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Abstract

Pharmaceutical R&D projects often have the characteristics of irreversibility on

investment, flexibility of investment timing, and uncertainty in cash flows. In this

thesis, the real options approach is used as the evaluation tool for these projects and

three continuous-time investment models are developed. In chapter 4, we discuss

the effects of the investment lag and commercialization flexibility on the investment

decisions under uncertainty. Chapter 5 examines which organizational structures,

the decentralized or centralized pharmaceutical R&D project, are more socially

desirable in terms of early investment and higher project value. Chapter 6 considers

whether adding a time constraint on the drug development process will increase the

investment incentives and how remuneration level will influence the quality of the

products, as well as the timing of commercialization.
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Chapter 1

Introduction

1.1 Motivation and the Problems Solved in the The-

sis

The pharmaceutical industry is an indispensable part of modern society since it

plays an important role in improving peoples’ health and the quality of their lives.

Researchers have exerted great efforts in solving many of the problems in the in-

dustry such as making policies to increase investment incentives for research and

development (R&D) projects in order to tackle the neglected diseases by setting rea-

sonable quality standards for drugs so that patients will benefit from its therapeutic

improvements. Meanwhile, investors would not be intimidated by the unattainable

quality level and reject the investment proposals. Although there are usually no

quick fixes to these problems, every effort towards perfection, no matter how small,

is important and so I am motivated to study, practice and help solve these problems.

This thesis will discuss the various problems concerning the different phases of

the R&D process. There are usually three essential phases before the launch of a

new drug: the discovery or pre-clinical phase, R&D, and commercialization. The

combination of the three phases of clinical trials is referred to as the R&D process.

In the discovery phase, animal testing is conducted and the results are crucial in
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determining whether they are safe enough for human testing. If sufficient evidence

suggests that the drugs are safe for human testing, a sequence of clinical trials will

begin. Usually, three phases of clinical trials will be conducted to make sure that the

new chemical entities (NCE) will advance to the new drug application stage where

the authority decides whether to approve the drug or not. Finally, if the product is

proven successful by the authority, the commercialization process starts and at this

stage, revenue is generated.

In chapter 4, this thesis will introduce the concept of commercialization flexibil-

ity. Commercialization flexibility allows the decision maker of any R&D project

to delay selling the drugs by the end of the R&D phase when they are approved.

On the other hand, if there is no commercialization flexibility, commercialization is

immediate, giving the decision maker no choice but to launch selling the products at

the approval date.

In an R&D project with commercialization flexibility, two decisions are con-

sidered: when to optimally start the R&D process and when to optimally start the

commercialization process. Both of these processes should be considered simul-

taneously; therefore, the decision maker’s problem can be viewed as a compound

option. However with projects with immediate commercialization, there is only

one decision to be made: when to optimally start the R&D process. This thesis

will discuss the effect that commercialization flexibility has on the projects that are

suitable for accelerated approval and priority review.

In 1992 and 2014, the US Food and Drug Administration (FDA) and Medicines &

Healthcare Products Regulatory Agency (MHRA) in the United Kingdom launched

the “FDA Accelerated Approval Program” and the “Early Access to Medicines

Scheme” (EAMS) respectively, to facilitate and expedite development and review

of new drugs, in order to address unmet medical needs in the treatments of any

serious or life threatening conditions. A serious disease or condition is defined in

the expanded access regulations as follows:

. . . a disease or condition associated with morbidity that has

substantial impact on day-to-day functioning. Short-lived and
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CHAPTER 1. INTRODUCTION

self-limiting morbidity will usually not be sufficient, but the

morbidity need not be irreversible if it is persistent or recurrent.

Whether a disease or condition is serious is a matter of clinical

judgment, based on its impact on such factors as survival,

day-to-day functioning, or the likelihood that the disease, if left

untreated, will progress from a less severe condition to a more

serious one.1 (Page.2)

Both programs aim to ensure the therapies of the above conditions are approved

and available to patients as soon as possible if the therapies’ benefits justify the

risks. However, from the perspective of the pharmaceutical companies, it is un-

clear whether immediate commercialization on the approval date is an optimal

strategy. Therefore, the influence that commercial flexibility will have on investment

incentives is worth discussing.

Before going deep into the problem, it is ideal to think of two possible scenarios.

The first is that commercialization flexibility is allowed and the decision maker

has the option to defer selling the products by the end of the R&D process. The

policy offers more flexible options that are favorable to the investors such that

investment incentives are increased and the projects will be started sooner. However,

the flexibility may also delay the commercialization process. The second scenario is

that commercialization flexibility is not allowed and pharmaceutical companies are

compelled to sell the products immediately on the approval date. This policy will

decrease the investment incentives so that projects will be started later. However,

since no commercialization flexibility is allowed, the products will be available to

the patients by the end of the R&D process.

In these two scenarios, it is not clear which project will allow patients to have

earlier access to the products. Moreover, it is controversial whether commercializa-

tion flexibility will always increase investment incentives and thus lead to earlier

investments under uncertainty since uncertainty allows the decision maker to wait

1http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation
/Guidances/UCM358301.pdf
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longer to avoid the risks and invest only if the conditions are favorable enough. This

type of event is usually considered as the “bad news principle”.

In this chapter, this thesis will discuss which project, with or without commercial-

ization flexibility, provides more investment incentives causing faster investments;

and whether commercialization flexibility will prolong or shorten the time that the

final products are launched in the market.

In chapter 5, this thesis considers how structural arrangements, private, public

or private-public partnerships for pharmaceutical R&D projects may address the

lack of investment issue on tackling Neglected Tropical Diseases (NTDs). Since

the main reason for lack of investments lies in the uncertainty of a future market,

public organizations could help ease the problem by signing the Advance Purchase

Commitments (APC) contract in a private-public partnership (PPP).

Is it possible to infer that the problem will be less severe if the government takes

more responsibilities? Dependent on the participation degree of the government in

the projects, free market is, at one extreme, where no public sectors are involved. A

social planner’s project, which is conducted solely by the government, is at the other

extreme. The project with private-public partnership or the decentralized project is

between the two extremes. This thesis will focus on the decentralized project and

the social planner’s project since free market does not provide a good solution to the

lack of investment problem.

In comparison of the projects, three problems are discussed. The first problem is

which project, when decisions are optimally made to maximize the project values,

will start sooner. For the products with the same required standards of quality, one

could expect that an earlier start of the project means a faster finish granting patients

earlier access to the potential treatments. To figure out the investment timing of both

projects, the optimal investment thresholds will be compared. A lower investment

threshold implies earlier investment timing.

Second, we analyze how remuneration levels can be used to adjust the standards

of quality of the products. Despite the importance of incentivizing pharmaceutical

companies to invest in drug developments and to start the project sooner, making
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CHAPTER 1. INTRODUCTION

sure that the products have a high standard of quality is also of great concern. In

this model, a noticeable difference between the decentralized project and the social

planner’s project is that the decentralized project is a game with two players, the

government and a pharmaceutical company, while in the social planner’s project, the

pharmaceutical company is not involved and only the government will be in charge

of the whole project. Thus the remuneration level will need to be considered in the

decentralized project while and not within the social planner’s project. In addition,

the remuneration is considered to be the revenue for the pharmaceutical company

but costs the government money in the decentralized project. Moreover, it is shown

that the remuneration level, which can be used as a great tool of adjustment, can

affect the optimal standard of quality. However, this is not feasible in the social

planner’s project.

Last, the value of the projects, under different managerial structures, is compared.

In the decentralized project, it is shown that even if remunerations are internalized

by adding the project values of the pharmaceutical company and the government, the

total value of the decentralized project is different from the social planner’s project.

The reason for this difference is that the optimal decisions made in the decentralized

project are constrained maximization problems, while the maximization problem is

unconstrained in the social planner’s project.

In chapter 6, this thesis discusses whether a time-constrained R&D project may

help further increase investment incentives in the projects that aim for NTDs in

the low-income countries. The purpose of the chapter is to discuss the effects that

time constraint will have on the investment incentives in the APC to deal with

NTDs. According to WIPO (2005), between 1975 and 2000, it is estimated that

only 10% of global R&D resources were directed at diseases accounting for 90%

of the global disease burden. Also, in this 25-year period, only 13 new drugs for

neglected diseases were approved for use. The primary reason for lack of investment

in fighting NTDs is that most of the patients who suffer from these diseases live

in low-income countries and the prices of treatments are not affordable to them.

In other words, their need for treatments can hardly be turned into demand with
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foreseeable profits. Hence it is understandable why few R&D projects are specific

to the diseases in these countries.

In addition, free markets alone do not provide with a solution so the involvements

of governments, NGOs and philanthropists are crucial since these non-profit driven

organizations can be relied upon to provide the market that the pharmaceutical

companies need. Among the numerous proposals for stimulating more research with

the participations of the above organizations, the Advance Purchase Commitments

(APC) contract is claimed to be one of the most effective approaches to increase the

incentives of the pharmaceutical companies since it guarantees a solid future market

with a legally binding contract (Kremer et al. (2005)).

The outline of the commitments is as follows:

(1) Define a technical specification of the potential product.

(2) Specify the price and quantity that makes the patients affordable and the manu-

facturers profitable with payments from sponsors.

(3) Manufacturers are obliged to keep providing further treatments at sustainable

prices afterwards.

Mostly, there are no constraints regarding when the products have to be finished.

The pharmaceutical companies will receive the payments from the sponsors as

long as the technical specification is met regardless of how long it takes. Thus the

companies do not have incentives to speed up investment. This is less of a problem

if the contract is a “winner-take-all” arrangement since companies will have to

compete to be the first producer so that they will be awarded. However, in practice,

the arrangement of multiple winners is more reasonable because it does not only

provide more incentives for manufacturers to join without competition, but it also

makes the coexistence of products with varying benefits and risks possible (Berndt

and Hurvitz (2005)).

Without setting a deadline of drug development in the contract, the pharmaceuti-

cal companies have less incentive to accelerate the developments that are crucial to

the patients in serious conditions. A natural solution will be to add a time constraint

in the contract specifying when the R&D process should be finished or the rewards
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CHAPTER 1. INTRODUCTION

will be reduced dramatically. In this case, the pharmaceutical companies may not

finish the projects on time if the projects are not started earlier, which will likely

increase their investment incentive. Thus the value of the project will also depend

on the time of expiration of the investment opportunity.

It is worth noting that although the thesis is pharmaceutical industry oriented, the

models developed in the three chapters are not only applicable to the R&D projects.

These models can be used to evaluate any R&D projects that are featured with either

the combination of compound options, investment lags and time constraint or with

these properties respectively. For instance, an irreversible R&D project to develop a

new type of car with both options to decide when to start the R&D process and the

flexibility on when to launch the sell of the cars can also be evaluated by using the

models in chapter 4.

1.2 The Real Options Approach and its Synergy with

Pharmaceutical R&D Projects

In standard economics theories, the rule of thumb to determine whether an invest-

ment is worth taking or not is to calculate the Net Present Value (NPV) of the

project. The investment proposal is acceptable if the project has a positive NPV, i.e.,

when the present value of the cash inflow is greater than the present value of the

cash outflow. The investment proposal is rejected if the NPV is negative. However,

The “NPV rule” does not fit every problem since an NPV calculation only uses

information that is known at the time of the appraisal. The decision maker is not

allowed to adjust to new information even if more choices are available in the future.

More specifically, if NPV calculation is used in the following conditions, the

project value will tend to be underestimated. First, the costs spent to start the project

are sunk costs and irreversible. Any improper decisions made can have tremendous

impacts on the profitability of these projects. Second, the investment decisions do

not have to be made right away. Decision makers then have the flexibility to wait
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while updating information and pay the sunk costs only if the situation is favorable

enough. Last, the cash flows are uncertain and subject to variations.

It is the “risk-adjusted expected NPV” and not the current NPV that matters.

Since the value of the project is affected by both the expected NPV and the discount-

ing effect of time, it is possible that the discount expected NPV of the project in the

future is positive while the current NPV is negative. Thus a rejected proposal by the

“NPV rule” can be accepted in the context of the real options theory and a project

with good potential can be saved. The reason that the NPV rule does not fit for the

pharmaceutical R&D projects is that most of these projects are endowed with the

above three properties: irreversibility, uncertainty and flexibility.

For irreversibility, according to DiMasi et al. (2016), it is estimated that the

average pre-tax cost of new drugs and biologics development is $2,870 million (2013

US dollars), which includes the costs of pre-human research, clinical studies and

post-approval research. Although it is common for certain projects to be abandoned

during each of the phases, most of the costs spent are irreversible once out of pocket.

Furthermore, various types of uncertainties exist in the industry. Among these,

technical uncertainties are the greatest one. O’Hagan and Farkas (2009) show that

the traditional approach to R&D, which relies on the number of “shots on goal”

hoping some lucky result will be obtained, is getting less effective.

The philosophy of this traditional approach is based on the idea that the company

will have a better chance to invent a profitable product with more attempts on drug

discovery. Also, the reason that taking “shots on goal” matters to R&D is while

many of the potential products look very promising in the lab, it is unclear whether

they will be translated into effective therapeutic treatments for patients. This typical

pattern of coming up with new products leads to great volatility in the expected

profits in the industry.

Besides, the uncertainties from the regulators setting new rules for the safety and

effectiveness of products, competitors coming into market with alternative brand or

generics and disgruntled shareholders also make it difficult to estimate the expected

payoffs.
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Lastly, because of the numerous uncertainties in the pharmaceutical industry,

investors have to think before they leap. Although competitors or shareholders may

sometimes exert pressures on earlier adoptions of the investment decision, decision

makers are usually provided with the flexibility to wait and keep on updating

information until it is optimal to start the R&D process. Because of irreversibility

and uncertainty, the value of flexibility can be high. The conclusions drawn on the

real options approach in terms of the evaluation and feasibility of projects can be

quite different from those using the NPV rule since the value of flexibility is not

taken into account in the latter approach. Hence, to make better investment decisions

on pharmaceutical R&D projects, the real options approach is chosen in the thesis.

1.3 Contributions

This thesis both contributes to the Health Technology Assessment (HTA) and the

Real Options literature. This thesis contributes to the HTA literature by providing

possible solutions to solve the lack of investment problem on NTDs in the developing

countries. Three models were developed to look at how investment decisions are

affected under different scenarios so that possible policies can be made to encourage

earlier investments. In each model, we discuss a specific potential policy, such as

offering commercialization flexibility after drug approval, altering the managerial

structure of the project and exerting time constraints on the development stage, that

will probably help ease the problem.

By comparing the benchmark models with the models that policies are im-

plemented, policy recommendations are provided. Moreover, since most of the

pharmaceutical R&D projects have the properties of irreversibility, uncertain cash

flows and flexible investment timing, the real options approach is used to estimate

the value of projects, the optimal investment and commercialization thresholds,

and the optimal quality standard of the products that the government sets. In the

HTA literature, the mostly widely used approaches to evaluate R&D projects are

net present value (NPV), expected net present value (ENPV) and discounted cash
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flows (DCF) (Hartmann and Hassan (2006)). Besides, the financial indicators such

as return on equity (ROE) and internal rate of return (IRR) are also considered.

However, these approaches are static analyses, which fails to capture the option

value and underestimates the project values. When the real options approach is used

to evaluate pharmaceutical R&D projects, the three properties mentioned above are

carefully taken into account. Thus it suits the evaluation of the pharmaceutical R&D

projects better.

This thesis also contributes to the Real Options literature. In chapter 4, it

models an R&D project, which combines a compound option with an investment

lag. Normally, when a compound option is exercised, the holder of the option will

get a new option immediately. However, when an investment lag is combined, the

holder no longer acquires the new option at the exercise date, but at the end of the

investment lag. Thus the lag makes the value of the new option a random variable at

the exercise date. The uncertainty of the value of the new option further complicates

the optimal investment decisions.

In chapter 5, this thesis assumes the value of the project is dependent on a

stochastic process that has different growth rates before and after the investment

taking place, which requires the consideration of different expected discount factors

in the optimal stopping problem. This makes the comparison of the project value

more difficult when the projects have different optimal investment timings.

In chapter 6, this thesis models the sudden success of a time-constrained R&D

project by a Poisson process. It is found that the intensity of the Poisson process

λ is of great importance in determining the optimal investment threshold in this

model, while λ is usually considered to be a less important parameter, which simply

enters the analysis through increasing the discount rates in other models ( Hsu and

Schwartz (2008)). The impression that the intensity only increases the discount

factor can be misleading in particular problems.

In chapters 4 and 5, it is assumed that the projects will be successful with

probability 1 and even if the project in chapter 6 has the possibility of failure, the

abandonment options are not considered in all the related chapters.
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In practice, the abandonment options are particularly crucial to the pharmaceu-

tical industry since the former promising product may result as unpromising as

more information is collected during the R&D process. The flexibility of aban-

donment enables the decision makers to minimize the losses even if the previous

investment decision was problematic. Nevertheless, as it has been shown in the real

options literature, the abandonment option will usually decrease the option value of

waiting since the project is no longer (partly) irreversible, which will often lead to

earlier investment. In order to focus on the problems that we are interested in, the

abandonment option is not considered during the R&D process in the thesis.
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Chapter 2

Literature Review

2.1 Real Options Literature

Following Myers (1977), it is quite natural to think of many investment problems

that feature irreversibility, flexibility and uncertainty as real options. According to

the classification of Trigeorgis (1993a), there are seven types of real options: to

defer, time to build, alter operation scale, abandon, switch, growth and multiple

interacting options.

Among all, one of the most common flexibilities on investment is the option to

defer. With this option, the decision maker does not have to make the investment

decision right away under uncertainty. Instead, he or she can wait while updating

information needed to execute and only kill the option when information is favorable

enough. Waiting implies both discounting and variation of the future NPV. Since

it is possible that the discounted future NPV is larger than the NPV of immediate

investment, the option to defer adds value to the whole project. This type of option

has been examined in many papers such as Tourinho (1979), McDonald and Siegel

(1986) and Majd and Pindyck (1987). Though different investment projects are

considered in these papers, the one thing in common is that the the option values are

proved to be crucial in calculating the values of these projects.
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Another option shown in this thesis is the compound option. Geske (1979) points

out that many opportunities have a sequential nature, where latter opportunities are

available only if earlier opportunities are undertaken. Also, in the paper of Geske

(1979), a theory is presented to price the option to acquire a latter opportunity which

depends on financial instruments. Similarly, Carr (1988) discussed a compound

option that the latter opportunities are options to exchange for other options. Both

papers use contingent claim analysis (CCA) to compute the option values. In chapter

5, we model a pharmaceutical R&D project that has both the options to defer R&D

and commercialization process. Moreover, the former option is the prerequisite

for having the latter one. Hence the project can be considered as a compound real

options. However, dynamic programing, instead of CCA, is used in calculating the

option and project values.

In Kulatilaka (1995), it is concluded that a project that has the following char-

acteristics will lead to time-to-build option values: (1) Investment decisions and

associated cash outlays occurring sequentially over time; (2) a maximum rate at

which outlays and construction can proceed, namely, it takes “time to build”; and

(3) a project yielding no cash returns until it is completed. In a sense, the models in

this thesis can be considered as simplified versions of time-to-build models.

First, it is assumed in the thesis that the R&D costs are paid as cost flows in

some projects. However, it is also assumed that no further decisions will be made

during the R&D process and the project will continue to proceed till the end of

it without abandonment options. Second, the projects take time to finish. But no

variables specifying the speed of construction or outlays are presented. Instead,

we either specify a fixed time or under certain rules, such as a jump in the quality

standard being reached, that the project will be finished. Thirdly, no revenues are

generated until the project is finished which conforms to the second characteristic

of a time-to-build model. The time difference between investment costs and payoffs

complicates the valuation of a project. On one hand, the payoffs will need to be

discounted back to the time when investment costs are paid. The problem of how

much value will be discounted is not always easy. On the other hand, uncertainty
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increases with time, hence the future expected NPV of projects is extremely volatile.

The combination of the two problems increases the difficulty of evaluations.

In real options literature, the duration of time between the start and completion

of a project is usually called the investment lag, 1 delivery lag or implementation

lag, which has been used to model construction delay in many papers. Alvarez and

Keppo (2002) considers a model of investment where investment lag is dependent

on the underlying stochastic process. They find that the impact of delivery lag on

investment is negative. In other words, an increase in the investment lag delays

investment. Sarkar and Zhang (2013) argues that the conventional result “increase

in uncertainty and investment lag should have inhibiting effect on investment” can

be reversed if the project has sufficient reversibility. Majd and Pindyck (1987) and

Pindyck (1993) discuss two models that take time to build where the firms can invest

at some maximum rate and abandon the projects in the mid stream. Thijssen (2015)

proposed a model that can be used to value especially large-scale infrastructure

projects, where the revenue process and construction process are possibly correlated.

The concept of investment lag has also been used in the models of this thesis, which

proves to have tremendous impacts on the project value and investment decisions.

Last, Trigeorgis (1993b) discussed the valuation of a project if multiple options

exist in the same project. The sum of each option individually could be different

from the combined option value, which is dependent on the option type, the degree

of overlap of exercise regions and the sequence of options, etc. Thus valuing each

option individually then summing the values will lead to the unreliable evaluation of

the project. In chapter 5, a project with interactive options is presented and we show

that the combined value of the options will further decrease if the project is run by

two parties instead of one decision maker. The reason of a smaller combined value

is due to the different goals of the two parties and that the exercise of one option

limits the optimal exercise of the other. Thus the maximization problems that the

two players solve are constrained.

1Investment lag was used by Bar-Ilan and Strange (1996), delivery lag was used by Alvarez and
Keppo (2002) and implementation lag was used by Sarkar and Zhang (2013). These terms can be
used interchangeably.
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2.2 Health Technology Assessment Literature

After showing the various types of real options models that are related to the

thesis, we next discuss the evaluation methods that are used by the majority in the

pharmaceutical industry and the reasons why real options theory is better suited for

evaluation of pharmaceutical R&D projects. In one word, the following evaluation

methods that will be introduced are static analysis while real options approach is

dynamic analysis.

Hartmann and Hassan (2006) present an in-depth analysis of collected empirical

data regarding the application of different valuation methods in the pharmaceutical

industry. Every pharmaceutical project can be considered as a series of sub-projects

and is composed of several nodes including discovery, pre-clinical, phase I, II and III

and approval. In each of these nodes, NPV/ENPV/DCF2 are the most widely used

methods for evaluation. The number of project managers who admit the adoption

of these methods in each phases ranging from 59% to 100%. Others methods such

as RoE/RoI/EVA3, IRR (Internal Rate of Return), scoring model and real options

analysis are also mentioned. But they are not as popular as NPV/ENPV/DCF.

Pandey (2003) discusses the pros and cons of evaluating a pharmaceutical R&D

project by using NPV and ENPV (a probability-adjusted version of DCF is ENPV).

It is argued that NPV is inferior since it assumes that decision makers are unable to

take further actions such as abandonments based on future information while ENPV

combines NPV and decision tree analyses by taking the probability distribution of

future outcome into consideration. Indeed, decision tree helps decision makers by

calculating the expected payoffs at every decision node so that better actions will be

taken.

However, in real options point of view, even if the abandonment option is given,

it does not necessarily need to be taken immediately. It is better to abandon the

project when the information is bad enough or there is little chance that the project

2The most widely used evaluation methods in the pharmaceutical industry: NPV (Net Present
Value), ENPV (Expected Net Present Value) and DCF (Discounted Cash Flow)

3Other evaluation methods in the pharmaceutical industry: ROE (Return on Equity), ROI (Return
on investment) and EVA (Economic Value Added)
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will be feasible anymore. At every decision node, ENPV computes the expected

payoff of the project, however, the option value is not taken into account. Thus the

project value is still underestimated. Neglecting the option values in the evaluation

of project will lead to false rejection of the investment proposal.

Moreover, decision tree analysis is based on discrete time models and it is

difficult for these models to capture the changes of NPV and option values for any

given time compared to continuous time models. In addition, discrete time models

can probably deal with problems on a case basis, but the lack of general results

makes it more difficult to do comparative statics in general cases. These problems

can be improved by using continuous time real options model.

ROE measures the profitability of a company by showing how much profits

it generates with the money that shareholders have invested. ROI is computed as

the difference of gain and cost from investment divided by cost of investment. It

measures the efficacy of an investment and represents in a percentage term. EVA

measures the value created that exceeds the required return from the company’s

shareholders and is computed as the net profit minus the opportunity cost of the

capital of a firm.

Although these financial indicators provides useful information for comparisons

between projects, they are static and not reliable for projects that have high volatility.

For instance, the ROE is low if a firm decides to sacrifice a large part of the present

earnings in change of a future earnings (Lesáková (2007)). But it does not necessarily

indicate that the profitability of the firm is low. Moreover, these ratios fail to capture

risks which lead to uncertainties. As a result, it is never recommended to treat these

ratios as the only knowledge required to make investment decisions. They will have

to be used in combination of other evaluation tools for better decision making.

IRR can be used to rank the multiple promising projects that a firm may want

to invest. Generally speaking, the higher the IRR, the more profitable the project.

However, in evaluation of the a pharmaceutical R&D project, the most difficult

problem is to estimate the cash flows accurately because of uncertainties. IRR, which

relies on the accurate approximation of cash flows, is a good measure on ranking
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projects if the cash flows are certain. Thus, similar to other financial indicators, it is

better used with combination of other evaluation methods that are able to estimate

the expected cash flows.

Henriksen and Traynor (1999) proposed a flexible R&D project-selection method

to rank R&D project alternatives, which relies on researcher-accepted peer review

in the form of a user-friendly questionnaire. It was designed to help the federal

research laboratory with funding selection. Although scoring models can be useful

for valuing projects with relative values, they are not able to measure project values

in absolute terms and thus comparative statics can hardly be applied. Moreover,

they fail to capture the dynamics of the whole project. For instance, it is difficult for

scoring models to explain how the project value changes in certain states and what

leads to these changes.

Finally, real options theory is recommended to evaluate pharmaceutical R&D

projects since most of these projects have the following properties: irreversibility of

investment costs, managerial flexibility and uncertainty in cash flows. Irreversibility

creates opportunity cost and value of waiting. Volatility of the project’s payoffs

makes managerial flexibility even more valuable. None of the above evaluation

methods mentioned capture these properties, which lead to unreliable evaluation of

project values.

It is not new to evaluate a pharmaceutical R&D project by using real options

theory. For instance, Schwartz and Moon (1996) discusses the evaluation of a

pharmaceutical R&D project when both cost and the completed value of the project

are uncertain. Hsu and Schwartz (2008) studies the problem of under-investment in

R&D for vaccines in the developing countries and the design of research incentives.

In the thesis, we use continuous time real options models to solve the evaluation

problems of the pharmaceutical R&D projects and provide with policy advices in

terms of how to incentivize earlier investments and improve the quality of products.
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2.3 Industrial Organization and Contract Theory Lit-

erature

The thesis is also related to the IO literature in that, in chapter 5, it analyzes how

different structural arrangements of an R&D project will lead to different optimal

investment threshold and optimal quality standard of the projects. The decentralized

R&D project, which is run together by the government and a pharmaceutical com-

pany, and the social planner’s project or the centralized project, are compared. This

is similar to the vertical control problem in the relationship of an “upstream firm”

and a “downstream firm” (Tirole (1988)).

However, there are some differences between the two frameworks. In this model,

the relationship between the government and some pharmaceutical company is con-

nected by an advance purchase commitments contract. The contract is proposed by

the government, which ensures that the pharmaceutical company will receive some

predetermined revenues once the requirements of the government are met. Thus

the government moves first by setting the quality standard and the pharmaceutical

company starts the R&D project next and keeps improving the quality of the product

until the quality standard is reached.

The government is similar to the role of the downstream firm since the govern-

ment first purchases the products from the pharmaceutical company and then sells

them to the consumers. In the IO literature, however, the upstream firm usually

moves first by selling the intermediate products to the downstream firms, and then to

the retailers (downstream firm). After transformation of the intermediate products,

the government sells the final products to consumers. Moreover, in terms of welfare

analysis, this thesis’ finding is similar to those in the IO literature, which shows that

the value of the integrated firm is higher, but for a different reason.

For instance, Spengler (1950) argues that a vertical structure is more profitable

under vertical integration than under a linear price since the monopoly profit of

the vertical structure is realized. In addition, the social welfare is increased due

to the elimination of the “double marginalization” problem. In this model, the
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effects of the prices and demands of the intermediate and final product are not

considered, the different projects’ values are only dependent on the quality of the

product. The reason for a higher value for the integrated project is because the

maximization problems that the government and the pharmaceutical company solve

are constrained, while the problem the social planner solves is unconstrained.

In addition, the relationship between the government and the pharmaceutical

company can also be considered as a variation of the principal-agent relationship in

the contract theory. The government can be viewed as the principal who maximizes

the patients’ welfare, while the pharmaceutical company is the agent, who maximizes

profits and agrees to produce medicines for the government. For the government, it

is better if the R&D project starts as soon as possible so that the quality of the drug

will be reached sooner and the patients will have earlier access to the new products.

However, it is the pharmaceutical company who determines when to start the

project. Because of uncertainty, starting the project as soon as possible is not always

the best strategy (real options analysis). The decision maker will often choose to

wait and invest when the conditions are favorable enough.

Although there is no asymmetric information in this model, the government is

not able to control the pharmaceutical company’s intention of earlier investment

due to uncertainty. The only thing that can be observed is the exact investment

timing because the different objectives of the two parties, the advance purchase

commitments contract, does not lead to the first-best outcome in terms of social

welfare.

This is similar to the moral hazard problem when the principal is not able to

observe the effort of the agent but only the outcomes (Bolton and Dewatripont

(2005)), though the outcomes are merely noisy signal of effort. Hence the principal

will need to incentivize the agent to exert more effort by designing an effective

managerial incentive schemes. Similarly, in our model, the government will also

need to incentivize the pharmaceutical company to start the project earlier by altering

the quality standard of the project or the remuneration level. More importantly, we
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show that uncertainty, like asymmetric information, will also lead to a sub-optimal

outcome in a two-parties contract.
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Chapter 3

Basic Tools from Real Options

Theory

3.1 Probability Spaces and Filtrations

In this chapter we review some basic concepts from probability theory and the basic

tools from the real options theory that have been used in the thesis.

To start with, the probability spaces are first defined, in which the stochastic

processes, expectations and probability measures that have been used in the thesis

are dependent on.

Definition 3.1.1 (Oksendal (2013)) If Ω is a given set, then a σ -algebra F on Ω is

a family F of subsets of Ω with the following properties:

(a) /0 ∈ F

(b) F ∈ F =⇒ Fc ∈ F , where Fc=Ω\F is the complement of F in Ω

(c) A1,A2... ∈ F =⇒ A :=
∞⋃

i=1
Ai ∈ F

The pair (Ω,F ) is called a measurable space. A probability measure P on a mea-

surable space (Ω,F ) is a function P : F −→ [0,1] such that

(a) P( /0) = 0,P(Ω) = 1

(b) if A1,A2... ∈ F and {Ai}∞
i=1 is disjoint (i.e. Ai ∩A j = /0 if i ̸= j) then
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P

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

Ai. (3.1)

The triple (Ω,F ,P) is called a probability space.

Definition 3.1.2 Given a measurable space (Ω,F ), a filtration is a sequence of

σ -algebras {Ft}t≥0 with Ft ⊆ F where each t is a non-negative real number and

t1 ≤ t2 =⇒ Ft1 ⊆ Ft2 .

The filtration at time t represents all the historical information available at time t.

3.2 Brownian Motion

The Brownian Motion is often used to develop models for a decision making process

in which action is taken when a threshold criterion level is reached. Moreover,

Brownian Motion acts as random part of the stochastic processes such as Arithmetic

Brownian Motion (ABM) and Geometric Brownian Motion (GBM), which are

widely used to model different uncertainties in the investment problems.

Definition 3.2.1 (Billingsley (1995)) A Brownian motion or Wiener process is a

stochastic process [Wt : t ≥ 0], on some (Ω,F ,P), with the three properties:

(a) The process starts at 0: P[W0 = 0] = 1.

(b) The increments are independent: If 0 ≤ t0 ≤ t1 ≤ ...≤ tk, then

P[Wti −Wti−1 ∈ Hi, i ≤ k] = ∏
i≤k

P[Wti −Wti−1 ∈ Hi]. (3.2)

(c) For 0 ≤ s < t the increment Wt −Ws is normally distributed with mean 0 and

variance t − s:

P[Wt −Ws ∈ H] =
1√

2π(t − s)

∫
H

e−x2/2(t−s)dx. (3.3)
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Note that the notation Wt is often interchangeable with Bt .

3.3 Ito Diffusions, Ito’s Lemma and Geometric Brow-

nian Motion (GBM)

Definition 3.3.1 (Thijssen (2013b)) The stochastic process (Yt)t≥0, where for each

t > 0 , is

Yt = y+
∫ t

0
µ(s,Ys)ds+

∫ t

0
σ(s,Ys)dBs, Y0 = y, Ps −a.s., (3.4)

and (Bt)t≥0 is a Brownian motion. Processes as in Equation 3.4 are called (Ito)

diffusions.

In differential notation we can write

dYt = µ(t,Yt)dt +σ(t,Y )dBt . (3.5)

An equation of the form (Equation 3.5) is also called a stochastic differential

equation (SDE), the function µ(·) is the trend and σ(·) is the volatility. If the trend

and volatility do not depend on t, the diffusion is time homogeneous.

Ito’s Lemma is of great importance in the Ito Calculus and it can be used to

compute the derivative of a time-dependent function of a stochastic process. It plays

the role of the chain rule in a stochastic setting, similar to the chain rule in ordinary

differential calculus. In the thesis, we model the uncertainty in the investment

problems by using stochastic processes that the NPV functions and the functions of

project values are dependent on. Ito’s Lemma can be used to calculate the change of

NPV or project values within an infinite small amount of time for any given time.

This is crucial in real options analysis since decision makers will need to compare
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the NPV and option value of waiting as time goes by, so that an optimal investment

decision can be made.

Definition 3.3.2 (Thijssen (2013b)) Ito’s Lemma. Let (Yt)t≥0 follow an Ito diffusion

and let Xt = g(t,Yt), with g being a twice continuously differentiable function. Then

dXt =
∂g(·)

∂ t
dt +

∂g(·)
∂Yt

dYt +
1
2

∂ 2g(·)
∂Y 2

t
dY 2

t

=

[
∂g(·)

∂ t
+

∂g(·)
∂Yt

µ(·)+ 1
2

∂ 2g(·)
∂Y 2

t
σ(·)2

]
dt +

∂g(·)
∂Yt

σ(·)dBt .

(3.6)

Geometric Brownian Motion is used in the thesis to model the uncertainties in

such as revenues and quality of drugs, which are assumed to be non-negative.

Definition 3.3.3 A Geometric Brownian Motion (GBM) Yt is the solution of an SDE

with linear drift and diffusion coefficients, i.e.

dYt = µYtdt +σYtdBt , (3.7)

with initial value Y0 = y.

3.4 Stopping Time

Definition 3.4.1 (Oksendal (2013)) Let Nt be an increasing family of σ -algebras

(of subsets of Ω). A function Ω → [0,∞] is called a (strict) stopping time w.r.t. Nt if

{ω;τ(ω)≤ t} ∈ Nt , f or all t ≥ 0. (3.8)

In other words, it should be possible to decide whether or not τ ≤ t has occurred on

the basis of the knowledge of Nt .

For instance, if a firm decides to invest as soon as some pre-determined threshold

(or “trigger”) Y ∗ is reached, then the (random) time at which investment takes place
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is the first hitting time

τ(Y ∗) = inf{t ≥ 0 | Yt ≥ Y ∗,Y0 = y}, (3.9)

which is a stopping time.

3.5 The Generator of a Diffusion and Dynkin’s For-

mula

Definition 3.5.1 (Oksendal (2013)) Let Yt be a (time-homogeneous) Ito diffusion in

Rn. The (infinitesimal) generator A of Yt is defined by

A f (y) = lim
t→0

Ey [ f (Yt)]− f (y)
t

; y ∈ Rn (3.10)

The set of functions f : Rn → R such that the limit exists at y is denoted by DA(y),

while DA denotes the set of functions for which the limit exists for all y ∈ Rn.

Another operator which is closely related to the generator A, but is more suitable in

many situations, is the characteristic operator of the diffusion process (Yt)t≥0. In

the thesis, Yt follows GBM, if there exists a function f ⊂C 2, the generator A is equal

to the characteristic operator which is denoted by L . Expand the characteristic

operator by using Ito’s Lemma, we have

AY = LY =
1
2

σ
2y2 ∂ 2

∂y2 +µy
∂

∂y
. (3.11)

The characteristic operator of a diffusion process can be used to compute the value

of waiting within an infinite small amount of time in the real options analysis.
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Definition 3.5.2 (Oksendal (2013)) Dynkin’s formula. Let f ∈ C 2
0 (R

n). Suppose τ

is a stopping time, Ey [τ]< ∞. Then

Ey [ f (Yτ)] = f (y)+Ey
[∫

τ

o
A f (Ys)ds

]
. (3.12)

Dynkin’s formula is used in the thesis to calculate the expected discount factor at the

optimal investment timing, when the underlying stochastic process (Yt)t≥0 follows

GBM.

(Thijssen (2013b))In the models, we will often need to compute Ey [e−ρτF(Yτ)],

for some stopping time τ and a discount rate ρ , where F is an increasing and concave

C 2 function.

Define the process (Xt)t≥0 by

Xt =

s+ t

Yt


and for any function g ∈ C 2 ([0,∞)×E), the generator of g equals

LX g =
∂g
∂ t

+
1
2

σ
2y2 ∂ 2g

∂y2 +µy
∂g
∂y

. (3.13)

It follows that for g(t,y) = e−ρtF(y) we get:

LX g =e−ρt
(

1
2

σ
2y2 ∂ 2F

∂y2 +µy
∂F
∂y

−ρF
)

=e−ρt (LY F −ρF) . (3.14)

Dynkin’s formula then gives

Ey
[
e−ρτF(Yτ)

]
= F(y)+Ey

[∫
τ

0
e−ρt (LY F(Yt)−ρF(Yt))dt

]
. (3.15)
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If LY F(Yt)−ρF(Yt) = 0 holds and ϕ(·) is known to be the general solution, the

expected discounted factor can be computed as

Ey
[
e−ρτ

]
=

ϕ(y)
ϕ(Yτ)

. (3.16)

It is worth noting that the above equation is not specific to Geometric Brownian

Motion (GBM), it is a generalized result which can be applied to any stochastic

processes. However, for other stochastic processes that are not GBM, one cannot

guarantee that ϕ(·), which solves the PDE in equation (3.13), has a closed form

solution. Thus the expected discount factor may not be computed. For GBM, the

functional form of the solution to equation (3.13) is known, which enables us to

further calculate the expected discount factor.

3.6 Markov Property and Strong Markov Property

Definition 3.6.1 (Oksendal (2013)) Markov property. Let f be a bounded Borel

function from Rn to R. Then, for t,h ≥ 0

Ex
[

f (Xt+h) | F
(m)
t

]
(ω)

= EXt(ω) [ f (Xh)] . (3.17)

Definition 3.6.2 (Oksendal (2013)) Strong Markov property. Let f be a bounded

Borel function on Rn, τ a stopping time w.r.t. F(m)
t , τ < ∞ a.s. Then

Ex
[

f (Xτ+h) | F
(m)
τ

]
= EXτ [ f (Xh)] for all h ≥ 0. (3.18)

The uncertainties of the investment problems in the thesis are modeled by GBM.

Moreover, GBM is Markovian which satisfies the above two properties which makes

the computation much easier. For instance, if the decision maker, at time s > 0,

wants to compute the expected project value at time t > s, because of the Markovian
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property of GBM, the decision maker may treat time t as the new start and compute

the project value at time t then discount it back to time s.

3.7 Law of Iterated Expectation

Definition 3.7.1 (Billingsley (1995)) If X is integrable and the σ -fields G1 and G2

satisfy G1 ⊂ G2, then

E[E[X | G2] | G1] = E[X | G1] (3.19)

3.8 Poisson Process

Let (T0,T1, ...) be a strictly increasing sequence of stopping times, in a sense that

for any i, j ∈ N with i < j, Ti < Tj a.s., with T0 = 0. Define the indicator function

1{t≥Tn} =


1 i f t ≥ Tn(ω)

0 i f t < Tn(ω).

(3.20)

Definition 3.8.1 (Thijssen (2013b)) The counting process associated with the se-

quence (T0,T1, ...) is the process (Nt)t≥0 defined by Nt = ∑n≥0 1{t≥Tn}. Note that

(Nt)t≥0 takes values in {0,1,2, ...}. Let T := supTn. We say that (Nt)t≥0 is a

counting process without explosions if T = ∞, P-a.s.

Definition 3.8.2 A counting process without explosions is a Poisson process if

(1) Nt −Ns is independent of Ns, for all s < t;

(2) for any s < t and u < v, with t − s = v−u it holds that Nt −Ns and Nv−Nu have

the same distribution.

The Poisson process is used to model the sudden success of the pharmaceutical

R&D project in chapter 6.
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Chapter 4

The Effect of Commercialization

Flexibility and Investment Lag on

Pharmaceutical Investment

Decisions under Uncertainty

4.1 Abstract

This chapter studies the evaluation of irreversible pharmaceutical R&D projects

and optimal exercise of the options to defer investment and commercialization

in the presence of stochastic payoffs and investment lag. Two pharmaceutical

R&D projects, with and without commercialization flexibility, are analyzed and

compared. The project with commercialization flexibility is modeled as a compound

option, which is composed of an option to defer starting the R&D process and an

option to defer commercialization, with the investment lag in the R&D process.

Thus the revenues are not necessarily generated after construction being finished,

which is usually assumed in the literature. We find that, although a project with

commercialization flexibility has a higher project value, it does not provide with
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more investment incentives when uncertainty is high. In addition, the fast approval

policy is more effective in terms of shortening the time for new drugs to be on the

market only when uncertainty is low.

4.2 Introduction

The development of modern medical science has helped to cure many diseases that

were once considered as “the incurables” such as Smallpox and the Black Death.

However, when facing diseases such as cancer, AIDS and Avian flu, which have

been claiming thousands of lives, we still strive to develop new technologies and

look for better solutions. One of the approaches that have been discussed widely

in the literature on how to satisfy the clinical needs for these patients earlier is by

shortening the approval process.

In 1992, the US Food and Drug Administration (FDA) initiated the FDA Accel-

erated Approval Program to allow faster approval of drugs for serious conditions that

fill an unmet medical need.1 In April 2014, the Medicines and Healthcare products

Regulatory Agency (MHRA) in the UK launched the Early Access to Medicines

Scheme (EAMS) in order to give patients with life threatening or seriously debilitat-

ing conditions access to medicines that do not yet have a marketing authorization

and where there are no suitable alternative licensed treatments.2

However, from the perspective of a pharmaceutical company who provides

profitability, is it an optimal strategy to launch and start selling the new drug as soon

as the products are approved? By looking at the top 10 blockbuster drugs launched

in US from 2010-2013, it is found that half of the pharmaceutical companies (8/18)

chose to launch the new drugs as soon as their products were approved3, while the

other half of the companies (7/18) delayed the launch, including Lipitor and Plavix,

1http://www.fda.gov/Drugs/ResourcesForYou/HealthProfessionals/ucm313768.htm
2http://www.mhra.gov.uk/Howweregulate/Innovation/EarlyaccesstomedicinesschemeEAMS/index.htm
3The time between approval and launch is less than a month. The approval dates are collected

from FDA’s website http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm and the start
dates of drugs are collected by the annual reports of each pharmaceutical companies that produced
them. Among all the drugs, the launch dates of 3/18 drugs cannot be found
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of which sales ranked 1 and 2 in 2010. In this chapter, we explain the behaviors of

the companies by using real options theory to model a pharmaceutical investment

and commercialized decision.

Following Myers (1977), it is quite natural to think of many investment problems

that feature irreversibility, flexibility and uncertainty as real options. Many R&D

projects can be fitted in this framework since they exhibit these features. First, the

cost spent on developing a drug is usually high and irreversible since it will not be

recovered if the research turns out to be a failure or the project is abandoned. Second,

most of the decisions do not have to be made abruptly. Waiting to decide while

collecting useful information will be a better choice. Last, the payoffs of projects

are usually full of uncertainties in that the price and demand of drugs are usually

not known ex ante. Because of these features, initiating the project at different time

will lead to huge differences on the potential profits.

The evaluation of a pharmaceutical R&D project by using real options theory

is not new in the literature. For instance, Schwartz and Moon (1996) discuss the

evaluation of a pharmaceutical R&D project when both cost and the completed

value of the project are uncertain. Hsu and Schwartz (2008) studies the problem of

under-investment in R&D for vaccines in the developing countries and the design of

research incentives.

An additional feature for many pharmaceutical R&D projects is that it often

takes a long time, 8-14 years average, to complete the R&D process before approval

and commercialization (DiMasi et al. 2003). In real options literature, the duration

of time between the start and completion of a project is called the investment lag,

delivery lag or implementation lag 4, which has been used to model construction

delays in many papers. Alvarez and Keppo (2002) consider a model of investment

where investment lag is dependent on the underlying stochastic process. They

find that the impact of delivery lag on investment is negative. In other words, an

increase in the investment lag delays investment. Sarkar and Zhang (2013) argue

4Investment lag was used by Bar-Ilan and Strange (1996), delivery lag was used by Alvarez and
Keppo (2002) and implementation lag was used by Sarkar and Zhang (2013). These terms can be
used interchangeably.
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that the conventional result “increase in uncertainty and investment lag should

have inhibiting effect on investment” can be reversed if the project has sufficient

reversibility. Majd and Pindyck (1987) and Pindyck (1993) discuss two models that

take time to build where the firms can invest at some maximum rate and abandon the

projects in the mid stream. The difference is the former paper introduce uncertainty

in the value of the completed project where the latter in the cost. Thijssen (2015)

proposed a model that can be used to value especially large-scale infrastructure

projects, where the revenue process and construction process are possibly correlated.

However, the decisions in the papers mentioned above are either “once-and-for-

all” type decisions (see Alvarez and Keppo (2002)) or composed of the abandonment

options in the mid stream or at the completion of the projects. Moreover, these papers

assume that the revenues or the salvage value will be generated at the completion of

the project (see Sarkar and Zhang 2013).

In this chapter, we model an R&D project with investment lag and commercial-

ization flexibility. Thus the revenues are not necessarily generated as soon as the

R&D process is completed. The payoffs of the project are modeled by a stochastic

process (Yt)t≥0 that follows Geometric Brownian Motion (GBM). Dependent on

the value of the stochastic process at the end of the R&D process, the decision

maker will consider whether to start commercialization immediately or delay it. If

commercialization is delayed, the revenues will also be generated later.

Since starting the R&D process is a prerequisite of acquiring the option to

launch the products afterwards, the decision maker’s problem can be considered

as a compound option. Methodologically, the major contribution of this chapter is

to model an R&D project by combining a compound option with investment lag.

The combination of the two problems further increases the difficulty of making

an optimal investment decision under uncertainty since the expected NPV of the

project are influenced in both directions. First, the investment lag will increase

the discounting on future payoffs, which reduces the NPV of the project. A lower

NPV will lead to a higher investment threshold. Second, the investment lag will

have effects on the probability that the commercialization process will take place,
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which may increase the NPV of the project and lead to a lower investment threshold.

Last, an increase in the investment lag will increase the option value of waiting

if the volatility of the stochastic process (Yt)t≥0 is high which will lead to a high

investment threshold. Hence the effect of investment lag on option value is not clear.

The interactions of these effects make the evaluation of a project more difficult.

There are three major findings of this chapter. First, the project with commercial-

ization flexibility performs better when uncertainty is low since both the probabilities

of investment and commercialization taking place are higher. Second, the project

without commercialization flexibility is better in terms of sooner investment and

commercialization when uncertainty is high. Last, fast approval, which is modeled

by shortening the investment lag, is a better policy when uncertainty is low.

The remainder of the chapter is organized as follows. Section 4.3 introduces the

model without commercialization flexibility. Section 4.4 discusses the model with

commercialization flexibility. In section 4.5, the two projects are compared. Section

4.6 considers policy implications. Finally, section 4.7 concludes the chapter.

4.3 The Project with Immediate Commercialization

It is worth noting that the following model and results are not new in the real options

literature. They serve as benchmarks in order to compare with the model and results

in section 4.4. The model can be considered as a simplified version of the model

of Alvarez and Keppo (2002), when the sunk cost is paid when the investment

takes place and when the investment lag is a known constant instead of a function

dependent on the underlying stochastic process.

Consider a pharmaceutical company that is provided with the opportunity to

invest in a drug development project with uncertain revenues. The first, R&D, phase

of the project, starts when the cost flow CR commences. The second, commercializa-

tion, phase of the project, starts when the new drug is approved, which we assume

happens after a known, fixed time T ∗. As soon as the drug is approved and ready to
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launch, the company will start selling it immediately by paying a sunk cost Ic > 0

with revenues being generated at this point.

The time line of the project is as follows

0

Now

t

Cost incurred.

R&D starts

t +T ∗

New drug approved.

Commercialization starts

R&D process

Uncertainty in revenues is represented by a stochastic process (Yt)t≥0, which

follows a geometric Brownian motion

dYt = µYtdt +σYtdBt , (4.1)

where (Bt)t≥0 is a Wiener process. We assume that the initial value is known with

Y0 = y. The probability measure over the sample paths of (Yt)t≥0 is denoted by Py.

It is assumed that the decision maker is risk neutral and ρ > 0 is the discount rate.

When the new drug is available to sell at the end of the R&D process, the decision

maker will start the commercialization process immediately by paying a sunk cost

Ic in return for a stream of revenues. The expected profit of commercialization is

Fc(y) = Ey

(∫
∞

0
e−ρtYtdt

)
− Ic

=
y

ρ −µ
− Ic, (4.2)

where Ey is the expectation operator under the probability measure Py. In addition,

we assume that ρ > µ , to ensure finiteness of Fc(y). To simplify the problem, we

also assume the operating cost of commercialization process is 0. However, the

following results will not lose generality if operating cost is added since it can be

considered as part of the sunk cost.

At time 0, the problem of the decision maker is to find the optimal stopping

time τ1 to start the project. Since Fc(Yt+T ∗) is a random variable at time t, the
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problem faced by the decision maker is to optimally stop the expected profit of

commercialization EYt [Fc(Yt+T ∗)], net of R&D costs. That is, the decision maker

needs to solve the optimal stopping problem

G(y) =sup
τ1

Ey

[
−
∫

τ1+T ∗

τ1

e−ρtCRdt + e−ρ(τ1+T ∗)

(
Yτ1+T ∗

ρ −µ
− Ic

)]
=sup

τ1

Ey

{
e−ρτ1

[
e−ρT ∗

EYτ1

[
Yτ1+T ∗

ρ −µ
− Ic

]
− cR(1− e−ρT ∗

)

ρ

]}

≡sup
τ1

Ey
[
e−ρτ1g(Yτ1)

]
, (4.3)

where

g(y) =
ye−(ρ−µ)T ∗

ρ −µ
− Ice−ρT ∗

− cR(1− e−ρT ∗
)

ρ
. (4.4)

As is well-known, for this type of problem, the optimal stopping time takes

the form of the first hitting time of some threshold Y ∗, i.e., τ(Y ∗) = inf{t ≥ 0 |

Yt ≥ Y ∗,Y0 = y}. (Basically, because of the Markovian nature of the process and

monotonicity of g in y.) In addition, the space [0,∞] can be divided into two regions

by the critical value Y ∗. In [0,Y ∗), continuation (waiting) is optimal since the value

of investing immediately is less than the value of waiting. In [Y ∗,∞], termination

(invest immediately) is optimal since the value of investing immediately exceeds

the value of waiting. Hence [0,Y ∗) is called the continuation region while [Y ∗,∞] is

called the stopping region (Dixit and Pindyck (1994)). Thus, instead of solving the

optimal stopping problem in equation 4.3, we can compute the optimal investment

threshold Y ∗ by rewriting the problem above as

G(y) = sup
Y ∗

Ey

[
e−ρτ1(Y ∗)g(Yτ1(Y ∗))

]
= sup

Y ∗
Ey

[
e−ρτ1(Y ∗)

]
g(Y ∗). (4.5)
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The characteristic operator of the process (Yt)t≥0 is

LY =
1
2

σ
2y2 ∂ 2

∂y2 +µy
∂

∂y
. (4.6)

Since the Bellman equation holds in the continuation region, i.e., LY G = ρG.

By substituting the expression of the characteristic operator and rearranging, we

have

1
2

σ
2y2 ∂ 2G

∂y2 +µy
∂G
∂y

−ρG = 0, (4.7)

of which the general solution is of the form

G(y) = Ayβ1 +Byβ2, (4.8)

where β1 > 1 and β2 < 0 are the two roots of the quadratic equation

Q(β ) =
1
2

σ
2
β (β −1)+µβ −ρ = 0. (4.9)

The boundary condition G(0) = 0 is satisfied only if B = 0. Thus the general

solution of the value function is reduced to be G(y) = Ayβ1 on (0,Y ∗).

By using Dynkin’s formula (Oksendal (2013)), the expected discount factor is

Ey

[
e−ρτ(Y ∗)

]
=

G(y)
G(Y ∗)

=
( y

Y ∗

)β1
. (4.10)

The optimal investment threshold Y ∗ can be obtained by substituting the expected

discount factor Ey

[
e−ρτ(Y ∗)

]
in equation 4.10 with the result in Equation 4.5 and

taking the first order derivatives of the value function G(y) with respect to Y ∗

G(Y ∗)g′(Y ∗) = G′(Y ∗)g(Y ∗), (4.11)
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and

Y ∗ =
β1

β1 −1
(ρ −µ)e(ρ−µ)T ∗

(
Ice−ρT ∗

+
cR(1− e−ρT ∗

)

ρ

)
. (4.12)

In particular, if there is no investment lag, i.e., T ∗ = 0,

Y ∗ =
β1

β1 −1
(ρ −µ)Ic, (4.13)

which is the standard investment threshold in Dixit and Pindyck (1994).

Dependent on the current value of y, the value of the project is

G(y) =


( y

Y ∗
)β1

(
Y ∗e−(ρ−µ)T∗

ρ−µ
− Ice−ρT ∗ − cR(1−e−ρT∗)

ρ

)
i f y < Y ∗

ye−(ρ−µ)T∗

ρ−µ
− Ice−ρT ∗ − cR(1−e−ρT∗)

ρ
i f y ≥ Y ∗.

(4.14)

The value of the project with immediately commercialization at any point in

time is dependent on the value of the stochastic process (Yt)t≥0, which represents the

revenue of the product at that time. If the project’s revenue is less than the optimal

investment threshold Y ∗, the best strategy is to wait and only pay the sunk cost as

soon as Y ∗ is reached. If the project’s revenue is greater or equal to the optimal

investment threshold Y ∗, the best strategy is to invest and start the R&D process

immediately.

4.4 The Project with Commercialization Flexibility

In section 4.3, we discussed a project assuming that the pharmaceutical company

starts commercialization immediately after the R&D process finishes. Now, we

relax this assumption by providing commercialization flexibility at the approval date

so that the decision maker is allowed to delay commercialization. In this case, two

decisions will need to be made by the decision maker, which are the optimal time (i)

to start the project and (ii) to commence commercialization.
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By offering the commercialization flexibility, the time line of the project is as

follows:

0

Now

tR

Cost incurred.

R&D starts

tR +T ∗

Drug approved.

Commercializa-

tion may start or

not

tR +T ∗+ tc

commercialization

may start

here

R&D process Flexibility

The problem of the decision maker now is to maximize the expected discounted

net present value of the project when she has both the option to defer the decision of

investment and the option to defer commercialization. The problem can be solved

by backwards induction.

Suppose that the R&D process is finished and that the new drug is ready for

commercialization, the expected revenues net of associated sunk costs of the com-

mercialization process is

Fc(y) := Ey

(∫
∞

0
e−ρtYtdt − Ic

)
=

y
ρ −µ

− Ic. (4.15)

The value of the commercialization process is determined by the solution to the

associated optimal stopping problem. As in the previous section, the optimal policy

is of the threshold type, so that we can write

F∗
c (y) := sup

τ

Ey
[
e−ρτF(Yτ)

]
= sup

Y ∗
c

Ey

[
e−ρτ(Y ∗

c )F(Yτ(Y ∗
c )
)
]

= sup
Y ∗

c

Ey

[
e−ρτ(Y ∗

c )
]

F(Y ∗
c ). (4.16)
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Following the same approach as in section 4.3, we are able to compute the

threshold for commercialization as

Y ∗
c =

β1

β1 −1
(ρ −µ)Ic. (4.17)

The value function of the commercialization option is

F∗
c (y) =


( y

Y ∗
c

)β1
( Y ∗

c
ρ−µ

− Ic
)

i f y < Y ∗
c

y
ρ−µ

− Ic i f y ≥ Y ∗
c .

(4.18)

In what follows, the two terms
(

y
Y ∗

c

)β1
(

Y ∗
c

ρ−µ
− Ic

)
and y

ρ−µ
− Ic in the value

function above will be used frequently. For simplicity, define C(y;Y ∗
c )=

( y
Y ∗

c

)β1
( Y ∗

c
ρ−µ

−

Ic
)

and D(y) = y
ρ−µ

− Ic. If R&D starts at time t, then, Yt+T ∗ is a random variable

that is not Ft measurable. In other words, the exact values of C(Yt+T ∗ ;Y ∗
c ), D(Yt+T ∗)

and F∗
c (Yt+T ∗) are unknown with the information up to time t. So, to evaluate the

option to invest in R&D, the decision maker must rely on the conditional expecta-

tions EYt

(
C(Yt+T ∗;Y ∗

c )|Yt+T ∗ < Y ∗
c
)
, EYt

(
D(Yt+T ∗)|Yt+T ∗ ≥ Y ∗

c
)

and EYt [F
∗
c (Yt+T ∗)],

which are given by

Lemma 4.1

EYt

(
C(Yt+T ∗;Y ∗

c )|Yt+T ∗ < Y ∗
c
)
= (Yt)

β1e[µβ1+
1
2 σ2β1(β1−1)]T ∗

(Y ∗
c )

−β1

(
Y ∗

c
ρ −µ

− Ic

)
(4.19)

and

EYt

(
D(Yt+T ∗)|Yt+T ∗ ≥ Y ∗

c
)
=

YteµT ∗

ρ −µ
− Ic. (4.20)
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Since F∗
c (Yt+T ∗) is a random variable at time t, by the law of total expectation,

the expected value is

EYt [F
∗
c (Yt+T ∗)] = [EYt (C(Yt+T ∗;Y ∗

c )|Yt+T ∗ < Y ∗
c )]PYt (Yt+T ∗ < Y ∗

c )

+ [EYt (D(Yt+T ∗)|Yt+T ∗ ≥ Y ∗
c )]PYt (Yt+T ∗ ≥ Y ∗

c ). (4.21)

The two probabilities PYt (Yt+T ∗ < Y ∗
c ) and PYt (Yt+T ∗ ≥ Y ∗

c ) in the above equa-

tions are

PYt (Yt+T ∗ < Y ∗
c ) = PYt (

log(Yt+T∗
Yt

)− (µ − 1
2σ2)T ∗

σ
√

T ∗ <
log(Y ∗

c
Yt
)− (µ − 1

2σ2)T ∗

σ
√

T ∗ )

(4.22)

and

PYt (Yt+T ∗ ≥ Y ∗
c ) = 1−PYt (Yt+T ∗ < Y ∗

c ). (4.23)

See proof of the lemma in the Appendix.

After computing the expected NPV of the commercialization process, the deci-

sion maker needs to find the optimal time to start the R&D process. The correspond-

ing optimal stopping problem is

F∗
R (y) = sup

τ1

Ey

{
e−ρτ1

[
e−ρT ∗

EYτ1
[F∗

c (Yτ1+T ∗)]− cR(1− e−ρT ∗
)

ρ

]}

≡ sup
τ1

Ey
[
e−ρτ1 fR(Yτ1)

]
, (4.24)
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where

fR(Yτ1) = e−ρT ∗
[
EYτ1

(C(Yτ1+T ∗;Y ∗
c |Yτ1+T ∗ < Y ∗

c )PYτ1
(Yτ1+T ∗ < Y ∗

c )

+EYτ1
(D(Yτ1+T ∗|Yτ1+T ∗ ≥ Y ∗

c )PYτ1
(Yτ1+T ∗ ≥ Y ∗

c )
]
− cR(1− e−ρT ∗

)

ρ
.

(4.25)

The above problem is closely related to the one proposed by Alvarez and Keppo

(2002). In their model, the investment lag T ∗ is assumed to be a function of the

revenue process, and payoffs are received at the end of the lag. While the investment

lag is an exogenously given constant in our problem and the project is considered

as a compound option because of commercialization flexibility. To maximize the

value of the project, both investment and commercialization decisions will need to

be taken into account simultaneously.

Conjecture 4.1 There exists a unique investment threshold Ŷ that maximizes the

value of the project with commercialization flexibility. This threshold Ŷ satisfies

F∗
R (Ŷ ) f ′R(Ŷ ) = (F∗

R (Ŷ ))
′ fR(Ŷ ). (4.26)

To prove the existence and uniqueness in the above conjecture, the sign of “ f ′(y)”

(see equation (4.41) in the Appendix) must be determined. The first and second order

derivatives of the NPV function for the project that has commercialization flexibility

(equation (4.25)) with respect to “y” are the keys to determine the sign. However, due

to the complicated functional form of the NPV function, it is impossible to calculate

these derivatives. The existence of the investment threshold in the conjecture is based

on numerical methods and the uniqueness is based on induction. (see Appendix)
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4.5 Comparison of Projects with and without Com-

mercialization Flexibility

Four problems are focused on during the comparisons. First, we discuss how in-

vestment thresholds in each project vary with uncertainty σ for different investment

lags. Second, we compare how investment thresholds of the two projects vary with

uncertainty σ for the same investment lag. Third, to find out which project provides

pharmaceutical companies with more incentives to start the R&D process earlier,

we compute the probabilities of investments taking place within T years for the two

projects. Last, to find out when the products will be available on the market, we

calculate the probabilities that commercialization will start at the end of the R&D

process.

Figure 4.1 shows how investment thresholds in each project vary with uncertainty

for different investment lags. We first compare the investment thresholds within

each project.
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(a) Without commercialization flexibility (b) With commercialization flexibility

Fig. 4.1 Comparison for the investment thresholds Y ∗ and Ŷ vary with respect to
uncertainty σ for different investment lags for each projects. Ŷ and Y ∗ represent the
investment thresholds of the project with and without commercialization flexibility
respectively. The parameter values are: the discount rate ρ = 0.05, the growth rate
µ = 0.03, the sunk cost for commercialization Ic = 0.5, the cost flows per period
during the R&D process cR = 0.05, the uncertainty σ ranges from 0.001 to 0.9 and
the investment lag T ∗ ranges from 5 to 15.
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In figure 4.1 (a) and (b) respectively, we notice that the investment thresholds

with larger investment lag always dominate the one with smaller investment lag.

Intuitively, there are two reasons. First, since it is assumed the costs of the project

are paid per period, a larger investment lag or longer R&D process ends up with

higher overall costs which reduces the NPV of the investment. In this case, a higher

investment threshold is needed to ensure a positive NPV of the project. Moreover,

future revenues will be discounted more heavily with a larger investment lag in

both projects, which also reduces the NPV of the investments. Second, a higher

investment lag T ∗ leads to higher uncertainty in the value of Yt at the time of

approval. For the project with commercialization flexibility, the option value of

commercialization process also increases with higher uncertainty. Both the decrease

of NPV and the increase in the option value contribute to a higher investment

threshold.

Next, this thesis addresses the second problem by comparing the evolution of

investment thresholds between projects in Figure 4.2. In figure (A), the investment

threshold of the project with commercialization flexibility is strictly below the other

one when the investment lag is 5 years. However, as the investment lag T ∗ increases

from 5 to 7 years, as shown in figure (B), the two thresholds cross out each other

when σ is between 0.8 and 0.9. In figure (C) and figure (D), as T ∗ further increases,

the thresholds cross out even sooner when σ is between 0.6 and 0.7.

Before discussing why the thresholds vary in this way, three facts need to be

mentioned. (1) The NPV of the project with commercialization flexibility is always

greater or equal to the NPV of the project without commercialization flexibility. (2)

There are two options in the project with commercialization flexibility, which are

the option to defer investment, and the option to defer commercialization; but there

is only one option in the project without commercialization flexibility, which is to

defer investment. (3) The increase in the uncertainty σ will not influence the NPV

of the project with immediate commercialization, while it has effects on the NPV

of the project that has commercialization flexibility, since the expected revenues
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are only dependent on the growth rate of the stochastic process due to the fact that

EYt (Yt+T ∗) = YteµT ∗
.
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Ŷ
,
Y

∗

 

 

Ŷ
Y

∗

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

σ
Ŷ
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Fig. 4.2 Comparison for the investment thresholds for different projects with dif-
ferent investment lags. Ŷ and Y ∗ represent the investment thresholds of the project
with and without commercialization flexibility respectively. The parameter values
are: the discount rate ρ = 0.05, the growth rate µ = 0.03, the sunk cost for commer-
cialization Ic = 0.5, the cost flows per period during the R&D process cR = 0.05,
the uncertainties σ range from 0.001 to 0.9 and the investment lag T ∗ range from 5
to 15.

Three conclusions can be drawn from the above facts. The first conclusion is

when uncertainty σ = 0, the investment thresholds of both projects are equal. In this

case, the commercialization flexibility does not provide with additional value to the

project since the expected value of the commercialization process at the approval

date is certain. Without uncertainty, the only choice that the investor has is to start

the commercialization process right after approval without further delay. Hence the
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optimal investment strategy is to invest when NPV>0 since further waiting will only

lead to lower overall NPV due to the assumption of r > µ .

The second conclusion is when the investment lag T ∗ is small and as uncertainty

σ goes up, the investment threshold of the project that has commercialization flexi-

bility Ŷ increases slower than the threshold of the project without commercialization

flexibility. For the project without commercialization flexibility, the increase in σ

leads to higher option value while the expected NPV of the project stays the same.

Thus the investment threshold of the project goes up.

For the project with commercialization flexibility, an increase in σ does not

only increase the value of waiting before investment due to higher volatility of

the underlying stochastic process, but also because of the increased NPV of the

commercialization process since uncertainty makes the commercialization flexibility

valuable. However, since the investment lag T ∗ is low, for the same length of waiting,

for example, Tw years, as σ goes up, the option value increases slower than NPV

because the option value of waiting is based on the value of Yt on time Tw +T ∗.

More specifically, when T ∗ is much lower than Tw, as σ goes up, the gain from the

option value is relatively lower. Since NPV increases faster while the option value

increases slower, the investment threshold goes up slower than the one of the project

without commercialization flexibility.

The third conclusion is the investment threshold of the project that has com-

mercialization flexibility Ŷ increases faster as uncertainty σ goes up with higher

investment lag T ∗. This conclusion also results from the balance of the NPV and

the option value. For the project with immediate commercialization, an increase in

σ will increase the option value of investment, which is the same as it is when T ∗

is small. For the other project, a higher T ∗ will increase the volatility of Yt at the

approval date, thus the option value of commercialization process also increases. As

σ goes up, on one hand, the NPV of the project increases. On the other hand, the

option value also increases but it increases faster than the NPV of the project. The

reason is, when T ∗ is larger, for the same length of waiting, for example, Tw years,

as σ goes up, the volatility of Yt which is based on time Tw +T ∗, is much higher.
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When T ∗ is much higher than Tw, as σ goes up, the gain from the option value is also

higher. Since the option value increases faster than NPV, the investment threshold

goes up faster than the one of the project without commercialization flexibility.

The third problem that we discuss is which project provides investors with more

incentives to start the R&D process earlier. This can be done by either comparing

the value of the investment thresholds of the two projects, or more intuitively, by

computing the probabilities of investment taking place within a certain amount of

time.

Letting µ̄ = µ − 1
2σ2, the probability that Y ∗ is reached within T period equals

(Harrison, 1985)

Py

(
sup

0≤t≤T
Yt ≥ Y ∗

)
= Φ

− log
(

Y ∗

y

)
+ µ̄T

σ
√

T

+

(
Y ∗

y

) 2µ̄

σ2

Φ

− log
(

Y ∗

y

)
− µ̄T

σ
√

T

 ,

(4.27)

where Φ(·) is the cumulative distribution function of the standard normal distribution

and y the initial value of the process (Yt)t≥0.

For a given volatility, lower investment thresholds are equivalent to earlier

investments taking place within certain period. The numerical results show that

when σ ranges from 0.2 to 0.6, the project with commercialization flexibility

has a higher probability of starting the project than the project with immediate

commercialization. However, when σ ranges from 0.7 to 0.9, the values of the two

probabilities are reversed.

Lastly, we discuss the probability of the commercialization process taking place

by the end of the R&D process. For the project without commercialization flexibility,

the probability that the commercialization starts at the end of the R&D process is 1.

For the project with commercialization flexibility, we simulate 300,000 sample paths

of the underlying stochastic process (Yt)t≥0, by choosing the optimal investment

threshold Ŷ as the initial value. Y ∗
c , the optimal commercialization threshold and

YtR+T ∗ , the value of stochastic process T ∗ years after starting at Ŷ , are compared.
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The probability of immediate commercialization at the end of the commercialization

process is computed as the number of sample paths that end up with YtR+T ∗ ≥ Y ∗
c

divided by 300,000, the total number of simulation. And the probability of delaying

commercialization is 1− (the probability of immediate commercialization).

How the probabilities change with respect to uncertainty σ and T ∗ are shown

in table 4.1 (See Appendix). As it is shown in the table, the commercialization

probabilities decrease with higher σ and increase with higher T ∗. Intuitively, when

σ goes up, the option value of commercialization goes up. Decision maker tends to

defer commercialization until the option value is fully captured before paying the

sunk cost which leads to lower commercialization probabilities. When T ∗ increases,

there is a higher probability that the optimal commercialization threshold will be

exceeded in expectation, since the growth rate µ of the stochastic process is positive.

Thus a higher T ∗ leads to higher commercialization probability.

In conclusion, the project with commercialization flexibility has a higher prob-

ability to start the R&D process as well as commercialization earlier under low

uncertainties. Hence it is great for the government to offer commercialization

flexibility when uncertainty is low. However, when uncertainty is high, both the

probabilities of starting the R&D and commercialization processes are lower, which

implies less investment incentives and a longer time before the products are launched.

In this case, the government is better off by making immediate commercialization

compulsory. Moreover, faster approval policy, which is modeled by a less T ∗, works

better when σ is lower since the probability of commercialization is negative related

to the uncertainty in the revenue process.

4.6 Policy implications

Several policy implications can be drawn from the models.

First, if the priority of the government is to maximize the utility of the expen-

diture or the total value of the R& D project, commercialization flexibility should

always be provided. For the project without commercialization flexibility, at the
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approval date, the pharmaceutical company has no option but to commercialize

immediately. However, for the other project, the decision maker has the flexibility to

decide the timing of the commercialization process, which adds value to the whole

project. Thus the value of the project that has commercialization process always

dominates the other one, due to the additional option value of the flexibility. Hence

if the value of the project is the top concern, the authority should always allow the

pharmaceutical companies to decide when to start selling the drugs.

Second, if earlier investment is the priority, for different combination of the

uncertainty and the length of the investment lag, two opposite policies should be

provided.

On one hand, it is better not to provide with commercialization flexibility for

the projects with long investment lag when uncertainty is high. In practice, the

reason that a project has longer investment lag could be that the pharmaceutical

company is working on a product which is of great therapeutic improvement. For

the pharmaceutical company, once these products are launched, the profits are huge

since the drugs with great improvements often have the potential to become the

“blockbuster drug”. Uncertainty can be anything that has great influence on the

profitability of the drug. Since “blockbuster drugs” will usually take over the whole

market without competitors, when uncertainty is high, it is wise to delay selling the

drugs, which will maximize the commercialization process without being worried

about similar products launched. In this case, if the authority believes it is necessary

to incentivize these companies to launch selling the drugs earlier, commercialization

flexibility should not be provided. The earlier the products are commercialized, the

higher benefits the patients will get. The option value that is missing because of the

policy could be subsidized in ways such as lower tax or price subsidy as a reward

for both therapeutic improvement as well as earlier investment.

On the other hand, it is fine to provide pharmaceutical companies with commer-

cialization flexibility when uncertainty is low. The reason is that when uncertainty is

low, despite the length of the project, as uncertainty goes up, the NPV of the project

that has commercialization flexibility increases faster than the option value. In other
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words, the opportunity cost of waiting goes up as uncertainty goes up, which leads

to earlier investment. Ultimately, the profitability of immediate investment could be

one of the decisive factors regarding whether commercialization flexibility should

be allowed or not. In order to incentivize earlier investment, commercialization

flexibility should be provided when the opportunity cost of waiting is higher.

4.7 Conclusions

In this chapter, this thesis models a pharmaceutical R&D project under uncertainty

where investment decisions are influenced by both investment lag and commer-

cialization flexibility. It is assumed that the end of the R&D process does not

necessarily generate the revenues, which is different from many other real options

models assuming that the payoffs will be received immediately after the investment

lag. Because of the commercialization flexibility, the decision maker is able to

choose whether to start commercialization immediately or delay it, dependent on

the value of the stochastic process at that time. In this project, the option to start

investment is the prerequisite of the option to defer commercialization. Hence the

project can also be considered as a compound option with an investment lag, which

is new in the literature of evaluation on pharmaceutical R&D projects.

By comparing the two projects, we find that the project with commercialization

flexibility provides with more investment incentives when uncertainty is low despite

the fact that it always has a higher project value. When uncertainty is low, the option

value of commercialization flexibility is low, since the NPV of the project is higher,

the investment threshold is lower and the investment probability is higher. When

uncertainty is high, the total option value of the project is higher which leads to a

higher investment threshold and lower investment probability.

Finally, this thesis discusses the probability of immediate commercialization by

the end of the R&D process. For the project without commercialization flexibility,

the probability is 1. For the other project, uncertainty will reduce the probability of

immediate commercialization since decision maker will want to capture the option
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value by waiting further. On the other hand, a higher investment lag will increase

the probability of commercialization. Hence, fast approval policy, modeled by a

smaller investment lag, is more effective in terms of early commercialization when

uncertainty is low.
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4.8 Appendix

Proof of Lemma 4.1

(a) Since Yt+T ∗ follows Geometric Brownian Motion (GBM), Yt+T ∗ =Yte(µ−
1
2 σ2)T ∗+σBT∗ ,

where BT ∗ ∼ N(0,T ∗).

Thus the expected value

EYt (Yt+T ∗) =Yte(µ−
1
2 σ2)T ∗

Et(eσBT∗ )

=Yte(µ−
1
2 σ2)T ∗

∫
∞

−∞

eσBT∗
1√

2πT ∗ e−
B2

T∗
2T∗ dBT ∗

=Yte(µ−
1
2 σ2)T ∗

∫
∞

−∞

1√
2πT ∗ e

−(BT∗−T∗σ)2+(T∗)2σ2

2T∗ dBT ∗

=Yte(µ−
1
2 σ2)T ∗

e
σ2T∗

2

∫
∞

−∞

1√
2πT ∗ e

−(BT∗−T∗σ)2

2T∗ dBT ∗

=Yte(µ−
1
2 σ2)T ∗

e
σ2T∗

2

=YteµT ∗
. (4.28)

(b) Let f (Yt+T ∗) = (Yt+T ∗)β1 , by using Ito’s lemma we have

d(Yt+T ∗)β1 = (µ2Y
∂ f
∂Y

+
1
2

σ
2Y 2 ∂ 2 f

∂Y 2 )dt +σY
∂ f
∂Y

dBt

=

[
µβ1 +

1
2

σ
2
β1(β1 −1)

]
Y β1dt +σβ1Y β1dBt . (4.29)

Divide equation 4.29 by f (Yt+T ∗) on both sides, then we have

d f (Yt+T ∗)

f (Yt+T ∗)
= µ̃dt + σ̃dBt , (4.30)

where the parameters µ̃ = µβ1 +
1
2σ2β1(β1 −1) and σ̃ = σβ1. So, it is proved that

(Yt+T ∗)β1 also follows GBM with a drift µ̃ and a volatility σ̃ if Yt+T ∗ follows GBM.
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By using the result proved in part (a), we know that

EYt

[
(Yt+T ∗)β1

]
= (Yt)

β1e[µβ1+
1
2 σ2β1(β1−1)]T ∗

. (4.31)

In conclusion,

EYt (C(Yt+T ∗ ;Y ∗)|Yt+T ∗ < Y ∗) = EYt

[
(Yt+T ∗)β1

]
(Y ∗)−β1(

Y ∗

ρ −µ
− Ic)

= (Yt)
β1e[µβ1+

1
2 σ2β1(β1−1)]T ∗

(Y ∗)−β1(
Y ∗

ρ −µ
− Ic)

(4.32)

and

EYt (D(Yt+T ∗)|Yt+T ∗ ≥ Y ∗) =
EYt

(
Yt+T ∗

)
ρ −µ

− Ic =
YteµT ∗

ρ −µ
− Ic. (4.33)

Since Yt+T ∗ follows GBM,

Yt+T ∗ = Yte(µ−
1
2 σ2)T ∗+σBT∗ , (4.34)

log(Yt+T∗
Yt

) is normally distributed with expectation (µ − 1
2σ2)T ∗ and variance σ2T ∗,

i.e.,

log(
Yt+T ∗

Yt
)∼ N((µ − 1

2
σ

2)T ∗,σ2T ∗). (4.35)

By standardization,

log(Yt+T∗
Yt

)− (µ − 1
2σ2)T ∗

σ
√

T ∗ ∼ N(0,1) (4.36)
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and

PYt (Yt+T ∗ < Y ∗) = PYt (
log(Yt+T∗

Yt
)− (µ − 1

2σ2)T ∗

σ
√

T ∗ <
log(Y ∗

Yt
)− (µ − 1

2σ2)T ∗

σ
√

T ∗ ),

(4.37)

which completes the proof. �

Conjecture 4.1

We first try to prove the existence of at least one solution to the equation (4.26).

Since the general solution of F∗
R (y) is Ayβ1 , to prove that there is a unique y such

that F∗
R (y) f ′R(y) = (F∗

R (y))
′ fR(y) holds, we first replace F∗

R (y) with Ayβ1 . Thus we

have

Ayβ1 f ′R(y) = Aβ1yβ1−1 fR(y) (4.38)

=⇒ y f ′R(y) = β1 fR(y) (4.39)

=⇒ y = β1
fR(y)
f ′R(y)

:= f (y) (4.40)

If f (y) is an increasing function, according to the Knaster-Tarski fixed-point

theorem, there exists at least one y that satisfies y = f (y). Thus the problem is

reduced to prove that f (y)′ > 0.

Since

f (y)′ =
β1
[
( f ′R(y))

2 − f (y) f ′′R (y)
]

( f ′R(y))2 , (4.41)

β1 > 1 and f ′(y)2 > 0, we need to prove

f ′R(y)
2 − fR(y) f ′′R (y)> 0. (4.42)
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However, the function fR (see Equation 4.25) is highly non-linear since it is

composed the products of convex functions with cumulative distribution functions

(CDF). Hence the derivative f ′R will be even more complicated and it is composed of

the products of convex functions, CDF and probability density function (PDF). It is

difficult to prove the inequality f ′R(y)
2− fR(y) f ′′R (y)> 0 holds analytically. However,

extensive numerical experiments show that the inequality f ′R(y)
2 − fR(y) f ′′R (y) >

0 always holds under different parameter values. As Figure 4.3 shows that the

minimum value of f ′(y) is positive and it stays as a constant when y is large enough.
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(a) y ranges from [0.001,2] (b) y ranges from [0.001, 0.2]

Fig. 4.3 Numerical experiments of f ′(y). The parameter values are: the discount rate
ρ = 0.05, the growth rate µ = 0.03, the sunk cost for commercialization Ic = 1, the
cost flows per period during the R&D process cR = 0.05, the uncertainties σ = 0.2
and the investment lag T ∗ = 10.

Next, we try to prove the uniqueness of the solution. Because the NPV function

fR is the weighted average of two convex functions, which are EYt

(
C(Yt+T ∗;Y ∗

c )|Yt+T ∗ <

Y ∗
c
)

and EYt

(
D(Yt+T ∗

c )|Yt+T ∗ ≥ Y ∗
c
)
, and the option value function is simply the ex-

pected discounted NPV when the investment optimally takes place. Moreover, since

the expected discount factor often takes the form of f (y)β1 which is also a convex

function. Thus we argue that the value function should be a more convex func-

tion than the NPV function where the second order condition is satisfied (Thijssen

(2013a)).
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Thus we conclude that f ′(y)> 0 and there is a unique Ŷ such that F∗
R (y) f ′R(y) =

(F∗
R (y))

′ fR(y) holds. �

Commercialization Probabilities under Different Un-

certainty σ and Investment Lag T ∗.

Table 4.1 Simulation of the immediate commercialization probabilities. The uncer-
tainty σ changes from 0.1 to 0.9, the growth rate of the stochastic process µ = 0.03,
the investment lag T ∗ = 5 and 10 years, the cost of commercialization Ic = 0.8, the
R&D cost flow of each period cR = 0.05.

σ T ∗ = 5 T ∗ = 10

0.1 1 1

0.2 0.9985 1

0.3 0.9348 0.9991

0.4 0.8115 0.9777

0.5 0.7134 0.9283

0.6 0.6483 0.8772

0.7 0.6092 0.8356

0.8 0.5866 0.8116

0.9 0.5740 0.7966
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Chapter 5

On the Interaction of Government

Quality Standards and

Pharmaceutical Investment Timing

5.1 Abstract

This chapter discusses how different roles that the government plays in the pharma-

ceutical R&D projects will help solve the lack of investment problem on Neglected

Tropical Diseases (NTDs). There are two types of projects that the government acts

within: as a sponsor in the Private-Public Partnership (PPP) with another pharma-

ceutical company (the decentralized project), or acts as the social planner being

in charge of the whole project. It is proved that the optimal investment threshold

of the social planner’s project is lower and the project value strictly dominates the

decentralized project. However, the model also shows that the remuneration level is

a great tool to adjust the quality standard of the product in the decentralized project

but not in the social planner’s project. Policy advices that the social planner’s project

is a better option if funding is limited since the project starts sooner and leads to

higher quality product. The decentralized project is a better choice if funding is
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sufficient and a higher quality standard is the priority.

5.2 Introduction

Seventeen kinds of NTDs, classified by the World Health Organization (WHO),

cause severe pain, long-term disability, and are the cause of death for over 500,000

people per year.1 It is estimated that more than 1 billion people suffer from at

least one NTD (WHO (2015)). Most often, the people affected by these tropical

diseases are living in the poorest developing countries, which are suffering from

poor sanitation, lack of clean water, and necessary health care. The diseases, which

cause high mortality and morbidity among the people, are traditionally neglected in

the pharmaceutical industry for mainly two reasons. First, people affected by these

tropical diseases have a low profile and status in public health priorities, and lack a

strong political voice.2 Second, the pharmaceutical industry has little incentive to

invest in R&D for the diseases that predominantly plague poor nations, as medicines

cannot be sold there at a price that would allow pharmaceutical firms to cover

their high R&D costs (Buckup (2008)). It is found that, of 1393 new chemical

entities marketed between 1975 and 1999, only 16 were for tropical diseases and

tuberculosis. There is a 13-fold greater chance of a drug being brought to market for

central-nervous-system disorders or cancer than for a neglected disease (Trouiller

et al. (2002)).

In order to tackle the lack of investment incentives problem, governments, non-

profit organizations (NPOs) and foundations have been contributing substantial funds

to help increase the investments on the R&D projects that deal with NTDs. Various

favorable marketing conditions, including research grants, public support for clinical

trials (Yamey (2002)), are granted to encourage pharmaceutical companies to enter

into public-private partnership (PPP). With the support of the public organizations,

1The END (Ending Neglected Diseases) fund. http://www.end.org/whatwedo/ntdoverview
2World Health Organization (WHO) Q&A, Why are some tropical diseases called “neglect”?

http://www.who.int/features/qa/58/en/
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investment intentions of the pharmaceutical companies in the R&D projects that deal

with NTDs may increase. Since pharmaceutical investment is subject to substantial

uncertainty on future market conditions, one of the proposed mechanisms to deal

with this uncertainty in the public-private partnership is via Advance Purchase

Commitments (APC).

These are commitments, by the public organizations such as the governments or

NPOs, “to purchase specified ‘technologies’ in specified ‘quantities’ in the ‘future’

at a ‘guaranteed’ unit ‘price’ ” (Farlow (2004) [quotation mark in the original]).

Despite the many disadvantages of this mechanism as discussed by Farlow (2004),

it is widely accepted that APCs are one of the best ways to finance R&D projects

for neglected diseases (Levine et al. (2005)).

Another way of solving the lack of investment problem is that the government

will be responsible for the drug development on its own instead of cooperating

with privates firms. Giesecke (2000) compared the science and technology (S&T)

policies of Germany and the US and showed that direct interventionist S&T policy

did not necessarily lead to successful innovations. Despite the effort that the German

government has made, such as initiating working groups, advisory boards, and fund-

ing programs for the advancement of biotech research, it turned out that “enabling a

preferable economic ecology for biotech development was more successful than an

interventionist policy.”

However, this does not help much if the priority now is not to develop a self-

growing market for battling NTDs in a long run, but to have sufficient projects which

are able to produce high quality drugs to cure the affected people in the short run

since most of the NTDs can be “eliminated”. For instance, Malaria is not coming

back to the developed countries where it has been effectively wiped out. The priority

is to choose a project that starts as soon as possible, produces high quality drugs

and has higher project value with same costs.

In this chapter, which role the government should play in the drug development

is discussed by comparing two projects with different managerial structures. In

the first project, an advance purchase commitments contract is signed between the
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government and a biopharmaceutical company. The contract states that once the

drug produced by the biopharmaceutical company meets a quality standard set by

the government, a fixed amount of money will be paid to the company. In the second

project, the government plays the role of a social planner and is responsible for

the research, production and marketing of the drug on its own. More often than

not, the drug development projects have the following features. First, the costs

are irreversible; second, the investment timing is flexible; last, the cash flows are

uncertain. The real options approach is a good choice in evaluating these projects

since it captures all these features.

The analysis in the comparison of the two projects is similar to the vertical

control problem in the industrial organization literature, regarding the relationship

of an “upstream firm” and a “downstream firm” (Tirole (1988)). In the decentralized

project, the government is similar to the role of the downstream firm since it

purchases the products from the pharmaceutical company, and then sells them to the

consumers. In the IO literature, however, the upstream firm usually moves first by

selling the intermediate products to the downstream firms, and then to the retailers

(downstream firm). Then after transformation of the intermediate products, the

retailers sell the final products to consumers.

In terms of welfare analysis, we show that the integrated project or the social

planner’s project has a higher overall project value, which is similar to the result

of Spengler (1950). He argues that the vertical structure is more profitable under

vertical integration than under a linear price since the monopoly profit of the vertical

structure is realized. The social welfare is increased due to the elimination of the

“double marginalization” problem. However, in this model, the effects of the prices

and demands of the intermediate and final product are not considered, the different

projects’ values are only dependent on the quality of the product. The reason for a

higher value for the integrated project is because the maximization problems that

the government and the pharmaceutical company solve are constrained, while the

problem the social planner solves is unconstrained.
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There are four main findings of this chapter. First, it shows that the optimal

investment threshold of the social planner’s project is strictly lower than the decen-

tralized project. In other words, the social planner’s project will always start sooner.

Second, if the budget for remuneration is limited while the sunk cost of the project

is relatively low, a social planner’s project is a better option since the project not

only starts sooner but also ends up with higher quality standard. Third, if there is

sufficient funding to afford higher remuneration, the remuneration level can be used

as an effective tool to adjust the quality standard of the product. However, increasing

the remuneration level could also lead to a delay in commercialization. Last, the

social planner’s project has a higher project value than the decentralized one and

this fact is independent of the key parameters of the model, such as discount rate,

growth rate and uncertainty.

The remainder of the chapter is organized as follow. Section 5.3 introduces

decentralized project. Section 5.4 discusses the project run by the social planner.

In section 5.5, the values of the two projects are compared. Section 5.6 considers

policy implications. Finally, section 5.7 concludes the chapter.

5.3 The Decentralized R&D Project

Consider a pharmaceutical company that is provided with an opportunity to invest

in developing a drug. The investment is irreversible and subject to a sunk cost I > 0

which is paid at the start of the project. To ensure the future market and incentivize

the company to invest, an advance purchase commitments contract is signed between

the government and the company specifying: (1) The quality standard of the drug,

which is often set by the industry and sponsors together and (2) The revenues of

the project, which will be paid as a constant cash flow R per period infinitely, if the

quality standard is met. In practice, the cash flows will only be paid for a certain

period of time. However, with a finite horizon, the expected discounted value of the

cash flows simply equals to the value of infinite cash flows multiply by a discount
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factor, which can be easily applied. For analytical convenience, we assume the cash

flows are infinite here.

When the project is finished, there would be an independent adjudication com-

mittee (IAC), with primary responsibility for determining whether the product meets

the technical specification (Berndt and Hurvitz (2005)). The pre-specified quality

standard is denoted by qA
c in the model. Like many other R&D projects, there exist

investment lags. In other words, the sunk cost will be paid long before receiving

revenues in the future since it takes time to reach the quality standard.

Every pharmaceutical project can be considered as a series of sub-projects

and is composed of several nodes including pre-discovery, discovery, pre-clinical,

phase I, II and III and approval (Hartmann and Hassan (2006)). In order to focus

on the problems that we are interested in the chapter, we simplify the project by

combining the phases mentioned above into two major phases: the research phase

before incurring a great amount of costs, which includes pre-discovery, discovery,

pre-clinical phases and the development phase after paying the sunk cost, which

includes the three phases of clinical trials (Paul et al. (2010)).

The uncertainty in revenues is dependent on the quality of the product which

is modeled by a geometric Brownian motion (GBM) (qt)t≥0. The quality of the

product mentioned in this chapter is an abstract indicator of the most probable

reasons of failures of the R&D process, such as lack of efficacy and safety issues

confirmed by Arrowsmith and Miller (2013) and Cook et al. (2014). As the R&D

process continues, more information will be collected as how to improve both

efficacy and safety of the products, which will update the previous knowledge

about the quality of the product as a whole. GBM is a great tool to model such a

situation where the trend of the quality is positive subject to fluctuations as more

information gathered during the drug development process. In the research phase,

the manufacturer will conduct researches including “Target-to-hit”, “Hit-to-lead”,

“Lead-to-optimization” and “pre-clinical trials” with lower costs in order to collect

as much information favorable to the development phase later. According to Paul

et al. (2010), the total cost of the development phase greatly out weights that of the
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research phase. Without loss of generality, we assume the cost of the research phase

is 0. However, the quality of the product will only be slightly improved during this

phase, which evolves according to the SDE,

dqt = µ1qtdt +σqtdBt , (5.1)

where Bt is a Wiener process and qt has initial value q, P−a.s.

Once the manufacturer considers the product promising, the development phase

starts and the sunk cost I will be paid, which will boost up the quality of the product

in a greater speed and the process is denoted by,

dqt = µ2qtdt +σqtdBt , (5.2)

where 0 < µ1 < µ2.

In conclusion, let τ be the time of investment. Then

dqt =


µ1qtdt +σqtdBt i f t < τ

µ2qtdt +σqtdBt i f t ≥ τ.

(5.3)

Although the pharmaceutical companies usually do not have priors for the

average qualities in both the research and development phases (µ1 and µ2), the idea

of setting µ1 < µ2 is to model a more intensive development stage, in which the

product has greater probability of success so that the quality increases faster after

paying the sunk cost. This assumption is more realistic for phase 1 and 3 trials in

that if the product has ever reached these stages, the transitional probabilities are

54% and 70% (Paul et al. (2010)). For phase 2 trial, the probability is estimated to

be 34%. Moreover, it is assumed that both trends are non-negative in that, to focus

on the choice of organizational structures and simplify the investment problems, the

projects are assumed to be successful with probability 1 if they last long enough.
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Consider the following dynamic game with two players: the government and

a pharmaceutical company. The government moves first by specifying a quality

standard qA
c . Once qA

c is reached, a constant cash flow R will be paid to the pharma-

ceutical company forever. The pharmaceutical company moves next by choosing

the optimal time τ to start the project and pay the sunk cost. The firm stops further

development of the product once qA
c is reached.

It is worth noting that the cash flow R can also be modeled as qA
c multiply by

some price p which will lead to the same conclusions in the chapter, since instead

of setting the cash flow per period equal to a constant R, the government can always

find a constant p that makes the product of p and qA
c equal to R. For analytical

convenience, we use R.

5.3.1 The Pharmaceutical Company’s Problem

The time line of the project is as follows:

Discovery, µ1

0

Now

τ(qI
c)

Cost incurred.

R&D starts

τ(qA
c )

New drug approved.

Commercialization starts

R&D process, µ2

Once qA
c is reached, the government will need to fulfill the advance purchase

commitments by paying a constant cash flow R to the pharmaceutical company. The

production cost that incurred by the company is denoted by C, a fixed cost flow per

period for infinity and it is assumed that R >C. In addition, the decision makers are

assumed to be risk neutral and that ρ is the discount rate of firm and government.

The NPV of commercialization when qA
c being reached is:

f (qA
c ) =

∫
∞

0
e−ρt(R−C)dt

=
R−C

ρ
. (5.4)
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The stopping time of which the investment of the development phase becomes

optimal is denoted by τ . As in most of the real options literature, the optimal stopping

time takes the form of the first hitting times of some threshold qI
c. For q∗ > 0, denote

the first passage time of q∗ by τ(q∗) := inf{t ≥ 0 | qt ≥ q∗}. Thus the optimal time

of investment is τ(qI
c). In addition, denote τs(q∗) := inf{t ≥ s | qt ≥ q∗} and the

subscript is omitted when s = 0. So, ττ(qI
c)
(qA

c ) is the random time, starting from the

time of investment, that the quality standard is met. Thus τ(qA
c ) = τ(qI

c)+ττ(qI
c)
(qA

c )

and revenues will accrue from this point onwards.

The firm’s problem is to solve the optimal stopping problem:

V S(q) = sup
τ(qI

c)

Eq

[∫
∞

τ(qI
c)+τ

τ(qIc)
(qA

c )
e−ρt(R−C)dt − e−ρτ(qI

c)I

]

= sup
qI

c

Eq

{
e−ρτ(qI

c)EqI
c

[∫
∞

τ
τ(qIc)

(qA
c )

e−ρt(R−C)dt − I

]}

= sup
qI

c

Eq

{
e−ρτ(qI

c)EqI
c

[
e−ρτ

τ(qIc)
(qA

c )EqA
c

(∫
∞

0
e−ρt(R−C)dt

)
− I
]}

≡ sup
qI

c

Eq

[
e−ρτ(qI

c)F(qI
c)
]
, (5.5)

where

F(qI
c) = EqI

c

[
e−ρτ

τ(qIc)
(qA

c )EqA
c

(
f (qA

c )
)]

− I

= EqI
c

[
e−ρτ

τ(qIc)
(qA

c ) f (qA
c )
]
− I. (5.6)

The first line of equation 5.5 shows that the pharmaceutical company wants to

maximize the expected revenues accruing from time τ(qA
c ) by paying the sunk cost I

at time τ(qI
c). And ττ(qI

c)
(qA

c ) is the first time that qt hits qA
c after starting the project.

The equations that follow are further derivations by using the Markovian property

of the stochastic process (qt)t≥0. The last line is to formalize the problem into the

one that can be solved by the standard real options approach.
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We first need to compute the value of F(qI
c). Since f (qA

c ) is a constant, it can be

taken out of the expectation and we obtain

F(qI
c) = EqI

c
[e−ρτ

τ(qIc)
(qA

c )] f (qA
c )− I. (5.7)

The characteristic operator of the process qt after investment is

Lqϕ =
1
2

σ
2q2 ∂ 2ϕ

∂q2 +µ2q
∂ϕ

∂q
. (5.8)

The general solution of the equation Lqϕ = ρϕ is of the form,

ϕ(q) = Aqβ1(µ2)+Bqβ2(µ2), (5.9)

where β1(µ2)> 1 and β2(µ2)< 0 are the two roots of the quadratic equation,

Q2(β ) =
1
2

σ
2
β (β −1)+µ2β −ρ = 0. (5.10)

The boundary condition ϕ(0) = 0 can only be satisfied iff B = 0 which gives

ϕ(q) = Aqβ1(µ2) on (qI
c,q

A
c ). For now, we assume that qI

c < qA
c .

By using Dynkin’s formula, the expected discount factor is

EqI
c
[e−ρτ

τ(qIc)
(qA

c )] =
ϕ(qI

c)

ϕ(qA
c )

=

(
qI

c
qA

c

)β1(µ2)

. (5.11)

So the value of F(qI
c) is

F(qI
c) =

(
qI

c
qA

c

)β1(µ2)

f (qA
c )− I

=

(
qI

c
qA

c

)β1(µ2)(R−C
ρ

)
− I. (5.12)
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By using the same approach above again, we are able to compute the expected

discount factor,

Eq

[
e−ρτ(qI

c)
]
=

(
q
qI

c

)β1(µ1)

, (5.13)

where β1(µ1)> 1 is one of the two roots of the quadratic equation,

Q1(β ) =
1
2

σ
2
β (β −1)+µ1β −ρ = 0. (5.14)

Proposition 5.1 The project value for the pharmaceutical company is:

V S(q) =



(
q
qI

c

)β1(µ1)
[(

qI
c

qA
c

)β1(µ2)
(

R−C
ρ

)
− I
]

i f q < qI
c(

q
qA

c

)β1(µ2)
(

R−C
ρ

)
− I i f qI

c ≤ q < qA
c

R−C
ρ

i f q ≥ qA
c

(5.15)

From the perspective of the pharmaceutical company, the value of the project

at any point in time is dependent on the value of the stochastic process (qt)t≥0,

which represents the quality of the product at that time. If the product’s quality

is less than the optimal investment threshold qI
c, the best strategy is to stay in the

discovery phase, wait and observe the evolution of (qt)t≥0, and pay the sunk cost as

soon as qI
c is reached. If the product’s quality is larger or equal to qI

c, but less than

the pre-specified quality qA
c , the best strategy is to invest and start the development

phase immediately. Finally, if the quality is larger or equal to qI
c, there is no point in

staying in the research phase or starting the development phase, the best strategy of

the pharmaceutical company is to start commercialization process immediately by

paying the operating cost C per period.

Proposition 5.2 qI
c is the optimal investment threshold that maximizes the pharma-

ceutical company’s project value and qI
c = qA

c

[
β1(µ1)

β1(µ1)−β1(µ2)
ρI

R−C

]1/β1(µ2)
.

See proof of the proposition in the Appendix.
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Lemma 5.1 The ratio β1(µ1)
β1(µ1)−β1(µ2)

> 1, which ensures that the investment threshold

qI
c is non-negative.

See proof of lemma 5.1 in the Appendix.

In addition, to ensure proposition 5.2 makes economic sense, it is assumed that
β1(µ1)

β1(µ1)−β1(µ2)
< R−C

ρI , therefore, qI
c < qA

c . This condition will need to be satisfied so

that the pharmaceutical company will have incentive to start the project in the first

place. Otherwise, conducting basic research in the discovery phase without paying

any costs will lead to a successful product.

5.3.2 The Government’s Problem

In the previous section, we have computed the optimal investment threshold of

the pharmaceutical company which is shown in proposition 5.2. For each quality

standard set by the government, the pharmaceutical company will come up with

a unique corresponding optimal investment threshold. Since there is no hidden

information between the two players, the government knows that the quality standard

will be set under the condition that the equation qI
c = qA

c

[
β1(µ1)

β1(µ1)−β1(µ2)
ρI

R−C

]1/β1(µ2)

is a common knowledge. Moreover, since the government is the first mover in the

game, the pharmaceutical company will have to accept the quality standard given

and adjusts its strategies accordingly. Mathematically, qI
c is a function of qA

c and it

will be replaced by using qA
c in the calculation of the government’s optimal quality

standard.

The objective of the government is to set an optimal quality standard qA
c to

maximize the present value of patients’ health gain net of payment to the firm.

Suppose the patients’ overall health is linearly dependent on the quality of the

product, which is represented by B(qA
c ) = KqA

c , where K > 0. The problem of the
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government is then:

V F(q) = sup
qA

c

Eq

[∫
∞

τ(qI
c)+τ

τ(qIc)
(qA

c )
e−ρt(KqA

c −R)dt

]

= sup
qA

c

Eq

{
e−ρτ(qI

c)EqI
c

[∫
∞

τ
τ(qIc)

(qA
c )

e−ρt(KqA
c −R)dt

]}

= sup
qA

c

Eq

{
e−ρτ(qI

c)EqI
c

[
e−ρτ

τ(qIc)
(qA

c )EqA
c

(∫
∞

0
e−ρt(KqA

c −R)dt
)]}

= sup
qA

c

{(
q
qI

c

)β1(µ1)

EqI
c

[
e−ρτ

τ(qIc)
(qA

c )v(qA
c )

]}
, (5.16)

where

v(qA
c ) =

∫
∞

0
e−ρt(KqA

c −R)dt

=
KqA

c −R
ρ

. (5.17)

In the above equations, the Markovian property of the stochastic process (qt)t≥0

is used again by treating the time to start the project τ(qI
c) and the approval time

τ(qA
c ) as new beginnings.

By using the same approach in the last section, we are able to compute the

expected discount factor,

EqI
c

[
e−ρτ

τ(qIc)
(qA

c )

]
=

(
qI

c
qA

c

)β1(µ2)

. (5.18)

As in the problem of the pharmaceutical company, the government’s problem

can be rewritten as:

V F(q) = sup
qA

c

{(
q
qI

c

)β1(µ1)

EqI
c

[
e−ρτ

τ(qIc)
(qA

c )

]
v(qA

c )

}

= sup
qA

c

{(
q
qI

c

)β1(µ1)
(

qI
c

qA
c

)β1(µ2)

v(qA
c )

}
. (5.19)
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Proposition 5.3 The project value for the government is

V F(q) =



(
q
qI

c

)β1(µ1)
[(

qI
c

qA
c

)β1(µ2)
(

KqA
c −R
ρ

)]
i f q < qI

c(
q

qA
c

)β1(µ2)
(

KqA
c −R
ρ

)
i f qI

c ≤ q < qA
c

Kq−R
ρ

i f q ≥ qA
c

(5.20)

The value of the government’s project is dependent on the current quality of

the product. If the current quality q < qI
c, the pharmaceutical company will stay

in the discovery phase and wait until the optimal investment threshold is reached

before investment. After investment, the development phase continues till the

optimal quality standard is met which is the time the payoff of the government is

realized. If the current quality qI
c ≤ q < qA

c , the pharmaceutical company will start

the development phase immediately and the payoff is realized when the optimal

quality standard is met. Lastly, if q ≥ qA
c , the quality of the product has exceeded

the optimal quality standard. Hence the government can launch selling the product

immediately.

Proposition 5.4 qA
c is the optimal quality standard that maximizes the government’s

project value and qA
c = β1(µ1)

β1(µ1)−1
R
K . Replacing qA

c in the value of qI
c in proposition

5.2, we have

qI
c =

β1(µ1)

β1(µ1)−1
R
K

[
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

]1/β1(µ2)

. (5.21)

See proof of proposition 5.4 in the Appendix.

Since the government’s willingness to pay is a constant, the only decision that

the pharmaceutical company will have to make is when to start investment regardless

of the timing of commercialization. In this case, when the quality standard qA
c is

reached, the products are commercialized immediately. And for the government,

the only decision to make is how a quality standard qA
c is supposed to be set which

maximizes patients’ health gains net of payoffs to the firm, conditional on the
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reaction function of the pharmaceutical company being a common knowledge to

both players. The unique pair of strategies that maximize the project values of

both players is (qA
c ,q

I
c) . The uniqueness is due to both the optimal thresholds are

satisfying value matching and smooth pasting conditions (Dixit and Pindyck, 1994).

5.4 The Social Planner’s R&D Project

In the decentralized R&D project, the pharmaceutical company and the government

are both involved and each of them is in charge of only part of the project. The

government is charge of the commercialization process and it moves first by setting

a quality standard of the final product. The pharmaceutical company is in charge of

the research and development of the product. Dependent on the quality standard, it

moves next by choosing the best time to start the development phase. The goal of

each player is to maximize the project value that each of them being in charge of .

Now consider the project is taken over by a social planner who will be in charge

of both R&D and commercialization. In this case, the decision of investment and

how to set the optimal quality standard will need to be considered simultaneously.

The goal of the social planner is to maximize the project value as a whole.

The optimal investment threshold and the optimal quality standard are denoted

by qI
I and qA

I , respectively, in the social planner’s project. The problem of the social

planner is:

V I(q) = sup
qA

I ,q
I
I

Eq

[∫
∞

τ(qA
I )

e−ρt(B(qA
I )−C)dt − Ie−ρτ(qI

I)

]

= sup
qA

I ,q
I
I

{(
q
qI

I

)β1(µ1)
[(

qI
I

qA
I

)β1(µ2)(KqA
I −C
ρ

)
− I

]}
(5.22)

The investment problem can be solved by treating qA
I as a constant and taking

the partial derivatives of V I(q) with respect to qI
I .
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And ∂V I(q)
∂qI

I
= 0 gives

qI
I = qA

I

(
β1(µ1)

β1(µ1)−β1(µ2)

ρI
KqA

I −C

)1/β1(µ2)

. (5.23)

The problem of what quality standard to be set in order to maximize the social

welfare can be solved by taking partial derivatives of V I(q) with respect to qA
c .

And ∂V I(q)
∂qA

c
= 0 gives

qA
I =

β1(µ2)

β1(µ2)−1
C
K
. (5.24)

Replacing qA
I in equation 5.23, we have

qI
I =

β1(µ2)

β1(µ2)−1
C
K

[
β1(µ1)

β1(µ1)−β1(µ2)
(β1(µ2)−1)

ρI
C

]1/β1(µ2)

. (5.25)

In addition, to ensure equation 5.23 makes economic sense, it is assumed that

qI
I ≤ qA

I . Thus, the condition

C >
β1(µ1)(β1(µ2)−1)

β1(µ1)−β1(µ2)
ρI (5.26)

must be satisfied.

Proposition 5.5 The value of project run by the social planner V I(q) is maximized

if the development phase starts at qI
I and the quality standard is set to be qA

I .

See proof of proposition 5.5 in the Appendix.

Proposition 5.6 The project value of the social planner is

V I(q) =



(
q
qI

I

)β1(µ1)
[(

qI
I

qA
I

)β1(µ2)(KqA
I −C
ρ

)]
i f q < qI

I(
q

qA
I

)β1(µ2)
(

KqA
I −C
ρ

)
i f qI

I ≤ q < qA
I

Kq−C
ρ

i f q ≥ qA
I

(5.27)
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The project value of the social planner is dependent on the quality of the product.

If the current quality is less than the optimal investment threshold i.e., q < qI
I , the

social planner will consider stay in the discovery phase, wait and collect more

information and invest until the quality is high enough. If the current quality is

higher than the optimal investment threshold but lower than the optimal quality

standard i.e., qI
I ≤ q < qA

I , the social planner will skip the discovery phase and start

the development phase immediately. The development phase will be finished until

the optimal quality standard is first met. Lastly, if the current quality is larger than

the optimal quality standard i.e., q ≥ qA
I , both the research and development phase

can be skipped. The best strategy is to start commercialization right away.

5.5 Analysis of Thresholds and Project Values

All together, this thesis has introduced four different thresholds for the two projects.

They are: (1) qI
c, the optimal investment threshold of the decentralized project, (2)

qA
c , the optimal quality standard set by the government in the decentralized project,

(3) qI
I , the optimal investment threshold of the project run by the social planner and

(4) qA
I , the optimal quality standard set by the social planner.

In order to make the investment problems more interesting, in both projects,

we assume that the optimal investment thresholds are less than the optimal quality

standards. Otherwise, the quality standard will be reached within the research phase

without starting the development phase which is usually unrealistic in reality.

More specifically, in the decentralized project, we assume that qI
c < qA

c . The

corresponding condition to be satisfied is

R >
β1(µ1)

β1(µ1)−β1(µ2)
ρI +C. (5.28)
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In the project run by the social planner, we assume that qI
I < qA

I . The correspond-

ing condition to be satisfied is

C >
β1(µ1)(β1(µ2)−1)

β1(µ1)−β1(µ2)
ρI. (5.29)

Next, we discuss the relation of the two optimal investment thresholds.

Proposition 5.7 The investment threshold of the social planner’s project qI
I , is

strictly less than that of the decentralized project qI
c, i.e., qI

I < qI
c.

See proof of Proposition 5.7 in the Appendix.
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Fig. 5.1 The difference of investment
thresholds as uncertainty varies.

To show the difference of the two

investment thresholds in a more intu-

itive way, we present a numerical ex-

ample when the parameter values are

µ1 = 0.02, µ2 = 0.2, σ = [0.001,0.9],

I = 10, ρ = 0.5, C = 20, K = 100 and

R = 80. Figure 5.1 shows the invest-

ment threshold of the project is strictly

dominated when run by the social plan-

ner. Given that the growth rates µ1, µ2

and the volatility σ of the stochastic

process (qt)t≥0 are the same for both

projects, smaller investment threshold means sooner investment and start of the

development phase.

Intuitively, the difference of the investment threshold lies in the different orga-

nizational structure of the two projects. In the decentralized project, there are two

players whose goals are to maximize their own project values. From the perspective

of the government, for a certain quality standard, the sooner the investment takes

place, the higher the payoffs; and an earlier investment means the product will be

finished sooner due to higher growth rate and there will be less discounting on the
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value of patients’ wealth gain. However, from the perspective of the pharmaceutical

company, earlier investment means giving up the information and the chance to

improve of the quality of product during the discovery phase. In order to capture the

option value in the discovery phase, the pharmaceutical company will tend to wait

and invest when the quality of the product is high enough.

However, for the project run by the social planner, the objective of the social

planner is to maximize the project value as a whole. Both investment timing and

quality standard are considered simultaneously. For the same quality standard, earlier

investment helps sooner realization of patients’ health gain, which is consistent with

the benefit of the social planner. Although earlier investment benefits the government

in the decentralized project, it does not necessarily benefit the pharmaceutical

company. The conflict between the two players in the decentralized project leads to

late investment. Hence the investment threshold in the social planner’s project is

lower without conflicts.

A noticeable difference between the two projects is that the pharmaceutical

company will receive a renumeration R from the government by the end of the

development phase in the decentralized project if the product is successful. However,

in the project run by the social planner, the variable R does not exist.

Next, the effects that the renumeration level has on the different thresholds in the

decentralized project and the relation of the optimal quality standards in different

projects because of R is analyzed.

For computational convenience, denote M as the right hand side of the inequality

5.28, i.e., M = β1(µ1)
β1(µ1)−β1(µ2)

ρI +C, and denote N = (β1(µ1)−1)β1(µ2)
(β1(µ2)−1)β1(µ2)

C.

Proposition 5.8 When 0< I < (β1(µ1)−β1(µ2))
2C

β1(µ1)2(β1(µ2)−1)ρ , M <N. If M <R<N, the optimal

quality standard of the decentralized project is less than the one run by the social

planner i.e., qA
c < qA

I . Hence, qI
I < qI

c < qA
c < qA

I .

See proof of Proposition 5.8 in the Appendix.

The optimal quality standard of the social planner qA
I is not affected by the

variations of remuneration level since there is no remuneration in the social planner’s
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project. However, a lower remuneration level will lead to a lower quality standard

in the decentralized project qA
c (See Proposition 5.4). The sunk cost does not affect

the quality standards of both projects directly. In the social planner’s project, the

decrease in the sunk cost will lead to a lower required operating cost (see equation

5.29), which does not have any influence on the quality standard if the operating

cost is high enough. Similarly, the quality standard of the decentralized project qA
c is

indirectly affected by the sunk cost. A lower sunk cost will lead to a lower required

remuneration (see Equation 5.28). However, as long as the minimum requirement

of R is satisfied, i.e., if equation 5.28 holds, the sunk cost I will not influence the

quality standard of the decentralized project. The proposition shows that when R is

low, the optimal quality standard of the decentralized project is less than the one run

by the social planner. Policy advices that if the budget for remuneration is limited

while the sunk cost of the project is relatively low, a social planner’s project is

preferred since the project will not only be started sooner, which means the products

will be finished and commercialized sooner, the quality standard of the project is

also higher.

Proposition 5.9 When 0< I < (β1(µ1)−β1(µ2))
2C

β1(µ1)2(β1(µ2)−1)ρ , M <N and when I ≥ (β1(µ1)−β1(µ2))
2C

β1(µ1)2(β1(µ2)−1)ρ ,

M ≥ N. If R ≥ max{M,N}, the optimal quality standard of the project run by the

social planner is less or equal to the one of the decentralized project, i.e., qA
I ≤ qA

c .

Moreover, there is a unique remuneration level Rc (Rcc) such that the optimal

investment threshold of the decentralized project equals the optimal quality stan-

dard of the social planner’s project, i.e., qI
c = qA

I . Thus if N(M) ≤ R < Rc(Rcc),

qI
I < qI

c < qA
I < qA

c . If R ≥ Rc(Rcc), qI
I < qA

I ≤ qI
c < qA

c .

See proof of Proposition 5.9 in the Appendix.

By increasing the remuneration level, the result in Proposition 5.8 can be re-

versed. When R ≥ max{M,N}, the quality standard of the decentralized project qA
c

increases while the quality standard of the social planner’s project qA
I is not affected.

Moreover, as R goes up, the investment threshold of the decentralized project qI
c

first goes down then goes up. When N(M)≤ R < Rc(Rcc), the investment threshold
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of the decentralized project is less than the quality standard of the social planner’s

project, i.e., qI
c < qA

I . If R further increases, when R ≥ Rc(Rcc), the investment

threshold of the decentralized project will be larger or equal to the quality standard

of the social planner’s project, i.e., qI
c ≥ qA

I .

With sufficient funding, the remuneration level R can be used as a tool to adjust

the quality standard of the product in the decentralized project, which is not possible

for the social planner’s project. However, this is with the cost that the product will be

commercialized later since qI
c will be increasing with R as well. In an extreme case,

for instance, when R takes values in R ≥ Rc(Rcc), it may be that the final product in

the social planner’s project has been finished while the development phase has not

even started in the decentralized project.

Moreover, it can be proved that Rcc ≤ Rc. In other words, the higher the sunk

cost I, the less remuneration R is required to make qI
c approaches qA

I from below.

Mathematically, this is because qI
c increases with I while qA

I is not affected if the

operating cost C reaches the minimum value, i.e., C > β1(µ1)(β1(µ2)−1)
β1(µ1)−β1(µ2)

ρI.

Next, in Figure 5.2, we analyze how investment threshold of the decentralized

project vary with uncertainty and how the spread of the maximum and minimum

value of the threshold changes under different sunk costs and level of remunerations.

Proposition 5.10 The spread of the maximum and minimum value of the investment

threshold under different uncertainties decreases when the remuneration level R

increases. And the spread increases with increasing sunk cost I.

The investment threshold of the decentralized project increases with uncertainty.

Moreover, as the remuneration level R increases, the spread of the maximum and

minimum value of the investment threshold decreases. The effect of R on the

investment threshold qI
c can be separated into two parts. From Proposition 5.4, we

know that qI
c =

β1(µ1)
β1(µ1)−1

R
K

[
β1(µ1)

β1(µ1)−β1(µ2)
ρI

R−C

]1/β1(µ2)
which can be considered as a

product of two terms. First, an increase in R will lead to higher quality standard

since qA
c = β1(µ1)

β1(µ1)−1
R
K . This is quite intuitive since a product with higher quality

often requires more input of the available resources such as time, money and
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effort. To increase the incentives of consuming more resources on the research and

development of a product, a higher remuneration level will be needed. The influence

that the remuneration level R has on the optimal quality standard qA
c is the “quality

effect” and this effect will tend to delay the investment decision. Second, an increase

in R means higher future revenues and thus, decision maker will want to receive

the revenues sooner. We call the influence that R has on the NPV of the project

the “NPV effect” which encourages earlier investment and is captured in the term[
β1(µ1)

β1(µ1)−β1(µ2)
ρI

R−C

]1/β1(µ2)
.
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Fig. 5.2 The investment threshold of the decentralized project changes with un-
certainty and the spread of the maximum and minimum value of the investment
threshold under different sunk costs I and remuneration level R. The parameter
values are: µ1 = 0.02, µ2 = 0.2, σ = [0.001,0.9], I = 0.5 or 1, ρ = 0.5, C = 5,
K = 10 and R=10, 30 or 60. In the figures above, D represents the difference of the
maximum and minimum value of the investment threshold.

Figure 5.2 shows that when uncertainty is low, the investment threshold goes

up faster when R increases. Intuitively, as R goes up, the quality standard goes up.

If uncertainty is low, the chances that large upward jumps happen less often. In
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this case, a better strategy will be to wait in the discovery phase and invest after the

upward jumps are realized, instead of investing earlier and hoping that the upward

jumps will happen during the development phase which will lead to sooner finish.

Earlier investment means giving up the upward jumps for free, especially when

these jumps are more valuable when uncertainty is low since they happen less often.

Since the the upward jumps are more valuable when uncertainty is low, it is more

important to capture them by investing later when the current quality is higher,

which is represented by a higher optimal investment threshold. In other words, the

“quality effect” is larger when R goes up with lower uncertainty. Although the “NPV

effect” tends to encourage sooner investment, it is limited by the “quality effect”.

Sooner investment reduces the value of the project when uncertainty is low since the

valuable upward jumps are given up. The stronger “quality effect” when uncertainty

is low makes the optimal investment threshold goes up faster.

When uncertainty is high, the “quality effect” is weaker since even if earlier

investment means giving up the upward jumps in the discovery phase for free, it is

more likely that these jumps will happen in the development phase. Hence it is less

important to guarantee that the benefits of upward jumps must be captured before

investment. And these jumps are less valuable in the sense that they happen more

often. Moreover, “NPV effect” is stronger since sooner investment is a possibility.

The combination of the two effects leads to slower increase in the threshold when R

goes up with higher uncertainty.

Since the “quality effect”, which leads to the increase of the investment threshold,

is much stronger when uncertainty is low while the “NPV effect”, which reduces

the investment threshold, becomes stronger when uncertainty is higher, the spread

of the maximum and minimum value of the investment threshold decreases as the

remuneration level R increases. Moreover, the spread is also related to the value

of sunk cost. The higher the sunk cost, the higher the spread. This is because the

“NPV effect” is even weaker when I is large while the “quality effect” is not affect.

The combination of the two effects makes the spread larger.
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Next we compare the value of the decentralized project with the social planner’s

project.

Proposition 5.11 The value of the project run by the social planner is greater than

the decentralized one.

See the calculations and comparisons of project values in the Appendix.
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Fig. 5.3 The difference of project
values as uncertainty varies, when
q < qI

I < qI
c.

Two examples are provided to show the

difference of the project values. Figure 5.3

shows the different project values when the start

value of the stochastic process q is smaller than

the investment thresholds of both projects, i.e.,

q < qI
I < qI

c. The parameter values are: q = 0.3,

µ1 = 0.02, µ2 = 0.2, σ = [0.001,0.9], I = 0.5,

ρ = 0.5, C = 5, K = 10, R = 7. In this case, the

best strategy of both decision maker is to wait

until each investment threshold is reached before

paying the sunk cost. It is shown that the value

of the social planner’s project is strictly larger than the decentralized one.

Intuitively, although optimal decisions are made in both projects, the maximiza-

tion problem that qI
I solves is an unconstrained one, while qI

c solves a constrained

maximization problem, in which the pharmaceutical company moves next for a

given quality standard set by the government in advance. In this case, the option

value of the pharmaceutical company’s project cannot be fully captured, which leads

to the lower total value of the decentralized project. In addition, as uncertainty σ

goes up, the value of the decentralized project increases slower which also proves

that part of the option value is not captured when uncertainty increases, since the

decision of pharmaceutical company is limited by the action of the government.

Figure 5.4 shows the different project values when the start value of the stochastic

process q is larger than the investment thresholds of both projects, i.e., qI
I < qI

c < q.

The parameter values are: q = 2, µ1 = 0.02, µ2 = 0.2, σ = [0.001,0.9], I = 1,
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ρ = 0.5, C = 5, K = 10, R = 20. In this case, both projects will start immediately

without further waiting and it is shown that the social planner’s project value is

strictly larger than the decentralized one.
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Fig. 5.4 The difference of project
values as uncertainty varies, when
qI

I < qI
c < q.

In this case, the decision made by the govern-

ment is also affected by the response of the phar-

maceutical company in the decentralized project.

In other words, the government, although moves

first by setting a quality standard, also solves

a constrained maximization problem restricted

by what the pharmaceutical company will react

given the quality standard set. Thus the opti-

mal investment threshold qA
c does not maximize

the unconstrained value function NPV(x) (see

Appendix). Hence the total value of the decen-

tralized project is less than the social planner’s project. In addition, as uncertainty

goes up, both project values decrease. This is because both projects have no flexi-

bilities but to invest immediately at this point. Without options of waiting, the bad

outcomes cannot be avoided, thus increasing uncertainty reduces the value of both

projects.

5.6 Policy implications

Several policy implications can be drawn from the model.

First, the social planner’s project better suits the development of drugs for the

NTDs. The greatest problem of NTDs is not about the quality of the products but

the problem of being lack of investment to start the corresponding projects in the

first place. Compared with the projects that are financed by using advance purchase

commitments (APCs), the social planner’s project considers both the decisions of

earlier investment and the quality of the product at the same time. Also it is proved

that the social planner’s project tends to start earlier or has greater probability of
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starting the project within certain amount of time under all parameter values, which

is exactly what the patients are in great need of.

Second, the decentralized project, which is financed by advance purchase com-

mitments, is a better managerial structure in terms of adjusting the quality of the

product. More specifically, a higher remuneration level, which is agreed by both

parties before investments, will lead to higher quality of the drug. However, the

investment will also be delayed. Moreover, when the remuneration level is below

certain threshold, the social planner’s project does not only start sooner so that it

has the potential of providing patients with earlier treatments, but also makes higher

quality of the product. In this case, the social planner’s project is the best option.

Thus the managerial structure to be chosen is dependent on the budget constraint of

the authority. In a word, if the budget of the authority is limited, the social planner’s

project should be chose. If there is no budget constraint, dependent on whether the

priority is an earlier investment or the quality of drug, both social planner’s project

and the decentralized project are possible.

5.7 Conclusions

In this chapter, we analyze how structural difference will help address the lack

of investment incentives in the R&D projects for NTDs. Dependent upon the

roles the government plays in different projects, we compare the decentralized

project and the social planner’s project. In the decentralized project, the government

is both a regulator, who determines the quality standard of the product, and a

sponsor, who agrees to purchase the final product if the quality standard is met. The

pharmaceutical company is the “policy taker” whose only decision is to optimally

start the development phase, given the quality standard set by the government. In

the social planner’s project, the government is in charge of the whole project by

setting the optimal quality standard as well as considering the optimal investment

timing. The different roles that government play in the two projects have led to

several different results.

96



CHAPTER 5. ON THE INTERACTION OF GOVERNMENT QUALITY STANDARDS AND PHARMACEUTICAL
INVESTMENT TIMING

The comparison of the two models shows that the optimal investment threshold

of the social planner’s project is strictly less than the one of the decentralized project

and the social planner’s project will always start sooner. Since we assume that the

growth rate will increase dramatically after investment, i.e., µ2 > µ1, the project with

sooner investment will also finish sooner in expectation. Thus the social planner’s

project is a better choice if the unmet clinical needs are required to satisfied in a

short time.

Subsequently, we analyze the effect of the remuneration level R on the optimal

investment threshold of the decentralized project. It is found that the social planner’s

project is a better choice in terms of sooner start and higher optimal quality standard,

if the sunk cost of the project is relatively low and the sponsor does not have enough

funding for remuneration. On the other hand, with sufficient funding, remuneration

can be used as a great tool to adjust the quality standard, which is not achievable

in the social planner’s project. However, the increase in the quality standard also

means late commercialization. Thus, the decentralized project is more suitable for

the purpose of developing a product with higher quality and is not in urgent. For

instance, if a project aims to develop a more effective product for certain disease

to replace the current one, the decentralized project will be a better choice in that

the quality standard can be easily controlled by setting different remuneration level,

while this is impossible for the social planner’s project.

Furthermore, we discuss how investment threshold of the decentralized project

varies with uncertainty under different remuneration levels and sunk costs. The

results show that the investment threshold increases faster as the remuneration

level increases with lower uncertainty. This is because the upward jumps are more

valuable in the sense they happen less often when uncertainty is low, and it is

more important to capture the jumps before investment. Hence as the remuneration

level goes up, which leads to higher quality standard, the investment threshold of

the decentralized project goes up faster under lower uncertainty than under higher

uncertainty.
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A possible extension of the model is to endogenize the remuneration level R in

the decentralized project. In practice, an endogenized R is more reasonable since

the revenues that the company will receive are limited by some budget constraint of

the government and should be determined by the maximization problems of both

parties. However, two problems will occur if the revenue R is endogenized.

First, if the value function of the government is to be maximized regarding both

the quality of the product qA
c and the revenue R, there will be no closed form solution

of R (see equation 5.20), since qI
c is a nonlinear function of R (see proposition 5.2).

Second, if R is endogenized, although the value of the decentralized project is

maximized, the remuneration level will no longer serve as a useful tool to adjust the

quality standard of the project. Moreover, as it has been proved that, under the same

budget constraint, the centralized project has greater value no matter what. In other

words, if the objective is to maximize the value of the project, the decentralized

project will never be an optimal choice.

Thus this chapter uses an exogenous R which, on one hand, avoids the problem

of not getting a closed form solution of R if it is endogenized. On the other hand, an

exogenous R provides the decentralized project with the opportunity to shine when

the quality standard instead of the value of the project being the priority of patients

and the government.

Finally, it is proved that the value of the social planner’s project strictly dominates

the decentralized project. Because the problem that the social planner solves is

an unconstrained maximization problem while the problems of the pharmaceutical

company and the government are two constrained maximization problems. Hence

the sum of the two players’ project values is less than the social planner’s project

value.
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5.8 Appendix

Proof of Lemma 5.1

We start by looking at the quadratic equation:

Q(β ) =
1
2

σ
2
β (β −1)+µβ −ρ = 0. (5.30)

β1 > 0 is one of the two roots of the above equation.

Implicit differentiation of Q(β1) = 0 with respect to µ gives

∂Q(β1)

∂β1

∂β1

∂ µ
+

∂Q(β1)

∂ µ
= 0 ⇔ ∂β1

∂ µ
=− ∂Q(β1)/∂ µ

∂Q(β1)/∂β1
. (5.31)

The denominator can be computed easily since the graph of Q(β ) is a U-shape

parabola and ∂Q(β1)/∂β1 > 0.

From the direct derivatives

∂Q(β1)

∂ µ
= β1 > 0. (5.32)

So it follows that

∂β1

∂ µ
< 0. (5.33)

Since we assume that µ1 < µ2, β1(µ1)> β1(µ2), so

β1(µ1)

β1(µ1)−β1(µ2)
= 1+

β1(µ2)

β1(µ1)−β1(µ2)
. (5.34)

Since β1(µ1)> β1(µ2), β1(µ1)−β1(µ2)> 0,

β1(µ1)

β1(µ1)−β1(µ2)
> 1. (5.35)

�
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Proof of Proposition 5.2

The optimal quality threshold can be computed by taking the first order derivatives

of equation 5.15 with respect to qI
c when q ≤ qI

c

∂V S(q)
∂qI

c
=−β1(µ1)qβ1(µ1)(qI

c)
−β1(µ1)−1

[(
qI

c
qA

c

)β1(µ2)(R−C
ρ

)
− I

]

+qβ1(µ1)(qI
c)

−β1(µ1)

[
β1(µ2)(qI

c)
β1(µ2)

(
R−C

ρ

)]
(5.36)

and ∂V S(q)
∂qI

c
= 0 gives

qI
c = qA

c

[
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

]1/β1(µ2)

. (5.37)

The second order derivative of equation 5.15 with respect to qA
c is

∂ 2V S(q)
∂ 2qI

c
=qβ1(µ1)(qI

c)
−β1(µ1)−2

[
β1(µ1)(β1(µ1)

−β1(µ2))

(
qI

c
qA

c

)β1(µ2)(R−C
ρ

)
−β1(µ2)(β1(µ2)+1)I

]
. (5.38)

Substituting
(

qI
c

qA
c

)β1(µ2)
with β1(µ1)

β1(µ1)−β1(µ2)
ρI

R−C ,

∂ 2V S(q)
∂ 2qI

c

=qβ1(µ1)(qI
c)

−β1(µ1)−2

[
β1(µ1)(β1(µ1)−β1(µ2))

β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

R−C
ρ

− (β1(µ1)+1)β1(µ1)I

]

=qβ1(µ1)(qI
c)

−β1(µ1)−2
[
−β1(µ1)I

]
. (5.39)
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Since qβ1(µ1) > 0 and (qI
c)

−β1(µ1)−2 > 0, ∂ 2V S(q)
∂ 2qI

c
< 0. qI

c is the the optimal

investment threshold that maximizes the pharmaceutical company’s project value.

�

Proof of Proposition 5.4

The optimal quality threshold can be computed by taking the first order derivatives

of the value function in Proposition 5.3, when q < qI
c, with respect to qA

c , and

substituting qI
c with qI

c = qA
c

[
β1(µ1)

β1(µ1)−β1(µ2)
ρI

R−C

]1/β1(µ2)
as it is in Proposition 5.2,

∂V F(q)
∂qA

c
=qβ1(µ2)

[
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

] β1(µ2)−β1(µ1)
β1(µ2)

×
[
−β1(µ2)(qA

c )
−β1(µ2)−1

(
KqA

c −R
ρ

)
+(qA

c )
−β1(µ2)

K
ρ

]
. (5.40)

For computational convenience, denote

M = qβ1(µ2)

[
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

] β1(µ2)−β1(µ1)
β1(µ2)

. (5.41)

∂V F (q)
∂qA

c
can be rewritten as

∂V F(q)
∂qA

c
= M

[
−β1(µ2)(qA

c )
−β1(µ2)−1

(
KqA

c −R
ρ

)
+(qA

c )
−β1(µ2)

K
ρ

]
(5.42)

and ∂V F (q)
∂qA

c
= 0 gives

qA
c =

β1(µ1)

β1(µ1)−1
R
K
. (5.43)
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The second order derivative of equation 5.19 with respect to qA
c is

∂ 2V F(q)
∂ 2qA

c
= M(qA

c )
−β1(µ2)−2

[
β1(µ2)(β1(µ2)+1)

KqA
c −R
ρ

− 2KqA
c

ρ
β1(µ2)

]
.

(5.44)

Since qA
c = β1(µ2)

β1(µ2)−1

(C
K

)
,

β1(µ2)(β1(µ2)+1)
KqA

c −R
ρ

− 2KqA
c

ρ
β1(µ2)

=β1(µ2)(β1(µ2)−1)
KqA

c
ρ

−β1(µ2)(β1(µ2)+1)
R
ρ

=β1(µ2)(β1(µ2)−1)
K
ρ

β1(µ2)

β1(µ2)−1
R
K
−β1(µ2)(β1(µ2)+1)

R
ρ

=− R
ρ

β1(µ2)< 0. (5.45)

Because M and qA
c are both positive, ∂ 2V F (q)

∂ 2qA
c

< 0.

And it can also be proved that qA
c maximizes the value function shown in the

Proposition 5.3, when qI
c ≤ q < qA

c .

∂V F(q)
∂qA

c
= (−β1(µ2))

(
q
qc

A

)β1(µ2)
(

1
qA

c

)(
KqA

c −R
ρ

)
+

(
q
qc

A

)β1(µ2) K
ρ

(5.46)

and ∂V F (q)
∂qA

c
= 0 gives

qA
c =

β1(µ1)

β1(µ1)−1
R
K
. (5.47)

The first order condition then becomes,

∂V F(q)
∂qA

c
=

(
q(β1(µ2)−1)K

β1(µ2)R

)β1(µ2)
(

R
(β1(µ2)−1)ρ

)
> 0. (5.48)
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The second order condition is,

∂ 2V F(q)
∂ 2qA

c
=(−β1(µ2))

(
q
qA

c

)β1(µ2)
(

1
qA

c

)[
(1−β1(µ2))

K
ρ
+

β1(µ2)R
qc

Aρ

]
+

(
q

qA
c

)β1(µ2)
(
− 1
(qA

c )
2

β1(µ2)R
ρ

)
. (5.49)

When qA
c = β1(µ1)

β1(µ1)−1
R
K ,

∂ 2V F(q)
∂ 2qA

c
=

(
q
qA

c

)β1(µ2)
(
− β1(µ2)R
(β1(µ2)−1)K

)
< 0 (5.50)

Thus qA
c is the optimal quality standard which maximizes the value of the

government’s project. �

Proof of the Proposition 5.5

The partial derivatives of V I(q) in equation 5.22 with respect to qI
I is

∂V I(q)
∂qI

I
=qβ1(µ1)(qI

I)
β1(µ2)−β1(µ1)−1(qA

I )
−β1(µ2)

(
KqA

I −C
ρ

)
(β1(µ2)−β1(µ1))

+qβ1(µ1)(qI
I)
−β1(µ1)−1

β1(µ1)I (5.51)

and ∂V I(q)
∂qI

I
= 0 gives qI

I = qA
I

(
β1(µ1)I

β1(µ1)−β1(µ2)
ρ

KqA
I −C

)1/β1(µ1)
.

The partial derivatives of V I(q) with respect to qA
I is

∂V I(q)
∂qA

I
=qβ1(µ1)(qI

I)
β1(µ2)−β1(µ1)

×
[
−β1(µ2)(qA

I )
−β1(µ2)−1

(
KqA

I −C
ρ

)
+(qA

I )
−β1(µ2)

K
ρ

]
(5.52)

and ∂V I(q)
∂qA

I
= 0 gives qA

I = β1(µ2)
β1(µ2)−1

(C
K

)
.
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The second partial derivatives of V I(q) with respect to qI
I is:

∂ 2V I(q)
(∂qI

I)
2 =qβ1(µ1)(β1(µ2)−β1(µ1)−1)(β1(µ2)−β1(µ1))(qI

I)
β1(µ2)−β1(µ1)−2

× (qA
I )

−β1(µ2)

(
KqA

I −C
ρ

)
−qβ1(µ1)(β1(µ1)+1)β1(µ1)(qI

I)
−β1(µ1)−2I

=(qI
I)
−β1(µ1)−2

[
qβ1(µ1)(β1(µ2)−β1(µ1)−1)(

qI
I

qA
I
)β1(µ2)(β1(µ2)−β1(µ1))

×
(

KqA
I −C
ρ

)
−qβ1(µ1)(β1(µ1)+1)β1(µ1)I

]
=(qI

I)
−β1(µ1)−2

[
qβ1(µ1)(β1(µ2)−β1(µ1)−1)(β1(µ2)−β1(µ1))

× β1(µ1)I
β1(µ1)−β1(µ2)

−qβ1(µ1)(β1(µ1)+1)β1(µ1)I
]

=− (qI
I)
−β1(µ1)−2

[
qβ1(µ1)β1(µ1)β1(µ2)I

]
< 0. (5.53)

The second partial derivatives of V I(q) with respect to qA
I is:

∂ 2V I(q)
(∂qA

I )
2 =qβ1(µ1)(qI

I)
β1(µ2)−β1(µ1)

K
ρ
(1−β1(µ2))(−β1(µ2))(qA

I )
−β1(µ2)−1

− (β1(µ2)+1)β1(µ2)qβ1(µ2)(qI
I)

β1(µ2)−β1(µ2)(qA
I )

−β1(µ2)−2
(

C
ρ

)
=qβ1(µ1)(qI

I)
β1(µ2)−β1(µ1)(qA

I )
−β1(µ2)−2

[
K
ρ
(β1(µ2)−1)(β1(µ2))qA

I

− (β1(µ2)+1)β1(µ2)

(
C
ρ

)]
=−qβ1(µ1)(qI

I)
β1(µ2)−β1(µ1)(qA

I )
−β1(µ2)−2

β1(µ2)

(
C
ρ

)
< 0. (5.54)
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The derivatives of V I(q) with respect to qI
I and qA

I is:

∂ 2V I(q)
∂qI

I∂qA
I
=(β1(µ2)−β1(µ1))(qI

I)
β1(µ2)−β1(µ1)−1(qA

I )
−β1(µ2)

×
[

qβ1(µ1)
K
ρ
(1−β1(µ2))+β1(µ2)qβ1(µ1)

1
qA

I

(
C
ρ

)]
=(β1(µ2)−β1(µ1))(qI

I)
β1(µ2)−β1(µ1)−1(qA

I )
−β1(µ2)

×
[

qβ1(µ1)
K
ρ
(1−β1(µ2))+β1(µ2)qβ1(µ1)

β1(µ2)−1
β1(µ2)

K
ρ

]
=0. (5.55)

Thus

D =
∂ 2V I(q)
(∂qI

I)
2

∂ 2V I(q)
(∂qA

I )
2 −

(
∂ 2V I(q)
∂qI

I∂qA
I

)2

> 0. (5.56)

Hence it is proved that the value of project run by the social planner V I(q) is

maximized if the development phase starts at qI
I and the quality standard is set to be

qA
I . �

Proof of the Product of Two Non-Negative and Convex Functions

is a Convex Function

In general, the product of two non-negative and convex functions is also a convex

function. The proof is as follows:

Choose x and y in the domain with x < y and t in [0,1] and consider the function

H(x) = f (x)g(x), (5.57)
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with both f (x) and g(x) non-negative and convex.

H[tx+(1− t)y]− [tH(x)+(1− t)H(y)]

= f [tx+(1− t)y]g[tx+(1− t)y]− [t f (x)g(x)+(1− t) f (y)g(y)]

≤ [t f (x)+(1− t f (y))] [tg(x)+(1− t)g(y)]− [t f (x)g(x)+(1− t) f (y)g(y)]

≤t2 f (x)g(x)+ t(1− t) f (x)g(y)+ t(1− t) f (y)g(x)+(1− t)2 f (y)g(y)− t f (x)g(x)

− (1− t) f (y)g(y)

≤t f (x)g(x)+(1− t) f (y)g(y)− t f (x)g(x)− (1− t) f (y)g(y)

=0. (5.58)

Hence H[tx+ (1− t)y] ≤ [tH(x) + (1− t)H(y)] and it proves that H(x) is a

convex function.�

Proof of Proposition 5.7

Rewrite qI
I by substituting qA

I ,

qI
I = qA

I

(
β1(µ1)I

β1(µ1)−β1(µ2)

ρ

KqA
I −C

)1/β1(µ2)

= qA
I

(
β1(µ1)I

β1(µ1)−β1(µ2)

ρ(β1 −1)
C

)1/β1(µ2)

=
β1(µ2)

β1(µ2)−1

(
C
K

)(
β1(µ1)I

β1(µ1)−β1(µ2)

ρ(β1 −1)
C

)1/β1(µ2)

. (5.59)

Then rewrite qI
c by substituting qA

c ,

qI
c = qA

c

(
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

)1/β1(µ2)

=
β1(µ1)

β1(µ1)−1

(
R
K

)(
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

)1/β1(µ2)

. (5.60)
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Divide qI
c by qI

I ,

W (C) =
qI

c

qI
I
=

β1(µ1)(β1(µ2)−1)
β1(µ2)(β1(µ1)−1)

(
R
C

)(
C

R−C
1

β1(µ2)−1

)1/β1(µ2)

. (5.61)

Take the first order derivative of W (C) with respect to C,

∂W (C)/∂C
A

=

(
− 1

C2

)(
C

R−C

)1/β1(µ2)

+
1
C

1
β1(µ2)

(
C

R−C

)1/β1(µ2)−1 R
(R−C)2 ,

(5.62)

where

A =
β1(µ1)(β1(µ2)−1)
β1(µ2)(β1(µ1)−1)

(
1

β1(µ2)−1

)1/β1(µ2)

. (5.63)

And ∂W (C)/∂C
A = 0 gives

C =

(
β1(µ2)−1

β1(µ2)

)
R. (5.64)

The ratio qI
c

qI
I

can be treated as a function of C. Consider the two functions

f1(C) = 1
C and f2(C) =

( C
R−C

)1/β1(µ2). f1(C) is convex for every value of C. For

computational convenience, denote α = 1/β1(µ2) and

∂ 2 f2(C)

∂ 2C
=

∂ 2 ( C
R−C

)α

∂ 2C

=Rα
{

Cα−2(R−C)−α−2 [(α −1)(R−C)+C((α +1)]
}

=Rα
{

Cα−2(R−C)−α−2 [2C− (1−α)R]
}
. (5.65)
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When C =
(

β1(µ2)−1
β1(µ2)

)
R,

∂ 2 f2(C)

∂ 2C

=Rα
{

Cα−2(R−C)−α−2 (1−α)R
}

=Rα

{
Cα−2(R−C)−α−2

(
β1(µ2)−1

β1(µ2)

)
R
}
> 0. (5.66)

Hence, the function f2(C) is convex on the point C =
(

β1(µ2)−1
β1(µ2)

)
R.

Since both functions f1(C) and f2(C) are non-negative and convex, the product

of two non-negative and convex functions is also a convex function. See Appendix.

Because W
[(

β1(µ2)−1
β1(µ2)

)
R
]
= β1(µ1)

β1(µ1)−1 > 1, the ratio W (C) =
qI

c
qI

I
is larger than 1

when it takes the minimum value, which shows that qI
c > qI

I . �

Proof of Proposition 5.8

If qA
c < qA

I , (see proposition 5.4 and equation 5.24), the following condition must be

satisfied:

R <
(β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C. (5.67)

However, equation 5.28 will also be satisfied at the same time. Thus,

β1(µ1)

β1(µ1)−β1(µ2)
ρI +C < R <

(β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C. (5.68)

Equation 5.68 only holds if the sunk cost of the project I satisfies,

β1(µ1)

β1(µ1)−β1(µ2)
ρI +C <

(β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C, (5.69)
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or

I <
(β1(µ1)−β1(µ2))

2C
β1(µ1)2(β1(µ2)−1)ρ

. (5.70)

Since it is by assumption that qI
c < qA

c and it has been proved that qI
I < qI

c ,

qI
I < qI

c < qA
c < qA

I . �

Proof of Proposition 5.9

If qA
I ≤ qA

c , (see proposition 5.4 and equation 5.24), the following condition must be

satisfied:

R ≥ (β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C. (5.71)

Since by assumption, qI
c ≤ qA

c , the following condition holds

R >
β1(µ1)

β1(µ1)−β1(µ2)
ρI +C. (5.72)

If

β1(µ1)

β1(µ1)−β1(µ2)
ρI +C <

(β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C, (5.73)

the sunk cost I will be satisfying

I <
(β1(µ1)−β1(µ2))

2C
β1(µ1)2(β1(µ2)−1)ρ

. (5.74)

Hence

R ≥ (β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C. (5.75)

109



5.8. APPENDIX

Next we prove that there is a unique Rc which makes qI
c = qA

I . Take the

first order derivative of qI
c with respect to R, we will find that ∂qI

c
∂R < 0 if R ∈[

(β1(µ1)−1)β1(µ2)
(β1(µ2)−1)β1(µ1)

C, β1(µ2)
β1(µ2)−1C

)
and ∂qI

c
∂R ≥ 0 if R ∈

[
β1(µ2)

β1(µ2)−1C,∞
)

.

Moreover,

β1(µ2)

β1(µ2)−1
C− (β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C =

β1(µ2)C
(β1(µ2)−1)β1(µ1)

> 0. (5.76)

When R = (β1(µ1)−1)β1(µ2)
(β1(µ2)−1)β1(µ1)

C,

qI
c =

β1(µ2)

β1(µ2)−1
C
K

[
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

]1/β1(µ2)

= qA
I

[
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

]1/β1(µ2)

. (5.77)

By assumption,
[

β1(µ1)
β1(µ1)−β1(µ2)

ρI
R−C

]1/β1(µ2)
< 1, thus qI

c < qA
I .

Since

qI
c =

β1(µ1)

β1(µ1)−1
R
K

[
β1(µ1)

β1(µ1)−β1(µ2)

ρI
R−C

]1/β1(µ2)

, (5.78)

to see what happen to qI
c when R goes to infinity, we compute limR→+∞

R
(R−C)1/β1(µ2)

by using L’Hospital’s Rule and limR→∞
R

(R−C)1/β1(µ2)
= limR→∞ β1(µ2)(R−C)1−1/β1(µ2)=

+∞ > qA
I . Thus there is a unique Rc makes qI

c = qA
I .

It is by assumption that qI
c < qA

I and qI
I < qI

c. In conclusion, qI
I < qI

c < qA
I ≤ qA

c

on
[
(β1(µ1)−1)β1(µ2)
(β1(µ2)−1)β1(µ1)

C,Rc

)
and qI

I < qA
I ≤ qI

c < qA
c on

[
Rc,∞

)
.

If the Equation 5.73 is changed to be

β1(µ1)

β1(µ1)−β1(µ2)
ρI +C ≥ (β1(µ1)−1)β1(µ2)

(β1(µ2)−1)β1(µ1)
C, (5.79)

110



CHAPTER 5. ON THE INTERACTION OF GOVERNMENT QUALITY STANDARDS AND PHARMACEUTICAL
INVESTMENT TIMING

the sunk cost I will be satisfying

I ≥ (β1(µ1)−β1(µ2))
2C

β1(µ1)2(β1(µ2)−1)ρ
. (5.80)

Hence

R ≥ β1(µ1)

β1(µ1)−β1(µ2)
ρI +C. (5.81)

There are only two differences in the conclusion which is to change the start value

to R = β1(µ1)
β1(µ1)−β1(µ2)

ρI +C and denote the critical value that makes qI
c = qA

I as Rcc.

The rest of the proofs are the same. The final conclusion will be qI
I < qI

c < qA
I ≤ qA

c

on
[

β1(µ1)
β1(µ1)−β1(µ2)

ρI +C,Rcc

)
and qI

I < qA
I ≤ qI

c < qA
c on

[
Rcc,∞

)
. �

Proof of Proposition 5.11

Dependent on the initial value of product’s quality q, the total value of the projects

are different.

When q < qI
I < qI

c, the total value of both projects are:

V S(q)+V F(q) =
(

q
qI

c

)β1(µ1)
[(

qI
c

qA
c

)β1(µ2)(KqA
c −C
ρ

)
− I

]
(5.82)

and

V I(q) =
(

q
qI

I

)β1(µ1)
[(

qI
I

qA
I

)β1(µ2)(KqA
I −C
ρ

)
− I

]
. (5.83)

qI
I and qI

c are the optimal investment thresholds of both projects and they solve

the maximization problems of the social planner’s project and the pharmaceutical

company’s project respectively. However, the maximization problem of the social

planner’s project is an unconstrained problem while the maximization problem of

the pharmaceutical company’s problem is limited by the quality standard set by
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the government. In this case, the option value of the pharmaceutical company is

not fully captured which leads to lower project value. Thus the total value of the

decentralized project is lower than the social planner’s project.

When qI
I < qI

c < q, both projects start immediately. The total value of both

projects are:

V S(q)+V F(q) =
(

q
qA

c

)β1(µ2)
(

KqA
c −C
ρ

)
− I (5.84)

and

V I(q) =
(

q
qA

I

)β1(µ2)
(

KqA
I −C
ρ

)
− I. (5.85)

In general, the total value of each project can be represented by the following

function:

NPV (x) =
(q

x

)β1(µ2)
(

Kx−C
ρ

)
− I, (5.86)

where x > 0.

Take the first order derivative of NPV (x) wrt x,

NPV
′
(x) = qβ1(µ2)x−β1(µ2)−1

(
(1−β1(µ2))

Kx
ρ

+
C
ρ

β1(µ2)

)
. (5.87)

It is shown that NPV
′
(x)> 0 if 0 < x < β1(µ2)

β1(µ2)−1
C
K = qA

I , NPV
′
(x) = 0 if x = qA

I

and NPV
′
(x)< 0 if x > qA

I .

Now take the second order derivative of NPV (x) wrt x,

NPV
′′
(x) = qβ1(µ2)[−β1(µ2)]x−β1(µ2)−2

[
(1−β1(µ2))x

K
ρ
+

C
ρ
(β1(µ2)+1)

]
.

(5.88)
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It is shown that NPV
′′
(x)> 0 if x > β1(µ2)+1

β1(µ2)−1
C
K = qA

I +
C

(β1(µ2)−1)K , NPV
′
(x) = 0

if x = β1(µ2)+1
β1(µ2)−1

C
K and NPV

′
(x)< 0 if 0 < x < β1(µ2)+1

β1(µ2)−1
C
K .

In conclusion, NPV (x) is an increasing concave function on (0,qA
I ) and reaches

its maximum at qA
I . Then it decreases and remains being concave on (qA

I ,q
A
I +

C
(β1(µ2)−1)K ) then it keeps decreasing and being convex on [qA

I +
C

(β1(µ2)−1)K ,∞).

Thus,

(
q
qA

I

)β1(µ2)
(

KqA
I −C
ρ

)
− I >

(
q
qA

c

)β1(µ2)
(

KqA
c −C
ρ

)
− I. (5.89)

And it is proved that the value of the social planner’s project is strictly larger

than the decentralized project when qI
I < qI

c < q.

When qI
I < q < qI

c, the social planner’s project starts immediately while the

decentralized project has not started yet. The total value of both projects are:

V S(q)+V F(q) =
(

q
qI

c

)β1(µ1)
[(

qI
c

qA
c

)β1(µ2)(KqA
c −C
ρ

)
− I

]
(5.90)

and

V I(q) =
(

q
qA

I

)β1(µ2)
(

KqA
I −C
ρ

)
− I. (5.91)

Since the total value of the social planner’s project is larger than the decentralized

project when q ∈ [0,qI
I)∪ [qI

c,+∞], if V I(q) is more convex on [qI
I,q

I
c), V I(q) >

V S(q)+V F(q).
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Take the second order derivatives of Equation 5.91 with respect to q and

[
V S(q)+V F(q)

]′′
=

(
q
qI

c

)β1(µ1)
[(

qI
c

qA
c

)β1(µ2)(KqA
c −C
ρ

)
− I

]

×β1(µ2)(β1(µ2)−1)
1
q2

<

(
q
qI

c

)β1(µ2)
[(

qI
c

qA
c

)β1(µ2)(KqA
c −C
ρ

)
− I

]

×β1(µ2)(β1(µ2)−1)
1
q2

<

(
q
qA

c

)β1(µ2)
(

KqA
c −C
ρ

)
β1(µ2)(β1(µ2)−1)

1
q2

<

(
q
qA

I

)β1(µ2)
(

KqA
I −C
ρ

)
β1(µ2)(β1(µ2)−1)

1
q2

=
[
V I(q)

]′′
. (5.92)

Hence we have proved that V I(q) is more convex on [qI
I,q

I
c). Thus the project

value of the social planner’s project is larger than the decentralized one. �

114



Chapter 6

Gambling or Investment? A

Time-Constrained Pharmaceutical

Investment Decision under

Uncertainty

6.1 Abstract

This chapter discusses whether a time-constrained pharmaceutical R&D project

provides with more investment incentives to tackle the lack of investment problem

on Neglected Tropical Diseases (NTDs). The success of the project is modeled by

a Poisson process, which is assumed to be independent of the process of revenues.

We claim that the intensity of the Poisson process plays an important role in the

investment decisions if both time-to-expiration and the sudden success of the projects

are considered simultaneously. The model shows that two effects determine the

investment threshold of the time-constrained project: the investment effect and the

gamble effect. The investment effect will reduce the optimal investment threshold

while the gamble effect will increase it. Moreover the numerical results show that
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the time-constrained project does provide with more investment incentives, when

the life remaining of the project is longer, intensity of the Poisson process is higher

and when uncertainty of revenues is lower.

6.2 Introduction

The problem to tackle the Neglected Tropical Diseases (NTDs) in developing

countries has been long recognized. Trouiller et al. (2002) found that the infectious

diseases present a huge burden expressed as millions of disability adjusted life-years

(DALYs) in developing countries and together account for 11.4% of the global

disease burden. However, only 1% of the 1393 new chemical entities marketed

between 1975 and 1999 were registered for these diseases, in which 13 for Neglected

Tropical Diseases (NTDs) and three for tuberculosis. The reason for the lack of

investment problem is that the people who suffer from these diseases are mostly

from developing countries with low income and they can not afford to pay for the

drugs. Thus the pharmaceutical companies have no incentives to start these risky

projects that subject to various technological and political uncertainties.

To address the lack of investment problem, the push and pull mechanisms

proposed in the literature may serve to promote research into neglected infectious

diseases (Mueller-Langer (2013)). Among all, the Advance Purchase Commitments

(APC) is one of the best ways to increase investment incentives by assuring a future

solid market. The Center for Global Development (CGD), with the support of

the Bill & Melinda Gates Foundation published a report in 2005 recommending

how advance market commitments for vaccines could be implemented Levine et al.

(2005).

However, most of these commitments only specify specific technologies with

certain quantities in the future at a guaranteed unit price (Farlow (2004)), without

setting time constraints on the drug development process. In order words, the

decision maker has an infinitely lived option to start the project. Moreover, the R&D

process can last forever until some new product is developed once the project starts.
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However, the assumption that the decision maker (DM) owns a perpetual investment

option in the pharmaceutical industry seems too strong, since patients who are in

serious medical conditions can not afford to wait forever. In this chapter, the thesis

investigates how investment decisions are affected if a time constraint is added to

the pharmaceutical R&D project.

Following Myers (1977), it is quite natural to think of many investment problems

that feature irreversibility, flexibility and uncertainty as real options. Many phar-

maceutical R&D projects can be fitted in this framework since they exhibit these

features. Firstly, the cost spent on developing a drug is usually high and irreversible

since it will not be recovered if the research turns out to be a failure or the project is

abandoned in the meantime. Secondly, most of the decisions do not have to be made

right away. Waiting while collecting useful information will usually help make a

better decision. Lastly, the payoffs of projects are usually full of uncertainties in

that the price and demand of drugs are usually not known ex ante. Because of these

features, initiating the project at different time will lead to huge differences on the

potential profits.

In the real options literature, there are many models that assume the investment

decisions are allowed to be made within an unlimited time horizon. For instance, in

the models that Schwartz and Moon (1996) and Hsu and Schwartz (2008) proposed

to evaluate the pharmaceutical R&D projects, there are no time constraints for the

investment decisions. The decision maker can wait forever until the condition is

favorable enough before investment. However, in many practical cases, this is not

realistic. In our models, we assume that the option of delaying investment does not

live infinitely, but subject to a time constraint, say a T years time. This is similar to

the real options models that are developed to evaluate the natural resource options,

such as the valuation of a mine (Brennan and Schwartz (1985)) or the petroleum

leases (Paddock et al. (1988)), where deadlines or time-to-expiration of the projects

are also considered.

Another characteristic of the pharmaceutical R&D project is that the time that

the project being successful is not know ex ante. For instance, the project may be
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successful because of a major breakthrough of new technology. Such situation is

usually modeled by using a Poisson process, with which the time between jumps

follow exponential distribution. This is not new in the real options literature. For

instance, the value of a project that exponentially decays or the project with sudden

death can also be modeled by using this approach (Dixit and Pindyck (1994)).

The contribution of this chapter is that we provide with an evaluation method

of a time-constrained pharmaceutical R&D project, of which success is modeled

by using Poisson process. In other words, we consider a model with both time-to-

expiration and sudden success of the project. Compared to other real options models

to evaluate pharmaceutical R&D projects, such as Schwartz and Moon (1996), Hsu

and Schwartz (2008) and Schwartz (2004), the model in this paper is different in

two ways.

First, the intensity of the Poisson process, besides adding to the discount rate,

also influences the timing of the investment decision by altering the success proba-

bility of the project, when time-to-expiration is considered. In Hsu and Schwartz

(2008), the Poisson process is used to model catastrophic events when the decision

maker is not limited by the time horizon. And it is argued that, if uncorrelated

with the market, the intensity simply enters into the analysis through increasing

the discount rates. We show that the intensity is more than simply adding to the

discount rate.

Second, we model the sudden success of the project instead of the catastrophic

events by using the Poisson process, which is different with the model of Schwartz

(2004). In their paper, although time-to-expiration is also considered, the intensity

simply adds to the discount rate since the catastrophic events do not have influence

on the success probability of the project. In other words, intensity will have great

impact on the investment decisions only if a) The success of the project is modeled

by a Poisson process and b) When the project is of limited time horizon, are both

satisfied simultaneously. Otherwise, the intensity is a less important parameter

which does not have decisive effects on the investment decisions.
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In this chapter, pharmaceutical R&D projects with and without time constraints

are compared and there are three main findings. First, when the success of a time-

constrained pharmaceutical R&D project is modeled by the Poisson process, the

investment effect and the gamble effect determines the optimal investment thresholds

of the project at any given time as the life remaining of the project decreases. The

investment effect will reduce the optimal investment threshold while the gamble

effect will increase it. Second, the intensity of the Poisson process will only have

influence on the investment effect while the uncertainty of the project will only

have impact on the gamble effect. Moreover, both effects increase as the project

approaches the deadline. Last, the time-constrained project provides with more

investment incentives, when intensity is higher and when uncertainty is lower.

The remainder of the chapter is organized as follow. Section 6.3 introduces the

project with perpetual investment option. Section 6.4 discusses the time-constrained

project. In section 6.5, the comparative statics of the two projects are shown. Section

6.6 considers policy implications. Finally, section 6.7 concludes the chapter.

6.3 The Project with a Perpetual Investment Option

The following model and results in this section are not new in the real options

literature. They serve as benchmarks in order to compare with the model and results

in section 6.4.

The time line of the project is as follows:

0

Now

t

Cost incurred.

R&D starts

t + τ̄

Jump observed and new

drug approved. Rev-

enues received.

R&D process

Consider a pharmaceutical company that has an opportunity to invest in a R&D

project without a deadline. The investment is irreversible and subject to a sunk cost
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I > 0 that is paid at the start of the project and a stream of cost flows C > 0 paid

for every period of the R&D process. An advance purchase commitments (APC)

contract is signed between the government and the pharmaceutical company, stating

that the government promises to purchase a certain quantity of the products from

the company, if the final product is proved to be successful anytime after investment.

The revenues of the company are uncertain and represented by a stochastic process

(Yt)t≥0, which follows a geometric Brownian motion (GBM)

dYt = µYtdt +σYtdBt , (6.1)

where (Bt)t≥0 is a Wiener process, µ and σ are constants, and Y0 = y.

The R&D process is modeled as a Poisson process (qt)t≥0, with intensity λ , and

independent of (Bt)t≥0. We assume that the process starts when the investment takes

place and the start value is q0 = 0. The final product is considered to be successful

when the first jump is observed after investment, i.e., at the stopping time

τ̄ = inf{t ≥ 0|qt = 1}. (6.2)

It is assumed that the pharmaceutical company is risk neutral which discounts

projects at rate ρ > max{0,µ}. When the drug is successful, the company will be

receiving a stream of revenues, of which the value is dependent on the value of Yt at

that time:

F(Yt) = EYt

(∫
∞

t
e−ρ(s−t)Ysds

)
=

Yt

ρ −µ
. (6.3)

At the time of investment, the net present value (NPV) of the project is composed

of three parts: (1) the sunk cost paid immediately; (2) the sum of the discounted

cost flows during the R&D process and (3) the revenues received afterwards when
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the final product is successful. The NPV of the project at time t is:

G(Yt) = EYt

[(∫ t+τ̄

t
e−ρ(s−t)(−C)ds+

∫
∞

t+τ̄

e−ρ(s−t)Ysds− I
)]

. (6.4)

Proposition 6.1 If the investment takes place at anytime t, the NPV of the project

at time t is

G(Yt) =
λYt

(ρ −µ)(ρ +λ −µ)
−
(

C
ρ +λ

+ I
)
. (6.5)

See proof of Proposition 6.1 in the Appendix.

The pharmaceutical company wants to maximize the value of the project which

is denoted by the following optimal stopping problem:

F∗(y) = sup
τ

Ey

[
−
∫

τ+τ̄

τ

e−ρtCdt +
∫

∞

τ+τ̄

e−ρtYtdt − e−ρτ I
]

= sup
τ

Ey

{
e−ρτEYτ

[
−
∫

τ̄

0
e−ρtCdt +

∫
∞

τ̄

e−ρtYtdt − I
]}

= sup
τ

Ey

{
e−ρτ

[
λYτ

(ρ −µ)(ρ +λ −µ)
−
(

C
ρ +λ

+ I
)]}

= sup
τ

Ey
[
e−ρτG(Yτ)

]
(6.6)

The stopping time of which the investment in R&D becomes optimal is denoted

by τ . As in most of the real options literature, the optimal stopping time takes the

form of the first hitting times of some threshold Y ∗. For Y ∗ > 0, denote the first

passage time of Y ∗ by τ(Y ∗) := inf{t ≥ 0 | Yt ≥ Y ∗}, which is the optimal time of

investment. Therefore, the problem can be written as

F∗(y) = sup
Y ∗

Ey

[
e−ρτ(Y ∗)G(Yτ(Y ∗))

]
= sup

Y ∗
Ey

[
e−ρτ(Y ∗)

]
G(Y ∗). (6.7)
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In addition, the space [0,∞] can be divided into two regions by the critical value

Y ∗ in this problem. In [0,Y ∗), continuation (waiting) is optimal since the value

of investing immediately is less than the value of waiting. In [Y ∗,∞], termination

(invest immediately) is optimal since the value of investing immediately is equal to

the value of waiting. Hence [0,Y ∗) is the continuation region while [Y ∗,∞] is the

stopping region (Dixit and Pindyck (1994)).

The characteristic operator of the process (Yt)t≥0, as we have seen before, is

LY =
1
2

σ
2y2 ∂ 2

∂y2 +µy
∂

∂y
. (6.8)

On the continuation region, the Bellman equation should hold, i.e., LY F∗ = ρF∗.

By substituting the expression of the characteristic operator and rearranging, we

have

1
2

σ
2y2 ∂ 2F∗

∂y2 +µy
∂F∗

∂y
−ρF∗ = 0, (6.9)

the general solution of which is of the form,

ϕ(y) = Ayβ1 +Byβ2, (6.10)

where β1 > 1 and β2 < 0 are the two roots of the quadratic equation,

Q(β ) =
1
2

σ
2
β (β −1)+µβ −ρ = 0. (6.11)

The boundary condition ϕ(0) = 0 is satisfied only if B = 0, so that ϕ(y) = Ayβ1

on [0,Y ∗). By using Dynkin’s formula, the expected discount factor is

Ey

[
e−ρτ(Y ∗)

]
=

ϕ(y)
ϕ(Y ∗)

=
( y

Y ∗

)β1
, (6.12)
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so that Y ∗ can be obtained by solving

ϕ(Y ∗)G′(Y ∗) = ϕ
′(Y ∗)G(Y ∗). (6.13)

which yields

Y ∗ =
β1

β1 −1
(ρ −µ)(ρ +λ −µ)

λ

(
C

ρ +λ
+ I
)
. (6.14)

Therefore the value of the project is:

F∗(y) =


( y

Y ∗
)β1
[

λY ∗

(ρ−µ)(ρ+λ−µ) −
(

C
ρ+λ

+ I
)]

i f y < Y ∗

λy
(ρ−µ)(ρ+λ−µ) −

(
C

ρ+λ
+ I
)

i f y ≥ Y ∗.

(6.15)

The project value of the perpetual option depends on the current value y of the

stochastic process (Yt)t≥0. If the current value y is less than the optimal investment

threshold Y ∗, the optimal strategy of the pharmaceutical company is to wait and

invest when Y ∗ is reached. However, if the current value y is larger or equal to the

optimal investment threshold Y ∗, the optimal strategy is to invest or start the R&D

process right away.

6.4 The Time-Constrained Project

Now consider the case that another requirement is added in the previous advance

purchase commitments contract, which states that the final product needs to be

finished in T years time. After T years from now, the government will no longer

guarantee to purchase the product from the pharmaceutical company even if any

product is invented. Since the R&D process is modeled by a Poisson process, if a

jump happens within the time specified by the government, i.e., T years, the project

is considered to be successful and the pharmaceutical company will be rewarded.

However, if no jump is observed within time T , the project will keep incurring
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costs until time T and fails without receiving any revenues. Moreover, there is no

opportunity to resume research or restart the project from the scratch. In this case,

the value of the project does not only depend on the value of (Yt)t≥0, but also on

time itself.

The time line of the project is as follows:

0

Now

t

Cost incurred.

R&D starts

t + τ̄

Revenues received if

a jump happens be-

fore T .

T t + τ̄

No revenues received

if a jump happens af-

ter T .

R&D process

According to whether the jump happens by the time T , the NPV of the project

can be separated into two parts. One part is the revenues of the project net of all

the costs occurred before the jump happens, multiplied by the probability that the

jump happens. The other part is the sum of all the costs accumulated by time T ,

multiplied by the probability that the jump does not happen, and no revenues are

generated in this case.

The NPV of the project that at time t if t < T is

g(Yt , t) =EYt

[(∫ t+τ̄

t
e−ρ(s−t)(−C)ds+

∫
∞

t+τ̄

e−ρ(s−t)Ysds− I
)

P(τ̄ < T − t)

+

(∫ T

t
e−ρ(s−t)(−C)ds− I

)
P(τ̄ ≥ T − t)

]
. (6.16)

Proposition 6.2 The NPV of the project is 0 if the investment takes place after time

T . For any time t < T at which the investment takes place, the NPV of the project is

g(Yt , t) =
[

λYt

(ρ −µ)(ρ +λ −µ)
−
(

C
ρ +λ

+ I
)][

1− e−λ (T−t)
]

+

C
(

e−ρ(T−t)−1
)

ρ
− I

e−λ (T−t). (6.17)

See proof of Proposition 6.2 in the Appendix.
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The problem of the pharmaceutical company is to maximize the value of the

project, which is denoted by the following optimal stopping problem

F∗(y, t) = sup
τ≤T

Ey

[(∫
τ+τ̄

τ

e−ρs(−C)ds+
∫

∞

τ+τ̄

e−ρsYsds− e−ρτ I
)

P(τ̄ < T − τ)

+

(∫ T

τ

e−ρs(−C)ds− e−ρτ I
)

P(τ̄ ≥ T − τ)

]
= sup

τ≤T
Ey

{
e−ρτEYτ

[(
−
∫

τ̄

0
e−ρsCds+

∫
∞

τ̄

e−ρsYtds− I
)

×P(τ̄ < T − τ)+

(∫ T−τ

0
e−ρs(−C)ds− I

)
P(τ̄ ≥ T − τ)

]}

= sup
τ≤T

Ey

{
e−ρτ

[[
λYτ

(ρ −µ)(ρ +λ −µ)
−
(

C
ρ +λ

+ I
)][

1− e−λ (T−τ)
]

+

C
(

e−ρ(T−τ)−1
)

ρ
− I

e−λ (T−τ)

]
= sup

τ≤T
Ey
[
e−ρτg(Yτ ,τ)

]
. (6.18)

Since the project value is influenced by both (Yt)t≥0 and t, the continuation

region in this project is different from the one in the project of perpetual option.

We define the continuation region as C = {(Yt , t) : Yt ∈ [0,Y ∗(t)}, for t < T , where

waiting is the best strategy for the given contract length. And the stopping region is

define as S = {(Yt , t) : Yt ∈ [Y ∗(t),∞)}, for t < T , where the optimal strategy is to

invest immediately.

On the continuation region, the Bellman equation should hold

∂F∗

∂ t
+

1
2

σ
2y2 ∂ 2F∗

∂y2 +µy
∂F∗

∂y
−ρF∗ = 0. (6.19)

Because two state variables are involved in the time-constrained project, the

differential equations that emerge from dynamic programming are also partial

differential equations (PDE) with two state variables. And there is no general

solution for the PDE. Hence we are not able to compute the closed form of the
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expected discount factor by using Dynkin’s formula as in the previous case. Solution

of such equations typically requires numerical methods (see Dixit and Pindyck

(1994)). In what follows, we try to solve the above PDE numerically by using the

finite difference approximation.

To simplify the approximation, we first take the log transformation of the Bell-

man equation and define

x = log(y) (6.20)

W (x, t) = F∗(y, t) (6.21)

w(x, t) = g(x, t). (6.22)

Thus we can rewrite the partial differences in equation 6.19 as

∂F∗

∂y
=

∂W
∂x

e−x (6.23)

∂ 2F∗

∂y2 = (
∂ 2W
∂x2 − ∂W

∂x
)e−2x (6.24)

∂F∗

∂ t
=

∂W
∂ t

. (6.25)

Substitute equation 6.19 with equations 6.23 to 6.25, the transformed Bellman

equation becomes

∂W
∂ t

+
1
2

σ
2 ∂ 2W

∂x2 +(µ − 1
2

σ
2)

∂W
∂x

−ρW = 0. (6.26)

The finite difference method transforms the continuous state variables Yt and

T into discrete variables and replaces the partial derivatives in the PDE with finite

differences.

Let W (x, t) ≡ W (i△x, j△t) ≡ Wi, j, where 0 ≤ i ≤ k and 0 ≤ j ≤ h. For any

value of x, it is divided into i shares of equal lengths, which is represented by △x

and hence x = i△x. Similarly, for any value of t, it is divided into j shares of equal

lengths, represented by △t and x = j△t. Note that i and j do not have to be equal.
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In addition, The partial differences in equation 6.26 can be approximated by

∂ 2W
∂x2 ≈ [Wi+1, j −2Wi, j +Wi−1, j]/(△x)2 (6.27)

∂W
∂x

≈ [Wi+1, j −Wi−1, j]/2△x (6.28)

∂W
∂ t

≈ [Wi, j −Wi, j−1]/△t. (6.29)

Now substitute equation 6.26 with equations 6.27 to 6.29,

(Wi, j −Wi, j−1)

△t
+

1
2

σ
2 (Wi+1, j −2Wi, j +Wi−1, j)

(△x)2

+(µ − 1
2

σ
2)
(Wi+1, j −Wi−1, j)

2△x
−ρWi, j = 0. (6.30)

The partial differential equation then can be written as

(1+ρ△t)Wi, j−1 = p+Wi+1, j + p0Wi, j + p−Wi−1, j (6.31)

where

p+ =

[
1
2

(
σ

△x

)2

+
1
2

(
µ − 1

2σ2

△x

)]
△t (6.32)

p0 = 1−
(

σ

△x

)2

△t (6.33)

p− =

[
1
2

(
σ

△x

)2

− 1
2

(
µ − 1

2σ2

△x

)]
△t. (6.34)

Notice that p++ p0 + p− = 1, thus they can be considered as the probabilities

that the value of the Wi at time j−1, multiplied by some discount factor 1+ρ△t,

move upward p+, not changed p0 or move downwards p−, in the next period j.

More specifically, it is a three-point random walk representation of the Geometric

Brownian Motion (GBM).

There are several boundary conditions that need to be satisfied. Firstly, no matter

what value x is, at deadline T , the project value F∗(y,T ) is 0 since the opportunity

127



6.4. THE TIME-CONSTRAINED PROJECT

has been lost according to the requirement of the government. Hence

W (x,T ) = 0; (terminal boundary condition). (6.35)

Secondly, if the initial value y = 0, the project value is also zero. According

to the properties of GBM, the stochastic process (Yt)t≥0 will remain to be 0 in

expectation since E(Yt) = yeµt . So, if y = 0, E(Yt) = 0. When y approaches 0 from

the right, i.e., y → 0+, x approaches −∞, thus

W (−∞, t) = 0; (lower boundary condition). (6.36)

As for the upper boundary condition, the value of x is chosen to be high enough

so that there is at least one positive NPV of the project (w(x, t) > 0) to start with

from time T −△t.

Next, we are going to find the boundary that separates the continuation region

and the stopping region in log terms, namely the curve x∗(t) which is called a

“free boundary” (Dixit and Pindyck (1994)). We start from the terminal boundary

and look backwards to find the first column that has at least one positive NPV by

investing immediately. In that column, the value of the project equals the NPV of

the project which can be computed by the equation in Proposition 6.1 since the

NPVs one period after this column are all negative. Then we start to look at all the

columns earlier by comparing the NPVs with the value of waiting in every grids of

the trinomial trees. The smallest x that makes the value of waiting larger than NPV

in each column is denoted by x∗(t) which are the optimal investment thresholds

at that time. The continuation region for a given t is composed of all the x that is

less than x∗(t) and all the x that is larger than x∗(t) forms the stopping region. The

collection of x∗(t) in every column forms the optimal investment threshold frontier.

Proposition 6.3 If the function after transformation W (x, t) is maximized at x =

x∗(t), the original function F∗(y, t) is maximized at y = y∗(t).

See proof of Proposition 6.3 in the Appendix.
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6.5 Comparative Statics

The first problem that we discuss is how the investment threshold of the project that

has limited life time changes, as the life of the project t approaches the time limit T

under different intensity λ , which is shown in Figure 6.1. Generally speaking, the

changes of the investment threshold result from the interaction of two effects, the

investment effect and the gamble effect.
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Fig. 6.1 The investment threshold of the time-constrained project varies with the
project’s life time t, when the intensity λ are 0.2, 2 and 30. The parameter values
are: ρ = 0.1, µ = 0.08, C = 2, I = 50, σ = 0.5 and T = 10

The investment effect is that the decreasing life remaining of the project, T − t,

encourages earlier investment. As the remaining life of the project decreases, the

project is less likely to be successful since there is less time for R&D. Hence the

probability of the jump happening within the remaining life time of the project is

low. In this case, a reasonable strategy would be to start the project sooner so that

there will be more time for R&D, which increases the probability that the jump

will happen within the time limit. Thus the investment effect will lead to a lower

investment threshold.

On the contrary, the gamble effect is that the decreasing life remaining of the

project delays investment. When it is close to the deadline, the probability that the

jump will happen in time is low and the risk of starting the project is high. While

the best strategy that the decision makers will make at this point is probably to
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reject the investment proposal, the only possibility that the investment will take

place is that the potential revenues are extremely high once the project is successful.

Since the revenues of the project are positive related with the underlying stochastic

process Yt , the investment will take place only if Yt is extremely high. Because the

probability that the investment takes place when Yt is of an extremely high value is

low, the success of the project will be dependent on the event of small probabilities,

which is similar to gambling. That is why we call it the gamble effect, which delays

investment.

When λ = 0.2, it is shown that the investment threshold goes up as the life of

project gets closer to the time limit T . The intensity λ represents the average number

of jumps that happen within a unit time, a lower λ implies that the happening of

the jump is lower. The investment effect is weaker for a lower λ , since even if the

project starts sooner which means a longer possible R&D process, the chances that

the jump will happen is still low. Thus the extension of the R&D process is less

valuable than if the intensity is higher. In this case, the gamble effect dominates

throughout the lifetime of the project, and the optimal investment threshold of the

project keeps rising as the project approaches the deadline.

When λ = 2, it is shown that the investment threshold first goes down, then goes

up by the end of the contract, and it eventually disappears before the deadline as

the project approaches the deadline T . When intensity is higher, the chance that

the jump happens is also higher. Thus the investment effect is stronger since earlier

investment and a longer R&D process is more beneficial if the jump is more likely

to happen. In this case, the risk of the project is lower, and the decision maker does

not necessarily need to wait and start the project only if Yt is extremely high. It is

before y∗ reaches its minimum that the investment effect dominates.

However, the two effects are reversed before the deadline. Because even if the

intensity is higher, when it is close to the deadline, the time for the R&D process is

too short for the jump to happen. This is when the gamble effect gets stronger and

finally dominates the investment effect before the deadline of the project. Finally, as

t further approaches T , the optimal investment threshold no longer exists. From this

130



CHAPTER 6. GAMBLING OR INVESTMENT? A TIME-CONSTRAINED PHARMACEUTICAL INVESTMENT
DECISION UNDER UNCERTAINTY

point onwards, it is never optimal to accept the investment proposal since the NPVs

of the project are all negative.

When λ further increases to λ = 30, the investment effect is so strong that

the investment threshold of the project keeps decreasing even when the project

is extremely close to the deadline. The gamble effect never dominates in this

circumstance. It is worth noting that both effects are getting stronger as the life

remaining of the project is decreasing. In addition, λ only has influence on the

investment effect while the gamble effect is not affected when λ varies.
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Fig. 6.2 The investment threshold of the time-constrained project varies with the
project’s life time t when the deadline of the project varies from 5 to 500 years. The
parameter values are: ρ = 0.1, µ = 0.08, σ = 0.3, C = 2 and I = 50.

Next, in Figure 6.2, we discuss how the investment threshold of the project

that has time-constraint varies as the contract length increases. Summarily, as T
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increases, the time-constraint will have less effect on the investment decision. More

specifically, when T is great enough or goes to infinity, the time-constrained project

becomes more similar to the unconstrained project and the investment threshold

approaches a constant . The reason is, when T is large enough, the probability that

the jump happens within the time limit, i.e., P(τ̄ < T − t), is 1, which makes the

NPV function of the time-constrained project (see equation 6.16) becomes that of

the unconstrained project (see equation 6.5).

Moreover, the shape of the free boundary is not general. In other models

where time constraints are considered, as the project approaches the deadline, the

investment threshold keeps decreasing if there exists only the investment effect

with which the success probability of the project can only be enhanced by earlier

investment. In this model, as it is closed to the deadline, it is the balance of both

the investment and gamble effect determines the shape of the threshold. Since it is

possible that the gamble effect is stronger, the investment threshold may increase as

“t” approaches “T”.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

t

y
∗
(σ

=
0
.
3
),

y
∗
(σ

=
0
.
5
)

y
∗
(σ

=
0
.
8
)

 

 
y
∗(σ = 0.3)

y
∗(σ = 0.5)

y
∗(σ = 0.8)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

t

y
∗
(σ

=
0
.
3
),

y
∗
(σ

=
0
.
5
)

y
∗
(σ

=
0
.
8
)

 

 
y
∗(σ = 0.3)

y
∗(σ = 0.5)

y
∗(σ = 0.8)

(A) λ=0.2 (B) λ=2

Fig. 6.3 The investment threshold of the time-constrained project varies with the
project’s life time t when uncertainty σ are 0.3, 0.5 and 0.8 respectively. The
parameter values are: ρ = 0.1, µ = 0.08, C = 2, I = 50 and T = 10.

Next, in Figures 6.3, this thesis discusses the effect of uncertainty σ has on the

investment threshold of the project at different time t when intensity takes the value

of λ = 0.2 and λ = 2, respectively.
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Figure 6.3 (A) shows that the investment threshold of the time-constrained

project increases as σ goes up for any given time t. This is standard in the real

options literature (see Dixit and Pindyck (1994)) since the option value increases

with uncertainty while the NPV of the project is not affected, which leads to the

increase of the investment threshold. As t changes, the effect that uncertainty σ has

on the option values forms the gamble effect. In other words, the increase in the

level of uncertainty will boost the magnitude of the gamble effect. However, as it

is shown in the figure, the gap between the threshold with different σ shrinks as

t approaches T . The reason is that the gamble effect does not only dependent on

the level of uncertainty σ , but also dependent on the time left of the project T − t.

As the project approaches its deadline or when T − t is smaller, as σ goes up, the

gamble effect increases slower because waiting becomes more risky in the sense

that there is less time left for the jump to happen. Thus, although the investment

threshold increases as σ goes up for every time t, as it is close to the deadline, the

increase of σ will have less effect on the gamble effect, which leads to the smaller

gap between the investment threshold for different σ .

In Figure 6.3 (B), when the project is away from the deadline T , it is shown

that the investment threshold does not change as σ goes up. This is because the

investment effect dominates when λ is high. Thus even if an increase in σ boost

up the gamble effect, the investment threshold does not go up. As t goes up, the

investment threshold of the project that has lower uncertainty goes down first while

the one with higher uncertainty stays the same. Since the gamble effect is stronger

with higher uncertainty which offsets the investment effect, the investment thresholds

when σ = 0.5 and σ = 0.8 decrease more slowly. However, since the intensity λ is

not high enough, at a certain time t near the deadline, the two effects are reversed.

It is worth noting that the level of uncertainty σ has nothing to do with the

investment effect but it is positive related with the gamble effect.

The investment problem of the project that has time constraint is quite similar to

the exercise problem of the standard American call option. However, there are some

differences between the two.
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On one hand, as it is close to the deadline, the line of NPV=0 for the project

goes up while it goes down for the American call option. For the project that has

time constraint, when the time of the project approaches the maximum length of the

contract “T”, the probability that the project to be successful becomes lower and the

total costs paid will be much higher. In this case, a positive NPV of project requires

that revenues of the project must be higher, which leads to the increasing line when

NPV=0. For the American call option, the NPV of the option at each point in time

is dependent on three factors, which are the price of the underlying asset (Pt), the

strike price (K) and the price of the call option (Ct) itself. The NPV of the option,

NPV (Pt) = max(Pt −K −Ct ,0). As the time approaches the deadline, the price of

option decreases, thus the line that NPV=0 also decreases.

On the other hand, for the American call option, it is never optimal to exercise

before the expiration date if there are no dividends. However, for the project that has

time constraint, the decision maker should exercise the option or invest immediately

when the NPV of the project is larger than the option value of the project.

Lastly, we discuss the difference of the project with a perpetual option with the

time-constrained project by looking at how investment thresholds of both projects

vary under different intensity λ and level of uncertainty σ .

It is shown in Figure 6.4 that the investment threshold of the project with a

perpetual option does not vary with time t. In other words, the investment threshold

is not a time-dependent function. Since for the project with a perpetual option, the

life time remaining is infinity. Thus the decision maker can wait as long as he likes

and the project will only end if the opportunity is given up or the decision maker

decides to wait forever. If there is no time limit on waiting, the option value can be

fully captured since the project will only start when Yt is high enough. However, in

the time-constrained project, the life remaining of the project has to be considered

since the project fails automatically if the investment is not taken place within the

time limit. The option value of this type of project can not be fully captured. In a

word, the two projects’ different capabilities of capturing the option values lead to

the great difference of the two investment thresholds.
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Fig. 6.4 Comparison of the investment thresholds of the perpetual option project Y ∗,
with the time-constrained project y∗ when λ takes the value of λ = 0.2 and λ = 2,
the level of uncertainty σ = 0.3, σ = 0.5 and σ = 0.8. The other parameter values
are: ρ = 0.1, µ = 0.08, C = 2, I = 50 and T = 10.

When λ is small, the investment threshold of the project with a perpetual option

is larger than the one of the time-constrained project with long time remaining

T − t. As the life-remaining of the project decreases, the investment threshold of the

time-constrained project y∗, goes up and it exceeds the investment threshold of the

project with a perpetual option Y ∗ at certain time t. As σ goes up, the option value

increases and the time that y∗ ≥ Y ∗ happens later. This is due to the two projects’

different capabilities of capturing the option values. Thus at any time t, as σ goes

up, Y ∗ always goes up faster than y∗.

When λ is higher, it takes an even longer time for y∗ exceeding Y ∗ since the

investment effect dominates, which reduces y∗ as the project approaches the deadline.

In addition, as σ further increases, Y ∗ strictly dominates y∗. On one hand, the project

without time constraint can fully capture the option value. On the other hand, the
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investment effect is strong with a higher λ . Thus y∗ ≤ Y ∗ maintains for a longer

period of time in this case.

Thus it can be concluded that the time-constrained project provides with more

investment incentives when intensity λ is higher and when uncertainty σ is lower.

6.6 Policy implications

Several policy implications can be drawn from the model.

First, adding a time constraint in the advance purchase commitment contract will

increase the incentive of earlier investments for two reasons. First, the investment

flexibility of the pharmaceutical companies are restricted since the time constraint

itself is as long the companies could wait. However, for the project without time

constraint, the decision maker could wait until the option value is fully realized

before investment. One can even choose to wait forever if the condition is not

favorable enough. Second, a time constraint increases the risk of failure when the

project is close to the deadline and forces the investors to start the project earlier,

especially when the probability of success is low which is represented by “λ” in the

model.

Second, if the authority has already determined to add a time constraint in the

advance purchase commitment contract, dependent on the success probability of the

project, the length of the time constraint should be chosen such that the investment

effect is larger than the gamble effect for most of the time during the contract length.

For the project with lower success probability, the contract length is better set to be

moderately higher so that the companies have enough time to make sure the project

will be successful after investment. Or the company will have to wait until the

revenues are high enough (the gamble effect) so that it is possible for them to start

the project. For the project with higher success probability, a short contract length

will help increase the incentive of earlier investment. The reason is that the decision

makers of these projects can well adapt to the pressure of a short time constraint by

starting the project earlier instead of resorting to the gamble effect. Thus when it
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is close to the deadline, they will not further delay investment but to invest sooner.

Moreover, the longer the contract length, the less effect that time constraint will

have exerted on the decision makers.

6.7 Conclusions

In this chapter we develop a model to value a pharmaceutical R&D project based

on the real options approach. The sudden success of the project is modeled by a

Poisson process where time-to-expiration is also taken into account. It is found that

when the project is of limited time horizon, the intensity of the Poisson process does

not simply add to the discount rate as in many other models, that either has infinite

time horizon or consider catastrophic events. The intensity can be the decisive factor

in determining the optimal investment threshold in that the success probability of

the project is affected. Thus the impression that the intensity only increases the

discount factor can be misleading in particular problems.

We also analyze how the optimal investment threshold of the time-constrained

project changes with respect to the life remaining of the project T − t, the intensity

of the Poisson process λ and the uncertainty of revenues σ . The model shows

that the optimal investment threshold is determined by the balance of two effects:

the investment effect and the gamble effect. The investment effect will reduce the

optimal investment threshold while the gamble effect will increase it. Both effects

get stronger as T − t decreases. When it is close to the deadline, on one hand, the

investment effect is stronger since earlier investment will leave more time for the

R&D process, thus the project has higher success probability. On the other hand, the

gamble effect is also stronger since the success probability is extremely low at this

point. The only possibility that the investment will ever take place is the revenues

are high enough if the project happens to be successful, which leads to waiting and

late investment.

The intensity λ represents the average number of jumps that happen within a

unit time, and a lower λ implies that the happening of the jump is lower. When λ is
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extremely low, earlier investment is not a good strategy since the probability of the

jump happening within the deadline is still low, while the opportunity of investing at

high revenues is given up soon. Thus the investment effect is weaker when λ is of

low values. The uncertainty of revenues σ is positive related to the gamble effect. A

higher σ will increase the probability of Yt reaching a higher value, which increases

the incentives of the decision maker to wait when the project is close to the deadline.

The numerical results show that the time-constrained project does provide with

more investment incentives when intensity λ is higher and when uncertainty σ is

lower, i.e., when the investment effect is stronger and the gamble effect is weaker.

Thus, adding a term in the advance purchase commitments, which states that the

drug development process must be finished within a limited time, could be a good

way to further increase the investment incentives of the private companies to tackle

the problem of Neglected Tropical Diseases (NTDs) in the developing countries.
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6.8 Appendix

Proof of Proposition 6.1

Consider the decision maker is at time t, the NPV of the project is

F(Yt) =EYt

[∫
τ̄

0
e−ρt(−C)dt +

∫
∞

τ̄

e−ρtYtdt − I
]

=
C
(
e−ρτ̄ −1

)
ρ

+
Yt

ρ −µ
e−(ρ−µ)τ̄ − I. (6.37)

Since τ̄ is a random variable at time t which is exponentially distributed, the

above function can also be treated as a function of τ̄ , i.e., F(τ̄). The NPV of the

project can be computed by taking the expectation of F(τ̄),

E (F(τ̄)) =

[(
C
ρ

∫
∞

0
e−ρx

λe−λxdx
)
− C

ρ

]
+

[
Yt

ρ −µ

∫
∞

0
e−(ρ−µ)x

λe−λxdx
]
− I

=

[
C
ρ

(
λ

ρ +λ

)
− C

ρ

]
+

[
λYt

(ρ −µ)(ρ +λ −µ)

]
− I

=
λYt

(ρ −µ)(ρ +λ −µ)
−
(

C
ρ +λ

+ I
)

:=G(Yt). (6.38)

The proof is complete. �
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Proof of Proposition 6.2

Consider the decision maker is at time t, the NPV of the project is

f (Yt , t) =EYt

[∫
τ̄

0
e−ρt(−C)dt +

∫
∞

τ̄

e−ρtYtdt − I
]

P(τ̄ < T − t)

+EYt

[∫ T−t

0
e−ρt(−C)dt − I

]
P(τ̄ ≥ T − t)

=

[
C
(
e−ρτ̄ −1

)
ρ

+
Yt

ρ −µ
e−(ρ−µ)τ̄ − I

](
1− e−λ (T−t)

)

+

C
(

e−ρ(T−t)−1
)

ρ
− I

e−λ (T−t). (6.39)

Since τ̄ is a random variable at time t which is exponentially distributed, the

above function can also be treated as a function of τ̄ , i.e., F(τ̄, t). The NPV of the

project can be computed by taking the expectation of f (τ̄, t),

E ( f (τ̄), t) =
[(

C
ρ

∫
∞

0
e−ρx

λe−λxdx
)
− C

ρ
+

Yt

ρ −µ

∫
∞

0
e−(ρ−µ)x

λe−λxdx− I
]

×
(

1− e−λ (T−t)
)
+

C
(

e−ρ(T−t)−1
)

ρ
− I

e−λ (T−t)

=

[
λYt

(ρ −µ)(ρ +λ −µ)
−
(

C
ρ +λ

+ I
)](

1− e−λ (T−t)
)

+

C
(

e−ρ(T−t)−1
)

ρ
− I

e−λ (T−t)

:=g(Yt , t). (6.40)

The proof is complete. �
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Proof of Proposition 6.3

Since it is assumed that

F∗(y, t) =W (log(y), t) =W (x, t), (6.41)

x∗(t) maximizes W (x, t) if

∂W (x∗(t), t)
∂x∗(t)

= 0 or
∂W (log(y∗(t)), t)

∂ log(y∗(t))
= 0 (6.42)

and

∂ 2W (x∗(t), t)
∂x∗(t)2 < 0 or

∂ 2W (log(y∗(t)), t)
∂ log(y∗(t))2 < 0. (6.43)

Hence,

∂F∗(y∗(t), t)
∂y∗(t)

=
∂W (log(y∗(t)), t)

∂y∗(t)
(6.44)

=
∂W (log(y∗(t)), t)

∂ log(y∗(t))
× ∂ log(y∗(t))

∂y∗(t)

=
∂W (log(y∗(t)), t)

∂ log(y∗(t))
× 1

y∗(t)

=0. (6.45)

Thus it is proved that the first partial derivative of F∗(·) with respect to y at the

point y = y∗(t) is zero.

141



6.8. APPENDIX

In addition,

∂ 2F∗(y∗(t), t)
∂y∗(t)2 =

∂ 2W (log(y∗(t)), t)
∂y∗(t)2 (6.46)

=∂

(
∂W (log(y∗(t)), t)

∂y∗(t)

)
/∂y∗(t)

=∂

(
∂W (log(y∗(t)), t)

∂ log(y∗(t))
× 1

y∗(t)

)
/∂y∗(t)

=

(
∂ 2W (log(y∗(t)), t)

∂ log(y∗(t))2
1

y∗(t)2

)
=< 0. (6.47)

Thus it is also proved that the second partial derivative of F∗(·) with respect to y

at the point y = y∗(t) is negative. Hence F∗(·) is maximized when x = x∗(t). �
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Chapter 7

Conclusions

I conducted a series of studies on three problems in the pharmaceutical industry.

Each problem is discussed by comparing two models in every chapter. For the two

models, one is unconstrained and serves as the benchmark. The other is limited

by some condition that mimics the problem in real life. By comparisons, we have

three major findings. First, the commercialization flexibility will incentivize earlier

investments when uncertainty is low and it delays investment when uncertainty is

high. Moreover, faster approval policy is more effective when uncertainty is low.

Second, the social planner’s project is more desirable in terms of early investment

thus earlier access to the product, as well as a larger overall value of the project.

While the project run by a Private-Public Partnership is a better option in terms of the

flexibility to adjust the product’s quality, but with the cost of delaying commercial-

ization. Last, the contract with a time constraint on the R&D process will increase

the probability of investment and lead to earlier investment, when investment effect

dominates the gamble effect.

However, the models are simplifications of the real situations, further researches

can be done on implementing more factors in practice.

First, in real life, the R&D process is far from observing the fluctuation of the

underlying stochastic process but more complicated. It is usually composed of three

or four phases of clinical trials before the start of commercialization. At certain point
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in time, future decisions are usually made based on all the information available up

to that time. In other words, the information is not Markovian as we have assumed

in the thesis. Moreover, it is highly likely that the project is considered to be not

promising and thus it can be abandoned to avoid losses in the future. In our models,

we either assume that the project will be successful for sure or the costs will be paid

till the end of the project even if it fails. If the abandonment option is implemented,

the value of the project will further go up and thus the project should provide with

more investment incentives.

Second, we assume that there is only one project in each models and the decision

makers are endowed with only two choices which are to invest or to give up the

opportunity. Hence the investment decision is made with no other opportunity costs

besides discounting. However, in reality, the decision maker may have a portfolio of

projects at hand with limited budget. In this case, the decisions made for the one

project will definitely be affected by other projects in that portfolio since the goal

of the decision maker is no longer maximizing the value of a single project but the

portfolio.

Third, we assume that the project is only made for the particular decision maker

with no other competitors. In a competitive industry, the first-mover advantage or

late-mover advantage will need to be considered. The optimal investment timing

does not only depend on the balance of the option value and NPV of the project, but

also subject to the moves of other decision makers.

Fourth, further research can be done on analyzing the optimal length of the

advance purchase commitments contract in chapter 6, in terms of the different goals

that the government or the sponsor want to achieve. For instance, one goal can be

to speed up investments thus the patients can have earlier access to the product,

while only a medium quality of the product is required. Another goal is to invent

a product of high quality while the timing of commercialization is not the priority.

Or the government would want to balance the timing of commercialization with

the product’s quality. Dependent on the various goals, the contracts are optimal in

different sense. Thus the optimal length of the contract will also be different.
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CHAPTER 7. CONCLUSIONS

Last, to capture more real life situations, the different ways that we model

the pharmaceutical R&D projects could be combined, where any of the following

factors such as investment lag, different growth rates before and after investment,

commercialization flexibility, sudden success of the project and time constraint can

be considered simultaneously. The analysis combining more factors can be done

easier since some of the combinations have been throughly discussed in the thesis

already.
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