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Abstract

This thesis combines the fields of functional analysis and topology.

C∗-algebras are analytic objects used in non-commutative geometry
and in particular we consider an invariant of them, namely E-theory.

E-theory is a sequence of abelian groups defined in terms of homo-
topy classes of morphisms of C∗-algebras. It is a bivariant functor
from the category where objects are C∗-algebras and arrows are ∗-
homomorphisms to the category where objects are abelian groups
and arrows are group homomorphisms. In particular, E-theory is
a cohomology theory in its first variable and a homology theory in
its second variable. We prove in the case of real graded C∗-algebras
that E-theory has 8-fold periodicity.

Further we create a spectrum for E-theory. More precisely, we use
the notion of quasi-topological spaces and form a quasi-spectrum,
that is a sequence of based quasi-topological spaces with specific
structure maps. We consider actions of the orthogonal group and
we obtain a orthogonal quasi-spectrum which we prove has a smash
product structure using the categorical framework. Then we obtain
stable homotopy groups which give us E-theory.

Finally, we combine these ideas and a relation between E-theory and
K-theory to obtain connections of the E-theory orthogonal quasi-
spectrum to K-theory and K-homology orthogonal quasi-spectra.
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Introduction

A key aspect of this work is that we have connected operator algebras and
topology.

We use complex C∗-algebras, i.e. Banach ∗-algebras A for which ||T ∗T || =
||T ||2 for all T in A. By results of Gelfand and Naimark, any commutative
C∗-algebra is isomorphic to the algebra of continuous functions on some topo-
logical space, and any C∗-algebra is a subalgebra of bounded linear operators
on a Hilbert space. Additionally, we also work with real C∗-algebras [Pal84].
These have an analogous definition to complex C∗-algebras but require that the
element 1 + T ∗T is invertible for all T in A. Further it is also necessary for me
to work with Z2-graded C∗-algebras.

In C∗-algebra theory, we are interested in studying certain invariants. We
work with homotopy classes of functions between C∗-algebras. These form
groups known as E-theory groups; a bivariant version of the K-theory groups.
Many C∗-algebraists use the notion of K-theory and/or KK-theory but we
use E-theory since it has additional properties of KK-theory and relates to
K-theory.

E-theory was introduced by Higson [Hig90] as a categorical framework to in-
clude the excision property that KK-theory does not have. It was formed to aid
in the study of KK-theory since it has additional structure making it easier to
work with. Soon after, Connes and Higson constructed a concrete definition us-
ing almost homomorphisms [CH]. Higson did some work with Guentner [HG04]
and defined E-theory for complex graded C∗-algebras. Furthermore, Guentner,
Higson and Trout [GHT00], define equivariant E-theory and descent and the
Baum-Connes conjecture there after.

E-theory is a bivariant functor from the category where objects are C∗-
algebras and arrows are ∗-homomorphisms, to the category whose objects are
abelian groups and arrows are group homomorphisms, being a cohomology the-
ory in its first variable and a homology theory in its second variable. That
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is, we have a sequence of abelian groups E0(A,B), E1(A,B) . . . for Z2-graded
C∗-algebras A and B.

We prove that when we consider real Z2-graded C∗-algebras that E-theory
has 8-fold periodicity using techniques of Guentner and Higson [HG04], who
prove that in the case of complex Z2-graded C∗-algebras we have 2-fold period-
icity. That is,

Theorem A. For real graded C∗-algebras A and B,

En(A,B) ∼= En+8(A,B).

As we have homotopy classes, the notion of topological spectrum is a logi-
cal choice since we can obtain a stable homotopy theory which gives resulting
groups as the E-theory groups. A topological spectrum is a sequence of based
topological spaces with connecting structure maps. The classes of functions that
define the E-theory groups are not continuous, but satisfy a weaker property
called “quasi-continuity”. The appropriate structure to describe this is a quasi-
topological space. A quasi-topology on a set W is a collection of maps for each
compact Hausdorff space C into W , Q(C,W ), called quasi-continuous with ad-
ditional properties. A set X with a quasi-topology is a quasi-topological space.
In this thesis, we generalise the definition of a spectrum to quasi-topological
spaces, that is we have a sequence of based quasi-topological spaces with struc-
ture maps. Our spaces are defined by

En(A,B) = Asy(C0(R)g⊗̂A⊗̂K, B⊗̂Fn,0⊗̂K)

where F = R or C and we equip the set with a quasi-topology. We can define
the structure maps too and denote this quasi-spectrum by X(A,B).

The notion of an orthogonal quasi-spectrum is a quasi-spectrum with an
action of the orthogonal group and additional properties. This is necessary for
a rich product structure called the smash product of orthogonal quasi-spectra.
We prove that this structure exists in this framework and obtain the following
theorem.

Theorem B. There is a natural map of orthogonal quasi-spectra

X(A,B) ∧ X(B,C)→ X(A,C).

This result gives us a realisation of the E-theory product.
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The thesis concludes with a connection of K-theory and K-homology or-
thogonal quasi-spectra using the E-theory orthogonal quasi-spectrum and the
smash product as in the above theorem.

Others have done similar constructions, namely Mitchener [Mit01] con-
structed a symmetric spectra for K-theory and a symmetric spectra of KK-
theory for C∗-categories. Joachim and Stolze [JS09] created an enrichment of
KK-theory over the category of symmetric spectra.

There are many avenues for future work. The author is working in col-
laboration with Mitchener on extending the thesis to C∗-categories. Then in
a postdoctoral position at Penn State, the author hopes to use this theory in
applications to positive scalar curvature results, by generalising work of Weiss
and Williams [WW95].
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Chapter overview

Chapter 1
We cover key preliminaries on ungraded E-theory, some necessary topological
notions, the concept of a quasi-topology and categorical definitions.
Chapter 2
Here we detail the definition of Z2-graded C∗-algebras and cover the generali-
sation of the E-theory groups in this case. We include proofs throughout and
set up material for later.
Chapter 3
We consider real C∗-algebras and prove Bott periodicity for real K-theory de-
fined in terms of E-theory and then generalise this to the case of E-theory.
Chapter 4
We prove that quasi-topological spaces satisfy various properties. Addition-
ally we prove that the category of quasi-orthogonal sequences is a symmetric
monoidal category.
Chapter 5
We define orthogonal quasi-spectrum which is a quasi-orthogonal sequence with
further structure, and prove that the category of these is equivalent to the cat-
egory of R-modules. This then gives a smash product structure. We construct
the orthogonal quasi-spectrum for E-theory and show it has the properties re-
quired before defining a smash product structure.
Chapter 6
Finally, we combine the E-theory orthogonal quasi-spectrum with K-theory
and K-homology orthogonal quasi-spectrum to connect these together.
Appendix A
We give details on functional calculus for complex, unbounded, real and graded
C∗-algebras.
Appendix B
We give the definition of K-theory and detail its properties.
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Chapter 1

Preliminaries

In this chapter, we detail the specific definitions and technical statements that
we need to define in order to define the E-theory groups. We will cover the
concept of a C∗-algebra and asymptotic morphisms as well as homotopy classes
of morphisms. Some of this is taken from [WO93].

1.1 C∗-algebras

Definition 1.1.1. A complex Banach space is a complete normed vector space.
A Banach algebra is a complex Banach space A with an associative multiplica-
tion operation, A× A→ A, written (a, b) 7→ ab such that:

� a(b+ c) = ab+ ac and (a+ b)c = ac+ bc, for all a, b, c ∈ A,

� (λa)(µb) = (λµ)(ab), for all λ, µ ∈ C and a, b ∈ A,

and a norm || − || satisfying

||ab|| ≤ ||a||||b||.

For a proof of the following see Theorem 2.11 in [Rud91].

Theorem 1.1.2 (Open Mapping Theorem). Let f : V → W be a surjective
continuous linear map between Banach spaces. Then f is open.

A consequence of the Open Mapping Theorem is that for a surjective linear
continuous map f : V → W between Banach spaces, we can find a continuous
linear map g : W → V such that f ◦ g = idW .
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Definition 1.1.3. An involution is a mapping a 7→ a∗ satisfying:

(a) (Conjugate-linear) (λa+ µb)∗ = λa∗ + µb∗ for all a, b ∈ A and λ, µ ∈ C,

(b) (a∗)∗ = a for all a ∈ A,

(c) (ab)∗ = b∗a∗ for all a, b ∈ A.

A C∗-algebra is a complex Banach algebra with an involution ∗ that satisfies
the C∗-identity ||aa∗|| = ||a||2 for all a ∈ A.

An algebra A is commutative if ab = ba for all a, b ∈ A. Let C(X) denote the
continuous functions from a locally compact Hausdorff space X to the complex
numbers and C0(X) those functions of C(X) that vanish in norm at infinity.

Some examples of C∗-algebras:

� Let X be a locally compact Hausdorff space, then C(X) is a commutative
C∗-algebra where involution is given by complex conjugation. The norm
here is the standard supremum norm.

� Let H be a Hilbert space, then the set of bounded linear operators on
H, B(H), is a C∗-algebra where involution ∗ is defined as the adjoint and
with norm defined by the operator norm.

Definition 1.1.4. Let A and B be C∗-algebras. Then we call f : A → B a
∗-homomorphism if:

1. f is an algebra homomorphism, that is

(a) f(ka) = kf(a) for all a ∈ A and k ∈ C,

(b) f(a+ b) = f(a) + f(b) for all a, b ∈ A,

(c) f(ab) = f(a)f(b) for all a, b ∈ A,

2. f(a∗) = f(a)∗.

If in addition f is bijective, then we have a C∗-isomorphism, denoted by ∼=, and
say that A and B are isomorphic as C∗-algebras.

Denote the set of ∗-homomorphisms from A to B by Hom(A,B).
Continuity is automatic by the above definition for a ∗-homomorphism. This

is clear once you see that a ∗-homomorphism is norm-decreasing (see The-
orem 2.17 in [Mur90]), and norm-decreasing implies continuous. We call a
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C∗-algebra separable, if its underlying topological space has a countable dense
subset.

For a proof of the Theorem below see Theorem 2.1.10 in [Mur90].

Theorem 1.1.5. (Gelfand-Naimark I) Let A be a commutative C∗-algebra.
Then A ∼= C0(X) for some locally compact Hausdorff space X.

See Theorem 3.4.1 in [Mur90] for a proof of the following.

Theorem 1.1.6. (Gelfand-Naimark II) Let A be a C∗-algebra. Then A is
isomorphic to a subalgebra of B(H) for some Hilbert space H.

Definition 1.1.7. The spectrum of an element x in a unital C∗-algebra is the
set

σ(x) = {λ ∈ C | x− λ is not invertible}.

We pass to the spectrum of an operator for later on. We need to be care-
ful with the definition in the unbounded case, as the domain of an unbounded
operator needs to be dense in our Hilbert space. We firstly consider the com-
plement to the spectrum, namely the resolvent set. The following results are
from [Kre89], namely Theorem 10.4-1, Theorem 10.4-2(page 544) and one inclu-
sion from Theorem 7.4-2 (page 381) and proofs are consistent even with extra
conditions.

Theorem 1.1.8. Let T : D(H)→ H be an unbounded self-adjoint on a complex
Hilbert space H where D(H) is a dense subset of H. Then λ is in the resolvent
set, if for every x ∈ D(H) there exists a C > 0 such that

||(T − λI)x|| ≥ C||x||.

Definition 1.1.9. Consider an unbounded operator T : D(H)→ H on a com-
plex Hilbert space H where D(H) is a dense subset of H. D(H) is not in general
closed and so we define the spectrum of T by the set

σ(T ) = {λ ∈ C | (T − λI)−1 exists and is bounded}.
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Theorem 1.1.10. The spectrum of a self-adjoint unbounded operator T is real
and closed.

Theorem 1.1.11. Let X be a complex Hilbert space and T an unbounded linear
operator on X. Then for an 6= 0, let

p(λ) = anλ
n + an−1λ

n−1 + . . .+ a0.

Then

σ(p(T )) ⊂ p(σ(T )).

We should note that for an operator T on a real Hilbert space we have
similar results. This is because we can consider the complexification of T ,
TC = T ⊗R C, which is the tensor product of T and C over R. Then it follows
that σ(T ) = σ(TC).

1.2 Asymptotic morphisms

Definition 1.2.1. Let A and B be C∗-algebras. An asymptotic morphism from
A to B, denoted by ϕ : A 99K B, is a family of functions {ϕt}t∈[1,∞) such that:

1. the map t 7→ ϕt(x), from [1,∞) to B is continuous for each x ∈ A,

2. limt→∞ ||ϕt(xy)− ϕt(x)ϕt(y)|| = 0, for each x, y ∈ A,

3. limt→∞ ||ϕt(x+ λy)− ϕt(x)− λϕt(y)|| = 0, for each x, y ∈ A, λ ∈ C,

4. limt→∞ ||ϕt(x∗)− ϕt(x)∗|| = 0, for each x, y ∈ A.

That is an asymptotic morphism is a family of functions which asymptotically
converges to a ∗-homomorphism.

Note that we will often not refer to the family of functions that form an
asymptotic morphism but if we have an asymptotic morphism ϕ then it is
associated to the family of functions denoted ϕt.
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Definition 1.2.2. Two asymptotic morphisms ϕ, ψ : A 99K B formed from the
families of functions ϕt, ψt respectively are called equivalent if for all a ∈ A:

lim
t→∞
||ϕt(a)− ψt(a)|| = 0.

It is easy to see that this relation is in fact an equivalence relation. Denote this
equivalence by ∼asy, and the set of equivalence classes of an asymptotic mor-
phism ϕ by 〈ϕ〉. Denote the set of equivalence classes of asymptotic morphisms
from A to B, by 〈A,B〉.

Definition 1.2.3. Let A be a C∗-algebra and let T = [1,∞). Then define the
asymptotic algebra of A, AA, by:

AA := Cb(T,A)/C0(T,A),

where Cb(T,A) denotes bounded continuous functions from T to A and C0(T,A)
denotes those functions of Cb(T,A) which vanish in norm at infinity. Alterna-
tively,

AA = {[f ] | f : [1,∞)→ A | f is bounded and continuous},

and [f ] denotes the equivalence class of functions, where f ∼ g if

lim
t→∞
||f(t)− g(t)|| = 0.

The algebra structure here is defined pointwise as expected.
Let ÃA denote the algebra of continuous bounded functions from [1,∞) to

A, that is to say Cb(T,A).

Denote the set of ∗-homomorphisms f : A→ AB by Hom(A,AB).

Lemma 1.2.4. We have a map θ : AB → ÃB such that for any ∗-homomorphism

ψ : A→ AB the map ĝ(ψ) : A 99K B defined by

ĝ(ψ)t(a) = θψ(a)(t),

is an asymptotic morphism for all a ∈ A, t ∈ [1,∞).

Proof. We have an obvious surjective ∗-homomorphism π : ÃB → AB which is
clearly continuous and linear. Hence by Theorem 1.1.2, we see that π is open.
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Consequently we have a continuous map θ : AB → ÃB, such that π ◦ θ = idAB.
Then we can define

ĝ(ψ)t(a) = θψ(a)(t).

Clearly the map t 7→ ĝ(ψ)t is continuous since θ and ψ are continuous. Let
a, b ∈ A, then since π is multiplicative and linear,

π(θψ(a)θψ(b)− θψ(ab)) = π(θψ(a))π(θψ(b))− π(θψ(ab))

= ψ(a)ψ(b)− ψ(ab)

= 0.

Then,
θψ(a)θψ(b)− θψ(ab) ∈ C0([1,∞), B),

so

||ĝ(ψ)t(a)ĝ(ψ)t(b)− ĝ(ψ)t(ab)|| = ||θψ(a)(t)θψ(b)(t)− θψ(ab)(t)|| → 0,

as t 7→ ∞. The other conditions to check θψ defines an asymptotic morphism
are checked similarly.

We define a function g : Hom(A,AB)→ 〈A,B〉 using the above. So g(ψ) =

〈ĝ(ψ)〉 since g(ψ) is the class of the above asymptotic morphism.
The following is stated similarly in [D94] on page 3 with some justifications,

but the details are given in the proof below.

Theorem 1.2.5. There is a bijection between the set of equivalence classes of
asymptotic morphisms A 99K B and the set of ∗-homomorphisms A→ AB.

Proof. Define f : 〈A,B〉 → Hom(A,AB) as follows. Let ϕ : A 99K B be an
asymptotic morphism formed from the family of functions ϕt, with 〈ϕ〉 as the
equivalence class of ϕ. Then we want a ∗-homomorphism f(〈ϕ〉) ∈ Hom(A,AB).

Let a ∈ A, then f(〈ϕ〉)(a) ∈ AB. First let us define f̃(〈ϕ〉)(a) ∈ Cb(T,A) with
T = [1,∞) by,

f̃(〈ϕ〉)(a)(t) = ϕt(a),

for all t ∈ [1,∞). Then define

f(〈ϕ〉)(a) = [
∼
f(〈ϕ〉)(a)].

Now we need to check that f is well defined. Let ϕ0, ϕ1 : A 99K B be
equivalent asymptotic morphisms formed from the family of functions (ϕ0)t
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and (ϕ1)t respectively, then we want to show that f(〈ϕ0〉) = f(〈ϕ1〉). Since
ϕ0 ∼ ϕ1, for all a ∈ A,

lim
t→∞
||(ϕ0)t(a)− (ϕ1)t(a)|| = 0.

Then we have f̃(〈ϕ0〉)(a)(t) = (ϕ0)t(a) and f(〈ϕ0〉)(a) = [f̃(〈ϕ0〉)(a)], and

similarly for ϕ1. Then since ϕ0 ∼ ϕ1, f̃(〈ϕ0〉)(a)(t) − f̃(〈ϕ1〉)(a)(t) → 0 as
t→∞, and hence,

[f̃(〈ϕ0〉)(a)(t)]− [f̃(〈ϕ0〉)(a)(t)] = 0.

Hence f(〈ϕ0〉) = f(〈ϕ1〉).
Now we check that f(〈ϕ〉) is a ∗-homomorphism. Note that f(〈ϕ〉)(x) = 0

means that [f̃(〈ϕ〉)(x)] = [0]. In our case we have that

ϕt(a
∗)− ϕt(a)∗ → 0,

as t→∞, so
f̃(〈ϕ〉)(a∗)(t)− f̃(〈ϕ〉)(a)(t)∗ → 0,

as t→∞, and so
f(〈ϕ〉)(a∗)− f(〈ϕ〉)(a)∗ = 0.

Similarly we can also prove the other requirements of a ∗-homomorphism hold.
We now define g : Hom(A,AB)→ 〈A,B〉 as above,

ĝ(ψ)t(a) = θψ(a)(t).

where θ : AB → ÃB is such that ĝ(ψ)t is a asymptotic morphism, and this is
possible by Lemma 1.2.4.

Finally we need to show that f ◦ g = id, and g ◦ f = id.
Let ϕ : A→ AB be a ∗-homomorphism,

f ◦ g(ϕ) = ϕ1,

then we want ϕ = ϕ1. Then we have

f(g(ϕ))(a) = [f̃(g(ϕ))(a)] and f̃(g(ϕ))(a)(t) = g(ϕ)t(a),

by the above definitions. Also ĝ(ϕ)t(a) = θψ(a)(t), but [θψ(a)] = [ψ̃(a)] = ϕ,

and using the relation between g(ψ) and ĝ(ψ), we get our equivalence by the
properties of our equivalence relation.
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Now let ϕ : A 99K B be an asymptotic morphism associated to the family ϕt
and denote the set of equivalence classes of ϕ by 〈ϕ〉. Then suppose for some ψ,

g ◦ f(〈ϕ〉) = ψ. Then g(f(〈ϕ〉)(a)) = g[f̃(〈ϕ〉)(a)], and f̃(〈ϕ〉)(a)(t) = g(ϕ)t(a)

and ĝ(ψ)t(a) = θψ(a)(t), and similarly to the above we get that ϕ = ψ.

Definition 1.2.6. Let A and B be C∗-algebras. Then we define the object
A⊗̂B to be the completion of the algebraic tensor product of A and B in the
norm

||
∑
i

ai ⊗ bi|| = sup
ϕ,ψ
||
∑
i

ϕ(ai)ψ(bi)||

where ϕ : A→ AC, ψ : B → AC are ∗-homomorphisms for some C∗-algebra C.
This is the maximal tensor product.

By Theorem 1.2.5 and the definition above we get a tensor product from
asymptotic morphisms in the same manner.

1.3 Homotopy classes of asymptotic morphisms

Let A, B be C∗-algebras. Denote by IB the continuous functions from a closed
interval I to B. Define the suspension, ΣA, by:

ΣA := {f : [0, 1]→ A | f(0) = f(1) = 0, f is continuous}.

This is a C∗-algebra itself with operations taken pointwise and its norm is the
supremum norm. We can apply the suspension to a ∗-homomorphism g : A→ B
between C∗-algebras and we obtain the ∗-homomorphism Σg : ΣA→ ΣB, where

(Σg(µ))(s) = g(µ(s)),

for all µ ∈ ΣA, s ∈ [0, 1].

Definition 1.3.1. Two ∗-homomorphisms ϕ0, ϕ1 : A → B are homotopic if
there exists a ∗-homomorphism ϕ : A → IB such that ϕ(a)(0) = ϕ0(a) and
ϕ(a)(1) = ϕ1(a) for all a ∈ A.

The conditions in the definition above can also be written as ev0◦ϕ = ϕ0 and
ev1 ◦ϕ = ϕ1, where evi denotes evaluation at i for i = 0, 1, that is evi(f) = f(i)
for a function f .

The notion of homotopy is an equivalence relation and the classes obtained
are called homotopy classes. Denote the set of these homotopy classes of ∗-
homomorphisms from A to B by [A,B].
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Proposition 1.3.2. Let α, β : A → B be homotopic ∗-homomorphisms, then
the ∗- homomorphisms Σα,Σβ : ΣA→ ΣB are homotopic.

Proof. Let ϕ : A → IB be a ∗-homomorphism such that ev0 ◦ ϕ = α and
ev1 ◦ ϕ = β. Now for g ∈ ΣA, s ∈ [0, 1], we can define

(Σα)(g)(s) = α(g(s)) and (Σβ)(g)(s) = β(g(s)).

Then we can define a homotopy ψ : ΣA→ IΣB by

ψ(g)(t)(s) = ϕ(g(s))(t),

for all g ∈ ΣA, t ∈ I and s ∈ [0, 1]. Then it suffices to check that ev0 ◦ ψ = Σα
and ev1 ◦ ψ = Σβ. For all g ∈ ΣA, s ∈ [0, 1] we have

ev0 ◦ ψ = ψ(g)(0)(s) = ϕ(g(s))(0) = α(g(s)) = (Σα)(g)(s),

so ev0 ◦ ψ = Σα . Similarly we can show that ev1 ◦ ψ = Σβ as required.

Definition 1.3.3. Two asymptotic morphisms ϕ, ψ : A 99K B with families of
functions ϕt, ψt are homotopic if there exists an asymptotic morphism θ : A 99K
IB with family of functions θt such that for all a ∈ A:

θt(a)(0) = ϕt(a) and θt(a)(1) = ψt(a).

Proposition 1.3.4. Let ϕ, ψ : A 99K B be equivalent asymptotic morphisms.
Then ϕ and ψ are homotopic.

Proof. Define a homotopy θ : A 99K IB by

θt(a)(s) = (1− s)ϕt(a) + sψt(a) = ϕt(a) + s(ψt(a)− ϕt(a)),

for all a in A, and s ∈ [0, 1].
Then we need to check that θ is an asymptotic morphism. That is check,

lim
t→∞
||θt(x+ λy)− θt(x)− λθt(y)|| = 0,

for each x, y ∈ A, λ ∈ C. For all s ∈ [0, 1],

θt(x+ λy)(s)− θt(x)(s)− λθt(y)(s),
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equals

ϕt(x+ λy) + s(ψt(x+ λy)− ϕt(x+ λy))− (ϕt(x) + s(ψt(x)− ϕt(x)))

− λ(ϕt(y) + s(ψt(y)− ϕt(y))).

Since ϕt(x+ λy)(s)− ϕt(x)(s)− λϕt(y)(s)→ 0 as t→∞, we have

s(ψt(x+ λy)− ϕt(x+ λy))− s(ψt(x)− ϕt(x))− λ(s(ψt(y)− ϕt(y))),

as t→∞, and as ϕ and ψ are equivalent, the expression above tends to 0 as t
tends to infinity. This is true for all s, so

lim
t→∞
||θt(x+ λy)− θt(x)− λθt(y)|| = 0.

The other conditions are similarly checked.

Note that the definition of homotopy and statement above are from the
paper [D94]. Let JfK denote the homotopy class of an asymptotic morphism f
and if f and g are homotopic as asymptotic morphism then write f ∼h g.

We now define an n-asymptotic morphism (for any natural number n) and
the notion of homotopy for these, in order to form a single set of homotopy
classes. Let | − | denote the supremum of an ordered set. For example if
k = (t1, t2, . . . , tn) then |k| = supi(t1, t2, . . . , tn) for all ti ∈ R.

Definition 1.3.5. Let A and B be C∗-algebras. Then for any natural number n,
an n-asymptotic morphism ϕ from A to B is a family of functions ϕk : A 99K B
where k = (t1, t2, . . . , tn) for ti ∈ [1,∞) for all i, such that

1. the map k 7→ ϕk(x), from [1,∞)n to B is continuous for each x ∈ A,

2. lim|k|→∞ ||ϕk(xy)− ϕk(x)ϕk(y)|| = 0, for each x, y ∈ A,

3. lim|k|→∞ ||ϕk(x+ λy)− ϕk(x)− λϕk(y)|| = 0, for each x, y ∈ A, λ ∈ C,

4. lim|k|→∞ ||ϕk(x∗)− ϕk(x)∗|| = 0, for each x, y ∈ A.

Note that a 0-asymptotic morphism is a ∗-homomorphism and a 1-asymptotic
morphism is just an asymptotic morphism.

Definition 1.3.6. Let ϕ, ψ : A 99K B be n-asymptotic morphisms with associ-
ated famililes of functions ϕk, ψk, where k = (t1, t2, . . . , tn) for all ti ∈ [1,∞) for
all i. Then ϕ, ψ are equivalent if for all a in A

lim
|k|→∞

||ϕk(a)− ψk(a)|| = 0.
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Definition 1.3.7. Let ϕ, ψ : A 99K B be n-asymptotic morphisms with asso-
ciated families of functions ϕk, ψk, where k = (t1, t2, . . . , tn) for all ti ∈ [1,∞)
for all i. Then ϕ, ψ are homotopic if there exists an n-asymptotic morphism
θ : A 99K IB with family of functions θk, such that for all a ∈ A:

θk(a)(0) = ϕk(a) and θk(a)(1) = ψk(a).

Proposition 1.3.8. Let ϕ, ψ : A 99K B be equivalent n-asymptotic morphisms.
Then ϕ and ψ are homotopic.

Proof. This proof is the same as for Proposition 1.3.4, but extended to n-
asymptotic morphisms.

Definition 1.3.9. Let A and B be C∗-algebras, then we denote by JA,BKn,
the set of homotopy classes of n-asymptotic morphisms from A to B.

Note that JA,BK1 is the set of homotopy classes of asymptotic morphisms
from A to B.

Definition 1.3.10. Denote by JA,BK, the direct limit of the following system

JA,BK0 → JA,BK1 → JA,BK2 → · · ·

where the linking maps JA,BKn → JA,BKn+1 are given by

α(ϕ)(t1,t2,...,tn,tn+1) 7→ ϕ(t1,t2,...,tn),

and by taking homotopy classes.

Theorem 1.3.11. If A is a separable C∗-algebra then the natural map in the
direct limit

JA,BK1 → lim−→JA,BKn,

is a bijection. Thus JA,BK is isomorphic to the set of homotopy equivalence
classes of asymptotic morphisms from A to B.

For a proof see Theorem 2.16 of [GHT00].
Henceforth we will use JA,BK for homotopy classes of asymptotic morphisms

from A to B and for an asymptotic morphism ϕ : A 99K B denote the homotopy
class by JϕK.

It is worth noting here that it is not possible to compose asymptotic mor-
phisms simply by composing. This is since composing two asymptotic mor-
phisms at the same t does not guarantee an asymptotic morphism as a result.
Instead we need to reparameterise one when composing. Before we describe the
concrete method we require the following lemma from [CH90] (Lemma 3).
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Lemma 1.3.12. Let ϕ : A 99K B and ψ : B 99K C be asymptotic morphisms.
Let A′ be a dense ∗-subalgebra of A which is a countable union of compacts.
Then there exists an increasing continuous function r : [1,∞) → [1,∞) such
that for any increasing continuous function s : [1,∞)→ [1,∞) with s(t) ≥ r(t)
the composite

θt = ψs(t) ◦ ϕt,
is an asymptotic morphism from A′ 99K C.

Due to this lemma and since

lim sup
t

= ||(ψs(t) ◦ ϕt)(a)|| ≤ ||a||,

for all a ∈ A, the map θt : A
′ 99K C is well-defined and bounded. Hence we can

lift so that the function vanishes at infinity and obtain an asymptotic morphism
from A to C. Henceforth we will say r(t) is our reparameterisation. We should
also note that the choice of reparameterisation has no effect on the homotopy
classes and also composition with ∗-homomorphisms can be done in the obvious
manner.

For a proof of the subsequent result see Proposition 2.12 in [GHT00].

Proposition 1.3.13. Given asymptotic morphisms ϕ : A 99K B and ψ : B 99K
C with families of functions ϕt and ψt, we have an associative composition law

JA,BK× JB,CK→ JA,CK,

given by
JϕK× JψK→ Jψ ◦ ϕK.

Here on a representative (ψ ◦ ϕ)t of Jψ ◦ ϕK, we can define

(ψ ◦ ϕ)t = ψr(t) ◦ ϕt.

For a proof of the next result see Proposition 2.19 in [GHT00].

Proposition 1.3.14. For any C∗-algebra B the natural map

[C0(R), B]→ JC0(R), BK,

defined by sending a representative ϕ of [C0(R), B] to the constant asymptotic
morphism representative in JC0(R), BK (i.e ϕt = ϕ for all t ∈ [1,∞)), is a
bijection.

18



1.4 E-theory

Throughout this section all C∗-algebras are separable, so their underlying topo-
logical spaces each have a countable dense subset. Let K(H) denote the set of
compact operators on a separable Hilbert space H. For simplicity we will just
use K throughout. Note that ΣB ⊗K = Σ(B ⊗K).

We start by defining two operations on the set JA,ΣB ⊗ KK which we will
show are equivalent. This is in order to show that there is an operation that the
set JA,ΣB ⊗KK can be equipped with, which makes it into an abelian group.

We will use the following theorem to prove this.
The succeeding Theorem’s proof can be found in [EH62] Theorem 4.17.

Theorem 1.4.1 (Eckmann-Hilton Argument). Let + and +̃ denote two op-
erations on a set A with common identity element e ∈ A, such that for all
a0, a1, a2, a3,

(a0 + a1)+̃(a2 + a3) = (a0+̃a2) + (a1+̃a3).

Then the operations are equal, and furthermore are commutative.

Now let us define an isomorphism α0 : K(H⊕H)→ K(H) by

α0(T ) = UTU∗,

where T ∈ K(H ⊕ H) and U : H ⊕ H → H is a unitary operator defined by
sending the elements

e0 ⊕ e0, e1 ⊕ e0, e0 ⊕ e1, e1 ⊕ e1, e2 ⊕ e0, . . .

to e0, e1, e2, . . . where ei form an orthonormal basis for H.
Observe that we therefore also have isomorphisms:

α : B ⊗K(H⊕H)→ B ⊗K(H), Σ(B ⊗K(H⊕H))→ Σ(B ⊗K(H)).

Definition 1.4.2. Let A and B be C∗-algebras. Given the two asymptotic
morphisms ϕ, ψ : A 99K Σ(B ⊗ K(H)) we define the operation ⊕̃, JϕK⊕̃JψK, to
be the homotopy class of the asymptotic morphism θ : A 99K Σ(B ⊗ K(H))
given by

θt(a) = α

[(
ϕt(a) 0

0 ψt(a)

)]
,

for all a ∈ A.
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The above makes sense since the C∗-algebra B ⊗ K(H) is a direct limit of
matrices Mn(B) by the mapping

b→
(
b 0
0 0

)
.

For details see [RLL00] page 102. Note that θt above is also the same as the
homotopy class of the asymptotic morphism (ϕ⊕̃ψ)t.

Lemma 1.4.3. The operation ⊕̃ defined in Definition 1.4.2 is well-defined.

Definition 1.4.4. Given two asymptotic morphisms ϕ, ψ : A 99K ΣB ⊗ K we
define the direct sum operation ⊕, JϕK ⊕ JψK, to be the homotopy class of the
asymptotic morphism θ : A 99K Σ(B ⊗K) defined by

θt(a)(s) =

{
ϕt(a)(2s), if s ∈ [0, 1

2
]

ψt(a)(2s− 1), if s ∈ [1
2
, 1],

for all a ∈ A and s ∈ [0, 1].

Note that θt above is also the same as the homotopy class of the asymptotic
morphism (ϕ⊕ ψ)t.

Proposition 1.4.5. The group operation defined above is well-defined.

Proof. We need to show that the direct sum operation is well-defined. It suffices
to show that this holds for representative elements in the class since then it
will hold for the whole class. Suppose that we have asymptotic morphisms
ϕ0, ϕ

′
0, ϕ1, ϕ

′
1 : A 99K ΣB⊗K, such that ϕ0 ∼h ϕ′0 and ϕ1 ∼h ϕ′1. Then we have

asymptotic morphisms

ϕt : A 99K I(ΣB ⊗K) and ψt : A 99K I(ΣB ⊗K)

such that for all a ∈ A, t ∈ [1,∞), ϕ(a)(0) = ϕ0(a), ϕ(a)(1) = ϕ′0(a), ψ(a)(0) =
ϕ1(a) and ψ(a)(1) = ϕ′1(a). Now we define

θ : A 99K I(ΣB ⊗K)⊕ I(ΣB ⊗K),
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for all a ∈ A, by

θt(a)(s) =

{
(ϕt ⊕ ψt)(a)(2s), if s ∈ [0, 1

2
]

(ϕt ⊕ ψt)(a)(2s− 1), if s ∈ [1
2
, 1],

and then
θ : A 99K I((ΣB ⊗K)⊕ (ΣB ⊗K)).

Then θ is clearly an asymptotic morphism and it is clear that ϕ0 ⊕ ϕ1 ∼h
ϕ′0 ⊕ ϕ′1.

Proposition 1.4.6. For any asymptotic morphisms ϕ, ψ, µ, τ : A 99K ΣB ⊗ K
the distributive law

(JϕK⊕ JψK)⊕̃(JµK⊕ JτK) = (JϕK⊕̃JµK)⊕ (JψK⊕̃JτK)

holds.

Proof. By the definitions of ⊕̃ and ⊕, it suffices to check that the distributive
law holds for elements of the classes, that is

(ϕ⊕ ψ)t⊕̃(µ⊕ τ)t = (ϕ⊕̃µ)t ⊕ (ψ⊕̃τ)t.

Now we have

(ϕ⊕ ψ)t(a)⊕̃(µ⊕ τ)t(a) = α

(
(ϕ⊕ ψ)t(a) 0

0 (µ⊕ τ)t(a)

)
= α

(
ϕt(a) 0

0 µt(a)

)
⊕ α

(
ψt(a) 0

0 τt(a)

)
= (ϕ⊕̃µ)t(a)⊕ (ψ⊕̃τ)t(a),

for all a ∈ A.

It follows from the above and the Eckmann-Hilton argument that the oper-
ations ⊕̃ and ⊕ defined on the set JA,ΣB ⊗KK are equal.

Lemma 1.4.7. Let A and B be C∗-algebras. The set JA,ΣB⊗KK is an abelian
group under the direct sum operation ⊕ defined in Definition 1.4.4. The zero
element of this group is represented by the zero asymptotic morphism.
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Proof. The group operation is well-defined by Proposition 1.4.5.
For associativity we have a homotopy β : A 99K I(ΣB ⊗ K) that we first

represent using the following diagram

•

•

•

•
ϕ0 ϕ1 ϕ2

ϕ0 ϕ1 ϕ2

and then by an exact formula:

βt(a)(r)(s) =


(ϕ0)t(a)(4s/(1 + r)) if 0 ≤ s ≤ (r + 1)/4

(ϕ1)t(a)(4s− 1− r) if (r + 1)/4 ≤ s ≤ (r + 2)/4

(ϕ2)t(a)(1− 4 (1−s)
(2−r)

)
if (r + 2)/4 ≤ s ≤ 1,

for all a ∈ A, s ∈ [0, 1] and r ∈ [0, 1].
Commutativity follows immediately from the Eckmann-Hilton argument and

Proposition 1.4.6. A proof of the existence of additive inverses can be found
in [Bla98], Proposition 25.4.3(c).

Definition 1.4.8. Let A and B be C∗-algebras. Then the E-theory group is
given by

E(A,B) = JΣA⊗K,ΣB ⊗KK.

In addition we have E-theory groups:

En(A,B) = JΣA⊗K,Σn+1B ⊗KK,

for all n ≥ 0.

The definition of E-theory may look a bit forced but actually it is defined in
this way so that we get certain desired properties. In particular the suspension
of a C∗-algebra is necessary so that we obtain long exact sequences and needed
for the group operation, and the compact operators are necessary for the group
operation and for stability of our functor as defined later.
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Lemma 1.4.9 (Functoriality). E is a bivariant functor from the category where
objects are C∗-algebras and arrows are ∗-homomorphisms to the category of
abelian groups and group homomorphisms. That is, it is a functor that is con-
travariant in its first variable and covariant in its second variable.

Proof. By lemma 1.4.7 it is obvious that the source and target categories of
the functor E are as stated in the lemma. The identity property is also clearly
satisfied.

Let A,B,C and D be C∗-algebras. Let α : A → B be a ∗-homomorphism,
then we have an object E(A,D) = JΣA ⊗ K,ΣD ⊗ KK for all A and a mor-
phism α∗ : E(B,D) → E(A,D) for all α defined by α∗(JxK) = Jx.αK, where
(x.α)t = xt ◦ (Σα ⊗ idK) for all JxK ∈ E(B,D). Now consider the composition

of morphisms A
α−→ B

β−→ C on a representative x of JxK,

(β ◦ α)∗(xt) = xt ◦ (Σ(β ◦ α)⊗ idK)

= xt ◦ (Σβ ⊗ idK) ◦ (Σα⊗ idK) as Σ is a functor

= β∗(xt) ◦ (Σα⊗ idK)

= α∗β∗(xt)

= (α∗ ◦ β∗)(xt).

Similarly, we have for all A, E(D,A) = JΣD ⊗ K,ΣA ⊗ KK and for all
α, a morphism α∗ : E(D,A) → E(D,B) defined by α∗(JyK) = Jα.yK, where
(α.y)t = (Σα⊗ idK) ◦ yt for all JyK ∈ E(D,A). Considering the composition of
morphisms above and taking a representative y of JyK ∈ E(D,A) we see that

(β ◦ α)∗(yt) = (Σ(β ◦ α)⊗ idK) ◦ yt
= ((Σβ ◦ Σα)⊗ idK) ◦ yt
= (Σβ ⊗ idK) ◦ (Σα⊗ idK) ◦ yt
= (Σβ ⊗ idK) ◦ α∗(yt)
= β∗α∗(yt)

= (β∗ ◦ α∗)(yt).

Theorem 1.4.10 (Homotopy invariance). Suppose α, β : A→ B are homotopic
∗-homomorphisms and C is a C∗-algebra. Then the induced maps
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1. α∗, β∗ : E(C,A)→ E(C,B), and

2. α∗, β∗ : E(B,C)→ E(A,C)

are equal.

Proof. 1. Let f : ΣC⊗K 99K ΣA⊗K be an asymptotic morphism represent-
ing JfK ∈ E(C,A), then we can define α∗ and β∗ by

α∗(ft) = (Σα⊗ idK) ◦ ft = Σ(α⊗ idK) ◦ ft,

β∗(ft) = (Σβ ⊗ idK) ◦ ft = Σ(β ⊗ idK) ◦ ft.
By Proposition 1.3.2, we see that Σ(α⊗idK) and Σ(β⊗idK) are homotopic
and hence α∗ and β∗ are equal since we are homotopic on representatives
of our class.

2. Similarly to (1) we can define α∗ and β∗, for an representative g of JgK ∈
E(B,C) by

α∗(gt) = gt ◦ (Σα⊗ idK),

β∗(gt) = gt ◦ (Σβ ⊗ idK).

Then by Proposition 1.3.2, we can clearly see that α∗ and β∗ are equal at
the level of homotopy classes.

For a proof of the following see section 6 Lemma 2 and Lemma 4 in [CH].

Lemma 1.4.11 (Half exactness). Let 0 → J
α−→ B

β−→ A → 0 be a short exact
sequence of C∗-algebras and let D be a C∗-algebra. Then

1. E(D, J)
α∗−→ E(D,B)

β∗−→ E(D,A) is exact,

2. E(A,D)
β∗−→ E(B,D)

α∗−→ E(J,D) is exact.

Definition 1.4.12. Let C and D be categories. Then a covariant functor
F : C → D is called half exact if we have short exact sequence of objects in C ,

0 → A
f−→ B

g−→ C → 0 then the induced sequence F (A)
f∗−→ F (B)

g∗−→ F (C),
is exact. The functor F is called homotopy invariant if we have homotopic
morphisms in C , α, β : A → B, then the induced map α∗ : F (A) → F (B) and
β∗ : F (A) → F (B) are equal. If F is both half exact and homotopy invariant
we call it a homology functor.
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We obtain the following result from [WO93], Proposition 11.1.12.

Proposition 1.4.13. Let 0 → A
α−→ B

β−→ C → 0 be a short exact sequence of
C∗-algebras. Let H be a homology functor from the category of C∗-algebras and
∗-homomorphisms to the category of abelian groups and group homomorphisms.
Then there is a group homomorphism

δ : HΣC → HA,

such that the following sequence is exact,

HΣA
Σα∗−−→ HΣB

Σβ∗−−→ HΣC
δ−→ HA

α∗−→ HB
β∗−→ HC.

The same result applies in the contravariant case. For a proof of the following
see Theorem 6.15 and Theorem 6.18 in [GHT00].

Theorem 1.4.14. Let D be a C∗-algebra and let 0 → J
α−→ B

β−→ A → 0 be a
short exact sequence of C∗-algebras. Then there is an element σ ∈ E(ΣA, J)
and long exact sequences:

E(A,D)→ E(B,D)→ E(J,D)
∂∗−→ E(ΣA,D)→ · · · ,

and

· · · → E(D,ΣA)
∂∗−→ E(D, J)→ E(D,B)→ E(D,A),

in which the maps ∂∗, ∂∗ are given by the E-theory product with σ ∈ E(ΣA, J).

Here we can define δ∗ and δ∗ explicitly by,

δ∗(α(x)) = α(σ(x)),

where α is an asymptotic morphism from ΣJ ⊗K to ΣD⊗K and x ∈ Σ2A⊗K,
and

δ∗(β(y)) = σ(β(y)),

where β is an asymptotic morphism from ΣD⊗K to Σ2A⊗K and y ∈ ΣD⊗K.
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Proposition 1.4.15. Let A,B,C and D be C∗-algebras and suppose we have
a split exact sequence,

0 // A
α //

B
γ
oo

β // C // 0,

then

0 // E(C,D)
β∗ // E(B,D)

α∗ //
E(A,D)

γ∗
oo // 0,

0 // E(D,A)
α∗ //

E(D,B)
γ∗
oo

β∗ // E(D,C) // 0,

are split exact.

Proof. By Theorem 1.4.14, we obtain the following long exact sequence:

E(C,D)
β∗ // E(B,D)

α∗ //
E(A,D)

γ∗
oo

δ∗ // E(ΣC,D) // · · · ,

for any separable C∗-algebra D. By exactness we have ker ∂∗ = im α∗ but
γ∗α∗ = idE(B,D) and by functoriality ker ∂∗ = E(A,D) and hence ∂∗ = 0. So,

E(C,D)
β∗ // E(B,D)

α∗ //
E(A,D)

γ∗
oo // 0,

is exact. By functoriality of E-theory, lemma 2.2.11, we see β∗ is surjective so

0 // E(C,D)
β∗ // E(B,D)

α∗ //
E(A,D)

γ∗
oo

∂∗ // 0,

is exact as required.
By Theorem 1.4.14, we obtain the following long exact sequence,

· · · // E(D,ΣC)
∂∗ // E(D,A)

α∗ //
E(D,B)

γ∗
oo

β∗ // E(D,C),

By functoriality, α∗ is injective so ker α∗ = 0 = im ∂∗, so ∂∗ = 0. Hence,

0 // E(D,A)
α∗ //

E(D,B)
γ∗
oo

β∗ // E(D,C).
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Similarly β∗ is surjective, we obtain

0 // E(D,A)
α∗ //

E(D,B)
γ∗
oo

β∗ // E(D,C) // 0.

By functoriality we see that the sequence is clearly split exact.

Then using a similar proof we can obtain the following result in the con-
travariant case.

Proposition 1.4.16. Let A,B,C and D be C∗-algebras and suppose we have
a split exact sequence,

0 // A α // B
β //

C
δ
oo // 0,

then

0 // E(C,D)
β∗ //

E(B,D)
δ∗
oo

α∗ // E(A,D) // 0,

and

0 // E(D,A)
α∗ // E(D,B)

β∗ // E(D,C)
δ∗
oo // 0,

are split exact.

For a proof of the following Lemma, see Lemma 6.25 in [GHT00].

Lemma 1.4.17. Let A and B be C∗-algebras, with A separable. Then

E(A,B) = JΣA,ΣB ⊗KK.

Proposition 1.4.18. Let A and B be C∗-algebras. Then

1. E(A⊗K, B) ∼= E(A,B)

2. E(A,B ⊗K) ∼= E(A,B).
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Proof. 1. By Lemma 1.4.17, we need to show equivalently that

JΣ(A⊗K),ΣB ⊗KK ∼= JΣA⊗K,ΣB ⊗KK,

which follows if Σ(A⊗K) ∼= ΣA⊗K. This is obvious since

Σ(A⊗K) = C0(0, 1)⊗ A⊗K.

2. This proof is exactly like the one above but we need to use that K⊗K ∼= K.

A proof of the following is found in [GHT00] as proposition 6.17.

Proposition 1.4.19. Let A and B be separable C∗-algebras. Then the suspen-
sion map

Σ: E(A,B)→ E(ΣA,ΣB),

is an isomorphism.

The subsequent result is proved in section 4 in [Cun84].

Theorem 1.4.20 (Bott periodicity). Let A and B be separable C∗-algebras,
then we have isomorphisms:

E(A,B) ∼= E(A,Σ2B) and E(A,B) ∼= E(Σ2A,B).

Proposition 1.4.21. For separable C∗-algebras A and B, there is a natural
isomorphism:

E(ΣA,B) ∼= E(A,ΣB).

Proof. This follows from the following natural isomorphisms from Theorem 1.4.20
and Proposition 1.4.19,

P : E(A,B)→ E(Σ2A,B) and Σ: E(A,B)→ E(ΣA,ΣB).

The Theorem below is proven using Theorem 1.4.14 and Bott periodicity.

28



Theorem 1.4.22. Let D be a separable C∗-algebra and let

0→ A
α−→ B

β−→ C → 0,

be a short exact sequence of C∗-algebras. Then there are exact sequences

E(D,ΣA) // E(D,ΣB) // E(D,ΣC)

��
E(D,C)

OO

E(D,B)
β∗

oo E(D,A)α∗
oo

,

and
E(ΣA,D)

��

E(ΣB,D)oo E(ΣC,D)oo

E(C,D)
β∗ // E(B,D) α∗ // E(A,D)

OO
,

where the boundary maps are defined by Bott periodicity and product with the E-
theory class of an element σ ∈ E(ΣA, J) associated to the short exact sequence.

1.5 Spectrum

Here we cover the notions of spectra and orthogonal spectra as we will need them
later when we generalise their notions to quasi-topological spaces and also when
combining K-theory and K-homology spectra using E-theory spectra.

Definition 1.5.1. A spectrum X is a sequence of based topological spaces
X0, X1, . . . with structure maps ε : Xm → ΩXm+1 for m ≥ 0.

Proposition 1.5.2. The functors ΣTop and Ω are adjoints, where Σtop is the
left adjoint and Ω the right adjoint.

Due to the above proposition, we can also define a spectrum to be a sequence
of based topological spaces with structure maps defined by

σ : ΣXm → Xm+1,

where ΣXm = Xm ∧ S1.
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Definition 1.5.3. An Ω-spectrum is a spectrum where for all natural numbers
m the structure maps ε : Xm → ΩXm+1 are weak homotopy equivalences.

We will also want to use the notion of orthogonal spectra but firstly we need
to recall the notions of group actions and facts about them.

Definition 1.5.4. Let G be a topological group and X a topological space.
Then we call a group action h : G×X → X continuous, written h(g, x) = gx if
the map h is continuous. In this case, we call X a G-space. A map of G-spaces
f : X → Y is called G-equivariant if for all g ∈ G,

f(gx) = gf(x).

If the map f : X → Y is G-equivariant, we call it a G-map.

Definition 1.5.5. An orthogonal spectrum is a sequence of based topological
spaces X0, X1, . . . with a basepoint preserving continuous left action of O(m)
on each Xm for all m, and based structure maps σ = σm : Xm ∧ S1 → Xm+1,
such that for each m,n ≥ 0, the iterated structure map

σnm : Xm ∧ Sn
σm∧idSn−1−−−−−−→ Xm+1 ∧ Sn−1 σm+1∧idSn−2−−−−−−−−→ . . .

σm+n−1∧idS1−−−−−−−−→ Xm+n,

is O(m)×O(n)-equivariant.

Since ΣTop and Ω are adjoints, we can reformulate the structure map explic-
itly σ : Xm ∧ S1 → Xm+1 using ε : Xm → ΩXm+1 and we write

σ(x, s) = ε(x)(s),

for all x ∈ Xm and s ∈ S1.

A morphism of orthogonal spectra f : X → Y is a collection of O(m)-
equivariant maps fm : Xm → Ym for all m, which satisfy the following com-
mutative diagram:

Xm ∧ S1

σm

��

f∧idS1 // Ym ∧ S1

σm

��
Xm+1

fm+1 // Ym+1.

30



Definition 1.5.6. Let X be an orthogonal spectrum with spaces Xn. For each
integer k ∈ Z we define the k-th stable homotopy group πk(X) to be the direct
limit

πk(X) = lim−→
n

πk+nXn,

under the maps ε∗ : πk+nXn → πk+n+1Xn+1 induced from the structure maps
Ωk+nε : Ωk+nXn → Ωk+n+1Xn+1.

1.6 Quasi-topological spaces

This section is taken from [Spa63] and we will need quasi-topological spaces
since it is not known if we can put a standard topology on the set of asymptotic
morphisms.

Definition 1.6.1. A quasi-topology on a set X, is a collection of sets of maps
from C to X for each compact Hausdorff space C, written Q(C,X), called
quasi-continuous and satisfying:

� any constant map C → X belongs to Q(C,X),

� if f : C1 → C2 is a map of compact Hausdorff spaces and g ∈ Q(C2, X)
then gf ∈ Q(C1, X),

� for a disjoint union C = C1 q C2 of closed compact Hausdorff spaces, a
map g : C → X is contained in Q(C,X) if and only if g|Ci

∈ Q(Ci, X) for
i = 1, 2,

� for every f : C1 → C2 surjective map of compact Hausdorff spaces, then
a map h : C2 → X is quasi-continuous if h ◦ f is quasi-continuous.

A quasi-topological space is a set X endowed with a quasi-topology as described
above.

If X is a topological space we can obtain a quasi-topology on X by consid-
ering Q(C,X) as the set of continuous maps from C to X in the topology of
X.

A map of quasi-topological spaces f : X → Y is called quasi-continuous if
g ∈ Q(C,X) implies that the composite fg ∈ Q(C, Y ). Also by the definition
of quasi-continuous maps, a composite of quasi-continuous maps is also quasi-
continuous. A quasi-homeomorphism f : X → Y between quasi-topological
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spaces is a quasi-continuous bijection with a quasi-continuous inverse g : Y →
X.

As in the standard notion of topology we can define the product quasi-
topology and the quotient quasi-topology. Let X = X1 × X2 × . . . Xn. Then
define the product quasi-topology on X by the condition that a : C → X is
quasi-continuous if and only if the composite

C → X
pi−→ Xi, (where pi is the projection map)

is in Q(C,Xi) for each i.

For the quotient quasi-topology, let X be a quasi-topological space and
g : X → Y a surjection. Then the quotient quasi-topology on Y is defined by
the condition that a : C → Y in Q(C, Y ) if and only if there is a surjection
map g′ : C ′ → C of compact Hausdorff spaces and a quasi-continuous map
a′ : C ′ → X in Q(C ′, X) such that

C ′ a′ //

g′

��

X

g

��
C a

// Y,

commutes.

Using the product and quotient quasi-topology we define the quasi-topology
on X ∧ Y . Here X and Y are quasi-topological spaces with basepoints x0 and
y0 and we define X ∨ Y by

X q Y/(x0 ∼ y0),

where the equivalence class of x0 and y0 serve as the basepoint. Then we define
the smash product of X and Y , X ∧ Y by

X × Y/X ∨ Y.

A map a : C → X ∧ Y is quasi-continuous if and only if there exists a surjec-
tive map g′ : C ′ → C of compact Hausdorff spaces and quasi-continuous maps
a′ : C ′ → X and a′′ : C → Y such that for every c′ ∈ C,

ag′(c′) = a′(c′) ∧ a′′(c′).
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Let X and Y be quasi-topological spaces. Let F (X, Y ) denote the set of
quasi-continuous maps between X and Y . Then we can define a quasi-topology
on F (X, Y ) by considering the evaluation map

E : F (X, Y )×X → Y,

defined by E(f, x) = f(x) for all f ∈ F (X, Y ) and x ∈ X. We define the
quasi topology on F (X, Y ) by declaring a map a : C → F (X, Y ) to be quasi-
continuous if and only if for every surjective continuous map g : C ′ → C of
compact Hausdorff spaces and every quasi-continuous map a′ : C ′ → X, the
map

E(ag, a′) : C ′ → Y,

is quasi-continuous. Due to definition of the product quasi-topology, the evalu-
ation map is quasi-continuous.

Definition 1.6.2. Let X, Y be quasi-topological spaces and f, g : X → Y be
quasi-continuous maps. Then a homotopy is a quasi-continuous map

H : X → C([0, 1], Y ),

such that for all x ∈ X, H(x)(0) = f(x) and H(x)(1) = g(x).

From the above we can define the suspension and loop space of a quasi-
topological space. The suspension is defined by

ΣtopX = S1 ∧X,

and the loop space is defined by

ΩX = {µ : S1 → X | µ is quasi-continuous and basepoint preserving}

and we consider the circle S1 with the quasi-topology that comes from the
topology coming from that on R2. That is, our quasi-continuous maps are the
continuous maps from every compact Hausdorff space to S1 in that topology.

1.7 Category Theory

We detail the definition of a symmetric monoidal category here as it will be
necessary to check that we have a symmetric monoidal structure on a particular
category later.
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Definition 1.7.1. A symmetric monoidal category (C ,⊗, u) has the following
data

� A category C ,

� A functor ⊗ : C × C → C called the tensor product,

� An object u ∈ obj(C ) called the unit object,

� A natural isomorphism α, called the associator, with

αA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C,

� A natural isomorphism γ, called the left unitor, with

γA : u⊗ A→ A,

� A natural isomorphism ρ, called the right unitor, with

ρA : A⊗ u→ A,

� a natural isomorphism lA,B : A⊗B → B ⊗ A called the braiding

subject to the following commutative diagrams.

1.

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

99
αA⊗B,C,D

%%

idA⊗αB,C,D

��

αA,B⊗C,D

//

αA,B,C⊗ idD

OO

2.

A⊗ (u⊗B) (A⊗ u)⊗B

A⊗B

αA,u,B//

ρA⊗idB

��

idA⊗γB
��

34



3.

A⊗ u u⊗ A

A

lA,u //

γA

��

ρA

��

4.

A⊗B B ⊗ A

A⊗B

lA,B //

lB,A

��

idA⊗B

��

5.

(A⊗B)⊗ C
lA⊗̂B,C //

α−1
A,B,C

��

C ⊗ (A⊗B)

αC,A,B

��
A⊗ (B ⊗ C)

idA⊗lB,C

��

(C ⊗ A)⊗B

lC,A⊗idB

��
A⊗ (C ⊗B)

αA,C,B // (A⊗ C)⊗B

,

and

6.

A⊗ (B ⊗ C)
lA,B⊗̂C //

αA,B,C

��

(B ⊗ C)⊗ A

α−1
B,C,A

��
(A⊗B)⊗ C

lA,B⊗idC

��

B ⊗ (C ⊗ A)

idB⊗lC,A

��
(B ⊗ A)⊗ C

α−1
B,A,C // B ⊗ (A⊗ C)

,

It should be noted that a monoidal category satisfies all the criteria as above
apart from diagram (4).
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Definition 1.7.2. A commutative monoid (M,µ, η) in a symmetric monoidal
category (C ,⊗, u) is an object M in the C together with morphisms µ : M ⊗
M →M and η : u→M satisying the following commutative diagrams:

1.

M ⊗ (M ⊗M)

(M ⊗M)⊗M

M ⊗M

M ⊗M M

αM,M,M

99
µ⊗idM

%%

idM⊗µ

��

µ
//

µ

��

2.

u⊗M M ⊗M M ⊗ u

M

η⊗idM// idM⊗ ηoo

γM

""

ρM

||

µ

��

3.

M ⊗M M ⊗M

M

lM,M //

µ

��

µ

��

Definition 1.7.3. Let (C ,⊗, u) be a monoidal category with a monoid (M,µ, η)
as defined above. Then we define a right M-module to be an object J with an
associative morphism ν : J ⊗M → J such that we have the following commu-
tative diagram:

J ⊗ (M ⊗M)
idJ ⊗̂µ //

ν⊗idM

��

J ⊗M
µ

##

J ⊗ uidJ⊗ηoo

ρJ

!!
(J ⊗M)⊗Mν⊗idM // J ⊗M ν // J

∼= // J

.
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Let (A, νA) and (B, νB) be right modules of M . Then a morphism of right
modules of M is a map f : A→ B such that

νB ◦ (f ⊗ idM) = f ◦ νA.

Denote the category where objects are right M -modules and where arrows are
the morphisms defined above, by mod-M .
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Chapter 2

Complex Graded E-theory

This chapter extends the definition of E-theory in the previous chapter to the
case when we consider complex graded C∗-algebras. We start by defining the
notion of gradings on a C∗-algebra alongside the definition of Clifford algebras
which will play an important role for us. Then we will define the complex
graded form of E-theory and state and prove the properties that it has.

2.1 Gradings and Clifford algebras

Much of this section is taken and proofs adapted from [Mit01]. To save repeating
ourselves in the next chapter, where possible we include the real graded case.
We will see that Clifford algebras are fundamental to the construction of the
Bott map of complex graded E-theory.

Definition 2.1.1. Let A be a C∗-algebra. A grading on A is an automorphism
δ : A→ A such that δ2 = 1.

Every C∗-algebra can be equipped with the trivial grading, defined as the
identity map. We can also consider a grading on a C∗-algebra in terms of odd
and even elements as we see below.

Definition 2.1.2. Let A be a C∗-algebra with grading δ. Then define

Aeven = {a ∈ A | δa = a} and Aodd = {a ∈ A | δa = −a}
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Definition 2.1.3. Let A be a graded C∗-algebra. Then the degree of an element
a is defined by:

deg(a) =

{
0, if a ∈ Aeven

1, if a ∈ Aodd.

Definition 2.1.4. Let A and B be graded C∗-algebras with gradings α and
β respectively. Then we define the object A⊗̂B to be the completion of the
algebraic tensor product of A and B in the norm

||
∑
i

ai ⊗ bi|| = sup ||
∑
i

ϕ(ai)ψ(bi)||

where ϕ : A 99K C, ψ : B 99K C are graded asymptotic morphisms for some
graded C∗-algebra C. We equip A⊗̂B with involution, multiplication and grad-
ing defined by:

1. (a⊗̂b)∗ = (−1)deg(a)deg(b)a∗ ⊗ b∗

2. (a⊗̂b)(c⊗̂d) = (−1)deg(b)deg(c)(ac⊗ bd)

3. γ(a⊗̂b) = α(a)⊗ β(b)

It should be noted this is the maximal tensor product.

If additionally we also extend by linearity within the definition of A⊗̂B we
obtain the following result.

Proposition 2.1.5. The object A⊗̂B is a graded C∗-algebra.

Definition 2.1.6. Let p, q be natural numbers. Then define the Clifford algebra
Fp,q, to be the algebra over the field F = R or C generated by the elements:

{e1, . . . , ep, f1, . . . , fq},

such that e2
i = 1 and f 2

j = −1 and all generator anti-commute.

The following propositions are taken from [Mit01], so for the proofs see the
paper.

Proposition 2.1.7. The Clifford algebra Fp,q is a C∗-algebra with grading de-
fined by having all generators being odd.
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Proposition 2.1.8. For all p, q, r, s in the natural numbers there is an isomor-
phism

Fp,q⊗̂Fr,s ∼= Fp+r,q+s.

The following two Propositions show why Clifford algebras are really useful
in this context, since they will be the reason we can define the Bott map of
E-theory using them.

Proposition 2.1.9.

C2,0
∼= C1,1

∼= C0,2.

Proposition 2.1.10.

R8,0
∼= R4,4

∼= R0,8.

Proposition 2.1.11. The Clifford algebra F1,1 and the algebra M2(F) are iso-
morphic when we have the grading:

M2(F)even =

{(
a 0
0 d

) ∣∣∣ a, d ∈ F
}

and M2(F)odd =

{(
0 b
c 0

) ∣∣∣ b, c ∈ F
}
.

Proposition 2.1.12. Let A be a graded C∗-algebra over the field F. Let Mn(A)
denote the set of n× n matrices with entries in A. Then

Mn(F)⊗̂A = Mn(A),

where the matrix in Mn(A) is odd when every element is odd and even when
every element is even.
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Remark 2.1.13. Let H be a Hilbert space equipped with the orthogonal de-
composition

H = H0 ⊕H1,

where H0 denotes the even elements and H1 denotes the odd elements. Then
the C∗-algebra K(H) of compact operators on such a Hilbert space is graded.
For this grading, we consider 2 × 2 matrices of operators where the diagonal
matrices are even and the off diagonal ones are odd. That is we have a grading

β : K(H)→ K(H)

defined by

β(T ) =

{
T if T is even

−T if T is odd.

Note that if we have an odd element E ∈M2(B(H)) then

β(ET ) =

{
ET if T is odd

−ET if T is even,

so −β(ET ) = Eβ(T ) and similarly −β(TE) = β(T )E.
Then in particular with the above remark we have the following result.

Lemma 2.1.14. We have an isomorphism

K(H)⊗̂F1,1
∼= M2(K(H)),

with grading

α

(
a b
c d

)
=

(
β(a) −β(b)
−β(c) β(d)

)
,

for all a, b, c, d ∈ K(H),where β is as in Remark 2.1.13.

Denote M2(K(H)) in this case by M2(K(H))g.

Lemma 2.1.15. We have a set of isomorphisms

K(H)⊗̂F1,1
∼= M2(K(H))g ∼= M2(K(H)) ∼= K(H).
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Proof. By Lemma 2.1.14 it suffices to show that M2(K(H))g ∼= M2(K(H)). The
grading on M2(K(H)) is

β

(
a b
c d

)
=

(
β(a) β(b)
β(c) β(d)

)
,

so it suffices to check that we can define a map

θ : M2(K(H))→M2(K(H))g,

which is an isomorphism. Let

V =

(
1 0
0 E

)
∈M2(B(H)), and E =

(
0 1
1 0

)
∈M2(B(H))

and note E is odd. Notice V 2 = 1 and V ∗ = V . Then define θ(x) = V xV , then
θ : K(H)→ K(H) is clearly a ∗-homomorphism since

θ(xy) = V xyV = V xV V yV = θ(x)θ(y),

for all x, y ∈M2(K(H)). Then if V xV = y, then x = V yV so θ is invertible.
Now we check that θ(β(x)) = α(θ(x)).

θ(β(x)) = θ

(
β(a) β(b)
β(c) β(d)

)
=

(
1 0
0 E

)(
β(a) β(b)
β(c) β(d)

)(
1 0
0 E

)
=

(
1 0
0 E

)(
β(a) β(b)E
β(c) β(d)E

)
=

(
β(a) β(b)E
Eβ(c) Eβ(d)E

)
=

(
β(a) −β(bE)
−β(Ec) β(EdE)

)
by Remark 2.1.13

= α

(
a bE
Ec EdE

)
= α

(
1 0
0 E

)(
a b
c d

)(
1 0
0 E

)
= α(θ(x)).
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Let K(Hopp) denote the compact operators on the Hilbert space H where
the grading is reversed.

Definition 2.1.16. Let S = C0(R), be the C∗-algebra of continuous, complex
valued functions on R which vanish at infinity but with the following graded
defined as a decomposition:

S = C0(R) = {even functions} ⊕ {odd functions}.

The grading automorphism is defined by f(x) 7→ f(−x). In addition define
the amplification of a graded C∗-algebra A to be the graded tensor product
SA = S⊗̂A.

Remark 2.1.17. Let u(x) = e−x
2

and v(x) = xe−x
2

and notice that these are
functions contained in S and u is even and v is odd. Now set A to be the
algebra generated by u and v.

The theorem below is Theorem B page 167 in [Sim63]. It follows from the
classical Stone-Weierstrass Theorem.

Theorem 2.1.18. Let X be a locally compact Hausdorff space, and let B be a
closed subalgebra of C0(X) which separates points, for each point in X contains
a function which does not vanish there, and contains conjugates of the functions.
Then B equals C0(X).

Lemma 2.1.19. The algebra A is dense in S.

Proof. This is immediate from Theorem 2.1.18 since R is locally compact and
Hausdorff and A separates points.

Then it follows that the elements u and v in Remark 2.1.17 generate S.

2.2 Complex Graded E-theory

In this section we give the definition of graded E-theory and also certain prop-
erties we require when it comes to defining its spectrum.
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Definition 2.2.1. Let A,B be C∗-algebras with gradings δA and δB respec-
tively. A graded asymptotic morphism ϕ : A 99K B is an asymptotic morphism
with family of functions {ϕt}[1,∞)which additionally satisfies the relation:-

lim
t→∞
||δB(ϕt(a))− ϕt(δA(a))|| = 0.

Denote the set of graded asymptotic morphisms from A to B by Asyg(A,B).

Definition 2.2.2. Two graded asymptotic morphisms ϕ, ψ : A 99K B formed
from the families of functions ϕt, ψt respectively are called equivalent if for all
a ∈ A:

lim
t→∞
||ϕt(a)− ψt(a)|| = 0.

Definition 2.2.3. Two graded asymptotic morphisms ϕ, ψ : A 99K B with fam-
ilies of functions ϕt, ψt are graded homotopic if there exists a graded asymptotic
morphism θ : A 99K IB with family of functions θt such that for all a ∈ A:

θt(a)(0) = ϕt(a) and θt(a)(1) = ψt(a).

Denote the set of graded homotopic asymptotic morphisms from A to B by
JA,BKg.

Proposition 2.2.4. Let ϕ, ψ : A 99K B be equivalent graded asymptotic mor-
phisms. Then ϕ and ψ are homotopic.

Proof. As in Proposition 1.3.4 we again define a homotopy θ : A 99K IB by

θt(a)(s) = (1− s)ϕt(a) + sψt(a) = ϕt(a) + s(ψt(a)− ϕt(a)),

which satisfies the graded property of graded asymptotic morphisms since for
all s ∈ [0, 1], a ∈ A

αB(θt(a)(s)− θt(αA(a))(s)

= αB[(1− s)ϕt(a) + sψt(a)]− [(1− s)ϕt(αA(a)) + sψt(αA(a))]

= αBϕt(a)− ϕt(αA(a))− s(αBϕt(a)− ϕt(αA(a))) + s(αBψt(a)− ψt(αA(a))

and this tends to 0 as t 7→ ∞ since ϕt and ψt are asymptotic morphisms.
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Now we need a notion of tensor product for our graded asymptotic mor-
phisms so that we can define the composition of asymptotic morphisms. It is
worth noting that we actually need to be pretty careful when we define a ten-
sor product since unless our C∗-algebras are nuclear, we don’t always get an
asymptotic morphism when we tensor. For us to get an asymptotic morphisms
we must use the maximal tensor product. In detail, let us consider two graded
asymptotic morphisms ϕt : A 99K B and ψt : C 99K D. We form the tensor
product ϕt⊗̂ψt by taking the maximal tensor product to obtain:

A⊗̂maxC 99K B⊗̂maxD,

which is obtained in the standard way by taking the completion and extending
by linearity.

The following is Lemma 4.5 in [GHT00], so see this for a proof.

Lemma 2.2.5. Let ϕ : A1 99K A2 and ψ : B1 99K B2 be (graded) asymptotic
morphisms, then the compositions

A1⊗̂B1
ϕ⊗̂1−−→ A2⊗̂B1

1⊗̂ψ−−→ A2⊗̂B2,

and

A1⊗̂B1
1⊗̂ψ−−→ A1⊗̂B2

ϕ⊗̂1−−→ A2⊗̂B2,

are equal. The 1 symbolises the relevant identity morphism.

In order to talk about compositions in the E-theory category we first need
to define the ∗-homomorphism

∆: S → S⊗̂S,

described in [HG04]. Let SR be the set of continuous functions on the interval
[−R,R]; we have a surjection π : S → SR defined by restriction. Let XR ∈ SR
be the function x 7→ x, then note that XR is odd. Now if f ∈ S, by functional
calculus (see Appendix) we have an element

f(XR⊗̂1 + 1⊗̂XR) ∈ SR⊗̂SR,

where 1 denotes the function 1. Then we have a graded ∗-homomorphism as
follows:
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Lemma 2.2.6. There is a unique graded ∗-homomorphism ∆: S → S⊗̂S such
that

(π⊗̂π)∆(f) = f(XR⊗̂1 + 1⊗̂XR),

for every R > 0.

Proof. The map is clearly a graded ∗-homomorphism by the properties of func-
tions in S. Uniqueness follows from the fact that

⋃
R>0 SR is dense in S by the

Stone-Weierstrass Theorem.

Write ∆π(f) = (π⊗̂π)∆(f).

Proposition 2.2.7. For the elements u = e−x
2

and v(x) = xe−x
2

of S we have

∆π(u) = u⊗̂u and ∆π(v) = u⊗̂v + v⊗̂u.

Proof. Using the above lemma we have,

∆π(u) = u(XR⊗̂1 + 1⊗̂XR)

= e−(XR⊗̂1+1⊗̂XR)2

= e−(X2
R⊗̂1+1⊗̂X2

R) since XR is odd

= e−(X2
R⊗̂1)e−(1⊗̂X2

R)

= e−X
2
R⊗̂e−X2

R

= u⊗̂u.

and

∆π(v) = v(XR⊗̂1 + 1⊗̂XR)

= (XR⊗̂1 + 1⊗̂XR)e−(XR⊗̂1+1⊗̂XR)2

= (XR⊗̂1)e−(XR⊗̂1+1⊗̂XR)2 + (1⊗̂XR)e−(XR⊗̂1+1⊗̂XR)2

= (XR⊗̂1)(e−X
2
R⊗̂e−X2

R) + (1⊗̂XR)(e−X
2
R⊗̂e−X2

R)

= XRe
−X2

R⊗̂e−X2
R + e−X

2
R⊗̂XRe

−X2
R

= u⊗̂v + v⊗̂u,

as required.
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Lemma 2.2.8. Let ∆′ : S → S⊗̂S be a graded ∗-homomorphism such that

∆′π(u) = u⊗̂u and ∆′π(v) = u⊗̂v + v⊗̂u.

Then ∆′ = ∆.

Proof. Let A be the algebra generated by u and v. Then by Lemma 2.1.19,
S is generated by A. Hence ∆′ is uniquely determined by ∆′π(u) and ∆′π(v).
Then since ∆′π(u) = ∆π(u) and ∆′π(v) = ∆π(v), it follows that ∆′ = ∆ as
required.

Now we consider compositions of asymptotic morphisms.
Let ϕt : S⊗̂A⊗̂K(H) 99K B⊗̂K(H) and ψt : S⊗̂B⊗̂K(H) 99K C⊗̂K(H) be

asymptotic morphisms, then the composition is defined by:

S⊗̂A⊗̂K(H)
∆⊗̂idA⊗̂K(H)// S⊗̂S⊗̂A⊗̂K(H)

idS⊗̂αt // S⊗̂B⊗̂K(H)
βr(t) // C⊗̂K(H),

where βr(t) is a reparameterisation as of Lemma 1.3.12.

Lemma 2.2.9. Let A and B be C∗-algebras. The set JS⊗̂A⊗̂K(H), B⊗̂K(H)Kg
is an abelian group under the direct sum operation ⊕ defined in Definition 1.4.4.
The zero element of this group is represented by the zero asymptotic morphism.

Proof. By the previous statements in the ungraded case, it just suffices to check
that we have additive inverses. Let ϕ : S⊗̂A⊗̂K(H) 99K B⊗̂K(H) be a graded
asymptotic morphism and define

ϕopp
t : S⊗̂A⊗̂K(H) 99K B⊗̂K(Hopp),

to be the graded asymptotic morphism defined by ϕopp
t (x) = ϕt(α(x)) where α

is the grading automorphism. Now let s ≥ 0 be a fixed scalar and define

Φs
t : S⊗̂S⊗̂A⊗̂K(H) 99K B⊗̂K(H⊕Hopp),

by
Φs
t(f⊗̂x) = f(s)(ϕt ⊕ ϕopp

t )(x),

with f ∈ S and x ∈ S⊗̂A⊗̂K(H). Then this is a graded asymptotic morphism
and we can define a homotopy on s ∈ [0,∞) between ϕt ⊕ ϕopp

t and the zero
asymptotic morphism,

S⊗̂A⊗̂K(H)
∆⊗̂idA⊗̂K(H)−−−−−−−→ S⊗̂S⊗̂A⊗̂K(H) 99K B⊗̂K(H⊕Hopp).
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It is well defined and is clearly a graded asymptotic morphism so we need to
check at the end points we obtain ϕt ⊕ ϕopp

t and 0. In order to do this it is
enough to consider the functions u = e−x

2
and v(x) = xe−x

2
that generate S.

For u, and a ∈ A⊗̂K(H),

Φs
t(∆⊗̂idA⊗̂K(H))(u⊗̂a) = Φs

t(∆(u)⊗̂a)

= Φs
t(u⊗̂u⊗̂a)

= u(s)(ϕt ⊕ ϕopp
t )(u⊗̂a),

and when s = 0, u = e−0 = 1 and so we obtain ϕt ⊕ ϕopp
t and when s→∞, we

obtain 0.
Now for v,

Φs
t(∆⊗̂idA⊗̂K(H))(v⊗̂a) = Φs

t(∆(v)⊗̂a)

= Φs
t((u⊗̂v + v⊗̂u)⊗̂a)

∼ Φs
t((u⊗̂v)⊗̂a) + Φs

t((v⊗̂u)⊗̂a)

= u(s)(ϕt ⊕ ϕopp
t )(v⊗̂a) + v(s)(ϕt ⊕ ϕopp

t )(u⊗̂a),

where the equivalence is valid, since equivalent graded asymptotic morphisms
are homotopic by Proposition 2.2.4. Now at s = 0, v(s) = 0 and as s → ∞,
v(s) → 0, so the second term is equal to 0 at the end points, and hence we
obtain the same endpoints as above and we are done.

Definition 2.2.10. Let A and B be C∗-algebras. Then the graded E-theory
group is given by

Eg(A,B) = JS⊗̂A⊗̂K(H), B⊗̂K(H)Kg.

In addition we have graded E-theory groups:

En
g (A,B) = JS⊗̂A⊗̂K(H),ΣnB⊗̂K(H)Kg,

for all n ≥ 0. The grading on ΣB is the one coming from the grading of B, and
the compact operators have grading β defined in Remark 2.1.13.

Lemma 2.2.11 (Functoriality). Eg is a bivariant functor from the category
where objects are graded C∗-algebras and arrows are ∗-homomorphisms to the
category where objects abelian groups and arrows are group homomorphisms.
That is, it is a functor that is contravariant in its first variable and covariant
in its second variable.
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Proof. By Lemma 2.2.9 it is obvious that the source and target categories of
the functor Eg are as stated in the lemma. The identity property is also clearly
satisfied.

Let A,B,C,D be C∗-algebras. Let α : A→ B be a graded ∗-homomorphism,
then we have an object Eg(A,D) = JS⊗̂A⊗̂K, D⊗̂KKg for all A and a morphism
α∗ : Eg(B,D)→ Eg(A,D) for all α defined by α∗(JxK) = Jx.αK, where (x.α)t =
xt ◦ (α ⊗ idS⊗̂K) for all JxK ∈ Eg(B,D). Now consider the composition of

morphisms A
α−→ B

β−→ C on a representative x of JxK,

(β ◦ α)∗(xt) = xt ◦ ((β ◦ α)⊗̂idS⊗̂K)

= xt ◦ (β⊗̂idS⊗̂K) ◦ (α⊗̂idS⊗̂K)

= β∗(xt) ◦ (α⊗̂idS⊗̂K)

= α∗β∗(xt)

= (α∗ ◦ β∗)(xt).

Similarly, we have for all A, Eg(D,A) = JS⊗̂D⊗̂K, A⊗̂KKg and for all
α, α∗ : Eg(D,A) → Eg(D,B) defined by α∗(JyK) = Jα.yK, where (α.y)t =
(α ⊗ idK) ◦ yt for all JyK ∈ Eg(D,A). Considering the composition of mor-
phisms above and taking a representative y of JyK ∈ Eg(D,A) we see that

(β ◦ α)∗(yt) = ((β ◦ α)⊗ idK) ◦ yt
= ((β ◦ α)⊗ idK) ◦ yt
= (β ⊗ idK) ◦ (α⊗ idK) ◦ yt
= (β ⊗ idK) ◦ α∗(yt)
= β∗α∗(yt)

= (β∗ ◦ α∗)(yt).

The following proposition and lemma on projections may seem out of place
but they will be useful for a proof immediately after. This is since we will
want to consider the compact operators and we know that they are formed of
projections of rank 1. For a proof of the following proposition see [WO93],
Proposition 5.26.

49



Proposition 2.2.12. If p, q are projections and ||p − q|| ≤ 1 then they are
homotopic.

Lemma 2.2.13. Let p, q ∈ K(H) be rank 1 projections. Then there is a path
from p to q.

Proof. Let [p] denote the homotopy class of a projection p. We know from
Appendix B, that

K0(F) = {[p]− [q] | p, q ∈M∞(F)}
= {[p]− [q] | p, q ∈ K(H)},

since M∞(F) is dense in K(H), and also since any two projections that are suffi-
ciently close are homotopic by Proposition 2.2.12. Now we have an isomorphism

θ : K0(F)→ Z,

defined by
θ([p]− [q]) = Rank(p)− Rank(q),

where we recall that Rank(p) denotes the rank of a projection p. Now let
p, q ∈ K(H) be rank 1 projections. Then Rank(p) = Rank(q), so θ([p]−[q]) = 0,
and since θ is an isomorphism, [p] − [q] = 0, so p and q are homotopic as
required.

Lemma 2.2.14. Let A and B be graded C∗-algebras, with A separable. Then

Eg(A,B) = JS⊗̂A,B⊗̂KKg.

Proof. Let τ : S⊗̂A→ S⊗̂A⊗̂K denote the graded ∗-homomorphism defined by

f⊗̂a 7→ f⊗̂a⊗̂e,

where f ∈ S, a ∈ A and e is the standard rank 1 projection in K. Then define
g : JS⊗̂A⊗̂K, B⊗̂KKg → JS⊗̂A,B⊗̂KKg by

g(αt)(f⊗̂a) = (αt ◦ τ)(f⊗̂a) = αt(f⊗̂a⊗̂e),

for all α ∈ JS⊗̂A⊗̂K, B⊗̂KKg.
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Then define an inverse to g, h : JS⊗̂A,B⊗̂KKg → JS⊗̂A⊗̂K, B⊗̂KKg by

h(βt)(f⊗̂a⊗̂p) = βt(f⊗̂a),

where βt ∈ JS⊗̂A⊗̂K, B⊗̂KKg and p is a rank 1 projection.
Then for all γt ∈ JS⊗̂A,B⊗̂KKg,

gh(γt)(f⊗̂a) = h(γt)(f⊗̂a⊗̂e) = γt(f⊗̂a),

and for all κt ∈ JS⊗̂A⊗̂K, B⊗̂KKg,

hg(κt)(f⊗̂a⊗̂p) = g(κt)(f⊗̂a) = κt(f⊗̂a⊗̂e).

By Lemma 2.2.13 there is a path from p to e so hg is homotopic to the identity
and we are done.

Proposition 2.2.15. Let A and B be graded C∗-algebras. Then

1. Eg(A⊗̂K, B) ∼= Eg(A,B)

2. Eg(A,B⊗̂K) ∼= Eg(A,B).

Proof. 1. This is immediate by Lemma 2.2.14.

2. Use K⊗̂K ∼= K and the proof is immediate.

Theorem 2.2.16 (Homotopy invariance). Suppose α, β : A→ B are homotopic
graded ∗-homomorphisms and C is a C∗-algebra. Then the induced maps

1. α∗, β∗ : Eg(C,A)→ Eg(C,B), and

2. α∗, β∗ : Eg(B,C)→ Eg(A,C)

are equal.

Proof. 1. Let f : S⊗̂C⊗̂K 99K A⊗̂K be a graded asymptotic morphism rep-
resenting JfK ∈ Eg(C,A), then we can define α∗ and β∗ by

α∗(ft) = (α⊗̂idK) ◦ ft = (α⊗̂idK) ◦ ft,

β∗(ft) = (β⊗̂idK) ◦ ft = (β⊗̂idK) ◦ ft.
Since α and β are homotopic and hence α∗ and β∗ are equal since we are
homotopic on representatives of our class.
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2. Similarly to (1) we can define α∗ and β∗, for an representative g of JgK ∈
E(B,C) by

α∗(gt) = gt ◦ (α⊗̂idS⊗̂K),

β∗(gt) = gt ◦ (β⊗̂idS⊗̂K).

Then again since α and β are homotopic, we can clearly see that α∗ and
β∗ are equal at the level of homotopy classes.

The following definition is very similar to that of the one given in [HG04] as
Definition 1.26 and the Theorem 1.14 too. The proof of Bott periodicity below
is omitted since we give a proof in the case of real graded C∗-algebras in the
next chapter.

Definition 2.2.17. Denote by b ∈ E(C,ΣC⊗̂C1,0) the E-theory class of the
∗-homomorphism

β : SC→ ΣC⊗̂C1,0.

The ∗-homomorphism above is given by functional calculus and defined in
explicitly for the real case in Definition 3.2.1.

Proposition 2.2.18. The ∗-homomorphism

β : S⊗̂C→ ΣC⊗̂C1,0,

induces the isomorphism:

E(A,ΣkB⊗̂Cn,0) ∼= E(A,Σk+1B⊗̂Cn+1,0),

of E-theory groups, for all positive n and k.

Proof. We consider the map

β⊗̂idΣkB⊗̂Cn,0
: S⊗̂B⊗̂Cn,0 → Σk+1B⊗̂Cn+1,0,

which is an E-theory equivalence as β is. Consequently, we obtain the isomor-
phism as required.

Call this ∗-homomorphism the Bott map.

52



Corollary 2.2.19. Let A and B be graded C∗-algebras. The Bott map induces
natural isomorphisms

En
g (A,B) ∼= En

g (A,Σ(B⊗̂C1,0)),

of E-theory groups.

To obtain the property that if we take a short exact sequence, we get a long
exact sequence in graded E-theory, we need to introduce a particular asymptotic
morphism that is associated to the short exact sequence. We also need some
of the construction here to show that E is half-exact. For this we start by
introducing the notion of approximate units as in the work by Guentner, Higson
and Trout [GHT00] and the first two authors in [HG04].

Definition 2.2.20. For a separable graded C∗-algebra B and an ideal J in B,
an approximate unit for J ⊂ B is a norm-continuous family {ut}t∈[1,∞) of J ,
satisfying

1. 0 ≤ ut ≤ 1 for all t,

2. limt→∞ ||utj − j|| = 0 for all j ∈ J ,

3. limt→∞ ||uta− aut|| = 0 for all a ∈ A.

Now furthermore an approximate unit as defined above always exists by
Lemma 5.3 in [GHT00].

For a proof of the next result see Proposition 5.5 in [GHT00].

Proposition 2.2.21. Let 0 → J → B
π−→ A → 0 be a short exact sequence of

separable graded C∗-algebras and {ut} an approximate unit for J ⊂ B. Then
there is an asymptotic morphism σ : ΣA 99K J such that if we have any asso-
ciated family {σt}t∈[1,∞) : ΣA → J and a set-theoretic section s : A → B of π
then

σt(f⊗̂x) = f(ut)s(x),

where f ∈ Σ and a ∈ A.

Furthermore the asymptotic morphism σ is independent of the choice of
section.
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Definition 2.2.22. For a graded C∗-algebra A we define the cone of A by

CA = {f : [0, 1]→ A | f(1) = 0}.

Let π : B → A be a ∗-homomorphism. Then the mapping cone of π is defined
by:

Cπ = {b⊕ f ∈ B ⊕ CA |π(b) = f(0)}.

Define ∗-homomorphisms α : Cπ → B by α(b ⊕ f) = b and β : ΣA → Cπ by
β(f) = 0⊕ f .

By the definition of α and β above we can form a short exact sequence

0→ ΣJ → CB
π1−→ Cπ → 0, (2.1)

where we define π1 by π1(f) = f(0) ⊕ π(f). Then by Proposition 2.2.21 we
obtain the associated asymptotic morphism σ : ΣCπ 99K ΣJ .

The proof of the following proposition follows from the short exact sequence
(2.1) and by the inclusion of J in Cπ.

Proposition 2.2.23. The associated asymptotic morphism σ determines an
element in Eg(ΣCπ,ΣJ) which in addition is inverse to an element Στ∗ ∈
Eg(ΣJ,ΣCπ).

By Bott periodicity it follows that Eg(J,A) ∼= Eg(Cπ, A) and Eg(A, J) ∼=
Eg(A,Cπ) for all C∗-algebras A.

For the following result, let p : A→ A/J and then

Cp = {a⊕ f ∈ A⊕ C(A/J) | p(a) = f(1)}.

Lemma 2.2.24. For a graded C∗-algebra B, the following are exact in the
middle.

1. Eg(B,Cp)
α∗−→ Eg(B,A)

p∗−→ Eg(B,A/J) is exact,

2. Eg(A/J,B)
p∗−→ Eg(A,B)

α∗−→ Eg(Cp, B) is exact.

Proof. 1. Let ϕt : S⊗̂B⊗̂K 99K A⊗̂K, and [ϕt] ∈ Eg(B,A) be such that
p∗[ϕt] = 0, i.e [ϕt] ∈ Ker p∗. Then p ◦ ϕt ∼h 0.

54



Now let θ : S⊗̂B⊗̂K 99K A⊗̂K⊗̂C[0, 1] be such that p ◦ θt is a homotopy
between p ◦ ϕt and 0. Then write

θ : S⊗̂B⊗̂K 99K A⊗̂C0[0, 1)⊗̂K ∼= CA⊗̂K,

and define ψ : S⊗̂B⊗̂K 99K Cp⊗̂K by,

ψt = ϕt ⊕ θt.

Then α◦ψt = ϕt, and α∗[ψt] = [ϕt] and so [ϕt] ∈ Im α∗. So Ker p∗ ⊆ Im α∗.

Conversely, from homological algebra we know that Im α∗ ⊆ Ker p∗ is
equivalent to p∗α∗ = 0. Now for xt ∈ E(B,Cp)

p∗α∗(xt) = p∗(α⊗̂idK ◦ xt)
= p⊗̂idK ◦ α⊗̂idK ◦ xt
= (p ◦ α)⊗̂idK ◦ xt
= 0

since p ◦ α is equal to the identity.

2. Firstly α∗ ◦ p∗ = 0 so Im p∗ ⊆ Ker α∗ by a similar method to part(1).
Now we show that Ker α∗ ⊆ Im p∗. Let ϕt : S⊗̂A⊗̂K 99K B⊗̂K and
q : Cp⊗̂K → A⊗̂K be the projection. Then we want θt : S⊗̂ΣA/J⊗̂K 99K
ΣB⊗̂K such that

[θt ◦ (idS ◦ Σp)] = Σ[ϕ] ∈ E(ΣA,ΣB),

where p : S⊗̂A⊗̂K → S⊗̂A/J⊗̂K.

Now let η : S⊗̂Cp⊗̂K → IB⊗̂K (where I = [0, 1]) be a homotopy between
ϕt ◦ (id⊗̂q) and 0. Then by symmetry of homotopy we can obtain

η̃t : S⊗̂Cp⊗̂K → I1B⊗̂K,

where I1 = [0, 1]. Now we also have an inclusion

i : ΣS⊗̂A/J⊗̂K ∼= S⊗̂ΣA/J⊗̂K → S⊗̂Cp⊗̂K,

defined by
i(g⊗̂f⊗̂k) = g⊗̂(0⊕ f)⊗̂k,
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where g ∈ S, f : [−1, 1]→ A/J and k ∈ K. Then (idS⊗̂q) ◦ i = 0.

Define θt : S⊗̂ΣA/J⊗̂K 99K ΣB⊗̂K by θt = η̃t ◦ i.Then we need to show
that θt ◦ (idS ◦Σp) is homotopic to Σϕ. Now Σϕt = η̃t ◦ i ◦ (idS ◦Σp), and
so

||θt ◦ (idS ◦ Σp)− (Σϕt)|| → 0,

as t → ∞ and asymptotic equivalence implies homotopic equivalence by
Proposition 2.2.4, half exactness follows.

Then the next result follows from the isomorphisms Eg(J,D) ∼= Eg(Cπ, D)
and Eg(D, J) ∼= Eg(D,Cπ) and Lemma 2.2.24.

Lemma 2.2.25 (Half exactness). Let 0 → J
α−→ B

β−→ A → 0 be a short exact
sequence of graded C∗-algebras and let D be a graded C∗-algebra. Then

1. Eg(D, J)
α∗−→ Eg(D,B)

β∗−→ Eg(D,A) is exact,

2. Eg(A,D)
β∗−→ Eg(B,D)

α∗−→ Eg(J,D) is exact.

Now once we see the following result, proposition 6.14 in [GHT00], we can
obtain the theorem following it. Recall from chapter 1, that a functor is a
homology functor if it is half exact and homotopy invariant.

The subsequent result is proven as Proposition 21.4.1 of [Bla98].

Proposition 2.2.26. For a homology functor F from the category of graded
C∗-algebras and ∗-homomorphisms to the category of abelian groups and group
homomorphisms to every short exact sequence of separable graded C∗-algebras

0→ J → B → A→ 0,

we obtain a long exact sequence of abelian groups

· · · → F (ΣB)→ F (ΣA)
∂∗−→ F (J)→ F (B)→ F (A),
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where the connecting map ∂∗ fits in to the commutative diagram

F (ΣA)

∂∗

��

β∗

%%
F (Cπ)

F (J)

τ∗

99

Then the following theorem is proven by using the above statements with
contravariant version of the above proposition.

Theorem 2.2.27. Let D be a graded C∗-algebra and let 0→ J
α−→ B

β−→ A→ 0
be a short exact sequence of graded C∗-algebras. Then there is an element
σ : ΣA 99K J and long exact sequences:

Eg(A,D)→ Eg(B,D)→ Eg(J,D)
∂∗−→ Eg(ΣA,D)→ · · · ,

and
· · · → Eg(D,ΣA)

∂∗−→ Eg(D, J)→ Eg(D,B)→ Eg(D,A),

in which the maps ∂∗, ∂∗ are given by the E-theory product with σ.

As before we can define δ∗ and δ∗ explicitly by,

δ∗(α) = α ◦ (id⊗̂σ) ◦ (∆⊗̂idΣA⊗̂K),

where α is in the E-theory class Eg(J,D), and

δ∗(β) = σ ◦ (idS⊗̂β) ◦ (∆⊗̂idD⊗̂K),

where β is in the E-theory class Eg(D,ΣA).

Proposition 2.2.28. Let A,B,C and D be graded C∗-algebras and suppose we
have a split exact sequence,

0 // A
α //

B
γ
oo

β // C // 0,
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then

0 // Eg(C,D)
β∗ // Eg(B,D)

α∗ //
Eg(A,D)

γ∗
oo // 0,

0 // Eg(D,A)
α∗ //

Eg(D,B)
γ∗
oo

β∗ // Eg(D,C) // 0,

are split exact.

Proof. The proof is the same as in Proposition 1.4.15 where we use Theo-
rem 2.2.27.

Proposition 2.2.29. Let A,B,C and D be graded C∗-algebras and suppose we
have a split exact sequence,

0 // A
α // B

β //
C

δ
oo // 0,

then

0 // Eg(C,D)
β∗ //

Eg(B,D)
δ∗
oo

α∗ // Eg(A,D) // 0,

and

0 // Eg(D,A)
α∗ // Eg(D,B)

β∗ // Eg(D,C)
δ∗
oo // 0,

are split exact.

Proof. This proof is similar to Proposition 2.2.28.

Proposition 2.2.30. Let A,B be unital graded C∗-algebras. Then we have an
isomorphism

Eg(A,B) ∼= Eg(A⊗̂F1,1, B⊗̂F1,1).

Proof. This is immediate from Lemma 2.1.14, Lemma 2.1.15 and Lemma 2.2.14.

Corollary 2.2.31. Let A and B be complex graded C∗-algebra. Then we have
natural isomorphisms

En
g (A,B) ∼= En+2

g (A,B).
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Proof.

En
g (A,B) = En

g (A,Σ2(B⊗̂C1,0⊗̂C1,0)), by Corollary 2.2.19,

= En
g (A,Σ2(B⊗̂C1,1)), by Proposition 2.1.9,

= En
g (A,Σ2B), by Proposition 2.2.30,

∼= En+2
g (A,B).

The proof of the next Theorem follows from Theorem 2.2.27 and Bott peri-
odicity.

Theorem 2.2.32. Let D be a separable graded C∗-algebra and let

0→ A
α−→ B

β−→ C → 0,

be a short exact sequence of graded C∗-algebras. Then there are exact sequences

Eg(D,ΣA) // Eg(D,ΣB) // Eg(D,ΣC)

��
Eg(D,C)

OO

Eg(D,B)
β∗

oo Eg(D,A)α∗
oo

,

and
Eg(ΣA,D)

��

Eg(ΣB,D)oo Eg(ΣC,D)oo

Eg(C,D)
β∗ // Eg(B,D) α∗ // Eg(A,D)

OO
,

where the boundary maps are defined by Bott periodicity and product with the E-
theory class of an element σ ∈ Eg(ΣA, J) associated to the short exact sequence.
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Chapter 3

Bott periodicity in the real case

We wish to pass the definition of E-theory to real C∗-algebras, so this chap-
ter begins by giving a brief introduction to real C∗-algebras based on [Goo82]
and [Pal84]. Our aim is to extend the Bott map in the previous chapter to
the real case. We will start by thinking about Bott periodicity in K-theory
(see Appendix B for details) since this then can be used to induce the Bott
periodicity in E-theory. We will define a ∗-homomorphism

β : S → C0(V,Cliff(V ))

for a finite dimensional Euclidean vector space V over R. We will see that this
gives a class in K-theory. Similarly to Guentner and Higson [HG04], we will
construct an asymptotic morphism

αt : S⊗̂C0(V,Cliff(V )) 99K K(H).

Thereafter we will prove α is asymptotically equivalent to another map before
proving that the induced maps β∗ and α∗ are such that α∗β∗ is homotopic to 1
in K(R) ∼= Z. Then we will show why this is sufficient to prove Bott periodicity
for E-theory.

3.1 Real C∗-algebras

Definition 3.1.1. A real C∗-algebra A is a real Banach algebra with involution
satisfying the C∗-identity and additionally the property that 1+x∗x is invertible
in A for all x ∈ A.
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Note that the property above that 1 + x∗x is invertible is equivalent to the
element x∗x being positive. That is, x∗x is self adjoint and the σ(x∗x) ⊆ [0,∞)
(For a proof see [Goo82], Proposition 13.4.).

Example 1. Every complex C∗-algebra is a real C∗-algebra, where we restrict
scalar multiplication to just real scalars.

Example 2. The algebra of bounded linear operators on a real Hilbert space is a
real C∗-algebra with the operation of pointwise multiplication and the supremum
norm.

Example 3. C(X), the algebra of real valued functions on a compact Haus-
dorff space is a C∗-algebra with operation of pointwise operation and with the
supremum norm.

Here we define the spectrum of an element x in a real C∗-algebra by consid-
ering the set of formal expressions x + iy for x, y ∈ A which forms a complex
C∗-algebra B. Then the spectrum of an element in A is the spectrum of the
element in B.

3.2 The Bott map

Let Cliff(V ) denote the Clifford algebra of a finite dimensional Euclidean real
vector space V . That is, the algebra generated by elements V , that have odd
grading, and such that v = v∗ and v2 = ||v||2 · 1 for every v ∈ V . Then
define a function P : V → Cliff(V ) by P (v) = v. Notice that P (v)2 = ||v||2.
Now we require a function in C0(V,Cliff(V )) so using functional calculus (see
Appendix A), take f ∈ S then we define the map f(P ) : V → Cliff(V ) by:

v 7→ f(P (v)).

This gives a ∗-homomorphism from S to C0(V,Cliff(V )), and hence the following
definition:-

Definition 3.2.1. We define the Bott element b to be the class of the K-
theory group K(C0(V,Cliff(V )) induced from the ∗-homomorphism β : S →
C0(V,Cliff(V )) defined by f 7→ f(P ).

61



Theorem 3.2.2. For a finite dimensional Euclidean vector space V over R, the
Bott map induces the isomorphism of K-theory

β∗ : K(R)→ K(R⊗̂C0(V,Cliff(V ))),

defined by the formula β∗(x) = x× b, where x ∈ K(R).

To prove this theorem we need a collection of ingredients which we now
detail. We start by defining a map that induces the inverse homomorphism in
K-theory but before that we require some definitions to define such a map.

Denote by H(V ) the real Hilbert space L2(V,Cliff(V )) which is the Hilbert
space of square-integrable Cliff(V )-valued functions on V . Note that this is
graded and the grading is the one coming from that of Cliff(V ).

The following definition may seem irrelevant to our aim but it will be very
useful for defining the operators we need to define the maps inducing Bott
periodicity.

Definition 3.2.3. Let e, f be elements in V . Define linear operators

e, f̂ : Cliff(V )→ Cliff(V )

on a finite-dimensional Hilbert space under Cliff(V ) by

e(x) = ex,

f̂(x) = (−1)deg(x)xf.

For a vector space V , the Schwarz space Sch(V) is the topological vector
space of functions f : V → F such that f is continuously differentable and for
x ∈ V , xα∂βf(x) → 0 as |x| → ∞ for every pair of multi-indices α, β ∈ Nm.
These form a class of functions. Let Sch(V ) denote the dense subspace of H(V )
of Schwartz-class Cliff(V )-valued functions.

Definition 3.2.4. Define the Dirac operator D : Sch(V )→ H(V ) by

(Df)(v) =
n∑
1

êi(
∂f

∂xi
(v)),

where the ei’s form an orthonormal basis of V and each xi is the correspond-
ing coordinate in V . Here we use functional calculus to define the functions
throughout the summation.
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For h ∈ C0(V,Cliff(V )) let Mh denote the operator of pointwise multiplica-
tion by h on the space H(V ). So

Mh(g)(v) = h(v)g(v).

Then for the multiplication operator we have the following result. For a
proof of the this see [HG04], Lemma 1.8, since this proof is still valid when we
take real finite dimensional Euclidean vector spaces.

Lemma 3.2.5. The Dirac operator on V is formally self-adjoint. For f ∈ S
and h ∈ C0(V,Cliff(V )), the product f(D)Mh is a compact operator on H(V ).

It will be convenient to write h ∈ C0(V,Cliff(V )) as ht, with t ∈ [1,∞) and
ht(v) = h(t−1v).

Definition 3.2.6. Define the graded commutator of elements a, b in a real
graded C∗-algebra A by

[a, b] = ab− (−1)deg(a)deg(b)ba,

which extends by linearity to all elements in A.

Letting V = Rn,0 we have the following result:

Lemma 3.2.7. For every f ∈ S, h ∈ C0(Rn,Rn,0), with the finite dimensional
Euclidean vector space Rn having Dirac operator D,

lim
t→∞
||[f(t−1D),Mht ]|| = 0,

where Mht is a bounded linear operator on H(Rn) and f(t−1D) is defined using
functional calculus of unbounded operators(see Appendix A).

Proof. Let f ∈ C0(R)⊗̂RC, then f is also contained in f ∈ C0(R)⊗̂CC. Let
fk(x) = (x+ i)−k and fk(x) = (x− i)−k and define

A = {fk, fk | k ∈ N≥0}.

Then A is a unital algebra closed under complex conjugation which separates
points, sincs f1 separates points. Hence by the Stone-Weierstrass Theorem, A
is dense in C0(R)⊗̂RC. So if

lim
t→∞
||[fk(t−1D),Mht ]|| = 0 and lim

t→∞
||[fk(t−1D),Mht ]|| = 0,
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for all f ∈ A, then
lim
t→∞
||[f(t−1D),Mht ]|| = 0,

for all f ∈ C0(R)⊗̂RC, and so for all f ∈ C0(R). It is enough to check this for
f1, and f1 since they generate A. Let f = f1.

Then we obtain the factorisation,

[f(t−1D),Mht ] = [(t−1D − iI)−1,Mht ]

= (t−1D − iI)−1Mht ±Mht(t
−1D − iI)−1

= (t−1D − iI)−1Mht(t
−1D − iI)(t−1D − iI)−1

± (t−1D − iI)−1(t−1D − iI)Mht(t
−1D − iI)−1

= (t−1D − iI)−1[Mht , (t
−1D − iI)](t−1D − iI)−1

= t−1(t−1D − iI)−1[Mht , D](t−1D − iI)−1.

Then the norm of this is bounded by t−1[Mht , D], but since this commutator is
pointwise multiplication we obtain for v ∈ Rn

t−1[Mht , D](v) = t−1

n∑
i=1

êi(
∂h

∂ti
(v)).

Then this norm tends to 0 as t→∞.

Now we can state the map α we require to prove Bott periodicity.

Proposition 3.2.8. There exists a unique asymptotic morphism (up to equiv-
alence)

αt : S⊗̂C0(V,Cliff(V )) 99K K(H(V ))

defined by
αt(f⊗̂h) = f(t−1D)Mht ,

for t ≥ 1.

Proof. Firstly to prove this we consider αt defined from the algebraic tensor
product of S�̂C0(V,Cliff(V )) to K(H(V )) by,

αt(f�̂h) = f(t−1D)Mht .
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Then we have a linear map, which is asymptotically ∗-linear by Lemma 3.2.7
and universality of the tensor product gives an asymptotic morphism

αt(f⊗̂h) = f(t−1D)Mht .

Also by Lemma 3.2.5, the image is contained in the compact operators. Hence
we have our required asymptotic morphism.

Definition 3.2.9. On a finite dimension Euclidean real vector space we define
the Clifford operator C : Sch(V )→ H(V ) by

(Cf)(v) =
n∑
i=1

xiei(f(v)),

where ei form an orthonormal basis for V , xi are the corresponding coordinates
in V . Here we use functional calculus to define the functions throughout the
summation.

Lemma 3.2.10. The composition of the Bott map and the multiplication oper-
ator given by

S β−→ C0(V,Cliff(V ))
M−→ B(H(V )),

is defined by
f 7→ f(C),

where C is the Clifford operator and f ∈ S.

Proof. Since the operator C is essentially self adjoint on the Hilbert space H(V )
we can form the operator f(C) in the bounded linear operators. Then

(Mβ(f))(g)(v) = Mβ(f)(g)(v) = β(f)(v)g(v) = f(C)(v)g(v) = f(C)g(v).

Now we need to prove that α and β satisfy the requirements that their
induced maps give α∗β∗ is homotopic to 1 ∈ K(R). In order to show this we
firstly need an equivalent morphism coming from composing α and β for which
we need a new operator.

Definition 3.2.11. We define an operator B : Sch(V )→ Sch(V ) by

(Bf)(v) =
n∑
i=1

xiei(f(v)) +
n∑
i=1

êi(
∂f

∂xi
(v)).

Call B the Bott operator and notice B = C +D.
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Definition 3.2.12. Define the number operator N : Cliff(V )→ Cliff(V ) by

N =
n∑
i=1

êiei,

where ei’s form an orthonormal basis for V .

We should note that the number operator is bounded and we can extend it
to an operator on H(V ) by composition with a map from V to Cliff(V ). Also
note that N commutes with both C and D.

Proposition 3.2.13.
B2 = C2 +D2 +N.

Proof. By orthogonality of the basis of V ,

B2(f)(v)

= B(Bf)(v)

=
n∑
i=1

(
xiei(Bf(v)) + êi(

∂Bf

∂xi
(v))

)
=

n∑
i=1

(
xiei

m∑
j=1

(
xiei(f(v) + êi(

∂f

∂xi
(v))

))

+
n∑
i=1

(
êi
∂

∂xi

m∑
j=1

(
xiei(f(v) + êi(

∂f

∂xi
(v))

))

=
n∑

i,j=1

(
xieixjejf(v) + xieiêj

∂

∂xj
f(v) + êi

∂

∂xi
(xjejf)(v) + êi

∂

∂xi
êj

∂

∂xj

)

=
n∑
i=1

(
x2
i f(v)− ∂2

∂xi2
f(v)

)
+ A(f)(v),

= C2(f)(v) +D2(f)(v) + A(f)(v)

where

A(f)(v) =
n∑
i=1

m∑
j=1

(
xieiêj

∂

∂xj
f(v) + êi

∂

∂xi
(xjejf)(v)

)
.
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Then for i = j,

A(f)(v) =
n∑
i=1

(
xieiêi

∂

∂xi
f(v) + êi

∂

∂xi
(xieif)(v)

)
=

n∑
i=1

(
xieiêi

∂

∂xi
f(v) + êiei

∂

∂xi
(xif)(v)

)
=

n∑
i=1

(
xieiêi

∂

∂xi
f(v) + êieif(v) + êieixi

∂

∂xi
f(v)

)
=

n∑
i=1

(
xieiêi

∂

∂xi
f(v) + êieixi

∂

∂xi
f(v)

)
+Nf(v)

where the third line is established using the product rule and for i 6= j,

A(f)(v) =
n∑
i=1

m∑
j=1

(
xieiêj

∂

∂xj
f(v) + êiejxj

∂

∂xi
f(v)

)
.

So

A(f)(v) =
n∑
i=1

m∑
j=1

(
xieiêj

∂

∂xj
f(v) + êiejxj

∂

∂xi
f(v)

)
+Nf(v)

= Nf(v),

since êjei = −êjei. So as required

B2 = C2 +D2 +N.

The following two results have identical proofs to the results stated in [HG04]
so for proofs see Proposition 1.16 and Corollary 1.1 of that paper.

Proposition 3.2.14. For a finite dimensional real vector space V of dimension
n, consider the operator B = C + D. Then there exists an orthonormal basis
in Sch(V ) for H(V ) consisting of the eigenvectors for B2 such that
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1. the eigenvalues are nonnegative integers and each eigenvalue occurs with
finite multiplicity,

2. the eigenvalue 0 occurs only once and its corresponding eigenfunction is
e−

1
2
||v||2.

Corollary 3.2.15. For a finite dimensional real vector space V . Then the Bott
operator B

1. is essentially self-adjoint,

2. has compact resolvent,

3. has one-dimensional kernel generated by the function e−
1
2
||v||2.

The following two results follow from a standard result of analysis.

Proposition 3.2.16. Let T be an unbounded self-adjoint operator. Then e−T
2

is bounded.

The following is proved similarly.

Proposition 3.2.17. For an unbounded self-adjoint operator T , Te−T
2

is bounded.

The following follows from chapter 12 [CFKS87] and [HT92] page 114-115,
and it is stated in [HG04] as Proposition 1.6.

Proposition 3.2.18 (Mehler’s formula). For the Clifford operator C and the
Dirac operator D defined above we have the following identities for s > 0

e−s(C
2+D2) = e−

1
2
s1C2

e−s2D
2

e−
1
2
s1C2

and e−s(C
2+D2) = e−

1
2
s1D2

e−s2C
2

e−
1
2
s1D2

with

s1 =
cosh(2s)− 1

sinh(2s)
and s2 =

sinh(2s)

2
.

Then as in [HG04], Lemma 1.11, we have the asymptotic conditions:
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Lemma 3.2.19. For an unbounded operator X we have the following condi-
tions:

lim
t→∞
||e−

1
2
s1X2 − e−

1
2
t−2X2 || = 0,

lim
t→∞
||e−

1
2
s2X2 − e−

1
2
t−2X2 || = 0,

and

lim
t→∞
||t−1Xe−

1
2
s1X2 − t−1Xe−

1
2
t−2X2 || = 0,

lim
t→∞
||t−1Xe−

1
2
s2X2 − t−1Xe−

1
2
t−2X2 || = 0,

where

s1 =
cosh(2t−2)− 1

sinh(2t−2)
and s2 =

sinh(2t−2)

2
.

For a proof of the following result, see Lemma 1.12 of [HG04].

Lemma 3.2.20. Let f, g ∈ C0(R), then

lim
t→∞
||[f(t−1C), g(t−1D)]|| = 0.

We can use the proof in [HG04] of Theorem 1.17 and the above statements
to obtain.

Proposition 3.2.21. For operators C and D defined before,

e−t
−2B2 ∼asy e−t

−2C2

e−t
−2D2

.

The following is similar.

Proposition 3.2.22. For the operators C and D,

t−1Be−t
−2B2 ∼asy t−1(C +D)e−t

−2C2

e−t
−2D2

.
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Theorem 3.2.23. The composition of αt and β given by :

S ∆ // S⊗̂S id⊗̂β // S⊗̂C0(V,Cliff(V ))
αt // K(H(V ),

is asymptotically equivalent to the asymptotic morphism γt : S 99K K(H) defined
by

γt(f) = f(t−1B),

for all t ≥ 1.

Proof. Here we imitate the proof of Guentner and Higson in [HG04] with addi-
tional details. Since S is generated by u and v by Lemma 2.1.19 it suffices to
check that

α(id⊗̂β)(∆(f)) ∼asy γt(f),

for f = u and f = v.
For f = u,

α(id⊗̂β)(∆(u)) = α(id⊗̂β)(u⊗̂u)

= α(u⊗̂β(u))

= α(u⊗̂u(C))

= u(t−1D)Mu(C)t

= u(t−1D)u(t−1C)

= e−t
−2C2

e−t
−2D2

,

and
γt(u) = u(t−1B) = e−t

−2B2

,

and these are both asymptotically equivalent by Proposition 3.2.21.
For f = v,

α(id⊗̂β)(∆(u)) = α(id⊗̂β)(u⊗̂v + v⊗̂u)

= α(u⊗̂β(v) + v⊗̂β(u))

= α(u⊗̂v(C) + v⊗̂u(C))

∼asy α(u⊗̂v(C)) + α(v⊗̂u(C))

= u(t−1D)Mv(C)t + v(t−1D)Mu(C)t

= u(t−1D)v(t−1C) + v(t−1D)u(t−1C)

= e−t
−2D2

t−1Ce−t
−2C2

+ t−1De−t
−2D2

e−t
−2C2

= t−1(C +D)e−t
−2C2

e−t
−2D2

,
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and
γt(v) = v(t−1B) = t−1Be−t

−2B2

.

Then by Proposition 3.2.22 these are asymptotically equivalent. Hence the
composition of α and β is asymptotically equivalent to γt.

Corollary 3.2.24. The composition α∗β∗ of the induced homomorphisms

β∗ : K(K(H))→ K(C0(V,Cliff(V )))

and
α∗ : K(C0(V,Cliff(V )))→ K(K(H)),

is the identity homomorphism.

Proof. By Theorem 3.2.23, the composition of α∗β∗ is equivalent to the asymp-
totic morphism γt, given by γt(f) = f(t−1B). Since f is in S, each γt is a ∗-
homomorphism and γ is homotopic to the ∗-homomorphism mapping f to f(B).
Now it suffices to define a homotopy between γ and the map θ : S → K(H) de-
fined by θ(f) = f(0)p where p is a rank 1 projection (by Corollary 3.2.15) onto
the kernel of B.

Let f = u or f = v from Remark 2.1.17.
Consider an eigenvector w of u(B) or v(B) with non-zero eigenvalue, then

u(t−1B)w → 0 and v(t−1B)w → 0

as s→ 0.
Now if w ∈ ker(B), then

u(t−1B)w = w and v(t−1B)w = 0

for all s.
Finally, for an eigenvector w of u(B) or v(B) respectively

u(0)p(w) =

{
0 if w /∈ ker(B)

w if w ∈ ker(B),

and v(0)p(w) = 0.
By Proposition 3.2.14 and Corollary 3.2.15, H(V ) has a basis consisting of

eigenvectors of u(B) and v(B). Combining these, we have

||f(t−1B)− f(0)p|| → 0,
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as t → 0 when f = u or f = v. Since u and v generate S, it follows that the
above holds for all f ∈ S, and so we have a homotopy between γ and θ defined
by

f 7→

{
f(s−1B) if s ∈ (0, 1]

f(0)p if s = 0,

where p is the projection onto the kernel of B.

Now we check that the composition β∗α∗ is asymptotically equivalent to
α∗β∗ and consequently prove that we get the identity in this case too.

Definition 3.2.25. Define the flip map

l : A⊗̂B → B⊗̂A,

by
l(a⊗̂b) = (−1)deg(a)deg(b)b⊗̂a,

for all a ∈ A and b ∈ B.

Notice that l is a ∗-isomorphism. For simplicity in the following statements
let C(V ) = C0(V,Cliff(V )).

Lemma 3.2.26. Let K = K(H) for the following diagram. The diagram

S⊗̂C(V )

∆⊗̂idC(V )

��

∆⊗̂idC(V ) // S⊗̂S⊗̂C(V )
idS⊗̂αt // S⊗̂K β⊗̂idK // C(V )⊗̂K

l

��
S⊗̂S⊗̂C(V )

idS⊗̂β⊗̂idC(V )

// S⊗̂C(V )⊗̂C(V )
idS⊗̂l

// S⊗̂C(V )⊗̂C(V )
αt⊗̂idC(V )

// K⊗̂C(V ),

asymptotically commutes.

Proof. Since S is generated by the elements u(x) = e−x
2

and v(x) = xe−x
2

it
suffices to check that the diagram asymptotically commutes for u and v in S.
Let

f1 = l(β⊗̂idK(H))(idS⊗̂αt)(∆⊗̂idC(V ))

and
g1 = (αt⊗̂idC(V ))(idS⊗̂l)(idS⊗̂β⊗̂idC(V ))(∆⊗̂idC(V ))
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For u and h ∈ C(V ),

f1(u⊗̂h) = l(β⊗̂idK(H))(idS⊗̂αt)(u⊗̂u⊗̂h)

= l(β⊗̂idK(H))(u⊗̂u(t−1D)Mht)

= l(u(C)⊗̂u(t−1D)Mht)

= u(t−1D)Mht⊗̂u(C),

and

g1(u⊗̂h) = (αt⊗̂idC(V ))(idS⊗̂l)(idS⊗̂β⊗̂idC(V ))(u⊗̂u⊗̂h)

= (αt⊗̂idC(V ))(idS⊗̂l)(u⊗̂u(C)⊗̂h)

= (αt⊗̂idC(V ))(u⊗̂h⊗̂u(C))

= u(t−1D)Mht⊗̂u(C).

Hence we have an asymptotic equivalence in the case when we take u. Now
consider v. We have,

f1(v⊗̂h) = l(β⊗̂idK(H))(idS⊗̂αt)((u⊗̂v + v⊗̂u)⊗̂h)

∼asy l(β⊗̂idK(H))(u⊗̂v(t−1D)Mht + v⊗̂u(t−1D)Mht)

= l(u(C)⊗̂v(t−1D)Mht + v(C)⊗̂u(t−1D)Mht)

= v(t−1D)Mht⊗̂u(C) + u(t−1D)Mht⊗̂v(C),

and

g1(v⊗̂h) = (αt⊗̂idC(V ))(idS⊗̂l)(idS⊗̂β⊗̂idC(V ))((u⊗̂v + v⊗̂u)⊗̂h)

= (αt⊗̂idC(V ))(idS⊗̂l)(u⊗̂v(C)⊗̂h+ v⊗̂u(C)⊗̂h)

= (αt⊗̂idC(V ))(u⊗̂h⊗̂v(C) + v⊗̂h⊗̂u(C))

∼asy u(t−1D)Mht⊗̂v(C) + v(t−1D)Mht⊗̂u(C)

and again we have the diagram asymptotically commuting.

A proof of the following can be found in [HKT98], Lemma 18.

Lemma 3.2.27. The flip map on C(V )⊗̂C(V ) is homotopic by the graded ∗-
homomorphisms to the map h1⊗̂h2 7→ h1⊗̂ιh2, where ι is the automorphism on
C(V ) induced by the map e 7→ −e in V .
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Corollary 3.2.28. There is an isomorphism:

K(R)→ K(C(V ))

induced by β : S → C(V ).

Proof. It suffices to check that the f1 in the proof of Lemma 3.2.26 induces
an isomorphism in K-theory since by Corollary 3.2.24 we have that α∗ is left
inverse to β. It follows from the stability of K-theory that:

K(S⊗̂C(V ))
α∗−→ K(K(H)) ∼= K(R).

So we need to show:

S⊗̂C(V )
∆⊗̂idC(V )// S⊗̂S⊗̂C(V )

idS⊗̂αt // S⊗̂K(H)
β⊗̂idK(H)// C(V )⊗̂K(H)

l

��
K(H)⊗̂C(V )

induces an isomorphism on K-theory. By Lemma 3.2.26, we have an asymptotic
equivalence which gives a homotopy equivalence. Further the composition in
the diagram above is asymptotically equivalent to

g1 = (αt⊗̂idC(V ))(idS⊗̂l)(idS⊗̂β⊗̂idC(V ))(∆⊗̂idC(V ))

which is homotopic by Lemma 3.2.27 to the composition

(αt(idS⊗̂β)∆)⊗̂ι

and hence by Theorem 3.2.23 is homotopic to γ⊗̂ι, and so maps

f⊗̂h 7→ f(t−1B)⊗̂ι(h).

and so induces an isomorphism in K-theory by the homotopy defined similarly
to that in the proof of Corollary 3.2.24

f⊗̂h 7→

{
f(s−1B)⊗̂ι(h) if s ∈ (0, 1]

f(0)p⊗̂ι(h) if s = 0.
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Then the proof of Theorem 3.2.2 is complete.
Observe that when V = R then

C0(V,Cliff(V )) = C0(R,Cliff(R)) ∼= C0(R)⊗̂Cliff(R) ∼= Σ⊗̂R1,0
∼= ΣR1,0.

Then we obtain

Corollary 3.2.29.
K(R) ∼= K(ΣR⊗̂R1,0).

Corollary 3.2.30. For any real graded C∗-algebra,

K(A) ∼= K(ΣA⊗̂R1,0).

Then combining this with Theorem 1.14 in [HG04], we have

Theorem 3.2.31. For any graded C∗-algebra over F = R or C,

KF(A) ∼= KF(ΣA⊗̂F1,0),

where KF denotes real or complex K-theory.

We finally obtain the isomorphism in E-theory.

Theorem 3.2.32. For any graded C∗-algebra over F = R or C,

EF(A,B) ∼= EF(A,ΣB⊗̂F1,0),

and
EF(A,B) ∼= EF(ΣA⊗̂F1,0, B),

where EF denotes real or complex E-theory.

Proof. The Bott map β : S → ΣF1,0 gives an invertible class, that we denote
by [β] ∈ EF(F,ΣF⊗̂F1,0). Also we have an invertible class

[β⊗̂idA] ∈ EF(F⊗̂A,ΣF⊗̂F1,0⊗̂A) = EF(A,ΣA⊗̂F1,0).

Denote this class by [βA] and similarly set [βB] for the class [β⊗̂idB]. Then
these classes are invertible.
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By the E-theory product we have a group homomorphism

f : EF(A,B)→ EF(A,ΣB⊗̂F1,0)

defined by
f(x) = x× [βB]

for all x ∈ EF(A,B) which is invertible with inverse defined by

f−1(y) = y × [βB]−1

for all y ∈ EF(A,ΣB⊗̂F1,0).
Similarly we define

g : EF(A,B)→ EF(ΣA⊗̂F1,0, B)

by
g(x) = [βA]−1 × x

for all x ∈ EF(A,B), and this has inverse defined by

g−1(y) = [βA]× y,

for all y ∈ EF(ΣA⊗̂F1,0, B). Then the result follows.

Corollary 3.2.33. Let A and B be real graded C∗-algebra. Then we have
natural isomorphisms

En
g (A,B) ∼= En+8

g (A,B).

Proof.

En
g (A,B) = En

g (A,Σ8(B⊗̂R1,0⊗̂R1,0⊗̂R1,0⊗̂R1,0⊗̂R1,0⊗̂R1,0⊗̂R1,0⊗̂R1,0))

= En
g (A,Σ8(B⊗̂R4,4)) by Proposition 2.1.10,

= En
g (A,Σ8B) by Proposition 2.2.30,

∼= En+8
g (A,B)

where the first equality follows from Corollary 2.2.19.
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Chapter 4

Quasi-topological spaces and
quasi-orthogonal sequences

In this chapter we generalise the notion of orthogonal spectra to quasi-topological
spaces. In order to do this, we have to define the notion of a quasi-continuous
group action and further prove we have a symmetric monoidal structure on the
category of quasi-orthogonal sequences which we also define.

4.1 Quasi-topological spaces

The suspension and loop space of a quasi-topological space X are defined sim-
ilarly to the case of topological spaces by

ΣtopX = S1 ∧X,

and

ΩX = {µ : S1 → X | µ is quasi-continuous and basepoint preserving}

and we consider the circle S1 with the quasi-topology that comes from the
standard topology on R2. That is, our quasi-continuous maps are the continuous
maps from every compact Hausdorff space to S1 in that topology. Now we check
that Σtop and Ω are adjoints in the category where objects are quasi-topological
spaces and arrows are quasi-continuous maps. In order to do this, we consider
an abstract result and obtain it as a corollary.
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Proposition 4.1.1. Let X, Y and Z be quasi-topological spaces. Then

F (X ∧ Y, Z) and F (X,F (Y, Z)),

are quasi-homeomorphic.

Proof. We define α : F (X ∧ Y, Z)→ F (X,F (Y, Z)) by

((α(f))(x))(y) = f(x ∧ y),

where f ∈ F (X ∧ Y, Z), x ∈ X and y ∈ Y . Then α is quasi-continuous since f
is quasi-continuous.

Define β : F (X,F (Y, Z))→ F (X ∧ Y, Z) by

(β(g))(x ∧ y) = (g(x))(y),

where g ∈ F (X,F (Y, Z)), x ∈ X and y ∈ Y . So β is quasi-continous since g is
quasi-continuous.

Finally α and β are inverses, so we obtain a quasi-homeomorphism.

Corollary 4.1.2. Σtop and Ω are adjoints in the category of quasi-topological
spaces. That is

F (ΣtopX, Y ) and F (X,ΩY )

are quasi-homeomorphic.

Proof. This follows from Proposition 4.1.1 since

F (ΣtopX, Y ) = F (X ∧ S1, Y ),

and

F (X,ΩY ) = F (X,F (S1, Y )).

Let A,B be C∗-algebras. Further by work of Dardalat-Meyer [DM12] we can
define a quasi topology on Asy(A,B), the set of asymptotic morphisms from A
to B. We define the set of quasi-continuous maps from a compact Hausdorff
space Y to Asy(A,B) to be the Asy(A,C(Y,B)), mentioned in [DM12]. That
is, more precisely we have
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Definition 4.1.3. For a compact Hausdorff space Y , a map h : Y → Asy(A,B)

is quasi-continuous when for each t ∈ [1,∞) the map h̃t(a) : Y → B defined by

h̃t(a)(y) = h(y)t(a),

is continuous.

Now we check that this is a quasi-topology.

Proposition 4.1.4. The set of asymptotic morphisms from A to B, Asy(A,B),
is a quasi-topological space when equipped with the above quasi-topology.

Proof. We must check the axioms. Let c : Y → Asy(A,B) be constant. Then
for y ∈ Y , c(y) = ft : A 99K B for a fixed f . Then we need to show that c is
quasi-continuous. That is to show for each map c, the map c̃t(a) : Y → B is
continuous. Then we define this map for a ∈ A, y ∈ Y by

c̃t(a)(y) = c(y)t(a) = ft(a),

which is continuous as a function of Y and hence c is continuous.

Now let f : Y1 → Y2 be a map of compact Hausdorff spaces and let g : Y2 →
Asy(A,B) be quasi-continuous. Then we want to show that gf : Y1 → Asy(A,B)

is quasi-continuous. That is, we need to show that g̃f t(a) : Y1 → B is con-
tinuous. Now f is continuous and since g is quasi-continuous, we have each
g̃t(a) : Y2 → B is continuous and

g̃t(a)(y) = g(y)t(a).

Now,

g̃f t(a)(y) = g̃t(a)f(y),

which is continuous in Y so is g̃f t(a) is continuous, yielding that gf is quasi-
continuous.

Let Y = Y1 q Y2 of compact Hausdorff spaces. Then we need to show that
g : Y → Asy(A,B) is quasi-continuous if and only if g|Yi is quasi-continuous for
i = 1, 2. Suppose g : Y → Asy(A,B) is quasi-continuous. Then map g̃t(a) : Y →
B defined by

g̃t(a)(y) = g(y)t(a),
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is continuous. Now by properties of continuous functions we know that the
restriction of a continuous function is continuous. Suppose that g|Yi is quasi-
continuous, then (g̃|Yi)t(a) : Yi → B is continuous. Then by properties of con-
tinuous functions we know that if the restrictions are continuous then the map
of the disjoint uniion will be continuous.

Finally, we need to check for every surjective map f : Y1 → Y2 of com-
pact Hausdorff spaces that g : Y2 → Asy(A,B) is quasi-continuous if gf : Y1 →
Asy(A,B) is quasi-continuous. Then for a particular map f and by the above
argument

g̃f t(a)(y) = g̃t(a)f(y),

is continuous. Let f : Y1 → Y2 be the identity, then

g̃f t(a)(y) = g̃t(a)f(y) = g̃t(a),

and hence g̃t(a) is continuous and the result follows. So we do indeed have a
quasi-topology on Asy(A,B) defined as above.

For a quasi-topological space X, let X+ denote the space with a basepoint.

Proposition 4.1.5. The quasi-topological spaces ΩAsy(A,B) and Asy(A,ΣB)
are quasi-homeomorphic.

Proof. By the definition of a quasi-topology, we know that

ΩAsy(A,B) : = Q(S1,Asy(A,B))+.

Then by the definition 4.1.3, we have that

Q(Y,Asy(A,B))+ = Asy(A,C(Y,B)+),

and then that

ΩAsy(A,B) = Q(S1,Asy(A,B))+

= Asy(A,C(S1, B)+)

= Asy(A,ΣB).

The above results hold in the case of graded asymptotic morphisms.
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4.2 Group actions

The following definition makes sense since a topological group can be viewed as
a quasi-topological group.

Definition 4.2.1. Let G be a topological group acting on a quasi-topological
space X. Then the group action is called quasi-continuous if the map G×X →
X is quasi-continuous. If this is the case we say that the set X is a quasi
G-space.

Definition 4.2.2. A map f : X → Y of quasi G-spaces is a quasi G-map if it
is G-equivariant. That is, for all g ∈ G, we have

f(gx) = g(f(x)).

Now we consider basepoint preserving group actions.

Proposition 4.2.3. Let G and H be groups. Let X be a quasi G-space, Y a
quasi H-space where the group actions preserve the basepoints of both X and
Y . Then there are basepoint preserving action of G×H on X × Y , X ∨ Y and
X ∧ Y .

Proof. Assume the actions are left actions, as the proofs work the same for right
actions.

We can define (G × H) × (X × Y ) → (X × Y ) by (g, h)(x, y) 7→ (gx, hy)
then this is a quasi G×H-action which preserves the basepoint since G and H
are quasi actions and preserve the basepoint.

Now define (G×H)× (X ∨ Y )→ (X ∨Y ) by (g, h)(x∨ y) 7→ (gx∨ hy) and
the result follows.

Finally, define (G×H)× (X ∧ Y )→ (X ∧ Y ) by (g, h)(x∧ y) 7→ (gx∧ hy),
and once again the result follows.

We now need the notion of a balanced smash product.

Definition 4.2.4. Let X be a right quasi G-space and Y a left quasi G-space,
then we can from the balanced smash product X ∧G Y , which is the quotient
space X ∧ Y/ ∼G where

(xg ∧ y) ∼G (x ∧ g−1y)⇔ (x ∧ y) ∼G (xg ∧ g−1y),

for all g ∈ G.
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Let the equivalence class of x∧ y be denoted by x∧G y. Now using these we
can construct a left quasi G-space.

Let G be a topological group and H a subgroup. Then let X be a based left
quasi H-space where G acts by preserving the basepoint. Let G+ = G q {∗},
then we can construct the right quasi G-space denoted G+∧HX using the above
equivalence classes. Additionally we can actually define a left quasi G-action
on this space by the following map:

(f, g ∧H x) 7→ fg ∧H x,

for all f ∈ G.
To prove this is well-defined action it is a formality of using the fact that H

is a subgroup of G.
Let X and Y be based quasi G-spaces. Then let QG(X, Y ) denote the set

of basepoint preserving quasi G-maps. Then we have the following result:

Proposition 4.2.5. Let H be a subgroup of a group G. Let X be a left quasi
H-space and Y a left quasi G-space. There there is a natural bijection

QH(X, Y )←→ QG(G+ ∧H X, Y ).

Proof. We define α : QH(X, Y ) → QG(G+ ∧H X, Y ). Let f ∈ QH(X, Y ) and
g ∧H x ∈ G+ ∧H X, then we define

α(f)(g ∧H x) = gf(x),

and we then need to check that α is well-defined and also G-equivariant. Since
(g ∧H x) ∼ (gh ∧H h−1x), then

α(f)(gh ∧H h−1x) = ghf(h−1x) = ghh−1f(x) since f is a quasi H-map

= gf(x) = α(f)(g ∧H x).

Then α(f) is G-equivariant since

α(f)(g′g ∧H x) = g′gf(x) = g′(gf(x)) = g′α(f)(g ∧H x),

for all g′ ∈ G.
Now define β : QG(G+ ∧H X, Y ) → QH(X, Y ). Let k ∈ QG(G+ ∧H X, Y ),

x ∈ X, then
β(k)(x) = k(e ∧H x),
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where e denotes the identity in G. Then β is H-equivariant since

β(k)(hx) = k(e ∧H hx)

= k(h−1h ∧H hx)

= k(h ∧H x) by equivalence relations

= hk(e ∧H x) as k is a H-map

= hβ(k)x.

Then is is clear that α and β are inverse maps, and both are natural in X and
Y , so the result follows.

4.3 Quasi-Orthogonal sequences

Let O be the category of finite dimensional real Euclidean inner product spaces
and linear isometric isomorphisms where we have objects to be the set

obj(O) = {Rn | n = 0, 1, . . .}

and morphisms are

O(A,B) =

{
O(n), if A = B = Rn

∅, otherwise.

It should be noted that this is a small category since the collection of objects
is a set.

Let T denote the category of quasi-topological spaces with basepoints and
quasi-continuous maps. So obj(T ) is the collection of quasi-topological spaces
with basepoints and the morphisms T (X, Y ) are the set of basepoint preserving
quasi-continuous maps from X to Y .

Then we can obtain the product category T × T where obj(T × T ) are
pairs (X, Y ) of quasi-topological spaces with basepoints, and morphisms are

(T ×T )((X, Y )(Z,W )) = {(f, g) | f ∈ T (X,Z), g ∈ T (Y,W )}.

Proposition 4.3.1. The smash product ∧ : T × T → T of quasi-topological
spaces is a functor.

The following definition of a quasi-orthogonal sequence is going to form part
of the definition of a orthogonal quasi-spectrum.
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Definition 4.3.2. Let O and T be the categories defined above. Then we
define the category of quasi orthogonal sequences formed as the functor category
T O with objects

obj(T O) = {functors X : O → T | Xn := X(Rn)},

together with a left quasi-continuous basepoint preserving action of O(n) on
each Xn for all n ≥ 0, and morphisms

T O(X, Y ) = {ϕ : X → Y | ϕ is a natural transformation},

and such that a natural transformation is formed of sets of quasi-continuous
basepoint preserving maps ϕn : Xn → Yn that are O(n)-equivariant for n ≥ 0,
or equivalently that the map ϕn commutes with the group action of O(n) on
Xn and Yn.

A useful example of such a functor category will be the unit sequence coming
from the orthogonal sequence defined below. Consider a based topological space
K, then define the orthogonal sequence with n-space:

(GpK)n =

{
O(n)+ ∧K, if n = p

{∗}, otherwise

Then the unit sequence is when we just have the topological space S0, given by
the sequence

G0S
0 = {S0, ∗, ∗, . . .}.

We also consider quasi-biorthogonal sequences since they will help us in
defining our smash product structure.

The category of quasi-biorthogonal sequences is defined to be the category
with objects

obj(T O×O) = {X : O × O → T | X is a functor Xm,n := X(Rm,Rn)},

together with a quasi-continuous basepoint preserving left-action of O(m) ×
O(n), and

T O×O(X, Y ) = {ψ : X → Y | ψ is a natural transformation},

formed of sets of quasi-continuous basepoint preserving maps ψm,n : Xm,n →
Ym,n that are O(m)×O(n)-equivariant for all m,n ≥ 0.

Using this we can define the external smash product of two quasi-orthogonal
sequence X and Y .
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Definition 4.3.3. Define the external smash product X∧Y to be the quasi-
biorthogonal sequence given by the composition

O × O
X×Y−−−→ T ×T

∧−→ T ,

defined by

(X∧Y )m,n = (X∧Y )(Rm,Rn) = X(Rm) ∧ Y (Rn) = Xm ∧ Yn.

Then by Proposition 4.2.3, the quasi-topological space Xn ∧ Ym has a quasi-
O(n)×O(m)-action.

For a general quasi-orthogonal sequenceX we can define a quasi-biorthogonal
sequence X ◦ ⊕ by:

(X ◦ ⊕)m,n = (X ◦ ⊕)(Rm,Rn) = X(Rm+n) = Xm+n.

Now we can construct the tensor product of quasi-orthogonal sequences since
the category T is complete and cocomplete.

Definition 4.3.4. For quasi orthogonal sequence X and Y we define the tensor
product of X and Y to be the quasi-orthogonal sequence

(X ⊗ Y )n =
∨

p+q=n

O(n)+ ∧O(p)×O(q) Xp ∧ Yq,

where we define the O(n)-action on (X⊗Y )n by acting on each wedge summand.

Then we can combine the external smash product and tensor product of
quasi-orthogonal sequences as a natural bijection:

Proposition 4.3.5. For quasi-orthogonal sequences X, Y and Z, there is a
natural bijection

T O×O(X∧Y, Z ◦ ⊕)←→ T O(X ⊗ Y, Z).

Proof. Let f : X∧Y → Z ◦ ⊕ be a natural transformation in the category of
quasi-biorthogonal sequences. Then fp,q : Xp∧Yq → Z ◦⊕ is quasi O(p)×O(q)-
equivariant and then by proposition 4.2.5, this corresponds to a quasi O(n)-
equivariant map, with n = p+ q

fp,q : O(n)+ ∧O(p)×O(q) Xp ∧ Yq → Zn.
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Now fixing n and letting p and q vary, this allows us to obtain a quasi O(n)-
equivariant map

fn =
∨

p+q=n

O(n)+ ∧O(p)×O(q) Xp ∧ Yq → Zn,

which is a quasi-continuous basepoint preserving O(n)-equivariant map in T O

from X ⊗ Y to Z.

Now we construct a map the other way. Let g ∈ T O(X ⊗ Y, Z). Then g
is a wedge summand of basepoint preserving quasi-continuous O(n)-equivariant
maps

gn :
∨

p+q=n

O(n)+ ∧O(p)×O(q) Xp ∧ Yq → Zn,

for all n ≥ 0. Also, we can write that gn =
∨
p+q=n gp,q, where

gp,q : O(n)+ ∧O(p)×O(q) Xp ∧ Yq → Zn,

and by proposition 4.2.5, we obtain a basepoint preserving quasi-continuous
O(p)×O(q)-equivariant map as required.

Proposition 4.3.6. The tensor product is associative, that is for quasi-orthogonal
sequence X, Y and Z,

X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y )⊗ Z.

Proof.

(X ⊗ (Y ⊗ Z))n

=
∨

p+q=n

O(n)+ ∧O(p)×O(q) Xp ∧ (Y ⊗ Z)q

=
∨

p+q=n

O(n)+ ∧O(p)×O(q) Xp ∧

( ∨
q=r+s

O(q)+ ∧O(r)×O(s) Yr ∧ Zs

)
=

∨
p+r+s=n

O(n)+ ∧O(p)×O(r+s) Xp ∧
(
O(r + s)+ ∧O(r)×O(s) Yr ∧ Zs

)
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and

((X ⊗ Y )⊗ Z)n

=
∨

q+s=n

O(n)+ ∧O(q)×O(s) (X ⊗ Y )q ∧ Zs

=
∨

q+s=n

O(n)+ ∧O(q)×O(s)

( ∨
p+r=q

O(q)+ ∧O(p)×O(r) Xp ∧ Yr

)
∧ Zs

=
∨

p+r+s=n

O(n)+ ∧O(p+r)×O(s)

(
O(p+ r)+ ∧O(p)×O(r) Xp ∧ Yr

)
∧ Zs.

Then we want to show that the map

αX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z,

is an isomorphism. To do this we define two maps and prove they are inverses
as follows:

O(n)+ ∧O(p)×O(r+s) Xp ∧
(
O(r + s)+ ∧O(r)×O(s) Yr ∧ Zs

)
f
��

O(n)+ ∧O(p+r)×O(s)

(
O(p+ r)+ ∧O(p)×O(r) Xp ∧ Yr

)
∧ Zs

by

A ∧O(p)×O(r+s) x ∧
(
B ∧O(r)×O(s) y ∧ z

)
_

f
��

A

(
Ip 0
0 B

)
∧O(p+r)×O(s)

(
Ip+r ∧O(p)×O(r) x ∧ y

)
∧ z

where A ∈ O(n), B ∈ O(r+ s), x ∈ Xp, y ∈ Yr, z ∈ Zs and Ik denotes the k×k
identity matrix. Then define

O(n)+ ∧O(p+r)×O(s)

(
O(p+ r)+ ∧O(p)×O(r) Xp ∧ Yr

)
∧ Zs

g

��
O(n)+ ∧O(p)×O(r+s) Xp ∧

(
O(r + s)+ ∧O(r)×O(s) Yr ∧ Zs

)
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by

A ∧O(p+r)×O(s)

(
C ∧O(p)×O(r) x ∧ y

)
∧ z

_

g
��

A

(
C 0
0 Is

)
∧O(p)×O(r+s) x ∧

(
Ir+s ∧O(r)×O(s) y ∧ z

)
where A ∈ O(n), C ∈ O(p + r), x ∈ Xp, y ∈ Yr, z ∈ Zs. Since the smash
product is a functor both f and g are quasi-continuous. Now we check that
both f and g are well-defined. By the equivalence relations we have

A ∧O(p)×O(r+s) x ∧
(
B ∧O(r)×O(s) y ∧ z

)
∼ A

(
Ip 0
0 B

)
∧O(p)×O(r+s) x ∧

(
Ir+s ∧O(r)×O(s) y ∧ z

)
and then

f

(
A

(
Ip 0
0 B

)
∧O(p)×O(r+s) x ∧

(
Ir+s ∧O(r)×O(s) y ∧ z

))
= A

(
Ip 0
0 B

)(
Ip 0
0 Ir+s

)
∧O(p+r)×O(s)

(
Ip+r ∧O(p)×O(r) x ∧ y

)
∧ z

= A

(
Ip 0
0 B

)
∧O(p+r)×O(s)

(
Ip+r ∧O(p)×O(r) x ∧ y

)
∧ z

= f
(
A ∧O(p)×O(r+s) x ∧

(
B ∧O(r)×O(s) y ∧ z

))
and you can prove that g is well-defined similarly. Using this, it is clear that f
and g are inverses. For completeness, we show that gf is the identity.

gf(A ∧O(p)×O(r+s) x ∧
(
B ∧O(r)×O(s) y ∧ z

)
= g

(
A

(
Ip 0
0 B

)
∧O(p+r)×O(s)

(
Ip+r ∧O(p)×O(r) x ∧ y

)
∧ z
)

= A

(
Ip 0
0 B

)(
Ip+r 0

0 Is

)
∧O(p)×O(r+s)x ∧

(
Ir+s ∧O(r)×O(s) y ∧ z

)
= A

(
Ip 0
0 B

)
∧O(p)×O(r+s)x ∧

(
Ir+s ∧O(r)×O(s) y ∧ z

)
∼ A ∧O(p)×O(r+s) x ∧

(
B ∧O(r)×O(s) y ∧ z

)
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and so we have the identity in this case.
Now we need to extend our definitions of f and g to the wedge summand.

As f and g hold for all p+ r + s = n we define∨
p+r+s=nO(n)+ ∧p×(r+s) Xp ∧

(
O(r + s)+ ∧O(r)×O(s) Yr ∧ Zs

)
Fn

��∨
p+r+s=nO(n)+ ∧(p+r)×s

(
O(p+ r)+ ∧O(p)×O(r) Xp ∧ Yr

)
∧ Zs

Gn

SS

(where O(p)×O(r+ s) is denoted by p× (r+ s) and O(p+ r)×O(s) is denoted
by (p+ r)× s) by

Fn =
∨

p+r+s=n

fn and Gn =
∨

p+r+s=n

gn,

and then we have that the map αX,Y,Z is an quasi-isomorphism, since our maps
Fn and Gn are O(n)-equivariant, quasi-continuous, basepoint preserving and
inverses.

Lemma 4.3.7. Let W,X, Y and Z be quasi-orthogonal sequences. Then the
following diagram commutes:

W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z

W ⊗ ((X ⊗ Y )⊗ Z) (W ⊗ (X ⊗ Y ))⊗ Z

αW,X,Y⊗Z

99
αW⊗X,Y,Z

%%

idW⊗αX,Y,Z

��

αW,X⊗Y,Z

//

αW,X,Y ⊗ idZ

OO

Let

Pm,n =

(
0 In
Im 0

)
be the matrix that when applied to a vector in Rm+n swaps the first m-entries
with the last n-entries. Then note that Pm,n is a matrix in O(m + n) since
P T
m,nPm,n = Pm,nP

T
m,n = Im+n. Also notice that P−1

m,n = Pn,m.
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Additionally define conjugation by Pm,n on a real (n+m)× (n+m)-matrix
by

conjm,n(A) = Pm,nAP
−1
m,n = Pm,nAPn,m.

Then it is easy to see that conjm,n(AB) = conjm,n(A)conjm,n(B).

Proposition 4.3.8. Let X and Y be quasi-orthogonal sequences. Then we have
a quasi-isomorphism

LX,Y : X ⊗ Y → Y ⊗X,

where LX,Y is the set of basepoint preserving quasi-homeomorphisms which are
O(n)-equivariant, ln =

∨
p+q=n ιp,q with

ιp,q : O(n)+ ∧O(p)×O(q) Xp ∧ Yq → O(n)+ ∧O(q)×O(p) Yq ∧Xp,

defined by

ιp,q(A ∧O(p)×O(q) x ∧ y) = conjp,q(A) ∧O(q)×O(p) y ∧ x,

for all A ∈ O(n), x ∈ Xp and y ∈ Yq.
Furthermore LX,Y satisfies the following commutative diagram

X ⊗ Y Y ⊗X

X ⊗ Y

LX,Y //

LY,X

��

idX⊗Y

��

Proof. We first need to show that each ιp,q is well-defined and has an inverse.
For A ∈ O(n), B ∈ O(p), C ∈ O(q), x ∈ Xp and y ∈ Yq we have

A ∧O(p)×O(q) x ∧ y ∼ A

(
B 0
0 C

)
∧O(p)×O(q) Bx ∧ Cy,
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and since

ιp,q

(
A

(
B 0
0 C

)
∧O(p)×O(q) Bx ∧ Cy

)
= conjp,q

(
A

(
B 0
0 C

))
∧O(q)×O(p) Cy ∧Bx

= conjp,q(A)conjp,q

((
B 0
0 C

))
∧O(q)×O(p) Cy ∧Bx

= conjp,q

(
A

(
C 0
0 B

))
∧O(q)×O(p) Cy ∧Bx

∼ conjp,q(A) ∧O(q)×O(p) y ∧ x
= ιp,q

(
A ∧O(p)×O(q) x ∧ y

)

ιp,q is well-defined. Now ι−1
p,q = ιq,p and these are clearly inverses. They are

also quasi-continuous since the smash product is a functor. Now for n = p + q
we let ln =

∨
p+q=n ιp,q and then by taking the set of all basepoint preserving

O(n)-equivariant quasi-homeomorphisms ln we obtain the quasi-isomorphism

LX,Y : X ⊗ Y → Y ⊗X.

Now the diagram commutes since for all fixed n = p + q and A, x and y as
above:

ιq,pιp,q(A ∧O(p)×O(q) x ∧ y) = ιq,p(conjp,q(A) ∧O(q)×O(p) y ∧ x)

= conjq,p(conjp,q(A)) ∧O(p)×O(q) x ∧ y
= A ∧O(p)×O(q) x ∧ y = idX⊗Y

Proposition 4.3.9. The following diagrams commute for all quasi-orthogonal
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sequences X, Y and Z.

(X ⊗ Y )⊗ Z
LX⊗Y,Z //

α−1
X,Y,Z

��

Z ⊗ (X ⊗ Y )

αZ,X,Y

��
X ⊗ (Y ⊗ Z)

idX⊗LY,Z

��

(Z ⊗X)⊗ Y

LZ,X⊗idY

��
X ⊗ (Z ⊗ Y )

αX,Z,Y // (X ⊗ Z)⊗ Y

,

and

X ⊗ (Y ⊗ Z)
LX,Y⊗Z //

αX,Y,Z

��

(Y ⊗ Z)⊗X

α−1
Y,Z,X

��
(X ⊗ Y )⊗ Z

LX,Y ⊗idZ

��

Y ⊗ (Z ⊗X)

idY ⊗LZ,X

��
(Y ⊗X)⊗ Z

α−1
Y,X,Z // Y ⊗ (X ⊗ Z)

,

Now recall that G0S
0 is the unit quasi-orthogonal sequence where

(G0S
0)n = (S0, ∗, ∗, . . .).

For a quasi-orthogonal sequence X, we want to define maps

G0S
0 ⊗X → X and X ⊗G0S

0 → X,

such that these are quasi-isomorphisms.
Let n = p + q. Then for A ∈ O(n), x ∈ Xp and w ∈ (G0S

0)q,we have an
element A ∧O(p)×O(q) x ∧w in X ⊗G0S

0, we define rp,q : (X ⊗G0S
0)n → Xn by

rp,q(A ∧O(p)×O(q) x ∧ w) =

{
x if q = 0

xn otherwise

where xn is the basepoint of the quasi-topological space Xn.
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Now we can also define gp,q : (G0S
0 ⊗X)n → Xn to be rp,q ◦ ιq,p Then

rp,q ◦ ιq,p(A ∧O(q)×O(p) w ∧ x)

= rp,q(conjq,p(A) ∧O(p)×O(q) x ∧ w)

=

{
x if q = 0

xn otherwise

Now we can formulate the maps we require. We know that

O(n)+ ∧O(n)×O(0) Xn ∧ S0 ∼= O(n)+ ∧O(n) Xn → Xn,

we obtain a map

rp,0 : (X ⊗G0S
0)n → Xn,

and similarly a map

l0,q : (G0S
0 ×X)n → Xn,

which are both quasi-homeomorphisms. Then we can vary p and q to obtain

ρX : X ⊗G0S
0 → X,

and

γX : G0S
0 ×X → X,

where we see that γX = ρX ◦ LG0S0,X .

Proposition 4.3.10. The maps ρ and γ are the right unitor and the left unitor
respectively in the category of quasi-orthogonal sequences wih natural transfor-
mations. That is, ρ and γ are natural isomorphisms for all quasi-orthogonal
sequences X, and also for all quasi-orthogonal sequences the following diagram
commutes

X ⊗ (G0S
0 ⊗ Y ) (X ⊗G0S

0)⊗ Y

X ⊗ Y

αX,G0S
0,Y //

ρX⊗G0S
0⊗idY

||
idX⊗γG0S

0⊗Y

""
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Proposition 4.3.11. The left and right unitor maps are compatible, in the
sense that for all quasi-orthogonal sequence X the following diagram commutes

X ⊗G0S
0 G0S

0 ⊗X

X

LX,G0S
0

//

γX

||

ρX

""

Proposition 4.3.12. The category of quasi-orthogonal sequences forms a sym-
metric monoidal category (T O ,⊗, G0S

0) with associator αX,Y,Z, left unitor γX ,
right unitor ρX and braiding LX,Y .

The proof of this follows from Proposition 4.3.6, Lemma 4.3.7, Proposi-
tion 4.3.8, Proposition 4.3.9, Proposition 4.3.10 and Proposition 4.3.11.

Let S = (S0, S1, S2 . . .) be the orthogonal sequence defined in terms of quasi-
topological spaces.

Proposition 4.3.13. The orthogonal sequence of quasi-topological spaces S =
(S0, S1, S2 . . .) is a commutative monoid in the symmetric monoidal category
(T O ,⊗, G0S

0).

Proof. The map sp,q : Sp ∧ Sq → Sp+q is associative since the diagram

Sp ∧ Sq ∧ SridSp∧sq,r //

sp,q∧idSr

��

Sp ∧ Sq+r

sp,q+r

��
Sp+q ∧ Sr

sp+q,r // Sp+q+r

commutes. By Proposition 4.3.5, sp,q : Sp ∧ Sq → Sp+q is equivalent to a map

µ : S ⊗ S → S,

and so is associative since sp,q is associative.
Now we have a map ηp : (G0S

0)p → Sp defined to be the basepoint preserving
map such that G0S

0 → S0 is the unit quasi-homeomorphism. Then diagram
(2) from Definition 1.7.2 commutes. It follows that we obtain a morphism

G0S
0 → S
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and the diagram also commutes in this case.
Now we check that S is commutative. That is, the diagram

S ⊗ S S ⊗ S

S

LS,S //

µ

||

µ

""

Let A ∧O(p)×O(q) x ∧ y be an element in O(p + q) ∧O(p)×O(q) S
p ∧ Sq then by

definitions from the previous chapter yields

µ(lS,S(A ∧O(p)×O(q) x ∧ y)) = µ(conjp,q(A)(y ∧ x))

= A(x ∧ y)

= µ(A ∧O(p)×O(q) x ∧ y).
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Chapter 5

E-theory orthogonal
quasi-spectra

This chapter brings together ideas from the previous chapter, since we will
define the notion of an orthogonal quasi-spectrum which is a quasi-orthogonal
sequence with added structure. We will show that we have an orthogonal quasi-
spectrum representing the graded E-theory groups and thereafter show we have
a smash product.

5.1 Quasi-Spectra

We begin by defining concepts we have seen before in terms of quasi-topological
spaces.

A quasi-spectrum is a sequence of based quasi-topological spaces X0, X1, . . .
with structure maps ε : Xm → ΩXm+1 that are quasi-continuous. An Ω-quasi-
spectrum is a quasi-spectrum where for all natural numbers m the structure
maps ε : Xm → ΩXm+1 are weak equivalences. Then we can define an orthogo-
nal quasi-spectrum:

Definition 5.1.1. An orthogonal quasi-spectrum is

� a sequence of based quasi-topological spaces X0, X1, . . .

� a basepoint preserving quasi-continuous left action of O(m) on each Xm

for all m, and

96



� a collection of based structure maps σ = σm : Xm ∧ S1 → Xm+1 that are
quasi-continuous,

such that for each m,n ≥ 0, the iterated map

σnm : Xm ∧ Sn → Xm+1 ∧ Sn−1 → . . .→ Xm+n,

is quasi-continuous and O(m)×O(n)-equivariant.

In the same manner, we have that a morphism of orthogonal quasi-spectrum
f : X → Y is a collection of quasi-O(m)-equivariant maps fm : Xm → Ym for all
m, which satisfy the following commutative diagram:

Xm ∧ S1

σm

��

f∧idS1 // Ym ∧ S1

σm

��
Xm+1

fm+1 // Ym+1,

or alternatively that the following diagram commutes:

Xm

εm

��

fm // Ym

εm

��
ΩXm+1

Ωfm+1 // ΩYm+1.

It is easily seen that any orthogonal spectrum is an orthogonal quasi-spectrum.
By Corollary 4.1.2, the structure maps in the definition of quasi-spectrum can
be defined in terms of loop spaces. Notice that an orthogonal quasi-spectrum
is a quasi-orthogonal sequence with more structure.

Proposition 5.1.2. The category of right S-modules, mod-S is naturally equiv-
alent to the category of orthogonal quasi-spectrum.

Proof. Consider the multiplication map ν : X⊗S → S for a right S-module X.
Then by Proposition 4.3.5 we have a set of O(m)×O(n)-equivariant maps

νnm : Xm ∧ Sn → Xm+n,

for m,n ≥ 0 with unit quasi-homeomorphism ν0
m. Now this action is associative

so it follows that the structure maps are then defined by νm.
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Conversely, consider the set of structure maps

σnp : Xp ∧ Sp → Xn+p,

for a spectrum X and p, n ≥ 0, with unit quasi-homeomorphism σ0
p. Then we

have a multiplicative map ν : X ⊗ S → X defining a right S-module. Since
these constructions are inverses, we have a natural equivalence of these two
categories.

Hence we can obtain a tensor product of orthogonal quasi-spectrum since
we have a tensor product in the category of right S-modules.

Definition 5.1.3. Let X be an orthogonal quasi-spectrum with spaces Xn. For
each integer k ∈ Z we define the k-th stable homotopy group πk(X) to be the
direct limit

πk(X) = lim−→
n

πk+nXn,

under the maps ε∗ : πk+nXn → πk+n+1Xn+1 induced from the structure maps
ε : Ωk+nXn → Ωk+n+1Xn+1.

5.2 Graded E-theory Spectra

Let Asyg(A,B) denote the set of graded asymptotic morphisms from A to B
with the quasi-topology as defined in Definition 4.1.3.

Proposition 5.2.1. The map of quasi-topological spaces

f : Asyg(A,B)→ Asyg(D⊗̂A,D⊗̂B)

defined by

f(xt) = idD⊗̂xt,

is quasi-continuous for all xt ∈ Asyg(A,B).

Proof. Since gradings follow immediately, we consider ungraded asymptotic
morphisms throughout the proof. To prove a map of quasi-topological spaces
is quasi-continuous, wwe need to check that for a quasi-continuous map g :
Y → Asy(A,B) where Y is a compact Hausdorff space, that the composition
fg : Y → Asy(D⊗̂A,D⊗̂B) is quasi-continuous. Suppose g : Y → Asy(A,B)
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where Y is a compact Hausdorff space is quasi-continuous. Then by defini-
tion 4.1.3 we know that g is quasi-continuous when for each t ∈ [1,∞) the map
g̃t(a) : Y → B defined by

g̃t(a)(y) = g(y)t(a)

is continuous. Then we define fg : Y → Asy(D⊗̂A,D⊗̂B) by for each t ∈ [1,∞)

f(g(y)t)(a) = idD⊗̂g(y)t(a) = idD⊗̂g̃t(a)(y)

but since g is quasi-continuous and that

f(g(y)t)(a) = f̃ gt(a)(y),

it follows from the definition of quasi-topology on the set of asymptotic mor-
phisms that fg is quasi-continuous.

Definition 5.2.2. Let K = K(H). Define X(A,B) to be the sequence of based
quasi-topological spaces

Xm = Asyg(S⊗̂A⊗̂K, B⊗̂Fm,0⊗̂K)

where m ≥ 0. Define maps εm : Xm → ΩXm+1:

Asyg(S⊗̂A⊗̂K, B⊗̂Fm,0⊗̂K) // ΩAsyg(S⊗̂A⊗̂K, B⊗̂Fm+1,0⊗̂K)

∼=

Asyg(S⊗̂A⊗̂K,Σ(B⊗̂Fm+1,0)⊗̂K)

by:

ε(xt) = (b⊗̂idB⊗̂Fm,0⊗̂K) ◦ (idS⊗̂xt) ◦ (∆⊗̂idA⊗̂K),

for all xt ∈ Asyg(S⊗̂A⊗̂K, B⊗̂Fm,0⊗̂K) and the Bott map b ∈ Homg(S,ΣF1,0).
Alternatively, we also have a map σm : Xm ∧ S1 → Xm+1 defined by

σm(xt, s) = εm(xt)(s),

with xt ∈ Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H)) and s ∈ S1.

Definition 5.2.3. We define a quasi-continuous action of the group O(m) on
the space Xm as follows. First we consider the alternative definition of Fm,0 as
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Cliff(V ) which we saw in chapter 3. Recall that for V an m-dimensional Eu-
clidean vector space, Cliff(V ) = G(V )/ ∼ where G(V ) is the algebra generated
by V subject to the equivalence relation ∼ defined by

v2 = ||v||2 · 1

for all v ∈ V . We write ab for the product of two elements a, b ∈ Cliff(V ).
If V = Rm, then we have a natural group action (H, v) 7→ Hv where H ∈

O(m), v ∈ V .
Then we can define a group action of O(m) on G(V ) by

H(v1 . . . vk) 7→ H(v1) . . . H(vk) and H(1) = 1

for all H ∈ O(m). Then this gives a group action of O(m) on Cliff(V ) since

H(v2) = H(v)H(v) = (H(v))2

= ||H(v)||2 · 1 = ||v|| · 1 since H is orthogonal.

So then we get a group action

λ : O(m)× Fm,0 → Fm,0,

by
λ(H, (e1, e2, . . . em)) = H(e1)H(e2) . . . H(em),

where H ∈ O(m), e1, e2, . . . em are the generators of the algebra Fm,0. Then we
define

λ∗ : O(m)×B⊗̂Fm,0⊗̂K(H)→ B⊗̂Fm,0⊗̂K(H)

by
λ∗(H, b⊗̂x⊗̂p) = b⊗̂λ(H, x)⊗̂p

with H ∈ O(m), b ∈ B, x ∈ Fm,0 and p ∈ K(H). Then we finally define a group
action of O(m) on Xm

λ∗∗ : O(m)× Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H))

−→ Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H)),

by
λ∗∗(H,αt)(x) = λ∗(H,αt(x)),

where we have αt ∈ Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H)), x ∈ S⊗̂A⊗̂K(H) and
H ∈ O(m). Then it follows that this action is O(m)-equivariant.
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The following is true by Proposition 5.2.1.

Proposition 5.2.4. The action in the previous definition is a basepoint pre-
serving quasi-continuous action of O(m) on Xm.

Proposition 5.2.5. The map εm : Xm → ΩXm+1 is quasi-continuous and hence
the map σm : Xm ∧ S1 → Xm+1 is quasi-continuous.

Proof. Since both

b⊗̂idB⊗̂Fm,0⊗̂K(H) and ∆⊗̂idA⊗̂K(H)

are ∗-homomorphisms, these two maps are continuous. So it suffices to check
the map (idS⊗̂xt) is quasi-continuous since the a composition of continuous and
quasi-continuous maps yields a quasi-continuous map. By proposition 5.2.1,
with D = S it follows that the map (idS⊗̂xt) is quasi-continuous. Hence the
map εm is quasi-continuous. Since σm is defined in terms of εm it is also quasi-
continuous.

We define the iterated map σnm : Xm ∧ Sn → Xm+n by

σnm(xt, s1, s2, . . . sn) = εn(xt)(s1)(s2) . . . (sn),

where xt ∈ Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H)) and s1, s2, . . . sn is contained in
S1 ∧ S1 ∧ . . . ∧ S1.

Proposition 5.2.6. The iterated map σnm : Xm ∧ Sn → Xm+n defined above
quasi-continuous and O(m)×O(n)-equivariant.

Proof. By other results it suffices to check that the map is O(m) × O(n)-
equivariant.

Firstly it is clear that Xm ∧ Sn and Xm+n are quasi O(m) × O(n)-spaces.
Let i : O(m)×O(n)→ O(m+ n) be the inclusion map.

Now O(m+ n) acts on Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm+n,0⊗̂K(H)) by

J(xt) = (idB⊗̂J⊗̂idK(H)) ◦ xt

for all J ∈ O(m+n) and xt : S⊗̂A⊗̂K(H)→ B⊗̂Fm+n,0⊗̂K(H). Here J acts of
Fm+n,0 as defined earlier.
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Then O(m)×O(n) acts on Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H)) ∧ Sn by,

(H,K)(xt, s) = ((idB⊗̂H⊗̂idK(H)) ◦ xt, Ks),

for all H ∈ O(m), K ∈ O(n), xt ∈ Asyg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H)) and
s ∈ Sn. Then we need to show that for σ = σnm : Xm ∧ Sn → Xm+n, that

σ((H,K)(xt, s)) = i(H,K)σ(xt, s),

that is,

σ((Hxt, Ks) = i(H,K)σ(xt, s).

That is to show, by definition of σ that,

ε(Hxt)(Ks) = i(H,K)ε(xt)(s).

Let bn = b⊗̂ . . . ⊗̂b be the n-fold graded tensor product of the Bott map,
b : S → ΣF1,0. Then

bn = b⊗̂ . . . ⊗̂b : Sn → Σn⊗̂Fn,0,

we have b⊗̂ . . . ⊗̂b(λ)(s) ∈ Fn,0 for λ ∈ Sn and s ∈ Sn. Then for K ∈ O(n),

(b⊗̂ . . . ⊗̂b)(λ)(Ks) = K(b⊗̂ . . . ⊗̂b)(λ)(s).

Then by permuting copies of Σ and extending by linearity we have an action
of the orthogonal group.

Reconsidering

ε(Hxt)(Ks) = i(H,K)ε(xt)(s),

the left hand side yields

ε(Hxt)(Ks) = ((bn⊗̂idB⊗̂Fm,0⊗̂K(H)) ◦ (idS⊗̂Hxt) ◦ (∆⊗̂idA⊗̂K(H))(Ks)),

and the right hand side yields

i(H,K)ε(xt)(s) = i(H,K)(b⊗̂idB⊗̂Fm,0⊗̂K(H)) ◦ (idS⊗̂xt) ◦ (∆⊗̂idA⊗̂K(H)).

Then
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ε(Hxt)(Ks)

= ((bn⊗̂idB⊗̂Fm,0⊗̂K(H)) ◦ (idS⊗̂Hxt) ◦ (∆⊗̂idA⊗̂K(H)))(Ks)

= i(H, 1)((bn⊗̂idB⊗̂Fm,0⊗̂K(H)) ◦ (idS⊗̂xt) ◦ (∆⊗̂idA⊗̂K(H))(Ks))

= i(H, 1)i(1, K)(bn⊗̂idB⊗̂Fm,0⊗̂K(H)) ◦ (idS⊗̂xt) ◦ (∆⊗̂idA⊗̂K(H))(s)

= i(H,K)(bn⊗̂idB⊗̂Fm,0⊗̂K(H)) ◦ (idS⊗̂xt) ◦ (∆⊗̂idA⊗̂K(H))(s)

= i(H,K)ε(xt)(s)

Then the result follows.

The proof of the following result follows from the above propositions, namely
Proposition 5.2.4, Proposition 5.2.5 and Proposition 5.2.6.

Proposition 5.2.7. The spectrum X(A,B) is an orthogonal quasi-spectrum.

Proposition 5.2.8. If G0, G1, G2, . . . is a sequence of groups with isomorphisms
θn : Gn → Gn+1 for n ≥ 0, then

lim−→
n

Gn = G0.

Proof. We first need to construct a commutative diagram.

Gn

θn

��

δ

""
G0

Gn+1

ψ

<<

.

As θn is an isomorphism for all n ≥ 0, we have inverses, so δ = (θ0)−1 . . . (θn−1)−1

and ψ = (θ0)−1 . . . (θn−1)−1(θn)−1 and hence the diagram commutes. Now we
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check that G0 is unique. Suppose we have a group H such that we have a group
homomorphism f : G0 → H which fits into the following diagram

Gn

θn

��

δ ##

µ1

$$
G0 f // H

Gn+1

ψ
;;

µ2

::

.

Then define f = µ1δ
−1 so our diagram commutes. Suppose that we have an-

other group homomorphism g : G0 → H fitting into the diagram. Then by
commutativity we have gδ = µ1, so g = µ1δ

−1 = f so f is unique.

Proposition 5.2.9. The direct limit lim−→n
Eg(A,Σ

k+nB⊗̂Fn,0) is Eg(A,Σ
kB).

Proof. This result follows from Proposition 5.2.8 where

Gn = Eg(A,Σ
k+nB⊗̂Fn,0)

and using Proposition 2.2.18.

Proposition 5.2.10. For all positive integers k,

πkX(A,B) = Eg(A,Σ
kB).

Proof. Since X is an orthogonal quasi-spectrum we have that

πkX(A,B) = lim−→
n

πk+nEn.

Then

lim−→
n

πk+nXn = lim−→
n

π0Ωk+nAsyg(S⊗̂A⊗̂K(H), B⊗̂Fn,0⊗̂K(H))

= lim−→
n

π0Asyg(S⊗̂A⊗̂K(H),Σk+nB⊗̂Fn,0⊗̂K(H))

= lim−→
n

JS⊗̂A⊗̂K(H),Σk+nB⊗̂Fn,0⊗̂K(H)Kg

= lim−→
n

Eg(A,Σ
k+nB⊗̂Fn,0)

= Eg(A,Σ
kB) by Proposition 5.2.9.
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Proposition 5.2.11. The orthogonal quasi-spectrum X(A,B) is an Ω-quasi-
spectrum.

Proof. We just need to check that the structure map ε : En → ΩEn+1 is a weak
equivalence. That is the map πkEn → πkΩEn+1 is an isomorphism for all k.
Now this gives us the map:

Eg(A,Σ
k(B⊗̂Fn,0))→ Eg(A,Σ

k+1(B⊗̂Fn+1,0)),

which is an isomorphism for all k by Corollary 2.2.19.

Theorem 5.2.12. Let A,B and C be graded C∗-algebras. Then there is a
natural map of orthogonal quasi-spectra

µm,n : X(A,B) ∧ X(B,C)→ X(A,C),

defined by

(α ∧ β)t 7→ (βr(t)⊗̂idFm,0) ◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K),

where α ∈ Asyg(S⊗̂A⊗̂K, B⊗̂Fm,0⊗̂K) and β ∈ Asyg(S⊗̂B⊗̂K, C⊗̂Fn,0⊗̂K).
In addition the product is associative up to homotopy.

Proof. The product gives a natural O(m)×O(n)-equivariant map:

Asyg(S⊗̂A⊗̂K, B⊗̂Fm,0⊗̂K) ∧ Asyg(S⊗̂B⊗̂K, C⊗̂Fn,0⊗̂K)

−→ Asyg(S⊗̂A⊗̂K, C⊗̂Fm+n,0⊗̂K),

given by permuting the m, n and m+ n copies of F1,0.

Now compatibility with the structure maps follows from the naturality of
the structure maps and also since we have the following two diagrams:

Xm(A,B) ∧ Xn(B,C)

ε∧id

��

µm,n // Xm+n(A,C)

ε

��
ΩXm+1(A,B) ∧ Xn(B,C)

µm+1,n // ΩXm+n+1(A,C),
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and

Xm(A,B) ∧ Xn(B,C)

id∧ε

��

µm,n // Xm+n(A,C)

ε

��
Xm(A,B) ∧ ΩXn+1(B,C)

µm,n+1 // ΩXm+n+1(A,C),

where id denote the obvious identities, and the ε’s denote the required structure
maps. These diagrams commute since,

µm+1,n(ε ∧ id)(α ∧ β)t = µm+1,n(ε(α) ∧ β)t

= (βr(t)⊗̂idΣFm+1,0) ◦ (idS⊗̂ε(αt)) ◦ (∆⊗̂idA⊗̂K)

= (βr(t)⊗̂idΣFm+1,0) ◦ (idS⊗̂[
(b⊗̂idB⊗̂Fm,0⊗̂K) ◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K)

]
) ◦ (∆⊗̂idA⊗̂K)

= (idΣF1,0⊗̂βr(t)⊗̂idFm,0) ◦ (b⊗̂idS⊗̂B⊗̂Fm,0⊗̂K) ◦ (idS⊗̂S⊗̂αt)
◦ (∆⊗̂idS⊗̂A⊗̂K) ◦ (∆⊗̂idA⊗̂K) by tensor products,

= (b⊗̂idC⊗̂Fm+n,0⊗̂K) ◦ (idS⊗̂βr(t)⊗̂idFm,0) ◦ (idS⊗̂S⊗̂αt)
◦ (∆⊗̂idS⊗̂A⊗̂K) ◦ (∆⊗̂idA⊗̂K) by Lemma 2.2.5,

= (b⊗̂idC⊗̂Fm+n,0⊗̂K) ◦ (idS⊗̂[
(βr(t)⊗̂idFm,0) ◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K)

]
) ◦ (∆⊗̂idA⊗̂K)

= ε((βr(t)⊗̂idFm,0) ◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K))

= ε(µm,n)(α ∧ β)t,
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and

µm,n+1(id ∧g ε)(α ∧g β)t = µm,n+1(α ∧ ε(β))t

= (ε(β)r(t)⊗̂idFm,0) ◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K)

=
[
(b⊗̂idC⊗̂Fn,0⊗̂K) ◦ (idS⊗̂βr(t) ◦ (∆⊗̂idB⊗̂K)

]
⊗̂idFm,0)

◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K)

= (b⊗̂idC⊗̂Fm+n,0⊗̂K) ◦ (idS⊗̂βr(t)⊗̂idFm,0) ◦ (∆⊗̂idB⊗̂Fm,0⊗̂K)

◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K)

= (b⊗̂idC⊗̂Fm+n,0⊗̂K) ◦ (idS⊗̂βr(t)⊗̂idFm,0) ◦ (idS⊗̂S⊗̂αt)
◦ (∆⊗̂idS⊗̂A⊗̂K) ◦ (∆⊗̂idA⊗̂K) by Lemma 2.2.5,

= (b⊗̂idC⊗̂Fm+n,0⊗̂K) ◦ (idS⊗̂[
(βr(t)⊗̂idFm,0) ◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K)

]
) ◦ (∆⊗̂idA⊗̂K)

= ε((βr(t)⊗̂idFm,0) ◦ (idS⊗̂αt) ◦ (∆⊗̂idA⊗̂K))

= ε(µm,n)(α ∧ β)t,

for all α ∧ β ∈ Em(A,B) ∧ En(B,C).
Now we check that our product is associative up to homotopy.
Let α ∈ Asyg(S⊗̂A⊗̂K, B⊗̂Fm,0⊗̂K) and β ∈ Asyg(S⊗̂B⊗̂K, C⊗̂Fn,0⊗̂K)

and γ ∈ Asyg(S⊗̂C⊗̂K, D⊗̂Fp,0⊗̂K). Then take the homotopy classes of these
elements and we obtain E-theory groups, and we know that the E-theory prod-
uct is associative.
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Chapter 6

Connecting graded K and
E-theory spectra

This chapter connects together graded K-theory and E-theory spectra. In par-
ticular we form a smash product in terms of these two spectra and consequently
combine K-theory and K-homology in to a smash product.

6.1 A topology on graded ∗-homomorphisms

Let Homg(A,B) denote the set of graded ∗-homomorphisms from A to B. We
equip Homg(A,B) with the compact open topology as detailed below.

Definition 6.1.1. A basis for a topology on a set A is a collection of subsets
A of A such that A is a union of sets from A and such that if A1, A2 are in A
then their intersection is a union of sets from A.

A subbasis is a collection of subsets B of A where the set A of all finite
intersections of sets in B is a basis.

Definition 6.1.2. Let A and B be graded C∗-algebras. The compact open
topology on the set of graded ∗-homomorphisms from A to B, Homg(A,B), is
generated by subsets of the following form,

B(K,U) = {f ∈ Homg(A,B) | f(K) ⊂ U},

where K is compact in A and U is open in B. Here generated means that the
sets defined form a subbasis for the open sets when we think of a topology. This
then generates a basis for the topology.
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For simplicity of notation let Homg(A,B) denote the space of graded ∗-
homomorphisms from A to B equipped with the compact open topology. Denote
the loop space of this space by ΩHomg(A,B). Note that the basepoints for both
of these spaces is just the zero ∗-homomorphism, which will we denote by 0.

The compact open topology is the choice for our topology since it gives us
the correct path components for our loop space and it also allows us to have
continuity of particular maps as we will see soon.

Now let us consider the generators of the compact open topology on the
spaces ΩHomg(A,B) and Homg(A,ΣB). Now we have a basis for Homg(A,B),
so we just extend this for ΩHomg(A,B), and it is not to hard to see that a
basis for the loop space is the set generated by B(K ′, V ) such that K ′ ⊆ [0, 1]
compact and V ⊆ Homg(A,B) open.

Combining these, we obtain the following definition.

Definition 6.1.3. The compact open topology on ΩHomg(A,B) is generated by
sets of the form B(K ′, B(K,U)), where K ⊆ A compact, K ′ ⊆ [0, 1] compact
and U ⊆ B open. The compact open topology on Homg(A,ΣB) is generated by
sets of the form B(K,B(K ′, U)) where K ⊆ A compact, K ′ ⊆ [0, 1] compact
and U ⊆ B open.

Before we check we have the continuity of maps in the following proof, it
is worth noting that it is sufficient to check that a map is continuous under
a topology by considering a subbasis. That is, to check a map of topological
spaces is continuous we just need to check that continuity holds at the level of
generating sets for a basis of a topology. For details, see [Sut75], Application
3.2.5.

Proposition 6.1.4. The spaces ΩHomg(A,B) and Homg(A,ΣB) are homeo-
morphic.

Proof. We consider ungraded ∗-homomorphisms since the grading property is
immediate. Define f : ΩHom(A,B) → Hom(A,ΣB) as follows. Let µ ∈
ΩHom(A,B) based at 0, then define

f(µ)(a)(s) = µ(s)(a),

for all a ∈ A and s ∈ [0, 1].
Now define g : Hom(A,ΣB)→ ΩHom(A,B) as follows. Let τ ∈ Hom(A,ΣB),

define
g(τ)(s)(a) = τ(a)(s).

109



Both f and g are well defined since µ and τ are ∗-homomorphisms.
We need to show that f ◦ g = id, and g ◦ f = id where id stands for the

natural identities.
Let ϕ ∈ Hom(A,ΣB), then for all a ∈ A, s ∈ [0, 1].

fg(ϕ)(a)(s) = g(ϕ)(s)(a) = ϕ(a)(s).

Similarly, let ψ ∈ ΩHom(A,B), then for all a ∈ A, s ∈ [0, 1],

gf(ψ)(s)(a) = f(ψ)(a)(s) = ψ(s)(a).

Then f ◦ g = id and g ◦ f = id as required.
Now we check that f and g are continuous. By the above discussion, it

suffices to check that:

f−1[B(K ′, B(K,U))] = B(K,B(K ′, U))

and
g−1[B(K,B(K ′, U))] = B(K ′, B(K,U)),

for all K ⊆ A compact, K ′ ⊆ [0, 1] compact and U ⊆ B open.
Let y ∈ B(K,B(K ′, U)), then f−1(y) = {x | f(x) = y}. Now let x ∈ f−1(y),

then we know
f(x)(s)(a) = x(a)(s) = y(s)(a),

so x must be contained in B(K ′, B(K,U)), and similarly we can check the
converse, so f is continuous.

Similarly we can prove that g is continuous.

6.2 K-theory spectra

Now we can define the K-theory spectrum.

Definition 6.2.1. Let K = K(H). Define K(A) to be the sequence of based
topological spaces

Kn = Homg(S⊗̂F⊗̂K, A⊗̂Fn,0⊗̂K)

where m ≥ 0. Define maps εn : Kn → ΩKn+1:

Homg(S⊗̂F⊗̂K, A⊗̂Fn,0⊗̂K) // ΩHomg(S⊗̂F⊗̂K, A⊗̂Fn+1,0⊗̂K)

∼=

Homg(S⊗̂A⊗̂K,Σ(A⊗̂Fn+1,0)⊗̂K)
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by:
ε(xt) = (b⊗̂idA⊗̂Fn,0⊗̂K) ◦ (idS⊗̂xt) ◦ (∆⊗̂idF⊗̂K),

for all xt ∈ Asyg(S⊗̂A⊗̂K, B⊗̂Fn,0⊗̂K) and the Bott map b ∈ Homg(S,ΣF1,0).

We now give an alternative definition for the spectrum of graded K-theory
in terms of asymptotic morphisms.

Definition 6.2.2. Let K = K(H). Define K′(A) to be the orthogonal quasi-
spectrum with the sequence of based quasi-topological spaces

K ′n = Asyg(S⊗̂F⊗̂K, A⊗̂Fn,0⊗̂K)

where n ≥ 0. The structure maps ε : K ′n → ΩK ′n+1:

Asyg(S⊗̂F⊗̂K, A⊗̂Fn,0⊗̂K) // ΩAsyg(S⊗̂F⊗̂K, A⊗̂Fn+1,0⊗̂K)

∼=

Asyg(S⊗̂F⊗̂K,Σ(A⊗̂Fn+1,0)⊗̂K)

are defined by:

ε(xt) = (b⊗̂idA⊗̂Fn,0⊗̂K) ◦ (idS⊗̂xt) ◦ (∆⊗̂idF⊗̂K),

for all xt ∈ Asyg(S⊗̂A⊗̂K, B⊗̂Fn,0⊗̂K) and the Bott map β ∈ Homg(S,ΣF1,0).

We now notice that Definition 6.2.1 and Definition 6.2.2 are orthogonal and
orthogonal quasi-spectra for the same reason that 5.2.2 forms one and conse-
quently the following result comes from the stable homotopy groups coming
from these spectra.

Proposition 6.2.3. The map of spectrum f : K(A)→ K′(A), defined by f(ϕ) =
ϕ for all ϕ ∈ K(A) is a weak equivalence.

Proof. Consider the map f ′ : Homg(S, A) → Asyg(S, A) then this induces the
map f ′∗ : [S, A]→ JS, AK. Now the map,

Homg(S, A⊗̂Fn+1,0)→ Asyg(S, A⊗̂Fn+1,0),

induces an isomorphism at the level of π0, and therefore the map

Homg(S, A⊗̂F1,0)→ Asyg(S, A⊗̂F1,0),
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induces an isomorphism at the level of πn. Therefore we have a weak equiv-
alence. Then we can also consider the map f above and the same applies,
since we obtain this map by tensoring with the suspension and the complex
numbers.

Corollary 6.2.4. The map of spectrum f : K(A)→ K′(A) has a natural inverse
g : K′ → K at the level of stable homotopy groups.

Theorem 6.2.5. Let A and B be C∗-algebras. Then there is a natural map of
orthogonal quasi-spectra

ν ′m,n : K(A) ∧ E(A,B)→ K′(B),

defined by

(α ∧ βt)t 7→ (βt⊗̂idFm,0) ◦ (idS⊗̂α) ◦ (∆⊗̂idF⊗̂K(H)),

where α is contained in Homg(S⊗̂A⊗̂K(H), B⊗̂Fm,0⊗̂K(H)) and β is contained
in Asyg(S⊗̂B⊗̂K(H), C⊗̂Fn,0⊗̂K(H)).

Proof. Since the composition of a ∗-homomorphism and an asymptotic mor-
phism is an asymptotic morphism it is clear that α ∧ β is an asymptotic mor-
phism and lies in the required spectra.

By the above theorem and Corollary 6.2.4, we obtain

Corollary 6.2.6. There is a natural map of spectra

νm,n : K(A) ∧ E(A,B)→ K(B),

with the above criteria.

Now we finalise this section by combining the graded K-theory spectrum
and K-homology spectrum noting that Khom(A) = E(A,F).

Theorem 6.2.7. There is a canonical map

S : K(A⊗̂B) ∧Khom(A)→ K′(B)
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of orthogonal quasi-spectra. The map S is natural in the variable B in the
obvious sense and natural in the variable A, in the sense that if we have a
∗-homomorphism f : A→ A′ then we have the following commutative diagram

K(A⊗̂B) ∧Khom(A) S // K′(B)

K(A⊗̂B) ∧Khom(A′)

id∧f∗
OO

f∗∧id
��

K′(B)

K(A′⊗̂B) ∧Khom(A′) S // K′(B)

where f∗ and f ∗ are defined by:

f∗(α)(λ) = (f⊗̂idB⊗̂Fm,0⊗̂K(H))(α(λ)),

and

f ∗(βt)(a) = βt(f⊗̂idS⊗̂K(H))(a),

with α ∈ K(A⊗̂B), β ∈ Khom(A′), a ∈ S⊗̂A⊗̂K and λ ∈ S⊗̂F⊗̂K.

Proof. Writing Khom(A) = E(A,F), we can extend the definition of S to a
composition of maps, in order to obtain the following diagram:

K(A⊗̂B) ∧ E(A,F)
id∧⊗̂B // K(A⊗̂B) ∧ E(A⊗̂B,B)

ν′m,n // K′(B)

K(A⊗̂B) ∧ E(A′,F)

id∧f∗
OO

f∗∧id
��

K′(B)

K(A′⊗̂B) ∧ E(A′,F)
id∧⊗̂B // K(A′⊗̂B) ∧ E(A′ ⊗B,B)

ν′m,n // K′(B)

K(A⊗̂B) ∧ E(A⊗̂B,B)→ K′(B).

Then we have
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ν ′m,n(id ∧ ⊗̂B)(id ∧ f ∗)(α ∧ βt)
= ν ′m,n(id ∧ ⊗̂B)(α ∧ f ∗(βt))
= ν ′m,n(α ∧ f ∗(βt)⊗̂idB)

= (f ∗(βt)⊗̂idB⊗̂Fm,0
) ◦ (idS⊗̂α) ◦ (∆⊗̂idF⊗̂K(H))

= ([βt ◦ (f⊗̂idS⊗̂K(H))]⊗̂idB⊗̂Fm,0
) ◦ (idS⊗̂α) ◦ (∆⊗̂idF⊗̂K(H))

= (βt⊗̂idB⊗̂Fm,0
) ◦ (f⊗̂idS⊗̂B⊗̂Fm,0⊗̂K(H)) ◦ (idS⊗̂α) ◦ (∆⊗̂idF⊗̂K(H))

= (βt⊗̂idB⊗̂Fm,0
) ◦ (idS⊗̂[(f⊗̂idB⊗̂Fm,0⊗̂K(H)) ◦ α] ◦ (∆⊗̂idF⊗̂K(H))

= (βt⊗̂idB⊗̂Fm,0
) ◦ (idS⊗̂f∗(α)) ◦ (∆⊗̂idF⊗̂K(H))

= v′m,n(f∗(α) ∧ (βt⊗̂idB))

= v′m,n(id ∧ ⊗̂B)(f∗(α) ∧ βt)
= v′m,n(id ∧ ⊗̂B)(f∗ ∧ id)(α ∧ βt).

Corollary 6.2.8. There is a canonical map

S : K(A⊗B) ∧Khom(A)→ K(B)

of orthogonal quasi-spectra. The map S is natural in the variable B in the
obvious sense and natural in the variable A, in the sense that if we have a
∗-homomorphism f : A→ A′ then we have the following commutative diagram

K(A⊗B) ∧Khom(A) S // K(B)

K(A⊗B) ∧Khom(A′)

id∧f∗
OO

f∗∧id
��

K(B)

K(A′ ⊗B) ∧Khom(A′) S // K(B).
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Appendix A

Functional Calculus

Much of this appendix is taken from Section 1.5 of [Dix96] and Section 2.2
of [Mit00].

Functional Calculus is a necessity for us to define certain functions we use
throughout the Bott periodicity proof.

In this appendix we give an overview of functional calculus for complex,
bounded, unbounded, real and graded operators.

A.0.1 Complex bounded

Let A be a unital complex C∗-algebra and x ∈ A be normal, that is x∗x = xx∗.
Then we can think of the spectrum of the element x, σ(x).

Theorem A.0.9. There exists a unique ∗-homomorphism

C(σ(x))→ A,

written f 7→ f(x) such that

σ(f(x)) = f(σ(x)),

and

f(g(x)) = (f ◦ g)(x),

if g ∈ C(σ(x)) and f ∈ C(σ(g(x))).

116



A.0.2 Unbounded

Let H be a complex Hilbert space and V ⊆ H. Then consider the possibly
unbounded operator T : V → H.

Theorem A.0.10. There exists a unique map

C(σ(T ))→ {Unbounded operators on H},

written f 7→ f(T ) such that the map is linear, multiplicative, ∗-preserving,
satisfies

f(σ(T )) = σ(f(T )),

and f(g(x)) = (f ◦ g)(x) if g ∈ C(σ(x)) and f ∈ C(σ(g(x))).
Additionally if f ∈ C(σ(T )) is bounded, then f(T ) is bounded and

||f(T )|| = sup{|λ| | λ ∈ σ(T )}.

A.0.3 Real

Let C(X) denote the set of continuous complex-valued functions. For the real
case we require a new set of functions defined by

CR(X) := {f ∈ C(X) | f(x) = f(x)}.

Call f ∈ CR(X) a Real1 function.

Theorem A.0.11. Let A be a real unital C∗-algebra and let x ∈ A be normal.
There exists a unique ∗-homomorphism

CR(σ(x))→ A,

written f 7→ f(x) such that

f(σ(T )) = σ(f(T )),

and f(g(x)) = (f ◦ g)(x) if g ∈ CR(σ(x)) and f ∈ CR(σ(g(x))).

1The capitalisation of R here is intentional.
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A.0.4 Graded

Let A be a unital graded complex C∗-algebra and x ∈ A be normal, that is
x∗x = xx∗. Then we have the following theorem.

Theorem A.0.12. There exists a unique ∗-homomorphism

C(σ(x))→ A,

written f 7→ f(x) such that

1. σ(f(x)) = f(σ(x)),

2. f(g(x)) = (f ◦ g)(x), if g ∈ C(σ(x)) and f ∈ C(σ(g(x))),

3. if x is odd then the ∗-homomorphism is graded,

4. if x is even, then for all f ∈ C(σ(x)), f(x) is even.
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Appendix B

K-theory

Much of this appendix is taken from [Bla98], [RLL00] and [WO93]. In this Ap-
pendix we look at the notion of analytic K-theory, which is a sequence of covari-
ant functors, K0, K1, . . . Kn, from the category where objects are C∗-algebras
and arrows are ∗-homomorphisms to the category where objects are abelian
groups and arrows are group homomorphisms. We will see via Bott periodic-
ity that we only need to define K0 and K1, which we define in the first few
subsections. We will see how we can use Bott periodicity to get the other K-
theory groups and then see a relation between our two functors via the index
map. Then we also use the relation of E-theory and K-theory to view K-theory
differently.

Definition B.0.13. A semigroup is a set A with a binary operation ◦ such that

a ◦ (b ◦ c) = (a ◦ b) ◦ c,

for all a, b, c ∈ A. In particular, a semigroup is abelian if ab = ba, for all a, b ∈ A.

We now give a description of the construction of the Grothendieck group.
We will need this later as the K0 group is defined using this group. Let (A,+) be
an abelian semigroup. Let ∼ denote the equivalence relation on A×A defined
by (a1, b1) ∼ (a2, b2) if there exists z ∈ A such that a1 + b2 + z = a2 + b1 + z.
Then the Grothendieck group G(A) is defined by the quotient A× A/ ∼, with
operation:

〈a1, b1〉+ 〈a2, b2〉 = 〈a1 + b1, a2 + b2〉,

where 〈a, b〉 denotes the equivalence class containing 〈a, b〉 in G(S). Define the
Grothendieck map for y ∈ S by, γs : S → G(S), x 7→ 〈x+ y, y〉.
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Definition B.0.14. Let A be a complex C∗-algebra. A projection, p ∈ A, is a
self-adjoint idempotent, that is to say p = p∗ = p2. Two projections are called
orthogonal when pq = 0.

We now talk about the equivalence of projections.

Definition B.0.15. Let p, q be projections in a C∗-algebra A. Then

� p is equivalent to q, written p ∼ q, if p = v∗v and q = vv∗ for some partial
isometry v ∈ A,

� p is unitarily equivalent to q, written p ∼u q, if p = u∗qu with u ∈ Ã being
unitary,

� p is homotopic to q, written p ∼h q, if p and q are connected by a norm
continuous path of projections in A.

Definition B.0.16. Define the semigroup P∞(A), by

P∞(A) =
∞⋃
n=1

Pn(A),

where
Pn(A) = P (Mn(A)).

Define a relation ∼0 on P∞(A) for projections p ∈ Pn(A) and q ∈ Pm(A) by,
p ∼0 q if there is an element v ∈ Mm,n(A) with p = v∗v and q = vv∗ . The
binary operation ⊕ on P∞(A) is defined by,

p⊕ q = diag(p, q) =

(
p 0
0 q

)
,

where p ∈ Pn(A), q ∈ Pm(A).

Definition B.0.17. Define the semigroup D(A) of a C∗-algebra A by,

D(A) = P∞(A)/ ∼0 .

Then for each p ∈ P∞(A) let [p]D ∈ P (A) denote the equivalence class contain-
ing p. Then addition in P (A) is defined by,

[p]D + [q]D = [p⊕ q]D.
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Note that (P (A),+) is an abelian semigroup.
We firstly have to define the functor K0 for unital C∗-algebras and then

extend it to the whole category of C∗-algebras.

Definition B.0.18. Let A be a unital C∗-algebra, and let (D(A),+) be the
semigroup defined in Definition B.0.17. Define K0(A) to be the Grothendieck
group of D(A). That is, K0 = G(D(A)). Define [.]0 : D∞(A)→ K0(A) by

[p]0 = γ([p]D) ∈ K0(A), p ∈ P∞(A),

where γ : D(A)→ K0(A) is the Grothendieck map.

For a proof of the next result see [RLL00].

Proposition B.0.19. Let A be a unital C∗-algebra. Then

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(A)}
= {[p]0 − [q]0 : p, q ∈ Pn(A), n ∈ N}.

Moreover,

� [p+ q]0 = [p]0 + [q]0 for all projections p, q ∈ P∞(A),

� [0A]0 = 0, where 0A is the zero projection in A,

� if p, q ∈ Pn(A) for some n and p ∼h q ∈ Pn(A), then [p]0 = [q]0,

� if p, q are mutually orthogonal projections in Pn(A), then

[p+ q]0 = [p]0 + [q]0,

� for all p, q ∈ P∞(A), [p]0 = [q]0 if and only if p ∼s q.

Before we move on to generalise our definition of K0 to all C∗-algebras,
we state a univeral property of K0. For a proof of the following result see
Proposition 3.1.8 in [RLL00].

Proposition B.0.20. Suppose A is a unital C∗-algebra, G an abelian group,
and that ν : P∞(A)→ G is a map satisfying:

� ν(p⊕ q) = ν(p) + ν(q) for all projections p, q ∈ P∞(A),
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� ν(0A) = 0,

� if p, q ∈ Pn(A) for some n and p ∼h q ∈ Pn(A), then ν(p) = ν(q).

Then there is a unique group homomorphism α : K0(A) → G such that the
following diagram commutes:

P∞(A)

ν
%%

[.]0 // K0(A)

α

��
G

Now we extend our functor K0 to the whole of the category of C∗-algebras
and state the properties that this functor has.

Definition B.0.21. Let A be a C∗-algebra, not necessarily unital, and consider
the associated split exact sequence

0 // A
l //

∼
A

π //
C

λ
oo // 0,

obtained by adjoining a unit to A. Define K0(A) to be the kernel of the homo-

mophism K0(π) : K0(
∼
A)→ K0(C).

Proposition B.0.22. K0 is a functor from the category where objects are C∗-
algebras and arrows are ∗-homomorphisms to the category where objects are
abelian groups and arrows are group homomorphisms.

Proposition B.0.23. Let A and B be C∗-algebras, and suppose that ϕ, ψ : A→
B are homotopic ∗-homomorphisms, then K0(ϕ) = K0(ψ).

Now we talk about the standard picture of K0(A) in terms of the scalar
mapping. The Scalar mapping, s, is defined as the composition map of λ and
π in the following split exact sequence:

0 // A
l //

∼
A

π //
C

λ
oo // 0,

obtained by adjoining a unit to A. That is s = λ ◦ π :
∼
A→

∼
A.
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Proposition B.0.24. For a C∗-algebra A,

K0(A) = {[p]0 − [s(p)]0 : p ∈ P∞(
∼
A)}.

Proposition B.0.25. For every short exact sequence of C∗-algebras:

0→ A
α−→ B

β−→ C → 0,

induces an exact sequence

K0(A)
K0(α)−−−→ K0(B)

K0(β)−−−→ K0(C).

Proposition B.0.26. Every split exact sequence of C∗-algebras:

0 // A
α // B

β //
C

γ
oo // 0,

induces a split exact sequence of abelian groups

0 // K0(A)
K0(α) // K0(B)

K0(β) //
K0(C)

K0(γ)
oo // 0.

Proposition B.0.27. For every pair of C∗-algebras A and B, we have

K0(A⊕B) ∼= K0(A)⊕K0(B).

Some examples:

� K0(C) = Z

� K0(B(H)) = {0}, where B(H) is the set of bounded linear operators on
a Hilbert space H.
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The functor K1 also goes from the category where objects are C∗-algebras
and arrows are ∗-homomorphisms to the category where objects are abelian
groups and arrows are group homomorphisms just like K0 but instead of being
defined in terms of projections it is instead defined using unitaries.

Definition B.0.28. Let A be a unital C∗-algebra, and let U(A) denote its
group of unitary elements. Set

Un(A) = U(Mn(A)), U∞(A) =
∞⋃
n=1

Un(A).

Define the binary operation ⊕ on U∞(A) by,

u⊕ v = diag(u, v) =

(
u 0
0 v

)
,

where u ∈ Un(A), v ∈ Um(A).

Definition B.0.29. For each C∗-algebra A define

K1(A) = U∞(
∼
A)/ ∼1,

where u ∼1 v for all u ∈ Un(A) and v ∈ Um(A), if there exists a natural number
k ≥ max{m,n} such that u⊕ 1k−n ∼h v ⊕ 1k−m in Uk(A).

Proposition B.0.30. Let A be a C∗-algebra. Then

K1(A) = {[u]1 : u ∈ U∞(
∼
A)}.

Note that K1 has similar properties to K0 but we will not restate them.
The K-theory groups are periodic with period 2.

Theorem B.0.31. The Bott map βA : K0(A) → K1(ΣA) is an isomorphism
for every C∗-algebra A.

Then we can define for n ≥ 2,

Kn+1(A) := Kn(ΣA).
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Corollary B.0.32. For every complex C∗-algebra A and every integer n ≥ 0,

Kn+2(A) ∼= Kn(A),

and for every real C∗-algebra B and every integer n ≥ 0,

Kn+8(B) ∼= Kn(B),

Equivalently we can think of the K-theory groups in an alternative way by
using the relation with E-theory formulated by Guentner, Higson and Trout [GHT00].
Recall that [A,B] denotes the set of homotopy classes of (graded) ∗-homomorphisms
from A to B. Then we obtain the following definition from [HG04]:

Theorem B.0.33. For a graded C∗-algebra A,

K(A) = [S, A⊗̂K],

and when A is ungraded we have

K(A) = [ΣC,ΣA⊗K].
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