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Abstract 

Breast cancer is the second most common cancer worldwide and the fifth biggest 

cause of cancer-related deaths. Breast cancer subtype has a huge influence on 

tumour behaviour and prognosis. The basal-like subtype, which is typically – but not 

always – triple negative for receptor expression status limiting treatment options, 

represents one of the main subtypes with relatively poor prognosis. Breast cancer is 

a disease that comprises not only transformed luminal epithelial cells but also 

modified stroma, as a consequence of interactions between the cancer cells and the 

stroma. One of the most numerous cellular components of cancer stroma are 

fibroblasts. MicroRNA (miRNA) are short, single-stranded RNA molecules that 

modify protein expression through regulation of mRNA translation and/or mRNA 

stability. I have explored the expression and roles of miRNAs in the stromal 

fibroblast compartment of triple negative breast cancer, in particular of miR-21. I 

have used a variety of clinical samples and cell culture models to assess the potential 

clinical relevance of these levels and their potential functional effects. 

I have found that miR-21 expression is significantly increased in stromal fibroblasts 

of triple negative breast cancer as compared to matched normal breast fibroblasts. 

However, miR-21 levels in the cancer associated fibroblasts did not significantly 

correlate with clinical outcomes. In tissue culture models, miR-21 was significantly 

up-regulated in breast fibroblasts by contact co-culture with epithelial cancer cells, 

suggesting that this interaction may be the cause of this increase in tumours. Using 

immortalised breast fibroblasts, I showed alteration of miR-21 levels did not 

significantly influence fibroblast migration or invasion. Nor did levels of miR-21 in 

these fibroblasts impact on the behaviour of breast epithelial cancer cells in a variety 

of co-culture settings. However, over-expression of miR-21 in primary breast cancer 

associated fibroblasts was associated with a small, but significant, increase in the 

migration of fibroblasts, and a small but significant decrease in the invasion of co-

cultured tumour cells. 

Overall, I conclude that miR-21 does not have a striking and consistent cancer-

related role in the fibroblast compartment of triple negative breast cancers, however 

further work is required to assess potential roles in primary settings. 
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1 Chapter 1 

Introduction 

1.1 Breast cancer 

1.1.1 Epidemiology 

Breast cancer is the most common cancer diagnosed in the UK and the second most 

common cancer worldwide, after lung cancer (ONS, 2014, WHO, 2016). It accounts 

for 31% of all cancer cases in women in the UK and 25% worldwide (CRUK, 2014, 

WCRFI, 2015). In the UK, approximately 1 in 8 women will develop breast cancer 

during their lifetimes (BCN, 2016). The incidence of female breast cancer in the UK 

has been increasing since the 1970s, from 73.8 per 100,000 in 1973 to 170.1 per 

100,000 in 2013, although the rate of increase is levelling off (CRUK, 2014). 

Breast cancer is the cause of approximately 11,000 deaths in women in the UK each 

year (11,400 in 2014) and 75 deaths in men (2014). Female breast cancer mortality 

rose in the 1970s and 1980s to a peak in 1986, with a standardised mortality rate 

(SMR, number of deaths per hundred thousand population per year) of 41.7, and has 

been declining steadily since then, to a SMR of 24 in 2012. This improvement is due 

in large part to changes in treatment, but also due to the introduction of 

mammographic breast cancer screening into the UK in 1988, which reached national 

coverage by the mid-1990s (Marmot, 2012). This decrease in SMR is reflected to 

some extent in the improvement in the lengths of time of survival after a breast 

cancer diagnosis, from 52% 5 year survival in the early 1970s to 86.6% in 2010-

2011 (CRUK, 2014).  

1.1.2 Subtypes 

Breast cancer is a heterogeneous group of diseases with wide variation in 

morphology, clinical behaviour, response to treatment and outcome. This 

heterogeneity is partly reflected in World Health Organisation (WHO) classification 

into 22 different subtypes, several of these with multiple variants (Lakhani et al., 

2012, Sinn and Kreipe, 2013). It is, however, notable that the most common 

subtype, invasive carcinoma of no special type (NST) makes up over 70% of all 



 
 

- 2 - 
 

breast cancers (Fulford et al., 2006, CRUK, 2014). The WHO classification is based 

primarily on microscopic morphological appearance. However, morphological 

characteristics alone are insufficient to sub-classify the majority NST grouping, 

which itself contains substantial heterogeneity in clinical behaviour.  

Additional classification determined by immunohistochemistry (IHC) and/or in situ 

hybridisation (ISH) is now routinely carried out in clinical practice. Tumours are 

tested for expression of oestrogen receptor (ER), progesterone receptor (PR) and 

human epidermal growth factor receptor 2 (HER2), and are defined as either 

positive (+) or negative (-) using various clinical tests and cut offs (see below). The 

four major subtypes defined by morphology and receptor status are luminal A 

(generally ER+/PR+/HER2-), luminal B (generally ER+/PR+/HER2+ or 

ER+/PR+/HER2- and high grade or large tumour size or lymph node positivity or 

high proliferative activity), HER2 type (usually ER-/PR-/HER2+) and triple 

negative/basal-like (ER-/PR-/HER2-) (Metzger-Filho et al., 2013). The basal-like 

subgroup is often referred to as triple negative because of its receptor expression, 

although as discussed in section 1.1.3 this definition is too simplistic. The 

prevalences and further clinical information for these groups are summarised in 

Table 1-1.  

With the advent of gene expression profiling and other profiling techniques, such as 

methylation profiling, there has been great advancement in attempts to classify 

breast cancer subtypes more accurately, reproducibly and with better predictive and 

prognostic information. This began with Perou et al. characterising histological 

subtypes based on gene expression profiles as well as potentially recognising other 

breast cancer subtypes, such as the normal-like subgroup (Perou et al., 2000). In 

2009, a more concise set of 50 genes (PAM50) was identified with good prognostic 

performance and subtype classification (Parker et al., 2009). There have been further 

attempts to refine these, for example by placing greater emphasis on driver 

mutations, combining with methylation data or by integrating gene expression and 

copy number aberration data (Ali et al., 2014, List et al., 2014). The importance of 

the IHC classification system lies in its clinical relevance in determining therapeutic 

management for patients. Of particular relevance to my work is the fact that this 

classification separates out the triple negative group. Critically, there are no targeted 

drugs available for these patients and they have a worse prognosis than other 
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subtypes, which are treated with drugs targeting their expression of ER (Tamoxifen 

or aromatase inhibitors) or HER2 (Trastuzumab/Herceptin) (see Table 1-1). 

 

Receptor 

expression 

subtype 

Prevalence 

(approximate) 

10 year relapse free 

survival (Arvold et 

al., 2011, Voduc et 

al., 2010) Treatment options 

Luminal A 30 - 70 % 87 - 95 % 

• Surgery 
• Local radiotherapy 
• Selective oestrogen receptor 

modulator 
• Aromastase inhibitor 
• Cytotoxic chemotherapy 

Luminal B 10 - 25 % 78 - 92 % 

• Surgery 
• Local radiotherapy 
• Selective oestrogen receptor 

modulator 
• Aromatase inhibitor 
• Anti-HER2 receptor 

monoclonal antibody (if the 
tumour is HER2 positive) 

• Cytotoxic chemotherapy 

HER2 5 - 15 % 73 - 88 % 

• Surgery 
• Local radiotherapy 
• Anti-HER2 receptor 

monoclonal antibody  
• Cytotoxic chemotherapy 

Triple 

negative 
15 - 20 % 75 - 89 % 

• Surgery 
• Local radiotherapy 
• Cytotoxic chemotherapy 

Table 1-1 A summary of the prevalence, prognosis and treatment options for 
breast cancer subtypes 

 

Basal-like and/or triple negative tumours are potentially of greater interest in terms 

of research because of their substantial clinical impact. They are more likely to 

occur in younger patients, are generally of larger size, higher grade, are more likely 

to have lymph node involvement at diagnosis and are biologically more aggressive 

(Partridge et al., 2016). There is variation within published studies as to whether 

tumours of special type which show basal characteristics, either morphology or IHC 
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markers, are included within the basal-like group (Gazinska et al., 2013, Leidy et al., 

2014). This is important as the prognosis for special types can vary compared with 

basal-like invasive carcinoma NST, for example adenoid cystic and medullary 

carcinoma tend to have a better prognosis compared with stage matched invasive 

carcinoma NST whereas claudin-low subtype tends to do worse (Leidy et al., 2014). 

The triple negative subtype tends to relapse early, within 3-5 years, compared with 

other breast cancer subtypes, for example subtypes such as luminal A have a gradual 

increase in relapse rate and mortality as time passes, particularly after 10 years 

(Haque et al., 2012). Triple negative tumours are also more likely to show BRCA1/2 

inactivation, due to germline mutation and subsequent loss of heterozygosity, 

somatic mutation or promoter hypermethylation (Timms et al., 2014). 

Interestingly, and potentially importantly in the context of my cell line based work, 

genomic studies of breast cancer cell lines have shown that their profiles also reflect 

the heterogeneity seen in primary breast tumours, suggesting that cell lines may 

reflect the subtype-specific behaviours seen clinically. Studies have also identified 

subgroups within the triple negative breast cancer cell lines based on gene 

expression profiling. The number of different groups identified and the name given 

to each group varies slightly from study to study. The profiles of these groups have 

been compared with breast tumour profiles and three main broad groups have been 

identified, a basal-like group, a mesenchymal/stem cell-like group and a luminal-like 

group (Neve et al., 2006, Lehmann et al., 2011). 

1.1.3 Basal-like and triple negative subtypes 

Within the NST group there is a recognised subset of tumours that co-express 

proteins normally expressed on the outer myoepthelial or basal layer of breast ducts. 

These proteins include the high-molecular weight cytokeratins CK5/6, CK14, CK17, 

epidermal growth factor receptor (EGFR), and smooth muscle markers such as 

smooth muscle actin and S100 protein (Fulford et al., 2006, Thike et al., 2010). 

There is no consensus definition or terminology for this subgroup, which contributes 

up to 15 % of all breast tumours (Fulford et al., 2006, Badve et al., 2011). The group 

is referred to as basaloid, basal-like, myoepithelial phenotype or the triple negative 

subtype (Jones et al., 2001, Nielsen et al., 2004, Rakha et al., 2008). Referring to this 

group as ‘triple negative subtype’ or using these terms synonymously is particularly 
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unhelpful as they are distinct groups. Although there is considerable overlap 

between these groups, not all basal-like breast cancers are ER-/PR-/HER2- and not 

all triple negative breast cancers show basal-like morphological features or have 

CK5/6, CK14 or CK17 positivity (Badve et al., 2011). For example, in studies where 

tumours have been grouped as basal-like by gene expression profiling, 14 - 46 % 

were ER positive (Sorlie et al., 2001, Calza et al., 2006, Nielsen et al., 2004). It is 

important to define the method and criteria by which breast cancer cases are 

subtyped to enable comparison between studies. It has been shown that age, grade 

and stage matched basal-like tumours have a worse prognosis following metastasis 

(Fulford et al., 2007). Basal-like tumours tend to be high grade and have specific 

identifying morphological features, including the presence of a central scar, tumour 

necrosis, spindle cells, squamous metaplasia, high mitotic count and high nuclear-

cytoplasmic ratio (Fulford et al., 2006). Examples of these features are shown in 

Figure 1-1. 

1.2 Breast tumour composition 

1.2.1 Breast cancer cells 

Breast cancer cells originally derive from luminal epithelial cells within the breast. 

The clinical classification of breast cancer is based primarily on the receptor 

expression and morphology of these cells and our understanding of breast cancer 

behaviour is based on the biology of these cells. However, breast cancer is a disease 

not only of transformed epithelial cells, but also as a consequence of their interaction 

with the stromal environment. Stroma is present in every breast cancer alongside the 

breast cancer cells and comprises of a number of different cellular components and 

extracellular matrix (see Figure 1-2). 

1.2.2 Breast tumour stroma 

The genetic alterations that arise in breast luminal epithelial cells during their 

progression to become cancer cells cause changes in epithelial cell phenotype and 

behaviour stimulating changes in surrounding cells and the extracellular matrix 

(ECM) (Ronnov-Jessen et al., 1996). Within a tumour, the fibroblasts, endothelial 

cells, inflammatory cells, other non-epithelial cells and ECM are collectively known 

as tumour stroma.  
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Figure 1-1 Representative histological features of basal-like breast tumours 

Basal-like breast tumours were stained with haematoxylin and eosin (H&E) 
and images were selected to demonstrate specific features typical of the 
tumour type. A and B show a central scar within a tumour (A: low power; B: 
high power). C shows extensive tumour necrosis. D shows squamous 
metaplasia. E shows a high number of mitoses (arrows) within a single high 
power field. F shows high nuclear to cytoplasmic ratio (also nuclear 
pleomorphism and prominent nucleoli). 

200	μm		

A	 B	

C	 D	

E	 F	

200	μm		

200	μm		

200	μm		

(A)	Central	scar	within	the	tumour	(low	power)	 (B)	Central	scar	within	the	tumour	(high	power)	

(C)	Extensive	tumour	necrosis	 (D)	Squamous	metaplasia	

(E)	Numerous	mitoses	within	a	single	high												
is			power	field	

(F)	High	nuclear	to	cytoplasmic	raFo	

200	μm		200	μm		



 
 

- 7 - 
 

 

Figure 1-2 H&E image of breast cancer highlighting the different elements that 
make up tumour stroma 
 

1.2.2.1 Extracellular matrix 

In normal tissue the ECM provides a structural scaffold and contributes to the tensile 

strength of the tissue necessary to maintain tissue integrity. It includes the basement 

membrane, predominantly made up of collagen type IV, laminin, entactin and 

proteoglycans, loose intralobular stroma and more tightly packed interlobular 

stroma, predominantly composed of fibrillar collagens (types I and III), 

proteoglycans and glycoproteins (Lu et al., 2012). The ECM provides an adhesive 

surface for cells, provides cell survival signals via integrins, controls the mechanical 

forces cells are subject to and can regulate stability and bioavailability of growth 

factors and cytokines (Hynes, 2009, Oskarsson, 2013). It can interact directly with 

epithelial cells and influence the way they behave, for example without contact with 

laminin-1 epithelial cells fail to differentiate and produce milk under the hormonal 

influence of prolactin (Streuli et al., 1995, Oskarsson, 2013). The ECM is 

predominantly produced and maintained by fibroblasts, although some components 

of the basement membrane are made by myoepithelial cells (Chong et al., 2012, 

Gudjonsson et al., 2002). The basement membrane is obviously key to an important 

step in tumour development, progression from in situ to invasive disease – only once 

this layer has been breached can the cancer potentially spread beyond the breast and 
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result in death. This involves not only proteolysis, but also suppression of 

myoepithelial cell behaviour and alterations in tumour cell adhesion (Muschler and 

Streuli, 2010). Once the breast cancer becomes invasive there is increased 

crosslinking of the ECM and increased production of collagen and hyaluronic acid 

(Itano and Kimata, 2008, Provenzano et al., 2008, Levental et al., 2009). These 

biochemical and mechanical changes make the ECM stiffer. ECM molecules may 

also play a role in metastasis, establishing a premetastatic niche in non-mammary 

tissues (Psaila and Lyden, 2009). 

1.2.2.2 Tumour vasculature 

Development of a tumour vasculature is essential for tumours to grow beyond 500 

µm (Brem et al., 1976). The tumour vasculature provides nutrients and oxygen to 

the tumour cells and removes waste products. Tumour vasculature is formed by co-

opting existing blood vessels or through neoangiogenesis. It is not always easy to 

discern which process has lead to formation of the tumour vasculature within a 

given tumour as in either case the tumour vessels are abnormal, fragile and 

hypermaleable (Ziyad and Iruela-Arispe, 2011). Angiogenesis, the formation of new 

blood vessels from existing ones, is normally very tightly regulated, and is only 

activated in certain situations such as wound healing. Angiogenesis begins with 

activation of endothelial cells, which then release proteases that degrade the 

basement membrane. Endothelial cells and pericytes migrate into the surrounding 

matrix and proliferate, forming sprouts. These sprouts migrate towards the 

angiogenic stimulus along a chemotactic gradient using integrin adhesion molecules. 

Eventually the sprouts form a loop and develop a lumen to form a fully developed 

blood vessel connected to the original vessel they sprouted from (Flores-Perez et al., 

2016). Co-opted blood vessels occur when the tumour expands and progressively 

takes over the local vasculature, changing the resident vessels physiology and 

morphology (Ziyad and Iruela-Arispe, 2011). The development of the tumour 

vasculature requires a proangiogenic environment established by tumour cells, 

cancer associated fibroblasts and resident inflammatory cells. Key molecules 

involved in the process of sprouting angiogenesis include hypoxia-inducible factor 

1-α (HIF-1α), vascular endothelial growth factor A (VEGF-A), transforming growth 

factor–β (TGF-β), angiopoietins and plasminogen (Flores-Perez et al., 2016, Cesario 

et al., 2016, Gouri et al., 2016). VEGF stimulates endothelial proliferation and 
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migration, inhibits endothelial apoptosis, induces proteinases involved in ECM 

remodelling, increases vascular permeability and vasodilatation, and inhibits 

antigen-presenting dendritic cells. 

1.2.2.3 Inflammatory cells 

The immune system is thought to play a dual role in tumour development. Initially 

the immune system can suppress tumour growth by destroying cancer cells and/or 

inhibiting tumour outgrowth (Kaplan et al., 1998, Schreiber et al., 2011). It is only 

when the tumour has developed the ability to evade immune system recognition that 

the tumour can become established. Inflammatory cells may then play a role in 

supporting tumour growth, angiogenesis, invasion and metastasis (Ziyad and Iruela-

Arispe, 2011). This section focuses on an established tumour where the tumour 

promoting influence of the immune system predominates. The inflammatory cells 

within a tumour are drawn from both the innate and adaptive arms of the immune 

system. Innate immune system cells including tumour associated macrophages 

(TAMs, mostly M2-type), neutrophils (N2-type) and mast cells promote tumour 

development by promoting angiogenesis, stimulating fibroblast proliferation and 

secreting factors involved with ECM-degradation and remodelling, the ECM 

changes can in turn promote metastatic spread (Pollard, 2009, Condeelis and 

Pollard, 2006, DeNardo et al., 2009, Nozawa et al., 2006, Coussens et al., 1999). 

The innate immune system cells can also produce factors that influence each other to 

convert to and maintain a tumour promoting phenotype, for example neutrophils 

produce IL-13 which may polarise TAMs to become M2-type (Neill et al., 2010, 

Nozawa et al., 2006, Shojaei et al., 2008, Egeblad et al., 2010). Tumour-infiltrating 

lymphocytes have been reported as positively associated with improved response to 

chemotherapy and survival in breast cancer (Denkert et al., 2010). However, cancers 

that show up-regulated programmed cell death ligand 1 (PD-L1) are able to 

inactivate lymphocytes within the tumour via interaction with programmed cell 

death protein 1 (PD-1) on the T-cell surface (Pardoll, 2012). The adaptive arm of the 

immune system can also contribute to tumour development as Th2 T-helper cells 

produce cytokines that polarise TAMs to M2-type and T-regulatory cells directly 

suppress the anti-tumour activity of CD8+ cytotoxic T-cells (DeNardo et al., 2009, 

Yu et al., 2005). Increased infiltration with immune system cells, particularly 
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macrophages, is a poor prognostic sign in breast cancer (Leek et al., 1996, de Visser 

et al., 2006). 

1.2.2.4 Fibroblasts 

The most prominent change in breast stromal composition in response to neoplasia 

is an increase in the number of fibroblasts (Ronnov-Jessen et al., 1996, Orimo et al., 

2005). They are the most common cell type in breast tumour stroma and are known 

as tumour associated or cancer associated fibroblasts (CAFs). CAFs proliferate more 

rapidly than normal fibroblasts and show greater activity and influence on 

surrounding cells. Other than location, there is no consensus way of defining or 

characterising CAFs and there is no specific marker that identifies all CAFs. 

Markers most frequently noted to be more highly expressed in CAFs compared with 

non-tumour fibroblasts include α-smooth muscle actin (α-SMA), vimentin, 

fibroblast specific protein 1 (FSP1) and fibroblast activation protein (FAP), although 

these markers are often shared with other cells including myofibroblasts, 

myoepithelial and mesenchymal stem cells and are not expressed by all CAFs 

(Huang et al., 2010, Kojima et al., 2010, Orimo et al., 2005, Liu et al., 2006, 

Sugimoto et al., 2006, Fearon, 2014). Markers with decreased expression in CAFs, 

compared with mammary fibroblasts not grown with breast cancer cells, include 

caveolin-1 and laminin (Mercier et al., 2008, Madar et al., 2013).  

The precise origin of CAFs is not fully understood. Several studies have suggested 

that mammary normal fibroblasts (NFs) may develop into CAFs and have shown 

progressive increases in α-SMA expression in mammary fibroblasts with tumour 

development using an in vivo mouse model with human breast fibroblast and 

carcinoma lines (Kojima et al., 2010). Another study demonstrated epithelial-to-

mesenchymal transition as a possible source of CAFs by stimulating a bladder 

cancer cell line with Fibroblast Growth Factor-1 (Billottet et al., 2008). An 

interesting study looking at male to female bone marrow stem cell transplants, 

identified cells with Y-chromosome (male cells) that also expressed α-SMA in 

subsequent tumours that developed in these (female) patients, suggesting that some 

CAFs may have derived from bone marrow cells (Worthley et al., 2009). Other 

possible sources of CAFs include endothelial cells that have undergone endothelial-

to-mesenchymal transition following transforming growth factor-β (TGF-β) 
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stimulation (Zeisberg et al., 2007). In each of these studies the CAFs identified from 

a particular source account for some but not all of the CAFs within the tumour. This 

suggests that CAFs may be derived from a number of sources. It is not known 

whether characteristics of the person, factors within the tumour, or tumour type may 

determine from where the majority of CAFs derive in each tumour. 

One molecule that may be involved in stimulation of the CAF phenotype is stromal 

cell-derived factor-1 (SDF-1, CXCL12), which increases CAF α-SMA expression. 

A second candidate is TGF-β, which is secreted by CAFs, stimulates α-SMA 

expression and CAF tumour-promoting chemokine secretion (Kojima et al., 2010, 

Kuzet and Gaggioli, 2016). Fibroblasts grown with breast cancer cells in vivo 

showed progressive increase in TGF-β expression in CAFs with time. In correlation 

with the increase in TGF-β expression Smad2/3, a TGF-β signal transducer, 

translocated to the nucleus suggesting activation of Smad2/3 signalling in CAFs. 

SDF-1 expression in CAFs also increased with time cultured with tumour cells as 

did expression of SDF-1 receptor CXCR4. This suggests that CAFs respond to 

signals that perpetuate the CAF phenotype via autocrine signalling loops, possibly 

explaining the finding that the CAF phenotype is maintained in in vitro culture 

without continuous interaction with tumour cells (Kojima et al., 2010, Orimo et al., 

2005).  

CAFs play a central role in the tumour stroma by interacting with many of the 

stromal elements. CAFs produce a wide variety of matrix components including 

collagen type I, tenascin C and fibronectin as well as matrix remodelling enzymes 

such as matrix metalloproteinase 1 (MMP1) and MMP3 (Augsten, 2014). CAFs 

produce cytokines and chemokines that interact with the immune system such as IL-

6 and IL-8, which stimulate macrophages and induce chemotaxis in neutrophils 

respectively (Balkwill, 2004). They play a role in establishing tumour blood supply 

by producing pro-angiogenic factors such as vascular endothelial growth factor 

(VEGF) and SDF-1 that can recruit endothelial progenitor cells (Kalluri and 

Zeisberg, 2006, Kuzet and Gaggioli, 2016). Most important is the role CAFs play in 

promoting tumour growth, invasion and metastasis, partly through the previously 

mentioned interactions with other stromal elements, but also through direct 

interaction with tumour cells. These include secretion of SDF-1, which directly 

stimulates CXCR4 on tumour cells leading to increased tumour cell migration and 
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metastatic ability; hepatocyte growth factor (HGF) which stimulates increased 

epithelial-mesenchymal transition and cell motility; and ADAMTS1 (a disintegrin 

and metalloproteinase with thrombospondin type 1 motif) which stimulates breast 

cancer cell invasion in vitro (Orimo et al., 2005, Balkwill, 2004, Kuzet and 

Gaggioli, 2016, Tyan et al., 2012). As well as paracrine signalling, it is thought that 

CAFs may mediate some of their effect by direct cell-cell contact with tumour cells 

(Sadlonova et al., 2009). CAFs have been shown to play a direct role in facilitating 

tumour cell invasion by formation of a pathway of reduced resistance through the 

ECM by directed ECM remodelling (Gaggioli, 2008). 

The tumour microenvironment and particularly CAFs play a dynamic role in tumour 

behaviour, highlighted by the response to chemotherapy. Following treatment with 

chemotherapy a dramatic increase in number of CAFs can be observed and targeting 

CAFs alongside tumour cells produced an enhanced response, reducing recruitment 

of tumour-promoting immune cells and inhibiting angiogenesis, in a colorectal 

cancer model (see section 1.2.2.3) (Li et al., 2016). CAFs can also mediate 

chemoresistance through secretion of prostaglandin E2 and sphingosine-1-phosphate; 

via activation of the PI3K-Akt pathway and by ECM remodelling causing increased 

tension between fibres increasing interstitial pressure and diminishing drug delivery 

(Castells et al., 2012, Heldin et al., 2004, Sirica, 2011). 

1.2.3 Tumour stroma ratio  

The proportion of stroma within a tumour varies from one patient to another, with 

stroma being 20-90% of the tumour (Dvorak, 1986). The proportion of tumour that 

is stroma can be visually estimated using the tumour stroma ratio (TSR). The TSR 

has been shown to be of prognostic significance in a number of solid tumours, 

including colorectal cancer, oesophageal adenocarcinoma, non-small cell lung 

cancer, early cervical carcinoma and triple negative breast cancer; in all these 

examples, tumours that are more than 50% stroma are associated with worse 

prognosis and shorter relapse-free survival (Mesker et al., 2009, Courrech Staal et 

al., 2010, Wang et al., 2013, Liu et al., 2014a, de Kruijf et al., 2011, Dekker et al., 

2013, Moorman et al., 2012). Within breast cancer the importance of TSR on patient 

prognosis varies according to subtype. The influence of TSR in ER+ breast cancer is 

less clear cut with one study indicating low TSR actually may actually confer better 
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survival, although other studies show different results (Downey et al., 2014, Dekker 

et al., 2013, de Kruijf et al., 2011). This variability may in part be due to the 

different ways TSR is estimated. It can be done by examining the whole tumour area 

and basing the TSR on a visual assessment of the area with the highest degree of 

stromal formation or by selecting a smaller tumour area and superimposing a grid 

with systematic random points and assessing each point individually. In triple 

negative breast cancer TSR is consistently identified as an independent prognostic 

factor, the 5 year disease free survival in stroma-poor tumours is over 80% whereas 

in stroma-rich tumours it is approximately 50% (Moorman et al., 2012, de Kruijf et 

al., 2011). 

1.2.4 Stromal targeted therapies 

Given the importance of the role of the stroma in patient prognosis it is not 

surprising that drugs targeting the stroma is a highly active area of research. The 

complex interactions between different elements that make up the stroma and the 

difficulty in differentiating tumour stroma from normal stroma have meant that 

successfully translating these drugs from experimental models to human trials has 

not always had the expected outcome. Of the drugs available these are at differing 

stages of development and show varying results.  

One of the most controversial stromal targeted therapies is bevacizumab (Avastin). 

Bevacizumab is classified as an anti-angiogenic, an inhibitor of all isoforms of 

vascular endothelial growth factor A (VEGF-A). Bevacizumab has been shown to be 

of benefit and is licenced for use in metastatic colorectal cancer, non-small cell lung 

cancer, renal cell carcinoma and glioblastoma multiforme (Wagner et al., 2012). In 

phase III randomised, double-blind placebo controlled trials of metastatic breast 

cancer it has been shown to improve overall response rate and progression free 

survival, but not to have a significant effect on overall survival or quality of life for 

the patient (Miller et al., 2007, Robert et al., 2011, Miles et al., 2010, Wagner et al., 

2012). It is currently licensed for use in metastatic breast cancer in the European 

Union, although it is no longer recommended by the National Institute for Health 

and Care Excellence (NICE) and approval in the USA has been withdrawn. 

Other anti-angiogenic treatments include vandetanib, an inhibitor of the VEGF 

receptor, which is licensed for use in medullary thyroid cancer, and an antibody to 
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the angiogenic stimulator platelet-derived growth factor C, which inhibits growth of 

anti-VEGF resistant tumour cells in co-culture with CAFs but has not yet entered 

routine clinical use (Crawford et al., 2009). 

There have been attempts to counteract the increased activity of MMPs using Matrix 

metalloproteinase inhibitors (MMPI), such as tanomastat, prinomastat and 

marimastat. These are anti-angiogenic, and inhibit migration of cells through their 

effects on ECM remodelling and may have a role in fibroblast differentiation. This 

group of drugs showed promising effects on breast cancer spread in animal models, 

with significant decrease in the number and size of metastatic deposits in a mouse 

model following resection of the primary tumour (Sledge et al., 1995). In patient 

trials the most promising results have been seen in the phase III clinical trial of 

marimastat in advanced gastric cancer that showed an increase in progression-free 

survival and overall survival compared with placebo (Bramhall et al., 2002). Phase 

III trials of the MMPI tanomastat have not been as promising, with trials halted early 

due to significant increase in disease progression and mortality in small cell lung 

cancer compared with placebo (Brown, 2000). In breast cancer development of 

marimastat has faltered due to serious musculoskeletal adverse effects in phase II 

trials and poor pharmacokinetics, with the drug falling below therapeutic levels 

between doses (Miller et al., 2002, Overall and Kleifeld, 2006). There is hope that 

third generation MMPI with improved specificity will have wider clinical use with 

fewer adverse affects (Cepeda et al., 2016). There has also been advancement in 

understanding that MMPs may have different roles depending on tumour stage and 

that treating early stage tumours is more likely to have the desired effect than later 

stage metastatic disease (Overall and Kleifeld, 2006). 

Volociximab, another ECM targeting drug, inhibits angiogenesis by blocking the 

interaction between α5β1 integrin and fibronectin. It has been shown to have a low 

toxicity profile in phase I and II clinical trials but unfortunately only limited effects 

in patients with ovarian or peritoneal cancer (Bell-McGuinn et al., 2011, Ricart et 

al., 2008). 

1.2.4.1 Therapies targeting CAFs 

Given the inter-connectedness of the tumour stroma and the central role CAFs play 

in co-ordinating between many different stromal parts, CAFs provide an ideal target 
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to influence many aspects of the tumour microenvironment. Treatments that target 

CAFs are an emerging area of investigation, however development has been limited 

by the lack of clarity concerning the origin of CAFs and the lack of a CAF-specific 

marker. Fibroblast activation protein (FAP) is a CAF marker that has shown some 

promise. Although it is expressed in wound healing myofibroblasts and weakly in 

normal fibroblasts, it is expressed at much higher levels in CAFs. FAP has been 

targeted in a number of different approaches: using a monoclonal antibody against 

FAP to stimulate an immune response to the tumour microenvironment; using a 

small molecule inhibitor of FAP activity (FAP is a protease); and harnessing the 

activity of FAP to convert a prodrug to its active form within the tumour, as detailed 

below. 

Sibrotuzumab, a monoclonal antibody against FAP demonstrated a good safety 

profile in phase I trials of patients with colorectal and non-small cell lung cancer, 

although no objective tumour response was seen (Scott et al., 2003). One possible 

explanation for this is the effectiveness of the tumour microenvironment in 

switching the immune reaction to a tumour promoting response.  

Talabostat (PT-100), an FAP inhibitor, has shown a modest effect in vitro and in 

vivo in models of colorectal and breast cancer where it slowed tumour growth 

(Huang et al., 2011). It showed a much greater effect in colorectal cancer models 

when combined with the chemotherapeutic oxaliplatin, with greatly reduced tumour 

growth and increased overall survival (Li et al., 2016). Oxaliplatin has been shown 

to stimulate accumulation of CAFs and an increase in CAF associated cytokines, 

which explained the increased response to combined treatment. Talabostat has 

shown good safety profiles, but no strong evidence of clinical effectiveness in phase 

II clinical trials in patients with non-small cell lung cancer (Eager et al., 2009).  

Harnessing the activity of FAP as a way to target drugs specifically and exclusively 

to the tumour has been attempted. The naturally occurring plant toxin Thapsigargin 

(TG) is a potential candidate cytotoxic that can be targeted to FAP expressing cells. 

TG exerts its cytotoxic effects by causing a rise in intracellular calcium leading to 

apoptosis and therefore is effective against cells that are not actively dividing as well 

as those that are. When TG is bound to a FAP-specific peptide, this peptide prevents 

TG from being able to enter cells. When in contact with FAP expressing cells the 
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peptide with a FAP-specific cleavage site was cleaved and the active form of the TG 

toxin became available. This prodrug has shown promising results in vitro and in 

vivo using the breast cancer cell line MCF-7 and because of its specificity very low 

concentrations of the prodrug were effective (Brennen et al., 2012). One possible 

problem with this approach is the small but potentially important effect of soluble-

FAP activity in human plasma (Lee et al., 2006). 

1.3 MicroRNAs 

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules of 

~21-22 nucleotides (nt) that act as post-transcriptional regulators of protein 

expression. Over 1,800 precursor and 2,500 mature Homo sapiens miRNA 

sequences have been identified, predominantly by small RNA deep sequencing 

(MiRbase, 2016, Kozomara and Griffiths-Jones, 2014). MiRNAs have been shown 

to be involved with many biological processes including cell growth, differentiation, 

tissue morphogenesis and apoptosis (Kloosterman and Plasterk, 2006). The link 

between miRNAs and cancer was first made in 2002 in B cell chronic lymphocytic 

leukaemia where deletion or down-regulation of miR-15 and miR-16 was seen in 

68% of cases (Calin et al., 2002).  

1.3.1 MicroRNA production  

The majority of miRNAs are encoded by their own independent transcription units 

located in regions between protein coding genes. Alternatively, there are also a large 

number located intronically that are transcribed with the host mRNA (Ambros et al., 

2003, Lin et al., 2006, Barik, 2008, Frediani and Fabbri, 2016). In some cases 

several miRNAs are located within the same region, and can be transcribed as a 

single transcript that is subsequently cleaved to produce individual miRNAs. 

MiRNAs are transcribed by RNA polymerase II as primary transcripts of several 

kilobases in length and include both a 5’ cap and a 3’ poly-adenylated (poly-(A)) tail 

(Yin et al., 2015). Primary transcripts (pri-miRNAs), typically several kilobases in 

length, base-pair internally to form hair-pin loops containing the bases destined to 

form mature miRNAs. The heterodimer Drosha, an RNase III type endonuclease, 

and DGCR8 (DiGeorge syndrome critical region 8) recognise the hair-pin structures 

and cleave the pri-miRNA to a ~70 nt precursor miRNA (pre-miRNA) (Zeng, 2006, 
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Lee et al., 2003). Following export from the nucleus by exportin 5 and cofactor Ran-

guanosine triphosphate (Ran-GTP), Dicer cleaves pre-miRNAs into molecules with 

~20 nt double-stranded sections with 2 nt single-stranded overhangs at each end 

(Ketting et al., 2001, Svobodova et al., 2016, Kim et al., 2016). Argonaute proteins 

interact with these as part of the ribonucleoprotein RNA induced silencing complex 

(RISC). RISC selects and stabilises the mature miRNA allowing the double stranded 

miRNA sequence to unwind and separate to form a single stranded mature miRNA, 

with the complementary strand being discarded, see Figure 1-3 (Graves and Zeng, 

2012). 

 

Figure 1-3 MiRNA biogenesis 
The process of miRNA biogenesis begins with transcription followed by 
successive cleavage steps to produce the final mature miRNA strand in 
complex with RISC. The key enzymes involved in the process are highlighted 
in green.  

 

1.3.2 The mechanism of action of microRNAs 

There are thought to be two main mechanisms by which miRNAs functionally 

regulate protein expression. The first mechanism occurs when miRNAs bind to the 
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3’ untranslated region (UTR) of target mRNAs resulting in translational repression, 

and in some instances mRNA deadenylation and degradation (Filipowicz et al., 

2008, Fabian and Sonenberg, 2012). This mechanism requires only imperfect 

complementarity (further detail regarding this binding is outlined below). The 

second mechanism occurs when the miRNA binds with perfect or near perfect 

complementarity within the open reading frame of the target mRNA resulting in 

cleavage and degradation of the target mRNA by the Argonaute component of RISC 

(Reis et al., 2015). This process is dominant mainly in plants, so I will therefore 

focus on the former mechanism.  

Several studies have shown that miRNAs cause a decrease in their target mRNA 

levels and that when a miRNA pathway is inhibited or miRNA levels are 

experimentally increased or decreased target mRNA levels are inversely altered 

(Guo et al., 2010, Giraldez et al., 2006). However, many studies have also shown 

that mRNA degradation is not the only outcome and that miRNA silencing can 

occur without mRNA degradation and that reversal of repression can occur quickly 

when cellular conditions are altered, indicating that the intact mRNA can still be 

present (Yang et al., 2010, Bhattacharyya et al., 2006). 

Functional repression of protein expression by miRNA complexes is thought to take 

place at the translation initiation stage. Translation of mRNAs proceeds from the 5’ 

to the 3’ end. Given that miRNAs bind to the 3’ UTR, circularisation of mRNAs 

must occur as part of translation initiation in these situations. The precise molecular 

interactions by which miRNA-RISC interferes with initiation is unclear. It has been 

shown that Argonaute and the glycine-tryptophan repeat family proteins, GW182, 

components of RISC are essential for miRNA mediated silencing as when either is 

depleted or their interaction is blocked miRNA mediated silencing is impaired 

(Fabian and Sonenberg, 2012, Behm-Ansmant et al., 2006, Schmitter et al., 2006, 

Eulalio et al., 2008). It has also been shown that artificially tethering Argonaute or 

GW182 to target mRNAs causes repression, suggesting that miRNAs determine 

which mRNAs are targeted but are not directly involved in silencing expression 

(Behm-Ansmant et al., 2006, Pillai et al., 2004). 

Various studies have indicated interaction with a number of stages of initiation 

including the binding of eukaryotic translation initiation factors (eIFs) and ribosomal 
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recruitment. In particular, miRNA-RISC is thought to interfere with the binding of 

eIF4G, with eIF4G-eIF4E interaction and with eIF4E recognition of and binding to 

the 7-methylguanylate (m7G) cap of the mRNA (Kiriakidou et al., 2007, Pillai et al., 

2005, Fabian and Sonenberg, 2012). The presence of a m7G cap has been shown to 

be required for translational repression, and a poly(A) tail - whilst not essential - 

confers greater sensitivity to miRNA activity. In HEK-293 cells, miRNA mediated 

translation repression was partially relieved by the addition of non-physiological 

length poly(A) tails over 0.8 kb in length (Wang et al., 2006, Filipowicz et al., 2008, 

Pillai et al., 2005, Humphreys et al., 2005, Walters et al., 2010). One candidate for 

this mechanism of action is poly(A) binding protein (PABP) that can interact with 

eIF4G to stimulate mRNA circularisation and translation. GW182 has been shown 

to interact with PABP and may inhibit this function (Huntzinger et al., 2010). It has 

been shown that there is decreased ribosomal 60S subunit recruitment in miRNA 

targeted mRNA, confirming that inhibition occurs at the initiation stage (Fabian and 

Sonenberg, 2012, Wang et al., 2008).  

MiRNAs not only repress translation but can also cause mRNA decay, via the 

deadenylation-dependent pathway. It is suggested that even where degradation of 

mRNA occurs, translational repression may precede this event (Chen et al., 2009). 

MiRNA mediate mRNA degradation by targeting them to processing/GW-bodies, 

which are cytoplasmic sites of mRNA degradation (Liu et al., 2005). The CCR4-

NOT deadenylation complex has been shown to be required for miRNA mediated 

mRNA decay. When CAF1 or NOT1 proteins, both of which form part of the 

CCR4-NOT complex, were depleted, mRNA degradation but not translation 

repression was inhibited (Behm-Ansmant et al., 2006). Chen et al. confirmed the 

requirement for CCR4-NOT and showed that its action can be assisted and hastened 

by PAN2-PAN3 mediated poly(A) shortening and is followed by DCP2 mediated 

decapping (Chen et al., 2009). PABP is also proposed to enhance miRNA mediated 

deadenylation by bringing miRNA-RISC recruited deadenylation machinery close to 

the poly(A) tail. PABP over-expression in HEK-293 cells led to partial derepression 

of miRNA mediated silencing in part through decreased deadenylation of target 

mRNAs, and depletion of PABP in a mouse system prevented miRNA-mediated 

deadenylation (Fabian et al., 2009, Walters et al., 2010). Exactly how these 

complexes interact with each other and the miRNA-RISC is currently not fully 
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understood. It is not known what determines whether an mRNA will follow the 

degradation or translation repression pathway. 

1.3.3 MicroRNA binding  

There is reasonably good understanding regarding the base paring interactions 

between miRNAs and mRNAs. The seed region, nucleotides 2-8 at the miRNAs 5’ 

end, is the area where base pairing specificity is very important for the miRNA-

mRNA interaction. It requires perfect or near perfect complementarity and 

contiguous binding to the mRNA for miRNA binding and functionality (Doench and 

Sharp, 2004, Brennecke et al., 2005, Lewis et al., 2005, Filipowicz et al., 2008). 

Within the miRNA binding site on the mRNA, an adenine in position 1 and an 

adenine or uracil in position 9 improves the inhibitory ability of the miRNA even if 

these residues do not base pair with the miRNA (Lewis et al., 2005, Nielsen et al., 

2007). Reasonable complementarity towards the 3’end, particularly between 

residues 13-16, stabilises the interaction (Grimson et al., 2007). Although, 

mismatches and bulges can be tolerated in this region. This region becomes more 

influential when the seed region base pairing is suboptimal, see Figure 1-4. 

 

 

Figure 1-4 MiRNA binding 

This diagram shows the important base pairing interactions for miRNA 
binding and targeting. The mRNA strand represented in blue and the miRNA 
in green, each base is represented by a coloured block. 

 

The position of the miRNA binding site within the 3’ UTR is also important. A site 

close to the termination codon or the poly(A) tail in long 3’ UTRs improves 

inhibitory ability. MiRNA binding sites within the 3’ UTR are often present in 

multiple copies. Multiple sites for the same or different miRNAs are generally 
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required for effective repression (Vella et al., 2004). Sites that are 10-40 nt apart 

tend to act co-operatively (Grimson et al., 2007). There is no evidence to suggest 

that the RISC has any miRNA or mRNA binding specificity.  

Unfortunately, these binding criteria are sufficiently general that bioinformatic 

predictions frequently identify many hundreds or thousands of possible sites for any 

miRNA of interest; critically, often only a few of these turn out to be within mRNAs 

actually targeted by the miRNA. In addition, some experimentally characterised 

binding sites deviate substantially from these rules, even requiring a bulged 

nucleotide in the seed region (Vella et al., 2004). For these reasons experimental 

confirmation is essential to confirm mRNA targets. 

1.3.4 MicroRNA nomenclature 

MicroRNA (miRNA) naming conventions have changed over time as more is 

known about them. Currently the full name of a miRNA will include the species 

abbreviation e.g. hsa for Homo sapiens, miR to indicate that it is a mature miRNA 

sequence and the number assigned to that sequence, for example hsa-miR-101. A -

3p or -5p suffix may be added if both arms of the hairpin precursor are processed 

into mature miRNA; this indicates which arm of the hairpin is being referred to, for 

example miR-17-5p and miR-17-3p are different mature sequences processed from 

opposite arms of the same hairpin loop. Sometimes a letter or number suffix may be 

added to the miRNA name to indicate different miRNA of the same family. A letter 

is added for miRNA mature sequences that have very similar mature products, e.g. 

hsa-miR-10a and hsa-miR-10b differ in only one base. A number is added to 

indicate identical mature miRNA that originate from distinct hairpin loci, e.g. hsa-

miR-16-1 and has-miR-16-2 originate from chromosomes 13 and 3 respectively. 

Prior to this standardisation of miRNA naming an asterisk was sometimes used to 

indicate the minor miRNA product from a hairpin loop rather than -3p or -5p. A # 

was also previously used to indicate a precursor miRNA that gave rise to more than 

one mature miRNA, the ones labelled # were the less predominant of the product. 

The –as suffix indicating that the miRNA was transcribed from the DNA antisense 

strand is also no longer assigned to new miRNA that are identified, instead miRNA 

transcribed from opposite chromosomal strands are typically given different 

numbers (miRBase, 2011, Griffiths-Jones et al., 2006). 
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1.3.5 MicroRNAs as oncomiRs and tumour suppressors 

The definition of the term oncomiR has evolved over time. Initially it was used to 

refer to miRNA that play an “oncogenic” role, more recently this term has been used 

more broadly to refer to a miRNA that is involved in a cancer, i.e. can function as an 

oncogene or a tumour supressor (Ma, 2016, Budd et al., 2015). To avoid confusion, I 

will avoid using the term oncomiR instead use the phrase oncogenic miRNA or 

tumour suppressor miRNA. MiRNAs act as oncogenes when their increased 

expression increases the likelihood or severity of cancer, presumably by targeting 

mRNA(s) coding for tumour suppressor protein(s); such as an anti-apoptotic factor, 

a protein involved with DNA repair, or a cell cycle inhibitor. One of the first 

miRNAs identified as having an oncogenic effect was miR-17. One mechanism 

through which miR-17 has its effect in lymphoma is via targeting the pro-apoptotic 

cell cycle transcription factor E2F1 (O'Donnell et al., 2005).  

Conversely, a miRNA may act as a tumour suppressor by inhibiting translation of an 

oncoprotein. As mentioned in section 1.3, the first miRNAs found to be down-

regulated in malignancy were miR-15 and miR-16. These miRNAs inhibit 

translation of BCL2, an important anti-apoptotic protein (Cimmino et al., 2005). 

Interestingly miR-17 in breast cancer has been indicated to have a tumour 

suppressive effect, decreasing breast cancer cell proliferation by inhibiting 

translation of the ERα co-activator AIB1 (Hossain et al., 2006). Identifying miRNAs 

that act as tumour suppressors and oncogenes, their target mRNAs, and the role the 

target proteins have in carcinogenesis, malignant transformation and metastasis is a 

key aim in furthering our understanding of cancer and could potentially lead to new 

and better targeted therapies. 

1.3.5.1 Oncogenic and tumour suppressing miRNAs in CAFs 

There have been a variety of studies looking at the expression and role of miRNAs 

in CAFs in a range of cancer types. I will focus on those studies that have looked at 

miRNAs in breast cancer CAFs – the vast majority of which are very recent. The 

majority of these studies identified miRNAs that were up-regulated or down-

regulated in CAFs either by comparing primary CAFs and NFs isolated from fresh 

breast tissue or by measuring the levels of miRNAs in fibroblast conditioned 

medium. This identified a number of miRNAs with altered expression in CAFs, 
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including down-regulation of miR-320 and the miR-200 family and up-regulation of 

miR-9, miR-221/222, miR-378, miR-143 and miR-21 (Tang et al., 2016, Baroni et 

al., 2016, Donnarumma et al., 2017, Bronisz et al., 2011, Shah et al., 2015, Sansone 

et al., 2017). I have discussed the role of miR-21 in CAFs in a separate section (see 

section 1.4). Most miRNA identified have been investigated in one or two studies. 

The reason why different studies identified different miRNAs as up-regulated and 

down-regulated may be because they have looked at fibroblasts from different breast 

cancer subtype, although often this is not stated; in the initial analysis of a larger 

number of miRNA different miRNAs are included; or because the changes they 

observe are specific to the one or few fibroblasts they have analysed.  

Following identification of miRNAs with altered expression the next step has 

generally been to confirm the functional role of the miRNA by increasing and 

decreasing expression of the miRNA(s) of interest in fibroblasts and assessing the 

impact this has on fibroblast behaviour and tumour cell behaviour in co-culture. The 

third avenue of investigation has been to identify targets for the miRNA by referring 

to published work and bioinformatics analysis, followed by confirmation of these 

targets using luciferase reporter assays of the targets mRNA 3’UTR. This has been 

done in very few breast cancer fibroblast studies. Further detail about each miRNA 

is outlined below. 

The miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) were 

down-regulated with a mean 2.5-fold change when comparing matched pairs of 

CAFs with NFs isolated from 20 breast cancer resection specimens. This was 

confirmed in vitro as when NFs were co-cultured with breast cancer cells they 

showed a significant decrease in miR-200 family expression after 30 days. MiR-200 

family over-expression in CAFs decreased their migration and invasion. FLI1 and 

TCF-12 were confirmed as targets of the miR-200 family. These proteins are 

thought to be involved in ECM remodelling, which could explain the effect the miR-

200 family has on migration and invasion of fibroblasts (Tang et al., 2016). MiR-

200b has also been noted to be down-regulated in gastric cancer CAFs and to 

decrease CAF migration and invasion in this setting as well (Kurashige et al., 2015). 

MiR-9 has been found to be increased in CAFs compared with NFs isolated from 

triple negative breast cancer patients, but not in other breast cancer subtypes. When 
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miR-9 was transfected into NFs it increased their migration and invasion and 

transfection of miR-9 inhibitor into CAFs decreased their migration and invasion. 

Fibroblasts transfected with miR-9 were found to secrete it into the cell culture 

medium, and conditioned medium from these fibroblasts increased migration, 

invasion and decreased E-cadherin expression in triple negative tumour cell lines. 

The mRNA targets of miR-9 were not explored in this study (Baroni et al., 2016). 

MiR-143 and miR-378 were found to be present at higher levels in CAF exosome 

samples compared with NF exosomes isolated from breast biopsies. When T47D 

breast cancer cells were treated with the CAF exosomes they showed increased 

mammosphere formation and increased markers of stemness and epithelial to 

mesenchymal transition (EMT) (Donnarumma et al., 2017). These findings suggests 

that the influence of CAFs on tumour cell behaviour and protein expression may in 

part be mediated by miRNA secreted into exosomes that are then taken up by 

tumour cells. 

PTEN has been frequently identified as down-regulated during the conversion of 

NFs to CAFs. In a breast cancer mouse model with PTEN-null fibroblasts, 9 

miRNAs of the 400 profiled showed at least a 2-fold change and were conserved 

between mice and humans. MiR-320 was selected from these 9 for further 

investigation as it was previously reported as down-regulated in breast cancer. When 

miR-320 was re-expressed in PTEN-null fibroblasts in tissue culture conditioned 

medium from these fibroblasts lead to decreased tumour cell proliferation and 

migration. In vivo the mouse mammary tumours showed decreased tumour cell 

proliferation and decreased neoangiogenesis (Bronisz et al., 2011). MiR-320 has 

also been found to be down-regulated in CAFs in hepatocellular carcinoma. In 

hepatocellular carcinoma this decrease has been linked with increased tumour cell 

proliferation, migration and metastasis (Zhang et al., 2017b). 

MiR-221/222 has been identified as secreted by breast CAFs into tissue culture 

medium. Conditioned medium from these cells has been shown to decrease ER 

expression in MCF-7 cells, and this repression was relieved when miR-221/222 was 

knocked down in CAFs (Shah et al., 2015). MiR-221 has also been found to be at 

increased levels in the serum of patients who developed metastases following 

hormone treatment for breast cancer (Sansone et al., 2017). If miR-221 plays a role 
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in decreasing ER expression in these patients, this would explain the increased 

chance of them becoming resistant to treatment. 

1.4 MicroRNA-21 (miR-21) 

1.4.1 MiR-21 expression 

The gene for miR-21 is on chromosome 17q23.2, within an intron of the gene for the 

vacuole membrane protein TMEM49, although the miRNA gene has its own 

promoter region and can be transcribed independently of the host gene. The primary 

miR-21 transcript from its own promoter is ~3,500 nt long, while the mature 

miRNA is 21 nt (MiRbase, 2016). MiR-21 is an established oncogenic miRNA and 

has been found to be up-regulated in a wide range of cancers including breast, 

pancreas, lung, gastric, prostate, colon, head and neck, oesophageal, leukaemia, 

lymphoma, multiple myeloma, glioblastoma, osteosarcoma and spermatocytic 

seminoma (Buscaglia and Li, 2011). The role and specific targets of miR-21 in each 

of these malignancies may vary. In glioma, miR-21 expression correlated with grade 

and was highest in grade IV glioblastomas (Gabriely et al., 2008), whereas in 

multiple myeloma, expression of miR-21 in bone marrow mononuclear cells 

correlated with response to chemotherapy (Zhang et al., 2012a). 

A key caveat to many studies in which tumoural expression of miR-21 has been 

examined is that expression was typically examined using whole tumour samples, 

containing tumour cells admixed with stromal cells and ECM (Song et al., 2010). In 

many cases, it has been assumed that over-expression of miR-21 occurred in the 

tumour cells, as opposed to in the stromal cells or even potentially as a result of 

changes in the relative proportions of different cell types. Studies looking at miR-21 

cellular localisation within cancer tissues, typically using in situ hybridisation, are 

less common. These studies have shown that location of miR-21 expression varies 

between different cancer types. In cervical and melanocytic lesions and in glioma 

miR-21 expression was predominantly identified in tumour cells (Yao and Lin, 

2012, Grignol et al., 2011, Dillhoff et al., 2008, Hermansen et al., 2013). Whereas in 

colorectal, prostate, gastric, oesophageal, non-small cell lung, and breast cancer, and 

diffuse large B cell lymphoma, miR-21 expression was been predominantly seen in 

the stromal compartment, specifically within CAFs (Lee et al., 2016, Bullock et al., 
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2013, Kjaer-Frifeldt et al., 2012, Guan et al., 2016, Melbo-Jorgensen et al., 2014, 

Uozaki et al., 2014, Stenvold et al., 2014, Hug et al., 2015, Nielsen et al., 2014, 

Munch-Petersen et al., 2015, Nouraee et al., 2013). Interestingly, in cancer types 

where both tumour cell and stromal staining were present and analysed separately 

the stromal staining but not the tumour cell staining correlated with 

clinicopathological factors, such as disease free survival and lymph node status, 

suggesting that in these cancers it is the stromal miR-21 that has the greater 

influence on tumour behaviour (Guan et al., 2016, Hug et al., 2015, Stenvold et al., 

2014, Kjaer-Frifeldt et al., 2012). In one colorectal cancer study miR-21 expression 

was quantified by qPCR using laser microdissected CAFs, which confirmed the 

results seen with in situ hybridisation that miR-21 expression was increased in CAFs 

compared with normal fibroblasts but not in epithelial cells (Bullock et al., 2013). 

Studies concerning the location of miR-21 in breast cancer report a variety of 

findings that are not obviously compatible with each other. An initial study in breast 

cancer suggested that miR-21 was located in tumour cells (Gong et al., 2011). 

However, more recent studies together with improvements in in situ hybridisation 

staining have shown that miR-21 is predominantly located within CAFs. Between 

different studies there was variation in the staining of miR-21 seen in tumour cells 

with one reporting that only a few clusters of breast cancer cells occasionally stained 

positively whilst another found that in the occasional cases where tumour cells were 

positive this tended to be uniform (Nielsen et al., 2014, Rask et al., 2011).  

1.4.2 Regulation of miR-21 expression 

There is relatively little known about what influences the expression of miR-21 in 

breast cancer, and essentially nothing is known in the context of breast cancer 

fibroblasts. In terms of up-stream factors, a study by Huang et al. showed that 

increased HER2/neu receptor expression increased miR-21 expression within breast 

cancer cells and that stimulating these cells with a HER2 agonist further increased 

the level of miR-21. Using pathway inhibitors it was indicated that this was brought 

about via the mitogen-activated protein kinase/extracellular signal-regulated kinase 

(MAPK/ERK) pathway (Huang et al., 2009b). Another study has shown that in ER+ 

breast cancer cells, miR-21 levels are decreased following stimulation with 

oestradiol (Selcuklu et al., 2012). Different factors may stimulate miR-21 expression 
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in different breast cancer subtypes, and it is not known what stimulates miR-21 

expression specifically in triple negative breast cancer. 

In breast cancer cell lines, five transcription factors have been investigated as 

regulators of miR-21 expression. The activity of transcription factor ETS-1, 

activated by the MAPK/ERK pathway, correlated with miR-21 expression levels 

(Huang et al., 2009b). Genotoxic treatment has been shown to activate and recruit 

the transcription factor NF-ĸB to the miR-21 promoter region	   (Niu et al., 2012). 

TCF4, a down-stream effector of the Wnt signalling pathway, has been shown to 

bind to a promoter region upstream of miR-21 and Wnt signalling increased miR-21 

expression and effects (Lan et al., 2012). Bone morphogenetic protein 6 negatively 

regulates miR-21 expression via decreased transcription of the δEF1 and AP-1 

transcription factors which bind to the miR-21 promoter region (Du et al., 2009). 

Understanding the factors that regulate miR-21 expression could allow targeting and 

inhibition of its action as a potential therapeutic strategy.  

1.4.3 Role of miR-21 in Cancer  

Increased miR-21 expression in breast cancer has been positively correlated with 

increased cancer cell proliferation index (Ki-67), lymph node positivity, advanced 

breast cancer stage and poor prognosis, although most of these studies included all 

breast cancer subtypes combined and did not determine whether the miR-21 was in 

the tumour cells or the stroma (Yan et al., 2008, Huang et al., 2009a, Rask et al., 

2011, Hug et al., 2015). In a more detailed and comprehensive study by MacKenzie 

et al. it was found that when looking at all breast cancer subtypes combined, 

increased miR-21 expression correlated with shorter disease free survival, but in 

luminal A subtype increased miR-21 in cancer cells was associated with disease 

recurrence whereas increased stromal miR-21 in triple negative breast cancer was 

associated with disease recurrence (MacKenzie et al., 2014).  

Similar findings have been seen in other cancer types, including prostate, pancreatic 

and gastric cancers and glioma where increased miR-21 expression correlated with 

worse clinicopathological factors or worse patient outcomes (Guan et al., 2016, 

Morinaga et al., 2016, Melbo-Jorgensen et al., 2014, Uozaki et al., 2014, Stenvold et 

al., 2014, Hermansen et al., 2013, Dillhoff et al., 2008). Interestingly, in prostate and 

gastric cancer studies when location of miR-21 expression was analysed, it was 
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found that the stromal miR-21 expression correlated with worse outcomes, but 

tumour cell miR-21 expression did not, and in non-small cell lung cancer tumour 

cell miR-21 correlated with good prognosis but stromal miR-21 correlated with poor 

prognosis (Melbo-Jorgensen et al., 2014, Uozaki et al., 2014, Stenvold et al., 2014). 

These findings suggest that miR-21 may play different roles in tumour cells 

compared with stromal cells in cancer, and that in certain cancer types, including 

triple negative breast cancer, it is the stromal miR-21 that is important in influencing 

overall tumour behaviour. 

1.4.4 MiR-21 targets 

1.4.4.1 MiR-21 targets in breast cancer 

A large number of miR-21 targets have been identified, with at least 30 validated to 

varying extents in a variety of different tumours. The targets that have been studied 

in breast cancer epithelial cells line are outlined here. Targets have been identified 

by looking at protein expression levels and sometimes mRNA levels that were 

negatively correlated with miR-21 expression and altered by experimental 

manipulation of miR-21 levels/activity. Potential miR-21 binding site or sites in the 

3’ UTR of these suspected target mRNAs have then been identified using 

bioinformatics. 3’ UTRs were typically then cloned into luciferase mRNA reporters 

to confirm that the 3’ UTR is targeted. In some studies a further validation was 

carried out by deleting or mutating the miR-21 binding site within the 3’ UTR 

abrogating the miR-21-dependent luciferase down-regulation. Target mRNAs where 

this has been done include Jagged1 (Selcuklu et al., 2012), PDCD4 (Frankel et al., 

2008, Lu et al., 2008), TPM1 (Zhu et al., 2007), RHOB (Connolly et al., 2010), 

PTEN (Meng et al., 2007, Li et al., 2012), and TIMP3 (Song et al., 2010). These 

proteins are involved in a diverse range of carcinogenic and malignant processes. 

Jagged1 is known as an intercellular ligand of Notch and has been implicated in 

angiogenesis. PDCD4 can stimulate an apoptotic pathway. TPM1 decreases 

anchorage independent growth (Zhu et al., 2007). RHOB increases cell adhesion and 

decreases cell migration (Connolly et al., 2010). PTEN causes cell cycle arrest, 

induces apoptosis, and reduces cell migration (Connolly et al., 2010), invasion and 

stem cell phenotypes (Weng et al., 1999, Li et al., 2012).  
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PTEN and TIMP3 are of particular interest when considering possible targets for 

miR-21 in CAFs. TIMP3 is an inhibitor of MMP3 (Song et al., 2010). Although 

research thus far has looked at miR-21 targeting of TIMP3 in epithelial cells, given 

that CAFs are known to be involved in regulating and remodelling the ECM, if miR-

21 is up-regulated in CAFs the mRNA for TIMP3 could be a potential target. As 

discussed above PTEN has been shown to be a tumour suppressor in mammary 

fibroblasts, involved in suppressing several malignant processes in CAFs. Therefore 

miR-21 could be a mechanism by which PTEN expression is regulated in fibroblasts 

leading to an activated or myofibroblastic phenotype and behaviour.  

As mentioned in section 1.2.2.4, TGF-β can simulate the CAF phenotype. MiR-21 is 

up-regulated within 2 hours of TGF-β stimulation and has been shown to be required 

for this pathway, suggesting that miR-21 is required for the CAF phenotype (Li et 

al., 2013). 

1.4.4.2 MiR-21 targets in fibroblasts 

A limited number of potential miR-21 targets have been identified in fibroblasts 

from various tissues. These may be of more relevance to breast CAFs than the 

targets described above that were identified in epithelial cells. In cardiac 

hypertrophy miR-21 expression in fibroblasts has been shown to target and down-

regulate Spry1 expression leading to decreased inhibition of the MAPK/ERK 

pathway and decreased apoptosis. This resulted in increased fibroblast survival and 

increased cardiac fibrosis (Thum et al., 2008). The MAPK/ERK pathway has been 

suggested to increase miR-21 expression in breast cancer. It is possible a positive 

feedback loop is operating. In colorectal cancer, miR-21 has been found to be up-

regulated in fibroblasts. Reversion-inducing cysteine-rich protein with Kazal motifs 

(RECK) has been investigated as one possible target. RECK is an inhibitor of 

MMPs and thereby decreases ECM remodelling. Bullock et al. showed increased 

MMP activity in cell culture when miR-21 was over expressed (Bullock et al., 

2013). It is possible RECK is a target of miR-21 in breast CAFs as well as colorectal 

CAFs. 
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1.5 Hypothesis and aims 

In this research project I have focused on basal-like and triple negative breast 

cancers and the role of fibroblast and fibroblast-epithelial interaction in tumour 

behaviour; looking specifically at the expression of miRNAs in fibroblasts and the 

function of miR-21 in these cells. My hypothesis is that miRNAs, and miR-21 in 

particular, in CAFs have key roles in the behaviour of triple negative, basal-like 

breast cancers. 

The aims of this project were to: 

1) identify miRNAs differentially expressed between NFs and CAFs in triple 

negative, basal-like breast cancers; 

2) determine the functional role of a selected miRNA in CAFs; 

3) determine the impact of a selected miRNAs in CAFs on the behaviour of 

epithelial cancer cells. 
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2 Chapter 2 

Materials & Methods 

2.1 Ethical approval 

Ethical approval for use of the archival breast tissue and associated anonymised data 

from Leeds Teaching Hospitals NHS Trust (LTHT) was granted by Leeds (East) 

Research Ethics Committee to my supervisor Professor Andrew Hanby (reference 

06/Q1206/180, see Appendix A). Fresh breast tissue samples, from which breast 

fibroblasts were extracted, were supplied by the Breast Cancer Now Breast Tissue 

Bank (Leeds), under approval from the Leeds (East) Research Ethics Committee 

(reference 09/H1306/108, see Appendix B) and were transferred to my research 

team under material transfer agreements.  

All the work and methods outlined in this chapter were carried out by myself except 

where a colleague’s contribution has been specifically stated. 

2.2 Case selection 

2.2.1 Selection of triple negative, basal-like subtype cases for laser capture 

microdissection 

A suitable cohort of triple negative, basal-like breast cancer cases for laser capture 

microdissection (LCM) was identified, initially, by searching the Leeds Teaching 

Hospitals Trust histopathology database for breast resections from 01/01/2008 to 

01/10/2012 that contained the word ‘basal’ in their histopathology report (Appendix 

C). This yielded 113 cases. Not all basal-like breast cancer cases will have been 

identified in the pathology report, as this subtype is not typically stated. However, as 

only a small cohort of cases was required this search strategy was adequate to 

identify sufficient number of cases. In addition, identifying cases in this way means 

that reports where basal-like subtype was mentioned were more likely to the have 

more of the classical morphological features of basal-like breast cancer. The 

pathology report, slides and blocks from the search results cases were reviewed to 
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identify suitable cases. During the review of each report, certain cases were 

excluded from the ‘basal’ search results. Cases were excluded if 

i) basal was used in a context other than to refer to tumour subtype;  

ii) the tumour was of a special subtype such as metaplastic, neuroendocrine or 

adenosquamous;  

iii) the report was from a recurrence rather than a primary tumour;  

iv) or the patient had been treated with chemotherapy prior to resection.  

This excluded 27 cases, leaving 86 potential cases. Breast cancers of special 

subtype, such as metaplastic and neuroendocrine, are sometimes included in the 

basal-like group and sometimes excluded as they have different prognoses. In this 

cohort breast cancers of special type were excluded. This cohort was identified as 

those where basal was stated in the pathology report. These two factors meant that  

this cohort of cases may not be representative of all basal-like breast cancers. It was 

selected to be a more homogenous basal-like group and representative of the 

commonest type of basal-like breast cancer, invasive carcinoma of no special type 

with typical basal-like morphological features. Selecting a homogenous group meant 

that as the cohort size was small this increased the chance of identifying common 

changes within the group. Whereas if there was variation between the cases 

important alterations in CAFs may be missed if they occurred in only one subtype. 

These cases were confirmed as triple negative and basal-like using 

immunohistochemistry for ER, PR, HER2, CK5 and CK14 and HER2 fluorescence 

in situ hybridization, if required. ER, PR and HER2 tests were carried out at the time 

of initial reporting. CK5 and CK14 had been done on many of these cases. Where it 

had not been done at the time of reporting, it was carried out by a specialist 

biomedical scientist and then reviewed by myself and a subspecialist breast 

histopathologist (supervisor, Prof Andrew Hanby). I reviewed and confirmed the 

results of all the immunohistochemistry tests, including those that had been done at 

the time of reporting.  

The tissue availability for these cases was assessed by retrieving the slides and 

blocks from storage and reviewing the H&E stained sections. Suitable cases and 

blocks were those that had sufficient tumour stroma and had a block of non-tumour 
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breast tissue from at least 1 cm away from the tumour (see Figure 2-1). Tumour 

stroma was defined as non-tumour cell areas within the tumour, the invasive front of 

the tumour cells was used to delineate the edge of the tumour and fibroblasts from 

beyond this line were not microdissected. Areas of tumour stroma heavily admixed 

with necrotic material or inflammatory cells were avoided during microdissection. 

1-2 tumour blocks and 1 normal tissue block were identified for each case. Normal 

tissue was defined as greater than 10 mm from the tumour as this is equivalent to or 

greater than clinically clear margins (Taghian et al., 2005). 

 

Figure 2-1 Flow diagram of cases selected for laser capture microdissection 
This diagram outlines how many cases were excluded at each stage and how 
the final set of 14 cases was selected. 

 

After these exclusions a total of 14 cases were selected. These tumours were all 

invasive ductal carcinoma of no special type (IDC-NST); triple negative, defined as 

ER Allred score 0/8, PR Allred score 0/8, HER2 copy number amplification 

negative; and expressed basal cytokeratins CK5 and CK14. Table 2-1 contains the 

details of the patient characteristics for this cohort of 14 cases. 

 

 

 

 



 
 

- 34 - 
 

 

Characteristic Number of cases (%) 

  Age at diagnosis 62 years (34 - 81 years)   mean (range) 

  Laterality   

         Left 8  (57 %) 

         Right 6  (43 %) 

Resection   

         Wide local Excision 11  (79 %) 

         Mastectomy 3  (21 %) 

  Histological Grade   

         I 0  (0 %) 

         II 1  (7 %) 

         III 13  (93 %) 

  Lymph nodes   

          0 14  (100 %) 

         1-4 0  (0 %) 

         >4 0  (0 %) 

  Invasive tumour size 21.7 mm (7.3 mm)   mean (standard deviation) 

Table 2-1 Characteristics of the 14 breast patients, and their triple negative, 
basal-like breast cancers that were used for laser capture microdissection 
and qPCR miRNA expression analysis 

 

2.2.2 Selection of triple negative breast cancer cases for tissue microarray 

construction 

In order to construct a tissue microarray (TMA) of triple negative breast cancer 

cases, searches were carried out to identify as many invasive TNBC cases within the 

LTHT archive as possible. Cases were included from 01/01/2008 – 30/03/2013 (this 

end date was used to allow at least 3 years follow up for each case). Three different 

search strategies were combined to maximise the cohort:  

1) a ‘free text’ search of computerised histopathology reports containing the words 

‘triple negative’ in the clinical details;  
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2) triple negative cases selected from the results of a search for ‘B5b’ (the clinical 

code for invasive carcinoma in a biopsy) carried out by Catherine Turner 

(undergraduate medical student) for invasive breast cancer biopsy reports in 2011 

with receptor status from each report recorded;  

3) cases identified as triple negative by the multi-disciplinary team meeting co-

ordinator, collected by Ms Caroline Strachan (MD student within my research 

group).  

The case lists from these searches were reviewed to exclude duplicates, and a final 

list of cases was compiled.  

2.3 Tissue microarray construction 

To construct the tissue microarray (TMA), 1-3 tumour blocks from each case were 

selected and appropriate areas of tumour were manually marked on a haematoxylin 

and eosin (H&E) stained slide. When available archival H&E slides were marked, 

but when these were unavailable new sections were taken and stained with H&E. 

Slides were marked to identify areas of tumour mixed with stroma, avoiding 

acellular or poorly cellular areas such as those with large amounts of necrosis or 

sclerosis. An 18 x 15 or 16 grid was used. Non-breast tissue cores were inserted 

around the edge of the grid and through the grid as an off-centre orientation cross. 

Three 0.6 µm cores of tumour tissue were taken from each case and consecutively 

inserted into the recipient wax block. Recipient wax blocks were x-rayed prior to use 

to confirm they did not contain any air bubbles. If the depth of tissue in the donor 

block was thin, 2 cores were stacked on top of each other. A total of 3 blocks 

containing 150 cases (450 cores) were constructed. 

2.4 Cutting sections 

Sections were taken from paraffin blocks using a Leica RM2235 microtome at 5 or 

10 µm. For subsequent laser microdissection (LCM), 3 or 4 sections of 10 µm 

thickness were taken from each paraffin block using a new, clean blade. The top few 

sections from each block were discarded, in case of RNA breakdown in the top 

layer. These were floated on a water bath of diethylpyrocarbonate (DEPC) (Sigma-
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Aldrich, Cat no. D5758) treated and autoclaved water heated to 35 °C and lifted 

onto Membrane Slides NF 1.0 PEN (Carl Zeiss Ltd., Cat no. 415190-9081-000). 

Care was taken to ensure the sectioning environment was relatively free from 

RNases by cleaning all equipment with RNase Zap (Life Technologies, Cat no. 

AM9780) prior to use. Slides were dried overnight at 55 °C to fix the tissue to the 

membrane and then stored in RNase-free containers at -20 °C. At the same time a 5 

µm section from each block was cut onto an uncoated glass slide (Thermo Scientific 

SuperfrostTM Plus Microscope Slides, Cat no. 4951PLUS4) for staining with 

haematoxylin and eosin in order to act as a guide during LCM (LCM-guide). 

Sections of blocks for H&E staining, or sections of TMAs were cut in the same way 

as LCM-guide slides. 

2.5 Staining with haematoxylin and eosin 

All steps were carried out at room temperature. The LCM-guide sections, or sections 

of tumour blocks for mark-up for TMA manufacture, were stained using a standard 

H&E staining protocol and covered with a glass coverslip (Torres et al., 2013, 

Schmitz et al., 2010). In brief, sections were treated as follows: dewaxed in xylene 4 

x 3 min, 100% ethanol 4 x 3 min, rehydrated in graded ethanols (75%, 50%, 25%) 3 

x 3 min, washed in running tap water 2 min, stained with Mayer’s Haematoxylin 

(Sigma Aldrich, Cat no. MHS1) 2 min, washed in running tap water until clear, 

washed in Scott’s tap water substitute (Sigma-Aldrich, Cat no. S5134), washed in 

tap water 1 min, counterstained with eosin (Sigma Aldrich, Cat no. 230251) 2 min, 

washed in running tap water 1 min, dipped in 100% ethanol 15 s, washed in 100% 

ethanol 3 x 3 min, xylene 3 x 3 min and mounted with DPX (Sigma Aldrich, Cat no. 

06522). 

For sections on membrane slides destined for LCM, slides were cooled prior to 

staining to enhance tissue adherence and the dewaxing and staining steps were 

shortened to minimise RNA degradation. The dewaxing and staining steps were as 

follows: 60 s in xylene, 30 s in xylene, 60 s in 100% ethanol, 30 s in Mayer’s 

Haematoxylin, 120 s in phosphate-buffered saline (PBS), 10 s in eosin, followed by 

rinses in 70% ethanol and 100% ethanol, and finally slides were allowed to air dry.  
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2.6 Laser capture microdissection 

LCM was carried out on the Zeiss PALM Laser Capture Microdissection 

Microscope. Initially I reviewed the LCM-guide slides to identify areas of 

fibroblasts with very few admixed inflammatory cells, epithelial cells or necrosis. 

The equivalent area was then identified on membrane-mounted sections. These areas 

of fibroblasts were cut along the perimeter with the laser and fired into lids of 

AdhesiveCap 500 opaque PCR Tubes (Carl Zeiss Ltd., Cat no. 415190-9201-000) 

by laser pressure catapulting (LPC). The microscope settings used for LCM were cut 

energy 71, focus 65, LPC energy 100, focus 65 at 100x magnification. The area 

dissected from each case varied between 5.2 - 27.4 x 106 µm2 depending on the 

density of fibroblasts.  

2.7 RNA extraction 

Total RNA was extracted from formalin fixed paraffin embedded (FFPE) fibroblast-

enriched samples or from cell culture fibroblasts using the RecoverAll™ Total 

Nucleic Acid Isolation Kit for FFPE (Ambion®, Cat no. AM1975) or the mirVana™ 

miRNA Isolation Kit (Ambion™, Cat. No. AM1560), respectively, broadly 

following the manufacturer’s protocols. Briefly, FFPE fibroblast samples were 

initially protease and DNA nuclease digested (proprietary enzymes) and then the 

RNA was purified using column-based glass fibre filters. The initial 

deparaffinisation step was omitted as this was carried out prior to staining and LCM. 

RNA was eluted from filters with 60 µl nuclease-free water. To increase yield, this 

eluate was passed through the filter three times (a further modification from the 

manufacturer’s protocol). In the case of cell culture samples, briefly, following cell 

lysis the nucleic acid molecules were separated from proteins by acid-

phenol:chloroform, a glass fibre column was then used to purify the RNA and the 

product was eluted with nuclease-free water (Ambion™, Cat no. AM9937). 242 – 

571 ng RNA was extracted from FFPE fibroblast enriched samples, while 600 ng – 

2 µg was typically extracted from tissue culture samples. 
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2.8 Reverse transcription of miRNA 

Reverse transcription (RT) was carried using either the pre-designed Megaplex™ 

Primer Human Pools Sets v2.1 or v3.0 (Applied Biosystems™, Cat nos. 4399966 & 

4444750) or individually selected TaqMan® microRNA RT primers (Applied 

Biosystems™, Cat no. 4427975) with the TaqMan® MicroRNA Reverse 

Transcription Kit (Applied Biosystems™, Cat no. 4366596) following the 

manufacturer’s protocol. 120 ng of FFPE fibroblast enriched RNA was used for 

each primer pool, 240 ng from each sample in total. With tissue culture samples, 

where amounts of RNA were less restricted, typically 500 – 1,000 ng was used. The 

volumes of RNA for the different samples were standardised by evaporating the 

liquid in a Savant speed vac SC110 centrifuge and resuspending in 3 µl nuclease-

free water. Briefly, 3 µl RNA was added to 100 mM deoxyribonucleotide 

triphosphates, MultiScribe Reverse Transcriptase, 10X RT buffer, nuclease-free 

water, RNase inhibitor, MgCl2 and RT primer or megaplex primer pool with a final 

reaction volume of 7.5 µl. When using individual RT primers the thermal 

programme was 16 °C for 30 min, 42 °C for 30 min, 85 °C for 5 min and finally 

chilled at 4 °C. For the megaplex reactions, pulsed reverse transcription reaction 

conditions were used because they improve detection sensitivity without bias (Tang 

et al., 2006). Thermal cycling conditions were 16 °C for 2 min, 42 °C for 1 min, 

50°C for 1 s, repeated for 40 cycles, then 85 °C for 5 min and finally cooled to 4 °C. 

Following reverse transcription samples were either used immediately for qPCR 

analysis or stored at -20 °C. 

2.9 Preamplification of miRNAs 

Pilot experiments showed that quantitative polymerase chain reaction (qPCR) 

sensitivity was problematic with levels of RNA as low as 100 ng. Therefore 

preamplification was used. The Applied Biosystems® TaqMan® PreAmp Primer 

Pools and Master Mix was chosen because this system allows amplification with 

relatively-little bias, giving extremely high correlations between relative levels of 

cDNA pre- and post-amplification (Mestdagh et al., 2008). The manufacturer’s 

protocol was followed. Briefly, 2.5 µl of RT cDNA product was added to TaqMan® 
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PreAmp Master Mix (Applied Biosystems™, Cat no. 4391128), nuclease-free water 

and either Megaplex™ PreAmp Primers Human Pool A (Applied Biosystems™, Cat 

no. 4399233) or Pool B (Cat no. 444282). Thermal cycling conditions were 95 °C 

for 10 min, 22 °C for 2 min, 72 °C for 2 min, 12 cycles of 95 °C for 15 s followed 

by 60 °C for 4 min, 99.9 °C for 10 min and finally cooled to 4 °C. After thermal 

cycling 75 µl 0.1X Tris-EDTA was added to each sample and samples were stored 

at -20 °C. 

2.10 Quantitative polymerase chain reaction (qPCR) 

Quantitative polymerase chain reaction (qPCR) was carried out either in 384 well 

TaqMan Low Density Array (TLDA) cards (TaqMan® Array Human MicroRNA 

A+B Cards Set v2.0 and v3.0, Applied Biosystems™, Cat no. 4398965 & 4444913) 

or in 96 well plates with TaqMan® Small RNA qPCR primers (20X) (Applied 

Biosystems™, Cat no. 4427975). When using a TLDA card, following the 

manufacturer’s protocol, 450 µl TaqMan® Universal PCR Master Mix, No 

AmpErase® UNG (Applied Biosystems™, Cat no. 4324018), 441 µl nuclease-free 

water and 9 µl preamplification product were mixed and dispensed into 8 reservoirs 

on each card. The reaction mixture was drawn into each well containing a specific 

primer by centrifugation and the card was sealed. The qPCR reaction was carried out 

and quantified by the 7900HT Fast Real-Time PCR System (Applied Biosystems™, 

Cat no. 4329001). With individual primer qPCR, scaled down volumes of the 

manufacturer’s protocol were used. Briefly, within each well was 0.5 µl TaqMan® 

Small RNA qPCR primer, 5 µl TaqMan® Universal Master Mix II, 3.835 µl 

Nuclease-free water and 0.665 µl RT or preamp product were combined. The qPCR 

was run on the 7500 Real Time PCR System (Applied Biosystems™, Cat no. 

4351105). The passive reference within the wells was ROX dye and the detector dye 

was FAM. A no template control was included for each primer on each plate.	  

Reactions	   were	   carried	   out	   as	   technical	   triplicates. The thermal cycling 

conditions for both reactions were 50 °C for 2 min, 95 °C for 10 min, 40 cycles of 

95 °C for 15 s followed by 60 °C for 60 s. 
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2.10.1  qPCR data analysis 

Each qPCR well was reviewed for adequate passive reference signal. The 

amplification curves for each qPCR plate were reviewed and the cycle threshold (Ct) 

set in the linear exponential phase. Target Ct values were normalised by subtracting 

the geometric mean of the reference Ct values (ΔCt). Small nuclear RNA (snRNA) 

U6 and small nucleolar RNA RNU48 were used as references, as they are stably 

expressed at high levels across a range of human tissue types and cell lines and have 

been validated by other studies (Torres et al., 2013, Davoren et al., 2008). Relative 

expression levels were calculated using 2-ΔCt (assuming 100% primer efficiency). 

With the low density qPCR array wells with Ct <40 were regarded as ‘detected’ and 

expression levels calculated.  

For the TLDA qPCR normalised Ct values (2-ΔCt) were loaded into ‘R’ for clustering 

analysis (R Core Team, 2016). Analyses were performed on pool A individually and 

pools A and B combined. The Euclidean distance between each pair of samples was 

computed, then agglomerative hierarchical clustering was performed on the distance 

matrix using complete linkage. This analysis was carried out by the bioinformatician 

Dr Alastair Droop (University of Leeds). 

2.11 Chromogenic in situ hybridisation 

5 µm sections were taken from whole tissue or TMA blocks (section 2.4). Sections 

for the work were cut by Sarah Perry, an experienced FFPE tissue sectioner.  

Chromogenic in situ hybridisation (CISH) was carried out using the miRCURY 

LNATM microRNA Detection (FFPE) probes and ISH Optimization Kit 2 (Exiqon, 

Cat No. 90002) using the published manufacturer’s recommended protocol with 

optimisation of the appropriate steps (Jorgensen et al., 2010). CISH involved 

hybridisation of locked nucleic acid (LNA) miRNA-complementary probes. LNA 

probes have increased thermal stability that increases the binding strength and 

specificity of the probe to the miRNA of interest. LNA probes were labelled at 3’ 

and 5’ ends with non-mammalian hapten, digoxigenin (DIG). DIG is recognised by 

a specific anti-DIG antibody conjugated directly to alkaline phosphatase (AP). AP 

converts substrate NBT-BCIP (4-nitro-blue tetrazolium and 5-bromo-4-chloro-3’-

indolylphosphate) to form a dark blue precipitate. 
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To ensure the experimental setup was relatively RNase free, all solutions were made 

with DEPC-treated water and autoclaved; all glassware was heat treated for 8 hours 

at 180 °C prior to use and sterile and RNase free filter pipette tips were used. Cooled 

slides were deparaffinised by being washed in xylene for 3 x 5 min, dipped 20 times 

then washed for 5 min in 99.9% ethanol, dipped 10 times then washed for 5 min in 

96 % and 70% ethanol and washed for 2 min in phosphate buffered saline (PBS). 

Proteinase-K digestion was carried out using 300 µl of 15 µg/ml proteinase-K 

reagent per slide for 10 min at 37 °C. Following demasking with proteinase-K, the 

slides were dehydrated in serial ethanols by being dipped 10 times then washed for 1 

min in 70%, 96% and 100% ethanols. The hybridisation probe was denatured at 90 

°C for 4 min. Hybridisation was carried out using 25 µl per slide at 53 °C for 1 hour. 

The concentration of probe (5 nM – 1 µM) was optimised for each probe 

individually. To ensure even coverage of probe over the whole tissue section and 

prevent evaporation of the probe, a coverslip was placed on top of the tissue and the 

edges sealed with Marabu-Fixogum Rubber Cement (Fred Aldous, Cat no. 

010160032). After hybridisation, the fixogum and coverslips were removed, taking 

care not to disrupt tissue sections. The sections then went through stringency washes 

in serial saline sodium citrate (SSC) solutions at 53 °C to remove excess, non-

specifically bound probe. SSC solutions were made up with UltraPure™ SSC, 20X 

stock (Invitrogen™, Cat no. 15557044). Wash steps were 5 min 5X SSC, 2 x 5 min 

1X SSC, 3 x 5 min 0.2X SSC and finally in PBS at 20 °C. Slides were loaded onto a 

Shandon™ Sequenza™ (Thermo Scientific™, Cat no. 73-310-017) with PBS 0.1% 

Tween-20 (Sigma-Aldrich, Cat no. P9416). Endogenous AP activity was blocked 

using PBS with 0.1% Tween-20, 2% sheep serum (Sigma-Aldrich, Cat no. S3772) 

and 1% bovine serum albumin (BSA) (Sigma-Aldrich, Cat no. A8531) for 15 min. 

Anti-DIG antibody (Roche, 150 U in 200 µl, Cat no. 11093274910) at 1 in 800 

dilution with dilutant PBS, 0.05% Tween-20, 1% sheep serum, 1% BSA was applied 

to slides for 1 h. After antibody binding, slides were washed with PBS 0.1% Tween-

20 for 3 x 3 min. AP substrate was prepared fresh on the day of the experiment by 

dissolving 1 tablet NBT-BCIP (Roche, Cat no. 11697471001) in 10 ml Milli-Q 

water with 20 µl Levamisole (Sigma-Aldrich, Cat no. 31742-250MG) 100 mM 

stock. Slides were then incubated with AP substrate for 2 hours at 30 °C in the dark. 

To terminate the reaction, slides were washed with KTBT an aqueous solution of 50 
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mM Tris-HCl, 150 mM NaCl, 10 mM KCl for 2 x 5 min. The slides were then 

washed 2 x 1 min H2O and the counter stain Nuclear Fast Red™ (Sigma-Aldrich, 

Cat no. N3020) was applied for 1 min. Slides were removed from the slide rack, 

washed in running tap water for up to 10 min, dehydrated in serial ethanols, dipped 

10 times then washed for 1 min in 70%, 96% and 99.9% ethanol. Finally coverslips 

were mounted using Eukitt® quick-hardening mounting medium (Sigma-Aldrich, 

Cat no. 03989).  

For each tissue block CISH was carried out with positive and negative controls, and 

with the miRNA probes of interest. The positive control was 5’-DIG labelled probe 

against U6 snRNA at 5 nM. The negative control was double-DIG labelled 

scrambled probe at the same concentration as the experimental probe. MiR-21 

double-DIG labelled probe was used at 400 nM. CISH with probes 1 µM miR-30a 

and 800 nM miR-27b was also attempted. 

2.11.1  CISH scoring 

A scoring system was developed by myself and Dr Eldo Verghese (supervisor, and 

breast pathology consultant within LTHT). The scoring system developed is similar 

to the histoscore (H-score) in terms of the way it is calculated (Nenutil et al., 2005). 

The percentage of cells stained was assessed (0 – 100) and the intensity of the 

staining was assessed; (1) for weak, (2) for moderate and (3) for strong staining. The 

intensity score was multiplied by the percentage of the target cell type scoring at that 

intensity to give an overall H-score 0 – 300. Positive staining was often 

predominantly seen in CAFs located closest to tumour cells within the tumours. The 

tumour sections were therefore scored as staining in the whole population of CAFs, 

staining in CAFs ≤ 0.075 mm from a tumour cell, and CAFs > 0.075 mm from a 

tumour cell. An eye-piece graticule was used to determine distances of fibroblasts 

from tumour cells. Ten high power fields were scored on each whole tissue section. 

50% of sections were scored twice, independently, by Dr Eldo Verghese and myself. 

The inter-observer correlation for this ordinal scoring system was calculated using 

the intraclass correlation coefficient rather than the kappa-statistic because the 

staining was scored using a 0 – 300 score rather than a few discrete groups. 

Scoring of TMA cores was carried out in a similar way using the H-score, but rather 

than scoring 10 high power fields, the entire core was scored at high power. When 
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scoring the CAFs in TMA cores, the separation of CAFs into CAFs ≤ 0.075 mm and 

CAFs > 0.075 mm from tumour cells was not done, all CAFS were scored together 

because a large proportion of the tissue within a core is < 0.075mm from the edge of 

the core, and therefore may have been close to tumour cells outside the core, but 

could be miscategorised. Cores were deemed to be adequate if at least a quarter of 

the core tissue was present. If not all three cores were present on the slide or 

adequate following CISH staining data from cores that were present was included 

and used to calculate the mean CISH score. 

2.11.2  Comparison of CISH scores with clinical and survival data 

CISH TMA scores were correlated with clinicopathological parameters. The 

parameters correlated were patient age at diagnosis, tumour size, tumour grade, 

number of positive lymph nodes at initial resection or following axillary node 

clearance and Nottingham Prognostic Index. The clinicopathological parameters 

were correlated with miR-21 CISH score using Spearman’s correlation as 

appropriate for ordinal data. It was not appropriate to carry out a multivariate 

analysis with these data as the means of each variable were not compared, the 

individual values for each case were correlated. 

CISH TMA scores were correlated with disease free survival, disease specific 

survival and overall survival using Kaplan-Meier curves. For the calculation of 

clinical outcomes date of diagnosis was defined as the date the diagnostic core 

biopsy was taken. Disease free survival was defined as the time from the date of 

diagnosis to the date of first relapse either radiological, clinical or pathological, 

whichever was the earliest (outcome 1) or the time to the most recent clinical 

encounter if no relapse had occurred (outcome 0). Disease specific survival was 

defined as the time from the date of diagnosis to the date of death from breast cancer 

(outcome 1); or date of death from another cause or patient still alive at most recent 

clinical encounter (outcome 0). Overall survival was defined as the time from 

diagnosis to the date of death from any cause (outcome 1) or patient still alive at 

most recent clinical encounter (outcome 0). Lymph node status was defined as any 

number of lymph nodes positive or no metastasis to lymph nodes, micrometastasis 

and isolated tumour cells identified in lymph nodes were defined as negative, in line 

with clinical classification (Galimberti et al., 2013). There is variation in whether 
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lymph nodes are classified as positive or negative when micrometastasis (0.2-2 

mm), are present. The classification of micrometastasis as negative lymph node is 

based on the standard practise in Leeds Teaching Hospitals Trust.  

2.11.3  CISH and qPCR comparative analysis 

The qPCR relative expression was correlated with CISH H-scores to determine how 

similar the results from these two different techniques were. The H-score is an 

ordinal scale and the qPCR relative expression is an interval scale therefore the 

Pearson correlation coefficient was used to compare these values. 

2.12 Molecular cloning 

2.12.1  Transformation and propagation 

Competent E. coli (NEB® 5-α Competent E. coli, New England Biolabs® Inc., Cat 

no. E0554s) were transformed by thawing 50 µl on ice, adding 2-3 µl (<500 ng 

complete plasmid or <25 ng DNA ligation mix) DNA, giving a heat-shock at 42 °C 

for 45 s, then placing back on ice for 2 min. Propagation occurred by adding, 

initially, 250 µl SOC outgrowth medium (Biolabs, Cat no. B9020S) for 45 min at 37 

°C in a shaking incubator at 300 rpm. This was then either poured onto an ampicillin 

agar plate or added to 500 ml LB-ampicillin medium and incubated overnight at 37 

°C. LB ampicillin medium was made by adding 20 g LB-Broth (Sigma-Aldrich, Cat 

no. L3022) to 1 l distilled water, autoclaving and adding 500 µl ampicillin (Sigma-

Aldrich, Cat no. A5354, 100 mg/ml stock solution). Single colonies grown on an 

agar plate were selected using a pipette tip and grown overnight in 2-3 ml LB 

ampicillin medium.  

2.12.2  Plasmid purification 

Plasmid was purified from bacteria using either the HiSpeed Plasmid Midi Kit 

(Qiagen, Cat no. 12643) or the QIAprep Spin Miniprep Kit (Qiagen, Cat no. 27106) 

following the manufacturer’s protocol exactly. 

2.12.3  Cloning pmirGLO-21 reporter plasmid 

In order to prepare vector for inserting oligos containing a miR-21 target site, 

pmirGLO Dual-Luciferase miRNA Target Expression Vector (Promega, Cat no. 
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E1330, Figure 2-2), underwent restriction digestion using site specific restriction 

enzymes in appropriate buffers. 

 

 

Figure 2-2 Plasmid map of pmirGLO plasmid 
This map was provided by Promega who supplied the pmirGLO plasmid for 
cloning and insertion of the desired miRNA target site. 

 

2.5 µg plasmid DNA was added to 2.5 µl Sac1 (New England BioLabs® Inc., Cat 

no. R0156S), 5 µl 10X NEbuffer 1 (New England BioLabs® Inc., Cat no. B7001S), 

0.5 µl 100X Bovine Serum Albumin (BSA, New England BioLabs® Inc., Cat no. 

B9000S) and the total volume made up to 50 µl with DNase-RNase-free water and 

incubated at 37 °C for 4 hours. The product was purified using the QIAquick 

Purification Kit (Qiagen, Cat no. 28104) following the manufacturer’s protocol 
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exactly, eluting in 50 µl DNase-RNase-free water. For the second restriction 

digestion 1.5 µg DNA was added to 1.5 µl Sal1 (New England BioLabs® Inc., 

R0138S), 5 µl 10X NEbuffer 3 (New England BioLabs® Inc., Cat no. B7003S), 

BSA and DNase-RNase-free water and incubated as described above. The digestion 

product was purified as described above using the QIAquick Purification Kit.  

The oligonucleotides (see Appendix D) for insertion into the plasmid were annealed 

by being suspended in 46 µl annealing buffer (10 mM Tris-HCl, pH 7.5-8.0, 50 mM 

NaCl, 1mM EDTA), heated to 95 °C and allowed to cool slowly. A ratio of 1:1 for 

each oligonucleotide was used. 

For the ligation reaction a ratio of 1:3 vector to insert was used. The vector and 

insert were combined with 1 µl T4 DNA Ligase Reaction Buffer (New England 

BioLabs® Inc., Cat no. B0202S), 1 µl T4 DNA Ligase (New England BioLabs® 

Inc., Cat no. M0202S) and made up to a final volume of 10 µl with DNase-RNase-

free water and incubated overnight at 16 °C. 

2.12.4  Sequencing 

Sanger sequencing of plasmids was carried out using the BigDye Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems, Cat no. 4337455). 1 µl Big Dye 3.1, 1 

µl purified plasmid, 1 µl primer, 1.5 µl Big Dye buffer and 5.5 µl DNase-RNase-

free water were mixed and thermal cycled 96 °C for 1 min, 25 cycles of 96 °C for 10 

s, 50 °C for 5 s, 60 °C for 4 min, then held at 4 °C. After cycling, 5 µl 125 mM 

EDTA and 60 µl 100% ethanol were added to each sample and spun at 3060 x 

Relative Centrifugal Force (RCF) for 30 min at 22 °C. The plate was then inverted 

and spun at 8 x RCF for 1 min. 60 µl 70% ethanol was added to each sample and 

spun 805 x RCF for 15 min at 4 °C. The plate was then inverted again and spun at 8 

x RCF for 1 min to remove supernatant and allowed to dry. The plate was then 

either frozen until needed or 10 µl Hi Di Formamide (Applied Biosystems™, Cat 

no. 4440753) added to each well and loaded onto the 3130xl Genetic Analyzer 

(Applied Biosystems™). 
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2.13 Tissue culture 

2.13.1  Source of cell lines and basic culture conditions 

The triple negative breast epithelial cancer cell line MDA-MB-231 was obtained 

from American Type Culture Collection (ATCC® HTB-26). A derivative stably 

expressing green fluorescent protein and firefly luciferase (MDA-MB-231-GFP-

f.luc) was created by lentiviral transduction with appropriate vectors by Dr Mihaela 

Lorger (University of Leeds) as described previously (Lorger and Felding-

Habermann, 2010). Fibroblast lines were created by immortalisation of fibroblasts 

extracted from primary breast cancer resections and reduction mammoplasties using 

a retrovirus allowing stable over-expression of hTERT as described previously 

(Verghese et al., 2011). NF-1 and NF-2 lines have been described previously 

(Verghese et al., 2013, Simpkins et al., 2012), while further lines were created 

specifically for this work as detailed in section 2.13.2. Specifically, CAF-1 cells 

were extracted from breast tumour tissue and immortalised, while CAF-2 cells were 

extracted from breast tumour tissue and cultured as primary (non-immortal) cells. 

All cells were grown at 37 °C in 5% CO2. Cells were grown in Dulbecco’s Modified 

Eagle Medium, high glucose, GlutaMAX™ Supplement (DMEM, Gibco™, Cat no. 

10566016) with 10% heat inactivated Foetal Bovine Serum (FBS, Sigma-Aldrich, 

Cat no. F7524-500ML) (complete medium), unless stated otherwise for specific 

protocols. To passage, cells were washed with PBS and detached from the flask 

using 1-4 ml Trypsin, (Gibco®	  2.5	  %	  (10X),	  Cat	  no.	  15090-‐046) diluted with PBS 

to 1X at 37 °C for approximately 3-10 min. Trypsin was deactivated using complete 

medium. The cell suspension was centrifuged at 400 x RCF for 5 min and 

supernatant discarded. Cells were re-suspended in complete medium seeded into a 

new flask. Cells were passaged 1 in 2 – 1 in 5 every 2-5 days, to maintain growth in 

the exponential phase. 

2.13.2  Fibroblast extraction 

Human breast fibroblasts were extracted from fresh tissue in the form of breast 

cancer resections, sourced from the Leeds Breast Tissue Bank (see section 2.1 & 

Appendix B). 6-well plates were prepared in advance by coating with 1 ml of 50 

µg/ml Collagen, Type 1 solution from rat tail (Sigma-Aldrich, Cat no. C3867-1VL) 
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diluted in 0.02 M acetic acid and subsequent incubation at 37 °C for minimum 1 

hour to allow the collagen to set. Wells were rinsed thoroughly, at least 3 times, with 

PBS to ensure all the acid was removed. Plates were then either used immediately or 

stored at 4 °C for up to 1 week. Fresh tumour tissue, typically 7 x 7 x 2 mm in size, 

was chopped up using surgical blades on a petri dish, with a small amount of 

primary preparation medium added. Primary preparation medium was RPMI 1640 

Medium (Gibco™, Cat no. 11875093) with 5% FBS. Excess fat was removed from 

tissue and the minced up tissue was added to a T25 flask. 5 ml primary preparation 

medium, 1 ml Collagenase from Clostridium histolyticum (Sigma-Aldrich, Cat no. 

C2674-100MG), 50 µl Amphotericin B (250 µg/ml, Gibco™, Cat no. 15290026) 

and 50 µl Penicillin-Streptomycin (Pen-Strep, 5 000 U/ml, Gibco™, Cat no. 15070-

063) were added to the flask with the tissue. The flask was incubated overnight at 37 

°C.  

After digestion the tissue was filtered and washed. Larger pieces of tissue that did 

not pass through the cell strainer were returned to the original tube and both tubes 

topped up to 20 ml with PBS. At this step fibroblasts were predominantly in single 

cell suspension and passed through the cell strainer, whereas epithelial cells were 

retained. Cells were collected by centrifugation at 290 x RCF for 3 min and pellets 

were re-suspended in 15 ml PBS. The centrifuge spin and re-suspension in PBS was 

repeated 3 times. After the final spin pellets were re-suspended in 3-9 ml complete 

medium. PBS was removed from collagen-coated wells and the wells were seeded 

with either cell strainer filtrate or larger tissue pieces. 1-3 wells were seeded 

depending on the size of each pellet. 30 µl Pen-Strep and 30 µl Amphotericin B was 

added to each well. Although the wells containing the larger pieces of tissue were 

likely to contain a mixture of cells including fibroblasts and epithelial cells, 

fibroblasts only were selected for growth in this medium as primary epithelial cells 

typically require additional factors such as insulin and hydrocortisone. 

2.13.3  Fibroblast immortalisation 

Once primary fibroblasts were established and growing, frozen stocks were prepared 

and, separately, cells were immortalised. In order to produce viral particles to allow 

immortalisation, Phoenix-AMPHO cells (phoenix-A, ATCC® CRL-3213™) were 

used. These were grown to 60% confluence in a T25 flask. 8 µl Lipofectamine® 
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2000 (Invitrogen™, Cat no. 11668-019) was incubated at room temperature with 2-3 

µg pBABE-puro-hTERT plasmid (siPORT XP-1, Applied Biosystems, Cat no. 

AM4507) in serum-free medium for 20 min to allow complexes to form. 4 ml 

complete medium was added to the complexes and the medium changed on the 

phoenix-A cells to complex containing medium. Phoenix-A cells were incubated 

overnight at 37 °C. The next day the medium was changed to fresh, complete 

medium. The following day, the first harvest of virus supernatant was collected and 

fresh medium added to the cells, the virus supernatant was filtered through a 0.45 

µm filter and stored overnight at 4 °C. On the fourth day a second virus supernatant 

was harvested, filtered, pooled with the first virus supernatant and used immediately 

or frozen at -80 °C. This work to produce cell supernatant containing viral particles 

was carried out by a colleague, Dr Claire Nash (then part of the wider breast group 

in Leeds; now at McGill University, Montreal).  

Primary fibroblasts were grown in a T25 flask to 60% confluence. The medium was 

removed and Polybrene 1 µg/ml (1,5-dimethyl-1,5-diazaundecamethylene 

polymethobromide, hexadimethrine bromide, Sigma-Aldrich, Cat no. 107689), 

serum-free DMEM and 1 ml virus supernatant added to the flask. After overnight 

incubation at 37 °C, the medium was changed to complete medium. Cells were 

selected for having incorporated the virus simply by continued culture, as fibroblasts 

without the virus would enter senescence after 6-8 passages. 

2.13.4  Co-cultures 

MDA-MB-231 tumour cells were co-cultured with fibroblasts (NF or CAF lines) in 

three different ways; contact co-culture, transwell co-culture and conditioned 

medium. In each case cells were grown in co-culture for up to 3 days. 3 days co-

culture was selected because it enabled cells to be seeded at a density where there 

was some contact between cells but sufficient space for the cells to proliferate 

without becoming over-confluent within the time period.   

2.13.4.1 Contact co-culture 

In contact co-culture fibroblasts and tumour cells were seeded together in flasks or 

wells in direct contact with each other, allowing for cell-cell communication as well 

as paracrine communication to take place. 
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2.13.4.2 Transwell co-culture 

In transwell co-culture assays 1 x 105 fibroblasts were seeded into each well of a 24-

well plate. 1 x 104 MDA-MB-231 cells were seeded into a 1 µm pore size PET 

membrane 24-well cell culture insert (BD Falcon, Cat. No. 353104). This permeable 

support was then placed into the fibroblast well allowing exchange of soluble factors 

but not movement of cells between the two compartments. 

2.13.4.3 Conditioned media co-culture 

In conditioned medium co-culture experiments, fibroblast cells were cultured with 

conditioned medium taken from separate MDA-MB-231 cultures, or – as a control – 

taken from parallel fibroblast cultures. Fibroblasts were seeded at 1 x 105 cells per 

well in a 24-well plate. Half the medium in each experimental well was replaced 

with medium from parallel MDA-MB-231 or fibroblast cultures. In an effort to 

reduce any influence of depletion of growth factors etc. within the media due to cell 

metabolism, the medium for conditioning was replaced every day, it was incubated 

with the cells for 24 h to become conditioned before being transferred to the 

experimental wells. 

2.13.5  Fluorescence activated cell sorting 

Fibroblasts and MDA-MB-231-GFP-f.luc cells were grown in contact co-culture, 

see section 2.13.4.1, and then separated by fluorescence activated cell sorting 

(FACS) based on GFP fluorescence (B530 FITC Green Fluorescent Protein 

detector) and side scatter, with the non-fluorescent cells (the fibroblasts) being 

collected. Typically 1 x 106 NF-1 or CAF-1 were seeded with 3-5 x 105 MDA-MB-

231-GFP-f.luc into T75 or T150 flasks to achieve tumour cell : fibroblast ratios of 

1:1 – 3:1 depending on comparative cell division rates. After 3 days growth, cells 

were suspended and washed three times in PBS, filtered (Falcon™, Cat no. 352340) 

and transferred to a polypropylene FACS tube (Falcon™, Cat no. 352063). A 

comparison sample of fibroblast cells mixed with tumour cells immediately prior to 

FACS was used. A purity of at least 96 % GFP-negative cells was achieved from the 

FACS cells collected. Typically 1- 4 x 105 cells were collected from FACS. 
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2.13.6  Transfection of cell lines 

Cells were transfected with synthetic miRNAs and with DNA plasmids. A synthetic 

pre-miRNA mimic and a miRNA inhibitor were used to transiently, fast forward or 

reverse transfect cells. Briefly, miRNA mimics (Ambion, Cat no. 4464066) or 

mimic control (Ambion, Cat no. 4464058) or miRNA inhibitors (Ambion, Cat no. 

4464084) or inhibitor control (Ambion, Cat no. 4464076) formed complexes with 

Hiperfect transfection reagent (Qiagen, Cat no. 301705) in serum-free DMEM at 

room temperature for 10 min. Cells were suspended in serum-free DMEM, as 

described for passaging in section 2.13.1. Cells were filtered, diluted to the 

appropriate concentration mixed with complexes and seeded into wells. The volume 

of transfection reagent used varied depending on the size of the well and was 

following the manufacturers recommendations, 24-well plate 3 µl per well, 96-well 

plate 0.5 µl per well. Following manufacturer’s recommendation the concentration 

of transfected miRNA was optimised. Initially, transfection with 10 nM, 25 nM and 

50 nM miRNA mimic were carried out. 10 nM was found to be sufficient to 

significantly increase miRNA levels within the cells, quantified by qPCR. It is well 

documented that concentration for miRNA inhibitor needs to be several fold higher 

than for miRNA mimic to produce a significant decrease in functional miRNA 

levels. Therefore 50 nM miRNA inhibitor was tested and found to significantly 

decrease miRNA functional levels. Transfection complexes were removed after 12-

18 hours and complete medium added to each well. 

Forward transfection with plasmid DNA was carried out by seeding cells and 

growing them for 24 hours in a 24-well plate. Transfection complexes were formed 

by incubating a ratio of 0.5 µg plasmid to 1 µl Lipofectamine® 2000 Reagent 

(Invitrogen, Cat no. 52887) in Opti-MEM™ medium (Gibco™, Cat no. 11058021) 

for 20 min at room temperature. The complexes were added to the fibroblast wells 

and incubated at 37 °C. After 6 h the medium was changed to complete medium. 

2.13.7  MTT assays 

In preparation, on the day prior to the experiment, MTT (3-(4,5-Dimethylthiazol-2-

yl)-2,5-Diphenyltetrazolium Bromide) (Sigma-Aldrich, Cat no. M2128-1G) was 

made into a 5 mg/ml stock solution with PBS and stored in the dark at 4 °C. 

Fibroblasts (NF-1, NF-2, CAF-1 and CAF-2) were seeded at a density of 1-3 x 104 
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cells per well into a 24-well plate and allowed to grow for up to 5 days. On the day 

measurement of number of viable cells was taken, 50 µl MTT stock solution was 

mixed with 200 µl complete medium and added to each well of a 24-well plate. 

Plates were incubated at 37 °C, wrapped in foil for 3 hours to allow the reaction to 

take place. After 3 hours the MTT solution was removed and the formazan dye 

dissolved in propan-1-ol. The plate was gently shaken for 15 minutes to allow the 

dye to dissolve. The solution was then transferred to a 96-well plate and the optical 

density was measured at 570 nm using a plate reader (Opsys, Dynex Technologies 

or Berthold Mithras LB 940). 

Optical density readings were normalised to the readings taken on the first day for 

each miRNA complex transfected, i.e. control readings from days 2-4 were 

normalised to day 1 control and miR-21 mimic readings from days 2-4 were 

normalised to miR-21 mimic reading on day 1. Initially MTT assays were carried 

out over 3 days, as small non-significant changes in measurements were noted on 

day 3 the assay was extended to 4 days to see if this trend in differential growth rate 

continued or increased. The mean reading for the three independent wells for each 

transfected miRNA within an experiment were compared using Student’s t-tests. 

The means from each of three independent repeat experiments were combined and a 

Student’s t-test carried out on the combined data.  

2.13.8  Luciferase assays 

Luciferase activity within cells was measured using the Dual-Luciferase® Reporter 

Assay System (Promega, Cat No. E1910). All solutions were made up to 1X 

concentration with 18 MΩ water filtered through a 0.45 µm filter to remove 

particulate matter and then further diluted 1:2 with filtered water. Cells were washed 

twice with PBS and lysed with passive lysis buffer for 15 min rocking gently at 

room temperature. The lysate was then either stored at -20 °C or transferred to a 

white 96-well plate for reading. Luciferase assay readings were taken on the 

Berthold Mithras LB940 Multimode Microplate Reader. The automated plate reader 

added 20 µl luciferase assay reagent, shook the plate for 2 s, waited for 2 s, then 

read the luminescence for 5 s, this measured the firefly luciferase activity. If a single 

luciferase assay was being done, this was the only reading that was taken from each 

well. If a dual-luciferase assay was being done 20 µl Stop&GLO was then added to 
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the well and the same settings used, shake 2 s, delay 2 s, read 5 s, this measured the 

Renilla luciferase activity. Two or three repeats were carried out with each fibroblast 

culture in contact co-culture with MDA-MB-231 luciferase expressing cells. The 

number of repeats with each fibroblast culture is indicated in the respective results 

figure. 

2.13.9  Scratch wound assays 

Scratch wound assays were used to measure migration and invasion. The formation 

of the wound was the same in both, but the setting up of the plate before and after 

differed. This assay was carried out with fibroblasts (NF-1, NF-2, CAF-1 and CAF-

2) on their own and in contact co-culture with MDA-MB-231-GFP-f.luc, as 

described in section 2.13.4.1. 5-10 x 103 fibroblasts per well were seeded into a 96-

well plate, with 5 x 103 MDA-MB-231-GFP-f.luc cells per well if required, to be 

just confluent at the time of scratching. In the migration scratch wound assay a 

wound was made in the wells using the Essen® 96-well WoundMaker™. This is a 

tool with 96 pins spaced at the same distance as the wells. The WoundMaker™ 

slides the pins along the surface of the centre of each well, removing the cells in a 

uniform line across the middle of each well to form the appearance of a wound or 

scratch in a confluent monolayer of cells. The wells were washed twice with media 

to remove any debris within the wound and the plate was loaded onto the IncuCyte® 

Zoom Live-Cell Analysis System (Essen Bioscience). The Incucyte was 

programmed to scan each well at 10x magnification, every hour for 48-72 hours. 

Cell migration was measured using relative wound density and % GFP confluence 

metrics. Relative wound density was used as the wound can take up to 48 hours to 

close, this metric assesses the density of cells within the wound taking into account 

the background cell density to remove the influence of cell division within the 

wound in increasing wound confluence. 

For the invasion assay wells were coated with 50 µl 300 µg/ml Collagen, Type 1 

solution from rat tail, (Sigma-Aldrich, Cat no. C3867-1VL) prior to seeding. Before 

wounding the wells a chilled reagent plate was setup. The reagent plate contained a 

column of wells containing 200 µl chilled 5x Neutralisation solution and a column 

of wells containing 150 µl collagen type I solution 3.75 mg/ml for each pair of 

experimental columns. 5x Neutralisation solution was made by mixing 1 ml 7.5% 
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NaHCO3 (Sigma-Aldrich, Cat No. 401676-2.5KG-D), 1 ml FCS and 2 ml serum-free 

DMEM. The reagent plate was kept cool using the 96F CoolBox® Microplate 

System (BioCision, Cat No. BCS-147) together with the CoolSink® XT 96F 

(BioCision, Cat No. BCS-536). A scratch was made horizontally across the centre of 

each well using the WoundMaker™ as described above. The experimental wells 

were washed twice with complete medium and placed on a second CoolSink® XT 

96F within a 96F CoolBox® for 5 min to chill. During this time 37.5 µl chilled 5x 

Neutralisation solution was transferred into the collagen type I containing wells to 

neutralise the acid within the wells. After 5 min the medium was removed from the 

experimental wells. 50 µl neutralised collagen type I was then quickly added to the 

wounded experimental wells, taking care not to allow bubbles to form in the 

collagen. Both plates were kept chilled and chilled pipette tips were used to prevent 

the collagen type I setting before it was added to the experimental wells. If any 

bubbles formed they were removed by blowing ethanol vapour across the surface of 

the collagen. The experimental plate was then transferred to a 37 °C incubator onto a 

pre-warmed CoolSink® for 30 min to allow the collagen to set. After 30 min 100 µl 

complete medium was added to each well. Again any bubbles were removed using 

ethanol vapour. The plate was then loaded into the Incucyte. The plate was left for 

10 min for the temperature to equilibrate and to allow condensation to clear from the 

plate before incucyte scanning. 

The Incuctye software was programmed to recognise cells and the wound. From 

these measurements it calculated the density of cells in the wound compared with 

the density of cells in the wound in the first scanned image. It also compared the 

density of cells in the wound with the density of cells outside of the wound to take 

into account increase in cell density within the wound due to cell proliferation rather 

cell migration from outside the wound. The calculation of relative wound density 

was made using the equation below. 

Relative  wound  density   %

=   100  x   (density  of  wound  region  at  time  𝑡 − density  of  wound  region  at  time  0)(density  of  cell  region  at  time  𝑡 − density  of  cell  region  at  time  0)  



 
 

- 55 - 
 

Two or three repeats were carried out with each fibroblast culture in contact co-

culture with MDA-MB-231 GFP expressing cells. The number of repeats with each 

fibroblast culture is indicated in the respective results figure. 

 

2.13.10 Chemotherapy resistance assay 

2 x 104 cells per well of a 96-well plate were seeded in contact co-culture, as 

described in section 2.13.4.1. This assay was carried out with fibroblasts NF-1, NF-

2, CAF-1 and CAF-2 in contact co-culture with MDA-MB-231-GFP-f.luc. 

Epirubicin was added to the wells for 24 hours and then changed to fresh complete 

medium. Epirubicin was made up into high dose and low dose working 

concentrations of 79 µM and 1 µM, respectively. Epirubicin stock was dissolved in 

Dimethyl Sulfoxide (DMSO, Sigma-Aldrich, Cat No. 472301-100ML). DMSO 

without epirubicin was added to control wells. 48 h following treatment with 

epirubicin cell viability of MDA-MB-231-GFP-f.luc cells was measured using the 

luciferase assay as described in section 2.13.7. Data were normalised by dividing by 

luciferase activity in untreated (DMSO only) control wells. Two or three repeats 

were carried out with each fibroblast culture in contact co-culture with MDA-MB-

231 luciferase expressing cells. The number of repeats with each fibroblast culture is 

indicated in the respective results figure. 
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3 Chapter 3 

Differential expression of microRNAs between normal breast 

fibroblasts and breast cancer associated fibroblasts 

3.1 Abstract 

Stromal fibroblasts modify behaviour of epithelial breast cancer cells. My aim in 

this chapter was to identify microRNAs (miRNA) that are differentially expressed 

between normal breast fibroblasts and cancer associated fibroblasts (CAFs) of triple 

negative, basal-like breast cancers, with a view to understanding better CAF biology 

and therefore the potential molecular mechanisms by which CAFs influence cancer 

cells. 

First, samples of matched pairs of normal fibroblasts (NFs) and CAFs were prepared 

by laser microdissection from four triple negative, basal-like breast cancer cases. 

MiRNA expression profiles were determined using qPCR arrays. 48 miRNAs were 

found to be consistently differentially expressed between NFs and CAFs in these 

cases. Next, samples of matched NFs and CAFs were prepared from a further ten 

triple negative, basal-like breast cancers, and expression of selected miRNAs, miR-

21, miR-27b and miR-30a-3p, was examined. Differential expression of miR-21, 

miR-27b and miR-30a-3p was confirmed in this larger cohort (p = 0.0006, p = 

0.0295 and p <0.05 respectively). In order to validate my laser microdissection and 

qPCR methodology, expression was also examined using chromogenic in situ 

hybridisation in the same 14 cases. This confirmed the finding that miR-21 

expression is increased in CAFs, but miR-27b and miR-30a-3p expression was not 

successfully validated. Finally, expression of miR-21 was examined in an 

independent cohort of 150 triple negative breast cancer cases, using chromogenic in 

situ hybridisation on a tissue microarray supported by extensive clinical and 

pathological data. In support of my other findings, miR-21 expression was typically 

stromal rather than within epithelial cells. However, significant correlations between 

expression and clinical outcomes, including survival, were not evident. 
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In view of the well-established role of miR-21 as an oncogenic miRNA, I concluded 

that the function of miR-21 within the fibroblast compartment of breast cancer was 

worthy of further study (chapters 4 and 5). 
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3.2 Introduction 

CAFs play key roles in co-ordination between tumour cells and many of the other 

elements within the cancer stroma. CAFs produce a wide variety of matrix 

components, which in turn play a role in bioavailability of growth factors as well as 

tensile strength of the tumour. They produce a range of signalling molecules, 

including cytokines that influence the behaviour of inflammatory cells and pro-

angiogenic factors (Augsten, 2014, Kalluri and Zeisberg, 2006). CAFs, most 

importantly, interact with the tumour cells and can increase tumour cell migration, 

metastatic ability and resistance to chemotherapy (see section 1.2.2.4) (Augsten, 

2014, Kuzet and Gaggioli, 2016).  

The proportion of stroma in triple negative breast cancers is thought to have an 

influence on the risk of breast cancer recurrences (de Kruijf et al., 2011, Moorman et 

al., 2012). It is not known exactly which elements of the stroma have the biggest 

influence, but it is probable that various stromal components are necessary for this 

effect. It is therefore likely that CAFs contribute to this worsening of prognosis.  

The importance of the role of miRNAs in regulation of gene expression has become 

increasingly recognised (Bhattacharyya et al., 2006, Guo et al., 2010). Being able to 

influence gene expression means that miRNAs can affect the functions and activity 

of the cell, they can therefore influence which growth factors and other signalling 

molecules CAFs express as well as the levels of different extracellular matrix 

components they produce.  

In this chapter I address the first of my project aims, to identify miRNAs that are 

differentially expressed between NFs and CAFs in triple negative, basal-like breast 

cancer (see section 1.5). I hope to identify miRNA that may affect gene expression 

in CAFs and ultimately influence the behaviour of tumour cells through CAF-

epithelial cell interaction. 

3.3 Results 

3.3.1 Array profiling of microRNA expression in matched NFs and CAFs 

My aim was to identify differentially expressed miRNAs between 4 matched pairs 

of NFs and CAFs. To do this, first, I carried out laser capture microdissection 
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(LCM) to prepare matched samples highly enriched for NFs and CAFs from 4 cases. 

CAFs were taken from stroma next to carcinoma cells and NFs from benign breast 

tissue at least 10 mm away from tumour in the same individual patients. Images are 

shown in Figure 3-1 to demonstrate typical tissue regions selected as NFs and CAFs. 

 

 

 Figure 3-1 Representative images demonstrating LCM of fibroblasts 

Archival tissue blocks containing normal breast tissue (A) and tumour tissue 
(C) from triple negative, basal-like breast cancer resections were identified. 
Blocks were sectioned and stained with haematoxylin and eosin, before 
regions of fibroblasts were identified and isolated using laser capture 
microdissection (B and D). 

 

Expression levels of 671 miRNAs, along with the reference RNAs snRNA U6 and 

snoRNA RNU48, were quantified using low density qPCR arrays. Of the 671 

miRNA analysed, 291 were not detected in any of the 8 samples and 110 were 

detected in all of the samples. 

There is no consensus in the literature for exactly which reference(s) should be used 

for miRNA normalisation (Pan et al., 2016, Shidfar et al., 2016, Chen et al., 2016a). 

A B 

C D 
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Each miRNA was normalised to the geometric-mean of the references snRNA U6 

and snoRNA RNU48 (Davoren et al., 2008, Torres et al., 2013), as these were 

expressed at suitable levels in all 8 samples (i.e. within a range that was not hugely 

different from many of the miRNAs to be tested: Ct-values 18-27), and this pairing 

could realistically be used in future follow up studies of individual miRNAs, where 

– for example – array median normalisation would not be possible. 

For my first analysis, I used unsupervised agglomerative hierarchical clustering to 

look at the similarity in overall expression of the different miRNA across the 8 

samples (4 NFs and 4 CAFs). The dendrograms representing these relationships are 

shown in Figure 3-2. This analysis was carried out by bioinformatician Alastair 

Droop.  

This analysis initially revealed that the miRNA expression in NFs and CAFs from 

cases 1 and 3 clustered in their matched pairs, showing that their expression patterns 

were more similar to each other than other samples. By contrast, the other cases did 

not cluster in their matched pairs, showing that these paired normal and cancer 

samples were relatively divergent. However, when this analysis was limited to a 

subset of the miRNAs contained on only one of the two array cards and which is 

focused on the more highly expressed miRNAs (Figure 3-2B), all 4 cases clustered 

in their pairs. This demonstrated that the second array card may introduce noise to 

this analysis, as it contains a high proportion of miRNAs detected close to the limit 

of detection. It also demonstrated that matched NFs and CAFs are relatively similar 

to each other, more so than to other unrelated NFs or CAFs. 
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Figure 3-2 Dendrograms showing clustering of NF and CAF samples based on 
miRNA expression 

Matched NF and CAF samples were isolated from 4 triple negative, basal-like 
breast cancer cases. Total RNA was extracted and miRNA expression 
quantified using array qPCR, normalised to the geometric mean of U6 and 
RNU48 expression. (A) Unsupervised agglomerative hierarchical clustering 
based on miRNA expression of the 380 miRNAs detected in at least one 
fibroblast sample. (B) Unsupervised agglomerative hierarchical clustering 
based on miRNA expression of a subset of these miRNAs, 178 in total, which 
were selected by the array suppliers as the more highly expressed and studied 
miRNAs (“pool A” only). P number refers to the case number, while N and C 
identify NF and CAF samples, respectively. 
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Next, I examined the differential expression of individual miRNAs between CAFs 

and NFs. I defined up-regulation or down-regulation in CAFs as >1.001 or <0.999 

fold change compared with the matched NF samples, respectively. MiRNAs were 

also defined as up-regulated or down-regulated if detected in one sample of a 

matched pair but not the other, although for these it was not possible to calculate a 

fold difference. Table 3-1 shows the total number of miRNAs potentially up-

regulated and down-regulated for each cancer case, with a minimum number of 87 

(case 4, down-regulated) and a maximum number of 187 (case 4, up-regulated). 

Figure 3-3 shows the number of miRNAs with over-lapping up-regulation or down-

regulation across the 4 cases. It should be noted that these assessments include all 

the array data, inclusive of some miRNAs that were expressed at very low levels 

(Cts >35) in both the matched CAF and NF samples, and some miRNAs with some 

evidence of non-logarithmic amplification profiles; therefore some data are 

potentially unreliable. I have filtered data using some quality metrics in later 

assessments. 

 

Case Number of miRNAs up-
regulated 

Number of miRNAs 
down-regulated 

1 91 183 
2 166 99 

3 112 165 
4 187 87 

Table 3-1 Number of miRNA up-regulated and down-regulated in each case 
MiRNA expression profiles in 4 matched pairs of NFs and CAFs were 
determined. The table shows the number of miRNAs up-regulated and down-
regulated in CAFs compared with matched NFs. 
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Figure 3-3 Venn diagrams showing numbers of miRNAs up-regulated (A) and 
down-regulated (B) in CAFs compared to matched NFs in 4 cases of triple 
negative, basal-like breast cancer, and showing overlaps between the 
cases. 
MiRNA expression profiles in 4 matched pairs of NFs and CAFs were 
determined. Figure 3-3 shows the numbers of miRNAs that were up-regulated 
(A) and down-regulated (B) in CAFs compared with matched NFs. The central 
figure in bold highlights the number of miRNAs consistently up-regulated or 
down-regulated in all 4 cases. 

 
21 miRNAs were consistently more highly expressed in CAFs compared with 

matched NFs and 27 miRNAs were consistently down-regulated in CAFs compared 

with matched NFs (Figure 3-3). These miRNAs are listed in Table 3-2 and Table 3-

3, respectively. To enhance the reliability of the data I manually reviewed the 

amplification curves and Ct values for each miRNA. In some cases amplification 

curves did not have smooth sigmoidal shapes, indicative of reliable amplification, 

but more jagged shapes that may suggest technical problems (see Appendix E). 

Cases where Ct >35 in a matched fibroblast pair were also identified. Cases with 

high Ct values and/or irregular amplification curves were deemed to be potentially 

unreliable, this is indicated by the presence of asterisks in tables 3-2 and 3-3. 

 

 

 

27 21 

A	 B	
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MicroRNA Mean fold 
change 

Minimum fold 
change 

Maximum fold 
change 

Detected in 8 
fibroblast samples 

miR-213 ∞* ∞ ∞ No (4 samples) 
miR-200b# 23.50* 23.5 137.8 No (5 samples) 

miR-21 6.92 2.08 11.98 Yes   
miR-27b 2.46 2.06 2.86 No (6 samples) 
miR-223# 2.03 1.92 2.14 No (6 samples) 
miR-296 4.33 1.50 10.97 Yes   
miR-21# 21.32 1.42 39.70 Yes   
miR-708 2.26 1.38 2.93 Yes   
miR-193b 4.43 1.37 11.52 Yes   
miR-19a 1.91 1.35 2.79 Yes   

miR-125a-5p 5.09 1.34 11.27 Yes   
miR-425# 1.25 1.13 1.37 No (6 samples) 
miR-99b 1.25 1.10 1.33 No (7 samples) 

miR-574-3p 2.70 1.05 5.61 Yes   
miR-127 7.12 1.05 10.90 Yes   
miR-214 3.09 1.04 5.82 Yes   
miR-222 2.30 1.04 2.84 Yes   

miR-142-3p 2.77 1.03 6.00 Yes   
miR-886-3p 2.35 1.02 5.67 Yes   
miR-342-3p 4.02 1.02 10.97 Yes   
miR-193b# 2.22 1.01 3.42 No (6 samples) 

 

Table 3-2 MiRNAs with higher expression in CAFs as compared to matched 
NFs 

Table 3-2 lists miRNAs expressed at higher levels in CAFs compared with 
NFs in all 4 pilot cases, with the largest minimum fold change at the top. It 
shows the mean fold change across the 4 cases, the minimum fold change and 
if the miRNA was detected in all CAF and NF samples. When not present in 
all 8 samples the mean was calculated from cases where it was present in both 
NF and CAF samples. 
* indicates values that were not reliable because the amplification curves were 
not smooth, sigmoidal shaped or the Ct >35. The # on some miRNAs indicates 
precursor miRNAs that give rise to more than one mature miRNA, the ones 
labelled # are the less predominant of the two (see section 1.3.4).  
miR-213 was detected in CAFs, but undetectable in the 4 NF samples. It was 
therefore not possible to calculate a fold change in expression level for this 
miRNA, this is indicated by ∞. 
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MicroRNA Mean fold 
change 

Minimum fold 
change 

Maximum fold 
change 

Detected in 8 
fibroblast samples 

miR-760 175800726* 69129 308993233 No (7 samples) 
miR-581 6.97* 6.97 6.97 No (5 samples) 
miR-335# 4.41* 4.13 4.68 No (6 samples) 

miR-30a-3p 4.21 3.21 5.65 Yes   
miR-645 3.24 3.14 4.92 Yes   
miR-573 15.52* 2.17 52.97 Yes   
miR-335 2.49 1.93 3.05 No (6 samples) 
miR-942 6.12 1.78 17.40 Yes   
miR-378 31612682* 1.74 126450719 Yes   
miR-126# 6.20 1.68 15.85 Yes   
miR-630 5.95* 1.67 10.76 No (7 samples) 
miR-99a# 2.79 1.63 3.90 No (7 samples) 
miR-632 2.08 1.61 2.84 Yes   

miR-139-5p 12.22 1.59 32.00 No (7 samples) 
miR-218 6.65 1.57 11.48 Yes   

miR-let-7c 3.82 1.58 7.91 Yes   
miR-30e-3p 3.76 1.50 5.68 Yes   

miR-451 12.01625* 1.45 15.78 Yes   
miR-205 5.29 1.45 12.45 No (7 samples) 
miR-381 224498* 1.44 717192 Yes   
miR-140 2.06 1.42 3.87 Yes   
miR-29c 3.23 1.42 6.15 Yes   
miR-195 3.85 1.41 7.90 Yes   
miR-126 7.53 1.39 15.68 Yes   
miR-549 4.74 1.26 14.31 Yes   
miR-638 1.91 1.15 3.03 No (7 samples) 

miR-188-5p 2.20 1.05 3.06 Yes   

Table 3-3 MiRNAs with lower expression in CAFs as compared to matched 
NFs 

Table 3-3 lists miRNAs expressed at lower levels in CAFs compared with NFs 
in the 4 pilot cases, with the largest minimum fold change at the top. It shows 
the mean fold change across the 4 cases, the minimum fold change and if the 
miRNA was detected in all CAF and NF samples. When not present in all 8 
samples the mean was calculated from cases where it was present in both NF 
and CAF samples. 

* indicates values that were not reliable because the amplification curves were 
not smooth, sigmoidal shaped or the Ct >35. The # on some miRNAs indicates 
precursor miRNAs that give rise to more than one mature miRNA, the ones 
labelled # are the less predominant of the two (see section 1.3.4).  
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MicroRNA 
Mean fold change 

Minimum fold change 
Maximum fold change 

Detected in 8 fibroblast samples 
 

miR-760 
175800726* 

69129 
308993233 

No 
(7 samples) 

 
miR-581 

6.97* 
6.97 
6.97 
No 

(5 samples) 
 

miR-335# 
4.41* 
4.13 
4.68 
No 

(6 samples) 
 

miR-30a-3p 
4.21 
3.21 
5.65 
Yes 

  
 

miR-645 
3.24 
3.14 
4.92 
Yes 

  
 

miR-573 
15.52* 
2.17 
52.97 
Yes 

  
 

miR-335 
2.49 
1.93 
3.05 
No 

A total of 38 miRNAs with consistent up- or down-regulation passed quality control 

screening with respect to amplification dynamics and level of expression that could 

be reliably detected, and were therefore potentially worthy of further study. A 

further screening mechanism was required to identify miRNAs to prioritise in 

further work. I selected for further validation miR-21, miR-27b and miR-30a-3p 

because they had a minimum fold change >2 in all 4 cases and they had the highest 

mean fold changes. 

3.3.2 MiR-21 and miR-27b are significantly up-regulated and miR-30a-3p is 

significantly down-regulated in CAFs 

My next aim was to confirm that selected candidate miRNAs from the screen above, 

namely miR-21, miR-27b and miR-30a-3p, were indeed deregulated in fibroblasts 

from triple negative, basal-like breast cancers. First, I carried out a repeat analysis of 

the RNA extracted from the cases used for the array screen, since the screen was 

performed as only one technical replicate for each biological sample, presenting a 

risk of technical errors. Individual qPCRs (as opposed to array cards) were 

performed for miR-21, miR-27b and miR-30a-3p (normalisers snRNA U6 and 

snoRNA RNU48) using technical triplicates and relative expression was determined 

(Figure 3-4). All three miRNAs demonstrated similar results to those from the array 

screen. 
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Figure 3-4 MiR-21, -27b and -30a-3p were differentially expressed between NFs 
and CAFs in 4 cases of triple negative, basal-like breast cancer 

Matched samples of normal breast fibroblasts (NFs) and cancer associated 
fibroblasts (CAFs) were prepared from 4 triple negative, basal-like breast cancer 
patients. Relative expression of miR-21 (A), miR-27b (B) and miR-30a-3p (C) was 
determined (normalised to U6 and RNU48) by qPCR. Each circle represents the 
expression level for one fibroblast sample. The lines between the NF and CAF 
circles identify the matched sample for each case. The error bars represent the 
standard deviation of the technical triplicate repeats. 
 

Next, I isolated matched NFs and CAFs from a further ten cases of triple negative, 

basal-like breast cancer using LCM. Relative expression of miR-21, miR-27b and 

miR-30a-3p was determined for these ten cases, and the data were combined with 

the data from the original 4 screening cases (Figure 3-5). 
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Figure 3-5 MiR-21 and miR-27b are significantly differentially expressed 
between NFs and CAFs in 14 triple negative, basal-like breast cancers 
Matched samples of normal breast fibroblasts (NFs) and cancer associated 
fibroblasts (CAFs) were prepared from 14 triple negative, basal-like breast 
cancer patients. Relative expression of miR-21 (A), miR-27b (B) and miR-
30a-3p (C) was determined (normalised to U6 and RNU48) by qPCR. Each 
circle represents the expression level for one of the samples. The lines between 
the NF and CAF circles identify the matched sample for each case. The error 
bars represent the standard deviation of the technical triplicate repeats. The 
Wilcoxon matched pairs signed rank test was used to assess the significance of 
any differential expression, as shown. 

 
Expression of miR-21 and miR-27b was higher in CAFs compared with NFs in 12 

of the 14 cases, whereas for miR-30a-3p the technical variability for each data-point 

was so high that conclusions could not easily be drawn. The significance of these 

differential expressions was assessed using Wilcoxon matched pairs signed-rank test 

(after a Shapiro-Wilk test had demonstrated that the data were not normally 

distributed; Appendix F). MiR-21 and miR-27b were significantly up-regulated in 

CAFs (p = 0.006 and p = 0.0295 respectively), while miR-30a-3p demonstrated no 

significant difference (p = 0.9515). 

I reviewed the amplification curves for miR-30a-3p to try to determine reasons for 

technical variability within these samples. The amplification curves for miR-30a-3p 

have a shallower slope in the exponential phase (see Appendix G). One explanation 

for this could be the presence of a PCR inhibitor (Schrader et al., 2012). To attempt 
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to overcome this issue, samples were diluted by a range of factors up to 1000-fold, 

potentially reducing the influence of any PCR inhibitors, at the cost of reducing 

assay sensitivity. Results of qPCR with 1000-fold diluted samples, and excluding 

cases with continued poor amplification and high technical variability, are shown in 

Figure 3-6; miR-30a-3p was significantly down-regulated in CAFs in the cohort of 

10 remaining cases. This optimisation work was carried out by a colleague, Dr Ruth 

Darbyshire (Academic FY2 visiting scientist).  

 

 

Figure 3-6 MiR-30a-3p is significantly down-regulated in CAFs as compared to 
matched NFs 

Matched samples of normal breast fibroblasts (NFs) and cancer associated 
fibroblasts (CAFs) were prepared from 14 triple negative, basal-like breast 
cancer patients. Relative expression of miR-30a-3p was determined 
(normalised to U6 and RNU48) by qPCR. Data from 10 cases that passed 
assessments of qPCR data quality are shown. Each circle represents the 
expression level for one fibroblast sample. The lines between the NF and CAF 
circles identify the matched sample for each case. The error bars represent the 
standard deviation of the technical triplicate repeats. 
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3.4 Deregulation of miR-21 within fibroblasts, but not other 

miRNAs, was confirmed by in situ hybridisation 

3.4.1 MiR-21 in situ hybridisation showed staining predominantly in CAFs 

My next aim was to confirm my PCR-based findings using an alternative assay, 

while in addition examining whether expression of my miRNAs of interest was 

limited to the fibroblast component, or was also present within epithelial cells. In 

order to do this, I used chromogenic in situ hybridisation (CISH) to visualise 

expression of miR-21, miR-27b and miR-30a-3p on blocks representing the same 14 

triple negative, basal-like breast cancer cases used above. Positive expression was 

labelled with a blue precipitate, while tissue was counterstained red (with the dye 

nuclear fast red). Examples of the staining with the positive control (U6) and with 

the probe for miR-21 can be seen in figure 3-7. 

CISH staining for U6 (used as a positive control to demonstrate successful CISH) 

showed clear nuclear positivity in both benign and tumour tissue as expected (Figure 

3-7A). Staining with a negative control probe of scrambled miR-21 sequence was 

generally negative, although one case stained positively in benign and tumour tissue 

in inflammatory cells, endothelial cells, tumour cells and fibroblasts, this case was 

excluded from further analysis.  

CISH with the probe for miR-21 gave clear, specific positive and negative staining 

predominantly in the cytoplasm of CAFs, and little staining elsewhere. Positive 

staining intensity varied from weak to strong (see Figure 3-7D-F). In one case 

positive staining was seen in normal fibroblasts, in this case the staining was much 

stronger in the CAFs than in the NFs, in all other cases the NFs were negative. In 

one case staining was seen in tumour cells as well as in CAFs (see Figure 3-8A). It 

was noted that in several cases the CAFs closest to tumour cells stained more 

strongly than those further away (see Figure 3-8B and C), whereas in other cases all 

the CAFs stained with similar intensities. 

The CISH staining for miR-27b and miR-30a-3p was not successful, no positive 

staining was seen. Probe concentration was increased from 400 nM up to 1.5 µm, 

until non-specific staining was seen. 
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Figure 3-7 Representative images of chromogenic in situ hybridisation (CISH) 
staining of breast tissue for the snRNA U6 (positive control) and miR-21 
Breast FFPE sections stained with CISH. CISH positive staining is blue, with a 
red counterstain. Part A was stained for snRNA U6 (positive control). Parts B-
F were stained for miR-21 and show examples of no staining (B and C), weak 
staining (D), moderate staining (E) and strong staining (F). Parts A and B are 
sections of benign breast tissue, parts C-F are invasive tumour.  
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Figure 3-8 Representative images of CISH staining of breast tissue for miR-21 
demonstrating specific features of the staining patterns 
Invasive breast cancer FFPE sections were stained with CISH of miR-21 
(blue) and counterstained red. (A) In one case, epithelial staining was seen. (B 
and C) In some cases, CAFs close to tumour cells arrows (          ) were stained 
more strongly than CAFs further away. 
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MiR-21 expression in fibroblasts was quantified as a histoscore combining 

assessment of the proportion of cells stained, and their intensity (weak, moderate or 

strong, see section 2.11.1 for more details). The distribution of staining in CAFs was 

assessed by quantifying CAFs ≤ 75 µm from tumour cells and CAFs > 75 µm from 

tumour cells separately. The distance 75 µm was chosen based on a visual 

assessment of the CISH staining pattern, it was after this distance that the staining 

intensity decreased dramatically in cases where CAFs closer to tumour stained more 

intensely. Scoring was performed by myself, and additionally and independently by 

Dr Eldo Verghese (supervisor, and a histopathology consultant) for 50% of cases. 

Scores from the two independent scorers correlated closely (correlation coefficient 

absolute agreement 0.974; Appendix H) thereby validating the reproducibility of this 

scoring method.  

One of the initial aims in carrying out CISH was to confirm the findings from my 

initial LCM and qPCR approach (Figures 3-5). I therefore compared expression 

levels determined by qPCR to CISH scores, using CISH scores for all fibroblasts or 

for either those closest to (≤75 µm) or further from tumour cells (>75 µm). All three 

comparisons were significantly positively correlated (r of at least 0.57; p of at least 

0.0037; Figure 3-9) demonstrating that my LCM procedure was successful in 

enriching for fibroblasts, and that assessment of relative miR-21 levels using CISH 

was possible. I also examined the correlation between the scores for the two CAF 

populations (close to tumour cells and further away). Surprisingly, these were not 

significantly correlated with each other, although this could be due in part to the 

small sample size (Appendix I).  
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Figure 3-9 Assessments of miR-21 expression in NFs and CAFs by CISH H-
score and by LCM / qPCR significantly correlate 

Relative expression of miR-21 in NFs and CAFs was quantified, after LCM of 
the cells, by qPCR. Expression of miR-21 was also assessed using CISH in the 
same tissues and was quantified manually as H-scores of specific fibroblast 
populations as described. Correlations between the two assessments were 
examined using scatter plots and Pearson correlation coefficients. (A) CISH 
scores for staining in all fibroblasts. (B) CISH scores for NFs closest to 
epithelial cells and CAFs closest to tumour cells (≤75 µm). (C) CISH scores 
for NFs further from epithelial cells and CAFs further from tumour cells (> 75 
µm). Each circle represents one sample of either NFs or CAFs. Linear 
regression has been plotted based on the data points and the Pearson 
correlation calculated. 
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3.5 Tissue microarray CISH 

Based on my finding that miR-21 is relatively highly expressed in CAFs using a 

relatively small cohort of 14 patients, I was interested to assess whether this finding 

was generally applicable to a larger cohort, and potentially whether expression 

correlated with specific clinical or pathological features. Therefore, I constructed a 

tissue microarray (TMA), containing triplicate cores of cancer tissue from 150 triple 

negative breast cancer cases and supported by extensive clinical and pathological 

information (Table 3-4). The previous 14 cases were not included in the TMA to 

avoid repeating CISH staining and scoring on these cases and duplicating the data. 

MiR-21 expression was visualised using CISH and scored as previously, with final 

scores for each case being taken as the mean score from the cores available for that 

case. The mean score, rather than the highest score, was chosen to include in the 

analysis to be more representative of the entire CAF population rather than a small 

subset of intensely staining CAFs. CAFs as a whole population were scored, rather 

than separate assessments of those close to or further from tumour cells. This was 

because: (i) previous results above suggested separate analyses did not add value; 

(ii) within TMA cores much of the tissue is within 75 µm of the core edge and 

therefore could be incorrectly classified as not near tumour cells when tumour cells 

were in fact immediately next to the core in the donor tissue; and (iii) examples of 

both close and far fibroblasts were frequently not present in the limited core tissue 

available. Some cores were lost from slides during staining, an expected and 

documented occurrence in TMA-based research (Parsons, 2009), and in some cores 

tissue became very disrupted and scoring was not possible; therefore, it was not 

possible to score every case. 70% (105/150 cases) were scored. As with the previous 

sections, positive staining was predominantly seen in CAFs, with tumour cells rarely 

staining (only 2 cases, 1.3 %). Staining intensity varied from negative to strong. 
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Characteristic Number of cases (%) 

  Age at diagnosis 61 years (32 - 93 years)   mean (range) 

  Histological Grade   

         I 3  (2 %) 

         II 20  (13 %) 

         III 124  (83 %) 

        Not assessable 3  (2 %) 

  Lymph nodes   

          0 95  (63 %) 

         1-4 33  (22 %) 

         >4 19  (13 %) 

        None taken 3  (2 %) 

Table 3-4 Summary of clinicopathological features of the triple negative breast 
cancer cases included in tissue microarray 

 
To confirm that TMAs were a reliable way to assess miR-21 staining I correlated the 

CISH scores between different cores from the same cases, to see if they were similar 

to each other. A strong positive correlation between scores in different cores would 

suggest that miR-21 expression was sufficiently homogenous throughout the tissue 

for valid assessment in TMAs. Correlation analysis between scores for cores 1 and 2 

(random designations in the TMA plan) for each case where both scores were 

available gave a strong positive correlation (Spearman’s rank correlation coefficient 

= 0.75; p < 0.0001). Correlation between cores 1 and 3 and 2 and 3 also showed 

strong positive correlation (Spearman’s correlation cores 1 and 3 r = 0.5879; p < 

0.0001 and Spearman’s correlation cores 2 and 3 r = 0.7413; p < 0.0001). The whole 

tissue section CISH carried out in section 3.4.1 showed reasonable homogeneity 

across the section. Both the core correlation and the whole section staining suggest 

that TMA are a suitable format for this analysis. 
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The CISH H-scores for the TMA were 0 – 220. To show the distribution of TMA 

CISH H-scores a cumulative frequency distribution has been plotted (Figure 3-10). 

 

Figure 3-10 Cumulative frequency distribution of TMA CISH H-scores 

105 TMA cases were successfully stained with CISH miR-21 probe. The 
CISH staining intensity and percentage was quantified using a H-score. This 
shows the cumulative frequency of the TMA CISH H-scores. 

 

The relevance of miR-21 expression within the fibroblast compartment to clinical or 

pathological factors was tested by assessing correlations between miR-21 expression 

(defined as mean CISH score for each case) and age at diagnosis, tumour size, 

grade, number of positive nodes and Nottingham Prognostic Index using 

Spearman’s rank correlation coefficients (Table 3-5). Tumour grade showed a weak, 

but significant (ignoring multiple testing) positive correlation with miR-21 

expression in CAFs, but other factors did not correlate. 
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Clinicopathological 
Parameter 

Spearman's correlation 
coefficient P value 

Age at diagnosis 0.06038 0.5406 

Tumour size -0.02563 0.7972 

Tumour grade 0.2318 0.0191 

Number of positive 
lymph nodes at diagnosis 0.1215 0.219 

Nottingham Prognostic 
Index 0.1412 0.1569 

Table 3-5 Tumour grade significantly correlates with miR-21 expression in 
CAFs 

MiR-21 expression in CAFs was quantified in a cohort of triple negative breast 
cancers using CISH and H-scores. Spearman’s correlation coefficients were 
used to assess correlations between clinicopathological features and miR-21 
expression. 

 

The relevance of miR-21 to cancer outcome was also tested by assessing the impact 

of expression on disease free survival, disease specific survival and overall survival 

using Kaplan Meier analyses (Figure 3-12). Expression was dichotomised into 

low/negative and high using cut offs determined by modified receiver operating 

characteristic curves, separately for each clinical outcome (Figure 3-11). For disease 

free survival, the cut off was CISH score >60, for disease specific survival this was 

CISH score >145, and for overall survival this was CISH score > 20. MiR-21 

staining intensity did not significantly correlate with clinical outcome in these 

analyses. Some alternative cut offs could also be suggested from the receiver 

operating characteristic curves (Appendix J-1); these were also used for further 

Kaplan Meier analyses (Appendix J-2), however it remained the case that miR-21 

expression in fibroblasts did not correlate significantly with clinical outcome. 
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Figure 3-11 Modified receiver operating characteristic curves used to 
determine the optimal cut off point for CISH score low vs. CISH score 
high 
CISH score was correlated with the clinical outcomes disease free survival, 
disease specific survival and overall survival. The data was dichotomised at 
each CISH score within the range and the sensitivity and specificity calculated. 
Each circle represents the CISH cut-off score plotted against the sum of 
sensitivity and specificity for each clinical outcome, disease free survival (A), 
disease specific survival (B) and overall survival (C). The optimal CISH cut-
off score was determined from the peak of each curve. 
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Figure 3-12 Clinical outcomes do not significantly correlate with miR-21 
expression in CAFs 
MiR-21 expression in CAFs was determined in a cohort of triple negative 
breast cancers using CISH and H-scores. Cases were dichotomised into low 
and high expression groups based on cut-offs defined by receiver operating 
characteristic curve analyses (Figure 3-11) as shown. Kaplan Meier analyses 
for the clinical outcomes disease free survival (A), disease specific survival 
(B) and overall survival (C) were carried out on these groups. Red lines 
represent low/negative expression while purple lines represent high 
expression. The small black squares represent the point at which a subject was 
censored.  
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3.6 Discussion 

3.6.1 Choice of miRNAs for further study 

The array analysis I performed allowed identification of 21 miRNAs that were up-

regulated in CAFs compared with matched NFs and 27 miRNAs that were down-

regulated in CAFs in the 4 pilot cases (Figure 3-3). It was not possible to investigate 

fully the functional role of each of these miRNA, therefore I wanted to determine 

which of these miRNA were more likely to be biologically important rather from 

those occurring by chance. To do this the fold-change of up-regulation or down-

regulation was analysed. I looked at both the mean fold change and the minimum 

fold change to determine which miRNA were altered the most in CAFs and to 

confirm that this wasn’t the result of a large change in one case and relatively 

modest changes in the other cases (Tables 3-2 and 3-3). This is based on the 

assumption that a larger change and a change that is consistent across more cases is 

more likely to be biologically significant. This approach has been taken in a number 

of studies, including those looking at miRNAs in nipple discharge and serum 

samples of breast cancer patients (Zhang et al., 2015, Zhang et al., 2017a, Wang et 

al., 2009). However, it is possible that very minor changes in specific miRNA may 

also be important to the cells. 

MiRNA expression profiling in breast cancer has been carried out on a variety of 

breast cancer samples including whole tumour samples, patient serum and nipple 

discharge samples, however isolating a specific part of the tumour, the CAFs, and 

profiling them separately from the rest of the tumour provides a rare insight into the 

biological changes within CAFs (Tanic et al., 2015, Zhang et al., 2012a, Shin et al., 

2015). MiR-21 was not identified as significantly increased in nipple discharge or 

whole tumour samples, and was identified as decreased in the serum of triple 

negative breast cancer patients compared with non-triple negative breast cancer 

patients. This highlights the difference in results that can be obtained when looking 

at one specific component or cell-type within a tumour and when using matched 

benign breast tissue from the same patient for comparison. 

Using the mean and minimum fold-change in miRNA expression miR-21, miR-27b 

and miR-30a-3p were selected for further validation (see Tables 3-2 and 3-3). This 

was done by carrying out a triplicate single-primer PCR on these four cases and a 
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further 10 matched pairs of NFs and CAFs. The single-primer PCR confirmed the 

findings that miR-21 and miR-27b are significantly up-regulated in CAFs and that 

miR-30a-3p is significantly down-regulated in CAFs (Figures 3-5 and 3-6). Figure 

3-5 parts A and B also showed that 2 of the 14 cases did not follow the general 

pattern, that miR-21 and miR-27b expression were not up-regulated in 2 patient 

samples. These were the same patient samples for both miRNA. The samples and 

clinical outcomes were reviewed. There was no difference in the amount of RNA or 

the quality of the RNA extracted from these samples and there was no significant 

difference in clinical parameters or outcomes for the patients from which these 

samples were taken, including tumour morphology, size, grade, lymph node status, 

disease free survival or overall survival. As the patient samples that did not follow 

the overall pattern, i.e. an increase in miRNA levels in CAFs for miR-21 and miR-

27b, were the same for both miRNA this suggests that in these cases the conversion 

of normal fibroblasts to CAFs may have harnessed different biochemical pathways 

compared with the other 12 cases. As there is little known about the mechanisms 

involved in the conversions of cells into CAFs it is not possible to identify the exact 

differences between these two pathways, however my work does suggest that 

whichever pathway is followed this does not alter patient outcomes, although with 

such low numbers firm conclusions cannot be drawn.  

The finding that miR-21 qPCR expression is increased in CAFs is similar to the 

results published by Bullock et al. in colorectal cancer. They carried out LCM of 

colorectal cancer stroma and qPCR of 10 cases and found that miR-21 expression 

was on average 4-fold higher in tumour stroma than in normal stroma (Bullock et 

al., 2013), I observed a average 2-fold increase in CAFs compared with NFs. 

My results showed that miR-27b was significantly up-regulated in CAFs compared 

with matched NFs (Figure 3-5). No other study has looked at miR-27b qPCR 

expression exclusively in fibroblasts, however there are a number of studies that 

have looked at miR-27b expression in whole tumour samples and breast cancer cell 

lines using qPCR. These showed mixed results, depending on whether cell lines or 

patient samples were used and which breast cancer subtype was selected. MiR-27b 

expression has been found to be decreased in luminal breast cancer whole tumour 

samples, to show no significant change in expression levels in breast adenoid cystic 

carcinoma compared with normal breast tissue and to be increased in triple negative 
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breast cancer cell lines compared with a non-invasive breast cell line (Takahashi et 

al., 2015, Wang et al., 2009, Kiss et al., 2015). In triple negative breast cancer miR-

27b expression has also been found to be correlated with worse disease free survival, 

but has not been compared with levels in normal breast tissue (Liu et al., 2015, Shen 

et al., 2014). These findings together with my work suggested that increased miR-

27b may be of importance specifically in the triple negative breast cancer subtype. 

MiR-30a-3p was significantly down-regulated in CAFs as compared to matched NFs 

(Figure 3-6). This finding is supported by a study that also identified miR-30a-3p 

down-regulation when looking at whole tumour samples compared with matched 

normal tissue in fresh tissue of 8 breast cancers using a miRNA microarray (Yan et 

al., 2008). MiR-30a-3p down-regulation has been associated with early recurrence, 

and levels are to be generally lower in ER negative breast cancers (Perez-Rivas et 

al., 2014). However, this study looking at breast cancer recurrence did not separate 

breast cancers by subtype and given that a proportion of basal-like breast cancers are 

known to relapse early, some of the miRNA changes they observed may be 

identifying subtype specific changes rather than an independent early recurrence 

signature. Therefore the clinical significance of my and others’ findings on miR-

30a-3p down-regulation remains largely unclear. 

 

3.6.2 ISH for miRNAs – technical challenges, but cell-type specific 

conclusions 

The CISH staining for miR-27b and miR-30a-3p was not successful, with no 

positive staining seen. Probe concentration was increased from 400 nM up to 1.5 

µm, until non-specific staining was seen. One possible explanation for the lack of 

specific staining is that the expression of these miRNA was below the level of 

detection by CISH. MiR-21 was generally expressed at higher levels in CAFs, (a 

mean relative expression value of 1.50), whereas the relative expression of miR-27b 

and miR-30a-3p were 0.03 and 0.38 respectively. These values are 4 – 50 fold lower 

than the expression of miR-21. It could be possible therefore that there is not enough 

miR-27b or miR-30a-3p present to bind to the probe to produce visible positive blue 

staining. In a study looking at detection of herpes virus in FFPE and frozen tissue 

qPCR was found to be more sensitive than ISH or conventional PCR (Crockford et 
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al., 2008), supporting the idea that CISH sensitivity may be limiting. MiR-27b CISH 

has been successfully carried out in the epithelial keratinocyte layer of oral biopsies 

(Zhang et al., 2012b), although the relative expression of miR-27b in oral 

keratinocytes compared with triple negative, basal-like breast cancer tissue is not 

known. CISH of miR-30a-3p has not been published. 

CISH has been successfully carried out in breast tissue for only a small number of 

miRNAs; 13 in total, including miR-21 (Quesne et al., 2012, Jang et al., 2014, 

Minemura et al., 2015, Cao et al., 2016, Song et al., 2016a, Song et al., 2015, Hanna 

et al., 2012). Breast tissue itself is not thought to present particular technical 

challenges when carrying out CISH compared with other cancer tissues types. 

However, it is more technically challenging to carry out CISH on FFPE tissue than 

frozen tissue or cell lines because formalin fixation and the presence of paraffin can 

mask the miRNA target and cause cross-linking reducing the sensitivity of the 

technique (Warford, 2016). This reduced sensitivity in FFPE tissue could explain 

why miR-27b and miR-30a-3p CISH did not work in my breast tissue samples, 

whereas miR-21 which is at higher expression levels in these cases was above the 

detectable range.  

The miR-21 CISH staining showed a variety of staining patterns, with normal 

fibroblasts largely staining negatively, except in one case, and CAFs in all cases 

staining positively. The staining pattern in CAFs varied with similar staining 

throughout the CAF population in some cases, and heterogeneous staining in others 

(both strong and weak staining in different populations of CAFs). Where there was 

variable staining, the CAFs closest to tumour cells stained more strongly and those 

further from islands of tumour cells stained more weakly (Figure 3-8). This is 

similar to results seen by Nielsen et al. and Hug et al. (Hug et al., 2015, Nielsen et 

al., 2014). In a study looking at 26 specimens, 16 malignant and 10 benign, Hug et 

al. noted “miR-21-positive spindle-like cells were found to surround tumour cell 

islands”, a similar description to what was seen in our cases. However, in contrast to 

our findings, they noted that miR-21 was detected in epithelial cell cytoplasm in 

most high-grade specimens, whereas we saw tumour cell staining in only one case, 

however they did not comment on the subtype of these cases, and it may be that 

these were not triple negative, basal-like cases and that therefore differences in 

staining in the tumour cells may not be unexpected (Hug et al., 2015). Qi et al. 
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identified positive tumour cell cytoplasm staining in 15 out of 17 invasive ductal 

carcinomas, although again, the receptor status of these cases was not mentioned (Qi 

et al., 2009). It is known that the staining patterns are different in different subtypes, 

for example in a study looking at miR-21 CISH staining in HER2 positive breast 

cancer Nielsen et al. saw staining either only in the stroma (36 %) or in the stroma 

and the tumour cells (64 %) (Nielsen et al., 2014). This reinforces the importance of 

being specific about which breast cancer subtype is being referred to, and taking it 

into account, particularly when carrying out studies with small numbers of cases. 

The expression of miR-21 in CAFs as quantified by CISH intensity and percentage 

of positive cells correlated well with the qPCR relative expression assessments. This 

is important not only in the context of my work in confirming the qPCR findings, 

but also in that it validates semi-quantitative assessment of CISH staining and 

therefore provides greater validity to studies that correlate CISH staining with 

clinical and patient outcome data. A more quantitative alternative to CISH staining 

is radio-isotope labelled ISH. The ISH signal can then be measured in a more 

automated, quantitative way using phosphorimage analysis. One major disadvantage 

of this method is that it can be less sensitive because the signal is not amplified at 

the alkaline phosphatase substrate conversion step and may therefore not be 

appropriate for miRNA detection (Chotteau-Lelievre et al., 2006). 

The importance of using CISH to assess cell type location of miRNA and therefore 

how to investigate and interpret miRNA roles in tumour biology was highlighted by 

recent findings on the expression of miR-143 and miR-145 in colorectal cancer. 

When measuring levels in whole tumour samples miR-143 and miR-145 were found 

to be down-regulated in colon cancer and up-regulation was thought to inhibit 

tumourigenesis. However, when ISH was used to determine their cellular 

localisation they were found to be expressed in myofibroblasts and mesenchymal 

derived smooth muscle cells and shown to be involved in repair processes following 

epithelial cell injury (Chivukula et al., 2014, Kent et al., 2014). Their roles as a 

tumour suppressor were not supported by work assessing roles in the appropriate 

cell types. 

 



 
 

- 87 - 
 

3.6.3 Comparing LCM-qPCR and CISH expression: does each technique 

validate the other? 

I tried to assess the accuracy and reliability of using semi-quantitative scoring of 

CISH signal intensity and percentage by comparing the results with those obtained 

from qPCR relative expression. Figure 3-9 shows the comparison between qPCR 

relative expression and CISH scores. Pearson correlation was chosen to compare 

these data as qPCR relative expression is an interval variable and this was consistent 

with the linear regression plotted. However, as the number of cases was low (13 in 

total) and as the scatter plots in Figure 3-9 do not show a clear linear relationship it 

was difficult to determine if linear regression was appropriate. Spearman correlation 

looks for a monotonic but not a linear relationship, this may have been more 

appropriate with low case numbers. 

There are a few studies that have tried to compare qPCR with ISH. In one of these 

studies detection of human papilloma virus DNA in human cervical cancer biopsies 

by RT-PCR and CISH was compared (Biesaga et al., 2012). This is very different to 

the comparison I carried out, both in the initial questions and setting that was used 

and the type of analysis consequently undertaken. This study was for potential use in 

a clinical setting comparing detection of viral DNA under both systems, therefore 

relative abundance was not relevant in this case, merely whether the viral DNA was 

classified as present or absent. The sensitivity, specificity, positive predictive values 

and negative predictive values were therefore compared, rather than the relative 

expression levels measured by both systems. In similarity to my work the RT-PCR 

was regarded as the gold-standard for measuring nucleic acid sequence and CISH 

was compared to it. This study also found that CISH was not as sensitive as qPCR, 

which is consistent with my finding that miR-21 was detectable by CISH but miR-

27b and miR-30a-3p were not. A second relevant study looked at HER2 

amplification detection in gastric carcinoma, again to assess potential clinical 

detection methodologies, and compared IHC with 3 different FISH methods and 

qPCR. (Stanek et al., 2014). This study found that quantification by qPCR, FISH 

and IHC was comparable in intestinal-type gastric carcinoma but not in diffuse-type 

gastric carcinoma. This agrees to some extent with my finding that ISH and qPCR 

quantification correlate with each other. However, it also suggests that this cannot be 

assumed for every cancer type, and of particular interest, it suggests that ISH can be 
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the more sensitive technique in circumstances where the cell-type of interest is not 

the majority cell-type within the tissue. 

The finding that miR-21 CISH score correlated well qPCR expression is useful both 

in the context of my work and in validating the work of others. It meant that I could 

look at miR-21 expression in CAFs in a much larger number of cases and compare 

this with clinicopathological parameters and with patient outcomes. This confirmed 

the validity of the experimental approach of using miR-21 CISH staining to 

determine cellular expression and comparing this with clinical outcomes in breast 

cancer (Nielsen et al., 2014, Qi et al., 2009).  

 

3.6.4 MiR-21: the most promising miRNA of interest in the fibroblast 

compartment 

MiR-21 showed the most significant up-regulation in CAFs by both qPCR and 

CISH. I also found that tumour grade showed a small but significant correlation with 

miR-21 CISH score (p = 0.0191, Table 3-5). Disease free survival showed a small, 

non-significant decrease with stronger miR-21 staining. It is possible that the sample 

size of 150 cases was underpowered to detect any true, relatively small, difference in 

survival in this analysis. Based on the assumption of 30 % core loss and 25 % of 

cases staining strongly, as seen in this sample, the sample size would need to be 

above 725 cases to detect a significant difference in disease free survival, if it exists. 

In a study of 901 breast cancer cases MacKenzie et al. found that stromal miR-21 in 

triple negative breast cancers, but not other subtypes, correlated with disease 

recurrence, which also suggests my TMA work may have been underpowered for 

this analysis (MacKenzie et al., 2014). Stromal miR-21 expression has been 

correlated with worse clinical outcomes in gastric cancer, prostate cancer and non-

small cell lung cancer (Melbo-Jorgensen et al., 2014, Uozaki et al., 2014, Stenvold 

et al., 2014). In colorectal cancer, miR-21 in fibroblasts has been shown to increase 

tumour cell invasion and decrease tumour cell chemotherapy sensitivity in tissue 

culture (Bullock et al., 2013). My findings together with other published work 

suggests that miR-21 may play an oncogenic role in some cancer types including 

triple negative breast cancer. However, no work has been done to investigate the 

functional role of miR-21 within triple negative breast cancer. I therefore concluded 
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this is an important area for further investigation. It is worth pointing out that when I 

committed to the choice of miR-21 for further study, in 2013, the vast majority of 

the literature that now suggests stromal miR-21 is potentially important in cancer 

had yet to be published. Therefore, this choice was at the time based on my data and 

data showing potential importance of miR-21 in cancer overall, as opposed to 

published work on stromal roles. 
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4 Chapter 4 

Investigation of the role of microRNA-21 in breast fibroblasts 

4.1 Abstract 

Expression of miR-21 is increased in cancer associated fibroblasts compared with 

adjacent non-tumour fibroblasts in a number of different tumours, including 

colorectal cancer, oesophageal squamous cell carcinoma, prostate cancer, gastric 

cancer and, from my own work in chapter 3, triple negative breast cancers. The 

functional importance of this over-expression for either breast fibroblast behaviour, 

or for the behaviour of breast cancers, remains unclear. My aim was to explore the 

effect miR-21 has on the behaviour of breast fibroblasts, by increasing the levels of 

miR-21 within these cells and assessing any changes in various cancer-related 

behaviours – namely growth, migratory and invasive abilities.  

Four breast fibroblast cultures were used: two representative of normal breast 

fibroblasts, and two representative of breast cancer associated fibroblasts. I found 

that increasing miR-21 had no significant effect on fibroblast growth or invasion in 

any of these cell types. Concerning migration, over-expression of miR-21 increased 

migration in one culture of cancer associated fibroblasts, CAF-2, but not the other 

fibroblast lines. I concluded that miR-21 does not have a striking or consistent cell 

autonomous role in breast fibroblasts with respect to the cancer-related behaviours I 

have tested. 

            

  



 
 

- 92 - 
 

4.2 Introduction 

MiR-21 is known to be significantly up-regulated in breast cancer compared with 

normal tissue adjacent to tumour and samples from non-cancer patients (Yan et al., 

2008, Song et al., 2016b, Iorio et al., 2005). However, the vast majority of these 

studies have analysed whole tumour samples or, in some cases, serum. My work 

described in chapter 3 has shown that in fact miR-21 is significantly up-regulated in 

the fibroblast compartment of triple negative, basal-like breast cancers, and also that 

expression within epithelial breast cancer cells is relatively low compared to the 

CAFs.  

A considerable amount of work has been done looking at the effects of miR-21 in 

breast cancer (epithelial) cell lines. This has shown that transfection with miR-21 

mimics significantly increased growth, migration and invasion in MCF-7 (luminal 

A) and MDA-MB-231 (triple negative) cell lines using MTT, scratch wound and 

transwell assays, respectively, and that using miR-21 inhibitors significantly 

decreased growth, migration and invasion in these cell lines (Kuang and Nie, 2016, 

Yan et al., 2011, Zhang et al., 2016). However, since the expression of miR-21 is 

predominantly in CAFs rather than in epithelial cancer cells in human triple 

negative, basal-like breast cancers (chapter 3), therefore the relevance of these 

findings to the behaviour of human cancers are uncertain. In this chapter I have 

attempted to examine the role of miR-21 in breast fibroblasts with respect to the 

cancer-related behaviours of growth, migration and invasion.  

4.3 Results 

4.3.1 Establishing a model system for investigation of effects on miR-21 in 

breast fibroblasts 

My first aim was to establish a cell culture model system to use in future 

experiments. In several studies, fibroblasts from organs other than the origin of the 

cancer being studied have been used to investigate potential roles of cancer 

fibroblasts. For example, foetal lung fibroblasts were used in a colorectal cancer 

study, gingival fibroblasts were used when studying oesophageal cancer, and human 

skin and mouse embryo fibroblasts were used in breast cancer studies (Bullock et 
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al., 2013, Nouraee et al., 2013, Porretti et al., 2014, Paquette et al., 2011). I used 

human breast fibroblast cultures as I felt that these would be most appropriate and 

relevant to my work. There is no single way to define cancer associated fibroblasts; I 

have therefore based my definition on the sample and location from which cells 

were extracted. I chose to use, in the main, immortalised fibroblasts as these were 

experimentally most convenient in terms of allowing consistent experimental 

approaches over a long period of time, and previous work published in the group 

successfully manipulated miRNA expression in these cells (Verghese et al., 2013). I 

used two fibroblast lines extracted from normal breast tissue (designated NF-1 and 

NF-2) and a single immortalised fibroblast line extracted from a triple negative 

breast cancer (designated CAF-1). I also used a primary triple negative breast cancer 

associated fibroblast culture (designated CAF-2). I chose to use both normal 

fibroblasts and cancer associated fibroblasts as it has been reported that the different 

behaviours associated with this distinction can be maintained in immortalised 

cultures (Calvo et al., 2013). 

First I assessed the baseline levels of miR-21 expression in these four cell types 

using qPCR (Figure 4.1) 
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Figure 4-1 MiR-21 levels vary between different fibroblast cultures 

Relative expression levels of miR-21 were determined using qPCR 
(normalised to the geometric mean of U6 and RNU48) in each of four different 
fibroblasts cultures (2 representative of normal fibroblasts, NF, and 2 
representative of cancer associated fibroblasts, CAF). Data points represent the 
means of technical triplicates, while error bars represent standard deviations. 

 

Expression level of miR-21 varied across the different fibroblast cultures by 30 fold, 

with NF-1 having the highest constitutive expression and CAF-2 having the lowest. 

This finding may at first appear slightly surprising, as in chapter 3 I have shown that 

miR-21 is up-regulated in CAFs. However, in this new analysis, each fibroblast 

culture, whether NFs or CAFs, has been extracted from a separate individual, while 

my previous finding was based on comparison of paired NFs and CAFs from the 

same patient. In the previous work, I observed a wide degree of variation in the 

miR-21 expression levels in the NFs and CAFs (Figure 3-5 qPCR relative 

expression = 0.015 – 4.00), with up-regulation in CAFs being specific to 

individuals, rather than having levels in all CAFs above all NFs. The variation in 

levels in Figure 4-1 (qPCR relative expression = 0.018 – 0.56) is within the range of 

the previous expression levels and is therefore compatible with my previous findings 

and I proceeded to use all four fibroblast cultures for functional experiments. 

Next, I aimed to establish whether transient transfections were able to increase 

levels of miR-21 in the fibroblast cultures. I transfected the NF-1 and CAF-1 lines 
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with either miR-21 mimic or control (scrambled miRNA) and then measured the 

miR-21 levels over 4 days using qPCR (Figure 4-2). 

 

Figure 4-2 Transfection of immortalised breast fibroblasts with miR-21 mimics 
successfully increases miR-21 levels in fibroblasts for up to 4 days 

Fibroblasts were transiently transfected with either miR-21 mimic (dark blue 
bars) or control scrambled miRNA (light blue bars). RNA was extracted from 
fibroblasts following transfection for 4 consecutive days and measured using 
qPCR. Data points represent the means of technical triplicates and errors bars 
represent standard deviations. Part A is NF-1 and part B is CAF-1.  

 

Figure 4-2 demonstrates that transfection with miR-21 mimic increased levels of 

miR-21 in fibroblasts by up to >1000 fold (CAF-1). Over-expression was greatest 1 

or 2 days after transfection, but still remained substantial and significant after 4 

days.  

4.3.2 Increasing miR-21 has no effect on fibroblast growth 

My next aim was to assess the impact of miR-21 over-expression in breast 

fibroblasts on cancer-related behaviours, starting with cell growth. Fibroblast 

cultures (NF-1, NF-2, CAF-1 and CAF-2 primary) were transfected as above with 

miR-21 mimic or control, and cell number was assessed every day from 1 to 4 days 

after transfection using MTT assays. Experiments were performed as three 

independent biological replicates and are analysed both in combination, and 

individually (Figures 4-3 and 4-4).  
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Figure 4-3 MiR-21 does not affect growth in normal breast fibroblasts 
NF-1 (A) and NF-2 (B) were transfected with miR-21 mimic (dark blue) or 
control (light blue) and MTT assays were used to monitor growth over the 
subsequent 4 days (1-4). Data represent cell density relative to day 1 and are 
displayed as the mean (+/- SEM) of 3 independent experiments (top panel), 
with each separate experiment shown below (means +/- SD). 
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Figure 4-4 MiR-21 does not affect growth in breast cancer associated 
fibroblasts 

CAF-1 (A) and CAF-2 (B) were transfected with miR-21 mimic (dark blue) or 
control (light blue) and MTT assays were used to monitor growth over the 
subsequent 4 days (1-4). Data represent cell density relative to day 1 and are 
displayed as the mean (+/- SEM) of 3 independent experiments (top panel), 
with each separate experiment shown below (means +/- SD). 
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Increasing levels of miR-21 in fibroblasts did not significantly alter cell numbers in 

any of the 4 fibroblast cultures. Some individual repeat experiments appeared to 

show changes between miR-21 mimic and control, mainly, but not exclusively, of 

miR-21 inducing enhanced growth (NF-1 repeat 2, NF-2 repeat 2, CAF-1 repeat 1, 

CAF-2 repeat 3). However, these results were not reproducible or significant when 

analysed in the context of the combined data.  

 

4.3.3 Increased levels of miR-21 increases migration in CAF-2 

My next aim was to investigate the influence of miR-21 on migration of breast 

fibroblasts. Fibroblasts were transfected as before with miR-21 mimic or control, 

and migration was assessed using scratch wound assays. Migration was assessed 

using live cell imaging, taking images each hour, and was quantified as relative 

wound density. Experiments were performed as three independent biological 

replicates and were analysed in combination (Figures 4-5 and 4-6). In order to 

combine replicates that sometimes had rather different kinetics of wound closure, 

migration throughout the whole closure period was quantified as the area under the 

curve for relative wound density vs. time and is displayed as miR-21 mimic 

transfected relative to control transfected (Salomon et al., 2013, Salomon et al., 

2014).  
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Figure 4-5 Over-expression of miR-21 does not affect migration in normal 
breast fibroblasts 
NF-1 (A) and NF-2 (B) were transfected with miR-21 mimic (dark blue) or 
control (light blue), following this a scratch wound closure assay was used to 
measure migration. Data are displayed as the relative mean of the area under 
the curve of wound density vs. time (+/- SEM) of 3 independent experiments 
(top panel), with each separate wound density vs. time plot from individual 
experiments shown below (means of 6 wells +/- SD).  
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Figure 4-6 Over-expression of miR-21 significantly increases migration in CAF-
2 

CAF-1 and CAF-2 were transfected with miR-21 mimic (dark blue) or control 
(light blue), following this a scratch wound closure assay was used to measure 
migration. Data are displayed as the mean of the area under the curve (+/- 
SEM) o 3 independent experiments (top panel), with each separate experiment 
shown below (means of 6 wells +/- SD). Part A shows the data from CAF-1 
and part B from CAF-2. * indicates significant difference in wound closure 
rate. 
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For normal fibroblasts, miR-21 over-expression had no statistically significant 

influence on migration (p = 0.0935 and p = 0.0805). However, with CAFs, 

migration significantly increased when miR-21 levels were increased in CAF-2 (p = 

0.0214), but not in CAF-1 (p = 0.1425).  

 

4.3.4 Increased miR-21 levels does not significantly affect invasion in breast 

normal or cancer associated fibroblasts 

My next aim was to investigate the influence of miR-21 on fibroblast invasion. As 

previously, fibroblasts were transfected with miR-21 mimic or control, and invasion 

was assessed using scratch wound assays through collagen type I. Invasion was 

assessed using live cell imaging and was quantified as relative wound density, as 

before. Three independent biological replicates were performed and, as previously 

(section 4.3.3), these have been analysed in combination as the area under the curve 

for relative wound density vs. time and is displayed as miR-21 mimic relative to 

control transfected (Figure 4-7 and 4-8). 
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Figure 4-7 Over-expression of miR-21 does not affect invasion in normal breast 
fibroblasts 
NF-1 (A) and NF-2 (B) were transfected with miR-21 mimic (dark blue) or 
control (light blue), and then invasion into collagen type I was assessed using 
scratch would closure assays. Data are displayed as the relative mean of the 
area under the curve of wound density vs. time plots (+/- SEM) of 3 
independent experiments (top panel), with each separate wound density vs. 
time plot from individual experiments shown below (means of 6 wells +/- SD). 
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Figure 4-8 Over-expression of miR-21 does not affect invasion in breast cancer 
associated fibroblasts 
CAF-1 (A) and CAF-2 (B) were transfected with miR-21 mimic (dark blue) or 
control (light blue), and then invasion into collagen type I was assessed using 
scratch would closure assays. Data are displayed as the relative mean of the 
area under the curve of wound density vs. time plots (+/- SEM) of 3 
independent experiments (top panel), with each separate wound density vs. 
time plot from individual experiments shown below (means of 6 wells +/- SD). 
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Increasing levels of miR-21 in fibroblasts did not significantly alter the ability of 

fibroblasts to invade through collagen type I for any of the 4 fibroblast cultures (NF-

1, NF-2, CAF-1 and CAF-2) (Figures 4-7 and 4-8).  

4.4 Discussion 

4.4.1 The effect of miR-21 on fibroblast growth 

Increasing levels of miR-21 in fibroblasts did not significantly alter cell proliferation 

over 4 days in any of the 4 fibroblast cultures. Some individual replicate 

experiments did show significant changes between miR-21 mimic and control (for 

example, in Figures 4-3 part B and 4-4 respectively 2 or 3 of the repeats showed 

statistically significant differences on day 4) however these results were not 

significant when analysed in the context of the combined data. It is possible that 

combining these data in this way has led to a type II statistical error of incorrectly 

rejecting the alternative hypothesis of a true effect, however, any differences appear 

to be at best small and inconsistent. The more important questions may be not 

whether these effects are statistically significant, but whether they are biologically 

relevant, which I believe is potentially unlikely due to their small and inconsistent 

nature 

MiR-21 over-expression had no significant effect on fibroblast growth in either 

normal fibroblasts or cancer associated fibroblasts. There has been very little work 

in breast fibroblasts or cancer associated fibroblasts from other tumours that has 

looked at the influence of miR-21 over-expression on fibroblast behaviour in this 

way. One study, that has some similarities, used primary stromal cells extracted 

from phyllodes breast tumours. This study found that transfection with miR-21 

mimic increased growth of stromal cells (Gong et al., 2014). Other studies have 

looked at the effect on growth of altering expression of miR-21 in fibroblast-like 

synovial cells from rats; pulmonary fibrosis fibroblasts from mice; and primary 

human keloid fibroblasts. These studies showed varying results. In rat fibroblast-like 

synovial cells, constitutive down-regulation of miR-21 by lentiviral transduction 

lead to a significant decrease in growth rate. A similar result was seen with mouse 

pulmonary fibrosis fibroblasts where transient transfection with miR-21 mimics 

significantly increased cell proliferation, whereas the opposite was seen with human 



 
 

- 105 - 
 

keloid fibroblasts where transient transfection with miR-21 mimics significantly 

decreased growth (Chen et al., 2016b, Liu et al., 2014b, Liu and Qian, 2015). This 

confirms that fibroblasts from different species, different locations and different 

tumours display different characteristics when their miR-21 levels are altered and 

that fibroblasts should not be regarded as one homogenous group. It also highlights 

the importance of investigating the role of miR-21 in the specific fibroblasts of 

interest, not relying on results from other settings. 

4.4.2 The effect of miR-21 on fibroblast migration 

My work has shown that migration significantly increased when miR-21 levels were 

increased in CAF-2 cells (p = 0.0214; Figure 4-6). However, in the other fibroblast 

cultures (NF-1, NF-2 and CAF-1) there was no significant effect, although 

numerically migration was marginally increased (Figures 4-5 and 4-6; p = 0.0935, p 

= 0.0805, p = 0.1425, respectively). This lack of a consistent influence across the 

different fibroblasts could be due to a number of key influences. (i) CAF-2 cells 

were the only primary cells included in the analysis – it is possible primary cells 

behave differently in response to transfection with miR-21 than immortalised 

fibroblast lines. (ii) All the fibroblasts were extracted from different individuals – it 

is possible differences in response simply reflect biological differences between 

individuals. (iii) CAF-2 had the lowest endogenous miR-21 levels (Figure 4-1) – it 

is possible that this would make them the most sensitive to miR-21 over-expression, 

as endogenous miR-21 levels may be less likely to be saturated. 

Other studies have looked at the effect of miR-21 on fibroblast migration in 

phyllodes stromal cells, prostate fibroblasts and skin fibroblasts. Transfection of 

miR-21 mimics into primary phyllodes stromal cells significantly increased 

transwell migration compared with cells transfected with controls (Gong et al., 

2014). Similarly, normal prostate fibroblasts (WPMY-1) showed a significant 

increase in transwell migration when transfected with miR-21 mimics (Sanchez et 

al., 2016). Finally, in human skin fibroblasts, cells transfected with miR-21 mimics 

reportedly showed increased migration in a scratch wound assays, although the 

published data contained no quantification or statistical analyses of the size or 

significance of this increase, and therefore this report may not be robust 

(Madhyastha et al., 2012). Overall these studies seem to point to a consistent picture 
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of miR-21 increasing cell migration in fibroblasts. This finding was partly backed up 

by my work, as this difference was also seen in CAF-2, but not completely as the 

other fibroblast cultures did not show this increase, although there was a trend 

towards this. 

4.4.3 The effect of miR-21 on fibroblast invasion 

In my work I found that increasing levels of miR-21 in normal breast fibroblasts and 

in breast cancer associated fibroblasts made no difference to their invasive ability 

and there was no suggestion of a trend in the results (Figs. 4-7 and 4-8). This is in 

contrast to the effect miR-21 has on fibroblast migration where it was significantly 

increased migration in CAF-2. There are very few other studies looking at the effect 

of miR-21 levels specifically on fibroblast invasion. The only related study looked at 

the effect of miR-21 on the stromal cells in benign and malignant breast phyllodes 

tumour. This found that transient transfection to over-express miR-21 significantly 

increased the invasive ability of stromal cells from both benign and malignant 

phyllodes tumours (Gong et al., 2014). This result is not wholly unexpected as it is 

the stromal cells in phyllodes tumour that have genetically altered, and have 

increased independent proliferative ability and in malignant phyllodes developed 

invasive ability, becoming tumour cells. Whereas in breast carcinoma it is the 

epithelial cells that undergo genetic changes. Therefore this study may be more 

comparable to the studies looking at the effect of miR-21 on tumour cell invasion, 

where it is known that transfection of miR-21 into epithelial and connective tissue 

tumour cells increases their invasive ability (Silva and Aboussekhra, 2016, Han et 

al., 2016, Yang et al., 2017), rather than comparable to the work I have done. 

4.4.4 Conclusions 

I have shown that over-expression of miR-21 in breast fibroblasts has no consistent 

effect on fibroblast growth, migration or invasion, although one CAF culture did 

demonstrate enhanced migration. This is in contrast to a number of published studies 

where miR-21 has been shown to influence these activities significantly, although in 

every case a different tissue type has been used to supply the fibroblasts – something 

that may highlight tissue-specific differences in fibroblast biology. 
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5 Chapter 5 

The influence of miRNA-21 levels in fibroblasts on the 

behaviour of breast tumour cells 

5.1 Abstract 

Expression of miR-21 is increased in cancer associated fibroblasts of triple negative, 

basal-like breast cancers as compared to normal breast fibroblasts. My aim was to 

test the functional relevance of this increase with respect to the behaviour of 

epithelial breast cancer cells. A series of co-culture experiments were performed, 

culturing breast fibroblasts, either normal fibroblasts (NF-1 or NF-2) or cancer 

associated fibroblasts (CAF-1 or CAF-2), with epithelial breast cancer cells (MDA-

MB-231) with or without transfections to manipulate miR-21 expression levels. 

Expression levels were assessed using qPCR and a luciferase reporter and epithelial 

cell behaviour was assessed in proliferation, migration, invasion and chemotherapy 

resistance assays.  

Increasing or decreasing levels of miR-21 in any of the 4 fibroblast cultures did not 

significantly alter epithelial cancer cell growth, migration or resistance to 

chemotherapy in a co-culture setting. I found that decreasing miR-21 significantly 

increased the invasion of tumour cells when in co-culture with the cancer associated 

fibroblast culture, CAF-2, but not with any of the other fibroblast lines. These 

findings do not provide compelling evidence of a substantial role of miR-21 in 

fibroblasts in affecting the behaviour of cancer cells, however, more work in other 

primary CAF cultures and potentially other breast cancer cell lines is needed to 

confirm this. 
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5.2 Introduction 

MiR-21 is significantly up-regulated in breast cancer compared with adjacent 

normal tissue or non-cancer breast tissue (Yan et al., 2008, Song et al., 2016b, Iorio 

et al., 2005). My work, described in chapter 3, has shown that in fact miR-21 is 

significantly up-regulated in the fibroblast compartment of triple negative, basal-like 

breast cancers, and also that expression within epithelial breast cancer cells is 

relatively low compared to the CAFs, suggesting that the cancer-related role of miR-

21 may be in this compartment.  

Functional work has been carried out in breast epithelial cancer cells to test for 

potential roles of miR-21. This has shown that transfection with miR-21 mimic 

significantly increased growth in MCF-7 (luminal A) and MDA-MB-231 (triple 

negative) cell lines and that using miR-21 inhibitors significantly decreased growth. 

Migration and invasion were also significantly increased in MCF-7 and MDA-MB-

231 cell lines when transfected with miR-21 mimics, and decreased by miR-21 

inhibitors (Kuang and Nie, 2016, Yan et al., 2011, Zhang et al., 2016). However, as 

miR-21 expression is predominantly in CAFs rather than in tumour cells, at least in 

triple negative, basal-like breast cancers, the relevance of these findings to actual 

cancer biology is uncertain.  

I have already described work in which I assessed whether miR-21 levels influence 

breast fibroblast behaviour, with respect to growth, migration and invasion (chapter 

4). Next, I wanted to develop a co-culture tissue culture model that would enable me 

to determine what effects over-expression of miR-21 in CAFs has on the behaviour 

of triple negative breast cancer cells. I wanted to use this model to investigate the 

cancer-related behaviours of growth, migration, invasion and resistance to 

chemotherapy in the tumour cells when levels of miR-21 were altered in fibroblasts. 

A key fact to note is that many of the changes associated with the conversion of NFs 

to become CAFs are known to be induced directly by the presence of the epithelial 

cancer cells, for example by factors secreted by tumour cells, such as TGF-β (Calon 

et al., 2014, Casey et al., 2008). There is some evidence that up-regulation of miR-

21 is one of these changes induced directly by epithelial cancer cells, as this has 

been seen in colorectal cancer and pancreatic adenocarcinoma (Ali et al., 2015, 

Bullock et al., 2013). Also, TGF-β has been shown to increase miR-21 levels in skin 
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fibroblasts (Li et al., 2013, Kuninty et al., 2016b). It was important for me to assess 

whether up-regulation of endogenous miR-21 in fibroblasts would occur in my co-

culture system of breast fibroblasts with breast epithelial cancer cells, in order to 

understand the regulation of fibroblast endogenous miR-21 levels, and therefore 

how to manipulate experimentally miR-21 levels by transfection. This has not 

previously been studied in the context of breast cells.  

5.3 Results 

5.3.1 Co-culture of fibroblasts with MDA-MB-231 cells 

My first aim was to investigate whether epithelial breast cancer cells directly 

influenced miR-21 expression in fibroblasts in order to understand better the 

endogenous miR-21 levels in fibroblasts and therefore to be able to experimentally 

manipulate them appropriately and more effectively with transfections. I used the 

well-established triple negative breast cancer cell line, MDA-MB-231, as a 

representative epithelial cancer cell line for these experiments. 

5.3.1.1 MDA-MB-231 cells induced up-regulation of miR-21 in breast 

fibroblasts in direct co-culture 

My initial experimental design was to compare expression of miR-21 in a mono-

culture of fibroblasts, with expression of miR-21 within the fibroblast compartment 

of a fibroblast-epithelial co-culture. In order to be able to isolate the fibroblasts from 

the co-culture, I used MDA-MB-231 cells that over-expressed GFP and therefore the 

cell types could be separated using fluorescence activated cell sorting (FACS). As 

the cell sorting process could potentially also influence expression levels, it was 

important that the mono-culture fibroblasts also underwent sorting. Therefore the 

mono-culture fibroblasts were mixed, on ice, with GFP-positive MDA-MB-231 cells 

and sorted immediately prior to RNA extraction, thereby undergoing treatment as 

similar as possible to the co-cultured cells. I used 2 fibroblast lines - a NF and a 

CAF line (NF-1 and CAF-1) to see if the influence of tumour cells on fibroblast 

miR-21 levels varied with fibroblast line and potentially whether the source of the 

fibroblasts, benign breast tissue compared with breast cancer tissue, made a 

difference to how the fibroblasts responded in co-culture. 
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Fibroblasts were cultured for 3 days either alone (mono-culture), or with GFP-

tagged MDA-MB-231 at an initial ratio of 1:1, and then both cultures underwent 

FACS as described above to isolate fibroblasts, based on lack of GFP expression. 

MiR-21 levels were assessed by qPCR (Figure 5-1). 

Contact co-culture with MDA-MB-231 significantly increased the levels of miR-21 

in both fibroblast lines by up to 4-fold (Figure 5-1). As an aside, experiments were 

carried out using transfer of epithelial conditioned medium or physically separate 

co-culture in transwells to examine further the mechanisms of the influence of 

MDA-MB-231 cells on NF-1 and CAF-1 miR-21 levels. These showed no 

significant up-regulation of miR-21 in the fibroblasts, suggesting that direct cell-to-

cell contact between epithelial and fibroblast cells may be required, although there 

was some variability between individual repeats making robust conclusions difficult 

(Appendix K). 

The fact that contact co-culture of fibroblasts NF-1 or CAF-1 with MDA-MB-231 

significantly increased miR-21 levels in these fibroblasts, has key implications for 

design of experiments to test functional roles of miR-21 in fibroblasts with respect 

to epithelial behaviour in co-cultures. In this context, the influence of fibroblasts 

transfected with miR-21 mimics compared to control transfections may be 

particularly problematic, as miR-21 would in fact be up-regulated to some extent in 

both samples because of induction of endogenous expression by epithelial cells, 

albeit substantially more in the mimic transfected sample. I concluded that use of 

miRNA inhibitors may be more appropriate, allowing comparison of the influence 

of co-culture enhanced endogenous levels (inhibitor control transfected) with 

reduced levels (inhibitor transfected), and that this approach would be prioritised in 

some cases.  

At the end of this (section 5.4) I return to the observation that direct co-culture with 

MDA-MB-231 cells induced changes in miRNA expression in fibroblasts and 

analyse whether these extend beyond miR-21, however at this stage the focus 

remained on miR-21. 
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Figure 5-1 Co-culture with tumour cells increases miR-21 in NF-1 and CAF-1 
Fibroblasts (NF-1 and CAF-1) were either co-cultured for 3 days with GFP-
positive MDA-MB-231 cells or were mixed immediately prior to FACS. The 
mixed cell populations were separated by FACS on the basis of GFP 
expression, and miR-21 levels measured in fibroblasts by qPCR. Data are 
displayed as the mean (+/- SEM) of two independent experiments (top panel), 
with each separate experiment shown below (means +/- SD of technical 
triplicates; bottom panel). Part A shows the data from NF-1 and part B from 
CAF-1. 
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5.3.2 Establishing a model system for investigating the effects of miR-21 in 

fibroblasts on the behaviour of epithelial tumour cells 

I confirmed previously (Figure 4-2) that transfection of breast fibroblasts with miR-

21 mimics successfully increased miR-21 levels, using qPCR. To decrease levels of 

miR-21 in fibroblasts, I transfected them with miR-21 inhibitors. MiRNA inhibitors 

are complementary strands of RNA that binds to their target miRNAs, preventing 

them from having functional effects within the cells. It was not appropriate to 

confirm by qPCR that miR-21 inhibitor transfection had successfully inhibited miR-

21, because the inhibitors do not necessarily decrease the absolute levels of their 

targets within the cell, only the functional level. I therefore cloned a miR-21 reporter 

plasmid to assess miR-21 activity, and to confirm that the miR-21 inhibitor 

transfection was effective. The miR-21 reporter plasmid contained a firefly 

luciferase expression cassette with an exactly complementary miR-21 binding site in 

its 3’UTR, and a Renilla luciferase expression cassette for plasmid transfection 

efficiency normalisation. Fibroblasts were transfected with miR-21 inhibitor or 

inhibitor control, or miR-21 mimic or mimic control. On the following day 

fibroblasts were transfected with miR-21 reporter plasmid, and on the following day 

dual luciferase assays were performed (Figure 5-2). 
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Figure 5-2 MiR-21-inhibitor decreases miR-21 activity in fibroblasts 

Fibroblasts were transfected with miR-21 mimic or miR-21-inhibitor or the 
appropriate control. They were then transfected with miR-21 reporter plasmid 
containing a perfect miR-21 binding site in the firefly luciferase 3’UTR. On 
the following day firefly luciferase and Renilla luciferase were measured. 
Firefly activity measurements were normalised to Renilla activity. Data 
represent means (+/- SD) of three independent wells. Part A shows data for 
NF-1, part B NF-2, part C CAF-1 and part D CAF-2. Significance values 
derive from Student’s t-tests. 
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four fibroblast lines, as demonstrated by de-repression of miR-21 reporter 

expression by up to 4-fold. Concerning and surprising was the fact that the miR-21 

mimic apparently caused no functional repression of this reporter (despite the fact 

that I have previously shown mimics to allow successful and substantial miR-21 

over-expression; Figure 4-2). One interpretation of this result is that it is possible a 

perfect miR-21 binding site is not representative of the influence of miR-21 over-

expression. MiRNA binding sites are usually only poorly complementary and 

miRNA-target binding is comparatively weak. In this case, the reporter’s perfect 

A B 

C D 

0.00

0.01

0.02

0.03

0.04

0.05

mimic miR-21  inhibitor    miR-21
control mimic  control    inhibitor

N
or

m
al

is
ed

 fi
re

fly
 lu

ci
fe

ra
se

 a
ct

iv
ity

p = 0.0006

NF-2

0.00

0.05

0.10

0.15

mimic miR-21  inhibitor    miR-21
control mimic  control    inhibitor

N
or

m
al

is
ed

 fi
re

fly
 lu

ci
fe

ra
se

 a
ct

iv
ity

p = 0.0007
NF-1

0.00

0.05

0.10

0.15

0.20

0.25

mimic miR-21  inhibitor    miR-21
control mimic  control    inhibitor

N
or

m
al

is
ed

 fi
re

fly
 lu

ci
fe

ra
se

 a
ct

iv
ity

p = 0.0343CAF-1

0.00

0.05

0.10

0.15

mimic miR-21  inhibitor    miR-21
control mimic  control    inhibitor

N
or

m
al

is
ed

 fi
re

fly
 lu

ci
fe

ra
se

 a
ct

iv
ity

p = 0.0378

CAF-2



 
 

- 114 - 
 

binding site would compete for miR-21 binding very effectively, therefore it may be 

that the reporter is fully inhibited even in the absence of miR-21 over-expression, 

meaning that additional repression by miR-21 mimic cannot be detected. This 

hypothesis may also imply that the functional influence detected from the miR-21 

inhibitor under-represents its true functional impact. The more effective 

demonstration of the functional influence of the miR-21 inhibitor, as opposed to the 

mimic, provided a further reason for prioritising inhibitor studies in some cases, 

addition to the reason given already in section 5.3.1.1. 

 

5.3.3 Altering levels of miR-21 in fibroblasts does not affect growth of 

tumour cells 

In investigating the effects of altering miR-21 levels in fibroblasts, my first aim was 

to examine the influence on epithelial tumour cell growth. Co-cultures of fibroblasts 

and epithelial cancer cells were to be used, but I wanted to test any changes in 

epithelial tumour cell growth only, therefore I used MDA-MB-231 transduced to 

express firefly luciferase, and used luciferase activity as a way of assessing tumour 

cell number within the co-culture. 

To investigate the effect that altering the levels of miR-21 in fibroblasts has on the 

growth of MDA-MD-231 tumour cells, first fibroblasts (four different breast 

fibroblast cultures: NF-1, NF-2, CAF-1 or CAF-2) were transfected with miR-21 

mimic, miR-21 inhibitor or appropriate control. Following transfection MDA-MB-

231-luciferase-expressing cells were seeded into the same wells. After 1, 2 and 3 

days co-culture MDA-MB-231 growth was quantified by measuring luciferase 

activity (Figures 5-3 to 5-6). 
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Figure 5-3 Increasing or decreasing miR-21 levels in NF-1 does not affect 
growth of MDA-MB-231 in contact co-culture 
NF-1 cells were transfected with either miR-21 mimic (dark blue) or miR-21 
inhibitor (purple) or the respective control (light blue and pink respectively). 
MDA-MB-231-luciferase-expressing cells were seeded into the same wells. 
Luciferase activity was measure after 1-3 days. Data are displayed as the mean 
(+/- SEM) of 3 independent experiments (top panel), with each separate 
experiment shown below (means +/- SD). Part A shows the data from NF-1 
transfected with miR-21 mimic and part B from NF-1 transfected with miR-21 
inhibitor. 
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Figure 5-4 Increasing or decreasing miR-21 levels in NF-2 does not affect 
growth of MDA-MB-231 in contact co-culture 
NF-2 cells were transfected with either miR-21 mimic (dark blue) or miR-21 
inhibitor (purple) or the respective control (light blue and pink respectively). 
MDA-MB-231-luciferase-expressing cells were seeded into the same wells. 
Luciferase activity was measure after 1-3 days. Data are displayed as the mean 
(+/- SEM) of 2 independent experiments (top panel), with each separate 
experiment shown below (means +/- SD). Part A shows the data from NF-2 
transfected with miR-21 mimic and part B from NF-2 transfected with miR-21 
inhibitor. 
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Figure 5-5 Increasing or decreasing miR-21 levels in CAF-1 does not affect 
growth of MDA-MB-231 in contact co-culture 

CAF-1 cells were transfected with either miR-21 mimic (dark blue) or miR-21 
inhibitor (purple) or the respective control (light blue and pink respectively). 
MDA-MB-231-luciferase-expressing cells were seeded into the same wells. 
Luciferase activity was measure after 1-3 days. Data are displayed as the mean 
(+/- SEM) of 2 independent experiments (top panel), with each separate 
experiment shown below (means +/- SD). Part A shows the data from CAF-1 
transfected with miR-21 mimic and part B from CAF-1 transfected with miR-
21 inhibitor. 
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Figure 5-6 Increasing or decreasing miR-21 levels in CAF-2 does not affect 
growth of MDA-MB-231 in contact co-culture 

CAF-2 cells were transfected with either miR-21 mimic (dark blue) or miR-21 
inhibitor (purple) or the respective control (light blue and pink respectively). 
MDA-MB-231-luciferase-expressing cells were seeded into the same wells. 
Luciferase activity was measure after 1-3 days. Data are displayed as the mean 
(+/- SEM) of 3 independent experiments (top panel), with each separate 
experiment shown below (means +/- SD). Part A shows the data from CAF-2 
transfected with miR-21 mimic and part B from CAF-2 transfected with miR-
21 inhibitor 
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Increasing or decreasing levels of miR-21 in fibroblasts, by using miR-21 mimics or 

inhibitors, did not significantly alter tumour cell growth with any of the 4 fibroblast 

cultures, (NF-1, NF-2, CAF-1, CAF-2). Some individual repeat experiments 

appeared to show changes in growth on day 3, mainly, but not exclusively, of lower 

miR-21 levels inducing enhanced growth (e.g. Figure 5-5B and Figure 5-6B repeat 

1). However, these results were not significant when analysed in the context of the 

combined data. 

 

5.3.4 Altering levels of miR-21 in fibroblasts does not affect migration of 

tumour cells 

My next aim was to look at the effect of altering levels of miR-21 in fibroblasts on 

migration of epithelial tumour cells. To do this I transfected fibroblasts with either 

miR-21 mimic, miR-21 inhibitor or appropriate control. I then seeded MDA-MB-

231 cells into the same wells. On the following day, after allowing time for cells to 

settle and adhere, a scratch was made in the cell layer and the time for the cells to 

migrate into these “wounds” was measured hourly using a live cell imaging system. 

To differentiate between migration of epithelial cells and fibroblasts, epithelial cells 

labelled with GFP were used and the migration of GFP-fluorescent cells into the 

wound was measured. Data are shown hourly for each individual experimental 

repeat, and repeats were combined by calculating the relative areas under the 

migration vs. time curves (Figures 5-7 to 5-10) (Salomon et al., 2013, Salomon et 

al., 2014). 
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Figure 5-7 Increasing or decreasing miR-21 levels in NF-1 does not affect 
migration of MDA-MB-231 in contact co-culture 

NF-1 cells were transfected with either miR-21 mimic (dark blue) or miR-21 
inhibitor (purple) or the respective control (light blue and pink respectively). 
MDA-MB-231-GFP cells were seeded into the same wells. Following this a 
scratch wound closure assay was used to measure migration. Data are 
displayed as the mean of the area under the curve (+/- SEM) of 3 independent 
experiments (top panel), with each separate experiment shown below (mean of 
6 wells +/- SD). Part A shows the data from NF-1 transfected with miR-21 
mimic and part B from NF-1 transfected with miR-21 inhibitor. 
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Figure 5-8 Decreasing miR-21 levels in NF-2 does not affect migration of MDA-
MB-231 in contact co-culture 

NF-2 cells were transfected with miR-21 inhibitor (purple) or inhibitor control 
(pink). MDA-MB-231-GFP cells were seeded into the same wells. Following 
this a scratch wound closure assay was used to measure migration. Inhibitor 
assessments were prioritised for the reasons stated in sections 5.3.1.1 and 
5.3.2. Data are displayed as the mean of the area under the curve (+/- SEM) of 
3 independent experiments (top panel), with each separate experiment shown 
below (mean of 6 wells +/- SD). 
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Figure 5-9 Increasing or decreasing miR-21 levels in CAF-1 does not affect 
migration of MDA-MB-231 in contact co-culture 

CAF-1 cells were transfected with either miR-21 mimic (dark blue) or miR-21 
inhibitor (purple) or the respective control (light blue and pink respectively). 
MDA-MB-231-GFP cells were seeded into the same wells. Following this a 
scratch wound closure assay was used to measure migration. Data are 
displayed as the mean of the area under the curve (+/- SEM) of 2 or 3 
independent experiments (top panel), with each separate experiment shown 
below (mean of 6 wells +/- SD). Part A shows the data from CAF-1 
transfected with miR-21 mimic and part B from CAF-1 transfected with miR-
21 inhibitor. 
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Figure 5-10 Increasing or decreasing miR-21 levels in CAF-2 does not affect 
migration of MDA-MB-231 in contact co-culture 
CAF-2 cells were transfected with either miR-21 mimic (dark blue) or miR-21 
inhibitor (purple) or the respective control (light blue and pink respectively). 
MDA-MB-231-GFP cells were seeded into the same wells. Following this a 
scratch wound closure assay was used to measure migration. Data are 
displayed as the mean of the area under the curve (+/- SEM) of 3 independent 
experiments (top panel), with each separate experiment shown below (mean of 
6 wells +/- SD). Part A shows the data from CAF-2 transfected with miR-21 
mimic and part B from CAF-2 transfected with miR-21 inhibitor. 
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Increasing or decreasing the levels of miR-21 in fibroblasts did not significantly 

alter the speed of migration of MDA-MB-231 tumour cells in a contact co-culture 

setting (Figures 5-7 to 5-10).  

 

5.3.5 Lower levels of miR-21 in CAF-2 fibroblasts, but not in other breast 

fibroblast lines, increases invasion of MDA-MB-231 tumour cells 

My third aim was to look at the effect of altering levels of miR-21 in fibroblasts on 

the invasion of epithelial tumour cells. Fibroblasts were transfected with either miR-

21 mimic, miR-21 inhibitor or their respective control and were seeded onto a layer 

of collagen type 1. MDA-MB-231 cells (GFP labelled) were seeded into the same 

wells the following day. After cells had adhered, a scratch was made in the cell layer 

and a second layer of collagen type I was added to the wells to cover the cells and to 

provide a barrier for invasion. The time for the cells to migrate into the “wound” 

was measured hourly using live cell imaging. As with the migration scratch wound 

assay, to differentiate between the invasion of epithelial cells and fibroblasts, the 

invasion of GFP-fluorescent epithelial cells into the wound was measured. Data are 

shown hourly for each individual experimental repeat, and repeats were combined 

by calculating the relative areas under the invasion vs. time curves (Figures 5-11 to 

5-14) (Salomon et al., 2013, Salomon et al., 2014).   
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Figure 5-11 Increasing or decreasing miR-21 levels in NF-1 does not affect 
invasion of MDA-MB-231 in contact co-culture 
Wells were coated with collagen type I. NF-1 cells were transfected with either 
miR-21 mimic (dark blue) or miR-21 inhibitor (purple) or the respective 
control (light blue and pink respectively). MDA-MB-231-GFP cells were 
seeded into the same wells. Following this, a scratch was made across the 
culture and a second layer of collagen type I was added. Invasion of epithelial 
cells into the collagen filled scratch was quantified as GFP density. Data are 
displayed as the mean of the area under the curve (+/- SEM) of 3 independent 
experiments (top panel), with each separate experiment shown below (mean of 
6 wells +/- SD). Part A shows the data from NF-1 transfected with miR-21 
mimic and part B from NF-1 transfected with miR-21 inhibitor. 
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Figure 5-12 Decreasing miR-21 levels in NF-2 does not affect invasion of MDA-
MB-231 in contact co-culture 
Wells were coated with collagen type I. NF-2 cells were transfected with miR-
21 inhibitor (purple) or inhibitor control (pink). MDA-MB-231-GFP cells 
were seeded into the same wells. Following this, a scratch was made across the 
culture and a second layer of collagen type I was added. Invasion of epithelial 
cells into the collagen filled scratch was quantified as GFP density. Data are 
displayed as the mean of the area under the curve (+/- SEM) of 3 independent 
experiments (top panel), with each separate experiment shown below (mean of 
6 wells +/- SD). 
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Figure 5-13 Increasing or decreasing miR-21 levels in CAF-1 does not affect 
invasion of MDA-MB-231 in contact co-culture 

Wells were coated with collagen type I. CAF-1 cells were transfected with 
either miR-21 mimic (dark blue) or miR-21 inhibitor (purple) or the respective 
control (light blue and pink respectively). MDA-MB-231-GFP cells were 
seeded into the same wells. Following this, a scratch was made across the 
culture and a second layer of collagen type I was added. Invasion of epithelial 
cells into the collagen filled scratch was quantified as GFP density. Data are 
displayed as the mean of the area under the curve (+/- SEM) of 2 or 3 
independent experiments (top panel), with each separate experiment shown 
below (mean of 6 wells +/- SD). Part A shows the data from CAF-1 
transfected with miR-21 mimic and part B from CAF-1 transfected with miR-
21 inhibitor. 
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Figure 5-14 CAF-2 with lower levels of miR-21 significantly decreases invasion 
of MDA-MB-231 cells in contact co-culture 
Wells were coated with collagen type I. CAF-2 cells were transfected with 
either miR-21 mimic (dark blue) or miR-21 inhibitor (purple) or the respective 
control (light blue and pink respectively). MDA-MB-231-GFP cells were 
seeded into the same wells. Following this, a scratch was made across the 
culture and a second layer of collagen type I was added. Invasion of epithelial 
cells into the collagen filled scratch was quantified as GFP density. Data are 
displayed as the mean of the area under the curve (+/- SEM) of 3 independent 
experiments (top panel), with each separate experiment shown below (mean of 
6 wells +/- SD). Part A shows the data from CAF-2 transfected with miR-21 
mimic and part B from CAF-2 transfected with miR-21 inhibitor. 
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Changing levels of miR-21 in fibroblast cultures NF-1, NF-2 and CAF-1, with either 

miR-21 mimic or miR-21 inhibitor, made no significant difference to the speed of 

MDA-MB-231 cell invasion within co-cultures (Figure 5-11 to 5-13). Whereas, 

when miR-21 levels were increased in CAF-2 fibroblasts with miR-21 mimic 

(Figure 5-14A) the invasion of MDA-MB-231 cells was significantly decreased (p = 

0.0483), and when miR-21 levels were decreased in CAF-2 using a miR-21 inhibitor 

(Figure 5-14B) the invasion of MDA-MB-231 cells significantly increased (p = 

0.0039). Both parts of Figure 5-14 suggest that when miR-21 levels are lower in 

CAF-2 fibroblasts the invasion of MDA-MB-231 cells is increased.  

 

5.3.6 Altering levels of miR-21 in fibroblasts does not affect chemotherapy 

resistance in tumour cells 

Next, my aim was to determine if increasing or decreasing levels of miR-21 in 

fibroblasts changed the sensitivity of tumour cells to a standard chemotherapy agent 

used in breast cancer treatment, the anthracycline, epirubcin. To do this I first 

transfected fibroblasts with either miR-21 mimic, miR-21 inhibitor or their 

respective control. I then seeded MDA-MB-231 (luciferase positive) cells into the 

same wells as the fibroblasts. On the following day epirubicin was added to the 

wells at low or high dose (1 µM or 79 µM) or the cells were treated with vehicle 

control. Cell survival exclusively in the MDA-MB-231 cells was measured by using 

luciferase activity as a proxy measure of viable MDA-MB-231 cell number (as 

previously in section 5.3.3). Data were normalised to the vehicle only control and 

are shown in Figures 5-15 to 5-18.  
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Figure 5-15 Increasing or decreasing miR-21 levels in NF-1 does not alter 
MDA-MB-231 survival/proliferation following epirubicin treatment 
NF-1 cells were transfected with either miR-21 mimic (A, dark blue) or miR-
21 inhibitor (B, purple) or the respective control (light blue and pink 
respectively). MDA-MB-231-luciferase-expressing cells were seeded into the 
same wells and then treated with epirubicin at a relatively low dose (1 µM) or 
a relatively high dose (79 µM). Luciferase activity was used to determine 
MDA-MB-231 cell number thereby measuring survival/proliferation. Data are 
displayed as means (+/- SEM) of 3 independent experiments (top panel), with 
each separate experiment shown below (means +/- SD). 
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Figure 5-16 Increasing or decreasing miR-21 levels in NF-2 does not alter 
MDA-MB-231 survival/proliferation following epirubicin treatment 
NF-2 cells were transfected with either miR-21 mimic (A, dark blue) or miR-
21 inhibitor (B, purple) or the respective control (light blue and pink 
respectively). MDA-MB-231-luciferase-expressing cells were seeded into the 
same wells and then treated with epirubicin at a relatively low dose (1 µM) or 
a relatively high dose (79 µM). Luciferase activity was used to determine 
MDA-MB-231 cell number thereby measuring survival/proliferation. Data are 
displayed as means (+/- SEM) of 3 independent experiments (top panel), with 
each separate experiment shown below (means +/- SD). 
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Figure 5-17 Increasing or decreasing miR-21 levels in CAF-1 does not alter 
MDA-MB-231 survival/proliferation following epirubicin treatment 
CAF-1 cells were transfected with either miR-21 mimic (A, dark blue) or miR-
21 inhibitor (B, purple) or the respective control (light blue and pink 
respectively). MDA-MB-231-luciferase-expressing cells were seeded into the 
same wells and then treated with epirubicin at a relatively low dose (1 µM) or 
a relatively high dose (79 µM). Luciferase activity was used to determine 
MDA-MB-231 cell number thereby measuring survival/proliferation. Data are 
displayed as means (+/- SEM) of 2 or 3 independent experiments (top panel), 
with each separate experiment shown below (means +/- SD). 
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Figure 5-18 Increasing or decreasing miR-21 levels in CAF-2 does not alter 
MDA-MB-231 survival/proliferation following epirubicin treatment 

CAF-2 cells were transfected with either miR-21 mimic (A, dark blue) or miR-
21 inhibitor (B, purple) or the respective control (light blue and pink 
respectively). MDA-MB-231-luciferase-expressing cells were seeded into the 
same wells and then treated with epirubicin at a relatively low dose (1 µM) or 
a relatively high dose (79 µM). Luciferase activity was used to determine 
MDA-MB-231 cell number thereby measuring survival/proliferation. Data are 
displayed as means (+/- SEM) of 3 independent experiments (top panel), with 
each separate experiment shown below (means +/- SD). 
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Increased or decreased miR-21 levels in any of the four fibroblast cultures, NF-1, 

NF-2, CAF-1 and CAF-2, did not significantly alter the survival/proliferation of 

MDA-MB-231 cells in response to epirubcin treatment. As previously, some 

individual repeats did show some differences (e.g. repeats 2 and 3 with CAF-1 

transfected with miR-21 mimic; Figure 5-17A), however, the combined assessments 

indicated there to be no significant differences.  

 

5.4 MDA-MB-231 cells induce changes in expression of multiple 

miRNAs in co-cultured fibroblasts 

I now return to the observation that miR-21 was induced in fibroblasts by co-culture 

with MDA-MB-231 cells (section 5.3.1.1 and Figure 5-1). My aim now was to 

determine whether co-culture induces changes in expression of other miRNAs in the 

fibroblasts, and whether these changes reflect the differences in miRNA levels in the 

matched normal versus CAF comparison made using LCM FFPE fibroblasts 

samples in chapter 3. 

In the same way as in section 5.3.1.1 the CAF-1 fibroblast culture was grown in 

mono-culture or in contact co-culture with GFP-labelled MDA-MB-231 cells for 3 

days. Cells then underwent fluorescence sorting to isolate the non-fluorescent 

fibroblasts (note – as before, the fibroblast mono-cultures were mixed, on ice, with 

GFP-labelled MDA-MB-231 cells immediately before fluorescence sorting, to 

control for any changes induced by the sorting process itself). MiRNA expression 

profiling was then carried out using Taqman low density qPCR arrays. 

MiRNAs showing differential expression induced by the presence of the MDA-MB-

231 cells were identified, and the numbers and identities of these were compared 

with the miRNAs identified as differentially expressed between NFs and CAFs from 

4 clinical cases, previously (section 3.3.1). 

The numbers of miRNAs up-regulated or down-regulated in the tissue culture model 

compared with those from the four clinical cases are shown in Figure 5-19, while 

Table 5-1 shows the identities of the miRNAs that show consistent deregulation 

between these two systems. I concluded that the majority (15/21) of the miRNAs 
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consistently up-regulated in CAFs from clinical breast cancers were recapitulated in 

the tissue culture system, while a minority of the miRNAs that were down-regulated 

(1/27) were recapitulated. The up-regulated miRNAs identified by array analysis 

included miR-21, as expected and in accordance with my previous analysis of this 

miRNA alone (Figure 5-1). 

 

 

Figure 5-19 Number of miRNAs up- or down-regulated in CAF-1 cells by co-
culture with MDA-MB-231 cells compared with those up- or down-
regulated in CAFs from 4 clinical breast cancer cases 

CAF-1 fibroblasts were grown in mono-culture or co-culture with MDA-MB-
231 cancer cells. MiRNA expression was profiled in the CAF-1 cells in these 
cultures by qPCR arrays. MiRNAs consistently differentially expressed 
between matched NFs and CAFs from four cases of breast cancer were also 
identified by qPCR array profiling (section 3.3). These Venn diagrams show 
the numbers of miRNAs up-regulated (A) or down-regulated (B) in these 
experiments with the over-lap representing miRNAs consistently deregulated 
in tissue culture and clinical cases. 

  

																 FFPE	cases	 																FFPE	cases	A	 B	
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Mean fold change 

in FFPE cases Fold change in CAF-1 

miR-127 7.12 7.59 

miR-21 6.92 3.77 

miR-125a-5p 5.09 1.87 

miR-193b 4.43 3.76 

miR-296 4.33 7.38 

miR-342-3p 4.02 3.72 

miR-214 3.09 3.82 

miR-142-3p 2.77 ∞                                                           
(not detected in mono-culture CAF-1) 

miR-574-3p 2.7 1.87 

miR-27b 2.46 3.79 

miR-886-3p 2.35 3.74 

miR-222  2.30 3.75 

miR-708 2.26 3.79 

miR-19a 1.91 3.77 

miR-99b 1.25 7.20 

miR-139-5p 0.25 0.94 

Table 5-1 List of miRNA up- or down-regulated in CAFs as identified in 
clinical cases and in a co-culture model in vitro 

This table lists the miRNAs from the intersects of the Venn diagrams in Figure 
5-19. 
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5.5 Discussion 

5.5.1 Co-culture of fibroblasts with MDA-MB-231 cells 

My work showed that when fibroblasts and epithelial tumour cells were in contact 

co-culture miR-21 levels were significantly increased in fibroblasts. The effect of 

co-culture on in vitro miR-21 expression in fibroblasts in breast cancer has not 

previously been looked at. In a study of oesophageal cancer, using transwell and 

conditioned medium co-cultures, they found that when a squamous cell carcinoma 

line (KYSE-30) was co-cultured in transwells with gingival fibroblasts miR-21 

levels in fibroblasts significantly increased, whereas this increase was not seen with 

conditioned medium. When Nouraee et al. carried out a similar experiment with an 

oesophageal adenocarcinoma cell line (FLO-1) a small non-significant increase in 

fibroblast miR-21 levels was seen in a transwell co-culture, but not with conditioned 

medium co-culture (Nouraee et al., 2013). This also suggests the idea that miR-21 

up-regulation in co-culture is different in different cancer subtypes. 

 

5.5.2 Manipulation of miR-21 levels in fibroblasts in co-cultures 

A luciferase reporter was used to demonstrate that miR-21 inhibitor decreased 

functional levels of miR-21 within transfected fibroblasts. However, surprisingly, 

the luciferase reporter failed to detect functional over-expression of miR-21 after 

transfection with miR-21 mimics despite the fact that the transfection was evidently 

successful (Figure 4-2), suggesting that with this reporter the endogenous levels of 

miR-21 already fully repressed reporter expression (section 5.3.2 Figure 5-2).  

Effective transfection with miR-21 mimic and miR-21 inhibitor is typically 

confirmed by qPCR in published work, and studies have shown significant increases 

in miR-21 levels using qPCR after transfection with miR-21 mimics and significant 

decreases in miR-21 levels by qPCR after transfection with miR-21 inhibitors (Xu et 

al., 2015, Liu et al., 2014b). However, it has been shown that levels of miRNAs 

detectable by qPCR are not necessarily the same as the actual intracellular levels or 

– perhaps most importantly - as functional levels within the cells (Thomson et al., 

2013). The transfected miRNA mimic has to become bound to Argonaute proteins 

and then become incorporated into a RISC complex to become functional. Use of a 
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miRNA luciferase reporter or measurement of miRNA level following Argonaute 

immunoprecipitation are better ways to measure functional miRNA levels within 

cells. A luciferase reporter was used to confirm alteration of functional levels of 

miR-21 following transfection with miR-21 mimic in primary rat cardiac fibroblasts, 

it showed an almost 50% decrease in luciferase activity following transfection with 

miR-21 mimic (Thum et al., 2008). This differs from my findings and could be 

because the endogenous levels of miR-21 within these fibroblasts was different or 

because the miR-21 binding site within the 3’UTR also influences its functional 

activity. Some miR-21 binding sites may be very sensitive and show repression at 

low miR-21 levels, whereas other miR-21 binding sites, possibly those that are less 

complementary, may need higher levels of miR-21 for significant repression to 

occur. Confirmation of miR-21 inhibitor transfection leading to decreased levels of 

functional miR-21 within fibroblasts using a luciferase assay has not been published 

previously. 

 

5.5.3 MiR-21 in fibroblasts and tumour cell growth 

I found that increasing or decreasing the levels of miR-21 in fibroblasts did not 

significantly alter the growth of co-cultured breast cancer epithelial cells (Figures 5-

3 to 5-6). Previous data have shown that increased miR-21 expression in breast 

cancers, quantified by qPCR of RNA extracted from whole tumour tissues, or higher 

miR-21 expression in CAFs, as assessed by in situ hybridisation, positively 

correlated with tumour cell Ki67 proliferation index (Rask et al., 2011, Huang et al., 

2009a). However this does not necessarily imply a causal link between the miR-21 

fibroblast level and tumour cell proliferation, and my work suggests that there is not 

a causal link. It should also be noted that these breast cancer studies were looking at 

all breast cancer subtypes in one study (Huang et al., 2009a), and luminal A breast 

cancer subtype in the other (Rask et al., 2011), whereas I have focused on triple 

negative breast cancers, so it is possible there are subtype specific differences with 

respect to miR-21 function. In contrast to my work, a study of colorectal cancer 

found that increasing the level of miR-21 in fibroblasts lead to significant increases 

in tumour cell growth (Bullock et al., 2013). Again, this conflict could be because 

miR-21 in fibroblasts has a different role in different cancer types. 
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5.5.4 MiR-21 and tumour cell migration 

I have found that increasing or decreasing the levels of miR-21 in normal fibroblasts 

or cancer associated fibroblasts did not alter migration of co-cultured tumour cells 

(Figures 5-7 to 5-10). Specifically looking at the effect of miR-21 levels in 

fibroblasts on the migration of tumour cells has not been carried out in many other 

studies. One similar study used breast normal fibroblast conditioned medium and 

CAF conditioned medium to influence the behaviour of breast cancer cells. This 

study found that when miR-21 mimic was transfected into normal fibroblasts the 

migration of tumour cells increased, and conversely when a small molecule inhibitor 

of miR-21 was added to CAFs, the migration of tumour cells decreased in scratch 

wound assays (Ren et al., 2016). However, there was no quantification of the 

magnitude of this change, and no statistical analyses carried out to confirm that these 

changes were significant, therefore potentially this result should be interpreted with 

caution. These results differ from my findings in both result and experimental 

approach. The main difference in experimental design is that Ren et al. used 

conditioned medium transfer, whereas I used contact co-culture. When the small 

molecule inhibitor is added to fibroblasts it is not known if all the inhibitor is taken 

up into cells or if some could be carried across in the conditioned medium and act 

directly on the tumour cells. It is also not known whether it has any non-specific 

effects other than inhibiting the action of miR-21. These could explain the 

differences seen between their findings and mine. 

One other related study was carried out using an oesophageal squamous cell 

carcinoma cell line (KYSE-30) and human gingival fibroblasts (HGF-1) (Nouraee et 

al., 2013). Nouraee et al. found that inhibition of miR-21 in fibroblasts caused no 

significant difference in the migration of tumour cells, in accordance with my 

findings. 

 

5.5.5 MiR-21 and tumour cell invasion 

I found that when miR-21 levels were increased in CAF-2 fibroblasts the invasion of 

tumour cells decreased, and when miR-21 levels were decreased by miR-21 
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inhibitor the speed of invasion of tumour cells increased (Figure 5-14). A suggestion 

of a similar trend was seen with NF-1, NF-2 and CAF-1, as miR-21 inhibitor in 

fibroblasts lead to a small increase in tumour cell invasion although this increase 

was not significant (Figures 5-11 to 5-13). These finding suggest that different 

fibroblasts may behave in different ways. There are two possible reasons for this. 

One is that CAF-2 are a primary fibroblast culture, while the other lines have been 

immortalised. It may be that during the immortalisation process other changes occur 

that make the fibroblasts respond less sensitively or differently to miR-21 inhibitor 

transfection. The second possible reason is that because each of these fibroblast 

cultures is isolated from a different individual they may each respond in a different 

way to changes in manipulation of the miR-21 levels in their fibroblasts because 

their tumours and tumour fibroblasts were fundamentally different in the first place. 

My findings are different to those seen in other published work. Several different 

studies have shown that when miR-21 levels were increased in normal fibroblasts, 

the speed of invasion increased in associated cancer cells. This has been seen in 

several different adenocarcinomas, including colorectal cancer and pancreatic 

adenocarcinoma and even breast cancer cells (Bullock et al., 2013, Kadera et al., 

2013, Ren et al., 2016). The converse has also been demonstrated, that when miR-21 

levels were decreased in CAFs using either a small molecule inhibitor of miR-21 or 

miR-21 complementary inhibitor, invasion of breast cancer cells and pancreatic 

adenocarcinoma cells decreased (Ren et al., 2016, Kadera et al., 2013). In contrast to 

these, Nouraee et al. noted no significant change in the invasion of oesophageal 

squamous carcinoma cells when miR-21 inhibitor was transfected into fibroblasts 

(Nouraee et al., 2013). This suggests that miR-21 in fibroblasts may have different 

effects in different tumour types and subtypes.  

 

5.5.6 MiR-21 and chemotherapy resistance 

In my work I showed that increasing or decreasing levels of miR-21 in both normal 

fibroblasts and CAFs made no difference to epirubicin sensitivity of co-cultured 

cancer epithelial cells (Figures 5-15 to 5-18). 

There is no other published work directly comparable to my findings with this assay 

in the context of breast cancer, although some related work has been published in 
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other cancer types. In colorectal cancer, the effect of increasing miR-21 levels in 

CAFs on the response of cancer cells to oxaliplatin has been measured. This showed 

that increased miR-21 in CAFs significantly decreased the cytotoxic effect of 

oxaliplatin (Bullock et al., 2013). This difference could be because it is a different 

cancer type or because, although oxaliplatin and anthracyclines are both cytotoxic, 

DNA-damaging chemotherapies, they may work in different ways as the mechanism 

of action of anthracyclines is not completely understood (Rabbani et al., 2005, 

Alcindor and Beauger, 2011). A study looking at pancreatic ductal adenocarcinoma 

miR-21 expression and response to chemotherapy found that high levels of miR-21 

in CAFs correlated with decreased overall survival in multivariate analysis in 

patients that were treated with 5-fluorouracil, but miR-21 levels in CAFs did not 

correlate with survival following treatment with gemcitabine; this highlights that 

miR-21 may affect response to some chemotherapeutics but not others (Donahue et 

al., 2014). A further example looking at yet another therapeutic agent is that stromal 

miR-21 expression in breast cancer was not found to correlate with response to 

trastuzumab in HER2 positive breast tumours (Nielsen et al., 2014), however as this 

differs in cancer subtype and therapeutic agent it is difficult to relate this finding to 

my conclusions. 

 

5.5.7 Comparisons between miRNAs altered in matched NFs and CAFs from 

clinical samples, and in the tissue culture setting 

My work identified 15 miRNAs that were up-regulated and 1 miRNA that was 

down-regulated in CAFs compared with NFs in FFPE samples and also in co-culture 

compared with mono-culture growth conditions. The up-regulated miRNAs were 

miR-21, miR-125a-3p, miR-193b, miR-296, miR-214, miR-222, miR-127, miR-708, 

miR-19a, miR-142-3p, miR-574-3p, miR-342-3p, miR-886-3p, miR-27b and miR-

99b. The down-regulated miRNA was miR-139-5p. The methodology of comparing 

differences in the clinical cell types (NFs vs. CAFs) and those de-regulated in tissue 

culture when fibroblasts were co-cultured with an appropriate epithelial line, may 

provide a useful way of identifying the most robustly deregulated – and therefore 

potentially most important – miRNAs (Nouraee et al., 2013). As discussed in section 

1.4, miR-21 is known to up-regulated in several cancer types, including breast 
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cancer (Yan et al., 2008, Huang et al., 2009a, Rask et al., 2011, Hug et al., 2015). 

Below, I will briefly discuss data concerning expression and relevance of the other 

miRNAs in cancer fibroblasts. 

For most of these miRNAs very little is known about their expression or function in 

CAFs in any cancer type. In a study looking at miRNA expression in primary breast 

CAFs compared with matched primary NFs, in contrast to my findings, this found 

miR-342 was down-regulated in CAFs (Zhao et al., 2012). However, the breast 

cancer subtype of the 6 patient samples used in this study were not stated and 

therefore breast cancer subtype specific difference may explain this conflict. MiR-

214 has been found to be down-regulated in primary ovarian CAFs compared with 

normal omental fibroblasts from the same patients, but up-regulated in pancreatic 

stellate cells (myofibroblast-like cells) compared with adjacent normal tissue (Mitra 

et al., 2012, Kuninty et al., 2016a). In pancreatic stellate cells, miR-214 has also 

been suggested to play a role in TGF-β stimulation of stellate cells and activation of 

a tumour enhancing phenotype (Kuninty et al., 2016a). This suggests that miR-214 

may show different alteration and regulation depending on the tumour type. I 

identified miR-214 as up-regulated in CAFs, and it is an interesting prospect that it 

may be involved in TGF-β stimulation and the CAF phenotype in breast CAFs as 

well. Conditioned medium from MDA-MB-231 cells has been shown to increase 

miR-214 expression in osteoclasts (Liu et al., 2017), suggesting that factors secreted 

by this specific cancer cell type may induce expression of this miRNA in a range of 

other cells, as demonstrated by my findings that miR-214 was increased in co-

cultured fibroblasts.  

Some findings concerning miRNAs found in serum or plasma of breast cancer 

patients may be of relevance. MiR-127 has been found to be increased and miR-139 

decreased in the serum of breast cancer patients compared with people with no or 

benign breast disease (Lu et al., 2017, Dai et al., 2017). While miR-19a has been 

found to be increased in the serum of breast cancer patients with high grade disease 

compared with low grade (Sochor et al., 2014) – a key point being that triple 

negative breast cancers are more commonly high grade. These observations are 

compatible with my findings for these miRNAs as these changes are in the same 

direction as I find in CAFs, although this relies on the assumption that CAFs and/or 
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NFs secrete miRNAs into the circulation at meaningful levels – something that is 

not known. 
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6 Chapter 6 

Discussion of results 

In this chapter, I discuss some themes that cut across the different results chapters 

within the thesis. I also attempt to summarise how my work impacts overall on the 

understanding of the importance of miR-21 in cancer. 

6.1 The up-regulation of miR-21 in fibroblasts is dependent on 

proximity to tumour cells 

In situ hybridisation using probes targeted against miR-21 demonstrated that the 

strongest miR-21 expression often occurred in the fibroblasts closest to the tumour 

cells (sections 3.3.1 and 3.4). Furthermore, in a tissue culture model using breast 

fibroblasts and epithelial breast cancer cells I found that contact co-culture lead to a 

significant increase in the levels of miR-21 in the fibroblasts, although transwell co-

culture and epithelial-conditioned medium transfer did not (section 5.3.1.1 and 

Appendix K). These findings both suggest that close proximity between tumour cells 

and fibroblasts is important in the increase in miR-21 levels seen in fibroblasts 

within a tumour. The finding that miR-21 is mainly over-expressed in the cytoplasm 

of stromal cells adjacent to malignant cells has previously been noted in breast 

cancer and oesophageal cancer (Nouraee et al., 2013, Hug et al., 2015). The reason 

for this increase being most prominent in fibroblasts closest to tumour cells could be 

because direct contact between tumour cells and fibroblasts is important in 

increasing miR-21 levels in fibroblasts or because the factor that stimulates the 

increase only diffuses a short distance at appropriate (i.e. functionally relevant) 

concentrations.  

It is not known whether the increased fibroblast miR-21 levels occurred because the 

fibroblasts themselves transcribed more miR-21, or because miR-21 was transcribed 

within the epithelial cells (or even another cell type within the tumour), exported by 

these cells, possibly within exosomes, and then taken-up by fibroblasts. MiR-21 has 

been detected in the conditioned medium of numerous cancer cell lines, and if 

cancer cells in vitro secrete miR-21 this suggests it is possible that they secrete miR-
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21 in vivo into the tumour microenvironment (Nouraee et al., 2013, Munagala et al., 

2016). Indeed, within our own laboratory, a different worker (Samir Jana, visiting 

PhD student) has detected miR-21 within exosomes secreted by MDA-MB-231 

cells, the triple negative breast epithelial cells used in my work (unpublished). In 

colorectal cancer, miR-21 has been identified as released by monocytes as well as by 

tumour cells (Patel and Gooderham, 2015). Some exosomes are known to be 

relatively stable and able to diffuse and travel some distance, as they are detected in 

the blood stream (Munagala et al., 2016). However, it is not known if all miRNA are 

transferred into exosomes, and whether all exosomes are stable over longer distances 

and time periods. Indeed some exosomes are thought to become bound to the 

extracellular matrix rather than freely diffusing through it (Huleihel et al., 2016). My 

own data make it clear that if the epithelial cancer cells are a source of the miR-21 

that is detected in the fibroblasts, then miR-21 export from the epithelial cells must 

be very rapid and efficient since expression is not detected within the epithelial cells 

themselves, at least by in situ hybridisation. 

6.2 The role of miR-21 in migration and invasion of CAF-2 

fibroblasts and epithelial tumour cells 

In comparing the results from sections 4.3.3, 4.3.4, 5.3.4 and 5.3.5, my work showed 

that increased levels/activity of miR-21 in CAF-2 fibroblasts: 

(i) significantly increased migration of CAF-2 cells; 

(ii) did not significantly affect invasion of CAF-2 cells; 

(iii) did not significantly affect migration of epithelial tumour cells in the 

context of co-culture; and, 

(iv) significantly decreased invasion of epithelial tumour cells in co-cultures. 

These findings present two surprising results. Firstly, that miR-21 did not have the 

same influence in the matched migration and invasion assays, as both are scratch 

wound closure assays and activity in them requires some similar cell behaviours. 

Secondly, that increased miR-21 was associated with increased activity in one assay 

in fibroblast mono-cultures, but decreased activity of the tumour cells in the co-

culture (albeit migration for one observation and invasion for the other). 
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Although extending lamellipodia and filopodia (actin-rich membrane protrusions) 

and re-organising the internal cytoskeleton to facilitate cell movement may involve 

the same proteins in both assays, a cell moving through collagen type I may require 

additional collagen digestion enzymes and possibly different cell tethering and 

adhesion proteins compared with a cell migrating across the surface of a plastic well 

through culture medium (Jacquemet et al., 2015, Machesky, 2008). This could 

explain the difference in the migration and invasion results.  

It remains challenging to explain how increased CAF-2 migration relates to 

decreased epithelial tumour cell invasion. It has been demonstrated that carcinoma 

cells often invade collectively, rather than individually. It has also been 

demonstrated that carcinoma cells may follow behind stromal fibroblasts as they 

remodel the ECM (Gaggioli et al., 2007). Although increased miR-21 does not make 

the CAF-2 cells invade more slowly, it may alter their protein expression such that it 

alters the way they remodel the collagen type I as they invade. This could then 

impact on the invasion of the epithelial tumour cells, decreasing their rate of 

invasion. 

This leads on to the question, which result is more clinically relevant? Movement 

through collagen type I is more similar to the situation within a tumour as normal 

breast ECM, into which tumour cells invade, is predominantly composed of collagen 

type I (Kauppila et al., 1998). Whereas migration through fluid could be thought of 

as more similar to cells moving through lymphatic or vascular channels, possibly 

tethered to the endothelial membrane as they search for sites to extravasate and 

establish a metastasis. Both assays are models used to try to identify factors relevant 

to the behaviour of CAFs within a human tumour and both may have relevance to 

specific circumstances. A key follow up would be to assess any such findings using 

in vivo studies, and by observation and manipulation of human breast cancers. 

6.3 MiRNA co-operation 

One area that has not been explored in my work is the idea that miR-21 alone may 

not have a large measurable impact on fibroblast behaviour or on the influence of 

fibroblasts on tumour cells, but that miR-21 may act in co-operation with other 

miRNAs. In section 3.3.1 I identified 21 miRNAs that were consistently up-
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regulated and 27 miRNAs that were consistently down-regulated in CAFs compared 

with NFs in clinical samples. In section 5.4 the miRNA changes in CAFs were 

further explored using a tissue culture model, which identified 15 miRNAs that were 

up-regulated in both settings and 1 miRNA that was down-regulated. It may be that 

changes in the levels of more than one miRNA are required to see substantial 

changes in fibroblast behaviour and their influence on tumour cells. This has been 

seen in other cancer types, for example in ovarian cancer miR-31 down-regulation, 

and miR-214 and miR-155 up-regulation in fibroblasts were required to increase 

tumour growth (Mitra et al., 2012). It has also been suggested that miR-21 up-

regulation in combination with down-regulation of miR-206 and let-7a could be 

important in regulating angiogenesis in ER positive breast cancer, and it has also 

been shown that miR-21 in combination with miR-155 has a cumulative effect on 

the expression of genes involved with breast cancer metastasis in ER positive breast 

cancer cell lines (Isanejad et al., 2016, Nikiforova et al., 2016). MiRNAs that may 

work co-operatively with miR-21 in the fibroblasts of triple negative breast cancer 

have yet to be investigated, and it would be possible to attempt to transfect cells with 

selections of mimics and inhibitors for multiple miRNAs. The potential complexity 

of manipulating up to 16 different miRNAs (based on the number of consistently 

deregulated miRNAs from my data) is – of course – huge. 

6.4 Breast cancer cell line selection 

In the co-culture work, sections 5.3 and 5.4, I used the cell line MDA-MB-231 as a 

line that is representative of triple negative human breast cancer cells. However, 

triple negative cancers are a broad subtype containing considerable heterogeneity, as 

identified by RNA expression analysis, DNA sequencing and hierarchical clustering 

(Mayer et al., 2014). MDA-MB-231 is a metastatic cell line extracted from a pleural 

effusion (Cailleau et al., 1978). It was classified as basal-like subtype by IHC, but 

further sub-classified as basal B and claudin-low (Neve et al., 2006, Parker et al., 

2009, Perou et al., 2000, Subik et al., 2010, Prat et al., 2010). Claudin-low breast 

cancers show low or absent luminal differentiation markers and enrichment for 

epithelial-to-mesenchymal transition markers, immune response genes and cancer 

stem-cell/tumour initiating cell markers in gene expression studies. They generally 

have triple negative receptor expression and clinically, as a group, they show an 
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intermediate response to chemotherapy, between luminal and basal-like breast 

cancers (Prat et al., 2010). The basal A and basal B classification was used to 

describe the clustering into two major subdivisions seen within basal-like breast 

cancer cell lines. Basal A cell lines have transcriptional profiles more closely 

matched to breast tumour basal-like expression, whereas basal B lines have 

expression profiles with more stem-cell like features and may reflect clinical triple 

negative non-basal tumours (Neve et al., 2006, Kao et al., 2009). Interestingly, 

MDA-MB-231 has also been classified as mesenchymal stem-like based on gene 

expression profiling (Lehmann et al., 2011). Other triple negative, basal-like human 

breast cancer cell lines such as MDA-MB-468 and HC1599 have been classified as 

non-claudin-low, basal A subtype. The initial observations of miRNA alterations 

and CAFs were made in basal-like breast cancers, section 3.3.1, without making any 

assessment of claudin-low status. It would be interesting to assess potential 

differences between these classifications with respect to miRNAs, by expanding my 

initial patient cohort to power analyses of these subtypes and also assessing if co-

culture with different basal-like cell lines produce different results. It is, of course, 

possible that miR-21 within fibroblasts may have more dramatic effects on other 

epithelial lines.  

In section 5.3.5 I found that increased miR-21 levels in CAF-2 fibroblasts lead to 

decreased invasion of tumour cells. Mesenchymal-like and non-mesenchymal-like 

tumour cells are thought to invade the ECM using different mechanisms. 

Mesenchymal-like tumour cells, such as MDA-MB-231, have been found to re-align 

ECM fibrillar collagen to create microtracks along which cells can migrate, whereas 

invading tumour cells that retain epithelial markers are thought to follow fibroblasts 

tracks into the ECM (Gaggioli et al., 2007, Wolf et al., 2007). One might predict that 

non-mesenchymal tumour cell lines, such as MDA-MB-468, may have therefore 

responded differently to co-culture with CAF-2 fibroblasts, perhaps being stimulated 

to migrate faster literally following the enhancement of fibroblast migration 

stimulated by miR-21 (section 4.3.3). It is difficult to predict whether the results 

would be the same for the co-culture invasion assay, i.e. decreased invasion with 

increased CAF-2 miR-21 levels, or different because of the different way the tumour 

cells invade. 
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6.5 In conclusion: is miR-21 important in CAFs or not? 

In my work I have shown significant up-regulation of miR-21 in triple negative 

breast cancer CAFs using qPCR and ISH (sections 3.3.1, 3.3.2 and 3.4.1). I have 

identified that increasing miR-21 in CAF-2 increased migration of fibroblasts and 

decreased invasion of tumour cells, by significant but small amount and made no 

difference to the migration or invasion of fibroblasts or tumour cells with the other 

fibroblast cultures (sections 4.3.3-4 and 5.3.4-5). It also made no difference to the 

proliferation of fibroblasts or tumour cells and no difference to the chemosensitivity 

of tumour cells (sections 4.3.2, 5.3.3 and 5.3.6). One possible explanation for this 

lack of a large impact on the behaviour of fibroblasts or tumour cells could be that 

miR-21 does not act in isolation, but in co-operation with other miRNAs. This has 

been discussed in section 6.3. Another explanation is that although miR-21 is 

transcribed in CAFs it has its most noticeable and important effects in other cell 

types. MiR-21 has been identified as being secreted in exosomes from the 

fibroblasts of oesophageal cancer and pancreatic adenocarcinoma (Nouraee et al., 

2016, Nouraee et al., 2013, Takikawa et al., 2017). It could be that miR-21 is 

predominantly made and stored in fibroblasts but has its functional effects in tumour 

cells, as it has been found that increasing miR-21 levels in a variety of epithelial 

breast cancer cell lines increased epithelial to mesenchymal transition, induced 

gemcitabine resistance and increased tumour cell proliferation and invasion (Wu et 

al., 2016, Kuang and Nie, 2016, Yan et al., 2016). It may be that a signal or stimulus 

is needed for fibroblasts to release exosomal miR-21 or that the time it takes for 

fibroblasts to process miR-21 into exosomes, secrete them into the medium, for 

them to be taken up into tumour cells and then have their functional effects in 

tumour cells is longer than the 24 hours they were co-cultured together in the assays 

used to look at migration, invasion and chemotherapy resistance. For example, in 

one study fibroblasts and serous ovarian cancer cells were co-cultured together for 7 

days to induce miRNA changes in CAFs and CAF-like changes in the behaviour of 

fibroblasts and, more importantly, to assess the influence of the fibroblasts on 

tumour cell behaviour (Mitra et al., 2012). It could be interesting to investigate 

whether and which miRNA are secreted by looking at fibroblast exosomes 

specifically from contact co-culture medium and analyse their miRNA content after 

a number of time periods. In summary, my data do not provide substantial evidence 
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of a compelling role for miR-21 in CAFs in controlling breast cancer biology 

overall, but there are so many different experimental approaches that could have 

been taken, that it is currently not possible for me to rule this potential role out. 

6.6 MiR-21 as a potential biomarker or target in breast cancer 

MiR-21 has been proposed as a possible diagnostic marker, prognostic marker and 

as a potential therapeutic target in breast cancer. It has been detected at increased 

levels in the serum of triple negative breast cancer patients and in breast cancer 

patients in general when compared with healthy controls or patients with benign 

breast disease (Han et al., 2017, Yang et al., 2016, Motawi et al., 2016, Hannafon et 

al., 2016). My findings support the idea of using miR-21 as a potential diagnostic 

marker as I also found that miR-21 levels were increased in triple negative breast 

cancer tissues (section 3.3.2), although I have not analysed circulating levels. 

However, when analysing miR-21 expression as a predictor of clinical and 

prognostic outcomes, I found no significant correlation (section 3.5). My findings do 

not support those suggesting that miR-21 may be a useful prognostic indicator of 

improved breast cancer survival or lymph node metastasis (Yang et al., 2016, Chang 

et al., 2016). It is useful when trying to identify new prognostic indicators to have an 

understanding of their biological role within the tumour, to be able to understand the 

advantages and limitations of a new clinical marker. My work has not identified a 

role for miR-21 in triple negative breast cancer that would support or explain its use 

as a prognostic marker.  

MiR-21 has also been proposed as a potential therapeutic target in breast cancer (Rui 

et al., 2017, Ren et al., 2016). My findings show that miR-21 in fibroblasts does not 

affect the response of tumour cells to chemotherapy and does not alter the behaviour 

of tumour cells to a large enough extent likely to be of clinical use. My findings do 

not support the idea that miR-21 could be a potential new therapeutic target in triple 

negative breast cancer. 
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6.7 Critical review and future work 

In reviewing the work I have done for my PhD and included in this thesis there are 

some aspects I would change if I had more time or alter given the overview of the 

work I have now. These are outlined in this final section. 

During the analysis of the TMA CISH H-scores I treated this data as a continuous, 

ratio variable. In other published work, sometimes CISH scores are grouped and 

treated as an ordinal variable (Uozaki et al., 2014). Transforming the data in this 

way would then mean different statistical tests are more appropriate to use. For 

example instead of using the Spearman’s correlation in Table 3-5 I would use the 

Kruskal-Wallis test for tumour grade and lymph node positivity.  

The TMA did not include the 14 original cases that had had CISH carried out on 

them already because I did not want to duplicate the data. However, if they had been 

included this would have been a good way to confirm that H-scores from the TMA 

were the same or very similar to H-scores from whole tissue sections, further 

confirming the reliability TMAs as a method of analysing a larger number of cases. 

In the analysis and discussion of the TMA CISH work (Figure 3-12 and section 

3.6.4) I determined that a larger sample size, over 700 cases in total, may be 

required to confirm whether disease free survival is significantly correlated with 

miR-21 ISH staining. I would like to obtain a TMA of further triple negative breast 

cancer cases to confirm and clarify this result. 

The miR-21 CISH staining suggested that miR-21 was present at detectable levels in 

the CAFs but not in the tumour cells (Figure 3-7). I looked at the miR-21 levels in 

the fibroblasts cultures using qPCR and compared these with the levels detected in 

the FFPE fibroblast samples (section 4.3.1). There was no qPCR measurement of the 

miR-21 levels in the tumour cell line I used (MDA-MB-231). Measuring the level of 

miR-21 in the tumour cell line may provide further background to the interpretation 

of the contact co-culture miR-21 fibroblast levels (Figure 5-1) and subsequent 

contact co-culture functional experiments (Figure 5-3 to 5-18). 

My work has shown that when the primary CAF culture (CAF-2) had increased 

levels of miR-21 migration of these fibroblasts significantly increased and invasion 

of MDA-MB-231 tumour cells in co-culture with them significantly decreased 
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(Figures 4-6 and 5-14). It is not known whether this finding was specific to these 

CAFs only or may be seen in other primary CAF cultures, as the other fibroblasts 

used were not primary but immortalised fibroblast lines. It would be interesting to 

carry out migration and invasion assays with other triple negative primary CAF 

cultures to see if these would behave in a similar way and therefore if these results 

are more widely and generally applicable. 

The co-culture work was carried out with triple negative breast cancer cell line 

MDA-MB-231. As discussed in section 6.4 this cell line has also been classified as 

basal B and claudin-low. It was beyond the scope of this project but it would be 

interesting to see if the same results, e.g. a decrease in invasion of tumour cells 

occurred with a different triple negative breast cancer cell line, for example a basal 

A non-claudin-low subtype such as MDA-MB-468. 

If there was unlimited time and resources available further work that could be 

carried out based on some of the results presented previously would include 

investigation of other miRNAs identified as potentially of interest, for example those 

listed in Table 5-1. As discussed in section 6.3 the role of miRNAs working in co-

operation has not been explored, carrying functional assays following transfection 

with several miRNA mimics and inhibitors could also potentially lead to some very 

interesting findings. 
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8 Appendix A 

Ethical approval for use of FFPE tissue
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9 Appendix B 

Breast tissue bank ethical approval
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10 Appendix C 

Co-Path search criteria 

The Leeds Teaching Hospitals Trust histopathology database (Co-path) was 

searched to identify potential cases for inclusion in the cohort of cases that were 

used for LCM qPCR and CISH. The search terms that were used are listed below. 

 

Accession date: From 01/01/2008 To 01/10/2012 

Specimen Class: individual items ‘LH’ 

SNOMED Code: Not used 

Text Search: Include if contains any ‘basal’ in text type (ALL) 

Age: Not Used 

Gender: individual items ‘Female’ 

Part Type: individual items ‘Breast biopsy wide excision’; ‘Breast biopsy wide local 

excision plus lymph nodes’; ‘Breast hook wire localisation’; ‘Breast total 

mastectomy’; ‘Breast wide local excision’; ‘Breast Xray mastectomy’; ‘Breast Xray 

wide local excision’; ‘Breast radical resection and axillary tail lymph nodes’ 
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11 Appendix D 

Oligonucleotide insertion sequences 

 

 

 

 

 

 

 

Appendix D PmirGLO-21 reporter plasmid oligonucleotides 
Appendix D contains the technical data including the oligonucleotide sequences that were 
inserted to produce the pmirGLO-21 reporter plasmid 
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12 Appendix E 

“Abnormal” qPCR amplification curves from the qPCR arrays 

that failed my manual quality control 

 

 

Figure E Array PCR amplification curves 
Representative qPCR amplification curves that were assessed as being 
unreliable as they did not have a smooth sigmoidal shape. These specific 
amplification curves are for miR-200b# (A), miR-213 (B), miR-760 (C) and 
miR-378 (D). 
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13 Appendix F 

Shapiro-Wilk test of normality 

 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

rel_exp_B .400 14 .000 .537 14 .000 

rel_exp_C .245 14 .022 .845 14 .019 

a. Lilliefors Significance Correction 

Table F MiR-21 expression levels in cells isolated from 14 clinical breast 
cancers do not have a normal distribution, therefore non-parametric 
statistical tests were appropriate 
This table shows the results of the Shapiro-Wilk test comparing the 
distribution of the miR-21 expression level in the FFPE samples from 
fibroblasts of triple negative, basal-like breast cancer cases with a normal 
distribution. Rel_exp_B represents the data from NF samples and rel_exp_C 
from CAF samples. The significance is 0.000 and 0.019 for NFs and CAFs 
respectively, showing that the sample population is significantly different from 
a normal population. 
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Figure F Expression levels of miR-21 in cells isolated from 14 breast cancer 
cases cannot be assumed to follow a normal distribution 
This Q-Q plot compared the quantiles of the sample data to a normal 
distribution. The line represents where the points would lie if they followed a 
normal distribution. This clearly showed that the sample data points do not lie 
close to the line and therefore a statistical test that assumes normal distribution 
of the data should not be used. 
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14 Appendix G 

“Abnormal” miR-30a-3p amplification curves 

 

Figure G MiR-30a-3p qPCR amplification was not exponential 

Some qPCR amplification curves for miR-30a-3p showed shallow slopes in 
the exponential phase, possibly indicating the presence of PCR inhibitors, and 
leading to wide variation in Ct values between technical replicates. 
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15 Appendix H 

Intraclass correlation of CISH scoring by 2 independent scorers 

 

Figure H CISH miR-21 scoring shows good correlation between the two scorers 
MiR-21 CISH was carried out on triple negative, basal-like breast cancer FFPE 
sections. Scoring of intensity and % of fibroblasts staining was carried out to 
give a H-score 50% of cases were scored by both scorers. Each circle 
represents one fibroblast sample (either NF or CAF), plotted based on the 
scores of the two independent scores. Linear regression of the data has also 
been plotted (the line). The two independent scores show good correlation, 
with an intraclass correlation coefficient of 0.974. 
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16 Appendix I 

Correlation of CISH scores of CAFs close to and further away 

from tumour cells 

 

Figure I MiR-21 CISH scores of CAFs close to tumour cells and CAFs further 
from tumour cells did not significantly correlate with each other 
MiR-21 CISH was carried out on triple negative, basal-like breast cancer FFPE 
sections. Scoring of intensity and % of fibroblasts staining was carried out 
giving an H-score. CAFs close to tumour cells (≤ 75 µm) and CAFs further 
away from tumour cells (> 75 µm) were scored separately for each case. Each 
circle represent the miR-21 CISH score for CAFs further from tumour cells (> 
75 µm) plotted against the score for CAFs close to tumour cells (≤ 75 µm). 
The line represents the linear regression. The Spearman correlation coefficient 
was r = 0.5313 (p = 0.0794). 
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17 Appendix J 

MiR-21 CISH score and clinical outcome analyses 

J.1 Receiver operating characteristic curves for CISH score cut-offs 

and clinical outcomes 

 

Figure J-1 Modified receiver operating characteristic curves were used to 
determine the optimal cut offs for CISH score low vs. CISH score high 

CISH score was correlated with the clinical outcomes disease free survival, 
disease specific survival and overall survival. The data was dichotomised at 
each CISH score within the range and the sensitivity and specificity calculated. 
Each circle represents the CISH cut-off score plotted against the sum of 
sensitivity and specificity for each clinical outcome, disease-free survival (A), 
disease specific survival (B) and overall survival (C). The arrows highlight 
alternative CISH cut-off scores determined from the peaks of each curve. 
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J.2 Correlation of clinical outcomes with miR-21 CISH score using 

cut-offs determined in appendix J-1 

 

Figure J-2 Clinical outcomes did not significantly correlate with CISH staining 
intensity with any cut offs determined using ROC analyses 
CISH scores were dichotomised into two groups, high staining (purple lines) 
and low or no staining (red lines) based on the cut-offs determined by 
modified ROC analysis (Figure J-1). Clinical outcome data was compared with 
CISH score and plotted on Kaplan Meier curves for disease free survival (A), 
disease specific survival (B) and overall survival (C). The small black squares 
represent where a subject was censored at length of follow up. 
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18 Appendix K 

Conditioned medium transfer or transwell co-cultures with 

MDA-MB-231 does not alter miR-21 levels in NFs or CAFs 

 

Figure K-1 Tumour cell conditioned medium does not alter miR-21 level in 
fibroblasts 

Conditioned medium from MDA-MB-231s or the same fibroblasts was used to 
replace half the medium on fibroblasts (NF-1 and CAF-1) every day for 3 
days. Following this RNA was extracted and miR-21 levels measured by 
qPCR. Data are displayed as the mean (+/- SEM) of 3 independent 
experiments (top panel), with each separate experiment shown below (means 
+/- SD of technical triplicates; bottom panel). Part A shows the data from NF-
1 and part B from CAF-1. 
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Figure K-2 Transwell co-culture with MDA-MB-231 does not significantly alter 
miR-21 levels in fibroblasts 

Fibroblasts (NF-1 and CAF-1) were grown in the base of wells, along with 
either the same fibroblasts or MDA-MB-231 cells seeded into transwell inserts 
(membrane with 1 µm pores) for 3 days. RNA was extracted from the 
fibroblasts and qPCR used to measure miR-21 levels. Data are displayed as the 
mean (+/- SEM) of 3 independent experiments (top panel), with each separate 
experiment shown below (means +/- SD of technical triplicates; bottom panel). 
Part A shows the data from NF-1 and part B from CAF-1. 
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