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Abstract

Despite continuous progress in X-ray angiography systems, X-ray coronary an-

giography is fundamentally limited by its 2D representation of moving coronary

arterial trees, which can negatively impact assessment of coronary artery disease

and guidance of percutaneous coronary intervention. To provide clinicians with

3D/3D+time information of coronary arteries, methods computing reconstructions

of coronary arteries from X-ray angiography are required. Because of several as-

pects (e.g. cardiac and respiratory motion, type of X-ray system), reconstruction

from X-ray coronary angiography has led to vast amount of research and it still

remains as a challenging and dynamic research area.

In the first part of this work, we review the state-of-the-art approaches on recon-

struction of high-contrast coronary arteries from X-ray angiography. We mainly

focus on the theoretical features in model-based (modelling) and tomographic re-

construction of coronary arteries, and discuss the evaluation strategies. We also

discuss the potential role of reconstructions in clinical decision making and inter-

ventional guidance, and highlight areas for future research.

In the second part, we look into the coronary artery reconstruction problem

from a probabilistic perspective, and propose new algorithms for model-based

3D/3D+time reconstruction of coronary arteries. First, we formulate a novel

probabilistic model-based centreline reconstruction method based on a Gaussian

mixture model. Second, we propose a novel model-based 3D+time coronary artery

centreline reconstruction method. The novelty of the method stems from the fact

that it employs a spatiotemporal statistical model of the ventricular epicardium

to cope with the ill-posedness of the reconstruction problem. Lastly, we extend

our probabilistic 3D reconstruction method by using Student’s t-distributions, and

incorporating spatial regularisation and sparsity priors in a Bayesian framework.

Thanks to these improvements, the reconstruction algorithm can handle cardiac

motion inconsistencies between X-ray images due to finite gating accuracy, and

noisy or erroneously segmented parts in 2D centreline segmentations.
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[7] C. Pinto, S. Çimen, A. Gooya, K. Lekadir, and A. F. Frangi, “Joint Cluster-
ing and Component Analysis of Spatio-Temporal Shape Patterns in Myocardial
Infarction,” in Proc. Statistical Atlases and Computational Models of the Heart.
Imaging and Modelling Challenges: STACOM 2015, O. Camara, T. Mansi, M.
Pop, K. Rhode, M. Sermesant, and A. Young, Eds., vol .9534, 2016, pp. 171-179.



Articles under review
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3 1.1. CORONARY ANGIOGRAPHY

1.1 Coronary Angiography

Coronary artery disease (CAD), also known as coronary heart disease (CHD), is a

serious illness, which is responsible for 1 of every 5 deaths in Europe [1] and 1 of

every 6 deaths in US [2]. In addition to the severe mortality rates, the direct and

indirect costs associated with CAD are major burdens on healthcare systems [1,2].

Early diagnosis of CAD, effective prognostic markers of treatment outcome, and

the availability of minimally invasive treatment options for CAD have all motivated

steady progress in diagnostic and interventional imaging modalities to quantify the

anatomy and function of the coronary arteries.

Current clinical practice for assessing the presence and the extent of the CAD re-

lies on medical imagery acquired through various diagnostic (cardiac computed to-

mographic angiography (CCTA) [3–5] and magnetic resonance angiography (MRA)

[6]) and interventional (X-ray coronary angiography [7, 8]) imaging modalities.

Other hybrid imaging modalities such as intravascular ultrasound (IVUS), opti-

cal coherence tomography (OCT) [9] can be used diagnostically. Apart from their

diagnostic role, these imaging modalities also help clinicians to select between ther-

apeutic options and plan interventional procedures. These modalities also differ in

terms of invasiveness. CCTA and MRA are non-invasive modalities, whereas X-ray

coronary angiography, OCT and IVUS requires minimally invasive intervention.

Invasive (catheter-based) X-ray coronary angiography is one of the most com-

monly utilised methods to assess CAD and is still considered the gold standard

in clinical decision making and therapy guidance [5]. This imaging modality is

based on the radiographic visualisation of the coronary vessels with injection of

a radiopaque contrast material [10]. X-ray coronary angiography essentially pro-

vides anatomical information about the coronary arteries and the morphology of

the stenoses. It can also provide limited functional information such as blood flow

in the main coronary vessels and the existence of collateral flow [11].

1.2 Types of Coronary Angiography Systems

Thanks to the advances in C-arm based angiography systems in the cardiac catheter-

isation laboratory (cath-lab), various kinds of X-ray coronary angiography exists,

namely single plane (standard/conventional), biplane, rotational and dual-axis ro-
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tational coronary angiography (DARCA).

Since X-ray coronary angiography creates 2D projection images of the complex

3D/3D+time (3D+t) anatomy of the coronary artery arteries, multiple images

should be collected by placing X-ray source and detector in different positions to

ease CAD assessment. Positioning is handled by C-Arm based angiography system

(Fig. 1.1). C-arm is essentially a C-shaped device, which holds X-ray source and

flat-panel detector (image intensifier in older systems). Depending on the setup,

C-arm allows movement of X-ray source and the detector along several axes. In

fact, the trajectory of the movement of C-arm is the fundamental design parameter

that differs between different types of X-ray coronary angiography protocols.

Clinical decision making requires an appropriate number of angiography images

which depends on the difficulty of the clinical case. On the other hand, several

other factors should be taken into account for the design of an X-ray imaging pro-

tocol which may limit the total number of acquired angiography images: i) Con-

trast material may cause chemotoxic adverse reactions (such as contrast-induced

nephropathy) directly related to the dose, molecular structure, and physiochemical

characteristics [12, 13]. ii) Modern X-ray coronary angiography systems equipped

with automatic exposure control units that try to balance the image quality and the

X-ray tube voltage parameters. Although automatic exposure control effectively

limits the exposure to X-ray radiation, further reduction is desired for increased

safety. iii) Finally, the procedural time is also another important matter due to

the high number of percutaneous coronary interventions (PCI) [2].

Standard X-ray angiography is the traditional way of X-ray coronary angio-

graphy, which consists of imaging the coronary arteries from a few fixed, operator

chosen views. Therefore, the success rate of the diagnosis and the following treat-

ment are solely dependent on the skills of the operator [11]. Although expert

recommended views for standard X-ray angiography exist, they do not necessar-

ily lead to satisfactory images due to the patient variability [11]. Even though

standard X-ray angiography is currently the gold standard in interventional car-

diology, it has some limitations in terms of contrast material use, procedural time

and radiation exposure.

A biplane X-ray angiography system consists of two C-arms, which are generally

configured to collect angiography images from orthogonal views. As a result, the

biplane X-ray angiography system doubles the number of images that are acquired
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during a single contrast injection. However, operator dependency on the image

acquisition quality persists.

Rotational X-ray angiography is an advanced scanning technique, which is de-

vised to standardise and automatise the image acquisition [11]. It provides an op-

erator independent, panoramic view of the coronary arteries by collecting a series

of images during a predefined C-arm rotation [14]. The continuity in the collected

images help the operator to mentally visualise the dynamic spatial structure of the

coronary arterial tree.

Traditionally in rotational X-ray angiography, rotation of gantry starts from 55◦

to 60◦ right anterior oblique (RAO) and ends at 55◦ to 60◦ left anterior oblique

(LAO) with some cranial (CRA) or caudal (CAU) angulation. Extended rota-

tional X-ray angiography is a novel acquisition protocol in which the arc that goes

from 120◦ LAO to 60◦ RAO where no angulation is introduced (Fig. 1.1) [15].

Extended rotational X-ray angiography facilitates the use of tomographic recon-

struction based algorithms to reconstruct the contrast filled high contrast coronary

arteries. However, it should be noted that extended rotational X-ray angiography

is different from cardiac C-arm CBCT, which also provides tomographic recon-

struction. Extended rotational X-ray angiography runs faster than cardiac C-arm

CBCT and requires less images because it is used to reconstruct high contrast ob-

jects [16]. Nonetheless, extended rotational X-ray angiography capability is also

integrated into the state-of-the-art C-arm CBCT devices. Extended rotational

X-ray angiography has some specific issues because of the prolonged acquisition

time, such as prolonged contrast injection [15] and motion due to breathing.

Dual-axis rotational coronary angiography (DARCA) is an improved form of

rotational X-ray angiography, which further increases the patient safety and eases

the acquisition of the angiography images. DARCA combines the acquisitions

with CRA and CAU angulation into one single acquisition run [8]. Moreover, the

trajectories for the rotation of C-arm are not randomly selected but optimised in

DARCA (Fig. 1.1). The optimised trajectories allow to collect images with minimal

vessel overlap and foreshortening and are consistent with the expert recommended

views [17].



CHAPTER 1. INTRODUCTION 6

CAU

LAO
CRA

RAO

DARCA

Extended
RA

RA

X-ray
source

Flat panel
detector

Figure 1.1: C-arm trajectories for different X-ray angiography types: Typical tra-
jectories that X-ray source follows during rotational X-ray angiography, extended
rotational X-ray angiography, and DARCA are shown by green, blue, red curves,
respectively.

1.3 Necessity and Potential Uses of Coronary Artery Re-

construction

Despite the advent of 3D non-invasive imaging modalities (CCTA, MRA) to visu-

alise the coronary arteries, 2D invasive X-ray coronary angiography is still consid-

ered the gold standard for the clinical decision making and therapy guidance due

to several reasons [5]. The technology is widespread and trained staff is available.

Moreover, X-ray coronary angiography still delivers highest spatial and temporal

resolution. More importantly, it is an interventional imaging modality, which does

not only provide diagnostic information but also guides the following therapeutic

procedures [18].

Although X-ray coronary angiography has drastically evolved since its first in-

troduction five decades ago, it is known to be fundamentally limited in some

aspects [11, 19]. X-ray coronary angiography represents complex 3D/3D+t struc-
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ture of the contrast filled coronary arteries by 2D X-ray projections or silhouette

images, which can be degraded by imaging artifacts [11]. A considerable amount

of 3D/3D+t information of the coronary arteries is lost due to the consequences

of the projection operation. Specifically, the cumulative effect of suboptimal pro-

jection angles, vessel overlap, foreshortening, tortuosity and eccentricity may all

lead to underestimation of stenoses severity and incorrect stent size selection [11].

In order to obviate the fundamental limitation of X-ray coronary angiography

described above, a 3D/3D+t description of the coronary arterial tree may be re-

constructed from the 2D projection images. This inverse problem of reconstruction

is known to be ill-posed and it entails some additional challenges in the context of

X-ray coronary angiography. These challenges include: intensity inhomogeneities

due to blood flow inside the arteries, overlap of different structures (e.g. catheters,

bones), and more importantly respiratory and cardiac motions [20]. Moreover,

the diversity of the X-ray coronary angiography strategies inevitably leads to the

diversity of the 3D/3D+t reconstruction algorithms, because different strategies

necessitate special considerations for the reconstruction algorithms.

A 3D/3D+t reconstruction could i) ease diagnostic decision making, ii) assist

pre-operative planning, iii) provide intra-operative guidance, and iv) supply virtual

physiological indices.

Traditionally, the assessment of stenoses, the selection of the correct treatment

for the patient, and the delivery of the treatment depend on the operator’s in-

terpretation of 2D projection images [18]. Lesion lengths, angles of bifurcations

and vessel tortuosity may be misinterpreted in 2D projection images. In addi-

tion, subjective interpretation of 2D images could also lead to inter-observer and

intra-observer variability. More importantly, misinterpretation could also lead to

over/under estimation of lesion severity and incorrect selection of stent size [21,22].

Consequently, suboptimal selection of the stent dimensions could reduce the effec-

tiveness due to poor lesion coverage [21], cause restenosis [23] or thrombosis [23,24]

and increase the cost of the treatment [21]. In order to overcome these diagnostic

problems and select an optimal stent dimension, computerised measurements of le-

sions (such as minimum luminal area, percentage area stenosis, minimum luminal

diameter etc.), which are considered to be correlated with the degree of the steno-

sis, are utilised [25]. This procedure is generally known as quantitative coronary

angiography (QCA). With the development of 3D coronary artery reconstruction
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algorithms, QCA can now performed in 3D reconstruction of the lesion of inter-

est [26,27], which is shown to be in an agreement with ground truth measurements

via guide-wire or IVUS measurements [28–31].

Image fusion is another emerging field in medical imaging. It aims to supply

complementary information (anatomical/functional information, pre/post-operative

information, device visibility, soft tissue visibility) from different imaging modal-

ities. Specifically, X-ray coronary angiography could be supplemented by pre-

operative 3D images from CCTA, cross-sectional morphology information from

IVUS or OCT. Fusion of X-ray coronary angiography with pre-operative CCTA

could bring the intervention planning visually into the cath-lab [32] and provide ad-

ditional information especially in the patients with chronic total occlusions [33,34].

Although most of CCTA/X-ray coronary angiography fusion algorithms are for-

mulated as 2D/3D registration [32,33], one recent study showed that the problem

can be cast as a 3D/3D registration problem by the help of 3D reconstructions

from biplane X-ray angiography [34]. Fusion of X-ray coronary angiography with

IVUS or OCT is also desirable since these imaging modalities are known to provide

cross-sectional morphological information about the stenosis and plaque character-

istics [35]. This type of fusion employs 3D reconstruction of coronary artery cent-

reline and complements it with the surface information from IVUS/OCT [35,36].

The search for the link between the coronary anatomy and its physiology has

led to a remarkable amount of research carried out in the image based hemody-

namics modelling field [37,38]. Large scale randomised clinical studies reveal that

significance of a coronary stenosis could not be determined solely on anatomical

information and conclude that anatomical information from any imaging modal-

ity should be coupled by intra-coronary physiological measurements [39]. Among

those physiological measurements, a comprehensive investigation is devoted to

fractional flow reserve (FFR) [40, 41]. Recently, there is a strong interest in esti-

mating virtual FFR values using the flow and pressure values obtained through

CFD simulations inside 3D anatomical models of the coronary arteries [42, 43].

Virtual FFR via non-invasive imaging (CCTA, MRA) could pave the way for a

non-invasive diagnosis of moderate stenosis. On the other hand, it is also feasible

to calculate virtual FFR from the 3D reconstruction obtained from invasive X-ray

coronary angiography [44–46].

Although there is a plethora of research evidence that highlights the clinical po-



9 1.4. CONTRIBUTIONS AND OUTLINE

tential of the aforementioned applications, a large amount of the research carried

out over the last ten years is still not fulfill the clinical requirements and is unfor-

tunately not available in clinical routine. There are, however, several methods that

start appearing as part of clinical research (see, for instance [44,46–50]). One of the

major limiting factors for their translation into the clinics is that 3D reconstruc-

tion still needs to be simultaneously robust, accurate and real-time and meeting

these three constraints at once has proven really challenging. As methods become

more involved to deal with accuracy, they tend to be computationally expensive

and sensitive to various parameters. As techniques attempt to achieve speed, they

become prone to inaccuracies and lack robustness. To date, most of the com-

mercially available algorithms still rely on intensive off-line manual interactions.

Over the last few years, while parallel efforts on addressing this requirement tril-

ogy have continued, many researchers have also focused on extracting functional or

physiological information from imaging in addition to anatomical information [50].

However, automated algorithms that could provide reconstructions in (near) real-

time are still required as input to these methods so the quest for accurate, robust

and efficient algorithms for coronary anatomy reconstruction continues.

1.4 Contributions and Outline

The aim of this thesis is to develop robust algorithms to reconstruct 3D coronary

artery centrelines from X-ray rotational angiography, and to assess the performance

of these algorithms in realistic settings.

To achieve the aforementioned objective, one needs to identify the limitations

of the approaches in the literature. To this end, Chapter 2 presents an exhaus-

tive review of the state-of-the-art approaches on reconstruction of high-contrast

coronary arteries from X-ray angiography. This chapter mainly focuses on the

theoretical aspects in model-based (modelling) and tomographic reconstruction of

coronary arteries, and discusses the evaluation strategies.

Chapter 3 introduces some of the fundamental aspects of the reconstruction

methods presented in the rest of the thesis.

Chapter 4 describes the first methodological contribution to reconstruct 3D

coronary arteries from a set of retrospectively gated X-ray angiography images.

Most of the existing model-based reconstruction algorithms are either based on



CHAPTER 1. INTRODUCTION 10

forward-projection of a 3D deformable model onto X-ray angiography images or

back-projection of 2D information extracted from X-ray angiography images to 3D

space for further processing. All of these methods have their shortcomings such as

dependency on accurate 2D centreline segmentations. In Chapter 4, the problem

is approached from a novel perspective, and is formulated as a probabilistic recon-

struction method based on a Gaussian mixture model representation of the point

sets describing the coronary arteries. Specifically, it is assumed that the coronary

arteries could be represented by a set of 3D points, whose spatial locations denote

the Gaussian components in the mixture model. Additionally, an extra uniform

distribution is incorporated in the mixture model to accommodate outliers (noise,

over-segmentation etc.) in the 2D centreline segmentations. Treating the given

2D centreline segmentations as data points generated from mixture model, the 3D

means, isotropic variance, and mixture weights of the Gaussian components are

estimated by maximising a likelihood function. Results from a phantom study

show that the proposed method is able to handle outliers in the 2D centreline

segmentations, which indicates the potential of our formulation.

Chapter 5 investigates 3D+t reconstruction and describes a new method for

finding 3D+t centreline points on coronary artery tree given tracked 2D+t cent-

reline point locations in X-ray rotational angiography images. In order to address

the ill-posedness of the reconstruction problem, a statistical bilinear model of the

ventricular surface is used as a spatiotemporal constraint on the non-rigid struc-

ture of the coronary arteries. The 3D+t reconstruction problem is formulated as

a 2D+t/3D+t Gaussian mixture model based registration between the tracked 2D

arterial centreline point locations on the X-ray images and the landmarks of the

statistical bilinear model. The spatiotemporal statistical model and additional

information from multiple X-ray views enable reconstruction of artery segments,

which otherwise may be difficult to reconstruct. The algorithm is validated using

a software coronary artery phantom.

Finally, Chapter 6 extends the algorithmic framework of the first contribution.

Specifically, 3D coronary artery centrelines to be reconstructed are represented

by a mixture of Student’s t-distributions, and the reconstruction is formulated as

estimation of mixture model parameters given the 2D centreline segmentations

from multiple X-ray images. Our probabilistic formulation enables us to introduce

Bayesian spatial regularisation and sparsity priors over the parameters to cope with



11 1.4. CONTRIBUTIONS AND OUTLINE

the ill-posedness of the reconstruction problem. Thanks to the prior information

and the heavy tails of the t-distribution components, our formulation can handle

cardiac motion inconsistencies between X-ray images due to finite gating accuracy,

and noisy or erroneously segmented parts in 2D centreline segmentations. A com-

prehensive evaluation is performed using both synthetic and clinical angiography

data. Compared to the state-of-the-art, the proposed method requires fewer X-ray

images and significantly less user interaction, achieving comparable reconstruction

error.

The content of this thesis is based on the following publications:

• Chapter 1 and Chapter 2:

S. Çimen, A. Gooya, M. Grass, and A. F. Frangi, “Reconstruction of Coro-

nary Arteries from X-ray Angiography: A Review,” Med. Image Anal., vol.

32, pp. 46-68, 2016.

• Chapter 4:

S. Çimen, A. Gooya, and A. F. Frangi, “Reconstruction of Coronary Artery

Centrelines from X-ray Rotational Angiography using a Probabilistic Mixture

Model,” in Proc. SPIE, vol. 9784, 2016, pp. 97843A-97843A-7.

• Chapter 5:

S. Çimen, C. Hoogendoorn, P. Morris, J. Gunn, and A. F. Frangi, “Recon-

struction of Coronary Trees from 3DRA Using a 3D+t Statistical Cardiac

Prior,” in Proc. Med. Image Comput. Comput. Assist. Interv., P. Golland,

N. Hata, C. Barillot, J. Hornegger, and R. Howe, Eds., vol. 8674, 2014, pp.

619-626.

• Chapter 6:

S. Çimen, A. Gooya, N. Ravikumar, Z. A. Taylor, and A. F. Frangi, “Re-

construction of Coronary Artery Centrelines from X-Ray Angiography Using

a Mixture of Students t-Distributions,” in Proc. Med. Image Comput. Com-

put. Assist. Interv., S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and

W. Wells, Eds., vol. 9902, 2016, pp. 291-299.
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2.1 Introduction

In this review chapter, we focus on the 3D/3D+t reconstruction of coronary ar-

teries from invasive X-ray coronary angiography. The most recent reviews [18,51]

about coronary artery reconstruction provide a good overview of the subject but

are partial reviews of the topic. In this review, we follow the taxonomy proposed

by [18,51], and divide the literature into two main categories, dealing with model-

based methods (modelling) and tomographic reconstruction aspects. Model-based

methods try to find a binary representation of the 3D/3D+t structure of the coro-

nary arteries [18]. On the other hand, tomographic reconstruction methods aim to

reconstruct the 3D/3D+t volume of attenuation coefficients [51]. Specifically, we

distinguish between the tomographic reconstruction of high contrast arteries from

rotational coronary angiography and low contrast cardiac reconstruction from C-

arm cone-beam CT (CBCT). In this review, we merely focus on the papers about

high contrast coronary artery reconstruction.

The goal of this review is to identify the trends and the developments in the area

rather than explaining application specific details. Compared with the previous

reviews, we provide a more comprehensive technical overview of 3D/3D+t recon-

struction from X-ray coronary angiography, focusing on the recent developments

in the model-based and tomographic reconstruction. With respect to model-based

reconstruction methods, we cover multi-view reconstruction techniques and put

a special emphasis on 3D+t reconstruction and vascular lumen reconstruction.

In addition, we discuss the progress in motion estimation and optimisation tech-

niques for tomographic reconstruction methods. We also discuss the methods on

how to evaluate the performance of the reconstructions, and summarise available

databases for validation and comparison purposes.

This review chapter is organised as follows. Section 2.2 details the model-based

approaches (Section 2.2.2) and tomographic reconstruction approaches (Section

2.2.3) to the 3D/3D+t reconstruction of coronary arteries from X-ray coronary

angiography. A summary of Section 2.2 is given in Tables 2.1 - 2.2. Section

2.3 discusses the methods of validation and comparison, and finally, Section 2.4

concludes the review.
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2.2 Reconstruction of Coronary Arteries from X-ray

Coronary Angiography

In recent years, a significant amount of work has been devoted to obtain a 3D/3D+t

representation of the coronary tree from X-ray coronary angiography. Different

types of X-ray coronary angiography systems, strategies to handle cardiac and res-

piratory motion, and additional requirements have resulted in the diversity of the

coronary artery reconstruction methods. Nevertheless, the methods in the litera-

ture could be classified into two main groups, namely model-based reconstruction

(modelling) (Section 2.2.2) and tomographic reconstruction (Section 2.2.3). The

main distinction between two classes of reconstruction methods is the reconstruc-

tion output. While modelling generates a binary 3D/3D+t representation of the

coronary arteries, tomographic reconstruction produces a volume representing the

X-ray absorption of the coronary arteries. Despite the separation of reconstruc-

tion methods, there are some general aspects, which are applicable to both classes.

These aspects are discussed in Section 2.2.1.

2.2.1 General Aspects of the Reconstruction Methods

2.2.1.1 X-ray Coronary Angiography Type

One fundamental aspect is the selection of X-ray coronary angiography type. Due

to specific requirements of the reconstruction methods, all types of X-ray coronary

angiography are not suitable for both types of reconstruction (Section 1.2). While

all types of X-ray coronary angiography are suitable for modelling, only rotational

X-ray angiography allows tomographic reconstruction.

2.2.1.2 Image Acquisition Geometry and Calibration

Another common aspect is the acquisition geometry. The acquisition geometry for

reconstruction methods is commonly described using the tools from the computer

vision, since the acquisition principle of X-ray is similar to the finite projective

camera model [52]. The main difference is that the X-ray images are magnified.

Three coordinate systems are defined for the acquisition geometry, namely, X-ray

source (camera), X-ray detector (image) and patient (world) coordinate systems

(Fig. 2.1). X-ray source coordinates are centred at X-ray source location (camera
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Figure 2.1: X-ray coronary angiography image acquisition geometry: Three co-
ordinate systems, which are related to each other by a rigid transformation, are
defined for X-ray detector, patient, and X-ray source. The origin of the patient
coordinate system is typically assumed to coincide with the isocentre (centre of
rotation of the gantry). Intrinsic and extrinsic parameters specify the mapping
between patient and detector coordinates.

centre). Flat panel X-ray detector is modelled with a plane (image plane) perpen-

dicular to one of the main axis of the X-ray source coordinate system. Distance

between the X-ray source and X-ray detector is known as source to image dis-

tance (SID). The line from the X-ray source perpendicular to X-ray detector is

known as principal line and it intersects X-ray detector at principal point. Image

formation is determined by intrinsic parameters of the camera model, which are

SID, coordinates of the principal point in the X-ray detector coordinate system,

and sometimes skew parameter. These parameters form a matrix called camera

calibration matrix, which is used to describe the mapping between points given

in X-ray source coordinates and their 2D projection given in 2D X-ray detector

coordinates. The centre of rotation of the gantry is called isocentre and considered

to be the origin of the patient coordinate system. It is generally assumed to lie on
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the principal line. The relation between the X-ray source and patient coordinates

is described by a rigid transformation. The parameters (rotation angles and source

to object/patient distance (SOD)) for the rigid transformation are known as ex-

trinsic parameters. Intrinsic and extrinsic parameters constitute camera projection

matrix, which defines the mapping between patient and X-ray detector coordinate

system1. The acquisition geometry enables us to define another important concept

called projection line. A projection line for a point is the line that passes through

the X-ray source and the projection of the point in the X-ray detector.

One minor point is the image distortion related to the X-ray detector. Older

angiography systems are equipped with image intensifier that generates images

with distortion due to its design. These distortions must be corrected either before

applying the reconstruction method [53] or within the reconstruction method [54].

However, now the new angiography systems make use of flat panel detectors, which

can create distortion free X-ray images [55].

It is necessary for both class of reconstruction methods to obtain the parameters

describing the acquisition geometry. However, the way how the acquisition geom-

etry obtained changes between different reconstruction strategies. Some methods

rely on a prior calibration step to record the geometry parameters. During the

image acquisition the X-ray gantry follows the recorded geometry to generate the

X-ray coronary angiography images. In earlier, mechanically unstable C-arm sys-

tems, calibrations can be performed just before image acquisition [56]. However,

in stable C-arm systems, the calibration is performed once in a while with regular

intervals to ensure its stability [57–59]. The calibration is usually completed by

using phantom objects [56–59]. Nevertheless, some methods opt for non-calibrated

data because of the possible table translation during image acquisition or because

of noise in the calibrated parameters. These methods either estimate geometry

parameters before computing the reconstruction or jointly estimates the geometry

parameters and the reconstruction. However, joint optimisation aggravates the

problem by increasing the ill-posedness of it, and is not realistic. On the other

hand, all of the tomographic coronary artery reconstruction methods assume cal-

ibrated geometry, while modelling based reconstruction can adopt calibrated and

non-calibrated geometries (Section 2.2.2).

1Modern X-ray imaging systems store both extrinsic and intrinsic parameters.
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2.2.1.3 Handling of Cardiac and Respiratory Motion

Another important aspect with regard to both classes of reconstruction is the

respiratory and cardiac motion experienced by coronary arteries during image

acquisition. Respiratory motion could be reduced during the acquisition by asking

the patients to hold their breaths (see Tables 2.1 and 2.2). Considering there is no

residual respiratory motion, retrospective gating strategies are commonly utilised

to overcome cardiac motion. The main principle of retrospective gating is to select

the subset of images that are at the same cardiac phase in order to eliminate the

cardiac motion. The number of available cardiac cycles during the acquisition is

important; high heart rates are preferable to low or normal cardiac phase in order

to have sufficient number of images for reconstruction. Two different approaches

are investigated for retrospective gating: ECG and surrogate based gating.

The most common way to achieve gating is to use ECG signal simultaneously ac-

quired with the image acquisition. Specifically, this signal is used to assign cardiac

phases to the collected X-ray images assuming a cyclic heart motion (Fig. 2.2).

Typically, the phases of least motion, end-systole and end-diastole [60, 61], are

employed for gating to obtain a higher 3D reconstruction quality.

Missing or unusable ECG (e.g. due to mislocation of electrodes), and irregular

heartbeats pose further challenges for retrospective gating of images collected using

a C-Arm system [62, 63]. In X-ray coronary angiography, motion phases can be

assigned based on a surrogate function extracted from the intensity information in

the X-ray images [64, 65]. To find such a surrogate function, several assumptions

are made. First, it is assumed that there is no CRA/CAU angulation during

acquisition and consequently axial direction of the patient is roughly aligned with

vertical axis of the X-ray detector. Second, predominant motion in the axial

direction is assumed to be caused by the cardiac motion. Under these assumptions,

motion in the axial direction can be used as the surrogate function. Blondel et

al. [64] determined the motion by estimating the shift between horizontal line

integrals of subsequent X-ray images. Lehmann et al. [65] calculated centroid of

the horizontal line integrals and use its motion to define the surrogate. From a

different perspective, these methods find an optimal time point to compute the

reconstruction.

A related problem is to select the optimal cardiac phase for the reconstruction,
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Figure 2.2: Retrospective ECG gating: A subset of images corresponding to the
same cardiac phase are selected to discard the cardiac motion before reconstruction
(top). Each image is assigned a cardiac phase using the ECG signal recorded si-
multaneously with the image acquisition (middle). A windowing function specifies
a temporal slot and weighting for image selection (bottom).

given the gating signal. Because of the heart rate differences and other special

conditions (e.g. arrhythmia) of the patients, the optimal cardiac phase for recon-

struction is different between the patients [61]. Moreover, it is known that the

reconstruction quality varies among different cardiac phases [66]. Apart from us-

ing aforementioned surrogate functions, several methods are devised to determine

the optimal phase. The methods described in [67, 68] build a series of gated re-

constructions and define a quality metric based on the histogram analysis of those

reconstructions. The mean intensity value of the high contrast voxels are used

as the quality metric. Hansis et al. [69] used minimum intensity projections of a
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back-projected distance map to determine a quality measure for the cardiac phases

assigned via ECG signal.

The selection of images are generally conducted by a windowing function. A

windowing function defines a temporal slot around the selected cardiac phase; the

X-ray images inside that domain are selected for reconstruction. The shape of the

windowing function introduces a weighting to X-ray images depending on temporal

distance of X-ray image to the selected phase. Most commonly used windowing

functions are nearest-neighbour [66,70] or power of cosine function [66,71,72]. The

nearest-neighbour function selects the image that is closest to the selected cardiac

phase. This gating function strictly eliminates the cardiac motion by selecting one

image for each cardiac cycle. However, it severely undersamples available X-ray

projection data and this can lead to artifacts in the reconstruction [66]. Instead

of nearest-neighbour gating, bell-shaped functions are also used as the windowing

function. One popular choice is cosine squared windowing function [66]. A more

general family of cosine functions, namely power of cosines, are introduced in [71].

Specifically, the shape of the windowing function is controlled using a parameter

describing the power of the cosine function. In addition, there are also some

attempts to determine the optimal window length from X-ray images using value of

the surrogate function [65]. Finally, one should note that cardiac motion type (e.g.

twisting motion [73]) and magnitude could still lead to undersampling problems

even using bell-shaped or surrogate based windowing functions.

2.2.2 Model-based Reconstruction

Model-based reconstruction (or modelling) methods try to build a 3D/3D+t binary

model of coronary arteries, which consists of a 3D/3D+t centreline and, occasion-

ally, the vessel surface. These methods are flexible tools for reconstruction, since

they allow us to use images from all X-ray coronary angiography modalities or

from calibrated and non-calibrated systems. However, the flexibility is usually

accompanied by requirement of manual processing. Although these methods com-

monly use ECG gating to remove the motion of coronary arteries (Table 2.1), there

are efficient ways to propagate the 3D reconstruction for one cardiac phase to the

remaining phases to obtain 3D+t reconstruction.

Based on the overall design, modelling methods could be further divided into
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two groups, namely forward-projection based (Section 2.2.2.1) and back-projection

based (Section 2.2.2.2) methods. Modelling methods could also differ in terms

of ability to obtain 3D+t reconstruction (Section 2.2.2.3), multi-view modelling

capability (Section 2.2.2.4) and vascular lumen reconstruction (Section 2.2.2.5).

2.2.2.1 Forward-projection Based Methods

Forward-projection based modelling methods for coronary artery reconstruction

employ a 3D model, which adapts itself to the vessel structures in 2D X-ray pro-

jection images.

Deformable models are frequently employed in forward-projection based recon-

struction. The deformable model evolves under the influence of an external energy,

which is obtained from the 2D images and an internal energy, which is due to the

smoothness and topology of the model itself. The most commonly used 3D de-

formable model for modelling of the coronary arteries are active contour model [74].

In the context of coronary reconstruction, each coronary artery branch is repre-

sented by one active contour model and these models are optimised individually.

The main concern for active contour based reconstruction is the design of the

external and internal energy terms.

Two-dimensional external energy terms are generally computed using the image

information from the 2D projection images and used in various ways to update

the location of the 3D landmark points describing the active contour. In order to

calculate 2D external energy terms for each landmark point, common approaches

are to compute the Gradient Vector Flow (GVF) [75], Generalised Gradient Vector

Flow (GGVF) [76], and Potential Energy (PE) [77] from the 2D projection images

and use the resulting 2D vector fields [54, 78–81]. Centrelines segmented from

2D projection images are used as the feature map input to GVF, GGVF and

PE computation. Alternative to this approach, image intensity information can

be directly used to compute the external energy term. The intensity values are

locally minimum at the image pixels corresponding to the vessel axis, since X-

rays passing through the vessel axis penetrate the thickest layer of contrast [82].

The direct [82] or normalised [83] sum of intensity values from different projection

images are used to formulate the external energy term. In [83], authors also added

the gradient of the intensity to the formulation to gain some robustness to noise
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Figure 2.3: Computation of external force for active contour based reconstruction
methods: (a) 3D external force can be computed using new 2D locations updated
using 2D external forces. (b) Alternatively, 3D external force can be computed
using back-projections of the 2D external forces.

In order to update the position of the 3D landmark points of the active con-

tour, one strategy is to update the projections of the landmark in 2D [54, 78].

Specifically, the 3D landmarks for the current iteration of the active contour evo-

lution are projected onto the 2D images. The 2D projections of landmarks are

moved to new locations in 2D according to the external force. Because of the

epipolar geometry, a new 3D position for the landmark must located at the inter-

section of the projection lines. However, updated 2D projections do not comply

with the epipolar constraints, since they have been updated independently in the

projection images. Therefore, the new 3D position of the landmark is found as

the 3D position, which minimises the distance to all projection lines (Fig. 2.3a).

Another strategy is to compose a 3D external force term using the 2D external
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force terms [79–81]. To this end, the 2D external forces are back-projected onto

the world coordinate system by ignoring the out-of-plane component of the 3D

external force. The back-projected external energy forces are added together to

obtain the 3D external force (Fig. 2.3b). The main advantage of this strategy is to

update the 3D landmark points without violating the epipolar constraints, which

is proven to increase the accuracy and the convergence rate [80,81]. Additionally,

this strategy is easy to adapt to multi-view scenarios since the 3D external force

is given by a simple vector addition operation [80].

As the internal energy, the elastic and bending energy from the original active

contour model [74] are generally used. Zheng et al. [83] devised a new elastic

term to avoid shrinkage problem of the open active contour model. This new term

produces an additional penalty for the landmark pairs, which are not separated

by the average distance between all pairs of neighbouring landmarks.

Initialisation of the active contour model in 3D is performed manually [54, 78–

83]. Some corresponding points (including the start and end point) for a branch

are selected from different views and rough reconstructions are obtained for these

points. These points are used to generate a piece-wise linear active contour model

to start with.

Although the literature on the forward-projection based modelling of coronary

arteries revolves around parametric active contour models, there are some ex-

ceptions to this trend. As one notable example, Sarry et al. [84] used Fourier

descriptors as the parametric deformable model. An analytical relationship be-

tween the 3D Fourier descriptor and its projection is derived. This relationship

yields to an energy functional, which consists of intensity, epipolar constraint and

smoothness terms. Another interesting example uses geometric active contours as

the deformable model [85]. A 3D level set surface for the coronary artery is defined

in a reference cardiac phase. It is assumed that this level set surface is mapped to

a 2D projection image by rigid transform due to motion of the arteries followed

by a projection operation. An energy minimisation framework is formulated to

evolve the level set in the reference phase and to estimate the rigid transformation

for all the projection images. Çimen et al. [86] used a statistical bilinear model of

ventricular epicardium as spatiotemporal model, and estimated parameters of the

bilinear model along with the arterial locations on the bilinear model.

Forward-projection based modelling methods do not require any correspon-
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dence between centrelines extracted from 2D X-ray images. Moreover, 2D seg-

mentations are unnecessary for some of the methods, which work directly on the

intensity values. These features provide serious advantages over most of back-

projection based modelling methods in the literature. In addition to that, it is

easy to adapt forward-projection modelling methods for reconstruction from mul-

tiple views. However, these methods rely on manual selection of corresponding

points from projection images for each branch of the artery, which might be time

consuming and prone to errors.

2.2.2.2 Back-projection Based Methods

Back-projection based modelling methods build the coronary artery tree from

back-projection of 2D information extracted from projection images that are se-

lected via ECG gating. These methods could be divided into two main groups: i)

methods based on 2D feature matching, and ii) methods based on back-projection

of vesselness responses.

The first group of back-projection based methods are the methods based on

2D feature matching. These methods start with a segmentation of artery centreli-

nes and often several salient structures (e.g. start/end points, bifurcations) from

the projection images. Correspondences are established between the centrelines

from different views using epipolar geometry, and 3D points representing the coro-

nary artery tree are reconstructed using the triangulation method [52] from the

computer vision (Fig. 2.4a).

Two-dimensional feature matching based modelling methods are designed to

work with the non-calibrated systems [64,87–92], although exceptions exist [20,93].

This is because the estimation of geometry parameters that relate the projection

images used for reconstruction can be easily integrated into the method. One way

is to estimate the geometry parameters before reconstruction commences. For

this purpose, the salient points (e.g. start/end, flexion and bifurcation points)

that are extracted during the segmentation step are exploited [87–89, 94]. A set

of corresponding points are formed via manual establishment of correspondence.

This set can be used to write constraint equations using the fundamental or es-

sential matrix [87] or to formulate an energy function whose minimum is given by

the optimal values for the geometry parameters [88, 89]. Generally, rotation and
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Figure 2.4: Summary of back-projection based methods: (a) Methods based on
2D feature matching establish correspondences of centrelines from different 2D
views and compute reconstruction using triangulation. (b) Some of the 2D feature
matching based methods divide the 3D space into parallel planes representing the
depth levels. Each centreline point in the reference frame is assigned to one of
the depth levels using the information from multiple X-ray images. (c) Methods
based on back-projection of vesselness response compute a 3D volumetric vesselness
response from 2D vesselness responses for further processing.

translation between the X-ray sources are considered to be the geometry parame-

ters to optimise, and intrinsic parameters are assumed to be known. The energy

function mainly consists of the reprojection error of points and the reprojection



27
2.2. RECONSTRUCTION OF CORONARY ARTERIES FROM X-RAY CORONARY

ANGIOGRAPHY

error of direction vectors [88, 89, 94]. Another popular way is to estimate geome-

try parameters jointly with the reconstruction. In this strategy, estimation of the

geometry parameters and reconstruction, and the establishment of the correspon-

dences are iteratively performed until a convergence criterion is met [64, 90–92].

These methods are advantageous because they are robust against outliers and pro-

vide a mechanism to estimate the intrinsic parameters as well. In [92], a total of

14 parameters are optimised including intrinsic (SID, principal point coordinates,

skew) and extrinsic parameters (rotation, translation, table translation). For any

approach to estimate the geometry parameters, initialisation is important. In most

of the cases, the geometry parameter estimation starts from the values recorded

by the X-ray system.

Correspondence establishment is the critical step for feature matching based

methods, since the corresponding points are directly used to triangulate the 3D

position. The simplistic approach is to use hard epipolar constraints to establish

the correspondences [87–89, 94]. However, epipolar lines usually do not produce

a single match and this necessitates more sophisticated approaches. One solution

is the exploitation of dynamic programming algorithms. Yang et al. [92] used a

method similar to dynamic time warping (DTW) [95] to find the correspondences.

Dynamic programming can also be used to put soft epipolar constraints [64, 90].

Soft epipolar constraints allow for a point in the first view to match a point in the

second view that is not strictly on the epipolar line but around it. To this end,

an energy function is formulated for matching that consists of unary and binary

terms. Unary terms penalise according to the distance to the epipolar line [90] or

any feature that reflects correct correspondence (e.g. high tubularity value) [64].

On the other hand, binary terms ensure that the linked points in the first view

are paired with points that are close to each other in the second view [64] or en-

sures that the deviation from epipolar lines varies smoothly [90]. In order to avoid

point-to-point correspondences, a branch-to-branch correspondence establishment

method is proposed in [20]. The projection lines formed by the 2D points in the

projection images and corresponding X-ray source position form ray bundles for

each view. Closest points on the ray bundle from first view with respect to the

ray bundle from the second view establishes a correspondence. Another way to

support the correspondence finding is to estimate some 3D features from 2D fea-

tures and use the estimations to put a constraint on the correspondences. One
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particular example is the study in [91]. Given an initial correspondence, 3D cur-

vature value for a point is estimated from the 2D curvature values from projection

images. They compared estimated curvature and the curvature obtained from the

reconstruction for the initial correspondence, and if the values are very different

from each other the point correspondence is discarded. Although the authors used

it for outlier removal, it is a promising strategy to put prior information on the

3D reconstruction.

One alternative strategy for 2D correspondence establishment is proposed in [96]

and later adapted for dynamic reconstruction in [97]. The problem is formulated

as a depth map estimation, inspired by multi-view stereo in the computer vision

literature. To this end, the 3D space between X-ray source and detector is divided

into parallel planes of equal depth increments (Fig. 2.4b). To obtain the recon-

struction, all 2D centreline points in one reference view are assigned to a plane,

i.e. assigned a depth value using an energy function minimisation. Liao et al. [96]

proposed an energy function consisting of a reprojection error term and a term for

smoothness of depths in 3D. The energy minimisation can be performed through

efficient methods such as graph cuts or belief propagation [98].

Modelling methods based on 2D feature matching provide flexible and modu-

lar approaches to reconstruction. There is a wide selection of methods to choose

from for segmentation, estimation of imaging geometry, and establishing the cor-

respondences. More importantly, their ability to estimate the imaging geometry

is indispensable for reconstruction from standard X-ray angiography, since table

movements are common during image acquisition. Requirement of 2D segmen-

tation is the main disadvantage of these methods. First, it hinders its use for

multi-view reconstruction because segmentation of 2D projection images is gen-

erally a demanding (especially if there is overlap and foreshortening) and time

consuming task. Second, one should select projection images at the same cardiac

phase, with some angular difference (between 35-145 degrees [93]), without over-

lap and foreshortening, and with sufficient contrast. These conditions may not be

satisfied easily and as a result the method may output suboptimal reconstructions.

The second group of back-projection based methods are the methods based on

back-projection of vesselness responses. These methods compute vessel responses,

which highlight coronary arteries in 2D projection images. These responses are

back-projected given the imaging geometry to compute a volumetric vessel re-
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sponse in 3D. Segmentation methods are applied on the 3D vessel response to

obtain the coronary artery reconstruction (Fig. 2.4c).

The first choice for these methods is the type of the 2D vessel response. Binary

segmentation [99], tubularity response [100], and distance map to centreline [101]

are used in the literature. Second choice is the back-projection operator. Differ-

ent operators have been studied in the literature, namely multiplicative combi-

nation from all views [99], weighted multiplicative combination from all pairs of

views [100] and maximum of 2D distances to centrelines [101]. Three-dimensional

segmentations can be obtained from a variety of methods, although fast marching

propagation [99,100] and minimal paths [101] are the only ones used so far. Owing

to low number of projection images, 3D vessel responses are generally very noisy

and robust methods for segmentations are required. Otherwise, post-processing

steps might be required to prune the segmentation [99,100].

Modelling methods based on back-projection of vesselness response work with

minimum level of interaction. Additionally, being inherently multi-view is a merit,

however these methods might require extended rotational X-ray angiography im-

ages to increase the number of images available for reconstruction and to reduce

the noise in the 3D vessel response function.

2.2.2.3 3D+time Model-based Reconstruction

3D+t reconstruction of coronary arterial tree could give the clinician a better

assessment of the target lesion by providing information about motion and extent

of deformation near the lesion [89]. Modelling methods could be extended such

that they have the ability to generate 3D+t reconstructions of coronary arteries.

The most straightforward 3D+t reconstruction strategy to obtain 3D recon-

structions for a number of cardiac phases separately [20,89,90,102]. This could be

achieved by completely handling the reconstruction for each cardiac phase indepen-

dent from each other [89, 102]. To avoid complete independence of reconstruction

at different cardiac phases, temporal constraints penalising the difference between

neighbouring cardiac phases can be used [97]. The disadvantage of processing each

cardiac phase individually is the requirement of segmentations for every cardiac

phase, which may sometimes be infeasible. Another drawback of working on each

cardiac phase separately is that the resulting 3D reconstructions are independent
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from each other and there is no notion of temporal correspondence. If the motion

field for the coronary artery tree is needed, temporal correspondences should be

sought [89,102]. This can be achieved by branch matching or tree matching algo-

rithms. For example, Chen et al. [89] proposed a branch matching algorithm using

a physics based principle to formulate matching energy. Jandt et al. [102] devised

an energy formulation for iterative matching of tree structures.

Figure 2.5: Propagation of initial 3D reconstruction by transformation optimi-
sation: The transformation for cardiac phase p (T p) is estimated such that the
projection of deformed initial reconstruction is aligned with the vessel structures
in 2D projection images at phase p. The initial reconstruction (Rref ) at the refer-
ence phase pref and deformed initial reconstruction (Rp) at phase p are shown in
red and blue, respectively.

A popular strategy for 3D+t reconstruction is to propagate an initial 3D recon-

struction from a reference cardiac phase to the rest of the phases [53, 82–84, 103,

104]. Depending on the reconstruction methodology, there are two ways to accom-

plish this propagation. If it is a forward-projection based modelling method, the 3D

deformable model representing the reconstruction for the reference cardiac phase

is evolved such that its projection fits to the 2D projection images corresponding

to the other cardiac phases. The easiest way is to use the 3D reconstruction as the

initialisation at the next cardiac phase and to apply the same reconstruction strat-

egy [84]. However, this strategy does not introduce any temporal constraints. To

overcome this drawback, the deformable model energy for 3D reconstruction might

be enriched with some additional terms that enforce temporal smoothness [82,83].

Four-dimensional propagation strategies for forward-projection based methods are

generally designed to work with intensity values of 2D projection images in or-
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der to avoid the necessity of centreline segmentations for all the 2D images. On

the other hand, back-projection based modelling method approaches 3D+t recon-

struction as a temporal transformation estimation problem. Specifically, these

methods parameterise a 3D/3D+t transformation, which is applied to the refer-

ence 3D reconstruction, such that the projections of the deformed reconstruction

align with the 2D projection images (Fig. 2.5) [53, 64, 103–105]. A rigid or affine

transformation for each cardiac phase is optimised in [104]. A set of hierarchi-

cal transformations with increasing degrees of freedom are proposed to model the

motion of the arteries in [53,103]. Specifically, rigid, affine and 3D B-spline trans-

formations are optimised respectively for each time step. A strategy to reduce the

number of transformation parameters by estimating a transformation separately

for each coronary artery branch is followed in [103]. A 3D+t B-spline transfor-

mation model is used in [105]. Instead of directly estimating the parameters of

the transform, a motion vector field is calculated using an energy minimisation. A

second energy minimisation is performed to estimate the parameters of the trans-

formation using the motion vector field. In [64], temporal dimension is added to

the transformation via a 3D+t B-spline transformation. To estimate the parame-

ters of the transformation, an energy measure describing the quality of fit is used

to estimate the parameters of the transformations. The energy term consists of a

term for the projection error, a term to constrain structural changes and a term

to ensure smooth transformation. In order not to segment centrelines, the pro-

jection error term generally depend on intensity based features such as tubularity

measure [53, 64, 103] or GVF [104]. The energy term controlling the smoothness

of deformation can be defined using the transformed points [104] or using the

parameters (e.g. control points for B-spline transformation) of the transforma-

tion [53,64,103,105]. Application specific temporal or structural constraints, such

as cyclic deformation constraint [104] or length preservation constraints [53], are

taken advantage of as additional energy terms.

2.2.2.4 Multi-view Model-based Reconstruction

X-ray rotational X-ray angiography and DARCA offer a sequence of projection im-

ages from different views, which provides additional information for model-based

reconstruction. Many state-of-the-art modelling methods benefit from the addi-
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tional information. These methods differ in the way they use multiple projection

images.

There are various ways to incorporate multiple views. Cong et al. [80] com-

bined back-projections of 2D external forces to compute a 3D external force for

an active contour based reconstruction method. Blondel et al. [64] generated 3D

reconstructions for every pair of multiple views and fused them together to find

the final reconstruction. Liao et al. [96] showed that, for back-projection based

modelling, it is possible to integrate the information from multiple images using

an elegant energy formulation for the correspondence. To this end, the authors

formulated the problem not as a correspondence establishment but as a depth as-

signment to centrelines extracted from one of the projections. Li et al. [101] and

Jandt et al. [102] used modelling based on back-projection of vesselness response,

which inherently supports multiple views. Finally, Keil et al. [85] combined a ge-

ometric active contour model with a transformation to utilise all the images in a

rotational X-ray angiography sequence.

Multi-view modelling could bring some advantages to the reconstruction. First,

reconstruction methods that rely on only two projection images discard a signif-

icant amount of acquired images. Multi-view reconstruction benefits from extra

information from the additional images, which improves the accuracy of the recon-

struction [80,96]. Second, two projection images are not enough for correspondence

establishment between the projections if there is substantial amount of vessel over-

lap or foreshortening. In such cases, additional information from multiple views

could assist the correspondence establishment [96]. Finally, multiple images pro-

vide additional diameter measurements, which could be used to improve surface

reconstruction [80, 93, 94, 96, 102]. However, necessity of manual processing from

user may hinder the adoption of multi-view modelling. Therefore, it is important

to invest on methods with minimal user interaction.

2.2.2.5 Vascular Lumen Reconstruction

Assessment of stenosis severity or simulations from 3D reconstruction of arteries

demand not only the reconstruction of centrelines but also the reconstruction of

arterial lumen walls. Vessel surface reconstruction is performed after centreline

reconstruction using the vessel diameter information from the projection images.
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The basic approach to vessel surface reconstruction is to use vessel diameter

information from only one view [20, 88, 89, 96]. These methods extract the 2D

diameter value by searching the vessel boundary perpendicular to vessel axis from

one projection image. The diameter value is scaled to remove the scaling effect

due to projection and the scaled diameter is used to fit a circle cross section

perpendicular to the 3D vessel axis (Fig. 2.6a). These cross sections are used

to create the surface of the coronary artery tree. Movassaghi et al. [93] adapted

this basic strategy to multi-view reconstruction. The scaled diameter values from

multiple views put additional constraints on the shape of the vessel cross sections.

Instead of limiting the cross sections to circles or ellipses, an interpolation scheme is

proposed to accommodate various cross sections in [102]. To this end, the authors

found the points that constrain the cross section and angularly interpolated new

points describing the cross section. The interpolation is defined as a weighted

linear combination and the weights are given based on a local foreshortening value

and angular difference. Andriotis et al. [94] observed that the plane where 3D

circular cross section lies might not be perpendicular to 3D vessel axis due to the

rotational movement of X-ray source (Fig. 2.6b). They proposed a strategy to

extract diameter information using the plane of 3D circular cross section. Yang

et al. [92] proposed an ellipse fitting method for two views that respects non-

coplanar circular cross sections in 3D. Later, Cong et al. [80] showed that this

strategy can be incorporated into the multi-view reconstruction scenarios by using

a least squares fitting.

Apart from reconstructing the vessel surface using the information available in

the 2D angiography images, there is also a recent interest in fusing 3D centreline re-

constructions with vessel surface extracted from IVUS or OCT images [35,106,107].

In this type of the vascular lumen reconstruction, 3D catheter path [108] or 3D

vessel centreline [109] is generally assumed to be reconstructed using X-ray images

from a biplane system using a back-projection based method. The problem of vas-

cular reconstruction is formulated in three steps: i) segmentation of IVUS/OCT

cross sections, ii) identification of the centreline locations corresponding to ECG

gated IVUS/OCT cross sections, and iii) correction for the axial orientations of

cross sections [108–112]. The spatial correspondence is established assuming an

initial correspondence and a constant pull-back speed [108, 109]. The axial ori-

entation correction is typically handled using local geometry around identified
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(a)

(b)

Figure 2.6: Effect of C-arm movement on the vessel surface reconstruction: (a)
Projection plane (light blue triangular area) is often assumed to be perpendicular
to vessel axis. As a result, projection plane and vessel cross section (black circle)
are parallel to each other. (b) If the movement of the C-arm is taken into account,
projection plane (light blue triangular area) and vessel cross section (black circle)
are no longer parallel to each other. Furthermore, projection planes from different
views (light blue and red triangular area) are non-coplanar.

centreline points [108–110,112].

2.2.3 Tomographic Reconstruction

Tomographic reconstruction methods use X-ray coronary angiography images di-

rectly to produce a volume representing the coronary arteries. In contrast to

binary representation of model-based reconstruction, tomographic reconstruction
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methods offer information about X-ray absorption coefficients. These methods can

handle unusual anatomies (e.g. collaterals, tortuous branches) since they require

less, if not none, prior information about the coronary arterial trees [113]. Because

of the same reason, these methods can also provide more accurate vessel surface

details [114]. In addition, tomographic reconstruction methods do not require any

manual interaction.

Tomographic reconstruction methods need to fulfil specific requirements. All of

the tomographic reconstruction methods assume that the X-ray imaging system

is calibrated prior to the acquisition. Compared with modelling based reconstruc-

tion, these methods generally demand more X-ray images with a larger angular

coverage. For this reason, extended rotational X-ray angiography acquisition is

preferred as the acquisition protocol (Table 2.2). However, one should note that

even extended rotational X-ray angiography does not satisfy Tuy-Smith data suf-

ficiency condition [115, 116]. Moreover, as the coronary artery branches should

be visible in the X-ray sequence, isocentring becomes crucial. Consistent con-

trast injection is also important to be able to exploit all the X-ray images. It is

also important since these methods ignore the contrast agent propagation in their

formulation and assume constant contrast distribution over time. Moreover, these

methods typically have high computational demands compared with the modelling

based reconstruction. However, thanks to the advances in parallel computing, ded-

icated GPU implementations can be used to overcome this difficulty (Table 2.3).

Similar to modelling methods, cardiac and respiratory motion are the most

difficult challenges for the tomographic reconstruction. Typically, X-ray coronary

angiography data are acquired during breath hold to minimise the respiratory

motion. Depending on how they handle the cardiac motion, the tomographic re-

construction methods can be classified into three groups: i) gated (Section 2.2.3.2),

ii) motion compensated (MC) (Section 2.2.3.3), and iii) gated and motion com-

pensated methods (Section 2.2.3.4). The basic considerations and algorithms for

tomographic reconstruction are briefly introduced in Section 2.2.3.1. These algo-

rithms are generally adapted to the specific problem of high contrast moving object

reconstruction and specialised algorithms are proposed. A detailed discussion of

specialised algorithms for coronary artery reconstruction is provided in Section

2.2.3.5. Background removal strategies are discussed in Section 2.2.3.6. Finally, a

brief discussion on 3D+t tomographic reconstruction is given in Section 2.2.3.7.
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2.2.3.1 Preliminaries

One distinction between different methods is the type of the tomographic recon-

struction approach. Both analytical and iterative tomographic reconstruction al-

gorithms have been developed.

Analytical reconstruction algorithms consider a simplified system model and

image (volume) model. Thus, they are best suited to the situations where approx-

imate solutions are adequate. Yet, these methods are well-established and fast

compared to iterative alternatives. Popular choice for analytical reconstruction of

cone-beam geometries is Feldkamp-Davis-Kress (FDK) [117] algorithm.

Iterative reconstruction algorithms can integrate wide range of acquisition ge-

ometries (e.g. limited angular coverage), image model, forward model, noise model

and prior information into the reconstruction [118]. The image model mainly deals

with the representation of the volume to be reconstructed. The continuous volume

is approximated by a linear combination of basis functions at discrete regular rect-

angular grid locations [119]. Among alternatives, voxel [120], Gaussian [121, 122],

and blob-like (Kaiser-Bessel) [123–125] basis functions are utilised2. The forward

model describes the contribution of the voxels along X-ray line (or X-ray beam)

to the corresponding pixels [126]. Although forward model should be explicit to

increase reproducibility of the method, it is not always reported. This is most

probably due to the fact that most of the methods use the length of intersection

between X-ray lines and voxel grid image model. Unlike most other work, Blondel

et al. [120] used the volume of the voxel if the X-ray beam is passing through the

voxel. The image model and forward model can be combined to form an underde-

termined system of linear equations (forward projection equations), which relate

projected pixels and voxels to be reconstructed by a forward projection matrix.

The lack of measurement error modelling in the forward projection equations is

addressed by appropriate noise models. In the context of coronary artery recon-

struction, Poisson [123,124] or Gaussian [125] noise models are employed. Finally,

the spatial dependency between neighbouring voxels can be used to include any

prior information about the volume.

Iterative reconstruction algorithms are classified into two groups, namely al-

gebraic and statistical. This classification is made on the basis of whether they

2Unless otherwise noted, we assume that a voxel basis is used in the following discussion.
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account for a noise model or not. Both group of methods have been used in the

context of coronary artery reconstruction.

2.2.3.2 Gated Tomographic Reconstruction

As with the modelling methods, one simple way to reduce the effect of motion on

the reconstruction is to apply gating, i.e. select a subset of images that correspond

to the same motion state of the coronary artery tree (Section 2.2.1.3).

The initial attempts to tomographic reconstruction from X-ray rotational X-

ray angiography have focused on the feasibility and optimisation of the acquisition

protocols rather than the reconstruction method [70,127]. Because of this reason,

these studies utilise analytical FDK type reconstruction algorithms with nearest-

neighbour gating. On the other hand, cosine squared windowing function is shown

to improve the reconstruction if an optimal window size is chosen [66]. If the

size of the window is increased, it possibly reduces the background artifacts but

it leads to a blurred reconstruction due to motion [66]. These motion corrupted

reconstructions are not satisfactory for clinical purposes, however they can be

benefited as an initial coarse reconstruction for a motion compensated reconstruc-

tion [63,71,72,128].

In recent years, the focus of gated reconstruction methods has shifted towards

incorporation of prior information to cope with the undersampling due to gat-

ing. High contrast vessels occupy a small volume, therefore there must be a small

number of voxels in the final reconstruction with nonzero voxel values [129,130], as-

suming background pixels are removed from the X-ray images (see Section 2.2.3.6).

Since it is not possible to embed prior information into analytical reconstruction

algorithms, iterative reconstruction algorithms with some kind of sparsity prior

have been proposed. In [121, 130, 131], the forward projection equations are used

as constraints and L1 norm of the reconstruction is minimised. Similarly, [132]

minimised total variation (TV) norm of the reconstruction instead of L1 norm.

Another way is to take a statistical approach and integrate the prior information

in terms of a prior distribution model for the voxels. In particular, the voxel grid

is considered a Markov Random Field (MRF) and the prior information is em-

bedded using the clique potentials for the MRF. As the clique potentials, absolute

value [123] and sign functions [124, 125] are used, which introduce TV-like and
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L0-like priors, respectively. An interesting way to introduce the prior information

is to use a 3D centreline model. The prior probability for each voxel is defined as

a function of the distance from a reference 3D centreline model to that voxel [105].

2.2.3.3 Motion Compensated Tomographic Reconstruction

Since retrospective gating reduces the number of images available for the recon-

struction, some reconstruction algorithms compensate for the effective motion in-

stead of gating (Table 2.2). Essentially, the contributions from all X-ray images

are brought to the same time point. Thus, all collected X-ray images are effectively

used without introducing motion related artifacts. By means of a phantom coro-

nary artery reconstruction experiment, Schäfer et al. [66] demonstrated that MC

reconstruction can attain the quality of a static reconstruction from all projections,

if the motion is known or estimated up to a certain accuracy. Therefore, the cru-

cial part of every MC reconstruction algorithm is generally the motion estimation

step.

MC methods require a representation of a motion field to model the mapping

of the pixels or voxels from a reference time point to another time point. In gen-

eral, the motion field is parameterised by a motion vector field or a geometric

transformation. The temporal component of the motion field is commonly param-

eterised by cardiac phase assuming a periodic motion [64, 71, 105, 113, 119, 133].

However, the periodicity assumption is problematic for the cases where residual

motion is strong or for the cases with arrhythmic heart motion [63]. Because

of this reason, the temporal component is sometimes parameterised by acquisi-

tion time [63, 134, 135]. This strategy was shown to lead similar, if not superior,

reconstructions.

Several types of geometric transformations have been investigated. A simplistic

approach is to model the complex motion of the coronary arteries using 2D geo-

metrical transformations acting on the X-ray images [113, 133]. Two-dimensional

rigid [133] and 2D elastic [113] transformation are employed. Other studies use

either 3D [71,105] or 3D+t [63,64,119,134,135] B-spline transformation. B-spline

transformations offer spatial (and temporal if 3D+t) smoothness and achieve bet-

ter results at the extent of an increase in the number of parameters to be estimated.

The parameters of the geometric transformation are estimated by an image reg-
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istration method. For 2D transformations, an initial 3D reconstruction is obtained

at a reference time and forward projected onto the projection images with a dif-

ferent time stamp. The parameter estimation problem is defined as estimating the

registration between the features extracted from the projection images and the fea-

tures extracted from forward projected images (Fig. 2.7a). 3D reconstructions of

markers on the guide-wire [133] and ECG-gated tomographic reconstruction [113]

are utilised to compute the forward projections. In some cases, the forward pro-

jected images are processed to extract some features (e.g. centrelines) for the

registration [113]. For 3D and 3D+t B-spline transformations, various strategies

are proposed. One option is to propagate a 3D modelling based reconstruction

to the remaining projection images (Section 2.2.2.3) [64, 105]. Instead of a 3D

modelling based reconstruction, a series of ECG-gated reconstructions can be ob-

tained. These reconstructions are used to define an intensity based registration

to estimate the parameters [71]. Other possibility is to estimate the motion pa-

rameters jointly with the reconstruction (Fig. 2.7b) [63, 119, 134, 135]. To achieve

this goal, the parameters of the transformation are directly embedded into the

analytical [63, 134, 135] or iterative [119] reconstruction formulations. An energy

functional is derived from these formulations with the addition of appropriate reg-

ularisation term. The squared error between the projections of the reconstruction

and X-ray images is used as the energy term in [119, 134]. Voxelwise multiplica-

tion of the reconstruction by a binarized reference 3D reconstruction is another

alternative, which require a reference reconstruction [63, 135]. Starting from an

initial set of parameters and reconstruction, parameters are updated by a gradient

based optimisation and reconstruction is updated according to the reconstruction

formula iteratively.

The compensation for the estimated motion is mainly performed in two ways.

First, the X-ray projection images are deformed using the estimated geometric

transformation [113, 133]. This is a trivial task if the estimated motion acts on

pixels in 2D. On the other hand, if a 3D/3D+t motion field is estimated, it can

be incorporated into the reconstruction formulation. Section 2.2.3.5 details how

to achieve this for iterative [64, 105, 119, 120] or analytical [63, 66, 71, 134–136]

formulations.
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Figure 2.7: Motion estimation strategies for motion compensated (MC) reconstruc-
tion: The motion is parameterised by an appropriate geometric transformation,
T p, and the parameters of the transformation are estimated by a registration pro-
cess. Rref and Rp denote initial reconstructions at a reference cardiac phase pref
and at an arbitrary cardiac phase p, respectively. (a) For 2D geometric transfor-
mation, the motion estimation can be formulated as a registration between the
X-ray images and the forward projection of Rref . The 2D images at phase p are
deformed according to the estimated transformation, and utilised in the recon-
struction process. (b) For 3D geometric transformation, one option is to compute
Rref and T p jointly. This is generally achieved by embedding the T p into the
reconstruction formulation and iteratively estimating Rref and T p by minimising
the error between the X-ray projections and forward projection of Rref (T p).

2.2.3.4 Gated and Motion Compensated Tomographic Reconstruction

In gated tomographic reconstruction, the shape of the gating window is critical

since it determines the trade-off between undersampling and motion artifacts [66].
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It is inevitable, however, to observe motion artifacts with a finite gating window

due to residual motion [122]. In some difficult circumstances, such as when the

patient is unable to hold breath or in the presence of arrhythmic motion, motion

artifacts are more severe [136]. To improve this aspect of ECG-gated reconstruction

methods, motion compensation strategies are proposed [64,72,122,128,136,137].

The gated MC methods typically parameterise the motion as a 2D geometric

transformation [64, 72, 113, 128]. Two-dimensional elastic [113, 137], a multiscale

scheme of 2D affine and 2D B-spline [72,128], and 2D translation [64] are employed.

The estimation of parameters are carried out by intensity based [72,128] or feature

based (e.g. centrelines) [113] registration between the forward projections of the

ECG-gated reconstruction and X-ray images. The estimated transformation is

applied on the projection images and these transformed images are used for the

final MC reconstruction. In general, these methods compute the reconstruction

and perform motion compensation in an iterative manner to reduce the effect of

motion in the final reconstructions [128,137]. Starting with a small gating windows

and gradually increasing the size of the window as iterations progress is shown to

be a reasonable strategy to deal with the undersampling artifacts and motion at

the same time [128].

As an alternative to 2D geometric transformation, Rohkohl et al. [136] employed

3D+t affine transformation to parameterise the residual motion. In particular, a

set of temporal points are selected and assigned a 3D affine transform, from which

the 3D affine transformation for the remaining time points are interpolated. The

parameters of the affine transforms are estimated altogether and jointly with the

gated reconstruction.

2.2.3.5 Specialised Tomographic Reconstruction Algorithms

The fundamental tomographic reconstruction algorithms discussed in Section 2.2.3.1

mainly deal with the reconstruction of conventional CT. These algorithms are gen-

erally unsuitable for high contrast non-stationary coronary artery reconstruction

because these may cause artifacts due to sparse high contrast vessels or under-

sampling due to gating. Moreover, modifications to these algorithms are required

if motion compensation is intended. As a result, several specialised tomographic

reconstruction algorithms are adapted from these basic algorithms.
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Analytical FDK reconstruction algorithm is modified such that it copes with

the undersampling due to retrospective gating [71, 127]. A weighting factor is

introduced to counteract the non-equidistant angular sampling [127]. Rohkohl et

al. [71] observed actual low intensity voxels receive high contributions from some

projection images, and this leads to streak artifacts. Thus, a novel weighting is

devised to reduce the highest and lowest contributions for a voxel.

Some studies investigated the necessary modifications to FDK in order to con-

vert it into a MC method. Schäfer et al. [66] demonstrated how to incorporate

motion into an analytical FDK reconstruction formulation. Their new formula-

tion suggests that the filtering and back-projection steps must take the estimated

motion vector field into account. However, the formulation does not take into ac-

count the effect of the motion vector field on the filtering in their implementation.

In [63, 135], the same MC-FDK formulation is used without ignoring the filtering

step. This formulation is well-suited to the problems where motion and recon-

struction are jointly estimated. Specifically, MC-FDK is inserted into an objective

function and used multidimensional optimisation to find the motion parameters

and the reconstruction iteratively.

Iterative algebraic reconstruction algorithms are reformulated such that they

benefit from sparse structure of the coronary arteries. Instead of directly solving

the forward projection equations, L1 norm of the reconstruction is minimised with

the forward project equations used as constraints [121, 129, 130]. By introducing

a quadratic perturbation term, the minimisation problem can be approximated

and efficiently solved via an iterative scheme, which is akin to the conventional

ART [130]. Intuitively, nonzero constraint of original ART is relaxed and the solu-

tion space is enriched by addition of new subspaces [121]. This effect is mainly due

to a voxelwise thresholding in the new formulation. Therefore, the algorithm is

called thresholded ART (TART). Hansis et al. [121] proposed simultaneous TART

(START) technique following the similar changes to convert ART to SART. Re-

cently, Liu et al. [131] combined START with a novel background removal tech-

nique (Section 2.2.3.6).

Incorporation of the motion into iterative algebraic reconstruction formulation

is studied in [120]. The authors showed that the forward projection matrix can

be represented such that it depends on the estimated motion vector field. Their

formulation states that the entries of the forward projection matrix are given by



43
2.2. RECONSTRUCTION OF CORONARY ARTERIES FROM X-RAY CORONARY

ANGIOGRAPHY

the volume of the intersection of the X-ray beam with the deformed voxel. After

calculation of the forward projection matrix, any iterative algebraic technique can

be utilised for the reconstruction. A similar formulation with a generic image

model and X-ray lines are presented in [119]. Calculation of forward projection

matrix is computationally expensive and approximations are made [119,120].

Other methods based on joint estimation-reconstruction or iterative statisti-

cal reconstruction algorithms generally employ well-known energy minimisation

algorithms. These algorithms are used without any modifications, however we

mention these algorithms in this section for completeness. Alternatives for energy

minimisation include gradient descent [119], stochastic gradient descent [134,136],

L-BFGS-B [63, 135], separable paraboloidal surrogates (SPS) [124, 125, 138], and

block sequential regularised expectation maximisation (BSREM) [123,139].

2.2.3.6 Background Removal

X-ray coronary angiography not only includes coronary arteries but also back-

ground structures such as spine, ribs or diaphragm. These background structures

may cause truncation errors because they are not visible in all projection images

due to field of view [64]. In addition, the background structures may hinder the

use of sparsity as a prior information [121]. As a result, most of the tomographic

reconstruction methods require background removal from X-ray images as a pre-

processing or an intermediate step.

Simple image processing techniques are commonly utilised for background re-

moval. The most popular choice is to apply a top-hat filter [140] to suppress the

background [113,119,121,122,131,136]. A good suppression can be achieved, how-

ever the size of the filter may effect the results [131]. On the other hand, some

segmentation based background removal algorithms are proposed [64,72,123–125].

These methods first segment the coronary arteries from X-ray images and re-

move corresponding pixels. These pixels are filled with intensity value estimates

from neighbouring background structures to obtain a background image. Hys-

teresis thresholding of tubularity image [64, 123], thresholding of top-hat filtered

image [72, 124], and level set based segmentation [125] are employed. To fill the

removed pixels, morphological closure [64,123] and image inpainting [125] are used.

Some reconstruction methods perform background subtraction during the re-
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construction. In [63,135], a thresholded reference reconstruction is integrated into

reconstruction formulation to reduce the effect of the background structures on the

optimisation. On the other hand, [131] proposed to segment intermediate recon-

struction of the iterative reconstruction algorithm and used forward projections of

the segmentation to suppress background structures on the X-ray images.

The background is generally suppressed or subtracted from the X-ray projec-

tion images. This strategy is problematic for iterative statistical reconstruction

algorithms since the distribution of the subtraction image does not follow the orig-

inal assumption [123]. In such cases, integration of background estimation into

statistical model improves the reconstruction quality [123].

2.2.3.7 3D+time Tomographic Reconstruction

The simplest way to obtain 3D+t tomographic reconstruction is to reconstruct for

a number of time points independently [127, 137]. However, it may be impossible

to attain the same level of accuracy in different time points due to several factors

(e.g. residual motion related to gating window size). In addition, the motion of

the arteries can not be studied quantitatively [141]. To overcome these limitations,

[141] proposed a strategy to exploit the motion estimated for a MC reconstruction

method. Because the parameterisation of the motion is from arbitrary time points

to a reference time points, an energy minimisation is proposed to inverse the

estimated motion vector field. Inverse motion vector field is used to transform

the best-quality reconstruction to the other time points. Unlike this strategy,

the methods that perform joint reconstruction and motion estimation can directly

deliver the 3D+t reconstruction result [119].

2.3 Evaluation Methods for Coronary Artery

Reconstructions

Comparison between different types of the coronary artery reconstruction methods

is difficult to achieve due to diversity of the acquisition protocols, specific require-

ments for the method (e.g. ECG, calibration, user interaction), and especially the

lack of standard dataset and performance metrics. Nevertheless, common evalua-

tion types (Section 2.3.1), phantom datasets (Section 2.3.2) and evaluation metrics
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(Section 2.3.3) can be identified from the relevant literature to provide insight into

the efforts towards a standardised quantitative comparison.

2.3.1 Evaluation Type

Three main groups of evaluation types can be distinguished: qualitative results,

quantitative with phantom experiments, and quantitative with experiments on

clinical patient data (Table 2.3).

The methods with qualitative evaluation visually compare the results with the

results from other methods to provide evidence of the feasibility of the method.

These methods are rare in the literature, especially within the journal publications.

Further assessment of these methods are required to determine their strengths and

weaknesses. Quantitative evaluations are performed by experiments employing

either phantom data or clinical patient data.

2.3.2 Phantom Datasets

The ground truth required for the validation is not directly available for the recon-

struction problem. One way to address this issue is to utilise physical and software

phantoms where the ground truth is known.

Physical phantoms are advantageous in terms of exposing the reconstruction

methods to the practical limitations of image acquisition. However, they tend to

be limited to simple motion models, since it is hard to imitate the complex com-

bination of cardiac and respiratory motion. In addition, ground truth information

must be extracted from a stationary reconstruction of the phantom usually based

on manual or semi-automatic image segmentation.

Several physical phantoms with different levels of complexity have been used.

Wire [78, 87] and guide-wire [88] phantoms are primitive examples. A 3D-printed

static bifurcation and stenosis phantom is used in [92]. The ground truth is deter-

mined from the geometric description of the object. In [93], a stenotic coronary

artery phantom is used. A static coronary artery phantom with realistic topol-

ogy is used in [96]. The phantom is scanned with multislice CT (MSCT) and

segmented to find the ground truth centrelines. Shechter et al. [53] used contrast

filled tubes over a compliant latex balloon to mimic the motion. The motion is

controlled with mechanical inflation of the balloon. The ground-truth is obtained
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by segmenting a gated multislice MR of the object and identifying the temporal

correspondences between ground-truth and X-ray acquisition. A similar artificial

heart and coronary phantom is proposed in [63, 135]. The authors placed tubu-

lar structures filled with contrast over an elastic material filled with water. The

cardiac motion is controlled with a pump that pushes water in an out, and the

respiratory motion is controlled with specialised hardware. Jandt et al. [102] used

a commercially available complex chest phantom [142].

Software phantoms offer flexible environments for the reconstruction experi-

ments. These phantoms can simultaneously take into account several factors such

as the complex topology of vessels, cardiac and heart motions. However, imaging

geometry and physics of image acquisition are often simplified.

Lorenz et al. [143] built a software phantom from a mean model of the coronary

artery trees adapted from the clinical information provided in [144]. The motion of

the arteries are included using affine transformations between cardiac phases [66].

Yang et al. [145,146] built a phantom from MSCT data to obtain a more realistic

results. They segmented the coronary arteries from MSCT and set the segmented

voxel values to a high value to simulate contrast injection. Another possibility

is to exploit the coronary artery anatomical model in the 3D+t XCAT phantom

[147]. Fung et al. [148] generated more complete anatomical model for XCAT,

based on morphometric and physiological rules. Rohkohl et al. [149] used XCAT

phantom to generate realistic X-ray rotational angiography images. In fact, this

work constitutes the first attempt to define a standardised quantitative comparison

platform. The projection images and relevant additional information are publicly

available. Any voxelized reconstruction result can be submitted to the platform

for evaluation and ranking.

2.3.3 Evaluation Metrics

The reconstruction results are quantitatively assessed via evaluation metrics mea-

suring the similarity of the reconstruction and the ground truth. Depending on

the reconstruction method and the ground truth information various evaluation

metrics have been proposed.

Evaluation metrics for model-based reconstruction methods are based on ground

truth centreline. To emphasise robustness of the method against foreshortening,
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the difference between the length of the ground truth and reconstructed centreline

is typically preferred for the experiments with wire phantom [78,88,89]. Angles of

specific bifurcations are also used to define an error measure [89, 94]. Apart from

these metrics, the most common metrics are 2D reprojection error and 3D space

error. The 2D reprojection error is used to quantitatively evaluate the performance

in the experiments using clinical X-ray angiography images. It is defined using the

Euclidean distance between the manually segmented ground truth centrelines from

the X-ray images and forward projection of the reconstructed arteries onto the 2D

detector plane. However, it is demonstrated in [80] that 2D reprojection error does

not correlate well with the 3D space error. Therefore, the 2D reprojection error

must be calculated from projection angles that are not included in the reconstruc-

tion or favourably supported by appropriate 3D evaluation metric. The 3D space

error is used in the experiments where the 3D ground truth is available and is

generally considered most conclusive centreline based metric. It is simply defined

using the 3D Euclidean distance between the reconstruction and the ground truth.

Surface or attenuation coefficient based metrics are proposed for tomographic

reconstruction methods. Mean radius error [135] or mean relative radius error

[113, 121, 131] are calculated from the planes whose normal is the ground truth

centreline. Another metric is defined as the fraction of the energy (integral of voxel

values) located inside the ground truth surface [113]. Similar to this metric, RMS

error or MSE of voxel values over whole volume or near coronary artery centrelines

are employed [66,121,123,124,137]. These attenuation value metrics are reasonable

indicators of the contrast and artifact in the resulting reconstruction. Another way

of assessing the image artifacts is to employ a noise estimator [72]. One popular

choice for assessment is to compare a thresholded reconstruction with the binary

ground truth. Recall rate [105] or Dice coefficient [125] are utilised. In [149], a

set of thresholds are used to convert reconstruction into binary volumes and the

maximum Dice coefficient is assigned as the quality metric. This metric can work

with modelling based reconstructions if the voxelization of the reconstruction is

supplied.

There is also some interest in eliminating necessity of having a ground truth.

For this purpose, sharpness metric is adapted in [72, 150]. The centreline is semi-

automatically extracted from the reconstructed image and intensity profiles per-

pendicular to the centrelines are computed. The metric is defined as the inverse
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of the average distance between the point of 80% and 20% decrease along the

intensity profiles. An implementation of this metric is available as a part of a

multi-modality 3D coronary artery reconstruction evaluation software [150].

2.4 Discussion and Conclusion

During the last decade, healthcare has witnessed tremendous advances in the coro-

nary artery imaging technologies. Three main directions of development efforts can

be distinguished: i) development of non-invasive diagnostic imaging technologies,

such as MRA and CCTA, ii) development of non-invasive interventional tech-

nologies, such as C-arm CBCT, and iii) development of invasive interventional

technologies, such as IVUS, OCT and X-ray coronary angiography. In the current

situation, there is a competition between some of these imaging techniques to de-

termine the most effective areas of use for particular imaging technology. However,

it is clear that no single imaging technique can overthrow the others, since they

all have different advantages and limitations. Therefore, it is crucial to identify

the potential of the each imaging modality and to dedicate imaging and clinical

research to each of those to improve all technologies simultaneously.

Advances in the non-invasive imaging modalities do not necessarily result in a

decline of the invasive technologies. However, several aspects of clinical decision

making, which now depends on X-ray coronary angiography and reconstructions

obtained from it, can be effectively handled by a more appropriate imaging modal-

ity. The main competitor of X-ray coronary angiography is CCTA. It is anticipated

that the CCTA will be the dominant imaging modality for the selection of patients

for PCI and the intervention planning due to its non-invasiveness. However, sev-

eral important factors must be considered before adoption of this technology, such

as patient radiation dose, practice guidelines and financial issues [5]. In this re-

gard, X-ray coronary angiography is an established imaging modality, and it is

expected to remain as the main imaging modality for the guidance during the

interventions. In order to fully exploit X-ray coronary angiography capabilities,

3D/3D+t reconstruction from X-ray coronary angiography should make its way

to the intervention room.

Reconstruction from X-ray coronary angiography can facilitate PCI in several

ways. In fact, 3D/3D+t reconstructions are progressively being integrated into
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PCI. Optimal view selection using reconstructions is a remarkable example of

these integration efforts. Optimal views obtained without additional radiation

or contrast can help with the stent positioning [22, 151]. In a similar fashion,

tomographic reconstructions can be used to simulate intracoronary images to pro-

vide further guidance for stent positioning [114]. Furthermore, live overlay of the

reconstruction on the fluoroscopy images can provide navigational guidance and

possibly lead to a reduction in the contrast material use [51]. In the near future,

dynamic reconstructions and holographic imaging can provide a truly 3D display

for the understanding of the spatial structure of the coronary arteries.

Fusion of different imaging modalities to exploit supplementary information is

another promising direction for the future of X-ray coronary angiography. In this

context, reconstructions from X-ray coronary angiography can be utilised instead

of raw images. Extracted information from diagnostic CCTA scans can be over-

laid with reconstructions to bring the pre-operative planning into the cath-lab [34].

Fusion of reconstructions with IVUS or OCT can provide useful information con-

cerning the morphological information about the stenosis and wall characteris-

tics [35]. Moreover, combination of TEE with 3D+t reconstructions can supply

valuable soft-tissue information [152]. Most importantly, information from func-

tional imaging techniques must be fused with the anatomical information of the

reconstructions. This is one of the directions that requires a special attention in

the future.

An intriguing direction for the future research is the investigation of the to-

mosynthesis capability of the existing X-ray coronary angiography systems for

high-contrast vascular structure reconstruction [153]. In fact, this can be consid-

ered the natural next step for tomographic coronary artery reconstruction from

extended rotational X-ray angiography. Successful results can lead to reduction in

the radiation dose and may result in the change of the acquisition protocol, anal-

ogous to the transition from conventional to (dual-axis) rotational angiography.

Novel and robust clinical tools are required to strengthen X-ray coronary angio-

graphy’s position inside cath-lab. Improvements on virtual FFR estimation [43–46]

or virtual stenting [154] could make these technologies available for intraoperative

decision making. Real-time simulation of deployment of stent deployment and

computation of the resulting hemodynamic changes by the help of 3D/3D+t re-

constructions can be set as the next targets for clinical tool development.
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To achieve these ambitious goals, several aspects of the current reconstruction

methods must be reconsidered. First, the manual interaction required for most

of the modelling based reconstructions hinders clinical translation of these meth-

ods for real-time processing (Table 2.1). Almost automated methods are essential

to make reconstruction technology as an irreplaceable part of cath-lab. Second,

the time requirement of the methods should be reduced to the order of seconds

by the help of modern parallel computing opportunities (Table 2.3). The recent

progress on this direction is encouraging and shows the feasibility of online pro-

cessing inside cath-lab [22]. Third, 3D+t reconstruction methods with reasonable

time requirements should be devised to fully exploit the capabilities of X-ray coro-

nary angiography. Finally, a grand challenge could be organised to be able to

overcome the lack of comparability in 3D/3D+t reconstruction research. Initial

endeavour to generate a publicly available database for comparison [149] is a no-

table step toward this direction. A broader quantitative evaluation should involve

validation by appropriate metrics capable of providing 3D/3D+t errors on three

possible levels, namely, software phantom, physical phantom and clinical images.
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This short chapter covers the fundamental aspects of the reconstruction meth-

ods presented in Chapters 4-6, namely X-ray acquisition geometry/calibration,

and handling of cardiac/respiratory motion.

3.1 X-ray Acquisition Geometry and Calibration

Acquisition geometry for X-ray angiography is typically described by three distinct

coordinate systems, namely the X-ray source, the X-ray detector, and the patient.

A projection function, Θ : R3 → R2, defines the projective mapping between

patient and X-ray detector coordinate systems. This function can be defined using

projective camera models that are common in computer vision [52]. Particularly,

the perspective and weak-perspective camera models can be employed.

For the perspective model, the projection of a point in the patient coordinate

system is given by the intersection of a line passing through this point and the

X-ray source location. The projection function is defined as

Θ(y) =

qT1 [y 1]T/qT3 [y 1]T

qT2 [y 1]T/qT3 [y 1]T

 , (3.1)

where y ∈ R3 is a 3D point, and {qTi }3
i=1 are the rows of the projection matrix

Q ∈ R3×4. Perspective projection is a nonlinear transformation, since the scaling

factor depends on object’s distance from the X-ray detector.

The weak-perspective model is known to be a reasonable approximation to the

perspective model when the depth of the object is small compared to distance from

camera, and the field of view is small [52], both of which are valid assumptions for

X-ray angiography. The projection function is given as

Θ(y) =

qT1 y
qT2 y

 (3.2)

where {qTi }2
i=1 are the rows of projection matrix Q ∈ R2×3.

Modern X-ray angiography systems give access to calibration information for

specific angiography protocols (such as rotational angiography), from which the

projection matrices can be obtained. The methods presented in this thesis (Chap-
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ter 4-6) assume that the X-ray angiography images are collected using a calibrated

rotational angiography system, thus the projection matrices are readily available.

Moreover, the Jacobian matrix of the projection function, ∂Θ(y)
∂y
∈ R2×3, is required

for the reconstruction formulations in Chapter 4 and 6. The Jacobian matrix for

the perspective projection model depends on the point to be projected and given

as

∂Θ(y)

∂y
=

1

qT3 [y 1]T


(q11q

T
3 − q31q

T
1 )[y 1]T , (q21q

T
3 − q31q

T
2 )[y 1]T

(q12q
T
3 − q32q

T
1 )[y 1]T , (q22q

T
3 − q32q

T
2 )[y 1]T

(q13q
T
3 − q33q

T
1 )[y 1]T , (q23q

T
3 − q33q

T
3 )[y 1]T


T

, (3.3)

On the other hand, the Jacobian matrix simply equals to the projection matrix

for the weak-perspective projection, ∂Θ(y)
∂y

= Q.

In Chapter 4 and 6, we take advantage of both camera models by firstly comput-

ing an approximate reconstruction using weak-perspective camera model, and then

refining it with a perspective camera model. The linearity of the weak-perspective

camera model enables us to obtain closed-form solutions for 3D reconstruction,

whereas the perspective camera model requires numerical optimisation. In Chap-

ter 5, only the perspective camera model is used to model the X-ray acquisition

geometry.

3.2 Handling of Cardiac and Respiratory Motion

One important aspect for a coronary artery reconstruction method is handling of

respiratory and cardiac motion. Throughout this thesis, it is assumed that X-ray

images are acquired during breath-hold, thus the breathing motion is significantly

reduced. On the other hand, retrospective gating strategies are commonly em-

ployed to eliminate cardiac motion in the X-ray images.

In this thesis, retrospective ECG gating is utilised for the reconstruction meth-

ods proposed in Chapter 4 and 6. Every X-ray image is thus assigned a cardiac

phase using the ECG signal recorded synchronously with image acquisition. Fol-

lowing this assignment, a subset of images, which are close to a reference cardiac

time, are selected along with a windowing function to determine a weight for each

of the selected images. The end-diastolic or end-systolic cardiac phases are selected
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as the reference due to minimal motion in these phases [60,61].

In Chapter 4, a square windowing function which assigns the same weight to all

gated images is used. This function selects a subset consisting of 8-9 images out

of approximately 130 images. To further reduce the influence of cardiac motion, a

nearest neighbour window function is used in In Chapter 6, i.e. only those images

that are closest to the reference cardiac phase (3-5 images) are selected.
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4.1 Introduction

Although X-ray coronary angiography is considered as the gold standard for the

clinical decision making and therapy guidance, it is fundamentally limited, since

it can only produce 2D X-ray projection images of moving coronary arteries. It

is crucial to provide quantitative 3D/3D+t information to clinicians to improve

pre-operative planning and inter-operative guidance. However, reconstruction of

coronary arteries remains a highly challenging task due to ill-posedness, intensity

inhomogeneity, overlap, foreshortening, and cardiac/respiratory motion [11].

During the last decade, a vast amount of research has been devoted to obtain 3D

coronary artery reconstructions from 2D X-ray angiography images. Among these

efforts, model-based reconstruction algorithms (modelling) try to generate a 3D

model of the coronary arteries, which consists of 3D centreline of the arteries, and,

occasionally, vascular lumen. However, most of these methods generally require

clean centreline segmentations from 2D X-ray images, which are typically obtained

using a manual segmentation tool [78,80,81,89,92]. On the other hand, 2D segmen-

tation of coronary artery centrelines from X-ray angiography images remains as a

challenging task due to inhomogeneous intensities, and complex coronary artery

topologies with overlap and foreshortening [155]. This shortcoming limits adoption

of model based reconstruction methods in the clinical routine. As a solution, a

3D coronary artery reconstruction method should provide some robustness against

possible sources of error in the 2D centreline segmentations, such as outliers due

to other structures which are also visible in X-ray images.

In this chapter, we propose a novel probabilistic formulation for reconstruc-

tion of coronary artery centrelines from Rotational Angiography (RA) based on

a Mixture Model (MM) representation of point sets describing the coronary ar-

teries. The main contribution of this chapter is to provide a novel perspective

and formulation for model based reconstruction of coronary arteries from RA. Our

formulation offers robustness against the outliers in 2D centreline segmentations

by employing an additional uniform MM component to model the outliers.
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4.2 Literature on Mixture Model-based Point Set

Representation

In computer vision, a popular way to represent shapes is to use ordered point

sets that are sampled from original shape of the object of interest. However,

this basic representation might be problematic for applications operating on these

point sets, especially when outliers are present in the point set representations.

Iterative Closest Point (ICP) algorithm [156] is a typical example for these kind of

shortcomings. To overcome these issue, probabilistic representation of the point

sets has been studied in the last decade.

The main idea behind the probabilistic representation of point sets is to consider

each point as a probability distribution, whose spatial location corresponds to

the mean of the corresponding distribution. In this way, the point set can be

represented as a finite mixture model, and the applications involving point sets

can be formulated in a probabilistic manner.

The probabilistic point set representation has mainly been studied in the con-

text of point set registration. Chui et al. [157,158] proposed a registration frame-

work capable of handling rigid and non-rigid transformation by representing one

point set as a finite mixture model, and finding the best fit to the other point set.

Coherent Point Drift (CPD) [159] follows a similar idea but imposes motion coher-

ence [160] on the points to regularise the non-rigid registration. Horaud et al. [161]

proposed a probabilistic point set based registration method for articulated object

that can handle missing data. Another approach is to represent the both point

sets as finite mixture models, and minimise the dissimilarity between these distri-

butions to estimate the registration. Different types of dissimilarity measures are

used including L2 distance [162], Havrda–Charvat–Tsallis divergence [163,164].

All of the aforementioned registration methods use Gaussian distribution for

their point set representations. However, this distribution is known to be sensitive

to the outliers in the data [165]. To address this problem, the registration methods

often augment their finite mixture model by an additional distribution component

to accommodate the outliers [157, 159]. As an alternative, Gaussian distributions

can be replaced by robust distributions. To this end, Wang et al. [166] proposed

to use asymmetrical Gaussian distributions. Ravikumar et al. [167] developed a

group-wise registration algorithm which uses robust Student’s t-distributions.
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In medical image analysis, the probabilistic point set representation is utilised

for two main applications, namely joint correspondence matching and registration

for statistical shape models, and fusion of information from imaging modalities for

intra-operative guidance.

Gaussian mixture model based representation has been employed to formulate

group-wise rigid [168, 169] and non-rigid [170] registration methods for statistical

shape analysis. These methods jointly update the registrations of shapes to a mean

shape and the correspondences between the shapes and the mean shape. Recently,

Ravikumar et al. [167] proposed a rigid group-wise registration strategy using

Student’s t-mixture models, which provides additional robustness in the presence

of shapes with outliers due to segmentation errors.

To fuse the information from CTA images with the coronary artery recon-

structions from biplane angiography, Dibildox et al. [34] proposed a multi-stage

3D/3D registration approach. The initial rigid registration between point sets are

computed using a probabilistic point set representation, and then it is refined by

incorporating orientation and bifurcation information. Baka et al. [171] enriched

the conventional probabilistic point set representation by orientation information.

This representation is used to formulate a 2D/3D registration between coronary

artery segmentations from CTA images and X-ray coronary angiography for pro-

viding intra-operative guidance.

In this and the following chapters, we propose novel methods for coronary

artery reconstruction from X-ray rotational angiography images, taking advantage

of probabilistic point set representation. Unlike the aforementioned registration

methods, which start with a 3D probabilistic point set representation and register

it with other 2D/3D point sets, we tackle the reconstruction problem. Specifically,

our problem is to estimate the 3D/3D+t probabilistic point set representation of

coronary arteries given 2D/2D+t point sets from different views.

4.3 Methods

In this section, we discuss the Gaussian mixture model-based 3D reconstruction

method in detail. The reconstruction formulation presented in this section follows

the assumptions regarding the X-ray acquisition geometry and retrospective ECG

gating explained in Chapter 3.
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The main idea of our reconstruction method is to represent 3D coronary artery

centrelines as a probabilistic mixture model (MM), which is composed of Gaussian

distribution components and an additional uniform distribution. Specifically, our

method assumes that the coronary artery centrelines can be described by a set of

3D points. Spatial locations of these 3D points are considered as the means of the

Gaussian components to represent the coronary artery centrelines as a MM. In

addition, 2D centreline segmentations from retrospectively gated X-ray projection

images are assumed to be obtained by a semi-automatic or automatic segmentation

method. Intuitively, the MM describes a probability distribution in 3D space, and

the points of the 2D centreline segmentations are treated as projections of samples

generated from that probability distribution. To accommodate any outlier points

in the 2D centreline segmentations, an additional uniform distribution is added to

the MM. The configuration is illustrated in Fig. 4.1.

Fth RA imagefth RA image

1st RA image

Mean of
Gaussian
component,
ym

2D 
centreline
points, xn

f

outlier

Uniform
distribution
component

Figure 4.1: Illustration of the reconstruction process: 2D centreline points (blue
points on RA images) are segmented from retrospectively gated X-ray RA images.
Coronary artery centrelines are described by a set of 3D points (red points in 3D
space), whose spatial locations are considered as means of Gaussian components of
the MM. The goal of reconstruction is to find the means of Gaussian components
that ”best” explain the 2D centreline points. The projections of MM components
onto RA images (red points on middle RA image) are used to define the likelihood
function.

The reconstruction is formulated as maximum-likelihood (ML) estimation of

means, isotropic variance, and mixture weights of the components of the MM.

The ML solution is computed using Expectation-Maximization (EM) algorithm.

Closed form solutions are derived for isotropic variance of the Gaussian compo-
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nents and the mixture weights of all components. As to means of Gaussian com-

ponents, a closed form solution can be derived if weak-perspective camera model

is utilised to describe the acquisition geometry. Numerical optimisation is used

when perspective camera model is preferred. Our method takes advantage of both

models, initiating from weak-perspective model and, upon convergence, switching

to perspective model for refinement.

Two-dimensional centrelines are segmented from F retrospectively gated RA

images, and denoted as X = {X f}Ff=1. X f = {xfn ∈ R2}Nf

n=1 is the set of segmented

centreline points for fth RA image, where N f is the number of 2D centreline

segmentation points for fth RA image, and xfn is arbitrary single 2D centreline

point in fth RA image. Similarly, let Y = {ym ∈ R3}Mm=1 denote the set of M 3D

points corresponding to the means of the Gaussian components. In addition to

the Gaussian components, a uniform distribution is added to the mixture model

to allow for outliers in the 2D centreline segmentations (Fig. 4.1).

The goal is to maximise a likelihood function which is given as, lnP (X,Z|Y ,Q),

where Q denote the parameters of the components of MM, namely, isotropic vari-

ance of Gaussian components, and mixture weights for all components. Z =

{Zf}Ff=1 is the set of latent variables. Zf = {zfn ∈ RM+1}Nf

n=1 is the set of latent

variables for the centreline points in fth RA image, where zfn ∈ RM+1 is a binary

vector, which has only one non-zero entry. These vectors denote the cluster labels

of the 2D centreline points, i.e. if mth component of zfn is one, it means that the

nth 2D centreline point in fth RA image is generated by the mth component of

the mixture model.

If we assume independence of the 2D centreline points in different RA images,

and the independence of each 2D centreline point in each RA image, we can write

the total probability

P (X,Z|Y ,Q) =
F∏
f=1

P (X f ,Zf |Y ,Q) =
F∏
f=1

Nf∏
n=1

M+1∏
m=1

[
πmP

f
m

]zfnm
, (4.1)

where πm denote the mixture weights for the mth mixture component (
∑M+1

m πm =

1), and P f
m is the corresponding probability distribution. Because we have different



CHAPTER 4. RECONSTRUCTION OF CORONARY ARTERY CENTRELINES FROM X-RAY
ROTATIONAL ANGIOGRAPHY USING A GAUSSIAN MIXTURE MODEL 68

distributions for Gaussian and uniform components, P f
m is written as

P f
m =

N (xfn|Θf (ym), σ2) if m = 1 . . .M,

1/κ if m = M + 1,
(4.2)

where Θf : R3 → R2 is the projection function, σ2 is the isotropic variance of

Gaussian components, and κ is the parameter determining the amplitude of the

uniform distribution component, which is a free parameter of our formulation.

Although, the coronary arteries have a dominant direction, Gaussian distribution

with isotropic variance is chosen for three main reasons. First, the estimation of

the 3D covariance matrix from 2D projections require computing projection of

this matrix in every update iterations and it can be computationally expensive.

Second, it will increase the flexibility of the model, making it prone to overfitting.

Third, using isotropic covariance forces the model to place Gaussian components

at regular intervals to be able to model all the data. This is beneficial when the

complete tree is sought from reconstructed point sets.

The goal of the reconstruction is to estimate Y , which can be rewritten as

maximising log-likelihood function with respect to the mixture model parameters;

Y∗,Q∗ = argmax
Y,Q

lnP (X|Y ,Q). (4.3)

The ML estimation of the mixture model parameters can be found using expectation-

maximization (EM) algorithm [172]. EM algorithm is an iterative algorithm, which

iterates between E and M steps until convergence. Specifically, a lower bound of

the function in Eq. (4.3) is maximised with respect to Y and Q as

Y∗,Q∗ = argmax
Y,Q

∑
Z

P (Z|X, Ŷ , Q̂)lnP (X,Z|Y ,Q) (4.4)

= argmax
Y,Q

EZ{lnP (X,Z|Y ,Q)|X, Ŷ , Q̂}

where (̂·) identifies the mixture model parameters from the previous iteration of the

EM algorithm, and E{·} denotes the expectation. In the E-step of the algorithm,
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posterior probabilities of latent variables are computed as

γfnm = Ezfnm{z
f
nm|xfn, Ŷ , Q̂}

=

∑
zfn
zfnm

∏M+1
j′

[
π̂j′P

f
j′

]zf
nj′

∑
zfn

∏M+1
k′

[
π̂k′P

f
k′

]zf
nk′

.

=
π̂mP

f
m∑M+1

m=1 π̂mP
f
m

(4.5)

In the M-step, the lower bound is maximised with respect to Y and Q. Given

the posteriors in Eq. (4.5), the lower bound can be written as

EZ{lnP (X,Z|Y ,Q)|X, Ŷ , Q̂} = EZ{
F∑
f=1

Nf∑
n=1

M+1∑
m=1

zfnm ln
(
πmP

f
m

)
} ≈ (4.6)

F∑
f=1

Nf∑
n=1

M∑
m=1

γfnm ln
(
πmN (xfn|Θf (ym), σ2)

)
+

F∑
f=1

Nf∑
n=1

γfn(M+1) ln
(π(M+1)

κ

)
.

Maximising Eq. (4.6) with respect to πm boils down to solving the following equa-

tion:
∂

∂πm

[
Ezfnm{z

f
nm|xfn, Ŷ , Q̂}+ λ

(
M+1∑
m=1

πm = 1

)]
, (4.7)

where λ is the Lagrange multiplier for the constraint
∑M+1

m=1 πm = 1. The solution

can be written as

πm =

∑F
f=1

∑Nf

n=1 γ
f
nm∑F

f=1N
f

. (4.8)

Similarly, taking derivative of Eq. (4.6) with respect to σ2, and setting it to zero,

update equation can be written as

σ2 =
1
2

∑F
f=1

∑Nf

n=1

∑M
m=1 γ

f
nm‖xfn −Θf (ym)‖2∑F

f=1N
f −

∑F
f=1

∑Nf

n=1 γ
f
n(M+1)

. (4.9)

Finally, Y , i.e. reconstruction is estimated. Taking partial derivative of Eq. (4.6)
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with respect to ym, and equating it to zero, we obtain

F∑
f=1

Nf∑
n=1

γfnm
(
xfn −Θf (ym)

)T ∂Θf (ym)

∂ym
= 0. (4.10)

For weak-perspective camera model, the Jacobian matrix, ∂Θf (ym)/∂ym, is equal

to the projection matrix, Q. As a result, closed form solution for ym can be

obtained as  F∑
f=1

Nf∑
n=1

γfnm(Qf )TQf

ym =
F∑
f=1

Nf∑
n=1

γfnm(Qf )Txfn. (4.11)

In the case of perspective camera model, there is no closed form solution for ym,

since the Jacobian matrix is a function of the point to be optimised (Section 3.1).

Therefore, a numerical optimisation is carried out in the M-step. Any gradient

based optimiser can be used as analytical gradient is available (Eq. 4.11). In this

thesis, conjugate gradient method is used as the gradient based optimiser. Our

method takes advantage of both camera models, initiating from weak-perspective

model and, upon convergence, switching to perspective model for refinement.

4.4 Results and Discussion

To quantitatively assess our method, synthetic angiography data and correspond-

ing centreline segmentations at end-diastole were generated using left coronary

artery geometry of 4D XCAT phantom [147]. To this end, B-spline curves describ-

ing the projection of coronary artery centrelines were sampled 1.0 mm to generate

the synthetic centreline segmentations (Fig. 4.2a). This synthetic data was em-

ployed to test i) the influence of the number of Gaussian components (M), ii) the

effect of number of RA images, and iii) the robustness in the presence of outliers

in centreline segmentations.

Our method requires initial values of the mixture model parameters. We set

equal mixture weights, i.e. πm was set to 1/(M + 1). To initialise the means

of the Gaussian components, we selected M points on a regular grid in spherical

coordinates placed at the origin of the patient coordinate system (Fig. 4.2b). By

adjusting the radial sampling rate, we were able to change the number of Gaussian
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(a) (b)

(c) (d)

Figure 4.2: Progress of the proposed algorithm at different steps: (a) An example of
a single gated frame from the synthetic phantom, where the centrelines are shown
in blue. (b) Initialisation is conducted with points inside a sphere located at the
centre of the patient coordinate system. (c) The reconstruction at convergence with
weak-perspective camera model, and (d) the reconstruction at convergence with
perspective camera model are shown. The red points correspond to the estimated
means of the Gaussian components, whereas the ground truth centrelines are shown
in green.

components in the probabilistic model, M . This is an important parameter, since

a large M can cause overfitting of the probabilistic model. For all of the phantom

experiments M was empirically set to 336, which corresponds to a regular sampling

grid at every 30◦ in azimuth/inclination axis with four regular layers in radial axis

(Fig. 4.2b).

Random outlier points were added to the synthetic centreline segmentation fol-
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(a) (b)

(c)

Figure 4.3: Results of the outlier experiment: (a) An example of a single gated
frame from the synthetic phantom with outliers (cf. Fig. 4.2a). (b) The recon-
struction at convergence with perspective camera model at 40% outlier level (cf.
Fig. 4.2d at 0% outlier level). (c) Results of the experiments averaged over 10 runs
with different outlier levels (0% to 40%), camera models (weak-perspective, WP
or perspective, P) and number of gated frames (8 or 12 frames).

lowing a uniform distribution and were used as input to our algorithm (Fig. 4.3a).

Number of additional outliers points was specified as 0% to 40% of the number of

inlier points with 10% increments. The reconstruction experiments were repeated

ten times in each outlier level to increase generality. Moreover, influence of number

of retrospectively gated RA images was also investigated in our experiments. The

averages of mean Euclidean distances from the reconstructed points to the closest

ground truth centreline point were reported. The results of the outlier experiment
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are shown in Fig. 4.3. The results indicate that the resulting reconstructions do not

deteriorate severely even with a high number of outlier points in 2D segmentations.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Results of the experiments with clinical RA data are shown for LCA
(first row) and RCA (second row). (a)-(d) Segmented centreline points are shown
in blue. (b)-(e) Reconstruction result projected onto the RA image is shown by red
points. (c)-(f) The reconstruction at convergence with perspective camera model.
The opacity of the points reflect the importance of the component in MM.

To assess the performance of the proposed method in real X-ray RA data, two

reconstructions were computed from one LCA and one RCA study. The centreli-

nes from RA images (8 and 9 images for RCA and LCA, respectively), which are

temporally close to end-diastole, were segmented using a semi-automatic segmen-

tation tool [173] (Fig. 4.4a and 4.4d). As a post-processing step, reconstructed

points are connected to each other by computing minimum spanning arborescence

using Edmond’s algorithm [174]. Because the ground truth is not available, only

qualitative reconstruction results were shown in 3D (Fig. 4.4c and Fig. 4.4d), and



CHAPTER 4. RECONSTRUCTION OF CORONARY ARTERY CENTRELINES FROM X-RAY
ROTATIONAL ANGIOGRAPHY USING A GAUSSIAN MIXTURE MODEL 74

in 2D by projecting reconstruction onto RA image (Fig. 4.4a and 4.4b).

The preliminary reconstruction results in real RA data revealed some recon-

struction problems near coronary ostium and LCX bifurcation. Incorporation of

smoothness prior can lead to better reconstructions in those areas.

In addition, the influence of number of Gaussian components in the probabilistic

model, M , is more evident in the real X-ray RA experiments (Fig. 4.5). Because

of the residual motion due to imperfect ECG gating or respiratory motion, the X-

ray images do not correspond to the same motion state. As a result, some of the

mixture components are positioned in 3D space to model the effect of the residual

motion, i.e. our mixture model overfits to the data points. In order to alleviate

these problem, the number of model points could be reduced by incorporating

sparsity priors [169].

Incorporation of both smoothness and sparsity priors, and their influence on

the reconstruction results are discussed in Chapter 6.

(a) (b)

Figure 4.5: Overfitting due to number of Gaussian components, M: Reconstruction
results for RCA is shown after the number of Gaussian components in the mixture
model is increased to M=84. (cf. Fig. 4.4e and 4.4f with M=42).

4.5 Conclusion

We propose a method for 3D reconstruction of coronary arteries from X-ray RA

with a novel probabilistic perspective. The 3D points describing the coronary

centrelines are considered to form a probabilistic MM, from which the 2D centreline

points are generated. In our initial experiments, promising reconstruction results
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are obtained.

The suitability of the proposed MM based representation of the coronary artery

centrelines for the reconstruction problem is further investigated in the following

two chapters. In Chapter 5, a 3D+t reconstruction formulation is proposed using

a similar MM based representation. In Chapter 6, other aspects of the proposed

reconstruction method, namely more appropriate component distribution, incor-

poration of sparsity [169] and spatial smoothness, are discussed.
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5.1 Introduction

Coronary artery disease (CAD) is a serious condition, responsible for almost 1.8

million deaths in the Europe alone [1]. Current clinical practice for interpretation

and assessment of the disease still relies on the anatomical information derived

from coronary angiography [175]. However, a considerable amount of 3D infor-

mation of the coronary arteries is lost during 2D projection. It is also hard to

study dynamic variation of coronary arteries through 2D projection images [89].

Therefore, providing a clinician with a quantitative 3D+t description of the arte-

rial tree is of utmost importance to aid the diagnosis of CAD and improve therapy

planning and catheter-based interventions.

In recent years, a vast amount of research has been carried out to obtain a

3D/3D+t representation of the coronary tree from medical imagery. Among these

methods, a class of methods try to build a 3D symbolic model of coronary arteries,

which consists of a 3D centreline and, occasionally, the vessel diameter. Most of

the modelling based reconstruction methods uses ECG gating to select two or more

(4-5) projections from over a hundred images [96, 100]. Consequently, a consider-

able amount of acquired information is discarded by these methods. Additionally,

obtaining 3D+t reconstruction via ECG-gated reconstruction methods is a tedious

task. This is mainly because 3D reconstructions for different cardiac phases must

be generated separately. However, not all the segments of the coronary arterial

tree are visible in all the rotational angiographic views.

In this chapter, we propose a novel method to reconstruct 3D+t points of

coronary arterial trees from rotational X-ray angiography (RA), which generally

constitutes the initial step in a coronary artery reconstruction workflow. Our

method uses all the images collected during the angiographic study and outputs

the 3D+t points of the coronary arteries by utilising a spatiotemporal model of the

epicardial surface. Similar to the previous chapter, the method employs a mixture

model based representation which implicitly represents coronary arteries using the

spatiotemporal statistical model. Thanks to this representation, the reconstruc-

tion is formulated as a 2D+t/3D+t Gaussian mixture model based registration

between the given 2D artery centreline and the projections of the 3D points of

the spatiotemporal model. We validated our method with a software phantom of

the left coronary artery tree and a spatiotemporal model of the left ventricular
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epicardium.

5.2 Methods

Our method assumes that the coronary arteries are attached to and move together

with the ventricular epicardium. Therefore, a statistical model of the epicardial

surface could implicitly describe the non-rigid structure of coronary arteries if the

arterial locations on the model are known. Our method employs a bilinear model

of the left ventricle (Section 5.2.1) as the statistical model.

Given 2D points tracked over sequence of X-ray images, we formulate an energy

that consists of two terms: namely, a distance and a regularisation term. This

energy defines a 2D+t/3D+t Gaussian mixture model (GMM) based registration

between the given 2D points tracked over the sequence and the projections of the

3D bilinear model points. By minimising this energy, we find the bilinear model

parameters that best describe the observed 2D points. In order to iteratively

minimise the energy and estimate the correspondences between 2D coronary artery

points obtained from X-ray images and 3D points on the bilinear model of the left

ventricle, we adopted an EM-like method, which combines EM with a deterministic

annealing scheme [157] (Section 5.2.2).

5.2.1 Construction of a Bilinear Ventricle Model

A spatiotemporal model of the coronary arterial tree could be employed to reg-

ularise the ill-posed reconstruction problem. However, building a spatiotemporal

model for the coronary arteries is not straightforward due to topological varia-

tions of the structure of interest. To address this problem, our method assumes

that the coronary arteries lie on the surface of ventricular epicardium and move

together with it. Therefore, a spatiotemporal model of the coronary arteries can

be implicitly represented by a spatiotemporal model of the ventricular epicardium

and arterial locations on this ventricular model. Fortunately, the construction of

a spatiotemporal model of the heart has been exhaustively studied in the litera-

ture [33, 176–178].

A bilinear statistical model [179] is a natural candidate to model observations,

which possess variations due to two independent factors. Inter-patient shape vari-
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ability and beating motion of the heart can be considered as two independent

factors that generate the spatiotemporal structure of the ventricular epicardium.

In our work, a bilinear model is used as the spatiotemporal model of the ventricle.

In fact, it was shown in [178] that a bilinear model can provide a compact way

to model the shape of the human heart by separating inter-subject from temporal

variations (Fig. 5.1).

Figure 5.1: Bilinear model is a statistical model with two sets of parameters to
define two variations of the data. In our case, the variations are defined as sub-
ject and cardiac phase variations, and controlled by subject (as) and phase (bc)
parameters.

A bilinear model is a two-factor model whose outputs are linear in either factor

when the other is kept constant [179]. Suppose an output of a bilinear model, ysc,

is a K dimensional vector. Each element of ysc is written as:

ysck =
I∑
i

J∑
j

wijka
s
i b
c
j = asTWkb

c, (5.1)

where as, bc denote bilinear model parameters of sth subject (s ∈ 1 · · ·S) and cth

phase (c ∈ 1 · · ·C), which are I and J dimensional vectors, respectively. Wk is
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an I × J matrix determining the interaction of two factors. Wk, for k = 1 . . . K,

forms 3-dimensional matrix W , which defines a mapping from the subject and

phase spaces into observation space. In the training phase, the interaction between

subject and phase factors are learned by fitting a bilinear model to training obser-

vations. During testing, the same model is adapted to an observation by keeping

the common ingredient between the training and test cases. In our case, the inter-

action matrix, W , is learned from a training set of ventricular epicardium shapes

and bilinear model parameters for subject, â and for cardiac phases B̂ = [b̂1 · · · b̂C ]

are sought.

Let Y denote the observation matrix consisted of deviations from the mean

shape which is computed by taking average of the shapes for all styles and contents.

Instead of writing Y as a three dimensional array, SC K-dimensional vectors

are stacked into a single (SK) × C matrix in order to exploit standard matrix

algorithms [179],

Y =


y11 . . . y1C

...
. . .

yS1 ySC

 . (5.2)

To utilize Y in fitting, we also need to define vector transpose operation [179].

We assume that anyAK×B matrixX is constructed by stackingAB K-dimensional

vectors. Vector transpose XV T is defined to be BK×A matrix consisting of same

K-dimensional vectors stacked B down and A across. Therefore, we can write

KC × S matrix Y V T as

Y V T =


y11 . . . y1S

...
. . .

yC1 yCS

 . (5.3)

We can also define IK × J stacked weight matrix W which consists of the IJ

K-dimensional basis functions wij as

W =


w11 . . . w1J

...
. . .

wI1 wIJ

 . (5.4)
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Finally, we could write our model in two different forms

Y = [W V TA]V TB,

Y V T = [WB]V TA, (5.5)

where A is a I×S matrix and B is a J×C consisting of stacked style and content

parameters

A = [a1 . . .aS],

B = [b1 . . . bC ]. (5.6)

In order to train bilinear model using observations, an iterative procedure is

followed. For an initial estimate of B (must be an orthogonal matrix) and given

observation matrix Y , [Y BT ]V T = W V TA (Eq. 5.5). We compute singular value

decomposition (SVD) of [Y BT ]V T = UDV T and update our estimate of A to be

the first I rows of V T . Given estimate of A which is orthogonal, [Y V TAT ]V T =

WB. Similarly, by computing SVD of [Y V TAT ]V T , we can estimate our update

of B to be the first J rows of V T . Convergence in this iterative procedure is

guaranteed [179]. Upon convergence, we can compute W = [[Y BT ]V TAT ]V T to

obtain the basis vector. If observation data is evenly distributed across styles and

content classes, the parameter values will minimize total squared error [179].

The bilinear model of the ventricle surface is capable of capturing inter-subject

and temporal variations of its landmark points. However, it does not contain

any information regarding the arterial locations. To obviate this shortcoming,

the probability of corresponding to an arterial location, pn, is defined for each

landmark point.

Coronary arteries from an atlas of the human heart [180] are used to assign pn

for every landmark of the bilinear model. In [180], a mean volume is obtained via

group-wise registration of training CT images. Coronary arteries, ventricles and

other structures of the heart are segmented from the mean volume and represented

as surface meshes to construct the atlas of the heart. Furthermore, the segmenta-

tions from the mean volume are propagated to each training shape by using the

estimated inverse transformations to obtain surface representation with implicit

correspondences. In our work, these surface meshes are employed as the training

data for the bilinear model training. Therefore, an implicit correspondence be-
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tween the atlas of the heart and the bilinear model landmarks is established. As

a result, it is feasible to determine pn values directly using the atlas of the heart.

In order to assign pn values, points on the epicardial surface of the atlas that

are closest to the centrelines of the coronary arteries are determined. Using these

closest points, a signed distance function is computed on the atlas and pn values

are assigned as:

pn =
exp−(dn/ζ)

2∑N
n=1 exp−(dn/ζ)

2 , (5.7)

where dn is the distance of nth landmark to the nearest point and ζ is a constant

(Fig. 5.2). A large ζ value provides flexibility to compensate for the anatomical

variability of coronary arterial trees.

Figure 5.2: Probability of corresponding to an arterial location: A probability
value is assigned to each landmark point of the bilinear model using the distance
between the landmark point and the closest coronary artery point. The coronary
artery points are obtained from the atlas of the heart [180]. This figure shows the
probability values of every landmark point on surface of the bilinear model.

5.2.2 Reconstruction Energy Formulation and Minimisation

Our method assumes that we are given M 2D centreline points (M � N) tracked

over sequence of F RA images. The 2D centreline points are considered to be the

projections of the unknown 3D coronary centreline points that lie on the surface of

the bilinear model of the ventricular epicardium. The corresponding ECG signal is

used to assign each X-ray image to a cardiac phase in a canonical cycle. From the
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time-stamped point set we estimate i) the bilinear model parameters, â and B̂,

ii) the rotation matrix and the translation vector between the bilinear model and

the X-ray coordinate systems, R̂ and t̂, and iii) the correspondences between the

2D points on the X-ray images and the 3D points on the bilinear model, denoted

by a M ×N correspondence matrix Ĝ (Fig. 5.3). The problem is formulated as a

maximum a posteriori (MAP) estimation of these unknowns.

(a)

Figure 5.3: The overview of the method: From the time-stamped and tracked 2D
centreline point set (red points on the X-ray images) we estimate i) the bilinear

model parameters, â and B̂, ii) the rotation matrix and the translation vector be-

tween the bilinear model and the X-ray coordinate systems, R̂ and t̂, and iii) the
correspondences between the 2D points on the X-ray images and the 3D points

on the bilinear model, Ĝ. The MAP estimation of these parameters are formu-
lated using 2D centreline point set and the forward-projection of bilinear model
landmark points, which are shown by red and green points on the X-ray images,
respectively.

5.2.2.1 Notation

Suppose X = {Xm}Mm=1 denote M centreline points over F frames, and Xm =

{xfm}Ff=1 denote F 2D points for one particular corresponding location on the

artery centreline over the sequence. In other words, Xm is the 2D trajectory of

mth centreline point. Similarly, X̂ = {X̂n}Nn=1 denote N landmark points over

F frames describing the projection of 3D+t bilinear model, and X̂n = {x̂fn}Ff=1
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denote F 2D points for one particular landmark of the bilinear model over the

sequence, projected onto the 2D views. Furthermore, Ŷn = {ŷfn}Ff=1 denote F 3D

points for one particular landmark of the bilinear model over the sequence.

The description of the X-ray acquisition geometry employed in this work are de-

tailed in Chapter 3. Following the description, the projection operation is written

as: [
x̂fn
1

]
'

[
ŷfn
1

]
= Qf

[
R̂[W

V T
â]V T b̂+ t̂

1

]
, (5.8)

where W is a 3I × J matrix made of the rows of W , which corresponds to one of

the landmark point.

5.2.2.2 Temporal Alignment

In Eq. (5.8), b̂ is the column of B̂ corresponding to the phase of fth X-ray image.

Due to heart rate differences, there might be a temporal misalignment between

the cardiac phases of the bilinear model and the cardiac phases assigned to X-ray

images in the RA sequence. To overcome this problem, a piecewise linear function

is proposed. This function maps the systolic and diastolic cardiac phases assigned

to X-ray images to the corresponding cardiac phases of the bilinear model using

two linear functions (Fig. 5.4). This temporal alignment function is represented

by a single parameter (end-systolic phase for the patient) since the end-systolic

phase for the bilinear model is known. This single parameter is not estimated,

but manually obtained by the help of the cardiac phases assigned using ECG and

visual inspection of the coronary angiography images.

Another issue may arise since the bilinear model is defined at discrete time

points. Mapped cardiac phases assigned to X-ray images may not coincide with

the discrete cardiac phases of the bilinear model training set. In such cases, ŷfn is

interpolated from the cardiac phase parameter vectors of two neighbouring discrete

time points.

5.2.2.3 MAP Formulation

The reconstruction problem is formulated as a 2D+t/3D+t registration between

the given 2D points tracked over the sequence and the projections of the bilinear

model points. Assuming that the projections of the points in the bilinear model of
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Figure 5.4: Temporal alignment between the cardiac phases of the patient and of
the bilinear model is done with a piecewise linear function.

the ventricle specify Gaussian cluster centres, the distribution of ventricle points

could be represented by a Gaussian mixture model (GMM). This GMM can be

fitted to the given 2D points to find the reconstruction. Specifically, we find â,

B̂, R̂, t̂ and G by minimising a log-posterior energy function. The minus log-

posterior energy can be written as weighted sum of a distance and a regularisation

term [157]:

E = Edata + Ereg, (5.9)

where

Edata = − log p(X|â, B̂, R̂, t̂), (5.10)

and

Ereg = − log p(â)− log p(B̂). (5.11)

The final form of Edata is reduced to a weighted sum of squared distances

between 2D observations and 2D projections of the bilinear model landmark esti-

mates:

Edata =
F∑
f

N∑
n

M∑
m

Ĝmn‖xfm − x̂fn‖2, (5.12)
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where Ĝmn is the entry at mth row and nth column of Ĝ matrix, and denote the

posterior probability. It is written as:

Ĝmn =

pn exp

(
−

∑F
f=1‖x

f
m−x̂f

n‖2

2τF

)
c+

∑N
n=1 pn exp

(
−

∑F
1 ‖x

f
m−x̂f

n‖2
2τF

) , (5.13)

where c = ((w)/(1− w))(
√

2πτ/M) is a constant term.

The regularisation term is defined as the negative log-likelihood of the prior dis-

tribution of bilinear model parameters. To this end, the bilinear model parameters,

which are learned for the training ventricular surfaces are used to perform kernel

density estimations of the components of the parameter vector â and matrix B̂.

During the training of the bilinear model, S I-dimensional subject parameter vec-

tor, as and C J-dimensional phase parameter vector, bc, are learned as by-product.

Assuming that the scalar components of â and matrix B̂ are independent, the prior

probabilities can be written using the kernel density estimations:

p(â) =
I∏
i=1

1

hS

S∑
s=1

Φ

(
âi − asi
h

)
(5.14)

p(B̂) =
J∏
j=1

C∏
c=1

1

hC

C∑
c=1

Φ

(
B̂jc − bcj

h

)
(5.15)

where Φ denotes a Gaussian kernel and h is the bandwidth of the kernel which is

estimated using Silverman’s rule of thumb [181]. Since our method optimises for

subject and phase parameters separately, the regularisation term is written as:

Ereg =


−

I∑
i=1

log

(
1

hS

S∑
s=1

Φ

(
âi − asi
h

))
, if minimising for â, R̂, t̂,

−
J∑
j=1

C∑
c=1

log

(
1

hC

C∑
c=1

Φ

(
B̂jc − bcj

h

))
, if minimising for B̂.

(5.16)
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5.2.2.4 Optimisation

A simplified EM-like method [157] is adopted to find the bilinear model parameters,

transformation and correspondences by an alternating scheme. There are three

main differences to the standard EM method.

As the first difference, some parameters are assumed to be deterministic during

iterations. The mixture weights and the covariances of the Gaussian components

are estimated in a standard EM formulation. This provides additional flexibility

for the model, and can lead to overfitting. To avoid overfitting, the simplified EM-

like method combines the EM algorithm with a deterministic annealing scheme.

Specifically, instead of estimating the covariances of the Gaussian components, an

annealing parameter, τ , is used to decrease the isotropic variance of the Gaussian

clusters in every iteration. In addition, the mixture weights are fixed in our method

and obtained as described in Section 5.2.1.

Another difference is that the annealing parameter also acts on the regularisa-

tion energy term to control the level of the regularisation. The intuition is to keep

the regularisation high to avoid local minima when the estimation is far away from

the optimum and gradually relax as the estimation comes closer to the global min-

imum. In addition to that, a second weighting is necessary for the regularisation

energy to balance the influence of it. Thus, the energy to be minimised can be

rewritten as:

E = Edata + τλrEreg (5.17)

where λr determines the weighting between two energy terms and τ is the annealing

parameter.

The third difference is the outlier removal step as in [182]. The projected

bilinear model points and the corresponding Gaussian clusters are discarded if the

sum of the posterior probabilities for all the M observed points are smaller than

a threshold, β. In other words, the Gaussian cluster is not considered if there

is no corresponding 2D point. This step effectively reduces number of Gaussian

clusters during parameter estimation. This outlier removal step is important since

M � N .

The algorithm can be simply described as follows: In the E step, we update

the entries of the correspondence matrix Ĝ. In the M step, the total energy

in Eq. (5.17) is minimised to estimate the parameters. The overall algorithm is
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presented in Algorithm 1.

Algorithm 1
3D+t Coronary artery centreline reconstruction algorithm
Input:

1: X = {Xm}Mm=1: 2D points tracked over X-ray sequence
2: {Qf}Ff=1: Projection matrices
3: Rini, tini: Initial transformation
4: aini,Bini: Initial parameters for the bilinear ventricle model
5: τini, τup and τfin: Annealing parameters
6: λr, β and ζ: Other parameters

Output:

1: â, B̂: Estimates for bilinear model parameters

2: R̂, t̂: Global transformation

3: Ĝ: Correspondence matrix

1: R̂← Rini, t̂← tini, â← aini, B̂ ← Bini and τ ← τini
2: repeat

3: Compute Ĝ (Eq. (5.13))

4: if
∑M

m=1 Ĝmn < β then
5: Discard x̂fn, and its Gaussian cluster
6: end if
7: Update R̂, t̂, and â by minimising Etot (Eq. (5.17))

8: Update B̂ by minimising Etot (Eq.( 5.17))
9: τ ← τup × τ

10: until τ < τfin

5.3 Experiments

Training surface meshes describing the left ventricular epicardium (N = 2044)

are obtained using an atlas based segmentation algorithm [180] from 134 retro-

spectively ECG-gated multi-slice CT images. The proximal parts of the left coro-

nary artery tree are also extracted from the cardiac atlas utilised for segmentation

(Fig. 5.2). The surface meshes are temporally aligned as in [178] to compensate for

heart rate differences between patients. Procrustes alignment [183] is performed

to align training surfaces spatially. During Procrustes alignment, we opted for

rigid transformations without scaling and incorporated the scaling effects into our
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statistical model.

In order to quantitatively evaluate our algorithm, we generated synthetic rota-

tional angiography data using the single left coronary artery geometry of the 4D

XCAT phantom [147]. The cardiac cycle was set to be 1000ms, with no respiratory

motion present. X-ray imaging parameters, including projection matrices, number

of images (117) and frame rate (30 fps) were derived from a clinical dataset. Since

we have the 3D+t ground truth information for the centrelines, we created a total

of 208 corresponding coronary artery points (one centre point for each longitu-

dinal knot of non-uniform rational B-spline surface [147]) and projected these to

generate the 2D observation points in 117 projection images.

We used the phantom data to evaluate the algorithm’s robustness to missing

data and noise. In the first experiment (Experiment 1), we randomly removed

0% to 50% of 2D observation points which describe the projected 2D trajectory

of each tracked coronary artery point along the sequence of projection images. In

the second experiment (Experiment 2), we removed the 2D observation points

according to a sampling scheme that mimics the sparsity associated to missing

detail in the detection of centreline points in the 2D views. To this end, we

selected a set of points, P1, which consisted of a starting point, bifurcations and end

points. Similarly, we defined P2 as the set of points, which are the midpoints of the

segments described by the points in the set P1 and defined P3 as the set of points,

which are the midpoints of the segments described by the points in the set P1 and

P2. We applied our reconstruction algorithm given the points in the sets P1 ( 9.13%

of all points), P1∪P1 (16.35% of all points) and P1∪P2∪P3 (28.37% of all points).

We also evaluated the performance under uncertain measurements by adding zero

mean Gaussian noise (σ 0.25 to 1.25 mm) to the 2D points (Experiment 3). In

all of the experiments, the reconstruction errors were measured as the root-mean-

square errors in 3D between the reconstructed points and the true 3D positions.

The parameters of the algorithm are set empirically. The annealing parameters,

τini, τfin and τup were set to 500, 3 and 0.95, respectively [157]. The threshold for

rejecting projected bilinear point, β, was set to 0.05 and the weighting, λ, of the

regularisation term was set to 2.5×105. Finally, the weight, w, was set to 1.0×10−8

since we assume that there are no outliers in 2D observations.
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5.4 Results and Discussion

The results show that the 3D+t reconstruction performance of our algorithm stays

stable even under 1.25 mm 2D observation noise, which is approximately 6-7 times

of the pixel resolution of the rotational angiography (Fig. 5.5b).
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Figure 5.5: Quantitative 3D+t reconstruction results on phantom data: (a) Re-
sults of the Experiment 1, (b) results of the Experiment 3, (c) results of the
Experiment 1 for all cardiac phases, (d) results of the Experiment 2 for all car-
diac phases. See text for the details of the experiments.

Although there are some outliers, the results indicate that the proposed method

is able to handle missing data (Fig. 5.5a). In particular, the qualitative results

shows that the 3D reconstruction of missing data points are recovered satisfactorily.

The method is not able to accurately reconstruct the points near the LAD-LCX

branching. It is possible that this region could not be modelled solely by the left

ventricular epicardium.
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The accuracy of the algorithm quickly increases with addition of a small number

of points to the base set, P1 and continue to increase as more 2D observations

points are added (Fig. 5.5d).

(a) (b)

Figure 5.6: Qualitative 3D+t reconstruction results on phantom data: (a) Results
of the Experiment 1 for end-diastolic and end-systolic phases, (b) results of the
Experiment 2 for P1 and P1∪P2∪P3. The ground truth centreline of the coronary
artery tree is shown in green. Reconstructed points are given in red if 2D obser-
vation is available in the corresponding image and in blue if the 2D observation is
removed.

From one point of view, our method resembles non-rigid structure from motion

methods (NRSFM) in the computer vision literature. The fundamental difference

of our method is that we do not directly impose a constraint on the non-rigid struc-

ture as it is done in NRSFM methods. In other words, although our attention is

on the non-rigid structure of the arteries, we impose a constraint on the surface

that the non-rigid structure is attached to. This difference comes with the price

of having to estimate the correspondence between the 2D observations and land-

marks of the bilinear model. In addition to that, some recent work discussed the

bilinear structure of NRSFM [184] but does not fully describe how to reconstruct

3D structure out of 2D observations. In this work, we proposed a 2D+t/3D+t

registration strategy to bridge this gap.

On the other hand, our method is similar to 2D+t/3D registration methods

[33, 182] in the literature. However, these methods require an ECG gated CT

image. Specifically, 3D coronary arterial trees extracted from the CT image is

registered onto the X-ray angiography images. In our work, estimation of 3D+t

structure of the coronary arteries is embedded into the registration framework.
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The overall model (bilinear model, transformation and correspondences) pre-

sented in this chapter is a highly flexible model, thus prone to overfitting. In our

initial experiments, we only utilised the deterministic annealing based EM method

to fix some of the model parameters to circumvent the problem of overfitting. How-

ever, we observed that the model was still too flexible, and the resulting ventricular

surfaces may show unrealistic deformations. To address this issue, two important

measures were taken. First, the probabilities of corresponding an arterial location

for each landmark point are defined and incorporated into the formulation to re-

duce the space of feasible correspondences. Second, we introduced a regularization

term for bilinear model, which penalises the unrealistic deformations of the ven-

tricular shape. In our experience, both of these regularisation efforts are equally

important to prevent overfitting.

The 3D reconstruction errors shown in Fig. 5.5 are higher than the errors we

obtain with the methods presented in Chapters 4 and 6. The reason for this dif-

ference can be explained by the representation accuracy of the motion model. In

particular, we are making the assumption that it is possible to model myocar-

dial/coronary motion with the apparent cardiac motion. A similar approach was

taken in [33], where the coronary motion was modelled as a regression problem

given the surface model of the heart. In that paper, the authors fit their motion

model, and compared with the real motion of coronary arteries. The average error

was approximately 1 mm, which is close to the error we achieved in our experi-

ments. Therefore, one can argue that a more appropriate spatiotemporal model

with a more realistic motion model is necessary to further reduce the error.

5.5 Conclusion

In this chapter, we present a method to reconstruct the 3D+t points of the coro-

nary tree from rotational angiography images. The regularisation is achieved by

constraining the motion and the shape of the coronary arteries by a spatiotemporal

model of the epicardial surface of the ventricle. Although it is not discussed in this

chapter, the reconstructed 3D+t points could be converted to 3D+t centrelines by

a linking procedure [96] or 3D+t vascular surface [92] by incorporating the radius

information.

Our method assumes that the angiography images are collected during a breath
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hold. To overcome this drawback, a respiratory motion model [171] could be

incorporated into the energy minimisation formulation at the expense of estimating

more parameters.

Currently, we assume that the 2D points tracked over the sequence of X-ray

images are provided. However, automatic methods to determine the point corre-

spondences must be explored.
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6.1 Introduction

Coronary artery disease (CAD) is a serious illness, which is the cause of 20%

and 25.3% of all deaths in Europe and the US, respectively [185, 186]. Current

clinical assessment of CAD is carried out using various diagnostic (CCTA, MRA)

and interventional (X-ray angiography, IVUS, OCT) medical imaging techniques.

Among those, invasive X-ray coronary angiography is still one of the most com-

monly available diagnostic imaging technique.

Despite continuous development of the X-ray angiography systems, X-ray coro-

nary angiography is still inherently limited, since it can only provide 2D X-ray

images of the moving coronary arteries. As a consequence, assessment of CAD still

relies on direct analysis of 2D X-ray coronary angiography images. To overcome

this shortcoming, 3D representations of coronary arteries can be reconstructed

from X-ray angiography images. These 3D representations can be exploited to

aid clinical decision making [26,27], to guide subsequent interventions [21,22], and

to obtain estimation of clinically relevant physiological indices [44, 46]. However,

because of several factors such as intensity inhomogeneity due to contrast material

distribution, artery overlap/foreshortening, and cardiac/respiratory motion [11],

the ill-posed problem of 3D reconstruction remains a challenging task.

Numerous methods for reconstruction of coronary arteries from X-ray angio-

graphy have been developed in the last decade [187]. Among those, model-based

reconstruction (modelling) methods seek to generate a 3D representation of coro-

nary arteries, which consists of a centreline, and, occasionally, artery surfaces.

These methods typically select a subset of the acquired X-ray images via retro-

spective gating strategies, and use available 2D information in the selected images

to compute 3D reconstructions. Depending on the the way the 2D information is

used, modelling methods can be classified into two groups, namely back-projection

and forward-projection based methods.

Back-projection based modelling methods extract 2D information from two or

more X-ray angiography images, and collect them back in the 3D space to build

the coronary artery tree. One way to achieve this is to take advantage of stereo or

multi-view stereo approaches from computer vision literature [87–92, 96]. To this

end, the centrelines of the arteries are segmented from 2D views, and correspon-

dences between 2D centreline points from different views are established. Finally,
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3D centreline points are reconstructed using triangulation [52], or more dedicated

energy optimisation methods [187]. Correspondences are established on the space

of candidate tuples of 2D centreline points, segmented from 2D X-ray images. As

a consequence, these methods typically opt for computing the reconstruction from

stereo views in order to keep the number of candidate tuples low. In addition to

this drawback, they require accurate 2D artery centreline segmentations, which is

typically obtained using manual or semi-automatic segmentation methods.

Another approach is to compute 2D vesselness responses [188,189] to highlight

coronary artery structures in different views, and back-project those responses into

3D space for further processing [99–101]. This process generates a 3D vesselness

response, which can be segmented to find coronary artery reconstructions. Intu-

itively, these methods utilise 2D vesselness responses to eliminate the necessity

of accurate artery segmentations from 2D X-ray images. These methods may re-

quire a large number of projection images at the same cardiac phase, especially

in the presence of residual motion due to breathing or finite retrospective gating

accuracy [100].

On the other hand, forward-projection based modelling methods use a 3D model

of coronary arteries that adapts itself to the 2D information extracted from X-ray

images. One popular 3D model is based on the active contours [74]. Each coronary

branch is represented by an active contour, which evolves using a combination of

external forces computed from 2D X-ray images [78, 80, 81, 83, 92, 190]. These

methods are formulated to take advantage of the information from multiple X-ray

images. This aspect is especially important for reconstruction, since it has been

shown that the accuracy of the reconstruction depends on the angular separation

of the selected X-ray images for reconstruction from two views [80, 93]. However,

it is not always possible to select two views with adequate angular separation and

minimal overlap/foreshortening. In addition, some of these methods require good

initialisation of the active contours, which necessitates manual identification of

some corresponding points from the X-ray images.

Most of the aforementioned modelling methods require clean and accurate 2D

artery segmentations from X-ray images. However, segmentation of coronary arter-

ies from X-ray images remains a challenging task due to inhomogeneous intensity,

and artery overlap/foreshortening [155], and is thus prone to errors. In particular,

the 2D segmentations from some of the X-ray views may include extra coronary
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artery branches, which are not visible in the rest of the X-ray images due to wash-in

and wash-out of the contrast material. Moreover, 2D segmentations can be noisy

or include erroneously segmented parts, which can go unnoticed during manual

corrections. Therefore, reconstruction methods should be devised to be robust to

these imperfections.

This chapter investigates extensions to the probabilistic mixture model based

framework introduced in Chapter 4 in order to improve the robustness against

imperfect segmentations, residual motion and overfitting. Particularly, the extra

mixture model component accommodating the outliers is removed, and the mixture

model components are replaced by Student’s t-distributions which are inherently

robust to the outlier points. Moreover, prior information regarding the structure of

the coronary arteries is introduced in the formulation in terms of prior distributions

to prevent overfitting of the mixture model and to increase the robustness in the

presence of residual motion, which is explained in Section 4.4.

Similar to Chapter 4, we propose a novel forward-projection based method to

reconstruct coronary artery centrelines from X-ray rotational angiography images.

We employ a probabilistic mixture of Student’s t-distributions to model the cent-

relines of the coronary arteries. Specifically, we describe these centrelines by a

3D point set, where the spatial locations of the points correspond to the means

of the Student’s t-distribution components. Taking advantage of this representa-

tion, we formulate the reconstruction problem as the problem of estimating the

mixture model parameters, given the 2D delineations of coronary artery centreli-

nes from retrospectively gated X-ray images. As a key aspect, the heavy tails of

t-distributions makes the proposed algorithm more robust towards inaccuracies in

the extracted 2D centrelines as well as gating intervals. Moreover, the probabilis-

tic clustering allows establishing indirect correspondences between the projections,

eliminating the need for exact point bindings.

In most modelling methods in the literature, a subset of images of the same

cardiac phase are selected using ECG gating. However, the selected images are

not exactly at the same cardiac motion state due to finite gating accuracy. Our

probabilistic formulation handles residual motion, and generates an average model

of the 3D coronary artery centrelines that achieves the minimum reconstruction

error at the desired cardiac phase.

The ability to incorporate prior information is a desirable feature for model-
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based coronary artery reconstruction algorithms to improve results and reduce the

number of the required cardiac cycles [100]. However, this aspect is not thoroughly

investigated in the relevant literature. The method proposed in this chapter pro-

vides a convenient framework for the inclusion of prior information. In particular,

we extend our preliminary work in Chapter 4 [191, 192], by introducing Bayesian

priors on the means of the mixture components that describe the reconstruction,

and mixture weights. The former penalises deviation from a linear spatial align-

ment of components in a local neighbourhood, whereas the latter effectively re-

moves the redundant mixture components. Consequently, these priors regularise

the reconstruction, and prevent overfitting of the parameters owing to the outliers,

overall increasing the robustness of the method.

This chapter is structured as follows. In Section 6.2, we first explain X-ray

image selection via retrospective ECG gating, and subsequent delineation of coro-

nary centrelines from selected images. We then provide detailed formulation of

our probabilistic reconstruction method, and an algorithmic summary of it. We

describe experimental setup on both synthetic and real X-ray rotational angio-

graphy data in Section 6.3, and present results in Section 6.4. We discuss our

results in Section 6.5, and compare our results with the recent literature. Finally,

we conclude in Section 6.6.

6.2 Methods

Following the acquisition of X-ray coronary angiography images from different

views, retrospective ECG gating is performed to select images that correspond to

the same cardiac motion state of the coronary arteries (Chapter 3). Points de-

scribing the locations of coronary arteries in 2D X-ray images are extracted using

a coronary artery segmentation algorithm (Section 6.2.1). The main idea of our

method is to model coronary artery centrelines in 3D using a probabilistic mixture

model with priors on some of the parameters. Segmented 2D centreline points

from different X-ray views are considered to be projections of 3D coronary artery

centreline points drawn from the mixture model. Thus, reconstruction is formu-

lated as estimation of mixture model parameters (Section 6.2.2). Reconstructed

3D coronary centreline points are connected by computing a minimum spanning

arborescence, and pruned if necessary (Section 6.2.3).



103 6.2. METHODS

6.2.1 Segmentation of Coronary Artery Centrelines from X-ray Images

Initially, the coronary artery centrelines need to be segmented from the selected

2D X-ray images by a convenient segmentation algorithm such as those described

in [96, 193]. The resulting segmentation may include some erroneous parts due

to noise or other background structures such as catheter, spine and diaphragm.

Similarly, it may also include some coronary artery branches that are not visible

in other X-ray images due to the distribution of intra-arterial contrast medium

over time. We refer to these noisy and inconsistent structures as outliers. The

segmented centrelines are then converted to point sets for further processing by

placing a point at the location of each pixel in the segmentation.

6.2.2 Probabilistic Mixture Model-based Reconstruction Method

Our main idea is to represent the 3D coronary artery centrelines probabilistically

using a mixture of Student’s t-distributions, thus formulating the reconstruction,

as the problem of estimation of mixture model parameters, given segmented 2D

centrelines from the X-ray images. Additionally, Bayesian priors are introduced on:

i) the means of the t-distribution components to spatially regularise the resulting

reconstruction, and ii) the mixture weights to avoid overfitting.

6.2.2.1 Probabilistic Modelling of the Data

Suppose there are F retrospectively gated X-ray images. Let X f = {xfn ∈ R2}Nf

n=1

be the set of 2D centreline points extracted from the f th X-ray image. Similarly,

let Y = {ym ∈ R3}Mm=1 be the set of 3D points describing the coronary artery

centrelines to be reconstructed.

Our objective is to model 3D coronary centrelines using a mixture of Student’s

t-distributions. To this end, 3D points describing the centrelines are assumed to

specify the means of the t-distributions. Moreover, the segmented 2D centreline

points are considered to be generated by sampling from the mixture and then

projecting onto the 2D X-ray images. Given these assumptions, a mixture model

representation of t-distributions can be written as

P (xfn|Y ,Q) =
M∑
m=1

πmS(xfn|Θf (ym), σ2, νm), (6.1)
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where Q =
{
π, σ2,ν

}
denotes the parameters of the mixture model: π is the

vector of mixture weights satisfying
∑M

m πm = 1, σ2 is the isotropic variance, and ν

is the degrees of freedoms of the Student’s t-distributions. Moreover, Θf : R3 → R2

is the projection function for the f th X-ray image.

A multivariate t-distribution with mean µ, covariance Σ, and degree of freedom

ν has the following probability density function:

S(x|µ,Σ, ν) =
Γ(ν+d

2
)|Σ|− 1

2

(πν)
d
2 Γ(ν

2
)

[
1 +

(x− µ)TΣ−
1
2 (x− µ)

ν

]−( ν+d
2

)

, (6.2)

where d is the dimension of the data, and Γ denotes the Gamma function. For

the case ν = 1, t-distribution reduces to Cauchy distribution, whereas in the

limit ν → ∞, t-distribution becomes a Gaussian distribution with mean µ and

covariance Σ [165]. The density function in Eq. (6.2) can also be written as an

infinite mixture of scaled Gaussians

S(x|µ,Σ, ν) =

∫ ∞
0

N (x|µ,Σ/u)G(u|ν/2, ν/2)du, (6.3)

where N and G denote the Gaussian and Gamma distributions, respectively [194].

The t-distribution is known to be inherently robust compared to the Gaussian

distribution because of the ‘heavy’ tails of the distribution (Fig. 6.1a). This ro-

bustness property is illustrated in Fig. 6.1b.

In Eq. (6.3), u can be regarded an implicit latent variable introduced for each

observation [195]. In our formulation, these latent variables are denoted by Uf =

{ufn ∈ R}Nf

n=1 for the 2D points in the f th X-ray image. Similarly, let Zf =

{zfn ∈ RM}Nf

n=1 be the set of latent variables for the 2D points in the f th X-ray

image, where zfn is a binary 1-of-M vector, whose only non-zero element (zfnm = 1)

indicates the model component generating the xfn.

Assuming statistical independence between the 2D segmented points and the

frames, we can write the complete data probability as

P (X,Z,U|Y ,Q) =
F∏
f=1

Nf∏
n=1

M∏
m=1

[
πmN

(
xfn|Θf (ym),

σ2

ufn

)
G
(
ufn|

νm
2
,
νm
2

)]zfnm
, (6.4)

where X = {X f}Ff=1, Z = {Zf}Ff=1, and U = {Uf}Ff=1.
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(a) (b)

Figure 6.1: Heavy tails of the Student’s t-distribution and its influence on the
robust parameter estimation: (a) Plot of Student’s t-distribution for different de-
grees of freedom. The limit ν → ∞ corresponds to a Gaussian distribution with
the same mean and covariance. (b) Maximum-likelihood estimations for data
points including outliers are shown in green and red for Student’s t-distribution
and Gaussian distribution, respectively.

6.2.2.2 Prior on Means

The 3D points describing the coronary artery centrelines should be close to a

straight line in a local neighbourhood. We introduce a Bayesian prior on Y to

enforce local linearity of these points, and consequently, to spatially regularise the

reconstruction. To this end, a weighted covariance describing the local structure

for each 3D point, ym, is defined as

Cm =

∑M
k=1 Φ(ym,yk)(ym − yk)(ym − yk)T∑M

k=1 Φ(ym,yk)
(6.5)

where Φ is a kernel function. In this work, it is given by an isotropic Gaussian

with variance η2,

Φ(ym,yk) = exp

(
−‖ym − yk‖2

η2

)
. (6.6)

Let em1, em2, and em3 be the eigenvectors of Cm with corresponding eigen-

values 0 ≤ λm1 ≤ λm2 ≤ λm3. For vascular structures, the eigenvector with

the largest eigenvalue, em3, is expected to point along the longitudinal local ori-

entation. Therefore, we design our local linearity prior to minimise the covari-

ance projected onto the plane spanned by em1 and em2. The projected covari-

ance of the points can be written as the sum of the corresponding eigenvalues,
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λ1 + λ2 = tr(WmCm), where Wm = em1e
T
m1 + em2e

T
m2, and tr denotes the trace

of the matrix. Using this definition, the prior probability is written as

P (Y) =
1

ω
exp

(
−β
2

M∑
m=1

tr(WmCm)

)
, (6.7)

where ω is a normalisation factor, and β is a free parameter.

6.2.2.3 Prior on Mixture Weights

As explained in Chapter 4, the number of mixture model components is a criti-

cal parameter of our coronary artery representation. Particularly, the number of

mixture model components describing the coronary artery centrelines should be

specified in a way that under/overfitting of the probabilistic model is avoided. Intu-

itively, using an excessive number of components may result in increased flexibility

of the model, and consequently overfitting of the probabilistic model. Overfitting

is especially a significant problem in our case, since there can be more than one

solution because of the ill-posedness of the reconstruction problem. To this end,

we introduce a symmetric Dirichlet distribution [165] to enforce sparsity on the

mixture weights of the model components [169]. The symmetric Dirichlet prior is

written as

P (π) =
Γ(M(Nt(α− 1) + 1))

Γ(Nt(α− 1) + 1))M

M∏
m=1

(πm)Nt(α−1) (6.8)

where Nt =
∑F

f=1N
f is the total number of segmented 2D points, Γ is the Gamma

function, and α is the concentration parameter of the distribution. When α < 1,

πm’s approach zero, and the distribution imposes sparsity on the mixture weights.

Sparsity can increase when α is close to (1 − 1/M). To ease the selection of α

parameter, we introduce an auxiliary variable ζ ∈ (0, 1) to control the sparsity

level proportionally, i.e. α = (1 − 1/M)ζ + (1 − ζ). Under this formulation, in

each parameter estimation step, the negligible mixture components are identified

by solving a convex optimisation problem [196], and consequently removed.

6.2.2.4 Estimation of Mixture Model Parameters

Our goal is to maximise the posterior probability for the 3D points describing the

coronary artery centreline with respect to mixture model parameters Y and Q.
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The formulation for the maximisation can be written as

Y∗,Q∗ = argmax
Y,Q

lnP (Y ,Q|X), (6.9)

where logarithm term can be further decomposed as

lnP (Y ,Q|X) =
∑
Z,U

q(Z,U) ln

(
P (X,Z,U|Y ,Q)

q(Z,U)

)
−
∑
Z,U

q(Z,U) ln

(
P (Z,U|X,Y ,Q)

q(Z,U)

)
+ lnP (Y ,Q)

− lnP (X), (6.10)

where q denotes an arbitrary distribution. The final 3D reconstruction of the

coronary artery centreline is given by the estimated mean values of the mixture

model components, i.e. Y∗.
The MAP estimation of the mixture model parameters can be found using the

expectation-maximization (EM) algorithm (Algorithm 1) [172]1. A lower bound of

the function in Eq. (6.9) can be obtained by setting the Kullback-Leibler divergence

described by second term in Eq. (6.10) to zero, and ignoring the constant last term.

The lower bound is given by

Y∗,Q∗ = argmax
Y,Q

EZ,U{lnP (X,Z,U|Y ,Q)|X, Ŷ , Q̂}+ lnP (Y) + lnP (π), (6.11)

where a hat over the symbol, (̂·), identifies the mixture model parameters from

the previous iteration of the EM algorithm. This lower bound is maximised with

respect to Y ,Q.

To compute the expectation of the complete data log-likelihood in Eq. (6.11),

the expectations of the latent variables, given the data and the values of the

model parameters from the previous iteration, are computed in the E-step of the

1In fact, we use the expectational-conditional-maximisation (ECM) algorithm [197]. However, due to the
structure of the complete data log-likelihood in Eq. (6.17), it reduces to EM algorithm. For a detailed discussion,
the reader is referred to [198].
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EM algorithm [198] as follows:

γfnm = Ezfnm{z
f
nm|xfn, Ŷ , Q̂} =

π̂mS(xfn|Θf (ŷm), σ̂2, ν̂m)∑M
m=1 π̂mS(xfn|Θf (ŷm), σ̂2, ν̂m)

, (6.12)

τ fnm = Eufn{u
f
n|zfnm = 1,xfn, Ŷ , Q̂} =

ν̂m + 2

ν̂m + ‖xfn −Θf (ŷm)‖2/σ̂2
, (6.13)

Eufn{lnu
f
n|zfnm = 1,xfn, Ŷ , Q̂} = Ψ

(
ν̂m + 2

2

)
− ln

(
ν̂m + 2

2

)
+ ln τ fnm. (6.14)

Using these expectations, one can write the expectation term in Eq. (6.11) as

EZ,U{lnP (X,Z,U|Y ,Q)|X, Ŷ , Q̂} ≈ (6.15)
F∑
f=1

Nf∑
n=1

M∑
m=1

γfnm lnπm

F∑
f=1

Nf∑
n=1

M∑
m=1

γfnm

[
− ln Γ

(νm
2

)
+
ν

2
ln
ν

2

+
ν

2

(
Ψ

(
ν̂m + 2

2

)
− ln

(
ν̂m + 2

2

)
+ ln τ fnm − τ fnm

)]
+

F∑
f=1

Nf∑
n=1

M∑
m=1

γfnm

[
− ln 2π + lnσ−2 − 1

2
τ fnm
‖xfn −Θf (ym)‖2

σ2

]
,

ignoring the terms that does not depend on Y ,Q.

In the M-step of EM algorithm, the lower bound in Eq. (6.11) is maximised

with respect to
{
Y ,π, σ2,ν

}
. To compute ym’s, the derivative of Eq. (6.11) is

taken with respect to ym and set to zero, i.e.

F∑
f=1

Nf∑
n=1

γfnmτ
f
nm(xfn−Θf (ym))

∂Θf (ym)

∂ym
+ β

M∑
k=1

(ΦmkWm + ΦkmWk)(ym−yk) = 0,

(6.16)

where Φil = Φ(yi,yl)/
∑M

j=1 Φ(yi,yj). The solution of Eq. (6.16) for ym is approx-

imated by fixing {Wm}Mm=1. The ym’s are sequentially computed, and {Wm}Mm=1

are updated after computation of each ym.

For a weak-perspective camera model, the Jacobian of the projection function

in Eq. (6.16) does not depend on ym. On the other hand, the Jacobian is a
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function of ym for the perspective camera model, necessitating numerical optimi-

sation to compute ym under perspective camera model. Therefore, we first obtain

a closed-form solution for the weak-perspective model. and subsequently use it

for numerical solution of Eq. (6.16), thus satisfying the perspective model con-

straints in our reconstruction. For weak-perspective camera model, Eq. (6.16) can

be organised to obtain a closed form solution, which is given by F∑
f=1

Nf∑
n=1

γfnmτ
f
nm(Qf )TQf + β

M∑
k=1

(ΦmkWm + ΦkmWk)

ym = (6.17)

+
F∑
f=1

Nf∑
n=1

γfnmτ
f
nm(Qf )Txfn + β

M∑
k=1

(ΦmkWm + ΦkmWk)yk.

Similarly, the derivative of (Eq. 6.11) is taken with respect to πm after in-

troducing Lagrange multipliers to enforce the constraint and setting it to zero.

Organising the terms, the mixture weights can be computed using

π̄m =
(α− 1) + ((

∑F
f=1

∑Nf

n=1 γ
f
nm)/Nt)

M(α− 1) + 1
. (6.18)

When α = 1, Eq. (6.18) reduces to the maximum-likelihood estimation of mixture

weights. On the other hand, for (1− 1/M) ≤ α, if (
∑F

f=1

∑Nf

n=1 γ
f
nm)/Nt < 1− α,

then we obtain invalid negative mixture weights, i.e. π̂m < 0. To solve the problem,

mixture weights that are estimated using Eq. (6.17) are updated via the following

convex optimisation problem

π1, . . . , πM = argmin
π1,...,πM

M∑
m=1

(π̄m − πm)2,

s.t.
M∑
m=1

πm = 1 ∧ 0 ≤ πm∀m, (6.19)

which is solved using the generalised sequential minimal optimiser proposed in

[196]. Eq. (6.19) finds the orthonormal projection of π̄ on the space of eligible

probabilities, and sets the negative probabilities to 0. Note that the number of

zero mixture weights (sparsity) can increase when α is close to (1 − 1/M). To

ease the selection of α parameter, we introduce an auxiliary variable ζ ∈ (0, 1) to
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control the sparsity level, i.e. α = (1− 1/M)ζ + (1− ζ). At the end of the M-step,

the mixture components with zero mixture weights are identified and pruned out.

The derivative of Eq. (6.11) is taken with respect to σ, and set to zero in order

to compute the σ2 as

σ2 =
1
2

∑F
f=1

∑Nf

n=1

∑M
m=1 γ

f
nmτ

f
nm‖xfn −Θf (ym)‖2∑F

f=1N
f

. (6.20)

Finally, the derivative of Eq. (6.11) is taken with respect to νm, and set to

zero. Organising the terms, νm can be computed as the solution to the following

nonlinear equation

−Ψ
(νm

2

)
+ ln

(νm
2

)
+ 1 + Ψ

(
ν̂m
2

)
+ ln

(
ν̂m
2

)
+

1∑F
f=1

∑Nf

n=1 γ
f
nm

 F∑
f=1

Nf∑
n=1

γfnm(ln τ fnm − τ fnm)

 = 0. (6.21)

After each EM cycle, convergence is monitored by computing the Euclidean

distance between the current and the previous values of the component means.

EM algorithm stops when the distance for each mixture component is smaller

than a threshold (tconv in mm). The overall algorithm is given in Algorithm 2.

6.2.3 Reconstruction of the Coronary Trees

The previous step computes the 3D points representing the means of the mixture of

the t-distributions. These points are further processed to obtain the 3D coronary

artery centrelines. To this end, we compute the minimum spanning arborescence

of a directed graph, whose vertices are the reconstructed points and edges are the

possible connections between the neighbouring points. One of the reconstructed

points is manually selected as the root of the graph. The graph is built by connect-

ing the root to all the remaining points, and each point to its neighbours inside

a 10 mm neighbourhood. The edge weights of the graph are determined by the

Euclidean distance between the connecting points. Following the computation of

minimum spanning arborescence using Edmonds algorithm [174], automatic prun-

ing steps are applied to obtain the final coronary arterial tree. Specifically, short

coronary branches are removed, and a cubic spline is fitted to each branch of the
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Algorithm 2 3D Coronary artery centreline reconstruction algorithm
Input

1: X = {X f}Ff=1: 2D centreline points segmented from F retrospectively gated
X-ray images

2: {Θf}Ff=1: Projection functions for F retrospectively gated X-ray images
3: Yini,Qini: Initial mixture model parameters
4: β, η, ζ,: Spatial regularisation parameter, standard deviation of the kernel

function, and sparsity parameter
5: tconv: Convergence threshold

Output

1: Y∗,Q∗: Estimates of mixture model parameters

MAP estimation via EM algorithm

1: Y∗ ← Y ini, Q∗ ←Qini

2: Compute Wm ∀m ∈ {1 . . .M}
3: repeat
4: Ŷ ← Y∗, Q̂←Q∗
5: Update γfnm and τ fnm (Eq. (6.12) and (6.13))
6: for m = 1 . . .M do
7: Update y∗m by solving Eq. (6.14)
8: Update Wk ∀k ∈ {1 . . .M}.
9: end for

10: Update (σ2)∗

11: Update π∗

12: for m = 1 . . .M do
13: if π∗m = 0 then
14: Remove mth mixture model component
15: end if
16: end for
17: Update ν∗

18: until ||y∗m − ŷm|| ≤ tconv ∀m ∈ {1 . . .M}
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coronary arterial tree.

6.3 Experiments

6.3.1 Error Metrics

The reconstruction accuracy is measured in terms of centreline to centreline dis-

tance metrics, namely the 2D reprojection (RPE2D) and the 3D space errors

(SE3D). The evaluation metrics are defined in terms of point-to-point correspon-

dences between the reconstructed and ground truth 2D/3D centrelines. For each

reconstructed point, a corresponding ground truth point is identified, which is

selected as the closest point on 2D/3D ground truth. RPE2D/SE3D is defined

as the average of 2D/3D Euclidean distances between the 2D/3D reconstructed

centrelines and their corresponding ground truth points.

6.3.2 Synthetic Data Experiments

Quantitative validation is carried out by means of a comprehensive phantom study.

To this end, we generated two synthetic X-ray rotational angiography sequences

using the left coronary artery geometry of 4D XCAT phantom [147]. Information

related to image acquisition, namely number of images (117), frame rate (30 fps),

angular coverage (60◦ RAO to 60◦ LAO with 25◦ CRA angulation), and the pa-

rameters defining the geometry model, corresponded to typical values in a clinical

rotational angiography dataset. The generation process of the first sequence is the

same as the one described in Chapter 4. In the first sequence (CardiacSeq), we

simulated cardiac motion where we set the heart beat rate to 70 beats per minute.

The 3D splines describing the 3D coronary artery centrelines for each time step of

the sequence are projected onto 2D views. Synthetic 2D centreline segmentations

were generated by sampling 2D points from the corresponding 2D splines every 1.0

mm. Instead of using a rectangular gating window as in Chapter 4, we performed

ECG gating on this sequence using a nearest neighbour gating window, where the

reference cardiac phase is selected as end-diastole. Effectively, a total of 5 images

with corresponding 2D centreline segmentations (CardiacSet) were selected for

reconstruction. Although this process selects projection images with equiangular

increments due to the regular heart beat, this is not a requirement for our method,
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as the method can handle segmentations from arbitrary views. In the second se-

quence (StaticSeq), we employed the static geometry of the coronary arteries at

end-diastole to generate the sequence. For the experiments involving the static se-

quence, we selected the images and the 2D centreline segmentations (StaticSet)

that are acquired from the same views that are selected for the CardiacSet.

Having the synthetic data, we perform four sets of experiments assessing re-

construction using variable data qualities obtained with: different angular densi-

ties, noisy centreline segmentations, outliers in the segmented centrelines, and the

artery motion.

6.3.2.1 Angular Density of X-ray Images

In this experiment, we selected a number of X-ray images and their corresponding

2D centreline segmentations from StaticSeq (F ∈ {3, 4, 5}) such that F images

cover the full angular range with equal angular increments.

6.3.2.2 Noisy 2D Centreline Segmentations

The 2D centreline segmentations employed in the reconstruction inevitably include

errors. This experiment is designed to understand the advantage of our proba-

bilistic formulation and the priors in the presence of segmentation errors. For this

purpose, we added zero mean Gaussian noise with standard deviations ranging

from 0.25 mm to 1.00 mm to the 2D centreline segmentations of the StaticSet,

and computed the reconstructions. The reconstruction experiments were repeated

10 times at each noise level.

6.3.2.3 Structured Outliers in 2D Centreline Segmentations

Some of the 2D segmentations may include extra branches with no corresponding

points in other views. Furthermore, some parts of the 2D segmentations may not

correspond to actual centreline structures. Instead, these parts are erroneously

segmented from the background structures in X-ray images. In this experiment,

we aim at understanding the behaviour of our method in such scenarios, where we

have such outliers. To generate realistic outlier points, smooth random curves that

mimics the shape of the 2D coronary artery centreline branches were generated
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and outliers points are sampled from these curves. To this end, random trajecto-

ries of particles having Brownian motion were generated and smoothed by fitting

cubic Hermite splines. The outliers points were then sampled from these splines at

1.0 mm, which is the same sampling rate to generate the synthetic segmentations.

These outlier points were added to each of the corresponding 2D centreline seg-

mentations of the StaticSet (Fig. 6.5a). The number of additional outlier points

was varied from 0% to 30% of the number of points in the 2D centreline segmen-

tations. Similar to the previous experiment, the reconstructions were computed

10 times with different outlier points at each outlier level.

6.3.2.4 Residual Artery Motion

To examine the accuracy of our method under residual cardiac motion, we use

the images from the CardiacSeq. This sequence was deliberately generated such

that any image in the sequence is acquired at a unique cardiac phase, different

to others. As a result, the X-ray images selected by ECG gating correspond to

slightly different cardiac motion states. First, we reconstructed coronary arteries

using the 2D segmentations of CardiacSet, which are selected using a nearest

neighbour gating window. Following this benchmark reconstruction, we computed

reconstructions with images selected using gating windows of size 10% and 20% of

the cardiac cycle around end-diastole.

6.3.3 Clinical Data Experiments

To illustrate the clinical feasibility of our method, a set of experiments is per-

formed using real X-ray rotational angiography data. The data were collected

with a Philips Allura Xper C-Arm X-ray system (Philips Healthcare, Best, The

Netherlands) at the Northern General Hospital (Sheffield, United Kingdom). The

X-ray system is calibrated periodically to ensure accurate acquisition geometry

parameters. The X-ray images were collected during hand injection of intravenous

contrast agent. Patients were asked to hold their breaths during the acquisition.

C-Arm rotation covered a range from RAO 60◦ to LAO 60◦ with 25◦ cranial or

caudal angulation and the rotation was completed in approximately 4 s at 30 fps,

resulting in 117 images per study. The X-ray images have a size of 960 × 960

pixels with an isotropic pixel spacing of 0.184 mm. A simultaneous ECG signal
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was also recorded during the acquisition, and a subset of images was selected via a

retrospective ECG gating at end-diastolic or end-systolic cardiac phase for further

processing. The number of gated images was 3-4 using nearest-neighbour gating

window.

To extract coronary arteries from retrospectively gated X-ray angiography im-

ages, we employed a segmentation workflow, which consists of simple image pro-

cessing algorithms, similar to the ones proposed in [64,96]. Specifically, the X-ray

images are smoothed with coherence enhancing diffusion filter [199], and then their

vesselness [189] is computed. Directional non-maximum suppression is applied on

the vesselness image followed by hysteresis thresholding. The resulting binary

segmentations are connected using morphological operations, and the connected

components smaller than a threshold are removed. The output of the segmenta-

tion workflow is inspected by an expert, and obvious errors (e.g. segmented parts

of catheter or branch connections) are manually corrected. A total of 10 X-ray

angiography studies (5 LCAs, 5 RCAs) were processed using the segmentation

workflow.

We performed two experiments in total to qualitatively and quantitatively val-

idate the proposed method.

6.3.3.1 Experiments without Outliers

Although the cumulative effect of heavy tails of t-distributions, sparsity and spatial

regularisation priors renders the proposed method robust to outliers, the recon-

structed centrelines can be further improved if better segmentations (free from

obvious errors or missing parts) are provided. Moreover, clean segmentations fa-

cilitate a fair comparison of our results with the relevant literature, since the

methods in the literature generally assume that accurate and clean segmentations

are available. In this experiment, the 3D reconstruction was computed using the

2D segmentations which were obtained using the segmentation workflow described

above, and further processed to remove all the outliers from 2D centreline segmen-

tations.
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6.3.3.2 Experiments with Outliers

Segmentation of the coronary arteries from X-ray angiography is prone to errors.

The resulting segmentations can be degraded with the addition of erroneously seg-

mented structures (outliers). In this experiment, the reconstruction was computed

using the 2D segmentations from the segmentation workflow, which include outlier

points. Specifically, we deliberately preserved some of the extra branches in the

2D segmentations, which are not visible in all the X-ray images due to contrast

wash-in/out (Fig. 6.7b). The average number of outlier points for our clinical

dataset was 22.7% of the number of total points in the 2D segmentations.

Table 6.1: Parameter settings for the experiments using synthetic and clinical
data.

Synthetic Clinical

F 3− 5 3− 4

M 252 {84, 126, 168, 210}
Yini Points from regular Points from regular

spatial grid spatial grid

σini 60 mm 60 mm

πini πm = 1/M πm = 1/M

∀m ∈ {1 . . .M} ∀m ∈ {1 . . .M}
νini 3 3

β [0.00 0.20] {0.05, 0.10, 0.20}
ζ [0.00 0.01] {0.025, 0.050, 0.075}
η 5 mm 5 mm

tconv 0.001 mm 0.01 mm

6.3.4 Initialisation

To initialise the number of mixture model components and corresponding mean

values, we selected M points on a regular grid in spherical coordinates centred at

the origin of the patient coordinate system (Fig. 6.5b). By changing the radial

sampling rate of the grid, we can adjust the number of parameters and the initial

mean values. The number of model components were selected empirically. We

fixed M to 252 for the synthetic data experiments, whereas we tried different

numbers of model components for the clinical data experiments. Moreover, the

initial value of the component variance is set to a high value. Finally, the mixture
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weights are selected uniformly such that they sum to one.

In synthetic data experiments, we performed experiments with varying degrees

of β and ζ to study the effect of spatial regularisation and sparsity, and reported the

results. For the clinical data experiments, we conducted experiments with varying

degrees of β, ζ and M , and then selected the reconstruction with the smallest

average RPE2D. The parameter settings for the experiments using synthetic and

clinical data is summarised in Table 6.1.

6.4 Results

6.4.1 Results on Synthetic Data

The results of the experiments using different angular density of X-ray images,

noisy centreline segmentations, centreline segmentations with outliers, and the

artery motion (Section 6.3.2) are given below.

6.4.1.1 Angular Density of X-ray Images

Table 6.2 summarises the SE3D for the reconstructions obtained with different

numbers of X-ray images covering the full angular span. The best reconstruction

is achieved at ζ = 0.00, β = 0.05 with 5 gated X-ray images and has an error of

0.085 mm. In general, the highest reconstruction accuracies were achieved with 4-5

gated X-ray images. These results indicate that the proposed method can work be

successfully applied to typical X-ray rotational angiography data, with 3-5 gated

X-ray images per cardiac phase.

Table 6.2: The effect of angular density of X-ray images on the reconstruction
accuracy: 3D space Errors (mm) are shown for varying degrees of sparsity (ζ) and
spatial regularisation (β).

# of ζ 0.00 0.10

images β 0.00 0.05 0.20 0.00 0.05 0.20

3 0.200 0.230 0.141 0.202 0.196 0.139

4 0.110 0.100 0.128 0.103 0.099 0.116

5 0.112 0.085 0.152 0.088 0.090 0.155

The results also show that when the number of images is low, increasing both

the sparsity level and the spatial regularisation improves the reconstruction ac-
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curacy, justifying the additional value of the prior information. However, when

there are more than 3 X-ray images, increasing the spatial regularisation causes

some artifacts, particularly in the regions where two branches are close to each

other. Some results are shown in Fig. 6.2d to demonstrate the effect of spatial

regularisation.

(a) (b) (c) (d)

Figure 6.2: The effect of angular density of X-ray images on the reconstruction:
The ground truth centrelines are shown in green, whereas reconstructed centrelines
are shown in red. (a)-(b) The spatial regularisation prior improves the reconstruc-
tion when the number of X-ray images is low. (c)-(d) However, with sufficient
X-ray images, increasing spatial regularisation excessively may cause reconstruc-
tion artifacts.

6.4.1.2 Noisy 2D Centreline Segmentations

Fig. 6.3 shows the the SE3D for the reconstructions obtained when each of the

points in the 2D centreline segmentations are degraded by zero mean Gaussian

noise. The median error increases from 0.117 to 0.7334 mm (with ζ = 0.01,

β = 0.01), when we increase standard deviation of the noise from 0.00 to 1.00

mm. In particular, the reconstructions obtained with up to 0.50 mm noise are

still comparable to baseline. This implies that the probabilistic formulation of the

reconstruction can handle noisy centreline segmentations.

The results also demonstrate the effect of the spatial regularisation prior (β).

With noise levels up to 0.50 mm standard deviation, increasing β excessively dete-

riorates the reconstructions, similar to the previous experiment. However, in the

presence of noise with 1.00 mm standard deviation, increasing this term improves

the resulting reconstructions as expected.
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Figure 6.3: The effect noisy in 2D centreline segmentations on the 3D reconstruc-
tion accuracy: 3D space errors (mm) are calculated using reconstructions with
varying levels of sparsity (ζ) and spatial regularisation (β) priors.

6.4.1.3 Structured Outliers in 2D Centreline Segmentations

Fig. 6.4 shows the SE3D for the reconstructions obtained when varying levels of ad-

ditional outlier points were added to the 2D centreline segmentations. The median

error only marginally increases from 0.119 to 0.241 mm (with ζ = 0.01, β = 0.20),

as we increase the outlier percentage from 0% to 30%. The results obtained with-

out prior information (ζ = 0.00, β = 0.00) signify that the heavy tails of the

t-distributions behave as expected, providing robustness against outliers. Further-

more, the prior information complements the effect of the heavy-tails. Specifically,

increasing the spatial regularisation consistently decreases the dispersion of the

SE3D in all outlier levels. On the other hand, the positive effect of the sparsity

prior can only be perceived when the outlier level is high.

In Fig. 6.4, a substantial increase in the dispersion of the error can be observed

when the outlier percentage is increased to 30%. As we increase the outlier level,

the reconstructed points may contain some scattered points due to overfitting

(Fig. 6.5). This can be explained as follows: The possibility of finding consistent

point correspondences between various projection frames increases when a large

amount of outliers is present in the segmentations. As a result, some mixture

model components are displaced towards those outliers. This situation can be

rectified to some extent by increasing the sparsity level, since this term mainly
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Figure 6.4: The effect of outliers in 2D centreline segmentations on the recon-
struction accuracy: 3D space errors (mm) are calculated for varying degrees of
additional outlier points, and with/without sparsity (ζ) and spatial regularisation
(β) priors.

avoids overfitting by decreasing the number of model points and, consequently,

the flexibility of the mixture model.

6.4.1.4 Residual Artery Motion

Fig. 6.6 shows the reconstruction errors when there is residual cardiac motion in

the gated X-ray images. The reconstructions are computed using X-ray images

selected by gating windows of size 0% (nearest neighbour), 10% and 20% of the

cardiac cycle (with ζ = 0.01, β = 0.05), and SE3D is computed by comparing

reconstructions with the ground truth 3D centrelines at cardiac phases immediately

above and below the reference cardiac phase.

The minimum SE3D for the reconstruction using nearest neighbour window is

0.114 mm, and achieved at the reference cardiac phase. Additionally, this result

is close to the error for the corresponding reconstruction without cardiac motion

(0.090 mm, Table 6.2). If 10% gating window is utilised, the error obtained at the

reference phase increases to 0.161 mm. These errors suggest that the proposed

method can compute an average model at the reference cardiac phase for small

gating windows. As we further increase the width of the gating window to 20%,
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(a) (b)

(c) (d)

Figure 6.5: The effect of structured outliers in 2D centreline segmentations on the
3D reconstruction: (a) An example synthetic X-ray angiogram and the correspond-
ing 2D segmentations (dark green) with outliers (light green). (b) Initialisation
of the mixture model components. (c) Reconstructed points at 30% outlier level.
(d) Pruned final reconstruction. The ground truth centrelines are shown in green,
whereas reconstructed points or centrelines are shown in red.

our reconstruction method can no longer guarantee that the reconstruction at the

reference cardiac phase is optimal.

6.4.2 Results on Clinical Data

The results of the experiments using real X-ray rotational angiography data with-

out and with outliers (Section 6.3.3) are presented below.
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Figure 6.6: The effect of residual cardiac motion due to finite gating accuracy
on the reconstruction accuracy: Coronary arteries are reconstructed using 2D
centreline segmentations from X-ray images that are selected using gating windows
covering 0% (Nearest Neighbour), 10% and 20% of the cardiac cycle (ζ = 0.01,
β = 0.05). The reconstructed coronary arteries are compared with the ground
truth 3D centrelines at cardiac phases above and below the reference cardiac phase
(tref ∈ [0, 1)).

6.4.2.1 Experiments without Outliers

The mean and standard deviation of the RPE2D values for the reconstructions of 10

coronary artery trees are given in Table 6.3. The proposed method achieved 0.428

mm mean error and 0.387 mm median error, whereas the minimum and maximum

errors were 0.206 and 0.716 mm, respectively. Projections of the reconstructions

onto X-ray images for the best and the worst cases are shown in Fig. 6.7a. For

the best reconstruction, the projections perfectly fit the ground truth, whereas, for

the worst case, there is a perceivable translation between the projections and the

ground truth. This is possibly due to strong residual motion (breathing, patient

movement), as investigated in Section 6.4.1.4. Nevertheless, the proposed method

successfully generated an average model, and the overall shape of the artery was

correctly reconstructed.

6.4.2.2 Experiments with Outliers

In the presence of the outliers, for the data set of 10 coronary artery trees, the

method achieved 0.486 mm mean RPE2D with a standard deviation of 0.168 mm

(cf. Table 6.3), and the median error of 0.431 mm. The cases with the minimum
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(a)

(b)

Figure 6.7: Projections of reconstructions onto X-ray images: The cases with the
minimum and maximum reprojection errors are shown for the experiments (a)
without/ (b) with outliers. (a) The ground truth centrelines are shown in green.
(b) The input segmentations are shown in blue. In both (a) and (b), the projections
of the reconstruction are delineated in red.

and maximum errors did not change with respect to the previous experiment. This

time, the minimum and maximum RPE2D were 0.239 and 0.825 mm, respectively.

Similar to the previous experiment, the projections of the reconstructions for the
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best and the worst reconstructions are shown in Fig. 6.7b. The RPE2D values

obtained for the experiments without and with outliers does not change immensely,

which verifies the method’s robustness in the clinical dataset. However, for some

arteries, reconstruction artifacts were noticeable at the distal end of some branches

(Fig. 6.7b). This can be attributed to method’s previously explained behaviour in

the presence of a large number of outliers (Section 6.4.1.3).

One should note that the 2D reprojection error does not take the amount of

overlap between the ground truth centrelines and the projections of the recon-

structed centrelines [192]. Nonetheless, we did not observe any excessively pruned

reconstructions in our experiments. The method was able to establish correspon-

dences of 2D points as long as they are segmented from all views (Fig. 6.7b).

6.4.3 Comparison with the Literature

The proposed method is compared with the state-of-the-art model-based 3D coro-

nary artery reconstruction methods. The results on the synthetic and clinical data,

given in Table 6.3 for various methods, were obtained using different datasets due

to lack of a standardised validation dataset. Nonetheless, they show the accuracies

of the various techniques. Our method achieved superior accuracy on the synthetic

data, and comparable results on the clinical data.

The methods in the literature differ in terms of the required level of interac-

tion. Methods based on active contour model [80, 81] require clean 2D centreline

segmentations from 2-5 X-ray images to define the external forces. These segmen-

tations can typically be obtained by semi-automatic segmentation algorithms. In

addition, these methods need manual initialisation of the active contour for each

coronary branch. Multi-view stereo based reconstruction method described in [96]

can work with automatically extracted centreline segmentations from 4-5 X-ray

images. Specifically, this method estimates a depth value for each centreline point

at a reference image given the segmentations for the other images. Therefore, it

is important to manually correct any errors in the segmentation of the reference

frame. Alternatively, method in [100] is based on back-projection of vesselness

responses, and does not need centreline segmentations. However, this method

requires 8-9 X-ray images to reduce the noise in the back-projection, and thus

is appropriate for reconstruction from rotational angiography with high angular
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span. Our method can work with automatically segmented coronary artery cent-

relines from 3-5 X-ray images, is robust to possible outliers in the segmentations,

and requires minimal amount of interaction during the tree reconstruction.

6.5 Discussion

The experiments in the previous section demonstrated that the proposed method

can successfully reconstruct coronary arteries from routinely acquired X-ray rota-

tional angiography images. Our method was capable of reconstructing coronary

artery shapes from automatically generated 2D segmentations, which can include

inaccuracies/outliers. In particular, some branches may not be visible in all X-ray

images due to contrast wash-in/out, or the segmentations may be noisy. Thanks

to heavy tails of the t-distributions and the prior information, our method can

overcome such segmentation artifacts. In addition to that, our method was shown

to be relatively insensitive to residual cardiac motion between gated X-ray images,

and can generate an average model, recovering the shape of the arteries at the

desired cardiac phase.

In the proposed method, the model complexity is controlled by the number

of components in the mixture model (M), and the parameters for the spatial

(β) and sparsity (ζ) priors. In our experience, the range of values between 0.05

and 0.20 for β deliver satisfying results. We also observed that β should be kept

small (0.05 ≤) for tortuous vessels, which agrees with the definition of the spatial

regularisation prior. The other two parameters are interrelated, since ζ specifiesM ,

by incorporating sparsity on the mixture weights. The initial value for M depends

on the number and length of branches to reconstruct, and the values between 80

and 250 worked well for our dataset. We observed that starting with a moderate

number of model points (approximately 150), and adjusting sparsity level yields

superior reconstruction results. The range of values for ζ was between 0.025 and

0.050. One should note that the sparsity enforced by Dirichlet distribution in

Eq. (6.8) quickly increases, even for the small change of α parameter towards zero.

This range of ζ values offers a delicate balance between the sparsity and the level

of details in the final reconstruction. Increasing this parameter further resulted in

extremely sparse models that cannot capture anatomical details.

The additional value of the prior information was demonstrated experimentally.
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In particular, we showed that these priors can become useful when the number of

X-ray images is low. In such cases, prior information regularises the reconstruction

problem, increasing the accuracy of final segmentations. Both of the priors defined

in this chapter are generic, and can be incorporated into the Gaussian mixture

model based framework of Chapter 4.

The proposed method provides a convenient framework for integration of prior

information in terms of prior distributions defined over mixture model parameters.

Therefore, it may be possible to include other information, such as ventricular

epicardium surface constraints [33,86] or coronary artery shape models [200,201],

by defining those as probability distributions. However, inter-patient variability

and pathologies must be considered while incorporating such prior information. In

this context, our spatial regularisation prior is generic, and can deal with different

topologies.

Currently, the proposed method can reconstruct 3D centrelines of the coro-

nary arterial trees. This typically constitutes the initial step in a model-based

coronary artery reconstruction workflow. To enable quantitative analysis of the

lumen, especially in the stenotic regions, 3D centreline reconstruction should be

coupled with a vascular lumen reconstruction. Reconstruction of the lumen could

also facilitate the study of hemodynamic parameters by means of computational

fluid dynamics simulations, and could consequently facilitate the computation of

clinically relevant physiological indices, such as fractional flow reserve [44,46]. The

reconstruction of vascular lumen from X-ray projection images is well-studied in

the literature, and there are some convenient methods (see Section 2.2.2.5). These

methods extract diameter information from multiple X-ray images, and use the

diameters to define a cross-sectional shape of the vessel around each of the recon-

structed centreline points. These cross-sections are then converted into surface

meshes. Incorporation the vascular lumen reconstruction into the current method

will be the subject of our future work.

The average runtime of the method on clinical data sets was 5.5 min with our

single-core CPU implementation. Therefore, the current implementation of the

method only lends itself to offline processing of coronary artery reconstructions.

This may be valuable for some clinical scenarios, however the ultimate goal is to

have a robust, accurate and real-time coronary artery reconstruction method. For-

tunately, the proposed reconstruction method can be accelerated, since the update
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equations for each t-distribution component can be run in parallel when the spatial

regularisation term is ignored. We anticipate that a two step reconstruction can

reduce the computational time, where in the first step an initial reconstruction is

computed in parallel without spatial regularisation, and then refined with inclusion

of the spatial regularisation term in the second step. In addition, we observed that

the number of model points (M) has a significant impact on the computational

time. This can be leveraged to devise a multi-resolution reconstruction strategy,

similar to the one proposed in [167].

6.6 Conclusion

In this chapter, a novel probabilistic model based method is proposed to re-

construct coronary artery centrelines from retrospectively gated X-ray rotational

angiography images. The target 3D coronary arteries are represented by a mix-

ture of Student’s t-distribution, and the reconstruction is formulated as estimation

of mixture model parameters, given 2D coronary artery centreline segmentations

from multiple X-ray images. Compared to existing forward-projection based mod-

elling methods, the probabilistic formulation of the proposed method allows us

to introduce regularisation terms in the form of Bayesian priors to cope with the

ill-posedness. These regularisation terms and the heavy tails of the t-distribution

components contribute to the robustness of the method in the presence of noise,

errors in the 2D centreline segmentations, and residual cardiac motion between 2D

X-ray images. Qualitative and quantitative results on synthetic and clinical data

sets show that the proposed method is effective and sufficiently accurate. Incor-

poration of the vascular lumen reconstruction, and improvements in computation

time will be the subjects of our future work.
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7.1 Conclusions

X-ray coronary angiography is still considered as the gold standard for diagno-

sis of coronary artery disease and guidance during its treatment. This imaging

modality is fundamentally limited, since it can only represent complex and dy-

namic coronary artery trees with 2D X-ray projection images. Three-dimensional

reconstructions of coronary arteries can obviate some of the limitations of 2D X-

ray coronary angiography, namely artery overlap/foreshortening and lack of depth

information. However, X-ray angiography related challenges (such as intensity in-

homogeneity, artery overlap/foreshortening, and cardiac/respiratory motion) pose

a serious challenge for the reconstruction problem. It was the goal of this thesis

to develop robust algorithms to reconstruct 3D/3D+t coronary artery centreli-

nes from X-ray rotational angiography, and assess their performance in realistic

settings.

To identify the gaps in the literature, we carried out an exhaustive literature sur-

vey on the 3D/3D+t reconstruction of coronary arteries from X-ray angiography,

as presented in Chapter 2. According to our review, two main reconstruction ef-

forts can be distinguished, namely model-based and tomographic reconstruction.

The main difference between these two different approaches is the final recon-

struction output. Model-based reconstruction (modelling) attempt to compute a

symbolic representation of coronary arteries, which consists of a 3D centreline and,

occasionally, the vascular lumen. Tomographic reconstruction methods produces

a volume of attenuation coefficients. The methodological aspects for both types

of reconstruction approaches has been discussed in detail in Chapter 2.

Chapter 2 concludes with some important messages by listing a number of pos-

sible future directions. First, the time requirement for the reconstruction methods

must be drastically reduced to allow for real-time processing. This can be achieved

by taking advantage of the state-of-the-art parallel computing techniques. Second,

research effort must be invested in developing new dynamic (3D+t) reconstruction

algorithms to provide operational guidance. Finally, almost automatic methods

must be devised to make 3D reconstruction technology an irreplaceable part of the

cath-lab. In this thesis, we mainly focused on the last two directions. Specifically,

we proposed i) a novel probabilistic model-based reconstruction framework (Chap-

ter 4 and 6), and ii) a new model based 3D+t coronary arterial tree reconstruction
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method (Chapter 5).

Model-based reconstruction algorithms offer flexible and relatively simple tech-

nical solutions on the reconstruction problem. Most of the model-based recon-

struction methods require accurate and clean centreline segmentations from 2D

X-ray images as input. However, segmentation of coronary arteries suffers from

the angiography related problems, namely inhomogeneous intensities, and artery

overlap/foreshortening. As a result, this requirement may hinder the adoption of

these methods in the clinical practice. To address this limitation, we presented

a novel probabilistic model-based reconstruction framework in Chapter 4 and 6.

In particular, we propose to represent 3D coronary artery centrelines by a prob-

abilistic mixture model. To this end, centrelines are assumed to be represented

by a set of points, whose spatial locations are assumed to specify means of some

probability distribution function. The reconstruction is formulated as estimation

of mixture model parameters using Expectation Maximisation algorithm. The

main advantage of this probabilistic framework is that it can tolerate noisy and

erroneously segmented parts (outliers), and therefore has the potential to reduce

manual input.

In Chapter 4, a Gaussian mixture model is chosen as the 3D centreline model.

To gain robustness against the outliers, a uniform distribution component is added

to the mixture model. Despite its effectiveness in reconstruction and its robustness

against random outliers, the method suffers from overfitting in certain scenarios.

More precisely, the number of mixture model components play a critical role,

making it necessary to find an optimal value for it. The effect of overfitting becomes

more evident when there is residual motion in the gated X-ray images. Moreover,

an estimation of the outlier level is required to adjust the parameter that controls

the weight of the outlier distribution component. Incorrect parameter adjustment

can cause a failure of the reconstruction algorithm.

In Chapter 6, a mixture of Student’s t-distributions is employed to model 3D

coronary artery centrelines. The main motivation behind this selection is the

heavy tails of t-distributions. Specifically, a Student’s t-distribution has heav-

ier tails compared to a Gaussian distribution. Its robustness can be controlled

in a parametric fashion, eliminating the necessity of identifying the outliers and

tackling with them separately. By using t-distribution, we can avoid setting the

parameter controlling the weight of outlier distribution, and indirectly estimate it
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from the data. Additionally, we incorporated prior information into the reconstruc-

tion, since the overfitting is known to be avoided by introducing prior information.

More importantly, the incorporation of prior information into model-based coro-

nary artery reconstruction has been overlooked in the relevant literature, partly

because of unsuitable models. Our probabilistic framework offers a convenient

framework for addition of prior information in terms of probability distributions.

In the proposed method, the prior information enables us to spatially regularise

the reconstruction, and remove unnecessary mixture model components. Our ex-

periments demonstrated that the cumulative effect of t-distributions and the prior

information reduces the number of required X-ray images for reconstruction, and

the manual interaction required to segment those images.

In Chapter 5, a new method to reconstruct 3D+t centreline points from rota-

tional angiography is devised. The main assumption is that the coronary arteries

are attached to the ventricular epicardium and moves together with the epicardial

surface. Therefore, a spatiotemporal model of the ventricular epicardium could po-

tentially describe the 3D+t structure of the coronary arteries if the locations of the

coronary arteries on the model can be estimated. To this end, we employed a spa-

tiotemporal statistical shape model of the left ventricular epicardium. Given 2D+t

centreline points (i.e. points tracked over the sequence of X-ray images), 3D+t

reconstruction is formulated as a 2D+t/3D+t Gaussian mixture model based reg-

istration between the tracked points and the projections of the points describing

the bilinear model. Using a modified EM algorithm, we succeeded in estimating

the arterial locations on the bilinear model, the rigid transformation between the

artery and model coordinates, and the bilinear model parameters. To ease the

estimation of arterial locations, we have taken advantage of prior knowledge on

the anatomy of the heart. Moreover, we learned the distributions of the bilinear

model parameters from a training data, and used it as a prior information to reg-

ularise parameter estimation. Our experimentation showed that the method can

cope with missing and noisy tracking information.

7.2 Outlook and Future Work

There are several potential ways to improve the methods proposed in this the-

sis, and several future directions to investigate in the topic of coronary artery
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reconstruction from X-ray angiography.

Incorporation of other prior information: For model-based reconstruction, we

have showed various ways to take advantage of our prior knowledge about the

structure of the coronary arteries. Incorporation of prior information can help us

to reduce the number of X-ray images required, by imposing more constraints on

the ill-posed reconstruction problem. Following that, we can optimise our imaging

protocols such that we effectively reduce the X-ray exposure of the patient and

the operator. There are two promising directions to achieve this goal.

First one is due to the surface constraints of the coronary arteries. Utilisation

of this type of prior information has already been investigated in the context of

2D/3D registration [33] and 3D+t reconstruction (Chapter 5), nevertheless re-

quires more attention. There are two main challenges with this approach. First,

the correspondence establishment between the surface and the arteries is not well-

defined, since only a small subset of surface points correspond to the arteries.

This necessitates some stronger prior information about the distribution of arte-

rial locations on the surface model, which can be obtained from a large training

data [201]. Second, the coronary arteries might not be attached to the epicardial

surface, especially around the ostium region as indicated by the experiments in

Chapter 5.

Second one is the utilisation of shape models of the coronary arteries. Although

it is a difficult task to generate a statistical shape model of tree-shaped structures

due to diverse topological variations amongst the data, there are recent intriguing

attempts to approach this problem [200,201].

Reconstruction using other features: As an alternative to the 2D coronary artery

segmentations, other features that might be easier to extract could be utilised,

such as 2D vesselness responses [188, 189]. Specifically, the probabilistic recon-

struction framework presented in this thesis can be adapted to work with vessel-

ness responses. Instead of treating centrelines as the data points drawn from the

mixture model, one can directly consider the pixels of the vesselness responses as

weighted data points, and compute reconstructions using a weighted data mix-

ture model [202]. This way, dependency to the centreline segmentations could

be eliminated, making the method fully automatic. However, due to the noise in

the vesselness responses, we expect that such a method may require more X-ray

images to obtain satisfactory reconstructions.
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3D+t reconstruction: Our probabilistic model-based reconstruction framework

can be extended in two different ways to compute 3D+t reconstructions. First,

the existing literature on non-rigid point set registration [158, 159, 162] can be

exploited to devise new 3D+t reconstruction strategies. We anticipate that the

motion coherence theory [159,160] can be adapted to estimate the motion between

different cardiac phases in a 2D/3D setting. Second, there is a recent interest in the

non-rigid structure from motion, which is defined as the recovery of time-varying

shape and motion of a non-rigid structure. Although most of these methods deal

with orthographic projection, some recent methods discuss the use of perspective

projections [203], which is similar to our reconstruction problem. As an alternative

to existing 3D+t reconstruction algorithms, one could potentially describe the

trajectory of a coronary artery centreline point by some linear basis functions

[203,204] to regularise motion estimation.

Development of clinical software tools: Although there is a large amount of

research evidence supporting the additional value of 3D reconstructions in the

clinical practice, 3D reconstruction technology is still not commonly used. This is

partly because the time and user interaction requirements of some of the recon-

struction algorithms do not match the clinical requirements. On the other hand,

the lack of clinical software tools that can be operated by clinicians contributes to

the slow clinical translation. New research should be devoted to improve virtual

FFR estimation tools [43] and develop virtual stenting tools [154] to see the im-

pact of reconstruction technology in the treatment of CAD. In this way, a feedback

mechanism between clinical and engineering research can be maintained to develop

the future artery visualisation technologies.
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[66] D. Schäfer, J. Borgert, V. Rasche, and M. Grass, “Motion-compensated and

gated cone beam filtered back-projection for 3-D rotational X-ray angio-

graphy,” IEEE Trans. Med. Imaging, vol. 25, no. 7, pp. 898–906, 2006.

[67] V. Rasche, B. Movassaghi, and M. Grass, “Automatic gating window se-

lection for gated three-dimensional coronary X-ray angiography,” in Proc.

Comput. Assist. Radiol. Surg., vol. 1268, 2004, pp. 1050–1054.

[68] V. Rasche, B. Movassaghi, M. Grass, D. Schäfer, and A. Buecker, “Automatic
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[69] E. Hansis, D. Schäfer, O. Dössel, and M. Grass, “Automatic optimum phase

point selection based on centerline consistency for 3D rotational coronary

angiography,” Int. J. Comput. Assist. Radiol. Surg., vol. 3, no. 3-4, pp. 355–

361, 2008.

[70] V. Rasche, B. Movassaghi, M. Grass, D. Schäfer, H. P. Kühl, R. W.
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[187] S. Çimen, A. Gooya, M. Grass, and A. F. Frangi, “Reconstruction of coronary

arteries from X-ray angiography: A review,” Med. Image Anal., vol. 32, pp.

46–68, 2016.

[188] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale

vessel enhancement filtering,” in Proc. Med. Image Comput. Comput. Assist.

Interv., ser. LNCS, W. M. Wells, A. Colchester, and S. Delp, Eds., vol. 1496,

1998, pp. 130–137.

[189] M. W. K. Law and A. C. S. Chung, “Three dimensional curvilinear structure

detection using optimally oriented flux,” in Proc. Eur. Conf. Comput. Vis.,

2008, pp. 368–382.

[190] Z. Hui and M. Friedman, “Tracking 3-D coronary artery motion with biplane

angiography,” in Proc. IEEE Int. Symp. Biomed. Imaging, 2002, pp. 605–

608.
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