
 

 

 

 

  

 

Policy-Driven Governance in Cloud Service Ecosystems 

 

By: 

Dimitrios Kourtesis 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

The University of Sheffield 

Faculty of Engineering 

Department of Computer Science 

 

 

28 September 2016 

 

 

South East European Research Centre 



 

 

Abstract 

Cloud application development platforms facilitate new models of software 

co-development and forge environments best characterised as cloud service 

ecosystems. The value of those ecosystems increases exponentially with the addition of 

more users and third-party services. Growth however breeds complexity and puts 

reliability at risk, requiring all stakeholders to exercise control over changes in the 

ecosystem that may affect them. This is a challenge of governance. From the viewpoint 

of the ecosystem coordinator, governance is about preventing negative ripple effects 

from new software added to the platform. From the viewpoint of third-party developers 

and end-users, governance is about ensuring that the cloud services they consume or 

deliver comply with requirements on a continuous basis.  

To facilitate different forms of governance in a cloud service ecosystem we need 

governance support systems that achieve separation of concerns between the roles of 

policy provider, governed resource provider and policy evaluator. This calls for better 

modularisation of the governance support system architecture, decoupling governance 

policies from policy evaluation engines and governed resources. It also calls for an 

improved approach to policy engineering with increased automation and efficient 

exchange of governance policies and related data between ecosystem partners.  

The thesis supported by this research is that governance support systems that satisfy 

such requirements are both feasible and useful to develop through a framework that 

integrates Semantic Web technologies and Linked Data principles.  

The PROBE framework presented in this dissertation comprises four components: (1) a 

governance ontology serving as shared ecosystem vocabulary for policies and 

resources; (2) a method for the definition of governance policies; (3) a method for 

sharing descriptions of governed resources between ecosystem partners; (4) a method 

for evaluating governance policies against descriptions of governed ecosystem 

resources. The feasibility and usefulness of PROBE are demonstrated with the help of 

an industrial case study on cloud service ecosystem governance.  

  



 

Acknowledgements  

My PhD supervisors Iraklis Paraskakis and Anthony J.H. Simons have my gratitude. I 

am grateful to Iraklis for introducing me to academic research and for giving me the 

opportunity to work as a research associate at SEERC for six great years. I am grateful 

to Tony for his wise advice, his intellectually stimulating teaching and his help with 

keeping me focused on completing this research. I wish to thank both of them for their 

genuine support at times when full-time work along part-time research study became 

challenging.  

I am thankful to my colleagues at SEERC, to the academics of the Computer Science 

department at the University’s International Faculty in Thessaloniki and to our research 

partners from companies and academic institutions with whom I had the privilege to 

work during my PhD research
1
.  

I also want to thank Andigoni Malousi, my beloved cousin who has been an inspiration 

for the academic studies I pursued in Computer Science - thank you for helping me to 

cross the PhD finish line. 

The limitless support and loving patience of my wife Aimilia from the beginning of this 

research to this day is the single thing that kept me going. This work is really her 

achievement. Aimilia and the two beautiful children we have been blessed with, Yannis 

and Thanos, have been my motivation.  

I am thankful to our son Yannis who is now six years old and planning a future career in 

science, for being an explosive source of inspiration. I am thankful for his active (daily) 

encouragement for me to study and complete my writing. At present he finds it 

extremely cool that dad is pursuing a doctorate degree. I hope he will think the same 

when he gets to read this dissertation! I am also thankful to our beautiful five-month old 

son Thanos who has been observing with keen interest and a warm smile but without 

saying much for the present time —or should I say, not much with clear semantics. 

Yannis and Thanos will now have more playtime with dad, I promise.  

My parents, if it wasn’t for you... Mother, I am eternally grateful for your unconditional 

love and support. Father, I keep your words to my heart and eternally miss you.  

 

  

                                                 
1
 This research work was supported by a University of Sheffield Scholarship, with full PhD tuition fees 

sponsored by the South-East European Research Centre (SEERC). It also benefited from my 

participation in two research projects sponsored by European Commission research grants: CAST, 

funded by Eureka Eurostars (E! 4373) and Broker@Cloud, funded by the Seventh Framework 

Programme (FP7-ICT 318392). 



i 

Table of Contents 
 

1 INTRODUCTION ....................................................................................................... 2 

1.1 MOTIVATION ............................................................................................................... 2 

1.2 RESEARCH AIMS AND OBJECTIVES .................................................................................... 6 

1.3 RESEARCH RESULTS ....................................................................................................... 7 

1.4 DISSERTATION OUTLINE ................................................................................................. 8 

 

2 CLOUD SERVICE ECOSYSTEMS AND GOVERNANCE SUPPORT SYSTEMS .................... 12 

2.1 INTRODUCTION .......................................................................................................... 12 

2.2 CLOUD SERVICES ......................................................................................................... 12 

2.2.1 The paradigm of cloud computing ..................................................................... 12 

2.2.2 Cloud computing service models ....................................................................... 13 

2.2.3 Cloud application platforms............................................................................... 15 

2.3 SOFTWARE ECOSYSTEMS IN THE CLOUD .......................................................................... 17 

2.3.1 Software co-development .................................................................................. 17 

2.3.2 Software ecosystems ......................................................................................... 19 

2.3.3 Cloud service ecosystems ................................................................................... 20 

2.4 THE CHALLENGE OF GOVERNANCE ................................................................................. 23 

2.4.1 Definitions of governance .................................................................................. 23 

2.4.2 Governance in cloud service ecosystems ........................................................... 24 

2.4.3 Research on governance of software ecosystems ............................................. 27 

2.5 GOVERNANCE SUPPORT SYSTEMS – STATE OF THE ART ...................................................... 30 

2.5.1 Examples of governance control mechanisms from app stores ........................ 30 

2.5.2 Best practices from SOA governance ................................................................. 32 

2.5.3 Definition and enforcement of governance policies .......................................... 34 

2.6 SUMMARY ................................................................................................................. 36 

 

3 GOVERNANCE IN CLOUD SERVICE ECOSYSTEMS: KEY REQUIREMENTS ..................... 40 

3.1 INTRODUCTION .......................................................................................................... 40 

3.2 EXAMPLES OF GOVERNANCE IN A CLOUD SERVICE ECOSYSTEM ............................................ 41 

3.2.1 Scenario 1: Quality review in a private PaaS environment ................................ 41 

3.2.2 Scenario 2: Regulatory compliance audits of cloud applications ...................... 43 

3.2.3 Scenario 3: Lifecycle management and quality control in a cloud service 

ecosystem ....................................................................................................................... 44 

3.2.4 Scenario 4: External auditing of cloud service providers ................................... 46 

3.2.5 Scenario 5: Policy-based governance by a cloud service broker ........................ 47 

3.3 ROLES AND CONCERNS OF STAKEHOLDERS IN THE GOVERNANCE PROCESS ............................. 50 

3.3.1 Roles in the governance process ........................................................................ 50 

3.3.2 Distribution of governance roles ........................................................................ 50 

3.3.3 Types of concerns ............................................................................................... 51 

3.3.4 Policy provider concerns .................................................................................... 51 



ii 

3.3.5 Data provider concerns ...................................................................................... 53 

3.3.6 Policy evaluator concerns .................................................................................. 55 

3.4 IMPLICATIONS ON THE DESIGN OF GOVERNANCE SUPPORT SYSTEMS .................................... 57 

3.4.1 Separation of concerns ...................................................................................... 57 

3.4.2 Design requirements and quality attributes ...................................................... 58 

3.5 SUMMARY ................................................................................................................. 59 

 

4 A NEW FOUNDATION FOR GOVERNANCE SUPPORT SYSTEMS ................................. 62 

4.1 INTRODUCTION .......................................................................................................... 62 

4.2 LIMITATIONS OF CURRENT GOVERNANCE SUPPORT SYSTEMS .............................................. 62 

4.2.1 Definition and enforcement of policies .............................................................. 63 

4.2.2 Impact on system quality attributes .................................................................. 64 

4.2.3 Dimensions of required enhancements ............................................................. 66 

4.3 THE POTENTIAL OF SEMANTIC TECHNOLOGY .................................................................... 68 

4.3.1 Logic-based knowledge representation and reasoning ..................................... 69 

4.3.2 Ontologies, Semantic Web standards and Linked Data..................................... 71 

4.3.3 Ontology-driven information systems engineering ........................................... 74 

4.4 THESIS STATEMENT ..................................................................................................... 76 

4.5 PROBE FRAMEWORK .................................................................................................. 77 

4.6 SUMMARY ................................................................................................................. 79 

 

5 DEFINING GOVERNANCE POLICIES .......................................................................... 83 

5.1 INTRODUCTION .......................................................................................................... 83 

5.1.1 Governance from the policy provider’s perspective........................................... 83 

5.1.2 Governance policies from the ecosystem’s perspective .................................... 84 

5.2 GOVERNANCE ONTOLOGY ............................................................................................ 85 

5.2.1 Basic characteristics ........................................................................................... 85 

5.2.2 Class hierarchy ................................................................................................... 86 

5.2.3 Object and data properties ................................................................................ 88 

5.2.4 Individuals .......................................................................................................... 89 

5.2.5 SWRL rules ......................................................................................................... 90 

5.2.6 Advanced OWL 2 features ................................................................................. 91 

5.3 METHOD FOR CREATING GOVERNANCE POLICIES .............................................................. 91 

5.3.1 Process and resource governance...................................................................... 91 

5.3.2 Policy encoding patterns .................................................................................... 92 

5.4 RELATED WORK ON SEMANTIC POLICY REPRESENTATION .................................................. 106 

5.4.1 Policy engineering ............................................................................................ 106 

5.4.2 Ontology-based policy representation and enforcement ................................ 107 

5.4.3 Enhancing existing policy languages with formal semantics .......................... 108 

5.4.4 Discussion ........................................................................................................ 108 

5.5 SUMMARY ............................................................................................................... 109 

 



iii 

6 DESCRIBING GOVERNED RESOURCES .................................................................... 113 

6.1 INTRODUCTION ........................................................................................................ 113 

6.1.1 Governance from the resource provider's perspective .................................... 113 

6.1.2 Governed resources from the ecosystem’s perspective ................................... 114 

6.2 DESCRIPTIONS OF GOVERNED RESOURCES AS LINKED DATA .............................................. 116 

6.2.1 Linked Data principles ...................................................................................... 116 

6.2.2 Core Semantic Web standards ......................................................................... 116 

6.3 METHOD FOR CREATING AND SHARING DESCRIPTIONS OF GOVERNED RESOURCES ................ 118 

6.3.1 Examples of governance data description ....................................................... 118 

6.3.2 Linked Data provision & sharing architecture ................................................. 121 

6.4 SUMMARY ............................................................................................................... 126 

 

7 EVALUATING GOVERNANCE POLICIES ................................................................... 130 

7.1 INTRODUCTION ........................................................................................................ 130 

7.1.1 Governance from the policy evaluator’s perspective ...................................... 130 

7.1.2 Policy evaluation from the ecosystem’s perspective ....................................... 131 

7.2 QUERY-BASED VS CLASSIFICATION-BASED POLICY EVALUATION ......................................... 132 

7.3 METHOD FOR POLICY EVALUATION BASED ON DL REASONING .......................................... 133 

7.3.1 Governance policy evaluation example ........................................................... 133 

7.3.2 Open-world assumption and unique name assumption .................................. 135 

7.3.3 Local closure axiom generation algorithm ...................................................... 137 

7.3.4 Related work .................................................................................................... 141 

7.4 SUMMARY ............................................................................................................... 142 

 

8 COMPARATIVE CASE STUDY ................................................................................. 146 

8.1 INTRODUCTION ........................................................................................................ 146 

8.2 CAST PROJECT ......................................................................................................... 147 

8.2.1 Background ...................................................................................................... 147 

8.2.2 CAST platform concepts and terminology ....................................................... 148 

8.3 POLICY-BASED GOVERNANCE OF CAST PLATFORM ......................................................... 150 

8.3.1 Governance requirements ............................................................................... 150 

8.3.2 Stakeholders in the governance process .......................................................... 151 

8.3.3 Governance policy examples ........................................................................... 152 

8.4 DESCRIPTION OF THE SOLUTION AS DEVELOPED IN CAST ................................................. 155 

8.4.1 Overview - CAST platform registry & repository system .................................. 155 

8.4.2 Policy definition................................................................................................ 157 

8.4.3 Data extraction ................................................................................................ 164 

8.4.4 Policy evaluation .............................................................................................. 167 

8.4.5 Remarks ........................................................................................................... 170 

8.5 DESCRIPTION OF ALTERNATIVE SOLUTION BASED ON PROBE FRAMEWORK ......................... 171 

8.5.1 Overview .......................................................................................................... 171 

8.5.2 Policy definition................................................................................................ 172 

8.5.3 Data extraction ................................................................................................ 177 



iv 

8.5.4 Policy evaluation .............................................................................................. 178 

8.5.5 Remarks ........................................................................................................... 179 

8.6 COMPARATIVE ASSESSMENT OF DESIGN APPROACHES ..................................................... 180 

8.6.1 Units of analysis ............................................................................................... 181 

8.6.2 Scenario-based comparison ............................................................................. 181 

8.6.3 Change scenarios ............................................................................................. 182 

8.6.4 Comparison of approaches .............................................................................. 187 

8.6.5 Discussion ........................................................................................................ 189 

8.7 SUMMARY ............................................................................................................... 190 

 

9 CONCLUSIONS ..................................................................................................... 195 

9.1 INTRODUCTION ........................................................................................................ 195 

9.2 SYNOPSIS ................................................................................................................ 195 

9.2.1 The challenge of ecosystem governance ......................................................... 195 

9.2.2 Requirements thinking for governance support systems ................................ 196 

9.2.3 The PROBE framework ..................................................................................... 196 

9.2.4 Realising the framework .................................................................................. 197 

9.2.5 Evaluating the framework ............................................................................... 199 

9.3 IN SUPPORT OF THE THESIS ......................................................................................... 200 

9.4 RESEARCH PROCESS AND RESULTS ................................................................................ 200 

9.4.1 Problem domain analysis ................................................................................. 200 

9.4.2 Solution development ...................................................................................... 203 

9.4.3 Summary of results .......................................................................................... 205 

9.5 SIGNIFICANCE OF RESULTS AND CONTRIBUTIONS ............................................................ 205 

9.5.1 Furthering our understanding of governance .................................................. 206 

9.5.2 Providing a conceptual model for requirements thinking ............................... 207 

9.5.3 Delivering a feasible and useful solution framework ...................................... 207 

9.6 LIMITATIONS AND FURTHER WORK ............................................................................... 209 

9.6.1 Further case studies of governance in cloud service ecosystems .................... 209 

9.6.2 Comparison to other commercial governance technology platforms ............. 209 

9.6.3 Alignment of the governance ontology to Linked-USDL .................................. 210 

9.6.4 Alternative policy evaluation approaches ....................................................... 210 

9.6.5 Data interlinking and sharing infrastructure ................................................... 211 

9.6.6 PROBE framework integration toolkit ............................................................. 211 

9.6.7 Application to other classes of software ecosystems ...................................... 211 

9.7 PUBLICATIONS BY THE AUTHOR ................................................................................... 212 

 

10 REFERENCES ........................................................................................................ 214 

 

11 APPENDIX ............................................................................................................ 227 

 



v 

List of Tables 

TABLE 1. GOVERNANCE SUPPORT SYSTEM DESIGN REQUIREMENTS AND QUALITY ATTRIBUTES ..................................... 59 

TABLE 2. DESCRIPTION OF PLATFORMENTITY CLASS (OWL MANCHESTER SYNTAX) .................................................. 87 

TABLE 3. DESCRIPTION OF HASDEPENDENCY OBJECT PROPERTY ............................................................................ 88 

TABLE 4. DESCRIPTION OF HASSIZEINKB DATA PROPERTY .................................................................................... 88 

TABLE 5. DESCRIPTION OF _SOAPSERVICE INDIVIDUAL ...................................................................................... 89 

TABLE 6. DESCRIPTION OF SOAPSERVICE CLASS ................................................................................................ 90 

TABLE 7. DESCRIPTION OF CONFLICTINGDEPENDENCYSOLUTION CLASS MEMBERSHIP CONDITIONS VIA A SWRL RULE ..... 90 

TABLE 8. DESCRIPTION OF APPSCREENSHOT ARTEFACT CLASS ............................................................................... 94 

TABLE 9. DESCRIPTION OF POSITIVE-FORM POLICY VALIDAPPSCREENSHOT (DEFINED CLASS)....................................... 95 

TABLE 10. DESCRIPTION OF NEGATIVE-FORM POLICY INVALIDAPPSCREENSHOT (PRIMITIVE CLASS) .............................. 96 

TABLE 11. DESCRIPTION OF NEGATIVE-FORM POLICY INVALIDDESCRIPTION (DEFINED CLASS) ...................................... 98 

TABLE 12. DESCRIPTION OF APPINREVIEW STAGE ............................................................................................ 100 

TABLE 13. DESCRIPTION OF POSITIVE-FORM POLICY FOR APPPROMOTABLETOBETA TRANSITION (DEFINED CLASS) ........ 101 

TABLE 14. DESCRIPTION OF COLLECTIONOFVALIDAPPARTEFACTS ....................................................................... 102 

TABLE 15. DESCRIPTION OF APPARTEFACTSFORTRANSITIONTOBETA .................................................................. 103 

TABLE 16. DESCRIPTION OF NEGATIVE-FORM POLICY FOR APPNONPROMOTABLETOBETA TRANSITION....................... 103 

TABLE 17. DESCRIPTION OF NEGATIVE-FORM POLICY APPNONPROMOTABLETOENDOFLIFE ..................................... 104 

TABLE 18. DESCRIPTION OF APPINDEPRECATION ............................................................................................. 105 

TABLE 19. DESCRIPTION OF APPWITHDEPENDENTSINOPERATION CLASS MEMBERSHIP CONDITIONS VIA A SWRL RULE . 105 

TABLE 20. EXCERPT FROM TRANSLATION SERVICE INTERFACE DESCRIPTION (CAST PLATFORM WSDL ARTEFACT) ......... 118 

TABLE 21. RAW RDF TRIPLES EXTRACTED FROM TRANSLATION SERVICE WSDL ARTEFACT ....................................... 119 

TABLE 22. SPARQL QUERY TO RETRIEVE RDF DESCRIPTION OF TRANSLATION SERVICE INTERFACE ............................. 120 

TABLE 23. RDF DESCRIPTION OF TRANSLATION SERVICE INTERFACE ENCODED IN TURTLE SYNTAX .............................. 120 

TABLE 24. DESCRIPTION OF TRANSLATION SERVICE INTERFACE (TURTLE SYNTAX) .................................................... 133 

TABLE 25. DEFINITION OF VALIDSERVICEINTERFACE POLICY (MANCHESTER SYNTAX) .............................................. 134 

TABLE 26. DEFINITION OF SERVICEINTERFACE ARTEFACT CLASS ........................................................................... 134 

TABLE 27. DESCRIPTION OF TRANSLATION SERVICE INTERFACE AS OWL INDIVIDUAL (MANCHESTER SYNTAX) .............. 134 

TABLE 28. DESCRIPTION OF TRANSLATION SERVICE ENDPOINT-001 AND ENDPOINT-002 AS OWL INDIVIDUALS ........... 135 

TABLE 29. ABSTRACT DESCRIPTION OF LOCAL CLOSURE GENERATION ALGORITHM................................................... 140 

TABLE 30. DESCRIPTION OF TRANSLATION SERVICE INTERFACE AS OWL INDIVIDUAL (MANCHESTER SYNTAX) .............. 140 

TABLE 31. DESCRIPTION OF TRANSLATION SERVICE ENDPOINT-001 AND ENDPOINT-002 AS OWL INDIVIDUALS ........... 140 

TABLE 32. IMAGES.XML .............................................................................................................................. 158 

TABLE 33. EXCERPT FROM IMAGEPOLICY.JAVA ................................................................................................ 159 

TABLE 34. EXCERPT FROM IMAGEVALIDATOR.JAVA .......................................................................................... 161 

TABLE 35. EXCERPT FROM SERVICEINTERFACEVALIDATOR.JAVA .......................................................................... 162 

TABLE 36. EXCERPT FROM SOLUTIONLIFECYCLE.XML ........................................................................................ 164 

TABLE 37. EXCERPT FROM SERVICE INTERFACE DESCRIPTION ARTEFACT (WSDL) .................................................... 166 

TABLE 38. PRICING DEFINITION ARTEFACT (XML) ............................................................................................ 166 

TABLE 39. DEFINITION OF POSITIVE-FORM POLICY VALIDAPPSCREENSHOT (DEFINED CLASS) ..................................... 173 

TABLE 40. DEFINITION OF POSITIVE-FORM POLICY FOR THE TRANSITION OF A CAST SOLUTION TO THE REVIEW STAGE ... 174 

TABLE 41. DEFINITION OF COLLECTIONOFVALIDSOLUTIONARTEFACTS ................................................................. 175 

TABLE 42. DEFINITION OF SOLUTIONARTEFACTSFORTRANSITIONTOREVIEW ......................................................... 175 

TABLE 43. DEFINITION OF SOLUTIONARTEFACTSFORTRANSITIONTOTESTING ........................................................ 176 

TABLE 44. DEFINITION OF PLATFORMENTITYINPRODUCTION ............................................................................. 176 

TABLE 45. DESCRIPTION OF APP SCREENSHOT RESOURCE (SCREENSHOT-732.JPG) METADATA IN RDF TRIPLES ............ 177 

TABLE 46. SPARQL QUERY TO RETRIEVE DESCRIPTION OF APP SCREENSHOT RESOURCE (SCREENSHOT-732.JPG) .......... 178 

TABLE 47. EXAMPLE DESCRIPTION OF APP SCREENSHOT RESOURCE (SCREENSHOT-732.JPG) ..................................... 178 



vi 

TABLE 48. ANALYSIS OF CHANGE SCENARIO 1 ................................................................................................. 183 

TABLE 49. ANALYSIS OF CHANGE SCENARIO 2 ................................................................................................. 185 

TABLE 50. ANALYSIS OF CHANGE SCENARIO 3 ................................................................................................. 186 

TABLE 51. ANALYSIS OF CHANGE SCENARIO 4 ................................................................................................. 187 

TABLE 52. COMPARISON OF DESIGN APPROACHES BASED ON CHANGE SCENARIOS .................................................. 189 

TABLE 53. SUMMARY OF RESEARCH RESULTS .................................................................................................. 205 

TABLE 54. SUMMARY OF RELATED PUBLICATIONS BY THE AUTHOR ....................................................................... 213 

TABLE 55. EXCERPTS FROM THE IMPLEMENTATION OF SOLUTIONLCM.JAVA IN CAST REGISTRY & REPOSITORY SYSTEM229 

 

  



vii 

List of Figures 

FIGURE 1. SEPARATION OF RESPONSIBILITIES IN CLOUD COMPUTING SERVICE MODELS. ADAPTED FROM [34]. ............... 15 

FIGURE 2. TYPOLOGY OF PLATFORM EXTENSION MODELS. ADAPTED FROM [43]. ..................................................... 18 

FIGURE 3. SCENARIO OF QUALITY REVIEW IN A PRIVATE PAAS ENVIRONMENT .......................................................... 42 

FIGURE 4. SCENARIO OF REGULATORY COMPLIANCE AUDITS OF CLOUD APPLICATIONS ............................................... 44 

FIGURE 5. SCENARIO OF LIFECYCLE MANAGEMENT AND QUALITY CONTROL IN A CLOUD SERVICE ECOSYSTEM .................. 45 

FIGURE 6. SCENARIO OF EXTERNAL AUDITING OF CLOUD SERVICE PROVIDERS ........................................................... 47 

FIGURE 7. SCENARIO OF POLICY-BASED GOVERNANCE BY A CLOUD SERVICE BROKER .................................................. 49 

FIGURE 8. OVERVIEW OF PROBE FRAMEWORK ARCHITECTURE FOR GOVERNANCE SUPPORT SYSTEMS .......................... 78 

FIGURE 9. EXCERPT FROM GOVERNANCE ONTOLOGY CLASS HIERARCHY .................................................................. 87 

FIGURE 10. CLASS HIERARCHY IN POLICY ENCODING PATTERN FOR THE VALIDATION OF APPSCREENSHOT RESOURCES ...... 94 

FIGURE 11. CLASS HIERARCHY IN POLICY ENCODING PATTERN FOR THE VALIDATION OF DESCRIPTION RESOURCES ........... 97 

FIGURE 12. CAST MODEL OF SEVEN LIFECYCLE STAGES OF SOFTWARE UNITS ........................................................... 99 

FIGURE 13. POLICY ENCODING PATTERN TO GOVERN THE PROMOTION OF AN APP FROM REVIEW TO BETA .................. 100 

FIGURE 14. POLICY ENCODING PATTERN TO GOVERN THE PROMOTION OF AN APP TO END-OF-LIFE. .......................... 104 

FIGURE 15. EXAMPLE RDF GRAPH. ............................................................................................................... 117 

FIGURE 16. LINKED DATA PUBLISHING OPTIONS AND WORKFLOWS. ADAPTED FROM [19]. ...................................... 122 

FIGURE 17. EXAMPLE MAPPING OF PLATFORM CONSTRUCTS TO ECOSYSTEM PARTNERS ........................................... 149 

FIGURE 18. ARTEFACT ORGANISATION IN CAST REGISTRY & REPOSITORY SYSTEM ................................................. 165 

FIGURE 19. ARTEFACT VALIDATION INTERFACE ................................................................................................ 169 

FIGURE 20. LIFECYCLE MANAGEMENT INTERFACE ............................................................................................. 170 

 

 

  



viii 

 

 

 

 

 

 

 

 

 

 

Το κυβερνάν εστί προβλέπειν. 

 

To govern is to foresee. 

 

 

(Alcibiades, 450-404 BC) 

 

  



1 

 

 

 

 

 

 

Chapter 1 

 

Introduction 



2 

1 Introduction  

1.1 Motivation 

The model of cloud computing represents an evolutionary step for human technology 

analogous to the one that marked the transition from the era of mainframe computing to 

personal computing [1]. Cloud computing is a transformational force, acting as a 

catalyst to accelerate developments in a wide range of scientific and industrial fields. 

One such field is the development of software applications which is now increasingly 

happening on the cloud.  

Platform as a Service (PaaS) is a cloud computing service model that the software 

industry is adopting at a rapid pace [2]. Cloud application development platforms 

following the PaaS model have introduced a profoundly different and more efficient 

way for software creators to develop and deliver web applications.  

A key benefit of such platforms for application developers is removing the burden of 

acquiring, setting up and maintaining their own infrastructure to deliver software over 

the Internet. Another key benefit is that every cloud application platform includes an 

array of pre-built application development components or developer services in the 

form of application programming interfaces (APIs) which offer reusable solutions to 

recurring problems in application development, so that the time and effort to develop a 

new piece of software can be greatly reduced [3]. 

Increasingly, cloud application development platforms follow an open extensible 

architecture which allows independent third-parties to extend the capabilities of the 

platform and its array of reusable building blocks with their own add-ons. Third-party 

extensions add significant value to a platform as they offer more tools and options to the 

software developers who use the platform to create end-user applications, giving them 

more solutions for routine tasks or providing them with highly specialised capabilities 

that would otherwise be challenging or impossible to develop from the ground up.  

This model of collaboration between different kinds of software creators which is now 

made possible by cloud application platforms represents a novel form of software 

product co-development. The owner and operator of the cloud application platform 

plays a central coordination role, facilitating and promoting collaboration between all 

partners. In short, as observed by Hanssen and Dyba [4], software engineering is 

becoming an open process in a complex distributed environment.  

Software platforms which facilitate co-development relationships of this form foster 

the creation of environments best characterised as software ecosystems [3].  

Jansen, Finkelstein and Brinkkemper [5] define a software ecosystem as: “a set of 

businesses functioning as a unit and interacting with a shared market for software and 



3 

services, together with the relationships among them. These relationships are 

frequently underpinned by a common technological platform or market and operate 

through the exchange of information, resources and artifacts.”  

The three primary roles in a cloud service ecosystem are: (i) the keystone partner who 

typically owns the cloud application platform and controls its evolution, (ii) the 

third-party organisations that use the platform to create user-facing apps or developer 

extensions, and (iii) the end consumers of apps which are offered by third-parties or by 

the keystone organisation itself.  

The value of an ecosystem for everyone involved increases exponentially with (a) more 

users and (b) more complementary services built around the platform [6]. But in 

software, growing in size and diversity is at odds with reliability. The cause of this 

tension is complexity; a property that emerges as an inevitable side-effect of growth 

and which is known to be inversely related to software reliability [7],[8].  

Managing this complexity is the key to maintaining the reliability of the services that 

the ecosystem delivers, and ultimately, to maintaining and increasing the ecosystem’s 

value. To manage complexity, ecosystem partners need to be able to exercise control 

over developments in the ecosystem that may affect them, such as the introduction of a 

new service, a change to the characteristics of an existing service, or a change to how a 

set of services is assembled. This is a challenge of governance. 

From an organisational viewpoint the challenge of governance lies in establishing an 

effective and efficient structure for direction-setting and policy-making in the 

organisation. From a technological viewpoint, the challenge lies in providing effective 

and efficient tool support to the relevant actors in the organisation such that governance 

policies can be enforced throughout the lifecycle of the relevant ecosystem resources.  

The majority of academics that have so far been writing on subjects related to IT 

governance have a background in management science or information systems and tend 

to focus on the first viewpoint, i.e. on how governance decisions can be made in an 

organisation [9]. In this work we focus on the latter viewpoint, placing emphasis on the 

policy-driven control mechanisms that are necessary to operationalise those 

governance decisions. Our focus is on how to create software systems that support 

policy-driven governance.  

The importance of policy-driven governance to control the provision and consumption 

of cloud services in a software ecosystem is increasingly receiving more attention. 

From the viewpoint of the ecosystem coordinator, governance is about ensuring that the 

introduction of new apps and developer services – or the modification of existing ones 

– will not create a negative impact on the platform’s stability and reliability. From the 

viewpoint of ecosystem participants (third-party developers and end-users) governance 

is about ensuring that the services they consume or deliver operate as they should, and 

that they satisfy all relevant requirements on a continuous basis.  



4 

The body of literature on the subject of software ecosystem governance has so far 

focused on governance of the software platform and the ecosystem at large from the 

viewpoint of the keystone partner. However as cloud service ecosystems mature the 

role of the keystone partner evolves to include a new type of capability. The platform 

owner becomes an intermediary to help other ecosystem partners fulfil their individual 

governance requirements – from the viewpoint of consuming and delivering ecosystem 

services [10]. Governance becomes an intermediated process involving several 

distributed actors who assume different types of roles.  

This phenomenon is accelerated in cloud service environments of high complexity and 

is more pronounced in ecosystems involving cloud service brokers who intermediate 

the consumption and delivery of cloud services [11], [10], [12], [13]. For these reasons, 

our definition of governance extends beyond the notion of platform governance from 

the single viewpoint of the ecosystem coordinator, to incorporate the governance 

viewpoints and requirements of all participants in the ecosystem.  

However, examining the state-of-the-art governance technology platforms which are 

available to the software industry today reveals a gap between the type of requirements 

these platforms were originally designed to meet and the type of needs emerging to 

support governance in this new context. The architecture approach adopted by 

contemporary governance technology platforms embodies certain characteristics which 

represent critical limitations in relation to governance in cloud service ecosystems.  

The root of the problem can be traced in the way these platforms allow governance 

policies to be defined and evaluated. The policy representation, data extraction logic 

and policy evaluation logic are typically entangled in the implementation of a single 

software component which is coded in some imperative (procedural) programming 

language.  

As this dissertation will demonstrate, this represents the strongest form of coupling 

between three functions that should be kept separate. The consequence is that such 

systems cannot accommodate usage scenarios where several ecosystem partners need 

to take part in the governance process. In other words, governance support systems 

built on these platforms cannot support governance processes where the actor providing 

a policy may be different from the actor evaluating the policy, or where the latter may 

be different from the actor providing the data against which a governance policy needs 

to be checked.  

The fact that governance policies, governed resources, and policy evaluation are 

strongly coupled does not simply make it more difficult for the related stakeholders to 

manage their governance functions; it also makes it impossible for them to make 

internal changes and evolve, without creating ripple effects that influence other 

ecosystem partners.  



5 

To enable governance in a continuously evolving cloud service ecosystem we need 

governance support systems that achieve adequate separation of concerns between the 

roles of the policy provider, the governed resource data provider and the policy 

evaluator. Decoupling governance policies, governed resources, and policy evaluation 

engines allows the associated ecosystem partners to manage their internal governance 

processes in a more efficient way while they cooperate and coevolve with the rest of the 

ecosystem.  

This calls for better modularisation of the governance support system architecture, 

allowing decoupling governance policies from policy evaluation engines and governed 

resources. It also calls for an improved approach to policy engineering that not only 

enables more automation in policy management but most fundamentally facilitates 

interoperability and efficient exchange of governance policies and related data between 

ecosystem partners. The question then arises: How can these goals be achieved? How 

should governance support system architectures evolve to be able to meet such 

requirements? What would be a good basis to build on, to achieve this evolution?  

As discussed later in this dissertation, this is a problem domain where ontology-driven 

information systems engineering, ontology-based policy modelling, Semantic Web 

technologies [14] and Linked Data principles [15] have been successfully applied in the 

past.  

Uschold [16] cites six important benefits which result from the increased level of 

abstraction and the use of logic in ontology-driven information systems: reduced 

conceptual gap, increased automation, reduced development times, increased 

reliability, increased agility and decreased maintenance costs.  

On the benefits of applying Semantic Web technologies to policy engineering Tonti et 

al. [17] highlight reduced human error, simplified policy analysis, reduced policy 

conflicts, and increased interoperability, while Uszok et al. [18] emphasise reusability, 

extensibility, verifiability, safety, and automated reasoning.  

Linked Data principles on the other hand provide the key benefit of efficient integrated 

access to data from distributed and heterogeneous data sources [15], raising data 

interoperability to an entirely new level. As noted by Heath and Bizer [19], the premise 

underlying Linked Data is that “just as the World Wide Web has revolutionised the way 

we connect and consume documents, so can it revolutionise the way we discover, 

access, integrate and use data” [19]. 

The view that this research puts forward is that the basis for achieving an evolutionary 

step in the design of governance support systems for software ecosystems can be 

provided by a new approach to the definition and enforcement of governance policies in 

which Semantic Web technologies, Linked Data principles, and knowledge 

representation and reasoning will have a central role.  



6 

1.2 Research aims and objectives 

The aim of the research presented in this dissertation has been to investigate the 

feasibility and usefulness of a new software framework which integrates Semantic Web 

technologies and Linked Data principles to meet the advanced governance 

requirements posed by cloud service ecosystems. In the chapters to follow we refer to 

this framework as PROBE (policy-driven governance in cloud service ecosystems).  

The intermediate objectives to achieve the aim of the research can be summarised as 

follows: 

 Analyse an industrial cloud service ecosystem case study and other relevant 

examples, survey the literature in software ecosystem governance and develop a 

working definition for the concept of governance in cloud service ecosystems.  

 Develop a model of design requirements and software architecture quality 

attributes for governance support systems which reflects the needs of 

governance processes in cloud service ecosystems.  

 Survey state of the art service governance technology and known applications 

in cloud service environments to identify limitations and dimensions of required 

enhancements with respect to the previously derived requirements model.  

 Define a conceptual framework to help software engineers develop governance 

support systems capable of meeting the specific requirements of cloud service 

ecosystems, by integrating Semantic Web and Linked Data technologies.  

 Survey policy ontologies and experiment with alternative ontology modelling 

approaches based on an industrial cloud service ecosystem case study, to 

develop an ontology serving as shared governance policy vocabulary.  

 Experiment with alternative ontology-based policy modelling approaches, 

develop a method for policy definition and policy checking utilising the 

previous case study, and implement a prototype policy evaluation engine.  

 Develop guidelines for producing or automatically generating descriptions of 

governed ecosystem resources which are based on the same ontology 

vocabulary and can be automatically verified against ontology-based policies.  

 Validate the completeness of the developed methods and the implemented 

prototype by applying them on the governance policies derived from the 

industrial cloud service ecosystem case study.  

 Assess the relative advantages and disadvantages of the new framework by 

comparing it to a solution achievable with a state-of-the-art governance 

platform, using the same industrial cloud service ecosystem case study.  



7 

1.3 Research results 

In fulfilment of the objectives listed above this research work delivered the following 

results:  

1. Framing requirements thinking for governance support systems used in cloud 

service ecosystems in terms of the individual viewpoints of the different types 

of roles who participate in the governance process. This includes 

conceptualising the need to decouple governance policies, governed resource 

data and policy evaluation engines, so as to facilitate separation of concerns 

between the different governance process roles and to allow ecosystem partners 

to cooperate and coevolve in an agile manner.  

2. Defining PROBE as a new conceptual framework integrating Semantic Web 

technologies and Linked Data principles to help develop governance support 

systems that meet the advanced requirements of cloud service ecosystems.  

3. Demonstrating the feasibility of the PROBE framework by developing a 

concrete instantiation of its components using an industrial cloud service 

ecosystem case study as source of requirements and use cases. This contribution 

is delivered through the following individual results:  

a. Developing a governance ontology serving as shared conceptual model 

between ecosystem partners to define policies and to describe governed 

resources in a way that is abstract, amenable to automated analysis and 

interoperable.  

b. Developing a method for ontology-based definition of governance 

policies including policy modelling patterns for different types of 

governance policies and different forms of policy expression.  

c. Developing guidelines for the creation of structured, interoperable and 

highly reusable ontology-based descriptions of governed resources, and 

sharing them among ecosystem partners with Web standards.  

d. Developing a prototype of a generic logic-based policy evaluation 

engine which allows distributed policy evaluators to check policies 

against governed resource data without requiring any customisation.  

4. Demonstrating the usefulness of the PROBE framework through a comparison 

to the type of solutions afforded by state-of-the-art governance technology 

platforms and a side-by-side assessment using the same cloud service 

ecosystem case study.  



8 

1.4 Dissertation outline 

Chapter 2 – ‘Cloud service ecosystems and governance support systems’ presents the 

background to this research work. It provides an introduction to the paradigm of cloud 

computing and the different cloud service models available today with a focus on cloud 

application development platforms. A discussion on the different types of software 

co-development models afforded by cloud application platforms leads to introducing 

cloud service ecosystems as a special class of software ecosystems. It also leads to 

discussing how the complexity of software ecosystems gives rise to governance as a 

critical requirement. The theme of governance is introduced through alternative 

viewpoints, followed by our own definition of governance in cloud service ecosystems 

and a survey of the most relevant research.  

Chapter 3 – ‘Governance in cloud service ecosystems: key requirements’ lays the 

groundwork for requirements thinking on the challenge of governance in cloud service 

ecosystems. It provides an analysis of the distinct roles and individual concerns for 

different ecosystem actors who may be stakeholders in governance processes. To help 

outline how these roles function and to illustrate their different types of concerns in full 

variance, the chapter opens with five exemplifying scenarios. An analysis follows of 

the implications emerging for the design of governance support systems for cloud 

service ecosystems, highlighting the need for separation of concerns between the roles 

and interfaces of the policy provider, the governed resource data provider and the 

policy evaluator. The chapter concludes with summarising the design principles and 

architecture quality attributes for governance support systems based on the 

requirements of different governance process roles.  

Chapter 4 – ‘A new foundation for governance support systems’ introduces the thesis 

supported by the research work and this dissertation. The chapter opens with an 

analysis of how policy-based governance is facilitated by contemporary governance 

support systems, based on a study of two commercial governance technology platforms 

which are also open-source. Their limitations with respect to the requirements analysed 

in the previous chapter are highlighted and dimensions of required changes are 

identified. The chapter continues with introducing logic-based knowledge 

representation and reasoning, ontology modelling, Semantic Web technologies and 

ontology-driven information systems engineering as the foundation for a new approach 

to the development of governance support systems. This leads to presenting the thesis 

statement: Governance support systems that satisfy the evolved governance 

requirements of cloud service ecosystems are both feasible and useful to develop with 

an architecture framework that integrates Semantic Web technologies and Linked Data 

principles. The chapter concludes with presenting the conceptual architecture 

framework of PROBE (policy-driven governance in cloud service ecosystems). 

Chapter 5 – ‘Defining governance policies’ presents the instantiation of the first two 

components of the PROBE framework as introduced in chapter 4. The first component 



9 

is a governance ontology encoded in OWL-DL [20] which serves as shared vocabulary 

between ecosystem partners for policy definition and data description. The second 

component is a method for the definition of governance policies by different ecosystem 

partners, based on the shared governance ontology. Process and resource governance 

policies are formulated in either positive or negative form and encoded as OWL class 

axioms and SWRL [21] rules. Policy examples from project CAST [3], [22], an 

industrial case study on cloud service ecosystem governance, are utilised as use cases. 

The chapter concludes with relevant work on ontology-based policy representation and 

related semantic technologies.  

Chapter 6 – ‘Describing governed resources’ discusses the instantiation of the third 

component of the PROBE framework as introduced in chapter 4: methods to create 

RDF [20] descriptions of governed resources and to share them between ecosystem 

partners. An approach is described that combines transformation mappings of native 

data representations against the governance ontology, dynamic on-demand generation 

of RDF triples and SPARQL-based access [23]. Governed resource examples from 

project CAST are again utilised as use cases. The chapter concludes with design 

guidelines for setting up a Linked Data provision and sharing architecture and a review 

of related work on enabling technologies.  

Chapter 7 – ‘Evaluating governance policies’ presents the instantiation of the final 

remaining PROBE framework component: a mechanism to evaluate governed resource 

descriptions against governance policies when both have been defined and described on 

the basis of a shared governance ontology. The background to OWL-based data 

validation and alternative computation approaches to the problem of policy evaluation 

are discussed. A method and prototype implementation is described which allows 

overcoming the challenges presented by certain characteristics in the default language 

semantics of OWL to enable automated policy evaluation reasoning. Examples from 

project CAST are again utilised as use cases. The chapter concludes with relevant work 

on formulation of constraints and automatic validation of data.  

Chapter 8 – ‘Comparative case study’ presents a comparative assessment of alternative 

governance support system architectures which demonstrates the advantages of the 

PROBE framework over the solutions afforded by state-of-the-art governance support 

systems. The first design approach described is the one that project CAST originally 

adopted to develop the governance support system for the CAST cloud application 

platform. The second approach is the one proposed by the PROBE framework as 

described in chapters 5, 6 and 7. The two approaches are compared based on the same 

case study: the governance policies of project CAST. They are then examined from the 

perspective of the different roles involved in the ecosystem governance process and 

change-scenarios are used to evaluate how each approach supports evolvability and 

manageability of the governance process. This assessment demonstrates the usefulness 

of implementing the PROBE framework in a complex industrial setting and highlights 

the framework’s strengths. 



10 

Chapter 9 – ‘Conclusions’ is the final chapter which brings the dissertation to a close by 

returning to the aims and objectives of this research work. The chapter provides an 

overview of the research carried out and the key contributions achieved. It discusses 

significance of the results and closes with a description of limitations and directions for 

further research.  

  



11 

 

 

 

 

 

 

Chapter 2 

 

Cloud service ecosystems and 

governance support systems  



12 

2 Cloud service ecosystems and governance support 

systems 

2.1 Introduction 

In this chapter we present the background and wider context to the research work in this 

dissertation. We start with an introduction to cloud computing and cloud service 

models and focus on the type of cloud application development platforms which are 

often referred to as Platform as a Service offerings.  

We then discuss the model of software co-development in the context of cloud 

application platforms as a significant transformational force in the cloud services 

market. Following, we provide background to the concept of software ecosystems and 

discuss cloud service ecosystems as a manifestation of software ecosystems in the 

context of cloud services.  

The next section discusses the challenge of governance in cloud service ecosystems. 

We start with disambiguating governance as a term, discussing different definitions and 

viewpoints. We then survey relevant research under the theme of software ecosystem 

governance and develop our own working definition of cloud service ecosystem 

governance.  

Finally, we discuss governance support systems. We discuss examples of governance 

control mechanisms from different software ecosystems. We explain how governance 

support systems have historically evolved and provide an overview of capabilities and 

characteristics of commercial solutions for governance support in service-oriented 

architectures. Finally, we discuss the suitability of such systems for applications in 

governance of cloud service ecosystems.  

2.2 Cloud services 

2.2.1 The paradigm of cloud computing 

The term cloud computing refers to the concept of remote provisioning of pooled 

computing resources which are made available over a network, in a dynamic, 

on-demand and scalable fashion, and whose consumption is metered to enable 

usage-based billing. This notion is a departure from the established paradigm of 

computing where consumers of computing resources, ranging from single users to 

entire organisations, are required to buy and maintain their own hardware and software 

in order to have computing capabilities at their disposal.  



13 

Cloud computing can be seen as a move towards fulfilling the vision of utility 

computing, i.e. a vision of a future where computing resources will be provisioned and 

consumed as public utilities like electricity or telephony [24]. This vision is certainly 

not new, as it can be traced back to the 1960s when John McCarthy [25] and Douglas 

Parkhill [26] pioneered the idea. What makes it seem possible to achieve at this point in 

time is the level of maturity that Internet and Web technology have reached over the 

past two decades. The term cloud computing itself, was inspired from the cloud figure 

that is frequently used to represent the Internet in contemporary telecommunication and 

software system diagrams [27].  

The first spoken reference to the term “cloud computing” in the modern sense was by 

Eric Schmidt, Google CEO in August 2006: “It starts with the premise that the data 

services and architecture should be on servers. We call it cloud computing—they 

should be in a ‘cloud’ somewhere.” [28]. A few weeks later Amazon announced their 

Elastic Compute Cloud (EC2) offering and the term found widespread adoption.   

Adoption of cloud computing has been advancing rapidly. It is universally recognised 

as a model with tremendous potential for technological and business innovation and has 

become subject of intense debates with proponents and critics. Despite the hype that 

surrounds the topic for several years now [29],[30] cloud computing is not an 

ephemeral concept. The arrival of cloud computing signals a new era in computing and 

represents an evolutionary step analogous to the one that marked the transition from the 

era of mainframe computing to personal computing [1].  

2.2.2 Cloud computing service models  

A number of definitions for cloud computing have been proposed, with each placing 

emphasis on different aspects of the concept [29],[31]. Despite the differences, there 

appears to be general consensus regarding the range of cloud computing service 

models. Most commonly, cloud computing services are classified under the models of 

Software as a Service (SaaS), Infrastructure as a Service (IaaS), or Platform as a 

Service (PaaS) [32] although boundaries between the last two models are increasingly 

blurring in state-of-the-art cloud service offerings.  

Software as a Service (SaaS) 

Software as a Service (SaaS) refers to the concept of making software 

applications accessible in an on-demand fashion, typically through a thin client 

running inside a Web browser, and under a pay-as-you-go subscription fee (e.g. 

paid on a monthly or yearly basis). This model is a departure from the 

established practice of making software applications available as-a-product, i.e. 

in a form which requires distribution and on-premise installation and 

maintenance by the user. At the same time, it represents an evolved version of 

the ASP (Application Service Provider) model for Internet-based application 

delivery which was popularised during the 1990s. In contrast to the ASP model, 



14 

which involved maintaining a separate copy and running instance of an 

application for each of the provider’s client organisations, the SaaS model 

presupposes a single-instance/multi-tenant application architecture, which 

allows serving multiple client organisations with a shared application codebase 

and shared application runtime environment.  

Infrastructure as a Service (IaaS) 

In an analogy to the SaaS model, Infrastructure as a Service (IaaS) refers to the 

notion of providing on-demand access to computing infrastructure, over the 

Internet or some private network, while metering the usage of computing 

resources and charging the corresponding service fees. The infrastructure being 

provisioned can be raw computing infrastructure (data storage, processing and 

networking capacity), server software infrastructure (operating systems, 

database management systems and Web application servers), or a combination 

of both.  

Platform as a Service (PaaS) 

Platform as a Service (PaaS) refers to the concept of combining a particular 

computing infrastructure and server software stack which can be accessed over 

some network, with a stack of software tools and services that enable software 

developers to create software applications and deploy them on the platform.  

The deployed applications can be subsequently consumed by end-users in an 

on-demand fashion. The platform assumes the responsibility to monitor the 

usage of every application and to allocate infrastructure resources as 

appropriate to meet usage demand. Often, the platform owner is compensated 

by the application developer for the amount of infrastructure resources that an 

application consumes for as long it is being used. However in the case of 

commercial applications the platform’s compensation may also be in the form 

of revenue sharing from application subscriptions.  

Offerings following the PaaS model are primarily focusing on two target 

groups. The first group is Independent Software Vendors (ISVs), i.e. companies 

who are looking to create and market on-demand Web applications addressable 

to large numbers of potential customers in niche domains. The second group is 

internal IT teams, looking to create solutions for specific needs of users within 

their own organisations [33].  

For both groups, using a PaaS offering generally shifts a significant share of the 

concerns associated with developing, maintaining and provisioning on-demand 

software to the platform provider’s end. This allows developers to focus on the 

functionality of their applications, rather than the functionality of the 

infrastructure that would be required to make those applications available.  



15 

The separation of responsibilities between cloud service provider and cloud service 

subscribers in different cloud service models is illustrated in the figure below by Yung 

Chou [34].  

 

Figure 1. Separation of responsibilities in cloud computing service models. Adapted from [34]. 

In the following sections we will focus on the co-development possibilities and 

ecosystem creation potential presented by cloud application development platforms 

which fall under the definition of the PaaS service model. We will be using the terms 

‘cloud application development platform’ and ‘cloud application platform’ 

interchangeably.  

2.2.3 Cloud application platforms 

The benefits that application developers can gain by adopting a PaaS offering depend 

on the characteristics of the particular platform. In broad terms, cloud application 

development platforms which are delivered as PaaS offerings could be classified as 

platforms with domain-agnostic or domain-specific orientation.  

Domain-agnostic orientation  

Cloud application platforms that provide a computing infrastructure and server 

software stack for the development and delivery of Web-based applications 

using a particular programming language or framework (e.g. Java, Python, 

.NET, Ruby), independently of any specific application domain. Examples 

include Google App Engine
2
, Microsoft Azure

3
 and Heroku

4
.  

                                                 
2
 https://cloud.google.com/appengine/ 

3
 https://azure.microsoft.com/ 



16 

Domain-specific orientation 

Cloud application platforms that provide analogous facilities for the 

development and execution of applications as above, but additionally include 

components and application programming interfaces (APIs) specialised to a 

specific domain. Examples of such platforms include SAP YaaS
5

 for 

ecommerce, Force.com
6

 for customer relationship management, Intuit 

Developer
7
 for accounting and Zoho Creator

8
 for situational applications.  

A fundamental benefit that both types of platforms bring to application developers is 

removing the burden of acquiring, setting up, and maintaining their own infrastructure 

for provisioning software over the Internet. The cost of hardware, software and 

networking bandwidth, but also the effort of performing installations, regular backups, 

emergency upgrades, or any other form of maintenance to the infrastructure, are 

concerns of the platform provider.  

Another fundamental benefit is that every platform includes an array of pre-built 

components or services which offer reusable solutions to recurring problems in Web 

applications engineering, so that the time and effort to develop a new application can be 

reduced.  

Increasingly, cloud application platforms follow an architecture which allows 

third-parties to enrich the set of reusable development building blocks offered by the 

platform provider with their own add-ons. In this way, cloud application developers can 

be relieved from many tasks which are either routine in Web application development 

(such as implementing a mechanism for database access or user authentication), or are 

highly specialised and particularly challenging (such as implementing a mechanism for 

load balancing). Each cloud services platform provides an array of built-in or 

third-party components that address aspects like these; developers need only be 

concerned with constructing their applications such that they are compatible with the 

platform, and able to leverage those mechanisms. Examples include Heroku Add-ons 

listed on Heroku Elements Marketplace
9
 or YaaS Packages listed on YaaS Market

10
.  

Lastly, another important benefit of cloud application platforms specifically for 

developers of commercial applications (ISVs) is that they make it easier for 

applications to be marketed and distributed to potential users. This is achieved by 

means of app stores or app marketplaces [35]; a concept recently popularised by 

mobile apps. Cloud app stores/marketplaces are operated by the same company that 

offers the cloud application platform and provide listings and descriptions of 

                                                                                                                                            
4
 https://www.heroku.com/ 

5
 https://www.yaas.io/ 

6
 https://www.salesforce.com/products/platform/products/force/ 

7
 https://developer.intuit.com/ 

8
 https://www.zoho.com/creator/ 

9
 https://elements.heroku.com/ 

10
 https://market.yaas.io 



17 

third-party applications available for end-users to purchase. Microsoft Azure 

Marketplace
11

, Salesforce AppExchange
12

, Zoho Marketplace
13

, Intuit QuickBooks 

App Store
14

, and Google Apps Marketplace
15

 are examples from the platforms already 

mentioned.   

2.3 Software ecosystems in the cloud 

2.3.1 Software co-development 

The above described new model of collaboration between creators of software that is 

made possible by cloud application platforms represents a novel form of software 

product co-development, which has been accelerated by all the recent advancements in 

cloud computing [3].  

Collaborative product development [36],[37] has been growing in importance over the 

past decades in various industry areas, and software co-development can be seen as a 

manifestation of this phenomenon in the field of software [3]. For many years, software 

companies have been practising the development of commercial software products in 

relative isolation from others in their industry [38]. At some point though, software 

vendors started realising the benefits of partnerships beyond the obvious model of 

software distribution, and started opening their products to co-development [39]. 

Initially it was large-scale software products, notably operating systems, that started to 

transform from single-vendor projects into joint platform efforts [40],[41] but 

co-development models quickly found applications in software of varying size and 

complexity. The previously “fixed” supply chain model of collaboration in the software 

industry has started giving way to new partnership approaches where large numbers of 

partners can add value to a co-development platform [42]. There can be advantages for 

everyone involved: reduced costs, improved focus, reduced complexity, quicker 

time-to-market and consequently improved economics [38]. 

In this new context of co-development the software platform owner performs a central 

coordination role to facilitate and promote collaboration. In some cases the software 

platform is open for all interested parties to contribute with their resources without any 

control by the platform owner. In other cases the platform is effectively closed, with the 

platform owner being in control of access levels and vetting the contributions made by 

third-parties.  

Software co-development models can manifest in different forms depending on the 

architecture of the software platform.  

                                                 
11

 https://azure.microsoft.com/marketplace/ 
12

 https://appexchange.salesforce.com/ 
13

 https://marketplace.zoho.com 
14

 https://apps.intuit.com/ 
15

 https://apps.google.com/marketplace 



18 

Basic co-development models 

The most elementary form of co-development is when software platforms are 

extended by new user-facing applications created by third-parties. Developers 

of such extensions are effectively contributors who add value to the platform by 

extending its capabilities. Mobile apps for Apple iOS and Android, or desktop 

browser extensions for Mozilla Firefox and Google Chrome are some obvious 

examples. In the context of cloud services, Google Apps for Work and 

Force.com are examples of platforms which encourage third-parties to extend 

their functionality with new user-facing apps.  

Advanced co-development models 

Software platforms which can be extended in more sophisticated ways facilitate 

more advanced forms of co-development. In addition to extending the 

platform’s capabilities via user-facing apps, some software platforms allow 

adding to the platform’s capabilities via reusable software building blocks or 

developer services. These are accessible through APIs that other developers can 

subsequently use in creating their own user-facing apps. In this setting 

contributors to the co-development platform can build on other contributors’ 

work. One relevant example from the cloud application platforms already 

mentioned is the YaaS (Hybris as a Service) ecommerce platform by SAP.  

Jansen and van Capelleveen [43] refer to these two different types of co-development 

models as “first-generation” and “second-generation” extension models. The 

difference between them is that in the second-generation extension model an extension 

can be “the consumer as well as the provider of resources and services” [43]. Second 

generation platform extension architectures allow extensions to interact and have 

dependency relations between them.  

 

Figure 2. Typology of platform extension models. Adapted from [43]. 



19 

Advanced models of platform extensibility and software co-development allow 

relationships to be formed not only between the platform owner and individual 

contributors, but most importantly, between contributors themselves. This gives rise to 

a richer model of many-to-many co-development relationships, as opposed to 

traditional one-to-one co-development collaboration [3]. In short, as observed by 

Hanssen and Dyba [4], software engineering is becoming an open process in a complex 

distributed environment. 

2.3.2 Software ecosystems 

Software platforms which facilitate co-development relationships between different 

partners in the industry foster the creation of environments best characterised as 

software ecosystems.  

The term was first introduced by Messerschmitt and Szyperski in 2003, who defined a 

software ecosystem as “a collection of software products that have some given degree 

of symbiotic relationships” [42]. Over the decade that followed the concept of software 

ecosystems became established as a new paradigm in software engineering, proposing 

“participative engineering across independent development organisations centred on a 

common technology” [44].  

The year of 2009 was a turning point for software ecosystems research as the field 

started showing signs of consolidation and different researchers who were 

independently working on the subject published alternative definitions of the term. 

Kittlaus and Clough defined a software ecosystem as “an informal network of (legally 

independent) units that have a positive influence on the economic success of a software 

product and benefit from it” [45]. Bosch and Bosch-Sijtsema defined a software 

ecosystem as consisting of “a software platform, a set of internal and external 

developers and a community of domain experts in service to a community of users that 

compose relevant solution elements to satisfy their needs” [46]. 

The definition which is most widely used in related literature [47] is the one by Jansen, 

Finkelstein and Brinkkemper [5] who define software ecosystem as:  

“a set of businesses functioning as a unit and interacting with a shared market 

for software and services, together with the relationships among them. These 

relationships are frequently underpinned by a common technological platform 

or market and operate through the exchange of information, resources and 

artifacts.” 

As observed by Jansen and Cusumano [48] software ecosystems are a relatively new 

concept but in essence they represent a subclass of business ecosystems as introduced 

in the 1990s by James F. Moore. In his book titled “The Death of Competition” [49] 

Moore defined business ecosystems as:  



20 

“An economic community supported by a foundation of interacting 

organizations and individuals: the organisms of the business world. This 

economic community produces goods and services of value to customers, who 

are themselves members of the ecosystem. The member organizations also 

include suppliers, lead producers, competitors, and other stakeholders. Over 

time, they coevolve their capabilities and roles, and tend to align themselves 

with the directions set by one or more central companies.” 

In a survey of the literature that contributes to the development of software ecosystems 

theory, Hanssen and Dyba [4] identify three primary roles in a software ecosystem.  

 Keystone: The organisation which acts as the “keystone” and coordinates the 

development of the common technological platform.  

 Third-parties: The third-party organisations that use the platform to develop 

solutions or services.  

 Users: The end-users of those solutions and services.  

Software ecosystem researchers use different terms for these roles. Rickmann et al. [50] 

use the terms “platform sponsor”, “complementors” and “customers” respectively, to 

describe the same notions as above. For the platform sponsor’s role Jansen and 

Cusumano use the term “ecosystem coordinator” [48], while van Angeren et al. refer to 

the same function as “ecosystem orchestrator” [51]. Iansiti and Levien [52] refer to 

complementors as “niche players” that deliver products for special niche markets while 

Eisenmann et al. [53] call them “supply side platform users”.  

In addition to these primary roles, various other entities may participate in the 

ecosystem in different capacities, such as standardisation and certification 

organisations, distributors, resellers, and several others [4].  

One of the defining characteristics of software ecosystems is the presence of indirect 

network effects. As defined by Scott Shane [54] “In markets with indirect network 

effects, the value of any component does not depend directly on the number of other 

users of that component (hence the terminology), but rather on the availability of 

complementary and compatible components. For example, a PC is more valuable as 

the set of available software for that PC grows.” 

2.3.3 Cloud service ecosystems  

By extension, we can recognise the same characteristics of business ecosystems and 

software ecosystems in environments where the “common technological platform”, 

according to Jansen’s definition [5] is a cloud application platform. In the rest of this 

dissertation we will be referring to this special class of software ecosystems as cloud 

service ecosystems.  



21 

Unlike an ecosystem where the common technological platform is restricted to the 

technology with which ecosystem partners develop software, a cloud application 

platform also provides the technology through which this software is delivered to 

end-users.  

Referring back to the definition of ecosystem roles by [4], the primary roles in a cloud 

service ecosystem are distributed as follows:  

 Keystone: The organisation that owns the cloud application platform and 

controls its evolution, such as SAP in the case of YaaS or Salesforce for 

Force.com has the role of the “keystone” [55] or “ecosystem coordinator” [48].  

 Third-parties: The organisations that develop user-facing cloud apps or 

developer services which integrate with the platform are the third-party 

organisations. 

 Users: The consumers of the services which are created and offered by 

third-parties or by the keystone organisation are the end-users.  

In sections 2.2.3 and 2.3.1 above we mentioned some examples of cloud application 

platforms which span domain-agnostic to domain-specific orientation and facilitate 

basic to advanced co-development models. In the following paragraphs we will expand 

on some of those examples of platforms. 

Case 1: Microsoft Azure  

Microsoft Azure
16

 is a domain-agnostic cloud application platform providing 

an advanced co-development model. It is a cloud application platform for 

developing software applications using a broad selection of programming 

languages, frameworks and tools, including JavaScript, Python, .NET, PHP, 

Java and Node.js. An integral part of the platform is the Microsoft Azure 

Marketplace
17

. Azure offers many different ways for third-parties to integrate 

and add value to the platform. Among other options, Azure App Service allows 

third-party ISVs to create full-blown SaaS solutions or develop API-accessible 

apps for other developers to reuse. Publishing apps and developer services in 

the Azure marketplace allows ISVs to reach a global market of users.  

Case 2: Heroku  

Heroku
18

 is another domain-agnostic cloud application platform providing an 

advanced co-development model. Heroku reached a critical mass of users as the 

dominant cloud platform for developing applications in Ruby. Except for Ruby, 

Heroku developers can deploy code in Node.js, Java, PHP, Python, Go, Scala 

and Clojure. Third-parties can use Heroku to build stand-alone SaaS solutions 

                                                 
16

 https://azure.microsoft.com/ 
17

 https://azure.microsoft.com/marketplace/ 
18

 https://www.heroku.com/ 



22 

or use a self-service portal and development kit to offer new developer services 

as add-ons to the Heroku platform. The third-party add-ons can be either 

developed and hosted on the third-party’s infrastructure or developed and 

hosted on Heroku itself. At present, there are reportedly more than 150 

developer add-ons on Heroku Elements Marketplace
19

.   

Case 3: Force.com  

Force.com
20

 is a domain-specific cloud application platform providing a basic 

co-development model. It is offered by Salesforce.com – presently a dominant 

SaaS vendor in customer relationship management (CRM) software. Force.com 

allows third-parties to develop custom web apps that can be deployed on its 

platform. The apps can be used either independently as stand-alone business 

applications or as extensions that integrate with –and add capabilities to– 

Salesforce’s range of products. Developers have the option to publish the apps 

they create to Salesforce AppExchange marketplace
21

 allowing end-users to 

find and buy them. AppExchange is currently said to include over 3,000 

pre-integrated apps built to extend the capabilities of Salesforce products.  

Case 4: SAP YaaS  

YaaS
22

 (also known as Hybris as a Service) is a domain-specific cloud 

application platform providing an advanced co-development model. It is 

offered by SAP who specialise in enterprise resource planning (ERP) systems 

and is based on the technology that SAP acquired from its acquisition of Hybris 

ecommerce platform in 2013. YaaS is focused on enabling development of 

cross-channel commerce applications with an “API-first” approach. It allows 

businesses to develop full-scale ecommerce sites and mobile ecommerce apps 

which are deployed and run on SAP’s cloud infrastructure. It also allows 

developers to create microservices with RESTful APIs [56] that bring new 

ecommerce capabilities to the Hybris platform (such as content personalisation, 

or advanced analytics) that others can reuse in creating Hybris-based 

ecommerce solutions. Third-party apps and developer APIs are listed as 

packages on YaaS Market
23

.  

Gawer and Cusumano [6] make the observation that the value of a software platform 

increases exponentially with (a) more users and (b) more complementary products and 

services built around the platform. Indeed, the value of a cloud service ecosystem for its 

members is determined by the number of third-party partners and users it attracts, the 

diversity of the services it makes available, and the reliability of these services. When a 

                                                 
19

 https://elements.heroku.com/ 
20

 https://www.salesforce.com/products/platform/products/force/ 
21

 https://appexchange.salesforce.com/ 
22

 https://www.yaas.io/ 
23

 https://market.yaas.io 



23 

cloud service ecosystem increases in size, diversity and reliability, its value also 

increases for all stakeholders involved.  

But in software, size and diversity are at odds with reliability. The cause of this tension 

is complexity; a property that emerges as an inevitable side-effect of growth and is 

known to be inversely related to software reliability [7],[8]. Managing the deleterious 

effects of complexity in a cloud service ecosystem is therefore key to maintaining the 

reliability of the services that the ecosystem delivers, and ultimately, to maintaining 

and increasing the ecosystem’s value.  

To manage complexity, ecosystem partners need to be able to exercise control over 

developments in the ecosystem that may affect them, such as the introduction of a new 

service, a change to the characteristics of an existing service, or a change to how a set of 

services is assembled. This can be understood as a challenge of governance, and it can 

mean very different things to different stakeholders in a cloud service ecosystem.  

2.4 The challenge of governance  

2.4.1 Definitions of governance 

Governance is a broad term which is used in diverse contexts. The English verb govern 

derives from the Greek verb kybernan (κυβερνάν), meaning “to direct”, “to steer” [57]. 

Political scientist Mark Bevir defines governance as “all of processes of governing, 

whether undertaken by a government, market or network, whether over a family, tribe, 

formal or informal organisation or territory and whether through the laws, norms, 

power or language” [58].  

In IBM’s view [59], enterprise governance involves two components:  

“Establishing chains of responsibility, authority and communication to 

empower people with decision rights.  

Establishing measurement, policy and control mechanisms to enable people to 

carry out their roles and responsibilities.” 

IT governance is defined by IBM as a facet of enterprise governance focusing on “an 

organization’s information technology processes and the way those processes support 

the goals of the business” [59]. The IT Governance Institute (ITGI) defines IT 

governance in a similar way: “leadership and organisational structures and processes 

that ensure that the organisation’s IT sustains and extends the organisation’s strategies 

and objectives.” [60].  

For enterprises whose IT infrastructure adopts a service-oriented architecture (SOA) 

[61] IBM defines SOA governance as “an extension of IT governance specifically 



24 

focused on the lifecycle of services, metadata and composite applications in an 

organization’s service-oriented architecture.” [59].  

With the rapid adoption of cloud computing the services that a modern organisation 

relies on are increasingly “cloud-delivered” rather than “on-premise” [62], which 

brings forth the notion of cloud service governance as yet another extension of IT 

governance. Lithicum defines cloud service governance as “the ability to define, track, 

and monitor service execution on any number of on-premise and cloud-based 

platforms.” [62].  

In all its different expressions, governance is fundamentally a cross-disciplinary subject 

that can be viewed from both an organisational and technological perspective. For 

instance, this is made clear in IBM’s definition [59], which encompasses the 

component of organisational structure and decision-making, as well as the component 

of policy and control mechanisms.  

From an organisational viewpoint the challenge of governance lies in establishing an 

effective and efficient structure for direction-setting in the organisation. From a 

technological viewpoint, the challenge lies in providing effective and efficient tool 

support to the relevant actors in the organisation such that governance goals, expressed 

as policies, can be enforced throughout the lifecycle of all services.  

As noted by Papageorgiou et al. [63] it is useful to distinguish between the overall 

governance procedure and the corresponding technical support mechanisms, i.e., the 

system that facilitates, enables and/or automates governance aspects. 

Most academics who have been writing on subjects related to governance have a 

background in management science or information systems and tend to focus on the 

first viewpoint, i.e. how governance decisions can be made [9]. In this work we focus 

on the latter viewpoint, placing emphasis on the policy-driven control mechanisms that 

are necessary to effect those governance decisions. The focus of this research is on 

software systems supporting policy-driven governance.  

2.4.2 Governance in cloud service ecosystems  

Cloud service ecosystems are complex environments composed of many participants, 

each of which may have their own view of the ecosystem, their own objectives from 

participating and their own governance needs. Governance can mean different things to 

different types of stakeholders.  

We define governance in cloud service ecosystems as the process and the supporting 

systems for defining and enforcing policies to control the creation, provision and 

consumption of cloud services by different ecosystem partners.  

Our definition encompasses two forms of policy-driven governance.  



25 

 Process governance: defining and enforcing policies to ensure that the cloud 

services which are provided and used by the ecosystem are created and 

modified following an explicit process and lifecycle rules.  

 Resource governance: defining and enforcing policies to ensure that the 

artefacts associated with the cloud services which are provided and used by the 

ecosystem conform to explicit content and structure rules.  

When discussing governance in the context of a software ecosystem the view typically 

taken in literature is that we talk about how the ecosystem coordinator is governing the 

common software platform, or the activities of ecosystem partners. Uludag et al. [64] 

refer to these two types of governance as “platform governance” and “ecosystem 

governance”, respectively. However, governance in a cloud service ecosystem entails 

more than the governance of the ecosystem. The latter is only one viewpoint – albeit a 

very important one as it reflects the immediate concerns of the platform owner.  

Viewpoint of ecosystem coordinator 

By design, a cloud application platform is an open environment that is 

anticipated to expand over time through the incremental addition of third-party 

extensions by different software creators. One of the most challenging goals for 

the ecosystem coordinator and platform operator is ensuring that the 

introduction of new apps and developer services –or the modification of 

existing ones– will not create a negative impact on the platform’s stability and 

reliability. Ecosystem coordinators see their platforms continuously growing in 

complexity and need specialised tools to help them control the evolution of the 

services they deliver, understand how changes to services can affect service 

consumers and ensure that services are always compliant with the variety of 

policies, regulations, contracts, industrial standards or technical specifications 

that may be applicable.  

Ecosystem coordinators must be able to exercise control over all critical 

activities taking place on the platform. Essential to achieve this is the creation of 

policies and policy enforcement mechanisms that facilitate governance over 

platform processes and resources. A platform owner’s process governance 

policies may specify the sequence of lifecycle stages that third-party apps or 

developer APIs should proceed through when submitted to the platform, and the 

conditions for advancing from one stage to the next. Resource governance 

policies may specify the criteria for validating specific artefacts that are part of 

the submission by the third-party, such as technical specification files or service 

pricing information.  

Viewpoint of ecosystem end-users  

On the other hand, consumers of user-facing apps and services which are 

delivered by the cloud application platform (i.e. end-users) find it increasingly 



26 

difficult to ensure that the services they use will satisfy all relevant 

requirements on a continuous basis. They too need policies and control systems 

to help them with governance from a service consumption viewpoint.  

In this context, process governance refers to defining and enforcing policies to 

ensure that cloud services will be selected, tested, used and retired in a 

prescribed manner, with explicit conditions for transitioning from one service 

lifecycle phase to the next. For example, a process governance policy could 

state that, before an enterprise department starts using a cloud service in full 

scale, it must have first gone through a trial usage period, and the enterprise’s 

Chief Information Officer must have obtained a compliance audit certificate 

from the provider of the service.  

Conversely, resource governance refers to defining and enforcing policies to 

ensure that artefacts associated with cloud services being consumed conform to 

certain technical or business constraints. For example, a policy may state that 

the compliance audit certificate provided by a cloud service provider must be 

based on the ISAE 3402 reporting standard
24

. 

Viewpoint of ecosystem third-party developers  

Third-party developers act as consumers of APIs provided by the platform and 

other developers in the ecosystem, and at the same time also act as providers of 

apps and services towards end-users. In that respect, their governance concerns 

may cover both service consumption and service delivery.  

From a service consumption viewpoint, third-party developers would share 

similar governance requirements with end-users. A process governance policy 

may refer to the lifecycle followed by external services that they consume, the 

stages these need to proceed through and the conditions for stage transitions. A 

resource governance policy may place constraints on the resources associated 

with a service being consumed, such as specific security certificates for web 

APIs. From a service delivery viewpoint, third-party developers may have 

governance requirements similar to those of the platform owner and ecosystem 

coordinator.  

The ecosystem coordinator is the provider of the common software platform that 

powers the ecosystem. In that capacity, its role may go beyond fulfilling its individual 

governance control objectives as outlined above, i.e. beyond only managing the quality 

and lifecycle of the software that enters the platform.  

As we see in use cases of cloud service brokerage [10], the role of the platform owner is 

increasingly extending into intermediating the governance process so as to assist other 

ecosystem participants, i.e. third-party developers and end-users, with fulfilling their 

                                                 
24

 http://isae3402.com/ 



27 

own governance requirements. To fulfil this role, platform owners are required to offer 

a governance support system as part of the ecosystem’s common software platform, 

which allows different ecosystem partners to define and enforce their own governance 

policies [11].  

2.4.3 Research on governance of software ecosystems 

In relation to the main body of literature on the wider topic of software ecosystem 

governance, our definition of governance in cloud service ecosystems focuses on the 

operationalisation of governance rather than high level governance decision-making. It 

also extends beyond the single viewpoint of the ecosystem coordinator to incorporate 

the governance requirements of all participants in the ecosystem.  

In a longitudinal survey of literature in the field of software ecosystems that includes 

231 papers published between 2007 and 2016 Manikas [9] identifies three main 

categories under which research works can be classified: software engineering, 

business and management, and ecosystem relationships. Those three categories reflect 

the diverse focus on technology, management and social perspectives by different 

software ecosystems researchers, as other relevant surveys have also highlighted [65].  

In the analysis by Manikas [9], the category of software ecosystems research related to 

software engineering revolves primarily around the theme of software architecture. The 

key notion here is that the architecture of a software ecosystem should support the 

nature of that ecosystem (i.e. be specific to its needs), support ecosystem management 

with business rules and restrictions, and allow the integration of diverse functionality in 

a reliable manner. Another theme classified under software engineering research is 

software quality, which relates to measuring and assuring quality of the software 

produced by a software ecosystem [9].  

Manikas [9] identifies ecosystem governance as an emerging theme under the category 

of business and management research. The key notion here is that proper governance of 

a software ecosystem will allow ecosystem resources to be used properly, will enhance 

productivity and reliability and will promote ecosystem health overall.  

The reason Manikas [9] classifies publications on ecosystem governance topics under 

business and management research rather than software engineering research, is that 

the vast majority of related works have so far focused on analysing or proposing models 

to frame governance decision-making rather than analysing or proposing models to 

engineer governance support systems. Focus so far has been on studying strategic 

governance policy-making rather than operational governance control and policy 

enforcement.  

Serebrenik and Mens [65] carry out a meta-analysis of the research field of software 

ecosystems and make observations which are largely in agreement with the analysis by 

Manikas [9]. They present a relevant list of literature and six themes of challenges for 



28 

software ecosystems: architecture and design, governance, dynamics and evolution, 

data analytics, domain-specific ecosystems solutions, and ecosystems analysis.  

In [66] Santos et al. undertake a review on software ecosystems as an emerging topic in 

the software engineering research community and outline a research agenda for the 

study of software ecosystems. Their research agenda comprises a total of six research 

themes under two different perspectives. The research theme of software ecosystem 

governance is classified under a management perspective, while software ecosystem 

quality, architecture and openness are classified under an engineering perspective.  

Uludag et al. [64] develop on the ideas of Tiwana [67] and draw a distinction between 

governance of the software platform which represents the ecosystem’s foundation and 

governance of actors and systems other than the platform. They refer to the first as 

platform governance and to the latter as ecosystem governance. The main difference 

between platform and ecosystem governance according to [64] is that secondary actors 

(i.e. ecosystem participants who can be complementors or end-users) cannot be directly 

controlled by the platform owner via hierarchical power or authority.  

The work by Tiwana et al. in [68] and later by Tiwana in [67] has provided a thorough 

conceptual model of governance in software ecosystems that researchers in the field are 

now developing on [69],[64].  

In [68] Tiwana et al. present a framework for understanding platform-based 

ecosystems. Their main premise is that the coevolution of the design, governance, and 

environmental dynamics of platform ecosystems influences how they evolve. They 

develop research questions to contribute towards homegrown theory about the 

evolutionary dynamics of software ecosystems with contributions by the disciplines of 

information systems, management strategy, economics, and software engineering.  

In the reference book published by Tiwana in 2014 [67], titled “Platform ecosystems: 

aligning architecture, governance, and strategy” the overarching theme is how 

alignment of platform governance with its architecture shapes the evolutionary 

trajectory of platform ecosystems. The main premise is that architecture-governance 

alignment fundamentally shapes evolution, and that the two require co-designing and 

co-evolving through different stages of the ecosystem’s lifecycle.  

In Tiwana’s definition, governance is about how the ecosystem coordinator influences 

the ecosystem, and encompasses three dimensions. 

 Decision rights: Strategic and implementation decisions about the ecosystem’s 

core and its complements, divided between the platform owner and 

third-parties. 

 Control mechanisms: Mix of mechanisms for formal control (input, process and 

output control) and informal control (relational control)  



29 

 Pricing regulation: pricing structures, including decisions about which side 

gets subsidised, for how long, revenue structure. 

Tiwana’s view on ecosystem governance is comprehensive in that it encompasses 

management, technology and economics perspectives and spans across different 

abstraction levels from strategic governance policy making to operational governance 

control with policy enforcement. Another characteristic of Tiwana’s view is that it is 

exclusively focused on the platform provider’s perspective. As noted by Tiwana 

“governance flows from the platform owner who governs to app developers who are 

governed by the platform owner”.  

The vast majority of research works in the cross-disciplinary field of software 

ecosystem governance have so far focused primarily on the first dimension of Tiwana’s 

model, i.e. on decision rights. The focus of this dissertation is on the second dimension: 

governance control mechanisms and specifically those classified under formal control.  

Tiwana defines governance control mechanisms as the tools through which the 

platform owner ensures that the complementors’ work is aligned with what is in the 

best interests of the platform [67]. Control mechanisms comprise the following: 

 Input control: Also referred to as “gatekeeping”. In platforms, it is common for 

third-party complementors who develop extensions to submit those to the 

platform owner for evaluation and inclusion in the platform’s ecosystem and 

marketplace. 

 Process control: This refers to prescribed development methods, rules and 

procedures that a platform owner expects third-party complementors to follow 

and will check for compliance.  

 Output control: This is also referred to as “metrics-driven control” and relates 

to evaluating the output of third-party complementors’ work. Metrics must be: 

(1) prespecified by the platform owner and (2) objectively measurable. 

The three mechanisms above are defined as formal control. They can be complemented 

by an informal control mechanism that Tiwana refers to as relational control. This 

refers to the norms, values and culture that an ecosystem coordinator shares with 

complementors to influence positive behaviour and align objectives. Relational control 

often manifests in open-source software ecosystems and is also referred to as “clan 

control” [67].  

As mentioned in section 2.4.2 above, in the scope of this work we consider two forms 

of policy-driven governance: process governance and resource governance. It is 

interesting to note that process control as defined by Tiwana maps naturally to our 

definition of process governance, whereas resource governance can be seen as a 

common way to operationalise input and output control as defined by Tiwana.  



30 

Tiwana notes that modularisation of the ecosystem platform architecture facilitates 

integration of third-party extensions with the platform only if the latter comply with the 

platform’s interface specifications and policies. This underlines the criticality of the 

formal governance control mechanisms listed above to ensure compliance. However, as 

Tiwana notes, “testing costs are the Achilles heel of modular architectures”. 

Automation of formal governance controls therefore becomes highly desirable.  

Governance control mechanisms and specifically those classified under formal control 

have been well studied in other contexts and software engineering research literature 

but are yet to receive adequate coverage in the scope of software ecosystems research. 

There is however some relevant research which is worth mentioning.  

Axelsson and Skoglund [70] have carried out a systematic literature mapping on quality 

assurance in software ecosystems. Among other topics they identify “keystone 

verification of extensions” which could include reliability tests carried out by the 

ecosystem coordinator and verification of compliance to rules and guidelines. Another 

topic they identify is “governance policies for verification and validation”, which could 

include quality assurance from the viewpoint of the service consumer.  

Van Angeren et al. [71] examine commercial software platform ecosystems in an 

inductive multiple case study to observe the entry requirements to be met by 

prospective app developers and the partnership and certification programs in place. 

Their study is among the first to empirically assess the efficacy of commercial software 

ecosystem governance mechanisms (input control/gatekeeping for the app store and 

creating partnership models).  

In [43] Jansen and van Capelleveen examine methods of quality review and approval 

for extensions in software ecosystems. They highlight that getting third-parties to 

follow quality criteria and adhere to platform standards so as to provide valuable 

extensions is one of the greatest challenges in platform governance. They include 27 

case studies and analyse them to derive three methods of governance control: 

review/inspection, certification, and community reviews; and eleven techniques to 

achieve quality goals in software ecosystems.  

2.5 Governance support systems – state of the art 

2.5.1 Examples of governance control mechanisms from app stores 

The ecosystem coordinators who control the app stores/marketplaces of software 

platforms will typically enforce a submission and review/approval process for all 

third-party extensions. Examining the processes they follow for quality assurance and 

control offers useful examples of governance support systems in action – from the 

ecosystem coordinator’s perspective.  



31 

Jansen and Bloemendal [35] provide a definition and conceptual model of app stores 

and survey typical features and policies observed in app stores through case studies. 

They define the app store as “an online curated marketplace that allows developers to 

sell and distribute their products to actors within one or more multi-sided software 

platform ecosystems”. In the same paper [35] the researchers review six mobile app 

stores (Google Play, SlideMe, Apple Appstore, Binpress, Amazon app store for 

Android and Intel AppUp) to derive an overview of common features and policies. 

They highlight several common policies enforced by app store operators related to 

quality assurance and control of third-party apps: code quality review, functional 

quality review, interface quality review, policy compliance checking and approval 

before publishing. Uludag et al. [64] also compare the control measures applied by 

different platform providers towards secondary developers. They provide case studies 

in four different mobile platforms and platform ecosystems: Waze, Moovit, Apple and 

ITS Factory. They identify several different types of control measures applied by 

ecosystem coordinators including gatekeeping, regulatory checks, process control, 

output control and social control.  

Beyond app stores for mobile platform ecosystems, making provisions for process and 

resource governance is equally critical for the reliability of cloud service ecosystems. 

This is especially pronounced for cloud application platforms allowing large volumes 

of third-party extensions to be deployed on a shared execution environment, physical or 

virtual, because of the negative cascading effects that become possible in such a setting. 

State-of-the-art cloud application platforms offer several examples of quality assurance 

and control mechanisms to govern process and artefacts.  

Development and deployment of applications on Intuit Developer
25

 (formerly known 

as Intuit Partner Platform) is described as proceeding through four phases, each of 

which is called “a line of development”. The phases are: development, quality 

assurance, staging, and publishing. Similarly, on the Heroku platform
26

, add-ons (i.e. 

third-party services) advance through the phases of development, alpha, private beta, 

beta, and general availability. In Force.com
27

 the majority of quality checks on 

application artefacts are associated with a particular phase towards the end of the 

development and deployment process which is referred to as “security 

review”—though the scope of the review carried out is actually much broader than 

security. Progress Rollbase
28

 has a similar “application approval” phase before the 

stage of deployment, during which all artefacts associated with an application are being 

reviewed against platform policies.  

The policies that cloud service ecosystem coordinators specify to govern processes and 

artefacts are enforced through automated or semi-automated means, depending on the 

platform. Detailed information on how platforms like the ones mentioned above are 

                                                 
25

 https://ipp.intuit.com/ 
26

 https://www.heroku.com/ 
27

 https://www.salesforce.com/products/platform/products/force/ 
28

 https://www.progress.com/rollbase 



32 

implementing governance through policy enforcement is typically not disclosed, since 

they are commercial offerings. In general, some platforms provide online tools that 

span the entire process of creating and deploying new services and applications, while 

others provide offline tools for development and testing (e.g. as popular IDE 

extensions) and employ certain online tools only for submitting services and 

applications to the platform and initiating their deployment. These tools will often 

support automated artefact validations (e.g. XML schema validations) as means of 

artefact-level policy enforcement, and less often, may also support some form of 

transition eligibility checks before applications can be promoted from one phase to the 

next.  

Given the relative immaturity of the domain, standardised specifications and software 

solutions for governance support of cloud application platforms have not yet emerged. 

Therefore, many of the tools that each platform employs for implementing process and 

resource governance are expected to be custom, purpose-built one-off solutions. This 

concerns both externally-facing tools, i.e. tools for third-party developers, and 

internally-facing tools, i.e. tools used by the platform providers’ own administration 

and quality assurance staff.  

Nevertheless, for many of the tasks associated with process and resource governance in 

the context of cloud application platforms, useful lessons may be learned from the 

related field of service-oriented architecture (SOA) governance [72],[73], from which 

mature solutions may also be transferred. The two have many things in common. 

Fundamentally, both are employed to deal with the complexity involved in managing 

loosely coupled, independently developed, and dynamically aggregated units of 

software. As stated in the OASIS Reference Architecture Foundation for SOA [74], 

“owning a SOA-based system involves being able to manage an evolving system’” 

This outlook is consistent with the earlier discussed view of cloud application platforms 

as environments of ever-increasing size and complexity.  

2.5.2 Best practices from SOA governance 

Not too many years after service-oriented architecture (SOA) was introduced as a term 

in the late 1990s, adopters started realising that without appropriate governance over 

the various phases and activities associated with the lifecycle of distributed services, a 

SOA-based IT infrastructure can quickly dissolve into an unmanageable environment 

[60],[75]. Since then, governance has become broadly recognised as a precondition for 

the success and long-term sustainability of service-oriented architectures, and as a 

major challenge, from both a decision-making and operationalisation perspective [59].  

As mentioned earlier in this chapter, the challenge of governance from the viewpoint of 

operationalisation lies in providing effective and efficient support for the daily 

activities of stakeholders in a SOA-based computing environment, such that 

governance imperatives, expressed as policies, can be enforced in a transparent and 



33 

preferably automated way throughout the lifecycle of all services. A best practice that 

has been established over the years is to address this challenge with the help of 

governance support systems that integrate registry and repository functions [76].  

In an analogy with the way yellow pages are used, a registry system allows providers 

and consumers of software units (such as web services in the case of SOA, or cloud 

apps and developer APIs in the case of cloud application platforms) to maintain a 

catalogue of the services available. In the case of SOA, the entity that maintains this 

type of registry is typically the owner of the SOA-based computing infrastructure, with 

the collaboration of internal and external developers of service-based systems and 

applications that utilise it. Correspondingly, the interested parties in cloud application 

platforms are first and foremost the platform provider, but also third-party developers 

who build extensions to the platform in the form of new developer services and cloud 

apps. Every new software component on the cloud application platform is registered 

and is given a description that other parties can use as reference. The description 

consists of metadata providing information about the component, definitions of the 

component’s relationships to other components, and associations to any relevant 

artefacts.  

Repository systems are complementary to registries, as they offer the means for storing 

and managing the actual artefacts that may be associated with a registered software 

component. Those artefacts may be specific to a single registered component or 

associated to more than one. Notably, a single change in an artefact may cause 

significant changes to the state of other dependent artefacts, or to the states of 

associated services and applications. Artefacts within a repository should therefore be 

managed and monitored in a way that allows tracking changes, detecting dependencies, 

and analysing the impact that a change can have in order to take appropriate measures. 

In general, storing all artefacts that a software component comprises in a central 

location enables a systematic approach to access control, versioning, dependency 

tracking, change management, and policy enforcement.  

The purpose of a combined registry and repository system within a service-based 

infrastructure is to provide an authoritative system of record. Governance support 

systems couple this with a set of functions supporting governance of different types of 

entities and artefacts through the definition and enforcement of policies.  

Registry and repository systems are typically found at the core of every commercial 

governance technology platform. Gartner Research has recently surveyed the market 

for application services governance solutions in a special technology analysis report 

[77]. The report reviews the capabilities of commercial governance support systems by 

IBM
29

, SAP
30

, Mashery
31

, Apigee
32

, Axway
33

 and others, some of which follow a 

                                                 
29

 https://apim.ibmcloud.com/ 
30

 http://scn.sap.com/community/api-management 
31

 https://www.mashery.com/ 
32

 https://apigee.com/about/cp/api-governance 



34 

commercial open-source model such as Mulesoft
34

 and WSO2
35

. Gartner highlights 

that “the growth of the API economy, the pressing need for application rationalisation 

and the disruptive needs of digital business applications will continue to change the 

market for application services governance technology”.  

2.5.3 Definition and enforcement of governance policies 

Governance support systems provide users with some way of checking whether the 

governed resources, as described by the data held in the registry and repository system, 

conform to relevant policies. Each solution achieves this through a different approach 

to policy definition and enforcement.  

In the scope of the research carried out within project CAST [22], the author of this 

dissertation analysed and compared the commercial open-source governance support 

systems by Mulesoft and WSO2 – the two open-source solutions which are also 

highlighted in Gartner’s industry survey [77]. The purpose of the analysis was to 

understand how the two systems allow governance policies to be defined and enforced 

[78]. The results from the analysis of the approaches adopted by the two solutions are 

discussed in detail in chapter 4. In the interest of introducing the state of practice 

regarding policy-driven governance support systems some key aspects are briefly 

discussed here.  

The analysis revealed some characteristics which represent limitations that are 

especially pronounced in a cloud service ecosystem context. These limitations 

fundamentally stem from how policies are defined and enforced, and can be 

summarised in the following.  

 Lack of separation between definition and enforcement of policy: Policy 

definition and policy checking are entangled within the same software unit. 

Policy authors write custom code that interfaces with the governance support 

system through an API, and checks if some data of interest conforms to certain 

constraints. Those constraints are not set out as explicit self-contained policies, 

but defined implicitly as part of the same code that checks for data 

conformance. Except for the case where such constraints are defined in an 

explicit way (e.g. in a separate XML schema document) there is no 

differentiation between what a policy is about, and how data can be checked for 

conformance to that policy.  

 Lack of abstraction in policy representation: Because of the above, policy logic 

is represented at the same level of abstraction as the implementation of the 

governance support system. The rules or constraints that a policy comprises are 

encoded in an imperative style, as part of the same low-level logic that queries 

                                                                                                                                            
33

 https://www.axway.com 
34

 https://www.mulesoft.com/resources/esb/application-service-governance 
35

 http://wso2.com/products/governance-registry/ 



35 

databases and parses files to check instance data for violations. The encoding of 

a policy is therefore disconnected from the high-level domain concepts that one 

would use to communicate its purpose and the policy author’s intent.  

 Lack of formal representation of policy rules and relationships. The 

relationships among policies, as well as between policies and their subjects (i.e. 

the logical entities in the governance domain) are not captured explicitly. 

Tracing the association of an operational-level policy to other policies at the 

same level or a higher (strategic) level is not possible. The same holds for 

tracing the relationships between a particular platform resource and all policies 

directly or indirectly related to it. Last but not least, the absence of any formal 

encoding of policies makes it difficult to analyse them, to reason how policies 

may affect other policies and to perform automated verification and validation. 

Typically, the only machine-readable representation of a policy is the code that 

enforces it. 

As we will discuss later in chapter 3, the above characteristics have negative 

implications with respect to policy maintainability, comprehensibility, verifiability, 

traceability, interoperability, and with respect to the overall agility of a governance 

support system. 

Overall, there is lack of support for decentralised/distributed cooperation. 

State-of-the-art governance support systems have been created with centralised 

governance in mind. Their design is driven by the notion that there is some entity which 

needs to make sure certain policies are enforced (for its own benefit, not as part of 

providing a service to some other entity in an ecosystem). To achieve this, the central 

entity (typically, an enterprise) will both create the policies and enforce them. To create 

and enforce those policies this entity obtains or creates descriptions of the governed 

resources and stores them in a central location (registry and repository system) which is 

owned, hosted and operated by the same entity.  

This approach is well suited to serve the individual platform governance needs of an 

ecosystem coordinator, but cannot simultaneously accommodate the governance needs 

of other ecosystem participants (i.e. third-party developers and end-users) as discussed 

in section 2.4.2. In an intermediated ecosystem governance process, there could be 

several different entities with the need to have their policies enforced. And these 

policies may not be defined by the same partner that enforces them, such as the 

ecosystem coordinator, but possibly from other ecosystem partners. The same holds 

with the governed resources and their descriptions which are subject to governance – 

they may be provided by an ecosystem partner who is different to the one evaluating the 

policies. These different roles and concerns of stakeholders in the governance process 

are discussed in the chapter that follows.  



36 

2.6 Summary 

In this chapter we introduced the background to the problem domain addressed by this 

dissertation. We first introduced the paradigm of cloud computing and provided 

definitions for the most commonly used cloud computing service models: Software as a 

Service (SaaS), Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). We 

next focused on the model of PaaS and discussed cloud application platforms in terms 

of the benefits they offer to application developers. In broad terms, cloud application 

development platforms which are delivered as PaaS offerings could be classified as 

domain-agnostic or domain-specific platforms and they may follow quite different 

architectures to allow extensions by third-parties.  

In the section that followed we focused on the co-development possibilities and 

ecosystem creation potential presented by cloud application development platforms. 

We introduced software product co-development as a growing trend and the different 

basic or advanced co-development models that may manifest depending on the 

architecture of a platform. 

Software platforms which facilitate co-development relationships between different 

partners foster the creation of environments best characterised as software ecosystems. 

We introduced the foundations of software ecosystems and adopted the definition by 

Jansen et al. [5] who define software ecosystem as “a set of businesses functioning as a 

unit and interacting with a shared market for software and services, together with the 

relationships among them. These relationships are frequently underpinned by a 

common technological platform or market and operate through the exchange of 

information, resources and artefacts.” We also discussed the primary roles that emerge 

in a software ecosystem setting.  

Analysing the definition of software ecosystems by Jansen et al. [5] we can recognise 

the same characteristics in environments where the “common technological platform” 

is a cloud application platform. That leads us to introducing a special class of software 

ecosystems we refer to as cloud service ecosystems. To illustrate this notion we 

summarised the key characteristics of four commercial cloud service ecosystems: 

Microsoft Azure, Heroku, Force.com and SAP YaaS.  

In the following section we introduced the challenge of governance. We provided 

definitions for what is a rather broad and misused term and explained the positioning of 

our research relative to governance as a theme in the literature. We then narrowed focus 

on cloud service ecosystem governance and discussed what it can mean to different 

types of stakeholders. We provided our own working definition of governance in cloud 

service ecosystems, which refers to the process and the supporting systems for defining 

and enforcing policies to control the creation, provision and consumption of cloud 

services by different ecosystem partners.  



37 

We then provided an overview of the related body of literature on governance of 

software ecosystems so as to position our work relative to other software ecosystems 

research. We expanded on Tiwana’s definition of software ecosystem governance 

which encompasses the dimensions of decision rights, control mechanisms and pricing 

regulation. We highlighted that the vast majority of research works in the field of 

software ecosystem governance have so far focused on the first dimension, i.e. on 

decision rights, while the focus of this dissertation is on the second dimension: 

governance control mechanisms and specifically those classified under formal control. 

In relation to the main body of literature on the wider topic of software ecosystem 

governance, our definition of governance in cloud service ecosystems focuses on the 

operationalisation of governance rather than high level governance decision-making. It 

also extends beyond the single viewpoint of the ecosystem coordinator to incorporate 

the governance requirements of all the participants in the ecosystem.  

To provide context, we presented examples of governance control mechanisms from 

app stores of cloud service ecosystems. We then moved to discussing the state of 

practice for creating and operating governance support systems. We introduced best 

practices from SOA governance and discussed some of their characteristics relative to 

how policies are defined and enforced, so as to show that these represent important 

limitations in the context of governance for cloud service ecosystems. 

The key takeaways from this chapter can be summarised as follows: 

1. Increasingly, cloud application platforms follow an open architecture which 

allows third-parties to enrich a platform’s capabilities with their own add-ons. 

This collaboration model leads to a form of software product co-development. 

Platforms that facilitate co-development relationships between partners foster 

the creation of environments best characterised as software ecosystems. Cloud 

service ecosystems can be seen as a special class of software ecosystems.  

2. The value of an ecosystem increases exponentially with more users and more 

complementary services. But complexity is a threat to system reliability. 

Ecosystem partners need to be able to exercise control over developments in the 

ecosystem that may affect them, such as the introduction of a new service, a 

change to the characteristics of an existing service, or a change to how services 

are assembled. This is a challenge of governance. 

3. In all its different expressions, governance is fundamentally a cross-disciplinary 

subject that can be viewed from both an organisational and technological 

perspective. The majority of researchers on the subject focus on the first 

viewpoint, i.e. on how governance decisions can be made in an organisation. In 

this work we focus on the latter viewpoint, placing emphasis on the 

policy-driven control mechanisms that are necessary to operationalise those 

governance decisions. Our focus is on how to create software systems that 

support policy-driven governance.  



38 

4. We define governance in cloud service ecosystems as the process and the 

supporting systems for defining and enforcing policies to control the creation, 

provision and consumption of cloud services by different ecosystem partners. In 

relation to the main body of literature on the wider topic of software ecosystem 

governance, our definition extends beyond the single viewpoint of the 

ecosystem coordinator to incorporate the governance requirements of all 

participants in the ecosystem.  

5. Examining state-of-the-art governance technology platforms reveals a gap 

between the type of requirements these platforms were originally designed to 

meet and the type of needs emerging to support governance in this new context 

of software ecosystems. The most prominent shortcoming is lack of support for 

networked collaboration. Contemporary governance support systems have been 

created with centralised governance in mind. Their design approach is well 

suited to serve the individual platform governance needs of an ecosystem 

coordinator, but cannot simultaneously accommodate the governance needs of 

other ecosystem participants, i.e. third-party developers and end-users.  

 

 

 

 

  



39 

 

 

 

 

 

 

Chapter 3 

 

Governance in cloud service 

ecosystems: key requirements 



40 

3 Governance in cloud service ecosystems: key 

requirements 

3.1 Introduction 

As discussed earlier in this dissertation, cloud service co-development ecosystems are 

complex environments composed of many participants, each of which may have their 

own view of the ecosystem, their own objectives from participating, and their own 

concerns. This encompasses all aspects of their function in an ecosystem, including 

their participation in governance processes.  

From the viewpoint of the platform owner and ecosystem coordinator, governance is a 

process ensuring that introducing new software to the platform will not create negative 

ripple effects. From the viewpoint of ecosystem participants, i.e. third-party developers 

and end-users, governance is a process ensuring that the services they consume or 

deliver will continuously operate as expected and will satisfy requirements on an 

ongoing basis. 

This chapter introduces the idea that software systems which are aimed at supporting 

the governance needs of ecosystems need to achieve an appropriate separation of 

concerns based on the different types of roles engaged in governance processes.  

To understand what this entails in terms of the concrete qualities that a governance 

support system should exhibit, one first needs to understand the different types of 

concerns associated with governance process stakeholders. The following sections in 

this chapter aim to assist the reader in this direction. 

The motivation for the analysis presented in this chapter, as well as the source of the 

insights that underpin the idea of separating concerns when designing governance 

support systems, surfaced during the author’s work in research projects CAST
36

 and 

Broker@Cloud
37

. Both of these projects included an objective to create software 

systems supporting governance in cloud service ecosystems. My work in these projects 

offered the opportunity to gather and analyse a variety of governance process scenarios. 

Analysis showed that any process of governance in the context of a software ecosystem 

is inherently a collaborative (and typically inter-organisational) process. Analysis also 

led to observing a recurring pattern in governance processes – a small set of distinctive 

roles and typical interactions was always present in the process. Looking closer at the 

needs fulfilled by these roles resulted in conceptualising a core set of concerns 

associated with each type of governance process role.  

                                                 
36

 http://seerc.org/projects/cast/ 
37

 http://www.broker-cloud.eu/ 



41 

To illustrate the complexity and diversity of governance processes and stakeholder 

roles in full variance we have chosen to synthesize example scenarios that combine 

multiple different elements from governance processes found in actual operational 

environments. Section 3.2 of this chapter presents five such exemplifying scenarios of 

governance in a cloud service co-development ecosystem inspired by real-world use 

cases, including use cases derived from industrial partners in research projects CAST 

and Broker@Cloud.  

The examples demonstrate governance processes ranging from relatively simple to 

fairly complex. We use these example stories to introduce the discussion that takes 

place in the next section of the chapter (Section 3.3) on key roles of stakeholders in a 

governance process, their views of the process, their associated concerns and individual 

objectives. This discussion leads to highlighting some fundamental design 

requirements for governance support systems, at the end of this chapter (Section 3.4).  

3.2 Examples of governance in a cloud service ecosystem 

This section presents five example scenarios that serve to illustrate potential forms of 

policy-based governance in the wider context of a cloud service ecosystem. Each 

example demonstrates a different potential scenario of policy-based governance in 

action. Each story brings different aspects of governance to the foreground, making 

implicit links between the roles and processes in the ecosystem.  

3.2.1 Scenario 1: Quality review in a private PaaS environment 

NineLives is a multinational medical insurance company with business operations 

across several European countries. To reduce the costs associated with maintaining 

disparate legacy information systems for its operations in different locations, the 

company has decided to rebuild its entire business process support infrastructure 

around a single, common software platform. The platform software was licensed from 

CloudDev, a company that provides software and services for the development and 

hosting of on-demand business applications. CloudDev offers subscription-based 

access to its platform as a public cloud service, but instead of that option, NineLives 

reached an agreement with CloudDev allowing it to run the platform software of 

CloudDev on the privately owned data centre of NineLives.  

The legacy systems deployed at different divisions of NineLives are gradually being 

replaced by cloud applications which are deployed and hosted on the common platform 

environment. These cloud applications are developed by different teams. Some 

applications are developed by internal staff at various IT departments of NineLives in 

different branches, while other applications are developed by external partners 

(outsourced). 



42 

To ensure that all these different applications can be smoothly integrated into a 

common operational environment, the team that manages the private PaaS environment 

at NineLives has established a number of policies that application developers are 

required to follow. These policies affect many different aspects of an application, such 

as how to use external and internal platform APIs from within an application, how to 

structure an application’s deployment descriptor, how to provide administrative and 

technical contact details for the team supporting an application, how to use logos and 

other visual design elements, etc.  

Once the development and testing of an application is complete, developers submit the 

application to the NineLives platform management team for quality review. Quality 

review personnel undertakes to make sure that every application conforms to platform 

policies before it is allowed to become operational. When policy violations are 

identified these are reported and the application is not allowed to proceed to 

deployment. To check applications against company policies the quality review team is 

using a combination of manual and automated policy evaluation methods. The process 

is as follows. First, the quality review staff determine which policies are applicable to 

the application at hand (different policies apply to different types of software 

applications). Second, they collect all the relevant data from the different artefacts that 

come with the application. Third, the collected data is evaluated against the conditions 

set out in the relevant policies. At the end, the quality review staff completes a quality 

review report that summarises the results, and whether or not policy violations have 

been detected.  

The scenario is illustrated in Figure 3 below. 

 

Figure 3. Scenario of quality review in a private PaaS environment 



43 

3.2.2 Scenario 2: Regulatory compliance audits of cloud applications 

NineMed is a partly-owned subsidiary of NineLives, incorporated in a different 

European country. As a publicly-traded company with activity in the highly regulated 

domain of medical insurance, NineMed is required to comply with a wide array of 

regulations governing its operations. These regulations are often imposed by different 

external authorities such as the national government and the European Union. In 

addition, as a subsidiary of NineLives, NineMed is required to comply with a number 

of “internal” policies set by the parent company.  

NineMed needs to be fully aware of all the different regulations it is required to 

observe, and bears the responsibility to comply in a proactive manner. The company is 

subject to external and internal audits to ensure that this is the case. Ensuring 

compliance is the responsibility of the company’s chief compliance officer (CCO) who 

is in charge of the company’s compliance management team. The compliance 

management team is tasked with monitoring the regulations published by different 

authorities, the policies issued by the parent company and the daily business practises 

of NineMed, codifying all this policy information in an internal knowledge base and 

reporting compliance issues to upper management.  

To perform its function, the compliance management team at NineMed first needs to 

identify which business processes and company information systems are affected by 

any particular regulation or policy under consideration. Then, it needs to obtain details 

on how the affected business processes are carried out within the company, and how the 

associated information systems operate. This information needs to be retrieved from 

several different resources within the company, such as process guidelines, staff 

manuals and software documentation. Next, the compliance management team needs to 

evaluate the collected information against the observed policies. In case of 

non-compliance the chief compliance officer is required to report this and the company 

is expected to take immediate rectifying action.  

In advance of the company’s migration from its old systems to new on-demand 

applications developed against the CloudDev platform, the compliance management 

team is carrying out compliance audits on the new applications as these are turned in by 

its IT staff. The goal of the audits is to ensure that the new applications comply with all 

relevant external regulations and internal policies. Sometimes the audits reveal 

problems associated with the fact that rules are issued by different authorities. It often 

turns out that some of NineMed’s local policies are in conflict with global policies 

originating from NineLives - the parent company, or that policies imposed by the 

parent company are not in line with local legislation.  

The scenario is illustrated in Figure 4 below. 



44 

 

Figure 4. Scenario of regulatory compliance audits of cloud applications 

3.2.3 Scenario 3: Lifecycle management and quality control in a cloud 

service ecosystem 

In addition to licensing its cloud platform for private deployment to large customers 

such as NineLives, CloudDev also offers access to a hosted instance of its platform 

which is being managed by CloudDev itself. The company markets this service as an 

application Platform as a Service (aPaaS) offering. Through this offering, the company 

has managed to become the facilitator of an ecosystem of cloud services by third-party 

independent software vendors (ISVs) who develop, host and market their applications 

in collaboration with CloudDev. One of the things that attracted those ISVs to the 

ecosystem was the built-in capabilities of the CloudDev platform for a range of generic 

business application functions, such as document management, content authoring and 

collaboration. Making use of these capabilities allows ISVs to develop small-scale 

solutions for small and medium sized businesses with minimal effort and resources. 

The second important factor attracting ISVs to CloudDev is that the company offers a 

free marketing and distribution channel through the CloudDev application store. 

Revenues from monthly subscriptions to ISVs’ applications are shared between the 

ISVs and CloudDev.   

Apptitude is a small ISV that specialises in SaaS applications for the Human Resource 

Management industry. The company is part of CloudDev’s ecosystem, but also 

develops and markets its applications through a number of similar (and mutually 

competing) cloud application ecosystems that are oriented towards business solutions 

for small and medium sized businesses. Most of Apptitude’s applications are 

multi-homed
38

, meaning that the company has built several variations of them to allow 

deployment on different cloud platforms, and distribution through several different app 

stores and marketplaces.  

                                                 
38

 For a discussion on multi-homing in software ecosystems the interested reader is referred to [79] 



45 

When Apptitude creates a new application for the CloudDev platform it needs to 

proceed through the steps of a formal lifecycle management process imposed by 

CloudDev on all ISVs. The process has been put in place to prevent the adverse effects 

of introducing a problematic application into the ecosystem, and to ensure that the 

environment remains healthy and competitive. During the application development 

phases, unit and integration testing take place in an isolated development environment 

– a development sandbox. Once this stage is completed ISVs can choose to launch a 

private beta testing programme with a limited number of invited users. This is carried 

out in an isolated trial environment – a beta sandbox. When a new application is finally 

ready for release Apptitude submits the final version of its codebase and the application 

description to CloudDev. The artefacts that comprise the application need to observe a 

number of policies set out by CloudDev. These concern both technical aspects such as 

restrictions on application coding standards or how applications use platform resources, 

as well as business aspects such as restrictions on an application’s pricing model.  

Before the application codebase is deployed onto the CloudDev production 

environment and the application description is added to the CloudDev application 

store, a quality review step takes place. The CloudDev quality assurance staff examines 

the code and metadata submitted by Apptitude and employs a combination of manual 

and automated methods to ensure that all relevant policies are observed. In case of 

policy violations these are reported and the release is blocked. Alternatively, the 

application is allowed into the main production environment and into the application 

store. Consumers can thereafter select the application and subscribe to use it. When 

Apptitude wishes to retire an application there is another set of conditions to be 

checked. CloudDev’s main objective here is to ensure that decommissioning an 

application does not have any adverse effect on consumers who are still using it and on 

other applications that are interfacing with the application to be retired.  

The scenario is illustrated in Figure 5 below. 

 

Figure 5. Scenario of lifecycle management and quality control in a cloud service ecosystem 



46 

3.2.4 Scenario 4: External auditing of cloud service providers 

Better, Saffe & Sawrie is an auditors’ firm specialising in Governance, Risk and 

Compliance (GRC) services for the hi-tech industry. Among other things, the company 

offers external auditing services to providers of cloud services, helping them to 

demonstrate compliance to standards such as ISO 27001 or SSAE 16. The audits 

carried out by the firm may involve infrastructure (IaaS), platform (PaaS), or 

application (SaaS) services.  

Compliance to standards is evaluated through review of objective evidence, which is 

provided by the customer in accordance to the auditor’s specifications. This involves a 

wide range of data about the customer’s information systems, business processes and 

operations. Once collected, the data is evaluated by the auditor to validate that the 

customer’s IT environment has all the appropriate mechanisms in place as foreseen by 

the customer’s own policies or by third-party standards and to verify that these 

mechanisms operate as intended.  

It is common for cloud service providers to subject their software and hardware 

infrastructure to periodic external audits to offer better assurances to customers about 

the safety of their data, their privacy, and the overall reliability of their services. Being 

able to offer such assurances and proof of compliance to major industry standards has 

become a necessity in the cloud computing market.  

Compliance certification of cloud service providers is especially sought after by 

consumers that are publicly-traded companies. Law holds officers of publicly-traded 

companies responsible for the quality of their company’s financial statements. The 

quality of those statements is affected not only by a company’s internal controls but 

also by the internal controls of third-parties who provide operation-critical services to a 

company. For this reason, a publicly-traded company that uses cloud services from a 

third-party will have to either carry out an audit of internal controls at the cloud service 

provider —which is something that the latter would most likely refuse— or to ask the 

provider to present a compliance audit certificate produced by an independent agency.  

One of the cloud service providers that receives periodic external audit services by 

Better, Saffe & Sawrie is CloudDev. The auditing process proceeds as follows. Firstly, 

CloudDev informs the auditing agency about its compliance objectives, meaning the 

internal policies it wishes to observe, and how it has chosen to implement public cloud 

security standards on its infrastructure. Subsequently, the auditor examines the 

compliance requirements, and issues a checklist of sample artefacts to be collected as 

well as reports to be filled-in by key personnel at CloudDev. CloudDev collects the data 

as per the auditors’ specifications. This may include information about the security 

controls of the aPaaS platform, its mechanisms for data storage, for system activity 

logging and monitoring, for redundancy and availability, and much more. The auditors 

examine the submitted data and may also carry out on-site inspection visits. The audit 



47 

results are summarised in a service auditor’s report. If the audit is successful, Better, 

Saffe & Sawrie issues an audit certificate.  

The scenario is illustrated in Figure 6 below. 

 

Figure 6. Scenario of external auditing of cloud service providers 

3.2.5 Scenario 5: Policy-based governance by a cloud service broker  

Appregator is a cloud service broker that helps consumers engage with the right cloud 

services provider for their needs. It maintains an extensive directory of cloud services 

across a number of areas and allows side by side comparison of offerings. In addition to 

helping with service selection Appregator helps consumers to manage their service 

contracts on a continuous basis. This is achieved by three means. Firstly, by taking over 

the task of monitoring the performance of providers against the Service Level 

Agreements (SLAs) agreed with the consumer. Secondly, by monitoring the 

conformance of providers to custom policies specified by the consumer. Thirdly, by 

monitoring the cloud computing market and offering recommendations to the consumer 

about alternative services based on customer-specified optimisation criteria.  

To be able to offer an accurate picture of the cloud services available in the market and 

how these services compare, Appregator collects data from several cloud service 

marketplaces on a continuous basis. It retrieves the descriptions of the cloud services 

from distribution channels, reconciles the information to an internal information model 

that facilitates homogenisation and comparison, and adds the resulting descriptions to 

its service directory. Service descriptions cover a wide range of aspects, such as key 

features, technical characteristics, subscription costs, terms of service and SLAs. Based 

on this information consumers can narrow down search and comparison to specific 

attributes of a service, they can specify custom policies to be monitored, and can 

fine-tune preferences for optimisation.  



48 

One of Appregator’s customers that have chosen to outsource the management of their 

contracts to the cloud service broker is Cerebrate; a medium-sized Human Resources 

Management (HRM) agency helping companies in the financial services sector with 

sourcing, screening, evaluating and recruiting employees. Cerebrate has been trying out 

different SaaS applications to help the agency’s staff with identifying candidates on 

social media, matching them to job positions, planning interviews and evaluation tests, 

and managing the entire recruitment process. Appregator has helped the agency to save 

considerable time and effort in identifying services suitable to its needs, and Cerebrate 

has decided to also let Appregator manage its ongoing subscription contracts for some 

of those services.  

The management of Cerebrate’s cloud service subscriptions encompasses several 

aspects. As part of its work Cerebrate is dealing with personal data of candidates as well 

as sensitive business information disclosed to the agency by the companies it recruits 

for. Confidentiality, privacy and safety of data are therefore important parameters in 

engaging with a cloud services provider. Cerebrate has established a set of policies 

about how its services providers should address these issues (for instance, strong 

encryption measures) and has outsourced the monitoring of cloud service conformance 

to Appregator. Another important parameter is business continuity. Having outsourced 

many of its IT functions to external service providers, the agency’s daily operations are 

entirely dependent on the availability and performance of those services. To ensure 

appropriate levels of operational capacity Cerebrate has established a number of related 

policies (e.g. an upper limit on the time it should take for a service to recover from a 

failure) which are enforced by Appregator. Appregator monitors changes to the terms 

of service in the cloud services contracted by Cerebrate, and ensures that these continue 

to conform to the agency’s policies at all times. Yet another important parameter is 

cost. To keep operational costs under control Cerebrate has fixed upper limits on the 

usage of cloud services by its staff. Appregator monitors billing information in 

real-time and issues alerts when service usage exceeds the monthly limits in the 

agency’s policy.  

One of the cloud services that Cerebrate has been using is TalentForge by Apptitude. 

TalentForge is a SaaS web application helping HR professionals with candidate 

evaluation and employee performance assessment. Apptitude has created multiple 

versions of the TalentForge application to allow distribution through multiple channels 

(multi-homing). This allows Apptitude to be part of several cloud service ecosystems at 

and to leverage as many synergies with other cloud service providers as possible.  

The version of TalentForge that Cerebrate has been using is the one developed on top of 

CloudDev’s aPaaS platform. CloudDev is one of the many distribution and delivery 

channels that Appregator is monitoring. Likewise, Appregator is one of several cloud 

service brokers that CloudDev collaborates with to promote its ecosystem. CloudDev 

encourages intermediaries (brokers) to retrieve and republish the service-related 

information available on the CloudDev app store, as this increases visibility for its 



49 

services and drives web traffic and subscribers to its marketplace. To make it easier to 

retrieve information about the SaaS services developed by the ISVs in its ecosystem, 

CloudDev provides special APIs for intermediaries to use. Moreover, CloudDev 

provides real-time data feeds with detailed information on consumer-specific service 

usage, such as billing events, which intermediaries such as Appregator can monitor on 

behalf of the end service consumers such as Cerebrate.  

To manage the TalentForge subscription contract that Cerebrate has in place with 

Apptitude, Appregator relies on the data exchange mechanisms that CloudDev has 

made available. The service contract management process comprises the following 

activities. As a first step, the cloud service consumer —Cerebrate, in this case— needs 

to let Appregator know which service contract needs to be managed. Appregator will 

allow Cerebrate to specify the aspects of the agreed service contract that should be 

monitored (e.g. service performance attributes), to define custom policies on service 

properties of importance (e.g. security and reliability attributes), and to set optimisation 

criteria as triggers for generating recommendations. Next, Appregator will undertake to 

monitor changes in CloudDev’s app store that concern TalentForge. Every time 

something changes Appregator will evaluate whether this is relevant to the 

requirements of Cerebrate, and whether or not it raises a conformance issue. In parallel, 

Appregator will undertake to evaluate developments in its entire directory of services 

and whether or not these represent optimisation opportunities for Cerebrate, such as 

replacing TalentForge with a competitive offering.  

The scenario is illustrated in Figure 7 below. 

 

Figure 7. Scenario of policy-based governance by a cloud service broker 



50 

3.3 Roles and concerns of stakeholders in the governance 

process 

Implicit in the scenario examples presented in the previous section are a number of 

roles and functions which are common in cloud service ecosystem governance 

scenarios. This section makes these features explicit. The goal is to highlight some 

fundamental concepts relating to governance in cloud service ecosystems, and to lay 

the groundwork for requirements thinking on governance support systems.  

3.3.1 Roles in the governance process 

Examining the scenario examples reveals three recurring roles which interact in the 

governance process. These are: 

 Policy provider role: Responsible for creating, maintaining, and providing 

governance policies that need to be enforced. A policy may affect more than 

one governed resources in a software ecosystem. Different policies by the same 

provider may reflect obligations at different levels of abstraction (e.g. 

strategic-level vs. operational-level policies) and may have different origin (e.g. 

internally defined corporate policy vs. externally imposed regulatory 

framework). An example of this role from scenario 1 is NineLives, the life 

insurance enterprise.  

 Data provider role: Responsible for creating, maintaining, and providing data 

describing the software resources in the ecosystem which are subject to 

governance. This data is necessary in order for the different policies affecting 

those resources to be evaluated. Governed resource descriptions could be 

derived from primary data residing in files or databases, or data derived from 

primary sources specifically for the purpose of policy evaluation. An example 

of this role from scenario 3 is Apptitude, the HR solution developer. 

 Policy evaluator role: Responsible for creating, maintaining, and providing a 

software system or software-based service that facilitates governance by 

carrying out policy evaluation. That is, a system or service that checks whether 

a certain governed resource description conforms to a specific policy or not. 

The policy of interest and the information about the governed resource of 

interest are provided as inputs to the evaluation process. An example of this role 

from scenario 5 is Appregator, the cloud service broker. 

3.3.2 Distribution of governance roles  

Governance in a cloud service ecosystem can be a distributed process. Actors in the 

ecosystem may simultaneously assume more than one of the governance roles 



51 

mentioned above, while at the same time, there can be more than one actor acting in the 

capacity of a certain governance role.  

For example, in scenario 1 there are two stakeholders who act as Data Providers - the 

internal and external developer teams (see Figure 3), while in Scenario 2 where there is 

one stakeholder who directly provides the policies in codified form (the CCO) we can 

understand there are more stakeholders inside NineMed and its parent company who 

indirectly also act as Policy Providers (see Figure 4).  

At the same time in Scenario 3 an entity – CloudDev – acts as both Policy Provider and 

Policy Evaluator (Figure 5), while in Scenario 4 it is the roles of Policy Provider and 

Data Provider that coincide on CloudDev as the actor (see Figure 6).  

3.3.3 Types of concerns  

Associated with each role in the governance process is a distinct set of concerns and 

goals, which the respective stakeholder(s) would like to see satisfied.  

Each entity that engages in the governance process of a cloud service ecosystem has a 

business goal to minimise cost and maximise benefit. This results in governance roles 

adopting concerns at two different levels of abstraction.  

 Role-level concerns which are local in scope, limited to the specific 

governance role, and involve internal management of the governance process 

from the perspective of that role. 

 Ecosystem-level concerns which are global in scope, seen from a wider 

perspective, and involve external collaboration with other roles in the 

governance process.  

3.3.4 Policy provider concerns 

The primary concerns of any actor assuming a policy provider role are manageability 

and evolvability of their internal function/process.  

The first means to be able to effectively and efficiently manage policies, which includes 

not only creating, testing and maintaining the policies, but also managing the 

knowledge regarding how different policies interact, or relate to each other.  

The latter means to be able to change and evolve its internal process for policy 

provision, and effect any desired changes without disrupting the operation of other 

ecosystem actors who need to comply with or enforce policies. And conversely, to 

avoid unnecessary disruption from changes effected by other ecosystem actors.  



52 

 

 

Manageability of the policy provision function:  

 Making it easy to create, test and maintain policies: For instance, can the policy 

encoding language be easily understood by the domain experts who author the 

policies? Does it allow defining policies on the basis of their domain 

vocabulary? Is it possible to construct policies by modular composition, by 

reusing existing policies? Are the policies encoded in a policy language which 

is amenable to automatic analysis? Is it possible to automatically check for 

policy self-coherence (internal policy conflicts) and “debug” policies?  

 Making it easy to manage knowledge about policies: Being a policy author 

creates a knowledge management requirement, as there may be important 

information regarding the policies which is not captured in the policy encoding 

itself. This implicit knowledge needs to be made explicit. For instance, do the 

policy language and the tools used for policy encoding support capturing policy 

hierarchies? Do they allow capturing relationships between policies at various 

levels of abstraction so as to support policy dependency analysis and 

inter-policy conflict detection (conflicts between policies by the same provider 

or by different providers)? Do they allow answering questions like: “What 

happens if we change this specific policy? Which other policies would also 

need to change?” 

Evolvability of the policy provision function:  

 Limiting the impact of internal changes to other governance roles: What is the 

extent to which local changes within the organisational boundaries of an actor 

who assumes the policy provider role trigger changes to other actors in the 

ecosystem? What happens when a policy is updated? What happens when the 

way in which policies are created is updated? Are changes contained locally? Is 

the method of policy definition independent from the method of governed 

resource description or the method of policy evaluation? Can changes to 

policies be effected without requiring re-engineering or disruption of operation 

for data providers or policy evaluators?  

 Limiting the impact of external changes to the policy provider role: Conversely 

to the above, what is the extent to which changes within the organisational 

boundaries of data providers or policy evaluators trigger changes to the policy 

provider? What happens when the way in which governed resource descriptions 

are created, changes? What happens when the way in which policies are 

evaluated changes? Are changes contained locally? Can these changes be 

effected without requiring re-engineering or disruption of operation for the 

policy provider? 



53 

To illustrate this, consider the role of Cerebrate as policy provider in Scenario #5. The 

IT staff at Cerebrate has established a number of policies to govern a range of technical 

and business aspects in the cloud applications used by its departments. These policies 

need to be created and maintained internally at Cerebrate, but also communicated to 

external stakeholders who are required to enforce them, like Appregator –the cloud 

service broker.  

How easy is it for Cerebrate to create policies on a variety of specialised areas such as 

confidentiality, privacy and safety of data? Do Cerebrate staff have access to a domain 

vocabulary they can use in formulating their policies? Can they build on previously 

created policies? Is there any tool to help users with identifying and correcting logical 

errors in the policies? Or with detecting conflicts with other policies created in the past?  

What happens when Cerebrate introduces a new policy parameter related to the Service 

Level Agreements of the cloud applications that it uses (such as TalentForge)? Does 

this change require the policy evaluator (Appregator) to also make changes to its 

internal policy engine which evaluates SLA-related policies? Does the change require 

the resource provider (for instance, CloudDev, the platform on which TalentForge is 

deployed) to also make changes to how SLA-related data is extracted and 

communicated to the policy evaluator?  

3.3.5 Data provider concerns  

The goal of the data provider is analogous to that of the policy provider. Manageability 

and evolvability of the data provision process are the two main types of concerns.  

Manageability of the data provision function:  

 Making it easy to create, maintain and share descriptions of governed 

resources (governance data): How easy is it for the data provider to aggregate 

data from different sources to produce homogeneous descriptions of governed 

resources? Does the data provider need to rebuild data extraction mechanisms 

from scratch per different source? Is there a generic and reusable mechanism for 

extracting and transforming data that can be configured and applied across 

different sources? How easy is it to allow consumption of those descriptions 

without catering to the specifics of each data consumer (i.e. policy evaluators)? 

Is the format chosen for governed resource description amenable to automated 

analysis? Is it possible to automatically validate resource descriptions and check 

for data quality issues? Can the data provider offer access to the data for 

distributed consumers and easily manage access permissions?  

 Making it easy to manage knowledge about resources, resource descriptions 

and the mechanisms that generate them: How easy is it to maintain references 

from generated resource descriptions to the actual resources being described? 

Can the data provider keep track of metadata such as lineage, origin, 



54 

provenance information? Can the data provider easily track mappings between 

data sources and target transformations, or associations between data sources 

and the applicable extraction and transformation mechanisms? Can the data 

provider easily answer questions like: “What happens if we change this data 

source interface? Which are the extraction and transformation mechanisms that 

also need to change?” 

Evolvability of the data provision function:  

 Limiting the impact of internal changes to other governance roles: What is the 

extent to which local changes within the organisational boundaries of an actor 

who assumes the data provider role will trigger changes to other actors in the 

ecosystem? What happens when a data source is added? What happens when 

the structure or interface of a data source changes? What happens when the way 

in which data is extracted or aggregated from different sources changes? Are 

changes contained locally? Is the method of generating resource descriptions 

independent from the method of policy evaluation? Can changes to how 

governance data is produced be effected without requiring re-engineering or 

disruption of operation for policy providers or policy evaluators? 

 Limiting the impact of external changes to the data provider role: Conversely to 

the above, what is the extent to which changes within the organisational 

boundaries of policy providers or policy evaluators trigger changes to the data 

provider? What happens when the way in which policies are evaluated changes, 

or when a new policy evaluation engine is added to the ecosystem? What 

happens when one or more policy providers change the way in which policies 

are defined? Are changes contained locally? Can these changes be effected 

without requiring re-engineering or disruption of operation for the data 

provider? 

For instance, consider the role of CloudDev as Data Provider in Scenario #5. CloudDev 

offers an API through which one can obtain real-time data feeds about the activity, 

availability and updates of ISV applications hosted on CloudDev’s platform. Cloud 

service brokers such as Appregator rely on this data to be able to offer their services to 

users of cloud applications, like Cerebrate –the HR agency.  

A key concern of CloudDev in its role as data provider is to be able to manage the wide 

range and volume of data that it continuously tracks about different ISV applications on 

its platform in the best way possible. In parallel, CloudDev needs to be able to 

effectively and efficiently share this data with all of its partners –like Appregator. If 

necessary, CloudDev should be able to change how data is created and stored internally 

in its systems, but this change should not impair its ability to share data with external 

stakeholders.  

How easy is it for CloudDev to aggregate data from different sources (inside or outside 

its own infrastructure) to produce descriptions of governed resources? Is there any 



55 

mechanism for extracting and transforming data that CloudDev can use across different 

sources? Does ClouDev need to cater to the specific needs of different data consumers 

such as Appregator or other cloud service brokers? Can CloudDev offer scalable and 

secure access to the data for distributed data consumers (policy evaluators) over the 

internet?  

What happens when CloudDev adds a new data source, splits a data source in two, or 

changes how data is extracted from a source? What happens when CloudDev enhances 

the governed resource description with additional data? Do such changes trigger 

re-engineering or disruption of operation for policy evaluators such as Appregator or 

policy providers such as Cerebrate? What happens when Cerebrate introduces a new 

policy parameter related to the Service Level Agreements of the cloud applications that 

it uses (such as TalentForge)? Does this change require CloudDev to also make changes 

to how SLA-related data is extracted and communicated to the policy evaluator 

(Appregator)?  

3.3.6 Policy evaluator concerns 

The policy evaluator performs a function that depends on input from both policy 

providers and data providers. Like with policy providers and data providers one can see 

a comparable need for manageability and evolvability of the policy evaluation process. 

However, the specific concerns here are of different nature.  

Manageability of the policy evaluation function:  

 Making it easy to evaluate policy conformance for different pairs of resource 

description and governance policy. Does the policy evaluator need to 

implement policy evaluation modules/logic from scratch for every different pair 

or resource/policy? Is it possible to have policy evaluation logic in a generic and 

reusable form? Are policy representation formats and resource description 

formats common so as to ensure the policy provider can effortlessly understand 

them? Is the policy evaluation logic free from couplings to specific governance 

policies (or types of governance policies)? Is it free from couplings to specific 

governance resource description formats?  

 Making it easy to manage knowledge about relationships between policies and 

governed resources: Can the policy evaluator easily keep track of which type of 

governed resource is a policy relevant to (so as to retrieve all relevant resources 

of that type from one or more data providers and validate them against that 

policy)? Can it easily track which policies apply to a specific resource (so as to 

retrieve the policies and evaluate them against the particular resource)?  

Evolvability of the policy evaluation function:  

 Limiting the impact of internal changes to other governance roles: What is the 

extent to which local changes within the organisational boundaries of an actor 



56 

who assumes the policy evaluator role trigger changes to other actors in the 

ecosystem? What happens when a policy evaluation engine is added or 

modified? Are changes contained locally? Is the method of evaluating policies 

independent from how resource descriptions are generated or policies 

represented? Can changes to how policies are evaluated be effected without 

requiring re-engineering or disruption of operation for policy providers or data 

providers? 

 Limiting the impact of external changes to the data provider role: Conversely, 

what is the extent to which changes within the organisational boundaries of 

policy providers or data providers trigger changes to the policy evaluator? What 

happens when one or more policy providers change the way in which policies 

are defined? Or when the data provision process evolves? Are changes 

contained locally? Can these changes be effected without requiring 

re-engineering or disruption of operation for the policy evaluator? 

To illustrate these concerns, let us take the example of Appregator who acts as policy 

evaluator in Scenario #5. Appregator is a cloud service broker offering continuous 

quality assurance and optimisation services to users of cloud applications. To offer its 

services, Appregator needs to be able to enforce a wide range of policies created by its 

customers like Cerebrate. It therefore needs to be able to obtain and understand these 

policies. Similarly, it needs to be able to obtain and understand all the data that it has to 

evaluate against these policies, like the data provided by CloudDev.  

How easy is it for Appregator to support checking new customer policies against the 

same types of governed resources? Or to support checking new governed resources 

against the existing set of policies? Does new policy evaluation code need to be created, 

tested and maintained? Can Appregator easily provide an answer to a question like: 

“What are all the policies applicable to the type of that SLA description of 

TalentForge?” without being bound to the internal representation of the SLA resource 

at the data provider’s side (the CloudDev platform)? Can Appregator easily answer the 

question “What are all the resources subject to governance by Cerebrate’s policy for 

service uptime?” without being bound to the internal representation of the policy at the 

policy provider’s (Cerebrate) side? 

Can Appregator change the way it evaluates policies internally –for instance, by 

changing the process or the technology it employs without involving or affecting 

interoperability with any of its external stakeholders, like Cerebrate and CloudDev? 

What happens when Cerebrate introduces a new policy parameter related to the Service 

Level Agreements of the cloud applications that it uses? Does this change require 

Appregator to also make changes to how SLA-related policies are evaluated internally?  



57 

3.4 Implications on the design of governance support 

systems  

Given the above-described characteristics of cloud service ecosystems where 

governance roles can be distributed between several collaborating actors, each of them 

carrying different viewpoints and concerns, what are the implications on how we 

design governance support systems? What are the design requirements shaped by such 

a collaborative environment? How can we provide that the system facilitates all 

stakeholders and their different sets of concerns, individually and as a whole?  

3.4.1 Separation of concerns  

A key insight to be derived from the analysis in the previous section is that, to facilitate 

governance in the context of a cloud service ecosystem, the design of the software 

system that is meant to support governance must achieve adequate separation of 

concerns between the roles of the policy provider, the governed resource data provider 

and the policy evaluator.  

‘Separation of concerns’ is a design principle that involves decomposition of software 

according to one or more dimensions of concern, and has been at the core of software 

engineering for decades. The term was introduced by Dijkstra in 1974 [80] and initially 

referred to the concept of separating a software program into modules such that each 

module addresses a single concern, and can operate without requiring knowledge of 

how other modules operate.  

Separation of concerns is closely related to the idea of ‘information hiding’ which was 

introduced by Parnas in 1972 [81] to address the problem of ever-growing size and 

complexity in software programs. Parnas suggested that programmers should segregate 

the design decisions in a computer program that are most likely to change, by 

encapsulating them in a module with a stable interface that exposes minimal 

information, so as to protect other parts of the program from extensive modification 

when the design decision is changed.  

The benefit from applying this design principle is much improved system 

maintainability and reusability [82], [83]. Although initially conceptualised as an 

approach to improve modularisation of functionality within software programs, i.e. at 

the code-design level, the principle has since been applied at wider scope and 

architecture-design level to drive the decomposition of entire software systems 

according to both functional and non-functional requirements.  

As defined by Mark Baker
39

: “If we are attempting to separate concern A from concern 

B, then we are seeking a design that provides that variations in A do not induce or 

require a corresponding change in B (and usually, the converse). If we manage to 

                                                 
39

 https://www.infoq.com/articles/separation-of-concerns 



58 

successfully separate those concerns, then we say that they are decoupled.” The way in 

which separation of concerns facilitates software evolution is also highlighted by Mens 

and Wermelinger [82] who define concern as any criterion that allows us to decompose 

parts of the software that exhibit different rates of change or different types of change.  

The observation by Parnas and Dijkstra that parts of a software system may exhibit 

different rates of change and different types of change holds true for any type of 

composite system, including systems of systems and software ecosystems. Therefore it 

also holds true for the different entities in a cloud service ecosystem that are engaged in 

a governance process. The entities assuming different roles in a governance process are 

bound to exhibit different rates of change and different types of change.  

Applying the principle of separation of concerns to the design of a governance support 

system based on governance process roles would mean avoiding strong couplings 

between governance policies, governed resources, and policy evaluation engines. This 

would allow the actors assuming the relevant roles to operate collaboratively in the 

scope of the governance process, but also evolve their functions independently of each 

other.  

3.4.2 Design requirements and quality attributes 

In Table 1 below we summarise the design requirements that emerge from concerns 

associated with different governance roles and their functions. We present the target 

quality attributes (or “–ilities”) that a governance support system will embody if it 

adequately addresses the sought separation of concerns.  

Role Concern Design requirement  Quality attributes 

Policy 

provider 

Manageability 

of policy 

provision 

process 

Abstract, domain-level policy representation 

language with support for automated analysis 

(checking self-coherence, 

contradictions/conflicts), and knowledge 

management (capturing policy 

dependencies/hierarchies). 

Usability (policy 

comprehensibility), 

Maintainability 

(traceability, 

change scope 

minimisation), 

Testability (policy 

verifiability), 

Reusability (policy 

reusability), 

Interoperability, 

Availability 

(minimal disruption 

to deploy changes) 

Evolvability of 

policy 

provision 

process  

Separation between provision of policy 

definitions and functions of other governance 

roles (provision of governance resource 

descriptions and policy evaluation).  

Standards-based interoperability for 

information exchange and decentralised 

coordination.  

Data 

provider 

Manageability 

of data 

provision 

process 

Structured resource description methods, with 

support for data validation and knowledge 

management. 

Data publishing mechanism with support for 

Reusability (data 

extraction and 

transformation 

mechanisms), 



59 

access control.  

Generic mechanisms for data extraction and 

transformation.  

Maintainability 

(change scope 

minimisation), 

Testability (data 

validation), 

Interoperability, 

Availability 

(minimal disruption 

to deploy changes) 

Evolvability of 

data provision 

process  

Separation between provision of governance 

resource descriptions and functions of other 

governance roles (policy definition and policy 

evaluation).  

Standards-based interoperability for 

information exchange and decentralised 

coordination. 

Policy 

evaluator 

Manageability 

of policy 

evaluation 

process 

Generic mechanism for governance policy 

evaluation.  

Support for knowledge management relating 

to policy evaluation (associations between 

policies and governed resources).  

Reusability (policy 

evaluation logic), 

Maintainability 

(change scope 

minimisation), 

Interoperability,  

Availability 

(minimal disruption 

to deploy changes)  

Evolvability of 

policy 

evaluation 

process  

Separation between policy evaluation and 

functions of other governance roles (provision 

of governance resource descriptions and 

provision of policy definitions).  

Standards-based interoperability for 

information exchange and decentralised 

coordination. 

Table 1. Governance support system design requirements and quality attributes 

3.5 Summary  

The aim of this chapter was to provide a basis for requirements thinking on designing 

governance support systems.  

We started with presenting five exemplifying scenarios of governance in cloud service 

co-development ecosystems, each one demonstrating a different (and progressively 

more complex) setting where a governance support system is required. Going through 

the scenarios the reader will notice three recurring governance roles which interact in 

every governance process: the Policy Provider, the Data Provider and the Policy 

Evaluator. Entities in the ecosystem may simultaneously assume more than one of 

those governance process roles, while at the same time there can be more than one 

entity acting in the capacity of a certain governance role.  

Associated with each role in the governance process is a distinct set of concerns and 

goals, which the respective stakeholder(s) would like to see satisfied. Some are 

role-level concerns which are local in scope and mainly relate to manageability of the 

process from the role's perspective. Others are ecosystem-level concerns which are 

global in scope, and mainly relate to evolvability and decentralisation of the process. 

Because of the fact that each role in a governance process has different concerns, the 



60 

entities that assume the relevant process roles are bound to exhibit different rates of 

change and different types of change over the lifetime of the governance process.  

Based on the observations from the above analysis, we put forward the fundamental 

idea that underlies this research, which is that to facilitate governance in the context of 

a cloud service ecosystem, a governance support system must achieve adequate 

separation of concerns based on the roles of the policy provider, the governed resource 

data provider and the policy evaluator. By avoiding strong couplings between 

governance policies, governed resources, and policy evaluation engines, the relevant 

roles can operate collaboratively and evolve their processes independently of each 

other, at the same time.  

The insights that underpin the idea of separating concerns when designing governance 

support systems, surfaced during the author’s work in research projects CAST and 

Broker@Cloud. Both of these projects included an objective to create software systems 

supporting governance in cloud service ecosystems and presented the opportunity to 

analyse a variety of governance process scenarios. Analysis showed that any process of 

governance in the context of a software ecosystem is inherently a collaborative process 

where one can notice a recurring pattern of three fundamental roles which are 

continuously interacting.  

At the close of the chapter we outline the design requirements shaped by such an 

environment and the software quality attributes (or “–ilities”) that a governance support 

system will embody if it adequately addresses the sought separation of concerns. 

In summary, the key takeaways from this chapter are the following: 

1. Governance is effected through a collaborative process that may span multiple 

networked organisational units and enterprises. 

2. The entities that participate in a governance process assume one or more of 

three fundamental roles: policy provider, data provider, or policy evaluator. A 

governance process may engage more than one entity in the same type of role 

(e.g. several different entities may act as policy providers in the same process).  

3. Each governance process role is associated with a distinct set of concerns. 

These revolve around manageability and evolvability of the individual role’s 

function (i.e. policy provision, data provision or policy evaluation). 

4. Because of the different concerns associated with each governance process role, 

the entities who assume the relevant roles exhibit different rates of change and 

different types of change over the lifetime of the process. 

5. In designing a software system to support collaborative governance processes, 

we need to ensure that the role-driven concerns of the different entities engaged 

in the process are independently addressed and simultaneously satisfied.  

  



61 

 

 

 

 

 

 

Chapter 4 

 

A new foundation for governance 

support systems 

 

 



62 

4 A new foundation for governance support systems  

4.1 Introduction 

In the previous chapter we analysed the key requirements to be satisfied in designing 

governance support systems that are aimed at serving software ecosystems.  

The questions that follow from this analysis are: Do state-of-the-art governance support 

frameworks/platforms represent a good fit to those requirements? Do their design 

assumptions acknowledge that there are three roles at play in the environment which 

are likely to be distributed among several actors in a network and that each role needs to 

be facilitated not only in isolation but in combination with the rest? If not, then what is 

the way in which governance support systems need to evolve? What would be a good 

basis to build on, to achieve this evolution? 

This chapter begins with an analysis of how policy-based governance is supported in 

contemporary governance support systems. The analysis is based on examining the 

architecture and usage of two commercial governance technology platforms which are 

also open-source products. We walk through how such systems support the definition 

and enforcement of process and resource governance policies and how different entities 

are engaged in the governance process. We reflect on how well this design approach – 

as typified by the two platforms examined – corresponds to the requirements discussed 

in the previous chapter. We also identify the main change drivers to meet those 

requirements: enabling networked collaboration and improving the operational 

efficiency of governance support systems.  

Motivated by the insight that semantic technologies can offer the sought evolutionary 

step in the design of governance support systems, which is based on the author’s earlier 

experience with using semantic technology to enable enterprise interoperability, we 

introduce fundamental concepts from this field and discuss how open Semantic Web 

standards are relevant. On this basis, we put forward the thesis that Semantic Web 

technologies [14] and Linked Data principles [15] can provide the right foundation to 

develop governance support systems that satisfy the requirements of policy-based 

governance in the context of a cloud service ecosystem.  

The chapter concludes with an overview of a conceptual framework which provides the 

fundamental architectural elements to be discussed in chapters 5 to 7. 

4.2 Limitations of current governance support systems 

As discussed in section 2.5, service governance technology in the form of registry and 

repository systems is finding its way into new applications for governance of cloud 



63 

service ecosystems. This has been shown to work well in environments where a single 

authority, the cloud platform provider, is the one that both sets the policies and ensures 

they are enforced.  

However, some of the characteristics of contemporary registry and repository systems 

represent obstacles to the effectiveness and operational efficiency of governance in a 

cloud service ecosystem context, i.e. in a setting that is beyond the much simpler use 

case of governance in an isolated cloud application platform. A most fundamental 

limitation is found in the way in which registry and repository systems support the 

definition and enforcement of policies.  

4.2.1 Definition and enforcement of policies 

To understand how policies are defined and enforced in contemporary governance 

support systems, we analysed and compared two open-source commercial registry and 

repository products: MuleSoft Galaxy
40

 and WSO2 Governance Registry
41

. The results 

indicate many similarities in the ways the two systems address policy definition and 

enforcement. The two products from MuleSoft and WSO2 are comparable in 

philosophy and functionality to many of their closed-source counterparts from vendors 

like IBM
42

 or Oracle
43

 and the approach adopted in these systems for policy definition 

and enforcement is representative of other governance technology platforms available 

in the market today [77].  

In support of process governance, the registry and repository systems we analysed 

allow creating custom lifecycle definitions consisting of multiple phases, and 

associating them with different types of software entities (i.e. services or applications) 

or software artefacts (i.e. code files, configuration files, specification files, etc). 

Depending on the system, the lifecycle definitions can be created either through a 

straightforward point-and-click visual interface—which typically offers a limited set of 

options—or by means of XML specifications. For policies to be defined and enforced 

in relation to a lifecycle, new Java components must be coded against a special API that 

is provided for this purpose by each registry and repository system. The components 

must be packaged as JAR archives and deployed to the system’s execution environment 

as extensions to the base functionality of the registry and repository system. The 

system, which in the cases of both MuleSoft Galaxy and WSO2 Governance Registry is 

implemented as a Java web application in a servlet container, needs to be restarted to 

complete the deployment of the extensions.  

Resource governance is supported in a similar manner. For policies to be defined and 

enforced in relation to the structure and contents of different types of software artefacts 

stored on the registry and repository system, the operator of the system must code the 

                                                 
40

 https://www.mulesoft.com/resources/esb/application-service-governance 
41

 http://wso2.com/products/governance-registry/ 
42

 http://www-03.ibm.com/software/products/en/wsrr 
43

 http://www.oracle.com/technetwork/middleware/registry/ 



64 

policies as extensions to the system’s base functionality. This generally comprises two 

tasks.  

The first task involves coding the conformance checking logic for each artefact type 

that needs to be validated. The validation is done either by reference to some external 

specification document (e.g. XML schema), or against a set of less explicitly defined 

rules that are coded directly in Java.  

The second task involves coding extensions to trigger the execution of that 

conformance checking logic whenever an artefact of the particular type is added to the 

repository, or is modified. Depending on the system, this may be realised by 

implementing and registering event listeners, or by implementing combinations of 

filters and handlers that intercept whatever actions of interest are taking place in the 

system with regard to a given type of artefact.  

In both tasks, the extensions are coded against special Java APIs provided by each 

registry and repository system for the particular purpose. Extensions need to once again 

be packaged as JAR files, deployed to a special directory, and the system must be 

restarted. Notably, this development and deployment cycle must be repeated every time 

an existing policy needs to be modified.  

Section 8.4 in chapter 8 provides a closer look and specific examples of how WSO2 

Governance Registry was extended based on the process outlined above to develop a 

governance support system for a cloud service ecosystem case study.  

4.2.2 Impact on system quality attributes 

The above described approaches to policy definition and enforcement by MuleSoft 

Galaxy and WSO2 Governance Registry present important limitations when required to 

support governance in the context of a collaborating ecosystem.  

The absence of separation of concerns between the roles of the policy provider, data 

provider and policy evaluator is very prominent. Policy definition, data extraction and 

policy evaluation are entangled in the implementation of a single software component: 

a policy checking unit. The rules that a policy comprises are encoded in an imperative 

manner, directly in Java, as part of the same code that retrieves and validates the data. 

This violates the principle of separation of concerns as discussed in section 3.4 and can 

be shown to have many adverse effects.  

Evolvability of the individual functions of different governance process roles  

The most prominent adverse effect is hindered collaboration between distributed 

governance process participants. In governance scenarios like those examined in the 

previous chapter (where policies, data, and policy evaluation logic may be controlled 

and contributed by different entities), entangling policy definition, data extraction and 



65 

policy evaluation functions in a single software component makes collaboration 

impractical, if not impossible.  

The fundamental assumption behind the design of contemporary governance 

technology platforms is centralised control of the governance process by a single entity. 

There is no provision for a governance process with “moving parts” which may exhibit 

different rates of change or different types of change while independently evolving. In 

short, contemporary design approaches typified by the platforms examined do not cater 

to the need that policy providers, data providers and policy evaluators have to ensure 

evolvability of their individual functions.  

Manageability of the individual functions of different governance process roles  

Beyond its limitations with respect to process evolvability needs, the approach taken by 

these governance support platforms is also limited in how it meets stakeholder needs to 

ensure manageability of their individual policy provision, data provision or policy 

evaluation functions.  

To illustrate this, let us consider the challenge of manageability of the policy provision 

process, and start with focusing on policy traceability. Tracing the association of a 

policy at operational level to other policies representing strategic or tactical viewpoints 

within the same organisation is not possible. The transitive relationships that hold 

among policies at different levels of abstraction are opaque to users of the governance 

support system, as they are never made explicit.  

Lack of traceability has a knock-on effect on policy maintainability. In the event that 

some high level organisational policy is revised, determining which low level 

operational policies are affected and should therefore be modified can be very difficult. 

Likewise, there is no way to know when some modification in a low level policy 

renders it incompliant to one or more higher level policies in the same organisation.  

Another important limitation to manageability of the policy provision process is the 

lack of abstraction from the low level implementation details of a registry and 

repository system. Policies are coded against a low level Java API and deployed as 

extensions to the registry and repository system’s core. The logic that underlies a policy 

is therefore represented at the same level of abstraction as the implementation logic of 

the registry and repository system itself.  

This has implications with respect to usability and policy comprehensibility. It makes 

policy logic very difficult or even impossible to access and comprehend for users who 

may be experts in the domain but are not trained as software engineers. The same could 

be said, although possibly to a lesser degree, for engineers who are not familiar with a 

particular registry and repository system’s design principles and extensibility 

mechanisms.  



66 

A related side effect is impaired policy verifiability. Logical inconsistencies or conflicts 

between policies, which could easily give rise to erratic system behaviour, become very 

difficult to detect. The logic that underlies a policy is hidden deep inside policy 

enforcement code, and is expressed in a form that is not amenable to automated 

processing and formal consistency checking.  

Another affected aspect is policy interoperability. The low level of abstraction and tight 

coupling among policies and the registry and repository system is limiting the potential 

for portability of policies between different versions of a registry and repository 

system, or different systems altogether. Policy reusability is also prevented. If the 

registry and repository system is replaced or even significantly modified, the 

mechanisms for policy definition and enforcement need to be re-developed completely 

from scratch.  

Also, quite importantly, deploying a new or modified policy to the registry and 

repository system requires taking it offline, since the system has to be restarted before 

new or modified extensions can take effect. In an always-on cloud computing setting 

which calls for uninterrupted operations, this disruption to availability is highly 

undesirable. Overall, governance agility is considerably restricted, because 

modifications are made impractical to apply on a frequent basis.  

In addition to the limitations outlined above, which relate to manageability of the policy 

provision function, lack of separation of concerns also has an analogous adverse impact 

on manageability of the data provider and the policy evaluator functions. 

Maintainability, interoperability and reusability of data and policy evaluation logic are 

severely affected.  

4.2.3 Dimensions of required enhancements  

From the foregoing it becomes apparent that to address the problem of effective and 

efficient governance in the context of cloud service ecosystems, the methods by which 

policies are defined and enforced need to be drastically improved, along a number of 

dimensions.  

Enabling networked collaboration 

The primary need is enhancements to enable collaboration between the networked 

participants of the governance process. System design needs to be adapted so that it 

facilitates cross-departmental and inter-organisational collaboration between 

distributed ecosystem partners, through the online exchange of interoperable 

information that can be unambiguously interpreted by the software systems involved in 

the governance process.  

Such enhancements to enable networked collaboration can be summarised as follows: 



67 

1. Decoupling functions: Allowing different ecosystem partners to work together 

on a governance process, while they retain the ability to evolve independently 

of each other, calls for decoupling the concerns associated with the different 

governance process functions (i.e. policy provision, data provision, and policy 

evaluation). The rules that comprise a policy and the data to be checked for 

compliance should be decoupled from the implementation of the policy 

evaluation logic. The three functions should be able to evolve independently of 

each other. It should be possible to modify the policy without necessarily 

having to modify the policy evaluation code. The same applies for couplings 

between the policy evaluation code and the data against which policies are 

evaluated. Changes to the representation of the data should not necessitate 

changes to the policy evaluation code.  

2. Ensuring interoperability: Standards-based communication will allow 

distributed governance process participants to share process-related 

information between them. Policy definitions and data descriptions should be 

encoded in a way that allows them to be portable across systems.  

3. Increasing abstraction: Allowing different ecosystem partners to work 

together makes it necessary to develop and use a common language. 

Communication needs to rise to a level that overcomes terminology differences 

between ecosystem partners. To achieve this, ecosystem partners can operate on 

a shared conceptual model that allows translating between their internal terms 

of reference and the terminology used at the ecosystem level. Concretely, 

defining the rules that a policy comprises should not require dealing with low 

level programming constructs of the governance support system. The policies 

should be possible to specify at a level of abstraction that is considerably higher 

than any implementation, and as close as possible to the constructs and concepts 

of the domain of interest. The same holds for the data to be checked against 

governance policies.   

4. Eliminating ambiguity: Increasing the level of abstraction at which an idea is 

expressed opens up the problem of misinterpretation. This holds true for human 

communications and machine communications alike. Conveying the right 

context by reference to commonly accepted abstract terms must be combined 

with a means to exchange information that is structured and formal enough to 

allow unambiguous interpretation by machines.  

Improving operational efficiency 

A secondary need is enhancements to improve the operational efficiency of the 

governance process. In other words, enhancements to evolve the design of governance 

software so as to improve non-functional attributes of the governance process, such as 

reusability, maintainability, traceability and agility.  

Such enhancements to increase operational efficiency can be summarised as follows: 



68 

1. Maintainability: The policy definition language should facilitate the 

verification of a policy’s self-coherence as well as its consistency to other 

higher level policies to which it is associated. In addition, verification should 

reveal conflicts with other policies that would render the whole policy set in a 

registry and repository system incoherent. Verification should be possible to 

perform in an automated and reliable manner. Therefore, the policy definition 

language to be used should have formal underpinnings.  

2. Reusability: Creating new policies and descriptions of governed resources 

should be possible to do by reusing existing policies and data. Creating a new 

policy or governed resource description should not necessarily require writing 

new code for policy evaluation. The policy enforcement mechanism should be 

as generic and reusable as possible.  

3. Traceability: The way in which policies are defined should allow representing 

the associations they might have with other policies, such that relationships can 

be explicitly captured and dependencies can be traced. To make auditing easier, 

a common frame of reference should be employed for the definition of policies, 

in the form of a shared domain model, allowing higher-level policies to be 

linked to their lower-level manifestations.  

4. Agility: It should be possible to modify policies and data sources in a seamless 

and agile manner, without needing to disrupt the operation of the governance 

support system for the changes to take effect.  

4.3 The potential of semantic technology 

The key insight that underlies the new approach presented in this dissertation is that the 

sought evolutionary step in the design of governance support systems can be achieved 

through the application of semantic technologies.  

In his glossary of semantic technology terms
44

 Michael Bergman offers a succinct, yet 

comprehensive definition for the broad concept represented by the term ‘semantic 

technologies’: “a combination of software and semantic specifications that encodes 

meanings separately from data and content files and separately from application code. 

This approach enables machines as well as people to understand, share and reason 

with data and specifications separately.”  

The insight that semantic technologies can provide the basis to enable networked 

collaboration while improving the operational efficiency of governance support 

systems is rooted in the author’s past experience with researching solutions for 

enterprise interoperability [84]. Allowing heterogeneous and independent enterprise 

systems to participate in collaborative business processes calls for analogous changes 

                                                 
44

 http://www.mkbergman.com/1017/glossary-of-semantic-technology-terms/ 



69 

in how systems interact – through standards-based communication, shared terminology 

and unambiguous interpretation. Applying semantic technologies to the challenge of 

enterprise interoperability has been shown to not only address these needs but to also 

allow improved maintainability, reusability, traceability and overall agility [115], 

[116].  

Based on this experience, this research explored how knowledge representation and 

reasoning with open Semantic Web technology standards can be applied to advance the 

state of the art in governance technology platforms.  

4.3.1 Logic-based knowledge representation and reasoning  

Knowledge Representation and Reasoning (KR&R) is a field of Computer Science that 

emerged in the context of Artificial Intelligence (AI) and is one of AI’s main subfields 

[85]. The roots of KR&R can be traced back to the late 1950s, when John 

McCarthy—the computer scientist who also introduced the concept of utility 

computing or cloud computing as it is known today—put forward a vision of intelligent 

systems that could exercise common sense [86].  

In his seminal paper [87] McCarthy stated that a program could be said to have 

common sense if it was able to “automatically deduce for itself a sufficiently wide class 

of immediate consequences of anything it already knows”. The premise for automated 

deduction of this kind would be to represent knowledge about a given domain in a way 

that enables the system to apply some generic rules of inference in order to draw 

conclusions or to take actions. McCarthy proposed to employ first order predicate logic 

as the basis for such a knowledge representation language.  

As noted by Nebel [88] logic seems like a natural choice to address the problem of 

representing knowledge and reasoning about it, and indeed by the late 1980s 

logic-based methods had become prominent in the area of KR&R. A particular family 

of logic-based knowledge representation languages that has been increasingly 

attracting attention since that time is Description Logics (DLs) [89].  

DLs have their roots in Brachman’s structured inheritance networks [90], which were 

introduced to overcome some important limitations in the earlier KR approaches of 

semantic networks [91] and frames [92]; namely, the problems of ambiguity—due to 

their lack of formal semantics, and limited expressivity [89]. Structured inheritance 

networks were subsequently formalised as terminological systems, concept languages, 

and eventually as Description Logics [88]. What is common among DLs and their 

precursors is that, in contrast to earlier knowledge representation approaches, they are 

equipped with a formal, logic-based semantics [89].  

Description Logics were so named because their focus is to facilitate the creation of 

descriptions for notions that are important in an application domain (also known as 

terminological knowledge). A domain is described in terms of concepts (sets of 



70 

objects), roles (binary relationships between objects), individuals (object instances), 

and their interrelationships. Descriptions of concepts, roles and individuals are given by 

formulating axioms in a variable-free syntax. A set of axioms constitutes a DL 

knowledge base.  

Descriptions can be atomic—when single concepts or roles are defined, or 

complex—when composite descriptions are built from atomic ones using so-called 

concept and role constructors (e.g. concept or role union, intersection, complement, 

existential/universal restriction). Alternative combinations of concept and role 

constructors produce Description Logics that vary in terms of expressivity and 

complexity of inference. In most cases, however, the resulting DLs are decidable 

fragments of first-order predicate logic. A detailed account of the computational 

characteristics for several DLs is given in [89].  

By convention, a DL knowledge base is regarded as consisting of two components: a 

tBox (terminological box), and an aBox (assertional box). The tBox contains the 

intensional knowledge that is available about the domain, i.e. axioms that describe 

properties of domain concepts and their interrelationships. Conversely, the aBox 

contains extensional knowledge about the domain, i.e. assertions about the relations 

holding among individuals, and among individuals and concepts (also called 

membership assertions). The distinction among tBox and aBox is in some sense similar 

to the distinction among database schema and actual data records in traditional 

relational databases. There exists, however, an important difference in the way asserted 

data is viewed in the context of databases and DL knowledge bases. While the 

information stored in a database is always regarded to be complete for the purposes of 

query answering, the information stored in an aBox is viewed as always being 

incomplete [89]. That is, records in a database are interpreted under a Closed World 

Assumption, while the assertions in an aBox are interpreted under an Open World 

Assumption when performing DL reasoning.  

Once a DL knowledge base has been defined, it is possible to ask several kinds of 

questions about the described concepts and individuals, which can be answered by a 

DL reasoning engine. Typical reasoning tasks for tBox knowledge include concept 

classification (i.e. checking if a concept is subsumed by another), and concept 

satisfiability (i.e. checking that the description of a concept is coherent and not 

self-contradictory). Typical reasoning tasks for aBox knowledge are consistency 

checking (i.e. checking that the set of assertions in the aBox is consistent with the tBox) 

and individual classification (i.e. checking if a certain individual is an instance of a 

given concept).  

The most important benefit that one obtains from representing knowledge about a 

domain with DLs is the ability to perform all those different types of reasoning (with 

well-defined properties in terms of soundness, completeness, decidability and 

complexity), and particularly, the ability to infer new implicit knowledge from what 

has been explicitly defined in a DL knowledge base.  



71 

The advantages that Description Logics provide as methods for formal knowledge 

representation and reasoning make them appealing for a variety of applications. They 

have been employed to create knowledge representation languages and systems for a 

great number of domains until today, such as natural language processing, medical 

informatics, product configuration, databases, and software engineering [89].  

Notably however, the domain in which the application of DLs is considered to have 

been most successful is the development of ontology languages that provide a core 

building block for the architecture of the Semantic Web [86],[93].  

4.3.2 Ontologies, Semantic Web standards and Linked Data 

Ontology, as a term, has its origins in the field of Philosophy, in which it stands for the 

systematic study of what exists. In the context of Computer Science, however, ontology 

refers to an engineering artefact that is “constituted by a specific vocabulary used to 

describe a certain reality, plus a set of explicit assumptions regarding the intended 

meaning of the vocabulary words” [94]. In other words, an ontology is an “explicit 

specification of a conceptualisation” [95], providing a “shared and common 

understanding of a domain that can be communicated between people and 

heterogeneous and distributed systems” [96]. In the simplest case, an ontology may 

describe only a hierarchy of concepts, i.e. the subsumption relationships that hold 

between concepts in a domain. More fine-grained ontologies can also include other 

kinds of relationships between concepts, and specify constraints on their intended 

interpretation [94].  

According to Tim Berners-Lee, the inventor of the Web, ontologies are a fundamental 

building block to realise the vision of the Semantic Web – an extension of the current 

Web in which “information is given well-defined meaning, better enabling computers 

and people to work in cooperation” [97]. Achieving this vision will transform the 

current Web from a massive repository of hyperlinked human-readable documents, into 

a global knowledge graph and an application platform.  

In the view of Berners-Lee, in order to realise the Semantic Web vision, the data and 

services that are available on the Web must be augmented with semantic annotations 

that contain references to descriptive terms, with the meaning of such terms defined in 

ontologies [89]. The language in which these ontologies are to be encoded should allow 

for unambiguous interpretation by independently developed and autonomously 

operating software systems, and should facilitate reasoning upon the knowledge being 

specified in an automated and (computationally) practical manner. The formal, 

logic-based semantics with which Description Logics are equipped, the many years of 

experience of the DL research community in studying the computational properties of 

expressive DLs, as well as the implementation of highly optimised DL reasoning 

systems made the family of DLs an ideal starting point for that purpose [98].  



72 

Efforts in the area of creating an ontology language for the Semantic Web began in 

2000, with the DAML project in the USA [99] and the On-To-Knowledge project in the 

EU [100]. Collaboration among the two teams led to the creation of the DAML+OIL 

language in 2001 [101], and soon later to the creation of OWL (Web Ontology 

Language) which was ratified as a standard by the World Wide Web Consortium 

(W3C) in 2004 [102]. In 2009, the OWL 2 recommendation [103] was introduced, 

providing some extensions and revisions to the initial specification while retaining 

backwards compatibility.  

In both versions of OWL, the semantics of the language is definable via a translation 

into an expressive DL [104]. This correspondence allows tools and applications to 

exploit already known reasoning algorithms and reasoner implementations [89]. 

Semantically, OWL classes are the equivalent of DL concepts, OWL datatype 

properties and object properties correspond to DL unary and binary roles, and OWL 

instances are the equivalent of DL individuals. Examples of OWL-based ontology 

modelling will be introduced in detail in section 5.2. 

The normative exchange syntax of the language is based on XML (Extensible Markup 

Language) [105] and RDF (Resource Description Framework) [106]—every OWL 

ontology can be represented as an RDF graph and can be serialised and exchanged as an 

RDF document. The use of URIs (Universal Resource Identifiers) [107] provides a way 

to globally and uniquely identify and reference the modelling constructs defined in an 

OWL ontology document (classes, properties and instances) across the Web. RDF 

Schema [108] provides part of the language’s modelling vocabulary, and XML Schema 

[109] offers its datatypes to be used as concrete types in OWL.  

This interaction of the OWL language with other W3C standards did not emerge 

unintentionally. It was a design objective in the context of creating a layered Semantic 

Web architecture, but also an attempt to leverage existing tool support and make the 

language as appealing as possible to existing user communities—especially the RDF 

community.  

RDF is a standardised data model to create and share linked descriptions of resources 

accessible over the web. The RDF 1.0 specification was ratified by the W3C in 2004 

(although existing as a W3C recommendation since 1999 in the early days of the Web), 

and RDF 1.1 was published in 2014. With RDF, resources are described by making 

statements about them in the form of subject–predicate–object expressions. These 

expressions are known as RDF triples. The RDF model for data representation will be 

introduced in more detail through examples in section 6.2. 

Other technical specifications that are closely related to OWL and RDF and are often 

used in combination with OWL for developing Semantic Web applications are the rule 

languages SWRL [21] and RIF [110].  



73 

The SWRL (Semantic Web Rule Language) specification is a proposal for combining 

ontologies and rules which has not undergone a W3C standardisation process but is 

nevertheless endorsed quite widely and is supported by many tools. It allows extending 

the expressivity of OWL, particularly with respect to what can be said about properties 

of things in an OWL ontology (for instance, defining property chains), using a simple 

form of Horn-style rules [111]. Technically, it is a syntactic combination of the OWL 

language with the Datalog sublanguage of RuleML (Rule Markup Language).  

RIF (Rule Interchange Format) provides a unified XML-based representation language 

for rules of different types, enabling them to be exchanged among heterogeneous rule 

systems over the Web. In doing so, it is also a rule language in its own right. RIF 

became a W3C recommendation in 2010. At its current state, the recommendation 

includes three dialects: the Basic Logic Dialect (BLD), the Production Rule Dialect 

(PLD), and RIF Core (the intersection of BLD and PRD). By means of an import 

mechanism, the rules defined in a RIF document can include references to elements 

defined in an RDF graph or in an OWL ontology available on the Web [112]. This 

allows rules to be formulated in terms of entities modelled in any ontology.  

SPARQL (SPARQL Protocol And RDF Query Language) is a specification that first 

became a W3C recommendation in 2008. It defines a query language for data that is 

represented in the directed, labelled graph data format provided by the RDF standard. 

The SPARQL query language can be used to express queries across diverse data 

sources, whether the data is stored natively as RDF or is viewed as RDF via some kind 

of middleware [113]. By virtue of OWL’s layering on top of RDF, this also applies to 

instance data defined in an OWL ontology. Query results are returned to the requestor 

as an XML document or an RDF graph, depending on the particular SPARQL query 

form that is being used (SELECT, CONSTRUCT, ASK, or DESCRIBE). The 

specification also defines a protocol for issuing queries to remote query processing 

services over the Web (via SOAP and HTTP bindings), and an XML document format 

for representing the results of SELECT and ASK queries. The SPARQL model for data 

querying will be introduced in more detail through examples in section 6.2. 

The combination of URI, HTTP, RDF and SPARQL standards provide a toolset that 

allows developers to integrate heterogeneous data from distributed sources and share it 

between software applications with unprecedented efficiency. Tim Berners-Lee coined 

the term Linked Data to describe a set of best practices for online sharing of such 

structured data as interlinked datasets, using those basic web technologies [114].  

Berners-Lee outlined four principles of Linked Data which provide a very simple guide 

for publishing data [114]:  

1. Use URIs as names for things. 

2. Use HTTP URIs so that people can look up those names. 



74 

3. When someone looks up a URI, provide useful information, using the standards 

(RDF, SPARQL). 

4. Include links to other URIs, so that they can discover more things. 

The first Linked Data principle advocates using URIs to uniquely identify not just web 

documents (as in the classic web), but any kind of abstract concept or concrete object. 

The second Linked Data principle advocates the use of URIs that can be dereferenced 

over the HTTP protocol and return a structured description of the identified object or 

concept. The third principle advocates the use of the Resource Description Framework 

(RDF), as a single data model for publishing structured and semantically unambiguous 

descriptions of objects and concepts, and the use of SPARQL as a common query 

language to allow exploring the RDF dataset and discovering relationships. The fourth 

principle stresses the use of hyperlinks between the things described by RDF to other 

descriptions of related things residing in different datasets [19]. However, there is one 

important note to how hyperlinking works. Whereas hyperlinks in the classic web are 

largely untyped, in a Linked Data context the hyperlinks that connect things between 

them have types, which describe the relationships between them. These types are 

defined in an ontology vocabulary.  

These four rules have proven very effective in guiding data owners to publish Linked 

Data on the web, and the amount of data has grown rapidly. This data is often public as 

with the case of Linked Open Data, or it can be private, as is often the case with Linked 

Enterprise Data [115], [116]. In either case, the basic idea of Linked Data is to apply the 

general architecture of the World Wide Web to the task of sharing structured data on 

global scale [19], and bring interoperability to a whole new level.  

4.3.3 Ontology-driven information systems engineering  

The proliferation of the standards mentioned above, combined with the availability of 

several supporting tools have been a catalyst for the growing interest in recent years 

around the development of ontology-based software applications. But the potential 

benefits from employing ontology-based knowledge representation and reasoning to 

the development of software systems had been noticed and articulated much earlier. 

The intersection of the fields of knowledge engineering and software engineering has 

been the subject of active study by a wide research community since as early as the 

mid-1980s [27]. Researchers in this community have been concerned with different 

ways in which knowledge representation and reasoning can improve the processes or 

artefacts of software engineering. In 1998 Guarino introduced the term ontology-driven 

information systems to describe the general class of software systems where the 

knowledge that is being represented and reasoned upon for the purposes of their 

development or operation has been formulated as an ontology [94].  

According to Guarino [94], when considering the different ways in which ontologies 

can be used in the development of software systems, we can distinguish between two 



75 

orthogonal dimensions. The first is a temporal dimension, concerned with whether an 

ontology is used during the system’s development time or run time. In the first case, the 

ontology is employed with the intention to affect the software process and not the 

software artefacts per se, so it is appropriate to speak of ontology-driven development. 

In the second case, where the ontology is intended to interact with the software artefacts 

themselves, we can further distinguish among ontology-aware and ontology-driven 

information systems. This distinction is a matter of whether the ontology is actually 

peripheral or central to the operation of the system. If the existence of an ontology is 

known only to a single component of the information system that uses it whenever 

needed, we speak of an ontology-aware information system. When the ontology is a 

central component of the system that continuously affects its behaviour, Guarino 

proposes to speak of a proper ontology-driven information system. The second 

dimension in Guarino’s classification is a structural one, concerned with which 

components of the information system are being affected by the use of ontologies 

(presentation layer, logic layer, database layer), irrespective of when or how an 

ontology is used. 

Uschold [16] makes a similar but simpler distinction between ontology-driven software 

engineering, where ontologies are used in the process of building an application but no 

ontology is used by the application itself, and ontology-driven information systems, 

where the ontology is additionally playing a significant role in the end application.  

Happel and Seedorf [117] propose another classification that includes four general 

cases:  

 Ontology-driven development, which involves the use of ontologies at 

development time for sharing descriptions of the problem domain,  

 Ontology-enabled development, where ontologies are again used at 

development time but for actively supporting developers with their tasks,  

 Ontology-based architectures, where an ontology is used as a primary artefact 

during run time, and  

 Ontology-enabled architectures, where ontologies are used as auxiliary means 

for additional infrastructure support during run time.  

Irrespective of which might be considered the most appropriate framework for 

classifying research in this area, the benefits that ontologies can bring in relation to 

information systems engineering are manifold.  

Gasevic, Kaviani and Milanovic [118] provide a thorough analysis of the application of 

ontologies in different aspects of software engineering and the benefits that can be 

obtained. A similar analysis of applications and benefits of ontologies throughout the 

software lifecycle is given by Happel and Seedorf [117]. Bergman [119] points out that 

many of the benefits which are generally obtained by ontology-centric approaches to 

the development of information systems are attributed to the fact that the locus of effort 



76 

is shifted from software development and maintenance to the creation and modification 

of knowledge structures.  

Uschold [16] cites six important benefits which result from the increased level of 

abstraction and the use of formal structures and methods in ontology-driven 

information systems:   

 Reduced conceptual gap: developers interact with tools that are closer to their 

way of thinking about the problem domain rather than the implementation 

technology.  

 Increased automation: formal structures are amenable to automated reasoning 

thus reducing human workload.  

 Reduced development times: producing software artefacts that are closer to how 

we think, combined with reuse and automation, enables applications to be 

developed more quickly.  

 Increased reliability: formal constructs, combined with increased automation, 

reduces the likelihood of human error. 

 Increased agility/flexibility: ontology-driven information systems are more 

flexible, because changes can be made more easily and reliably in the model 

rather than in code.  

 Decreased maintenance costs: increased reliability and automation reduces 

errors and formal links between models and code make the software easier to 

comprehend and thus easier to maintain.  

4.4 Thesis statement 

Software platforms which facilitate co-development relationships between different 

organisations foster the creation of environments best characterised as software 

ecosystems. Cloud service ecosystems represent one special class of software 

ecosystems (section 2.3). As these grow and become more complex, reliability is put at 

risk, requiring all stakeholders to exercise control over changes in the ecosystem that 

may affect them. This is a challenge of governance (section 2.4).  

We put forward the view that a governance process within a cloud service ecosystem is 

inherently a decentralised, distributed and collaborative process spanning multiple 

organisational units and networked enterprises (section 3.3). Every governance process 

involves interaction between heterogeneous entities which perform one or more of the 

following functions: providing the policies, providing the data to be evaluated against 

policies or carrying out the actual policy evaluation. The concerns associated with each 

of the three functions are very different and cause the entities that assume these roles to 



77 

exhibit different rates of change and different types of change over the lifetime of the 

governance process.  

Therefore, in designing a software system to support collaborative governance 

processes, we need to ensure not only interoperability, which represents an obvious 

challenge, but need to also ensure that the role-driven concerns of the different entities 

engaged in the process are independently addressed and simultaneously satisfied. We 

need governance support systems that achieve adequate separation of concerns between 

the roles of the policy provider, the governed resource data provider and the policy 

evaluator (section 3.4). By avoiding strong couplings between governance policies, 

governed resources, and policy evaluation engines, the relevant stakeholders can 

operate collaboratively and evolve independently of each other at the same time.  

My thesis is that governance support systems that satisfy these requirements are both 

feasible and useful to develop through a framework that integrates Semantic Web 

standards and Linked Data principles.  

Semantic Web standards and Linked Data principles were designed to support the 

exchange of large volumes of heterogeneous and continuously evolving data, in a way 

that allows machines to unambiguously interpret the meaning of the data from each 

source, link together data from multiple different sources and independently generate 

new knowledge, without requiring any upfront investment in system-to-system 

integration (section 4.3).  

Heterogeneity, distribution and continuous evolution are the fundamental 

characteristics of the web. Semantic Web standards and Linked Data principles have 

been designed on that foundation. The key insight that underlies this thesis is that these 

same characteristics are also fundamental properties of governance processes in cloud 

service ecosystems. The challenge in designing a software system architecture to 

support governance in a cloud service ecosystem is a challenge of coping with 

heterogeneity, distribution and continuous evolution.  

As an additional benefit, beyond the capability to enable networked collaboration, 

Semantic Web standards can also guarantee the higher level of operational efficiency 

that ecosystem governance processes require. By virtue of the formal semantics, 

modelling abstraction and standards-based interfacing embodied by the standards, the 

design of governance support systems can benefit from improved reusability, 

maintainability, traceability and agility. 

4.5 PROBE framework  

The above described benefits of ontology-centric approaches to information systems 

engineering, in combination with the Semantic Web standards and Linked Data 



78 

technologies currently available, provide a promising foundation for a new approach to 

designing and implementing governance support systems for cloud service ecosystems.  

We here propose a conceptual architecture framework for developing governance 

support systems which we will refer to as the PROBE framework (policy-driven 

governance in cloud service ecosystems).  

The approach we put forward comprises four core components:  

 First, a shared governance ontology to provide the basic vocabulary and 

modelling constructs for describing both (i) the governance policies and (ii) the 

governed software resources made available in the ecosystem.  

 Second, ontology-based definitions of governance policies based on a uniform 

logic-based encoding method, referencing the shared governance ontology 

model.  

 Third, mechanisms to generate abstract, semantic descriptions of the different 

kinds of governed software resources, by means of transformation from their 

native representation into Linked Data with references to the shared governance 

ontology.  

 Fourth, a generic and reusable policy evaluation engine to check if the 

descriptions of governed resources conform to the relevant governance policies.  

Figure 8 illustrates the PROBE framework architecture in conceptual form.  

 

Figure 8. Overview of PROBE framework architecture for governance support systems 

Chapters 5, 6 and 7 explain the purpose served by the different components of this 

conceptual framework and show how each one can be realised with the application of 

contemporary web technology standards and tools.  



79 

4.6 Summary 

This chapter opens with an analysis of how policy-based governance is supported in 

contemporary governance technology platforms, based on a study of two widely used 

products that offer the opportunity to be studied in depth, as they are distributed under a 

commercial open source license. We walk through how these systems support the 

definition and enforcement of process- and resource-related policies and reflect on how 

the general approach typified by those systems meets the design objectives discussed in 

the previous chapter.  

The previous chapter introduced the idea that systems aimed at supporting governance 

processes in a cloud service ecosystem are required to simultaneously facilitate the 

concerns associated with three distinct roles in the governance process: the policy 

provider, the governed resource data provider and the policy evaluator. Separating the 

concerns associated with each role is the only way to facilitate all three roles at the same 

time, allowing the entities that take on these roles to manage and evolve their internal 

functions in an effective and efficient way.  

Our analysis in this chapter shows that contemporary governance technology platforms 

cater to much less complex governance requirements; networked collaboration is a 

requirement that they are simply not designed to meet. The fundamental assumption 

behind the design of contemporary governance technology platforms is centralised 

control of the governance process by a single entity. There is no provision for a 

governance process where multiple collaborating entities may exhibit different rates of 

change or different types of change while they independently evolve.  

Consequently, there is no architectural provision for separation of concerns between the 

roles of the policy provider, data provider and policy evaluator. Policy definition, data 

extraction and policy evaluation are entangled in the implementation of a single 

software component: a policy checking unit. In more concrete terms, the rules that a 

policy comprises are encoded in an imperative manner, for instance, directly coded in 

Java, as part of the same code that retrieves and validates the data.  

Based on this observation we discuss the dimensions of required enhancements that we 

need to bring to contemporary governance technology platforms so that we can cater to 

the advanced needs of cloud service ecosystems. We identify several aspects in which 

this technology needs to evolve, centred on two objectives: enabling networked 

collaboration and increasing operational efficiency in governance support systems.  

This analysis of the problem space leads into introducing the wider solution space. That 

is, architectural principles and concrete implementation technologies from the domain 

of semantic technologies, such as ontology-based knowledge representation and 

reasoning, ontology-driven information systems engineering and Semantic Web 

standards.  



80 

The insight that semantic technologies can provide the basis to enable networked 

collaboration while improving the operational efficiency of governance support 

systems is rooted in the author’s past experience with researching solutions for 

enterprise interoperability. The challenge of enabling heterogeneous enterprise systems 

to participate in collaborative business processes bears many similarities to the 

challenge of enabling ecosystem-wide governance processes. Experiences from 

applying knowledge representation and reasoning with open Semantic Web standards 

to the former domain can therefore readily be transferred to the latter.  

To explain the background and motivation for this approach we introduce some 

fundamental concepts from the domains of logic-based knowledge representation and 

reasoning, ontologies for the Semantic Web and related standards, and ontology-driven 

information systems engineering. This leads to presenting the thesis supported by this 

research, i.e. that a software architecture satisfying the advanced requirements of 

governance in cloud service ecosystems is both feasible and useful to realise on the 

basis of Linked Data principles and Semantic Web standards.  

On this basis we introduce a conceptual framework architecture for governance support 

systems that realises this approach. The fundamental architectural elements of the 

PROBE framework are discussed in the three chapters that follow (chapters 5, 6 and 7), 

which aim to demonstrate that a governance support system solution based on this 

framework is indeed feasible to create.  

The key takeaways from this chapter can be summarised as follows: 

1. State-of-the-art governance technology platforms are designed to meet 

requirements that are much simpler compared to those of governance support 

systems aimed at serving cloud service ecosystems. By virtue of its nature as a 

distributed and collaborative process, supporting governance in this new 

context requires systems to enable networked collaboration and to guarantee a 

higher level of operational efficiency.  

2. The thesis supported by the research presented in this dissertation is that a 

software architecture satisfying the advanced requirements of governance in 

cloud service ecosystems is both feasible and useful to realise on the basis of 

Linked Data principles and Semantic Web standards. 

3. The insight that underlies this thesis is that semantic technologies of this kind 

have already been shown to provide successful solutions in related problem 

domains such as inter-enterprise interoperability and policy engineering, and 

there are lessons learnt which can be readily transferred.  

4. The domains of ontology-based knowledge representation and reasoning, 

ontology-driven information systems engineering and Semantic Web research 

can provide architectural principles and concrete implementation technologies.  



81 

5. Our proposed framework architecture for policy-driven governance in cloud 

service ecosystems (PROBE) comprises four core components: a shared 

governance ontology; a repository of ontology-based policy definitions; 

mechanisms to generate ontology-based resource descriptions; a governance 

policy evaluation engine.  

  



82 

 

 

 

 

 

 

Chapter 5 

 

Defining governance policies 

 



83 

5 Defining governance policies 

5.1 Introduction 

In previous chapters we went through the fundamentals of cloud service ecosystems, 

we analysed the key requirements associated with developing governance support 

systems suitable for cloud service ecosystems, we discussed the potential of semantic 

technologies as a new foundation for the development of such systems and we 

presented an abstract software framework architecture that builds on this foundation.  

Our proposed framework architecture comprises four core components:  

 a shared governance ontology;  

 a repository of ontology-based policy definitions;  

 mechanisms to generate ontology-based resource descriptions; 

 a governance policy evaluation engine.  

In this chapter we discuss an instantiation of the first two of these components with 

contemporary web standards. We describe the conceptualisation and representation of 

an ontology which serves as a shared vocabulary to define governance policies, but also 

provides the vocabulary to describe governed software resources. In this context we 

also propose some governance policy modelling patterns with the help of real-life 

examples drawn from the governance policy dataset of an actual cloud service 

ecosystem. Lastly, we also discuss related work on ontology-based policy 

representation and related semantic technologies.  

5.1.1 Governance from the policy provider’s perspective 

As discussed in chapter 3, the policy provider role is responsible for creating, 

maintaining, and providing the governance policies that need to be enforced. A single 

policy may involve more than one governed entities in a cloud service ecosystem, 

whereas a resource may be governed by more than one policy originating from different 

policy providers.  

The goal of the policy provider is to be able to effectively and efficiently manage 

policies internally, and to communicate these policies to other partners who need to 

comply or enforce them.  

 Internal management objectives: To be able to freely modify existing policies 

while containing changes locally, i.e. without necessitating any corresponding 

changes to third-parties such as data providers or policy evaluators. To be able 

to easily create new or modify existing policies which may require traceability 



84 

of logical dependencies between policies, detection of contradictions with other 

policies and debugging of complex policy logic.  

 External communication objectives: To be able to exchange/share policies in a 

platform-agnostic way, without needing to consider how the policies will be 

later processed and evaluated, or how data concerning the governed resources is 

represented internally by data providers. To be able to efficiently and quickly 

have new or modified policies enacted/deployed to the destinations where they 

need to be enforced.  

5.1.2 Governance policies from the ecosystem’s perspective 

Observed from an ecosystem-wide perspective, policies exhibit the following three 

characteristics.  

Heterogeneity:  

 Governance policies concern very different aspects of governance objectives 

from the strategy level down to the operational level, and many different 

characteristics of a software ecosystem resource, from the pricing model or 

localisation details of a software unit, to its lifecycle stage. 

 Policies are initially represented in very dissimilar native formats (documents, 

web pages, structured files).  

Physical distribution:  

 Governance policies are stored in different locations. Software ecosystem 

partners are distributed, and so are the policies that ecosystem partners may 

wish to enforce on governed ecosystem resources. 

 Policies need to be exchanged over the internet between ecosystem partners.  

Fragmented ownership and control:  

 Governance policies are owned by multiple independent partners and may 

evolve (modified, removed) independently of other governance process 

components (data or policy evaluation engines). 

 Policies are owned by independent partners who are free to choose and use their 

own terms of reference in their local/native policy definitions. 



85 

5.2 Governance ontology  

5.2.1 Basic characteristics 

As discussed in section 4.3.2, an ontology represents a “shared and common 

understanding of a domain that can be communicated between people and 

heterogeneous and distributed systems” [96].  

Ontology development starts with determining scope and intended usage of the 

ontology model; i.e. what should the domain cover and what will the ontology artefact 

be used for. Scope and intended usage dictate the appropriate level of abstraction. At 

the highest level of abstraction we have foundational ontologies (also referred to as 

upper or top-level ontologies) such as GFO or DOLCE, which aim to formalise very 

general concepts that are common and reusable across different knowledge domains 

[120]. At the lowest level of domain abstraction we have application-specific 

ontologies which can be extremely narrow in focus. In between those two ends of the 

spectrum there is a wide variety of domain ontologies which may formalise a mix of 

high-level and low-level domain concepts in a common ontology – or in a set of 

interlinked ontologies.  

Beyond domain abstraction, other important aspects are the extent of formalisation in 

the ontology – i.e. the degree of axiomatisation in the description of classes, attributes 

and relations of domain concepts, and the size of the ontology – i.e. the number of 

domain entities described in the ontology artefact.  

In the context of this research our primary focus wasn’t to develop a foundational 

domain ontology for cloud service ecosystems governance, although the ontology 

presented here could be extended to provide one. Our goal in designing this ontology 

was to validate the feasibility of the framework presented in chapter 4. As such, the goal 

was to develop an ontology closer to the application-specific end of the spectrum, 

featuring relatively extensive axiomatisation over an adequate number of constructs.  

The governance ontology was developed based on the governance support system 

requirements that we analysed in the scope of research project CAST [22], [121],[122]. 

The constructs described in the ontology mirror the exact structure and characteristics 

of an actual ecosystem-oriented PaaS system, the CAST platform. In fact, the 

description of example scenario #3 which was provided in section 3.2.3 above was 

inspired by the characteristics and governance requirements of the CAST cloud service 

ecosystem. Through the process of requirements analysis for the CAST governance 

support system we derived a set of 37 governance policies of varying scope and 

complexity.  



86 

For the remainder of this chapter and the chapters to follow we will be using 

governance policy examples based on the CAST project case study, which is 

introduced in full detail in chapter 8.  

The resulting governance ontology comprises:  

1. A small set of core domain concepts which are generic and independent of any 

concrete cloud service ecosystem governance requirements, such as the notions 

of cloud platform resources, resource collections, lifecycle states and state 

transitions.  

2. Modelling constructs specific to the governance requirements of CAST. These 

correspond to the different types of logical entities found on the CAST platform 

such as different kinds of software units (solutions, apps and services), different 

kinds of software artefacts (e.g. deployment descriptors, interface definitions, 

pricing specifications, localisation files, images), different lifecycle states 

(development, testing, review, beta, production, deprecation, end-of-life), etc.  

3. The definitions of policies governing CAST platform resources, based on the 

set of the 37 governance policies produced from project CAST.  

For reasons of standards-based interoperability and tool support, the language we have 

adopted for the specification of the governance ontology is OWL 2 [103].  

The full ontology model comprising the platform-independent governance concepts, 

the platform specific governance concepts and the governance policies has the 

following characteristics: 

 Size: 170 classes, 30 properties, 29 individuals (constants), 7 SWRL rules  

 DL expressivity: ALCROIQ(D)45
 plus DL-safe [123] SWRL rules 

 Language features specific to OWL 2: XSD facets, Keys  

In the rest of this section we will provide a brief overview of the different types of 

domain/policy modelling constructs with the help of examples. The full specification of 

the governance ontology can be found at www.ecosystem-governance.com. 

5.2.2 Class hierarchy 

The ontology class hierarchy specifies the subsumption relationships that hold between 

the 170 concepts in the domain being modelled.  

An example of such a subsumption relationship is illustrated in Figure 9.  

                                                 
45

 For an overview of DL reasoning characteristics and the notation to describe the modelling construct 

composition of DL languages refer to http://www.cs.man.ac.uk/~ezolin/dl/ 



87 

 

Figure 9. Excerpt from governance ontology class hierarchy 

The concept of PlatformEntity refers to the basic software unit on the CAST 

platform. Software developed against the CAST platform can either be a Service (i.e. 

a web API), an App (i.e. a UI-complete application), or a Solution (i.e. a bundle of 

interoperable apps).  

Table 2 provides the axiomatic description of the PlatformEntity class in OWL 2, 

using Manchester Systax
46

.  

Class: PlatformEntity 

 

    DisjointUnionOf:  

        Solution, App, Service  

Table 2. Description of PlatformEntity class (OWL Manchester Syntax)  

PlatformEntity is defined as the disjoint union of Solution, App and Service, while 

those three concepts are in turn defined as subclasses of PlatformEntity in their own 

class expressions (not shown in the code excerpt above).  

A disjoint union class expression in OWL 2 allows one to define a class as the union of 

other classes, all of which are pairwise disjoint. Intuitively, this means that no software 

unit on the CAST platform can ever be both a Solution and an App at the same time, 

for instance. PlatformEntity is a root class in our governance ontology, which is why 

it is not defined as a subclass of any other class, except for owl:Thing, the top class in 

every ontology according to the semantics of OWL 2. Every individual in the OWL 

world is a member of the class owl:Thing. Consequently, every user-defined class is 

implicitly a subclass of owl:Thing.  

                                                 
46

 For the rest of the excerpts of OWL 2 DL code provided in this dissertation we will be using 

Manchester Syntax [103] in place of the equally formal but much less readable mathematic Description 

Logic notation. 



88 

5.2.3 Object and data properties 

The governance ontology includes 14 object properties and 16 data properties. Object 

properties are used to represent relationships between individuals (instances) of classes, 

while data properties connect individuals with RDF literals or simple types defined in 

accordance with XML Schema datatypes (such as xsd:integer and xsd:string).  

Table 3 provides an example object property specification excerpted from the ontology. 

The hasDependency property can be used to specify that some PlatformEntity 

depends on another PlatformEntity, such as when a Solution depends on some App, 

or when an App depends on a specific Service.  

The property is defined as the inverse of isDependencyOf. The property is irreflexive 

— that is, no individual can be connected to itself through this property. It is also 

defined as assymetric, meaning that, if an individual x is connected along this property 

to an individual y, then y cannot be connected along the same property to x. In this 

domain this prevents circular dependencies between software units on the cloud 

platform.  

ObjectProperty: hasDependency 

 

    Characteristics:  

        Irreflexive, 

        Asymmetric 

 

    InverseOf:  

        isDependencyOf 

Table 3. Description of hasDependency object property 

Table 4 provides an example data property specification. The hasSizeInKB property 

can be used to specify the size of any software artefact residing on the cloud platform, 

such as the size of deployment archives or the size of iconography and screenshots 

bundled with the description of a software unit. The property is restricted to range over 

xsd:decimal values and is defined as functional, meaning that an individual x cannot 

have more than one connection to literals along this property (in other words, it cannot 

have more than one value for file size).  

DataProperty: hasSizeInKB 

 

    Characteristics:  

        Functional 

 

    Range:  

        xsd:decimal 

Table 4. Description of hasSizeInKB data property 



89 

5.2.4 Individuals  

In Description Logics, a distinction is drawn between the tBox (terminological box) 

and the aBox (assertional box). When creating a DL knowledge base using OWL 2 as 

modelling language, class expressions, object properties and data properties belong to 

the tBox of the knowledge base. OWL 2 individuals (instances) belong to the aBox.  

The 29 individuals included in the governance ontology do not represent instances of 

the class expressions mentioned earlier. Their role is to assist in domain modelling by 

providing some fundamental classification constants for governed resources. These 

classification constants are used inside class expressions wherever required.  

Table 5 provides an example individual specification. It defines a constant named 

_SOAPService which is defined as pairwise disjoint from another individual 

representing the constant _RESTService.   

Individual: _SOAPService 

 

    Types:  

        ServiceInterfaceClassification 

     

    DifferentFrom:  

        _RESTService 

Table 5. Description of _SOAPService individual 

OWL 2 doesn’t adopt a Unique Name Assumption (UNA) and it is sometimes 

necessary to be able to specify when two individuals are not the same object, to support 

inferencing and enable detection of contradictions in the knowledge base. This is 

achieved using the owl:DifferentFrom language construct.  

In practice, the _SOAPService individual is used as a classification constant to 

distinguish between different types of services delivered by the CAST platform with 

respect to their interface type. Some services may be implemented such that they can be 

invoked through the SOAP protocol and others through a REST protocol. Any service 

delivered by the CAST platform can either expose a SOAP or a REST interface, not 

both at the same time. 

Table 6 presents the class expression of SOAPService which makes use of the 

individual _SOAPService as a classification constant.  

Class: SOAPService 

 

    EquivalentTo:  

        Service 

         and (hasInterfaceClassification value _SOAPService) 

 

 



90 

    SubClassOf:  

        Service 

Table 6. Description of SOAPService class 

5.2.5 SWRL rules 

The governance ontology is making use of the full expressiveness capabilities of the 

OWL 2 language. The Description Logics dialect corresponding to the developed 

governance ontology is ALCROIQ(D), which suggests there is a high degree of 

axiomatisation in the policy descriptions. Nevertheless, there are certain cases of 

policies from the CAST project dataset that cannot be expressed with OWL 2 axioms.  

OWL 2 DL is a decidable fragment of first order predicate logic, but there are cases 

where class membership conditions or property relationship conditions cannot be 

directly represented in OWL 2 [124].  

For instance, a first order predicate logic rule such as  

Solution (s)  

∧ hasDependency (s, a1)  

∧ hasDependency (s, a2)  

∧ conflictsWith (a1, a2)  
→ ConflictingDependencySolution (s) 

which defines the class ConflictingDependencySolution as consisting of CAST 

platform solutions whose dependencies are conflicting, is not expressible in OWL 2.  

The expressivity of an OWL 2 ontology can however be extended to support such 

domain/policy modelling requirements by adding SWRL (Semantic Web Rule 

Language) rules to the ontology. SWRL rules are Datalog rules with unary predicates 

for describing classes, binary predicates for describing properties, and some additional 

n-ary predicates for language built-ins.  

Table 7 presents the equivalent SWRL rule expression of the abovementioned class 

membership conditions rule.  

(Class: ConflictingDependencySolution) 

 

    Rules: 

        Solution (?s),  

        hasDependency(?s, ?a1),  

        hasDependency(?s, ?a2),  

        conflictsWith(?a1, ?a2)  

            -> ConflictingDependencySolution (?s) 

Table 7. Description of ConflictingDependencySolution class membership conditions via a SWRL 

rule 



91 

5.2.6 Advanced OWL 2 features 

In addition to the above, the governance ontology makes use of some relatively 

advanced language capabilities which were added to the OWL specification with the 

introduction of OWL 2.  

The most significant ones are Facets and Keys [125].  

 Facets: OWL 2 offers a wider set of datatypes compared to OWL (v1) and 

supports restrictions of data values by facets, as in XML Schema. Those 

restrictions make it possible to specify acceptable datatype values via 

constraining facets which restrict the range of values allowed. For text, 

xsd:minLength and xsd:maxLength can be used to restrict string length. For 

numbers, xsd:minInclusive and xsd:maxInclusive can be used to restrict 

values.  

 Keys: Keys offer increased expressive power as they enable an OWL-DL 

reasoning engine such as Pellet [127] or Hermit [128] to uniquely identify 

individuals of a given class by values of key properties. The OWL 2 construct 

owl:hasKey allows keys to be defined for a given class. An owl:hasKey axiom 

states the (data or object) property through which it is possible to uniquely 

identify each named instance of the class. If two named instances of the class 

have the same value for each of key properties, then these two individuals are 

inferred to be one and the same. 

5.3 Method for creating governance policies 

5.3.1 Process and resource governance  

In section 2.4.1 we introduced a definition of cloud service ecosystem governance that 

draws a conceptual distinction between governing ecosystem resources and governing 

ecosystem processes. Our analysis to date supports that any form of policy facilitating 

cloud service ecosystem governance can be abstracted to the level of either resource or 

process governance.  

One of the outcomes from the work carried out by the author in the scope of research 

project CAST was the observation that, in the context of a cloud service ecosystem 

which is created around a PaaS platform, process governance is effectively mapped 

onto lifecycle management, whereas resource governance is mapped onto artefact 

validation.  



92 

5.3.1.1 Policies for lifecycle management  

Process governance via lifecycle management policies is concerned with ensuring a 

structured and disciplined approach to introducing software units developed by 

different ecosystem partners onto the deployment and execution environments, 

modifying them, or removing them. Central to this is the notion of a lifecycle model 

defining the phases that every different managed software unit needs to proceed 

through, as well as the preconditions associated with the transition from one lifecycle 

phase to the next.  

For instance, one of the lifecycle governance policies defined for the CAST platform 

states that a precondition for allowing an app to proceed from the review phase to the 

beta testing phase, is for the app to be associated with a quality review report that 

contains a positive evaluation. In addition to this precondition, the app must continue to 

satisfy all preconditions defined for previous transitions (i.e. the transition from local 

development to sandboxed testing and from sandboxed testing to review).  

5.3.1.2 Policies for artefact validation  

Resource governance via artefact validation policies is concerned with ensuring that all 

artefacts and metadata associated with software units of cloud services are conformant 

to technical, business or legal constraints which are defined by the platform provider or 

by different ecosystem partners. Central to this concept is the notion of artefact 

specifications which place constraints on the valid structure and contents that different 

kinds of configuration, specification or code artefacts are allowed to have.  

For example, one of the artefact validation policies defined for the CAST platform 

states that the interface specification (Web Services Description Language or WSDL) 

of every external web service used by one or more apps, must contain exactly two 

non-identical endpoint URLs. These URLs must point to different servers on which the 

service is deployed (primary and backup endpoints). The rationale of this policy is to 

provide a failover alternative in case the primary server that hosts the service becomes 

unavailable. 

5.3.2 Policy encoding patterns  

The method we present here introduces the approach of expressing lifecycle 

management and artefact validation policies as OWL classes. This is done by creating a 

new OWL class for every policy to be defined and constructing equivalent class axiom 

expressions. This section provides several examples that illustrate how this can be 

achieved.  

We put forward the idea of a policy encoding pattern whereby process and resource 

governance policies can be formulated in either positive or negative form. A related 



93 

concept was applied in the representation of security policies with KaoS [18] and Rei 

[126], which are discussed in section 5.4 of this chapter.  

In some cases, it is much more intuitive to express policy constraints in terms of what 

should necessarily hold in the domain (positive form), rather than what should not be 

the case (negative form). In other cases it can be the opposite. And there are always 

cases where the only possible way to express the constraints imposed by a policy is in 

one of the two forms, not the other.  

The logic-based policy representation foundation in our approach provides the 

flexibility to define a policy in any of the two forms, depending on what is best, while 

affording powerful reasoning capabilities for the purposes of policy evaluation.  

5.3.2.1 Positive formulation for artefact validation policies 

The purpose of artefact validation policies is to regulate the structure and contents of 

software-related resources of a cloud service ecosystem. Similarly to how integrity 

constraints help ensure accuracy and consistency of data in databases, constraints on 

cloud service ecosystem resources will ensure conformance to governance 

requirements. The policy evaluation process will reveal whether or not an artefact is 

valid – the outcome of the process is always Boolean.  

A positive formulation of a resource governance policy describes the resource in terms 

of the conditions that make it a valid artefact. Conversely, a policy expressed in 

negative form describes the resource in terms of the conditions that make it an invalid 

artefact.  

To illustrate the policy encoding process let us consider a CAST platform app artefact 

as a concrete example; the case of AppScreenshot. As suggested by its name 

AppScreenshot is a resource that provides a screenshot of an App deployed to the 

CAST platform. This resource will be used as part of the App description to be placed in 

the cloud platform’s app store/directory.  

Policy encoding for AppScreenshot will proceed as follows: 

1. Step 1: Create a primitive OWL class
47

 ValidAppScreenshot which is 

asserted as a subclass of AppScreenshot and ValidAppArtefact. Should the 

                                                 
47

 In Description Logics languages like OWL concepts can be either primitive or defined. OWL classes 

that are only described in terms of necessary conditions (i.e. by asserting their superclasses) are known as 

primitive classes, whereas classes described in terms of both necessary and sufficient conditions (i.e. by 

asserting an equivalent class axiom) are known as defined classes. With defined classes, a reasoner can 

deduce that any individual that satisfies the definition will belong to the class. With primitive classes a 

reasoner will not draw this conclusion.  



94 

governance policy be encoded in positive form, this class will be later converted 

to a defined class in step 4.  

2. Step 2: Create a primitive OWL class InvalidAppScreenshot, which is also 

asserted as a subclass of AppScreenshot and InvalidAppArtefact. Should 

the governance policy be encoded in negative form instead of positive, it will be 

this class that will later be converted to a defined class.  

3. Step 3: Create/modify the description of superclass AppScreenshot, asserting it 

is a subclass of AppArtefact and a disjoint union of the newly created 

ValidAppScreenshot and InvalidAppScreenshot.  

4. Step 4: Depending on whether a positive or negative formulation is more 

convenient, construct an equivalent class axiom expressing the policy 

conditions and attach it to ValidAppScreenshot or to 

InvalidAppScreenshot, respectively, converting one of the two into a defined 

OWL class.  

Figure 10 illustrates the subsumption relationships defined between classes to facilitate 

resource governance for AppScreenshot artefacts.  

 

Figure 10. Class hierarchy in policy encoding pattern for the validation of AppScreenshot 

resources 

AppScreenshot is an AppArtefact, which is itself a PlatformArtefact. An 

AppScreenshot can either be a ValidAppScreenshot or an InvalidAppScreenshot. 

The OWL class description for AppScreenshot is provided in Table 8.  

Class: AppScreenshot 

     

    DisjointUnionOf:  

        ValidAppScreenshot, InvalidAppScreenshot 

 

    SubClassOf:  

        AppArtefact 

Table 8. Description of AppScreenshot artefact class 

For the last and most essential step of policy encoding we need to consider the policy 

conditions that go into the equivalent class axiom expression.  

As an example, the CAST platform policy for app screenshots is as follows:  



95 

 File type should be either JPEG or PNG 

 File size should 1024 KB or smaller 

 Image should be between 300 pixels and 600 pixels high 

 Image should be between 400 pixels and 800 pixels wide 

In this specific instance, positive formulation is the only way to express the policy. This 

is because it is practically impossible to describe all the different conditions that would 

cause an app screenshot to be an invalid artefact. The opposite, however, is 

straightforward.  

The equivalent class axiom expressing the policy conditions should therefore be 

attached to the class description for ValidAppScreenshot, converting it from a 

primitive OWL class into a defined class.  

Table 10 provides the complete definition of ValidAppScreenshot. As shown, the 

policy conditions listed above are mapped onto the equivalent class expression in a 

direct way.  

Class: ValidAppScreenshot 

 

    EquivalentTo:  

        (hasContentType some ({_image/jpeg, _image/png}))  

        and (hasSizeInKB some xsd:integer[<= 1024]) 

        and (hasHeightInPixels some xsd:integer[>=300, <=600]) 

        and (hasWidthInPixels some xsd:integer[>=400, <=800])  

 

    SubClassOf:  

        AppScreenshot,  

        hasContentType only ({_image/jpeg, _image/png}), 

        ValidAppArtefact 

Table 9. Description of positive-form policy ValidAppScreenshot (defined class)  

The EquivalentTo expression is constructed as a conjunction of the different policy 

conditions. The expression comprises one object property (hasContentType) and three 

data properties (hasSizeInKB, hasHeightInPixels, hasWidthInPixels). The object 

property ranges over _image/jpeg or_image/png, which are ontology individuals 

serving as classification constants, as described in section 5.2.4. The data properties 

range over numeric integer values restricted by constraining facets (OWL 2 

minInclusive and maxInclusive facets).  

Last, notice the presence of the closure axiom for the hasContentType object property 

which is part of the SubclassOf expression of ValidAppScreenshot:  

hasContentType only ({_image/jpeg, _image/png})  (1) 



96 

The purpose of the above axiom is to complement the hasContentType axiom that is 

part of the EquivalentTo expression and allow reasoners to draw the right inferences:  

hasContentType some ({_image/jpeg, _image/png})  (2) 

Axiom (2) describes the class of individuals that have some (i.e. at least one) 

connection along the hasContentType property to individual _image/jpeg or to 

individual _image/png. On the other hand, axiom (1) describes the class of individuals 

whose connections to any other individual along the hasContentType property are 

only with _image/jpeg or with _image/png. In other words, the individuals of the 

class described by closure axiom (1) do not have any connections along the 

hasContentType property to any individual whatsoever, except for individual 

_image/jpeg or individual _image/png.  

The combination of the logical conditions explicated by the two axioms allows an 

OWL-DL reasoner  like Pellet [127] or Hermit [128] to infer that a 

ValidAppScreenshot needs to be connected to either _image/jpeg or _image/png, 

and nothing else. In other words, the content type that any valid app screenshot 

individual can have is only JPEG or PNG, and nothing else.  

Class ValidAppScreenshot is also defined as a subclass of ValidAppArtefact, 

allowing further chains of inference in modular definition of policies as we will see 

later in this section.  

5.3.2.2 Negative formulation for artefact validation policies 

Table 9 provides the definition of OWL class InvalidAppScreenshot. As shown, the 

description of the class includes nothing more than stating it is a subclass of 

AppScreenshot and InvalidAppArtefact. This means the InvalidAppScreenshot 

class description only states necessary but not sufficient conditions and is therefore a 

primitive class.  

Class: InvalidAppScreenshot 

 

    SubClassOf:  

        AppScreenshot, 

        InvalidAppArtefact 

Table 10. Description of negative-form policy InvalidAppScreenshot (primitive class) 

Because of the disjoint union axiom in the AppScreenshot class description, a DL 

reasoner is lead to deduce than any instance of an app screenshot artefact is either a 

ValidAppScreenshot or an InvalidAppScreenshot.  



97 

As a result, if an (asserted) instance of AppScreenshot satisfies the definition of 

ValidAppScreenshot, a DL reasoner will classify it as an (inferred) instance of 

ValidAppScreenshot. Conversely, if an (asserted) instance of AppScreenshot does 

not satisfy the definition of ValidAppScreenshot, it will be classified as an (inferred) 

instance of InvalidAppScreenshot.  

The ability to draw these automated inferences provides the foundation for the policy 

evaluation infrastructure which is discussed in detail in section 7.  

To offer one more example that illustrates how negative policy formulation works let us 

consider another CAST platform resource: Description.  

Description is a data resource which is not represented as a file in CAST platform’s 

repository but persisted and retrieved from a relational data store. It is a brief textual 

description available for every software unit on the CAST platform and, similarly to the 

above example of AppScreenshot, Description is also used in the cloud platform’s 

app store/directory for end-users.  

Figure 11 depicts the subsumption hierarchy.  

 

Figure 11. Class hierarchy in policy encoding pattern for the validation of Description resources 

Description is subclass of PlatformEntityCollectionMetadata, which is a root 

class in the governance ontology (subclass of owl:Thing). A Description can either 

be a ValidDescription or an InvalidDescription.  

The policy for valid descriptions of software units deployed on the CAST platform is 

very simple; the description must be non-empty text.  

The defined OWL class for InvalidDescription which facilitates negative policy 

formulation is provided in Table 11.  



98 

Class: InvalidDescription 

 

    EquivalentTo:  

        Description 

         and (hasSingleValue value "") 

     

    SubClassOf:  

        Description 

Table 11. Description of negative-form policy InvalidDescription (defined class) 

InvalidDescription is defined as the class of things which are known to be a 

Description and are also known to have a connection along the hasSingleValue data 

property to an empty string of characters.  

Intuitively, any (asserted) instance of Description which does not satisfy the 

definition of InvalidDescription will be classified by a DL reasoner as an (inferred) 

instance of ValidDescription. Conversely, any (asserted) instance of Description 

that satisfies the definition of InvalidDescription will be classified as such.  

5.3.2.3 Positive formulation for lifecycle management policies 

The purpose of lifecycle management policies is to regulate the process by which 

software units developed by different ecosystem partners are integrated into the 

ecosystem’s operational environment and continuously modified, ensuring integrity 

and consistency at all times. Process governance policy definition is tied to lifecycle 

stages and conditions under which a transition from one stage to another would be 

allowed. Similarly to what we discussed for artefact validation policies, the policy 

evaluation process is meant to reveal if a resource can move along the lifecycle via a 

transition to a new lifecycle state, or not.  

A positive formulation of a process governance policy describes the conditions under 

which a transition from one state to another would be valid. Conversely, a policy 

expressed in negative form describes the conditions under which such a lifecycle stage 

transition would be invalid.  

To illustrate the method of process governance policy encoding let us consider another 

example from the CAST policy dataset. On the CAST platform, software units can 

transition sequentially through the stages of development, testing, review, beta, 

production, deprecation, and end-of-life. Allowed transitions include promotion from 

one stage to the next but also demotion to the previous stage. Lifecycle stages are 

common between CAST platform software units (solutions, apps and services), but 

transition conditions differ depending on type of software unit. 



99 

 

Figure 12. CAST model of seven lifecycle stages of software units 

The development state is the first state that a managed resource is entering once 

deployed to the platform. The testing state represents a phase during which a solution, 

app or service goes through platform integration testing in a special, non-production 

environment. The review state represents the phase of various automated and manual 

quality controls by platform QA experts to ensure certain levels of quality in an 

application. Beta represents a phase of acceptance testing by a wider group of users. 

The production state represents the phase where a service, app or solution is 

operational. Deprecation refers to the state of being possible to use but not 

recommended for usage, and end-of-life represents the state of being decommissioned 

from the platform. 

Let us use the example of an app which is currently found in the Review stage 

(AppInReview) and a lifecycle management policy that dictates the conditions under 

which there can be a promotion of this app to the Beta stage.  

The representation of process governance policies in positive or negative form is 

carried out in a pattern analogous to that employed for artefact validation policies. 

Policy encoding for AppInReview will proceed as follows: 

1. Step 1: Create a primitive OWL class AppPromotableToBeta, which is asserted 

as a subclass of AppInReview. Should the governance policy be encoded in 

positive form, this class will be later converted to a defined class in step 4.  

2. Step 2: Create a primitive OWL class AppNonPromotableToBeta, which is also 

asserted as a subclass of AppInReview. Should the governance policy be 

encoded in negative instead of positive form, it will be this class that will later 

be converted to a defined class.  

3. Step 3: Create/modify the description of superclass AppInReview, asserting it is 

a subclass of App and a disjoint union of the newly created 

AppPromotableToBeta and AppNonPromotableToBeta.  

4. Step 4: Depending on whether a positive or negative formulation is suitable, we 

construct an equivalent class axiom expressing the policy conditions and attach 

it to AppPromotableToBeta or to AppNonPromotableToBeta, respectively, 

converting one of the two into a defined OWL class.  

Figure 13 illustrates the class subsumption relationships to be modelled, in order to 

govern the promotion of an app from one lifecycle stage to a subsequent one. In the 

example case we use here the goal is to control the lifecycle change of an app going 

from Review stage to Beta. 



100 

 

Figure 13. Policy encoding pattern to govern the promotion of an app from Review to Beta  

AppInReview is an App, which is itself a PlatformEntity. An AppInReview can either 

be an AppPromotableToBeta or an AppNonPromotableToBeta. The OWL class 

description for AppInReview (as per step number 3 above) is provided in Table 12.  

Class: AppInReview 

 

    EquivalentTo:  

        App 

         and (hasLifecycleStateClassification value _Review) 

     

    SubClassOf:  

        App 

     

    DisjointUnionOf:  

        AppPromotableToBeta, AppNonPromotableToBeta 

Table 12. Description of AppInReview stage 

The CAST platform policy controlling the promotion of an app from Review to Beta 

stage states the following preconditions:  

 The app has a non-empty text description  

 The app’s collection of artefacts includes a positive review report  

 The app’s collection of artefacts includes every artefact required for a transition 

to Review (i.e. is the app’s current stage) 

 The app’s collection of artefacts are all valid with respect to the policies 

applicable 

 The app has no dependencies to services, or in case it does, then all services this 

app depends on are of correct types and are in the stage of either beta or 

production  

This policy is one more case where positive formulation is the only feasible way to 

express the conditions under which a lifecycle promotion would be valid. It is 

practically impossible to describe all the different conditions that would cause the 

promotion to be an invalid transition, so as to provide a formulation in negative form.  



101 

The equivalent class axiom expressing the policy conditions as per step number 4 

should therefore be attached to the class description for AppPromotableToBeta, 

converting it from a primitive OWL class into a defined class.  

Table 13 provides the complete definition of AppPromotableToBeta.  

Class: AppPromotableToBeta 

 

    EquivalentTo:  

        AppInReview 

        and (hasDescriptionMetadata exactly 1 ValidDescription) 

        and (hasCollection exactly 1  

               (CollectionOfValidAppArtefacts  

                and AppArtefactsForTransitionToBeta)) 

        and (AppWithoutDependencies or           

               ((hasDependency some  

                  (PlatformEntityInBeta or  

                   PlatformEntityInProduction)) 

                and AppWithDependenciesOfCorrectTypes)) 

 

    SubClassOf:  

        AppInReview, 

        hasDescriptionMetadata only ValidDescription, 

        hasDependency only  

            (PlatformEntityInBeta or  

             PlatformEntityInProduction), 

        hasCollection only  

            (AppArtefactsForTransitionToBeta and    

             CollectionOfValidAppArtefacts) 

Table 13. Description of positive-form policy for AppPromotableToBeta transition (defined class) 

In plain English, the EquivalentTo expression states that for an app to be promotable 

to Beta stage it must currently be in Review stage (AppInReview); must have a unique 

description which is valid with respect to the applicable policy (ValidDescription, as 

per Figure 11); must have a unique collection of artefacts which are all valid with 

respect to their applicable policies (CollectionOfValidAppArtefacts) and which 

includes all artefacts necessary for transition to Beta 

(AppArtefactsForTransitionToBeta); must not have any dependencies to other 

software units (AppWithoutDependencies), or in case it does, those units must be of 

the right type (AppWithDependenciesOfCorrectTypes) and those units must be in a 

lifecycle stage which is at least as advanced as the app’s current stage 

(PlatformEntityInBeta or PlatformEntityInProduction).  

One cannot fail but notice that the class description of AppPromotableToBeta is 

extensively modular and compositional, which is a strong advantage of ontology-based 

modelling frameworks. The equivalent class axiom (EquivalentTo) reuses several 

complex class descriptions which are described separately in the governance ontology:  

ValidDescription  

CollectionOfValidAppArtefacts  



102 

AppArtefactsForTransitionToBeta 

AppWithoutDependencies  

AppWithDependenciesOfCorrectTypes 

PlatformEntityInBeta 

PlatformEntityInProduction 

In the interest of brevity we will not unfold each of these class descriptions here. The 

interested reader is referred to the ontology specification provided at 

www.ecosystem-governance.com.  

We will only briefly comment on the construction of the OWL class descriptions for 

CollectionOfValidAppArtefacts and AppArtefactsForTransitionToBeta. The 

class ValidDescription has already been discussed in the previous section.  

Table 14 provides the description of the CollectionOfValidAppArtefacts class.  

Class: CollectionOfValidAppArtefacts 

 

    EquivalentTo:  

        (contains some ValidAppArtefact) 

         and (contains only ValidAppArtefact) 

     

    SubClassOf:  

        AppCollection 

Table 14. Description of CollectionOfValidAppArtefacts 

The necessary and sufficient conditions of the class state that individuals belonging to 

this class must be connected along the contains property to at least one 

ValidAppArtefact (shown in Figure 10), and that all connections to anything along 

the contains property should be exclusively with individuals known to be a 

ValidAppArtefact. In other words, a collection should contain at least one app 

artefact and nothing else but valid app artefacts. 

As discussed in the previous section, artefact validation policies that are expressed in 

positive form, like class ValidAppScreenshot for instance, are also specified as 

subclasses of ValidAppArtefact. The same holds for artefact validation policies in 

negative form, which are specified as subclasses of InvalidAppArtefact. This is to 

allow some very useful chains of inference with modular definition of policies.  

For example, individuals which are asserted (i.e. statically declared) as instances of 

AppScreenshot and are also inferred (i.e. dynamically deduced) to be instances 

ValidAppScreenshot, will also be automatically inferred as instances of 

ValidAppArtefact, thus allowing a DL reasoner to evaluate the equivalent class 

expression in CollectionOfValidAppArtefacts above and produce the relevant 

deductions.  

Table 15 below provides the description of AppArtefactsForTransitionToBeta. 



103 

Class: AppArtefactsForTransitionToBeta 

 

    EquivalentTo:  

        AppArtefactsForTransitionToReview 

         and (contains some PositiveReviewReport) 

     

    SubClassOf:  

        AppCollection, 

        contains exactly 1 PositiveReviewReport 

Table 15. Description of AppArtefactsForTransitionToBeta 

This is yet another compositional description that reuses OWL classes defined 

separately in the ontology. The necessary and sufficient conditions of the class state 

that the collections of app artefacts which should be inferred as belonging to this class 

must include all artefacts defined in the AppArtefactsForTransitionToReview class, 

and in addition, must contain a quality assurance review report with a positive 

evaluation.  

In other words, the set of artefacts that an app should include in order to be ready for 

promotion to Beta stage is everything that was previously required for promotion to 

Review (the app’s current stage), plus a review report that authorises deployment to the 

cloud platform’s execution environment.  

5.3.2.4 Negative formulation for lifecycle management policies 

Table 16 provides the OWL class description for AppNonPromotableToBeta. As 

shown, the description of the class includes nothing more than stating it is a subclass of 

AppInReview. The AppNonPromotableToBeta class description only states conditions 

that are necessary (but not sufficient), and is therefore a primitive class. No further 

specification is necessary for AppNonPromotableToBeta. Because of the disjoint union 

axiom in the AppInReview class description, a DL reasoner is lead to deduce than any 

instance of an app screenshot artefact is either an AppPromotableToBeta or an 

AppNonPromotableToBeta.  

Class: AppNonPromotableToBeta 

 

    SubClassOf:  

        AppInReview 

Table 16. Description of negative-form policy for AppNonPromotableToBeta transition  

Let us see one more example of lifecycle policy encoding in negative form. We will use 

another CAST platform lifecycle management policy: promoting an app from the stage 

of Deprecation (AppInDeprecation) to End-of-Life.   



104 

Figure 14 depicts part of the subsumption hierarchy involving the AppInDeprecation 

class.  

 

Figure 14. Policy encoding pattern to govern the promotion of an app to End-Of-Life.  

App is subclass of PlatformEntity, which is a root class in the governance ontology. 

An AppInDeprecation is a subclass or App and can either be an 

AppPromotableToEndOfLife or an AppNonPromotableToEndOfLife.  

The conditions under which an app can be promoted from Deprecation to End-of-Life 

(AppPromotableToEndOfLife) are quite basic:  

 The app does not represent a dependency to any solution which is currently in 

Production stage  

Intuitively, any app that has reached the Deprecation stage can be freely 

decommissioned from the platform’s execution environment unless there are solutions 

which depend on this app and those solutions are not in the Deprecated stage too. The 

policy governing the lifecycle transition is therefore expressed in terms of those 

special/exceptional conditions which would cause the transition to be invalid (in 

negative form). Expressing the same policy in positive form would not be practical. 

Table 17 provides the defined OWL class for AppNonPromotableToEndOfLife.  

Class: AppNonPromotableToEndOfLife 

 

    EquivalentTo:  

        AppInDeprecation 

         and AppWithDependentsInOperation 

     

    SubClassOf:  

        AppInDeprecation 

 

    Rules: 

        App(?a), Solution(?s), hasDependency(?s, ?a),  

        hasLifecycleStateClassification(?s, _Production)  

            -> AppWithDependentsInOperation(?a) 

Table 17. Description of negative-form policy AppNonPromotableToEndOfLife  



105 

The equivalent class axiom above describes individuals that satisfy the conditions for 

membership in the AppInDeprecation class, and at the same time also satisfy the 

conditions for membership in the AppWithDependentsInOperation class.  

The description of the AppInDeprecation class is straightforward, as shown in Table 

18 below.  

Class: AppInDeprecation 

 

    EquivalentTo:  

        App 

         and (hasLifecycleStateClassification value _Deprecation) 

     

    SubClassOf:  

        App 

     

    DisjointUnionOf:  

        AppPromotableToEndOfLife, AppNonPromotableToEndOfLife 

Table 18. Description of AppInDeprecation  

However, the conditions for membership in the AppWithDependentsInOperation 

class are not equally straightforward to express in OWL. What we need to express 

involves chains of object properties and a non-tree shaped graph structure which is 

beyond the expressiveness capabilities of OWL 2. The conditions can be expressed 

with a first order predicate logic rule as follows:  

App (a)  

∧ Solution (s)  

∧ hasDependency (s, a)  

∧ hasLifecycleStateClassification (s, ‘Production’) 
→ AppWithDependentsInOperation (a) 

The first order logic rule presented above can be encoded in SWRL as shown in Table 

19. The SWRL encoding can be appended to the OWL-based ontology encoding that an 

OWL-DL reasoner will later process to produce the desired inferences during policy 

evaluation.  

(Class: AppWithDependentsInOperation) 

 

    Rules: 

        App(?a), Solution(?s), hasDependency(?s, ?a),  

        hasLifecycleStateClassification(?s, _Production)  

            -> AppWithDependentsInOperation(?a) 

Table 19. Description of AppWithDependentsInOperation class membership conditions via a 

SWRL rule 



106 

As a result, Apps which are (asserted) instances of AppInDeprecation and have 

production-stage solutions that depend on them will be classified by an OWL-DL 

reasoner as instances of AppNonPromotableToEndOfLife. Conversely, (asserted) 

instances of AppInDeprecation which do not satisfy the definition of 

AppNonPromotableToEndOfLife will be classified as (inferred) instances of 

AppPromotableToEndOfLife.  

5.4 Related work on semantic policy representation 

5.4.1 Policy engineering  

Fisler, Krishnamurthi and Dougherty [129] highlight a growing trend towards 

designing software applications in a way that certain rules are kept separate from the 

main program logic. Those rules are captured though policy-specification languages 

and consulted at run-time via an engine or reference monitor when user activity dictates 

to do so. In their view, this represents a new form of software modularisation that offers 

some “interesting twists to established software engineering problems”. They observe 

that policies are much like other software components in their need for analysis, 

development, validation, and ongoing maintenance, and they propose to embrace 

policy engineering as a new method of thinking and problem solving in software 

systems design.  

Lewis et al. [130] provide a definition for policy engineering as a “systematic approach 

to the development and maintenance of policies, which closely integrates the modelling 

of the managed system and its behaviour with capturing user goals and resolving them 

to system executable policies”. 

Ross-Talbot et al. point out that the area of policy languages is still maturing from both 

a research and industrial point of view [131]. A sign of the present immaturity is that 

policy, as a term, appears to be rather overloaded in relevant literature [132],[133]. 

Antoniou et al. [133] note that the term policy has been used in connection to several 

notions: (i) security (e.g. access control policies), (ii) trust management (policies for 

authentication on the basis of user properties in open environments such as the Web), 

(iii) action languages (reactive policy specification to execute actions such as 

authorisation), and (iv) business rules (formalising and automating business decisions). 

Bonatti and Olmedilla [132] also add quality of service (in the context of networks and 

distributed systems) to the list of notions which are considered relevant to the term.  

Despite the lack of consensus on the semantics of the term ‘policy’, there has been a 

significant amount of work in this area, including research on how different aspects of 

policy engineering can be improved through the application of ontology-based 

knowledge representation and reasoning.  



107 

We can distinguish between two directions of research in this space. Research in the 

first direction has been mostly concerned with the development of novel 

ontology-based languages and tools for policy definition, management and 

enforcement, where the use of ontology-based knowledge representation and reasoning 

is central. Research works in the other direction have been mostly concerned with the 

enhancement of existing policy languages and tools with formal semantics and 

ontology-based methods of representation and processing.  

5.4.2 Ontology-based policy representation and enforcement 

The most prominent and representative works along the first line of research are KAoS 

[18] and Rei [126]. Tonti et al. [17] presents a comparison of the two systems and their 

approaches to policy representation, reasoning and enforcement, and compares them to 

Ponder [134], an earlier quite influential work in policy specification which did not 

make use of ontologies.  

KAoS is a policy management framework relying on OWL and SWRL for the 

definition of policies [18],[135]. The framework comprises a set of core ontologies that 

can be extended per application domain, and a number of services supporting a variety 

of tasks related to creating, modifying and enforcing policies. The framework 

distinguishes between positive and negative authorisations (constraints that permit or 

forbid some action), and positive and negative obligations (constraints that require 

some action when an event occurs or that serve to waive such a requirement). 

Representing policies using OWL allows reasoning about the environment being 

controlled, policy relations, disclosure of policies, policy conflict detection, and policy 

harmonisation [136]. The reasoning infrastructure is provided by the Java Theorem 

Prover developed by the University of Stanford. The most notable domains in which 

KAoS has been applied are resource management in grid computing infrastructures and 

service-based workflows [137].  

Rei is a related policy framework that integrates support for policy specification, 

analysis and reasoning in pervasive computing applications [17]. It is based on deontic 

concepts (although without any formal mapping to a particular deontic logic), and 

allows users to represent policies in terms of the concepts of rights, prohibitions, 

obligations and dispensations (i.e. deferred obligations) [126]. These modalities 

correspond to the notions of positive/negative authorisation and positive/negative 

obligation as found in KAoS [17]. The core concepts by which policies can be 

constructed are defined in an RDFS ontology. A policy engine makes decisions about 

authorisations and obligations by reasoning over policies using a Prolog-based 

reasoning engine. Before reasoning is executed, RDF triples are automatically 

translated to predicates of the form <subject, predicate, object> such that the Prolog 

engine can process them. One difference with respect to KAoS is that Rei has not been 

designed to enforce policies, but only to reason about them and respond to queries [17]. 



108 

The Rein system that is presented in [138] represents follow-on work based on the 

original Rei design.  

PolicyTab [139] is yet another approach for ontology-based policy representation with 

an emphasis on the aspect of trust negotiation and controlled access to resources on the 

Web. Policies are encoded using the PeerTrust policy language [140], with a distinction 

drawn between the notions of mandatory and default policies. F-Logic is used to 

formalise the constraints corresponding to those notions and to support reasoning.  

5.4.3 Enhancing existing policy languages with formal semantics  

Notable works along the second line of research mentioned earlier, i.e. the 

enhancement of existing policy languages and tools with ontological representation and 

reasoning, are those by Kolovski et al. [141] and Kolovski and Parsia [142], which 

focused on providing a mapping from WS-Policy to OWL. WS-Policy is a general 

purpose framework for describing capabilities of Web services and requirements of 

Web service consumers with a primary focus on non-functional properties. As with 

many other policy specification languages from the Web services domain (e.g. WSPL, 

XACML) the WS-Policy language lacks any formal semantics. By mapping the policy 

language constructs into a formal logic (Description Logics in this case) we can acquire 

a clear semantics for the language and obtain an understanding of the computational 

complexity involved in processing policies expressed in that language. Moreover, a 

mapping allows processing policies in that language using a general purpose DL 

reasoner, rather than a custom-built policy processor. Repeating the mapping process 

for additional policy languages can also enable reasoning about the exchangeability of 

policies represented in different languages and the interoperability of systems 

supporting them.  

5.4.4 Discussion 

Considering all this related work, it becomes apparent that the notions of policy which 

are adopted in the current literature are quite different from the notions of policy for 

process and resource governance that were presented earlier in this dissertation. We 

defined policy enforcement in the context of process governance as aiming to ensure 

that all resources relating to cloud services proceed through a prescribed set of lifecycle 

stages with well-defined transition criteria. In the context of resource governance, we 

defined policy enforcement as aiming to ensure that all resources associated with cloud 

services in the ecosystem satisfy certain conditions. In short, we appeal to a notion of 

governance policies that are meant to either constrain the evolution of cloud services 

throughout their lifecycle (lifecycle management policies), or constrain the structure 

and content of their associated resources (artefact validation policies).  

This outlook is distinct from the views of policy that are commonly found in the 

literature, i.e. where policies are more narrowly associated with security, privacy, trust 



109 

management, quality of service, or business rules. However, it is consistent with 

broader definitions of the term, such as the one given by Tonti et al. [17] who describe 

policies as “means to dynamically regulate the behaviour of system components 

without changing code and without requiring the consent or cooperation of the 

components being governed. By changing policies, a system can be continuously 

adjusted to accommodate variations in externally imposed constraints and 

environmental conditions”.  

Most importantly, the benefits that ontology-based knowledge representation and 

reasoning approaches have introduced in the works presented above are still applicable, 

regardless of the fact that the domain of application is new. Tonti et al. [17] summarise 

the advantages afforded by ontology-based approaches to the representation and 

processing of policies to reduced human error, simplified policy analysis, reduced 

policy conflicts, and increased interoperability. Uszok et al. [18] add the advantages of 

reusability, extensibility, verifiability, safety, and reasonability.  

5.5 Summary 

In this chapter we present the first part of our implementation of the conceptual 

framework put forward in chapter 4. We discuss how to use a shared governance 

ontology to create policy definitions for process and resource governance in a cloud 

service ecosystem.  

The previous chapter introduced the thesis that the architecture of software systems 

which are aimed at serving the advanced requirements of governance in cloud service 

ecosystems can benefit from Linked Data principles and Semantic Web standards to 

achieve their design objectives. The insight behind this thesis is that semantic 

technologies have already proven their value in analogous problem domains such as 

enterprise interoperability. Lessons learnt from that domain can be readily transferred 

to this new space in the form of architectural principles and concrete implementation 

technologies. On this basis the previous chapter introduced a conceptual framework 

architecture for governance support systems that realises this approach.  

The proposed framework architecture for policy-driven governance in cloud service 

ecosystems (PROBE) comprises four core components: a shared governance ontology; 

a repository of ontology-based policy definitions; mechanisms to generate 

ontology-based resource descriptions; a governance policy evaluation engine. 

This chapter opens with reiterating the view of the governance process from the 

viewpoint of the governance policy provider.  

We then present the governance ontology that we created based on the governance 

support system requirements we had previously analysed in the scope of research 



110 

project CAST. The constructs described in our ontology mirror the structure and 

characteristics of the cloud services ecosystem researched in the scope of that project.  

We introduced the different modelling constructs that the ontology makes available and 

presented a step-by-step method for creating governance policies. We put forward the 

view that any form of policy facilitating cloud service ecosystem governance can be 

abstracted to the level of either resource or process governance. In ecosystems 

facilitated by cloud application platforms, as in the case of CAST, process governance 

is effectively mapped onto platform lifecycle management, whereas resource 

governance is mapped onto platform artefact validation.  

For some policies, it is more intuitive to express policy conditions in terms of what 

should necessarily hold in the domain (positive form), rather than what should not be 

the case (negative form). In other cases, it can be the opposite. And there are always 

cases where it is practically impossible to express a policy in one of the two forms. 

Acknowledging this, we put forward an ontology-based policy encoding pattern 

whereby process and resource governance policies can be formulated in either positive 

or negative form.  

With the help of selected examples drawn from the CAST project policy dataset we 

presented detailed guidelines on encoding process and resource governance policies in 

both positive and negative form. We discussed the policy representation method in 

detail and highlighted how modular and compositional policy definitions can be, by 

virtue of our ontology-based approach. Lastly, we provided an overview of related 

work on semantic policy representation and some of the literature highlighting the 

advantages of policy engineering with formal ontology-based semantics. 

The key takeaways from this chapter can be summarised as follows: 

1. Our analysis to date supports that any form of policy facilitating cloud service 

ecosystem governance can be abstracted to the level of either resource or 

process governance. Process governance is concerned with ensuring a 

disciplined approach to introducing, modifying or removing software units 

from the ecosystem. Resource governance is concerned with ensuring that all 

artefacts and metadata linked to software units conform to the relevant 

technical, business or legal constraints.  

2. Constraints in governance policies can be expressed in terms of either what 

should hold in a situation (positive formulation) or what should not be the case 

(negative formulation). Situations where both types of formulation are equally 

applicable are uncommon – it is usually clear that one type of formulation is 

more straightforward and preferable over the other. This applies to both 

resource and process governance policies.  

3. We describe the conceptualisation and representation of an ontology that serves 

as a shared ecosystem vocabulary to describe governed software resources, and 



111 

at the same time also provides the vocabulary to define the necessary types of 

governance policies. The method is sufficiently expressive to allow describing 

diverse forms of cloud service resources and policies, covering governance 

objectives ranging from strategy to operations, and descriptions ranging from 

pricing models to lifecycle transitions. It is also sufficiently expressive to 

represent both types of governance policies (process and resource governance), 

as well as both positive and negative formulation of constraints. 

4. Because of its foundation on the Web Ontology Language (OWL) standard and 

related Semantic Web technologies, the proposed method of defining 

governance policies is readily equipped to support heterogeneity, distribution 

and continuous evolution. It is natively suited to support the type of networked 

collaboration found in cloud service ecosystem governance. It allows 

decoupling governance functions by offering a way to describe the policy 

conditions separately from the governance subjects and the policy evaluation 

logic. It ensures interoperability by offering a platform-agnostic way for 

ecosystem partners to exchange/share policies and data over the internet. It 

increases abstraction, by allowing ecosystem partners to bridge their 

terminology spaces to a common ecosystem-level vocabulary.  

5. By virtue of OWL’s declarative encoding style and its formal logic 

underpinnings, our proposed method also facilitates advanced automation in 

policy engineering tasks, such as traceability of logical dependencies between 

policies, detection of contradictions with other policies and debugging of 

complex policy logic (e.g. through satisfiability tests). More generally, the 

unambiguous interpretation and automated reasoning capabilities afforded by 

OWL’s formal semantics fulfills the need of increased operational efficiency - 

through improved maintainability, reusability, traceability and overall agility.  

 

  



112 

 

 

 

 

 

 

Chapter 6 

 

Describing governed resources 

 



113 

6 Describing governed resources 

6.1 Introduction 

For process and resource governance to be feasible through a generic and universal 

ontology-based method, it is not only the policies, but also the heterogeneous 

ecosystem resources which are subject to governance that must be described in an 

abstract and homogeneous manner. These descriptions need to be extracted from the 

multiple forms in which cloud platform resources are natively represented and 

persisted, to create Linked Data, using the governance ontology as common reference 

vocabulary for the domain.  

The term Linked Data refers to a set of best practices for publishing and connecting 

structured data using key Web technologies: URI, HTTP, and RDF. Using Linked Data 

principles and relevant web standards allows us to represent governance subjects in a 

way that is independent from how policies are encoded or how policy evaluation 

engines operate. In fact, the usage scenarios for the Linked Data which can be produced 

through the process we will describe can include many more applications beyond 

governance policy enforcement.  

In this chapter we present one possible way of realising the third component of the 

conceptual framework we proposed in chapter 4, i.e. the mechanisms to generate and 

share ontology-based descriptions of governed ecosystem resources. A wide range of 

academic and commercial efforts in the field of Linked Data have recently provided 

several tools which can be used for this purpose. We will show examples of how 

governed resources can be described, once again based on the governance policy 

dataset from project CAST. Lastly, we will briefly discuss related work on Linked Data 

enablement tools and application architectures.  

6.1.1 Governance from the resource provider's perspective 

As discussed in chapter 3, the governance data provider role is responsible for creating, 

maintaining, and providing information about resources which are available in a 

software ecosystem and are subject to governance. Typically, the provider of this 

information will also be the actor that owns or manages the relevant resource.  

To offer some examples, let us refer back to the ecosystem governance scenarios from 

chapter 3. The role of governance data provider in scenario #1 is assumed by the 

application developers (internal staff or external partners) who create apps and submit 

them to NineLives for quality review. In scenario #2 this role belongs to the compliance 

management team at NineMed. In scenario #3 the data provider role belongs to the 

ISVs who create and submit applications for deployment to the CloudDev platform, but 

also to CloudDev itself – once an application has been successfully deployed to the 



114 

platform. In scenarios #4 and #5 the role is again assumed by CloudDev since the 

governed resources (i.e. the applications developed by ISVs) have transitioned under 

the management and control of CloudDev.  

Providing ecosystem partners with information regarding the governed resources is 

essential in order for the different policies relating to those resources to be evaluated. 

The information about a governed resource could be primary data residing in files or 

databases, or data that is extracted from primary sources specifically for the purpose of 

policy evaluation.  

The concerns of individual providers of governed resources are analogous to those of 

the policy providers: how to effectively and efficiently manage governed resource 

descriptions internally, and how to easily communicate these to other ecosystem 

partners.  

 Internal management objectives: To be able to freely make changes to existing 

governed resource data, its schema, formats or the systems through which the 

data is internally persisted and managed, while containing changes locally, i.e. 

without necessitating any corresponding changes to third-parties such as policy 

providers or policy evaluators. 

 External communication objectives: To be able to share governed resource data 

in an effortless way, without needing to consider how the data will later be 

processed by policy evaluators, or how policies concerning the governed 

resources are represented.  

6.1.2 Governed resources from the ecosystem’s perspective 

Observed from an ecosystem-wide perspective, descriptions of governed resources 

exhibit the following three characteristics.  

Heterogeneity:  

 They concern very different aspects of a software ecosystem resource, from the 

pricing model or localisation details of a software unit, to its lifecycle stage. 

 They are represented in very dissimilar native formats (XML files, non-XML 

configuration files, relational databases, scripts, source code).  

Physical distribution:  

 They are stored in different locations. Software ecosystem partners are 

distributed, and so is the data they hold regarding the governed ecosystem 

resources. 

 They need to be exchanged over the internet between ecosystem partners.  

Fragmented ownership and control:  



115 

 Governed resources are owned by multiple different ecosystem partners who 

are free to evolve (modified, removed) independently of other governance 

process stakeholders. 

 Governed resources are owned by ecosystem partners who are free to choose 

and use their own terms of reference in their local/native resource descriptions. 

In an environment where the data relating to governed resources is heterogeneous, 

distributed and under multiple different ownership domains, it is imperative to 

standardise formats for data exchange. This is the only way to achieve loose coupling 

between the resources being governed, the governance policies and the policy 

evaluation mechanisms.  

Without standardisation there would be no option but to implement policy evaluation 

mechanisms such that they work with:  

(i) the specific data formats/sources that are imposed by each governance data 

provider (for instance, one resource provider may offer descriptions of services 

based on the WSDL 1.1
48

 standard while another provider uses WSDL 2.0
49

);  

(ii) the proprietary APIs for accessing governance subject data that are imposed at 

each data provider’s site (e.g. a vendor-specific API for fetching a WSDL 

document from a particular data provider’s server).  

This approach is not feasible as it makes the owner of a policy evaluation engine 

entirely dependent on each and every one of the governance data providers in the 

ecosystem. It means that the implementers of policy evaluation engines need to 

understand the terms of reference that each governance data provider is using when 

describing their resources. It also means that should a governance data provider decide 

to make a change to their proprietary data formats or to their APIs, the operation of 

every policy evaluation engine that is coupled to these technical specifications is 

affected.  

Such a model of policy-based governance would not scale for ecosystems.  

With standardisation in place, the setting is different. The policy evaluation 

mechanisms of different stakeholders can be built to consume a single, common data 

representation of governed resources. Commitment is made only to a single 

specification, rather than to several specifications. There is a single terminology that 

developers and operators of policy evaluation engines need to understand. Any internal 

changes to how resource description providers manage their data will remain localised 

to individual providers, having no impact on the operation of the policy evaluation 

engines. Only changes to the common data representation format would necessitate 

extensive reengineering of the policy evaluation engines.  

                                                 
48

 https://www.w3.org/TR/wsdl 
49

 https://www.w3.org/TR/wsdl20/ 



116 

6.2 Descriptions of governed resources as Linked Data 

The foundation to achieve the required standardisation and provide platform-agnostic 

descriptions of governed resources can be readily offered by Linked Data principles, 

Semantic Web standards, and related tools for data extraction and publishing.  

6.2.1 Linked Data principles 

As introduced in section 4.3, Linked Data refers to a set of best practices for online 

sharing of structured data in the form of interlinked datasets.  

Foundational web technologies such as HTTP and URIs are employed by Linked Data 

and coupled with new technology standards such as RDF and SPARQL to enable the 

weaving of a global distributed database.  

For completeness, we repeat here the four Linked Data principles defined by 

Berners-Lee to guide the publishing of structured interlinked data [114]: 

1. Use URIs as names for things 

2. Use HTTP URIs so that people can look up those names 

3. When someone looks up a URI, provide useful information, using the standards 

(RDF, SPARQL) 

4. Include links to other URIs, so that they can discover more things 

6.2.2 Core Semantic Web standards 

The core enabling technologies of the Semantic Web, beyond the foundation of HTTP 

and URI, are RDF, OWL and SPARQL. These standards were briefly introduced in 

chapter 4, and examples of OWL usage were provided in chapter 5. In the sections 

below we will briefly introduce RDF and SPARQL before moving on to present an 

example of creating governed resource descriptions based on Linked Data principles.  

6.2.2.1 RDF  

With RDF (Resource Description Framework), resources are described by creating 

statements in the form of subject–predicate–object expressions. These expressions are 

known as RDF triples.  

The subject in an RDF triple denotes the resource being described. The predicate may 

denote an attribute of that resource (a data property), or a relationship between the 

resource and some other resource (an object property). The object will correspondingly 

denote the data value of the resource’s attribute, or denote the resource to which the 

described resource is associated [143].  



117 

Subjects and predicates in an RDF triple are uniquely identified and represented using 

URIs. When objects in an RDF triple denote relationships to other resources they are 

also represented by a URI. When objects denote an attribute of the described resource 

(a data property), they are represented as a literal value.  

The triples combined form an RDF graph, as shown in Figure 15 below.  

 

Figure 15. Example RDF graph. 

6.2.2.2 SPARQL  

SPARQL (SPARQL Protocol And RDF Query Language) defines a query language for 

data that is represented in the directed, labelled graph data format provided by the RDF 

standard. It has become the predominant query language for RDF graphs. The language 

can be used to express SQL-like queries across diverse data sources, whether the data is 

stored natively as RDF or is viewed as RDF via some kind of middleware [113]. By 

virtue of OWL’s layering on top of RDF, SPARQL can also be used to query instance 

data (individuals) defined in an OWL ontology.  

In summary, SPARQL allows developers of Linked Data applications to perform the 

following [23]: 

 Pull values from structured and semi-structured data 

 Explore data by querying unknown relationships 

 Perform complex joins of disparate databases in a single, simple query 

 Transform RDF data from one vocabulary to another 



118 

 

6.3 Method for creating and sharing descriptions of 

governed resources  

6.3.1 Examples of governance data description 

As mentioned earlier, the abstract data description framework provided by RDF has 

many applications, allowing structured and semi-structured data in different ownership 

domains to be easily exposed and shared across organisational boundaries and 

heterogeneous applications. Because of these characteristics, RDF also provides a 

viable foundation to describe and to share descriptions of governed resources in the 

context of a cloud services ecosystem.  

Let us look at an example of describing a governed resource. Table 20 provides a 

snippet from an XML document describing a service available on the CAST platform. 

It is excerpted from a web service interface description artefact encoded using the 

WSDL 2.0 standard (Web Services Description Language). The service described can 

be used by apps on the CAST platform to translate text between different pairs of 

languages.  

<?xml version="1.0" encoding="utf-8" ?> 

<description  

    xmlns="http://www.w3.org/ns/wsdl" 

    targetNamespace= 

"http://cast-project.eu/governance/examples/wsdl"  

 

[...] 

 

  <service name="translationService"  

       interface="tns:translationServiceInterface"> 

 

     <endpoint name="endpoint1"  

               binding="tns:translationSOAPBinding" 

               address ="http://144.76.8.88"/> 

 

     <endpoint name="endpoint2"  

               binding="tns:translationSOAPBinding" 

               address ="http://143.167.8.2"/> 

  </service> 

 

</description> 

Table 20. Excerpt from translation service interface description (CAST platform WSDL artefact) 

In the WSDL excerpt above we can see that the interface of translationService 

includes two endpoints with different HTTP addresses: endpoint1 is accessible at 

address http://144.76.8.88 and endpoint2 is accessible at http://143.167.8.2.  



119 

This is one piece of information which is relevant from a governance perspective.  

One of the artefact validation policies from the CAST policy dataset states that the 

interface specification (WSDL 2.0 document) of every external web service used by 

apps on the CAST platform should specify two unique endpoint URLs. These URLs 

should point to different servers through which the service can be provided (primary 

and backup endpoints). The rationale is to provide a failover alternative in case the 

primary server that hosts the service becomes unavailable.  

As per our framework and proposed method, the translationService interface can 

be validated against this policy as long as the information provided in the WSDL 

document presented in Table 20 above is first extracted from the document, and made 

available in a suitable RDF-based representation. This is a task to be performed by the 

relevant actor that assumes the role of governance data provider.  

This representation can be derived from the WSDL document programmatically and 

will include the facts shown in Table 21, expressed as subject-predicate-object RDF 

triples. This is a process that is commonly referred to as “triplification” and there is an 

abundance of Linked Data tools and software frameworks that one can reuse for this 

purpose which are discussed later in this chapter.  

S: <http://kourtesis.net/phd/2016/examples#translationService>  

P: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>  

O: <http://ecosystem-governance.com/ontology#ServiceInterface> 

 

S: <http://kourtesis.net/phd/2016/examples#translationService> 

P: <http://ecosystem-governance.com/ontology#contains>  

O: <http://kourtesis.net/phd/2016/examples#endpoint-001> 

 

S: <http://kourtesis.net/phd/2016/examples#translationService> 

P: <http://ecosystem-governance.com/ontology#contains>  

O: <http://kourtesis.net/phd/2016/examples#endpoint-002> 

 

S: <http://kourtesis.net/phd/2016/examples#endpoint-001>  

P: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>  

O: <http://ecosystem-governance.com/ontology#Endpoint> 

 

S: <http://kourtesis.net/phd/2016/examples#endpoint-002>  

P: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>  

O: <http://ecosystem-governance.com/ontology#Endpoint> 

 

S: <http://kourtesis.net/phd/2016/examples#endpoint-001> 

P: <http://ecosystem-governance.com/ontology#contains>  

O: "http://144.76.8.88"^^<http://www.w3.org/2001/XMLSchema#anyURI> 

 

S: <http://kourtesis.net/phd/2016/examples#endpoint-002> 

P: <http://ecosystem-governance.com/ontology#contains>  

O: "http://143.167.8.2"^^<http://www.w3.org/2001/XMLSchema#anyURI> 

Table 21. Raw RDF triples extracted from translation service WSDL artefact  



120 

The RDF triples presented above could be serialised in static RDF/XML files and 

placed on a web server which is controlled by the data provider. Ideally though, they 

should be persisted in an RDF triple store which exposes a SPARQL query interface. In 

the latter case, any (ecosystem-authorised) governance policy evaluation engine could 

query the RDF triple store and retrieve the relevant information on demand.  

Table 21 presents a SPARQL query that can be used to obtain all information which is 

part of the RDF graph at the governance data provider’s end, and relates to the service 

of interest (translationService).  

SELECT DISTINCT ?predicate ?object 

WHERE  

{ 

   <http://kourtesis.net/phd/2016/examples#translationService> 

   ?predicate  

   ?object  

} 

Table 22. SPARQL query to retrieve RDF description of translation service interface 

The RDF triple store to receive a SPARQL query similar to that shown above would 

return a document as shown in Table 23. In this example, the encoding of RDF triples is 

in Turtle syntax [144].  

@prefix : <http://kourtesis.net/phd/2016/examples#> . 

@prefix gov: <http://ecosystem-governance.com/ontology#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@base <http://kourtesis.net/phd/2016/examples> . 

 

:translationService  rdf:type  gov:ServiceInterface ; 

:translationService  gov:contains  :endpoint-001 ; 

:translationService  gov:contains  :endpoint-002 ; 

 

:endpoint-001  rdf:type  gov:Endpoint ;  

:endpoint-001  gov:hasAddress  "http://144.76.8.88"^^xsd:anyURI ; 

 

:endpoint-002  rdf:type  gov:Endpoint ; 

:endpoint-002  gov:hasAddress  "http://143.167.8.2"^^xsd:anyURI . 

Table 23. RDF description of translation service interface encoded in Turtle syntax  

For the rest of the RDF description examples in this dissertation we will be using Turtle 

(Terse RDF Triple Language) syntax. Turtle is a textual syntax for RDF that allows 

RDF graphs to be completely written in a compact and natural text form, with 

abbreviations for common usage patterns and datatypes [144].  

Turtle's @prefix directive allows declaring a short prefix name in place of a long URI 

prefix. Writing @prefix gov: <http://ecosystem-governance.com/ontology#> 

allows us to subsequently write gov:ServiceInterface and having this expression 



121 

interpreted as http://ecosystem-governance.com/ontology#ServiceInterface. 

Similarly, the @base directive allows creating a default prefix.  

6.3.2 Linked Data provision & sharing architecture  

The RDF description presented in Table 23 is equivalent to that in Table 21, and 

conveys the same information as presented in the WSDL document of Table 20. This is 

a case where structured data in the form of a single WSDL/XML description can be 

transformed into a structured RDF dataset. In other cases however, the RDF description 

of a governed resource may need to be constructed by aggregating, assembling and 

transforming data and generating RDF statements from a number of different sources.   

The sources of primary data regarding governed resources will typically be: 

 Databases (e.g. relational databases, document/NoSQL databases) 

 APIs (e.g. interfaces of registry & repository systems) 

 Files (e.g. XML specification/property files, binary file headers) 

For example, the RDF description of a CAST platform app would include a fairly large 

set of statements regarding each of the artefacts associated with the app. This could 

include the app deployment descriptor, properties, localisation, license, pricing, 

provider details, description, iconography, review report and several more, but also 

metadata such as the lifecycle stage of the app, its dependencies on ecosystem services, 

etc.  

There is a great degree of heterogeneity in the native data sources, but RDF and 

SPARQL allow us to abstract over the differences and provide a common description 

layer for all resources associated with the CAST platform app in question, or any 

governed resource in a software ecosystem.  

In their book on design patterns for Linked Data applications, Heath and Bizer [19] note 

that despite the large number of information systems that can be connected into the 

“Web of Data”, the mechanisms for doing so fall into three Linked Data publishing 

patterns. 

These publishing patterns are: 

1. Generating Linked Data from queryable structured data. A relevant example 

from the CAST policy dataset would be to query the relational DB of the CAST 

platform governance support system (CAST Registry & Repository) to retrieve 

lifecycle state information on an app (e.g. to enforce an end-of-life policy) and 

generate the respective RDF statements.  

2. Generating Linked Data from static structured data. We have already seen the 

example of generating an RDF graph from the WSDL document of Table 20. 



122 

Other relevant examples from CAST platform governed resources could be the 

XML pricing specification file or the app deployment descriptor.  

3. Generating Linked Data from unstructured data. An example could be to 

generate a structured RDF graph from a text document. This could be useful in 

the context of analysing a document and carrying out a process of named entity 

extraction. However, in our experience, this does not appear to be common in 

the context of a governance support system where enterprise data is usually 

structured. 

The variety of possible workflows as identified by Heath and Bizer is visualised in 

Figure 16 below.  

 

Figure 16. Linked Data publishing options and workflows. Adapted from [19]. 

In the context of governance, the most common scenarios would concern publishing 

RDF data from structured sources. As mentioned these could be databases, APIs or 

static files. In all cases, the architectural solution would involve some form of wrapper 

components that perform the transformation from the native data representation 

formats to RDF statements. These transformations need to be driven by mapping 

specifications, either unidirectional or bidirectional, which can guide a machine to 

automate the process.  

Fortunately, such an architecture solution would not need to be developed from the 

ground up. There is already an abundance of software frameworks, platforms, 



123 

programming libraries and tools, most of which are open-source, which can provide the 

basis for an implementation.  

The majority of creators of tools in this space have so far focused on facilitating the 

generation of Linked Data from queryable structured data that reside in relational 

databases. This was motivated by very practical reasons, as the majority of data around 

the world currently resides in SQL databases. NoSQL (which stands for Not Only SQL) 

databases that have reached popularity more recently are also supported by several 

RDF enablement tools, such as those focusing on generating RDF graphs from 

Key-Value stores and other non-relational structures [145].  

6.3.2.1 Translation approaches and requirements for governance support  

Michel et al. [146] have carried out a thorough survey of RDB to RDF translation 

approaches and technologies. They propose classifying RDB to RDF systems with 

respect to the following three dimensions:  

1. The way mappings from RDB to RDF are described (direct vs transformational 

mapping specifications) 

2. The way mappings are implemented to generate RDF data (static vs on-demand 

production of RDF triples) 

3. The way RDF data is being accessed by applications (query-based access vs 

URI-based access) 

We will briefly walk through each of the above dimensions and discuss which approach 

is most suitable from an ecosystem governance perspective.  

Mapping specification 

RDB to RDF mapping specifications can be provided in a direct or transformational 

manner.  

 The direct mapping approach converts relational data into RDF in a 

straightforward fashion, by applying generic translation rules (defined by Tim 

Berners-Lee since as early as 1998 [147]): table to class, column to property, 

row to resource, cell to literal value or to resource URI. A by-product of the 

process is an ad-hoc RDF vocabulary (ontology) that mirrors the relational 

schema.  

 Conversely, the transformational/custom mapping approach is applied when the 

relational database needs to be translated using concepts and properties from 

existing ontologies. A typical use case is the alignment of a legacy database 

with an existing ontology that describes the same domain of interest. The 

relevant recommendation by W3C is R2RML – a language for expressing 

customised mappings from relational databases to RDF datasets [148]. 



124 

Mapping implementation 

Relational database tuples can be translated into RDF statements or ontological 

instances (individuals) through either data materialisation or on-demand mapping.  

 Data materialisation represents the static transformation of the database into an 

RDF representation, similarly to an Extract-Transform Load (ETL) approach. 

Mapping rules are applied to contents of the database to create an equivalent 

RDF graph. The resulting triples can be loaded into an RDF triple store and 

accessed through the triple store’s SPARQL query interface.  

 The on-demand mapping approach allows run time evaluation of queries 

against the relational data. In other words, the RDF dataset is virtual and gets 

constructed dynamically. SPARQL queries (or any other form of query) to 

retrieve data from the RDF graph are translated into SQL at query evaluation 

time. The relational data is never really transformed, just translated.  

Data retrieval  

The RDF statements about a described resource can be retrieved through either a 

SPARQL query, or by dereferencing the URI of the said resource, and performing 

content negotiation with the Web server.  

 SPARQL-based access: When the mapping implementation follows data 

materialisation as an approach, the SPARQL endpoint evaluates a query against 

the RDF triple store in which the materialised RDF triples have been loaded. In 

the case of the on-demand mapping approach, the SPARQL endpoint rewrites 

the SPARQL query into SQL queries and, vice-versa, translating SQL results 

into an equivalent SPARQL response. 

 URI-based access: Every resource described through a set of RDF triples is 

assigned a URI as unique identifier. According to the principles of Linked Data 

that we discussed in section 6.2.1, these URIs are possible to dereference by 

performing an HTTP GET method, as if the URI was a URL. Through content 

negotiation the Web server can then be instructed to return an RDF dump or to 

present additional information about the resource in a different form (such as 

human-readable HTML).  

Based on the above analysis, and in the context of our proposed framework for 

ecosystem governance support systems, it appears that a certain combination of 

mapping specification, mapping implementation and data retrieval modalities would be 

more suitable than other combinations.  

In our context, the governance ontology is already provided as a common vocabulary 

for describing governed resources and defining governance policies. Therefore, a 

transformational approach to specifying custom mappings between RDF and RDB 

would be the most appropriate route, as opposed to a direct mapping approach which 



125 

would result in the production of a new ontology model from every different data 

source being mapped.  

In terms of mapping implementation, an on-demand mapping approach whereby a 

virtual RDF graph is constructed dynamically is more suitable than a static 

materialisation approach. The main reason is managing updates to the RDF graph. In 

the context of a dynamic multi-party ecosystem, one would expect frequent updates to 

the (relational) data relating to governed resources, which means a materialised RDF 

graph could quickly become outdated. Data materialisation is not the optimal approach 

in such contexts [146]. 

Lastly, as far as data retrieval is concerned, a SPARQL-based approach to accessing the 

generated RDF dataset seems more practical, for reasons having to do with the 

implementation of the policy evaluation mechanism, to be discussed in the following 

chapter.  

6.3.2.2 State of the art implementation options 

Technologies that address the above requirements and could be readily employed to 

support implementations of our governance support system framework include D2RQ 

[149], Oracle 12c [150], Virtuoso [151], Optique [152] and Quest/Ontop 

[153],[154],[155]. All of the above frameworks support custom transformational 

mappings from relational schema to an ontology, and most of them do so by supporting 

the R2RML standard by W3C [148]. Moreover, they all support dynamic generation of 

RDF and ease of querying over virtual RDF view models through SPARQL.  

It is worth noting that RDB to RDF systems are continuously evolving with significant 

performance breakthroughs in recent years. For instance, the recently released Quest 

engine which is bundled with the Ontop platform implements a new design approach 

and delivers performance 500x times faster than D2RQ, and an average of 10x faster 

than Virtuoso
50

. Oracle’s investment into creating a commercial RDF graph store 

solution on top of its Oracle database range is also worth mentioning. 

Beyond relational data, the above mentioned RDB to RDF systems can also support 

non-relational structured sources (NoSQL databases, static structured documents, or 

APIs). This is done by supporting an extensible wrapper architecture which allows 

source-specific wrappers to expose the data from these sources as if they were 

relational, as an intermediate step before the conversion to RDF is performed.  

The availability of this range of tools is partly attributed to years of research in the field 

of Ontology-based Data Access (OBDA) [145],[156]. The fundamental idea in OBDA 

is to provide users with more convenient access to data residing in traditional databases, 

                                                 
50

 http://ontop.inf.unibz.it/components/ontopquest/ 



126 

without exposing the complexity of the raw data sources. This is achieved through the 

use of an ontology.  

Queries against the data are formulated using the vocabulary provided by the ontology, 

without the user ever having to know the actual structure of the data. The relationships 

between the ontological vocabulary and the data schema are described by OBDA 

mappings. OBDA user queries are first enriched using logical reasoning by compiling 

relevant parts of the ontology into the query, and then unfolded, i.e., translated into 

SQL queries using the OBDA mappings [152]. The approach is often referred to as 

“end-user oriented data access” or “user-oriented view” [156], and its fundamental 

affordance is that it allows domain experts to express information needs in their own 

terms.  

6.3.2.3 Further applications of semantic descriptions for ecosystem 

resources 

Notably, the above-described way in which Linked Data for governed resource 

descriptions can be represented is not determined by how policies are encoded or how 

policy evaluation engines operate. In fact, the usage scenarios for the Linked Data 

which is produced through this process can include much more than just governance 

policy enforcement. 

A stream of research in cloud computing has recently been looking into applications of 

Linked Data - and semantic technologies overall - for improving systems management 

in cloud environments. Haase et al. [157] describe the challenges related to intelligent 

information management in enterprise clouds and discuss how semantic technologies 

have been leveraged to address those challenges in the commercial eCloudManager 

system developed by fluidOps.  

In [158], Feridun and Tanner from IBM describe an approach and architecture for the 

transformation of diverse network and server management data into Linked Data, 

which allows data-center operators to easily browse, search and query data across 

multiple sources. Also, Joshi [159] describes some initial work towards a policy-based 

framework facilitating the automation of the lifecycle of virtualised services, using 

ontologies and Semantic Web technologies like OWL, RDF and SPARQL. 

6.4 Summary 

In this chapter we presented the second part of our implementation of the conceptual 

framework put forward in chapter 4. We discussed how to describe ecosystem 

resources which are subject to governance in a way that will later enable evaluation 

against the ontology-based policy definitions described in chapter 5.  



127 

The actor owning or managing a software resource which is made available to the 

ecosystem is also responsible for creating, maintaining, and providing access to 

information about that resource for the purposes of policy enforcement. The primary 

data from which this information is to be extracted could reside at a single location or at 

multiple different locations, collected from databases, specification files or APIs.  

From an ecosystem point of view, the governed resource descriptions that need to be 

contributed by different stakeholders are highly heterogeneous, highly distributed, and 

span across organisational boundaries. Evidently, in such an environment it is 

imperative to standardise semantics and formats for data exchange. The foundation to 

achieve the required standardisation and provide platform-agnostic descriptions of 

governed resources can be readily offered by Linked Data principles, Semantic Web 

standards, and related tools for data transformation and publishing.  

Through examples, we presented a method to create RDF descriptions of governed 

resources using the vocabulary provided by the governance ontology introduced in 

chapter 5. Often, these RDF descriptions of software resources need to be constructed 

by aggregating, assembling and transforming primary data from a number of different 

structured sources. A requirement emerges for an infrastructure that allows mapping 

the native data representations that are relevant to those resources to high-level 

concepts in an ontology-based vocabulary, and then generating the RDF descriptions.  

Fortunately, such an infrastructure would not need to be developed from the ground up, 

as there is an abundance of software RDB to RDF frameworks which can provide the 

basis for an implementation. These frameworks employ different approaches for 

describing mappings, generating RDF triples and providing access to the RDF data. In 

the context of our proposed framework for developing ecosystem governance support 

systems, the ideal approach combines transformational mappings against our 

governance ontology, dynamic on-demand generation of RDF triples and 

SPARQL-based access.  

The key takeaways from this chapter can be summarised as follows: 

1. The ecosystem partner who owns or manages a software resource is also 

responsible for creating, maintaining, and providing access to information 

about that resource for the purposes of policy enforcement. This data can be 

heterogeneous, physically distributed and under multiple different ownership 

domains. It is therefore imperative to standardise formats for data exchange.  

2. Employing a Linked Data approach for the description of governance subjects 

achieves a loose coupling between the resources being governed, the 

governance policies and the policy evaluation mechanisms. Applying a Linked 

Data approach means that governance data providers: (a) use URIs as names for 

governed resources, (b) use HTTP URIs so that entities acting as policy 

evaluators can look up those names, (c) provide information about the governed 



128 

resources in RDF when a URI is looked up with a SPARQL query, (d) include 

links to other URIs in the information returned to a SPARQL query, so that 

ecosystem partners can further discover more useful information.  

3. The abstract data description framework provided by RDF has many 

applications, allowing structured and semi-structured data in different 

ownership domains to be easily exposed and shared across organisational 

boundaries and heterogeneous applications. Because of these characteristics, 

RDF also provides a viable foundation to describe and to share descriptions of 

governed resources in the context of a cloud services ecosystem. These 

descriptions can be derived from their native data sources programmatically, 

through a process that is commonly referred to as “triplification” and is 

supported by a wide range of software tools.  

4. Data triplification approaches can be classified with respect to (1) how 

mappings from RDB to RDF are described (direct vs transformational mapping 

specifications), (2) how mappings are implemented to generate RDF data (static 

vs on-demand production of RDF triples), (3) how RDF data is being accessed 

by applications (query-based access vs URI-based access). In the context of 

ecosystem governance support systems the preferred approach combines 

transformation mappings between RDF and RDB, on-demand data translation 

where RDF graphs are constructed dynamically and SPARQL-based access the 

generated RDF dataset.  

5. There is a great degree of heterogeneity in the native data sources, but RDF and 

SPARQL allow us to abstract over the differences and provide a common 

description layer for all resources associated with any governed resource in a 

software ecosystem. The usage scenarios for the Linked Data which is produced 

through this process can include much more than just governance policy 

enforcement.  

 

 

  



129 

 

 

 

 

 

 

  

Chapter 7 

 

Evaluating governance policies 

 



130 

7 Evaluating governance policies 

7.1 Introduction 

In the previous two chapters we went through the method to create policy definitions 

based on our governance ontology, and descriptions of governed resources based on 

Linked Data principles.  

In this chapter we present the last part of our implementation of the PROBE framework 

as put forward in chapter 4. We briefly revisit the role of the policy evaluator, in terms 

of key concerns and associated challenges. We discuss some important background to 

OWL-based policy/data validation. Specifically, how it is possible to cast the goal of 

policy evaluation as either a problem of integrity constraint validation or a problem of 

object classification.  

In the first paradigm, policies are represented as queries, and any objects returned by 

the query are cases that violate the integrity constraints. Policy conformance checking 

is therefore reduced to query answering. In the latter paradigm, policies are represented 

as OWL DL class axioms. Any objects that are classified as satisfying the description 

are either satisfying or not satisfying the policy, depending on whether the policy as 

encoded in positive or negative form. Policy conformance checking is therefore 

reduced to DL instance checking.  

We present our own method following the second approach, and illustrate the process 

through an example. We discuss how the open-world assumption and the lack of a 

unique name assumption in the language semantics of OWL prevent us from using an 

OWL DL reasoner for RDF data validation, out of the box. We present a solution to 

overcome this challenge and combine the best from the worlds of OWA and CWA. The 

solution is based on generating local closure axioms covering those properties of 

governed resources which are important from a policy evaluation perspective.  

The approach that we implemented as a prototype allows a standard OWL-DL reasoner 

to operate in a closed-world setting and produce the desired inferences so as to 

successfully check conformance of governed resources to ecosystem governance 

policies.  

7.1.1 Governance from the policy evaluator’s perspective 

As discussed in chapter 3, the governance policy evaluator role is responsible for 

creating, maintaining, and providing a system that facilitates governance by carrying 

out policy evaluation. The system must check whether governed resources conform to 

the applicable policies or not. The inputs to the evaluation process are the policies and 

the descriptions of the governed resources.  



131 

To offer some examples, we will again refer to the ecosystem governance scenarios 

from chapter 3. The role of policy evaluator in scenario #1 is assumed by the quality 

review unit of NineLives. In scenario #2 the role belongs to the compliance 

management team at NineMed. In scenario #3 the role belongs to the CloudDev quality 

assurance staff, and in scenario #4 it is the auditors’ firm Better, Saffe & Sawrie. In 

scenario #5 the role is assumed by Appregator, the cloud service broker.  

Individual policy evaluators in the ecosystem are primarily concerned with effectively 

and efficiently managing the policy evaluation process internally and easily exchanging 

governed resource descriptions and policies with other ecosystem partners.  

 Internal management objectives: To be able to freely make changes to how 

resource descriptions and policies are being processed, while containing these 

changes locally, i.e. without necessitating any corresponding changes to 

third-parties such as policy providers or data providers. To retain policy 

evaluation logic as generic and reusable as possible so as to avoid 

re-implementing (and risk introducing bugs when re-implementing) policy 

evaluation logic from scratch, for every different policy or different type of 

governed resource description.  

 External communication objectives: To be able to understand governed 

resource description and policy definitions without needing to know or 

understand how these are processed or represented by policy providers and data 

providers.  

7.1.2 Policy evaluation from the ecosystem’s perspective 

Observed from an ecosystem-wide perspective, policy evaluation engines exhibit the 

same three characteristics as discussed in section 6.1.2 for governed resources.  

Heterogeneity:  

 Policy evaluation engines implemented by different ecosystem partners will 

rely on much different technologies to process governance policies and resource 

descriptions.  

Physical distribution:  

 Software ecosystem partners are distributed, and so are the policy evaluators. 

Policy evaluation is a role that may be assumed by more than one partner in an 

ecosystem, in parallel.  

Fragmented ownership/control:  

 Policy evaluation mechanisms may evolve (be modified, optimised) 

independently of other governance stakeholders.  



132 

7.2 Query-based vs classification-based policy evaluation 

Checking ontology-based descriptions of ecosystem resources against governance 

policies is a task which can generally be viewed as (at least) two different kinds of 

computational problem: a problem of integrity constraint validation on ontology 

objects, or a problem of ontology object classification. Depending on the adopted 

approach one must implement the appropriate strategy for defining policies and 

checking data against these policies. 

When policy checking is cast as an integrity constraint validation problem the strategy 

is to define governance policies in the form of first-order logic queries. This can be 

done using an ontology-based query language such as SPARQL [113] or SQWRL 

[160]. Policy evaluation can then be reduced to query answering. If a query returns a 

non-empty result set, it means that the returned ontology objects violate the integrity 

constraints specified in the query, i.e. they do not conform to the policy.  

Alternatively, policy evaluation can be approached as an object classification problem 

whereby governance policies are defined as Description Logic (DL) class axioms. This 

is the approach we have described in chapter 5. Under this approach, the task of policy 

evaluation can be reduced to instance checking with an OWL DL reasoner. Instance 

checking is a basic service provided by every DL reasoner [161] such as Pellet [127] or 

Hermit [128], to answer if a given individual is an instance of a specified class [162]. 

As we discuss next, due to certain characteristics of the OWL language this strategy 

requires an additional pre-processing step before instance checking is actually applied 

on any particular ontology object.  

Literature on OWL and RDF data validation provides examples of both approaches in 

contexts bearing similarities -but also differences- to governance policy evaluation. For 

instance, the projects described in [163] and [164] adopt the first and second approach, 

respectively. Each approach has its own advantages and disadvantages in specific 

contexts, and this is very much dependent on the rest of the use cases, beyond 

governance, for which an organisation wants to use semantic data representation and 

ontology models. The return on investment that any organisation expects to see from 

the use of semantic technology, or any technology for that matter, is stronger when the 

technology is utilised to benefit more than one business processes; i.e. in this case, more 

than just governance policy enforcement. The choice of approach is therefore strongly 

linked to an organisation’s other reasons for using semantic technology.  

The policy evaluation component of the conceptual framework that we introduced in 

chapter 4 should be possible to realise with either of the two approaches. In this 

research, however, we have chosen to demonstrate the feasibility of the framework 

through the DL classification-based approach. The reason for preferring this approach 

is purely practical and has to do with the author’s past experience and familiarity with 

developing software systems that utilise OWL-DL reasoning mechanisms.  



133 

7.3 Method for policy evaluation based on DL reasoning  

The input to initiate the policy evaluation process is a pair of ontology-based 

governance policy definition and governed resource description. The method to create 

them has been discussed in chapter 5 and chapter 6, respectively.  

7.3.1 Governance policy evaluation example 

To illustrate the process of policy evaluation let us use an example from the previous 

chapter; the WSDL document describing the interface of a text translation web service 

used by apps on the CAST platform.  

According to the WSDL document describing the service’s interface, the service can be 

invoked at two different endpoints (URLs). The relevant section of the service’s WSDL 

document is shown in Table 20 (section 6.3.1).  

Extracting the information from the WSDL document and making it available as 

Linked Data would allow a policy evaluation engine to query the resource provider’s 

RDF triple store for information about the service, using SPARQL (see Table 22), and 

receive the following RDF description as a response (Table 24).  

@prefix : <http://kourtesis.net/phd/2016/examples#> . 

@prefix gov: <http://ecosystem-governance.com/ontology#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@base <http://kourtesis.net/phd/2016/examples> . 

 

:translationService  rdf:type  gov:ServiceInterface ; 

:translationService  gov:contains  :endpoint-001 ; 

:translationService  gov:contains  :endpoint-002 ; 

 

:endpoint-001  rdf:type  gov:Endpoint ;  

:endpoint-001  gov:hasAddress  "http://144.76.8.88"^^xsd:anyURI ; 

 

:endpoint-002  rdf:type  gov:Endpoint ; 

:endpoint-002  gov:hasAddress  "http://143.167.8.2"^^xsd:anyURI . 

Table 24. Description of translation service interface (Turtle syntax)  

The relevant artefact validation policy from the CAST platform dataset states that the 

interface specification of every external web service used by apps on the CAST 

platform should specify two unique endpoint URLs (primary and backup endpoints as 

failover).  

Expressed as a DL axiom and represented in OWL Manchester Syntax, the policy is 

formulated as shown in Table 25.  

 



134 

Class: ValidServiceInterface 

 

    EquivalentTo:  

        ServiceInterface 

         and (contains exactly 2 Endpoint) 

     

    SubClassOf:  

        ServiceInterface 

Table 25. Definition of ValidServiceInterface policy (Manchester syntax) 

For completeness, Table 26 shows the ServiceInterface artefact class which is 

referenced by the ValidServiceInterface policy definition. 

ValidServiceInterface is defined as a disjoint union of 

InvalidServiceInterface and ValidServiceInterface. As mentioned in the 

method description section of chapter 5, the disjoint union axiom in the class 

description will force a DL reasoner to deduce than any instance of a service interface 

artefact which cannot be classified under ValidServiceInterface is necessarily an 

InvalidServiceInterface.  

Class: ServiceInterface 

 

    SubClassOf:  

        ServiceArtefact 

     

    DisjointUnionOf:  

        InvalidServiceInterface, ValidServiceInterface 

Table 26. Definition of ServiceInterface artefact class  

Once the policy evaluation engine obtains the resource description shown in Table 24 

and the policy definition shown in Table 25, the objective is to check if the data satisfies 

the definition. This can be done by invoking the instance checking function of an OWL 

DL reasoner such as Pellet [127] or Hermit [128]. To enable instance checking with an 

OWL-DL reasoner, the policy evaluation engine will first construct an OWL individual 

to represent the described governed resource (Table 27), by importing the RDF 

description shown earlier in Table 24.  

Individual: translationService   

 

    Types:  

        ServiceInterface 

     

    Facts:   

        contains  endpoint-001, 

        contains  endpoint-002 

Table 27. Description of translation service interface as OWL individual (Manchester syntax) 



135 

For completeness, Table 28 shows the encoding for OWL individuals endpoint-001 

and endpoint-002, which are referenced from within the description of the 

translationService individual.  

  Individual: endpoint-001 

 

    Types:  

        Endpoint 

     

    Facts:   

        hasAddress  "http://144.76.8.88"^^xsd:anyURI 

 

 

  Individual: endpoint-002 

 

    Types:  

        Endpoint 

     

    Facts:   

        hasAddress  "http://143.167.8.2"^^xsd:anyURI 

Table 28. Description of translation service endpoint-001 and endpoint-002 as OWL individuals  

Those three individuals (translationService, endpoint-001, endpoint-002) can 

be in-memory objects and do not need to be permanently stored. They can be generated 

on-demanded and discarded as soon as the instance checking function of the reasoner 

terminates. 

By this point, the policy evaluation engine has provided the DL reasoner with an 

in-memory representation of the policy (a defined OWL class), and an in-memory 

representation of the instance data (OWL individuals), so the DL reasoner can proceed 

with instance checking to determine if the object of interest (translationService) 

can be classified under the class of interest, i.e. ValidServiceInterface (or its 

mutually disjoint counterpart, the InvalidServiceInterface class).  

The object translationService is of type ServiceInterface and contains two 

objects of type Endpoint, each pointing to a different URL. Therefore, at first sight, it 

may intuitively appear as if the description of the object satisfies the definition of policy 

class ValidServiceInterface, and that the DL reasoner should infer that 

translationService is of type ValidServiceInterface. However, this is not the 

case. The reasons are explained in the following section.  

7.3.2 Open-world assumption and unique name assumption  

OWL as a language has two characteristics that militate against utilising an OWL DL 

reasoner for direct applications in data validation, as in the example above. These 

characteristics are the presence of an open-world assumption (OWA), and the absence 

of a unique name assumption (UNA) [162] in the language’s semantics.  



136 

When drawing conclusions from the information available, knowledge representation 

systems that adopt the OWA will assume that, by default, the information held in a 

knowledge base is incomplete. They assume there could be more objects and more 

relationships between them than those which happen to be known to a knowledge base 

at the given time, and this information may become part of the knowledge base in the 

future. A reasoning engine that operates under an OWA will limit itself to drawing 

conclusions only if these follow from the facts already available in the knowledge base 

at the time of reasoning, without making any assumptions about the completeness of 

the information held. If something is not known for a fact to be true or false, its truth 

value could be either true or false, and the system will refrain from drawing any 

conclusion. The OWA is closely related to the monotonic nature of classic first-order 

logic: adding new information can never falsify a previously drawn conclusion [165].  

By contrast, knowledge representation systems adopting a closed-world assumption 

(CWA) will draw conclusions assuming that the information held in a knowledge base 

is always complete. They assume there are no more objects and relationships between 

them other than those already known. If something is not known, its truth value is 

assumed to be false. The CWA is adopted in query-answering over relational databases 

and in Datalog-related logics. Datalog-based systems, such as Prolog programs, 

support non-monotonic reasoning and defeasible inference. That is, inference where 

reasoners draw conclusions tentatively, reserving the right to retract them in the light of 

further information [166]. 

Another semantic property that is closely related to the Datalog/relational paradigm is 

that names will uniquely identify and distinguish the objects in the domain. A resource 

can never be identified and referred to by two different names. This is known as the 

unique name assumption (UNA) and it is a common practice in non-monotonic 

reasoning [165]. However, it is not the assumption made in monotonic logic languages 

like OWL, where resources which are identified by different URIs are not assumed to 

be different objects in the domain, unless explicitly stated otherwise. Consistent with 

the openness and heterogeneity of the web, in OWL, there is nothing preventing a 

resource from being identified by several different names, by different entities.  

As noted by Bergman [119], operating under a CWA (and UNA) is a “poor choice” 

when attempting to combine information from multiple sources, to deal with 

uncertainty or incompleteness in the world, or to try to integrate internal, proprietary 

information with external data. Situations where a default CWA is more convenient and 

appropriate than OWA are “database-like applications” [167], where knowledge is 

mostly managed in a local scope. Data validation is one such application, where what is 

effectively desirable is to encode and check the integrity constraints that must be 

satisfied by instance data.  

Overall, there are several use cases identified by the Semantic Web community [168], 

[169],[170] where it is desirable to adopt the OWA without the UNA for parts of the 



137 

domain where knowledge is incomplete, and simultaneously, use the CWA with the 

UNA otherwise [171].  

Fortunately, there are ways to combine the best of the two approaches: the open world 

reasoning of OWL with closed world constraint validation.  

7.3.3 Local closure axiom generation algorithm 

According to the standard semantics of OWL, an OWL DL reasoner will never infer 

that some statement is false simply because there is no known evidence to support the 

truth of that statement. And it will never infer that two objects are distinct because they 

are identified by different names.  

A solution in order to guide the DL reasoner to draw the desired inferences is to enable 

some form of local closed world reasoning. That is, to close the world relative only to 

the descriptions of governed resources we are interested in checking, while leaving the 

rest of the knowledge base (KB) to be processed under the standard OWA. This can be 

accomplished by adding additional assertions regarding the object of interest, so as to 

state that all the information relevant to that object is known.  

Going back to the translation service example, let us see how an OWL DL reasoner 

would fail to produce the desired inferences, and how we can approximate local closed 

world reasoning.  

Let the policy presented in Table 25 earlier in this chapter be represented by an 

equivalence class axiom as in (1): 

ValidServiceInterface ≡ ServiceInterface ⊓ (=2 contains.Endpoint) (1) 

Let knowledge base K contain the ontology instance data as in (2):  

K = { 

ServiceInterface(translationService),  

Endpoint(endpoint-001),  

Endpoint(endpoint-002),  

contains(translationService, endpoint-001),  

contains(translationService, endpoint-002)  } (2) 

Given the above pair of governance policy and governed resource description, we 

would like the reasoner to infer ValidServiceInterface(translationService), 

which is a way of saying that individual translationService belongs to the class of 

valid service interfaces. However, without any UNA, the combination of (1) and (2) 

does not entail this inference. Despite the fact that translationService is known to 

contain the endpoints endpoint-001 and endpoint-002, there is nothing to preclude 

that endpoint-001 and endpoint-002 is not in fact the same individual.  



138 

To compensate for the lack of UNA we can extend K by asserting explicitly that 

endpoint-001 and endpoint-002 are different individuals (3):  

endpoint-001  ≠  endpoint-002 (3) 

However, even with this addition it is still not yet possible to have 

translationService classified under the anonymous class of things that contain 

exactly two endpoints (=2 contains.Endpoint). Due to OWL’s OWA, the 

cardinality restriction in the class expression can be satisfied only if we have explicit 

knowledge that endpoint-001 and endpoint-002 are in fact the only objects related to 

translationService along the contains property (otherwise, translationService 

could be related to more, as yet unseen objects along this property). The way to achieve 

this is by extending K with an anonymous type assertion as in (4):  

(=2 contains.⊤)  (translationService) (4) 

The assertion states that the number of objects to which translationService is 

related along contains property is exactly 2. The addition of (3) and (4) to the KB is a 

way of closing the world relative to a part of the KB (i.e. relative to 

translationService only) and in isolation from other ontology individuals.  

It is worth noting that the specific assertions (3) and (4) are not the only ways to achieve 

the desired closure. There are other modelling constructs in OWL that could be used to 

achieve the desired effect, such as enclosing the full list of objects that 

translationService is related to along the contains property in a universal 

quantification axiom like (∀contains.{endpoint-001, endpoint-002})  

(translationService), or using the hasAddress data property as a Key for all 

Endpoint objects, which would allow the reasoner to distinguish between different 

service endpoints if their URIs are different.  

These special-purpose assertions do not need to be custom-coded or predefined in 

templates. They can be dynamically generated by a generic mechanism, as a 

pre-processing step within the policy checking engine. Moreover, the addition of such 

assertions does not need to be permanent – they can be discarded as soon as 

conformance checking for translationService has been completed.  

This is achieved by our local closure generation algorithm which examines the 

equivalence class axiom representing a policy of interest, determines which (asserted or 

inferred) properties are relevant for classification, constructs anonymous type 

assertions with the exact known objects or literals per each property of importance, and 

adds those to the object to be checked.  

The steps in the local closure generation algorithm are as shown in Table 29:  



139 

 

01 

02 

 

03 

 

 

 

04 

 

05 

 

 

 

 

 

 

 

06 

 

07 

 

 

08 

 

 

 

 

09 

 

 

 

 

10 

 

11 

 

12 

13 

14 

15 

 

 

16 

 

17 

 

18 

19 

20 

21 

 

 

22 

 

23 

 

24 

 

25 

 

 

Get URI of the governed resource (OWL individual) to check 

Get URI of the policy definition (OWL class) to check against 

 

Check well-formedness of resource description against pattern 

 

   // Well-formed individuals have exactly one asserted type class  

 

   If individual is not well-formed, exit with error 

 

C heck well-formedness of policy description against pattern 
 

   // Well-formed policies are pairs of positive/negative policy  

   // descriptions under parent class with DisjointUnion axiom.  

   // They also follow a specific naming pattern:  

   // ValidABC/InvalidABC for artefact validation  

   // PromotableABC/NonPromotableABC for lifecycle management  

 

   If class is not well-formed, exit with error 

 

Discover the salient object and data properties relative to the 

policy  

 

   Analyze OWL Object Property restriction expressions in policy 

 

   // MinCardinality, MaxCardinality, ExactCardinality,  

   // AllValuesFrom, SomeValuesFrom, HasValue, HasSelf 

 

   Analyze OWL Data Property restriction expressions in policy 

 

   // MinCardinality, MaxCardinality, ExactCardinality,  

   // AllValuesFrom, SomeValuesFrom, HasValue 

 

Generate closures for salient policy properties 

  

   If salient property is OWL Object property 

 

      Get a reference to the predicate (object property) 

      Get a reference to the subject (individual) 

      Get all objects to which the subject is related  

      Create ObjectAllValuesFrom expression for property/objects 

      // Example: contains only {endpoint-001, endpoint-002}  

       

   Add the closure axiom to the KB 

 

   If salient property is OWL Data property 

 

 Get a reference to the predicate (data property) 

      Get a reference to the subject (individual) 

 Get all literals to which the subject is related  

      Create DataAllValuesFrom expression for property and filler 

      // Example: hasPrice only ({10})  

  

      Add the closure axiom to the KB 

 

Load KB (ontology, imports closure, closure axioms) onto DL reasoner  

 

Run KB consistency check with DL reasoner  

    

   If KB is consistent 

 



140 

26 

 

 

 

 

27 

 

28 

      Check if individual is instance of positive or negative policy  

      class 

      // Example: Type ValidServiceInterface or Type   

      InvalidServiceInterface 

 

      Return instance check result  

   

   Exit 

 

Table 29. Abstract description of local closure generation algorithm 

Table 30 and Table 31 below show the encoding for translationService and 

individuals endpoint-001 and endpoint-002, with the addition on the closure axiom 

assertions from (3) and (4) above. 

Individual: translationService   

 

    Types:  

        ServiceInterface, 

        contains exactly 2 Endpoint 

     

    Facts:   

        contains  endpoint-001, 

        contains  endpoint-002 

Table 30. Description of translation service interface as OWL individual (Manchester syntax) 

  Individual: endpoint-001 

 

    Types:  

        Endpoint 

     

    Facts:   

        hasAddress  "http://144.76.8.88"^^xsd:anyURI 

     

    DifferentFrom:  

        endpoint-001 

 

 

  Individual: endpoint-002 

 

    Types:  

        Endpoint 

     

    Facts:   

        hasAddress  "http://143.167.8.2"^^xsd:anyURI 

     

    DifferentFrom:  

        endpoint-002 

Table 31. Description of translation service endpoint-001 and endpoint-002 as OWL individuals  



141 

Using the local closure axiom generation algorithm that we created, any OWL DL 

reasoner presented with the above instance data and the definition of 

ValidServiceInterface policy in Table 25 would infer that translationService is 

of type ValidServiceInterface, and therefore establish policy conformance.  

7.3.4 Related work  

The formulation of constraints and the automatic validation of data according to these 

constraints is a much sought-after feature for RDF/OWL applications [172], and is 

growing in importance.  

Closely related work has been carried out on theory and applications for OWL and RDF 

data validation. Some works have focused on ways to extend the semantics of OWL to 

allow for integrity constraint validation. This typically involves the use of 

non-monotonic queries over the knowledge base, and the language used is typically 

SPARQL. Other works have focused on ways to implement local closed world 

reasoning over the knowledge base without introducing alternative semantics for OWL.  

Motik, Horrocks and Sattler [170] have proposed an extension of OWL semantics with 

Integrity Constraints (IC) similar to those found in relational databases. Their approach 

allows a subset of tBox axioms to be designated as ICs, which are interpreted in the 

spirit of relational database constraints during aBox reasoning. Bringing this in the 

context of policy-based governance, the tBox axioms would represent the policies, 

while the aBox would contain the instance data for the governed resource descriptions 

to be checked.  

Tao, Sirin, Bao, and McGuinness [163] also describe an alternative IC semantics for 

OWL, based on CWA and weak UNA. Their approach allows developers to augment 

OWL ontologies with IC axioms and combine open world reasoning with closed world 

constraint validation. They also show that, under certain conditions, IC validation can 

be reduced to query answering through SPARQL queries which are automatically 

generated from OWL DL class axioms.  

SPARQL Inferencing Notation (SPIN) [173] has similar objectives. It was created to 

serve as a SPARQL-based rule and constraint language for the Semantic Web. It allows 

ontology class definitions to be linked to SPARQL queries in order to capture 

constraints and rules that formalise the expected behaviour of objects belonging to 

those classes. In practice, SPIN offers a way to do constraint checking with closed 

world semantics and raise inconsistency flags when the currently available information 

does not fit the specified integrity constraints.  

A related tool implementation is presented by Rieckhof, Dibowski and Kabitzsch 

[174], who are interested in formal validation techniques for ontology-based electronic 

device descriptions. They describe the implementation of a validator that checks for 



142 

consistency, completeness and correctness in device descriptions using SPARQL 

queries.  

Miksa, Sabina and Kasztelnik [164] present a prototype system for ontology-based 

modelling of network devices. Their motivation is to detect configuration errors and to 

propose combinations of compatible devices by means of instance checking and other 

DL reasoning services. They achieve this by implementing a method similar to our own 

in order to implement local closed world reasoning and thus be able to detect 

configuration errors, while keeping the rest of the KB “open” in order to properly 

reason about combinations of compatible network devices [175].  

7.4 Summary 

In this chapter we presented the third and final part of our implementation of the 

conceptual framework put forward in chapter 4. We discussed how to enable evaluation 

of the governance resource descriptions described in chapter 6 against the 

ontology-based governance policy definitions described in chapter 5.  

The governance policy evaluator role is responsible for creating, maintaining, and 

providing a system that checks the conformance of governed resources to ecosystem 

policies. Providing this capability in the form of an automated policy evaluation engine 

is at the centre of every scalable policy enforcement infrastructure.  

Observed from an ecosystem-wide perspective, policy evaluation engines exhibit the 

same three characteristics as discussed for policies and governed resources: they are 

physically distributed, owned and controlled by different ecosystem actors, and unless 

standardised and generalised through our proposed approach, they can be 

heterogeneous and incompatible between different ecosystem partners.  

We presented a method for policy evaluation based on DL reasoning which allows 

distributed and independent policy evaluators to use a common policy conformance 

checking infrastructure. One that is generic enough to cover all the different types of 

governance policies and governance resource descriptions in the ecosystem.  

We presented the background to our proposed method and explained the differences 

between query-based and classification-based evaluation approaches for 

ontology-based policies. Through an example from the CAST platform governance 

dataset, we illustrated how classification-based evaluation with a DL reasoner will 

stumble upon standard OWL semantics, and what are the effects of the open-world 

assumption and the lack of unique name assumption in OWL.  

We then presented our implementation of an algorithm for local closure axiom 

generation that allows an open-world reasoning engine such as a standard OWL-DL 

reasoner to operate in a closed-world setting and produce the desired inferences so as to 



143 

successfully check conformance of governed resources to ecosystem governance 

policies.  

The algorithm examines the equivalence class axiom representing a policy of interest, 

determines which properties are important for object classification purposes, constructs 

anonymous type assertions for the governed resource description with the exact known 

objects or literals per each property of importance, and adds those to the knowledge 

base before instance checking (classification) is performed.  

The overall approach allows us to combine the best of open-world and closed-world 

reasoning approaches in a single framework: Open-world reasoning when using 

ontologies and Linked Data to integrate heterogeneous and incomplete information 

from different sources, inside and outside a software ecosystem; Closed-world 

reasoning where knowledge in a local scope can be considered complete, such as with 

governance policy evaluation.  

The key takeaways from this chapter can be summarised as follows: 

1. The function of the governance policy evaluator is to create, maintain and 

provide a system that facilitates governance by carrying out policy evaluation. 

The role of the system is to check whether a given description of a governed 

resource conforms to the applicable policies.  

2. Checking ontology-based descriptions of resources against governance policies 

is a task which can be approached as two different kinds of computational 

problem: a problem of integrity constraint validation on ontology objects, or a 

problem of ontology object classification. The policy evaluation component of 

the PROBE framework should be possible to realise with either of the two 

approaches. In this research we have chosen to explore the DL 

classification-based approach.  

3. OWL as a language has two characteristics that prevent us from directly 

utilising a DL reasoner’s object classification service for data validation. These 

characteristics are the presence of an open-world assumption (OWA) and the 

absence of a unique name assumption (UNA) in the language’s semantics. To 

overcome this obstacle we present an algorithm for local closure axiom 

generation. The algorithm closes the world relative only to the descriptions of 

governed resources we are interested in evaluating, while leaving the rest of the 

knowledge base to be processed under the standard OWA.  

4. The algorithm works by automatically generating additional assertions 

regarding an object of interest, i.e. a governed resource description, so as to 

state that all the information relevant to that object is known, i.e. to “close” the 

world. The strength of the algorithm is in its generality and reusability. 

Assertions do not need to be custom-coded or predefined in templates but can 



144 

be dynamically generated as a pre-processing step within the policy evaluation 

engine. 

5. Overall, our proposed method for evaluating governance policies combines the 

best of two worlds: the open world reasoning of OWL with closed world 

constraint validation. The approach relieves the ecosystem partners that 

function as policy evaluators from the need to develop and maintain a custom 

semantic policy evaluation engine. Instead, they can use a standard OWL DL 

reasoner in combination with our generic local closure axiom algorithm. The 

resulting policy evaluation mechanism is natively suited to support networked 

collaboration and is generic enough to cover all the different types of 

governance policies and governed resource descriptions in the ecosystem.  

 

 

  



145 

 

 

 

 

 

 

Chapter 8 

 

Comparative case study 

 



146 

8 Comparative case study  

8.1 Introduction  

In the preceding chapters we analysed the key requirements of governance processes in 

cloud service ecosystems, we discussed the limitations in state of the art governance 

technology platforms and introduced a new conceptual framework for developing 

governance support systems. The PROBE framework utilises Linked Data principles 

and Semantic Web standards to achieve the desired evolutionary step in terms of 

enabling networked collaboration between governance process stakeholders and 

improving the operational efficiency of governance processes.  

To demonstrate the feasibility of the PROBE framework we showed how its 

components can be concretely realised in order to define policies, to describe governed 

resources and to evaluate governance policies against resource descriptions, drawing 

on governance policy examples from research project CAST.  

In this chapter we demonstrate the usefulness of the PROBE framework. This 

constitutes the second component of our research validation strategy.  

To demonstrate the usefulness of the PROBE framework we compare a PROBE-based 

governance support system with the governance support system that was created in the 

scope of research project CAST. The two systems are compared in two different ways. 

The first comparison is implicit, in that it happens by describing how each system 

supports policy definition, data extraction and policy evaluation, and what the 

implications of each design approach are. The second comparison is explicit, in that we 

compare one system vis-à-vis the other system with the help of change scenarios that 

allow us to analyse how each system behaves under interesting conditions. The systems 

are examined from the perspective of the different roles involved in the ecosystem 

governance process and change-scenarios help to evaluate how each system supports 

evolvability and manageability of the governance process.  

The chapter starts with an introduction to the CAST project and the cloud application 

platform that the project consortium created. We discuss the governance requirements 

that emerge for this particular type of cloud platform and present several governance 

policy examples. Following, we introduce the governance support system that was 

developed in the CAST project to address those requirements and then describe an 

alternative approach to supporting policy-based governance for the CAST platform 

based on the PROBE framework. For both design approaches we explain how policy 

definition, data extraction, and policy evaluation are supported.  

Finally, we evaluate the two design approaches based on the requirements analysed in 

section 3.4. We examine the two approaches from the perspective of the different roles 



147 

involved in the ecosystem governance process: policy provider, data provider, and 

policy evaluator, using scenario-based comparison. Change-scenarios are employed to 

assess the two design approaches in terms of how they support evolvability and 

manageability of governance processes. 

8.2 CAST project 

Project CAST was a joint industry-academia research project that run from 2009 to 

2012 and developed technology to support co-development of cloud-based business 

software solutions by ecosystems of software companies [3],[22]. In the scope of 

project CAST the author of this dissertation analysed a set of 37 governance policies 

relating to lifecycle management and artefact validation for the cloud application 

platform created by the project and its governance support system. The author also led 

the technical team that developed a governance support system based on an 

open-source registry and repository platform to enforce these policies at run-time 

[121],[122]. Through this exercise the author gained valuable insights into the strengths 

and limitations of current approaches to policy-based governance as implemented by 

state-of-the-art governance support systems.  

8.2.1 Background 

The CAST project was set up to investigate the engineering challenges associated with 

creating a PaaS platform that enables ecosystem-oriented development of business 

software solutions [22],[3]. The project did not set out to create yet another PaaS 

platform for generic web application development, but one focusing on business 

applications co-developed by cloud service ecosystems. The models and technology 

developed as part of the project have found their way to commercial products by CAS 

Software AG and follow-on research programmes such as Broker@Cloud [11], [10], 

[12],[13].  

One of the project’s main outcomes was the CAST platform: a PaaS software 

infrastructure comprising an SDK for the development of applications, an application 

runtime environment and a set of supporting platform management tools. The most 

distinctive characteristic of the CAST platform is that its design is oriented towards 

creating network effects [176], by fostering the emergence of an ecosystem of business 

software creators around the PaaS. To promote this objective, the platform allows 

developers to create “solutions” by combining reusable prebuilt components (referred 

to as “apps”) which may be offered not only by the platform provider –as commonly 

happens in PaaS platforms, but also created and offered by independent third-parties.  

Enabling developers to construct applications this way—i.e. developing software on 

top of a PaaS platform through the reuse of building blocks provided by third-parties 

within the platform’s ecosystem, is a major force in the market of cloud application 



148 

platforms [177]. This trend promotes reusability, but also creates a need for much more 

advanced platform mechanisms for quality assurance. The openness and complexity of 

the environment that emerges makes stability and reliability much harder to guarantee, 

and calls for a rigorous approach to platform governance. This was an important 

requirement that the CAST project undertook to research.  

Before proceeding to discussing specific requirements with respect to governance in 

the context of the CAST platform and how these requirements were addressed, the next 

sections provide a brief introduction to the main concepts and terminology relating to 

the CAST platform. 

8.2.2 CAST platform concepts and terminology 

8.2.2.1 Development constructs  

There are three fundamental constructs that shape enterprise applications developed 

based on the CAST PaaS platform: solutions, apps and services.   

 CAST platform solutions. A solution is defined as a complete enterprise 

software application that targets a specific application domain or market niche 

(e.g. customer relationship management for French insurance companies, or 

event management for German exhibition centres). It is deployed on the CAST 

platform and made available to end-users as on-demand software (SaaS). 

Unlike a typical web application, a solution is not manifest as executable 

artefacts – there are no code binaries that form a solution, just metadata. This is 

because a solution is effectively a logical bundle of finer-grained components 

which provide the actual functionality. 

 CAST platform apps. The finer-grained components that solutions are 

composed of are called apps. Each app within a solution provides a 

highly-specialised function. An app in CAST can be characterised as either 

data-centric or process-centric. A data-centric app provides the implementation 

for creating, viewing, editing and storing a custom-built data object (for 

example, an employee’s record, or a project’s timesheet). A process-driven app 

provides the implementation for supporting an end-user in carrying out a 

sequence of tasks (for instance, supporting a sales employee for mass-importing 

customer addresses from a spreadsheet file). Developing an app involves 

coding against platform APIs which may span three different platform runtime 

layers. An app may define new data object types on the data layer, new business 

operations on the business logic layer, and new user interface elements on the 

presentation layer. An app’s behaviour can be extended by creating app 

extensions, which interface with the app at designated extension points. An app 

extension is therefore not a standalone component, but functions as a plug-in to 

one or more different apps.  



149 

 External services. Apps and app extensions may rely on external services to 

deliver part of their functionality. By external services we refer to systems that 

are deployed and executing outside the platform and are accessible over the 

Web, through a programmatic interface (i.e. REST or SOAP Web services). 

The ability to use Web services enables the developers of solutions to leverage 

already existing (and tested) solutions for particular specialised tasks within 

their apps. For example, an app or app extension for contact management could 

invoke an external service to perform email address validation for a particular 

contact, or to obtain the latest mentions on social media for a contact’s 

company. Even more importantly, the use of Web services in conjunction with 

apps makes it possible to integrate solutions which are deployed on the platform 

with external organisations and service providers, as well as legacy systems. 

8.2.2.2 Ecosystem co-development on the CAST platform 

The development constructs introduced above represent a generic model that could be 

applicable to a wide range of cloud application platforms. But how do these constructs 

map to specific entities/actors in the cloud service ecosystem that the CAST platform 

facilitates? Who creates and who extends those constructs in the context of enterprise 

application co-development?  

Figure 17 illustrates an example of possible associations/dependencies between 

platform constructs (solutions, apps and services) and organisational boundaries of 

different ecosystem partners (dashed outline).  

 

Figure 17. Example mapping of platform constructs to ecosystem partners 



150 

Apps and app extensions may be built both by the platform provider and by 

third-parties (ecosystem partners A and B). In order to help developers to bootstrap 

their work, the platform provider may build a number of apps that target functionality 

that is rather common in business applications, such as document management (app 1).  

Any partner that needs to use a built-in app is allowed to configure it for the needs of a 

particular solution (solution 1). Alternatively, apps and app extensions can be 

developed from the ground-up by different ecosystem partners (apps 2, 3, 4). 

Optionally, those apps can depend on external services (service 1, 2) which may not 

necessarily be owned by the same ecosystem partner (app 3, service 2). In any case, as 

soon as a third-party app, app extension, or external service is onboarded to the 

platform it can be made available for other partners to reuse in developing their own 

software.  

Composing built-in and third-party apps into solutions is the responsibility of 

ecosystem partners (solution 1, 2). In creating a solution package, ecosystem partners 

are also specifying how the appearance and behaviour of the included apps should be 

customised (at run-time) for the particular solution at hand. This is done by defining 

solution-specific constraints on the apps.  

Since an app can be part of more than one solution (app 3), different constraints can be 

applied for a particular app depending on the execution context. For example, data 

validation rules for fields such as a postal code or a vehicle license plate can be 

customised at app run-time quite differently, depending on the relevant country the 

solution should support. 

8.3 Policy-based governance of CAST platform 

8.3.1 Governance requirements 

As the usage of any CAST platform instance expands over time, increasing numbers of 

solutions, apps and services will be deployed and updated on a frequent basis. To 

ensure that appropriate operation conditions are maintained at all times, it is imperative 

to implement mechanisms for effective, centrally-exercised management and quality 

control over all of the platform’s solutions, apps and services.  

Essential to achieve this is to have a central governance support system in which all 

entities and artefacts that are intended for deployment to the platform’s runtime 

environment can be stored, organised, checked for conformance against platform 

policies, and managed throughout their lifecycle.  

The governance support system needs to facilitate a systematic and disciplined process 

for the deployment of solutions, apps and services to the platform, such that potential 



151 

problems can be detected and addressed before posing a threat to the platform’s 

stability and performance. 

The CAST project identified five core governance functionalities as most critical: 

 Cataloguing and storage: Solutions, apps, and services need to be catalogued, 

and their associated artefacts stored in a central location. 

 Artefact validation: Managed entities (solutions, apps, and services) and their 

associated artefacts need to be checked for conformance to platform policies. 

 Lifecycle management: The evolution of managed entities must follow an 

explicitly defined lifecycle model consisting of specific states and transitions, 

where transitions are guarded by preconditions. 

 Dependency tracking and impact analysis: The dependencies among solutions, 

apps, and services need to be tracked to allow for impact analysis. 

 External service monitoring: External (Web) services on which apps may 

depend must be monitored to ensure availability and performance. 

8.3.2 Stakeholders in the governance process 

In section 3.3 we discussed the three fundamental roles which interact in the scope of 

any cloud service ecosystem governance process: i) policy provider, ii) data (resource 

description) provider, and iii) policy evaluator.  

Those three distinct roles are also present in the setting of a CAST platform instance.  

 Policy provider: This role can be assumed by both the company that 

provides/operates the CAST PaaS platform, as well as the Independent 

Software Vendors (ISVs) who are ecosystem partners. For instance, the 

platform operator sets out a range of policies to govern the structure of the 

solutions and apps that are deployed onto the platform’s runtime environment, 

as well as policies governing how the platform can interface with external 

services. On the other hand, ecosystem partners set policies/constraints on the 

third-party apps or services used by their solutions, such as 

performance/availability or cost limits.  

 Data provider: Similarly, the role of the data provider can also be assumed by 

both the CAST platform operator as well as by ecosystem partners. For 

instance, the platform operator needs to deliver resource descriptions relating to 

the apps and services that are deployed onto the platform, so that this can be 

checked against relevant policies set out by ecosystem partners or the platform 

operator itself. Ecosystem partners also need to deliver resource descriptions 

relating to the apps and solutions they would like to deploy on the platform, so 

that they can be checked for conformance.  



152 

 Policy evaluator: Unlike the other two roles, the role of the policy evaluator is 

the responsibility of the CAST platform provider alone. As the operator of the 

platform, it is positioned at the centre of the ecosystem and needs to ensure that 

all the contributions by ecosystem partners can be smoothly integrated into a 

common operational environment. This requires evaluating all policies 

originating from ecosystem partners or by the platform provider itself, and 

governance aspects such as how to structure solutions or how to use external 

services from within an app, how to describe the pricing model of an app or how 

to use visual assets in the description of a solution.  

8.3.3 Governance policy examples 

To illustrate the type of governance policies relevant to CAST we list here a few 

examples. Specifically, we provide two examples of policies relevant to each different 

type of CAST platform software unit (solutions, apps, services).  

8.3.3.1 Solution policy examples 

Solution pricing.xml policy 

A solution pricing definition artefact is an XML file which is created by the ecosystem 

partner who develops a solution and is submitted to the platform along with the rest of 

the definition/configuration artefacts that comprise a solution. It provides a definition 

of the solution’s pricing model in terms of its subscription modality (for instance, 

charging a company that uses the solution per user seat - per month) and the billing 

amount per subscription option.  

Example rules:  

 Instance document is valid with respect to applicable XSD schema (pricing.xsd) 

 Subscription modality constraints. For example, the modalities specified are 

either per user - per month, or per tenant - per month. 

 Billing amount constraints: For example, the billing amount does not exceed 20 

EUR, if modality is per user - per month, or 100 EUR, if modality is per tenant - 

per month.  

Solution collection policies 

A solution collection is the set of artefacts and metadata that comprise a solution and is 

provided by the ecosystem partner who creates the solution. The platform operator 

needs to validate that the solution collection contains a minimum set of artefacts and 

metadata. This minimum set is not fixed but can change depending on the lifecycle state 

of the solution –more constraints are added as a solution advances through its lifecycle. 



153 

The different states that a solution (or any other governed software unit in CAST) can 

sequentially move through during its lifespan are as follows:  

1. Development 

2. Testing 

3. Review 

4. Beta 

5. Production 

6. Deprecated 

7. End of Life 

Example rules: 

Before allowing a transition from Development to Testing  

 The collection’s media type is “application/vnd.cast.sln” 

 There exists exactly one valid solution.xml file  

 All apps that this solution depends on, or recommends, are in the state of testing, 

beta, or production 

 Any other artefact in the collection (e.g. any additional property file) is valid 

with respect to the policies applicable 

Before allowing a transition from Testing to Review  

 There exists a non-empty text description of the solution 

 There exists a valid pricing specification file 

 There exists a valid license file 

 There exists a valid provider details file 

 All apps that this solution depends on, or recommends, are in the state of beta, 

or production  

Before allowing a transition from Review to Beta  

 There exists a valid review report with positive outcome (approval=true) 

Before allowing a transition from Beta to Production  

 All apps that this solution depends on, or recommends, are in the state of 

production 



154 

8.3.3.2 App policy examples 

App image files policy 

An app image file is a visual asset that is used in the platform as part of the app 

description. It may be the app icon/thumbnail or a screenshot of the app in operation 

(e.g. to be used inside the CAST platform operator’s app store). The app image artefacts 

are provided by whoever is the app creator (the CAST platform operator or an 

ecosystem partner). There exists a generic set of constraints that applies to all images, 

and a set of additional constraints which applies to app icons alone.  

Example rules: 

 The filetype is either jpg or png  

 The maximum filesize is 100 KB for app icons and 1024 KB for all other 

images  

 The maximum height is 150 pixels for app icons and 600 pixels for all other 

images  

 The maximum width is 150 pixels for app icons and 800 pixels for all other 

images 

App localisation files policy 

An app localisation file is a .property artefact submitted to the platform by the app 

creator (the CAST platform operator itself or an ecosystem partner). It contains a list of 

key-value pairs that allow labels inside apps to be presented in different languages at 

run-time. 

Example rules: 

 The file is not empty 

 Each defined key has some corresponding non empty value 

8.3.3.3 Service policy examples 

Service interface policy 

A service interface definition is an XML artefact submitted to the platform by the 

service provider or someone who has created a wrapper for a third-party web service. It 

provides a machine-readable description of how the service interface can be invoked, 

what parameters it expects, and what data structures it returns, based on WSDL v2 as 

the definition language.  

Example rules: 



155 

 Interface description is a valid WSDL v2 document 

 Two service endpoints specified for redundancy purposes (primary/backup 

server) 

Service level agreement policy 

A service level agreement definition is an XML artefact which, similarly to the service 

interface definition, is submitted to the platform by the service provider or whoever else 

created a wrapper for a third-party web service (the CAST platform operator or an 

ecosystem partner). It provides some baseline metrics regarding service quality, based 

on WSLA as the definition language.   

Example rules: 

 The instance document is valid with respect to XSD schema (WSLA) 

 The specified availability (uptime ratio) is no less than 98%  

 The specified maximum response time is no more than 600ms 

8.4 Description of the solution as developed in CAST 

8.4.1 Overview - CAST platform registry & repository system 

The approach that was taken in the CAST project to address the governance 

requirements outlined in section 8.3.1 was to develop a special-purpose registry & 

repository system that complements the CAST platform runtime environment. 

The system was developed as a set of extensions and customisations on top of the 

open-source WSO2 Governance Registry platform [178], which offers part of the 

necessary infrastructure as well as generic interfaces and extension points that allow 

default functionality to be extended [121], [122].  

In the following we explain the five main types of governance functions offered by the 

CAST Registry & Repository system. 

Cataloguing and storage 

The basis for all governance functions is the ability to catalogue solutions, apps, and 

services, and storing their associated artefacts. Each of the managed software unit in the 

platform comprises several artefacts (files) of different types, which need to be stored 

and linked to their associated unit. For example, each solution comprises a main 

descriptor file (manifest), a set of localisation files (property files), a specification file 

for data constraints that the solution places on apps, a pricing specification file, a 

license file, images, etc. 



156 

Central cataloguing and storage creates an authoritative system of record in which all 

data and metadata about the platform’s assets are collected. Apart from the platform 

administrators, the cataloguing function allows platform users (i.e. software 

developers) to keep track of their portfolio of solutions, apps, and services, as well as 

those of other developers that are being reused in their work. Information about 

managed entities is also accessible to the platform’s runtime environment through a 

programmatic API, allowing operations such as automated deployment of applications.  

Artefact validation  

The artefact validation function comprises a variety of automated processes to perform 

quality control on artefacts associated with managed CAST platform entities. This is 

done by checking the conformance or artefacts to pre-specified platform policies, 

which can be seen as a kind of integrity constraints.  

We have already mentioned the policy example stating that every WSDL document 

that describes the interface of an external Web service should contain two endpoint 

URLs, pointing to two different servers on which the service is deployed. This provides 

a failover solution in case the primary server that hosts an external service is 

unavailable.  

Validation of artefacts against such policies is triggered automatically whenever 

artefacts of interest are created or modified.  

Lifecycle management 

Lifecycle management refers to the ability of managing the state of governed software 

unit throughout their lifespan. Each managed CAST platform unit (solutions, apps, and 

services) follows a lifecycle model which is defined in terms of (i) states, (ii) transitions 

between states, (iii) pre-conditions to check before allowing a transition to a new state, 

and (iv) post-conditions to enforce upon exiting a state.  

As already mentioned above, all of the CAST platform entities go through the states of: 

development, testing, review, beta, production, deprecation, and end-of-life. 

Pre-conditions and post-conditions differ between lifecycle model definitions for 

solutions, apps and services.  

For example, as mentioned above, a pre-condition to automatically check before 

allowing a solution to proceed to the beta state is the availability of a certification report 

(an XML file provided during the review state by a member of the QA team), which 

should contain a positive evaluation for the app in question. An example of a 

post-condition to be enforced upon exiting the beta state would be to send a notification 

to some designated contact person, or to initiate a process of automated deployment to 

the production environment. 

Dependency tracking and impact analysis 



157 

The dependency tracking function is concerned with specifying dependency 

associations among managed entities. That is, specifying dependencies between a 

solution and the apps it comprises, or an app and the external services that it may 

consume. This information is vital in order to prevent failures and to preserve the 

integrity of the platform. If the software unit at the right hand side of a dependency 

association is significantly modified or is removed from the platform (e.g. by being 

moved to the “end of life” state), the unit on the left hand side of the relation runs the 

risk of failing during runtime.  

Keeping track of dependency information enables the platform to create warnings 

and/or deny unsafe user actions, such as attempting to remove a software unit to which 

there exists a direct or indirect dependency.  

External service monitoring 

As already mentioned, the apps that are offered through the CAST cloud application 

platform may rely on external Web services to deliver some of their functionality. This 

means that external services are essential parts of the ecosystem that is created around 

the platform, but at the same time, they lie beyond the control of the platform operator, 

since they are physically located and executed outside the platform’s boundaries. If a 

service becomes unavailable or its performance is severely degraded, it could have a 

dramatic impact on a number of apps (and by extension on a number of solutions) 

which may be using it. To prevent potential problems of this nature it is critical to 

employ monitoring for all external services. 

8.4.2 Policy definition 

In this section and for the rest of this chapter we will focus on the two principal 

governance functions implemented by the CAST platform governance support system: 

 Artefact validation policies 

 Lifecycle management policies 

We will use some examples of policies from section 8.3.3 to illustrate how policy 

definition was made possible with the CAST platform governance support system.  

8.4.2.1 Definition of artefact validation policies 

To illustrate how artefact validation policies can be defined with CAST, let us start with 

the example of validating the properties of visual assets that are part of an app 

description.  

As seen in section 8.3.3, an app creator can provide an app icon/thumbnail or a 

screenshot of the app in operation to be used inside the CAST platform app store. To 



158 

maintain consistency, the properties of those files must be checked, and this task can be 

automated.   

In the case of app image artefacts, policy definition is a four step process: 

1. Creating an artefact validation policy rules file in XML format. 

2. Implementing a new Java object converter to create an object representation of 

the policy rules file at runtime. 

3. Implementing a new Java policy validator to validate the resource against the 

policy rules at runtime. 

4. Packaging the Java components as JAR archives, deploying them to the policy 

evaluator’s execution environment, and restarting the Registry & Repository 

server (Java servlet container) to complete the deployment. 

Table 32 below presents the contents of the policy rules file. Constraints are placed on 

file type (valid extensions), and maximum the values allowed for width, height and file 

size.  

<?xml version="1.0" encoding="UTF-8"?> 

<policy> 

    <name>Images</name> 

    <isEnabled>true</isEnabled> 

 

    <rule name="width">800</rule> 

    <rule name="height">600</rule> 

    <rule name="size">1024</rule> 

    <rule name="extensions">jpg,png</rule> 

</policy> 

Table 32. Images.xml 

Table 33 provides a snippet of code from the Java object converter that creates an object 

representation of the policy rules file. It reads in the XML object and expects to find 

values for the constraints placed specifically on extensions, width, height, and file size. 

Notice the tight coupling between the XML policy rules file and this object converter. If 

the structure of the first changes the code in the latter needs to be modified and 

redeployed to the CAST platform.  

package org.seerc.cast.regrep.validators.app; 

 

[...] 

public class ImagePolicy { 

 

    private static final Log log = LogFactory.getLog(ImagePolicy.class); 

 

    private int width; 

    private int height; 

    private int size; 



159 

    private boolean isEnabled; 

    private String extensions[]; 

 

    public ImagePolicy(String policyPath) throws RegistryException { 

 

[...] 

        try { 

            log.debug("Reading Image Policy resource: " + policyPath); 

 

            OMElement element; 

            AXIOMXPath xpath; 

 

            log.debug("Setting Policy isEnabled: " + policyPath); 

            xpath = new AXIOMXPath("/policy/isEnabled"); 

            element = (OMElement) xpath.selectSingleNode(xmlDoc); 

            this.isEnabled = Boolean.parseBoolean(element.getText()); 

 

            log.debug("Setting Policy rule [WIDTH]: " + policyPath); 

            xpath = new AXIOMXPath("rule[@name='width']"); 

            element = (OMElement) xpath.selectSingleNode(xmlDoc); 

            this.width = Integer.parseInt(element.getText()); 

 

            log.debug("Setting Policy rule [HEIGTH]: " + policyPath); 

            xpath = new AXIOMXPath("rule[@name='height']"); 

            element = (OMElement) xpath.selectSingleNode(xmlDoc); 

            this.height = Integer.parseInt(element.getText()); 

 

            log.debug("Setting Policy rule [SIZE]: " + policyPath); 

            xpath = new AXIOMXPath("rule[@name='size']"); 

            element = (OMElement) xpath.selectSingleNode(xmlDoc); 

            this.size = Integer.parseInt(element.getText()); 

 

            log.debug("Setting Policy rule [EXTENSIONS]: " + 

policyPath); 

            xpath = new AXIOMXPath("rule[@name='extensions']"); 

            element = (OMElement) xpath.selectSingleNode(xmlDoc); 

            String extensionsStr = element.getText(); 

 

            if (extensionsStr == null) { 

                log.debug("Policy Rule [EXTENSIONS] was not set: " 

                        + policyPath); 

            } else { 

                this.extensions = extensionsStr.split(","); 

                for (int i = 0; i < this.extensions.length; i++) { 

                    this.extensions[i] = extensions[i].trim(); 

                } 

            } 

            log.debug("Set Policy rule [EXTENSIONS]: " 

                    + this.extensions.toString()); 

 

        } catch (JaxenException e) { 

            throw new RegistryException( 

                    "Failed to read Policy resource: " + policyPath, e); 

        } 

[...] 

Table 33. Excerpt from ImagePolicy.java 



160 

Table 34 contains snippets of code from the implementation of the image policy 

validator which reads in the properties of the actual image resource being validated at 

runtime, and compares them against the policy rules. One can notice there is once again 

a tight coupling between the policy rules and the function of this policy validator. It can 

only validate a specific set of rules: 1) extensions, 2) max width, 3) max height and 4) 

max file size. If the structure of the XML policy rules file should change then this code 

needs to be modified and redeployed. 

package org.seerc.cast.regrep.validators.app; 

 

[...] 

public class ImageValidator extends Validator { 

 

    private static final Log log =    

    LogFactory.getLog(ImageValidator.class); 

    private ImagePolicy policy; 

 

    public ImageValidator() { 

        super(); 

 

        try { 

            policy = new 

ImagePolicy(CastConstants.POLICY_PATH_IMAGES); 

        } catch (RegistryException e) { 

            log.error("Error initializing Image Policy", e); 

        } 

    } 

 

[...] 

    public ValidationResult validate(Resource resource) { 

 

[...] 

        try { 

 

            log.debug("Image file size in bytes: " 

                    + resource.getContentStream().available()); 

 

            BufferedImage image =  

            ImageIO.read(resource.getContentStream()); 

 

            log.debug("Validating image width [" + image.getWidth() 

                    + "] against  Image Policy maximum width [" 

                    + this.policy.getWidth() + "]"); 

            if (image.getWidth() > this.policy.getWidth()) { 

                return this.failed("Image exceeds maximum width of " 

                        + this.policy.getWidth()); 

            } 

 

            log.debug("Validating image height [" + image.getHeight() 

                    + "] against  Image Policy maximum height [" 

                    + this.policy.getHeight() + "]"); 

            if (image.getHeight() > this.policy.getHeight()) { 

                return this.failed("Image exceeds maximum height of " 

                        + this.policy.getHeight()); 

            } 

 

            log.debug("Checking image extension" + resource.getPath()); 



161 

            String extensions[] = policy.getExtensions(); 

            String pathArr[] = resource.getPath().split("/"); 

            String filename = pathArr[pathArr.length - 1]; 

            pathArr = filename.split("\\."); 

            String resourceExtension = pathArr[1]; 

            boolean extensionFound = false; 

            for (int i = 0; i < extensions.length; i++) { 

                if 

(resourceExtension.equalsIgnoreCase(extensions[i])) { 

                    extensionFound = true; 

                    break; 

                } 

            } 

 

            if (extensionFound) { 

                log.debug("Image extension is valid."); 

            } else { 

                log.debug("Image extension is invalid."); 

                return this.failed("Image extension is invalid."); 

            } 

 

            return this.succeed(); 

 

        } catch (IOException e) { 

            // TODO Auto-generated catch block 

            log.debug(e.getMessage()); 

        } catch (RegistryException e) { 

            // TODO Auto-generated catch block 

            log.debug(e.getMessage()); 

        } 

 

        return this.failed("Image validation failed"); 

    } 

 

[...] 

Table 34. Excerpt from ImageValidator.java 

There are other cases of artefact validation policies in CAST where the policy 

definition has been implemented in a simpler fashion. In the case of the service 

interface policy mentioned in section 8.3.3 there is no declarative XML representation 

of the policy rules and no object converter logic. The policy definition is embedded 

directly in the implementation of the validation logic. At runtime, a policy validator 

object reads in the service interface resource (the WSDL file) and applies a check on the 

number of distinct endpoints as illustrated in the snippet of Table 35 below. Should the 

“primary/failover server” policy change in the future, the validator logic will need to be 

revised and redeployed to the platform.  

package org.seerc.cast.regrep.validators.service; 

 

[...] 

 

public class ServiceInterfaceValidator extends Validator { 

 

    private static final Log log = LogFactory 



162 

    .getLog(ServiceInterfaceValidator.class); 

 

    @Override 

    public boolean applyValidation(Resource resource) { 

 

[...] 

            // check for two distinct end-points 

            for(int i=0;i<wServices.length;i++) 

            { 

                Set<String> disctinctEndpoints = new HashSet<String>(); 

                for(Endpoint e:wServices[i].getEndpoints()) 

                { 

                    disctinctEndpoints.add( 

                     e.getAddress().toString()); 

                } 

                if(disctinctEndpoints.size() != 2) 

                    return this.failed("Each defined service must have                         

                    two non-identical endpoints.); 

            }             

[...] 

Table 35. Excerpt from ServiceInterfaceValidator.java 

8.4.2.2 Definition of lifecycle management policies 

Artefact validation represents one of the two principal governance functions which are 

delivered by the CAST platform governance support system. The other function is 

lifecycle management. In this section we will look at an example of policy definition 

that allows the platform operator to control the lifecycle of CAST platform solutions.  

Section 8.3.3 presents a policy applied to the collection of artefacts and metadata that 

make up a CAST solution. Before the solution can be allowed to advance from one 

lifecycle stage to the next, the platform operator needs to validate that the solution 

collection meets certain criteria and contains a minimum set of valid resources in the 

form of artefacts and metadata. The constraints applied depend on the lifecycle state 

that the solution is transitioning to (Development to Testing, Testing to Review, 

Review to Beta, etc.). 

Let us consider a solution transitioning from the state of Testing to the state of Review. 

Before allowing this to take place, the platform operator needs to ensure that:  

 There exists a non-empty text description of the solution 

 There exists a valid pricing specification file 

 There exists a valid license file 

 There exists a valid provider details file 

 All apps or services this solution depends on are in beta or production state 

In this case, policy definition is a three-step process: 



163 

1. Creating/modifying a lifecycle management policy rules file in XML format. 

2. Implementing/modifying the lifecycle management logic in Java.  

3. Packaging the components as JAR archives, deploying them to the runtime 

environment, and restarting the server (Java servlet container) to complete the 

deployment.  

Table 36 below shows a snippet from the XML file (SolutionLifeCycle.xml) that 

allows configuration of the CAST governance support system front-end. The purpose 

served by this configuration file is only to adapt the governance support system’s user 

interface at run-time, presenting the user with the checks (preconditions) relevant to 

each lifecycle state of the solution. It plays no part in the further definition of those 

checks or their actual enforcement, except for also specifying which server-side 

function should be triggered to carry out the actual policy evaluation.  

<aspect name="CAST Solution Lifecycle" 

class="org.seerc.cast.regrep.lifecycle.SolutionLCM"> 

    <configuration type="literal"> 

        <lifecycle> 

 

[...] 

    <state name="testing" location="/%organization/solutions/testing"> 

        <checkitem>Solution description (metadata)</checkitem> 

        <checkitem>Pricing specification (pricing.xml)</checkitem> 

        <checkitem>License terms (license.txt)</checkitem> 

        <checkitem>Provider details (provider.xml)</checkitem> 

        <permissions> 

            <permission action="demote" roles="developer" /> 

            <permission action="promote" roles="developer" /> 

        </permissions> 

        <js> 

            <console promoteFunction="doPromote"  

                     demoteFunction="doDemote"> 

                <script type="text/javascript"> 

                    doDemote = function() { 

                    window.location =  

                    "../resource.jsp?path=/solutions/development";} 

                    doPromote = function() { 

                    window.location =  

                    "../resource.jsp?path=/solutions/review"; } 

                </script> 

            </console> 

            <server promoteFunction="doPromote"  

                    demoteFunction="doDemote"> 

                <script type="text/javascript"> 

                    function doDemote() { 

                    return "Solution demoted to development state"; } 

                    function doPromote() { 

                    return "Solution promoted to review state"; } 

                </script> 

            </server> 

        </js> 

    </state> 

             

[...] 

        </lifecycle> 



164 

    </configuration> 

</aspect> 

Table 36. Excerpt from SolutionLifeCycle.xml 

Table 55 in the appendix provides snippets from the actual lifecycle management logic 

implemented in Java. As with the case of service interface validation presented in the 

previous section, policy definition is once again embedded in the concrete 

implementation of the policy evaluation logic.  

To evaluate if a solution is promotable to the next lifecycle state, the lifecycle policy 

validator will check the conditions applicable to the attempted transition (in this 

example, moving from Testing to Review). As a first step, it will re-run the checks 

associated with the transition that came before that (Development to Testing), followed 

by the checks applicable to the transition at hand (Testing to Review conditions).  

The policy is defined by way of implementing checks on these conditions. In this 

example, the lifecycle policy validator will check to make sure that the description of 

the solution is not empty and that the solution collection includes a valid pricing 

specification file, a valid license file, and a valid provider details file. Should all these 

conditions be satisfied the lifecycle management logic will then check the maturity of 

the solution’s dependencies, i.e. whether all apps and services that the solution 

comprises are in a normal operational state (beta or production). 

As it should be evident, the CAST governance support system does not facilitate 

defining lifecycle management policies in any way that can be distinguished from how 

these policies are actually enforced. As a consequence, every time there is demand for a 

change to how lifecycle is managed there is a need to reengineer the policy evaluation 

component presented above, test the new code, package it in a JAR archive and have it 

redeployed to the platform on a scheduled maintenance/downtime window.  

8.4.3 Data extraction 

In section 8.4.2 above we looked at how policy definition is made possible with the 

CAST platform registry & repository system. Enforcing artefact validation policies and 

lifecycle management policies involves extracting a set of data relevant to the resource 

being governed and making this data available to the policy evaluation logic.  

In this section we are looking at how this was implemented with the CAST platform 

registry & repository system based on the infrastructure provided by the open-source 

WSO2 Governance Registry platform.  



165 

8.4.3.1 Retrieval of data for artefact validation  

Unlike other ecosystem scenarios where policy evaluation can be carried out by 

different ecosystem partners in parallel, the CAST project consortium focused on 

studying and facilitating an ecosystem scenario where policy evaluation is performed 

centrally by the CAST platform. The policy evaluator role is not assumed by any other 

actor except for the platform operator.  

The providers of governed resources, such as the ISVs who create CAST platform apps, 

are the ones who create the data against which policies are evaluated. This data is 

typically specification files or binary files like the examples presented in previous 

sections which are created and uploaded onto the CAST Registry & Repository (R&R) 

system by the resource providers. The CAST R&R system serves as a central repository 

for cataloguing and managing those artefacts.  

The CAST R&R system also offers a visual interface through which a user can navigate 

to these resources and perform relevant operations (Figure 18).  

 

Figure 18. Artefact organisation in CAST Registry & Repository system 

At policy evaluation execution time, the R&R system is queried by the policy 

evaluation logic (i.e. by the implementation of the policy validator component) to 

retrieve and process those artefacts.  

Table 37 provides a snippet from an example artefact we have already seen in previous 

chapters; a service interface description as a WSDL document. The code executed as 

shown earlier in Table 35 would directly retrieve the WSDL document from the 

repository in order to process it.  



166 

<?xml version="1.0" encoding="utf-8" ?> 

<description  

    xmlns="http://www.w3.org/ns/wsdl" 

    targetNamespace= 

"http://cast-project.eu/governance/examples/wsdl"  

 

[...] 

 

  <service name="translationService"  

       interface="tns:translationServiceInterface"> 

 

     <endpoint name="endpoint1"  

               binding="tns:translationSOAPBinding" 

               address ="http://144.76.8.88"/> 

 

     <endpoint name="endpoint2"  

               binding="tns:translationSOAPBinding" 

               address ="http://143.167.8.2"/> 

  </service> 

 

</description> 

Table 37. Excerpt from service interface description artefact (WSDL) 

Table 38 illustrates one more example of an artefact under governance. It is a pricing 

definition file for a solution deployed on the platform (as described in section 8.3.3.1).  

<?xml version="1.0" encoding="UTF-8"?> 

<price xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

xsi:schemaLocation="http://localhost/schema/pricing.xsd" 

xmlns="http://localhost/schema"> 

    <amount>35</amount> 

    <modality>per user, per month</modality> 

</price> 

Table 38. Pricing definition artefact (XML) 

In addition to those cases where the artefacts under governance are represented as files 

residing in the repository, validation policies could also refer to metadata that is stored 

in the relational database backend of the CAST Registry & Repository system. For 

instance, checking that the description of a solution is not empty (as in section 8.3.3.1) 

involves querying the system’s database. This is done through the data access APIs 

provided by the WSO2 Governance Registry platform, which are invoked from within 

the Java-based implementation of the policy validator object.  

In either case (artefacts as files, or artefacts as metadata) the CAST Registry & 

Repository system does not offer any intermediate layer to provide any abstraction over 

how these artefacts are retrieved. As a consequence, should the structure of any of these 

artefacts ever change, the artefact validation logic implemented by all relevant policy 

validators would be critically affected and would also need to change. This would 



167 

require modifying all the policy validators which are affected by this change and 

redeploying them to the CAST platform. 

8.4.3.2 Retrieval of data for lifecycle management  

The way in which data is retrieved for the purposes of lifecycle management is not 

much different to how this is performed for the purposes of artefact validation.  

In some cases, transitioning to a new lifecycle state may involve retrieving artefacts 

from the repository and running them through checks. In other cases, it may only 

involve retrieving and checking data from the CAST Registry & Repository system 

backend. In either case, the data retrieval function is embedded in the lifecycle 

management components. There is no abstraction layer that allows the data 

representation to evolve independently from the policy or the policy evaluation logic. 

Changes to how data is represented will trigger a need to reengineer the policy 

validators.  

8.4.4 Policy evaluation 

In the previous two sections we looked at how the CAST platform registry & repository 

system supports the definition of policies and the extraction of the data relevant to each 

resource or lifecycle being governed. We also illustrated how this data is evaluated 

against the relevant policies.  

We highlighted the tight coupling between those two functions (defining policies and 

extracting data for evaluation) which are effectively embedded inside the 

implementation of the policy evaluation logic. In this section we explain how this 

policy evaluation logic is invoked and the development and configuration activities that 

are required to enable this. We also discuss the implications of this process in terms of 

software modifiability.  

For completeness, we also provide a closer look at how the outcome of policy 

evaluation is visually communicated to the user of the CAST platform registry & 

repository system.  

8.4.4.1 Evaluation of artefact validation policies 

Once artefact policy validators are implemented in the way discussed in section 8.4.2, 

and packaged as JAR archives to be deployed to the CAST Registry & Repository 

runtime, they can be invoked by the system at the time they are needed. This invocation 

is based on triggers which are either system events or user actions.  

For instance, invocation of a policy validator can happen during cataloguing of new 

CAST platform entities and storage of associated artefacts, when saving, modifying or 



168 

deleting a resource, during the creation, modification or deletion of dependencies 

among entities and during lifecycle management, when promoting the state of a 

managed resource.  

The way this is supported by the WSO2 Governance Registry, which provides the 

infrastructure for the CAST governance support system, is through an extension 

architecture of Handlers and Filters.  

A handler is a pluggable Java component that extends the functionality of the WSO2 

Governance Registry platform to allow customisation of how resources are processed. 

The methods provided by handlers are invoked by the platform based on event triggers 

such as creating a new resource, updating it or adding it to a collection. Every handler 

has an associated filter. Filters provide the criteria for engaging handlers. If a filter’s 

criteria evaluate to true, the associated handler will be invoked. For example, we can set 

a filter that detects actions on resources of a specific media type (MIME type) such as 

XML files in general, or WSDL files specifically.  

In brief, a filter invokes a handler and the handler in turn invokes the respective artefact 

policy validator. For instance, uploading a new artefact like the one shown in Table 37 

whose MIME type is application/wsdl+xml will trigger invocation of the handler for 

WSDL files, which will in turn invoke all relevant WSDL-related policy validators, 

such as the “double-endpoint” policy validator shown in Table 35.  

Before handler and filter components can be used to trigger artefact policy validators, 

they also need to be packaged as JAR archives and deployed to the CAST Registry & 

Repository system. They also need to be registered with the system by configuration 

(editing the R&R Registry.xml file).  

Figure 19 shows how the CAST platform registry & repository helps visualise errors 

detected during artefact validation. In the specific instance there are three different 

artefacts (plugin.xml, sla.xml and solution.xml) which fail validation against their 

relevant policies.  



169 

 

Figure 19. Artefact validation interface 

8.4.4.2 Evaluation of lifecycle management policies 

Lifecycle modelling offers a bird’s eye view of the status of a solution, app or service 

which is useful to both the platform operator and ecosystem partners, and allows to 

associate lifecycle transitions with artefact validation policy checks, which are 

triggered when a user attempts to set some CAST platform software unit to a new state. 

The way this is supported by the WSO2 Governance Registry is through an extension 

architecture of Aspects, which is similar to the architecture of Handlers and Filters 

discussed above. Aspects can be used to associate custom behaviours with resources. 

The difference between aspects and handlers is that handlers are automatically applied 

to a resource, whereas aspects need to be invoked manually following a user’s action.  

Lifecycle management policy validators are implemented as WSO2 Registry aspects. 

Before they can be used they need to be packaged as JAR archives and deployed to the 

CAST Registry & Repository system. They also need to be registered with the system 

by configuration (editing the Registry & Repository system’s Registry.xml file).  

The screenshot in Figure 20 indicates that ServiceX is in the state of Testing, with all 

the required resources for this state checked, and is ready to be promoted to the next 

state (Review).  



170 

 

Figure 20. Lifecycle management interface 

8.4.5 Remarks 

The complete set of development and configuration steps required in order to facilitate 

evaluation of artefact validation and lifecycle management policies is as follows: 

1. Implement the lifecycle policy validator component (as in the example shown 

in Table 55 of the appendix). Package it as JAR archive.  

2. Implement the artefact policy validator component (as in the example of Table 

35). In some cases this may involve first creating a policy rule file (as in the 

example of Table 32) and a Java object converter (as in Table 33). Package it as 

JAR archive.  

3. Implement a new handler component or modify the existing one so that it 

invokes the new artefact policy validator component. Package it as JAR 

archive. 

4. Implement a new filter component (only needed in case the artefact type is new) 

which invokes the artefact handler component. Package it as JAR archive. 

5. Deploy all JAR archives to the CAST Registry & Repository system runtime. 

6. Register the new aspect component and the new filter and handler components 

with the system by editing its main configuration file (Registry.xml). 

7. Restart the CAST Registry & Repository system for the changes to take effect.  

It becomes apparent that the above process demands coding against low-level APIs and 

therefore requires good knowledge of the CAST Registry & Repository system 

architecture. Such knowledge may be reasonable to assume for the software engineers 



171 

working for the CAST platform operator, but this is not the case for third-parties in the 

ecosystem who, as discussed in 8.3.2, may also wish to act as policy providers.  

It is difficult to imagine a third-party ISV implementing handler, filter and aspect 

(lifecycle management) components against the low level APIs available by the system. 

Artefact policy validators are implemented against a somewhat higher-level API, so 

they would in fact represent less of a challenge to construct for third-party ecosystem 

partners. The rest of the components however seem to be only suited to a development 

team working for the CAST platform operator.  

Not only is this process impractical for third-party ecosystem partners, but it is also 

challenging from a software reliability point of view for the CAST platform operator 

and requires a heavy QA and deployment cycle on the operator’s end. It also raises 

concerns from a security perspective, as the CAST platform operator needs to expose 

information on the internal workings of the CAST Registry & Repository system and 

its APIs to a great level of detail.  

8.5 Description of alternative solution based on PROBE 

framework 

In the scope of the CAST project, a set of 37 different governance policies relating to 

lifecycle management and artefact validation were captured and analysed. 

Subsequently, the policy evaluation components to enforce these policies were 

implemented based on the process described in the previous section. Through this 

exercise we gained valuable insights into the limitations of state of the art approaches to 

policy-based governance as implemented by contemporary governance support 

systems.  

In this section we demonstrate an alternative approach to policy-based governance for 

the CAST platform, based on the new framework that this thesis puts forward – a 

framework for governance support system development that builds on Semantic Web 

technologies and Linked Data principles. We show that the new design approach 

afforded by the PROBE framework can meet the full set of requirements for 

policy-governance in a complex and dynamic ecosystem environment. We also set the 

basis to demonstrate its several advantages over the earlier design approach adopted by 

the CAST project.  

8.5.1 Overview 

This thesis puts forward a new approach to the definition and enforcement of 

governance policies, where ontology-based knowledge representation and reasoning is 

central. The PROBE framework leverages ontologies as both design-time artefacts for 

policy definition, as well as run-time artefacts for policy evaluation/enforcement.  



172 

The foundation for policy definition is a CAST platform governance ontology, which 

defines common modelling constructs corresponding to the different types of logical 

entities found on the CAST platform. This includes the different kinds of software units 

(solutions, apps and services), different kinds of software artefacts (e.g. deployment 

descriptors, interface definitions, pricing specifications, localisation files, images), 

artefact collections, lifecycle states (development, testing, review, beta, production, 

deprecation, end-of-life), and other relevant concepts.  

Ecosystem partners who act as policy providers, including the CAST platform operator, 

import this “global” ontology and extend it to create their own local policy ontologies. 

The policies defined by each ecosystem partner are saved into that local ontology. The 

ontology resource is accessible over the web by whoever other ecosystem partner is 

authorised to read and process it, for policy evaluation or other purposes.  

Ecosystem partners who act as data providers create and share descriptions of their 

governed resources using the terms defined in the same “global” ontology that policy 

providers also use. This allows policies and governed resources to be defined on the 

basis of a common vocabulary and facilitates automation for the process of policy 

evaluation.  

The approach we describe is not intended to displace the governance support system 

infrastructure which is used in the CAST Registry & Repository system. Instead, our 

design intention is for the PROBE framework to constitute an additional architecture 

layer on top of systems such as the open-source WSO2 Governance Registry platform – 

which was used in developing the CAST R&R system.  

A concrete description of how the PROBE framework components can be integrated 

into WSO2 Governance Registry or similar platforms is beyond the scope of this work. 

Suffice to say that the extension points provided by the architecture of WSO2 

Governance Registry in the form of Handlers and Aspects can provide the necessary 

integration hooks.  

8.5.2 Policy definition 

In the following subsections we will look at how our new framework allows describing 

CAST governance policies to facilitate resource governance through artefact validation 

and process governance through lifecycle management.  

8.5.2.1 Definition of artefact validation policies 

Section 8.4.2.1 presented how artefact validation policies were defined in CAST. One 

of the examples used in that section is the policy which states that screenshots of CAST 

apps should be submitted in either JPG or PNG format, that they should not exceed 



173 

1MB in size and that their horizontal and vertical dimensions should be within specific 

limits.  

An alternative way to define that same policy using the PROBE framework is provided 

in Table 39.  

Class: ValidAppScreenshot 

 

    EquivalentTo:  

        (hasContentType some ({_image/jpeg, _image/png}))  

        and (hasSizeInKB some xsd:integer[<= 1024]) 

        and (hasHeightInPixels some xsd:integer[>=300, <=600]) 

        and (hasWidthInPixels some xsd:integer[>=400, <=800])  

 

    SubClassOf:  

        AppScreenshot,  

        hasContentType only ({_image/jpeg, _image/png}), 

        ValidAppArtefact 

Table 39. Definition of positive-form policy ValidAppScreenshot (defined class)  

The specific policy presented above is created by the CAST platform operator with the 

goal of achieving some uniformity in how CAST apps are presented inside the CAST 

platform app store. We can imagine similar policies being created by other partners in 

the ecosystem, such as ISVs, to govern other quality attributes of CAST apps or 

external services being used as building blocks in their own CAST-powered solutions 

and apps.  

Ontology-based artefact validation policies like the one presented above can be 

authored using an open-source ontology editor tool such as Protégé
51

. Alternatively, 

they could also be authored through a special-purpose editor which would hide the 

expressive power and complexity of OWL but leverage the ontology’s structure to 

present the user with a limited set of policy constructor options to choose from, and the 

respective value input fields.  

The artefact validation policy is succinctly expressed in the policy ontology and unlike 

the original approach described earlier where bespoke processing with Java was 

required before a policy can be evaluated, this approach will use generic, 

standard-based OWL processing tools. The ontology-based approach to policy 

definition allows link maintenance between policies, as well as between policies and 

governed resource types (governance subjects) which enables traceability. It is an 

analysis-friendly representation of policies that brings verifiability benefits. The 

domain-level abstractions used in the encoding of policies aids comprehensibility and 

the platform-independent policy representation format enables interoperability between 

ecosystem partners.  

                                                 
51

 http://protege.stanford.edu/ 



174 

8.5.2.2 Definition of lifecycle management policies 

Section 8.4.2.2 presented an example of a lifecycle management policy to govern the 

transition of a CAST solution from Review to Testing. The policy is created by the 

platform operator and states the following conditions:  

 There exists a non-empty text description of the solution 

 There exists a valid pricing specification file 

 There exists a valid license file 

 There exists a valid provider details file 

 All apps or services this solution depends on are in beta or production state 

An alternative way to define that same policy using the PROBE framework is provided 

in Table 40 below.  

Class: SolutionPromotableToReview 

 

    EquivalentTo:  

        SolutionInTesting 

        and (hasDescriptionMetadata exactly 1 ValidDescription) 

        and (hasCollection exactly 1  

               (CollectionOfValidSolutionArtefacts  

                and SolutionArtefactsForTransitionToReview)) 

        and (hasDependency some  

                  (PlatformEntityInBeta or  

                   PlatformEntityInProduction)) 

 

    SubClassOf:  

        SolutionInTesting, 

        hasDescriptionMetadata only ValidDescription, 

        hasDependency only  

            (PlatformEntityInBeta or  

             PlatformEntityInProduction), 

        hasCollection only  

            (SolutionArtefactsForTransitionToReview  

             and CollectionOfValidSolutionArtefacts) 

Table 40. Definition of positive-form policy for the transition of a CAST solution to the review 

stage 

The EquivalentTo expression states that for a solution to be promotable to Review 

stage it must currently be in Testing stage (SolutionInTesting); must have a unique 

valid description (ValidDescription, as per Figure 11); must have a unique collection 

of valid artefacts (CollectionOfValidSolutionArtefacts) including all artefacts 

necessary for a transition to Review (SolutionArtefactsForTransitionToReview); 

any other software units the solution depends on must be in a stage which is fully 

operational and in a live environment (PlatformEntityInBeta or 

PlatformEntityInProduction).  



175 

The policy is defined in a compositional fashion, making references to other separately 

defined classes: 

ValidDescription,  

CollectionOfValidSolutionArtefacts,  

SolutionArtefactsForTransitionToReview,  

PlatformEntityInBeta,  
PlatformEntityInProduction 

 

The definition of ValidDescription is not given directly, but indirectly through the 

negative-form policy for InvalidDescription already presented in Table 11 of 

section 5.3.2.2.  

Table 41 provides the description of the CollectionOfValidSolutionArtefacts 

policy module.  

Class: CollectionOfValidSolutionArtefacts 

 

    EquivalentTo:  

        (contains some ValidSolutionArtefact) 

         and (contains only ValidSolutionArtefact) 

     

    SubClassOf:  

        SolutionCollection 

Table 41. Definition of CollectionOfValidSolutionArtefacts 

The necessary and sufficient conditions of the class state that individuals belonging to 

this class must be connected along the contains property to at least one 

ValidSolutionArtefact, and that all connections to anything along the contains 

property should be exclusively to individuals known to be ValidSolutionArtefact. 

In other words, a collection should contain at least one solution artefact and nothing 

else but valid solution artefacts. The definition of ValidSolutionArtefact is given 

indirectly, defined as superclass of ValidSolutionLicence, ValidSolutionPricing, 

ValidSolutionProviderDetails and other relevant solution artefact policy 

definitions.  

Table 43 provides the description of SolutionArtefactsForTransitionToReview. 

Class: SolutionArtefactsForTransitionToReview 

 

    EquivalentTo:  

        SolutionArtefactsForTransitionToTesting 

     

    SubClassOf:  

        SolutionCollection 

Table 42. Definition of SolutionArtefactsForTransitionToReview 



176 

The policy module provided by this definition states that the solution artefacts which 

are necessary for a transition to review are exactly the same as those necessary for a 

transition to testing. The definition of SolutionArtefactsForTransitionToTesting 

is provided in Table 43. 

Class: SolutionArtefactsForTransitionToTesting 

 

    EquivalentTo:  

         (contains some ValidSolutionLicence) 

         and (contains some ValidSolutionPricing) 

         and (contains some ValidSolutionProviderDetails)     

    SubClassOf:  

        (contains exactly 1 ValidSolutionLicence) 

         and (contains exactly 1 ValidSolutionPricing) 

         and (contains exactly 1 ValidSolutionProviderDetails) 

Table 43. Definition of SolutionArtefactsForTransitionToTesting 

The definition above provides the last building block to define the policy module for 

SolutionArtefactsForTransitionToReview. It states that the solution artefacts 

which are necessary for a transition to testing comprise a valid solution licence file, a 

valid pricing spec, and valid administrative contact details for the provider.  

Class: PlatformEntityInProduction 

 

    EquivalentTo:  

        hasLifecycleStateClassification value _Production 

     

    SubClassOf:  

        PlatformEntityInState 

Table 44. Definition of PlatformEntityInProduction 

Finally, Table 44 above provides the last policy module definition to completely unfold 

the policy for SolutionPromotableToReview. It defines 

PlatformEntityInProduction by making use of a simple object property 

(hasLifecycleStateClassification) and a constant value for that property.  

These examples show how lifecycle management policies can be described in a 

declarative way, rather than encoded implicitly in the procedural abstractions of the 

Java routines that validated the same policies in the CAST approach. Furthermore, the 

ontology language allows classification of similar kinds of lifecycle management, and 

definition of new policies by extension, which was not possible in the original 

approach. Compositionality in policy definitions allows information hiding at different 

levels of abstraction and reusability of policy specification fragments, which also helps 

with change localisation and policy maintenance.  



177 

8.5.3 Data extraction 

For policy evaluation to be feasible through a generic and universal method, the 

heterogeneous platform resources that are subject to governance are described in an 

abstract and homogeneous manner. Descriptions are extracted from the multiple forms 

in which platform resources are natively represented to create Linked Data, using the 

CAST platform governance ontology as the main reference vocabulary.  

Section 6.3 presents the method for creating and sharing descriptions of governed 

resources based on a common ontology. Let us provide an example of applying this 

method. We will use an artefact related to one of the validation policies we have already 

seen earlier in this chapter: the app “visual assets” policy from section 8.5.2.1. To 

validate an app screenshot image file against that policy, one first needs to extract the 

relevant metadata from the binary image file and make them available in a suitable 

RDF-based representation.  

This task can be performed by whichever ecosystem partner is the original resource 

provider, i.e. the creator of the app. Alternatively it can be performed by the CAST 

platform operator who is currently managing the CAST app, and also has access to a 

copy of the app screenshot artefact inside the CAST R&R system. Once a 

transformation mechanism is available to extract the important image metadata from 

the binary file, the mechanism can be reused by different partners in the ecosystem.  

Let us assume the app screenshot in question is a JPG image file named 

screenshot-732.jpg with size of 512 KB and dimensions of 300x400 pixels. The 

resulting output RDF representation of the artefact (after conversion) is shown in Table 

45 below.  

< http://kourtesis.net/phd/2016/examples#screenshot-732 >  
< http://www.w3.org/1999/02/22-rdf-syntax-ns#type >  
< http://ecosystem-governance.com/ontology#AppScreenshot > . 

< http://kourtesis.net/phd/2016/examples#screenshot-732 >  
< http://ecosystem-governance.com/ontology#hasSizeInKB >  
"512"^^http://www.w3.org/2001/XMLSchema#integer . 

< http://kourtesis.net/phd/2016/examples#screenshot-732 >  
< http://ecosystem-governance.com/ontology#hasHeightInPixels >  
"300"^^http://www.w3.org/2001/XMLSchema#integer . 

< http://kourtesis.net/phd/2016/examples#screenshot-732 >  
< http://ecosystem-governance.com/ontology#hasWidthInPixels >  
"400"^^http://www.w3.org/2001/XMLSchema#integer . 

< http://kourtesis.net/phd/2016/examples#screenshot-732 >  
< http://ecosystem-governance.com/ontology#hasContentType >  
< http://ecosystem-governance.com/ontology#_image/jpeg > . 

Table 45. Description of app screenshot resource (screenshot-732.jpg) metadata in RDF triples 



178 

The RDF triples presented above could be serialised in static RDF/XML files and 

placed on a web server. Ideally though, they should be persisted in an RDF triple store 

which exposes a SPARQL query interface. In the latter case, any 

(ecosystem-authorised) governance policy evaluation engine could query the RDF 

triple store and retrieve the relevant information on demand.  

Table 46 presents an example SPARQL query to obtain all information which is part of 

the RDF graph at the governance data provider’s end, and relates to the app screenshot 

description. 

SELECT DISTINCT ?predicate ?object 

WHERE  

{ 

   <http://kourtesis.net/phd/2016/examples#screenshot-732>  

   ?predicate  

   ?object  

} 

Table 46. SPARQL query to retrieve description of app screenshot resource (screenshot-732.jpg) 

The SPAQRL query above will return the following description of Table 47 (shown 

here in Turtle syntax).  

@prefix : < http://kourtesis.net/phd/2016/examples#> . 

@prefix gov: <http://ecosystem-governance.com/ontology#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@base <http://kourtesis.net/phd/2016/examples> . 

 

:screenshot-732  rdf:type  gov:AppScreenshot ; 

:screenshot-732  gov:hasSizeInKB  "512"^^xsd:integer ; 

:screenshot-732  gov:hasHeightInPixels  "300"^^xsd:integer ; 

:screenshot-732  gov:hasWidthInPixels  "400"^^xsd:integer ; 

:screenshot-732  gov:hasContentType  gov:_image/jpeg . 

Table 47. Example description of app screenshot resource (screenshot-732.jpg) 

While this data extraction and conversion to RDF format may sometimes form an 

additional stage in the PROBE approach, the advantage of this is that it only needs to be 

converted once, by the responsible data provider, after which the declarative 

representation of the same data will be available to all ecosystem partners. 

Furthermore, conversion mechanisms, once established for each raw data source, may 

be reused to convert all data of the same type. 

8.5.4 Policy evaluation 

The PROBE framework method to evaluate governance policies based on DL 

reasoning is discussed in detail in section 7.3.  



179 

The process is initiated when the policy evaluation engine is given a URI pointing to a 

description of the governed resource. In the app screenshot example in Table 47 above 

the URI is http://kourtesis.net/phd/2016/examples#screenshot-732.  

Once the policy evaluation engine obtains the resource description shown in Table 47 it 

determines the applicable policies by looking at the resource’s rdf:type axiom. The 

specific artefact is of type gov:AppScreenshot which suggests the relevant policies 

are the following subclasses of the AppScreenshot policy class:  

http://ecosystem-governance.com/ontology#ValidAppScreenshot 

http://ecosystem-governance.com/ontology#InvalidAppScreenshot 

To check if the RDF data from Table 47 satisfies the definition of 

ValidAppScreenshot shown in Table 39 (or, by extension, satisfies the mutually 

disjoint definition of InvalidAppScreenshot), the PROBE policy evaluation engine 

will invoke the instance checking function of an OWL DL reasoner such as Pellet [127] 

or Hermit [128]. 

As a pre-processing step, before invoking the reasoner, the policy evaluation engine 

will import the RDF description and construct an OWL individual to represent the 

described governed resource. It will then run a generic closure axiom generation 

algorithm as detailed in section 7.3 to automatically add additional local closure axioms 

along the following salient properties of the resource being described: 

http://ecosystem-governance.com/ontology#hasSizeInKB   

http://ecosystem-governance.com/ontology#hasHeightInPixels   

http://ecosystem-governance.com/ontology#hasWidthInPixels   

http://ecosystem-governance.com/ontology#hasContentType   

The algorithm examines the equivalence class axiom representing the policy of interest, 

determines which (asserted or inferred) properties are relevant for classification, 

constructs anonymous type assertions with the exact known objects or literals per each 

property of importance, and adds those to the object to be checked. The generic 

instance checking method of the DL reasoner is invoked and results returned to the 

system that queried the policy evaluation engine.  

Policy checking in PROBE is therefore performed by industry-standard OWL-DL 

reasoners that work directly with the chosen description logic. This is a considerable 

improvement over the bespoke Java algorithms that were used to check idiosyncratic 

representations of the data in the CAST approach, since checking policies is fully 

independent of policy creation, and may be carried out by different partners in the 

ecosystem. 

8.5.5 Remarks  

In the interest of making a comparison of the two design approaches easier for the 

reader, this section used the same policy examples as the ones illustrated in section 8.4. 



180 

Specifically, we used the examples of (1) validating an app screenshot artefact; and (2) 

managing the lifecycle transition of a CAST solution from testing to review stage.  

These policies represent two examples from the set of 37 governance policies analysed 

in the scope of project CAST [3],[22]. Beyond what is presented in this section, the 

PROBE framework has been successfully applied to defining and evaluating the 

complete set of those policies.  

One of the questions that surfaced on the outset of this work was whether the 

expressivity of OWL2 DL (i.e. SROIQ(D)) would prove sufficient for representing all 

of the policies in the CAST project dataset as OWL class axioms, or whether it would 

be necessary to step outside OWL2 DL boundaries. Indeed, the representation of some 

CAST policies proved to be demanding in terms of expressivity, and required the use of 

some SWRL rules. For most of the policies the less expressive DL ALCOIQ(D) has 

been sufficient. The need to step outside DL and include Horn-clauses encoded in 

SWRL was mitigated by the easy integration of SWRL with OWL. SWRL rules and 

OWL ontologies share a common semantics, and can be serialised together. 

Furthermore, SWRL is a de facto standard supported by many DL reasoning engines 

such as Pellet [127] or Hermit [128]. Therefore, combining OWL DL axioms and 

SWRL rules does not present any theoretical or practical obstacles from the perspective 

of policy evaluation.  

8.6 Comparative assessment of design approaches  

In this chapter we have so far presented the application of two different software design 

approaches on a common case study: developing a governance support system for 

CAST-powered cloud service ecosystems.  

In this section we evaluate and compare the two design approaches based on the 

requirements set forth in section 3.4.  

In an analysis of case study research methodology, Yin [179] defines comparative case 

studies as methods where “the same case is repeated twice or more to compare 

alternative descriptions, explanations, or points of view”. In the context of software 

engineering research the alternative descriptions in a comparative case study represent 

alternative design approaches or techniques applied on the case [180] so as to evaluate 

them in terms of suitability for a given purpose. This evaluation includes highlighting 

not only differences between the approaches but also trade-offs, and is based on 

common, predefined “units of analysis” [181].  



181 

8.6.1 Units of analysis  

We examine the two design approaches from the perspective of the different roles 

involved in the ecosystem governance process:  

1. Policy provider role 

2. Data provider role 

3. Policy evaluator role 

The analysis is grouped based on the different types of concerns associated with each 

role, relating to manageability and evolvability of their individual functions. Based on 

the requirements analysis in section 3.4, there concerns are classified as follows: 

Policy provider role concerns: 

 Ease of creating, testing and maintaining policies 

 Ease of managing knowledge about policies 

 Limiting the impact of policy provider changes to other roles 

 Limiting the impact of external changes to the policy provider role 

Data provider role concerns: 

 Ease of creating, maintaining and sharing descriptions of governed resources 

 Ease of managing knowledge about resources and resource descriptions  

 Limiting the impact of data provider changes to other roles 

 Limiting the impact of external changes to the data provider role 

Policy evaluator role concerns: 

 Ease of evaluating conformance of resource descriptions to policies 

 Ease of managing knowledge about relationships between policies and 

resources 

 Limiting the impact of policy evaluator changes to other roles 

 Limiting the impact of external changes to the policy evaluator role 

8.6.2 Scenario-based comparison  

To evaluate the two design approaches we adopt a scenario-based comparison 

methodology inspired by Bengtsson’s method for architecture-level modifiability 

analysis (ALMA) [182]. ALMA is a method to analyse the modifiability potential of a 

software system based on the characteristics of its architecture. The method is 

scenario-based and is used by software engineers and business information system 



182 

analysts to compare software architecture candidates, assess the risk associated with 

modifications of the architecture, or predict the effort needed to implement anticipated 

modifications [182].  

The scenarios employed for this kind of analysis are “change-scenarios”, which capture 

future events that will require a system to be adapted. In the context of our comparison, 

change scenarios help to evaluate the two design approaches in terms of how they 

support both evolvability and manageability of the governance process.  

To elicit some interesting change scenarios, it is useful to consider potential changes 

from the perspective of the three roles in the governance process and their associated 

process elements. Generally, the three elements of a governance process that may 

evolve over time are governance policies, governed resources, and policy evaluation 

engines. In the following change scenarios we consider some interesting cases of 

changes to those process elements, without exhausting all possible combinations.   

Before we proceed with describing scenarios, we introduce the following example 

ecosystem partners to set a common context across the scenarios:  

 Partner A. Provider of web APIs (external web services) which are used by 

other ecosystem partners to create CAST apps. As the provider of such 

ecosystem resources Partner A is also a Data Provider, i.e. is responsible to 

provide descriptions of the resources to other ecosystem partners for the 

purposes of policy evaluation.  

 Partner B. Creator of a CAST app which utilises the external service provided 

by Partner A as well as external services provided by other ecosystem partners. 

Partner B is also a Policy Provider. Its policies govern different properties of 

external services, such as interfaces and the encryption standards used to 

communicate with those services.  

 Platform. In its capacity as the ecosystem facilitator the CAST platform 

operator acts as both a Policy Provider and Policy Evaluator.  

8.6.3 Change scenarios 

We consider the following four indicative change scenarios.  

1. A new policy is introduced over an existing type of artefact.  

2. A new artefact type is introduced under an existing set of policies.  

3. A new policy is introduced over a new type of artefact.  

4. A new policy evaluation engine implementation is introduced.  



183 

In the sections that follow we walk through the actions to be taken by ecosystem 

partners in each scenario, for each of the two different design approaches we are 

looking to compare.  

8.6.3.1 Change scenario 1. A new policy is introduced over an existing type 

of artefact 

In this scenario, Partner B introduces a new policy placing constraints on the external 

services used by its apps. The policy states that it is mandatory for external services 

used by its apps to offer REST protocol bindings. The new policy affects the service 

interface description artefacts (WSDL documents) offered by service providers such as 

Partner A. Enforcement of the policy is carried out by the CAST Platform operator.  

Scenario 1 Change implementation process Execution-time process 

CAST 

design 

approach 

Partner B implements a new policy validator 

component in Java for the new REST 

protocol binding policy. The new 

component is tested and packaged as a JAR 

file which is submitted to the Platform.  

The Platform modifies the implementation 

of the WSDL artefact handler so that it 

triggers the new policy validator created by 

Partner B.  

Policy evaluation becomes effective after 

both JAR files pass QA and are deployed to 

the CAST R&R runtime at a scheduled 

maintenance window (downtime). 

A user of the governance support system 

takes an action which triggers validation 

of a WSDL instance document.  

The WSDL artefact handler triggers the 

new policy validator to check for REST 

protocol bindings in the WSDL file. 

PROBE 

design 

approach 

Partner B encodes the new REST protocol 

binding policy as an OWL class in its local 

ontology.  

No change is required to the Platform.  

Policy evaluation becomes effective 

immediately. 

A user of the governance support system 

takes an action which triggers validation 

of a WSDL instance document.  

A generic artefact handler identifies the 

WSDL document as a service interface 

description. A standard process is 

triggered to fetch all relevant policies 

from the policy ontology of Partner B 

and the RDF representation of the 

WSDL document from Partner A.  

Policies and RDF data are processed by 

a generic policy evaluation engine. 

Table 48. Analysis of change scenario 1 



184 

8.6.3.2 Change scenario 2. A new artefact type is introduced under an 

existing set of policies 

In this scenario, the CAST Platform operator requires that all external service providers 

such as Partner A describe the interfaces of the web APIs that they offer using WSDL 

2.0 specifications, in addition to their existing support for WSDL 1.1. Partner A needs 

to comply with this requirement. Moreover, the scope of all relevant policies already 

created by the Platform operator and other ecosystem partners needs to be extended to 

cover this new type of service description artefact. For instance, one of the Platform’s 

policies states that the interface specification of every external web service should 

contain two different endpoint URLs (primary and backup server endpoints). This 

policy was originally intended for use in connection with WSDL v1.1 specifications 

and now needs to be extended to include service interface descriptions which are based 

on the WSDL 2.0 standard. The same applies for WSDL-related policies created by 

other ecosystem partners such as Partner B which created the policy for REST protocol 

bindings mentioned in Scenario 1.  

Scenario 2 Change implementation process Execution-time process 

CAST 

design 

approach 

Partner A makes internal changes to be able 

to provide new WSDL 2.0 type documents 

as service interface descriptions.  

The Platform modifies/extends the existing 

Java implementation of the policy validator 

for double endpoints, in order to be able to 

additionally process and check WSDL 2.0 

type documents. It repeats the same type of 

modification/extension for all other relevant 

policy validator components.  

Partner B does the same for the REST 

bindings policy mentioned in scenario 1.  

So do all other ecosystem partners who have 

created WSDL-related policies in the past. 

When all affected ecosystem partners 

including Partner B have completed their 

changes, the Platform implements a new 

handler for WSDL 2.0 type documents in 

Java, which will trigger all relevant policy 

validators submitted by partners such as 

Partner B, and those of the Platform itself.  

All components are packaged as JAR files. 

Policy evaluation becomes effective after all 

new JAR files pass QA and are deployed to 

the CAST R&R runtime at a sscheduled 

maintenance window (downtime). 

A user of the governance support 

system takes an action which triggers 

validation of a WSDL 2.0 instance 

document.  

The WSDL 2.0 handler component 

triggers the modified policy validators 

to check the WSDL 2.0 file for double 

endpoints, REST bindings, etc. 



185 

PROBE 

design 

approach 

Partner A makes the relevant internal 

changes to be able to produce an RDF 

representation of WSDL 2.0 type 

documents.  

No change to the Platform is necessary, 

except for registering WSDL 2.0 type 

artefacts as service interface description 

type artefacts with the generic artefact 

handler. This is done to trigger validation of 

WSDL 2.0 descriptions against any 

applicable service interface policies.  

Policy evaluation becomes effective 

immediately. 

A user of the governance support 

system takes an action which triggers 

validation of a WSDL 2.0 instance 

document.  

A generic artefact handler identifies 

the WSDL 2.0 document as a service 

interface description. A standard 

process is triggered to fetch the RDF 

representation of the WSDL document 

from Partner A and any policy relevant 

to service interfaces from the Platform 

and Partner B policy ontology.  

Policies and RDF data are processed 

by a generic policy evaluation engine. 

Table 49. Analysis of change scenario 2 

8.6.3.3 Change scenario 3. A new policy is introduced over a new type of 

artefact 

In this scenario, Partner B introduces a new policy to govern the encryption standards 

for all external services used by its apps. The policy states that every external service 

used by its apps should support asymmetric message-level encryption. Details of the 

supported encryption parameters should be provided in a WS-Policy document offered 

by service providers such as Partner A. The policy is to be enforced by the Platform in 

the scope of lifecycle management and artefact validation for apps created by Partner 

B. 

Scenario 3 Change implementation process Execution-time process 

CAST 

design 

approach 

Partner A makes the relevant internal 

changes to be able to provide new 

WS-Policy type documents as service 

interface descriptions. 

Partner B implements a new policy validator 

component in Java to check for 

message-level encryption in WS-Policy 

type documents. This is packaged as a JAR 

file and submitted to the Platform.  

The Platform implements a new handler 

component for WS-Policy type documents 

in Java to trigger the relevant policy 

validators like the one submitted by Partner 

B, and any validator of the Platform itself.  

Policy evaluation becomes effective after all 

component JARs pass QA and are deployed 

to the CAST R&R runtime at a scheduled 

maintenance window. 

A user of the governance support 

system takes an action which triggers 

validation of a WS-Policy instance 

document.  

The new WS-Policy handler 

component triggers the new 

message-level encryption policy 

validator. 



186 

PROBE 

design 

approach 

Partner A makes the relevant internal 

changes to be able to produce RDF 

representation of WS-Policy documents.  

Partner B encodes the new message-level 

encryption policy as an OWL class in its 

local ontology.  

No change to the Platform is necessary, 

except for registering WS-Policy type 

artefacts as service interface descriptions 

artefacts with the generic artefact handler.  

Policy evaluation becomes effective 

immediately, as long as both Partner A and 

Partner B have independently completed 

their changes. 

A user of the governance support 

system takes an action which triggers 

validation of a WS-Policy instance 

document.  

A generic artefact handler identifies 

the WS-Policy document as a service 

interface description. A standard 

process is triggered to fetch all relevant 

policies from the policy ontology of 

Partner B and the RDF representation 

of the WS-Policy document from 

Partner A.  

Policies and RDF data are processed 

by a generic policy evaluation engine. 

Table 50. Analysis of change scenario 3 

8.6.3.4 Change scenario 4. A new policy evaluation engine implementation 

is introduced 

In this scenario, the Platform operator re-engineers its policy evaluation infrastructure 

to improve operational efficiency. Changes do not affect the standards used for data 

exchange between ecosystem partners (such as WSDL or WS-Policy from the previous 

scenarios). What gets modified is the implementation of the governance support 

system. The Platform operator upgrades to a newer version of the Registry & 

Repository system which offers better performance but brings the challenge of 

providing new Java APIs for developing policy validators and artefact processors.  

Scenario 4 Change implementation process Execution-time process 

CAST 

design 

approach 

The Platform re-engineers the Java-based 

implementations of all of its policy 

validators (such as the double endpoint 

policy validator from scenario 2) to work 

with the new Registry & Repository system 

APIs.  

Partner B does the same for the REST 

bindings policy validator from scenario 1 

and the message-level encryption policy 

from scenario 3.  

Every other policy provider in the 

ecosystem also re-engineers their policy 

validators.  

When all affected ecosystem partners 

including Partner B have completed and 

submitted their re-engineered policy 

validators, the Platform creates/modifies all 

Java-based artefact handler components 

A user of the governance support 

system takes an action which triggers 

validation of some artefact.  

The newly re-engineered handler 

component for the specific artefact 

type triggers the new policy validators. 



187 

which trigger policy validators created by 

ecosystem partners such as Partner B, or 

created by the Platform itself.  

All components are packaged as JAR files. 

Policy evaluation with the new version of 

the CAST R&R system becomes effective 

after all new JAR files pass QA and are 

deployed to the R&R runtime at a scheduled 

maintenance window. 

PROBE 

design 

approach 

Partner B or other ecosystem partners who 

are policy providers do not have to make 

any changes to their policies.  

The Platform creates/modifies a generic 

Java-based artefact handler that supports 

ontology-based mappings between policies 

and resources.  

Policy evaluation becomes effective 

immediately, as long as the Platform makes 

the existing resource-to-policy mappings 

available to the new generic artefact 

handler. 

A user of the governance support 

system takes an action which triggers 

validation of some artefact.  

A generic artefact handler identifies 

the type of artefact. A standard process 

is triggered to fetch all relevant 

policies from the policy ontologies and 

the RDF representation of the artefact 

from the relevant partners.  

Policies and RDF data are processed 

by a generic policy evaluation engine. 

Table 51. Analysis of change scenario 4 

8.6.4 Comparison of approaches 

In this section the two design approaches are compared based on how well they meet 

different types of concerns. How well does each design approach serve manageability 

of the governance process? How easy is it for the process to evolve? How do local 

changes inside the organisation boundaries of a partner affect other ecosystem 

partners? 

Change 

scenario 

Type of 

concern 
Comparison of design approaches 

Scenario 1 

Evolvability  

With the current design approach adopted by CAST, introducing a 

new policy requires changes in the form of new software 

development by both Partner B and the Platform. Policy evaluation 

becomes effective following a heavy QA and deployment cycle.  

With PROBE, changes remain entirely local to Partner B. No change 

is required to the Platform. Policy evaluation can be initiated 

immediately and there is no downtime for the CAST platform.  

Manageability  

With the current CAST design approach, policies are encoded in 

Java. This means they are not easily understood by the domain 

experts who issue these policies. Because of the procedural manner 

in which policies are defined, it is unlikely to reuse policy 

definitions in creating new ones, or to achieve any substantial degree 

of modular policy composition.  

With PROBE, no programming is involved. Policies are encoded in 



188 

a different way, which is similar to using logic rules. This makes 

them accessible to experts who are not programmers and also makes 

them amenable to automatic analysis. It also allows automatic 

checks for policy self-coherence which helps with logical debugging 

and minimising errors. 

Scenario 2 

Evolvability  

With the current CAST design approach, introducing a new type of 

artefact such as WSDL 2.0 requires changes to all policy providers 

who have created WSDL-related policies in the past. Policy 

evaluation becomes effective following a heavy QA and deployment 

cycle.  

With PROBE, change is mostly localised to Partner A. The Platform 

only needs to be updated with a new mapping that declares the new 

WSDL 2.0 artefact type as a service interface description. Policy 

evaluation becomes effective immediately, without platform 

downtime. 

Manageability  

With the current CAST design approach, the changes required at the 

platform level to support this scenario are extensive. There is no easy 

way to manage the associations between an artefact type, such as 

WSDL 2.0 which is used in this scenario, and the relevant policy 

validators. There is no easy way to capture the information that 

WSDL 2.0 represents a service interface description, and to deduce 

that by virtue of this, it relates to a specific set of policies. This 

information is hidden in the Java code of the WSDL 2.0 processor 

component which triggers the policy validators.  

With PROBE, changes at the platform level are much easier to make 

as they involve no programming (coding cannot be avoided for 

Partner A in either of the two solution approaches). In addition, 

because of the knowledge management capabilities inherent in 

ontology-based policy representation, it is easy to capture 

associations between policies and governed resources. This allows 

quickly answering questions like: “Which are the policies relevant to 

this type of governed resource description?” 

Scenario 3 

Evolvability  

With the current CAST design approach, introducing a new policy 

over a new type of artefact requires changes by both the data 

provider (Partner A), the Policy Provider (Partner B) and the 

Platform. Policy evaluation becomes effective following a heavy 

QA and deployment cycle.  

With PROBE, changes are independently localised to Partner A and 

Partner B. There is no structural change at the Platform level. Policy 

evaluation becomes effective immediately without platform 

downtime. 

Manageability  

With the current CAST design approach policies are defined by way 

of implementing the policy rules directly in Java as checks against 

an artefact or any other form of relevant governance data. This 

hinders comprehensibility, reusability and verifiability.  

With PROBE, changes are much easier to make as they involve no 

programming (coding cannot be avoided for Partner A in either of 

the two solution approaches). The advantages mentioned in the 

analysis of scenario 2 and 3 above are applicable here too.  



189 

Scenario 4 

Evolvability  

With the current CAST design approach, introducing a new policy 

evaluation engine implementation (such as an upgraded Registry & 

Repository system) requires re-engineering of the entire set of policy 

validators created by all relevant ecosystem partners. Policy 

evaluation becomes effective following the heaviest type of QA and 

deployment across all the scenarios examined. 

With PROBE, changes are minimal and remain local to the Platform. 

There is no change to the core of the policy evaluation process which 

relies on a generic policy evaluation engine. 

Manageability  

With the current CAST design approach, the policy evaluator needs 

to implement custom policy evaluation components (policy 

validators), from scratch, for every different pair or resource/policy.  

With PROBE, the policy evaluation logic is free from couplings to 

specific governance policies and free from couplings to specific 

types of governance resource description. This design approach 

offers a way to maintain policy evaluation logic in a form that is 

generic and reusable.  

Table 52. Comparison of design approaches based on change scenarios 

8.6.5 Discussion 

The defining questions for the evaluation of the two alternative design approaches are: 

Does the design approach promote effectiveness and efficiency in the internal 

management of the governance process by different roles? Does it promote evolvability 

of the governance process by the individual roles? Does it promote both at the same 

time?  

From the foregoing it becomes clear that the design approach which is put forward by 

PROBE for developing governance support systems has several important advantages 

over the one originally adopted in the scope of the CAST project.  

In the governance support system developed for CAST based on WSO2 Governance 

Registry, the place where policies are defined, where relevant data is extracted and 

where policy evaluation logic is applied coincide in the same architectural element: the 

policy validator component. This has some critical implications with respect to how 

easy it is for the CAST Registry & Repository system to support changing governance 

requirements. It limits the ability of ecosystem partners to evolve and therefore limits 

the potential of the ecosystem to create value through co-development.  

There are certainly trade-offs. The advantages afforded by PROBE as a design 

approach come with a cost. Firstly, software engineers who can code policy validators 

in Java are easier for a company to recruit compared to ontology engineers who can 

encode policies in OWL. Secondly, the additional layer of technology components 

required to implement a solution based on the PROBE framework introduce extra 

complexity and represent moving parts in the architecture that require additional effort 

to manage. Thirdly, the level of indirection introduced to hide resource descriptions in 



190 

native formats behind RDF descriptions increases complexity and introduces room for 

error in transformations.  

On the other hand, in very pragmatic terms, it is simply not practical for ISVs in the 

CAST platform ecosystem to write and package Java code in order to have their 

policies evaluated; and to have this code go through a QA process before it is deployed 

in a convenient release cycle to the run-time environment of the CAST platform. It is 

not practical, neither for the ISVs in the ecosystem or for the CAST platform operator.  

Moreover, the type of ecosystem envisaged by the CAST project consortium at the time 

the project was launched does not represent the most advanced form of cloud service 

ecosystem. We can envisage scenarios which are more advanced and more complex 

than those emerging from the CAST platform case study. For instance, policy 

evaluation in CAST is always performed by a single actor, the CAST platform operator, 

which also acts as policy provider and data provider. We may however envisage 

ecosystem scenarios where policy evaluation is also undertaken by some of the ISVs in 

the network, and other much more complex scenarios in terms of governance role 

distribution. One such example could be the cloud service brokerage scenario as 

described in scenario #5 from section 3.2.5.  

Based on these facts, we argue that PROBE represents an equally feasible but much 

more suitable design approach for developing governance support systems compared to 

what contemporary tools can offer; a design approach that is natively suited to the task 

of supporting governance in a dynamic cloud service ecosystem.  

8.7 Summary 

In this chapter we present a comparative case study on governance support system 

design for cloud service ecosystems. The goal of the case study is to evaluate two 

alternative design approaches for developing governance support systems. The first 

design approach is the one that project CAST adopted to develop the governance 

support system for the CAST cloud application platform. The second design approach 

is the one adopted by the PROBE framework as introduced in chapters 5 to 7 of this 

dissertation. 

The CAST project was set up to investigate the engineering challenges associated with 

creating a PaaS platform that enables ecosystem-oriented development of business 

software solutions [3]. The design of the CAST platform is geared towards creating 

network effects [176], by fostering the emergence of an ecosystem of business software 

creators around the PaaS [177]. To promote this objective, the platform allows 

developers to create “solutions” by combining reusable prebuilt components (referred 

to as “apps”) which are offered by the platform provider –as commonly happens in 

PaaS platforms, but also created and offered by independent third-parties.  



191 

The ability to construct applications in this way —i.e. through the reuse of building 

blocks provided by third-parties within a platform’s ecosystem, represents a major 

evolutionary force in the software industry today. It also creates a need for much more 

advanced mechanisms for quality assurance. The openness and complexity of the 

environment that emerges makes stability and reliability much harder to guarantee and 

calls for a rigorous approach to governance [121], [22]. The CAST project undertook to 

research this important requirement and to develop a suitable governance support 

system.  

Following an introduction to the CAST project and the fundamentals of the CAST 

platform we discuss the governance requirements emerging in this context, the 

ecosystem actors in the governance process and their roles and presented examples of 

governance policies. We then introduce the governance support system that was created 

in the CAST project to address those requirements.  

The approach taken in the CAST project was to develop a special-purpose registry & 

repository system that complements the CAST platform runtime environment. The 

system was developed through extensions and customisations on top of the open-source 

WSO2 Governance Registry platform [178]. Drawing examples from the set of policies 

produced in the scope of project CAST we illustrate how the governance support 

system developed by the project supports policy definition, data extraction and policy 

evaluation.  

We then demonstrate an alternative approach to policy-based governance for the CAST 

platform based on the new framework for governance support system development that 

is put forward by our research. We discuss how policy definition, data extraction and 

policy evaluation are supported by applying the new design approach on the same set of 

policies. This helps to highlight that a governance support system based on PROBE is 

not only sufficient to meet the requirements of policy-governance in a CAST-powered 

ecosystem, but has several advantages over the original design approach.  

The advantages of the PROBE framework are made concrete and demonstrated in 

greater depth through a structured comparative evaluation of the two design 

approaches. To evaluate the two approaches we adopt a scenario-based comparison 

methodology inspired by Bengtsson’s method for architecture-level modifiability 

analysis (ALMA) [182]. We use four indicative “change scenarios” to compare the two 

design approaches in terms of how well they support evolvability and manageability of 

the governance process. The ecosystem governance requirements that were analysed in 

section 3.4 provide the benchmark to then assess the two design approaches.  

The defining questions for the evaluation of the two alternative design approaches are: 

Does the design approach promote effectiveness and efficiency in the internal 

management of the governance process by the different governance roles (policy 

provider, data provider, policy evaluator)? Does it promote evolvability of the 



192 

governance process by each of the roles individually? Does it promote both goals at the 

same time?  

A design approach based on the PROBE framework is shown to achieve better 

separation of concerns between the three main roles manifesting in a policy-based 

ecosystem governance context. It is also shown to significantly improve how policy 

definition, data extraction and policy evaluation processes can be managed.  

Based on the analysis, we argue that PROBE represents an equally feasible but much 

more suitable design approach for developing governance support systems compared to 

what contemporary tools can offer; a design approach that is natively suited to the task 

of supporting governance in a continuously evolving cloud service ecosystem.  

The key takeaways from this chapter can be summarised as follows:  

1. Project CAST was an industry-academia R&D effort that developed technology 

to facilitate the co-development of cloud-based enterprise software solutions by 

an ecosystem of software companies. We here use the governance requirements 

of that specific ecosystem to compare two alternative approaches to developing 

governance support systems. The first approach is the one adopted by the 

consortium of research project CAST and the second is the one made possible 

by implementing the PROBE framework.  

2. For each of the two approaches, we describe how the governance support 

system implements policy definition, data extraction and policy evaluation. We 

also evaluate and compare the two systems using change scenarios, inspired by 

Bengtsson’s method for architecture-level modifiability analysis (ALMA). The 

defining questions for the evaluation of each system are: Does it promote 

effectiveness and efficiency in the internal management of the governance 

functions assumed by different roles? Does it promote evolvability of the 

individual governance functions? Does it promote both at the same time?  

3. In the governance support system developed following the first approach, as 

originally developed in the scope of project CAST, the place where policies are 

defined, where relevant data is extracted and where policy evaluation logic is 

applied coincide in the implementation of the same architectural component: 

policy-specific data validators. The lack of proper separation of concerns 

between different governance functions limits the ability of ecosystem partners 

to co-evolve and impairs operational efficiency. 

4. Because of its foundation on the Web Ontology Language (OWL) standard and 

related Semantic Web technologies, the PROBE-based method of defining 

governance policies is readily equipped to support heterogeneity, distribution 

and continuous evolution. By virtue of OWL’s declarative encoding style and 

its formal logic underpinnings PROBE also facilitates advanced automation in 

policy engineering tasks. Employing a Linked Data approach for the description 



193 

of governance subjects achieves a loose coupling between the resources being 

governed, the governance policies and the policy evaluation mechanisms. 

Governance functions are decoupled, interoperability is ensured, abstraction is 

raised and ambiguity is avoided, while operational efficiency is improved.  

5. PROBE is natively suited to the task of supporting governance in a dynamic 

cloud service ecosystem. But this comes with a cost: higher learning curve for 

engineers and an additional layer of technology that introduces complexity and 

room for error. 

 

 

  



194 

 

 

 

 

 

 

Chapter 9 

 

Conclusions 

 

 



195 

9 Conclusions  

9.1 Introduction 

There are three fundamental ideas that underpin this research and its contributions.  

Idea #1. Creating software systems to support governance processes in a dynamic 

cloud service ecosystem is a challenge of enabling decentralised and distributed 

collaboration between networked organisations.  

Idea #2. In addressing the challenge of heterogeneity, distribution and continuous 

evolution, governance support systems need to ensure interoperability between 

ecosystem partners and separation of concerns between the functions of the policy 

provider, the data provider and the policy evaluator.  

Idea #3. One feasible and useful way to achieve the kind of interoperability and 

separation of concerns required in cloud service ecosystems governance, with 

present day technology, is through a software architecture that embodies Linked 

Data principles and Semantic Web standards.  

The sections that follow unfold these fundamental ideas and summarise the research 

work that was carried out and the results obtained. We discuss the significance of the 

research and bring the dissertation to a close with an overview of limitations and 

directions for further work. 

9.2 Synopsis  

9.2.1 The challenge of ecosystem governance 

Increasingly, cloud application platforms follow an open architecture which allows 

third-parties to enrich the platform’s capabilities with their own add-ons (section 2.2.3). 

This model of collaboration represents a novel form of software product 

co-development (section 2.3.1). Software platforms that facilitate co-development 

relationships between different organisations foster the creation of environments best 

characterised as software ecosystems (section 2.3.2). Cloud service ecosystems can be 

seen as a special class of software ecosystems (section 2.3.3).  

The value of a cloud service ecosystem increases exponentially with more users and 

more complementary services. But in software, size and diversity are at odds with 

reliability. The cause of this tension is complexity. To manage complexity, ecosystem 

partners need to be able to exercise control over developments in the ecosystem that 



196 

may affect them, such as the introduction of a new service, a change to the 

characteristics of an existing service, or a change to how services are assembled. This is 

a challenge of governance. 

We define governance in cloud service ecosystems as the process and the supporting 

systems for defining and enforcing policies to control the creation, provision and 

consumption of cloud services by different ecosystem partners (section 2.4.2). In 

relation to the main body of literature on the wider topic of software ecosystem 

governance, our definition extends beyond the single viewpoint of the ecosystem 

coordinator to incorporate the governance requirements of all participants in the 

ecosystem (section 2.4.3).  

9.2.2 Requirements thinking for governance support systems 

Governance in a cloud service ecosystem is effected through a collaborative process 

that may span multiple networked organisational units and enterprises. The entities that 

participate in a governance process assume one or more of three fundamental roles: 

policy provider, data provider, or policy evaluator (section 3.3.1). A governance 

process may engage more than one entity in the same type of role (e.g. several different 

entities may act as policy providers in the same process). Moreover, a single 

governance process may engage the same entity in more than one role simultaneously.  

Each governance process role is associated with a distinct set of concerns. These 

revolve around manageability and evolvability of the individual role’s function. That is, 

the function of policy provision, data provision or policy evaluation (section 3.3.3).  

Because of the different concerns associated with each governance process role, the 

entities that assume the relevant roles exhibit different rates of change and different 

types of change over the lifetime of the governance process. Therefore, in designing a 

software system to support governance processes in a cloud service ecosystem, we need 

to achieve separation of concerns between the three governance process functions 

(section 3.4.1). Decoupling governance policies, governed resources, and policy 

evaluation engines allows ecosystem partners to manage their internal governance 

processes in a more efficient way, while they cooperate, coevolve and innovate along 

with the ecosystem.  

9.2.3 The PROBE framework  

Examining the state-of-the-art governance technology platforms which are available to 

the software industry today reveals a gap between the type of requirements they were 

originally designed to meet and the type of needs emerging in the context of cloud 

service ecosystems (section 4.2.2). By virtue of its nature as a distributed and 

collaborative process, supporting governance in this new context requires systems to 



197 

enable networked collaboration, interoperability, and to guarantee a higher level of 

operational efficiency (section 4.2.3).  

The thesis explored by this research is that governance support systems that satisfy the 

advanced requirements of cloud service ecosystems are both feasible and useful to 

realise on the basis of Linked Data principles and Semantic Web standards (section 

4.4). The insight that underlies this thesis is that semantic technologies of this kind have 

already been shown to provide successful solutions in the related problem domains of 

inter-enterprise interoperability and policy engineering, and there are lessons learnt 

which can be readily transferred (section 4.3).  

Heterogeneity, distribution and continuous evolution are the fundamental 

characteristics of the web. Semantic Web standards and Linked Data principles have 

been designed on that foundation. These same characteristics are also fundamental 

properties of governance processes in cloud service ecosystems. The challenge in 

designing a software system architecture to support governance in a cloud service 

ecosystem is a challenge of coping with heterogeneity, distribution and continuous 

evolution.  

As an additional benefit, beyond the capability to enable networked collaboration, 

Semantic Web standards can also guarantee the higher level of operational efficiency 

that ecosystem governance processes require. By virtue of the formal semantics, 

modelling abstraction and standards-based interfacing embodied by the standards, the 

design of governance support systems can benefit from improved reusability, 

maintainability, traceability and agility. 

Our proposed framework architecture for policy-driven governance in cloud service 

ecosystems (PROBE) comprises four core components: a shared governance ontology; 

a repository of ontology-based policy definitions; mechanisms to generate 

ontology-based resource descriptions; a governance policy evaluation engine (section 

4.5).  

9.2.4 Realising the framework  

Governance policies and governed resources are heterogeneous, physically distributed 

and under multiple different ownership domains. It is therefore imperative to 

standardise formats for data exchange. For this reason, we describe the 

conceptualisation and representation of an ontology that serves as a shared ecosystem 

vocabulary to describe governed software resources, and at the same time also provides 

the vocabulary to define the necessary types of governance policies (section 5.2).  

The ontology-based policy representation method is sufficiently expressive to allow 

describing diverse forms of cloud service resources and policies, covering governance 

objectives ranging from strategy to operations, and descriptions ranging from pricing 

models to lifecycle transitions. It is also sufficiently expressive to represent both types 



198 

of governance policies (process and resource governance), as well as both positive and 

negative formulation of constraints (section 5.3). 

Because of its foundation on the Web Ontology Language (OWL) standard and related 

Semantic Web technologies, the proposed method of defining governance policies is 

readily equipped to support not only interoperability but also heterogeneity, 

distribution and continuous evolution (section 4.3.2). It is natively suited to support the 

type of networked collaboration found in cloud service ecosystem governance. It 

allows decoupling governance functions by offering a way to describe the policy 

conditions separately from the governance subjects and the policy evaluation logic. It 

ensures interoperability by offering a platform-agnostic way for ecosystem partners to 

exchange/share policies and data over the internet. It increases abstraction, by allowing 

ecosystem partners to bridge their terminology spaces to a common ecosystem-level 

vocabulary.  

Moreover, by virtue of OWL’s declarative encoding style and its formal logic 

underpinnings, our proposed method also facilitates advanced automation in policy 

engineering tasks, such as traceability of logical dependencies between policies, 

detection of contradictions with other policies and debugging of complex policy logic 

(e.g. through satisfiability tests). More generally, the unambiguous interpretation and 

automated reasoning capabilities afforded by OWL’s formal semantics fulfils the need 

of increased operational efficiency - through improved maintainability, reusability, 

traceability and overall agility.  

Employing a Linked Data approach for the description of governance subjects achieves 

a loose coupling between the governance policies, the resources being governed and the 

policy evaluation mechanisms. Applying Linked Data principles means that 

governance data providers do the following: (a) use URIs as names for governed 

resources, (b) use HTTP URIs so that entities acting as policy evaluators can look up 

those names, (c) provide information about the governed resources in RDF when a URI 

is looked up with a SPARQL query, (d) include links to other URIs in the information 

returned to a SPARQL query, so that ecosystem partners can further discover more 

useful information (section 6.2).  

The abstract data description framework provided by RDF allows structured and 

semi-structured data in different ownership domains to be easily exposed and shared 

across organisational boundaries and heterogeneous applications. For this reason, RDF 

provides a viable foundation to describe and to share descriptions of governed 

resources in the context of a cloud services ecosystem. These descriptions can be 

automatically derived from their native data sources through a process that is 

commonly referred to as “triplification” (section 6.3). Another benefit of using the RDF 

standard is the wide range of existing tools available to support this process.  

There is a great degree of heterogeneity in the native data sources, but RDF and 

SPARQL allow us to abstract over the differences and provide a common description 



199 

layer for all resources associated with any governed resource in a software ecosystem. 

The usage scenarios for the Linked Data which is produced through this process can 

include much more than just governance policy enforcement (section 6.3). 

Checking the resulting ontology-based RDF descriptions of resources against 

governance policies is a task which can be approached as two different kinds of 

computational problem: a problem of integrity constraint validation on ontology 

objects, or a problem of ontology object classification (section 7.2). In this research we 

have chosen to explore the DL classification-based approach. We show how OWL’s 

open-world assumption (OWA) and absence of a unique name assumption (UNA) 

prevent us from directly utilising a DL reasoner’s object classification service for data 

validation, and present a solution in the form of an algorithm for local closure axiom 

generation (section 7.3).  

The strength of the algorithm is in its generality and reusability. The approach relieves 

the ecosystem partners that function as policy evaluators from the need to develop and 

maintain a custom semantic policy evaluation engine. Instead, they can use a standard 

OWL DL reasoner in combination with our generic local closure axiom algorithm. The 

resulting policy evaluation mechanism is natively suited to support networked 

collaboration and is generic enough to cover all the different types of governance 

policies and governed resource descriptions in the ecosystem.  

9.2.5 Evaluating the framework 

To evaluate the PROBE framework we compare the approach it makes possible to the 

approach of research project CAST, where a governance support system for a cloud 

service ecosystem was built on top of a popular governance technology platform.  

For each approach, we first describe how the respective governance support system 

implements policy definition, data extraction and policy evaluation and reflect on the 

effectiveness and efficiency of each approach (sections 8.4 and 8.5). We then evaluate 

and compare the two governance support systems using change scenarios (section 8.6). 

The defining questions for the evaluation of each system are: Does it promote 

effectiveness and efficiency in the internal management of the governance functions 

assumed by different roles? Does it promote evolvability of the individual governance 

functions? Does it promote both objectives simultaneously?  

In the governance support system developed in the scope of project CAST, lack of 

proper separation of concerns between different governance functions limits the ability 

of ecosystem partners to co-evolve, and reliance on purpose-built Java policy validators 

for representing and enforcing policies hinders operational efficiency. The design 

approach put forward by PROBE is shown to have several advantages: governance 

functions are decoupled and interoperability is ensured, abstraction is raised while 

ambiguity is avoided, and operational efficiency is significantly improved.  



200 

9.3 In support of the thesis  

The author’s thesis is that the advanced requirements for governance support systems 

posed by cloud service ecosystems can be successfully met with an architecture 

framework that integrates Semantic Web technologies and Linked Data principles.  

This thesis has been strongly supported by the successful development and evaluation 

of the PROBE framework for policy-driven governance in cloud service ecosystems. 

The framework is introduced in chapter 4 and comprises four components:  

1. A governance ontology encoded in OWL-DL which serves as shared 

vocabulary between ecosystem partners for policy definition and data 

description (chapter 5).  

2. A method for ontology-based policy definition whereby process and resource 

governance policies are formulated in positive or negative form (chapter 5).  

3. A method for creating descriptions of governed resources and sharing them 

between ecosystem partners based on RDF (chapter 6). 

4. A method and prototype system for evaluating governance policies against 

governed resource descriptions based on DL reasoning (chapter 7).  

The feasibility of the PROBE framework is demonstrated in chapters 5 to 7 using 

examples from an industrial case study on cloud service ecosystem governance 

originating from the CAST project. The usefulness of the framework is demonstrated in 

chapter 8 through a comparative evaluation based on the same case study.  

In the following section we will summarise the work carried out in the scope of this 

research and outline the results obtained.  

9.4 Research process and results 

The work carried out in the scope of this research can be divided in the stages of 

problem domain analysis and solution domain research and development. The order in 

which the research work is outlined below reflects thematic structure rather than 

chronological order, or order of importance of results.  

9.4.1 Problem domain analysis 

Research on the subject of this dissertation initiated with a study of academic and 

technical literature in the problem domain: service-oriented computing, cloud 

computing models, characteristics of PaaS offerings, models of software 

co-development and third-party platform extensions, software platform ecosystems, 

service governance, software ecosystem governance and governance support systems. 

This led to identifying software ecosystems as an emerging transformational 



201 

phenomenon in the software industry and a high-potential field for software 

engineering research. It also led to identifying the role of governance control 

mechanisms in cloud service ecosystems as an emerging subtopic of critical importance 

for ecosystems and practical value for the software industry. The most relevant 

learnings from this literature research are summarised in chapter 2.  

The author had the opportunity to be part of the team working on research project 

CAST, an EU-sponsored industry-academia research effort that developed technology 

to support co-development of cloud-based business software by ecosystems of software 

companies [3],[22]. CAST (Enabling customisation of SaaS applications by third 

parties
52

) was coordinated by CAS Software AG which specialises in cloud CRM 

platforms. Other partners included third-party ISVs from the ecosystem of CAS 

Software, and the South-East European Research Centre of the University of Sheffield 

as academic partner. In the scope of CAST the author analysed the governance 

requirements for the CAST platform ecosystem and captured a dataset of 37 

governance policies whose characteristics and common patterns were studied.  

Result #1: This led to conceptualising that governance policies can be 

abstracted to the level of either process governance or resource governance, and 

formulated accordingly for lifecycle management and artefact validation. This 

idea is introduced in chapter 2 and discussed in more detail in chapters 4 and 5.  

Following requirements analysis the author led the development of a purpose-built 

governance support system for the CAST service ecosystem based on WSO2 

Governance Registry platform. An analysis of the architecture of alternative 

governance support systems that could be used as the foundation to build on, such as 

MuleSoft Galaxy, had previously been conducted. Some insights from this analysis are 

briefly presented in chapter 4 (section 4.2). After the development of the CAST 

governance support system was completed the project team including the author 

evaluated the strengths and limitations of the resulting system.  

A first key observation from this evaluation relates to the underlying architecture of the 

governance support system which is provided by the WSO2 Governance Registry 

platform. The observation is that it cannot support the ecosystem coordinator in 

evaluating policies defined by third-parties within the ecosystem. The architecture of 

the governance support system does not allow decoupling the functions of different 

ecosystem partners who participate in the governance process. Consequently it 

prevents them from being able to evolve independently of each other. There is a 

fundamental assumption as to the governance process which is natively supported by 

the system. The assumption is that the actor who is evaluating and enforcing the 

governance policies is the same actor who defines these policies in the first instance, 

and who also owns all the relevant resource descriptions. This may be true for 

governance policies which are defined and enforced by the ecosystem coordinator 

                                                 
52

 http://seerc.org/projects/cast/ 



202 

based on resource descriptions that are locally available, but as discussed in chapter 3, 

this is far from the only governance scenario possible in a cloud service ecosystem.  

The author studied these limitations and drew requirements from descriptions of more 

complex ecosystems with distributed governance processes. Part of this research was 

carried out in the requirements analysis phase of another, larger-scale EU-sponsored 

research project which included software companies SAP, CAS Software and 

SingularLogic (Broker@Cloud: Continuous Quality Assurance and Optimisation for 

Cloud Service Brokers
 53,54

). This analysis of ecosystem scenarios provided inspiration 

and examples to define the synthesised ecosystem governance scenarios which are 

presented in chapter 3 (section 3.2).  

Result #2: This led to conceptualising that there can be three distinct roles at 

play in a cloud service ecosystem governance process (the policy provider, the 

data provider and the policy evaluator); that these can be physically distributed 

among several different actors who are ecosystem partners; that the three roles 

have different governance concerns; and that the concerns of each of them need 

to be facilitated not only in isolation but in combination with the rest of the 

governance process participants. This separation of concerns gives rise to new 

requirements in developing governance support systems. To meet these 

requirements we need to allow decoupling of governance policies, resource 

descriptions and policy evaluation engines. This concept is introduced in 

chapter 3 and relates to one of the primary contributions of this research.  

Another key observation resulting from the evaluation of the CAST ecosystem 

governance support system relates to the system’s effectiveness in supporting policy 

representation, analysis and evaluation. In more general terms, it relates to its 

effectiveness for policy engineering. A most fundamental limitation is found in the way 

in which the system supports the definition and enforcement of policies. The policy 

rules are encoded in an imperative manner, directly in Java, and as part of the same 

code that checks the data for violations. This has many negative side-effects with 

respect to policy maintainability, verifiability, interoperability, reusability and overall 

governance agility.  

Result #3. The two key observations as above led to demonstrating that 

state-of-the-art service governance support systems follow certain design 

assumptions which do not meet the evolved governance requirements of cloud 

service ecosystems. Their architecture limits how well they can support the 

management of the governance functions from the individual perspective of the 

policy provider, the data provider and the policy evaluator, and their individual 

evolvability requirements. These limitations were briefly introduced in chapter 

4 (section 4.2) and discussed in more depth in chapter 8.  

                                                 
53

 http://cordis.europa.eu/project/rcn/105609_en.html 
54

 http://www.broker-cloud.eu/ 



203 

Result #4. As a corollary, results #2 and #3 give rise to new software 

engineering research questions under the theme of software ecosystems 

governance. What is the way in which governance support systems should 

evolve to address the requirements of distributed governance processes in a 

cloud service ecosystem? What would be a good basis to build on, to achieve 

this evolution? The value of this result lies in opening up a new research theme 

with the potential to transfer knowledge and solutions from a multitude of 

software engineering research streams. This outcome is discussed in chapter 4.  

9.4.2 Solution development 

Result #4 provides the motivation to present the author’s thesis, which is that 

governance support systems that satisfy the evolved requirements of cloud service 

ecosystems are both feasible and useful to develop with an architecture framework that 

integrates Semantic Web technologies and Linked Data principles.  

The hypothesis underlying this thesis is that ontology-driven information systems 

engineering, Semantic Web technologies and Linked Data principles have already been 

shown to successfully provide solutions with analogous properties in other closely 

related problem domains.  

Research into the literature and the technology relevant to the solution domain 

included: knowledge representation and reasoning, ontological modelling, description 

logics, DL reasoning, datalog rules, Semantic Web standards, Linked Data application 

architectures, policy modelling languages, ontology-policy-based management 

architectures, ontology-driven modularisation of information systems. The potential of 

‘semantic technology’ to provide a new foundation for the development of governance 

support systems suited to the task was discussed in chapter 4 (section 4.3). 

Result #5. On this basis the author developed a conceptual framework titled 

PROBE (policy-driven governance in cloud service ecosystems) integrating 

Semantic Web technologies and Linked Data principles to guide the design and 

development of governance support systems meeting the requirements stated 

previously. This result is discussed in chapter 4 and represents a key 

contribution of this research.  

To demonstrate the feasibility of the abstract PROBE framework, its components were 

developed in concrete form using the governance policies from project CAST as 

development use cases and test cases. The framework was shown to be able to support 

the full set of policies.  

Result #6. A governance ontology encoded in OWL-DL which serves as shared 

vocabulary between ecosystem partners for policy definition and data 

description. The ontology comprises (i) a core of generic domain concepts 

which are independent of any concrete cloud service ecosystem, (ii) modelling 



204 

constructs specific to the CAST platform and (iii) definitions of concrete 

policies from CAST platform examples. This result is presented in chapter 5 

(section 5.2).  

Result #7. A method for ontology-based policy definition whereby process and 

resource governance policies are formulated in positive or negative form. The 

description of the method is accompanied by several examples of 

positive/negative policy formulation for process and resource policies 

expressed as OWL class axioms and SWRL rules. This result is presented in 

chapter 5 (section 5.3).  

Result #8. A method for creating RDF descriptions of governed resources and 

sharing them between ecosystem partners. We build on existing work by others 

in the field of Linked Data applications and describe an approach that combines 

transformational mappings against the governance ontology, dynamic 

on-demand generation of RDF triples and SPARQL-based access. This result is 

discussed in chapter 6 (section 6.3).  

Result #9. A method and prototype system for evaluating governance policies 

against governed resource descriptions based on OWL-DL reasoning. Checking 

ontology-based descriptions of ecosystem resources against governance 

policies is a task which can generally be viewed as two different kinds of 

computational problem: a problem of integrity constraint validation on 

ontology objects, or a problem of ontology object classification. We presented a 

method and implemented a prototype in Java for policy evaluation based on DL 

reasoning which allows distributed and independent policy evaluators to use a 

common policy conformance checking infrastructure. One that is generic 

enough to cover all the different types of governance policies and governance 

resource descriptions in the ecosystem. This includes a novel algorithm for 

local closure axiom generation that allows an open-world reasoning engine such 

as a standard OWL-DL reasoner to operate in a closed-world setting and 

produce the desired inferences so as to successfully check policy conformance. 

This result is discussed in chapter 7 (section 7.3). 

To demonstrate the usefulness of the PROBE framework, the author compared the 

original design approach taken in research project CAST to create a governance 

support system based on the open-source governance platform by WSO2, to the 

approach made possible by adopting the PROBE framework.  

Result #10. A comparative evaluation of alternative governance support system 

architecture approaches using change scenarios, which demonstrates the 

advantages of the PROBE framework over the solutions afforded by 

state-of-the-art governance support systems. The first design approach 

evaluated is the one originally adopted by project CAST for supporting 

governance on the CAST cloud application platform. The second design 



205 

approach is the one adopted by the PROBE framework as introduced in 

chapters 5 to 7 of this dissertation. We discuss how policy definition, data 

extraction and policy evaluation are supported by applying the new design 

approach of PROBE on the same set of policies from the CAST project. We 

examine the two approaches from the perspective of the different roles involved 

in the ecosystem governance process: policy provider, data provider, and policy 

evaluator, using a scenario-based comparison methodology. Change-scenarios 

are employed to evaluate the two design approaches in terms of how they 

support evolvability and manageability of the governance process. This helps to 

highlight that a governance support system based on PROBE is not only 

sufficient to meet the requirements of governance in a CAST platform 

ecosystem, but has several advantages over the original design approach. This 

result is discussed in chapter 8 (section 8.6).  

9.4.3 Summary of results 

The table below summarises the research results in order of presentation.  

Result Description Chapter 

R1. 
Conceptualising that governance policies can be abstracted to either process 

governance or resource governance levels 
4, 5 

R2. 
Conceptualising the three roles that manifest in a cloud service ecosystem 

governance process, and their associated concerns 
3 

R3. 
Demonstrating limitations of state of the art governance support systems for 

governance in cloud service ecosystems  
4, 8 

R4. 
New research questions: How should the design of governance support 

system evolve? What is the basis to achieve this evolution? 
4 

R5. Conceptualising the PROBE framework  4 

R6. Developing the governance ontology 5 

R7. Describing a method for ontology-based policy definition  5 

R8. Describing a method for RDF-based data description  6 

R9. Describing a method and developing a prototype system for policy evaluation 7 

R10. Comparative evaluation: CAST vs PROBE design approach 8 

Table 53. Summary of research results 

9.5 Significance of results and contributions 

Because of the growing importance of co-development in software products and 

services, governance in cloud service ecosystems —and software ecosystems in 



206 

general— is an emerging research theme of high impact and immediate practical value 

for the software industry.  

The intended contribution of this research work to computer science and to the 

cross-disciplinary field of software ecosystems research is threefold:  

1. Contribution #1. Furthering our understanding of the problem domain of 

governance in cloud service ecosystems.  

2. Contribution #2. Presenting a conceptual model to analyse the interactions 

between ecosystem partners in a governance process and the requirements 

posed for governance support systems.  

3. Contribution #3. Creating a feasible and useful solution framework that 

advances the state of the art in engineering governance support systems for 

software ecosystems.  

9.5.1 Furthering our understanding of governance  

This research contributes towards filling a gap in the software ecosystems research 

literature, since the vast majority of works on ecosystem governance have so far 

focused on analysing or proposing models to frame governance decision-making 

instead of models to engineer governance support systems. Focus so far has been on 

studying strategic governance policy making from a management viewpoint, rather 

than operational governance control and policy enforcement from an engineering 

viewpoint, which is the focus of this work.  

Moreover, the body of literature on the subject of software ecosystem governance has 

so far focused, almost exclusively, on governance of the ecosystem from the viewpoint 

of the keystone partner. However, it is not only the keystone partner that has 

governance objectives. Governance processes inside an ecosystem may involve 

multiple distributed ecosystem partners who assume different types of roles and need to 

interoperate and collaborate as a network.  

Accordingly, our definition of governance in cloud service ecosystems extends beyond 

the narrow viewpoint of the ecosystem coordinator to incorporate the wider governance 

requirements of all participants in the ecosystem. From the viewpoint of the ecosystem 

coordinator, governance is about ensuring that the introduction of new services – or the 

modification of existing ones – will not create a negative impact on the ecosystem’s 

stability and reliability. From the viewpoint of ecosystem participants (third-party 

developers and end-users) governance is about ensuring that the services they consume 

or deliver operate as required on a continuous basis.  

This research brings attention to the aspects of decentralisation, distribution and 

networked collaboration in ecosystem governance. We put forward the key idea that 

creating software systems to support governance processes in a dynamic cloud service 



207 

ecosystem is actually a challenge of enabling decentralised and distributed 

collaboration between networked organisations that continuously evolve.  

To the best of the author’s knowledge, this is the first time software ecosystem 

governance is framed in such a way.  

9.5.2 Providing a conceptual model for requirements thinking  

Framing the challenge of governance in a cloud service ecosystem as a challenge of 

heterogeneity, distribution and continuous evolution, leads to a new way of thinking 

about the requirements that governance support systems must fulfil.  

We introduce the key idea that to meet the challenge of governance in a cloud service 

ecosystem, governance support systems need to achieve clear separation of concerns 

between three core functions found in every governance process: the functions of the 

policy provider, the data provider and the policy evaluator.  

Associated with each of these functions is a distinct set of concerns and goals, which 

the respective stakeholder(s) would like to see satisfied. Some are role-level concerns 

which are local in scope and mainly relate to manageability of the individual function 

from the partner's perspective. Others are ecosystem-level concerns which are global in 

scope, and mainly relate to evolvability and decentralisation of the process. Because of 

the different concerns associated with each function, the ecosystem partners that 

assume the relevant process roles exhibit different rates of change and different types of 

change over the lifetime of the governance process.  

Therefore, in designing a software system to support collaborative governance 

processes, we need to ensure that the role-driven concerns of the different entities 

engaged in the process are independently addressed and simultaneously satisfied. And 

at the same time, we need to ensure that governance support systems facilitate 

interoperability between the ecosystem partners that function in different roles. 

To the best of our knowledge this is the first time that this designation of different 

governance process roles and associated concerns is made in research literature on 

software ecosystems or governance. 

9.5.3 Delivering a feasible and useful solution framework 

Formulating the problem space as described above leads to observing the opportunity 

of transferring best practices and technology from existing solution spaces that address 

problems of similar nature.  

We introduce the key idea that one possible way to achieve the sought interoperability 

between ecosystem partners and separation of concerns between governance functions, 

with present day technology, is through a software architecture that embodies Linked 



208 

Data principles and Semantic Web standards. This idea is the actual research thesis that 

this work sets out to investigate in depth, by proposing a novel conceptual software 

architecture framework, showing how this framework can be realised with existing 

technology standards, and evaluating the results in an actual cloud service ecosystem 

case study.  

The underlying observation is that heterogeneity, distribution and continuous evolution 

are fundamental characteristics of the web, and these same characteristics provided the 

motivation for creating Semantic Web standards and Linked Data principles. But these 

characteristics are also fundamental properties of governance processes in cloud 

service ecosystems, making Semantic Web standards and Linked Data principles a 

good candidate to offer solutions in this space.  

As mentioned earlier, beyond the capability to enable networked collaboration, the 

added benefit of Semantic Web standards is that they can also guarantee the higher 

level of operational efficiency that ecosystem governance processes require. By virtue 

of the formal semantics, modelling abstraction and standards-based interfacing 

embodied by the standards, the design of governance support systems can benefit from 

improved reusability, maintainability, traceability and agility. 

A design approach based on the PROBE framework is shown to achieve better 

separation of concerns between the three main roles manifesting in a cloud service 

ecosystem governance context. It is also shown to significantly improve how policy 

definition, data representation and policy evaluation processes can be managed. 

Overall, the PROBE framework provides an approach that is natively suited to the task 

of supporting governance in a continuously evolving cloud service ecosystem.  

To the best of our knowledge this is the first time that such a software framework is 

proposed in the scope of cloud service ecosystems governance, or software ecosystem 

governance in general.   

Implicit in this thesis is the view that in twenty years from now, the technology that will 

be most suitable to achieve the goals described here will most probably be quite 

different. Web standards will have evolved and new software architecture patterns will 

be available to facilitate networked collaboration between software ecosystem partners, 

along with separation of concerns between distributed governance process functions. 

However, the principles guiding the requirements that governance support systems 

need to fulfil will fundamentally remain the same. 



209 

9.6 Limitations and further work 

9.6.1 Further case studies of governance in cloud service ecosystems 

In the course of this research the author was fortunate to have worked on two 

large-scale research projects which involved collaboration between software industry 

and academia. Both projects, CAST and Broker@Cloud, included the objective to 

investigate governance in cloud service ecosystems from a software engineering 

research viewpoint. Both provided valuable usage scenarios and concrete governance 

control examples in the form of policies.  

Access to more ecosystem case studies would have been helpful to add to our 

understanding of the problem domain and to further evaluate the feasibility and 

usefulness of the PROBE framework. We have been able to demonstrate adequacy of 

the PROBE framework against the requirements formed by studying this case study 

material but we cannot, and do not, claim generality. The CAST project in specific, 

which provided the ecosystem governance policies used in this work, focused its 

attention to study and facilitate ecosystem scenarios where policy evaluation is 

performed centrally by the CAST platform operator, unlike other ecosystem settings 

where policy evaluation can be carried out by different ecosystem partners.  

CAST took a coordinator-centric perspective on policy evaluation, although it opened 

up policy definition as something other third-parties could do. CAST did not consider 

consumers of cloud services (end-users) as policy providers, data providers or policy 

evaluators. This area was later investigated further in the scope of a project 

Broker@Cloud where new scenarios where explored. This exploration showed that 

CAST does not represent the most complex ecosystem governance environment 

possible. This is also illustrated by the exemplifying scenarios presented in chapter 3.  

To deepen our understanding of the problem of governance in cloud service ecosystems 

this research needs to be expanded with additional case studies of governance 

requirements in cloud service ecosystems. A related research extension is a 

comparative evaluation of a PROBE-based governance support system against other 

governance support systems as implemented by cloud service ecosystems, using the 

same or an expanded set of change scenarios.  

9.6.2 Comparison to other commercial governance technology platforms  

One of the outcomes from this research was demonstrating the limitations of state of the 

art governance support systems for governance in cloud service ecosystems (result #2). 

This was based on a survey and technical analysis of the governance platforms that 

were available for the author to access at the time of the research. The analysis was 

focused on commercial governance technology platforms which are also open-source 

and can be accessed free of charge.  



210 

Other commercial solutions in the market were only studied through the documentation 

that was publicly available. It is possible that there are other commercial solutions for 

governance in the market which provide better policy engineering support by 

separating policy definition from policy enforcement logic. We therefore do not claim 

generality for the observations made. An extension of this research could involve more 

governance technology platforms to be evaluated against cloud service ecosystem 

governance requirements. 

9.6.3 Alignment of the governance ontology to Linked-USDL 

The governance ontology (result #6) comprises only a small core of 

platform-independent governance concepts. The primary focus in developing this 

ontology wasn’t to provide a foundational domain ontology for cloud service 

ecosystems governance such as Dublin Core
55

 or GoodRelations
56

, although the 

resulting ontology could be extended to that direction. The ontology was developed 

with the purpose to demonstrate the feasibility of the respective component in the 

PROBE framework which is done through showing that OWL-DL as a modelling 

formalism is sufficiently expressive to allow representing the full set of artefact 

validation and lifecycle management policies from CAST.  

Due to time limitations, no attempt was made to align the ontology vocabulary with 

other domain ontologies such as Linked-USDL
57

[183]. Nevertheless, the ontology 

presented could easily be extended towards to achieve this. Given the alignment with 

the applications that Linked-USDL is intended to support, it is worthwhile to explore 

connecting the governance ontology vocabulary to the core ontology provided by 

USDL (Linked USDL Core). This is both interesting and useful to pursue because of 

the benefits it could have from an interoperability perspective. Describing governed 

resources based on such a vocabulary would open up many different uses for the data. It 

would also benefit reusability of the descriptions and would allow using the 

Linked-USDL authoring tools available.  

9.6.4 Alternative policy evaluation approaches  

Checking ontology-based descriptions of ecosystem resources against governance 

policies is a task which can generally be viewed as (at least) two different kinds of 

computational problem: a problem of integrity constraint validation on ontology 

objects, or a problem of ontology object classification. The ontology-based policy 

definition method (result# 7) and evaluation methodology (result #9) presented in this 

dissertation adopt the approach of object classification with DL reasoning.  

                                                 
55

 http://dublincore.org/ 
56

 http://www.heppnetz.de/projects/goodrelations/ 
57

 https://linked-usdl.org/ 



211 

An interesting further research project would be to explore the relative advantages and 

disadvantages of the alternative approach that was only briefly introduced. Assuming 

the alternative approach based on query answering also proves feasible, both 

approaches would represent options to instantiate the PROBE framework.  

9.6.5 Data interlinking and sharing infrastructure 

The RDF-based method for the description and sharing of governed ecosystem 

resource descriptions (#result 8) is limited to providing guidelines for the description of 

resources, and guidelines for implementing the data extraction and sharing architecture 

using third-party technologies, such as RDB to RDF and RDF triple stores.  

This research work did not include any implementation of a prototype for governance 

data extraction and sharing. This was not deemed as a high-impact research question as 

it does not put the feasibility of the PROBE framework in question. It would however 

be interesting as a further research project to develop more concrete guidelines or even 

a reusable software framework that others could build on.  

9.6.6 PROBE framework integration toolkit 

PROBE is put forward as a framework to inform the design and development of 

governance support systems. The framework is not proposed as an alternative to using 

governance technology platforms such as WSO2 Governance Registry. Our design 

intention is not to reinvent the wheel but for the PROBE framework to constitute an 

additional architecture layer on top of such systems.  

Integration with such platforms would be case-specific but could nevertheless be 

guided by a common integration framework and an event-driven architecture to allow 

easy integration. This was not developed as part of this research and could be a subject 

of further work with different objectives.  

9.6.7 Application to other classes of software ecosystems 

Cloud service ecosystems have been identified as a subclass of software ecosystems. 

This raises the question: Do other classes of software ecosystems present similar needs 

with regards to governance? Can the PROBE framework be successfully applied to 

improve governance support for other software ecosystems, such as mobile software 

platforms?  

Our comparison between the extensibility architectures of mobile platforms versus 

cloud application platforms (not reported in this dissertation) suggests that the latter 

type of ecosystems offer much more advanced models of co-development at the present 

time, but the research questions are still of interest.  



212 

9.7 Publications by the author 

The table below presents the most relevant publications by the author in chronological 

order, and links them to work presented in chapters of this dissertation.  

 

Publication 
Related 

chapter 

Simons, A. J., Bratanis, K., Kourtesis, D., Paraskakis, I., Veloudis, S., Verginadis, Y., ... 

& Rossini, A. (2014, December). Advanced service brokerage capabilities as the catalyst 

for future cloud service ecosystems. In Proceedings of the 2nd International Workshop on 

CrossCloud Systems (p. 7). ACM. 

2, 3, 4 

Bratanis, K., & Kourtesis, D. (2014). Introducing Policy-Driven Governance and Service 

Level Failure Mitigation in Cloud Service Brokers: Challenges Ahead. In I. Brandi & F. 

Patrizi B. Benatallah S. N. A. Lomuscio (Ed.), Service-Oriented Computing, ICSOC 2013 

Workshops and PhD Symposium. Lecture Notes in Computer Science (LNCS) (Vol. 

8377). Springer Berlin / Heidelberg.   

2, 3, 4 

Kourtesis, D., Bratanis, K., Verginadis, Y., Friesen, A., Simons, A. J. H., Rossini, A., et al. 

(2014). Brokerage for Quality Assurance and Optimisation of Cloud Services: an 

Analysis of Key Requirements. In I. Brandi & F. Patrizi B. Benatallah S. N. A. Lomuscio 

(Ed.), Service-Oriented Computing, ICSOC 2013 Workshops and PhD Symposium. 

Lecture Notes in Computer Science (LNCS) (Vol. 8377). Springer Berlin / Heidelberg.   

2, 3, 4 

Bratanis, K., Kourtesis, D., Paraskakis, I., Verginadis, Y., Mentzas, G., Simons, A. J. H., 

et al. (2013). A research roadmap for bringing continuous quality assurance and 

optimization to enterprise cloud service brokers. In Proceedings of eChallenges 2013. 

Dublin, Ireland.   

2, 3, 4 

Kourtesis, D., & Bratanis, K. (2013). Towards Continuous Quality Assurance in Future 

Enterprise Cloud Service Brokers. In Proceedings of the 8th South East European 

Doctoral Student Conference (DSC 2013). Thessaloniki, Greece.   

2, 3, 4 

Kourtesis, D., Bratanis, K., Bibikas, D., & Paraskakis, I. (2012). Software 

Co-development in the Era of Cloud Application Platforms and Ecosystems: the Case of 

CAST. In Collaborative Networks in the Internet of Services – 13th IFIP WG 5.5 Working 

Conference on Virtual Enterprises (pp. 196–204). IFIP Advances in Information and 

Communication Technology, 380. Springer Boston.   

2, 3, 8 

Kourtesis, D., Bratanis, K., & Paraskakis, I. (2012). Continuous governance and quality 

control in a next-generation enterprise cloud application platform. IT Briefcase, (11 July 

2012).   

8 

Kourtesis, D., Paraskakis, I., & Simons, A. J. H. (2012). Ontology-based framework for 

policy-driven governance in cloud application platforms. In Proceedings of the 7th 

International Conference on Formal Ontology in Information Systems (FOIS 2012). Graz, 

Austria.   

4, 5, 6, 7 

Kourtesis, D., Paraskakis, I., & Simons, A. J. H. (2012). Policy-driven governance in 

cloud application platforms: an ontology-based approach. In Proceedings of the 4th 

International Workshop on Ontology-Driven Information Systems Engineering (ODISE 

2012). Graz, Austria.   

4, 5, 6, 7 



213 

Kourtesis, D., & Paraskakis, I. (2011). A Registry & Repository System Supporting Cloud 

Application Platform Governance. In ICSOC 2011 – Ninth International Conference on 

Service Oriented Computing (pp. 255–256). Lecture Notes in Computer Science, 7221. 

Springer Berlin / Heidelberg.   

8 

Kourtesis, D., & Paraskakis, I. (2011). Governance in Cloud Platforms for the 

Development and Deployment of Enterprise Applications. In IEEE CloudCom 2011 – 3rd 

IEEE International Conference on Cloud Computing Technology and Science.   

3, 8 

Kourtesis, D., Kuttruff, V., & Paraskakis, I. (2010). Optimising development and 

deployment of enterprise software applications on PaaS: The CAST project. In M. Cezon, 

& Y. Wolfsthal (Eds.), ServiceWave 2010 Workshops (pp. 14–25). Lecture Notes in 

Computer Science (LNCS), 6569/2011. Springer Berlin / Heidelberg.   

2, 3, 8 

Kourtesis, D., Paraskakis, I., & Simons, A. J. H. (2009). Semantic Web Technologies in 

Support of Service Oriented Architecture Governance. In Proceedings of the 4th South 

East European Doctoral Student Conference (DSC 2009) (pp. 418–425). Thessaloniki, 

Greece: South-East European Research Centre (SEERC).   

2, 4 

Kourtesis, D., & Paraskakis, I. (2009). Supporting Semantically Enhanced Web Service 

Discovery for Enterprise Application Integration. In G. Mentzas, & A. Friesen (Eds.), 

Semantic Enterprise Application Integration for Business Processes: Service-Oriented 

Frameworks. Hersley: IGI Global.   

6, 7 

Kourtesis, D., & Paraskakis, I. (2008). Combining SAWSDL, OWL-DL and UDDI for 

Semantically Enhanced Web Service Discovery. In S. Bechhofer, M. Hauswirth, J. 

Hoffmann, & M. Koubarakis (Eds.), The Semantic Web: Research and Applications (pp. 

614–628). Lecture Notes in Computer Science (LNCS), 5021. Springer Berlin / 

Heidelberg.   

6, 7 

Table 54. Summary of related publications by the author 

 

 

 



214 

10 References 

[1] N. G. Carr, “The end of corporate computing,” MIT Sloan Manag. Rev., vol. 46, 

no. 3, pp. 67–73, 2005. 

[2] M. Skok, “Future of cloud computing—4th annual survey results.” North Bridge 

Venture Partners, 2014. 

[3] D. Kourtesis, K. Bratanis, D. Bibikas, and I. Paraskakis, “Software 

co-development in the era of cloud application platforms and ecosystems: The 

case of CAST,” in IFIP Advances in Information and Communication 

Technology, 2012, vol. 380 AICT, pp. 196–204. 

[4] G. K. Hanssen and T. Dybå, “Theoretical foundations of software ecosystems.,” 

in IWSECO@ ICSOB, 2012, pp. 6–17. 

[5] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense of community: A 

research agenda for software ecosystems,” in 31st International Conference on 

Software Engineering - Companion Volume, 2009, pp. 187–190. 

[6] A. Gawer and M. A. Cusumano, Platform leadership: How Intel, Microsoft, and 

Cisco drive industry innovation. Harvard Business School Press, 2002. 

[7] J. Pan, “Software Reliability,” Dependable Embed. Syst., vol. 18, pp. 1–14, 

1999. 

[8] K. S. Lew, T. S. Dillon, and K. E. Forward, “Software complexity and its impact 

on software reliability,” IEEE Trans. Softw. Eng., vol. 14, no. 11, pp. 1645–

1655, 1988. 

[9] K. Manikas, “Revisiting software ecosystems Research: A longitudinal literature 

study,” J. Syst. Softw., vol. 117, pp. 84–103, Jul. 2016. 

[10] A. J. H. Simons, K. Bratanis, D. Kourtesis, I. Paraskakis, S. Veloudis, Y. 

Verginadis, G. Mentzas, S. Braun, and A. Rossini, “Advanced service brokerage 

capabilities as the catalyst for future cloud service ecosystems,” in Proceedings 

of the 2nd International Workshop on CrossCloud Systems - CCB14, 2014. 

[11] D. Kourtesis, K. Bratanis, Y. Verginadis, A. Friesen, A. J. H. Simons, A. 

Rossini, A. Schwichtenberg, and P. Gouvas, “Brokerage for Quality Assurance 

and Optimisation of Cloud Services: An Analysis of Key Requirements,” in 

Lecture Notes in Computer Science, Springer Science + Business Media, 2014, 

pp. 150–162. 

[12] K. Bratanis and D. Kourtesis, “Introducing policy-driven governance and 

service level failure mitigation in cloud service brokers: Challenges ahead,” in 

Lecture Notes in Computer Science, 2014, vol. 8377 LNCS, pp. 177–191. 

[13] K. Bratanis, D. Kourtesis, I. Paraskakis, Y. Verginadis, G. Mentzas, A. J. H. 

Simons, A. Friesen, and S. Braun, “A research roadmap for bringing continuous 

quality assurance and optimization to enterprise cloud service brokers,” in 



215 

Proceedings of eChallenges, 2013. 

[14] G. Antoniou and F. Van Harmelen, A semantic web primer. MIT press, 2004. 

[15] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,” Int. J. 

Semant. Web Inf. Syst., vol. 5, no. 3, pp. 1–22, 2009. 

[16] M. Uschold, “Ontology-driven information systems: Past, present and future,” in 

Proceedings of the 2008 conference on Formal Ontology in Information 

Systems: Proceedings of the Fifth International Conference (FOIS 2008), 2008, 

pp. 3–18. 

[17] G. Tonti, J. M. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok, 

“Semantic Web Languages for Policy Representation and Reasoning: A 

Comparison of KAoS, Rei, and Ponder,” in Lecture Notes in Computer Science, 

Springer Science & Business Media, 2003, pp. 419–437. 

[18] A. Uszok, J. M. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S. 

Aitken, “KAoS policy management for semantic Web services,” IEEE Intell. 

Syst., vol. 19, no. 4, pp. 32–41, Jul. 2004. 

[19] T. Heath and C. Bizer, “Linked Data: Evolving the Web into a Global Data 

Space,” Synth. Lect. Semant. Web Theory Technol., vol. 1, no. 1, pp. 1–136, Feb. 

2011. 

[20] S. Staab and R. Studer, Eds., Handbook on Ontologies. Springer Nature, 2009. 

[21] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, and 

others, “SWRL: A semantic web rule language combining OWL and RuleML,” 

W3C Memb. Submiss., vol. 21, p. 79, 2004. 

[22] D. Kourtesis, V. Kuttruff, and I. Paraskakis, “Optimising development and 

deployment of enterprise software applications on PaaS: the CAST project,” in 

Lecture Notes in Computer Science, 2010, vol. 6569 LNCS, pp. 14–25. 

[23] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres, “SPARQL 1.1 

Protocol,” Recomm. W3C, March, 2013. 

[24] M. A. Rappa, “The utility business model and the future of computing services,” 

IBM Syst. J., vol. 43, no. 1, pp. 32–42, 2004. 

[25] R. W. Seidel, “Architects of the Information Society: Thirty-Five Years of the 

Laboratory for Computer Science at MIT by Simson L. Garfinkel, edited by Hal 

Abelson,” Endeavour, vol. 24, no. 2, p. 94, Jun. 2000. 

[26] D. F. Parkhill, “Challenge of the computer utility,” 1966. 

[27] A. T. Velte, T. J. Velte, R. C. Elsenpeter, and R. C. Elsenpeter, Cloud 

computing: a practical approach. McGraw-Hill New York, 2010. 

[28] “Conversation with Eric Schmidt hosted by Danny Sullivan,” in Search Engine 

Strategies Conference, 2006. 



216 

[29] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the 

clouds,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, p. 50, Dec. 

2008. 

[30] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?,” Computer 

(Long. Beach. Calif)., vol. 42, no. 1, pp. 15–20, Jan. 2009. 

[31] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. D. Joseph, R. 

Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of cloud 

computing,” Commun. ACM, vol. 53, no. 4, p. 50, Apr. 2010. 

[32] P. M. Mell and T. Grance, “The NIST definition of cloud computing,” National 

Institute of Standards and Technology (NIST), techreport, 2011. 

[33] Y. Natis, “Introducing SaaS-Enabled Application Platforms: Features, Roles and 

Futures,” Gartner Inc, 2007. 

[34] Y. Chou, “Cloud Computing Primer for IT Pros,” 2010. [Online]. Available: 

https://blogs.technet.microsoft.com/yungchou/2010/11/15/cloud-computing-pri

mer-for-it-pros/. 

[35] S. Jansen and E. Bloemendal, “Defining App Stores: The Role of Curated 

Marketplaces in Software Ecosystems,” in Lecture Notes in Business 

Information Processing, Springer Science & Business Media, 2013, pp. 195–

206. 

[36] H. Chesbrough and K. Schwartz, “Innovating business models with 

co-development partnerships,” Res. Manag., vol. 50, no. 1, pp. 55–59, 2007. 

[37] G. Büyüközkan and J. Arsenyan, “Collaborative product development: a 

literature overview,” Prod. Plan. Control, vol. 23, no. 1, pp. 47–66, Jan. 2012. 

[38] CollabNet, “Enabling Open Collaboration with Development Partners,” 2007. 

[39] G. Parker and M. Van Alstyne, “Managing platform ecosystems,” ICIS 2008 

Proc., p. 53, 2008. 

[40] M. H. Meyer and R. Seliger, “Product platforms in software development,” MIT 

Sloan Manag. Rev., vol. 40, no. 1, p. 61, 1998. 

[41] D. S. Evans, “A Survey of the Economic Role of Software Platforms in 

Computer-based Industries,” CESifo Econ. Stud., vol. 51, no. 2–3, pp. 189–224, 

Jan. 2005. 

[42] D. G. Messerschmitt and C. Szyperski, “Software ecosystem: understanding an 

indispensable technology and industry,” MIT Press Books, vol. 1, 2003. 

[43] S. Jansen and G. van Capelleveen, “Quality review and approval methods for 

extensions in software ecosystems,” in Software Ecosystems: Analyzing and 

Managing Business Networks in the Software Industry, Edward Elgar 

Publishing, 2013, p. 187. 



217 

[44] J. Knodel and K. Manikas, “Towards a Typification of Software Ecosystems,” in 

Lecture Notes in Business Information Processing, Springer Science & Business 

Media, 2015, pp. 60–65. 

[45] H.-B. Kittlaus and P. N. Clough, Software product management and pricing: 

Key success factors for software organizations. Springer Science & Business 

Media, 2008. 

[46] J. Bosch and P. Bosch-Sijtsema, “From integration to composition: On the 

impact of software product lines, global development and ecosystems,” J. Syst. 

Softw., vol. 83, no. 1, pp. 67–76, Jan. 2010. 

[47] K. Manikas and K. M. Hansen, “Software ecosystems A systematic literature 

review,” J. Syst. Softw., vol. 86, no. 5, pp. 1294–1306, May 2013. 

[48] S. Jansen and M. A. Cusumano, “Defining software ecosystems: a survey of 

software platforms and business network governance.” Edward Elgar 

Publishing, pp. 13–28. 

[49] J. F. Moore, The death of competition: leadership and strategy in the age of 

business ecosystems. HarperCollins Publishers, 1996. 

[50] T. Rickmann, S. Wenzel, and K. Fischbach, “Software Ecosystem 

Orchestration: The Perspective of Complementors,” 2014. 

[51] J. van Angeren, J. Kabbedijk, K. M. Popp, and S. Jansen, “Managing software 

ecosystems through partnering,” in Software Ecosystems: Analyzing and 

Managing Business Networks in the Software Industry, Edward Elgar 

Publishing, 2013, pp. 85–102. 

[52] M. Iansiti and R. Levien, The keystone advantage: what the new dynamics of 

business ecosystems mean for strategy, innovation, and sustainability. Harvard 

Business Press, 2004. 

[53] T. R. Eisenmann, G. Parker, and M. Van Alstyne, “Opening Platforms: How, 

When and Why?,” Platforms, Mark. Innov., pp. 131–162, 2008. 

[54] S. Shane, The handbook of technology and innovation management. John Wiley 

& Sons, 2008. 

[55] S. Jansen, S. Peeters, and S. Brinkkemper, “Software Ecosystems: From 

Software Product Management to Software Platform Management.,” in 

IW-LCSP@ ICSOB, 2013, pp. 5–18. 

[56] L. Richardson and S. Ruby, RESTful web services. “ O’Reilly Media, Inc.,” 

2008. 

[57] “Origin and Etymology of Govern,” Merriam Webster Dictionary, 2016. . 

[58] M. Bevir, Governance: A Very Short Introduction. Oxford University Press, 

2012. 



218 

[59] W. A. Brown, G. Moore, and W. Tegan, “SOA governance—IBM’s approach, 

Effective governance through the IBM SOA Governance Management Method 

approach,” article, 2006. 

[60] M. Afshar, M. Cincinatus, D. Hynes, K. Clugage, and V. Patwardhan, “SOA 

governance: Framework and best practices,” article, 2007. 

[61] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: service-oriented 

architecture best practices. Prentice Hall Professional, 2005. 

[62] D. S. Linthicum, “The Evolution of Cloud Service Governance,” IEEE Cloud 

Comput., vol. 2, no. 6, pp. 86–89, Nov. 2015. 

[63] A. Papageorgiou, S. Schulte, D. Schuller, M. Niemann, N. Repp, and R. 

Steinmetz, “Governance of a Service-Oriented Architecture for Environmental 

and Public Security,” in Information Technologies in Environmental 

Engineering, Springer Science & Business Media, 2009, pp. 39–52. 

[64] O. Uludag, S. Hefele, and F. Matthes, “Platform and Ecosystem Governance,” 

Digit. Mobil. Platforms Ecosyst., p. 1, 2016. 

[65] A. Serebrenik and T. Mens, “Challenges in Software Ecosystems Research,” in 

Proceedings of the 2015 European Conference on Software Architecture 

Workshops - ECSAW15, 2015. 

[66] R. Santos, O. Barbosa, and C. Alves, “Software ecosystems: trends and impacts 

on software engineering,” in Software Engineering (SBES), 2012 26th Brazilian 

Symposium on, 2012, pp. 206–210. 

[67] A. Tiwana, Platform Governance: Aligning Architecture, Governance, and 

Strategy. Morgan Kaufmann, 2014. 

[68] A. Tiwana, B. Konsynski, and A. A. Bush, “Platform Evolution: Coevolution of 

Platform Architecture, Governance, and Environmental Dynamics,” Inf. Syst. 

Res., vol. 21, no. 4, pp. 675–687, Dec. 2010. 

[69] M. Schreieck, M. Wiesche, and H. Krcmar, “Design and governance of plaform 

ecosystems -key concepts and issues for future research,” in Twenty-Fourth 

European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016. 

[70] J. Axelsson and M. Skoglund, “Quality assurance in software ecosystems: A 

systematic literature mapping and research agenda,” J. Syst. Softw., vol. 114, pp. 

69–81, Apr. 2016. 

[71] J. van Angeren, C. Alves, and S. Jansen, “Can we ask you to collaborate? 

Analyzing app developer relationships in commercial platform ecosystems,” J. 

Syst. Softw., vol. 113, pp. 430–445, Mar. 2016. 

[72] E. A. Marks, Service-oriented architecture (SOA) governance for the services 

driven enterprise. John Wiley & Sons, 2008. 

[73] L.-J. Zhang and Q. Zhou, “CCOA: Cloud computing open architecture,” in Web 



219 

Services, 2009. ICWS 2009. IEEE International Conference on, 2009, pp. 607–

616. 

[74] J. A. Estefan, K. Laskey, F. McCabe, and P. Thornton, “Reference Architecture 

Foundation for Service Oriented Architecture Version 1.0, OASIS Committee 

Draft 02, 14 October 2009.” 2011. 

[75] “Transforming Business: Optimizing the Business Outcomes of SOA,” 2008. 

[76] T. Manes, “The Registry and SOA Governance Market,” 2007. 

[77] P. Malinverno, D. C. Plummer, and G. Van Huizen, “Gartner magic quadrant for 

application services governance. Gartner Inc,” misc, 2015. 

[78] I. Kourtesis, D., Bratanis, K., & Paraskakis, “Continuous governance and quality 

control in a next-generation enterprise cloud application platform,” IT Briefcase, 

2012. 

[79] S. Hyrynsalmi, A. Suominen, and M. Mäntymäki, “The influence of developer 

multi-homing on competition between software ecosystems,” J. Syst. Softw., vol. 

111, pp. 119–127, Jan. 2016. 

[80] E. W. Dijkstra, “On the role of scientific thought,” Selected writings on 

computing: a personal perspective, Springer New York , pp. 60–66, 1982. 

[81] D. L. L. Parnas, “On the criteria to be used in decomposing systems into 

modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972. 

[82] T. Mens and M. Wermelinger, “Separation of concerns for software evolution,” 

J. Softw. Maint. Evol. Res. Pract., vol. 14, no. 5, pp. 311–315, 2002. 

[83] H. Ossher and T. Peri, “Multi-dimensional separation of concerns and the 

hyperspace approach,” Software Architectures and Component Technology, pp. 

293–323, 2002.  

[84] D. Kourtesis and I. Paraskakis, “Supporting semantically enhanced web service 

discovery for enterprise application integration,” Semantic enterprise 

application integration for business processes: Service-oriented frameworks, 

IGI Global, pp.105–130, 2010. 

[85] R. J. Brachman and H. J. Levesque, “Expressing Knowledge,” in Knowledge 

Representation and Reasoning, Elsevier, 2004, pp. 31–47. 

[86] F. Harmelen, V. Lifschitz, and B. Porter, Handbook of Knowledge 

Representation. Netherlands, Amsterdam: Elsevier, 2008. 

[87] J. McCarthy, “Programs with common sense,” in Symposium on Mechanization 

of Thought Processes, National Physics Laboratory, Teddington, England, 

November 1958. 

[88] B. Nebel, “Logics for Knowledge Representation,” International Encyclopedia 

of the Social & Behavioral Sciences. Elsevier, pp. 9039–9041, 2001. 



220 

[89] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, The 

Description Logic Handbook: Theory, Implementation and Applications. 

Cambridge University Press, 2003. 

[90] R. J. Brachman, “Research in natural language understanding,” 1979. 

[91] J. Sowa, Principles of Semantic Networks: Explorations in the Representation of 

Knowledge. San Mateo: Morgan Kaufmann, 1991. 

[92] M. Minsky, “A Framework for Representing Knowledge,” MIT AI Laboratory, 

1974. 

[93] F. Baader, “What’s new in Description Logics,” Informatik-Spektrum, vol. 34, 

no. 5, pp. 434–442, Apr. 2011. 

[94] N. Guarino, “Formal ontology and information systems,” in Proceedings of 

FOIS, 1998, vol. 98, no. 1998, pp. 81–97. 

[95] T. R. Gruber, “A translation approach to portable ontology specifications,” 

Knowl. Acquis., vol. 5, no. 2, pp. 199–220, Jun. 1993. 

[96] D. Fensel, “Ontologies: A silver bullet for knowledge management and 

electronic-commerce (2000),” Berlin: Spring-Verlag. 

[97] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific 

American, vol. 284, no. 5, pp. 34–43, May 2001. 

[98] F. Baader, I. Horrocks, and U. Sattler, “Description Logics as Ontology 

Languages for the Semantic Web,” in Lecture Notes in Computer Science, 

Springer Science & Business Media, 2005, pp. 228–248. 

[99] D. L. Hendler, J., McGuinness, “The DARPA Agent Markup Language,” IEEE 

Intell. Syst., vol. 15, no. 6, pp. 67–73, 2000. 

[100] D. Fensel, F. Van Harmelen, M. Klein, H. Akkermans, J. Broekstra, C. Fluit, J. 

van der Meer, H.-P. Schnurr, R. Studer, J. Hughes, and others, 

“On-to-knowledge: Ontology-based tools for knowledge management,” in 

Proceedings of the eBusiness and eWork, 2000, pp. 18–20. 

[101] I. Horrocks, F. van Harmelen, P. Patel-Schneider, T. Berners-Lee, D. Brickley, 

D. Connolly, M. Dean, S. Decker, D. Fensel, R. Fikes, and others, “Daml+ oil 

language specifications.” Technical report, W3C, 2001. http://www. daml. org, 

2001. 

[102] D. L. McGuinness, F. Van Harmelen, and others, “OWL web ontology language 

overview,” W3C Recomm., vol. 10, no. 10, p. 2004, 2004. 

[103] M. Horridge and P. F. Patel-Schneider, “OWL 2 web ontology language 

manchester syntax,” W3C Work. Gr. Note, 2009. 

[104] B. Motik, P. F. Patel-Schneider, and B. C. Grau, “OWL 2 web ontology 

language direct semantics,” W3C Recomm., vol. 27, 2009. 



221 

[105] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, 

“Extensible markup language (XML),” World Wide Web Consort. Recomm. 

REC-xml-19980210. http//www. w3. org/TR/1998/REC-xml-19980210, vol. 16, 

p. 16, 1998. 

[106] F. Manola, E. Miller, and B. McBride, “RDF primer,” W3C Recomm., vol. 10, 

no. 1–107, p. 6, 2004. 

[107] M. Mealling and R. Denenberg, Eds., “Report from the Joint W3C/IETF URI 

Planning Interest Group: Uniform Resource Identifiers (URIs), URLs, and 

Uniform Resource Names (URNs): Clarifications and Recommendations,” 

techreport, Aug. 2002. 

[108] D. Brickley and R. V Guha, “RDF vocabulary description language 1.0: RDF 

schema,” article, 2004. 

[109] D. C. Fallside and P. Walmsley, “XML schema part 0: primer second edition,” 

W3C Recomm., vol. 16, 2004. 

[110] M. Kifer and H. Boley, “RIF overview,” W3C Work. Draft. W3C,(October 

2009). http//www. w3. org/TR/rif-overview, 2013. 

[111] I. Horrocks and P. F. Patel-Schneider, “A proposal for an OWL rules language,” 

in Proceedings of the 13th conference on World Wide Web - WWW 04, 2004. 

[112] J. de Bruijn and C. Welty, “RIF, RDF and OWL compatibility,” W3C Work. 

Draft (July 2009). http//www. w3. org/TR/rif-rdf-owl, 2010. 

[113] E. Prud’Hommeaux, A. Seaborne, Others, E. Prud’Hommeaux, A. Seaborne, 

Others, E. Prud’Hommeaux, A. Seaborne, and Others, “SPARQL query 

language for RDF,” W3C Recomm., vol. 15, 2008. 

[114] T. Berners-Lee, “Linked data. design issues for the world wide web,” World 

Wide Web Consortium. http//www. w3. org/DesignIssues/LinkedData. html, 

2006. 

[115] D. Wood, Ed., Linking Enterprise Data. Springer Nature, 2010. 

[116] B. Hu and G. Svensson, “A Case Study of Linked Enterprise Data,” in Lecture 

Notes in Computer Science, Springer Science & Business Media, 2010, pp. 129–

144. 

[117] H.-J. Happel and S. Seedorf, “Applications of ontologies in software 

engineering,” in Proc. of Workshop on Sematic Web Enabled Software 

Engineering"(SWESE) on the ISWC, 2006, pp. 5–9. 

[118] D. Gašević, N. Kaviani, and M. Milanović, “Ontologies and Software 

Engineering,” in Handbook on Ontologies, Springer Science & Business Media, 

2009, pp. 593–615. 

[119] M. Bergman, “The open world assumption: Elephant in the room,” AI3 Adapt. 

Inf., 2009. 



222 

[120] R. Poli, M. Healy, and A. Kameas, Eds., Theory and Applications of Ontology: 

Computer Applications. Springer Science & Business Media, 2010. 

[121] D. Kourtesis and I. Paraskakis, “Governance in cloud platforms for the 

development and deployment of enterprise applications,” IEEE CloudCom, 

2011. 

[122] D. Kourtesis and I. Paraskakis, “A registry and repository system supporting 

cloud application platform governance,” in Lecture Notes in Computer Science, 

2012, vol. 7221 LNCS, pp. 255–256. 

[123] P. Hitzler and B. Parsia, “Ontologies and Rules,” in Handbook on Ontologies, 

Springer Science & Business Media, 2009, pp. 111–132. 

[124] M. Krötzsch, F. Maier, A. Krisnadhi, and P. Hitzler, “A better uncle for OWL,” 

in Proceedings of the 20th international conference on World wide web - WWW 

11, 2011. 

[125] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler, 

“OWL 2: The next step for OWL,” Web Semant. Sci. Serv. Agents World Wide 

Web, vol. 6, no. 4, pp. 309–322, Nov. 2008. 

[126] L. Kagal, T. Finin, and A. Joshi, “A policy language for a pervasive computing 

environment,” in Policies for Distributed Systems and Networks, 2003. 

Proceedings. POLICY 2003. IEEE 4th International Workshop on, 2003, pp. 

63–74. 

[127] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical 

OWL-DL reasoner,” Web Semant. Sci. Serv. Agents World Wide Web, vol. 5, no. 

2, pp. 51–53, Jun. 2007. 

[128] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “HermiT: An OWL 2 

Reasoner,” J Autom Reason., vol. 53, no. 3, pp. 245–269, May 2014. 

[129] K. Fisler, S. Krishnamurthi, and D. J. J. Dougherty, “Embracing policy 

engineering,” in Proceedings of the FSE/SDP workshop on Future of software 

engineering research - FoSER 10, 2010. 

[130] D. Lewis, K. Feeney, K. Carey, T. Tiropanis, and S. Courtenage, 

“Semantic-Based Policy Engineering for Autonomic Systems,” in Lecture Notes 

in Computer Science, Springer Science & Business Media, 2005, pp. 152–164. 

[131] S. Ross-Talbot, S. Tabet, S. Chakravarthy, and G. Brown, “A generalized 

RuleML-based Declarative Policy specification language for Web Services,” in 

W3C Workshop on Constraints and Capabilities for Web Services, 2004. 

[132] P. A. Bonatti and D. Olmedilla, “Rule-Based Policy Representation and 

Reasoning for the Semantic Web,” in Reasoning Web, Springer Science & 

Business Media, pp. 240–268. 

[133] G. Antoniou, M. Baldoni, P. A. Bonatti, W. Nejdl, and D. Olmedilla, 

“Rule-based Policy Specification,” in Advances in Information Security, 



223 

Springer Science & Business Media, pp. 169–216. 

[134] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy 

Specification Language,” in Lecture Notes in Computer Science, Springer 

Science & Business Media, 2001, pp. 18–38. 

[135] A. Uszok, J. M. M. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. 

Johnson, and H. Jung, “New developments in ontology-based policy 

management: Increasing the practicality and comprehensiveness of KAoS,” in 

Policies for Distributed Systems and Networks, 2008. POLICY 2008. IEEE 

Workshop on, 2008, pp. 145–152. 

[136] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. 

Johnson, S. Kulkarni, and J. Lott, “KAoS policy and domain services: toward a 

description-logic approach to policy representation, deconfliction, and 

enforcement,” in Policies for Distributed Systems and Networks, 2003. 

Proceedings. POLICY 2003. IEEE 4th International Workshop on, 2003, pp. 

93–96. 

[137] A. Uszok, J. M. M. Bradshaw, and R. Jeffers, “KAoS: A Policy and Domain 

Services Framework for Grid Computing and Semantic Web Services,” in 

Lecture Notes in Computer Science, Springer Science & Business Media, 2004, 

pp. 16–26. 

[138] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner, “Using semantic web 

technologies for policy management on the web,” in Proceedings of the national 

conference on Artificial Intelligence, 2006, vol. 21, no. 2, p. 1337. 

[139] W. Nejdl, D. Olmedilla, M. Winslett, and C. C. Zhang, “Ontology-Based Policy 

Specification and Management,” in Lecture Notes in Computer Science, 

Springer Science & Business Media, 2005, pp. 290–302. 

[140] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett, “No 

Registration Needed: How to Use Declarative Policies and Negotiation to 

Access Sensitive Resources on the Semantic Web,” in Lecture Notes in 

Computer Science, Springer Science & Business Media, 2004, pp. 342–356. 

[141] V. Kolovski, B. Parsia, Y. Katz, and J. Hendler, “Representing Web Service 

Policies in OWL-DL,” in The Semantic Web - ISWC 2005, Springer Science & 

Business Media, 2005, pp. 461–475. 

[142] V. Kolovski and B. Parsia, “WS-Policy and beyond: application of OWL 

defaults to Web service policies,” in Proc. of the 2nd Int. Semantic Web Policy 

Workshop (SWPW’06), 2006. 

[143] M. Obitko, “RDF Graph and Syntax. Ontologies and Semantic Web,” 2007. 

[144] W. W. W. Consortium and others, “RDF 1.1 Turtle: terse RDF triple language,” 

2014. 

[145] M.-L. Mugnier, M.-C. Rousset, and F. Ulliana, “Ontology-mediated queries for 

NOSQL databases,” in AAAI: Conference on Artificial Intelligence, 2016. 



224 

[146] F. Michel, J. Montagnat, and C. Faron-Zucker, “A survey of RDB to RDF 

translation approaches and tools,” PhD thesis, I3S, 2014. 

[147] T. Berners-Lee, “Relational databases and the semantic web (in design issues),” 

World Wide Web Consort., 1998. 

[148] M. Rodriguez-Muro and M. Rezk, “Efficient SPARQL-to-SQL with R2RML 

mappings,” Web Semant. Sci. Serv. Agents World Wide Web, vol. 33, pp. 141–

169, Aug. 2015. 

[149] R. Cyganiak, “Accessing relational databases as virtual RDF graphs (2012).” 

Accessed, 2014. 

[150] R. Greenwald, R. Stackowiak, and J. Stern, Oracle essentials: Oracle database 

12c. “ O’Reilly Media, Inc.,” 2013. 

[151] O. Erling and I. Mikhailov, “RDF Support in the Virtuoso DBMS,” in Studies in 

Computational Intelligence, Springer Science & Business Media, 2009, pp. 7–

24. 

[152] E. Kharlamov, E. Jiménez-Ruiz, C. Pinkel, M. Rezk, M. G. Skjæveland, A. 

Soylu, G. Xiao, D. Zheleznyakov, M. Giese, I. Horrocks, and others, “Optique: 

Ontology-Based Data Access Platform.,” in International Semantic Web 

Conference (Posters & Demos), 2015. 

[153] M. Rodriguez-Muro and D. Calvanese, “Quest, a system for ontology based data 

access,” in OWL: Experiences and Directions Workshop (OWLED), Heraklion, 

2012. 

[154] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. 

Rodriguez-Muro, and G. Xiao, “Ontop: Answering SPARQL queries over 

relational databases,” Semant. Web, no. Preprint, pp. 1–17, 2016. 

[155] D. Calvanese, M. Giese, D. Hovland, and M. Rezk, “Ontology-Based Integration 

of Cross-Linked Datasets,” in The Semantic Web - ISWC 2015, Springer Science 

& Business Media, 2015, pp. 199–216. 

[156] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev, “The 

combined approach to ontology-based data access,” 2011. 

[157] P. Haase, T. Mathäß, M. Schmidt, A. Eberhart, and U. Walther, “Semantic 

Technologies for Enterprise Cloud Management,” in Lecture Notes in Computer 

Science, Springer Science & Business Media, 2010, pp. 98–113. 

[158] M. Feridun and A. Tanner, “Using linked data for systems management,” in 

2010 IEEE Network Operations and Management Symposium - NOMS 2010, 

2010. 

[159] K. P. Joshi, “DC Proposal: Automation of Service Lifecycle on the Cloud by 

Using Semantic Technologies,” in The Semantic Web - ISWC 2011, Springer 

Science & Business Media, 2011, pp. 285–292. 



225 

[160] M. O’Connor and A. Das, “SQWRL: a query language for OWL,” in 

Proceedings of the 6th International Conference on OWL: Experiences and 

Directions-Volume 529, 2009, pp. 208–215. 

[161] N. Matentzoglu, J. Leo, V. Hudhra, U. Sattler, and B. Parsia, “A survey of 

current, stand-alone owl reasoners,” in Informal Proceedings of the 4th 

International Workshop on OWL Reasoner Evaluation, 2015, vol. 1387. 

[162] D. Brachman, Ronald J and Nardi, “An Introduction to Description Logics,” in 

The Description Logic Handbook, Cambridge University Press, 2003. 

[163] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness, “Integrity Constraints in OWL.,” 

in AAAI, 2010. 

[164] K. Miksa, P. Sabina, and M. Kasztelnik, “Combining Ontologies with Domain 

Specific Languages: A Case Study from Network Configuration Software,” in 

Reasoning Web. Semantic Technologies for Software Engineering, Springer 

Science & Business Media, 2010, pp. 99–118. 

[165] S. Grimm and B. Motik, “Closed World Reasoning in the Semantic Web through 

Epistemic Operators.,” in OWLED, 2005. 

[166] C. Strasser and G. A. Antonelli, “Non-monotonic logic,” The Stanford 

Encyclopedia of Philosophy. Stanford University, 2014. 

[167] P. F. Patel-Schneider and I. Horrocks, “A comparison of two modelling 

paradigms in the Semantic Web,” Web Semant. Sci. Serv. Agents World Wide 

Web, vol. 5, no. 4, pp. 240–250, 2007. 

[168] A. A. Krisnadhi, K. Sengupta, and P. Hitzler, “Local Closed World Semantics: 

Grounded Circumscription for Description Logics,” in Web Reasoning and Rule 

Systems, Springer Science & Business Media, 2011, pp. 263–268. 

[169] L. Tao, J, Ding, L, McGuinness, D, “Instance Data Evaluation for Semantic 

Web-Based Knowledge Management Systems,” in 42nd Hawaii International 

Conference on System Sciences, 2009, pp. 1–9. 

[170] B. Motik, I. Horrocks, and U. Sattler, “Adding Integrity Constraints to OWL.,” 

in OWLED, 2007, vol. 258. 

[171] E. Sirin, “Data Validation with OWL Integrity Constraints,” in Web Reasoning 

and Rule Systems, Springer Science & Business Media, 2010, pp. 18–22. 

[172] T. Bosch and K. Eckert, “Requirements on RDF constraint formulation and 

validation,” in Proceedings of the 2014 International Conference on Dublin 

Core and Metadata Applications, 2014, pp. 95–108. 

[173] H. Knublauch, J. A. Hendler, and K. Idehen, “SPIN-SPARQL inferencing 

notation.” 2009. 

[174] F. Rieckhof, H. Dibowski, and K. Kabitzsch, “Formal validation techniques for 

Ontology-based Device Descriptions,” in ETFA 2011, 2011. 



226 

[175] S. Zivkovic, K. Miksa, and H. Kühn, “A Modelling Method for Consistent 

Physical Devices Management: An ADOxx Case Study,” in Lecture Notes in 

Business Information Processing, Springer Science & Business Media, 2011, 

pp. 104–118. 

[176] R. Evans, D. S., Hagiu, A., & Schmalensee, Invisible Engines: How Software 

Platforms Drive Innovation and Transform Industries. MIT Press, 2008. 

[177] D. C. Chou, “Rise of the cloud ecosystems,” MSDN Blogs, vol. 16, 2011. 

[178] C. WSO2, “Governance registry brings integrity to SaaS platform,” 2012. . 

[179] R. Yin, Case study research: Design and methods. Sage publications, 2003. 

[180] S. Demeyer, “Research methods in computer science,” in 2011 27th IEEE 

International Conference on Software Maintenance (ICSM), 2011. 

[181] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research in 

Software Engineering. Wiley-Blackwell, 2012. 

[182] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-level 

modifiability analysis (ALMA),” J. Syst. Softw., vol. 69, no. 1–2, pp. 129–147, 

Jan. 2004. 

[183] C. Pedrinaci, J. Cardoso, and T. Leidig, “Linked USDL: A Vocabulary for 

Web-Scale Service Trading,” in Lecture Notes in Computer Science, Springer 

Science & Business Media, 2014, pp. 68–82. 

 

 



227 

11 Appendix  

 

package org.seerc.cast.regrep.lifecycle; 

 

[...] 

public class SolutionLCM extends Aspect 

{ 

    private static final Log log = LogFactory.getLog(SolutionLCM.class); 

 

[...] 

    private Evaluation isPromotable(Resource collection, Registry registry) throws 

RegistryException 

    { 

        if (collection == null) 

        { 

            log.error("collection is null"); 

            throw new RegistryException("collection is null"); 

        } 

         

        Evaluation promotabilityEvaluation = new Evaluation(); 

 

        String currentState = collection.getProperty(currentStateProperty); 

         

        // this shouldn't happen  

        if (currentState == null) 

        { 

            promotabilityEvaluation.setFailureExplanation 

("Critical error: No specified current state"); 

            log.error("Critical error: No specified current state"); 

            return promotabilityEvaluation; 

        } 

         

        int currentStateIndex = lifecycleStates.indexOf(currentState); 

 

        // first check if the conditions relevant for this state are OK 

        Evaluation conditionsEvaluation = checkTransitionConditions(registry, 

collection, currentStateIndex); 

 

        // null failure explanation means no failure, i.e. positive evaluation 

        if (conditionsEvaluation.getFailureExplanation() == null) 

        { 

            // then check the maturity of all dependencies is OK relative to this state 

            Evaluation maturityEvaluation = checkMaturityOfDependencies(registry, 

collection, currentStateIndex);  

             

            // if all is well, return an evaluation with null failureExplanation 

            if (maturityEvaluation.getFailureExplanation() == null) 

            { 

                return promotabilityEvaluation; 

            } 

            else 

            { 

                return maturityEvaluation; 

            } 

        }  

        else 

            return conditionsEvaluation; 

    } 
 

    private Evaluation checkTransitionConditions(Registry registry, Resource collection, 

int currentStateIndex)  

    { 

        Evaluation eval = null; 

 

        switch (currentStateIndex) 

        { 

            case 0: // development->testing promotion 

            { 

                return checkDevelopmentToTestingConditions(registry, collection); 

            } 

            case 1: // testing->review promotion 

            { 

                // first run the checks of the previous transition 



228 

                eval = checkDevelopmentToTestingConditions(registry, collection); 

     

                // if something is wrong stop, else run additional checks 

                if (eval.getFailureExplanation() != null) 

                    return eval; 

                else 

                    return checkTestingToReviewConditions(registry, collection); 

            } 

 

[...] 

 

    private Evaluation checkTestingToReviewConditions(Registry registry, Resource 

collection)  

    { 

        Evaluation evaluation = new Evaluation(); 

 

        // There exists a non-empty description 

        // There exists a valid pricing specification file 

        // There exists a valid license file 

        // There exists a valid provider details file 

 

        // check that the description is non-empty 

        if (collection.getDescription() == null 

                || collection.getDescription().isEmpty()) 

        { 

            evaluation.setFailureExplanation("The description of the solution is 

empty."); 

            return evaluation; 

        } 

 

        // check if artefact exists in the collection root 

        Resource artefact = null; 

        try 

        { 

            artefact = registry.get(collection.getPath() 

                    + RegistryConstants.PATH_SEPARATOR + "pricing.xml"); 

        } catch (RegistryException e) 

        { 

            evaluation.setFailureExplanation("A pricing.xml file was not found in the 

collection root."); 

            return evaluation; 

        } 

 

        // check if artefact has a validation status 

        String resourceValidationStatus = 

artefact.getProperty(resourceValidationStatusProperty); 

        if (resourceValidationStatus == null) 

        { 

            evaluation.setFailureExplanation("The pricing.xml file has not been validated 

yet!"); 

            return evaluation; 

        } 

         

        // check if artefact is marked as valid 

        if (!resourceValidationStatus.equalsIgnoreCase("true")) 

        { 

            evaluation.setFailureExplanation("The pricing.xml file is marked as 

invalid."); 

            return evaluation; 

        } 

 

        // check if artefact exists in the collection root 

        artefact = null; 

        try 

        { 

            artefact = registry.get(collection.getPath() 

                    + RegistryConstants.PATH_SEPARATOR + "license.txt"); 

        }  

        catch (RegistryException e) 

        { 

            evaluation.setFailureExplanation("A license.txt file was not found in the 

collection root."); 

            return evaluation; 

        } 

 

        // check if artefact exists in the collection root 



229 

        artefact = null; 

        try 

        { 

            artefact = registry.get(collection.getPath() 

                    + RegistryConstants.PATH_SEPARATOR + "provider.xml"); 

        } catch (RegistryException e) 

        { 

            evaluation.setFailureExplanation("A provider.xml file was not found in the 

collection root."); 

            return evaluation; 

        } 

 

        // check if artefact has a validation status 

        resourceValidationStatus = 

artefact.getProperty(resourceValidationStatusProperty); 

        if (resourceValidationStatus == null) 

        { 

            evaluation.setFailureExplanation("The provider.xml file has not been 

validated yet!"); 

            return evaluation; 

        } 

 

        // check if artefact is marked as valid 

        if (!resourceValidationStatus.equalsIgnoreCase("true")) 

        { 

            evaluation.setFailureExplanation("The provider.xml file is marked as 

invalid."); 

            return evaluation; 

        } 

 

        return evaluation; 

    } 

 

[...] 

 

Table 55. Excerpts from the implementation of SolutionLCM.java in CAST Registry & 

Repository system 

 


