

Support for Model Checking Z Specifications

By:

Maria Ulfah Siregar

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

The University of Sheffield
Faculty of Engineering

Department of Computer Science

20 December 2016

Abstract

One of deficiencies in the Z tools is that there is limited support for model
checking Z specifications. To build a model checker directly for a Z spec-
ification would take considerable effort and time due to the abstraction of
the language. Translating inputs of a Z specification into a language that an
existing model checker tool accepts is an alternative method. Researchers
at the University of Sheffield implemented a translation tool which took a Z
specification and translated it into the input for the Symbolic Analysis Labo-
ratory (SAL) tool, a framework for combining different tools for abstraction,
program analysis, theorem proving and model checking, which they called
Z2SAL. In this paper, support for model checking Z specifications is dis-
cussed, in which the ability of the existing Z2SAL is extended. This support
includes a translation for generic constant and schema calculus. Instead of
translating these aspects of the Z language into the SAL language as Z2SAL
does, a Z specification containing these two notations will be pre-processed,
in which a generic constant definition will be redefined to its equivalent ax-
iomatic definition, and schema calculus will be expanded to a new schema
definition. This paper discusses the implementation of these types of sup-
port, and illustration of some working examples. The discussion also includes
other several issues related to a new approach in translating Z functions and
constants in SAL language, which originates from the type incompatibility
obtained during execution by the SAL tool, an approach to a SAL transla-
tion of embedded theorems on Z specifications, and a manual experiment on
applying an abstraction on Z specifications. Results have been gathered dur-
ing our experiments with the implemented support. Several of these results
could be translated by Z2SAL and be executed by the SAL tool.

Declaration

I declare that the composition of this thesis and the work within are entirely
my own except where explicitly stated otherwise in the text. This work has
not been put forward for any other degree or professional qualification, except
as stated.

Maria Ulfah Siregar

1

Acknowledgment

First, I thank Allah for the guidance to complete this study.
Second, I wish to express my gratitude to my supervisor, Prof John Der-

rick, who always supports and gives invaluable advice for me throughout
this study. Last but not least, I also wish to thank my second supervisor,
Dr Siobhán North, who has shown support and encouragement to me during
this study.

I am much obliged to the Ministry of Religion Affairs of the Indonesia
Government for offering and funding my study in the United Kingdom and
to UIN Sunan Kalijaga for giving me permission and time to pursue this
study.

I would like to thank my dear parents and my big family for their love,
support and advice. My success in this research is because of their praying.

I am incredibly grateful to my husband and our wonderful daughter with-
out whom I could have finished this study. Thank you for giving me the
motivation I need to undertake this study, being my best friends and patient
during my study.

I would like to thank my lab mates and DCS staffs and technical support
for their assistance throughout my time in this department. Specifically
Mathew and Thomas Gyeera who help me in proofreading my thesis, I wish
more successful works for you. Also Hanaa and Ermira who encourage me
to finish this study, I wish that both of you will finish your study soon. Nina
who also supports me to finish this study, I am waiting to hear your happiness
when you submit your thesis.

Finally, thank you very much for my friends of awardees of MORA Schol-
arship 2012 and Indonesian Society in this country, who plays as an extended
family, for encouragements and advice. I wish better luck for all of you.

2

Contents

1 Introduction 12
1.1 Research Motivation . 15
1.2 Research Objective and Contribution 15
1.3 Thesis Structure . 16
1.4 Publications . 18

1.4.1 Peer Reviewed Journal Paper 18
1.4.2 Peer Reviewed Conference Papers 18
1.4.3 Posters . 19

2 Background 20
2.1 Formal Methods . 20

2.1.1 Z . 21
2.1.2 VDM . 21
2.1.3 RAISE Specification Language (RSL) 21
2.1.4 CSP . 22
2.1.5 Conclusion . 22

2.2 The Z Notation . 22
2.2.1 Sets . 23
2.2.2 The First-Order Predicate Logic 24
2.2.3 Schema Operators . 26

Disjunction . 26
Conjunction . 26
Negation . 27
Implication . 28
Bi-implication . 28
Renaming . 29
Hiding . 29
Schema Composition 30
Quantification . 31

2.2.4 A Z Notation Example 32
2.2.5 The Z Tools . 35

3

2.2.6 Conclusion . 38
2.3 Model Checking . 39

2.3.1 The Temporal Logic 39
2.3.2 Binary Decision Diagram 44
2.3.3 Introduction to Abstraction 46
2.3.4 Abstraction on Z Specifications 47
2.3.5 Conclusion . 48

2.4 The SAL Tools . 49
2.4.1 A Glance at SAL . 49
2.4.2 SAL Components . 52
2.4.3 The SAL Environment 53

The SAL Model Checker 53
The SAL Simulator . 57

2.4.4 Conclusion . 60
2.5 The Z2SAL Translator . 61

2.5.1 Introduction . 61
2.5.2 The Current Z2SAL Translator 63

The #1 Aspect: Generic Constant Definition 67
The #2 Aspect: Schema Calculus Definition 71

2.5.3 Conclusion . 73

3 Translation of Embedded Theorems in Z Specifications: A
Proposed Method 74
3.1 Adding Theorems in the Generated SAL 74
3.2 Embedded Theorems on Z Specifications 76

3.2.1 Proposed Method in a Translation of Embedded The-
orems on Z Specifications 79

3.2.2 Experiment 1: Unique Allocator Specification 80
3.2.3 Experiment 2: Counter 4 Modulo Specification 81
3.2.4 Experiment 3: Cars Park Specification 82
3.2.5 Experiment 4: Birthday Book Specification 83
3.2.6 Experiment 5: Paper Example Specification 83
3.2.7 Experiment 6: Shop Specification 85
3.2.8 Result and Discussion 85

3.3 Conclusion . 87

4 Implementing A Z Scanner and Parser 88
4.1 A Z Scanner . 89

4.1.1 Introduction . 89
4.1.2 A Lexical Specification 90

User Code . 90

4

Options and Declarations 90
Lexical Rules . 90

4.1.3 An Implementation of a Z Scanner 92
4.1.4 Conclusion . 94

4.2 A Z Parser . 96
4.2.1 Introduction . 96
4.2.2 A YACC Parser . 96

Shift/Reduce Conflict 98
Reduce/Reduce Conflict 99
Precedence, Associativity, and Operator Declarations . 99

4.2.3 An Implementation of a Z Parser 100
The First Conflict . 105
The Second Conflict 106
The Third Conflict . 107
The Fourth Conflict 108
The Fifth Conflict . 108
The Sixth Conflict . 109

4.2.4 Conclusion . 109

5 Redefining Generic Constants 111
5.1 Introduction . 111
5.2 A Method for Redefining a Generic Constant 113
5.3 An Implementation of the Redefinition System 113

5.3.1 Reading a Z specification 113
5.3.2 Spotting Generic Constant Definition 114
5.3.3 Spotting Usages of Generic Constants 118

5.4 Important Findings around a Redefinition of Generic Constants125
5.5 A Proposed Translation of SAL Function 126
5.6 Conclusion . 128

6 Expanding Schema Calculus 130
6.1 Introduction . 130
6.2 An Implementation of the Expansion System 130

6.2.1 Expansion Processes in Java Main Program 131
6.2.2 Expansion Processes in schConstruction function . . 133

An Operator with Two Operands 135
The First Simplification 135
The Second Simplification 136
The First Not Regular Simplification 137
The Second Not Regular Simplification . . . 137

An Operator with a Right Operand 138

5

An Operator with a Left Operand 138
An Only Operator . 139
An Implication Operator 140
A Bi-implication Operator 144
A Negation Operator 147
Separators in a Schema Calculus Definition 148
Other Processes . 148

6.2.3 Expansion Processes in operate function 150
Conjunction and Disjunction 152
Negation . 152
Renaming . 153
Hiding . 153
Composition . 153

6.2.4 Expansion Processes in expand function 154
6.2.5 Expansion Processes in normalised function 155
6.2.6 Expansion Processes in collapse function 158
6.2.7 Expansion Processes in negateSch function 161
6.2.8 Expansion Processes in rename function 162
6.2.9 Expansion Processes in hide function 164

6.3 Conclusion . 168

7 Integration among the Scanner, the Parser, and Java Pro-
grams 171
7.1 Java Main Program . 171
7.2 Reading a Z Specification . 172
7.3 Establishing a Connection Amongst Systems 177
7.4 Conclusion . 177

8 A Generic Constants Redefinition 179
8.1 Setting up Questions for Evaluation 179
8.2 Experiments with the Generic Constant Redefinition 180

8.2.1 Experiment 1: bbook.tex 183
8.2.2 Experiment 2: bbook map.tex 186
8.2.3 Experiment 3: bbook uni.tex 186
8.2.4 Experiment 4: bbook map uni.tex 189
8.2.5 Experiment 5: fDomRan.tex 190
8.2.6 Experiment 6: fEmpty.tex 191
8.2.7 Experiment 7: fEmptyImpl.tex 192
8.2.8 Experiment 8: fFirst.tex 192
8.2.9 Experiment 9: fHead.tex 194
8.2.10 Experiment 10: fHeadFunc.tex 195

6

8.2.11 Experiment 11: fMaxComSubSeq orig.tex 196
8.2.12 Experiment 12: fMaxComSubSeq 1.tex 199
8.2.13 Experiment 13: fMaxComSubSeq.tex 200
8.2.14 Experiment 14: fMonoSeq 1.tex 200
8.2.15 Experiment 15: fMonoSeq.tex 201
8.2.16 Experiment 16: fSwap.tex 202
8.2.17 Experiment 17: fUniqSeq.tex 203
8.2.18 Experiment 18: fUniq1Seq.tex 205
8.2.19 Experiment 19: fUniq2Seq.tex 206
8.2.20 Experiment 20: tn.tex 207
8.2.21 Experiment 21: tnImpl.tex 208
8.2.22 Experiment 22: fFileStorage.tex 208
8.2.23 Experiment 23: fSet.tex 209

8.3 Evaluation of Generic Constants Redefinition 210
8.3.1 Evaluation of the #1 Question 211
8.3.2 Evaluation of the #2 Question 214
8.3.3 Evaluation of the #3 Question 217

8.4 Conclusion . 219

9 A Schema Calculus Expansion 221
9.1 Setting up Questions for an Evaluation 221
9.2 Experiments with the Schema Calculus Definitions 222

9.2.1 Experiment 1: expandingschema 1.tex 224
9.2.2 Experiment 2: expandingschema 2.tex 227
9.2.3 Experiment 3: expandingschema 3.tex 228
9.2.4 Experiment 4: expandingschema 4.tex 229
9.2.5 Experiment 5: expandingschema 5.tex 231
9.2.6 Experiment 6: expandingschema 6.tex 232
9.2.7 Experiment 7: expandingschema 7.tex 233
9.2.8 Experiment 8: expandingschema 8.tex 233
9.2.9 Experiment 9: expandingsch2 4.tex 234
9.2.10 Experiment 10: expandingsch3 1.tex 235
9.2.11 Experiment 11: expandingsch3 2.tex 236
9.2.12 Experiment 12: expandingsch3 4.tex 236
9.2.13 Experiment 13: expandingsch4 1.tex 237
9.2.14 Experiment 14: expandingsch4 2.tex 238
9.2.15 Experiment 15: expandingsch5 1.tex 238
9.2.16 Experiment 16: expandingsch5 2.tex 239
9.2.17 Experiment 17: expandingsch6 1.tex 239
9.2.18 Experiment 18: expandingsch6 2.tex 240
9.2.19 Experiment 19: expandingsch7 1.tex 240

7

9.2.20 Experiment 20: expandingsch8 1.tex 241
9.2.21 Experiment 21: expandingsch8 2.tex 241
9.2.22 Experiment 22: expandingsch8 3.tex 242
9.2.23 Experiment 23: expandingsch8 6.tex 242

9.3 Evaluation of Schema Calculus Expansion 243
9.3.1 Evaluation of the #1 Question 243

Failed Experiments . 244
expandingsch7 2.tex 244
expandingsch3 10.tex 245

Impossible Specifications to be Expanded 246
expandingsch1 20.tex 246
expandingsch6 3.tex 247
expandingsch6 4.tex 247
expandingsch8 4.tex 247

9.3.2 Evaluation of the #2 Question 248
Case In-Sensitive in SAL 250
A Range of Numbers 253
A Mismatch in the Function Application 254
Redeclaring State or Global Variables 254

9.3.3 Evaluation of the #3 Question 255
9.4 Conclusion . 257

10 Conclusion and Future Work 259
10.1 Thesis Summary . 259
10.2 The Main Contribution of Our Research 260
10.3 Relating Research Outcomes to Research Objectives 261
10.4 Future Work . 262
10.5 Finally . 263

A The SAL File of Unique Allocator Specification 270
A.1 The SAL File of The Original Specification 270
A.2 The SAL File of The Fifth Abstract Model 271

B The Counter-Example of The Fourth Abstraction 272

C Full Z Specifications from Related Chapter 274
C.1 shop.tex . 274
C.2 telephonenetwork.tex . 276
C.3 hotelspecguestcomps.tex . 277
C.4 club horz.txt . 278
C.5 counterMod4.tex . 279

8

C.6 uniqueAllocator.tex . 279
C.7 carspark.tex . 280
C.8 birthdaybook.tex . 280
C.9 paperexample.txt . 281

D The States Animation of telephonenetwork.tex 283

E JFlex Specification: Lexer.flex 287

F BYACC/J Specification: Parser.y 305

G fHead.tex and output fHead.tex 327

H expandingschema 2.tex and its expanded schema 328

I expandingsch2 4.tex and its expanded schema 330

J expandingsch5 2.tex and its expanded schema 331

K expandingsch6 1.tex and its expanded schema 332

L expandingsch7 1.tex and its expanded schema 333

9

List of Figures

2.1 φ holds in the next state on a path 40
2.2 φ eventually holds on a path 40
2.3 φ always (globally) holds on a path 41
2.4 φ holds until ψ holds on a path 41
2.5 The directed graph of an LTS 42
2.6 Abstraction based on equivalent classes 48
2.7 Transition system of the abstract model 57
2.8 Error message from Z2SAL . 72

3.1 The Architecture . 77

4.1 The JFlex scanner generator 95

6.1 Finalising expansion process 167
6.2 Finalising expansion process (continued) 168
6.3 Finalising expansion process (continued) 169
6.4 Finalising expansion process (continued) 170

7.1 Support for Model Checking Z Specifications 172

10

List of Tables

2.1 Equivalence of LTL and King’s notation 44
2.2 Model checking with verbosity 3 on original specification . . . 55
2.3 Model checking with verbosity 3 on abstracted specification . . 56

3.1 Equivalence of temporal logic notations 80
3.2 Execution Time of Embedded Theorem Experiments 85
3.3 Details of Execution Time of Experiment #6 86

4.1 A list of unspecified Z rules 100
4.2 Precedencies and associativity of Z operators 102

8.1 Several Experiments with the Redefinition System 181
8.2 Summaries of Experiments . 182
8.3 Frequent Usages of Generic Constant (GC) Names 213
8.4 Summary of a Usage of Generic Constant (GC) Names 214
8.5 Summaries of Checked Files 216
8.6 Sizes of Z Specifications . 218

9.1 Details of Several Experiments with the Expansion System . . 222
9.2 Several Experiments with the Expansion System 243
9.3 Other Experiments with the Expansion System 249
9.4 Other Experiments with the Expansion System (continued) . . 250
9.5 Sizes of Z Specifications . 256
9.6 Sizes of Z Specifications (continued) 257

11

Chapter 1

Introduction

This section introduces this research briefly which relates to the Z language,
research motivation, objective and contribution, a structure of our thesis and
publications of the research.

Our current life is surrounded by computer applications. Although those
applications are used in almost every aspect of our life, how they perform
their jobs accurately, particularly one which relates to safety-critical system
is a need. This requirement related to formal analysis.

Formal analysis can be staged into three parts [26]: modelling which uses
formal specification, specifying which specify properties in formal language
and verifying which checks properties formally. A brief description below
gives us methods to write specifications in order to model systems.

Previously, natural language and graphics were used to draw systems
flowcharts and to write specifications. However, natural language is inade-
quate for writing specifications due to its imprecision. An alternative, which
was the use of a programming language to write a specification, is equally
flawed in that it forces one to work at the wrong level of abstraction [56].

A method for writing a specification should be precise enough as well as
implementation free. Moreover, if the method is equipped with a proof the-
ory, it can help us to describe properties of specifications easily by conducting
’rigorous arguments’ [56].

It raised a need for a certain level of formality and for specifications
to be written at a suitably high level of abstraction. Thus, a mathematical
notation is used, which is based on the set theory, logic, function, and relation
to write those specifications. Notations used to do this are called specification
languages or formal methods.

Z is one example of formal languages and its use in academia and industry
has increased extensively. It is because Z is used successfully to address a
large variety of problems and the international standard was also designed

12

for this language [56].
The set theory, on which Z is based, is adequate to build a more complex

data structure, which is necessary in designing a specification [56]. As a
formal language, the use of Z could make a specification more formal, precise,
and free from ambiguity. In addition, it allows a specification to be analysed
mechanically [35].

Designing a specification of a system, which is expected to take consid-
erable time and effort in the software engineering, will ease a verification of
the system in the early stage of its development and could avoid high cost in
its implementation and test phases, if the specification is designed correctly
[56, 73, 75].

Therefore, a specification is crucial for a system, especially the one that
relates to the safety of property and life [56]. Indeed, although their use is
not widespread in every sphere, formal methods are recommended by many
standards bodies concerned with Safety-Critical systems [73].

Following is a discussion on verification. However, there is a lack of tools
for this language, especially in model checking Z specifications. Although
the Community Z Tools (CZT) project is developing continuously a set of
open source tools for Z, its progress is slow [21].

There are many causes of the shortage of Z tools, which mostly are related
to its language and semantics, such as its inherent expressiveness, and the
difficulty in deciding effectively any theorem about its specifications [21, 35].
Malik et al argue that with less tools support for Z specifications, only a few of
them can be used in validating the intended meaning of such Z specifications
[48]. Jackson argues that the richness of this language might be the issue in
verifying it [35].

It is found that model checking can be used to verify Z specifications as
model checking is a verification method that is an automatic, model-based,
property-verification approach, intended for use on concurrent, reactive sys-
tems, and is stemmed as a post-development methodology [35, 34]. One does
not need expertise in mathematical disciplines to model check such specifi-
cations [13].

Model checking performs a verification process starting with a model
which is described by a user, and discovers whether the hypotheses asserted
by the user are valid on that model. This uses an exhaustive searching of the
state space of such a system using suitable graph algorithms [13, 54]. If the
model checker cannot satisfy those hypotheses, counter-examples consisting
of execution traces will be produced. This automatic generation of counter
traces is an important tool in the systems design and debugging [13].

Furthermore, if such a model checker were to exist for a Z specification,
it has drawbacks. The two principle ones being that it only applies to finite

13

state systems, and even then these cannot be too large since it can suffer
from state space explosion problems [13, 54, 51]. Such an explosion is shown
to be the most challenging problem in model checking [13, 54, 51].

Smith and Winter [68] report that a Z specification can consist of complex
predicates as well as a large number of or even infinite state spaces. As a
result, run out of memory could be experienced. Our experiments such as
ones which are given in Appendix C.2, C.3 and ones which are discussed
in this thesis are examples of that error. As a result, researchers such as
Jackson, Smith and Winter [35, 68] proposed an approach of abstraction to
a Z specification.

The less supporting tools for the Z language and/or mentioned issues
above in mind, makes researchers suggest an alternative method, which is a
quick approach to reuse and adapt the existing tools. This quick approach
has advantages [10]: users can continue to work with existing tools that they
have known and cost to reuse existing tools is less expensive than to build
new tools.

Researchers at the University of Sheffield implemented the Z2SAL trans-
lator, which uses the SAL model checker to model check Z specifications. A
brief introduction to Z2SAL and SAL are given in Section 2.5.1 on page 61
and Section 2.4 on page 49.

On the other hand, there exist several model checking techniques for inte-
grations of the Z language and other languages. For example, model checking
CSP-Z by using FDR (Failures-Divergences Refinement) model checker [52].
This language is a semantical integration of both languages in a way that
CSP is responsible for the concurrent of a system and Z handles data struc-
ture of the system [52]. Mota and Sampaio [52] reuse and link theories and
tools to model check CSP-Z specifications. Using the integrated language,
they have shown that the language is more expressive power and flexibility
than singular approaches [52]. Their work has major limitation on the use
of CSPM data types and channel expansion [52].

Other example is model checking for combination of Z and Statechart
[10]. Bussöw uses the existing tool, SMV, to model check specifications.
Several translators or adaptors were developed to support Z, Statechart and
input language of SMV (Symbolic Model Verifier).

Another example is Circus [26] which is a model checking and theorem
prover for programs in combination of model based specification language Z,
the process algebra CSP (Communicating Sequential Processes) and speci-
fication statements of refinement calculi. Freitas built Circus from scratch
due to the difficulty to find suitable existing verification tools which support
both languages. Another reason is Freitas intends to do both model check
and theorem proving.

14

In line with the quick approach, our research relates to Z2SAL which is to
support model checking for Z specifications. Based on our experiments with
Z2SAL, Z2SAL supports many tags of Z, but not all. Furthermore, several
of the generated SAL could not be verified or simulated by the SAL tools.

The following section describes our research motivation.

1.1 Research Motivation

One tag that is not supported by Z2SAL is a generic construct. Z2SAL could
not translate specifications that consist of generic constructs and error files
were generated instead. Our finding is that Z2SAL cannot recognize a generic
constant which is one of generic constructs, though it has been declared in
the generic constant definition; Z2SAL treated a generic constant as a new
identifier.

Z2SAL has not encountered any generic construct on Z specifications
beforehand, so this part of Z has not been implemented yet. Since then, our
assumption is that the current Z2SAL does not support a translation of either
a generic constant or a generic schema. Although, Z2SAL could implement
them some time during our research on this redefinition of a generic constant.

Based on our exploration on the SAL literature itself, a generic form
cannot be found either. Thus, another assumption is that Z2SAL does not
support a generic constant in order to be consistent with the SAL language.

Other Z tags to be considered are tags which relate to schema calculus.
Z2SAL supports a translation of several schema calculus such as a schema
inclusion, ∆ operator, and Ξ operator, but they must be specified either
vertically or horizontally in a schema. However, if a new schema is specified
as being constructed from earlier schemas, Z2SAL does not support this
schema construction. Thus, it is assumed that Z2SAL does not support
schema calculus.

Generic constants and schema calculus are decided to be studied further
afterwards to support Z2SAL so this tool can translate both of them.

1.2 Research Objective and Contribution

Being specified using generic parameters, a generic constant is commonly
used in formulating mathematical tool-kit operators [2], in which these op-
erators do not depend on the particular type of elements in its construction
[69]. Another usage of a generic constant is to specify a general notion which
is used frequently in a system.

15

In a case there is no generic constant, several equivalent functions should
be formulated because each function is dedicated to one set of types of pa-
rameters; it is a redundant work. Thus, a generic constant is quite beneficial
to a Z specification.

Thus, our objective is to implement a tool which will redefine a generic
constant definition to an equivalent axiomatic definition based on usages of
this generic constant. This redefinition is called an actualization process, in
which a generic type of a parameter will be actualised to its actual type of
a parameter. Our approach originated from a similar behaviour between a
generic constant definition and an axiomatic definition: they declare a global
variable inside a Z specification.

Another objective is to implement a tool to construct a new schema by
expanding other schemas, in which they are connected by schema operators.
The constructed schema is used commonly to define a more complex, modular
and a huge specification of a system. Schemas that have been specified can
be reused to specify a new schema. It is since every schema has its distinctive
operation in a specification, called a ’schema separation’ [56].

Both these tools are implemented in a system which is called support for
model checking Z specifications. This system is our contribution to broaden
the applicability of model checking Z specifications. JFlex [43], BYACC/J
[33], and Java language [19] are software which were used to implement our
system.

The following section is a thesis structure. It will describe briefly the
whole picture of this thesis.

1.3 Thesis Structure

This thesis is divided into three parts. The first part relates to an intro-
duction to this research, backgrounds of this thesis and previous research
related to our research. The second one discusses our research, which begins
with descriptions of the research and more explanation about it. The last
one gives our experiments with the implemented system, evaluations on it,
discussions about the results and future works.

The structure of this thesis is as follows:

• Chapter 1 Introduction, which introduces problems related to this re-
search. This section is based on the previously published abstract or
paper ([65, 66, 64]). It discusses also our research motivation, objective
and contribution and the structure of this thesis. The last discussion
on this chapter is publications related to this research.

16

• Chapter 2 Background consists of five literature sections, beginning
with formal method, the Z notation, followed by model checking, the
SAL tools, and the Z2SAL translator. Section 2.1 on page 20 offers a
brief introduction to formal method and gives several formal languages
briefly. Section 2.2 on page 22 describes briefly the Z notation, which
begins with the introduction to the Z language, components which Z
is based on, operator schemas, an example of a Z specification, some
available Z tools and ends with a conclusion. Section 2.3 on page 39
relates to model checking; it contains temporal logics, which are used
to formulate a theorem to prove that the related system satisfies this
theorem. It also describes binary decision diagram, which is used by a
model checker as a search strategy in verifying a theorem. The section
before the last discussion on this section is about abstraction which
offers a discussion about applying this technique to a Z specification
(see 2.3.4 on page 47). Conclusion ends this section. The next sec-
tion relates to the SAL tools. It begins with a glance at SAL, SAL
components, the SAL environment and conclusion. The last section
is about the Z2SAL translator which can be grouped as one of the Z
tools. This section introduces this translator and gives a brief descrip-
tion about the current Z2SAL and two unsupported Z aspects. Most
part of this chapter is based on the previously published abstract or
paper ([65, 66, 64]).

• Chapter 3 Translation of Embedded Theorems in Z Specifications: A
Proposed Method, which discusses our proposed method in translation
of embedded LTL theorems in a Z specification.

• Chapter 4 Implementing A Z Scanner and Parser, it consists of dis-
cussions on how our Z scanner and parser were implemented. These
two generators are preliminary processes before a redefinition of generic
constants or an expansion of schema calculus is performed. Both gen-
erators were also included in our paper ([63]).

• Chapter 5 Redefining Generic Constants discusses a design and imple-
mentation of a redefinition of generic constants. Several parts of this
chapter can be seen in [63].

• Chapter 6 Expanding Schema Calculus discusses a design and imple-
mentation of a schema calculus expansion system. Several parts of this
chapter can be seen in [63].

• Chapter 7 Integration among the Scanner, the Parser, and Java Pro-
grams; describes our method to integrate our separate systems as dis-

17

cussed in the earlier chapters. For this purpose, another Java program
has been built. This Java program which is named Z Preprocessing Tool.java

is our main program.

• Chapter 8 A Generic Constants Redefinition, discusses further our re-
definition system. This chapter includes several experiments with this
system and an evaluation of this system. Several parts of this chapter
can be seen in [63].

• Chapter 9 A Schema Calculus Expansion, discusses another type of our
support for model checking Z specification which is support for schema
calculus. Several experiments with this system and an evaluation of
this system are discussed on this chapter. Several parts of this chapter
can be seen in [63].

• Chapter 10 Conclusion and Future Work, which is the last chapter in
this thesis, summarises the thesis and defines some future works.

Several appendices which give details of particular chapters are given
in appendices sections. It contains several sub-sections from A to L.
This thesis was created by using LATEX [74].

1.4 Publications

The following are publications made during this research. They can be either
papers or posters.

1.4.1 Peer Reviewed Journal Paper

There is one journal paper which was produced from this research. This
paper, which title is ”A Pre-processing Tool for Z2SAL to Broaden Support
for Model Checking Z Specifications”, is under publication in AISC. This
paper is an extended version of our conference paper in [63].

1.4.2 Peer Reviewed Conference Papers

Some papers are given as follows:

1. Siregar, M.U. and Derrick, J. Using Abstraction in Model Checking Z
Specifications. In The University of Sheffield Engineering Symposium
Conference Proceeding Vol. 1. USES 2014 - The University of Sheffield
Engineering Symposium, 24 June 2014.

18

2. Maria Siregar and John Derrick. An Investigation to the Use of Ab-
straction in Model Checking Z Specifications. In The 9th Annual South
East European Doctoral Student Conference Proceeding, pages 330-
345, September 2014.

3. M. Siregar, J. Derrick, S. North, and A. Simons. Experiences us-
ing Z2SAL. In Advanced Computer Science and Information Systems
(ICACSIS) Conference Proceeding, pages 225-231, 2014 International
Conference on, October 2014.

4. M. Siregar. Support for Model Checking Z Specifications. In The 4th
IEEE International Workshop on Formal Methods Integration (FMi)
2016 which is part of IEEE 17th International Conference on Informa-
tion Reuse and Integration (IRI), July 2016.

1.4.3 Posters

Several posters were produced as follows:

1. An A1 sized poster whose title is ”Z2SAL” has been submitted to the
Research Retreat of Department of Computer Science, University of
Sheffield on May 23rd, 2013.

2. An A1 sized poster whose title is ”An Investigation to the Use of Ab-
straction in Model Checking Z Specification” has been submitted to
the Research Retreat of Department of Computer Science, University
of Sheffield on May 22nd, 2014.

3. This A0 sized poster which is titled ”Using Abstraction in Model Check-
ing Z Specification” has been accepted to the USE Engineering 2014.

4. An A0 sized poster has been accepted to the York Doctoral Symposium
2015. Its title is ”A Support for Model Checking Z Specifications”.

In the next section, necessary background is described, and it begins with
a brief introduction to formal method.

19

Chapter 2

Background

This chapter describes a brief introduction to formal method, the Z notation,
and a shallow description of some related literature to this study. It also gives
a glance to model checking, the SAL tools, and the Z2SAL translator. Several
examples will be added as they are required. Let us move to formal method
which has been introduced briefly in the previous chapter.

2.1 Formal Methods

A formal method (formal technique) is a mathematical foundation based
method, which can be explained mathematically. It also means that a user
of this method should express his/her descriptions, prescriptions and specifi-
cations formally, which at the end the user is able to reason formally on the
expression [7].

A formal method requires a formal specification language. A formal spec-
ification language has syntax, semantics and proof system which are also
formal [7].

Formal specification languages can be classified into three categories [7]:

• Model-oriented Specification Languages: Use mathematical construc-
tions such as sets, Cartesians, lists, functions, etc. to specify the speci-
fication in a direct way. It results an abstract model specification. The
specification includes model type; invariant properties of model; each
process consists of name, parameters and return values; and pre- and
post- conditions. Languages fall into this category are VDM-SL, Z and
B.

• Property-oriented Specification Languages: Use logical properties of
the specification to express it. It expresses the properties in a declara-

20

tive way. It results an algebraic specification. The specification consists
of two parts: syntax and axioms. For example: OBJ3, CafeOBJ and
CASL.

• Mixed of both model-oriented and property-oriented specification lan-
guages, such as RAISE specification language (RSL).

Several of those specification languages will be described briefly below.
It begins with Z.

2.1.1 Z

Z, which is based on simple set theoretic notions, can handle simple state-
oriented sequential problems elegantly and traditionally [7]. It has also been
extended such that it is able to express concurrency and objects.

Since Z is one of main topics of this thesis, a further description will be
given in a separate section below, though it is not a very extensive discus-
sion. The section will offer several features relate to this formal specification
language.

2.1.2 VDM

VDM stands for the Vienna Development Method. It developed by Cliff
Jones and Dines Bjørner at IBM’s Vienna Laboratory on programming lan-
guage definition in the 1970s [37]. This specification language might repre-
sent the first ’full-fledged’ formal specification language concept [7]. It also
comprises an approach to refine specification into code.

This language was standardized by ISO in the 1990s. It has two syntaxes:
based on ASCII (most of VDM tools) and based on mathematical symbols.

VDM has been used in the development of electronic trading systems,
secure smart cards and the Dutch flower auction systems [37].

2.1.3 RAISE Specification Language (RSL)

RSL has compositionality of object-oriented and concurrency of CSP (com-
municating sequential processes) [7]. It has been extended also with several
features such as timing and duration calculus. RSL is the closest to discrete
mathematics to some extent. It is also able to express the imperative specifi-
cation style and concurrency. It allows for introduction of sorts, postulation
of observer function which are shaped by its axioms. RSL structures its
specification in a modular fashion the same as Z, B, CafeOBJ and CASL.

21

2.1.4 CSP

Communicating Sequential Processes is a language for describing patterns of
interaction [59]. This language is based on an elegant, mathematical theory,
and a set of proof tools. Fortunately, literature on this language is quite
extensive.

It is a member of the family of mathematical theories of concurrency
known as process algebras, or process calculi, based on message passing via
channels. Thus, it could be categorized as property-oriented specification
language.

A 1977 paper by Tony Hoare described CSP at the first time [32]. It
then evolved substantially matured by its practical application in industry
as a tool for specifying and verifying the concurrent aspects of a variety of
different systems. For example, T9000 Transputer and a secure e-commerce
system. Its theory is also being the subject of active research, including work
to increase its range of practical applicability.

2.1.5 Conclusion

As described above, formal method offers formal technique in designing a
specification of a system which can be reasoned formally later. There are
many projects applied to this method. However, formal method is not a
panacea for all of our problems. Although it could detect failure in a speci-
fication in an early stage of a development of a system and thus could avoid
loss of life and money, it should be applied appropriately.

Let us move to the further discussion on Z.

2.2 The Z Notation

Z is a notation to describe computing systems [38]. The terminology of com-
puting systems is used since Z is used to model both hardware and software.

The Z notation, which is based on set theory and first-order predicate
logic, is a ’model-based notation’ [38]. A system will be modelled by repre-
senting its state.

The scope of the set theory is a standard set operator, set comprehensions,
Cartesian products, and power sets. There are also other contents such as
the Z relation, the Z function, the Z sequence, and the Z bag. Together,
they develop one aspect of Z, which is based on set theory and the first-order
predicate logic. [75].

The second aspect is how to organize structurally the mathematics in a
specification [75]. A particular novelty is the use of what are called schemas

22

which are used to collect mathematical objects of Z and their properties.
Specifically, the state of a system and its changes are described in a schema
language, as well as its properties and refinement. Z can be differentiated
with other formal notations by the existence of schemas [38]. Due to its
unique type, an algorithm for type checking every mathematical object can be
written, and therefore there are type-checking tools to support the practical
use of Z [75].

The third aspect is the usage of natural language [75]. Mathematics
objects are related to the real world by means of natural language. Therefore,
a Z specification is a mixture of a formal part, which describes precisely
the system, and the informal text in natural language, which makes the
specification comprehensive and easy to read.

The last aspect is refinement [75], which is the process of moving from
an abstract design to a more concrete one. In Z, refinement is supported by
constructing another model (in Z), in which particular design decisions have
been made and is thus closer to an implementation.

In addition to Z language and mathematical tool-kit, Z has schema
calculus which serves as rules for combining individual schema into a com-
plete specification [3].

Z is not a programming language, so it is not an executable notation
(although there is an executable subset). In order to allow functionality of Z
to work properly, a translation of a specification into an executable form is
needed and that process is called ’animation or prototyping ’ [73].

Z was conceived in the late 1970’s, and developed through the 1980’s
in collaborative projects between Oxford University and industrial partners,
such as IBM and Inmos (a semiconductor producer) [38]. It has been applied
successfully on several large projects by the above institutions on CICS sys-
tem, a series projects by Praxis Critical Systems and the security verification
of Mondex electronic purse by NatWest Bank. In 1989, the first Z reference
manual [69] was widely published. Meanwhile, an international Z standard
was completed in 2002.

The main elements of Z, beginning with sets, will be described as follows.

2.2.1 Sets

In mathematics, a collection of similar objects is called a set; For example,
the collection of post graduate students who belong to the VT research group,
a collection of books about the Z notation, or a collection of nursery rhymes.

There is another method to describe a set, which is by listing all its
contents inside curly brackets. For example: {Chris, Sina, Jo, Victor, Maria},
{the way of Z: practical programming with formal methods, an introduction

23

to formal specification and Z, Z: a beginner’s guide, using Z: specification,
refinement, and proof}, or {Mary had a little lamb, Twinkle-twinkle little
star, Star light star bright}. Each of these examples presents the same set
as given in the first method above to define a set. In the second method,
the order of members is not important. Thus, they represent the same set
though the order of their members is different, as long as their members are
the same. In addition, it is impossible to refer to the first, the last, or any
order of the contents of set. Moreover, elements in a set are not repeated,
thus to have repeated elements in a collection of objects, a sequence or a bag
can be used to define it. Both a sequence and a bag are included also in Z.

However, the second method to describe a set is not practical, especially
the set who has many members. For such a case, the easier method is simply
to give them descriptive names. Those sets can be defined as follows:

• VTGroup - a set of post graduate students on VT lab

• ZBooks - a set of the Z notation books

• NURSERYRHYMES - a set of nursery rhymes

Furthermore, some sets have been assigned specific names, such as ”Z”
for a set of all whole numbers, ”N” for a set of natural numbers, ”∅” for
a set with no members, and others. Based on these default names, objects
are classified into a set according to their types. For example, all integers
can be classified into the set called ”Z”, and a floating-point number cannot
be added into that set since the latter number has a different type with the
set ”Z”. Due to this feature, these types can be used to detect errors and
inconsistencies in a Z specification [49].

Other aspects of a set will be given in this thesis, and will be described
as they appear. The next is a glance of the First-Order Predicate Logic.

2.2.2 The First-Order Predicate Logic

It is assumed that the reader is familiar with the propositional logic. Be-
cause of the limitations of the propositional logic, most specifications use the
predicate logic which is also called the first order logic.

For example, a proposition in English taken from [34]: ”Every student
is younger than some instructors”, will be defined as an atom, say p, in
the propositional logic. However, ’the finer logical structure’ of this English
proposition is not visible in this framework. This English proposition will
be presented as the same as if it is changed into: ”Every student is younger
than every instructor”.

24

By using the predicate logic, both these English propositions can be de-
fined differently and finely. Thus, if there are predicates as follows:

S(x) : x is a student
I (x) : x is an instructor
Y (x , y) : x is younger than y

, then the first English proposition will be formulated as:

∀ x(S(x)⇒ (∃ y(I (y) ∧ Y (x , y))))

On the other hand, the second one is formulated as this:

∀ x , y(S(x)⇒ ((I (y)⇒ Y (x , y))))

Thus, the predicate logic is more expressive than the propositional logic,
which is its ancestor. Due to this expressiveness, propositions in the predicate
logic are more complex than those in the propositional logic [34].

As in the propositional logic, there are two properties of an object in the
predicate logic. First is denoting the objects particularly. For example, a and
p (referring Alan and Patrick), n(a), h(x,y), and others that are considered
as objects. These all objects are called terms.

Terms constitute variables, constant symbols and functions applied to
those [34]. In the Backus Naur Form, terms are:

t ::= x | c | f (t , . . . , t)

where x ranges over a set of variables var, c over a nullary function symbol
in F, and f over those elements of F with arity n ¿ 0.

The Backus Naur Form (BNF) for the predicate logic is [34]:

φ ::= P(t1, t2, . . . , tn) | (¬ φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (∀ xφ) | (∃ xφ)

where P ∈ predicate symbols of arity ≥ 1, ti are terms over function symbols
and x is a variable. The binding priorities for those operators are:

• ”¬ ”, ”∀” and ”∃” bind most tightly;

• Then ”∧” and ”∨”;

• Then ”→”, which is right associative.

Second is denoting truth values or formulas. Every term has its truth-
value as well as terms combined with at least one operator.

The following sub-section offers brief introductions to several schema op-
erators in Z. All these operators are implemented in our system which will
be discussed later.

25

2.2.3 Schema Operators

The description of schema operators in Z is followed by examples. It begins
with the disjunction.

Disjunction

One schema can be combined with another schema by using the disjunction
operator ”∨”. This operation can be performed if both schemas have the
same types for all variables whose names are the same. This is a precondition
for disjunction. A resultant schema will have all declarations from both
schemas. Not only is the declaration part obtained, but the resultant schema
also gets also predicates from both schemas. However, the predicates are
formed from a combination of predicates from the first schema and the second
one by a disjunction operator.

An example taken from [57] is given as follows:

S
x , y : N

x + y = 2

T
y, z : N

y + z = 4

If a new schema U is specified as U =̂ S ∨ T, then U has the below form:

U
x , y, z : N

x + y = 2 ∨ y + z = 4

The above schema is a resultant schema from a combination of the schema
S and T by using a disjunction operator.

Conjunction

Another schema operator is conjunction; its behaviour is similar with a
schema inclusion operator. By using the same examples as above, a defi-
nition of S ∧ T can be used to generate another new schema, V:

V
x , y, z : N

x + y = 2 ∧ y + z = 4

Implicitly, each line of a predicate part is separated by an AND operator.
This operator has the operation which is similar with previous operator (OR).
The difference is on how predicates are combined. In this operator, each
predicate part is joined with a ”∧” operator.

26

Negation

Applying this operator to a schema yields the same schema but in a negated
constraint or predicate. Thus, if there is the S schema which was taken from
[75] shown as follows:

S
a : A; b : B

P

The negation of S, ¬S, is as follows:

a
: A; b : B

¬ P

However, before a predicate part of a schema can be negated, this operator
requires the schema to be in a normalised form. For example: if the above V

schema is negated, normalisation will first occur in this schema.
Normalisation is a method to rewrite a schema so that all constraints

are listed in a predicate part. These constraints, named implicit predicates,
restrict the declared variables’ values that these values are obtained from
subsets of the complete types. Furthermore, the declaration part of this
schema will be modified to its canonical form [75].

A canonical form specifies a unique representation of every mathematical
object. The canonical declaration is a declaration of pure types, known as a
signature [2]. Moreover, a predicate part which has been added with implicit
predicates is called a property of a schema. A schema which is written in
terms of a signature and a property is a normalised schema.

If a normalisation is not performed, several unacceptable results might
be obtained when a negation is required to be performed. For example: a
declaration of a function from A to B in a schema can be rewritten into
its abbreviated form which has the type of the set of the pairs of A and
B. Moreover, predicates to express the functionality of this function will be
added also into the predicate part of this schema. Then, a negation oper-
ation requires us to negate predicates on the predicate part. As mentioned
earlier, as a default, each line of a predicate is connected by a conjunction
operator. Thus, when these predicates are negated, conjunctions are changed
into disjunctions. Inevitably, such a process might produce predicates which
do not express the functionality of the previous function.

Several examples taken from [56] showing how normalisation works can
be seen as follows:

27

OneToFortyNine =̂ [n : 1..100 | n < 50]

Its normalised from is:

OneToFortyNine =̂ [n : Z | 1 ≤ n ∧ n ≤ 100 ∧ n < 50]

If this schema is negated, its negated schema might be as follows:

notOneToFortyNine =̂ [n : Z | 1 > n ∨ n > 100 ∨ n ≤ 50]

If normalisation is not performed before a negation operation, the negated
schema is:

FiftyToHundred =̂ [n : 1..100 | n ≥ 50]

This result is not expected as a negation from the first schema. This simple
example makes the previous function problem is clearer.

Implication

This operator is rare to use in a schema calculus definition. Implication on
schemas results a merged schema in which the signatures are merged, and
the properties are joined by a logical implication [2].

As formulated in propositional logic, an implication operator is equivalent
to a disjunction between a negated form of the left hand side proposition and
the right hand side one:

S⇒ T ≡¬S∨ T

Thus, there are two options in implementing a schema implication. The
first option is to use directly this operator, whereas the second is to use its
equivalent form.

If the latter option is used, the merged schema is obtained by negating the
first schema and combining it with the second schema by using a disjunction
operator. The first schema must be normalised before it is negated.

Bi-implication

This operator merges two schemas by merging their signatures and joining
their properties by using a logical equivalence. As with the previous schema
operator (implication), there are also two options for its implementation.

The first option is to use this operator to combine two schemas. The
second one uses an equivalent proposition of the bi-implication operator. If
the second option is used, the equivalent form of S ⇔ T is (S ⇒ T) ∧ (T
⇒ S). The operational procedure of the second option is given follows:

28

• Follow procedure of an equivalence form of each implication form as
given in previous operator.

• Combine them by using a conjunction operator.

Renaming

Another operation in a schema calculus is renaming, ”/”. By using this
operation, variables can be renamed explicitly [57]. The way a user uses this
operator is based on this definition: writing the schema name followed by a
sequence of pairs of new name/old name which is put inside a pair of square
brackets.

If there is a definition of S[a/x], which S is the same as the schema
used in the disjunction operator, and this operation is used to define a new
schema, let us say S ’, then S ’ is:

S ′

a, y : N

a + y = 2

As can be seen from the above schema, the new schema S ’ is obtained
from S [57] by first renaming all xs in the schema S into a and declaring
the renamed variable as well as other variables of the schema S in the new
schema S ’. Afterwards, a predicate part of the renamed schema is also put
in the new schema, but the renamed variables in this predicate part must be
considered.

This operator works by finding schema whose name is used in the renam-
ing operation. Afterwards, all of its variables and predicates will be recalled.
Having this information, all occurrences of old variables will be tracked and
be changed or renamed to the new specified name of variables in the renam-
ing operator. This action is reflected also in usages of the old variables in
the predicate part.

Hiding

Hiding, ”\”, is another example of a schema operation. This operation can
erase variables that are less relevant to a particular system. A list of variables
which is not interesting any more will be declared after a symbol ”\”. Decla-
rations of these variables will be erased from the schema and their existences
in the predicate part will be quantified existentially there. Thus, another
name for schema hiding is schema existential quantification [75].

29

Using the same schema example as used on the above disjunction, if there
is a definition of S\(x) which specifies the new S ’’ schema, this new schema
is as follows:

S ′′

y : N

∃ x : N • x + y = 2

Since x is a natural number typed variable which its minimum value is 0, the
suitable value for y can be found. Therefore, x can be erased permanently
from the predicate which gives us a compact schema as follows:

S ′′

y : N

y > 0 ∧ y ≤ 2

For the translation purpose, it seems that this operator is quite difficult to
operate, especially for finding the right value for the quantified variable. It
requires user guidance to perform the task.

Schema Composition

A schema composition of two schemas, S o
9 T, is obtained by passing the

output of S as an input to T. This operator consists of several processes as
follows:

• All matched variables that are primed in S and non-primed in T are
renamed to common names.

• Join these two renamed schemas by using a schema conjunction oper-
ator.

• Hide all common variables

• Simplify the schema

By using the same S schema as used for disjunction on the earlier sub-
section, let us specify the new W schema as follows:

W
x ′, z : N

x ′ + z = 6

If both schemas are operated by a schema composition operator as W o
9 S,

the new X schema as a result of this operation is as follows:

30

X
y, z : N

z − y = 4

The above schema is obtained after simplification performed on a predicate
part of this schema.

Quantification

By using this operator, a user can quantify over several variables of a schema
while other variables are unchanged. There are two types of quantification
operators. The first operator is a universal quantification ”∀”, whereas the
second one is an existential quantification ”∃”.

If the same S schema as the one used for disjunction is used here as an
example and it is copied as shown below:

S
x , y : N

x + y = 2

then, a universal quantification on the x variable is specified as the new
schema, C, as follows:

C
y : N

∀ x : N • x + y = 2

and an existential quantification on the same variable as above is specified
as the new D schema as follows:

D
y : N

∃ x : N • x + y = 2

The above C schema has a predicate that always returns false. It is since
there is no y that makes the addition of it to every natural number get 2.
On the other hand, the D schema, which looks like the S ’’ schema in the
hiding operator, can be simplified. The simplified schema is similar to the
schema given for the hiding operator. Indeed, an existential quantification is
also called hiding [75]; to hide variables from a declaration part of a schema.

31

2.2.4 A Z Notation Example

To know Z better, one simple example of our experiments, club.tex, was
taken. This specification describes a club that somebody can join as a mem-
ber and then can leave it.

In a similar fashion to programming languages, every variable or constant
is defined as having a type. Moreover, suppose at the time of writing the
specification the precise value for such a variable is not necessary or in other
words focus is on its essential, that variable could be defined as a basic type,
which is written within the square brackets in the Z notation [57, 49]. This
feature is called abstraction [49] to abstract the details that are not essential
for a specification.

In the given specification there is only one basic type which is PERSON. No
further details are known about PERSON as for this specification, they are not
relevant. Furthermore, this type can be used throughout the specification to
declare other variables with that type. Thus, the scope of a basic type or a
given type is global in that system. The declaration of this type is made as
follows:

[PERSON]

In this specification, a free type, MESSAGE, with only one value, OK, is
defined. By declaring a variable as a free typed variable, it can ease a user
to describe recursive structures, such as list or trees [69]. Another usage of a
free typed variable is to enforce that variable as a global constant or variable
[73]. In our example, there was a declaration as follows:

MESSAGE ::= OK

Variables and predicates will be discussed later on, and these are combined
into a structure called a schema. In this thesis, a schema is drawn as an
open box and is given a name. It has two partitions separated by a horizontal
line. Written as such, a schema is defined vertically, and there is an equivalent
horizontal definition, which is written with no box. This specification but in
horizontal definition can be seen in Appendix C.4.

In the state schema of our example, members variable was declared as
a set of PERSON, which size must be less than or equal to 3. Since then, one
specific PERSON can be referred at some time as needed [49].

Based on these declarations, each declaration has two parts. First is the
word right after the colon, let us say rhs, which contains a type or the name
of a set. Second is the left hand side word, say, lhs, which is a name of the
set, called variable. Thus, a declaration has a form as follows:

lhs : rhs

32

It is needed to define a maximum number of elements set can hold in order
to have every set still is in the finite state. The scope of one variable is
only inside the schema where it is declared, exception is for state variables.
Variables of a state schema are imported into other schemas so they can be
used in the specification globally. Variables can change their values which
means that they can change system states [57]. A state can be imagined as
the contents of a system’s memory.

The relationship between variables are defined by writing predicates and
they can act as system invariants [57] if they are defined in the state schema.
In our running example, the system invariant is ’the size of members must
be less than or equal to 3’. In this predicate, the cardinal operator, ”#”, was
used to count how many elements a set has. As these explanations, our first
schema, the state schema, which was given a name, Club, is as follows:

Club
members : PPERSON

#members ≤ 3

Everything which are declared above a horizontal line are state variables
or objects and below this line are state predicates [57]. One possible state
for our state variable is:

members == {person1, person2, person3}

As a comparison, if that state schema is defined horizontally, it can be
defined as:

Club =̂ [members : PPERSON |#members ≤ 3]

Variables within a state schema must be initialized in an initial schema to

assert that system invariants are fulfilled [57]. In our specification above the
Club specification, members will be initialized to empty set. Furthermore,
this initial schema includes a declaration Club’ which is known as schema
inclusion. Schema inclusion is one of decoration in Z. Doing so will benefit
one to [49]:

• Concentrate on just a few things at a time

• Keep schemas small and simple

• Re-use pre-written schemas in different contexts or situations

Let us go back to our specification, the above declaration means that
this schema has all variables and predicates, which are declared previously

33

in the Club state schema. Moreover, that variable was ended with ′, which
means variable after operation. Thus, it means members after this schema is
operated will have a value of an empty set.

Thus, our initialisation was given as follows:

Init
Club′

members′ = ∅

In addition to state and initialisation schemas, a Z specification has also
operational schemas. By using these schemas, it enables us to report on a
system’s state and describe changes in the state schema [49].

Our specification had two operational schemas. They will be described
one by one in the following paragraphs.

First, the JoinOK schema was operated to allow someone to join the club.
This schema might change the values of state schema variables, which is
indicated with a ∆ symbol preceding Club in the declaration part of this
schema. The ∆ symbol is other decoration in Z. Another decoration but
does not exist in this example is Ξ symbol which will not change states of a
system.

There was also an input variable, name?, whose type is PERSON which is
a person who wishes to join the club, an output variable, sumC!, of type
natural number, which will record how many members this club has, and
another output variable, reply!, with type MESSAGE. It is a convention on Z
that every variable which is ended with symbol ? is an input variable and
which is ended with symbol ! is an output variable.

In the predicate part of this schema, the person who wants to join this
club should not be a member of that club. This is presented as a not member-
ship operator, ” 6∈”. Furthermore, the number of persons in the club should
not exceed the maximal number. If both of these conditions are met, then
that person is added to that club. The set union operator, ”∪”, is used to
do this addition, which will unite one set and another set in a bigger set.
This operation will change the value of members and this happened after
JoinOk operation is conducted. It is also necessary to update the members

information so it contains all the person being added. The size of this club
or how many person on this club is recorded on sumC!. Finally, OK mes-
sage is generated, which indicates a process of joining the club is successful.
These predicates are combined with a conjunction or AND or an operator
”∧”. Logically AND will give true if all the predicates are true. Since this
operator is a default operator in the predicate part of a schema, a ”\\” can
be used to present a ”∧”. However, a precaution is not to use ”\\” to present
a ”∧” inside a quantifier block.

34

Thus, our operational schema, JoinOk, is as follows:

JoinOk
∆Club; name? : PERSON ; sumC ! : N; reply! : MESSAGE

name? 6∈ members
#members < 3
members′ = members ∪ {name?}
sumC ! = #members′

reply! = OK

Second, an operation for a member who wants to leave this club was for-
mulated in the LeaveClub schema. Based on its name, this schema might
change the state schema variables values. In this schema an input variable,
name?, whose type is PERSON was declared. This variable was assigned with
the name of club members, who wishes to leave that club. There is also an
output variable, sumC!, whose type is a natural number and contains the
number of members of the club after leaving process is performed. A person
can leave that club if that person is a member of that club. That operation
is to test whether such a person belongs to this club. It is achieved by using
a membership operator, ”∈”. If it is the case, that member will be deleted
from the club. Operator used here is the ”\” operator, which is called the
Set Difference. Remember that this operator works on a set, so name?

should be enclosed by curly brackets. Finally, as part of this operation, the
sum of club members will be calculated. All of these give us the following:

LeaveClub
∆Club; name? : PERSON ; sumC ! : N

name? ∈ members
members′ = members \ {name?}
sumC ! = #members

This is a very brief introduction to Z and its major components. For further
definitions and examples, the reader can refer to Z literature. In the next
section, survey of the available tools for the Z specification notation is offered.

2.2.5 The Z Tools

To date various tools were developed and introduced to support the Z lan-
guage. They are: troff [41], CADiZ [40], fuZZ [70], LATEX [44], Z/Eves [60]
and [61], the Community Z Tools (CZT), Isabelle/HOL-Z [9], ProofPower
[1], The Jaza Animator [71], Z Word Tools [29], and Fastest [14].

Descriptions of these tools are as follows:

troff
This is a programmable text formatter and due to its flexible funda-
mental tools it supports a large varieties of formatting tasks. troff also

35

supports phototypesetting on a Graphic Systems phototypesetter and
user-designed document styles [41].

CADiZ
This is a UNIX based suite of tools designed to check and typeset
Z specifications, as well as preview and investigate interactively of Z
properties. For checking, it will check the syntactic, scope and type cor-
rectness. Since troff is the base for tools on processing documents in
UNIX, CADiZ is integrated with such a tool. The specifications, which
are correct syntactically, might be previewed on a bit-map screen. Fur-
thermore, a mouse is used to investigate interactively their properties
[40]. To the date, it has abilities to do also the domain checking, the
schema expansion with a redundant term elimination, and the inter-
active theorem-proving using heuristics and proofs entered by the user
and it has evolved towards the ISO-Z standard [21].

fuZZ
This consists of formatting and printing tools for Z specifications, also
a checker of Z types and scopes. The package consists of two parts, the
first part consists of a style option, which is used to type-setting LATEX
systems, the second one consists of a program which can analyse and
check specifications [70].

LATEX
Having hundreds of citations or over a thousand authors in the bibli-
ography is not a problem if LATEX is used for preparing documents [44].
It is now used widely on preparing documents in which mathematical
formulas are used extensively.

Z/Eves
By using this tool, a Z specification can be analysed in a variety of ways
[60]. This tool has abilities such as the domain checking, the interactive
theorem proving using heuristic and proof entered by the user [21], and
the schema expansion with redundant term elimination.

The Community Z Tools(CZT)
The Community Z Tools project is an open source project providing
an integrated tool set to support Z, with some support for Z extensions
such as Object-Z, Circus and TCOZ. Recently, the CZT with their
projects has developed a parser and a type-checker for Z, an Java AST
package for use in third-party modules, and a number of other proposed
modules, this includes cross-language translators and model-checkers
[21]. It is planned also to have a Z animator.

36

Isabelle/HOL-Z
HOL-Z is a proof environment for Z built as plug-in of the generic the-
orem prover Isabelle/HOL. It allows importing Z specifications written
in LATEX and type-checked by the Java-based ZeTa-System.

ProofPower
ProofPower is a suite of tools supporting specifications and proofs in
Higher Order Logic (HOL) and in the Z notation. It has been under
ongoing development since 1989. It was originally designed and imple-
mented by International Computers Ltd. and now was undertaken by
Lemma 1 Ltd.

Z Word Tools
These tools are used to enable the usage of Z specifications within a
document written using Microsoft Word processor. It consists of several
functions such as editing and checking a Z specification. It needs other
programs so its functionalities work better, such as Java runtime for
working with the standard Z, Graphviz for generating diagrams and
fuZZ for using the stand-alone converter.

The Jaza Animator
It is an animator for the Z formal specification language. It can be
used to validate Z specifications by evaluating Z expressions, testing Z
schemas against example data values, and executing some of Z specifi-
cations.

Fastest
Fastest is a model-based testing tool. It receives a Z specification and
generates test cases in almost automatic way. Currently, it provides
only limited functionality for a test case refinement into C and Java.

However, there are certain drawbacks, especially in verifying Z specifica-
tion, associated with these tools, which were developed from scratch. Malik
et al. argue that with these support, only few of them can be used in vali-
dating the intended meaning of such Z specifications [48]. Therefore, Martin
argues that the issue of tool support is the main obstacle in using widely Z
specification [50]. Plagge and Leuschel argue that Z is a ’high-level formalism
specification’ and this might be the cause why Z has limited industrial tools
[55]. Derrick et al argue that to build a model checker directly for a Z spec-
ification can take considerable effort due to the abstraction of the language
[22]. Jackson argues that the richness of this language might be the issue in
verifying it [35].

37

With these issues in mind, it suggests an alternative method for support-
ing applications of Z, which is to adapt existing tools such as automated
checking tools [21]. In most recent studies, there is ProZ [48] which was
developed from ProB [55], data refinement verification [8] which uses Al-
loy SAT-solver based counter-example, and Z2SAL [20] which is a translator
from a Z language specification into a SAL language specification [18].

The translation of Z to an input of Alloy Analyser allows Alloy Analyser
generates an instance of Alloy specifications and model checks that specifi-
cation. By this translation, it enables ’immediate visual feedback’ of such a
specification for its designer and this quick response provides a worthwhile
verification of Z specifications.

Not only could Alloy Analyser model check the Alloy version of Z spec-
ifications and other input language specifications, but also it could be used
to model check temporal properties specified in Alloy specifications directly
to some extent. It is based on research of Vakili and Day in [72]. Their idea
is to use the transitive closure operator to specify conducive conditions for
the set of states in order to satisfy a property [72].

Z2SAL is intended to use SAL as a model checker and refinement tools
for Z specifications, which are translated into the SAL input language. This
paper works on this translator and model-checking tools.

One of our works relates also to a proposal of specifying temporal prop-
erties directly in Z specifications. It is because several operators to specify
temporal properties in LTL and CTL have been provided for Z and Object
Z languages [42]. Thus, a user could specify a Z specification which also
includes temporal properties.

As mentioned in Chapter 1, several model checkers which can model check
combinations of Z and other languages have also been built. They are Circus
[26], model checker of Z and Statechart [10] and model checker for CSP-Z
[52].

2.2.6 Conclusion

Z is a language that can be used for writing a formal specification of a system,
and at its heart, it is based on mathematical notation and logic. Using this
language, specifications can be clear and concise, thus can avoid ambiguities
that can occur when notations that more informal are used.

There is a range of tool support available for the language, which is briefly
reviewed above. Based on that description, the availability of more support
for model checking Z specifications is a need.

Now let us move on to the specifics of model checking, which begins with
the introduction and leading up to abstraction on Z specifications. It will be

38

followed by the section relates to the SAL model checker, which is a tool-set
that can be used to model check specifications written in the SAL language.

2.3 Model Checking

Model checking which is discussed in this thesis is a classical model checking
which is based on temporal logic, rather than a refinement model check-
ing which uses automata theoretic methods. These classifications of model
checking are mentioned in [26].

The model checking method is an appropriate choice when compared
with methods relying upon simulation, testing and deductive reasoning [13].
Expertise in mathematical disciplines is not needed to model check such
specifications [13].

Although it has advantages, there are also drawbacks, the two principle
ones are it only applies to finite state systems, and even then these cannot be
so large since it can suffer from state space explosion problems [13, 54, 51].
These are due to the search strategy, which uses an exhaustive searching of
the state space of a system using suitable graph algorithms [13, 54], which is
adopted in its verification.

The next section gives a brief description to the temporal logic. By using
this logic, properties which need to be verified are formulated.

2.3.1 The Temporal Logic

The temporal logic is useful for specifying concurrent systems, since they
can describe events in ordered time, regardless of time explicitly [13]. The
properties used in model checking are based on the temporal logic [34] and
this was introduced by Clarke and Emerson in their algorithm of temporal
logic model checking. In that algorithm, a formula can be true in some
states and false in other states dynamically. This is quite different from the
propositional logic and predicate logic, a formula is always true or false in a
model instead.

According to the particular view of time, the temporal logic can be divided
into the linear time logic and the branching time logic. In linear time logic
or Linear-time Temporal Logic (LTL), a time is a set of paths, and a path
is a sequence of time instances. However, in the branching time logic or
Computation Tree Logic (CTL), a time is represented as a tree, rooted at
the present moment and branching out into the future. Both these logics
are supported by the SAL model checker; both of them are introduced here,
beginning with the LTL.

39

Then LTL has the following syntax given in the Backus Naur form:

φ ::= > | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (Xφ) | (Fφ) | (Gφ) | (φUψ) | (φWψ) | (φRψ)

where p is any propositional atom from some set of atoms. The connectives
X, F, G, U, W and R are called temporal connectives. X means neXt state,
F means some Future state, and G means all future states (Globally). The
next three symbols, U, W and R are called Until, Weak-until and Release
respectively.

That grammar means as follows:

• > (true), ⊥ (false), ¬ (not), ∧ (and), ∨ (or), → (implies) are boolean
connectives.

• Connectives ⇔ (equivalent) can be defined by using combination of
above connectives.

• X φ means that φ holds in the next state on a path. Assumed that
φ is initially on the first state, that formula is shown in Fig. 2.1 on
page 40:

Figure 2.1: φ holds in the next state on a path, adopted from [34]

• F φ means that φ eventually holds on a path, it is shown in Fig. 2.2
on page 40:

Figure 2.2: φ eventually holds on a path, adopted from [34]

• G φ means that φ always (globally) holds on a path, it is shown in Fig.
2.3 on page 41:

• φ U ψ means that φ holds until ψ holds on a path, it is shown in Fig.
2.4 on page 41:

40

Figure 2.3: φ always (globally) holds on a path, adopted from [34]

Figure 2.4: φ holds until ψ holds on a path, adopted from [34]

• φ W ψ is a weak variant of φ U ψ

As in the propositional logic and predicate logic, to avoid ambiguities and
abundant brackets, there are binding priorities. They are ¬ , X, F, G, U, R,
W, ∧ and ∨, → with decreasing order.

Therefore, previous examples can be written without any loss of ambigu-
ity as:

• F p ∧ G q → p W r

• F (p → G r) ∨ ¬ q U p

• p W (q W r)

• G F p → F (q ∨ s)

LTL formulas are interpreted over labelled transition systems which gives
the semantics of a specification language of a system [54]. The LTS is a
structure (S , →, L) where [34]:

• S is a (finite) set of states

• → is a binary relation on S , the transition relation

• L : S → 2P is a labelling function

41

Figure 2.5: The directed graph of an LTS, adopted from [34]

LTSs can be drawn as a directed graph. An example of an LTS is shown in
Fig. 2.5 on page 42, which was taken from [34] as follows:

It represents these properties:

S = s0, s1, s2,

→ = {(s0, s1), (s0, s2), (s1, s0),

(s1, s2), (s2, s2)} ,
L(s0) = p, q ,

L(s1) = q , r ,

L(s2) = r

LTL theorems which correspond to previous LTS are as follows:

• s0 |= p ∧ q and s0 |= ¬r

• s0 |= Xr and s0 6|= Xq

• s0 |= G¬(p ∧ r) since p and r never hold at the same state

• s2 |= Gr

• si |= F¬q → FGr

• s0 |= GFp → GFr , but s0 6|= GFr → GFp

LTL formulas are evaluated on paths. A state of a system satisfies an LTL
formula if all paths from the given state satisfy it. Therefore, LTL implicitly
and universally quantifies over paths. Meanwhile, the properties which assert
the existence of a path can also be represented using the LTL in the negated
form of the property. However, the better way to represent an existence is
by using the CTL.

42

In addition to the temporal operators of the LTL, there are also quanti-
fiers A and E in the CTL, which express all paths and a path that exists,
respectively. The CTL formulas using the BNF are:

φ ::= > | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨) | (φ→ φ) | (AXφ) | (EXφ) | (AFφ) | (EFφ) | (AGφ)
| (EGφ) | (A(φUψ)) | (E(φUψ))

The propositional connectives have the same meaning as defined in the LTL
grammar. Other connectives, which are combined with those quantifiers,
represent meaning as follows:

• AXφ means that φ must hold for all children in a tree

• EXφ means that φ must hold for some children

• AFφ means that φ must eventually hold on all paths in a tree

• EFφ means that φ must eventually hold on some paths in a tree

• AGφ means that φ must always hold on all paths in a tree

• EGφ means that φ must always hold on some paths in a tree

• A(φUψ) means that, along all paths in a tree, φ holds until ψ does

• E (φUψ) means that, along some paths in a tree, φ holds until ψ does

As per the same directed graph as shown previously (see Fig. 2.5 on page 42),
CTL theorems for that LTS are as follows [34]:

• s0 |= EX (q ∧ r) and s0 6|= AX (q ∧ r)

• s0 |= ¬EF (p ∧ r) since p and r never hold in the same state

• s2 |= EGr

• s0 |= AFr

• s0 |= E ((p ∧ q)U r)

• s0 |= A(pUr)

• s0 |= AG(p ∨ q ∨ r → EFEGr)

43

Table 2.1: Equivalence of LTL and King’s notation
Temporal Logic Style of King

G 2
X ©©©
F 3

Following is a table shows equivalences of LTL and King’s notation [42].
Table 2.3.1 only shows equivalences for the three most frequent symbols of
temporal logic used by a user.

To our club specification (see Section 2.2.4 on page 32) can be added
some LTL theorems such as:

• |= G ¬ (# members = 3)

To check that the club never gets full

• |= G ¬ (members = ∅)

To check that the club never gets empty

It could be applied also to CTL theorems as follows:

• |= G ∃ (m, n: PERSON): m /= n)

To check that there is a member who is different

• |= G ¬(∃ (m, n: PERSON): m /= n))

To check that it is not the case that there is a member who is different

• |= G ∀ (m, n: PERSON): m /= n)

To check that every member is different

• |= G ¬(∀ (m, n: PERSON): m /= n))

To check that it is not the case that every member is different

The following section describes briefly about binary decision diagram.

2.3.2 Binary Decision Diagram

There are two strategies in designing model checking [51], either global or
local. If the former is used, the structure of the property will be re-cursed
and each of its sub-formula will be evaluated on all paths of that system.

44

On the other hand, in the latter one, only some of the paths of that system
will be re-cursed. CTL and other branching-time logics are in the former
strategy, whereas LTL is in the latter one.

CTL and LTL are introduced earlier (see Section 2.3.1 on page 39). Other
model checking algorithm that re-curses a system globally is branching-time
fixed point logic, µTL. Another algorithm in this category is Ordered Binary
Decision Diagrams (OBDDs) and is called symbolic model checking.

A set of states, which satisfies the properties, are presented symbolically in
symbolic model checking [34]. Every state as well as relation will be assigned
a Boolean value, and they are encoded by using binary values. However,
since a relation is a subset of a state to other state, that encoding needs two
copies of Boolean vectors. The SAL model checker is a model checker that
uses symbolic model checking (see Section 2.4.1 on page 49).

BDD is an alternative for presenting a Boolean function [34]. The diagram
is a binary tree on its simpler form. All of its non-terminal nodes are labelled
with Boolean variables, and its terminal nodes or its leaves are labelled with
Boolean values, ”T ” for true or ”F ” for false, sometimes ”1” is used instead
of ”T ” and ”0” is used instead of ”F ”. It has two edges at maximum, in
which one edge is drawn as a dashed line which represents a variable whose
value is 0, another edge is drawn as a solid line which represents a variable’s
value of 1.

As far as their sizes are concerned, binary decision trees are quite similar
with truth tables of the same Boolean functions [34]. A binary decision tree
can have at least 2n+1-1 nodes, which is almost the same size as the size of
a truth table 2n . Thus, a binary decision tree is not more efficient as a truth
table. However, on such truth tables, lines that have the same behaviour, in
other words have the same values, could be combined and this will minimize
the truth table’s size. This can be adapted to a decision tree and this will
yield a decision diagram for such a decision tree.

A procedure to obtain a decision diagram is as follows [34]:

• Removing duplicate terminals. At the end of this procedure, the deci-
sion diagram has just two terminals. To preserve the same meanings,
all edges which point to ”0” are redirected to point to only one terminal
”0”. The same process as above is applied also to ”1”.

• Removing redundant tests. If a node n has more than one outgoing
edges and they point to the same node m, delete this n and redirect its
incoming edges to point to m directly.

• Removing duplicate non terminals. If there are two nodes that have
the same structures of sub-BDDs rooted on each of both nodes, one of

45

them can be eliminated and all incoming edges of a deleted node are
redirected to point to another node.

If none of that procedure’s item can be applied to BDD then it is truly the
reduced BDD [34]. BDD satisfies function if a 1-terminal node is reachable
from the root along a consistent path in that BDD. A path is consistent if
and only if from a node there is only a dashed line or solid line leaving such
a node, not both of them.

Given BDDs B f and B g, an operation . can be performed by taking
BDD f and replacing all its 1-terminals by B g. For the same BDDs, oper-
ation + can be obtained by replacing all 0-terminals of B f by B g. More-
over, the complementation operation ”−” can be obtained by replacing all
0-terminals in one BDD by 1-terminals and vice versa.

OBDDs are BDDs which have an ordering on its variables, which can
interfere with the size of OBDD. OBDDs have a canonical form which means
that for one boolean function, it will give us a unique reduced OBDD [34].
Further information about OBBD can be obtained from literature.

The next section gives a brief description about abstraction. This tech-
nique is then applied to Z specifications as per [68].

2.3.3 Introduction to Abstraction

It is suggested that a state explosion in model checking will limit the appli-
cability of such model checking, especially in software verification [13]. Such
a state explosion can occur in the usage of memory and time [54].

Pelanek in [54] identifies several basic approaches for avoiding or prevent-
ing a state space explosion problem, such as:

• Minimizing the size of explored states. This can be obtained
by using abstraction, reductions based on equivalences (for example
the cone of influence, symmetry or partial order), or compositional
methods.

• Minimizing the size of memory needed for storing the explored
states. Several techniques are storage size reduction, or symbolic rep-
resentation (such as using binary diagram decision).

• Enlarging the availability of memory, for example distributed
environment or magnetic disk.

• Moderating completeness and exploring only part of state
space instead, such as heuristics or randomization.

46

Previous studies report that abstraction is the most important technique
for reducing the state explosion problem in model checking [12, 53, 30, 15,
28, 16, 13, 27, 11, 68].

The abstraction technique is used widely in many researches, such as
Clarke et al in their work of an approximation of the concrete system to
reduce the complexity of a temporal-logic model checker [12]. Their abstract
model can be used to verify the original system and this model can be used
to represent a system with a large number of states, which are over 101300

states.
The abstraction technique is an approach that is well applied either for

finite state systems [12, 47, 15, 46] or infinite ones ([5, 28, 23, 27, 53, 30]. Fur-
thermore, if model checking is combined with abstraction and/or induction
principles; this technique can be applied for infinite systems [13]. Most of
those studies related to creating a direct abstract model, which is not begun
from the concrete system.

By using abstraction techniques, a system will be modelled by a small
system. Thus, if some properties hold for the abstract model, these will hold
in the concrete or original model [15].

The abstraction technique was then proposed to be applied to a Z spec-
ification by Smith and Winter in [68] and Jackson in [35]. The next section
describes about this.

2.3.4 Abstraction on Z Specifications

More recently, literature has emerged that Z specifications can be complex
enough to be verified thus abstraction is offered onto that specification [68].
However, a major problem with that research is the lack of practicality,
though Smith and Winter started it in [68]. Thus, one of our aims is to
investigate the use of abstraction in model checking Z specifications.

Abstraction which refers to [68] groups states in the concrete model into
equivalent classes, then mapping these classes by an abstraction function to
states in an abstract model, as shown in Fig. 2.6 on page 48. The abstraction
function is described in many papers, such as mapping or equivalence relation
in [12] and others. However, one that offers a systematic method is [28],
Smith and Winter referred to that method.

In order to prove LTL theorems in a Z specification, such a specifica-
tion must be restricted to have totality operations [68]. This means every
operation must define a post-state which in some cases it is an error state.

Smith and Winter proposed this work as per [68]: create monomials from
atomic predicates of properties to be proven, form equivalent classes of the
concrete model, define an abstraction function and relate those classes to a

47

Figure 2.6: Abstraction based on equivalent classes, adopted from [68]

single abstract state. An example in how to apply their method in other Z
specification has been shown in our extended abstract [65].

2.3.5 Conclusion

Model checking is found to be useful since it provides a full verification of a
finite state system without the user having sophisticated knowledge. Origi-
nally applied in hardware systems, it is now commonly available for applica-
tions in software systems.

One of the drawbacks of model checking is that it applies to finite state
systems, since it works by performing a complete state space exploration.
However, the size of the systems that model checkers can now cope with has
increased rapidly over the years, especially when other techniques are applied
onto it, such as abstraction.

An example of applying an abstraction technique on a Z specification has
been performed by us in another paper. This example shows us that the
original Z specification can be modelled based on the property that needs to
be satisfied. The next chapter will discuss further benefits of this abstract
model. This manual work can be put as a future work as how to automate
it.

Following is the discussion regarding to the SAL tools. The same example
that has been used on the abstraction technique will be used also in the next
section.

48

2.4 The SAL Tools

SAL is a framework that is used to change perceptions and implementations
of model checkers and theorem provers, which at first was based on verifica-
tion to a calculation of properties or symbolic analysis such as abstraction,
slicing and composition [5]. It also combines some different tools such as
abstraction, program analysis, theorem proving and model checking towards
a symbolic analysis of transition systems [18].

The SAL language can be used as a specification language, a target lan-
guage for some translators or a common source of some analysis tools. It
originated from a collaboration of two researchers, David Dill from Stan-
ford University and Thomas Henzinger from the University of California at
Berkeley. It evolved and was included Verimag in this collaboration then it
is developed at SRI. The current version is SAL 3.3.

A discussion on the SAL model checker will be given in the following
section, begins with a glance at SAL.

2.4.1 A Glance at SAL

The brief description below is about expression language on SAL. Since SAL
is intended to accommodate users with various translations of sources lan-
guages, its language needs to be liberal [18]. Therefore, it includes a large
number of operators.

The SAL’s grammar is not case-sensitive the same as its user defined
variables. This situation enforces users not to use any of SAL’s reserved
words as variables, even in different case of characters.

As other computer languages, users can specify a comment in their SAL
file. Comments are preceded by a symbol % and terminated by an end-of-line.

The SAL language supports the built-in basic types for Boolean, natural
numbers, integers, and integers without zero, real and real without zero. For
new basic types, it might be introduced using un-interpreted type declara-
tions. Types in SAL are modelled as a set and they are not necessary to be
finite.

An expression in the SAL language consists of constants, variables, ap-
plications of Boolean, arithmetic, bit-vector and array operations, function,
tuples, and records selection and update. The expression without next vari-
ables is called the current expression.

The SAL expression contains two kinds of variables: logical variables and
state variables. State variables can be the current variable or next ones. The
next variables are almost identical with the current one, but the next ones
are differentiated from the current one by an ”’” in the end.

49

Let us move on to a brief description of a transition language on SAL. The
transition system module consists of a state type, an invariants definition,
an initialization condition, and a binary transition relation of a specific form.
All of these are defined on a state type, which is defined by four pairwise
disjoint sets of input, output, global and local variables, which define the
state of the module. Input and global variables consist of observed variables
of a module. On the other hand, output, global, and local ones are controlled
variables of a module.

Rules on the transition play roles as constraints for the current and next
states of the transition. Transitions can be written in the form of definitions
or guarded commands.

Definitional transitions are used to specify the values taken on by these
controlled variables, which transitions can be independently specified in a
simple form conveniently. However, for variables that have similar case struc-
tures in its definitions, this transition form is less efficient. This is due to
the repeated case structure in each of definitions [18]. For these controlled
variables, it is more efficient to write an initialization and a transition using
guarded commands.

A definition has a form:

Lhs = Rhs

, in which the Lhs can be an identifier with or without the next variable
symbol, ’, followed by zero or more access. In contrast, the Rhs can be
expression or the IN expression. Thus, the definition is used to construct an
invariant, an initialization, and a transition.

Regarding the guarded command, each of this command consists of a
guard formula and an assignment part. A guarded formula is a Boolean
expression in the current controlled variables, and in the current and next
state of state input variables. On the other hand, an assignment part is a
list of equalities, in which its left-hand side is the next state variable and its
right-hand side is expression in current and next state variables. The format
for a guarded command is:

label : guard −− > assignments

[18], in which label is a name of the operational schema and this so to aid
readability [21].

Variable that is defined in the Lhs of a definition cannot be assigned
either in a guarded initialization or transition. Another constraint is the
initialization cannot contain any next state variable, whereas the assignment
part of a transition must have next state variables on its left-hand side and
might have next state variables on its right-hand side.

50

A module in SAL works as follows: each time it is activated, one guarded
transition is chosen such that a guarded formula holds in the current (and
possibly the next input) state. A transition is a conjunction of associated
guarded transition with all definitions of transition sections. If no guard
is chosen, it might be a deadlock. Thus, the ELSE clause is added to the
transition section.

The SAL module is a self-contained specification of a transition system in
SAL. Properties can be analysed independently in modules. Moreover, mod-
ules can be composed synchronously or asynchronously from base modules
to yield a new module.

A base module defines a state type of a set of input, output, global and
local variables. It can be divided into some sections. These sections will be
described as follows:

The first section is the DEFINITION section. It serves as invariants to the
system and it is used to define controlled variables, which depend on the
inputs.

The second section is the INITIALIZATION one. In this section, con-
straints on the possible initial values for local, global, and output declara-
tions are defined, but inputs might not be initialized. This section determines
also a state predicate, which sets the initial state of the related base module.
Both methods on writing a transition language can be used in defining this
section, but they cannot contain any next variable.

The last section is the TRANSITION section. This section constraints the
possible next states for local, global, and output declarations. It determines
a state relation to the previous state of the module.

The SAL language allows us to manipulate state variables. It has some
constructs that can be used to achieve that. For example, to make an output
and global variable into local, the construct LOCAL is used. Another example
is to make a global variable into an output, the construct OUTPUT is used. To
rename a variable in order to avoid name clashes, the construct RENAME can
be used and the new variable name is introduced by using construct WITH.
This renaming can be applied to a declaration of INPUT, OUTPUT and GLOBAL.

Some modules can be combined using module composition which will
combine modules either synchronous by using ”||” or asynchronous by using
”[]”.

Several modules will be collected in a context. More on the SAL’s gram-
mar, reserved words, and others, can be found in [18]. The following section
is about components of SAL.

51

2.4.2 SAL Components

As an intermediate language, which serves as a medium for presenting the
state transition semantics of systems with their own source languages, SAL
was integrated with several loosely coupled back-end components. These
components relate to each other by using well-defined interfaces [4].

Interfaces such as PVS, SMV, InVeSt [6] and others, make a SAL speci-
fication can be analysed in various basic method given as follows [4]:

Validation.
Related to this method, several adjustments to the SAL specification
are taken place first to provide a suitable input for each of these tools,
such as:

• SAL contexts are translated into PVS theories to produce a se-
mantic of a SAL transition system. PVS is used to perform a
theorem proving.

• SAL modules are mapped to SMV modules by expanding its types
and constant definitions into a SMV specification, translating out-
put and local variables of SAL into variables, input variables into
parameters, and adding two extra variables to cope with a non-
deterministic assignment of SMV to fire a relevant SAL transition.
SMV model checks a translated specification of a SAL specifica-
tion.

• For animation of SAL specifications, not all features of such spec-
ifications will be supported by Java compiler. By a translation of
a SAL specification into a Java program, this specification can be
animated.

Invariant generation.
An invariant is an assertion specified in the predicate part of a state,
which will hold of every reachable state of the related transition sys-
tem. This generation will break up an infinitely states space of a SAL
specification into finitely many disjoint control states.

Slicing.
A SAL specification, which has large states space, will benefit from
this technique of program analysis. This technique deletes all irrelevant
codes of a system to a property under consideration.

Abstraction.
Given a concrete system and an abstract function, InVeSt can generate
automatically and compositionally an abstract model of a system [5].

52

The details about PVS, SMV and InVeSt can be found in the related
sources, hence they are not described here. The next section gives us a
description about an environment on model checking of this tool in the first
part of this section. Another environment on this tool relating to a simulation
will be given in the second part of the next section.

2.4.3 The SAL Environment

In this section, only two environments of SAL will be discussed, though SAL
can be used for other functionalities. The first one is the SAL model checker.
Another one is the SAL simulator. Let us move to the first discussion.

The SAL Model Checker

Regarding model checking, SALenv contains symbolic model checker called
SAL-smc (simple model checker). Users can specify properties in the LTL
and the CTL in their specification, which needs to be verified. In addition
to SAL-smc, SALenv also contains SAL-bmc (bounded model checker) which
only supports LTL formulas. By conducting bounded model checking, SAL
can search on a state space on a given depth. When a property is invalid, a
counter-example will be produced, otherwise, it will be proven.

Typical LTL operators are [17]:

• G(p): always p, which means p is always true

• F(p): eventually p, which means p will be eventually true

• U(p, q): p until q, which means p holds until a state is reached, in
which q holds

• X(p): next p, which means p holds in the next state

Some examples of LTL theorems are given as follows [17]:

• G(p ⇒ Fq), which means whenever p holds, eventually q holds

• G(F (p)), which means p will hold infinitely often

• G(¬p), which means p never holds

On the other hand, CTL operators in SAL can be in one of these forms
[17]:

• AG(p): p holds globally in all paths, which means p is globally true

53

• EG(p): p holds globally in some paths, which means there is a path,
in which p holds continuously

• AF(p): p holds eventually in all paths, which means for all paths, p
eventually holds

• EF(p): p holds eventually in some paths, which means there is a path,
in which p eventually holds

• AU(p,q): p holds for all paths until q holds, which means in all paths
p holds until a state is reached, in which q holds

• EU(p, q): p holds in some paths until q holds, which means there is a
path, in which p holds until a state is reached, in which q holds

• AX(p): p holds in the next state for all paths, which means p holds in
all successor states

• EX(p): p holds in the next state in some paths, which means there is
a successor state, in which p holds

SAL enables a user to describe transition system models and to add prop-
erties of this system to it. These properties are written using the tempo-
ral logic. Having this specification, it could be verified or checked to know
whether this system satisfies those properties. In this case, the SAL model
checker can produce two results. The first result is the properties that are
proven or in other words they are satisfied. Examples of this are many in
this thesis. The second one is counter-examples, which means that these
properties cannot be proven or they are violated by this system. An example
of counter-example can be seen in Appendix B.

The transition system is a collection of S states, in which there is a set
of initial states I, and a relation by using ”→” among these states. Thus, it
can be modelled as τ = (S, I, →). A state is a valuation for the variables
with their types.

In this section, the transition system of the examples used for the ab-
straction on Z specifications will be discussed. The first example used is the
original specification which can be seen in [68, 64]. The ”τ” transition system
of that example is defined as follows:

τ = (S = {used = ∅, alloc = ∅, sentNum = 0}, {used = {2}, alloc = {2}, sentNum = 0},
{used = {1}, alloc = {1}, sentNum = 0}, {used = {2}, alloc = ∅, sentNum = 2},
{used = {2}, alloc = ∅, sentNum = 0}, {used = {1, 2}, alloc = {1}, sentNum = 0},
{used = {1, 2}, alloc = ∅, sentNum = 1}, {used = {1, 2}, alloc = ∅, sentNum = 0},
{used = {1}, alloc = ∅, sentNum = 1}, {used = {1}, alloc = ∅, sentNum = 0},
{used = {1, 2}, alloc = {2}, sentNum = 0}, {used = {1, 2}, alloc = ∅, sentNum = 2},
I = {{used = ∅, alloc = ∅, sentNum = 0}},
→= {()})

54

Table 2.2: Model checking with verbosity 3 on original specification
Process Time (secs)

ast generation for count2 0.0

ast generation for set 0.0

ast generation for uniqueAllocator mod 0.0

type-checker for count2 0.0

type-checker for set 0.0

type-checker for uniqueAllocator mod 0.015

module flattening 0.0

ast simplification 0.0

function application expansion 0.0

unfolding quantifiers 0.016

flat module – common subexpression elimination 0.0

flat module → boolean flat module conversion 0.0

monitor generation 0.016

static order 0.0

cluster compression 0.0

flat module → BDD conversion 0.078

verification 0.031

Total 0.156

The relation between states, I, leaves blank since this set has a huge number
of pairs of states. As a consideration, the number of states of this transition
system is quite big which is 12.

The SAL specification of the original Z specification will be model checked
by setting the verbosity which is greater than the default values, 0. This
SAL file is a modification version of the one generated by Z2SAL from the
Z specification found in [68]. The related SAL specification can be seen in
Appendix A.1. Regarding modification, it can be read in [64]. This option
lets the SAL model checker to present also the way it performs the verification
including the time taken.

$ sal-smc -v= 3 uniqueAllocator mod

However, all the information produced from this command are not shown
here since it takes 115 lines. A table containing the usage of time for each
process is presented in Table 2.2 on page 55.

Thus, from Table 2.2 on page 55, this model checking needs 0.156 second,

55

Table 2.3: Model checking with verbosity 3 on abstracted specification
Process Time (secs)

ast generation for uniqueAllocatorAbs simpl5 0.015

type-checker for uniqueAllocator mod 0.0

module flattening 0.0

ast simplification 0.0

function application expansion 0.0

flat module – common subexpression elimination 0.0

flat module → boolean flat module conversion 0.016

monitor generation 0.0

static order 0.0

cluster compression 0.0

flat module → BDD conversion 0.078

verification 0.016

Total 0.125

whereas the abstracted model is model checked on 0.125 second. The similar
table, but the verification is performed on the abstract model ([68, 64]) with
the same level of verbosity is shown by Table 2.3 on page 56. The SAL
specification of the abstract model can be seen in Appendix A.2.

$ sal-smc -v= 3 uniqueAllocatorAbs simpl5

These experiments were conducted on machine with Intel(R) Core (TM) i5-
2320 CPU 3.00 GHz.

As said previously, there are 12 states on the original specification, whereas
there are only 4 states on the abstracted model. Since the number of states
is quite small, the relation of states can be presented as can be seen in the
transition system of the abstract model as follows:

τ = (S = {2 6∈ used , alloc 6= {2}, sentNum 6= 2}, {alloc = {2}, sentNum 6= 2},
{2 ∈ used , alloc 6= {2}, sentNum = 2}, {2 ∈ used , alloc 6= ∅, sentNum 6= 2}},
I = {{2 6∈ used , alloc 6= {2}, sentNum 6= 2}},
→= {({2 6∈ used , alloc 6= {2}, sentNum 6= 2}, {2 6∈ used , alloc 6= {2}, sentNum 6= 2}),
({2 6∈ used , alloc 6= {2}, sentNum 6= 2}, {alloc = {2}, sentNum 6= 2}),
({alloc = {2}, sentNum 6= 2}, {alloc = {2}, sentNum 6= 2}),
({alloc = {2}, sentNum 6= 2}, {2 ∈ used , alloc 6= {2}, sentNum = 2}),
({2 ∈ used , alloc 6= {2}, sentNum = 2}, {2 ∈ used , alloc 6= ∅, sentNum 6= 2}),
({2 ∈ used , alloc 6= ∅, sentNum 6= 2}, {2 ∈ used , alloc 6= ∅, sentNum 6= 2})})

It can be seen also in Fig. 2.7 on page 57.
The next section describes the SAL simulator. The same example will be

applied to the SAL simulator.

56

Figure 2.7: Transition system of the abstract model

The SAL Simulator

The SAL environment, (Salenv), contains a simulator for finite states spec-
ifications based on BDDs, which allows users to explore different execution
paths of a SAL specification [17]. By doing such an exploration, users will
be more confident of their model before verification is performed on such a
model.

The SAL simulator enables a user to use Scheme Programming language
to implement a new simulation of repetitive tasks. This simulator is started
by the sal-sim command. After this command is executed, the system
prompt will be changed to the sal prompt.

$ sal-sim

SAL Simulator (Version 3.3). Copyright (c) 2003-2011 SRI International.

Build date: Mon Mar 18 16:40:07 PDT 2013

Type ‘(exit)’ to exit.

Type ‘(help)’ for help.

57

sal >

A command to import the context, import!, that needs to be sim-
ulated is entered. As described above, the same example, which is the
uniqueAllocator mod specification, will be used here. Thus the import
statement is shown as follows:

sal > (import! "uniqueAllocator mod")

uniqueAllocator mod

sal >

To start a simulation, the below command is used. This time, the mod-
ule’s name is entered.

sal > (start-simulation! "State")

sal >

This command initializes the simulation, which composes of a current
trace, a current finite state machine, and a set of already visited states. The
current trace could be a set of traces since a trace is a list of states.

The (display-curr-trace) command will display one of the traces in
the current trace, which is initially is a set of initial states. It is shown as
follows:

sal > (display-curr-trace)

Step 0:

--- System Variables (assignments) ---

used(1) = false

used(2) = false

alloc(1) = false

alloc(2) = false

sentNum = 0

invariant = true

sal >

To display the set of current states, which is to print at most 10 states
as a default, the (display-curr-states) command is used. It is shown as
follows:

58

sal > (display-curr-states)

State 1

--- System Variables (assignments) ---

used(1) = false

used(2) = false

alloc(1) = false

alloc(2) = false

sentNum = 0

invariant = true

sal >

However, if it is needed to print at most num number of states, the previous
command could be defined as (display-curr-states [num]).

As can be seen above, there is an index of positive number, which extends
a state. This index idx can be used to select the intended state by using the
(select-state! [idx]) command.

To perform a simulation step, which will append the successors of the set
of current states in the current trace, the (step!) command is used. This
command updates also the set of current states.

sal > (step!)

sal > (display-curr-trace)

Step 0:

--- System Variables (assignments) ---

used(1) = false

used(2) = false

alloc(1) = false

alloc(2) = false

sentNum = 0

invariant = true

Transition Information:

(module instance at [Context: scratch, line(1), column(1)]

(label Request

transition at [Context: uniqueAllocator mod, line(26), column(12)]))

Step 1:

59

--- System Variables (assignments) ---

used(1) = true

used(2) = false

alloc(1) = true

alloc(2) = false

sentNum = 0

invariant = true

sal >

As a comparison, a simulation is also applied to the abstract model which
its SAL specification is given in Appendix A.2. After three step of a simu-
lation, the original specification consists of nine states, whereas the abstract
model has just four states, a slightly less than the half of the original speci-
fication’s one.

Another example of applying simulation can be seen in Appendix D. This
example gives the states animation of telephonenetwork.tex specification.
As mentioned earlier in Chapter 1, this specification produced run out of
memory when it was verified by the SAL tool.

The (sal/reset!) command can be used to force garbage collections
and reinitializes all data structures which are used by the simulator. It is
necessary to perform this command before the simulation of a new module
begins.

2.4.4 Conclusion

SAL is a tool that plays as an intermediate language tool and one of its roles is
in model checking of system. Due to its capability to model check a transition
system, this tool was chosen as an output language for a specification that
is generated by the Z2SAL translator.

It is shown that, the original specification needs more time for verifica-
tion by the SAL model checker on one property than the time needed by
the abstract specification, though their difference is less than one tenth of
a second. However, the numbers of states of these specifications are quite
different as given by the SAL simulator. Indeed, from their transition sys-
tems, the original specification has three times of the number of states of the
abstract specification.

Therefore, it seems that the abstract model is beneficial in terms of mem-
ory and time usage. In other words, it generates less number of states, which
needs less memory than the original specification. Furthermore, it can be
executed in the less time than the original specification.

60

The next section will discuss the Z2SAL translator. It can be classi-
fied into tools of the Z notation, especially the one that can translate a Z
specification into other specification language.

2.5 The Z2SAL Translator

This section gives a brief description to the Z2SAL translator. This descrip-
tion flows from the time it was developed until its current version.

2.5.1 Introduction

The idea of translating Z into the SAL input language was due to Smith and
Wildman [67] at the University of Queensland, Australia. However, since
the basic idea given in [67], the idea was implemented in a tool set, and the
current Z2SAL is extended in a different direction. In doing so, it has also
had to tackle optimization issues [21], and thus is quite different from the
ideas as originally envisaged.

In providing a translator for the Z language, which will translate a Z
language specification into an input language of an existing tool, SAL was
chosen since it has similar representation of many aspects of Z [22], such as
a module mechanism of SAL represents appropriately a Z states transition
system [67]. SAL also supports expressive mathematics, which is a necessity
in model checking an expressiveness of a Z specification [67]. Moreover, there
exists many different tools that use the SAL input language [21], which are
offered freely by SRI under academic licences such that they attract users to
engage in international groups.

Z2SAL translates a Z specification into a SAL module. This module
will group a number of definitions including types, constant and modules for
describing a Z states transition system [22]. A SAL module has a general
format as follows:

State : MODULE =
BEGIN

INPUT . . .
LOCAL . . .
OUTPUT . . .
INITIALIZATION [. . .]
TRANSITION [
. . .

]
END

Translating a Z specification into a SAL input language needs some ad-
justments due to some differences of both languages [21]. These adjustments
are discussed briefly as follows:

61

First, it is bounding the infinite. Z supports fully abstract (non-grounded,
non-constructive) specification styles, whereas SAL is a concrete and grounded
language. For example, Z supports the built-in numerical types such as ”Z”,
”N” and ”N1”, whose ranges are infinite. On the other hand, SAL has the
similar unbounded types INTEGER, NATURAL and NZNATURAL, which can be
used only as base types of finite sub ranges in the actual specification. Z also
supports basic types, which have semantics of un-interpreted set, such as
[TAPE, NAME]. Therefore, the translations provided by Z2SAL should define
a finite number for these sets.

The mismatched formal paradigms are the second difference. Z and SAL
have very different styles of specifications and descriptions. A Z specifica-
tion is built-up increasingly, which consists of state schemas and operational
schemas. It views locally and functionally such that every operational schema
operates on its input and output variables, or on variables of state schemas.
In contrast, a SAL specification is created as a ’monolithic finite state au-
tomaton’ such that all input, output and local variables are compiled into
aggregate states and all operations act upon guard transitions from one state
configuration to other state configurations [21]. Thus, this mismatch can
be approached by re-ordering all information in a Z specification. Another
mismatch is Z specifications often use partial functions. It is to express in-
complete operations of operational schemas and to express associative data
types, maps of the state schema, whose sizes are dynamics. As SAL is based
on Binary Decision Diagrams (BDDs), SAL always needs a representation
of the SAL function given as the SAL total function. This means one needs
a work-around in order to present a partial function in Z specifications as a
total function in SAL. Furthermore, a set cannot be treated as a monolithic
of SAL, but as a ’poly-lithic collection of judgements’ over its elements in-
stead. Thus, several operations in a set need to be expressed differently, such
as the cardinality of a set, which is not supported by SAL.

The last difference is an issue of non-computable specifications. A Z spec-
ification naturally supports non-constructive styles of a specification. These
styles need to be expressed in computable styles of a specification in SAL,
which essentially are different. Normally, a SAL specification consists of a
series of update assignments to primed variables, which indicates posterior
variable states. In contrast to Z, a direction of a constructive approach is
not necessary in a Z specification. Z2SAL adopts an assertion of a posterior
existence of variables and restricts their values in the precondition. This
needs a searching for suitable precondition values.

The next section introduces to the current Z2SAL. It includes also the
translation stages, which was implemented on this translator.

62

2.5.2 The Current Z2SAL Translator

Currently, the tool has two operating modes which it will either translate a
single Z specification into the input format of SAL for model checking pur-
poses, or translate a pair of Z specifications for refinement checking purposes
[62]. The translated output is placed in the same directory as the source.

Regarding model checking, it is possible to add theorems at the end of this
automaton, to check whether certain properties always hold, or eventually
hold. However, other aim of our research is to propose embedded theorems
on a Z specification. Our proposal can be reviewed in 3 on page 74. More
information relating to Z2SAL can be found in the related references.

The current Z2SAL translates the example of 2.2.4 with an order as fol-
lowing. First, Z2SAL will generate three SAL files or three contexts; club,
count3 and set. Following is a description of the SAL file of the club specifi-
cation and translation stages carried out by Z2SAL.

This SAL file will be given first as follows:

c lub : CONTEXT = BEGIN
NAT : TYPE = [0 . . 4] ;
PERSON : TYPE = {PERSON 1 , PERSON 2 , PERSON 3} ;
MESSAGE : TYPE = DATATYPE

OK
END;
PERSON counter : CONTEXT =
count3 {PERSON; PERSON 1 , PERSON 2 , PERSON 3} ;
State : MODULE =

BEGIN
LOCAL members : s e t {PERSON;} ! Set
INPUT name? : PERSON
OUTPUT r e p l y : MESSAGE
OUTPUT sumC : NAT
INITIALIZATION [

members = s e t {PERSON;} ! empty AND
r e p l y = OK AND
sumC = 4
−−>

]
TRANSITION [

JoinOk :
NOT s e t {PERSON;} ! c onta in s ?(members , name?) AND
PERSON counter ! s i z e ?(members)< 3 AND
members ’ = s e t {PERSON;} ! i n s e r t (members , name?) AND
rep ly ’ = OK
−−>
members ’ IN {x : s e t {PERSON;} ! Set | TRUE} ;
r ep ly ’ IN {x : MESSAGE | TRUE}

[]
LeaveClub :

s e t {PERSON;} ! c onta in s ?(members , name?) AND
members ’ = s e t {PERSON;} ! remove (members , name?) AND
sumC ’ = PERSON counter ! s i z e ?(members)
−−>
members ’ IN {x : s e t {PERSON;} ! Set | TRUE} ;
sumC ’ IN {x : NAT | TRUE}

[]

63

ELSE −−>
members ’ = members

]
END;

END

The name of its module is State and club is a name of context. A context is
used in SAL for providing a framework for declaring types, constant, modules,
and module properties [18]. A SAL context is read from left to right, top to
bottom, and an entity must be declared before it is used [18].

Z2SAL translates basic types of Z into finite and enumerated sets in SAL.
By default, this set has three elements and sometimes has an extra bottom
element [21]. Such the bottom element represents undefined element. This
element is a useful technique to treat commonly the partial function of Z as
the total function in SAL. Three is chosen as a default value since in [36]
it was stated that most counter-example could be found in a defined type
whose number of instances is three. Another reason why such a small number
was chosen by Z2SAL is to prevent a longer time for verification by the SAL
model checker.

For our SAL file, it has PERSON as a basic type and such a basic type is
translated as a set of three elements, which are enumerated as follows:

PERSON : TYPE = {PERSON 1 , PERSON 2 , PERSON 3} ;

However, in some cases, a sentinel value is inserted at the end of that range,
which means undefined element, bottom, as said previously. The bottom
element indicates that such a type is required in a context that needed this
element.

The translator generates also built-in types into finite sub ranges in SAL.
For such an example, type ”N” will have range of values given as follows:

NAT : TYPE = [0 . . 4] ;

Such a range is chosen by the translator since Z2SAL preserves relations
between numerical types, which are given as follows:

N1 ⊂ N ⊂ Z

Moreover, ”N1” has a default of at least three instances, then ”N” will have
four instances by including 0 as the lowest number, and ”Z” will have five
instances. The default strategy adapted in Z2SAL for literal constant is to
expand the minimal range to 1 above the highest and 1 below the lowest [21],
and it must be the smallest numerical range if it is possible. Thus, our ”N”
have five instances, whose range is from 0 to 4, by expanding 1 to the highest
range. It is because there is a definition of a literal constant, members, as
can be seen later.

64

Free type of Z is translated into a similar data type in SAL. Thus, the free
type from our Z example will be translated into SAL declaration as follows:

MESSAGE : TYPE = DATATYPE
OK
END;

Furthermore, Z2SAL will generate a SAL module for one Z specification
and its default name is State. Z2SAL assumes the first schema defined in a Z
specification is a state schema and the second one is the initialization schema.
Other schemas defined afterwards are operational schemas. Thus, Z2SAL
supports only one state schema in a Z specification, whereas Z supports many
state schemas in a Z specification as well as SAL supports many modules in
a SAL specification respectively.

This module defines a finite-state-automaton (FSA) of club system. States
for this FSA are taken from state variables, which are translated as local vari-
ables in the SAL file. In this example, only one state variable was declared,
which is members.

LOCAL members : s e t {PERSON;} ! Set

Sometimes, translator will generate an extra local Boolean variable, invariant ,
and define its formula in the Definition sub-clause. Such a variable serves as
an abbreviation for the longer expression and this will be useful, especially
if it often occurs in many contexts [21].

The initialization schema will be translated into the similar SAL Initial-
ization sub-clause of the module clause. In this system, members is initialized
to be empty, which declares empty as an initial value of member.

Z2SAL uses guarded commands (see Section 2.4.1 on page 49 for its form)
on its initialization sub-clause and forces variable bindings to be resolved in
the guard. If there is an invariant, it will hold in this part since invariants
act as preconditions for entering initial state [21].

State : MODULE =
BEGIN

LOCAL members : s e t {PERSON;} ! Set
. . .

OUTPUT r e p l y : MESSAGE
OUTPUT sumC : NAT
INITIALIZATION [

members = s e t {PERSON;} ! empty AND
r e p l y = OK AND
sumC = 4
−−>

]

Z2SAL translates every Z operational schema into two ways. Firstly, it
is to translate variables; secondly, it is to translate predicates.

65

First, it treats every occurrence of either input, output variable or both
of them with the similar input, output variable or both and puts them in
the beginning of module clause. Every input and output is a local variable of
each operational schema. In addition, Z2SAL replaces every ”!” at the end
of every output variable with ” ”.

JoinOk
∆Club; name? : PERSON ; reply! : MESSAGE

name? 6∈ members
#members < 3
members′ = members ∪ {name?}
reply! = OK

As an example, in the JoinOK schema, there are an input variable, name?,
and it will be translated as it is, and an output variable, reply!, and it
will be translated as reply . Both of them are in the local scope of such an
operational schema. In order to reduce initial state space, Z2SAL initializes
output variables to arbitrary initial values of its range of values. For that
operational schema, reply! is initialized to value OK.

Second, Z2SAL translates a predicate of these schemas into a guarded
command and puts it in the Transition sub-clause. This is a last sub-clause
of SAL module clauses.

Z2SAL expresses primed and non-primed variables relationship as model
constraints in the guard [21]. However, a value other than an empty value
should be assigned to the consequent part since SAL requires all changed
primed variables appear in these constraints. For this operational schema,
Z2SAL will translate those four lines of predicates as a conjunction of primed
and non-primed variables relationship as a guard, as follows:

TRANSITION [
JoinOk :

NOT s e t {PERSON;} ! c onta in s ? (members , name?) AND
PERSON counter ! s i z e ?(members) < 3 AND
members ’ = s e t {PERSON;} ! i n s e r t (members , name?) AND
rep ly ’ = OK

−−>
members ’ IN {x : s e t {PERSON;} ! Set | TRUE} ;
r ep ly ’ IN {x : MESSAGE | TRUE}

[]

Another operational schema in this specification has a translation below.
Two local variables are declared. Although their names are the same as the
variable names in other schemas, their scopes are in the relevant operational
schema, in other words, they are local variables, local to the schema, in which
they are declared.

LeaveClub :
s e t {PERSON;} ! c onta in s ? (members , name?) AND

66

members ’ = s e t {PERSON;} ! remove (members , name?) AND
sumC’ = PERSON counter ! s i z e ?(members)

−−>
members ’ IN {x : s e t {PERSON;} ! Set | TRUE} ;
sumC ’ IN {x : NAT | TRUE}

[]

Z2SAL might include an invariant ′ in the guard as an invariant will
assert a state predicate in the after state of every transition. Together,
primed invariant in the guard part and non-primed invariant in the
Initialization clause perform the truth of state predicates in every part of
this system.

Only one transition can be fired on each cycle of a system based on their
enabled guards. It is indicated by a ”[]” separator which is used between
operational schemas, which means an asynchronous operation. Thus, the
constraints are only enforced upon one set of input or output variables in
each cycle [21].

The last sub-clause of guard command is the ELSE and this command is
always included in every SAL file generated by Z2SAL. The addition of a
default clause ensures that the transition relation is total so model check-
ing is soundness [21]. If ELSE is fired then the state of automaton remains
unchanged [21].

More on other translations by Z2SAL, especially relating to the Z mathe-
matical tool-kit, see literature such as [21]. Not all aspects of Z specifications
were implemented by Z2SAL, as well as not all of those are well supported
by the SAL model checker, such as recursive types, processing tuples and
their types [21].

There are two aspects of Z which have been not supported by Z2SAL will
be discussed in the following sub-sections. It begins with generic constant
definition.

The #1 Aspect: Generic Constant Definition

Below are two generic constant definitions which were taken from [57].

[X ,Y]
swap2 : X ×Y → Y ×X

∀ x : X ; y : Y • swap2(x , y) = (y, x)

[X]
swap1 : X ×X → X ×X

∀ x , y : X • swap1(x , y) = (y, x)

Let usages for these generic definitions are specified in the following schema:

67

Swap
a? : NAME ; a!, b! : NAME ; c? : N; c! : N; ΞState

(b!, a!) = swap1[NAME ,NAME](name, a?)
(c!, a!) = swap2(name, c?)

Z2SAL generated this error: ’Error in the Z input file. This should have
been an expression not new identifier ’. This error pointed to a line below the
first usage on the Swap schema.

Thus, it looks as if Z2SAL does not support generic constant definitions.
It is since swap1 has been declared before this usage, but it was declared in a
generic constant definition. Thus, it is not a new identifier as Z2SAL claims.

One potential solution to this would be to redefine those generic constant
definitions to alternative definitions that are supported by Z2SAL. The alter-
native definition is an axiomatic definition. It is since both definitions have
several similarities. In addition, Z2SAL supports also axiomatic definitions.

Thus, for above example, they could be redefined to equivalent axiomatic
definitions as follows:

swap1 : NAME ×NAME → NAME ×NAME

∀ x , y : NAME • swap1(x , y) = (y, x)

swap2 : NAME × N→ N×NAME

∀ x : NAME ; y : N • swap2(x , y) = (y, x)

The associated operational schema could be updated also as follows:

Swap
a? : NAME ; a!, b! : NAME ; c? : N; c! : N; ΞState

(b!, a!) = swap1(name, a?)
(c!, a!) = swap2(name, c?)

Afterwards, Z2SAL could generate a SAL specification from a translation of
this Z specification as follows:

output fSwap : CONTEXT = BEGIN

B NAT : TYPE = [0 . . 4] ;

NAT : TYPE = {g : B NAT | g /= 4} ;

B NAME : TYPE = {NAME 1, NAME 2 , NAME 3 , NAME BB} ;

NAME : TYPE = {g : B NAME | g /= NAME BB} ;

B NAME X B NAME : TYPE = [B NAME, B NAME] ;

NAME X NAME : TYPE = [NAME, NAME] ;

68

NAME X NAT : TYPE = [NAME, NAT] ;

B NAT X B NAME : TYPE = [B NAT , B NAME] ;

State : MODULE =
BEGIN

LOCAL swap1 : [NAME X NAME −> B NAME X B NAME]
LOCAL swap2 : [NAME X NAT −> B NAT X B NAME]
LOCAL name : NAME
INPUT a? : NAME
OUTPUT a : NAME
OUTPUT b : NAME
INPUT c ? : NAT
OUTPUT c : NAT
LOCAL i n v a r i a n t : BOOLEAN
DEFINITION

i n v a r i a n t = (
func t i on {NAME X NAME, B NAME X B NAME ;
(NAME BB,NAME BB)} ! t o t a l ?(swap1) AND
func t i on {NAME X NAT, B NAT X B NAME ;
(4 , NAME BB)} ! t o t a l ?(swap2) AND
(FORALL (q 1 : NAME, q 2 : NAME) :
swap1 ((q 1 , q 2)) = (q 2 , q 1)) AND
(FORALL (q 3 : NAME, q 4 : NAT) :
swap2 ((q 3 , q 4)) = (q 4 , q 3)))

INITIALIZATION [
a = NAME 1 AND
b = NAME 1 AND
c = 3 AND
i n v a r i a n t

−−>
]
TRANSITION [

Swap :
(b ’ , a ’) = swap1 ((name , a ?)) AND
(c ’ , a ’) = swap2 ((name , c ?)) AND
name ’ = name AND
i n v a r i a n t ’

−−>
name ’ IN {x : NAME | TRUE} ;
a ’ IN {x : NAME | TRUE} ;
b ’ IN {x : NAME | TRUE} ;
c ’ IN {x : NAT | TRUE}

[]
ELSE −−>

name ’ = name
]

END;

END

Furthermore, this SAL file could be verified by the SAL model checker.
However, the SAL model checker failed to verify it if a LTL theorem was
added to this SAL file.

This has happened because the theorem that was added relates to a user-
defined function, swap1. Thus, it seems that there is a SAL problem on
a function translation performed by Z2SAL. Previously, problems with the
function application have been experienced in our experiments (see [63]).

69

Error: [Context: output fSwap, line(22), column(10)]:

Failed to convert function application (array selection).

The function/array does not have a finite domain,

or the argument is not in the domain of the function/array.

Above is an error produced by SAL when verifying the below theorem:

th1: theorem State |- G(FORALL (i,j: NAME): swap1(i,j) = (j,i));

One solution to the above problem would be to modify the SAL file to an
alternative function translation that is supported by the SAL tool as follows:

output fSwap mod : CONTEXT = BEGIN

B NAT : TYPE = [0 . . 4] ;

NAT : TYPE = {g : B NAT | g /= 4} ;

B NAME : TYPE = {NAME 1, NAME 2 , NAME 3 , NAME BB} ;

NAME : TYPE = {g : B NAME | g /= NAME BB} ;

B NAME X B NAME : TYPE = [B NAME, B NAME] ;

NAME X NAME : TYPE = [NAME, NAME] ;

NAME X NAT : TYPE = [NAME, NAT] ;

B NAT X B NAME : TYPE = [B NAT , B NAME] ;

swap1 (q 1 : NAME, q 2 : NAME) : B NAME X B NAME = (q 2 , q 1) ;

swap2 (q 3 : NAME, q 4 : NAT) : B NAT X B NAME = (q 4 , q 3) ;

State : MODULE =
BEGIN

LOCAL name : NAME
INPUT a? : NAME
OUTPUT a : NAME
OUTPUT b : NAME
INPUT c ? : NAT
OUTPUT c : NAT
LOCAL i n v a r i a n t : BOOLEAN
INITIALIZATION [

a = NAME 1 AND
b = NAME 1 AND
c = 3 AND
i n v a r i a n t

−−>
]

END;
th1 : theorem State |− G(FORALL (i , j : NAME) : swap1 (i , j) = (j , i)) ;

END

The transition clause was not shown as there was no any difference between

70

the first SAL file and the modified one. This modified SAL file could be
verified and simulated by the SAL tools.

Thus, based on the above discussion, it is one solution to have a system
that can redefine a generic constant definition to an equivalent axiomatic
definition. It is also necessary to have a SAL file that can be executed by
the SAL tool.

Let us move to the second aspect of Z which are not supported by Z2SAL.
It is schema calculus.

The #2 Aspect: Schema Calculus Definition

Z2SAL is able to translate several schema operators, such as ”∆”, ”Ξ”,
schema decorations, specifically ”′” and schema inclusions. However, they
must be specified either vertically or horizontally in a schema.

Therefore, if a new schema is constructed from earlier schemas, Z2SAL
does not support the schema construction. Thus, this kind of schema calculus
is not supported by Z2SAL.

A constructed schema is specified by using ”=̂” which is the same as the
supported schema calculus, but the constructed one does not use ”[” and
”]” to surround its declaration of variables and predicates. The constructed
schema is used commonly to define a more complex, modular and a much
larger specification of a system.

Consider a Z specification as given below:

[Seat ,Customer] Response ::= okay | sorry

initial allocation : PSeat BoxOffice
seating : PSeat
sold : Seat 7→ Customer

dom sold ⊆ seating

InitBoxOffice
BoxOffice′

sold ′ = ∅
seating ′ = initial allocation

Purchase0
∆BoxOffice
s? : Seat ; c? : Customer

s? ∈ seating \ dom sold
sold ′ = sold ∪ {s? 7→ c?}
seating ′ = seating

Success
r ! : Response

r ! = okay

Failure
r ! : Response

r ! = sorry

Purchase =̂ (Purchase0∧ Success)∨ (Purchase0∧ Failure)

71

This specification contains a schema calculus definition at the bottom of this
specification.

Z2SAL generated an error as shown by Fig. 2.8 on page 72. A variable
with a certain type is required instead of a schema name.

Figure 2.8: Error message from Z2SAL

One possible solution to this problem is to rewrite a schema calculus
definition to a definition that is supported by Z2SAL. Such a definition is a
schema definition. Thus, the schema calculus will be expanded that it will
form a schema definition to create a new schema.

Let us have the below schema which was created from the above schema
calculus definition:

Purchase
∆BoxOffice; r ! : Response; s? : Seat ; c? : Customer

(s? ∈ seating \ dom sold ∧
sold ′ = sold ∪ {s? 7→ c?} ∧
seating ′ = seating)
∧
((r ! = okay)
∨
(r ! = sorry))

72

The new Purchase schema was created by expanding three schemas with
specified operators as given in the associated schema calculus definition.

This expanded specification could be translated by Z2SAL. As well as the
generated SAL could be verified and simulated by the SAL tools. Thus, this
expansion can be a potential solution to a schema calculus problem.

The next section is a conclusion.

2.5.3 Conclusion

As a translator from a Z language specification to a SAL language one, Z2SAL
can be grouped as one of the Z tools, specifically in supporting model checking
Z specifications. The existence of this translator should be supported in order
to solve the lack of Z tools particularly in verification of this language.

In order to support model checking for Z specifications, some experiments
have been performed on this translator. Based on this, what support that
could offer by this research is described further and implemented in the later
chapters.

The next chapter is a discussion about our approach to the method to
a translation of embedded theorems on Z specifications. It is because the
current practices in using Z2SAL let users to add theorems in the generated
SAL.

73

Chapter 3

Translation of Embedded
Theorems in Z Specifications:
A Proposed Method

In this chapter, how properties of a system are written will be discussed.
Previously, a user added several theorems to the generated SAL file in order
to let the system, which is modelled by the Z specification, verifies these
theorems. By doing so, this user should know how the SAL language presents
this theorem, which might be a problem to learn other language, the SAL
language.

Then, an idea, how the user specifies the theorem inside the Z specifica-
tion, was proposed. As a result the current Z2SAL can translate either a Z
specification or a Z specification added with theorems.

The discussion with the old practice in verifying the theorems is given
first. Later is the discussion of our idea.

3.1 Adding Theorems in the Generated SAL

At the end of our SAL file of club.tex, which is given on Section 2.5.2 on
page 63, several LTL theorems and CTL theorems were added as presented
on Section 2.3.1 on page 39. These theorems were written by using the SAL
language shown as follows:

• th1 : THEOREM State |- G (NOT (members = set {PERSON;} ! full));

It is not the case such that a club ever gets full.

• th2 : THEOREM State |- G (NOT(set {PERSON;}! empty?(members)));

It is not the case such that the club ever be empty.

74

• th3a : THEOREM State |- G (EXISTS(m, n: PERSON): m /= n);

There exists at least one instance of members, who is different from
other members.

• th3b : THEOREM State |- G (NOT(EXISTS(m, n: PERSON): m /=

n));

It is not the case such that there is a member of members, who is
different with others.

• th4a : THEOREM State |- G (FORALL(m, n: PERSON): m /= n);

All members are different.

• th4b : THEOREM State |- G (NOT(FORALL(m, n: PERSON): m /=

n));

It is not the case such that all members are different.

Before these theorems were verified by using the SAL model checker, they
were investigated manually. For the first theorem th1, it should be invalid
since there is an operation JoinOk that can add a member to this club.
Furthermore, this operation only stops if the maximum number of members
is reached.

For th2, it is also invalid since in the initialization of this system, this
club has no member, in other words this system has ever been empty. For
th3a, it will be proved as the operation performed by the JoinOk schema will
only add a new member who has not been available in this club. For th3b, it
is a counter-example of the th3a theorem, thus it is invalid. Theorem th4a

is also invalid due to the assignment of no members for this club in the initial
state. Thus, in the initialization state, all members are the same, which are
empty. The last theorem is the counter-example of theorem th4a, thus it
will be proved.

Based on this prior knowledge, the SAL model checker was run on this
generated SAL file to verify those theorems then. The summary of that
verification is given as follows and they are the same as our expected results:

The assertion ’th1’ located at [Context: club, line(55), column(0)] is invalid.

The assertion ’th2’ located at [Context: club, line(58), column(0)] is invalid.

The assertion ’th3a’ located at [Context: club, line(61), column(0)] is valid.

The assertion ’th3b’ located at [Context: club, line(64), column(0)] is invalid.

The assertion ’th4a’ located at [Context: club, line(67), column(0)] is invalid.

The assertion ’th4b’ located at [Context: club, line(70), column(0)] is valid.

Many other examples given on other sections in this thesis show this
practice. Let us now move to the next discussion on embedded theorems.

75

3.2 Embedded Theorems on Z Specifications

Duke and Smith say that by presenting a specification of a system using the
Z notation, properties of this system such as liveness can be evaluated [25].
There are two alternatives to formulate these properties. Firstly, it is to use
the Z notation itself. Another one is to use the temporal logic notation. Duke
and Smith shown that by adapting the latter, predicates are more readable
and shorter than the former.

King also added tags for presenting several temporal logics to his oz
package [42]. Now, there are only three tags available, as follows:

• 2: for representing always

• ©©©: for representing next

• 3: for representing eventually

Despite the work of Duke and Smith [25], there are fewer tools that
implements embedded temporal theorems on a Z specification. Therefore,
this research proposed an extension to the Z standard notation adapted by
Z2SAL to include also the temporal logic provided by King as can be seen
in Fig. 3.1 on page 77. Let us discuss briefly this picture first.

Processes inside dotted-line boxes represent our works. From Fig. 3.1,
our works can be divided into two categories. The first category relates to Z
specification input files. The input file will be pre-processed by our tool in
such a way to let it be translated successfully by Z2SAL. Thus, the output
of this category is a tool to pre-process Z specifications.

Our pre-processed tool begins with scanning and parsing the input file.
The further process can be either redefining generic constant definitions or
expanding schema calculus definitions. It is based on a choice defined by a
user. Further discussion in this work can be read in Sections 4, 5, 6, 7, 8 and
9.

The second category relates to SAL specification files. There are three
works in this category. Proposing an algorithm for translation of embedded
theorems in Z specifications is the first work. This proposal will be discussed
in this section. The second work is proposing an algorithm for user-defined
functions. This work will be discussed further in Section 5.5. This proposal
has not been implemented in any tool. The last work in this category relates
to modifying types to solve type incompatibility. The same as the second
work, this is also manual works. These manual works can be seen in exper-
iments with the generic constant redefinition, specifically in Sections 9.2.1
,9.2.3 ,9.2.4 and 9.2.5.

76

F
ig

u
re

3.
1:

T
h
e

A
rc

h
it

ec
tu

re

77

Having the above discussion, let us back again to the embedded theorem.
The research proposed a method which is adapted from Object-Z Concrete
Syntax [24] in specifying embedded temporal logics on a Z specification. This
concrete syntax is an extension ofSpivey’s Z Concrete Syntax [69].

Following is the relevant definition to embedded theorems:

Specification ::= Paragraph NL . . .NL Paragraph
Paragraph ::= . . .

| . . .

| ClassBox

| . . .

ClassBox

ClassName

[LocalDefs]
[State]
[Init]
[Op
.
.
.
Op]
[

HistPred]

Predicate ::= . . .

| Let

Let ::= let Defn SEP . . .SEP Defn • Predicate

Defn ::= DefLhs == Expression

HistPred ::= ∀Declaration[| HistPred] • HistPred

| ∃Declaration[| HistPred] • HistPred

| ∃1 Declaration[| HistPred] • HistPred

| HistPred1

HistPred1 ::= op = Expression – op is an identifier

| op ∈ Expression – which is used to access

| Predicate – the last operation that

| 2HistPred1 – has occurred

| 3HistPred1

| ©©©HistPred1

| ¬ HistPred1

| HistPred1 ∧ HistPred1

| HistPred1 ∨ HistPred1

| HistPred1⇒ HistPred1

| HistPred1⇔ HistPred1

78

Based on these syntax rules, temporal logics are formulated under the defi-
nition of HistPred. Several syntax rules are not given here, but they can be
found on those references.

Proposed procedure of a translation of embedded properties on a Z spec-
ification will be given in the following sub-section.

3.2.1 Proposed Method in a Translation of Embedded
Theorems on Z Specifications

This section gives a method on how to translate LTL theorems, which are
embedded on a Z specification, into the suitable theorems on the generated
SAL file. Our aim is to benefit Z2SAL so it will be able to translate directly
embedded theorems on schemas on a Z specification to appropriate theorems
on the SAL specification.

The translation on these embedded theorems will use the format of the-
orems specified previously by Z2SAL, which suits the SAL model checker’s
format [17], as follows:

th i : THEOREM name of module |− t e m p o r a l l o g i c s ;

• th is an identifier, so it can be changed to other name. Each theorem
will be given a name th followed by i.

• i is a non-zero natural number starting from 1, which plays as an index.
This i number will be defined for each line of predicates containing tem-
poral logics with the first occurrence gets 1 and it will be incremented
by 1 for each successor of such a line. It is also part of the user identifier,
thus it can be changed to other identifier.

• THEOREM is a SAL keyword, but it is not case-sensitive.

• name of module is taken from the name of the SAL’s module and is
case-sensitive.

• Based on [17], the translation of King’s LATEX style temporal logics [42]
into equivalent temporal logics of the SAL model checker are as shown
in Table 3.2.1 on page 80.

Other temporal logic such as U(p,q) or p U q, which is not available
in [42], they can be derived from the three temporal logics above by
considering equivalences in temporal logics as follows:

U (p, q) ≡W (p, q) ∧ Fq (3.1)

79

Table 3.1: Equivalence of temporal logic notations
Style of King Style of SAL

2 G
©©© X

3 F

W (p, q) ≡ R(q , p ∨ q) (3.2)

R(p, q) ≡ ¬ (U (¬ p,¬ q)) (3.3)

Thus, these equivalences can be defined as:

U (p, q) ≡W (p, q) ∧ Fq

≡ R(q, p ∨ q) ∧ Fq applying eq. 2

≡ ¬ (U (¬ q,¬ (q ∨ p))) ∧ Fq applying eq. 3

≡ ¬ (U (¬ q,¬ q ∧ ¬ p)) ∧ Fq applying De Morghan′s law

≡ ¬ (¬ q) ∧ Fq interpreting the sub − formula

≡ q ∧ Fq

The SAL model checker does not support other temporal logics. Fur-
thermore, in a case, there are new identifiers in the schema consisting
of temporal logics notation; Z2SAL can choose one value for each of
these identifiers, which suits their types.

The next section gives several experiments on this proposed translation
method.

3.2.2 Experiment 1: Unique Allocator Specification

An example taken from Smith and Winter [68] is used in this experiment.
This specification is given in Appendix C.6 on page 279.

As an experiment, the same property as given in [68] was used as follows:

G(n! 6= v ∨ X (G(n! 6= v)))

, in which v has a type of ”N1”.
If an LTL theorem symbol is used, the theorem can be represented as:

2(n! 6= v ∨©©©(2(n! 6= v)))

A new schema, which represents this theorem, was added to the specification.
There are two approaches to specify that theorem: firstly, it uses the Z
notation as follows:

80

uniqueSend
ΞAllocator ; n! : N

∀ i : N1 • n! 6= i ∨ ∀ j : N1 • (j = i + 1 ∧ n! 6= j)

Secondly, it uses the temporal logic notation, as follows:

uniqueSend
ΞAllocator ; n! : N

∀ v : N1 •2(n! 6= v ∨©©©(2(n! 6= v)))

The above schema can also be specified as follows:

uniqueSend
ΞAllocator ; n! : N

2(n! 6= 2 ∨©©©(2(n! 6= 2)))

, in which an explicit value for v is chosen and it replaces the v.
Since writing LTL theorems by using the temporal logic notation is more

concise and easier to read, this notation will be used in our experiments.
Z2SAL generated theorems for the last two schemas as follows:

th1 : theorem State |− G((n /= 2) OR X(G(n /= 2))) ;

th2 : theorem State |− FORALL(q 2 : NZNAT) :G(n /= q 2 OR X(G(n /= v))) ;

The th1 theorem was generated from the last schema of the above specifi-
cation, whereas the th2 theorem was generated from the schema just before
the last schema.

The generated SAL file should be modified so the SAL tools, as discussed
on Chapter 2 can verify it. Finally, it could be verified and simulated by the
SAL tools. Those theorems are valid.

3.2.3 Experiment 2: Counter 4 Modulo Specification

Another example is a 4 modulo operation. The full specification is given in
Appendix C.5 on page 279.

One property that is required to be proven is as follows:

G((count ! = 1) => X(count ! = 2)) ;

Using tags of King, the theorem is as follows:

2((count ! = 1) =>©©©(count ! = 2));

The theorem was presented in the below schema:

81

count1Next2
ΞCounterMod4; count ! : N

2(count ! = 1⇒©©©(count ! = 2))

Another property is given as follows to show that count! is never greater
than the maximum, which is defined to be 3:

countMax
ΞCounterMod4; count ! : N

2(¬ (count ! > 3))

Z2SAL translated the above schemas into these theorems:

th1 : THEOREM State |− G((count = 1) => X(count = 2)) ;

th2 : THEOREM State |− G(NOT(count > 3))

The generated SAL file was modified before verification took place. For
example: assigning 0 to count and deleting the ELSE clause. The first mod-
ification is necessary so as the second theorem can be satisfied by the system
as expected; whereas the second one is to avoid weird results generated by the
SAL model checker. Both theorems are valid. This SAL file was successfully
verified and simulated by the SAL tools.

3.2.4 Experiment 3: Cars Park Specification

This specification is taken from [49]. The whole specification can be seen in
Appendix C.7 on page 280.

Assume, the properties to be proven were specified in this schema:

spaceChecking
ΞCarsPark ; space! : N

2(3(¬ (space! > maximum)))

2(3(space! ≤ maximum))

2(space! 6= 3 ∨©©©(space! 6= 3))

The first and the second theorems show that space!, which represents the
remaining space of a park area, is never greater than maximum, which repre-
sents the maximum capacity of the park area some time in future. The last
theorem shows that the number of space is never the same at any time.

Z2SAL produced these theorems:

th1 : theorem State |− G (F(NOT (space > maximum))) ;

th2 : theorem State |− G (F(space <= maximum)) ;

th3 : theorem State |− G (space /= 3 OR X(space /= 3)) ;

82

All these theorems were proved by the SAL model checker after space is
assigned 0 for its initial value. The SAL simulator could also simulate this
SAL file.

3.2.5 Experiment 4: Birthday Book Specification

This specification is obtained from [69] and can be seen in Appendix C.8 on
page 280.

A property to be proven is If it is known the birthday of a person then
the person should be recognized, and it was specified in the schema as follows:

WhichDate
ΞBirthdayBook

∀n : NAME • ∃ d : DATE •
2(d = birthday(n)⇒ n ∈ known)

Z2SAL translated this schema into following theorems:

th1 : theorem State |− (FORALL (q 2 : NAME) : (EXISTS (q 3 :DATE) :
G (q 3 = birthday (q 2) => s e t {NAME;} ! c onta in s ?(known , q 2)))) ;

The theorem above was satisfied by the system; it is valid. This SAL file
could be verified and simulated by the SAL tools.

3.2.6 Experiment 5: Paper Example Specification

This specification is taken from [21]. Full specification can be seen in the
reference or Appendix C.9 on page 281. By using the same LTL theorems as
given on this paper, new schemas were added to the specification.

th1 : theorem State |− G (rented = s e t {PERSON X TITLE ; } ! empty) ;

This theorem was a translation from following schema:

RentedTheorem
ΞState

2(rented = ∅)

rented is a relation between PERSON and TITLE.
The definition of the mathematical tool kit set, such as the relation con-

text can be seen in the separate SAL context produced by Z2SAL after
translating this Z specification.

Another schema consisting of theorems were added given as follows:

83

MembershipTheorem
ΞState

2(¬ (#members = #PERSON))

2(#members = #PERSON)

3(¬ (#members = #PERSON))

3(#members = #PERSON)

These predicates were translated into four theorems as follows:

th2 : theorem State |− G (NOT (Counter PERSON ! s i z e ?(members)=3)) ;

th3 : theorem State |− G (Counter PERSON ! s i z e ?(members)=3);

th4 : theorem State |− F (NOT (Counter PERSON ! s i z e ?(members)=3)) ;

th5 : theorem State |− F (Counter PERSON ! s i z e ?(members)=3);

These predicates were put on the same schema since they have a similarity
which is to verify members. SAL does not have a keyword to present a size
of a set, so Z2SAL formulate this size directly by using the special function,
size?. This operator can be seen in the counting function context.

th6 : theorem State |− G (c o p i e s /= 3) ;

th7 : theorem State |− G ((FORALL (q 1 : TITLE) : s tockLeve l (q 1) /= 3)) ;

Both these theorems were presented in this schema:

CopiesTheorems
ΞState; copies! : N

2(copies! 6= 3)

2(∀ t : TITLE • stockLevel(t) 6= 3)

SAL has several keywords to represent the relevant operators of the Z nota-
tion, but there are slightly differences. For example, SAL uses a colon, ”:”,
to represent a ”•”.

th8 : theorem State |− G ((FORALL (q 2 : TITLE) : s tockLeve l (q 2) >=
Counter PERSON X TITLE ! s i z e ?(r e l a t i o n {PERSON, TITLE;} !
r an g eR e s t r i c t (rented , s e t {TITLE;} ! s i n g l e t o n (q 2))))) ;

th9 : theorem State |− G (NOT (FORALL (q 3 : PERSON) :
(FORALL (q 4 : TITLE) : s e t {PERSON X TITLE ;} !
c onta in s ?(rented , (q 3 , q 4)) AND stockLeve l (q 4) >= 3))) ;

th10 : theorem State |− G (NOT (FORALL (q 5 : PERSON) :
(FORALL (q 6 : TITLE) : s e t {PERSON X TITLE ;} !
c onta in s ?(rented , (q 5 , q 6)) AND
stockLeve l (q 6) >= Counter PERSON X TITLE !
s i z e ?(r e l a t i o n {PERSON, TITLE;} !
r an g eR e s t r i c t (rented , s e t {TITLE;} ! s i n g l e t o n (q 6)))))) ;

84

RentedVideosTheorems
ΞState

2(∀ t : TITLE • stockLevel(t) ≥ #(rented B {t}))
2(¬ (∀ p : PERSON • ∀ t : TITLE • (p, t) ∈ rented ∧ stockLevel(t) ≥ 3))

2(¬ (∀ p : PERSON • ∀ t : TITLE • (p, t) ∈ rented ∧ stockLevel(t) ≥ #(rented B {t})))

From those ten theorems, only the fourth theorem is valid. The SAL simu-
lator could also simulate this SAL file.

3.2.7 Experiment 6: Shop Specification

Please refer to Appendix C.1 on page 274 for the whole specification. Assume
there is a property that says that for every item in the stock there will be
a price specified for it. However, the property is not true since sometimes
there is an item which does not have any price.

hasPrice
ΞShop

∀ i : ITEM • ∃ p : N •2(p = cost(i))

Z2SAL translated the schema into the theorem as follows:

th1 : theorem State |− (FORALL (q 3 : ITEM) : (EXISTS (q 4 : NAT) :
G (q 4 = cos t (q 3)))) ;

This SAL file could be verified and simulated by the SAL tools. The
theorem, which has mentioned before, is invalid.

The next section summarises results and discusses them.

3.2.8 Result and Discussion

Results from experiments on embedded theorems are depicted in Table 3.2
on page 85.

Table 3.2: Execution Time of Embedded Theorem Experiments
Experiment Number of Theorems Execution Time (secs)

1 2 0.359
2 2 0.187
3 3 0.515
4 1 0.514
5 10 10.561
6 1 126.658

The time can be different though from the same specification if it is run
several times. As can be seen in Table 3.2 on page 85, the last experiment

85

Table 3.3: Details of Execution Time of Experiment #6
Process Time (secs)

ast generation for context function 0.0

type-checker for context function 0.016

ast generation for context set 0.0

type-checker for context set 0.0

ast generation for context shop templog 0.0

type-checker for context shop templog 0.015

module flattening 0.0

ast simplification 0.032

function application expansion 0.046

unfolding quantifiers 0.032

flat module – common subexpression elimination 0.312

flat module → boolean flat module conversion 0.483

monitor generation 27.191

static order 1.248

cluster compression 0.078

flat module → BDD conversion 96.955

verification 1.544

consumed the most of execution time just to verify one theorem. The large
amount of time taken from Table 3.2 on page 85 was composed by several
chunks of individual time as shown in Table 3.3 on page 86.

The most usage of time was on BDD conversion execution, it is nearly
80% of total used time. The second large amount of time taken was used to
create monitor or buchi-automata for LTL property used on this theorem of
this specification. On the other hand, the time for verification is less than
2 seconds. The execution of this specification had 44593 total bdd node

count and visited 143699850.0 states.
Data in Table 3.2 on page 85 also shows us that a large number of the-

orems do not in line with total of execution time. It might be the specifi-
cation consisting of the lower number of theorem can take much more time
of execution. Thus, in addition to the number of theorems, complexity of a
specification, complexity of a theorem, and size of used sets influence total
execution time.

86

3.3 Conclusion

Based on these experiments, Z2SAL supports the translation of theorems,
which are embedded on a Z specification. Furthermore, the SAL model
checker could verify the theorems whether they were specified in the Z spec-
ification or in the generated SAL file. Therefore, the SAL model checker did
not distinguish these theorems though they can be formulated using one of
those methods. These experiments show also that our proposal representing
algorithm to do the translation of embedded theorems works. This success
is expected as our contribution to related research in this field. The proposal
is part of the architecture of our research as shown by Fig. 3.1 on page 77.

Being able to translate LTL theorems, which are embedded on a Z spec-
ification, makes verification such a system faster and easier than previously.
It is because a user of Z does not need to formulate their theorems at the
end of the generated SAL file; they can formulate the theorems inside their
Z specification instead. Having knowledge of writing Z specifications, such a
user will write quickly theorems using the Z notation.

Following section discusses an implementation of our Z scanner and parser.

87

Chapter 4

Implementing A Z Scanner and
Parser

As described on earlier chapter, our support is on one of generic constructs,
which is a generic constant. Other type of support is the Z schema calculus.
In addition to both types of support, a method in a translation of functions
was also proposed. Furthermore, the first two types of support require other
preliminary types of support: a scanner that scans Z input specifications into
tokens, and a parser that parses these tokens conforming to the Z grammar.
All these types of support are considered as our support for model checking
Z specifications.

This chapter will discuss how our support for Z scanner and parser is
implemented. Before this discussion begins, let us consider benefits that can
be offered by these systems.

Z2SAL has been known also as a scanner and parser for Z specifica-
tions, specifically a hand-written scanner and a hard-coded parser. It is since
Z2SAL researchers wrote their scanner and parser by using Java language; it
is a language that is not specialized for writing scanners and parsers.

Thus, it is one reason for us not to reuse the Z2SAL scanner and parser
to implement our Z scanner and parser. Other reason is that it will take
time and be an effort to hand-write such a scanner and hard-code such a
parser, such as to define regular expressions, and Z operators’ precedencies
and associativity, to match a sequence of tokens to one of the Z rules, and
others. Another reason is that a JFlex lexer has been known to be faster than
a hand-written scanner or lexer. Although a BYACC/J parser is not as fast
as a hard-coded parser, the BYACC/J parser is easy to write and modify.
Moreover, to learn code of somebody else is more difficult rather than to
write code from scratch. More importantly, Z2SAL scanner and parser were
integrated into the design of other parts of Z2SAL.

88

Based on these reasons, let us move to the first discussion. It is a design
and implementation of our Z scanner.

4.1 A Z Scanner

This section is composed of several sub-sections. It begins with an intro-
duction to a Java scanner generator, and a lexical specification. Based on
both overviews, a Z scanner was designed and implemented as a part of our
support for model checking Z specifications. Thus, both sub-sections will be
followed by an implementation of our Z scanner. In that sub-section, a brief
description of our Z scanner will be discussed. This Z scanner will scan Z
tags in our Z specifications. A successful scanning will pass tokens, which are
obtained from accepted Z tags, to a parser for further process. Otherwise, a
lexical error on an involved line will be reported. This section ends up with
a conclusion sub-section.

4.1.1 Introduction

JFlex is a Java lexical analysis generator (scanner generator) [43]. JFlex
1.6.1 is the current version which was released on 16 March 2015. It is free
software which is published under a BSD-style license.

JFlex will generate a .java file from a JFlex specification .flex. Thus,
this generator has an input which is the JFlex specification. The Java file
has one class that consists of code for the scanner. This code is a lexer that
reads input, matches the input against the regular expression, and runs an
associated action.

A lexer is a part of a compiler, specifically the first front-end of it. The
lexer will match keywords, comments, operators, etc. Then it will generate
a stream of input tokens for a parser. However, it can also be used for other
intentions. Built on a deterministic finite automaton (DFA), a JFlex lexer is
fast since backtracking is not performed.

Several parser generators can be integrated with this lexer. For example:
the LALR parser generator Construction of Useful Parsers (CUP) by Scott
Hudson, the Java modification of Berkeley Yet Another Compiler Compiler
(YACC), BYACC/J, by Bob Jamison [33]. To interface a generated scanner
with BYACC/J, the command %byacc is used.

89

4.1.2 A Lexical Specification

A JFlex specification, as JLex, is composed of three parts that are separated
by ”%%”. These parts are as follows: user code, options and declarations,
and lexical rules.

User Code

This is the first part; begins from the first line until the first ”%%”. JFlex
will copy the contents of this part to the generated Java file. Usually package

and import statements are put here. JFlex will also generate automatically
a Javadoc comment with or without being defined explicitly by a user.

Options and Declarations

This part contains a set of options, code for the generated scanner class,
lexical states, and macro declarations. The option on JFlex must begin a
line of the specification and must start it with a ”%”. The code that is
written inside ”%{” and ”%}” is copied verbatim into the generated lexer
class.

This code can contain member variables and functions that will be used
inside scanner actions. There are also macros which are abbreviations for
regular expressions. Macros make lexical specifications easy to read and
understand. Its form is as follows:

macroidentifier = regular expression

Lexical Rules

This part consists of regular expressions. It also can contain actions in
Java code, which will be executed when the associated regular expression
is matched. The scanner will match the longest regular expression. In a
case there are more than one regular expressions match with the input, the
scanner will choose the first matched expression.

A lexical specification on JFlex is based on lexical rules which follow the
Extended Backus-Naur Form (EBNF) grammar. This grammar can be read
further on [43].

JFlex adapts standard operator precedencies in a regular expression as
follows:

1. unary postfix operators (’*’, ’+’, ’?’, {n}, {n,m})

90

2. unary prefix operators (’ !’,’˜’)

3. concatenation (RegExp ::= RegExp RegExp)

4. union (RegExp ::= RegExp ’|’ RegExp)

In the above list, terminal symbols are enclosed by ’quotes’ to differ from non-
terminal symbols. As the number gets smaller, the precedence gets higher.

A regular expression is a ’mold’ which is based on meta language, to
specify particular patterns of interest [45]. If a and b are regular expressions,
then:

• a | b (union), is the regular expression that matches all inputs matched
by a or by b.

• a b (concatenation), is the regular expression that matches the input
matched by a followed by the input matched by b.

• a* (Kleene closure) matches zero or more repetitions of the input
matched by a.

• a+ (iteration), is equivalent to aa*.

• a? (option) matches the empty input or the input matched by a.

• !a (negation) matches everything but the strings matched by a.

• ˜a (upto), matches everything up to (and including).

• a{n} (repeat), is equivalent to n times the concatenation of a.

• a{n,m} is equivalent to at least n times and at most m times the
concatenation of a.

• (a) matches the same input as a.

• . matches any single character except the newline character (”\n”).

• [] (character class), matches any character within the brackets. If the
first character is a circumflex (”ˆ”), it matches any character except
the ones within brackets. If there is a dash (”-”) inside brackets, it
means a character range.

• ˆ matches the beginning of a line as the first character of a regular
expression.

91

• $
matches the end of a line as the last character of a regular expression.

• \ to escape meta-characters

• ”. . .” interprets everything within the quotation marks literally

• / matches the preceding regular expression but only if followed by the
following regular expression.

JFlex requires a white space to separate a regular expression and its actions;
otherwise JFlex will read it as different.

4.1.3 An Implementation of a Z Scanner

After two above sub-sections about a brief introduction to JFlex, a scanner
generator which was used to implement our Z scanner, and a brief description
on lexical specifications, this sub-section discusses our Z scanner. Thus, our
Z scanner was implemented using JFlex.

Our Z scanner was implemented so it can scan several Z tags. In other
words, our Z scanner does not support all Z tags. For a complete list of
Z tags which can be scanned by our Z scanner, please see Appendix E on
page 287.

As mentioned earlier, our scanner does not scan all Z tags as well as not
all of our Z tags were accompanied by actions. Reasons behind the first
statement are to be in line with Z2SAL as the translator does not support
all Z tags. Thus, there is no point here to be able to scan a token represents
a Z tag which is not supported by Z2SAL and sometimes it is not available
also on [69]. Other reason for us not to include all Z tags is that it is not
difficult to add a new token. Another one is our Z specifications could be
scanned by our Z scanner, though this scanner does not support all Z tags. In
other words, this scanner has implemented a list of Z tags which are suitable
to our Z specifications. Several Z tags which were not specified in our Z
scanner are: \nexi, \nexists for representing ”@”; \bool for ”B”; \iter for
”iter”; \pred for ”pred”; \post for ”post”; \items for ”items”; \bagcount
for ”count”; \buni for ”]”; \varsdef for ”,”; R+ for transitive closure; R∗

for reflexive-transitive closure.
Let us move to three parts of our scanner. There was no user code which

was put in the first part of our JFlex specification. The name of our JFlex
specification is Lexer.flex.

For the second part, the %byacc directive was added. Another directive
was added in this part, a directive to indicate a name of the generated Java

92

file. In this scanner, it was defined as ScannerCl. At first, Scanner was
chosen, but then it turned out that the latter is one of Java class names.
There are two methods specified in this second part. The first method is a
constructor for the generated Java class. The second one is a method to get
the line number of a particular line of our Z specification. This method is
called in actions of ”.” of our regular expression to indicate a lexical error.
There were also declarations of two variables in this part. Both methods and
these two variables were enclosed by ”%{” and ”%}”.

Z tags were specified in the third part. Several Z tags that have actions
in them, these actions are quite similar in all these tags. The first action is
to assign a matched tag which is returned by yytext() as a semantic value
for the associated parser, shown as follows:

yyparser . yy l va l = new ParserVal (yytext ()) ;

The JFlex must store this value in yylval before it is returned. The routine
yyparser() is the parser generated by YACC.

The second action is to return a token of the matched tag to the parser.

return Parser .BZED;

Above is an example of the action to return the BZED token to the parser.
This token indicates \begin{zed} tag. Among these tags, not all of them
were implemented with the first action.

JFlex matches input texts to patterns constructed by regular expressions
based on a set of simple disambiguating rules as follows [45]:

• JFlex patterns only match a given input character or string once.

• JFlex executes the action of the longest possible matched input texts.

Thus, if our scanner returns a lexical error while scanning a particular Z
specification, this error can inform us several cases after a further check on
this Z specification. The first case, the error means that the associated Z tag
has not been specified in our scanner. Having this error, a solution is to add
this tag to our scanner.

As an example is shown by the below output:
run:

file parse: E:\Google Drive\Tesis\program\JavaCode\Thesis\src\carspark.tex

Lexical error on line: 1 : \

C:\Users\MUS\AppData\Local\NetBeans\Cache\8.2\executor-snippets\run.xml:53: Java returned: 1

BUILD FAILED (total time: 3 minutes 5 seconds)

It was generated by our system during running the modified Cars Park spec-

93

ification (see Appendix C.7 on page 280). The first line of this specification
has been changed to:

\documentstyle [11 pt , oz]{ a r t i c l e }

Our scanner only recognizes 12pt as the font size.
The second case, the error means the tag, which is available in our scan-

ner, has been written wrongly. Thus, the associated tag will be rewritten
precisely.

Using the same example as above, below is the output generated by our
scanner:
run:

file parse: E:\Google Drive\Tesis\program\JavaCode\Thesis\src\carspark.tex

Lexical error on line: 4 : \

C:\Users\MUS\AppData\Local\NetBeans\Cache\8.2\executor-snippets\run.xml:53: Java returned: 1

BUILD FAILED (total time: 1 minutes 2 seconds)

It is because the example has also been modified. Its fourth line is misspelt
into:

\begin {schem}{CarsPark}

This lexical error should be fixed since the error will push the system to
stop immediately. In order to proceed to the Z parsing, it indicates no lexical
error which means all Z tags on associated Z specification are recognized as
true Z tags and specified in our Z scanner.

By using the JFlex scanner generator, there were 1,746 states during
a Non-Deterministic Finite Automaton (NFA) construction of our scanner.
This large number of states was reduced to 778 states in a DFA construction
before minimization and it was reduced again to 566 states in minimized
DFA. There was neither error nor warning detected by the JFlex scanner
generator. This is shown by Fig. 4.1 on page 95.

In a case the scanner generation is successful; the generated Java file
will be generated. This Java file is located in the same place as the JFlex
specification. This generation will generate the ScannerCl.java file from
our scanner.

4.1.4 Conclusion

Although our Z scanner does not implement all Z tags, these tags were suit-
able for our experiments. As a result, this scanner provided our Z parser
with accepted Z tokens. In addition, all of our Z specifications could pass
the scanning.

94

Figure 4.1: The JFlex scanner generator

It shows also that our Z scanner works. This success is expected as our
contribution to related research in this field. The Z scanner is part of the
architecture of our research as shown by Fig. 3.1 on page 77.

Furthermore, it is easy to add new Z tags to this scanner; just add the
associated tags and add appropriate actions. Please remember to run the
JFlex scanner generator for every modification which is performed on the
JFlex specification. The old Java still exists, but its name will be ended with
a tilde, ”˜”.

Based on our experiments, our Z scanner could correctly scan Z tags on
our Z specifications. Since our Z specifications usually were obtained from
Z books so it is argued that Z tags on our examples are accurate. Thus,
Z tags on our scanner were also specified precisely since the scanner could
scan the Z specifications. Other proof is tokens generated by our scanner
could be parsed correctly by our Z parser. It means that a sequence of
these tokens matches to our Z grammar which was taken from [69]. Another
proof is the outcome of our system either a generic constants redefinition or
a schema calculus expansion could be translated by Z2SAL. It means that

95

Z2SAL could parse associated Z specification.
As mentioned earlier, it is not difficult to add new Z tag to our scanner.

It denotes the implementation of a Z scanner is not a big problem. As
the outcome of our scanner will be processed further on our Z parser and
continued to redefinition or expansion system, the use of the third party
scanner generator makes the implementation of support for model checking
Z specifications easier rather than to hand-write a scanner generator by using
the Java language.

Let us now move to another discussion on this chapter. It is a design and
implementation of a Z parser.

4.2 A Z Parser

This section describes the implementation of our Z parser. Our parser will
read tokens passed by our scanner, and try to process whether these tokens
match any rule in Z grammar specified in our Z parser. This section contains
several sub-sections, which begins with an introduction to the BYACC/J
parser generator.

4.2.1 Introduction

An extension to the Berkeley 1.8 YACC-compatible parser generator is used
in our support [33]. It is BYACC/J, which is available in Microsoft, Linux,
Macintosh, and SUN Solaris platforms [58], with version 1.15. By a flag ”-J”,
the standard YACC tool will generate one or more Java parser files from a
YACC source file .y. However, BYACC/J can also generate C/C++ parsers
[58]. These Java files can be compiled to produce a LALR-grammar parser.

One of these files, which is usually generated, is the Parser.java. By
reading this file, a user can see how a parsing algorithm of YACC works.
This Java file generates a class which is an extension of Thread.

Another Java file is the ParserVal.java. The current version of BYAC-
C/J allows a user to define an int, a double, a String, or an Object values.
All these semantic values are stored in a public class, ParserVal.

4.2.2 A YACC Parser

JFlex recognizes regular expressions and returns tokens from the matched
inputs, whereas YACC recognizes grammars in which it groups tokens logi-
cally [45]. Thus, YACC takes a grammar, which is specified by a user, and
writes a parser that recognizes valid sentences in that grammar.

96

The BYACC/J parser generator supports all usual procedures of YACC.
A YACC specification consists of three parts as follows: declarations area,
actions area, and code area. They are separated by ”%%” at the start of a
line given as follows:

DECLARATIONS
%%
RULES AND ACTIONS
%%
CODE

The first section includes declarations of the tokens used in the grammar,
the types of values used in the parser stack, precedencies and associativity
of operators, and a literal block Java code is enclosed by ”%{” ”%}”. As a
position of an operator in the precedencies gets higher, its level of precedence
gets lower. There are three associativities: %left, %right, and %nonassoc.

A single quoted character can be used as a token directly without prior
declaration in it. A token can be declared with a particular type: <sval> for
a string value and <dval> for a double value. These values are used also in
the declaration of a type of a terminal symbol.

The second section consists of a list of grammar rules. A colon, ”:”, is
used to separate the left from right-hand side and a semicolon is used to
indicate the end of each rule. The symbol in the left-hand side of the first rule
is normally the start symbol. However, if the %start directive is declared,
then this directive will override the start symbol.

By default, the first rule is the highest-level rule [45]. In other words, a
parser will find a list of tokens that matches this initial rule.

A rule can be a recursive rule which gives ability for YACC to parse long
input sequences. A user can write their rules to be left recursive or right
recursive. However, YACC handles left recursion much more efficiently than
right recursion [45].

A symbol in YACC parser has its value which can be obtained by using
the $ symbol. This value symbol has an index commencing from 1 to indicate
the first symbol in the right-hand side of a colon. The left-hand side has the
$$ symbol for its value. The other name for left-hand side symbol is a non-
terminal, a symbol which cannot stop the parsing.

The right-hand side contains of symbols and might have action code. The
symbol might be a terminal symbol or a token. The action code is enclosed
by ”{” and ”}”. This side can consist of several vertical bars, ”|”, which
indicate that several symbols in the right-hand side have the same left-hand
side symbol.

The last section is used to specify code in Java language which then will
be copied verbatim to the parser. It is called the user subroutines section.

97

A YACC parser works by looking for rules that match the tokens seen so
far. This parser will create a set of states, which each state reflects a possible
position in one or more partially parsed rules.

Each time a parser reads a token that does not complete a rule; it pushes
the token in an internal stack and switches to a new state reflecting the token
that has just been read. This action is called a shift.

If a parser has found all the symbols in the right-hand side of a rule, it
pops these symbols off the stack, pushes the left-hand side symbol onto the
stack, and switches to a new state reflecting the new symbol in the stack.
This action is called a reduction, since it usually reduces the number of items
in the stack. Whenever YACC reduces a rule, it executes user code associated
with this rule.

However, YACC sometimes might fail to parse a grammar specification
file. Ambiguous or conflicts in the grammar can fail a parsing.

An ambiguity means that there are more than one possible parse trees for
a single input string. This ambiguity can be inherently in several grammar
specifications. For this case, YACC cannot handle this ambiguous grammar.

On the other hand, the grammar might not be ambiguous. The parsing
technique that is used by YACC is not powerful enough to parse the grammar.
This unambiguous grammar raises conflicts that push the parser to look many
tokens ahead to decide which of two possible parses to use [45].

There are two conflicts when YACC tries to parse a grammar specifica-
tion: shift/reduce and reduce/reduce conflicts. The next sub-sections discuss
ambiguity and conflicts on parsing an input file.

Shift/Reduce Conflict

This conflict occurs when there are two possible parses for an input string.
One of these parses can complete a rule, so a reduce option is applicable.
Another parse cannot complete such a rule, which applies a shift option.

For example, the below grammar has one shift/reduce conflict:

%%
e : ′X ′

| e′ +′ e
;

If there is an input ”X+X+X”, then there will be two possible parses:
”(X+X)+X” or ”X+(X+X)”. The reduce option makes the parser use the
first parse or the reduce imparts left associativity to the operator; otherwise
the shift one uses the second parse or the shift imparts right associativity.
YACC always chooses the shift unless operator precedencies or associativity

98

were declared. On the other hand, addition operator should be left associa-
tive. Thus, shift/reduce conflict occurred here. This will be discussed briefly
in the associated sub-section.

Reduce/Reduce Conflict

A reduce/reduce conflict occurs when the same token can complete two dif-
ferent rules. For example:

%%
prog : proga | progb;
proga : ′X ′;
progb : ′X ′;

Although usually the reduce/reduce conflict is less obvious than one
shown in the above example. This conflict indicates a mistake in a grammar.

In a case there is a reduce/reduce conflict, Yacc will reduce the earlier
rule or the rule with the smaller number of order [39].

Precedence, Associativity, and Operator Declarations

As mentioned earlier in the previous section (see Section 4.2.2 on page 98),
the default action for YACC to choose if there is a conflict is to take shift
option. However, sometimes the result is not as expected. Thus, YACC
includes operator declarations that let a user change the way YACC handles
shift/reduce conflicts.

Precedence controls which operators will be executed first in an expres-
sion, whereas an associativity controls the grouping of operators at the same
level of precedence or at the same operators. In other words, precedence
assigns a level to an operator. Operators at higher levels bind more tightly.
As mentioned earlier, associativity can be left which means operators are
grouping from the left, right which means operators are grouping from the
right, or no grouping.

Operators are declared in increasing order of precedence. The same line
of operators means they have the same level of precedence. To have another
group of operators without continued the level of precedencies of previous
groups, the new group must be declared in a different group from previous
groups. Both groups are separated by a blank line between them.

In practice, it is better to rewrite a grammar rather to benefit from prece-
dence to solve the conflict. The common use of precedence is to solve ’dan-
gling else’.

99

Table 4.1: A list of unspecified Z rules
LHS RHS

schema.exp1 pre schema.exp1

pred let Let-Def.list • pred
Let-Def.list Let-Def Let-Def.list

Let-Def ident == expr
(op.name) == expr

op.name in-sym decor

pre-sym decor

post-sym decor

(| |)decor
decor

pred1 PREREL decor expr

pre schema.ref

expr0 µ spot.tail

µ word.schema.text

let Let-Def.list • expr
expr if pred then expr else expr

expr4 expr4expr

in-sym INFUN | INGEN | INREL
pre-sym PREGEN | PREREL
post-sym POSTFUN

4.2.3 An Implementation of a Z Parser

Our Z parser can be seen in Appendix F on page 305. It was represented by
a BYACC/J specification, which was named as Parser.y. Our parser does
not implement all Z rules. The Z grammar in our BYACC/J specification
refers to [69].

Several Z rules that were not specified by our BYACC/J specification are
given in Table 4.1 on page 100. Z rules, which were listed in Table 4.1 on
page 100, have not been implemented because of several reasons. The first
reason is our examples do not contain any declaration or predicate which
match one of those rules. Another reason is several of those rules caused the
number of shift/reduce or reduce/reduce conflicts is even higher. Since then
they were not included in our Z grammar.

If our parser is given a Z specification which has a declaration or predicate
statement does not match any of our Z rules, then our Z parser will generate
a syntax error. This error can fall into several sources. The first source is our
grammar does not have a rule of such a declaration or predicate statement.
Solving this problem is by adding this new rule. This might be necessary to
check also relevant tokens to specify the rule since it can be such a token has
not been specified in our scanner. The second source is indeed the rule of

100

the declaration or predicate statement has been specified in our Z grammar.
However, there were conflicts on either declaration or predicate. For this
case, a solution requires a further check on available grammars and solve any
shift/reduce or reduce/reduce conflict if it exists.

For example is given by output below:

run:

file parse: E:\Google Drive\Tesis\program\JavaCode\Thesis\src\carspark.tex

syntax error

Please check line: 4

\nat with length: 4

BUILD SUCCESSFUL (total time: 34 seconds)

It was generated from the same example used in Section 4.1.3 on page 92.
This time, the statement in line 5 has been modified incorrectly into:

count \nat \\

Our scanner counts the number of line from 0. Thus, the real number of line
should be added with 1.

The suspicious line is part of a declaration in a schema. Our parser
expected that there is : between name and type of a variable.

In the first part of our BYACC/J specification, several imported pack-
ages were declared. The first half tokens were declared having string values,
whereas the second ones have not had any values. Tokens were specified
using capital letters. All types of terminal symbols in our parser have also
string values.

Precedencies and associativities of several Z operators, which were for-
mulated in our parser in this first part, can be seen in Table 4.2 on page 102.
These precedencies and associativity follow ones specified in [69], but not the
last two lines. Both these lines were specified by us.

The second part of our parser contains almost Z rules which were obtained
from [69]. However, several of them have been rewritten to avoid shift/reduce
and reduce/reduce conflicts. Although these conflicts exist on our parser,
the numbers are less than the numbers of the same conflicts on original Z
grammar. Not all our rules were accompanied by actions. These actions store
information which will then be used on further process either redefinition or
expansion.

One example of our Z rules is discussed here. It is a Z rule to parse
a schema calculus definition. Our parser supports also many lines in one
schema calculus definition box. It is since our parser passes information

101

Table 4.2: Precedencies and associativity of Z operators
Tokens Precedencies Associativity

PIPE 11th Left
SEMI 10th Left
HIDE 9th Left
PROJECT 8th Left
BIMPLIES 7th Left
IMPLIES 6th Right
OR 5th Left
AND 4th Left
NOT 3rd Non-association
’(’ 2nd Non-association
’)’ 1st Right

about a separator on each different schema calculus definition. A separator
which separates each line containing different schema calculus will be put
on the llSchCal list. This list will be used later in the schema calculus
operation.

The associated Z rules to process the separator is shown as follows:

schema . de f . horz : WORD SDEF
{

schCal = true ;
i f (s epa ra to r){

l l S chCa l . add (” s epa ra to r ”) ;
s epa ra to r = fa l se ;

}
}

schema . exp
| WORD gen . fo rmal s SDEF
{

// has the same code as f o r WORD SDEF
}

schema . exp
;

The schema.exp non-terminal can be matched by two rules. One of them is
word.schema.exp1 and it will match with either schema.exp1 or WORD. The
latter is a terminal, in this parser, it is a Z token which a firing on it will
store the token information on the llSchCal list.

word . schema . exp1 : schema . exp1
| WORD

{
l l S chCa l . add ($1) ;

}
;

On the other hand, the schema.exp1 non-terminal will store information
to the list shown as follows:

102

schema . exp1 : LSBRACK
{

l l S chCa l . add ($1) ;
}
word . schema . t ex t RSBRACK
{

l l S chCa l . add ($4) ;
}

| schema . r e f
. . .

| NOT word . schema . exp1
. . .

| word . schema . exp1 AND word . schema . exp1
. . .

| word . schema . exp1 OR word . schema . exp1
. . .

| word . schema . exp1 IMPLIES word . schema . exp1
. . .

| word . schema . exp1 BIMPLIES word . schema . exp1
. . .

| word . schema . exp1 PROJECT word . schema . exp1
| word . schema . exp1 HIDE ’ (’WORD ” ’ ” ’) ’

. . .
| word . schema . exp1 HIDE ’ (’ word . de c l . name . l i s t ’) ’

. . .
| word . schema . exp1 SEMI word . schema . exp1

. . .
| word . schema . exp1 PIPE word . schema . exp1
| ’ (’ schema . exp ’) ’

. . .
;

”...” can be seen in Appendix F on page 305.
The third part of our parser as can be seen in Appendix F on page 305

consists of declarations of several variables which were used on our actions.
There is also a reference to our scanner. This will discussed further on a
relevant chapter later. There are several functions specified in this part. The
first function is to establish an interface to our scanner. The second one
is to report any syntax error that has been found. This function will call
another function to perform this job. Another function is a constructor of
the generated Java file later.

Before a parser generation is performed, a BYACC/J specification must
be copied to the place at which JFlex generator is located. The command to
generate our parser is as follows:

C:\ j f l e x −1.6.1\ bin>yacc −J Parser . y

Our Z parser generated two Java files at the end of this generation. In
our case, they are Parser.java and ParserVal.java. Then, both these files
are copied again to the place at which the BYACC/J specification is defined.

In addition to both Java files, inevitably, our Z parser generated also sev-
eral warnings. These warnings relate to conflicts with our parsed Z grammar.
The warnings are:

103

yacc: 1 shift/reduce conflict, 5 reduce/reduce conflicts.

These warnings have not been solved. It requires time and an effort to an
elaborate check on the grammar and a rewriting in it. However, all of our
examples could be parsed by our parser. Based on information gathered from
actions defined in our parser, the way our parser was designed is sufficient
and it could be said that our parser parse the input correctly.

Thus, these warnings are left as future works. In other words, until
now, our system either a generic constants redefinition or a schema calculus
expansion could run all of our examples correctly, though there were conflicts
with our parser.

Fortunately, YACC provides also an output file during the parser gener-
ation. To obtain the output file, the above generation command is modified
as follows:

C:\ j f l e x −1.6.1\ bin>yacc −v −J Parser . y

A file named y.output as default is generated after the above command
is executed. This file contains the parse table of the parser. The parse table
could be checked if there is conflict with the grammar.

Our parse table contains 382 states, 86 terminals, 95 non-terminals, and
220 grammar rules. The above conflicts are informed also as follows:

• State 69 contains 1 shift/reduce conflict.

• State 137 contains 1 reduce/reduce conflict.

• State 151 contains 1 reduce/reduce conflict.

• State 159 contains 1 reduce/reduce conflict.

• State 199 contains 1 reduce/reduce conflict.

• State 202 contains 1 reduce/reduce conflict.

However, it is possible that there are errors in gathered information if
further type-checker or processing is added to our parser. Furthermore, it
might these conflicts make our system fails to run other Z specifications. This
case is beyond our expectation now.

Nevertheless, let us investigate which design of Z specifications could
trigger problem on this conflict. Further information is given in separate
sub-sections.

104

The First Conflict

The first conflict is a shift/reduce conflict on State 69. Its detail given by
the output file is as follows:

69: shift/reduce conflict (shift 138, reduce 121) on ’,’

The shift/reduce conflict relates to comma (”,”). This conflict is either
shift to State 138 or reduce to Rule 121. State 138 is as follows:

• decl.name.list : WORD ’’́ ’,’ . WORD ’’́ (168)

• decl.name.list : WORD ’’́ ’,’ . word.decl.name (170)

On the other hand, Rule 121 is given on the below list of information on
State 69.

Number inside brackets at the end of each rule is the number of rule.
Thus, a shift requires to shift to other state, whereas a reduce requires to
reduce to other rule number.

State 69 consists of other information as follows:

• head.gen.actual.opt.rename.opt : WORD ’’’ . (121)

• head.gen.actual.opt.rename.opt : WORD ’’’ . gen.actual.opt.rename.opt

(122)

• basic.decl : WORD ’’’ . ’:’ expr.word (165)

• decl.name.list : WORD ’’’ . ’,’ WORD ’’’ (168)

• decl.name.list : WORD ’’’ . ’,’ word.decl.name (170)

The period, ”.”, points to the current location of the parse in the input
string [58]. The first item calls for a reduce (because the period is the right-
most) on ”,”. However, the fourth and five items in this state call for a shift
on this input. The second item calls for a shift on ”[”, and the third item
calls for a shift on ”:”. Thus, it is a shift/reduce conflict. YACC will shift
on this case as it is its default action.

The fourth and five items could raise an error if in a Z specification there
is a declaration of two schema inclusions. It is because a comma in this list,
YACC will shift to read the next item. On the other hand, each item in this
list needs to be reduced to a rule of schema reference.

105

The second item could raise an error if a schema inclusion is followed by
a ”[”. It is because an open square bracket in this case, YACC will shift
to read the next item. On the other hand, a schema inclusion needs to be
reduced to a rule of schema reference.

The third item could raise an error if a schema inclusion is followed by
a ”:”. It is because a colon in this case, YACC will shift to read the next
item. On the other hand, a schema inclusion needs to be reduced to a rule
of schema reference.

None of our Z specifications were designed to have either one of these
four rules. Thus, our tool does not experience with errors originated from
this shift/reduce conflict. Otherwise, each of the above cases will generate a
syntax error.

The Second Conflict

Different with the first conflict, the second is a reduce/reduce conflict. For
this conflict, YACC will run the earlier ordered rule in the related grammar.

The detail of this conflict is as follows:

137: reduce/reduce conflict (reduce 91, reduce 148) on ’,’

This conflict offers options either reduce to Rule 91 or Rule 148 on a reading
of ”,”. Other information on this state is as follows:

• expr4 : word.decor . (91)

• expr4 : word.decor . word.sq.bracks (92)

• expr4 : word.decor . gen.actual.opt (93)

• decl.name : word.decor . (148)

The first and last items call for a reduce on ”,”. However, the first item
will reduce to Rule 91 and the last will reduce to Rule 148. YACC will reduce
to the earlier specified rule based on the input sequence. The second and
third items call for a shift on ”[”.

Based on our running on our Z specifications that were used for redef-
inition generic constant and expansion of schema calculus, none of these Z
specification gave us error on such conflict. Thus, it could be said that our
Z specification examples are parsed correctly on this conflict. This conflict
would generate a syntax error if it is expected that the item will reduce to
Rule 148, but YACC reduce to Rule 91 and the next input does not match
with the rule, and vice versa.

106

The Third Conflict

The third conflict is also a reduce/reduce conflict. The detail of this conflict
is given as below:

151: reduce/reduce conflict (reduce 161, reduce 198) on ’)’

This conflict originates from a reading of ”)” and causes two options
whether to reduce to Rule 161 or Rule 198. Other information on this state
is given as follows:

• expr1.word : WORD . (71)

• expr2.word : WORD . (84)

• expr4.word : WORD . (86)

• expr3.word : WORD . (117)

• schema.ref : WORD . gen.actual.opt.rename.opt (120)

• head.gen.actual.opt.rename.opt : WORD . ’’’ (121)

• head.gen.actual.opt.rename.opt : WORD . ’’’ gen.actual.opt.rename.opt

(122)

• word.decor : WORD . DECOR (151)

• pred : WORD . (161)

• word.pred1 : WORD . (195)

• expr.word : WORD . (198)

The third last and last items call for a reduce on ”)”. The third last item
reduces to Rule 161 whereas the last reduces to Rule 198. The fifth item
calls for a shift on ”[”. On the other hand, the sixth and seventh call for a
shift on ”’”, and the eighth calls for a shift on DECOR. The rests call for a
reduce to a rule as given inside brackets.

Based on our investigation on our Z specification examples, this conflict
does not occur. It is sufficient to say that our examples are parsed correctly
by YACC on this conflict.

107

The Fourth Conflict

Detail of this conflict is as follows:

159: reduce/reduce conflict (reduce 98, reduce 185) on ’)’

This error means that there is a reduce/reduce conflict when YACC reads
a ”)” after each of the below rules. It either can reduce to Rule 98 or Rule
185. Other information is as follows:

• expr4 : schema.ref . (98)

• pred1 : schema.ref . (185)

This conflict does not occur. As a result, it could be said that our Z
specification examples are parsed correctly on this conflict by our parser.

The Fifth Conflict

The fifth conflict is as follows:

199: reduce/reduce conflict (reduce 173, reduce 198) on ’,’

It relates to choices for YACC to reduce to Rule 173 or Rule 198. Other
information on this state is given as follows:

• expr1.word : WORD . (71)

• expr2.word : WORD . (84)

• expr4.word : WORD . (86)

• expr3.word : WORD . (117)

• schema.ref : WORD . gen.actual.opt.rename.opt (120)

• head.gen.actual.opt.rename.opt : WORD . ’’́ (121)

• head.gen.actual.opt.rename.opt : WORD . ’’́ gen.actual.opt.rename.opt

(122)

• word.decor : WORD . DECOR (151)

• schema.text : WORD . BAR pred (156)

• basic.decl : WORD . ’’́ ’:’ expr.word (165)

108

• decl.name.list : WORD . ’’́ ’,’ WORD ’’́ (168)

• decl.name.list : WORD . ’’́ ’,’ word.decl.name (170)

• word.decl.name.list : WORD . (173)

• word.schema.text : WORD . (183)

• expr.word : WORD . (198)

Based on our investigation on our Z specification examples, this conflict
does not occur. It could be said that YACC could parse our examples cor-
rectly on this conflict.

The Sixth Conflict

The last conflict generated by YACC is as follows:

202: reduce/reduce conflict (reduce 98, reduce 164) on TES

The right hand side of both below rules could be reduced either to the first
rule or second on a reading of ”TES”. ”TES” is the closing marker for a set
definition.

Other information on this state is given as follows:

• expr4 : schema.ref . (98)

• basic.decl : schema.ref . (164)

There is none of our examples experienced with this conflict.

4.2.4 Conclusion

A successful parsing of our parser provides important information for a
generic constant redefinition or a schema calculus expansion system. It shows
that our Z parser works. This success is expected as our contribution to re-
lated research in this field. The Z parser is part of the architecture of our
research as shown by Fig. 3.1 on page 77.

The outcome of a generic constant redefinition or a schema calculus ex-
pansion system will be translated by Z2SAL. If a user can obtain a generated
SAL file from this translation, it is argued that our Z parser has parsed an
associated Z specification accurately. On the other hand, if Z2SAL fails to
translate the outcome of our system, it does not denote that our parser is not
correct. It might be the associated Z specification contains Z notations which

109

does not supported by Z2SAL, as in one of our example of Z specification.
Since our examples on our experiments can be translated by Z2SAL with
an exceptional Z specification as mentioned earlier, our parser could parse Z
specifications on our experiments correctly.

The use of the third party parser generator makes the implementation of
support for model checking Z specifications easier rather than to hard-code
a parser generator on the Java language. If a user is necessary to add a new
rule, it can be performed easily on the existing parser.

As several conflicts still exist, further studies on YACC software as well
as parser are required to solve these conflicts. Although it is only a warning
in this tool, it says there is something not correct with the grammar. In our
cases, these conflicts relate to rules that have only one non terminal in the
right hand side of colons, whereas this non terminal was designed to exist in
many different rules.

The output file provided by YACC worth as guidance in solving conflict
on this tool. It is because this file supplies us with the next input, number
of states, number of rules, and other useful information. These conflicts can
be defined as future works.

110

Chapter 5

Redefining Generic Constants

The previous chapter discussed implementations of our Z scanner and parser.
This chapter discusses a redefinition of generic constants. It begins with a
brief introduction to generic constants.

5.1 Introduction

A generic constant is used to introduce a new constant [2]. Syntax for the
generic constants was taken from [69] and the associated syntax for a generic
constant is:

[Gen − Formals]
Declaration

Predicate; . . . ; Predicate

This box looks like a schema box, but the former box has several differences
on its header to the latter box. Firstly, it is not necessity to specify a name
for a generic constant definition box as in a schema box, but it is required
to add generic parameters to its heading. The generic parameter is specified
inside a pair of square brackets. Another difference is a double line instead
of a single line on the upper line of the former box.

Not only does a generic constant definition let a user define generic pa-
rameters with the same type, but also a user can define different types of
parameters. It is performed by using different literals such as X, Y, Z, and
others.

In a case there is no such a generic constant, a user should define several
different functions based on their types of parameters, though contents of
these functions are all the same. Thus, it involves redundant work.

A generic constant is commonly used in defining mathematical tool-kit
operators [2], which do not depend on existing elements in their constructions

111

[69]. Thus, a user can define a new mathematical operator easily without
being bothered by types of each its element.

A generic constant can also define a general notion of a system, which
in fact is used frequently. This general notion helps a user to gain more
understanding on the system.

By using a generic constant, a user can define parameters that might have
different types. It is the same as the generic schema which can be defined
whatever data that will be operated on it.

An example of a generic constant taken from [69] is given as follows:

[X ,Y]
first : X ×Y → X

∀ x : X ; y : Y • first(x , y) = x

where X and Y might have any type either a different or same type. As seen
above, the first generic constant has two generic parameters. This generic
constant can be used to find the first element between two elements.

These types can be specified such that they are the same. It is performed
by using one generic parameter showed as follows:

[X]
first : X ×X → X

∀ x , y : X • first(x , y) = x

A generic constant can be redefined to an axiomatic definition by specifying
actual types replacing generic types explicitly. In other words, a formal
generic parameter of a generic constant is usually formed from a single capital
letter, which will be actualised by defining its type based on usages of the
generic constant. A process of actualising is called with an instantiation [56].

For above example, if there is a usage for the generic constant first such
as first(2,5), the formed type is a set of ((Integer x Integer) x Integer).
This expression has inputs whose type is Integer and an output whose type
is Integer.

However, in a case of a generic constant that does not have a parame-
ter/input, actualising its parameter is not always straightforward. It requires
deduction to infer a type from the generic constant environment.

Furthermore, there are two methods on actualising generic parameters.
The first method is defining directly actual types. A user can define the
type by putting it inside a pair of square brackets, ”[]”, following either
the generic constant name or the actual parameters. This method is named
explicit actual types.

The second one is to infer the actual type from its surrounding; it is
implicit to the user. The second method seems a challenge in designing an

112

automatic actualisation system, especially with a generic constant without
an input.

Below is further discussion on redefining generic constants.

5.2 A Method for Redefining a Generic Con-

stant

Our method to support Z2SAL in translating a generic constant is to imple-
ment a tool which will redefine a generic constant definition to an equivalent
axiomatic definition based on usages of the generic constant. This redefinition
is called as an actualization process, in which a generic type of a parameter
will be actualised to its actual type of parameter. Plagge and Leuschel in
[55] also proposed the same method as our method for translating a generic
definition defined in a Z specification.

The difference of both definitions is the former definition uses generic
parameters, whereas the latter one uses no generic parameter. Based on this
difference, generic parameters will be replaced by their actual parameters
which match with their usages. Thus, an axiomatic definition is generated
from this generic constant definition which matches associated usage.

Based on this method, the next section discusses an implementation of
generic constant redefinition system.

5.3 An Implementation of the Redefinition

System

A simple redefinition tool, which will redefine a generic constant definition
in a Z specification to a suitable definition written by using an axiomatic
definition, was proposed and implemented.

This system starts from our main program, Z Preprocessing Tool.java,
specifically redefine function. From this function, other functions specified
in another Java program will be called as they are required. In this case the
latter program is generic.java. In general, our redefinition system has an
algorithm as follows:

5.3.1 Reading a Z specification

This first step will read the Z specification input line by line. Bytes of
characters were chosen as a reading method, and firstly it was read to a
buffer as follows:

113

BufferedReader br =
new BufferedReader (new Fi leReader (f i l e . getParent ()+”\\ output ”+
f i l e . getName ())) ;
// i r r e l e v a n t code
while ((s = br . readLine ()) != null){
// i r r e l e v a n t code
}
// i r r e l e v a n t code

To see how the added code works, this code will be applied to a Z speci-
fication. For this purpose, one of our Z specifications from our experiments,
fHead.tex, was used. Thus, a discussion on this working example will accom-
pany important code. This Z specification and its redefined version generated
by our system can be seen completely in Appendix G on page 327.

5.3.2 Spotting Generic Constant Definition

This step will spot generic constant definition boxes and change them into
relevant axiomatic definitions.

i f (s . s tartsWith (”\\ begin { gendef }”)){
i f (s . conta in s (”X”)) {

for (int i =0; i<s . l ength () ; i ++){
i f (s . charAt (i) == ’X ’) g e n e r i c . genPar . add (”X”) ;

}
}
i f (s . conta in s (”Y”)) {

// the same as e a r l i e r code , but the s t r i n g shou ld be matched
}
i f (s . conta in s (”Z”)) {

// the same as e a r l i e r code , but the s t r i n g shou ld be matched
}

Each generic parameter which is found in a generic constant definition box
will be stored. In this system, only three literals are considered for generic
parameters: X, Y, and Z. They are shown in the above code. This number
is chosen since it is rare to have a number higher than this. These literals
are also commonly used to represent generic parameters.

Each generic constant begins with \begin{gendef}. After it is spot-
ted, it is changed into the axiomatic definition. This is obtained by replac-
ing \begin{gendef} with \begin{axdef} as shown in the below code, and
\end{gendef} with \end{axdef} as shown in the later code.

s = s . r e p l a c e (s , ”\\ begin { axdef }”) ;
s = s . tr im () ;
g e n e r i c . tempS . add (s) ;

The code below gets variables and their types from generic constant
names. There was only one generic constant variable, headSeq, and its type
is (seq1 X) → X.

114

Types are then divided into two categories: they contain brackets, or they
do not contain brackets.

while (! (s = br . readLine ()) . equa l s (”\\ST”)){
i f (s . conta in s (” : ”)){

var = s . s ub s t r i ng (0 , s . indexOf (’ : ’)) ;
var = var . tr im () ;
va l = s . s ub s t r i ng (s . indexOf (’ : ’)+1) ;
va l = va l . tr im () ;
i f (va l . endsWith (”\\”+”\\”)){

va l = va l . s ub s t r i ng (0 , va l . indexOf (”\\”+”\\”)) ;
va l = va l . tr im () ;

}
// see the below code f o r d e t a i l s

}
g e n e r i c . tempS . add (s) ;

}

The code below gives details of the above comment.

i f (va l . conta in s (” (”)){
l lType = new LinkedLis t () ;
for (int idxVal = 0 ; idxVal< va l . l ength () ;
idxVal++){

i f (va l . charAt (idxVal) == ’ \\ ’){
// i r r e l e v a n t code

}
else {

i f (va l . charAt (idxVal) != ’ ’) {
l lType . add (va l . charAt (idxVal)) ;

}

stVal = ”” ;
}

}
int idv =0, idxVal , newIdv ;

while (idv<l lType . s i z e ()){
stVal = l lType . get (idv) . t oS t r i ng () . tr im () ;

i f (stVal . equa l s (” (”)&& g e n e r i c . indexOfById (l lType , ” (” , (idv+1))> −1){
// i r r e l e v a n t code

}
else i f (stVal . equa l s (” (”)&& g e n e r i c . indexOfById (l lType , ” (” , idv+1)== −1){

// i r r e l e v a n t code
}
else idv++;

}
. . .

}

If they do not contain bracket, the code is just a switch block shown as follows
which details the above ”. . .”:

switch (Parser . hmTypeVar . get (var) . t oS t r i ng ()) {
case ” i sFunct ion ” :

g e n e r i c . genCons . put (var , va l) ;
g e n e r i c . hmFunc . put (var , va l) ;
break ;

case ” i s R e l a t i o n ” :
g e n e r i c . genConsNotFunc . put (var , va l) ;

115

break ;
default :

g e n e r i c . genConsCons . put (var , va l) ;
g e n e r i c . hmFunc . put (var , va l) ;
break ;

}

At this stage, the type of the generic constant is gathered also. It can be
a function, a relation or a constant. They can be distinguished based on the
generic constant declaration, given as follows:

• a function; if the outermost operator is one of infix generic functions. A
complete set of these functions is ” 7→”, ”→”, ” 7�”, ”�”, ” 7→→”, ”→→”,
and ”�→”. These functions are collected in one token, namely INGEN.
Being a function, it will have at least one input parameter and one
output parameter. These parameters can have generic types.

• A relation; if a declaration uses ”↔” tag in its outermost operator. This
tag has REL as its token. As a relation, there is no output parameter, in
other words the output is the relation itself, a pair of typed parameters.

• A constant; a constant means it does not require any input. Thus,
a declaration of this generic constant only gives us the generic output
parameter. This declaration denotes none of above tags in its outermost
declaration.

These types of generic constant are formulated by following expressions which
were specified in our parser:

expr1 : expr1 . word REL decor
{

i s R e l a t i o n = true ;
i f (genAxDef){

hmTypeVar . put (llGenAxDefVar . getLast () . t oS t r i ng () ,
” i s R e l a t i o n ”) ;
llGenAxDefTypes . add ($2) ;
i f (! $3 . isEmpty ()) llGenAxDefTypes . add ($3) ;

}
else i f (schDef){

. . .
}

}
expr1 . word

| expr1 . word INGEN decor
. . .
expr1 . word

| expr2 . chain
. . .

| expr2
. . .

;

116

”. . .” can be seen in Appendix F on page 305. The first rule indicates a
relation, whereas the second one is a function. The third rule contains CROSS
obtained from expr2.chain. This rule can be either a function or a relation,
depending on which of the first two rules are fired previously. The last rule is
a constant; it denotes that the function and relation rules cannot be matched.

If a type does not contain any bracket, the next process is to identify
directly the type of generic constants which is the same as the above code.
Afterwards, each declaration line will be stored to the list. It is shown by
the last statement before the end of while block.

The next process is to get predicates. It is shown by the code as follows:

i f (s . equa l s (”\\ST”)){
LinkedLis t vcStr = new LinkedLis t () ;
g e n e r i c . tempS . add (s) ;
s = br . readLine () ;
s s = ”” ;
while (! s . equa l s (”\\end{ gendef }”)){

// see the below code
}

}

If there is a quantifier in the predicate part, the associated lines will be joined
until it reaches either a line separator or the end of this generic constant
definition.

i f (s . tr im () . endsWith (”\\dot”) | | s . tr im () .
endsWith (”\\ spot ”) | | s . tr im () . endsWith (”\\ cbar ”)){

s s = s ;
while (! s . endsWith (”\\”+”\\”) && ! s . tr im () . equa l s (”\\end{ gendef }”)){

s = br . readLine () . tr im () ;
i f (! s . tr im () . equa l s (”\\end{ gendef }”)){

s s = s s + ” ” + s ;
}

}
}

Our Z specification did not contain a quantified predicate as mentioned
on above code. In order to show how the above code works, the associated
quantified predicate is divided into two lines, though this predicate is a quite
short predicate.

After these lines are joined, another function will be called. getActualParam
is a function to identify usage of each known generic constant and get types
of actual parameters. This function was specified in generic.java program.
Since our system supports no usage on a generic constant definition box,
both calls will not give any result.

This function calls another function at the beginning of its code, which is
getVarInPredicate. The latter function which was specified in generic.java

is to get variables declared in a predicate part. These variables and their
associated types will be stored according to the value of the last parameter

117

passed to getActualParam. If the value is true as the below code, it indicates
the variable is declared on a predicate part of a generic constant definition
box. Otherwise, the variable is declared on a predicate part of schemas or
axiomatic definitions.

A call to getActualParam function is shown as follows:

i f (! s s . isEmpty ()){
g e n e r i c . getActualParam (ss , vcStr , genConstant , true) ;
i f (! s . equa l s (”\\end{ gendef }”)) s = br . readLine () ;

}
else {

while (! s . equa l s (”\\end{ gendef }”)){
g e n e r i c . getActualParam (s , vcStr , genConstant , true) ;
s = br . readLine () ;

}
}

Since a variable s was declared on a predicate part of the generic constant
definition headSeq, this variable and its type seq1 X are stored on a storage
hmVarGC containing variables declared on generic constant definitions. This
storage is an instance of HashMap, a Java standard library class.

Afterwards, the process returns to the caller of getActualParam function,
which is redefine function. If the end of this generic constant definition is
reached, then the next process is as the below code. The end of a generic
constant is changed to the end of an axiomatic definition. A header and
footer of a generic constant definition has been changed to both of them of
an axiomatic definition.

i f (s . equa l s (”\\end{ gendef }”)){
s = s . r e p l a c e (s , ”\\end{ axdef }”) ;
s = s . tr im () ;
g e n e r i c . tempS . add (s) ;
idxEAxDef = g e n e r i c . tempS . s i z e ()−1;

}

Thus, after this step, every generic constant definition has been modi-
fied to an axiomatic definition. However, they still use generic parameters.
The next step will change these generic type parameters into actual type
parameters.

5.3.3 Spotting Usages of Generic Constants

This step will spot usages of those generic constants. It also reflects these by
both writing verbatim the definition of those generic constants, in case they
are not defined before or they have different types of parameters, and modify
their callers. These usages will be searched in schema definitions shown as
follows:

else i f (s . s tartsWith (”\\ begin {schema}”)){

118

g e n e r i c . tempS . add (s) ;
s s = s . su b s t r i n g (s . l a s t IndexOf (”{”)+1 , s . l a s t IndexOf (”}”)) ;
s s = s s . tr im () ;
g e n e r i c . schName . add (s s) ;
while (! (s = br . readLine () . tr im ()) . equa l s (”\\ST”) &&
! (s . equa l s (”\\end{schema}”))){

// v a r i a b l e s processed here
}
i f (s . equa l s (”\\ST”)){

// p r e d i c a t e s processed here
}
else g e n e r i c . tempS . add (s) ;

}
else g e n e r i c . tempS . add (s) ;

A schema can contain varieties of declarations: an inclusion, a primed,
a ”∆”, and a ”Ξ” of state schemas, and other variables. All of these are
handled by code as follows:

i f (! s . conta in s (g e n e r i c . schName . get (0)+” \ ’ ”) &&
! s . conta in s (”\\Delta ”+g e n e r i c . schName . get (0)) &&
! s . conta in s (”\\Xi ”+g e n e r i c . schName . get (0)) &&
! s . conta in s (g e n e r i c . schName . get (0) . t oS t r i ng ())) {

// see The F i r s t D e t a i l
}
else {

i f (s . conta in s (g e n e r i c . schName . get (0) . t oS t r i ng ()) &&
! s . conta in s (g e n e r i c . schName . get (0)+” \ ’ ”) &&
! s . conta in s (”\\Delta ”+g e n e r i c . schName . get (0)) &&
! s . conta in s (”\\Xi ”+g e n e r i c . schName . get (0))){

. . .
}
else i f (s . conta in s (g e n e r i c . schName . get (0)+” \ ’ ”) &&
! s . conta in s (g e n e r i c . schName . get (0) . t oS t r i ng ()) &&
! s . conta in s (”\\Delta ”+g e n e r i c . schName . get (0))

&& ! s . conta in s (”\\Xi ”+g e n e r i c . schName . get (0))){
. . .

}
else i f (s . conta in s (”\\Delta ”+g e n e r i c . schName . get (0)) | |
s . conta in s (”\\Xi ”+g e n e r i c . schName . get (0)) &&
! s . conta in s (g e n e r i c . schName . get (0)+” \ ’ ”)){

. . .
}

}
g e n e r i c . tempS . add (s) ;

The first conditional is to process an ordinary variable, whereas other condi-
tional if blocks process a name of a state schema which can either be added
with a decoration or not.

The First Detail is shown as follows:

i f (s . indexOf (’ ; ’) > −1){
// to process a l i n e o f v a r i a b l e s which conta ins ”;” s

}
else {

// o therwi se
}

119

Since a ”;” can occur many times in a line of declared variable, inside ”. . .”
was specified a do-while block which will process variables as long as a ”;” is
still found. After there is no ”;”, a variable can be stored directly.

Since several variables can have a same type, this case was also specified.
It denotes ”,”s are available in a group of the same type of variables.

These variables are put into two different storages: a storage for state
variables which is hmStVar, and a storage for operational schemas variables
which is hmVar. Both of them are instances of HashMap.

”. . .”s are to process a name of a state schema with or without a deco-
ration. The state schema variables will be read here and they will be added
to a list of variables of an associated operational schema. These ”. . .” are
not displayed here since they do not really relate to a spotting of generic
constants usages.

Let us now discuss a process on a predicate part of a schema in which
such a usage usually occurs.

g e n e r i c . tempS . add (s) ;
s = br . readLine () . tr im () ;
s = ”” ;
while (! s . equa l s (”\\end{schema}”)){

checkModFunc = g e n e r i c . tempS . s i z e () ;
// j o i n s s e v e r a l l i n e s which are ended e i t h e r with a ”\ dot ” or a ”\ cbar ”

i f (! s s . isEmpty ()){
g e n e r i c . getActualParam (ss , vcStr , genConstant , fa l se) ;
// i r r e l e v a n t code
i f (! s . equa l s (”\\end{schema}”)) s = br . readLine () . tr im () ;

}
else {

g e n e r i c . getActualParam (s , vcStr , genConstant , fa l se) ;
// i r r e l e v a n t code
i f (! s . equa l s (”\\end{schema}”)) s = br . readLine () . tr im () ;

}
}
g e n e r i c . tempS . add (s) ;

The joining will stop until the line is ended with a ”\\” or \end{schema}.
This process is quite similar to the process in the earlier discussion.

As can be seen from the above code, getActualParam function is called
in two different places and both calls have ”false” for their last parameter. As
mentioned in the above discussion, this function will identify types of actual
parameter on usages of generic constants. The last parameter indicates that
the call is not conducted on a predicate part of a generic constant definition.
Because of this value, it is possible that this call will be processed further
until the types are obtained.

There are several writings of these usages that necessary to be introduced.
They were specified in our system, as follows:

• A generic constant is followed by a pair of brackets which encloses
its parameters. This usage will call getVariableBracket function.

120

This function was specified in generic.java and it was called by
getActualParam function.

The first process in getVariableBracket function is to get a type of
a generic constant. This function will call another helping function
specified also in generic.java which is splitType and it is shown as
follows:

temp = Parser . hmGenAxDef . get (gcVar) . t oS t r i ng () ;
i f (temp . conta in s (” , ”)){

idx = 0 ;
do{

temp1 = temp . s ub s t r i n g (idx , temp . indexOf (” , ” , idx)) . tr im () ;
ingen . tempType . add (temp1) ;
idx = temp . indexOf (” , ” , idx) + 1 ;
i f (temp . indexOf (” , ” , idx) == −1){

ingen . tempType . add (temp . s ub s t r i ng (idx) . tr im ()) ;
break ;

}
}
while (idx < temp . l ength ()) ;

}

The above code is a process for a generic constant which its occurrences
are higher than one on associated Z specification. It means that the
type of this generic constant is not a simple type. For example, a type
of (X \pfun Y) \fun \pset X will be split into X, \pfun, Y, \fun,
\pset, X. Each type will be stored on the same generic constant which
is separated by a ”,” from each type. As can be seen from the above
code, this function gets the type from the parser based on the associated
generic constant. The associated grammar is shown as follows:

bas i c . d e c l : schema . r e f
{

. . .
}
| WORD ” ’ ” ’ : ’ expr . word
{

St r ing s t r ;
i f (genAxDef){

$$ = $1+” ’ ” ;
llGenAxDefVar . add ($$) ;
for (int i =0; i<llGenAxDefTypes . s i z e () ; i ++){

i f (hmGenAxDef . containsKey (
llGenAxDefVar . getLast () . t oS t r i ng ())) {

s t r = hmGenAxDef . get (
llGenAxDefVar . getLast () . t oS t r i ng ()) . t oS t r i ng () ;
hmGenAxDef . put (llGenAxDefVar . getLast () .
t oS t r i ng () , s t r + ” , ”+
llGenAxDefTypes . get (i) . t oS t r i ng ()) ;

}
else hmGenAxDef . put (llGenAxDefVar . getLast () .
t oS t r i ng () , llGenAxDefTypes . get (i) . t oS t r i ng ()) ;

}
. . .

}

121

else i f (schDef){
. . .

}
else $$ = $1+” ’ ” + ” ” + $3 +
” ” + $4 ;

. . .
}

| word . dec l . name . l i s t ’ : ’ expr . word
. . .

;

”. . .” can be seen in Appendix F on page 305.

If a type does not contain any ”,”, this type is stored directly to
ingen.tempType. The next process, which is applied to either the
type with ”,” or without ”,”, is to read contents of ingen.tempType.
If there are open brackets without any close bracket on every element
of that list, the open brackets will be deleted. If there are close brack-
ets without any open bracket on every element of that list, the close
brackets will be deleted. Afterwards, if an element contains a generic
parameter, this element will be stored in gc.genParam.

After a type of generic constant is obtained, the next process is to
obtain an actual type for each parameter of this generic constant. This
actual type will be matched with the generic parameter on the same
order for every actual type. To do this, another function is called,
which is unifyTypeBrack. This function adopts a simple unification
process as follows:

tyVar = ”” ;
for (int i =0; i<strTy . l ength () ; i ++){

i f (i< tyTT . l ength ()−1 && strTy . charAt (i) != tyTT . charAt (i)){
i f (strTy . charAt (i) == ’X ’ | | strTy . charAt (i) == ’Y ’ | |
strTy . charAt (i) == ’Z ’){

tyVar = tyVar + tyTT . s ub s t r i ng (i) . tr im () ;
tyVar = tyVar . tr im () ;

}
else i f (strTy . charAt (i) == ’ ’){

tyVar = tyVar + tyTT . charAt (i) ;
}
else i f (tyTT . charAt (i) == ’ (’ | | tyTT . charAt (i) == ’) ’){

strTy = strTy . su b s t r i n g (0 , i) + tyTT . charAt (i) +
strTy . su b s t r i n g (i) ;

}
}

}

getVariableBracket calls also another helping indexOfById function.
The latter function performs a forward search on a list based on an
index input shown as follows. This search will find the index of the
first occurrence, which is started with an input index, of an object.

122

stat ic int indexOfById (L i s t l i s t , Object searchedObject , int idx){
for (int i = idx ; i< l i s t . s i z e () ; i ++){

i f (l i s t . get (i) . t oS t r i ng () . equa l s (searchedObject . t oS t r i ng ()))
return i ;

}
return −1;
}

A List in Java can perform a forward search, but it is always started
with the first index on the list, which is 0. An opposite function, which
is to get the index of the last occurrence of an object and this search is
started with an input index, was also created. It is shown as follows:

stat ic int lastIndexOfById (L i s t l i s t , Object searchedObject , int idx){
for (int i = idx ; i >= 0 ; i−−){

i f (l i s t . get (i) . t oS t r i ng () . equa l s (searchedObject . t oS t r i ng ()))
return i ;

}
return −1;
}

• A generic constant is followed by explicit types of its parameters which
are enclosed with a pair of square brackets. This usage will call getVariableSquare
or getConsType function. The same as getVariableBracket function,
processes on getVariableSquare function begins also with the same
of splitType function. getVariableSquare function performs almost
the same process as getVariableBracket function generally. How-
ever, this function calls a different function for unification which is
unifyTypeSqBrack. All of above processes apply also to getConsType,
but it calls unifyType for the unification. The unification is generally
the same as the one discussed on above item.

• A generic constant is written in a membership operator or an equal-
ity. This usage will call getTypes or getConsType function. Generally,
getTypes function performs almost the same processes as other func-
tions. It calls also unifyTypeBrack function for the unification.

There were three usages on generic constant headSeq. The first usage has
an actual type, seq1NAME, which was specified as an explicit type. Unification
as shown in the figure uses three variables: strTy represents a generic type,
tyTT represents an actual type, and tyVar holds a value for the generic liter-
als. After a unification, the only one generic parameter X will be actualised
to NAME. The second usage made X be actualised to ”N”, whereas the last
usage made X be actualised to ”Z”.

Thus, after usages of generic constants are spotted and processed on every
schema on a Z specification, generic parameters are changed along with the

123

spotted usages. If the number of usages of a generic constant higher than
one and they have different types of parameters, all these types of parameters
will be presented in a different copy of axiomatic definitions, which will be
differentiated by adding an index following the name of the generic constant.

Our system declared a variable, isFirst, to indicate whether a generic
constant with its actual parameters is the first occurrence on associated Z
specification. Its initial value is true and is changed into false if there is a
reading of such a redefined generic constant.

The case in which isFirst is false can be differentiated into two further
cases. The first case is the generic constant has different type of its actual
parameters comparing with the same name of generic constant. In this case,
a new copied of the same name of a generic constant, but with different types
of actual parameters, is processed. Further steps for this case is given earlier
in above paragraph.

The second case is, the same name of generic constant and also the same
types of actual parameters. In this case, there is no new copy of such a
generic constant.

All of these three usages were conducted on the same generic constant
name, but with different types of actual parameter. It is represented as
”first”, for the first usage, and ”different” for each of the second and third
usage.

In order to be able to see outputs of the above process, a statement to
print contents of tempS was added. As can be seen from both figures, callers
for this generic constant name have not been modified to reflect their indexes
if any.

After all these processes, the next process is to modify the caller of these
usages. In some occasions, there are indices added to these generic constants.
In others, any square brackets specifying actual types of parameters explicitly
are deleted. It is since Z2SAL does not support explicit types.

A usage of a generic constant can be found either in a generic constant
definition, an axiomatic definition or a schema. The above discussion is only
to identify usages of schemas, but identifying usages of a generic constant,
and an axiomatic definition is generally the same and simpler than the one
on schemas. However, nothing of Z specifications in our experiments has a
usage of a generic constant in a generic constant definition box. Nonetheless,
several of our examples have such usages, but the first usage was specified in
schemas. The usage is indicated by calling the name of the generic constant
and passing the actual parameters to replace the generic ones.

124

5.4 Important Findings around a Redefini-

tion of Generic Constants

Our system can also be used to redefine other generic forms in a Z specifi-
cation such as an abbreviation definition and a lambda expression. Z2SAL
supports an abbreviation definition, but not the generic one. A user of Z
specifications is common to declare global constants by using abbreviation
definitions in their specification. By defining this abbreviation as generic,
the definition will have a generic parameter that can have different types in
its usages.

Firstly this generic abbreviation definition was redefined to a usual ab-
breviation one. However, a generic abbreviation definition is usually defined
using a set comprehension; Z2SAL does not support this kind of abbrevi-
ation definition. Thus, another finding is the current Z2SAL supports an
abbreviation definition, but not a one that has a set comprehension as its
value. Since then, a generic abbreviation definition is redefined to a generic
constant one instead.

Other finding in encountering the set comprehension in a generic abbrevi-
ation definition is a difference between Z and SAL language in defining such
a set. The Z notation supports many parameters declared in a set compre-
hension, but neither of Z2SAL nor the SAL language supports such a set.
Based on the SAL literature, a user can only declare one parameter in a set
comprehension definition. The SAL syntax [18] for a set expression is given
as follows:

SetExpression := SetListExpression | SetPredExpression
SetListExpression := {{Expression}+, }
SetPredExpression := {Identifier : Type = Expression}

This fact makes us redefine our generic abbreviation definition as well as
our lambda expression to an axiomatic definition that does not use a set
comprehension any more.

A lambda expression is used to define a function without a name [2].
Z2SAL does not support this expression, which inevitably it is commonly
used in a generic constant definition. Our approach is to redefine the lambda
expression to an axiomatic definition since both these definitions have similar
behaviours. As it is known that an axiomatic definition can be used to define
a function as well as a relation or a constant.

Several of our Z specifications from our experiments consist of abbrevi-
ation generic definitions and lambda expressions. The associated examples
are fMaxComSubSeq orig.tex, fMaxComSubSeq.tex, fMaxComSubSeq 1.tex,
fMonoSeq 1.tex, and fMonoSeq.tex. These can be read on the later chapter.

125

The above discussion was performed on these specifications both manually
and automatically.

During the development of the redefinition system, a new translation for a
function, which is defined by a user in an axiomatic definition, was proposed.
It can also be applied to a constant. This approach is another type of our
support for model checking Z specifications and it will be discussed further
in the next section.

5.5 A Proposed Translation of SAL Function

Based on our experiments, the current translation of several functions or
constants by Z2SAL failed to be verified or simulated by the SAL tool. An
unsupported error of either a failure to convert function application or an
incompatible type in the equality operator was produced either by the SAL
model checker or the SAL simulator during an execution of a SAL file. The
SAL file was generated by Z2SAL from the Z input specification generated
by our redefinition system. Thus, it is an issue on working with the redefi-
nition system and this issue was decided to be discussed at the end of this
chapter. This finding motivated us to propose a new SAL translation for
these functions or constants.

This new translation was based on the SAL literature [18]. Fortunately,
this translation could be verified or simulated successfully by the SAL tools
as given by our experiments. However, such a translation cannot be applied
to a relation since a relation does not have a type for its output parameter.

The current Z2SAL translates a function, a relation and a constant in the
base module, in which Z2SAL defines State as a default name for a module,
and puts variable declarations inside a definition clause. On the other hand,
a user defined function, relation and constant are always declared outside the
module and put inside a context clause, specifically in a constant declaration.

A constant declaration has a syntax as follows [18]:

ConstantDecl := Identifier [(VarDecls)] : Type[= Expr]

Thus, the generated SAL was modified to adapt a constant declaration
formulated by SAL.

An example has been given in the previous section, specifically in Section
2.5.2 on page 67. However, let us look at back that example.

output fSwap : CONTEXT = BEGIN
. . .
State : MODULE =

BEGIN
LOCAL swap1 : [NAME X NAME −> B NAME X B NAME]

126

LOCAL swap2 : [NAME X NAT −> B NAT X B NAME]
. . .
DEFINITION

i n v a r i a n t = (
func t i on {NAME X NAME, B NAME X B NAME ;
(NAME BB,NAME BB)} ! t o t a l ?(swap1) AND
func t i on {NAME X NAT, B NAT X B NAME ;
(4 , NAME BB)} ! t o t a l ?(swap2) AND
(FORALL (q 1 : NAME, q 2 : NAME) : swap1 ((q 1 , q 2))

= (q 2 , q 1)) AND
(FORALL (q 3 : NAME, q 4 : NAT) : swap2 ((q 3 , q 4))

= (q 4 , q 3)))
INITIALIZATION [

. . .
−−>

]
TRANSITION [

. . .
[]
ELSE −−>

name ’ = name
]

END;

END

The above code is a SAL file generated by Z2SAL from an associated Z
specification. ”. . .” hides several lines that are not necessary here.

As discussed earlier, this SAL file has a problem with the SAL tools. In
other words, the SAL tool failed to execute this SAL file. Afterwards, it was
modified manually and it was changed as follows:

output fSwap mod : CONTEXT = BEGIN
% the same as the ones in the prev ious SAL f i l e
swap1 (q 1 : NAME, q 2 : NAME) : B NAME X B NAME = (q 2 , q 1) ;

swap2 (q 3 : NAME, q 4 : NAT) : B NAT X B NAME = (q 4 , q 3) ;

State : MODULE =
BEGIN

% the same as the ones in the prev ious SAL f i l e
INITIALIZATION [

% the same as the ones in the prev ious SAL f i l e
−−>

]
TRANSITION [

% the same as the ones in the prev ious SAL f i l e
[]
ELSE −−>

name ’ = name
]

END;
th1 : theorem State |− G(FORALL (i , j : NAME) : swap1 (i , j) = (j , i)) ;

END

This modified SAL file could be executed successfully by the SAL tool as
discussed on the earlier section (see Section 2.5.2 on page 67).

To compare both SAL files, there are several keys to consider as follows:

127

• Those functions are declared on the different place. The above func-
tions were declared by Z2SAL as a LOCAL variable inside a state clause
MODULE, please see the first SAL file above. On the other hand, the
same functions were declared by modifying manually the first SAL file
as shown above in the output fSwap mod context clause, please see the
second SAL file above.

• They have also different method of declaration. The modified version
is quite similar with the declaration of function generally. A function
declaration usually starts with a function name, and a list of parameters
and their types which is enclosed with a pair of brackets. A type of the
output of this function can be put before the function name or after
that list of parameters. To compare these declaration, the below code
is a declaration which is obtained from the modified version:

swap1 (q 1 : NAME, q 2 : NAME) : B NAME X B NAME

swap1 is the function name. There were two parameters: q 1, and
q 2; both of them have the same type NAME. The type of the output
is B NAME X B NAME.

On the other hand, the generated SAL file has a declaration as follows:

LOCAL swap1 : [NAME X NAME −> B NAME X B NAME]

• The declaration and body of the modified function are also quite sim-
pler than the original function. The function in the modified SAL file
only has the below code in its body:

= (q 2 , q 1) ;

However, the same function in the original SAL file has tremendous
code as follows:

f unc t i on {NAME X NAME, B NAME X B NAME ; (NAME BB,NAME BB)} !
t o t a l ?(swap1) AND (FORALL (q 1 : NAME, q 2 : NAME) :
swap1 ((q 1 , q 2)) = (q 2 , q 1)) AND

5.6 Conclusion

This system is expected to help Z2SAL in translating generic constant defini-
tion. Rather to translate directly a Z specification into a SAL file as Z2SAL
does, this system redefines a generic constant definition to an equivalent
axiomatic definition.

128

Although our system covers a small amount of Z generic constant defini-
tions, it can generate a redefined Z specification which can be translated by
Z2SAL easily and executed by the SAL tool. It also shows that our redefi-
nition system works. This success is expected as our contribution to related
research in this field. The redefinition system is a part of the architecture of
our research as shown by Fig. 3.1 on page 77.

A redefinition of generic constants relates also to a new translation of a
SAL function and constant. Based on our experiments on this translation,
it is argued that this translation is suitable to consider. However, this new
translation has not been applied to function which has more complex body.
Nonetheless, it can be set as a future work. It also shows that our proposal
on translation of user-defined functions and constants works. This success is
expected as our contribution to related research in this field. The proposal
is also a part of the architecture of our research as shown by Fig. 3.1 on
page 77.

More experiments on this system and an evaluation of this system can
be seen in later chapter. The next chapter discusses our system to expand
schema calculus.

129

Chapter 6

Expanding Schema Calculus

This section discusses a design and implementation of a schema calculus
expansion system. It begins with an introduction to schema calculus.

6.1 Introduction

By using a schema calculus definition, a new schema can be obtained by com-
bining previously specified schemas. Thus, schemas that have been specified
can be reused to specify a new schema. Every schema has its operations in
a specification, named a ’schema separation’ [56].

Since every schema operator has its own definition, a schema operator
affects how an expansion is performed. The expansion means that all unique
variables of the involved schemas are listed in a new schema. It also means
that predicates which are read from the involved schemas are added. These
predicates are combined using schema operators.

There is a prerequisite for operating two schemas; common variables
should have the same type. Furthermore, in a case of the negation oper-
ator, normalisation is also required.

Normalisation defines explicit constraints given by a declaration part of a
related schema, which is performed just before negation, and specifies these
constraints in a predicate part of the schema.

6.2 An Implementation of the Expansion Sys-

tem

In this section, the implementation of our expansion system is discussed. The
expansion system was included in the tool as support for model checking Z

130

specifications, as well as the redefinition system. This system can expand a
small subset of the Z schema calculus.

A list of schema operators which can be expanded by our system have
been discussed in the previous section (see Section 6.1 on page 130). Al-
though this list covers almost all schema operators in the Z schema calculus,
a user must not specify schema calculus in a complex definition. For more
description about whether a schema calculus definition can be expanded or
not by our system, please read through the implementation of this system as
discussed below, and experiments on this system in a later chapter.

Our method in this expansion system is to construct a new schema by
expanding other schemas, in which they are connected by schema operators.
This system supports several Z schema operators, which have been discussed
on earlier section, such as: ”¬”, ”∧”, ”∨”, ”⇒”, ”⇔”, ”/”, ”o

9”, ”\”, ”�”,
”∃”, ”∀”, and ”⊕”. However, all these schema operators should be specified
after ”=̂” and their paragraphs do not start with ”[” and end with ”]”; it is
one of limitations of our system.

The following subsection describes how our system processes a schema
calculus definition. This description is accompanied by associated code and
an example of a Z specification on this code. A Z specification which was used
for this purpose was taken from our experiments, expandingschema 2.tex.
This specification and its expanded schema generated by our system can
be seen in Appendix H on page 328. Since this example contains only one
schema calculus definition which uses conjunction operator, several other
operators will be also accompanied by an incomplete example. The example
is incomplete as it does not start from the first process until the final one.
The purpose is just to show how such an operator works.

6.2.1 Expansion Processes in Java Main Program

Our system starts an expansion process after a parsing on a Z specifica-
tion is successful. The expansion process is then performed by executing
the expand function. This function was specified in our main program,
Z Preprocessing Tool.java.

Next, an expansion starts by a reading of a \begin{zed}, ”=̂”, and one
of schema operators, as shown below:

else i f (s . s tartsWith (”\\ begin { zed}”)){
s = br . readLine () ;
while (! (s . equa l s (”\\end{ zed}”))){

i f (s . conta in s (”\\ s d e f ”)){
i f (s . conta in s (”\\ znot ”) | | s . conta in s (”\\ zand”) | | s . conta in s (”\\ zor ”) | |
s . conta in s (”\\zimp”) | | s . conta in s (”\\ zeq ”) | | s . conta in s (”\\ z f o r ”) | |
s . conta in s (”\\zcmp”) | | s . conta in s (”\\ semi ”) | | s . conta in s (”\\ zh ide ”) | |
s . conta in s (”\\ hide ”) | | s . conta in s (”\\ z p r o j e c t ”) | | s . conta in s (”\\ p r o j e c t ”) | |

131

s . conta in s (”\\ z e x i ”) | | s . conta in s (”\\ z a l l ”) | | s . conta in s (”\\ zovr ”)){

Our system recognizes also other zed definition boxes. All these definitions
are not specified by a ”=̂” after a \begin{zed}. Thus, these definitions
are not a schema calculus definition. They are specified for declaring an
abbreviation definition, and a basic type definition.

A function to process schema calculus is called afterwards as given in the
below code. This call will return a boolean value: true if a schema expansion
can be performed, false otherwise. This function is defined in another Java
program, schCal. All processes on expansion are performed on the latter
Java program. These processes will be discussed on a separate sub-section
afterwards. On the other hand, the process of the expand function, which
was specified in the main program, will be discussed in this sub-section.

strExp = s ;
s s = s . su b s t r i n g (0 , s . indexOf (”\\ s d e f ”)) ;
s s = s s . tr im () ;
schCal . schemaBox [idx] = new schema (s s) ;
i f (countSch > 0){

schCal . tempS . add (” ”) ;
}
schCal . tempS . add (”\\ begin {schema}{”+ss+”}”) ;
expanded=schCal . schConstruct ion (s . su b s t r i ng (s . indexOf (”\\ s d e f ”)+5). tr im () , idx) ;
i f (expanded){

idx++;
}

Thus, every time a \begin{zed}, ”=̂” and one of schema operators are read,
a new schema is created. An index, idx, is used to number the new schema.

Our expansion system is assisted by our parser to obtain schema names
and their operators. This process has been shown in Sub-section 4.2.3 on
page 100. The word.schema.exp1 non-terminal, which was used on that
process and was not provided on that sub-section, is given as follows:

word . schema . exp1 : schema . exp1
| WORD

{
l l S chCa l . add ($1) ;

}
;

For other non-terminals mentioned on schema.exp1, they can be seen in
Appendix F on page 305. Contents of the llSchCal list will be read and
used for schema expansion process.

Let us now move to another Java program, schCal to continue the ex-
pansion process. The first function to discuss is schConstruction.

132

6.2.2 Expansion Processes in schConstruction function

This function requires two parameters to operate: a string s represents a
schema calculus definition and a integer number index represents an index
number of a new schema.

The first process in this function is to check existences of redundant brack-
ets. Redundant brackets mean that there is no schema operator which is
enclosed with a pair of brackets. It is also redundant brackets if only a nega-
tion operator is specified inside a pair of brackets. Redundant brackets will
be removed from a list of operators and arguments of a paragraph of schema
calculus.

It is shown as follows:

while (g e t I < Parser . l l S chCa l . s i z e ()){
i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (” (”) &&
Parser . l l S chCa l . get (g e t I +1). t oS t r i ng () . equa l s (”) ”)){

i f (! Parser . l l S chCa l . get (get I −1). t oS t r i ng () . s tartsWith (”\\”)){
Parser . l l S chCa l . remove (g e t I +1);
Parser . l l S chCa l . remove (g e t I) ;

}
else i f (Parser . l l S chCa l . get (get I −1). t oS t r i ng () . s tartsWith (”\\ znot ”)){

// same as prev ious b l o c k
}
else g e t I++;

}

Our example, expandingschema 2, does not have any redundant brackets.
On the same while loop, there are other checks to pre-process contents

of the llSchCal list before an expansion begins. The second check, which is
an else clause of the above if block, is applied to schema decorations which
are ”∆” and ”Ξ”. The aim is to join the decoration with its successor and
remove the successor from the list. It is shown in the below code.

else i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\Delta ”)){
Parser . l l S chCa l . s e t (get I , Parser . l l S chCa l . get (g e t I) . t oS t r i ng () +
Parser . l l S chCa l . get (g e t I +1). t oS t r i ng ()) ;
Parser . l l S chCa l . remove (g e t I +1);

}
else i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\Xi”)){

// the same code as the above b l o c k
}

The third check is on hiding operator. The aim is to join all variables
and the join stop until the close bracket.

else i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . conta in s (”\\ zh ide ”)){
getI−−;
tempSch = ”” ;
do {

tempSch = tempSch + ” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng () ;
Parser . l l S chCa l . remove (g e t I) ;
i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”) ”)){

tempSch = tempSch + ”) ” ;

133

Parser . l l S chCa l . remove (g e t I) ;
break ;

}
}
while (! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”) ”)) ;
Parser . l l S chCa l . add (tempSch) ;
g e t I++;

}

The last check on this while loop is applied to quantifiers. The aim is gen-
erally similar with two previous checks. This time it is to join variables until
a ”•” is read. If none of all above checks is relevant, the getI index is up-
dated. Our system did not perform any of above checks on our Z specification
example. It denotes that this example does not contain both decorations, a
hiding operator, and a quantifier in its schema calculus definition.

In a separated part, but still in the same function, there is another check
to find out an existence of an implication operator, ”⇒”. If it is found,
contents of the llSchCal list will be copied to a temporary list, llTempImpl.
This temporary list is required to obtain an original sequence of schemas and
operators before an implication is performed. It is shown as follows:

g e t I = 0 ;
i f (Parser . l l S chCa l . conta in s (”\\zimp”)){

while (g e t I < Parser . l l S chCa l . s i z e ()){
llTempImpl . add (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) ;
g e t I++;

}
}

Since there is no implication operator on the only one schema calculus def-
inition on our Z specification example, the above check was not performed
either.

Another check is applied to horizontal schemas.

g e t I = 0 ;
while (Parser . l l S chCa l . s i z e () > 0 && g e t I < Parser . l l S chCa l . s i z e ()){

i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . tr im () . equa l s (”\\ l s c h ”)){
i f (Parser . l l S chCa l . indexOf (” s epa ra to r ”) < 0 | |
(Parser . l l S chCa l . indexOf (” s epa ra to r ”) > 0 &&
Parser . l l S chCa l . indexOf (” s epa ra to r ”) > Parser . l l S chCa l . indexOf (”\\ r sch ”))){

m = g e t I + 1 ;
temp = Parser . l l S chCa l . get (m) . t oS t r i ng () . tr im () ;
i f (temp . conta in s (” | ”)){

temp1 = temp . su b s t r i n g (0 , temp . indexOf (” | ”)) . tr im () ;
getVarVal (temp1 , schemaBox [index]) ;
temp1 = temp . su b s t r i n g (temp . indexOf (” | ”)+1). tr im () ;
schemaBox [index] . l l P r e d . add (temp1) ;

}
else i f (temp . conta in s (”\\bbar”)){

// the same code as prev ious b lock ,
// but with appropr ia t e s t r i n g to match and l e n g t h

}
else i f (temp . conta in s (”\\ zbar ”)){

// the same code as prev ious b lock ,
// but with appropr ia t e s t r i n g to match and l e n g t h

134

}
else {

getVarVal (temp , schemaBox [index]) ;
}
Parser . l l S chCa l . remove (m+1);
Parser . l l S chCa l . remove (m) ;
Parser . l l S chCa l . remove (m−1);
Parser . l l S chCa l . add (get I ,
schemaBox [index] . nameSch . tr im ()) ;

}
else g e t I++;

}
else g e t I++;

}

Every if block calls the getVarVal function to assign variables to a new
schema, as well as to assign predicate to the schema. The schema calculus
on our Z specification example was not specified in a horizontal schema.
Thus, the above function was not performed either.

The expansion process will start afterwards. Its code is as shown below:

while (Parser . l l S chCa l . s i z e () > 0 && g e t I < Parser . l l S chCa l . s i z e ()){
i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . s tartsWith (”\\”) &&
! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\ znot ”) &&
! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\Delta ”) &&
! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\Xi”) &&
! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\zimp”) &&
! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\ zeq ”) &&
! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . s tartsWith (”\\ z a l l ”) &&
! Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . s tartsWith (”\\ z e x i ”)){

Thus, the above code will process schema operators ”∧” and ”∨”.
There are several cases on how a schema calculus definition, which uses

both operators, was specified. Each case will be discussed on following sub-
section.

An Operator with Two Operands

The first case is an operator which has two operands. It is as shown below:

i f (get I−2 >= 0 && ! Parser . l l S chCa l . get (get I −2). t oS t r i ng () . equa l s (” (”) &&
! Parser . l l S chCa l . get (get I −2). t oS t r i ng () . equa l s (”) ”) &&
! Parser . l l S chCa l . get (get I −2). t oS t r i ng () . s tartsWith (”\\”)){

On this case, distributive simplifications are performed automatically on
predicates. These simplifications are as follows:

The First Simplification If a paragraph is on a form of (A op1 B)
op2 (A op1 C), this paragraph will be simplified into the form of A op1
(B op2 C). It is shown as follows:

i f (l l B r a c k e t . get (i) . t oS t r i ng () . conta in s (Parser . l l S chCa l . get (get I −2).
t oS t r i ng () + ” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ())) {

135

// i r r e l e v a n t code
tempSch = l l B r a c k e t . get (i) . t oS t r i ng () . su b s t r i n g (l l B r a c k e t . get (i) . t oS t r i ng () .
indexOf (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) +
Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . l ength ()) . tr im () ;
get Idx = i ;
l l B r a c k e t . s e t (getIdx , Parser . l l S chCa l . get (get I −2). t oS t r i ng () +
” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) ;
i f (get Idx > 0 && l l B r a c k e t . get (getIdx −1). t oS t r i ng () . equa l s (” (”) &&
l l B r a c k e t . get (get Idx +1). t oS t r i ng () . equa l s (”) ”)){

l l B r a c k e t . s e t (get Idx +1,” (”) ;
l l B r a c k e t . remove (getIdx −1);
hmOperator . put (getIdx −1, ”back”) ;
// o f i r r e l e v a n t code

}
l l B r a c k e t . add (tempSch + ”−” + Parser . l l S chCa l . get (get I −1). t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e () , ” complete ”) ;
l l B r a c k e t . add (”) ”) ;
break ;

}

The Second Simplification If it is on a form of (B op1 A) op2 (C
op1 A), the simplified form is (B op2 C) op1 A. This simplification is
shown as follows:

else i f (l l B r a c k e t . get (i) . t oS t r i ng () . conta in s (
Parser . l l S chCa l . get (g e t I) . t oS t r i ng () + ” ” +
Parser . l l S chCa l . get (get I −1). t oS t r i ng ())) {

// i r r e l e v a n t code
tempSch = l l B r a c k e t . get (i) . t oS t r i ng () . su b s t r i n g (0 , l l B r a c k e t . get (i) .
t oS t r i ng () . indexOf (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ())) . tr im () ;
// i r r e l e v a n t code
l l B r a c k e t . s e t (getIdx , tempSch +”−”+ Parser . l l S chCa l . get (get I −2). t oS t r i ng ()) ;
l l B r a c k e t . add (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()
+ ” ” + Parser . l l S chCa l . get (get I −1). t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e () , ” f r o n t ”) ;
break ;

}

Both the above simplifications are specified in a if block as follows:

i f (l l B r a c k e t . t oS t r i ng () . conta in s (Parser . l l S chCa l . get (get I −2). t oS t r i ng () +
” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) | |
l l B r a c k e t . t oS t r i ng () . conta in s (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()
+ ” ” + Parser . l l S chCa l . get (get I −1). t oS t r i ng ())) {

Sometimes, a pattern of schema calculus is not as regular as previous
discussions. For this kind of schema calculus, our system specifies it as
follows:

else i f (l l B r a c k e t . t oS t r i ng () . conta in s (Parser . l l S chCa l . get (get I −1). t oS t r i ng ()
+ ” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) | |
l l B r a c k e t . t oS t r i ng () . conta in s (Parser . l l S chCa l . get (g e t I) .
t oS t r i ng () + ” ” + Parser . l l S chCa l . get (get I −2). t oS t r i ng ())) {

These patterns are grouped as follows:

136

The First Not Regular Simplification A not regular form such as
(B op1 A) op2 (A op1 C) will be simplified into the form of (B op2 C)
op1 A, the same as the second rule above. It is the first form of not regular
patterns.

i f (l l B r a c k e t . get (i) . t oS t r i ng () . conta in s (Parser . l l S chCa l . get (get I −1).
t oS t r i ng () + ” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ())) {

// i r r e l e v a n t code
tempSch = l l B r a c k e t . get (i) . t oS t r i ng () . su b s t r i n g (l l B r a c k e t . get (i) .
t oS t r i ng () . indexOf (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ())
+ Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . l ength ()) . tr im () ;
get Idx = i ;
l l B r a c k e t . s e t (getIdx , Parser . l l S chCa l . get (get I −1). t oS t r i ng ()+
” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) ;
i f (get Idx > 0 && l l B r a c k e t . get (getIdx −1). t oS t r i ng () . equa l s (” (”) &&
l l B r a c k e t . get (get Idx +1). t oS t r i ng () . equa l s (”) ”)){

l l B r a c k e t . s e t (get Idx +1 ,”(”) ;
l l B r a c k e t . remove (getIdx −1);
hmOperator . put (getIdx −1, ”back ”) ;
// i r r e l e v a n t code

}
l l B r a c k e t . add (Parser . l l S chCa l . get (get I −2). t oS t r i ng () + ”−” + tempSch) ;
hmOperator . put (hmOperator . s i z e () , ” complete ”) ;
l l B r a c k e t . add (”) ”) ;
break ;

}

The Second Not Regular Simplification Another not regular form
such as (A op1 B) op2 (C op1 A) will be have the same simplified form
as the first rule on regular patterns above. This is shown as follows as the
second form of not regular patterns.

else i f (l l B r a c k e t . get (i) . t oS t r i ng () . conta in s (Parser . l l S chCa l . get (g e t I) .
t oS t r i ng () + ” ” + Parser . l l S chCa l . get (get I −2). t oS t r i ng ())) {

// i r r e l e v a n t code
tempSch = l l B r a c k e t . get (i) . t oS t r i ng () . su b s t r i n g (0 , l l B r a c k e t . get (i) .
t oS t r i ng () . indexOf (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ())) . tr im () ;
// i r r e l e v a n t code
l l B r a c k e t . s e t (getIdx , tempSch +”−”+ Parser . l l S chCa l . get (get I −1). t oS t r i ng ()) ;
l l B r a c k e t . add (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()
+ ” ” + Parser . l l S chCa l . get (get I −2). t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e () , ” f r o n t ”) ;
break ;

}

Other than both forms of simplification, there is a form of schema calculus
which does not form any pattern. For this form, an operation is just to store
the schema calculus definition in the llBracket list in the form of an infix
operation. It is shown by the code as follows:

else {
l l B r a c k e t . add (Parser . l l S chCa l . get (get I −2). t oS t r i ng () + ” ” + Parser . l l S chCa l .
get (g e t I) . t oS t r i ng () + ” ” + Parser . l l S chCa l . get (get I −1). t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e () , ” complete ”) ;

}

137

Our example fell in this category.
After an operation of associated three forms above, the next process is

to process other schemas and their operator including brackets. However, it
will be discussed later after patterns on conjunction and disjunction operator
are finished. The next discussion is the second case of these patterns.

An Operator with a Right Operand

The second case is a schema calculus definition whose left operand has been
processed previously. It is shown as follows:

else i f (get I−2 < 0 && g e t I > 0 && Parser . l l S chCa l . s i z e () > 1 && isFront){
l l B r a c k e t . add (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()
+ ” ” + Parser . l l S chCa l . get (get I −1). t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e () , ” f r o n t ”) ;
// i r r e l e v a n t code
i f (g e t I > 0){

i sBack = true ;
i sFront = fa l se ;

}
else {

i sBack = fa l se ;
i sFront = true ;

}
i f (isBack){

l l B r a c k e t . add (l l B r a c k e t . s i z e ()−1 , ” modi f i ed l a t e r ”) ;
hmOperator . put (hmOperator . s i z e () , hmOperator . get (
hmOperator . s i z e ()−1) . t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e ()−2 , ”back”) ;

}
i f (Parser . l l S chCa l . s i z e () > 1 && Parser . l l S chCa l . get (g e t I) . t oS t r i ng () .
equa l s (” (”) && Parser . l l S chCa l . get (g e t I +1). t oS t r i ng () . equa l s (”) ”)){
// i r r e l e v a n t code
}

}

This case is necessary since it is often to have schema calculus which con-
tains many schemas and operators. However, our system can only process a
medium number of schemas involved in schema calculus. Several examples
on our experiments show this case.

An Operator with a Left Operand

The third case is the opposite of previous case; the right operand has been
processed previously. It is shown as follows:

else i f (get I−2 < 0 && g e t I > 0 && Parser . l l S chCa l . s i z e () > 1 && isBack){
l l B r a c k e t . s e t (l l B r a c k e t . indexOf (” modi f i ed l a t e r ”) , Parser . l l S chCa l .
get (get I −1). t oS t r i ng () + ” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) ;
// i r r e l e v a n t code
i f (g e t I > 0){

i sBack = true ;
i sFront = fa l se ;

}

138

else {
i sBack = fa l se ;
i sFront = true ;

}
i f (isBack){

l l B r a c k e t . add (l l B r a c k e t . s i z e ()−1 , ” modi f i ed l a t e r ”) ;
hmOperator . put (hmOperator . s i z e () ,
hmOperator . get (hmOperator . s i z e ()−1) . t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e ()−2 , ”back”) ;

}
i f (Parser . l l S chCa l . s i z e () > 1 && Parser . l l S chCa l . get (g e t I) . t oS t r i ng () .
equa l s (” (”) && Parser . l l S chCa l . get (g e t I +1). t oS t r i ng () . equa l s (”) ”)){
// i r r e l e v a n t code
}

}

An Only Operator

The last case here is just an operator which is available. Its operands have
been processed previously. This case has three variants. The first one is
given as follows:

i f (get Idx > −1 && oldIdx != getIdx){
l l B r a c k e t . s e t (l l B r a c k e t . s i z e ()−2 , l l B r a c k e t . get (l l B r a c k e t . s i z e ()−2) .
t oS t r i ng () . s ub s t r i n g (0 , l l B r a c k e t . get (l l B r a c k e t . s i z e ()−2) . t oS t r i ng () .
indexOf (”−”)) + ” ” + Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()+ ” ” +
l l B r a c k e t . get (l l B r a c k e t . s i z e ()−2) . t oS t r i ng () . su b s t r i ng (l l B r a c k e t .
get (l l B r a c k e t . s i z e ()−2) . t oS t r i ng () . indexOf (”−”)+1). tr im ()) ;
get Idx = −1;
o ldIdx = −1;

}

The operator will replace the dash.
The second variant is generally similar to the above case. The difference

is on the position of the llBracket list that will be modified. In this variant,
it is the getIdx of llBracket that is processed.

The last variant is just the operator that will be add to the end of
llBracket. Another process here is to add a string ”complete” to the
hmOperator on the its size as the key.

All above discussion relate to ”∧” and ”∨” schema operators. Let us
now see other operators.

The ”⇒” and ”⇔” schema operators will be changed to their equivalent
forms. These equivalent forms have been discussed on the previous sections.
Thus, the A ⇒ B schema calculus will be changed to ¬ A ∨ B. On the
other hand, the A ⇔ B schema calculus will be changed to (A ⇒ B) ∧
(B ⇒ A).

The first sub-section discusses an implementation of the implication op-
erator.

139

An Implication Operator

There are three outer cases for implication specified in our system. They are
grouped based on the value of getI.

The first one is as follows:

i f (get I−2 == 0){
Parser . l l S chCa l . s e t (get I , ”\\ zor ”) ;
Parser . l l S chCa l . add (get I −1, ”\\ znot ”) ;
// i r r e l e v a n t code

}

It is a simple case, an infix implication of two operands. The above code
will change an implicative schema calculus to its equivalent as shown in the
above discussion.

The second case is shown by the code as follows:

else i f (get I−1 == 0){
Parser . l l S chCa l . s e t (get I , ”\\ zor ”) ;
i f (isBack){

Parser . l l S chCa l . add (get I , ”\\ znot ”) ;
hmOperator . put (hmOperator . s i z e ()−2 , ” complete ”) ;
l l B r a c k e t . s e t (l l B r a c k e t . indexOf (” modi f i ed l a t e r ”) , Parser . l l S chCa l .
get (g e t I) . t oS t r i ng () + ” ” + Parser . l l S chCa l . get (get I −1). t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e ()−1 , ” complete ”) ;
Parser . l l S chCa l . remove (g e t I) ;
Parser . l l S chCa l . remove (get I −1);
// i r r e l e v a n t code
continue ;

}

This case indicates the right operand has been processed previously. There
are two further checks here about a content of the last position of the
llBracket list.

If it does not equal ”)”, the next process is as shown below:

i f (! l l B r a c k e t . getLast () . t oS t r i ng () . tr im () . equa l s (”) ”)){
Str ingToken i ze r stBracks = new Str ingToken ize r (
l l B r a c k e t . getLast () . t oS t r i ng () , ” | \ \” , t rue) ;
// i r r e l e v a n t code
whi l e (stBracks . hasMoreElements ()){

temp = stBracks . nextElement () . t oS t r i ng () . tr im () ;
i f (! temp . isEmpty ()){

i f (temp . equa l s (”\\”)){
temp = temp+ stBracks . nextElement () . t oS t r i ng () ;
i f (temp . startsWith (”\\ ”)){

temp = Parser . l l S chCa l . getLast () . t oS t r i ng () . tr im () + temp ;
Parser . l l S chCa l . s e t (Parser . l l S chCa l . s i z e ()−1 , temp) ;

}
e l s e i f (temp . equa l s (”\\Delta ”)){

temp = temp + stBracks . nextElement () . t oS t r i ng () ;
}
e l s e i f (temp . equa l s (”\\Xi ”)){

// the same code as the above block
}
e l s e countOperator−−;
temp1 = temp ;

140

}
e l s e {

Parser . l l S chCa l . add (getI , temp) ;
g e t I++;

}
}

}
i f (! temp1 . isEmpty ()){

Parser . l l S chCa l . add (get I , temp1) ;
g e t I++;

}
Parser . l l S chCa l . add (get I , ”\\ znot ”) ;
// i r r e l e v a n t code

}

The above check is to process an implication which its right operand is not
enclosed with brackets.

For an implication with enclosed brackets, the code is as follows:

else i f (l l B r a c k e t . getLast () . t oS t r i ng () . tr im () . equa l s (”) ”)){
Str ingToken i ze r stBracks = new Str ingToken i ze r (
l l B r a c k e t . get (l l B r a c k e t . s i z e ()−2) . t oS t r i ng () , ” | \\ ” , true) ;
// i r r e l e v a n t code
temp1 = ”” ;
while (s tBracks . hasMoreElements ()){

// i r r e l e v a n t code

i f (i sFront){
Parser . l l S chCa l . add (getI , ”\\ znot ”) ;
g e t I++;

}
// the same code as the above code

}
i f (! temp1 . isEmpty ()){

i f (i sFront){
switch (temp1) {

case ”\\ zand” :
temp1 = ”\\ zor ” ;
break ;

case ”\\ zor ” :
temp1 = ”\\ zand” ;
break ;

}
}
Parser . l l S chCa l . add (get I , temp1) ;
i f (isBack){

g e t I++;
Parser . l l S chCa l . add (get I , ” (”) ;
g e t I++;
Parser . l l S chCa l . add (get I , ”) ”) ;

}
}
// i r r e l e v a n t code

}

The third case is when both left and right operands have been processed
previously.

else i f (g e t I == 0){
Parser . l l S chCa l . s e t (get I , ”\\ zor ”) ;

141

i f (l l B r a c k e t . getLast () . t oS t r i ng () . tr im () . equa l s (”) ”)){

The first code afterwards is a do-while loop as follows:

do{
i f (l l B r a c k e t . get (i) . t oS t r i ng () . equa l s (” (”)){

// see the below code f o r d e t a i l
}
else i−−;

}
while (i >=0);

It contains an if blocks. The detail of the above code is shown as follows:

j = i +1;
do{

// i r r e l e v a n t code
}
while (j < l l B r a c k e t . s i z e ()−2) ;

for (j =0; j< llTemp . s i z e () ; j++){
// i r r e l e v a n t code

}
i f (countO != countC){

// i r r e l e v a n t code
}
else {

Parser . l l S chCa l . add (get I , l l B r a c k e t . getLast () . t oS t r i ng ()) ;
Parser . l l S chCa l . add (get I , l l B r a c k e t . get (i) . t oS t r i ng ()) ;
Parser . l l S chCa l . add (get I , ”\\ znot ”) ;
// i r r e l e v a n t code
do{

Str ingToken i ze r stBracks = new Str ingToken i ze r
(llTemp . get (j) . t oS t r i ng () , ” | \\ ” , true) ;
temp1 = ”” ;
while (s tBracks . hasMoreElements ()){

temp = stBracks . nextElement () . t oS t r i ng () . tr im () ;
i f (! temp . isEmpty ()){

i f (temp . equa l s (”\\”)){
temp=temp+stBracks . nextElement () . t oS t r i ng () ;
i f (temp . startsWith (”\\ ”)){

// i r r e l e v a n t code
}
else i f (temp . equa l s (”\\Delta ”)){

// i r r e l e v a n t code
}
else i f (temp . equa l s (”\\Xi”)){

// s e v e r a l l i n e s o f i r r e l e v a n t code
}
temp1 = temp ;

}
else i f (temp . equa l s (” (”) | | temp . equa l s (”) ”)){

temp1 = temp ;
}
else {

Parser . l l S chCa l . add (get I , temp) ;
g e t I++;

}
}

}
i f (! temp1 . isEmpty ()){

142

// i r r e l e v a n t code
}
j ++;

}
while (j < llTemp . s i z e ()) ;
// i r r e l e v a n t code

}

Another if block after the above code is shown as follows:

i f (l l B r a c k e t . get (j −1). t oS t r i ng () . tr im () . equa l s (”) ”)){
// i r r e l e v a n t code
do{

i f (l l B r a c k e t . get (i) . t oS t r i ng () . equa l s (” (”)){
j = i +1;
do{

llTemp . add (l l B r a c k e t . get (j) . t oS t r i ng () . tr im ()) ;
j ++;

}
while (j < k) ;
for (j =0; j< llTemp . s i z e () ; j++){

// i r r e l e v a n t code
}
i f (countO != countC){

// i r r e l e v a n t code
}
else break ;

}
else i−−;

}
while (i >=0);
Parser . l l S chCa l . add (o ldI , l l B r a c k e t . get (k+1). t oS t r i ng ()) ;
Parser . l l S chCa l . add (o ldI , l l B r a c k e t . get (i) . t oS t r i ng ()) ;
i=Parser . l l S chCa l . s i z e ()−2;
j=llTempImpl . indexOf (”\\zimp”)−1;
do{

i f (Parser . l l S chCa l . get (i) . t oS t r i ng () . equa l s (llTempImpl . get (j) . t oS t r i ng ())) {
k=j ;
j−−;
i−−;

}
else {

i f (Parser . l l S chCa l . get (i) . t oS t r i ng () . equa l s (”\\ znot ”)) i−−;
}

}
while (i >=0);
i=k−1;
do{

Parser . l l S chCa l . add (0 , llTempImpl . get (i) . t oS t r i ng ()) ;
i−−;

}
while (i >=0);
// i r r e l e v a n t code

}

Let us move to an implementation of the ”⇔” schema operator.

143

A Bi-implication Operator

Our system changes this operator into its equivalent form which is on the
form of a conjugation of two implications forms. It is shown as follows:

else i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . s tartsWith
(”\\”) && Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\ zeq ”)){

It has two cases. The first one is given as follows:

i f (get I−2 == 0){
Parser . l l S chCa l . s e t (get I , ”\\zimp”) ;
o l d I = g e t I ;
g e t I++;
Parser . l l S chCa l . add (get I , ” (”) ;
g e t I++;
Parser . l l S chCa l . add (get I , ”) ”) ;
g e t I++;
Parser . l l S chCa l . add (get I ,
Parser . l l S chCa l . get (o ldI −1). t oS t r i ng ()) ;
g e t I++;
Parser . l l S chCa l . add (get I ,
Parser . l l S chCa l . get (o ldI −2). t oS t r i ng ()) ;
g e t I++;
Parser . l l S chCa l . add (get I , ”\\zimp”) ;
g e t I++;
Parser . l l S chCa l . add (get I , ” (”) ;
g e t I++;
Parser . l l S chCa l . add (get I , ”) ”) ;
g e t I++;
Parser . l l S chCa l . add (get I , ”\\ zand”) ;
g e t I = o l d I ;

}

The second case is shown as follows:

else i f (get I−1 == 0){
Parser . l l S chCa l . s e t (get I , ”\\zimp”) ;
o l d I = getI −1;
g e t I++;

It is then divided into two further cases which the first is shown as follows:

i f (g e t I == Parser . l l S chCa l . s i z e ()){
Parser . l l S chCa l . add (” (”) ;
Parser . l l S chCa l . add (”) ”) ;
Parser . l l S chCa l . add (Parser . l l S chCa l . get (o l d I) . t oS t r i ng ()) ;
g e t I = Parser . l l S chCa l . s i z e () ;

}

Below is the second further case:

else i f (g e t I < Parser . l l S chCa l . s i z e ()){
// i r r e l e v a n t code
i f (g e t I < Parser . l l S chCa l . s i z e ()){

Parser . l l S chCa l . add (get I , ”) ”) ;
g e t I++;
i f (g e t I < Parser . l l S chCa l . s i z e ()){

// i r r e l e v a n t code
i f (g e t I == Parser . l l S chCa l . s i z e ())

144

g e t I = Parser . l l S chCa l . s i z e () ;
}
else {

// i r r e l e v a n t code
}

}
else {

// i r r e l e v a n t code
}

}

Another further process is given as follows:

i f (! l l B r a c k e t . getLast () . t oS t r i ng () . tr im () . equa l s (”) ”)){
Str ingToken i ze r stBracks = new Str ingToken i ze r
(l l B r a c k e t . getLast () . t oS t r i ng () , ” | \\ ” , true) ;
// i r r e l e v a n t code
while (s tBracks . hasMoreElements ()){

temp = stBracks . nextElement () . t oS t r i ng () . tr im () ;
i f (! temp . isEmpty ()){

i f (temp . equa l s (”\\”)){
temp = temp + stBracks . nextElement () . t oS t r i ng () ;
i f (temp . startsWith (”\\ ”)){

// i r r e l e v a n t code
}
else i f (temp . equa l s (”\\Delta ”)){

// i r r e l e v a n t code
}
else i f (temp . equa l s (”\\Xi”)){

// i r r e l e v a n t code
}
else countOperator−−;
temp1 = temp ;

}
else {

// i r r e l e v a n t code
}

}
}
i f (! temp1 . isEmpty ()){

// i r r e l e v a n t code
}
Parser . l l S chCa l . add (get I , ”\\ znot ”) ;
// i r r e l e v a n t code

}

Above is to process the content of last position of llBracket which is
not equal to ”)”. Otherwise, code is given as follows:

else i f (l l B r a c k e t . getLast () . t oS t r i ng () . tr im () . equa l s (”) ”)){
Parser . l l S chCa l . add (o ldI , ”) ”) ;
Parser . l l S chCa l . add (o ldI , ” (”) ;
g e t I = g e t I + 2 ;
St r ingToken i ze r stBracks = new Str ingToken i ze r (
l l B r a c k e t . get (l l B r a c k e t . s i z e ()−2) . t oS t r i ng () , ” | \\ ” , true) ;
temp1 = ”” ;
while (s tBracks . hasMoreElements ()){

temp = stBracks . nextElement () . t oS t r i ng () . tr im () ;
i f (! temp . isEmpty ()){

i f (temp . equa l s (”\\”)){
temp = temp + stBracks . nextElement () . t oS t r i ng () ;

145

i f (temp . startsWith (”\\ ”)){
// i r r e l e v a n t code

}
else i f (temp . equa l s (”\\Delta ”)){

// i r r e l e v a n t code
}
else i f (temp . equa l s (”\\Xi”)){

// i r r e l e v a n t code
}
temp1 = temp ;

}
else {

i f (g e t I < Parser . l l S chCa l . s i z e ()−1){
Parser . l l S chCa l . add (get I , temp) ;
g e t I++;

}
else {

Parser . l l S chCa l . add (temp) ;
g e t I++;

}
llTemp . add (temp) ;

}
}

}
i f (! temp1 . isEmpty ()){

i f (g e t I < Parser . l l S chCa l . s i z e ()−1){
Parser . l l S chCa l . add (get I , temp1) ;
g e t I++;

}
else {

Parser . l l S chCa l . add (temp1) ;
g e t I++;

}
llTemp . add (temp1) ;

}
// see the below code f o r d e t a i l s

The details of the above code are shown as follows:

i f (g e t I < Parser . l l S chCa l . s i z e ()−1){
Parser . l l S chCa l . add (get I , ” (”) ;
g e t I++;
i f (g e t I < Parser . l l S chCa l . s i z e ()−1){

Parser . l l S chCa l . add (get I , ”) ”) ;
g e t I++;
i f (g e t I < Parser . l l S chCa l . s i z e ()−1){

Parser . l l S chCa l . add (get I , ”\\zimp”) ;
g e t I++;
i f (g e t I < Parser . l l S chCa l . s i z e ()−1){

Parser . l l S chCa l . add (getI , ” (”) ;
g e t I++;
i f (g e t I < Parser . l l S chCa l . s i z e ()−1){

Parser . l l S chCa l . add (get I , ”) ”) ;
g e t I++;
i f (g e t I < Parser . l l S chCa l . s i z e ()−1){

Parser . l l S chCa l . add (get I , ”\\ zand”) ;
}
else {

Parser . l l S chCa l . add (”\\ zand”) ;
}

}
else {

146

// the same code as above
}

}
else {

// the same code as above
}

}
else {

// the same code as above
}

}
else {

the same code as above
}

}
else {

the same code as above
}
for (int i=llTemp . s i z e ()−1; i>=0; i−−){

Parser . l l S chCa l . add (o ldI , llTemp . get (i) . t oS t r i ng ()) ;
}
// i r r e l e v a n t code

Thus, these lines of code are symmetrical.
Below is a discussion on an implementation of the negation operator.

A Negation Operator

The ”¬” schema operator will be processed as follows:

else i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () .
s tartsWith (”\\”) && Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (”\\ znot ”)){

countOperator++;
i f (get I−1 > −1){

l l B r a c k e t . add (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()
+ ” ” + Parser . l l S chCa l . get (get I −1). t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e () , ” complete ”) ;
// i r r e l e v a n t code
i f (g e t I > 0){

// i r r e l e v a n t code
l l B r a c k e t . add (l l B r a c k e t . s i z e ()−1 , ” modi f i ed l a t e r ”) ;
hmOperator . put (hmOperator . s i z e () , hmOperator .
get (hmOperator . s i z e ()−1) . t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e ()−2 , ”back”) ;

}
else {

i sBack = fa l se ;
i sFront = true ;

}
i f (Parser . l l S chCa l . s i z e () > 0 && Parser . l l S chCa l .
get (g e t I) . t oS t r i ng () . equa l s (” (”) && Parser . l l S chCa l .
get (g e t I +1). t oS t r i ng () . equa l s (”) ”)){

i f (l l B r a c k e t . s i z e ()−2 >= 0){
l l B r a c k e t . add (l l B r a c k e t . s i z e ()−2 , ” (”) ;

}
else {

l l B r a c k e t . add (0 , ” (”) ;
}
l l B r a c k e t . add (”) ”) ;

147

// i r r e l e v a n t code
}

}
else i f (get I−1 == −1){

l l B r a c k e t . add (Parser . l l S chCa l . get (g e t I) . t oS t r i ng ()) ;
hmOperator . put (hmOperator . s i z e () , ” f r o n t ”) ;
// i r r e l e v a n t code

}
}

Following is a discussion on an implementation of separators.

Separators in a Schema Calculus Definition

Separators were specified also in our system. Processes on the separator
require information provided by our parser. Please see Chapter 4 for a sep-
arator process.

The below code shows a process on a separator on the schConstruction

function:

else i f (Parser . l l S chCa l . get (g e t I) . t oS t r i ng () . equa l s (” s epa ra to r ”)){
Parser . l l S chCa l . remove (g e t I) ;
for (int gge t I = getI −1; ggetI >=0;ggetI−−){

Parser . l l S chCa l . remove (gge t I) ;
}
g e t I = 0 ;
break ;

}

The above code is to process a separator found in schema calculus. Our
system is able to expand more than one paragraph of schema calculus in
one zed box. This is achieved since a separator of each line of paragraphs is
recorded in our parser.

Following discussion relates to other processes on the schConstruction

function.

Other Processes

A read of other than above strings of operators as discussed above makes a
value of the variable getI be updated by 1. This process is continued until
conditions on while loop is not met. After the processes in this while loop,
the llSchCal list might be empty as another result of above processes.

Afterwards, contents of the llBracket list will be processed. The first
round of process is on contents of the llBracket which starts with a ”(” and
ends with a ”)”. It will be repeated so long the llBracket does not run out
of size and a variable isOperate is true. It is shown as follows:

int n=−1;
m=0;
i f (n == −1) n=m;

148

while (m<l l B r a c k e t . s i z e () && isOperate) {
temp = l l B r a c k e t . get (m) . t oS t r i ng () . tr im () ;
i f (temp . equa l s (” (”) && l l B r a c k e t . get (m+2). t oS t r i ng () . tr im () . equa l s (”) ”)){

temp1 = l l B r a c k e t . get (m+1). t oS t r i ng () . tr im () ;
i sOperate = operate (temp1 , index , tempVar , tempPred , true , cur r Idx) ;
i f (i sOperate && tempPred . s i z e () > 0) {

. . .
}

}
else i f (temp . equa l s (”\\ znot ”) && m==0) {

i sOperate = operate (temp , index , tempVar , tempPred , false , cur r Idx) ;
l l B r a c k e t . remove (m) ;
hmOperator . remove (n) ;
n++;

}
else {

m++;
}

}

”. . .” hides several lines which are intended to rewrite contents of tempPred
so they form better writing of a Z specification.

The second round is otherwise; the above conditions are not met. It is
shown as follows:

m = 0 ;
i f (n == −1) n=m;
while (m<l l B r a c k e t . s i z e () && isOperate){

temp = l l B r a c k e t . get (m) . t oS t r i ng () . tr im () ;
// see the below code

}

The first code contains other processes before the contents of tempPred

are processed. It is shown as follows:

i f (! temp . equa l s (” (”) && ! temp . equa l s (”) ”)){
i f (temp . startsWith (”\\ z a l l ”) | | temp . startsWith (”\\ z e x i ”)){

tempPred . add (temp) ;
temp = hiddenVars . tr im () ;
i f (temp . conta in s (”\\ zbar ”)){

temp = temp . s ub s t r i ng (0 , temp . indexOf (”\\ zbar ”)) .
tr im () ;

}
temp1 = getVarVal (temp , tempVar) ;
l l B r a c k e t . remove (m) ;
l l B r a c k e t . s e t (m, l l B r a c k e t . get (m) . t oS t r i ng () . tr im ()
+ ” \\ zh ide ” + ” (” + temp1 + ”) ”) ;
hmOperator . remove (n) ;
n++;
tempVar . add (” f i n i s h hidden v a r i a b l e s ”) ;
continue ;

}
i sOperate = operate (temp , index , tempVar , tempPred , false , cur r Idx) ;
i f (tempPred . s i z e () > 0 && (tempPred . g e t F i r s t () . t oS t r i ng () .
s tartsWith (”\\ f o r a l l ”) | | tempPred . g e t F i r s t () . t oS t r i ng () .
s tartsWith (”\\ e x i s t s ”))){

temp = tempPred . g e t F i r s t () . t oS t r i ng () ;
tempPred . removeFirst () ;

}

149

}

The getVarVal function has ever been discussed earlier above. Thus, it will
not be discussed again here. A schema calculus definition in this example
does not contain any brackets.

Below is other process on the second code:

else i f (temp . equa l s (” (”)){
i f (l l B r a c k e t . get (m+2). t oS t r i ng () . tr im () . equa l s (”) ”)){

i f (l lTemporary . s i z e () > 0){
l lTemporary . stream () . forEach ((l lTemporary1) −> {

tempPred . add (l lTemporary1 . t oS t r i ng ()) ;
}) ;
l lTemporary . removeAll (l lTemporary) ;
checkI = tempPred . s i z e () ;
curr Idx = checkI ;
l l B r a c k e t . remove (m+2);
l l B r a c k e t . remove (m+1);
hmOperator . remove (n) ;
n=n+1;
l l B r a c k e t . remove (m) ;
continue ;

}
}
i f (m > 0 && l l B r a c k e t . get (m−1). t oS t r i ng () . tr im () . equa l s (”) ”)){

tempPred . add (” outer ”) ;
}
tempPred . add (” (”) ;
m++;
continue ;

}

The last process in this second code is as follows:

else i f (temp . equa l s (”) ”)){
m++;
i f (tempPred . getLast () . t oS t r i ng () . tr im () . equa l s (” here ”)){

tempPred . s e t (tempPred . s i z e ()−2 , tempPred . get
(tempPred . s i z e ()−2) . t oS t r i ng () . tr im ()+”) ”) ;

}
else tempPred . s e t (tempPred . s i z e ()−1 , tempPred .
getLast () . t oS t r i ng () . tr im ()+”) ”) ;
continue ;

}

All above processes are specified in the schConstruction function. As
seen above, another function has been called. It is the operate function.

6.2.3 Expansion Processes in operate function

Before the operate function is executed, there are other processes that take
place first. These processes are shown as follows:

Str ingToken i ze r stS = new Str ingToken i ze r (s , ” | \ \ | [|] | , | (|) ” , t rue) ;
i f (tempVar . s i z e () > 0 && tempVar . conta in s (” f i n i s h hidden v a r i a b l e s ”)){

i n t i = 0 ;
do {

150

tempHiddenVars . add (tempVar . get (i) . t oS t r i ng ()) ;
i ++;

}
whi le (! tempVar . get (i) . t oS t r i ng () . equa l s (” f i n i s h hidden v a r i a b l e s ”)) ;
do{

tempVar . remove (i) ;
i−−;

}
whi le (i >= 0) ;

}
whi le (stS . hasMoreElements ()){

temp = stS . nextElement () . t oS t r i ng () . tr im () ;
i f (! temp . isEmpty ()){

i f (temp . equa l s (”\\”)){
temp = temp + stS . nextElement () . t oS t r i ng () ;
i f (temp . startsWith (”\\ ”)){

temp =schName . getLast () . t oS t r i ng () . tr im ()+temp ;
schName . remove (schName . s i z e ()−1) ;

}
e l s e i f (temp . equa l s (”\\Delta ”)){

temp = temp + stS . nextElement () . t oS t r i ng () ;
}
e l s e i f (temp . equa l s (”\\Xi ”)){

temp = temp + stS . nextElement () . t oS t r i ng () ;
}

}
schName . add (temp) ;

}
}

The above code will not be executed in this example as none of them was
specified.

As mentioned earlier (see Section 6.1 on page 130), each schema operator
has its own operation. Thus, there are several schema operators specified in
our system as cases below:

int i =0;
outer :
do{

switch (schName . get (i) . t oS t r i ng ()) {
case ”\\ zand” :
case ”\\ zor ” :

. . .
break ;

case ”\\ znot ” :
. . .
break ;

case ”\\ z f o r ” :
. . .
break ;

case ”\\ hide ” :
case ”\\ zh ide ” :

. . .
break ;

case ”\\zcmp” :
. . .
break ;

default :
i ++;
break ;

151

}
}
while (i< schName . s i z e ()) ;
return isExpand ;

The operate function returns a boolean value, which is determined by a
value of isExpand.

Following are cases that are specified in this system to detail above ”. . .”s.

Conjunction and Disjunction

There are several cases for these operators. The first case is each of these
operators is in the first index of a list whose size is 1. In other words, each of
them is the outer operator. Expansion, normalisation, and collapse are not
performed in this first case.

The second one is the size of this list is greater than 1. It denotes that
left arguments of each of this operator have been processed earlier. In this
case, the right argument will be expanded, normalised, and collapsed.

In other case, the index is greater than 0 and less than the biggest in-
dex. For this case, each of these operators will be an infix operator; it has
two arguments. Each of this argument will be expanded, and normalised.
Afterwards, the updated states of these arguments are collapsed together.

The last case is the index is greater than 0 and equals to the biggest
index. In this case, right arguments have been processed earlier. The left
argument will be expanded, normalised, and collapsed.

A schema conjunction flagged by an \zand will be replaced by \land.
On the other hand, a schema disjunction flagged by an \zor will be replaced
by \lor. Afterwards, the expand function will be called for each argument
which belongs to this operator.

Negation

The first case is a zero index and one sized list. This case means this operator
will negate an argument that has been processed earlier. There is no further
process.

The other case is to negate an argument immediately following it. The
negation process consists of an expansion, normalisation, and negation. Ex-
pansion and normalisation are the same as both processes on conjunction
and disjunction operators.

The negateSch function will be called. If a predicate starts with a quan-
tifier, a ”¬ ” will be added after a ”•” and the rest of this predicate after
the ”•” will be enclosed with brackets. A ”∧” will be changed into ”∨”.
Otherwise, a ”¬ ” and a ”(” will be added at the beginning of a predicate,

152

and this predicate will end with a ”)”. A ”∧” or a ”\\” will be changed into
”∨”.

Collapse is not performed on the negation operation as the predicates
have just been negated. Variables and negated predicates are difficult to
collapse to their previous variables.

The \znot schema negation will be replaced by \lnot. The specification
and its expanded schema can be seen in Appendix I on page 330.

Renaming

A schema that is followed by this operator will be expanded first, then nor-
malised. A renaming will come afterwards. Collapse is not performed on the
renaming operation. This is because the renaming process alters one or more
variables as well as predicate lines which contain these variables, but these
variables are still specified in the same schema. Thus, these altered variables
and predicates cannot be collapsed to their original schema before expansion
is performed. Renaming will call the rename function.

The name of the specification is expandingsch5 2.tex which can be seen
in Appendix J on page 331 as well as its expanded schema generated by our
system.

Hiding

A schema starting with this operator will be expanded, and normalised.
Afterwards, a hiding will be performed. Collapse is not performed on the
hiding operation. Hiding calls the hide function. This function returns a
Boolean value which indicates a schema can be expanded or not.

An example used here is expandingsch6 1.tex. This specification and
its expanded schema can be seen in Appendix K on page 332.

Composition

The first process in this operator makes each argument representing a schema
be expanded, and normalised. The primed variables from the first argument
will be renamed to common names; the non-primed variables from the second
argument will be renamed to the common names as used in the first renaming.

Updated variables and predicates from these arguments will be conjoined
into one list of variables and one list of predicates. Conjoin operation will call
the conjoin function. Contents of the tempVar1 first list of variables will
be added to the tempVar list of variables. Contents of the first tempPred1

list of predicates will be added to the tempPred list of predicates. As well as
contents of the second tempVar2 list of variables, so long a particular variable

153

is not available on the tempVar list, it will be added to this list. The process
of a predicate part is quite different for a predicate which is available on
the tempPred list of predicate. A list of predicates which are formed from
normalisation will be updated if the same predicate has already been in the
tempPred list.

Upon having these new lists which are tempVar and tempPred, hiding
will be performed. These arguments will be collapsed later.

The Z specification used here is expandingsch7 1.tex. This specification
and its expanded schema can be seen in Appendix L on page 333.

6.2.4 Expansion Processes in expand function

Let us go back to the operate function. As mentioned before, expansion
is performed in this function. Expansion will call another function, expand,
and it is shown as follows:

i f (strNameSch . equa l s (schemaBox [0] . nameSch)){
// i r r e l e v a n t code

}
else i f (strNameSch . equa l s (schemaBox [0] . nameSch+” ’ ”)){

// i r r e l e v a n t code
}
else i f (strNameSch . equa l s (”\\Delta ”+schemaBox [0] .
nameSch)){

// i r r e l e v a n t code
}
else i f (strNameSch . equa l s (”\\Xi ”+schemaBox [0] .
nameSch)){

// i r r e l e v a n t code
}
else {

idxVar = tempVar . s i z e () ;
for (int i = 0 ; i< schemaBox [index] . hmVar . s i z e () ; i ++){

var=schemaBox [index] . hmVar . get (i) . t oS t r i ng () . tr im () ;
i f (var . equa l s (schemaBox [0] . nameSch)){

// i r r e l e v a n t code
}
else i f (var . endsWith (” ’ ”) && var . equa l s (schemaBox [0] . nameSch+” ’ ”)){

// i r r e l e v a n t code
}
else i f (var . s tartsWith (”\\Delta ”)){

// s e v e r a l l i n e s o f i r r e l e v a n t code
}
else i f (var . s tartsWith (”\\Xi”)){

// s e v e r a l l i n e s o f i r r e l e v a n t code
}
else {

// s e v e r a l l i n e s o f i r r e l e v a n t code
}

}
}

This function will expand variables of a schema as shown above which might
have the same name as a state schema, the primed version of a name of a

154

state schema, a ”∆” or a ”Ξ” added to a name of a state schema, or expand
variables of other schema names which each of them will be checked also to a
name of a state schema. If a variable has already been available, the variable
will not get the second copy of it.

Afterwards, predicates will be expanded. It is shown as follows:

idxPred = tempPred . s i z e () ;
i f (i n c l u s i o n){

for (int j = 0 ; j< schemaBox [0] . l l P r e d . s i z e () ; j++){
pred = schemaBox [0] . l l P r e d . get (j) . t oS t r i ng () . tr im () ;

// i r r e l e v a n t code
}

}
else i f (primed){

for (int j = 0 ; j< schemaBox [0] . l l P r e d . s i z e () ; j++){
pred = schemaBox [0] . l l P r e d . get (j) . t oS t r i ng () . tr im () ;

// i r r e l e v a n t code
}

}
else i f (d e l t a | | x i){

for (int j = 0 ; j< schemaBox [0] . l l P r e d . s i z e () ; j++){
pred = schemaBox [0] . l l P r e d . get (j) . t oS t r i ng () . tr im () ;

// i r r e l e v a n t code
}

}
i f (! l l P r e d . isEmpty ()){

// i r r e l e v a n t code
}
i f (index > 0){

count = countPred ;
for (int i = 0 ; i< schemaBox [index] . l l P r e d . s i z e () ; i ++){

// i r r e l e v a n t code
}

}

This function returns a string containing the size of copied state variables,
the total size of copied variables, the size of copied state predicates, the total
size of copied predicates, the size of predicates, and the type schema whether
it is an inclusion, primed, ”∆”, ”Ξ” or not all of them. Our system expands
a list of variables and predicates for each argument before expanding other
argument.

6.2.5 Expansion Processes in normalised function

After the expand function was processed, normalisation will be performed.
Normalisation will call normalised function. The first process on this func-
tion is to split a type by calling another helping function, splitType.

On redefining generic constant definitions, there is also splitType func-
tion which will split a type of a generic constant. On the other hand, in the
expansion of schema calculus, this function will split a type of a variable that
is normalised. These split types will be stored in tempType list.

155

The next process of normalise function is as follows:

for (int i =0; i<ingen . tempType . s i z e () ; i ++){
oldVal = ingen . tempType . get (i) . t oS t r i ng () . tr im () ;
i f (hmGlobalCons . containsKey (oldVal)){

newVal = hmGlobalCons . get (oldVal) . t oS t r i ng () . tr im () ;
Set s e t = hmGlobalCons . entrySet () ;
I t e r a t o r i t e r a t o r = s e t . i t e r a t o r () ;
while (i t e r a t o r . hasNext ()){

Map. Entry enumGlob = (Map. Entry) i t e r a t o r . next () ;
temp = enumGlob . getKey () . t oS t r i ng () ;
i f (newVal . conta in s (temp)){

newVal = newVal . r e p l a c e (temp , enumGlob . getValue () . t oS t r i ng ()) ;
}

}
}
else newVal = oldVal ;
// see the f i r s t d e t a i l

}
// see the second d e t a i l
return va l ;

The first detail is given as follows:

i f (newVal . equa l s (”\\nat”) | | newVal . equa l s (”\\natone ”)){
newVal = va l . r e p l a c e (oldVal , ”\\ i n t e g e r ”) ;
va l = newVal . tr im () ;

}
else i f (newVal . conta in s (”\\natone ”)){

temp = val . su b s t r i ng (0 , va l . indexOf (oldVal)) . tr im () ;
newVal = newVal . r e p l a c e (”\\natone ” , ”\\ i n t e g e r ”) ;
newVal = temp + ” ” + newVal + ” ” + val . s ub s t r i ng
(va l . indexOf (oldVal)+oldVal . l ength ()) . tr im () ;
va l = newVal . tr im () ;

}
else i f (newVal . conta in s (”\\nat”)){

// the same as prev ious code , but match the s t r i n g
}
i f (newVal . conta in s (”\\ seq ”)){

newVal = va l . s ub s t r i n g (va l . indexOf (”\\ seq ”)+4). tr im () ;
newVal = ”\\ pset (\\ i n t e g e r \\ c r o s s ”+newVal+”) ” ;
va l = newVal ;

}
else i f (newVal . conta in s (”\\ seqone ”)){

// the same as prev ious code , but match the s t r i n g
}
ingen . tempType . s e t (i , va l) ;

The second detail is as follows:

i f (va l . conta in s (”\\ t fun ”) | | va l . conta in s (”\\ fun ”) | | va l . conta in s (”\\pfun”)
| | va l . conta in s (”\\ t s u r j ”) | | va l . conta in s (”\\ s u r j ”)
| | va l . conta in s (”\\ psur j ”) | | va l . conta in s (”\\ psur ”)
| | va l . conta in s (”\\ t i n j ”) | | va l . conta in s (”\\ i n j ”)
| | va l . conta in s (”\\ p i n j ”) | | va l . conta in s (”\\ b i j ”)
| | va l . conta in s (”\\ f i n j ”) | | va l . conta in s (”\\ f f un ”)){

idx = 0 ;
i f (va l . conta in s (”\\ t fun ”)){

oldVal = va l ;
do{

newVal = va l . s ub s t r i ng (0 , va l . indexOf (”\\ t fun ” , idx)) . tr im () ;
va l = va l . s ub s t r i ng (va l . indexOf (”\\ t fun ” , idx)+5). tr im () ;

156

va l = ”\\ pset (”+ newVal + ” \\ c r o s s ”+ va l + ”) ” ;
idx = va l . indexOf (”\\ t fun ” , idx) ;

}
while (! va l . conta in s (”\\ t fun ”)) ;

}
idx = 0 ;
i f (va l . conta in s (”\\ fun ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\pfun”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ t s u r j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ s u r j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ psur j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ psur ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ t i n j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ i n j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ p i n j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ b i j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ f i n j ”)){

. . .
}
idx = 0 ;
i f (va l . conta in s (”\\ f f un ”)){

. . .
}

}

”. . .” means the same as previous code, but match the string. This function
returns a string stored in val.

The normalisation result was written in the form: variable, old type, new
type after normalisation. The same as the expand function, normalisation

157

will be performed on every variable on each argument before normalising
other argument. Thus, a sequence of processes should be: expanding vari-
ables, expanding predicates, and normalising variables for each argument.

Thus, several normalisation rules which are specified in our system are as
follows:

• Every ”N” or ”N1” in a declaration part is rewritten to a type of ”Z”.

• Every ”seq” or ”seq1” is changed to P(Z × newVal), newVal is a type
which comes after ”seq” or ”seq1”. The previous rule is applied also to
newVal.

• Every function is changed to a pair of its left hand side type and its
right hand side one. Both above rules are also applied to the type in
the left and in the right.

As can be known from the above description, normalisation is applied also
to other schema operators for the sake of simplicity.

6.2.6 Expansion Processes in collapse function

Another process of operate function is to collapse associated schemas. The
latter function is collapse. Collapse means to fold state variables and state
predicates into the name of the state schema as an inclusion, a primed, a
”∆” or a ”Ξ” of the state schema.

Collapsing results from our example are different with both earlier func-
tions, this function is called by passing both arguments simultaneously.

In addition to that process, this function also performs a simple simplifi-
cation on a composition operation. Earlier section has discussed composition
operation, please see the associated section to get better understanding how
it works.

The first process in simplifying a resultant schema from a composition
is to find out whether there is a predicate which contains a renamed state
variable. It is shown as follows:

for (int j =0; j< schemaBox [0] . hmVar . s i z e () ; j++){
s t r i n g 1 = schemaBox [0] . hmVar . get (j) . t oS t r i ng () . tr im ()+”0” ;
tPred . add (s t r i n g 1) ;
for (i =1; i< tempPred . s i z e () ; i ++){

i f (tempPred . get (i) . t oS t r i ng () . tr im () . conta in s (s t r i n g 1)){
s t r i n g 2 = tempPred . get (i) . t oS t r i ng () . tr im () ;
tPred . add (i) ;

}
}

}

158

The next process will find the same renamed state variables, which is given
as follows:

for (i =0; i<schemaBox [0] . hmVar . s i z e () ; i ++){
s t r i n g 1 = schemaBox [0] . hmVar . get (i) . t oS t r i ng () . tr im ()+”0” ;
repeat :
for (int j =0; j<tPred . s i z e () ; j++){

s t r i n g 2 = tPred . get (j) . t oS t r i ng () . tr im () ;
i f (s t r i n g 2 . equa l s (s t r i n g 1)){
l l L en = new LinkedLis t () ;

for (k =j +1;k< tPred . s i z e () ; k++){
// see the f i r s t d e t a i l

}
s o r tL inkedL i s t (l lLen) ;
l en = I n t e g e r . pa r s e In t (l lL en . g e t F i r s t () .
t oS t r i ng () . tr im ()) ;
r epeat1 :
for (k =j +1;k< tPred . s i z e () ; k++){

// see the second d e t a i l
}
l l L en . removeAll (l lL en) ;
break ;

}
}

}

The first detail is given as follows:

s t r i n g 3 = tPred . get (k) . t oS t r i ng () . tr im () ;
i f (s t r i n g 3 . l ength () < 4){

i f (s t r i n g 3 . matches (” [0−9]+”)){
s t r i n g 3 = tempPred . get (I n t e g e r . pa r s e In t (tPred . get (k) .
t oS t r i ng () . tr im ())) . t oS t r i ng () . tr im () ;
l lL en . add (s t r i n g 3 . l ength ()) ;

}
}
else break ;

The above code will store the length of a predicate that contains renamed
variables.

sortLinkedList function will sort these predicates based on their length.
The shortest length will be put on the smallest index.

The second detail is as follows:

s t r i n g 3 = tPred . get (k) . t oS t r i ng () . tr im () ;
i f (s t r i n g 3 . l ength () < 4){

s t r i n g 3 = tempPred . get (I n t e g e r . pa r s e In t (tPred . get (k) .
t oS t r i ng () . tr im ())) . t oS t r i ng () . tr im () ;
i f (s t r i n g 3 . l ength () == len){

i f (s t r i n g 3 . conta in s (”=”)){
g e t I = k ;
s t r i n g 4 = s t r i n g 3 . su b s t r i n g (0 , s t r i n g 3 . indexOf (”=”)) . tr im () ;
s t r i n g 5 = s t r i n g 3 . su b s t r i n g (s t r i n g 3 . indexOf (”=”)+1). tr im () ;
i f (s t r i n g 5 . endsWith (”\\”+”\\”)){

s t r i n g 5 = s t r i n g 5 . su b s t r i n g (0 , s t r i n g 5 .
l a s t IndexOf (”\\”+”\\”)) . tr im () ;

}
else i f (s t r i n g 5 . endsWith (”\\ land ”)){

s t r i n g 5 = s t r i n g 5 . su b s t r i n g (0 , s t r i n g 5 .

159

l a s t IndexOf (”\\ land ”)) . tr im () ;
}
else i f (s t r i n g 5 . endsWith (”\\ l o r ”)){

s t r i n g 5 = s t r i n g 5 . su b s t r i n g (0 , s t r i n g 5 .
l a s t IndexOf (”\\ l o r ”)) . tr im () ;

}
i f (s t r i n g 4 . equa l s (s t r i n g 1)){

// see the f i r s t check
}
else i f (s t r i n g 5 . equa l s (s t r i n g 1)){

// see the second check
}
else {

continue ;
}

}
break ;

}
}

Our system just recognizes an equality operator to separate the left and right
operands of a predicate containing a renamed variable; it is another limitation
of our system. The left operand is stored on string4 string, whereas the right
one is on string5 string. There are two further checks here, which are given
as comments on the above code.

The first check is given as follows:

f o r (i n t l=j +1; l<tPred . s i z e () ; l ++){
i f (l != g e t I && tPred . get (l) . t oS t r i ng () . tr im () . l ength () < 4){

s t r i n g 4 = tempPred . get (I n t e g e r . pa r s e In t (tPred .
get (l) . t oS t r i ng () . tr im ())) . t oS t r i ng () . tr im () ;
s t r i n g 4 = s t r i n g 4 . r e p l a c e A l l (s t r ing1 , s t r i n g 5) ;
tempPred . s e t (I n t e g e r . pa r s e In t (tPred . get (l) . t oS t r i ng () . tr im ()) , s t r i n g 4) ;
isFound = true ;

}
}
i f (isFound){

tempPred . remove (I n t e g e r . pa r s e In t (tPred . get (k) . t oS t r i ng () . tr im ())) ;
f o r (i n t m=k+1;m<tPred . s i z e () ;m++){

i f (tPred . get (m) . t oS t r i ng () . tr im () . l ength () < 4
&& I n t e g e r . pa r s e In t (tPred . get (m) . t oS t r i ng () . tr im ())
> I n t e g e r . pa r s e In t (tPred . get (k) . t oS t r i ng () . tr im ()))

tPred . s e t (m, I n t e g e r . pa r s e In t (tPred . get (m) . t oS t r i ng () . tr im ()) −1) ;
}
tPred . remove (k) ;
isFound = f a l s e ;

}
e l s e {

s t r i n g 3 = s t r i n g 3 . r e p l a c e A l l (s t r ing1 , s t r i n g 5) ;
tempPred . s e t (get I , s t r i n g 3) ;

}

It is for a case that string4 string equals to the renamed variable string1.
The second check has the code as the first check, but change string4

string to string5 string.

160

6.2.7 Expansion Processes in negateSch function

This function is called in a negation process which will be used by negation
operator. In general, this function combines two other functions which have
been discussed above which are expand, and normalised. This combination
was implemented by calling both functions inside this function. Having those
processes performed, predicates will be negated then.

Its code is shown as follows:

s t r I d x = expand (strNameSch , index , tempVar , tempPred) ;
// i r r e l e v a n t code
for (int i = idxS ; i< tempVar . s i z e () ; i ++){

count++;
var = tempVar . get (i) . t oS t r i ng () . tr im () ;
var = var . s ub s t r i ng (0 , var . indexOf (” : ”)) . tr im () ;

va l = tempVar . get (i) . t oS t r i ng () . tr im () ;
va l = va l . s ub s t r i ng (va l . indexOf (” : ”)+1). tr im () ;
i f (va l . endsWith (”\\”+”\\”)){

va l = va l . s ub s t r i ng (0 , va l . l a s t IndexOf (”\\”+”\\”)) ;
}
newVal = normal i sed (var , va l) . tr im () ;

i f (! newVal . equa l s (va l)){
// i r r e l e v a n t code

}
}
. . .

”. . .” will perform a negation process and it is shown as follows:

// i r r e l e v a n t code
for (int i = idxS ; i< count ; i ++){

i f (tempPred . get (i) . t oS t r i ng () . tr im () . s tartsWith (”\\ f o r a l l ”) | |
tempPred . get (i) . t oS t r i ng () . tr im () . s tartsWith (”\\ a l l ”) | |
tempPred . get (i) . t oS t r i ng () . tr im () . s tartsWith (”\\ e x i s t s ”) | |
tempPred . get (i) . t oS t r i ng () . tr im () . s tartsWith (”\\ ex ione ”) | |
tempPred . get (i) . t oS t r i ng () . tr im () . s tartsWith (”\\ e x i s t s 1 ”) | |
tempPred . get (i) . t oS t r i ng () . tr im () . s tartsWith (”\\ ex i ”)){

strTemp = tempPred . get (i) . t oS t r i ng () . tr im () ;
i f (strTemp . conta in s (”\\ spot ”) | | strTemp . conta in s
(”\\dot”) | | strTemp . conta in s (”\\ cbar ”)){

do{
prevIdxSpot = idxSpot ;
idxSpot = strTemp . indexOf (”\\ spot ” , idxSpot) ;
l en = 5 ;
i f (idxSpot == −1){

idxSpot=strTemp . indexOf (”\\dot” , prevIdxSpot) ;
l en = 4 ;
i f (idxSpot == −1){

idxSpot = strTemp . indexOf (”\\ cbar ” , prevIdxSpot) ;
l en = 5 ;

}
}

i f (idxSpot > −1){
i f (! strTemp . su b s t r i n g (idxSpot+len) . tr im () . conta in s (”\\ f o r a l l ”) &&
! strTemp . s ub s t r i n g (idxSpot+len) . tr im () . conta in s (”\\ a l l ”) &&

161

! strTemp . s ub s t r i n g (idxSpot+len) . tr im () . conta in s (”\\ e x i s t s ”) &&
! strTemp . s ub s t r i n g (idxSpot+len) . tr im () . conta in s (”\\ ex ione ”) &&
! strTemp . s ub s t r i n g (idxSpot+len) . tr im () . conta in s (”\\ e x i s t s 1 ”) &&
! strTemp . s ub s t r i n g (idxSpot+len) . tr im () . conta in s (”\\ ex i ”)){

strTemp = strTemp . s ub s t r i ng (0 , idxSpot+len) .
tr im () + ” \\ l no t (” + strTemp . s ub s t r i ng (idxSpot+len) . tr im () ;

i f (tempPred . get (i) . t oS t r i ng () . tr im () . endsWith (”\\ land ”)){
strTemp = strTemp . s ub s t r i ng (0 , strTemp .
tr im () . l a s t IndexOf (”\\”+”\\”)) ;
tempPred . s e t (i , strTemp + ”)\\ l o r ”) ;

}
else {

strTemp = strTemp . s ub s t r i ng (0 , strTemp .
tr im () . l a s t IndexOf (”\\”+”\\”)) ;
tempPred . s e t (i , strTemp + ”) ”+”\\”+”\\”) ;

}
idxSpot = idxSpot + len ;

}
}

}
while (idxSpot > −1);
idxSpot = 0 ;

}
}
else {

i f (tempPred . get (i) . t oS t r i ng () . tr im () . endsWith (”\\”+”\\”)){
tempPred . s e t (i , tempPred . get (i) . t oS t r i ng () .
su b s t r i n g (0 , tempPred . get (i) . t oS t r i ng () . l a s t IndexOf (”\\”+”\\”))) ;
tempPred . s e t (i , ”\\ l no t (”+tempPred . get (i)+”)\\ l o r ”) ;

}
else i f (tempPred . get (i) . t oS t r i ng () . tr im () . endsWith (”\\ land ”)){

// has the same code as the above b lock ,
// but matches the s t r i n g

}
else tempPred . s e t (i , ”\\ l no t (”+tempPred . get (i)+”) ”) ;
i f (i == count−1){

i f (tempPred . get (i) . t oS t r i ng () . tr im () . endsWith (”\\ l o r ”))
tempPred . s e t (i , tempPred . get (i) . t oS t r i ng () .
s ub s t r i n g (0 , tempPred . get (i) . t oS t r i ng () . l a s t IndexOf (”\\ l o r ”))) ;

i f (! tempPred . get (idxS) . t oS t r i ng () . tr im () . s tartsWith (” (”)){
tempPred . s e t (idxS , ” (”+tempPred . get (idxS) . t oS t r i ng ()) ;
tempPred . s e t (i , tempPred . get (i) . t oS t r i ng ()+”) ”) ;

}
}

}
}

The idea of the above code is to put a ”¬ (” in front of the predicate, a ”)”
at the end of the predicate before any separator or operator, and reverse this
ending. The operator ”∧” and the separator ”\\” will be changed to ”∨”,
the operator ”∨” will be changed to ”∧”. However, if a predicate starts with
a quantifier, ¬ (will be put in front of the quantifier.

6.2.8 Expansion Processes in rename function

Renaming operation will call this function. It is given as follows:

162

do{
for (int i =0; i< tempVar . s i z e () ; i ++){

// see the f i r s t d e t a i l
}

i f (isRenamed){
// see the second d e t a i l

}
}
while (oldV . s i z e () > 0) ;

The first detail will be as follows:

i f (tempVar . get (i) . t oS t r i ng () . s tartsWith (oldV . g e t F i r s t () . t oS t r i ng ())) {
temp = tempVar . get (i) . t oS t r i ng () . s ub s t r i ng (0 ,
tempVar . get (i) . t oS t r i ng () . indexOf (” : ”)) . tr im () ;
temp1 = tempVar . get (i) . t oS t r i ng () . s ub s t r i n g (
tempVar . get (i) . t oS t r i ng () . indexOf (” : ”)) . tr im () ;
i f (temp . equa l s (oldV . g e t F i r s t () . t oS t r i ng ())) {

tempVar . s e t (i , newV . g e t F i r s t () . t oS t r i ng () + ” ” + temp1) ;
isRenamed = true ;
break ;

}
}

The above code will rename a variable stored in oldV to a new name stored
in newV.

Afterwards, each predicate containing the renamed variable will be altered
also by renaming the old variable to the new name. It is given as follows
which will describe the second detail:

for (int i =0; i< tempPred . s i z e () ; i ++){
i f (tempPred . get (i) . t oS t r i ng () . conta in s (oldV . g e t F i r s t () . t oS t r i ng ())) {

idx = 0 ;
temp = tempPred . get (i) . t oS t r i ng () . tr im () ;
temp1 = ”” ;
do{

i f (temp . indexOf (oldV . g e t F i r s t () . t oS t r i ng () , idx) > −1){
idx = temp . indexOf (oldV . g e t F i r s t () . t oS t r i ng () , idx) ;
idxS = idx ;
do{

temp1 = (temp1 + temp . charAt (idx)) . tr im () ;
idx++;
i f (temp1 . l ength () > oldV . g e t F i r s t () . t oS t r i ng () . l ength ()){

idx−−;
temp2 = ””+temp . charAt (idx) ;
i f (temp2 . matches (” [A−Za−z0−9?! ’\\] ”)){

isRenamed = fa l se ;
break ;

}
else {

isRenamed = true ;
idxE = idx −1;
break ;

}
}

}
while (idx < temp . l ength ()) ;
i f (isRenamed){

163

i f (idxS > 0 && idxE < temp . l ength ()−1) {
temp = temp . s ub s t r i ng (0 , idxS) + newV . g e t F i r s t () . t oS t r i ng () .
tr im () + ” ” + temp . s ub s t r i n g (idxE +1). tr im () ;

}
else i f (idxS == 0){

temp = newV . g e t F i r s t () . t oS t r i ng () . tr im ()
+ ” ” + temp . s ub s t r i n g (idxE +1). tr im () ;

}
else i f (idxE == temp . l ength ()−1){

temp = temp . s ub s t r i ng (0 , idxS) + newV .
g e t F i r s t () . t oS t r i ng () . tr im () ;

}
}

}
else break ;
temp1 = ”” ;

}
while (idx < temp . l ength ()) ;
tempPred . s e t (i , temp) ;

}
}
// i r r e l e v a n t code

6.2.9 Expansion Processes in hide function

The hiding operation calls this function. This function is shown as follows:

stS = new Str ingToken i ze r (hiddenVars , ” | (|) | , ”) ;
while (stS . hasMoreElements ()){

temp = stS . nextElement () . t oS t r i ng () . tr im () ;
numOfHidVars++;
for (int i =0; i< tempVar . s i z e () ; i ++){

i f (tempVar . get (i) . t oS t r i ng () . tr im () . s tartsWith
(”\\Delta ”) | | tempVar . get (i) . t oS t r i ng () . tr im () . s tartsWith (”\\Xi”)){

// see the f i r s t d e t a i l
}
else i f (tempVar . get (i) . t oS t r i ng () . tr im () . endsWith (” ’ ”) &&
tempVar . get (i) . t oS t r i ng () . tr im () . s tartsWith (schemaBox [0] . nameSch)){

// see the second d e t a i l
}
else i f (tempVar . get (i) . t oS t r i ng () . tr im () . equa l s (schemaBox [0] . nameSch)){

// see the t h i r d d e t a i l
}
i f (o l d I > −1){

i = o l d I ;
}
i f (tempVar . get (i) . t oS t r i ng () . s tartsWith (temp)){

temp1 = tempVar . get (i) . t oS t r i ng () . su b s t r i n g (0 ,
tempVar . get (i) . t oS t r i ng () . indexOf (” : ”)) . tr im () ;
temp2 = tempVar . get (i) . t oS t r i ng () . su b s t r i n g
(tempVar . get (i) . t oS t r i ng () . indexOf (” : ”)+1). tr im () ;
i f (temp2 . endsWith (”\\”+”\\”)) temp2 = temp2 .
su b s t r i n g (0 , temp2 . la s t IndexOf (”\\”+”\\”)) . tr im () ;
i f (temp1 . equa l s (temp)){

tempVar . remove (i) ;
i sHidden = true ;
o l d I = −1;
break ;

}

164

else {
o l d I = −1;
i sHidden = fa l se ;

}
}
else {

o l d I = −1;
i sHidden = fa l se ;

}
}
i f (i sHidden){

l lHiddenVar . add (temp1 + ” : ” + temp2) ;
}

}
i f (l lHiddenVar . s i z e () > 0 && numOfHidVars ==llHiddenVar . s i z e ()){

// see the f o u r t h d e t a i l
}
else i sHidden = fa l se ;
return i sHidden ;

It will hide associated hidden variables from tempVar list. Afterwards, these
hidden variables will be quantified existentially on the first line of an associ-
ated predicate part.

The first detail is given as follows:

o l d I = i ;
temp1 = tempVar . get (i) . t oS t r i ng () . tr im () ;
tempVar . remove (i) ;
i f (temp1 . endsWith (”\\”+”\\”)){

temp1 = temp1 . s ub s t r i ng (0 , temp1 . la s t IndexOf (”\\”+”\\”)) . tr im () ;
}
for (int j =0; j<schemaBox [0] . hmVar . s i z e () ; j++){

temp2=schemaBox [0] . hmVar . get (j) . t oS t r i ng () . tr im () ;
temp3 = temp2 + ” : ” + schemaBox [0] . hmVal . get (temp2) . t oS t r i ng () . tr im () ;
i f (j < schemaBox [0] . hmVar . s i z e ()−1){

tempVar . add (i , temp3+”\\”+”\\”) ;
i ++;
temp3 = temp2 + ” ’ ” + ” : ” + schemaBox [0] .
hmVal . get (temp2) . t oS t r i ng () . tr im () ;
tempVar . add (i , temp3+”\\”+”\\”) ;
i ++;

}
else {

tempVar . add (i , temp3) ;
i ++;
i f (i == tempVar . s i z e ()−1){

. . .
}
else {

. . .
tempVar . add (i , temp3) ;

}
}

}

The first ”. . .” means the same as previous if block from the last fourth to
second lines. The second ”. . .” means the same as the last fourth to third
lines of the same if block.

165

. . .
for (int j =0; j<schemaBox [0] . hmVar . s i z e () ; j++){

temp2=schemaBox [0] . hmVar . get (j) . t oS t r i ng () . tr im () ;
temp3 = temp2 + ” ’ ” + ” : ” + schemaBox [0] . hmVal .
get (temp2) . t oS t r i ng () . tr im () ;
i f (i < tempVar . s i z e ()−1){

tempVar . add (i , temp3+”\\”+”\\”) ;
i ++;

}
}

The above code details the second detail. ”. . .” means the same as the
top seven lines of previous if block.

. . .
for (int j =0; j<schemaBox [0] . hmVar . s i z e () ; j++){

temp2=schemaBox [0] . hmVar . get (j) . t oS t r i ng () . tr im () ;
temp3 = temp2 + ” : ” + schemaBox [0] . hmVal . get (temp2) . t oS t r i ng () . tr im () ;
i f (i < tempVar . s i z e ()−1){

tempVar . add (i , temp3+”\\”+”\\”) ;
i ++;

}
}

The above code details the third detail. ”. . .” means the same as the top
seven lines of first if block.

i f (! tempPred . g e t F i r s t () . t oS t r i ng () . tr im () .
s tartsWith (”\\ z a l l ”) && ! tempPred . g e t F i r s t () .
t oS t r i ng () . tr im () . s tartsWith (”\\ z e x i ”)){

i f (l lHiddenVar . s i z e () == 1){
temp = llHiddenVar . g e t F i r s t () . t oS t r i ng () ;
temp = ”\\ e x i s t s ” + temp + ” \\ spot ” ;
tempPred . add (0 , temp) ;
l lHiddenVar . remove (0) ;

}
else {

temp = ”” ;
for (int i =0; i<l lHiddenVar . s i z e () ; i ++){

temp=temp+llHiddenVar . get (i) . t oS t r i ng ()+” ; ” ;
}
temp = temp . s ub s t r i ng (0 , temp . la s t IndexOf (” ; ”)) ;
. . .
l lHiddenVar . removeAll (l lHiddenVar) ;

}
}
else {

temp = tempPred . g e t F i r s t () . t oS t r i ng () . tr im () ;
temp = temp . r e p l a c e (”\\ z a l l ” , ”\\ f o r a l l ”) ;
temp = temp . r e p l a c e (”\\ z e x i ” , ”\\ e x i s t s ”) ;
temp = temp . r e p l a c e (”\\ zbar ” , ”\\ cbar ”) ;
tempPred . s e t (0 , temp) ;

}
for (int i =1; i< tempPred . s i z e () ; i ++){

i f (tempPred . get (i) . t oS t r i ng () . endsWith (”\\”+”\\”)){
tempPred . s e t (i , tempPred . get (i) . t oS t r i ng () .
su b s t r i n g (0 , tempPred . get (i) . t oS t r i ng () .
l a s t IndexOf (”\\”+”\\”)) . tr im ()+” \\ land ”) ;

}
}

166

i sHidden = true ;

The above code describes the fourth detail. ”. . .” means the same as
previous if block, especially the last third and second lines.

Thus, a sequence of operations in operate function in general is: ex-
panding, normalising, and collapsing. This sequence can be different for
other operator such as negation in which negateSch function will be called
also. Functions which will be called on each operator have been mentioned
earlier.

After operate function finished, a value held by isOperate is returned to
the caller which is schConstruction function. Next processes are performed
on the latter function which is mainly to rewrite the predicates to get better
appearances. The final results are shown in Fig. 6.1 on page 167, Fig. 6.2
on page 168, Fig. 6.3 on page 169, and Fig. 6.4 on page 170. Both figures
were obtained by selecting View menu and clicking Expansion sub-menu
from the GUI window of our system.

Figure 6.1: Finalising expansion process

167

Figure 6.2: Finalising expansion process (continued)

Several functions were not put as headings of sub-sections of expansion
processes. For example: conjoin, both getVarVal, indexOfById, sortLinkedList,
and spliType. It is since they have been discussed on the discussion of other
functions either in this chapter or previous chapter.

6.3 Conclusion

At the moment, Z2SAL does not support constructed schemas in which a
schema is constructed by reusing other defined schemas operating by one
or more schema operators as given above. If there is an operation between
schemas, that operation is performed manually on the Z specification. The Z
specification output is then passed to Z2SAL. In other words, a user should
specify their specification in a style that does not use a constructed schema.
The user should apply the schema operator and reflect this application in
their specification. This method is then adapted to propose methods dis-
cussed earlier in this section, though neither all schema calculus on the Z

168

Figure 6.3: Finalising expansion process (continued)

language nor a complex schema calculus definition is supported by our sys-
tem.

Based on experiments with this system, it seems that this constructed
schema can be implemented straightforward, but not for the one that re-
quires a heavy simplification on their predicates. In this case, it requires a
more elaborate work to accomplish such a simplification process. This prob-
lem can be set up as future work. Nevertheless, our system can perform a
simplification process, though it is a simple one. This success is expected
as our contribution to related research in this field. The expansion schema
calculus is a part of the architecture of our research as shown by Fig. 3.1 on
page 77.

Our experiments on this system will be discussed on a later chapter.

169

Figure 6.4: Finalising expansion process (continued)

170

Chapter 7

Integration among the Scanner,
the Parser, and Java Programs

This chapter describes our method to integrate our separate systems as dis-
cussed in the earlier chapters. For this purpose, another Java program has
been built. This Java program which is named Z Preprocessing Tool.java

is our main program.
By starting from this main program, our support for model checking Z

specifications runs. The next discussion relates to this main program.

7.1 Java Main Program

Our main program has a simple GUI form as shown in Fig. 7.1 on page 172.
As can be seen in Fig. 7.1 on page 172, there are two menus.

The first menu, Action, consists of two sub-menus: Redefine, and Expand.
Based on their names, the first sub-menu performs a redefinition of generic
constants, whereas the second one performs an expansion on schema calculus
definitions.

The second menu, View, is just to display a result of a successful action.
The result is a generated Z specification which either its generic constant
definition has been redefined to an equivalent axiomatic definition or its
schema calculus definition has been expanded to a new schema. Thus, this
menu contains two sub-menus: Redefinition, and Expansion. It is either
one of these menus which is enabled automatically by our system depending
on a previous action.

As the main program, redefinition of a generic constant definition, and
expansion of a schema calculus definition were designed and implemented
in different files from the scanner and parser, all these systems should be

171

Figure 7.1: Support for Model Checking Z Specifications

integrated that they can connect to each other. This connection begins right
after a Z specification file is read by the system.

Let us discuss a method to read a Z specification implemented in our
system.

7.2 Reading a Z Specification

During a read process, characters of such a Z specification input will be
checked line by line to get necessary information.

i f (s . s tartsWith (”\\ begin { zed}”)){

The above code is the first check. It will check the existence of a zed box
definition. The zed box definition is classified as a definition without any box
[69]. The first zed definition specified in our system is a generic definition
which is indicated by the next line as follows:

i f ((s . conta in s (”\\ d e f s ”) | | s . conta in s (”==”)) && s . conta in s (”X”)){

172

If it is a case, this definition will be changed to a generic constant definition
box. The first change is to replace ”\begin{zed}” with ”\begin{gendef}”
as follows:

g e n e r i c . tempS . add (”\\ begin { gendef }{X}”) ;

tempS is a variable to store bytes of characters during a read. It is a linked
list typed variable which is an instance of a Java class LinkedList.

There are two further checks here. The first check is to see if a line is just
a value as follows:

i f (! s . conta in s (”\\ d e f s ”)) g e n e r i c . tempS . add (s) ;

In this case, the process is just to store the line to the list. The second one
is to collect information of a variable name and its value. Our system just
considers a value which begins with ”\\{” as follows:

i f (va l . s tartsWith (”\\{”)){

Afterwards, variables, and their constraints are recorded. A bar, which sep-
arates a declaration part, and a predicate part, is checked then. The bar can
be a ”|” or a ”\cbar”.

If a ”•” begins a predicate part, further checks are required. After these
checks, obtained information will be processed. Our system just supports
one generic parameter in a generic definition mentioned earlier, which is X.

i f (g e n e r i c . tempS . t oS t r i ng () . conta in s (tempV)){
for (int numList=0;numList<g e n e r i c . tempS . s i z e () ; numList++){

tempVN = g e n e r i c . tempS . get (numList) . t oS t r i ng () ;
i f (tempVN . conta in s (tempV)&&(tempVN . indexOf (tempV) < tempVN . indexOf (” : ”))){

i f (tempVN . s ub s t r i ng (tempVN . indexOf (tempV) + tempV . l ength ()) .
s tartsWith (” ”) | | tempVN . su b s t r i ng (tempVN . indexOf (tempV) +
tempV . l ength ()) . s tartsWith (””)){

newVal = tempVN . s ub s t r i ng (tempVN . indexOf (” : ”)+1). tr im () ;
g e n e r i c . tempS . add (var+” : ”+newVal) ;
break ;

}
}

}
}
else g e n e r i c . tempS . add (var+” : ”+”\\ pset (”+newVal+”) ”) ;

The above code is to avoid any duplication of generic constant definitions.
After a declaration of an associated generic constant is obtained, the next
process is to get this generic constant predicate part as follows:

i f (! va l . endsWith (”\\”+”\\”)){
g e n e r i c . tempS . add (”\\ST”) ;
pred = var+” = ”+val ;
g e n e r i c . tempS . add (pred) ;

}
else {

pred = var+” = ”+val ;
g e n e r i c . tempS . add (pred) ;

}

173

As can be seen from the above code, our system supports only a predicate
part which is in a form of equality. All above processes will be repeated until
a ”\end{zed}” is read. If it is found, an associated line will be changed to
”\end{gendef}” as follows:

i f (s . equa l s (”\\end{ zed}”))
g e n e r i c . tempS . add (”\\end{ gendef }”) ;

If the next line is not a generic definition, ”\begin{zed}” is kept unchanged,
the next process is to just store the number of line which has been read to
the list; it is an ordinary definition which will not be processed further here.

The second check is to see whether ”λ” expression exists in line by line
of the Z specification as follows:

else i f (s . conta in s (”\\ lambda”) && ! s . conta in s (”==”) && ! s . conta in s (”\\ d e f s ”)){

Thus, this lambda should not a part of a definition. If this lambda expression
is written on more than one line, these separate lines will be joined as follows:

i f (s . tr im () . endsWith (”\\dot”) | | s . tr im () .
endsWith (”\\ spot ”) | | s . tr im () . endsWith (”\\ cbar ”)){

s s = s ;
while (! s . endsWith (”\\”+”\\”) | | ! s . tr im () . equa l s (”\\end{ axdef }”) | |
! s . tr im () . equa l s (”\\end{ gendef }”) | | ! s . tr im () . equa l s (”\\end{schema}”)){

s = br . readLine () ;
i f (! s . tr im () . equa l s (”\\end{ axdef }”)){

s s = s s + ” ” + s ;
}
else i f (! s . tr im () . equa l s (”\\end{ gendef }”)){

s s = s s + ” ” + s ;
}
else i f (! s . tr im () . equa l s (”\\end{schema}”)){

s s = s s + ” ” + s ;
}

}
}

The joined lines will be used afterwards.
Our system supports just one lambda expression in a predicate line; there

is no nested lambda expression, as follows:

i f ((s . indexOf (”\\ lambda”) > s . indexOf (” (”) &&
s . indexOf (”\\ lambda”) < s . indexOf (”) ”)) | |
(s . indexOf (”\\ lambda”) > s . indexOf (”\\ l img ”) &&
s . indexOf (”\\ lambda”) < s . indexOf (”\\ rimg”))){

From this lambda expression, variables and their types will be gathered, as
well as predicates as follows:

idxLambd = s . indexOf (”\\ lambda”) ;
i f (s . conta in s (”\\dot”)){

var = s . s ub s t r i ng (idxLambd+7, s . indexOf (”\\dot” , idxLambd)) . tr im () ;

i f (s . indexOf (”\\ lambda” , idxLambd+1) > −1){
r e s u l t = s . s ub s t r i n g (s . indexOf (”\\dot” , idxLambd)+4 ,

174

s . l a s t IndexOf (”) ” , s . indexOf (”\\ lambda” , idxLambd +1))) . tr im () ;
}
else r e s u l t = s . s ub s t r i n g (s . indexOf (”\\dot” ,

idxLambd)+4 , s . l a s t IndexOf (”) ”)) . tr im () ;
newVar = ”\\ f o r a l l ”+var + ” \\dot ” ;

}
else {

var = s . s ub s t r i ng (idxLambd+7, s . indexOf (”\\ spot ” , idxLambd)) . tr im () ;

i f (s . indexOf (”\\ lambda” , idxLambd+1) > −1){
. . .

}
else . . .
. . .

}

”. . .” means the same as previous code, but this time it is for a string
”\begin{spot}”, not a string ”\begin{dot}”. In a case there are more
declared variables, further processes are required as follows:

i f (! var . conta in s (” ; ”)){
v a r i a b l e s = var . su b s t r i n g (0 , var . indexOf (” : ”)) . tr im () ;

}
else {

idxS = 0 ;
do{

i f (! v a r i a b l e s . isEmpty ()){
v a r i a b l e s = var . su b s t r i n g (idxS , var . indexOf (” : ” , idxS))+” , ”+v a r i a b l e s ;

}
else {

v a r i a b l e s = var . su b s t r i n g (idxS , var . indexOf (” : ” , idxS)) ;
}
i f (var . indexOf (” ; ” , idxS) > −1){

idxS = var . indexOf (” ; ” , idxS)+1;
}
else {

idxS = var . l ength () ;
}

}
while (idxS < var . l ength ()) ;

}

After that, an operator that relates a generic constant to its lambda
expression is checked. There are several operators specified here: ”=”, ”∈”,
”6=”, ” 6∈”, ”⊆”, ”⊂”, ”<”, ”≤”, ”>”, ”≥”, as follows:

idxS = s . l a s t IndexOf (” (” , idxLambd) ;
lhsVar = s . s ub s t r i ng (0 , idxS) . tr im () ;
i f (lhsVar . endsWith (”=”) | | lhsVar . endsWith (”\\mem”) | |

lhsVar . endsWith (”\\ in ”) | | lhsVar . endsWith (”\\neq”) | |
lhsVar . endsWith (”\\nem”) | | lhsVar . endsWith (”\\nmem”) | |
lhsVar . endsWith (”\\ subseteq ”) | | lhsVar . endsWith (” subset ”) | |
lhsVar . endsWith (”\\ subs ”) | | lhsVar . endsWith (”\\psubs ”) | |
lhsVar . endsWith (”<”) | | lhsVar . endsWith (”\\ l e q ”) | |
lhsVar . endsWith (”>”) | | lhsVar . endsWith (”\\geq”)){
stVar = new Str ingToken i ze r (lhsVar , ” ”) ;
do{

llVarGC . add (stVar . nextElement () . t oS t r i ng ()) ;
}

175

while (stVar . hasMoreElements ()) ;

The line containing a lambda expression will be changed into a new predicate
line which begins with a universal quantifier as follows:

i f (! llVarGC . getLast () . t oS t r i ng () . tr im () . equa l s (”=”)
&& ! llVarGC . getLast () . t oS t r i ng () . tr im () . equa l s (”\\mem”)
&& ! llVarGC . getLast () . t oS t r i ng () . tr im () . equa l s (”\\ in ”)
&& . . .
&& ! llVarGC . getLast () . t oS t r i ng () . tr im () . equa l s (”\\geq”)){

lhsVar = llVarGC . getLast () . t oS t r i ng () . tr im () ;
i f (lhsVar . endsWith (”=”)){

llVarGC . s e t (llVarGC . s i z e ()−1 , lhsVar . su b s t r i n g (lhsVar . indexOf (”=”)) . tr im ()) ;
lhsVar = lhsVar . s ub s t r i ng (0 , lhsVar . indexOf (”=”)) . tr im () ;

}
else i f (lhsVar . endsWith (”<”)){

. . .
}
else i f (lhsVar . endsWith (”>”)){

. . .
}
else {

llVarGC . s e t (llVarGC . s i z e ()−1 , lhsVar . su b s t r i n g (lhsVar .
l a s t IndexOf (”\\”+”\\”)) . tr im ()) ;
lhsVar = lhsVar . s ub s t r i ng (0 , lhsVar . l a s t IndexOf (”\\”+”\\”)) . tr im () ;

}
i f (v a r i a b l e s . conta in s (” , ”)){

v a r i a b l e s = ” (” + v a r i a b l e s + ”) ” ;
}
else v a r i a b l e s = ” ” + v a r i a b l e s ;
lhsVar = lhsVar + v a r i a b l e s ;

}
else {

i f (v a r i a b l e s . conta in s (” , ”)){
v a r i a b l e s = ” (” + v a r i a b l e s + ”) ” ;

}
else v a r i a b l e s = ” ” + v a r i a b l e s ;
lhsVar = llVarGC . get (llVarGC . s i z e ()−2) . t oS t r i ng () + v a r i a b l e s ;

}

newVar = newVar + lhsVar + ” ” + llVarGC . getLast () . t oS t r i ng () + ” ” + r e s u l t ;
g e n e r i c . tempS . add (newVar) ;
}

where ”. . .”s are the same as earlier associated lines for the rest of operators.
The new predicate is newVar on the above code.

The third check is on neither a generic constant definition on a zed box
nor a lambda expression contained in a line. For this case, there is no further
process; the only process just stores the line to the list.

These three checks are repeated until end of file. Afterwards, a new file
will be created and its name is the same as the input file name, but it starts
with ”output ”. Contents of the tempS list will then be copied to this new
file.

The next section discusses how a connection amongst all systems was
built. It occurs after a Z specification is read as specified in the earlier code.

176

7.3 Establishing a Connection Amongst Sys-

tems

The read file, which might be pre-processed as mentioned earlier, will be
passed to the parser to be processed further. The code below shows that
process:

Parser p = new Parser (new Fi leReader (f i l e . getParent ()+”\\ output ”+f i l e . getName ())) ;
pwout . f l u s h () ;
p . yyparse () ;

Parser is a name which was specified for our parser. The above code shows
how our main program connects to our parser. The code was specified in our
main program.

Below is code to connect our parser to our scanner. It is specified in our
parser shown as follows:

public Parser (Reader r) {
l e x e r = new ScannerCl (r , this) ;

}

The above function is the only constructor in our parser which requires one
parameter whose type is Reader. Reader is one class in Java. ScannerCl is
a name of a Java class specified in our scanner that will be created when the
scanner runs. It requires two parameters on its constructor shown as follows:

public ScannerCl (java . i o . Reader r , Parser yyparser) {
this (r) ;
this . yyparser = yyparser ;

}

The above constructor was specified in our scanner.
lexer is a variable which is an instance of ScannerCl. yyparse is a

name of a method provided by BYACC/J which is an entry point to a yacc-
generated parser [45].

Each time this method is called, an input stream will be parsed. It returns
zero if the parse succeeds, otherwise it returns not-zero. A failure in parsing
makes our system stop immediately. An error reporting this failure will be
generated by our system.

The next process after a successful parsing can be a redefinition or a
schema expansion which depends on what an option is chosen by a user.
Both processes have been discussed on earlier chapters.

7.4 Conclusion

The method to interconnect our systems has been discussed above. It is a
part of our research’s architecture, which is shown by Fig. 3.1, though it was

177

written explicitly in that picture.
The connection starts with an execution in the main Java program. This

program then connects to the parser. Subsequently the parser connects to the
scanner. The scanner provides a sequence of accepted tokens to the parser.
The parser checks whether this sequence matches the specified grammar.
It also stores necessary information for redefinition or expansion system.
Process of either redefinition or expansion is performed afterwards. Alongside
each of this process, but in our experiments it is usually in the redefinition
process, user-defined function modification could also be accomplished. It is
because our examples for schema expansion are rare specified in having user-
defined function. The modification is in the SAL file generated by Z2SAL.

By implementing all these programs separately, our system is more mod-
ular. Thus, it is easy to perform a further development. It is easy also to
locate an error.

As mentioned earlier, our main program has a simple display. To inform
a user about processes on each program, it might be better if this system can
display line by line of a Z specification input which is accompanied by what
process occurs in it. Furthermore, our system only supports a read in one file
input of a Z specification in each execution of either redefinition or expansion
menu. All of these improvements can be considered as future works.

178

Chapter 8

A Generic Constants
Redefinition

This chapter discusses further our redefinition system, which is a part of our
research’s architecture as can be seen in Fig. 3.1. It consists of four sections:
setting up questions for evaluation of this system, several experiments with
this system, evaluation of this system, and conclusion.

The first section describes a few questions which are required on an eval-
uation stage. It will be followed by a description of our experiments on this
system and a discussion on each experiment. There are 23 experiments con-
ducted by us on this system. The next section is an evaluation on this system
by answering earlier questions. A brief conclusion will end this chapter.

8.1 Setting up Questions for Evaluation

Evaluation means an action to find out over a system whether the system
can perform specified aims. As mentioned earlier in Section 1.2 on page 15,
our objective is to implement a tool which will redefine a generic constant
definition to an equivalent axiomatic definition. As a result, this tool or
system has been implemented with several limitations.

Over this system, questions are set up to assess its performances. These
questions are as follows:

• Can this system redefine all generic constant definitions correctly?

• Can the outcome of this system always be translated by Z2SAL and
then be executed by the SAL tool?

• Does the approach scale to larger specifications?

179

To obtain solutions for these questions, several experiments with this
system have been conducted. It will be discussed on the following section.

8.2 Experiments with the Generic Constant

Redefinition

Several of our experiments with these systems are given in this section. It
also includes our proposed method on a new SAL translation of function
or constant in associated experiments. Results and discussions relating to
these experiments are given also in each sub-section. Thus, our method of
a redefinition of generic constants as well as our proposed method can be
followed in this section.

A list of experiments on this system were summarised in the table in [63].
There were a few experiments added to this table. All these experiments are
as shown by Table 8.1 on page 181.

Before details of each experiment are discussed, a brief description of our Z
specifications is given in Table 8.2 on page 182, where the below abbreviation
words mean:

GCD = Generic Constant Definition
gp = generic parameter.

This table is arranged such that experiments which have the less number
of generic constant definitions are listed at the top. Afterwards, experiments
are ordered based on their number of usages, then number of generic param-
eters on the same type of generic constants.

Referring to this table, one Z specification input of our experiments can
contain several generic constant definitions as well as several usages. Further-
more, our experiments also experienced of function, relation and constant as
types of generic constants. Up to two generic parameters were specified in
our Z specifications though our system was designed to cover at most three
generic parameters. Moreover, these generic parameters should be either one
of X, Y or Z.

The generic constant definition is getting more complex if a declaration
of such a generic constant uses not only generic parameters but also Z tags,
which are accepted in a declaration of variables in Z, such as: ”P”, ”seq”, ”×”,
”↔”, functions, brackets and others. These Z tags in turn can be used in to-
gether, to create declarations such as: ”(X 7→ Y) P X”, ”X ↔ P X”, ”X ×
Y → X × Y”, ”(P X) × (P X) → (P X)”, ”P X”, ”X × Y → X”, ”(seq1

180

Table 8.1: Several Experiments with the Redefinition System
Z Specification Details Verification time in secs
(*.tex) #Theorem = 0 #Theorem > 0

bbook Modified SAL function 0.842
bbook map Modified SAL function 0.016 0.25
bbook uni Modified SAL function and 0.031 0.406

other parts of SAL file
bbook map uni Modified SAL function and 0.359

other parts of SAL file
fDomRan Modified SAL function 0.015
fEmpty OK 0.093
fEmptyImpl OK 0.109
fFirst Modified SAL function 0.015 0.187
fHead Modified SAL function 0.031
fHeadFunc Modified SAL function and 0.031

cannot be simulated: The
set of initial states is empty

fMaxComSubSeq Modified other parts of SAL 0.047
file and cannot be simula
ted: An out of memory error

fMaxComSubSeq 1 Modified other parts of SAL 0.032
file and cannot be simula
ted: An out of memory error

fMaxComSubSeq orig Modified other parts of SAL 0.032
file and cannot be simula
ted: An out of memory error

fMonoSeq OK. Long simulation 0.047
fMonoSeq 1 OK. Long simulation 0.031
fSwap Modified SAL function 0.016 0.141
fUniqSeq Ok. Cannot be simulated: 0.062

An out of memory error
fUniq1Seq Ok. Cannot be simulated: 0.031

An out of memory error
fUniq2Seq Ok. Cannot be simulated: 0.015

An out of memory error
tn Modified other parts of SAL 0.03

file and cannot be simula
ted: An out of memory error

tnImpl Modified other parts of SAL 0.0
file and cannot be simula
ted: An out of memory error

fFileStorage Canot be translated by N/A
Z2SAL

fSet Modified SAL function 0.0
and other parts of SAL file

181

Table 8.2: Summaries of Experiments
Number of GCDs Z Specification (*.tex) Details

1 bbook uni (9.2.3 on page 228) 1 function, 1 gp, 1 usage
fHeadFunc (9.2.10 on page 235) 1 function, 1 gp, 2 usages
fUniq1Seq (9.2.18 on page 240) 1 function, 1 gp, 2 usages
fUniq2Seq (9.2.19 on page 240) 1 function, 1 gp, 2 usages
fHead (9.2.9 on page 234) 1 function, 1 gp, 3 usages
bbook map (9.2.2 on page 227) 1 function, 2 gps, 1 usage
fEmpty (9.2.6 on page 232) 1 constant, 1 gp, 2 usages
fEmptyImpl (9.2.7 on page 233) 1 constant, 1 gp, 2 usages
tn (9.2.20 on page 241) 1 constant, 1 gp, 6 usages
tnImpl (9.2.21 on page 241) 1 constant, 1 gp, 6 usages

2 bbook (9.2.1 on page 224) 1 relation, 1 gp, 1 usage
1 function, 2 gps, 2 usages

bbook map uni (9.2.4 on page 229) 1 function, 1 gp, 1 usage
1 function, 2 gps, 1 usage

fDomRan (9.2.5 on page 231) 1 function, 2 gps, 1 usage
1 function, 2 gps, 1 usage

fFileStorage (9.2.22 on page 242) 1 function, 1 gp, 1 usage
1 function, 1 gp, 1 usage

fFirst (9.2.8 on page 233) 1 function, 2 gps, 2 usages
1 function, 2 gps, 2 usages

fMonoSeq (9.2.15 on page 238) 1 constant, 1 gp, 1 usage
1 constant, 1 gp, 2 usages

fMonoSeq 1 (9.2.14 on page 238) 1 constant, 1 gp, 1 usage
1 constant, 1 gp, 2 usages

fSwap (9.2.16 on page 239) 1 function, 1 gp, 1 usage
1 function, 2 gps, 1 usage

3 fUniqSeq (9.2.17 on page 239) 1 constant, 1 gp, 3 usage
1 constant, 1 gp, 3 usages
1 function, 1 gp, 2 usages

4 fMaxComSubSeq (9.2.13 on page 237) 1 relation, 1 gp, 1 usage
1 function, 1 gp, 1 usage
1 function, 1 gp, 2 usages
1 function, 1 gp, 2 usages

fMaxComSubSeq 1 (9.2.12 on page 236) 1 relation, 1 gp, 1 usage
1 function, 1 gp, 1 usage
1 function, 1 gp, 2 usages
1 function, 1 gp, 2 usages

fMaxComSubSeq orig (9.2.11 on page 236) 1 relation, 1 gp, 1 usage
1 function, 1 gp, 1 usage
1 function, 1 gp, 2 usages
1 function, 1 gp, 2 usages

fSet (9.2.23 on page 242) 1 relation, 1 gp, 1 usages
1 relation, 1 gp, 3 usages
1 function, 1 gp, 1 usage
1 constant, 1 gp, 7 usages

182

X) → X”, ”(seq X) ↔ (seq X)”, ”(seq X) → P(seq X)”, ”((seq X) ×
(seq X)) → P(seq X)”, ”P(seq X)”, ”X × Y → Y × X”, ”X × X → X

× X”, ”(seq X) → seq X”, ”(seq X) → (seq X)”, ”P(P(P X))”, ”((seq
X) × N) → (seq X)”, ”((seq X) × N) → (N 7→ X)”, ”X ↔ X”. These
cases require elaborate work on type unification.

Details of each experiment are given in the following sub-sections. These
experiments are in alphabetical order, except the last two experiments. Both
these experiments have problems during their running. Having our system
fixed, the last experiment could be redefined by our system. However, an-
other experiment has a problem with Z2SAL as discussed later.

Thus, our experiments as follows show how a generic constant is rede-
fined correctly based on its usage. In addition, our experiments also show
how when this generic constant is used for several usages it is still redefined
correctly.

Following experiments also demonstrate how our method to solve prob-
lems that occurred during processes. These problems can either be in a
redefinition process, a translation by Z2SAL or an execution by the SAL
tool. The last two problems also resemble our proposed method on SAL
function.

8.2.1 Experiment 1: bbook.tex

This specification was taken from [69, p. 3-6], but has been modified in
several places. There are two generic constants definitions specified in this
specification. The first generic constant definition is as follows:

[X ,Y]
domain : (X 7→ Y)→ PX

∀R : X 7→ Y • domainR = {x : X | ∃ y : Y • x 7→ y ∈ R}

This definition has one generic constant, domain, which type is a function,
specifically a total function. The domain generic constant has two generic
parameters: X, and Y. The input to this generic constant is a partial function
from X to Y. The output of this generic constant is a set of X.

Another generic constant definition is shown as follows:

[X]
nonMember : X ↔ PX

∀ x : X ; S : PX • (x ,S) ∈ nonMember ⇔ ¬ (x ∈ S)

This generic constant, nonMember, is a relation between X and a set of X. As
can be seen from above definition, this generic constant was specified with
one generic parameter, X.

183

These generic constants were used on several places on schemas of this
specification. The first usage is as follows:

(birthday, known) ∈ domain

This is a usage of domain and it was written by using a membership operator,
”∈”. The first argument, which is an input, is birthday which type is
a partial function from NAME to DATE. The second argument, known, is an
output and its type is a set of NAME.

The second usage is given by the predicate:

houseKnown = domain(house)

At this time, the usage was written as a normal writing of a function.
The input is house which type is a partial function from NAME to ADDRESS.
Obviously, the output is houseKnown which type is a set of NAME.

The next usage is to the second generic constant.

(name?, known) ∈ nonMember

It was written by using a common written of a relation. It has two pa-
rameters: name? which type is an instance of NAME, and known is a set of
NAME.

Another usage is as follows:

(name?, houseKnown) ∈ nonMember

Types for both parameters can be obtained from previous descriptions.
Thus, there were four usages for generic constant specified in this spec-

ification. After this specification was run by our system, three axiomatic
definitions redefined previous two generic constant definitions.

The first usage as discussed above was redefined as follows:

domain : (NAME 7→ DATE)→ PNAME

∀R : NAME 7→ DATE • domainR = {x : NAME | ∃ y : DATE • x 7→ y ∈ R}

Thus, X is actualized to NAME, and Y is actualized to DATE.
The second usage is to the same generic constant as the first usage. How-

ever, their arguments have different types. Thus, this usage was redefined to
a different axiomatic definition as shown below:

domain1 : (NAME 7→ ADDRESS)→ PNAME

∀R : NAME 7→ ADDRESS • domain1R = {x : NAME | ∃ y : ADDRESS • x 7→ y ∈ R}

The type for X is the same as the type of X from domain, but Y on domain1

is ADDRESS which is different with Y from domain. The additional index, 1, at

184

the end of domain affects also the way the usage was written. The updated
associated line of predicate is as follows:

houseKnown = domain1(house)

The last two usages have the same generic constant and the same types
of their arguments. Thus, both usages are redefined to the same axiomatic
definition, as follows:

nonMember : NAME ↔ PNAME

∀ x : NAME ; S : PNAME • (x ,S) ∈ nonMember ⇔ ¬ (x ∈ S)

The SAL file which was generated by Z2SAL could not be verified by the
SAL model checker. The error as shown below was produced instead by the
SAL model checker:

Error: [Context: output bbook, line(50),

column(12)]: Incompatible types in the equality operator.

The following types are incompatible:

output bbook!Set B NAME

[output bbook!NAME -> bool]

Several lines of the SAL specification, including the associated line, are
shown as follows:

49 (FORALL (q 1 : Set C NAME X B DATE I) :
50 domain (q 1) =
51 { q 2 : NAME | (EXISTS (q 3 : DATE) : q 1 (q 2) =
52 q 3)}) AND

The type of domain is [Set C NAME X B DATE I -> Set B NAME].
Thus, the type of domain(q 1) is Set B NAME. However, the right-hand
side of the equality operator is NAME -> bool.

Based on this error, the translations of the domain and domain1 function
are modified manually on the SAL file. These are given as follows:

domain (q 1 : Set C NAME X B DATE I) : Set NAME =
{ q 2 : NAME | (EXISTS (q 3 : DATE) : q 1 (q 2) = q 3) } ;

domain1 (q 4 : Set C NAME X B ADDRESS I) : Set NAME =
{ q 5 : NAME | (EXISTS (q 6 : ADDRESS) : q 4 (q 5) = q 6) } ;

These function translations were put on the context clause.
There were two theorems formulated on this SAL file as shown below:

th1 : THEOREM State |− G(func t i on {NAME, B DATE ;DATE BB ; } ! empty ?(b i r thday)) ;

th2 : THEOREM State |− G(func t i on {NAME, B ADDRESS ;ADDRESS BB ; } ! empty ?(house)) ;

185

This SAL file could be verified by the SAL model checker after the mod-
ification. Total execution time is 0.857 second. Both theorems were invalid.
The SAL file could also be simulated by the SAL simulator.

8.2.2 Experiment 2: bbook map.tex

This specification originated from the same book as the first experiment.
There is only one generic constant specified in this specification, mapRel. It
is shown as follows:

[X ,Y]
mapRel : X ×Y → X ×Y

∀ x : X ; y : Y • mapRel(x , y) = (x , y)

This generic constant is a total function from a pair of X, and Y. There are
two generic parameters: X, and Y.

Only one usage was specified upon this generic constant.

birthday ′ = birthday ∪ {mapRel(name?, date?)}

date? has a type of DATE. Following axiomatic definition was generated to
redefine above generic constant definition:

mapRel : NAME ×DATE → NAME ×DATE

∀ x : NAME ; y : DATE • mapRel(x , y) = (x , y)

The SAL file generated by Z2SAL could be verified by the SAL model
checker. However, after theorems, which are the same as theorems on the
previous experiment, were added to this SAL file, this SAL file could not be
verified by the SAL model checker.

Then, the SAL translation for the mapRel function was modified manually
and was put on the context clause instead.

mapRel (q 1 : NAME, q 2 : DATE) : NAME X DATE = (q 1 , q 2) ;

Total execution time by the SAL model checker is 0.25 second. This SAL file
could also be simulated by the SAL simulator.

8.2.3 Experiment 3: bbook uni.tex

This specification comes from the same book as two previous experiments.
The only generic constant specified in this specification is as follows:

[X]
uniSet : (PX)× (PX)→ (PX)

∀S ,T : (PX) • uniSet(S ,T) = {x : X | x ∈ S ∨ x ∈ T}

186

It has one generic parameter, X, and it is a total function from a pair of a
set of X, and a set of X, to a set of X.

The usage of this generic constant is as follows:

birthday ′ = uniSet(birthday, {name? 7→ date?})

As given in the previous experiments, the type of birthday is a partial
function from NAME to DATE.

Based on [69], mathematical functions are special kind of relation. Thus,
a function can be specified as a relation with additional conditions to assert
its function behaviour. Furthermore, a relation of two objects is a synonym
for a set of a pair of those objects.

Applying these synonyms, birthday can be written as a special relation,
then a set of a pair of NAME, and DATE. Thus, following axiomatic definition
was generated by our system for above usage on this generic constant:

uniSet : (P(NAME ×DATE))× (P(NAME ×DATE))→ (P(NAME ×DATE))

∀S ,T : (P(NAME ×DATE)) • uniSet(S ,T) = {x : (NAME ×DATE) | x ∈ S ∨ x ∈ T}

However, the SAL file generated by Z2SAL could not be verified by the SAL
model checker. An error was produced instead:

Error: [Context: output bbook uni, line(47), column(40)]:

Incompatible types in the equality operator.

The following types are incompatible:

output bbook uni!Set C B NAME X B DATE I

[output bbook uni!NAME X DATE -> bool]

Associated SAL lines are as follows:

46 (FORALL (q 1 : Set C NAME X DATE I , q 2 :
47 Set C NAME X DATE I) : uniSet ((q 1 , q 2)) =
48 { q 3 : NAME X DATE | s e t {NAME X DATE;} !
49 conta in s ?(q 1 , q 3) OR
50 s e t {NAME X DATE;} ! c onta in s ?(q 2 , q 3)}) AND

This error said that there was incompatible type between the output of
uniSet, which was Set C B NAME X B DATE I, and the right hand side
of the equality operator, which was [NAME X DATE -> bool].

Then, modification was made as follows to those SAL lines:

46 (FORALL (q 1 : s e t {NAME X DATE;} ! Set , q 2 :
47 s e t {NAME X DATE;} ! Set) : un iSet ((q 1 , q 2)) =
48 { q 3 : B NAME X B DATE | s e t {B NAME X B DATE ;} !
49 conta in s ?(q 1 , q 3) OR
50 s e t {B NAME X B DATE ;} ! c onta in s ?(q 2 , q 3)}) AND

187

However, there was another error as follows:

Error: [Context: output bbook uni, line(49), column(21)]:

Type mismatch in the function application.

Expected type:

[set{output bbook uni!B NAME X B DATE}!Set,

output bbook uni!B NAME X B DATE]

Actual type:

[set{output bbook uni!NAME X DATE}!Set,

output bbook uni!B NAME X B DATE]

Since the error relates to bottomed function, which might not be a prob-
lem if the uniSet function is specified in the context clause, a modification
was performed. The modification declaration for uniSet is as follows:

uniSet (q 1 : s e t {NAME X DATE;} ! Set , q 2 : s e t {NAME X DATE;} ! Set) :
s e t {NAME X DATE;} ! Set = { q 3 : NAME X DATE | s e t {NAME X DATE;} !
c onta in s ?(q 1 , q 3) OR s e t {NAME X DATE;} ! c onta in s ?(q 2 , q 3) } ;

However, an error was still produced as follows:

Error: [Context: output bbook uni mod, line(62), column(29)]:

Type mismatch in the function application.

Expected type:

[set{output bbook uni mod!NAME X DATE}!Set,

set{output bbook uni mod!NAME X DATE}!Set]

Actual type:

[output bbook uni mod!Set C NAME X B DATE I,

set{output bbook uni mod!NAME X DATE}!Set]

The related SAL lines are as follows:

61 NOT s e t {NAME;} ! c onta in s ?(known , name?) AND
62 birthday ’ = uniSet ((birthday , s e t {NAME X DATE;} !
63 s i n g l e t o n ((name? , date ?)))) AND
64 i n v a r i a n t ’

The type of uniSet after modification is a pair of set {NAME X DATE;}
! Set and set {NAME X DATE;} ! Set as can be seen in line 62. This
type was not compatible with the actual type passed to uniSet which was
a pair of Set C NAME X B DATE I and set {NAME X DATE;} ! Set.
Set C NAME X B DATE I is an alias for [NAME -> B DATE], specified by
Z2SAL. Although in the Z language, a function is special type of a relation,
and a relation is a set of a pair of types, it seems that SAL does not assume
the types of the first argument of uniSet are the same.

188

Thus, this incompatible type was solved manually. It is since our tool has
not been able to do it automatically.

Our modification was to keep the same alias for birthday, but this alias
represents a relation, not a function any more.

Set C NAME X B DATE I : TYPE = s e t {NAME X DATE;} ! Set ;

This changing affects the usage of birthday; it cannot any longer be used
as a function.

f unc t i on {NAME, B DATE ; DATE BB} ! p a r t i a l ?(b i rthday) AND

The above line was deleted.

known = r e l a t i o n {NAME, DATE;} ! domain (b i r thday) AND

The above line was replaced by a line as follows:

known = func t i on {NAME, B DATE ; DATE BB} ! domain (b i r thday) AND

As well as a line as follows:

date ’ = birthday (name?) AND

was replaced by the below line:

s e t {NAME X DATE;} ! c onta in s ? (birthday , (name? , date ’)) AND

The modified SAL version could be verified either by the SAL model
checker. The total execution time was 0.031 second. This SAL file could be
simulated by the SAL simulator.

The same theorems as added to previous experiment were added also to
this SAL file. The first theorem has been modified to reflect a relation.

th1: THEOREM State |- G(set {NAME X DATE;} !empty?(birthday));

th2: THEOREM State |- G(function{NAME,B ADDRESS;ADDRESS BB;}!

empty?(house));

Both theorems were INVALID and total execution time was 0.406 second.

8.2.4 Experiment 4: bbook map uni.tex

This specification combines two generic constant definitions which are spec-
ified in the bbook.tex and bbook map.tex.

Two usages specified here are the same as found on those specifications.

birthday ′ = uniSet(birthday, {mapRel(name?, date?)})

189

Thus, this usage is a nested usage: there is a usage inside another usage.
There two axiomatic definitions generated by our system to redefine those

two generic constant definitions as follows:

mapRel : NAME ×DATE → NAME ×DATE

∀ x : NAME ; y : DATE • mapRel(x , y) = (x , y)

uniSet : (P((NAME ×DATE)))× (P((NAME ×DATE)))→ (P((NAME ×DATE)))

∀S ,T : (P((NAME ×DATE))) • uniSet(S ,T) = {x : (NAME ×DATE) | x ∈ S ∨ x ∈ T}

Modifications which were performed on bbook uni.tex and bbook map.tex
were performed also in this specification. The same theorems as previous ex-
periments were added to this SAL file.

This SAL file could be verified by the SAL model checker with 0.015 sec-
ond and 0.359 second total execution times for no theorem and two theorems
respectively. It could be simulated also by the SAL simulator.

8.2.5 Experiment 5: fDomRan.tex

This specification was taken from [57] and it has been altered in several
places. There are two generic constants specified in one generic constant
definition. This definition has two generic parameters: X, and Y.

The first generic constant is domainSet. It is a total function from a
relation of X and Y, to a set of X.

Another generic constant is rangeSet. This generic constant has the
same input as the first generic constant, but it is different on the output. At
this generic constant, its output is a set of Y.

There are two usages; one for each of these generic constants.

(occupies, current guest) ∈ domainSet
(occupies, occupied room) ∈ rangeSet

The type of occupies is a relation between GUEST and HOTELROOM. current guest

is a set of GUEST, occupied room is a set of HOTELROOM.
Based on these usages, the following axiomatic definition was generated

to redefine the above generic constants definition:

domainSet : (GUEST ↔ HOTELROOM)→ PGUEST
rangeSet : (GUEST ↔ HOTELROOM)→ PHOTELROOM

∀R : GUEST ↔ HOTELROOM •
domainSetR = {x : GUEST | ∃ y : HOTELROOM • x 7→ y ∈ R} ∧
rangeSet(R) = {y : HOTELROOM | ∃ x : GUEST • x 7→ y ∈ R}

The generated SAL file could not be verified by the SAL model checker.
The following error was produced:

190

Error: [Context: output fDomRan, line(64), column(12)]:

Incompatible types in the equality operator.

The following types are incompatible:

output fDomRan!Set B GUEST

[output fDomRan!GUEST -> bool]

The SAL translations for these two generic constants were modified as
follows:

domainSet (q 1 : Set C GUEST X HOTELROOM I) : Set GUEST =
{ q 2 : GUEST | (EXISTS (q 3 : HOTELROOM) :
s e t {GUEST X HOTELROOM;} ! c onta in s ?(q 1 , (q 2 , q 3))) } ;

rangeSet (q 1 : Set C GUEST X HOTELROOM I) : Set HOTELROOM =
{ q 4 : HOTELROOM | (EXISTS (q 5 : GUEST) :
s e t {GUEST X HOTELROOM;} ! c onta in s ?(q 1 , (q 5 , q 4))) } ;

Total execution time is 0.015 second. This SAL file was simulated also by
the SAL simulator.

8.2.6 Experiment 6: fEmpty.tex

This specification, which has been added by us with a generic constant def-
inition, was taken from [69, p. 81]. The type of generic constant specified
here is a constant and it has one generic parameter: X.

[X]
empty : PX

empty = {x : X | false}

There are two usages for this generic constant, as follows:

a! = empty[N] ∧ b! = empty[Z]

These usages, which are not available on the referenced book, were specified
by using explicit type. Thus, obviously there will be two axiomatic definitions
with the first X was actualised to ”N”, and the second one was to ”Z”.

empty : PN

empty = {x : N | false}

empty1 : PZ

empty1 = {x : Z | false}

The usages will be modified to:

191

a! = empty ∧ b! = empty1

a! is a set of ”N”, and b! is a set of ”Z”.
There was one theorem formulated on this SAL file:

th1 : THEOREM State |− G(s e t {INT ; } ! empty = empty1) ;

This theorem was satisfied by the system. Total execution time is 0.094
second. It could be simulated by the SAL simulator.

8.2.7 Experiment 7: fEmptyImpl.tex

This specification is similar with the previous specification. The differences
are on the explicit types; it was written implicitly.

a! = empty ∧ b! = empty

Our system is able to generate the same axiomatic definitions as previous
experiment. As mentioned earlier, at this experiment, the actual types for
output of each usage were inferred from these usages surrounding. Thus, the
generated SAL file is also the same as the one from previous experiment.

8.2.8 Experiment 8: fFirst.tex

This specification was created by us. A generic constant definition which was
taken from [69, p. 81] was added to this specification and another generic
constant, secondF, was also created by us.

[X ,Y]
firstF : X ×Y → X
secondF : X ×Y → Y

∀ x : X ; y : Y • firstF (x , y) = x ∧ secondF (x , y) = y

Both these generic constants are total functions from a pair of X and Y. The
first generic constant has an output of type X, the second one has Y.

Several usages on these generic constants are as follows:

b! = secondF (number , c?)
a! = firstF (a?, b?)
c! = firstF (c?,number)
d ! = secondF (2, 4)

All these usages were specified by us. number is a ”N” type state variable,
whereas c? is a ”N” type non-state variable. a?, b? are NAME type variables.

Thus, the first usage and the third one are represented by the same ax-
iomatic definition; the generic parameters are actualised by the same type,

192

”N”. On the other hand, the second usage make the generic parameters to
be actualised to the same type also, NAME. The last usage is a numbered type,
but it is a ”Z”. These all generated three axiomatic definitions that would
be redefined the generic constant definition as follows:

firstF : N× N→ N
secondF : N× N→ N

∀ x : N; y : N • firstF (x , y) = x ∧ secondF (x , y) = y

firstF1 : NAME ×NAME → NAME
secondF1 : NAME ×NAME → NAME

∀ x : NAME ; y : NAME • firstF1(x , y) = x ∧ secondF1(x , y) = y

firstF2 : Z× Z→ Z
secondF2 : Z× Z→ Z

∀ x : Z; y : Z • firstF2(x , y) = x ∧ secondF2(x , y) = y

These axiomatic definitions influenced those usages as follows:

b! = secondF (number , c?)
a! = firstF1(a?, b?)
c! = firstF (c?,number)
d ! = secondF2(2, 4)

The generated SAL file could be verified by the SAL model checker, in a
case there was no theorem. However, in a case there was a theorem, this SAL
file could not be verified by the SAL model checker. The error is as follows:

[Context: output fFirst, line(25), column(10)]:

Failed to convert function application (array selection).

The below theorems were added to the SAL file:

th1 : THEOREM State |− G(FORALL (i , j : NAT) : i = j =>
f i r s t F (i , j) = secondF (i , j)) ;

th2 : THEOREM State |− G(FORALL (i , j : NAT) : f i r s t F (i , j) /= secondF (i , j)) ;

Those three axiomatic definitions were modified manually and they were
put on the context clause.

f i r s t F (q 1 : NAT, q 2 : NAT) : NAT = q 1 ;

secondF (q 1 : NAT, q 2 : NAT) : NAT = q 2 ;

f i r s t F 1 (q 1 : NAME, q 2 : NAME) : NAME = q 1 ;

secondF1 (q 1 : NAME, q 2 : NAME) : NAME = q 2 ;

f i r s t F 2 (q 1 : INT , q 2 : INT) : INT = q 1 ;

secondF2 (q 1 : INT , q 2 : INT) : INT = q 2 ;

193

Total execution time was 0.141 second. The first theorem was VALID,
and the second one was INVALID. This generated SAL file could be simulated
by the SAL simulator.

8.2.9 Experiment 9: fHead.tex

This Z specification was created by us and a generic constant definition which
was taken from [69, p. 117] was added to this specification. There is one
generic constant on this specification, headSeq. This generic constant is a
total function from a sequence of X to a X.

[X]
headSeq : (seq1 X)→ X

∀ s : seq1 X • headSeq(s) = s(1)

There are three usages on this generic constant as follows:

a! = headSeq[seq1 NAME](name) ∧ b! = headSeq(b?)
c! = headSeq(〈5, 2, 4〉)

The first usage will actualise X with NAME, whereas the second usage has
”N” for replacing X, and the last one is a direct usage which is obviously a
sequence of integer number, ”Z”. name is a sequence of basic type variable,
NAME, and b? is a sequence of natural number.

This system generated these three axiomatic definitions as follows:

headSeq : (seq1 NAME)→ NAME

∀ s : seq1 NAME • headSeq(s) = s(1)

headSeq1 : (seq1 N)→ N

∀ s : seq1 N • headSeq1(s) = s(1)

headSeq2 : (seq1 Z)→ Z

∀ s : seq1 Z • headSeq2(s) = s(1)

Those three usages were modified as follows:

a! = headSeq(name) ∧ b! = headSeq1(b?)
c! = headSeq2(〈5, 2, 4〉)

The generated SAL file of this specification with no added theorem could
be verified by the SAL model checker. Total execution time is 0.032 second.
However, the SAL simulator failed to simulate this SAL file with an out of
memory error.

Thus, these three functions were modified by specifying them on the
context clause as shown below:

194

headSeq (q 1 : Seq B NAME) : B NAME = q 1 (1) ;

headSeq1 (q 2 : Seq B NAT) : B NAT = q 2 (1) ;

headSeq2 (q 3 : Seq B INT) : B INT = q 3 (1) ;

There were three theorems added to this generated SAL file, as follows:

th1 : THEOREM State |− G(EXISTS (i : NAME) : i = headSeq (name)) ;

th2 : THEOREM State |− G(FORALL (i : NAME) : i = headSeq (name)) ;

th3 : THEOREM State |− G(EXISTS (i : NAME) : i = headSeq (name) =>
sequence {B NAME; NAME BB, 3} ! c onta in s ?(name , i)) ;

Total execution time was 0.281 second. Both th1 and th3 theorems are
VALID, whereas the th2 theorem is INVALID. This modified SAL file could
be simulated by the SAL simulator.

8.2.10 Experiment 10: fHeadFunc.tex

This specification is a modification of previous specification. In this specifi-
cation, the same generic constant as given above is used by functions defined
on the axiomatic definitions. These functions are called on a schema.

fHead1 : (seq1 N)→ N

∀n : seq1 N • fHead1(n) = headSeq(n)

fHead2 : (seq1 NAME)→ NAME

∀n : seq1 NAME • fHead2(n) = headSeq(n)

These below predicates call both functions:

a! = fHead2(name) ∧ b! = fHead1(b?)

With the same types for variables as given on previous experiment, two
axiomatic definitions to redefine the generic constant definition are as follows:

headSeq : (seq1 N)→ N

∀ s : seq1 N • headSeq(s) = s(1)

headSeq1 : (seq1 NAME)→ NAME

∀ s : seq1 NAME • headSeq1(s) = s(1)

Afterwards, the first usage will be modified to:

∀n : seq1 N • fHead1(n) = headSeq(n)

195

The second one is as follows:

∀n : seq1 NAME • fHead2(n) = headSeq1(n)

The generated SAL file of this specification with no theorem could be verified
by the SAL model checker. Total execution time was 0.047 second. However,
this SAL file could not be simulated by the SAL simulator. Modification
version of these functions still could not be simulated by the SAL model
checker. The set of initial states is empty was an error message produced by
the SAL simulator.

8.2.11 Experiment 11: fMaxComSubSeq orig.tex

This specification was created by us and several generic constant definition
were taken from [2, p. 163-164] which were added to this specification. This
will output the longest shared subsequence of two sequences.

There were four generic constant definitions on this specification. The
fourth generic constant calls the third generic constant, the third generic
constant calls the second generic constant, and the second generic constant
calls the first generic constant. The fourth generic constant will be used on
a schema.

[X]
subseqOf : (seq X)↔ (seq X)

∀ s, t : seq X • (s, t) ∈ subseqOf ⇔ (∃ p : PN1 • s = p � t)

[X]
allSubseq : (seq X)→ P(seq X)

allSubseq = (λ s : seq X • {t : seq X | (t , s) ∈ subseqOf })

[X]
commonSubseq : ((seq X)× (seq X))→ P(seq X)

commonSubseq = (λ s, t : seq X • allSubseqs ∩ allSubseqt)

[X]
maxCommonSubseq : ((seq X)× (seq X))→ P(seq X)

maxCommonSubseq = (λ s, t : seq X •
{x : commonSubseq(s, t) | (∀ y : commonSubseq(s, t) • #x ≥ #y)})

As can be seen from above schemas, there is the Z tag, ”�”, which will
extract a new sequence from an old sequence based on a set of indices. This

196

tag has been specified in the Z2SAL mathematical tool-kit, but not on the
Z2SAL parser. Then, Z2SAL’s team upgraded the Z2SAL parser so this tag
can be used on Z specification inputs.

Another Z tag that appears on this Z specification is the lambda expres-
sion. This tag is used commonly to define a function without specifies a
name on it [2]. The lambda expression, (λ S • E), represents a function and
has arguments which are taken from S. The output of this expression is the
value of E [69].

Z2SAL does not support this expression which inevitably is often to exist
on a generic constant definition or on other definitions in a Z specification
generally. Thus, our approach is to rewrite the lambda automatically and
manually to an equivalent expression without any lambda expression. After-
wards, it is redefined to an axiomatic definition.

The first approach is to rewrite automatically this tag to its equivalent
expression which can be supported by Z2SAL. The equivalent expression is
on the form of universal quantification. There is another equivalent expres-
sion for the lambda expression which is on the form of a set comprehension.
However, based on our experiences, the second equivalent expression can
raise a problem in a case of more than one declared variable. Thus, the first
equivalent expression was chosen to rewrite this lambda expression automat-
ically.

Based on the usage of the fourth generic constant definition, which was
specified by us, as follows:

a! = maxCommonSubseq(num, a?)

with num is a ”seqN” type state variable, and a? is a sequence of ”N”, this
generic constant definition was redefined as follows:

maxCommonSubseq : ((seqN)× (seqN))→ P(seqN)

∀ s, t : seqN •
maxCommonSubseq(s, t) = {x : commonSubseq(s, t) |
(∀ y : commonSubseq(s, t) • #x ≥ #y)}

This generic constant uses the third generic constant by passing ”seqN” to
actualise the generic parameter. The generated axiomatic definition, but on
the equivalent expression form of the lambda expression, is as follows:

commonSubseq : ((seqN)× (seqN))→ P(seqN)

∀ s, t : seqN • commonSubseq(s, t) = allSubseqs ∩ allSubseqt

The equivalent expression of the second generic constant was generated as
follows:

197

allSubseq : (seqN)→ P(seqN)

∀ s : seqN • allSubseqs = {t : seqN | (t , s) ∈ subseqOf }

The last equivalent expression is given as follows:

subseqOf : (seqN)↔ (seqN)

∀ s, t : seqN • (s, t) ∈ subseqOf ⇔ (∃ p : PN1 • s = p � t)

The second approach was to specify two new Z specifications and rewrite
this lambda expression to its equivalent expression. The first Z specification
has a universal quantifier to rewrite the lambda expression. This will be
discussed further on the 9.2.12 on page 236 sub-section. The second one
has a set comprehension instead and it will be discussed on the 9.2.13 on
page 237 sub-section.

The generated SAL file of this specification could not be verified by the
SAL model checker. The error was produced as follows:

Error: [Context: output fMaxComSubSeq orig, line(43), column(19)]:

Type mismatch in the function application.

Expected type:

[sequenceoutput fMaxComSubSeq orig!B NAT, 4, 3!Domain,

sequence{output fMaxComSubSeq orig!B NAT, 4, 3}!Sequence]

Actual type:

[set{output fMaxComSubSeq orig!NZNAT}!Set,

output fMaxComSubSeq orig!Seq B NAT]

The associated SAL’s lines are as follows:

38 (FORALL (q 1 : Seq B NAT , q 2 : Seq B NAT) : s e t
39 {Seq B NAT X Seq B NAT ; } !
40 conta in s ?(subseqOf , (q 1 , q 2)) =
41 (EXISTS (q 3 : s e t {NZNAT;} !
42 Set) : q 1 = sequence {B NAT ; 4 , 3} !
43 e x t r a c t (q 3 , q 2))) AND

The type of parameters which were passed to extract were not compatible
with the type of parameters which were declared for extract.

Thus, modification was made as follows:

40 (FORALL (q 1 : Seq B NAT , q 2 : Seq B NAT) : s e t
41 {Seq B NAT X Seq B NAT ;} !
42 conta in s ?(subseqOf , (q 1 , q 2)) =
43 (EXISTS (q 3 : sequence {B NZNAT; 4 , 3} ! Sequence) :
44 q 1 = sequence {B NAT ; 4 , 3} !
44 e x t r a c t (sequence {B NZNAT; 4 , 3} ! domain (q 3) , q 2))) AND

on the context clause. There is also a new type as follows:

198

B NZNAT : TYPE = [0 . . 3] ;

This time, this SAL file could be verified by the SAL model checker with
0.032 second for execution time. However, the SAL simulator produced an
out of memory error.

8.2.12 Experiment 12: fMaxComSubSeq 1.tex

This specification is the first equivalent expression for the lambda expression.
Following is the associated generic constant definitions:

[X]
subseqOf : (seq X)↔ (seq X)

∀ s, t : seq X • (s, t) ∈ subseqOf ⇔ (∃ p : PN1 • s = p � t)

[X]
allSubseq : (seq X)→ P(seq X)

∀ s : seq X • allSubseqs = {t : seq X | (t , s) ∈ subseqOf }

[X]
commonSubseq : ((seq X)× (seq X))→ P(seq X)

∀ s, t : seq X • commonSubseq(s, t) = allSubseqs ∩ allSubseqt

[X]
maxCommonSubseq : ((seq X)× (seq X))→ P(seq X)

∀ s, t : seq X • maxCommonSubseq(s, t) = {x : commonSubseq(s, t) |
(∀ y : commonSubseq(s, t) • #x ≥ #y)}

To obtain the equivalent expression from the lambda expression is as follows:

• Add a universal quantifier on the first line of predicate. This quan-
tifier has variables which are obtained from the lambda expression’s
variables.

• Add a ”•” which is then followed by the name of the generic constant.
In a case a generic constant is a function, and then the generic constant
name will be followed by its parameters. For a case of a relation, there
is no parameter.

• Add a equation sign and end it with the rest of old predicate until the
last curly bracket.

The axiomatic definitions for these equivalent expressions are the same
as previous experiments.

199

8.2.13 Experiment 13: fMaxComSubSeq.tex

This is the second equivalent expression for the lambda expression.

[X]
subseqOf : (seq X)↔ (seq X)

∀ s, t : seq X • (s, t) ∈ subseqOf ⇔ (∃ p : PN1 • s = p � t)

[X]
allSubseq : (seq X)→ P(seq X)

allSubseq = {s : seq X • (s, {t : seq X | (t , s) ∈ subseqOf })}

[X]
commonSubseq : ((seq X)× (seq X))→ P(seq X)

commonSubseq = {s, t : seq X • ((s, t), allSubseq(s) ∩ allSubseq(t))}

[X]
maxCommonSubseq : ((seq X)× (seq X))→ P(seq X)

maxCommonSubseq = {s, t : seq X • ((s, t), {x : commonSubseq(s, t) |
(∀ y : commonSubseq(s, t) • #x ≥ #y)})}

Though these generic constant definitions are written by using set compre-
hension forms, their axiomatic definitions are still written on forms of the
first equivalent expression.

8.2.14 Experiment 14: fMonoSeq 1.tex

These generic abbreviation definitions were taken from the same book as
above experiment, but from pages 336. Then, a specification was created by
us which were filled by these generic definitions. These generic abbreviation
definitions specify a sequence of a single element.

There are two generic definitions on this specification and they were spec-
ified in an abbreviation form. They are constants.

monoSequence[X] == {s : seq X | #(ran s) ≤ 1}

monoSequenceOne[X] == {s : monoSequenceX | #s > 0}

The second constant calls the first constant. This will output a non-empty
sequence of a single element.

There were two usages specified by us for this specification as follows:

200

alph = monoSequence[ALPHABET]
b! = monoSequenceOne[Z]

ALPHABET is a basic type. Both usages were written on an explicit type of
parameter.

Thus, axiomatic definitions were generated as follows:

monoSequence1 : P(seqZ)

monoSequence1 = {s : seqZ | #(ran s) ≤ 1}

monoSequence : P(seq ALPHABET)

monoSequence = {s : seq ALPHABET | #(ran s) ≤ 1}

monoSequenceOne : P(seqZ)

monoSequenceOne = {s : monoSequence1 | #s > 0}

These axiomatic definitions influenced those usages as follows:

alph = monoSequence
b! = monoSequenceOne

The generated SAL file could be verified by the SAL model checker. The
total execution time was 0.031 second for no theorem. This SAL file could
also be simulated by the SAL simulator, though it required a significant long
simulation time.

8.2.15 Experiment 15: fMonoSeq.tex

This specification is an equivalent form of above specification. A generic ab-
breviation definition can be rewritten to a generic constant definition. Thus,
both abbreviation definitions above were rewritten manually on this specifi-
cation as follows:

[X]
monoSequence : P(seq X)

monoSequence = {s : seq X | #(ran s) ≤ 1}

[X]
monoSequenceOne : P(seq X)

monoSequenceOne = {s : monoSequenceX | #s > 0}

A method to obtain a generic constant definition from a generic abbreviation
definition as follows:

201

• The name of generic constant is got from the abbreviation variable.

• Since it is a constant, there is no input parameter.

• The output type for this constant is obtained a type of variable declared
after the abbreviation name. In this case, after the abbreviation name is
a set comprehension with one declared variable which type is a sequence
of X. Thus, this type is a set of a sequence of X.

• Predicate for this generic constant definition is specified as the name of
abbreviation. It will be followed by an equation sign and all expressions
after ”==”.

The same usages as above experiment were used on this specification.
The same axiomatic definitions as above experiment were generated.

8.2.16 Experiment 16: fSwap.tex

This specification was created by us and it was added by two generic constant
definitions which were taken from [57]. There were two generic constant
definitions specified in this Z specification as follows:

[X ,Y]
swap2 : X ×Y → Y ×X

∀ x : X ; y : Y • swap2(x , y) = (y, x)

[X]
swap1 : X ×X → X ×X

∀ x , y : X • swap1(x , y) = (y, x)

Both of them are total functions. The second generic constant has just one
generic parameter. This generic constant swaps the order of its parameters.

Two usages were specified by us in those generic constants as follows:

(b!, a!) = swap1[NAME ,NAME](name, a?)
(c!, a!) = swap2(name, c?)

The first usage is defined by using two parameters, but with the same types.
In this usage, the explicit types for its parameters are also given in the same
time as its actual parameters are given. The second usage is specified by
passing NAME for X and ”N” for Y.

This Z specification can be redefined by our system to its axiomatic def-
initions.

202

swap1 : NAME ×NAME → NAME ×NAME

∀ x , y : NAME • swap1(x , y) = (y, x)

swap2 : NAME × N→ N×NAME

∀ x : NAME ; y : N • swap2(x , y) = (y, x)

Both usages will be modified to:

(b!, a!) = swap1(name, a?)
(c!, a!) = swap2(name, c?)

The generated SAL file could be verified by the SAL model checker. It
required 0.016 second execution time and no theorem. However, in a case
there were theorems, an error was produced as follows:

Error: [Context: output fSwap, line(22), column(10)]:

Failed to convert function application (array selection).

The function/array does not have a finite domain,

or the argument is not in the domain of the function/array.

Thus, both axiomatic function definitions were modified to forms as fol-
lows:

swap1 (q 1 : NAME, q 2 : NAME) : B NAME X B NAME = (q 2 , q 1) ;

swap2 (q 3 : NAME, q 4 : NAT) : B NAT X B NAME = (q 4 , q 3) ;

Theorems that were added to this SAL file are as follows:

th1 : theorem State |− G(FORALL (i , j : NAME) : swap1 (i , j) = (j , i)) ;

th2 : theorem State |− G(FORALL (i , j : NAME) : i = j => swap1 (i , j) = swap1 (j , i)) ;

th3 : theorem State |− G(FORALL (i , j : NAME) : swap1 (i , j) = swap1 (j , i)) ;

The first two theorems are VALID, the last one is INVALID. Total execution
time was 0.156 second. This modified SAL file could be simulated by the
SAL simulator.

8.2.17 Experiment 17: fUniqSeq.tex

The generic constant definition was taken from [2, p. 72-73]. This generic
constant replaces multiple consecutive copies of an element in a sequence
by a single copy of that element. Then, it was combined with the generic
constant definition of the abbreviation expression from page 336 as used on
the previous experiment. A specification was created afterwards.

203

The generic constant definitions are as follows:

[X]
monoSequence : (seq X)→ PX

monoSequenceX = {s : seq X | #(ran s) ≤ 1}

[X]
monoSequenceOne : (seq X)→ PX

monoSequenceOneX = {s : monoSequenceX | #s > 0}

[X]
uniqSequence : (seq X)→ seq X

uniqSequence〈〉 = 〈 〉
∀ x : X ; s : monoSequenceOneX • ran s = {x} ∧ uniqSequences = 〈x〉
∀ s, t : seq1 X • last s 6= head t ∧
uniqSequence(s a t) = uniqSequence(s) a uniqSequence(t)

There are three usages specified in these generic constants as follows:

a! = uniqSequence(num)
b! = uniqSequence(b?)
c! = monoSequenceOne[Z]

As can be seen from the first usage, the generic constant which is the
uniSequence function was used by passing its actual type ”seqN”. In the def-
inition of this generic constant, another generic constant monoSequenceOne

was used with the same number of generic parameter as uniSequence. Thus,
the monoSequenceOnegeneric parameter would be replaced by the actual type
read from uniSequence. The definition of monoSequenceOne also uses an-
other generic constant monoSequence which has the same number of generic
parameter as both earlier generic constants.

The second usage is a usage on the same generic constant as the first
usage, but different on the actual type. In this usage, b? is a sequence of
”Z”.

The last usage uses monoSequenceOne and explicit output type, ”Z”.
This specification can be redefined by our tool as follows:

monoSequence1 : P(seqZ)

monoSequence1 = {s : seqZ | #(ran s) ≤ 1}

monoSequenceOne1 : P(seqZ)

monoSequenceOne1 = {s : monoSequence1 | #s > 0}

204

monoSequence : P(seqN)

monoSequence = {s : seqN | #(ran s) ≤ 1}

monoSequenceOne : P(seqN)

monoSequenceOne = {s : monoSequence | #s > 0}

uniqSequence : (seqN)→ (seqN)

uniqSequence〈 〉 = 〈 〉
∀ x : N; s : monoSequenceOne • ran s = {x} ⇒ uniqSequences = 〈x〉
∀ s, t : seq1 N • last s 6= head t ⇒ uniqSequence(s a t) = uniqSequence(s) a uniqSequence(t)

uniqSequence1 : (seqZ)→ (seqZ)

uniqSequence1〈 〉 = 〈 〉
∀ x : Z; s : monoSequenceOne1 • ran s = {x} ⇒ uniqSequence1s = 〈x〉
∀ s, t : seq1 Z • last s 6= head t ⇒ uniqSequence1(s a t) = uniqSequence1(s) a uniqSequence1(t)

Then, those usages were modified to:

a! = uniqSequence(num)
b! = uniqSequence1(b?)
c! = monoSequenceOne1

The generated SAL file with no theorem could be verified by the SAL model
checker. The total execution time was 0.062 second. The SAL simulator
could not simulate this generated SAL file. An error of out of memory was
produced instead.

8.2.18 Experiment 18: fUniq1Seq.tex

The generic constant definition on this specification was taken from the same
book as previous experiment. This generic constant definition performs the
same as the generic constant definition from previous experiment. However,
at this time, the generic constant does not call another generic constant as
previous experiment.

[X]
uniqSequence : (seq X)→ (seq X)

uniqSequence〈 〉 = 〈 〉
∀ x : X • uniqSequence〈x〉 = 〈x〉
∀ x : X ; s : seq X • uniqSequence(〈x , x〉 a s) = uniqSequence(〈x〉 a s)

∀ x , y : X ; s : seq X • x 6= y ∧ uniqSequence(〈x , y〉 a s) = 〈x〉 a uniqSequence(〈y〉 a s)

The complete specification was created by us. Two usages were specified in
this generic constant as follows:

205

a! = uniqSequence(num)
b! = uniqSequence(b?)

Two axiomatic definitions were generated based on those usages which re-
place the generic constant definition.

uniqSequence : (seqN)→ (seqN)

uniqSequence〈 〉 = 〈 〉
∀ x : N • uniqSequence〈x〉 = 〈x〉
∀ x : N; s : seqN • uniqSequence(〈x , x〉 a s) = uniqSequence(〈x〉 a s)

∀ x , y : N; s : seqN • x 6= y ∧ uniqSequence(〈x , y〉 a s) = 〈x〉 a uniqSequence(〈y〉 a s)

uniqSequence1 : (seqZ)→ (seqZ)

uniqSequence1〈 〉 = 〈 〉
∀ x : Z • uniqSequence1〈x〉 = 〈x〉
∀ x : Z; s : seqZ • uniqSequence1(〈x , x〉 a s) = uniqSequence1(〈x〉 a s)

∀ x , y : Z; s : seqZ • x 6= y ∧ uniqSequence1(〈x , y〉 a s) = 〈x〉 a uniqSequence1(〈y〉 a s)

The two usages were modified as follows:

a! = uniqSequence(num)
b! = uniqSequence1(b?)

This generated SAL file with no theorem could be verified by the SAL
model checker with 0.047 second total execution time. However, it could not
be simulated by the SAL simulator with an out of memory error.

8.2.19 Experiment 19: fUniq2Seq.tex

This specification is another variance of previous experiments.

[X]
uniqSequence : (seq X)→ (seq X)

uniqSequence〈 〉 = 〈 〉
∀ x : X • uniqSequence〈x〉 = 〈x〉
∀ x : X ; s : seq X • uniqSequence(s a 〈x , x〉) = uniqSequence(s a 〈x〉)
∀ x , y : X ; s : seq X • x 6= y ∧ uniqSequence(s a 〈y, x〉) = uniqSequence((s a 〈y〉) a 〈x〉)

The same usages as previous experiment were used on this specification.
Two axiomatic definitions were generated as follows:

uniqSequence : (seqN)→ (seqN)

uniqSequence〈 〉 = 〈 〉
∀ x : N • uniqSequence〈x〉 = 〈x〉
∀ x : N; s : seqN • uniqSequence(s a 〈x , x〉) = uniqSequence(s a 〈x〉)
∀ x , y : N; s : seqN • x 6= y ∧ uniqSequence(s a 〈y, x〉) = uniqSequence((s a 〈y〉) a 〈x〉)

206

uniqSequence1 : (seqZ)→ (seqZ)

uniqSequence1〈 〉 = 〈 〉
∀ x : Z • uniqSequence1〈x〉 = 〈x〉
∀ x : Z; s : seqZ • uniqSequence1(s a 〈x , x〉) = uniqSequence1(s a 〈x〉)
∀ x , y : Z; s : seqZ • x 6= y ∧ uniqSequence1(s a 〈y, x〉) = uniqSequence1((s a 〈y〉) a 〈x〉)

This generated SAL file could be verified by the SAL model checker. The
total time was 0.032 second for executing no theorem version of this SAL file.
The SAL simulator failed to simulate this SAL file because of out of memory
error.

8.2.20 Experiment 20: tn.tex

This specification was taken from [31, p. 31-34]. There was one generic
constant definition in this specification.

[X]
disjoint : P(P(PX))

∀ cons : P(PX) • cons ∈ disjoint ⇔ (∀ c1, c2 : cons • c1 6= c2⇒ c1 ∩ c2 = ∅)

This generic constant is a constant. The usages of this generic constant
were specified to be explicit type. This explicit type was PHONE. There are
six usages as follows:

cons ∈ disjoint [PHONE]
cons0 ∈ disjoint [PHONE])
cons0 ∈ disjoint [PHONE]))
cons0 ∈ disjoint [PHONE]))
cons0 ∈ disjoint [PHONE]))
cons0 ∈ disjoint [PHONE]))

The second to the sixth usages are the same predicates.
The axiomatic definition was as follows:

disjoint : P(P(PPHONE))

∀ cons : P(PPHONE) • cons ∈ disjoint ⇔ (∀ c1, c2 : cons • c1 6= c2⇒ c1 ∩ c2 = ∅)

It would redefine the generic constant definition. Those usages were still the
same, but with the explicit types were removed.

Following error was produced by the SAL model checker:

Error: [Context: output tn, line(110), column(27)]:

Type mismatch in the function application.

Expected type:

power{output tn!CON}!Power

Actual type:

207

output tn!Set CON

Associated SAL lines are as follows:

108 (engaged ’ = No => NOT s e t {PHONE;} !
109 conta in s ?(power {CON;} !
110 generalUnion (cons) , ph ?)) AND

generalUnion outputs a set, so power should no be passed with a set typed
variable. Those SAL lines were modified as follows:

108 (engaged ’ = No => NOT s e t {PHONE;} !
109 conta in s ?(power {PHONE;} !
110 generalUnion (cons) , ph ?)) AND

This modified SAL file could be verified by the SAL model checker. By no
added theorem, the total execution time was 0.016 seconds. However, this
SAL file could not be simulated by the SAL simulator because of out of
memory error.

8.2.21 Experiment 21: tnImpl.tex

It is a variance of the previous experiment. The difference is the type was
implicit. The usages are also the same as previous experiment. Thus, the
same axiomatic definition was generated.

8.2.22 Experiment 22: fFileStorage.tex

This specification was taken from [31, p. 48-55]. There were two generic
constant definitions on this specification. Both of them are functions.

[X]
after : ((seq X)× N)→ (seq X)

∀ s : seq X ; offset : N •
dom(after(s, offset)) = (1 . .#s − offset) ∧ (∀n : N •
(n + offset) ∈ dom s ⇒ after(s, offset)(n) = s(n + offset))

[X]
shift : ((seq X)× N)→ (N 7→ X)

∀ s : seq X ; offset : N •
dom(shift(s, offset)) = {i : dom s • i + offset} ∧
(∀n : dom(shift(s, offset)) • shift(s, offset)(n) = s(n − offset))

There were two usages on these generic constant definitions as follows:

data! = (1 . . length?) C after(file, offset?)
file′ = zero(offset?)⊕ file ⊕ shift(data?, offset?)

208

Based on these usages, following axiomatic definitions were generated:

after : ((seq(0 . . 255))× N)→ (seq(0 . . 255))

∀ s : seq(0 . . 255); offset : N • dom(after(s, offset)) = (1 . .#s − offset) ∧ (∀n : N •
(n + offset) ∈ dom s ⇒ after(s, offset)(n) = s(n + offset))

shift : ((seq(0 . . 255))× N)→ (N 7→ (0 . . 255))

∀ s : seq(0 . . 255); offset : N • dom(shift(s, offset)) = {i : dom s • i + offset} ∧
(∀n : dom(shift(s, offset)) • shift(s, offset)(n) = s(n − offset))

However, the redefined version of this specification could not be translated
by Z2SAL. Z2SAL produced a message that the current Z2SAL does not
support the use of functions as the range of other functions.

8.2.23 Experiment 23: fSet.tex

This specification was a modification of the same specification found on [68].
There were several generic constant definitions as shown below:

[X]
notEqual : X ↔ X
nonMember : X ↔ PX

∀ x , y : X • (x , y) ∈ notEqual ⇔ ¬ (x = y)
∀ x : X ; S : PX • (x ,S) ∈ nonMember ⇔ ¬ (x ∈ S)

[X]
empty : PX

empty = {x : X | false}

[X]
uniSet : (P(X))× (P(X))→ (P(X))

∀S ,T : P(X) • uniSet(S ,T) = {x : X | x ∈ S ∨ x ∈ T}

The last two ones were specified in other Z specifications as well as nonMember.
Several usages are as follows:

used = empty[N1]
alloc = empty[N1]
alloc = (empty[N1] ∧ (used ,N1) ∈ notEqual)⇒ (∃n : N1 •
(n, used) ∈ nonMember ∧ alloc′ = {n} ∧ used ′ = uniSet(used , {n}))
((alloc, empty[N1]) ∈ notEqual ∨ used = N1)⇒ (alloc′ = alloc ∧ used ′ = used)
(alloc, empty[N1]) ∈ notEqual ⇒ n! ∈ alloc ∧ alloc′ = empty[N1] ∧ used ′ = used
alloc = empty[N1]⇒ n! = 0 ∧ alloc′ = alloc ∧ used ′ = used

They were grouped based on how they were specified in the associated Z
specification. Each group is on different line on relevant predicate parts.

209

This specification could be redefined by our system. All generic constant
definitions were redefined by following axiomatic definitions:

empty : PN1

empty = {x : N1 | false}

notEqual : (PN1)↔ (PN1)
nonMember : (PN1)↔ P(PN1)

∀ x , y : (PN1) • (x , y) ∈ notEqual ⇔ ¬ (x = y)
∀ x : (PN1); S : P(PN1) • (x ,S) ∈ nonMember ⇔ ¬ (x ∈ S)

notEqual1 : N1 ↔ N1

notMember1 : N1 ↔ PN1

∀ x , y : N1 • (x , y) ∈ notEqual1⇔ ¬ (x = y)
∀ x : N1; S : PN1 • (x ,S) ∈ notMember1⇔ ¬ (x ∈ S)

uniSet : (PN1)× (PN1)→ (PN1)

∀S ,T : PN1 • uniSet(S ,T) = {x : N1 | x ∈ S ∨ x ∈ T}

Those usages were modified as follows:

used = empty
alloc = empty
alloc = (empty ∧ (used ,N1) ∈ notEqual)⇒ (∃n : N1 •
(n, used) ∈ nonMember1 ∧ alloc′ = {n} ∧ used ′ = uniSet(used , {n}))
((alloc, empty) ∈ notEqual ∨ used = N1)⇒ (alloc′ = alloc ∧ used ′ = used)
(alloc, empty) ∈ notEqual ⇒ n! ∈ alloc ∧ alloc′ = empty ∧ used ′ = used
alloc = empty[N1]⇒ n! = 0 ∧ alloc′ = alloc ∧ used ′ = used

After the same modification as performed on previous experiment which
is on the uniSet function, the modified SAL file could be verified by the SAL
model checker. The total execution time was 0.0 second with no theorem.
The SAL simulator could simulate also this modified SAL file.

Following is a section discussing our evaluation on this system.

8.3 Evaluation of Generic Constants Redefi-

nition

As discussed above, there are 23 experiments over this system. Those ex-
periments showed above are to present redefinition processes over a variety
of generic constant declarations. Let us now move to an evaluation of this
system by answering above questions on following sub-sections.

210

8.3.1 Evaluation of the #1 Question

The first question was set up to assess whether this system is able to redefine
all generic constant definitions. In order to answer this question, discussions
on several Z specifications from our above experiments are given here.

Based on our careful examination, the same generic constant definitions
on usages which are greater than 1 were redefined to the equivalent axiomatic
definitions which are different on their generic parameters. For example, an
output of the Z specification bbook.tex from Section 9.2.1 on page 224,
which is output bbook.tex, will be discussed as follows.

There were two usages on the same generic constant definition domain.
This generic constant name is a total function which will return a domain
of this function. This domain was specified also as a function, but a partial
function.

[X ,Y]
domain : (X 7→ Y)→ PX

∀R : X 7→ Y • domainR = {x : X | ∃ y : Y • x 7→ y ∈ R}

The first usage, which can be seen in the previous section, has birthday as
its first actual parameter, and known as its second actual one. birthday is a
partial function from NAME to DATE, whereas known is a set of NAME. Thus, X
and its occurrences will be replaced with NAME, and Y and its occurrences will
be replaced with DATE. As a result, the domain will be a set of NAME which
match the type of known.

On the other hand, the second usage passed house as its parameter.
house is also a partial function, but this time it is from NAME to ADDRESS.
Thus, X will be actualised to NAME and Y will be actualised to ADDRESS. Since
this is the second usage on the same generic constant as the first one, but
with different actual types, name of the generic constant on this usage will
be added with an index. At this case, it is domain1. The aim of this index is
to differentiate between both these names as Z2SAL does not allow the same
name for different functions.

Our system generated the same result as above description. It is shown
in the associated experiment on the above section.

Another interesting example is output fFirst.tex from Section 9.2.8 on
page 233. In the same generic constant definition box, two generic constant
names were specified. They are shown as follows:

[X ,Y]
firstF : X ×Y → X ; secondF : X ×Y → Y

∀ x : X ; y : Y • firstF (x , y) = x ∧ secondF (x , y) = y

211

Several usages on these generic constant names are shown in the following
schema:

Find
a? : NAME ; b? : NAME ; a! : NAME
b! : N; c? : N; c!, d ! : N
ΞState

b! = secondF (number , c?)
a! = firstF (a?, b?)
c! = firstF (c?,number)
d ! = secondF (2, 4)

number is an instance of natural number, ”N”.
Based on these usages, our system generated axiomatic definition boxes

which can be seen in the previous section. Above usages were also modified.
As can be seen from the outcome and comparing them with those usages,

our system could actualise the same X on the same generic constant definition
box but different generic constant names to the same type of parameter.

Complete examinations of usages of the same generic constant names are
given in Table 8.3 on page 213. Although three generic parameters were
specified in Z specifications, there is no Z specification on our experiments
has three generic parameters on its generic constant definition. Table 8.3 on
page 213 gives summaries about generic constant names whose their usages
are greater than one.

However, as can be seen from Table 8.3 on page 213, there are several
names which just have one usage, which is indicated by only ”#1” and it is
not accompanied by the second and greater numbers. It is a case of usages of
the same generic constant names, but they are passed by the same types of
generic parameters. For this case, our system does not redefine this generic
constant name to one axiomatic definition and all the usages have the same
names without any index.

The rests of our Z specification, whose usages on the same generic con-
stant names is just one, are presented in Table 8.4 on page 214. Our system
could generate Z specification whose axiomatic definitions have such types
of parameters.

Therefore, based on these 23 experiments which could be redefined by
our system, to some extent all these evidences prove that our system is able
to redefine all generic constants correctly. The outcomes of our systems have
also been checked manually to prove its correctness and reliability.

This proof is true and applicable to examples that were used for our
experiments. It is possible that other Z specifications especially which have
more complex types of generic constants or more complex usages of generic
constant cannot be redefined by our system, but it is beyond the ability of

212

Table 8.3: Frequent Usages of Generic Constant (GC) Names
Name GC Names Actual Types
(output *.tex) X Y Z

bbook #1: domain NAME DATE
#2: domain1 NAME ADDRESS

fEmpty #1: empty N
#2: empty1 Z

fEmptyImpl #1: empty N
#2: empty1 Z

fFirst #1: firstF N N
#2: firstF1 NAME NAME
#3: firstF2 Z Z
#1: secondF N N
#2: secondF1 NAME NAME
#3: secondF2 Z Z

fHead #1: headSeq NAME
#2: headSeq1 N
#3: headSeq2 Z

fHeadFunc #1: headSeq N
#2: headSeq1 NAME

fMaxComSubSeq #1: allSubseq N
#1: commonSubseq N

fMaxComSubSeq 1 #1: allSubseq N
#1: commonSubseq N

fMaxComSubSeq orig #1: allSubseq N
#1: commonSubseq N

fMonoSeq #1: monoSequence ALPHABET
#2: monoSequence1 Z

fMonoSeq 1 #1: monoSequence ALPHABET
#2: monoSequence1 Z

fUniqSeq #1: monoSequence N
#2: monoSequence1 Z
#1: monoSequenceOne N
#2: monoSequenceOne1 Z
#1: uniqSequence N
#2: uniqSequence1 Z

fUniq1Seq #1: uniqSequence1 N
#2: uniqSequence1 Z

fUniq2Seq #1: uniqSequence1 N
#2: uniqSequence1 Z

tn #1: disjoint PHONE
tnImpl #1: disjoint PHONE
fSet #1: empty N1

#2: notEqual PN1

213

Table 8.4: Summary of a Usage of Generic Constant (GC) Names
Name GC Names Actual Types
(output *.tex) X Y Z

bbook map mapRel NAME DATE
bbook map uni mapRel NAME DATE

uniSet NAME × DATE
bbook uni uniSet NAME × DATE
fDomRan domainSet GUEST HOTELROOM

rangeSet GUEST HOTELROOM
fMaxComSubSeq subseqOf N

maxCommonSubseq N
fMaxComSubSeq 1 subseqOf N

maxCommonSubseq N
fMaxComSubSeq origin subseqOf N

maxCommonSubseq N
fMonoSeq monoSequenceOne Z
fMonoSeq 1 monoSequnceOne Z
fSwap swap1 NAME

swap2 NAME N
fFileStorage after 0 . . 255

shift 0 . . 255
fSet uniSet N1

nonMember N1

our system. The current performances of our system are sufficient to show a
redefinition process over generic constant definitions found in Z specifications.
The issue of more complex types of generic constants or more complex usages
of these generic constants can be set up as future works.

8.3.2 Evaluation of the #2 Question

To assess the second question, previous experiments have provided proofs
to answer this question. Thus, a user is encouraged to refer to associated
section to get detail explanations.

Table 8.5 on page 216 gives us summaries of our experiments. These
summaries record either Z specifications or generated SAL files. A term of
’modified SAL function’ means there is a modification which was applied to
a function on a generated SAL file. Thus, this modification relates to user
defined functions. This modification was performed manually on associated
SAL file.

On the other hand, a term of ’modified other parts of SAL file’ means a
manual modification has been performed manually on other parts on associ-
ated SAL file, not including the function. A term of ’OK’ means there is no

214

modification performed on associated SAL file in order to make it was able
to be executed.

Based on Table 8.5 on page 216, only one experiment which is the ”22nd”
one or fFileStorage.tex failed to be translated by Z2SAL. The reasons can
be seen in the associated section.

To solve the problem found on fFileStorage.tex, a variable, which
is a generic constant whose type was suspected as the source of an error
generated by Z2SAL, was deleted from this Z specification. The associated
generic constant definitions, the writeSS schema, and the zero axiomatic
definition were also deleted.

However, Z2SAL still could not translate this Z specification. There was
no error file generated and just a message:

Working on output fFileStorage 1

displayed on Z2SAL’s GUI instead.
Based on our investigation, Z2SAL failed to translate this Z specification

since there is a definition of ”. .” as follows:

BYTE == 0 . . 255

Moreover, BYTE is used on many places on this Z specification.
Previously, there was a usage of a range of numbers on the Chapter 3.

At first, Z2SAL raised an error, but Z2SAL could translate the associated Z
specification file after the error was reported to Z2SAL’s team. The range of
numbers was used on this Z specification as follows:

count : 0 . .maxFiles

in which maxFiles was specified as follows:

maxFiles : N1

maxFiles = 3

Referring to the previous experience as given above, BYTE was modified then
as follows:

BYTE == 0 . .maxByte

maxByte : N

maxByte = 255

However, another error message was generated by Z2SAL and without any
error file. The displayed message is:

215

Table 8.5: Summaries of Checked Files
Z Specification Details

bbook.tex Modified user defined function on SAL
bbook map.tex Modified user defined function on SAL
bbook uni.tex Modified user defined function on SAL

and modified other parts of SAL file
bbook map uni.tex Modified user defined function on SAL

and modified other parts of SAL file
fDomRan.tex Modified user defined function on SAL
fEmpty.tex OK
fEmptyImpl.tex OK
fFirst.tex Modified user defined function on SAL
fHead.tex Modified user defined function on SAL
fHeadFunc.tex Modified user defined function on SAL

and cannot be simulated:
The set of initial states is empty

fMaxComSubSeq.tex Modified other parts of SAL file
and cannot be simulated:
Out of memory error

fMaxComSubSeq 1.tex Modified other parts of SAL file
and cannot be simulated:
Out of memory error

fMaxComSubSeq orig.tex Modified other parts of SAL file
and cannot be simulated:
Out of memory error

fMonoSeq.tex OK and longer time to be simulated
fMonoSeq 1.tex OK and longer time to be simulated
fSwap.tex Modified user defined function on SAL
fUniqSeq.tex OK and cannot be simulated

because out of memory error
fUniq1Seq.tex OK and cannot be simulated

because out of memory error
fUniq2Seq.tex OK and cannot be simulated

because out of memory error
tn.tex Modified other parts of SAL file

and cannot be simulated
because out of memory error

tnImpl.tex Modified other parts of SAL file
and cannot be simulated
because out of memory error

fFileStorage.tex Cannot be translated by Z2SAL
fSet.tex Modified user defined function on SAL

and modified other parts of SAL file

216

The conversion from Z to SAL failed because BYTE cannot resolved to a set of constants

The same message was displayed though the number 255 has been changed
to a small number such as 3. Since then, this Z specification was left unre-
solved.

Thus, the rests of Z specifications could be translated by Z2SAL. Sev-
eral of their SAL files could be executed directly by the SAL tool with-
out any modification. Examples are the 6th , 7th , 14th , and 15th experi-
ments or their names of Z specifications are fEmpty.tex, fEmptyImpl.tex,
fMonoSeq 1.tex, and fMonoSeq.tex respectively. However, the last two ex-
amples required longer times for simulation. Other examples such as the
17th , 18th , and 19th experiments or fUniqSeq.tex, fUniq1Seq.tex, and
fUniq2Seq.tex for their names respectively failed to be simulated since there
were out of memory errors.

Other SAL files required alterations which were performed manually so
that they could be executed by the SAL tool. These alterations were per-
formed either on SAL functions or other parts of associated SAL files. More
information about these can be read on associated section.

Therefore, the second question can be answered as follows. Yes, the
outcomes of this system could be translated by Z2SAL and executed by the
SAL tool with several limitations. As long as the Z specification does not
contain a type whose range is a function, and a type of a range of numbers,
these outcomes could be translated by Z2SAL and executed by the SAL tool.
Furthermore, out of memory errors generated by the SAL simulator seems
can be avoided if there is no sequence on such a SAL file especially abundant
usages of sequences. Nested sets also seem hindered successful executions by
the SAL tool.

8.3.3 Evaluation of the #3 Question

Z specifications used for our experiments have different sizes measured in
kilobytes. These sizes are summarized in Table 8.6 on page 218. Sizes of the
redefined specifications are recorded also on this table.

’input’ on this table means a Z specification input file for our system.
On the other hand, ’output’ means a Z specification output file gener-
ated by our system after performing a redefinition process, ’N/A’s in SAL

specifications means an associated Z specification could not be translated
by Z2SAL.

Referring to this table, almost all of our experiments have the same sizes
of Z specifications before and after redefinition processes. It means that there

217

Table 8.6: Sizes of Z Specifications
Z Specifications Sizes in KB
(.tex) input output SAL specifications

bbook 2 2 6
bbook map 1 1 4
bbook map uni 1 2 5
bbook uni 1 1 4
fDomRan 2 2 6
fEmpty 1 1 2
fEmptyImpl 1 1 2
fFirst 1 1 3
fHead 1 1 3
fHeadFunc 1 1 3
fMaxComSubSeq 2 2 4
fMaxComSubSeq 1 2 2 4
fMaxComSubSeq orig 2 2 4
fMonoSeq 1 1 3
fMonoSeq 1 1 1 3
fSwap 1 1 2
fUniqSeq 1 2 5
fUniq1Seq 1 2 5
fUniq2Seq 1 2 5
tn 3 3 6
tnImpl 3 3 6
fFileStorage 2 2 N/A
fSet 2 2 5

were not many usages specified in these specifications. It can also mean that
the generic constant definitions are not quite complex definitions.

On the other hand, a size of a SAL specification is roughly twice to four
times of its Z specification. Sizes of SAL specifications shown in this table
are original sizes producing by Z2SAL. As discussed above, several of these
SAL specifications have been modified as required in order to be executed by
the SAL tool successfully. Thus, their sizes can be different from the original
ones.

There are only four experiments which their sizes of Z specification out-
puts were increased twice of their inputs. These specifications are bbook map uni,
fUniqSeq, fUniq1Seq and fUniq2Seq.

Based on previous discussions on each experiment, the last three Z spec-
ifications above could not be simulated by the SAL simulator because of out
of memory errors. However, these errors cannot be blamed for the increasing
sizes of specifications. It is because there are other specifications which their
sizes were not increased, but they were involved on the same errors as above.

218

Sizes of these specifications are greater than 1. However, it can coincide
which is not influenced entirely only by sizes of specifications.

Other consideration here is a complexity of a declaration of a generic
constant. The out of memory errors were involved on specifications which
have either sequences, or sets of sets.

Thus, it seems that a Z specification, which does not have a sequence, a
set of other set, or a range of numbers, can be executed successfully by the
SAL tool. It argues also that a size of a generic constant definition and a
number of usages relate to a generation of that error.

As a conclusion, our approach to redefine generic constants definitions
scales to larger specifications. However, as the outcomes of our system will
be translated by Z2SAL and executed by the SAL tool later, the large spec-
ification resulted by our system is possible to be a problem with both tools.

8.4 Conclusion

Based on our experiments, our system could redefine generic constant def-
initions on Z specification inputs to some extent. This system could also
generate the outcomes which sometimes could be translated by Z2SAL and
be executed by the SAL tool with some limitations. Our system cannot
possibly cope with more complex types of generic constants, more complex
predicates of a generic constant definition, or more complex usages of such a
generic constant.

Nevertheless, having a generic constant definition redefined, Z2SAL will
be benefited from a variety of Z specifications. Thus, coverage of Z2SAL can
be also broadened.

As a conclusion, this system is worth to consider, especially if it can
be extended so it can redefine more complex generic constant definitions
specified in a Z specification. A more complex generic constant definition
means several conditions. It can be a more complex type of a generic constant
variable. It can also be a more complex predicate part of this definition.

Another important issue to consider is our approach on translating func-
tions on SAL files. Although our approach on this SAL translation is still
a manual work, this approach can be considered also to automate in future.
This automation can either be added to the Z2SAL system or an extension
to our system. However, it seems the first option is easier to implement.

Related to the out of memory error, it requires further works. Our easy
solution that was applied to this issue is to change sizes of several related
variables smaller. Although there is high performance computing machines
on our university, there is no chance to benefit from those machines. Another

219

potential solution to this problem is to apply abstraction on associated SAL
file.

220

Chapter 9

A Schema Calculus Expansion

This chapter discusses another type of our support for model checking Z
specification which is support for schema calculus. This support is a work in
our pre-processing tool as given in Fig. 3.1. The chapter consists of several
sections. It begins with setting up questions for an evaluation on this sys-
tem. These questions represent a few scales to measure performances of our
system. It is followed by our experiments on this system These experiments
present expansions of schema calculus performed by our system. An evalua-
tion based on these questions is discussed on the next section. A conclusion
ends this chapter.

9.1 Setting up Questions for an Evaluation

In line with our objective mentioned on an earlier chapter, a system for
expanding schema calculus has been implemented. Having this system, an
evaluation is necessary to conduct to know its performances. In order to
evaluate this system, several questions were set up. These questions are as
follows:

• Can this system expand all schema calculus definitions correctly?

• Can the outcome of this system be translated by Z2SAL and then be
executed by the SAL tool?

• Does the approach scale to larger specifications?

Before an evaluation can be performed, several experiments with this
system are discussed on the following section. These experiments test the
ability of our system to expand schema calculus in Z specifications.

221

9.2 Experiments with the Schema Calculus

Definitions

Several experiments which were performed for our support on schema calculus
will be presented in this section. These experiments are summarized in Table
9.1 on page 222 where ’hs’ means a horizontal schema. The horizontal schema
is represented by using a pair of ”[” and ”]”.

The order of our experiments is based on schema operators specified in
a schema calculus definition. A simple schema operator will be introduced

Table 9.1: Details of Several Experiments with the Expansion System
Number of Schema Z Specification Details
Operators (.tex)

1 expandingschema 1 (9.2.1 on page 224) ”∨”

expandingschema 2 (9.2.2 on page 227) ”∧”

expandingschema 4 (9.2.4 on page 229) ”∧”

”∨”

expandingschema 8 (9.2.8 on page 233) ”∨”
expandingsch2 4 (9.2.9 on page 234) ”¬”
expandingsch3 1 (9.2.10 on page 235) ”⇒”
expandingsch4 1 (9.2.13 on page 237) ”⇔”

expandingsch6 1 (9.2.17 on page 239) ”\”

expandingsch6 2 (9.2.18 on page 240) ”\”
expandingsch5 1 (9.2.15 on page 238) ”/”
expandingsch5 2 (9.2.16 on page 239) ”/, /”
expandingsch7 1 (9.2.19 on page 240) ”o9”
expandingschema 3 (9.2.3 on page 228) ”o9”

expandingsch8 1 (9.2.20 on page 241) ”∀”

expandingsch8 2 (9.2.21 on page 241) ”∀”

expandingsch8 6 (9.2.23 on page 242) ”∃”

2 expandingschema 4 (9.2.4 on page 229) ”∨, ∨”

expandingsch3 2 (9.2.11 on page 236) ”∧,⇒”

expandingsch3 4 (9.2.12 on page 236) ”⇒, ∧”

expandingsch4 2 (9.2.14 on page 238) ”∧,⇔”

expandingsch8 3 (9.2.22 on page 242) ”∀, ∧”

3 expandingschema 5 (9.2.5 on page 231) ”∧, ¬, ∧”

1 and hs expandingschema 6 (9.2.6 on page 232) ”∧, [,]”
expandingschema 8 (9.2.8 on page 233) ”∧, [,]”

2 and hs expandingschema 7 (9.2.7 on page 233) ”¬, ∧, [,]”
expandingschema 8 (9.2.8 on page 233) ”¬, ∧, [,]”

222

at the first experiment. Conjugation and disjunction are simpler than other
operators.

Afterwards, other schema operators will be introduced as well as more
complex schema calculus definitions. A more complex schema calculus def-
inition is specified by using a combination of schema operators. It is also a
more complex schema calculus definition if there are a combination of op-
erators and a horizontal schema. Our experiments also experienced with a
combination of operators and a horizontal schema which declared predicates.

On the other hand, experiments on a library system will begin our pre-
sentations of these experiments since this specification is quite a complete
specification. There are other specification systems used for our experiments.
They will be introduced as follows before they are used for the experiments.

Thus, our experiments as follows begin by showing how individual oper-
ators are expanded correctly. These operators are: ”∨”, ”∧”, ”¬”, ”⇒”,
”⇔”, ”\”, ”/”, ”o

9”, ”∀” and ”∃”.
Afterwards, our experiments also show how when they are combined they

are still expanded correctly. These combinations of operators are: ”∨” and
”∨”, ”∧” and ”⇒”, ”⇒” and ”∧”, ”∧” and ”⇔”, ”∀” and ”∧”, ”∧”, ”¬”
and ”∧”, ”¬”, and ”∧” and a horizontal schema.

Let us now move to discussions on these experiments. It begins with
introductions of specification systems in general.

Specifications which were used for an Experiment 1 to an Experiment 8
were taken from [56]. It is a library system. This system has a state and an
initialization schema as follows:

Library
stock : COPY 7→ BOOK ; issued : COPY ↔ READER
shelved : FCOPY ; readers : FREADER

∀ x : COPY ; y1, y2 : READER •
(x 7→ y1) ∈ issued ∧ (x 7→ y2) ∈ issued ⇒ y1 = y2
shelved ∪ dom issued = dom stock
shelved ∩ dom issued = ∅
ran issued ⊆ readers
∀ r : readers • #(issued B {r}) ≤ maxloans

InitLibrary
Library ′

shelved ′ = ∅
readers′ = ∅

On the other hand, Experiment 9 was taken from [49]. This is a simple car
park system. The state schema and the initialization schema are as follows:

223

CarsPark
count : N; maximum : N

count ≤ maximum

InitCarsPark
CarsPark

count = 0
maximum = 3

Experiment 10 to Experiment 14 and Experiment 23 were taken from [75].
This system regards with bookings for performances on a concert hall. The
state schema and the initialization schema for these experiments are as fol-
lows:

BoxOffice
seating : PSeat
sold : Seat 7→ Customer

dom sold ⊆ seating

InitBoxOffice
BoxOffice′

sold ′ = ∅
seating ′ = initial allocation

The rest of experiments were taken from [2].

Calculator
store : MEMORY → Z
display : Z
arg2 : Z

Init
Calculator

∀m : MEMORY • store(m) = 0
display = 0
arg2 = 0

Above are the state and initialization schemas of this specification. This
specification is a system of a four function calculator.

Each experiment is described on a separate sub-section. Results and
discussions are also given on each sub-section.

Let us now move to each experiment. The first sequence of experiments
is on the library system.

9.2.1 Experiment 1: expandingschema 1.tex

There is one schema calculus definition in this specification. It uses one
schema operator, ”∨”.

AddCopy =̂ AddKnownTitle∨AddNewTitle

Associated operational schemas are as follows:

AddKnownTitle
∆Library; b? : BOOK ; rep! : Report

b? ∈ ran stock
∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})
issued ′ = issued
readers′ = readers
rep! = FurtherCopyAdded

224

The above schema is to add a copy of a known book. It means that the
book is available in the library. In other words, several books with this title
exist in the library, but not a book whose copy is intended to add.

The below schema adds a new book to the library.

AddNewTitle
∆Library; b? : BOOK ; rep! : Report

b? 6∈ ran stock
∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})
issued ′ = issued
readers′ = readers
rep! = NewTitleAdded

A new book means neither its title nor its copy exists in the library.
The above schema calculus will create a new operational schema to this

specification, namely AddCopy. As given by that definition, there are two
cases of adding a copy of a book to the library system. The first case is a
copy of an existing book. The second case is a copy of a new book.

The expanded AddCopy, which was generated by our system, is as follows:

AddCopy
∆Library; b? : BOOK ; rep! : Report

(b? ∈ ran stock ∧
(∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})) ∧
issued ′ = issued ∧
readers′ = readers ∧
rep! = FurtherCopyAdded)
∨
(b? 6∈ ran stock ∧
(∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})) ∧
issued ′ = issued ∧
readers′ = readers ∧
rep! = NewTitleAdded)

If the predicates are rearranged as follows:

((∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})) ∧
issued ′ = issued ∧
readers′ = readers ∧
b? ∈ ran stock ∧
rep! = FurtherCopyAdded)
∨
((∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})) ∧
issued ′ = issued ∧
readers′ = readers ∧
b? 6∈ ran stock ∧
rep! = NewTitleAdded)

225

then they form a pattern of a propositional logic formula as follows:

(p ∧ q) ∨ (p ∧ r)

p represents the first, second, and third conjuncts before and after ”∨”,
whereas q represents the four and fifth conjuncts, and r represents the last
two conjuncts.

Based on the algebra of logical equivalences as shown also in [56], the
above pattern has an equivalence form as follows:

p ∧ (q ∨ r)

It is a distributivity law on AND.
Thus, our new operational schema can become as follows:

AddCopy
∆Library; b? : BOOK ; rep! : Report

(∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})) ∧
issued ′ = issued ∧
readers′ = readers ∧
((b? ∈ ran stock ∧
rep! = FurtherCopyAdded)
∨
(b? 6∈ ran stock ∧
rep! = NewTitleAdded))

The last conjunct can be simplified further since its form is as follows:

(p ∧ q) ∨ (¬ p ∧ r)

p represents ”b? ∈ ran stock”, q represents ”rep! = FurtherCopyAdded”,
and r represents ”rep! = NewTitleAdded”.

There is an equivalence that can be used to simplify it as follows:

(p ∧ q) ∨ (¬ p ∧ r)⇔ (p ⇒ q) ∧ (¬ p ⇒ r)

Thus, the simplified schema is as follows:

AddCopy
∆Library; b? : BOOK ; rep! : Report

∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})
issued ′ = issued
readers′ = readers
b? ∈ ran stock ⇒ rep! = FurtherCopyAdded
b? 6∈ ran stock ⇒ rep! = NewTitleAdded

However, this simplification was performed manually since our system has
not been equipped with this capability. The simplified version of a schema

226

might require less time to be translated by Z2SAL as well as executed by the
SAL tool.

Z2SAL could translate this expanded specification as well as the simplified
one. The generated SAL file could also be verified by the SAL model checker
in 0.063 second and 0.031 second total execution times without any theorem.
The former time is dedicated for a non-simplified version and the latter time
is for a simplified one. It could also be simulated by the SAL simulator.

The below theorem was added to this SAL file:

th1 : theorem State |− G(she lved = s e t {COPY; } ! empty) ;

Increasing total execution times occurred. The non-simplified SAL file re-
quired 0.92 second and the simplified one required 0.81 second.

9.2.2 Experiment 2: expandingschema 2.tex

There is one schema calculus definition, which uses one schema operator,
”∧”. It is shown as follows:

AddCopy =̂ EnterNewCopy∧AddCopyReport

The generated schema has a quite similar function as the one from previous
experiment. However, in this experiment, both schemas must exist to specify
the AddCopy schema.

In contrast to the reference book, both schemas used in this specification
have quite different declarations. It is since Z2SAL does not allow a re-
declaration of state variables. Thus, both schemas were modified and it
turned out that the AddCopyReport schema had a quite similar design to the
EnterNewCopy schema.

Both schemas are as follows:

EnterNewCopy
∆Library; b? : BOOK

∃ c : COPY | c 6∈ dom stock • (stock ′ = stock ⊕ {c 7→ b?} ∧
shelved ′ = shelved ∪ {c})
issued ′ = issued
readers′ = readers

The above schema performs an operation to enter a new copy to the library.
On the other hand, the below schema is to release a report relating to an
entered book either it is a new book or not.

AddCopyReport
ΞLibrary; b? : BOOK ; rep! : Report

b? ∈ ran stock ⇒ rep! = FurtherCopyAdded
b? 6∈ ran stock ⇒ rep! = NewTitleAdded

227

The expanded schema was generated as follows:

AddCopy
∆Library; b? : BOOK ; rep! : Report

((∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})) ∧
issued ′ = issued ∧
readers′ = readers)
∧
(stock ′ = stock ∧
issued ′ = issued ∧
shelved ′ = shelved ∧
readers′ = readers ∧
b? ∈ ran stock ⇒ rep! = FurtherCopyAdded ∧
b? 6∈ ran stock ⇒ rep! = NewTitleAdded)

The generated SAL file was verified by the SAL model checker in 0.062
second. It was without any theorem. If the same theorem as found on the
previous experiment was added, the total execution time will be 0.78 second.
The SAL simulator was also able to simulate this SAL file.

9.2.3 Experiment 3: expandingschema 3.tex

A schema calculus definition on this specification uses the schema composi-
tion operator, ”o

9”. It is shown as follows:

Donate =̂ EnterNewCopy o
9 RegisterReader

The EnterNewCopy schema has been given on the previous experiment.
Another schema is as follows:

RegisterReader
∆Library; b? : BOOK ; r? : READER; rep! : Report

r? 6∈ readers ⇒ (readers′ = readers ∪ {r?} ∧ rep! = Ok)
r? ∈ readers ⇒ (readers′ = readers ∧ rep! = ReaderAlreadyRegistered)
stock ′ = stock
issued ′ = issued
shelved ′ = shelved

The above schema will register a reader either a new reader or not.
Our system generated a new schema as follows:

Donate
∆Library; b? : BOOK ; r? : READER; rep! : Report

∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c}) ∧
r? 6∈ readers ⇒ (readers′ = readers ∪ {r?} ∧ rep! = Ok) ∧
r? ∈ readers ⇒ (readers′ = readers ∧ rep! = ReaderAlreadyRegistered) ∧
issued ′ = issued

228

The schema has been simplified to become as presented above. This simpli-
fication was performed by our system.

The generated SAL file could be verified by the SAL model checker. It
required 0.03 second and 0.733 second for verifying 0 and 1 theorem. The
SAL simulator could also simulate this SAL file.

9.2.4 Experiment 4: expandingschema 4.tex

This specification has three schema calculus definitions specified in one non-
box definition.

NormalIssue =̂ Issue∧ Success

IssueError =̂ AlreadyIssued∨NotRegistered∨HasMaxLoans

TotalIssue =̂ NormalIssue∨ IssueError

Schema operators used here are ”∧” and ”∨”. Associated operational
schemas are as follows:

Issue
∆Library
c? : COPY ; r? : READER

c? ∈ shelved
r? ∈ readers
#(issued B {r?}) < maxloans
issued ′ = issued ⊕ {c? 7→ r?}
stock ′ = stock
readers′ = readers

Success
rep! : Report

rep! = Ok

NotRegistered
ΞLibrary
r? : READER; rep! : Report

r? 6∈ readers
rep! = ReaderNotRegistered

AlreadyIssued
ΞLibrary
c? : COPY ; rep! : Report

c? ∈ dom issued
rep! = CopyAlreadyIssued

HasMaxLoans
ΞLibrary; r? : READER; rep! : Report

r? ∈ readers
#(issued B {r?}) = maxloans
rep! = ReaderHasMaxLoans

Several of those schemas have been modified to get them to obey conditions
that were defined by Z2SAL, such as does not declare any state variable, and
just has one state schema in a specification.

The first schema calculus created a schema as follows:

229

NormalIssue
∆Library; c? : COPY ; r? : READER; rep! : Report

(c? ∈ shelved ∧
r? ∈ readers ∧
#(issued B {r?}) < maxloans ∧
issued ′ = issued ⊕ {c? 7→ r?} ∧
stock ′ = stock ∧
readers′ = readers)
∧
(rep! = Ok)

This schema performs a successful issue of a copy of a book to a reader.
The second schema calculus produced the new operational schema as

follows:

IssueError
ΞLibrary; c? : COPY ; rep! : Report ; r? : READER

(c? ∈ dom issued ∧ rep! = CopyAlreadyIssued) ∨
(r? 6∈ readers ∧ rep! = ReaderNotRegistered) ∨
(r? ∈ readers ∧ #(issued B {r?}) = maxloans ∧
rep! = ReaderHasMaxLoans)

The above schema performs a fail in issuing a copy of a book to a reader.
This fail can be the issue has been performed, the reader was not registered,
or a number of issues of such the reader exceed the maximum loans.

The third schema calculus was created from both created schemas above.
This schema is shown as follows:

TotalIssue
∆Library; c? : COPY ; r? : READER; rep! : Report

((c? ∈ shelved ∧
r? ∈ readers ∧
#(issued B {r?}) < maxloans ∧
issued ′ = issued ⊕ {c? 7→ r?} ∧
stock ′ = stock ∧
readers′ = readers)
∧
(rep! = Ok))
∨
((stock ′ = stock ∧
issued ′ = issued ∧
shelved ′ = shelved ∧
readers′ = readers ∧
c? ∈ dom issued ∧
rep! = CopyAlreadyIssued)
∨
(r? 6∈ readers ∧ rep! = ReaderNotRegistered)
∨ (r? ∈ readers ∧ #(issued B {r?}) = maxloans ∧
rep! = ReaderHasMaxLoans))

The above schema describes that an issue can be a normal issue or an error
one.

230

All above schemas were generated by our system. The generated SAL file
could be verified by the SAL model checker. It required 0.016 second for no
theorem and 2.044 seconds to verify one theorem. The SAL simulator could
also simulate this SAL file.

9.2.5 Experiment 5: expandingschema 5.tex

There is one schema calculus definition in this specification. It uses three
schema operators as follows:

RemoveCopy =̂ InStock∧¬OnLoan∧ FromStock

Those three operational schemas are as follows:

InStock
ΞLibrary
c? : COPY

c? ∈ dom stock

OnLoan
ΞLibrary
c? : COPY

c? ∈ dom issued

FromStock
∆Library; c? : COPY

stock ′ = {c?} −C stock
readers′ = readers
issued ′ = issued

These three schemas were specified horizontally in [56]. Furthermore, re-
declarations state variables and references to schemas other than the state
schema have been removed from these schemas.

Following is the new schema created from the above schema calculus
definition which was generated by our system:

RemoveCopy
∆Library; c? : COPY

(c? ∈ dom stock) ∧ ((∀ x : COPY ; y1, y2 : READER •
¬ ((x 7→ y1) ∈ issued ∧ (x 7→ y2) ∈ issued ⇒ y1 = y2)) ∨
(∀ x : COPY ; y1, y2 : READER •
¬ ((x 7→ y1) ∈ issued ′ ∧ (x 7→ y2) ∈ issued ′ ⇒ y1 = y2)) ∨
¬ (shelved ∪ dom issued = dom stock) ∨
¬ (shelved ′ ∪ dom issued ′ = dom stock ′) ∨
¬ (shelved ∩ dom issued = ∅) ∨
¬ (shelved ′ ∩ dom issued ′ = ∅) ∨
¬ (ran issued ⊆ readers) ∨
¬ (ran issued ′ ⊆ readers′) ∨
(∀ r : readers • ¬ (#(issued B {r}) ≤ maxloans)) ∨
(∀ r : readers′ • ¬ (#(issued ′ B {r}) ≤ maxloans)) ∨
¬ (c? ∈ dom issued))
∧
(stock ′ = {c?} −C stock ∧
readers′ = readers ∧ issued ′ = issued)

231

The above schema performs the removal of a copy of a book from this
library. A copy of books can be removed from a stock of books belonging to
this library so long this copy is in the stock and it is not issued to any reader.

Z2SAL was able to translate this expanded schema. The generated SAL
file without theorem could be verified by the SAL model checker in 0.031
second. If the same theorem as previous experiment was added, the SAL
model checker required 1.654 seconds to execute this SAL file. The SAL
simulator could also simulate this SAL file.

9.2.6 Experiment 6: expandingschema 6.tex

The schema calculus definition on this specification is as follows:

OnLoanError =̂ OnLoan∧ [rep! : Report | rep! = CopyOnLoan]

This new schema performs operations from the OnLoan schema which is then
added with a new operation to display an error report. The error report
informs a reader that a copy of a book has already been in an issue. In other
words, this copy is on loan to other reader.

The right hand side of conjunction operator in the above schema calculus
definition is similar to the ordinary horizontal schema that Z2SAL supports.
However, in the above schema calculus definition, this horizontal schema is
operated by the conjunction operator to another operational schema, OnLoan.
This schema calculus as a whole cannot be translated by Z2SAL.

The OnLoan schema is shown as follows:

OnLoan
ΞLibrary; c? : COPY

c? ∈ dom issued

The created schema which was generated by our system is as follows:

OnLoanError
ΞLibrary; c? : COPY ; rep! : Report

(c? ∈ dom issued) ∧ (rep! = CopyOnLoan)

The expanded specification could be translated by Z2SAL. The generated
SAL file could be verified by the SAL model checker. This SAL file without
theorem required 0.031 second and 0.686 second to be verified by the SAL
model checker. It could be simulated by the SAL simulator.

232

9.2.7 Experiment 7: expandingschema 7.tex

The schema calculus definition on this specification is quite similar with the
previous experiment. However, this time, the previous schema is negated
before it is conjunct with a new variable and a new predicate.

NotInStockError =̂¬ InStock∧ [rep! : Report | rep! = CopyNotInStock]

The InStock schema can be seen in the previous experiment.
The generated schema is as follows:

NotInStockError
stock : P(COPY × BOOK); stock ′ : P(COPY × BOOK)
issued : COPY ↔ READER; issued ′ : COPY ↔ READER
shelved : FCOPY ; shelved ′ : FCOPY ; readers : FREADER
readers′ : FREADER; c? : COPY ; rep! : Report

((∀ x : COPY ; y1, y2 : READER •
¬ ((x 7→ y1) ∈ issued ∧ (x 7→ y2) ∈ issued ⇒ y1 = y2)) ∨
(∀ x : COPY ; y1, y2 : READER •
¬ ((x 7→ y1) ∈ issued ′ ∧ (x 7→ y2) ∈ issued ′ ⇒ y1 = y2)) ∨
¬ (shelved ∪ dom issued = dom stock) ∨
¬ (shelved ′ ∪ dom issued ′ = dom stock ′) ∨
¬ (shelved ∩ dom issued = ∅) ∨
¬ (shelved ′ ∩ dom issued ′ = ∅) ∨
¬ (ran issued ⊆ readers) ∨
¬ (ran issued ′ ⊆ readers′) ∨
(∀ r : readers • ¬ (#(issued B {r}) ≤ maxloans)) ∨
(∀ r : readers′ • ¬ (#(issued ′ B {r}) ≤ maxloans)) ∨
¬ (c? ∈ dom stock) ∨
¬ (stock ∈ (COPY 7→ BOOK)) ∨
¬ (stock ′ ∈ (COPY 7→ BOOK)))
∧
(rep! = CopyNotInStock)

However, this expanded specification could not be translated by Z2SAL. It
is since there are several re-declared state variables on the created schema.
These state variables in this expanded schema could not be collapsed to the
reference of the state schema since the associated predicates were different;
they have been negated.

9.2.8 Experiment 8: expandingschema 8.tex

This specification has several schema calculus definitions, though the first
two definitions have been specified in the previous experiments. Another
definition was specified uses other definitions.

OnLoanError =̂ OnLoan∧ [rep! : Report | rep! = CopyOnLoan]
NotInStockError =̂¬ InStock∧ [rep! : Report | rep! = CopyNotInStock]
RemoveErrors =̂ OnLoanError∨NotInStockError

233

The created schemas for the first two definitions can be seen in the previous
experiments. The last created definition is as follows:

RemoveErrors
ΞLibrary; c? : COPY ; rep! : Report

((c? ∈ dom issued)
∧
(rep! = CopyOnLoan))
∨ (((∀ x : COPY ; y1, y2 : READER •
¬ (((x 7→ y1) ∈ issued) ∧ ((x 7→ y2) ∈ issued)⇒ y1 = y2)) ∨
(∀ x : COPY ; y1, y2 : READER •
¬ (((x 7→ y1) ∈ issued ′) ∧ ((x 7→ y2) ∈ issued ′)⇒ y1 = y2)) ∨
¬ (shelved ∪ dom issued = dom stock) ∨
¬ (shelved ′ ∪ dom issued ′ = dom stock ′) ∨
¬ (shelved ∩ dom issued = ∅) ∨
¬ (shelved ′ ∩ dom issued ′ = ∅) ∨
¬ (ran issued ⊆ readers) ∨
¬ (ran issued ′ ⊆ readers′) ∨
(∀ r : readers • ¬ (#(issued B {r}) ≤ maxloans)) ∨
(∀ r : readers′ • ¬ (#(issued ′ B {r}) ≤ maxloans)) ∨
¬ (c? ∈ dom stock) ∨
¬ (stock ∈ (COPY 7→ BOOK)) ∨
¬ (stock ′ ∈ (COPY 7→ BOOK)))
∧
(rep! = CopyNotInStock))

However, Z2SAL could not translate the expanded specification for the same
reason as previous experiment.

9.2.9 Experiment 9: expandingsch2 4.tex

There is one operational schema used in a schema calculus definition. The
operational schema and the schema calculus definition as follows:

Enters
∆CarsPark

count < maximum
count ′ = count + 1
maximum ′ = maximum

NotEntered =̂ (¬Enters)

The above schema calculus definition was specified by us.
There is one schema operator specified in this schema calculus definition.

It is a negation operator.
Our system generated an expanded schema as follows:

234

NotEntered
count : Z; count ′ : Z; maximum : Z; maximum ′ : Z

(¬ (count ≤ maximum) ∨
¬ (count ′ ≤ maximum ′) ∨
¬ (count < maximum) ∨
¬ (count ′ = count + 1) ∨
¬ (maximum ′ = maximum) ∨
¬ (count ∈ (N)) ∨
¬ (count ′ ∈ (N)) ∨
¬ (maximum ∈ (N)) ∨
¬ (maximum ′ ∈ (N)))

However, this expanded specification could not be translated by Z2SAL
because of redeclaring state or global variables. Due to negated predicates,
state variables in this expanded schema could not collapse to a reference of
the state schema.

9.2.10 Experiment 10: expandingsch3 1.tex

Two operational schemas that were used in the schema calculus definitions
are as follows:

NotPossible
ΞBoxOffice; s? : Seat
c? : Customer

s? 7→ c? 6∈ sold

Failure
r ! : Response

r ! = sorry

The schema calculus definition was specified by us as follows:

Return =̂ Failure⇒ NotPossible

Our system created the Return expanded schema by using the equivalence
form of an implication operator. This method was used at first for the sake
of easiness since the equivalence form uses simpler operators. However, it
turned out later that our system failed to expand this operator in a case of
a more complex schema calculus definition.

The created schema is as follows:

Return
ΞBoxOffice; r ! : Response; s? : Seat ; c? : Customer

(¬ (r ! = sorry))
∨
(s? 7→ c? 6∈ sold)

The generated SAL file could be verified by the SAL model checker. Total
execution time was 0.015 second for executing the SAL file without any
theorem. The SAL simulator could also simulate this SAL file.

235

9.2.11 Experiment 11: expandingsch3 2.tex

There was one schema calculus definition specified as follows:

Return =̂ (Return0∧ Failure)⇒ NotPossible

Failure and NotPossible schemas can be seen in the previous experiment.
The Return0 schema is as follows:

Return0
∆BoxOffice; s? : Seat ; c? : Customer

s? 7→ c? ∈ sold
sold ′ = sold \ {s? 7→ c?}
seating ′ = seating

The expanded specification is as follows:

Return
ΞBoxOffice; s? : Seat ; c? : Customer ; r ! : Response

(¬ (dom sold ⊆ seating) ∨
¬ (dom sold ′ ⊆ seating ′) ∨
¬ (s? 7→ c? ∈ sold) ∨
¬ (sold ′ = sold \ {s? 7→ c?}) ∨
¬ (seating ′ = seating) ∨
¬ (sold ∈ (Seat 7→ Customer)) ∨
¬ (sold ′ ∈ (Seat 7→ Customer)))
∨
(¬ (r ! = sorry))
∨
(seating ′ = seating ∧
sold ′ = sold ∧
s? 7→ c? 6∈ sold)

The generated SAL file with no theorem required 0.032 second to be executed
by the SAL model checker. It could be simulated by the SAL simulator.

9.2.12 Experiment 12: expandingsch3 4.tex

A schema calculus definition which was specified for this experiment has the
same operational schemas as the previous experiment. Differences are on an
order of operator and usages of brackets.

The schema calculus definition was specified by us is as follows:

Return =̂ Return0⇒ NotPossible∧ Failure

The ”∧” operator is tighter than the ”⇒” operator. Thus, the Return

schema will be conjuncted with the NotPossible schema. Our system gen-
erated an expanded schema as follows:

236

Return
ΞBoxOffice; s? : Seat ; c? : Customer ; r ! : Response

(¬ (dom sold ⊆ seating) ∨
¬ (dom sold ′ ⊆ seating ′) ∨
¬ (s? 7→ c? ∈ sold) ∨
¬ (sold ′ = sold \ {s? 7→ c?}) ∨
¬ (seating ′ = seating) ∨
¬ (sold ∈ (Seat 7→ Customer)) ∨
¬ (sold ′ ∈ (Seat 7→ Customer)))
∨ (seating ′ = seating ∧ sold ′ = sold ∧ s? 7→ c? 6∈ sold)
∧ (r ! = sorry)

The expanded schema could be translated by Z2SAL. The generated SAL
file with no theorem could be verified by the SAL model checker in 0.016
second. It could also be simulated by the SAL simulator.

9.2.13 Experiment 13: expandingsch4 1.tex

A schema calculus definition which was specified by us is as follows:

Return =̂ Return0⇔ Failure

It will be expanded as follows by our system:

Return
∆BoxOffice; s? : Seat ; c? : Customer ; r ! : Response

((¬ (dom sold ⊆ seating) ∨
¬ (dom sold ′ ⊆ seating ′) ∨
¬ (s? 7→ c? ∈ sold) ∨
¬ (sold ′ = sold \ {s? 7→ c?}) ∨
¬ (seating ′ = seating) ∨
¬ (sold ∈ (Seat 7→ Customer)) ∨
¬ (sold ′ ∈ (Seat 7→ Customer)))
∨
(r ! = sorry))
∧
((¬ (r ! = sorry))
∨
(s? 7→ c? ∈ sold ∧
sold ′ = sold \ {s? 7→ c?} ∧
seating ′ = seating))

As can be seen from the above schema, in expanding ”⇔” schema opera-
tor, this operator was replaced by its equivalence operators. This has been
explained on previous chapter. However, on more complex schema calculus
definition, our system still cannot expand it.

The generated SAL file was executed in 0.015 second by the SAL model
checker. It could also be simulated by the SAL simulator.

237

9.2.14 Experiment 14: expandingsch4 2.tex

The only schema definition which was specified by us is as follows:

Return =̂ (NotPossible∧ Success)⇔ Return0

The Success schema is as follows:

Success
r ! : Response

r ! = okay

The expanded schema which was specified by our system is as follows:

Return
∆BoxOffice; s? : Seat ; c? : Customer ; r ! : Response

((¬ (dom sold ⊆ seating) ∨
¬ (dom sold ′ ⊆ seating ′) ∨
¬ (s? 7→ c? 6∈ sold))
∨ (¬ (r ! = okay)) ∨
(s? 7→ c? ∈ sold ∧
sold ′ = sold \ {s? 7→ c?} ∧ seating ′ = seating))
∧
((¬ (dom sold ′ ⊆ seating ′) ∨
¬ (s? 7→ c? ∈ sold) ∨
¬ (sold ′ = sold \ {s? 7→ c?}) ∨
¬ (seating ′ = seating)) ∨
((s? 7→ c? 6∈ sold) ∧ (r ! = okay)))

Z2SAL could generate the SAL file from the expanded specification above.
The SAL model checker could verify this SAL file without any theorem in
0.031 second. This SAL file could also be simulated by the SAL simulator.

9.2.15 Experiment 15: expandingsch5 1.tex

There is one schema calculus definition specified by us in this specification.
The schema calculus definition uses a schema renaming operator. This op-
erator was applied to the state schema as follows:

CalculatorI =̂ Calculator [argument/arg2]

Our system generated an expanded schema as follows:

CalculatorI
store : P(MEMORY × Z); display : Z; argument : Z

store ∈ (MEMORY → Z)

However, the generated expanded specification could not be translated by
Z2SAL. Redeclaring state or global variables was a source of the error. The
renamed state variable made all state variables declared in this expanded
schema were not collapsed to a reference of the state schema.

238

9.2.16 Experiment 16: expandingsch5 2.tex

An operational schema which was used in a schema calculus definition spec-
ified in this experiment is as follows:

Add
∆Calculator

store′ = store
display ′ = display + arg2

The schema calculus definition is as follows:

AddI =̂ Add [argument/arg2, screen/display]

As can be seen from the above definition, there are two variables which will
be renamed from the Add schema.

Our system generated an expanded schema as follows:

AddI
store : P(MEMORY × Z); store′ : P(MEMORY × Z)
screen : Z; display ′ : Z; argument : Z; arg2′ : Z

store′ = store ∧
display ′ = screen + argument ∧
store ∈ (MEMORY → Z) ∧
store′ ∈ (MEMORY → Z)

This expanded specification could not be translated by Z2SAL because of
the same error as previous experiment.

9.2.17 Experiment 17: expandingsch6 1.tex

This example uses the same operational schema as previous experiment.
However, an operator used here is ”\”. Furthermore, the state schema used
in this specification has been modified a bit by adding one state variable,
arg21.

A schema calculus definition specified by us is as follows:

AddI =̂ Add \ (arg2)

This definition will hide the arg2 variable, if any, from the Add schema.

AddI
store : P(MEMORY × Z); store′ : P(MEMORY × Z)
display : Z; display ′ : Z; arg2′ : Z; arg21 : Z; arg21′ : Z

∃ arg2 : Z •
store′ = store ∧ display ′ = display + arg21 ∧
store ∈ (MEMORY → Z) ∧ store′ ∈ (MEMORY → Z)

239

The above schema from associated Z specification could not be translated by
Z2SAL. The reason is redeclaring state or global variables. State variables
declared in this schema could not be collapsed to a reference of the state
schema since there is one hidden state variable.

9.2.18 Experiment 18: expandingsch6 2.tex

There are two hidden variables specified in this schema calculus definition.

AddI =̂ Add \ (arg2, arg21′)

Our system generated an expanded schema as follows:

AddI
store : P(MEMORY × Z); store′ : P(MEMORY × Z)
display : Z; display ′ : Z; arg2′ : Z; arg21 : Z

∃ arg2 : Z; arg21′ : Z •
store′ = store ∧ display ′ = display + arg2 ∧
store ∈ (MEMORY → Z) ∧ store′ ∈ (MEMORY → Z)

However, this expanded specification could not be translated by Z2SAL.
The reason is the same as previous experiment.

9.2.19 Experiment 19: expandingsch7 1.tex

This specification uses the same state schema as the one used for the experi-
ment 15. There is an operational schema that has not been used in previous
experiments from the same state and initialization schemas. This operational
schema is as follows:

Enter
∆Calculator ; value? : Z

store′ = store
display ′ = value?
arg2′ = display

There is one schema calculus definition specified in this specification as
shown below:

Composition =̂ Enter o
9 Add

One schema operator in this definition is the ”o
9” schema composition.

Our system generated an expanded schema as follows:

Composition
∆Calculator ; value? : Z

store′ = store ∧ display ′ = value? + display

240

This expanded specification, which looks like that after an automatic sim-
plification by our system, could be translated by Z2SAL. It required 0.031
second to be verified by the SAL model checker on the SAL file with no
theorem. It could also be simulated by the SAL simulator.

9.2.20 Experiment 20: expandingsch8 1.tex

One schema calculus definition was specified in this specification.

Substract =̂∀ arg2 : Z | arg2 < 0 • Add

This specification uses the universal quantifier operator, ”∀”. The Add

schema, which was applied to that operator, can be seen in the previous
experiment.

Our system generated an expanded schema as follows:
Substract
store : P(MEMORY × Z); store′ : P(MEMORY × Z)
display : Z; display ′ : Z; arg2′ : Z

∀ arg2 : Z | arg2 < 0 •
store′ = store ∧ display ′ = display + arg2 ∧
store ∈ (MEMORY → Z) ∧ store′ ∈ (MEMORY → Z)

However, the expanded specification could not be translated by Z2SAL.
The error is redeclaring state or global variables. One hidden state variable
enforces all these state variables to be listed as their existences before.

9.2.21 Experiment 21: expandingsch8 2.tex

There is one schema calculus definition specified in this specification, the
same as previous experiment. However, in this experiment there are two
state variables will be hidden. This definition is given as follows:

Substract =̂∀ arg2, display ′ : Z | arg2 < 0 • Add

It has one schema operator which is ”∀”. This operator is applied to the
Add schema.

Our system generated an expanded schema as follows:
Substract
store : P(MEMORY × Z); store′ : P(MEMORY × Z)
display : Z; arg2′ : Z

∀ arg2, display ′ : Z | arg2 < 0 •
store′ = store ∧ display ′ = display + arg2 ∧
store ∈ (MEMORY → Z) ∧ store′ ∈ (MEMORY → Z)

This expanded specification could not be translated by Z2SAL. The error
is redeclaring state or global variables. Two hidden state variables make
un-collapsed state variables.

241

9.2.22 Experiment 22: expandingsch8 3.tex

One schema calculus definition was specified in this specification. It is as
shown below:

Substract =̂∀ arg2, display ′ : Z | arg2 < 0 • Enter∧Add

The above definition uses the universal quantifier, ”∀”, and conjunction
operators.

At the first, both Enter and Add schemas will be operated by using ”∧”.
A schema output of this conjunction will be operated further by using the
quantifier as an operator.

Substract
store : MEMORY → Z; store′ : MEMORY → Z
display : Z; arg2′ : Z; value? : Z

∀ arg2, display ′ : Z | arg2 < 0 •
(store′ = store ∧ display ′ = value? ∧ arg2′ = display)
∧
(store′ = store ∧ display ′ = display + arg2)

Above is an expanded schema generated by our system. All state variables
declared on this new schema could not be collapsed to a reference of a state
schema. It is since two state variables, arg2 and display’, have been hidden.
As a result, the expanded specification could not be translated by Z2SAL.

9.2.23 Experiment 23: expandingsch8 6.tex

There is one schema calculus definition specified in this specification. This
definition uses the existential quantifier, ”∃”, as a schema operator. It is
shown as follows:

AnonymousReturn =̂∃ c? : Customer • Return0

Our system generated an expanded schema as follows:

AnonymousReturn
seating : PSeat ; seating ′ : PSeat
sold : P(Seat × Customer); sold ′ : P(Seat × Customer)
s? : Seat

∃ c? : Customer • dom sold ⊆ seating ∧
dom sold ′ ⊆ seating ′ ∧ s? 7→ c? ∈ sold ∧
sold ′ = sold \ {s? 7→ c?} ∧ seating ′ = seating ∧
sold ∈ (Seat 7→ Customer) ∧ sold ′ ∈ (Seat 7→ Customer)

However, the expanded specification could not be translated by Z2SAL. The
error relates to redeclaring state or global variables. It is since state variables
could not be collapsed to a reference to a state schema. The existential
quantifier hides several variables which in this case are state variables.

242

Table 9.2: Several Experiments with the Expansion System
Z Specification Number of Schema Verification time in secs
(.tex) Calculus Definitions Non-simplified Simplified

expandingschema 1 1 0.063 0.031
expandingschema 2 1 0.062
expandingschema 3 1 0.03

0.733
expandingschema 5 1 0.031

1.654
expandingschema 6 1 0.031

0.686
expandingschema 7 1 N/A
expandingsch2 4 1 N/A
expandingsch3 1 1 0.015
expandingsch3 2 1 0.032
expandingsch3 4 1 0.016
expandingsch4 1 1 0.015
expandingsch4 2 1 0.031
expandingsch5 1 1 N/A
expandingsch5 2 1 N/A
expandingsch6 1 1 N/A
expandingsch6 2 1 N/A
expandingsch7 1 1 0.031
expandingsch8 1 1 N/A
expandingsch8 2 1 N/A
expandingsch8 3 1 N/A
expandingsch8 6 1 N/A
expandingschema 8 3 N/A
expandingschema 4 3 0.016

2.044

9.3 Evaluation of Schema Calculus Expansion

This section discusses evaluation on our expansion system. This section
is divided into three sub-sections in which each section answers one of our
questions. The first section as follows discusses the first question.

9.3.1 Evaluation of the #1 Question

Our first question wants to assess whether our system can expand all schema
calculus definition correctly. As part of our evaluation on this issue, Table
9.1 on page 222 or Table 9.2 on page 243 shows several of our experiments
with this system.

All these experiments were successfully expanded by our system correctly.

243

Please refer to each experiment above to get explanations of each expansion.
As mentioned above that not all our Z specifications containing schema

calculus definitions were displayed in Table 9.1 on page 222 or Table 9.2 on
page 243. It is because several other specifications contain schema calculus
definitions which were specified by us. Thus, these definitions are less inter-
esting than schema calculus definitions used for above experiments. Another
reason is a few other specifications still could not be expanded by our system
to correct expanded specifications.

From our 76 Z specifications in total including experiments above, there
are two Z specifications which fell into that category. Both of these specifi-
cations were failed to expand by our system. These two specifications will
be discussed as follows.

Failed Experiments

Both specifications which fail to be expanded by our system are discussed in
this sub-section. Each of them will be introduced in a separate paragraph.

expandingsch7 2.tex The first specification is expandingsch7 2. The
state and initialization schemas of this specification has been given above
which is the booking system on a concert hall.

A schema calculus definition specified in this specification by us is given
as follows:

Return =̂ Purchase0 o
9 Return0

The Return0 schema has also been given earlier. The Purchase0 schema is
as follows:

Purchase0
s? : Seat ; c? : Customer ; ∆BoxOffice

s? ∈ seating \ dom sold
sold ′ = sold ∪ {s? 7→ c?}
seating ′ = seating

The above schema calculus definition uses a schema composition operator.
There are two other specifications in our experiments which have this oper-
ator. However, both of these specifications could be expanded correctly by
our system. It is because they contain simpler predicates than schemas spec-
ified in the above schema calculus definition. Our system only can identify
an equal operator as a connector of a left and right hand side operands. In
contrast to both schemas, they have ”∈” instead.

Our system generated an expanded specification as follows:

244

Return
∆BoxOffice; s? : Seat ; c? : Customer

s? ∈ seating \ dom sold ∧ seating ′ = seating

Inevitably, the above schema is not correct as the expanded one from the
above schema calculus definition. The first predicate is not a correct predi-
cate.

If a manual work is applied to that definition, the expanded schema is as
follows:

Return
∆BoxOffice; s? : Seat ; c? : Customer

s? 7→ c? ∈ sold ∪ {s? 7→ c?} ∧
sold ′ = sold ∪ {s? 7→ c?} \ {s? 7→ c?} ∧
seating ′ = seating

The first predicate is true so that this line can be deleted. The second
line can be simplified by applying the operator ”\”. The final schema is as
follows:

Return
∆BoxOffice; s? : Seat ; c? : Customer

sold ′ = sold ∧
seating ′ = seating

Based on this specification, our system could not simplify the predicates
to the correct simplified ones. The first line of predicate requires simplifica-
tion works which are not easy to implement. The automation of the above
simplification can be put as a future work.

expandingsch3 10.tex This specification unfortunately could not be run
by our system. The Java compiler raised an error running this specification.
This specification also has the same state and initialization schemas as the
above example. However, its schema calculus definition is rather complex.

Return =̂ (¬Return0∨¬Success)⇒ (NotPossible∧ Failure)

As can be seen in the above definition, negation, conjunction, disjunction,
and implication were specified in it. The above schema calculus was specified
by us.

In order to be able to locate the error, the definition from the operator
”⇒” to the right has been deleted. Thus, the definition was as follows:

Return =̂ (¬Return0∨¬Success)

245

This simple definition could be expanded correctly by our system.
However, if this definition was changed as follows:

Return =̂ (¬Return0∨¬Success)⇒ NotPossible

It could be expanded by our system, but the expanded specification is not
the correct one. Several lines from its predicate part are not correct.

Thus, it seems that there are bugs with our way to implement an impli-
cation operator. At the current, our method to expand this operator is to
use its equivalent form. This form has been described on previous chapter.

In addition to both specifications, there are several specifications in our
experiments which could not also be expanded by our system. However, this
time it is not an error on our code; it is as expected. It originated from the
incorrect Z specification: those schemas have unmatched variables.

Thus, our system generated outputs of these specifications as the same
as its inputs in which schema calculus definitions still exist. All these speci-
fications will be discussed as follows.

Impossible Specifications to be Expanded

This sub-section discusses our experiments which are impossible to be ex-
panded. As a result, the same specification as the specification input was
generated by our system in which the schema calculus definitions have not
been expanded. Each of this experiment is given on a separate paragraph.

expandingsch1 20.tex This specification has the same state and initial-
ization as both specifications above. One schema calculus specified is as
follows:

Return =̂ (Return0∧ Success)∨ (NotPossible∧ Failure)

All of these schemas have been given earlier in this chapter.
However, there is a bit modification on the NotPossible schema. The

modified one is as follows:

NotPossible
ΞBoxOffice; s? : Seat1; c? : Customer

s? 7→ c? 6∈ sold

It is supposed to be the type for s? is an instance of Seat.
In other schema, Return0, specified in the above schema calculus defini-

tion, this variable was still specified as an instance of Seat. Thus, there is
one common variable which has different types. These incompatible types
were the source of the problem so that our system refused to generate an
expanded specification of this specification input.

246

expandingsch6 3.tex This specification was taken from [2]. Its state and
initialization schemas have been given earlier in this chapter.

A schema calculus definition was specified as follows:

AddI =̂ Add \ (arg22)

This definition wants to hide the arg22 variable from the Add schema and
specify this schema as the new schema named AddI.

However, this variable is not available in the Add schema. Thus, the above
definition cannot be expanded. Our system generated the same specification
as the input Z file.

expandingsch6 4.tex This specification is quite similar to the specifica-
tion above. A difference is on a schema calculus definition in which here there
are two variables which are required to hide. One of these variables is the
same as the hidden variable of the above specification. Another one is a vari-
able, arg2, which is indeed declared in the operated schema. However, the
unavailable variable made this schema calculus definition not be expanded.
As a result, the same specification as the specification input was generated
by our system.

expandingsch8 4.tex A specification used here is also similar to the pre-
vious specification. However, this time a different schema operator was used
in the schema calculus definition which is a universal quantifier, ”∀”. The
definition is as follows:

Substract =̂∀ displaying : Z | arg2 < 0 • Add

As can be seen above, the same operational schema was operated.
However, this schema calculus definition could not also be expanded. A

variable which is required to hide, displaying, is also not declared in the
Add schema. Our system generated the specification input as an output of
this expansion process.

Based on discussions on both sub-sections and previous discussions, our
system cannot expand all schema calculus definition specified in Z specifica-
tions on our experiments. Although only two of these specifications could
not be expanded, these fails cause great concerns. One of these concerns is
to revise our method to expand an implication operator. Another one is to
implement a better automatic simplification of a predicate part.

247

9.3.2 Evaluation of the #2 Question

As can be seen in Table 9.2 on page 243, several Z specifications do not have
verification times. It means that these specifications could not be trans-
lated by Z2SAL. Furthermore, such specifications contain negation, hiding
or renaming operator in their schema calculus. As also be discussed above,
Z2SAL generated errors of redeclaring state or global variables.

However, all our expanded specifications from the above experiments
which could be translated by Z2SAL, these specifications could also be veri-
fied and simulated by the SAL tool. It is because our Z specification inputs
are quite simple Z specifications which do not have user-defined functions.

If there is a user-defined function specified in our input, the same problem
as on our experiments with the generic constant definition system can be
experienced. It is because the current method of a translation for such a
function adopted by Z2SAL is quite different from a method adopted by the
SAL language.

However, errors of incompatible types for a function application were
also experienced in other specifications of our experiments with this system.
Although these errors do not originate from user defined functions, several
functions declared in schemas seem sources of these errors. These specifica-
tions, which were not discussed on above experiments and were not put in
Table 9.1 on page 222 or Table 9.2 on page 243, will be discussed later.

An out of memory error can also be a problem if our Z specification input
is rather a complex Z specification. It is because a schema expansion creates
a new operational schema. One operational schema represents a state in a
transition system of either the Z language or the SAL language.

For example, let us look at the generated SAL of one of previous examples.
Its name is output expandingsch3 4.sal. This SAL file was generated from
the output expandingsch3 4.tex Z specification which has five operational
schemas. Each of these operational schemas was translated as a guarded
transition. All guarded transitions were specified asynchronously by Z2SAL.
An asynchronous system means that this system is only deadlocked if all its
components are [18].

If the only schema calculus definition was deleted from the Z specification,
the generated SAL file could be executed by the SAL model checker on 0.015
second. The time difference between this SAL file and the SAL with an
expanded schema is just 0.001 second; it is almost the same time taken. It is
because this specification though it has been expanded is still quite a simple
Z specification.

Tables 9.3 on page 249 and 9.4 on page 250 show us other experiments
conducted in our system.

248

Table 9.3: Other Experiments with the Expansion System
Z Specification Details Verification time in secs
(.tex) Non-simplified Simplified

expandingsch1 1 ”∧” 0.0

expandingsch1 2 ”∧” 0.016

expandingsch1 3 ”∧, ∧, ∧” 0.0

expandingsch1 4 ”∧, ∧” 0.015

expandingsch1 5 ”∨, ∧” 0.015

expandingsch1 6 ”∨, ∧” 0.0

expandingsch1 7 ”∧, ∨” 0.015

expandingsch1 8 ”∧, ∨” 0.0

expandingsch1 9 ”∧” 0.0

expandingsch1 10 ”∨, ∨, ∨” 0.0

expandingsch1 11 ”∧, ∨, ∧” 0.016

expandingsch1 12 ”∧, ∨, ∧” 0.015

expandingsch1 13 ”∧, ∨, ∧” 0.016

expandingsch1 14 ”∧, ∨, ∧” 0.016

expandingsch1 15 ”∧” 0.016

expandingsch1 16 ”∧” 0.016

expandingsch1 17 ”∧” 0.016

expandingsch1 18 ”∧” 0.031

expandingsch1 19 ”∧, ∨, ∧” 0.032

expandingsch1 20 ”∧, ∨, ∧” N/A

expandingsch1 21 ”∧, ∨, ∧” 0.03

expandingsch1 22 ”∧, ∨” 0.031

expandingsch1 23 ”∧, ∨” 0.032

expandingsch1 24 ”∧, ∨” 0.031

expandingsch1 25 ”∧, ∨” 0.016

expandingsch1 26 ”∧” 0.015

expandingsch1 27 ”∧” 0.031

expandingsch1 28 ”∨, ∨, ∨” 0.031

expandingsch1 29 ”∨, ∨, ∨” 0.031

expandingsch1 30 ”∨, ∨, ∨” 0.047

expandingsch1 31 ”∨, ∧, ∨” 0.0

expandingsch1 32 ”∨, ∨, ∧” 0.015
expandingsch2 1 ”¬” N/A

expandingsch2 2 ”¬, ∧” 0.032
expandingsch2 3 ”¬” N/A

expandingsch2 5 ”¬, ∧” N/A

expandingsch2 6 ”¬, ∧” N/A

249

Table 9.4: Other Experiments with the Expansion System (continued)
Z Specification Details Verification time in secs
(.tex) Non-simplified Simplified

expandingsch2 7 ”∧, ¬” 0.0

expandingsch2 8 ”∧, ¬” 0.0

expandingsch2 9 ”¬, ∧, ¬” N/A

expandingsch3 3 ”∧,⇒” 0.016

expandingsch3 5 ”⇒, ∧” 0.015

expandingsch3 6 ”⇒, ∧” 0.031

expandingsch3 7 ”⇒, ∨,⇒” N/A

expandingsch3 8 ”∧,⇒, ∧” 0.015

expandingsch3 9 ”∧,⇒, ∧,⇒, ∧” 0.015

expandingsch8 5 ”∀” N/A

expandingschema 9 ”∧, ¬, ∧” N/A

”∧, [,]”
”¬, ∧, [,]”
”∨”

”∧, ∨”

Experiments, but have not been discussed above, which had problems in
translating or verifying them will be discussed on separate sub-sections as
follows.

Case In-Sensitive in SAL

The SAL model checker generated an error during a verification of a gen-
erated SAL file either of expandingsch1 26.tex, expandingsch1 27.tex,
expandingsch1 28.tex, expandingsch1 29.tex, or expandingsch1 30.tex.
It is because a value or a member of a enumeration type variable was de-
clared. This value has the same name as one of keywords of SAL though this
variable has different case of letters from the keyword. Another error in this
SAL file is a variable which has the same name as that value though also in
different case of letters.

All these specifications were taken from [31], but have been modified in
several places to be able to be translated by Z2SAL. One of modifications
is to have one state schema. A state and initialization schemas are given as
follows:

250

Flexi
Standard Hours,Flexitime Hours : Time → Period
worked : Ident 7→ Period ; in : Ident 7→ Time

dom in ⊆ dom worked

InitFlexi
Flexi

in = ∅
worked = ∅

Referring to the above discussion, the involved variable is in. This variable
is indeed one of SAL keywords. Let us look at definitions and abbreviations
specified in these specifications which are given as follows:

Time == N
Period == PTime
Response ::= In | Out | Balance | IdUnKnown
RelMinutes == Z

Another source of error is In.
A schema calculus definition specified in expandingsch1 26.tex is as

follows:

ClockIn =̂ ClockIn 0∧Worked

Both operational schemas on this specification are as follows:

ClockIn 0
∆Flexi ; ident? : Ident ; t? : Time; ind ! : Response

ident? ∈ dom worked
Standard Hours′ = Standard Hours
Flexitime Hours′ = Flexitime Hours
ident? 6∈ dom in
t? ∈ Flexitime Hours(t?)
in ′ = in ∪ {ident? 7→ t?}
worked ′ = worked
ind ! = In

Worked
∆Flexi ; ident? : Ident
t? : Time; ind ! : Response; cr ! : RelMinutes

ident? ∈ dom worked
Standard Hours′ = Standard Hours
Flexitime Hours′ = Flexitime Hours
cr ! = #(worked ′(ident?) ∩ Flexitime Hours(t?))−#{t : Standard Hours(t?) | t < t?}

On the other hand, a schema calculus definition on expandingsch1 28.tex

is as follows:

251

ClockOut =̂ ClockOut 0∧Worked

The ClockOut 0 operational schema is as follows:

ClockOut 0
∆Flexi ; ident? : Ident ; t? : Time; ind ! : Response

ident? ∈ dom worked
Standard Hours′ = Standard Hours
Flexitime Hours′ = Flexitime Hours
ident? ∈ dom in
worked ′ = worked ⊕ {ident? 7→ (worked(ident?) ∪ (in(ident?) . . (t?− 1)))}
ind ! = Out

A schema calculus definition on the expandingsch1 28.tex operational
schema is given as follows:

InsertKey =̂ ClockIn∨ ClockOut∨ ReadOut∨UnKnown

The first two schemas mentioned on the definition are created schemas which
were expanded from the two previous schema calculus definitions. Manually
both these schemas were added to this specification by copying from outcomes
of previous specifications. Other schemas are as follows:

ReadOut
∆Flexi ; ident? : Ident ; t? : Time
ind ! : Response; cr ! : RelMinutes

ident? ∈ dom worked
Standard Hours′ = Standard Hours
Flexitime Hours′ = Flexitime Hours
cr ! = #(worked ′(ident?) ∩ Flexitime Hours(t?))−#{t : Standard Hours(t?) | t < t?}
ident? 6∈ dom in
t? 6∈ Flexitime Hours(t?)
ind ! = Balance
worked ′ = worked
in ′ = in

UnKnown
ΞFlexi ; ident? : Ident ; ind ! : Response

ident? 6∈ dom worked
ind ! = IdUnKnown

The expandingsch1 29.tex specification has a similar schema calculus defi-
nition to previous definition. The difference is on the order of the operational
schemas. In this specification, such a definition is as follows:

InsertKey =̂ ReadOut∨UnKnown∨ ClockIn∨ ClockOut

As well as the expandingsch1 30.tex specification, this specification has a
similar schema calculus definition as two previous specifications. The order

252

of the operational schemas differs from two earlier specifications. It can be
seen as follows:

InsertKey =̂ ReadOut∨ ClockIn∨UnKnown∨ ClockOut

Based on these experiments, it seems that the SAL language accepts not
case sensitive letters of variables. It means that words are still the same
though these words have a variety of cases of its letters. On the other hand,
the Z language is case sensitive.

A way to fix these problems is to change an involved value or variable
into different names which are not members of the SAL keywords. The first
specification above could be verified by the SAL model checker afterwards.
However, other specifications still could not be verified. Another problem to
such specifications will be discussed as follows.

A Range of Numbers

This problem was reported by Z2SAL during a translation of one of either
expandingsch1 27.tex, expandingsch1 28.tex, expandingsch1 29.tex,
or expandingsch1 30.tex. An error message produced by Z2SAL is as fol-
lows:

The conversion from Z to SAL failed because null cannot resolved to a set of constants.

This error related to the ClockOut 0 operational schema. The suspicious
line is as follows:

worked ′ = worked ⊕ {ident? 7→ (worked(ident?) ∪ (in(ident?) . . (t?− 1)))}

Our reason for this involved schema and line is based on our experiments.
If such a line was deleted, the above error did not appear. This specification
could be translated by Z2SAL.

This line was modified then as follows:
in(ident?) < (t?− 1)⇒ worked ′ = worked ⊕ {ident? 7→ (worked(ident?) ∪ (in(ident?) . . (t?− 1)))}

Z2SAL still failed to translate it.
Other experiment is to modify it to a line as follows:

worked ′ = worked ⊕ {ident? 7→ (worked(ident?) ∪ {(in(ident?))})}

Fortunately this specification could be translated by Z2SAL.
It seems that there is a problem of a range of numbers. This is also proven

by modifying the above line as follows:
worked ′ = worked ⊕ {ident? 7→ (worked(ident?) ∪ (1 . . 2))}

Having this line of predicate, this specification could be translated by Z2SAL.
However, its generated SAL file could not be verified by the SAL model
checker. This problem will be discussed as follows.

253

A Mismatch in the Function Application

The generated SAL files of either expandingsch1 27.tex, expandingsch1 28.tex,
expandingsch1 29.tex, or expandingsch1 30.tex have another error relat-
ing to a type mismatch in the function application. The actual error message
from output expandingsch1 27.sal is as follows:

Error: [Context: output expandingsch1 27, line(93), column(19)]:

Type mismatch in the function application.

Expected type:

[set{output expandingsch1 27!B Time}!Set,

set{output expandingsch1 27!B Time}!Set]

Actual type:

[output expandingsch1 27!Set B Time,

set{output expandingsch1 27!Range1 2}!Set]

Involved lines of the SAL file are as follows:

89 worked ’ =
90 func t i on { Ident , s e t {B Time ;} ! Set ; s e t {B Time ;} !
91 s i n g l e t o n (5)} !
92 i n s e r t (worked , (ident ? , s e t {B Time ;} !
93 union (worked (ident ?) , s e t {Range1 2 ;} ! f u l l))) AND

This error says that there was a type mismatch in the union function. The
actual and expected types of this function are not compatible, as can be
seen above. The second parameter of this function is formed from a range of
numbers.

Since this error has been solved yet, a simpler predicate for the involved
line was used in which there is no a range of numbers. The associated line is
as given earlier. The SAL model checker could verify this SAL file.

Redeclaring State or Global Variables

This error occurs during a translation by Z2SAL. Several Z specifications
fell into this category of error. Usually these specifications have ’N/A’s
for their verification times. These specifications are expandingsch2 1.tex,
expandingsch2 3.tex, expandingsch2 5.tex, expandingsch2 6.tex,
expandingsch2 9.tex, expandingsch3 7.tex, expandingsch8 5.tex, and
expandingschema 9.tex.

Schema operators specified in their schema calculus definitions which can
originate such a problem are negation, implication and hiding by using a
universal quantifier. This problem is hard to fix. A potential solution is
to let a Z specification have many state schemas. This solution relates to

254

a Z2SAL upgrade. However, this solution is only applicable to a negation
operator. It is inapplicable to hiding or renaming operator.

This error prevents Z2SAL to generate a SAL file from a Z specification
input. Thus, there is no SAL file which is required to be verified by the SAL
model checker.

Therefore, there is a situation in which Z specifications generated by our
system could not be translated by Z2SAL. Redeclaring state variables was
found as the situation. Furthermore, it was also experienced several SAL
files generated by Z2SAL could not be verified by the SAL model checker
either. In this case, the associated SAL files contain a translation of a range
of numbers and a type mismatch in the function application.

9.3.3 Evaluation of the #3 Question

Tables 9.5 on page 256 and 9.6 on page 257 show us sizes of our Z speci-
fications on these experiments. As can be seen from these three tables, a
range of sizes of our Z specification inputs is between 1 and 3 kilobytes, oth-
erwise the ranges are 1 to 8 and 1 to 14 for Z specification outputs and SAL
specifications respectively. Sizes of SAL specifications shown in this table
are original sizes producing by Z2SAL. As discussed above, a few of these
SAL specifications have been modified as required in order to be executed
by the SAL tool successfully or have been simplified to their compact form
of predicates. Thus, their sizes can be different from the original ones.

’input’ means a Z specification input file for our system. On the other
hand, ’output’ means a Z specification output file generated by our system
after performing an expansion process, ’N/A’s in output means an associated
Z specification input could not be expanded by our system either because
of errors on the input file or because of bugs on our system, ’N/A’s in SAL

specifications means an associated Z specification could not be translated
by Z2SAL. It can also be seen that a ’N/A’ in input makes this Z specification
is not possible to be further processed.

One issue that is important to consider is by having many schema calculus
definitions, both a Z specification and a SAL specification are also getting
big in sizes. Another important issue is that a size of a SAL specification is
roughly twice to four times of its Z specification.

As a conclusion, our approach to expand schema calculus definitions scales
to larger specifications. However, as the outcomes of our system will be trans-
lated by Z2SAL and executed by the SAL tool later, the large specification
resulted by our system is possible to be a problem with both tools.

255

Table 9.5: Sizes of Z Specifications
Z Specifications Sizes in KB
(.tex) input output SAL specifications

expandingschema 1 2 2 7
expandingschema 2 2 2 6
expandingschema 3 2 2 6
expandingschema 4 2 3 10
expandingschema 5 2 3 9
expandingschema 6 2 2 4
expandingschema 7 2 3 N/A
expandingschema 8 3 5 N/A
expandingsch2 4 1 N/A N/A
expandingsch3 1 1 1 3
expandingsch3 2 2 2 4
expandingsch3 4 2 2 4
expandingsch4 1 2 2 4
expandingsch4 2 2 2 5
expandingsch5 1 1 1 N/A
expandingsch5 2 1 1 N/A
expandingsch6 1 1 1 N/A
expandingsch6 2 2 2 N/A
expandingsch7 1 1 1 2
expandingsch8 1 2 2 N/A
expandingsch8 2 2 2 N/A
expandingsch8 3 2 2 N/A
expandingsch8 6 1 2 N/A
expandingsch1 1 1 1 3
expandingsch1 2 1 1 3
expandingsch1 3 1 1 3
expandingsch1 4 1 1 3
expandingsch1 5 1 1 3
expandingsch1 6 1 1 3
expandingsch1 7 1 1 3
expandingsch1 8 1 1 3
expandingsch1 9 1 1 3
expandingsch1 10 1 1 3
expandingsch1 11 1 2 3
expandingsch1 12 1 2 4
expandingsch1 13 1 2 4
expandingsch1 14 1 2 3
expandingsch1 15 1 1 3
expandingsch1 16 1 1 3
expandingsch1 17 1 1 3
expandingsch1 18 1 1 3
expandingsch1 19 2 2 4
expandingsch1 20 2 N/A N/A
expandingsch1 21 2 2 4

256

Table 9.6: Sizes of Z Specifications (continued)
Z Specification Sizes in KB
(.tex) input output SAL specifications

expandingsch1 22 2 2 4
expandingsch1 23 2 2 4
expandingsch1 24 2 2 4
expandingsch1 25 2 2 5
expandingsch1 26 2 3 7
expandingsch1 27 2 3 7
expandingsch1 28 3 5 14
expandingsch1 29 3 5 14
expandingsch1 30 3 5 14
expandingsch1 31 1 1 3
expandingsch1 32 1 1 3
expandingsch2 1 1 1 N/A
expandingsch2 2 1 1 3
expandingsch2 3 1 2 N/A
expandingsch2 5 1 2 N/A
expandingsch2 6 1 2 N/A
expandingsch2 7 1 1 3
expandingsch2 8 1 1 3
expandingsch2 9 1 2 N/A
expandingsch3 3 2 2 4
expandingsch3 5 2 2 4
expandingsch3 6 2 2 4
expandingsch3 7 2 2 N/A
expandingsch3 8 2 2 4
expandingsch3 9 2 2 5
expandingsch3 10 2 N/A N/A
expandingsch6 3 2 N/A N/A
expandingsch6 4 2 N/A N/A
expandingsch7 2 2 N/A N/A
expandingsch8 4 2 N/A N/A
expandingsch8 5 1 2 N/A
expandingschema 9 3 8 N/A

9.4 Conclusion

Based on our experiments, our system could expand schema calculus def-
initions on Z specification inputs to some extent. This system could also
generate expanded schemas which sometimes could be translated by Z2SAL.
Fortunately, almost all generated SAL files could be executed by the SAL
tool. It was found that the SAL language is not a case sensitive language.
Another finding is that it seems there is a bug on a translation of a range of

257

numbers on Z2SAL. This finding convinces us to such a bug since our other
experiments with Z2SAL also found this.

Being able to expand a schema calculus definition, Z2SAL experiences a
big specification. However, it cannot a huge specification. The huge speci-
fication requires more time to be translated by Z2SAL and to be executed
by the SAL tool. Furthermore, it risks experiencing an out of memory error
generated by the SAL tool. Fortunately, there is no of our experiments fell
into this error. It is because our Z specifications are simple systems.

Redeclaring state or global variables is the error which usually occurs in
translating an expanded specification. Solution to this problem can be set
as a future work. One solution is to have many state schemas. Thus, one
state schema is specified to have just a variable part. Another state schema
has a predicate part. Having these state schemas, a user can collapse state
variables easily without a bother on negated predicates of other state schema.

258

Chapter 10

Conclusion and Future Work

Our thesis aims to enhance the ability of Z2SAL to translate generic con-
stants and schema calculus specified in Z specification inputs. It has been
highlighted in the above discussion the difficulties associated with translating
generic constants and schema calculus which are specified in Z specifications.
Previous chapters have also discussed the objectives and contribution of this
thesis as well as the implementation of our system, experiments and evalua-
tions with the system.

This is the final chapter of this thesis which will conclude previous chap-
ters and offer several works for enhancing our work. The first discussion is a
brief summary of this thesis. Let us move to the discussion.

10.1 Thesis Summary

As mentioned above that our objectives as well as our contribution have been
discussed on previous chapter, specifically in Section 1.2 on page 15. There
were two objectives stated in that section.

The first objective is to implement a tool which will redefine a generic
constant definition to an equivalent axiomatic definition based on usages of
this generic constant. The second one is to implement a tool to construct
a new schema by expanding other schemas, in which they are connected by
schema operators.

These tools were implemented in a system which is called support for
model checking Z specifications. Having this system, the applicability of
model checking Z specifications can be broadening. Indeed, it is our expected
contribution.

A description and discussions on our system were structured into 9 chap-
ters excluding this chapter. These chapters are summarized briefly as follows.

259

Chapter 1 on page 12 also outlined the thesis structure and publications
made of this thesis in addition to the contents mentioned above. Chapter
2 on page 20 described main topics relate to our thesis. There were five
sections discussed on this chapter. They are formal method, the Z notation,
model checking, the SAL tool and Z2SAL. Chapter 3 on page 74 provided
us with our proposal on translation of embedded theorems in Z specifica-
tions. Chapter 4 on page 88 detailed the implementation of our Z scanner
and parser. A small portion of relevant code was also given to accompany
the discussion. On the other hand, Chapter 5 on page 111 described the
implementation of our system of a redefinition of generic constants and the
Chapter 6 on page 130 described the implementation of our system of an
expansion of schema calculus. Several groups of code were given as well as
captured screen-shots of our system when running such code. Chapter 7
on page 171 discussed how to integrate those four separate systems into a
support for model checking Z specifications system. Chapter 8 on page 179
and Chapter 9 on page 221 provided several experiments on redefinition and
expansion systems respectively as well as evaluations of both systems.

The following section discusses a main contribution offered by our re-
search.

10.2 The Main Contribution of Our Research

As mentioned above, our main contribution is expected to broaden the ap-
plicability of model checking Z specifications and to enrich the literature of
support for model checking Z specifications. Our contribution consists of
small pieces of contributions as follows:

• Proposing a method of translating theorems embedded in Z specifica-
tions. This proposal has been implemented in one version of Z2SAL by
its researchers. This proposal was available in Chapter 3 on page 74.

• Implement a system of a redefinition of generic constants. This sys-
tem will redefine generic constant definitions to axiomatic definitions.
The discussion on this work can be seen in Chapter 8 on page 179.
This implementation included also implementation of Z scanner and Z
parser.

• Propose a new translation of SAL function and constant. This proposal
has been implemented manually by us in our experiments. However, it
has not been adopted by Z2SAL as this proposal sometimes still cannot
solve problems relating to SAL function. This proposal was discussed
on Section 5.5 on page 126, but in other sections it was also explained.

260

• Implement a system of an expansion of schema calculus. This system
will expand schema calculus definition to new schemas. The discussion
on this work can be seen in Chapter 9 on page 221. This implementa-
tion included also implementation of Z scanner and Z parser.

10.3 Relating Research Outcomes to Research

Objectives

As mentioned earlier, our research objectives are to implement a system
which is able to redefine generic constants and to expand schema calculus
specified in Z specifications. In order to achieve these aims, such a system
has been implemented. Please see Chapters 4 on page 88, 5 on page 111,
6 on page 130, and 7 on page 171 for details of this system. This system
does not translate both aspects of Z language to the SAL language as Z2SAL
does, instead it will pre-process the Z specification by redefining the generic
constant or expanding schema calculus such that the pre-processed Z specifi-
cation is similar to the general Z specification which can be translated easily
by Z2SAL.

Furthermore, an evaluation which was based on several defined questions
was then conducted on this system to assess its performance. This evaluation
obtained valuable information from our experiments on this system in order
to test these questions. These evaluation were discussed on Sections 8.1 on
page 179, 8.3 on page 210, 9.1 on page 221, and 9.3 on page 243. On the
other hand, our experiments were discussed on Sections 8.2 on page 180, and
9.2 on page 222.

Based on this evaluation, our system, to some extent, is able to fulfil
our aims. Several limitations of a predicate simplification, implementations
of implication and bi-implication operators, and a complex schema calculus
definition restricted our expansion system to expand all our Z specifications
correctly. In addition, usages of simple types of generic constants and sim-
ple usage of such generic constants made our redefinition system succeed to
redefine all of our Z specifications. However, more complex types of generic
constants can possibly cause our system to fail a redefinition of such generic
constants.

Since the outcomes of our system will further processed by Z2SAL and the
SAL tool, a successful redefinition or expansion is also defined by a success
on a translation by Z2SAL and an execution by the SAL tool. Relating to
these requirements and previous discussions, Z2SAL and the SAL tool could
not always run our inputs. Redeclaring state variables, a range of numbers,

261

an incompatible type of function application, and an out of memory error are
problems which were sources of unsuccessful either translations by Z2SAL or
executions by the SAL tool.

Despite above problems, overall, our system can meet our objectives.
Furthermore, pre-processed Z specifications yield Z specifications which are
possible to be translated by Z2SAL as opposed to original Z specifications.
Based on our literature review, these original Z specifications cannot be trans-
lated by Z2SAL. The current Z2SAL generated an error message, implying
that is on generic constant or schema calculus.

Identified or predicted limitations as mentioned above can be set up as
future works which will be discussed follows.

10.4 Future Work

Discussions on previous chapters have also recommended several works for
future. As explained above, these future works can be limitations which
either were identified or were predicted during our experiments. These future
works can also be devoted for our system or the Z2SAL translator. The
latter one is only our recommendations which can be considered by Z2SAL
researchers.

At first, works for enhancing our system will be discussed. Afterwards,
recommendations for Z2SAL are described.

Experiments with more complex types of generic constants and complex
predicates of generic constant definitions are our first recommendation for the
redefinition system. The complexity relating to a type of generic constant is
to use several allowed Z tags to specify the type of the generic constant inputs
and output. More complex predicates which use these generic constants are
another future work for this system. This complexity can be interpreted in
either the large number of usages or the way the generic constant is used.
These were discussed extensively on Section 8.3.1 on page 211.

A better simplification of predicates is our first recommendation for the
expansion system. This simplification requires extensive works to automate
manual simplifications which ease to perform. Better implementations of the
implication and bi-implication operators are also important to be performed.
Section 9.3.1 on page 243 discussed these works.

From Z2SAL side, it is recommended to allow a Z specification has many
state schemas. It is also important to upgrade a translation of the tag of a
range of numbers, ”. .”. Support for function in a range of another function
will also benefit Z2SAL. These can be seen in Sections 8.3.2 on page 214,
and 9.3.2 on page 248. Another worth recommendation is a revision to a

262

SAL translation of a user-defined function or constant (see Sections 8.3.1 on
page 211, 8.3.2 on page 214, 8.3.3 on page 217, and 9.3.2 on page 248).

On the other hand, out of memory errors can be solved by resizing vari-
ables in SAL specifications to smaller appropriate sizes. If these problems
persist, experiment these SAL specifications with high performance comput-
ing machines. Another solution is to apply abstraction on Z specifications.
These problems are discussed on Sections 8.3.3 on page 217, and 9.3.3 on
page 255.

10.5 Finally

Finally, all these discussions aim to introduce our research summarized in
this thesis. Furthermore, the implementation of the system is a practical
application to achieve our objectives. It is then supported by experimenting
with this system which is empirical studies to obtain expected results. In
the end, an evaluation was performed in order to assess the reliability and
performance of our system. Due to time limitations, this research has to
conclude in this thesis. Weaknesses of our system and other system have
been offered as future works.

263

Bibliography

[1] R. Arthan and R. B. Jones. The Story of ProofPower. Technical report,
February 2005. Available at http://www. rbjones. com/rbjpub/pp/doc,
2005.

[2] R. Barden, S. Stepney, and D. Cooper. Z in Practice. Prentice-Hall,
Inc., 1995.

[3] M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 2012.

[4] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muñoz, S. Owre, H. Rueß,
J. Rushby, V. Rusu, H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari.
An overview of SAL. In C. M. Holloway, editor, LFM 2000: Fifth NASA
Langley Formal Methods Workshop, pages 187–196, Hampton, VA, Jun
2000. NASA Langley Research Center.

[5] S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of
Infinite State Systems Compositionally and Automatically. In Computer
Aided Verification, pages 319–331. Springer, 1998.

[6] S. Bensalem, Y. Lakhnech, and S. Owre. Invest: A Tool for the Veri-
fication of Invariants. In Computer Aided Verification, pages 505–510.
Springer, 1998.

[7] D. Bjørner. Software Engineering 1, volume 1. Springer-Verlag, Berlin
Heidelberg, 2006.

[8] C. Bolton. Using the Alloy Analyzer to Verify Data Refinement in Z.
Electronic Notes in Theoretical Computer Science, 137(2):23–44, 2005.

[9] A. D. Brucker, F. Rittinger, and B. Wolff. Hol-Z 2.0. Journal of Uni-
versal Computer Science, 9(2):152–172, 2003.

[10] R. Bussöw. Model Checking Combined Z and Statechart Specifications.
PhD thesis, PhD thesis, Fakultät IV - Elektrotechnik und Informatik,
Technische Universität Berlin, 2003.

264

[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided Abstraction Refinement. In Computer Aided Verification, pages
154–169. Springer, 2000.

[12] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Ab-
straction. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(5):1512–1542, 1994.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
press, 1999.

[14] M. Cristiá, P. Albertengo, and P. R. Monetti. Fastest: A Model-based
Testing Tool for the Z Notation. PTD-SEFM, Consiglio Nazionale della
Ricerche, Pisa, Italy, pages 3–8, 2010.

[15] D. Dams, R. Gerth, and O. Grumberg. Abstract Interpretation of Re-
active Systems. ACM Transactions on Programming Languages and
Systems (TOPLAS), 19(2):253–291, 1997.

[16] C. Daws and S. Tripakis. Model Checking of Real-time Reachability
Properties using Abstractions. In Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 313–329. Springer, 1998.

[17] L. de Moura. SAL: Tutorial. Computer Science Laboratory, SRI Inter-
national, 2004.

[18] L. de Moura, S. Owre, and N. Shankar. The SAL Language Man-
ual. Computer Science Laboratory, SRI International, Menlo Park, CA,
Tech. Rep. CSL-01-01, 2003.

[19] H. Deitel and P. J. Deitel. Java : How to Program (5th (International)
ed.). Upper Saddle River, NJ: Prentice-Hall, 2003.

[20] J. Derrick, S. North, and A. J. Simons. Z2SAL-building a Model Checker
for Z. In Abstract State Machines, B and Z, pages 280–293. Springer,
2008.

[21] J. Derrick, S. North, and A. J. Simons. Z2SAL: A Translation-based
Model Checker for Z. Formal Aspects of Computing, 23(1):43–71, 2011.

[22] J. Derrick, S. North, and T. Simons. Issues in Implementing a Model
Checker for Z. In Z. Liu and J. He, editors, Formal Methods and Software
Engineering, volume 4260 of Lecture Notes in Computer Science, pages
678–696. Springer Berlin Heidelberg, 2006.

265

[23] J. Dingel and T. Filkorn. Model Checking for Infinite State Sys-
tems using Data Abstraction, Assumption-commitment Style Reasoning
and Theorem Proving. In Computer Aided Verification, pages 54–69.
Springer, 1995.

[24] R. Duke, P. King, G. Rose, and G. Smith. The Object-Z Specification
Language: Version 1, 1991.

[25] R. Duke and G. Smith. Temporal Logic and Z Specifications. Australian
Computer Journal, 21(2):62–66, 1989.

[26] L. Freitas. Model Checking Circus. PhD thesis, PhD thesis, Department
of Computer Science, University of York, 2005.

[27] S. Graf. Characterization of a Sequentially Consistent Memory and
Verification of a Cache Memory by Abstraction. Distributed Computing,
12(2-3):75–90, 1999.

[28] S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS.
In Computer Aided Verification, pages 72–83. Springer, 1997.

[29] A. Hall. Integrating Z into Large Projects Tools and Techniques. In
ABZ2008 Conference. Citeseer, 2008.

[30] K. Havelund and N. Shankar. Experiments in Theorem Proving and
Model Checking for Protocol Verification. In FME’96: Industrial Benefit
and Advances in Formal Methods, pages 662–681. Springer, 1996.

[31] I. Hayes and B. Flinn. Specification Case Studies. Prentice-Hall Inter-
national London, 1987.

[32] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM,
21(8):666–677, Aug. 1978.

[33] T. Hurka. BYACC/J, 2008.

[34] M. Huth and M. Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2004.

[35] D. Jackson. Abstract Model Checking of Infinite Specifications.
In FME’94: Industrial Benefit of Formal Methods, pages 519–531.
Springer, 1994.

[36] D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM
Transactions on Software Engineering and Methodology (TOSEM),
11(2):256–290, 2002.

266

[37] D. Jackson. Software Abstractions. The MIT Press, 2006.

[38] J. Jacky. The Way of Z: Practical Programming with Formal Methods.
Cambridge University Press, 1996.

[39] S. C. Johnson. Yacc: Yet Another Compiler-Compiler, 2015. [Online;
accessed 10-May-2017].

[40] D. Jordan. CADiZ-computer Aided Design in Z. In VDM’91 Formal
Software Development Methods, pages 685–686. Springer, 1991.

[41] B. W. Kernighan, M. E. Lesk, and J. F. Ossanna. Document Prepara-
tion. Bell Sys. Tech. J, 57(6):2115–2135, 1978.

[42] P. King. Printing Z and Object-Z LaTeX Documents. Department of
Computer Science, University of Queensland, May, 393:404–410, 1990.

[43] G. Klein. JFlex - The Fast Scanner Generator for Java, 2015.

[44] L. Lamport. LaTeX: A Document, volume 14. pub-AW, 1994.

[45] J. Levine, T. Mason, and D. Brown. Lex & YACC. O’Reilly & Asso-
ciates, Inc., 1992.

[46] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem, and
D. Probst. Property Preserving Abstractions for the Verification of
Concurrent Systems. Formal Methods in System Design, 6(1):11–44,
1995.

[47] D. E. Long. Model Checking, Abstraction, and Compositional Verifica-
tion. PhD thesis, PhD thesis, School of Computer Science, Carnegie
Mellon University, 1993.

[48] P. Malik, L. Groves, and C. Lenihan. Translating Z to Alloy. In Abstract
State Machines, Alloy, B and Z, pages 377–390. Springer, 2010.

[49] T. Marris. Z Notes, 2007.

[50] A. P. Martin. Proposal: Community Z Tools Project (CZT), Sept. 2001.

[51] S. Merz. Model Checking: A Tutorial Overview. In Modeling and Veri-
fication of Parallel Processes, pages 3–38. Springer, 2001.

[52] A. Mota and A. Sampaio. Model-checking CSP-Z: Strategy, Tool Sup-
port and Industrial Application. Science of Computer Programming,
40(1):59 – 96, 2001.

267

[53] O. Müller and T. Nipkow. Combining Model Checking and Deduction
for I/O-automata. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 1–16. Springer, 1995.

[54] R. Pelánek. Reduction and Abstraction Techniques for Model Checking.
PhD thesis, PhD thesis, Faculty of Informatics, Masaryk University,
Brno, 2006.

[55] D. Plagge and M. Leuschel. Validating Z Specifications using the ProB
Animator and Model Checker. In Integrated Formal Methods, pages
480–500. Springer, 2007.

[56] B. Potter, D. Till, and J. Sinclair. An Introduction to Formal Specifica-
tion and Z. Prentice Hall PTR, 1996.

[57] D. Rann, J. Turner, and J. Whitworth. Z: A Beginner’s Guide, volume 2.
CRC Press, 1994.

[58] A. J. D. Reis. Compiler Construction Using Java, JavaCC, and Yacc.
Wiley-IEEE Press, 2012.

[59] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall
International, 1997.

[60] M. Saaltink. The Z/Eves System. In ZUM’97: The Z Formal Specifica-
tion Notation, pages 72–85. Springer, 1997.

[61] M. Saaltink et al. The Z/EVES 2.0 Users Guide. ORA Canada, pages
31–32, 1999.

[62] A. Simons. The Z2SAL User Guide, 2012.

[63] M. Siregar. Support for Model Checking Z Specifications. In 2016
IEEE 17th International Conference on Information Reuse and Inte-
gration (IRI), pages 241–248, July 2016.

[64] M. U. Siregar and J. Derrick. An Investigation into the Use of Ab-
straction in Model Checking Z Specification. In Proceedings of the 9th
Annual South-East European Doctoral Student Conference, pages 330–
345. SEERC, Sep 2014.

[65] M. U. Siregar and J. Derrick. Using Abstraction in Model Checking Z
Specifications. In The University of Sheffield Engineering Symposium
Conference Proceeding. The University of Sheffield, Jun 2014.

268

[66] M. U. Siregar, J. Derrick, S. North, and A. J. H. Simons. Experiences
using Z2SAL. In 2014 International Conference on Advanced Computer
Science and Information System, pages 225–231, Oct 2014.

[67] G. Smith and L. Wildman. Model Checking Z Specifications using SAL.
In ZB 2005: Formal Specification and Development in Z and B, pages
85–103. Springer, 2005.

[68] G. Smith and K. Winter. Proving Temporal Properties of Z Specifica-
tions using Abstraction. In ZB 2003: Formal Specification and Devel-
opment in Z and B, pages 260–279. Springer, 2003.

[69] J. M. Spivey. The Z Notation, volume 1992. Prentice Hall New York,
1989.

[70] J. M. Spivey. The Fuzz Manual. Computing Science Consultancy, 34,
1992.

[71] M. Utting. Data Structures for Z Testing Tools. Department of Com-
puter Science, University of Waikato, 2001.

[72] A. Vakili and N. A. Day. Temporal Logic Model Checking in Alloy, pages
150–163. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[73] M. M. West. Issues in Validation and Executability of Formal Specifica-
tions in the Z Notation. PhD thesis, University of Leeds, 2002.

[74] Wikibooks. LaTeX — Wikibooks, The Free Textbook Project, 2016.
[Online; accessed 20-December-2016].

[75] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and
Proof. Prentice-Hall, Inc., 1996.

269

Appendix A

The SAL File of Unique
Allocator Specification

A.1 The SAL File of The Original Specifica-

tion

uniqueAl locator mod : CONTEXT = BEGIN
NZNAT : TYPE = [1 . . 2] ;
NAT : TYPE = [0 . . 2] ;
Counter NZNAT : CONTEXT = count2 {NZNAT; 1 , 2} ;
State : MODULE =

BEGIN
LOCAL used : s e t {NZNAT;} ! Set
LOCAL a l l o c : s e t {NZNAT;} ! Set
LOCAL sentNum : NAT
LOCAL i n v a r i a n t : BOOLEAN
DEFINITION

i n v a r i a n t = (
Counter NZNAT ! s i z e ?(a l l o c) <= 1)AND

INITIALIZATION [
used = s e t {NZNAT;} ! empty AND
a l l o c = s e t {NZNAT;} ! empty AND
sentNum = 0 AND
i n v a r i a n t
−−>

]
TRANSITION [

Request :
((a l l o c = s e t {NZNAT;} ! empty AND
used /= s e t {NZNAT;} ! f u l l) => (EXISTS (q 1 : NZNAT) : NOT
s e t {NZNAT;} ! c onta in s ?(used , q 1) AND
a l l o c ’ = s e t {NZNAT;} ! s i n g l e t o n (q 1) AND
used ’ = s e t {NZNAT;} ! i n s e r t (used , q 1)))AND
((a l l o c /= s e t {NZNAT;} ! empty OR
used = s e t {NZNAT;} ! f u l l) =>
(a l l o c ’ = a l l o c AND used ’ = used)) AND
sentNum’= 0 AND
i n v a r i a n t ’
−−>

270

used ’ IN {x : s e t {NZNAT;} ! Set |TRUE} ;
a l l o c ’ IN {x : s e t {NZNAT;} ! Set |TRUE}
sentNum ’ IN {x : NAT | TRUE}

[]
Send :

(a l l o c /= s e t {NZNAT;} ! empty =>
(s e t {NZNAT; } ! c onta in s ?(a l l o c , sentNum ’) AND
a l l o c ’ = s e t {NZNAT;} ! empty AND used ’ = used)) AND
(a l l o c = s e t {NZNAT;} ! empty =>
(sentNum ’ = 0 AND a l l o c ’ = a l l o c AND used ’ = used)) AND
i n v a r i a n t ’
−−>
used ’ IN {x : s e t {NZNAT;} ! Set |TRUE} ;
a l l o c ’ IN {x : s e t {NZNAT;} ! Set |TRUE} ;
sentNum ’ IN {x : NAT | TRUE}

]
END;
th1 : theorem State |− G((sentNum /= 2) OR X(G(sentNum /= 2))) ;

END

A.2 The SAL File of The Fifth Abstract Model

uniqueAl locatorAbs s impl5 : CONTEXT = BEGIN
SState : TYPE = DATATYPE

s3 ,
s7 ,
s9 ,
s10 ,

END;
State : MODULE =

BEGIN
LOCAL s : SState
INITIALIZATION [

s = s9
−−>

]
TRANSITION [

ARequest :
s = s3 => s ’ = s3 AND
s = s7 => s ’ = s10 AND
s = s9 => s ’ = s3 AND
s = s10 => s ’ = s10
−−>
s ’ IN {x : SState | TRUE}

[]
ASend :

s = s3 => s ’ = s7 AND
s = s7 => s ’ = s10 AND
s = s9 => s ’ = s9 AND
s = s10 => s ’ = s1

−−>
s ’ IN {x : SState | TRUE}

]
END;
th1 : theorem State |− G((s /= s7) OR X(G(s /= s7))) ;

END

271

Appendix B

The Counter-Example of The
Fourth Abstraction

$ sal-smc uniqueAllocatorAbs simpl4

Counterexample for ’th1’ located at [Context: uniqueAllocatorAbs simpl4, line(35), column(2)]:

========================

Path

========================

Step 0:

--- System Variables (assignments) ---

s = s4

Transition Information:

(module instance at [Context: uniqueAllocatorAbs simpl4, line(35), column(15)]

(label ARequest

transition at [Context: uniqueAllocatorAbs simpl4, line(18), column(11)]))

Step 1:

--- System Variables (assignments) ---

s = s3

Transition Information:

(module instance at [Context: uniqueAllocatorAbs simpl4, line(35), column(15)]

(label ASend

transition at [Context: uniqueAllocatorAbs simpl4, line(25), column(11)]))

Step 2:

--- System Variables (assignments) ---

s = s7

272

Transition Information:

(module instance at [Context: uniqueAllocatorAbs simpl4, line(35), column(15)]

(label ARequest

transition at [Context: uniqueAllocatorAbs simpl4, line(18), column(11)]))

Step 3:

--- System Variables (assignments) ---

s = s4

Transition Information:

(module instance at [Context: uniqueAllocatorAbs simpl4, line(35), column(15)]

(label ARequest

transition at [Context: uniqueAllocatorAbs simpl4, line(18), column(11)]))

Step 4:

--- System Variables (assignments) ---

s = s3

Transition Information:

(module instance at [Context: uniqueAllocatorAbs simpl4, line(35), column(15)]

(label ASend

transition at [Context: uniqueAllocatorAbs simpl4, line(25), column(11)]))

Step 5:

--- System Variables (assignments) ---

s = s7

Transition Information:

(module instance at [Context: uniqueAllocatorAbs simpl4, line(35), column(15)]

(label ASend

transition at [Context: uniqueAllocatorAbs simpl4, line(25), column(11)]))

Step 6:

--- System Variables (assignments) ---

s = s4

Summary: The assertion ’th1’ located at [Context:

uniqueAllocatorAbs simpl4, line(35), column(2)] is invalid.

273

Appendix C

Full Z Specifications from
Related Chapter

C.1 shop.tex

This specification is taken from [57].

[ITEM]

RESPONSE ::= price changed | item ordered | item sold |
not in stock | delivery done | no price

Shop
stock : ITEM 7→ N
cost : ITEM 7→ N
order : ITEM 7→ N

dom order = dom stock
dom cost = dom order ∪ dom stock

InitShop
Shop′

stock ′ = ∅
cost ′ = ∅
order ′ = ∅

PriceChange
∆Shop; item? : ITEM
new price? : N; reply! : RESPONSE

cost ′ = cost ⊕ {item? 7→ new price?}
reply! = price changed
stock ′ = stock
order ′ = order

274

SellItem
∆Shop; item? : ITEM
price! : N; reply! : RESPONSE

item? ∈ dom cost
item? ∈ dom stock
stock(item?) ≥ 1
cost(item?) = price!
stock ′ = stock ⊕ {item? 7→ (stock(item?)− 1)}
reply! = item sold
order ′ = order
cost ′ = cost

SellItemNoItem
ΞShop; item? : ITEM ; reply! : RESPONSE

(item? 6∈ dom stock ∨ stock(item?) = 0)
reply! = not in stock

SellItemNoPrice
ΞShop; item? : ITEM ; reply! : RESPONSE

item? 6∈ dom cost
reply! = no price

OrderNewItem
∆Shop; item? : ITEM
order level? : N1; cost? : N; reply! : RESPONSE

item? 6∈ dom stock
order ′ = order ∪ {item? 7→ order level?}
stock ′ = stock ∪ {item? 7→ 0}
cost ′ = cost ∪ {item? 7→ cost?}
reply! = item ordered

OrderItem
∆Shop; item? : ITEM
order level? : N1; reply! : RESPONSE

item? ∈ dom stock
order ′ = order ⊕ {item? 7→ (order(item?) + order level?)}
reply! = item ordered
stock ′ = stock
cost ′ = cost

275

Delivery
∆Shop; delivery? : ITEM 7→ N1

reject ! : ITEM 7→ N1; reply! : RESPONSE

∀ item : ITEM • ∃no : N1 •
(((item 7→ no) ∈ delivery? ∧
(item ∈ dom order ∧
(no = order(item) ∨ no < order(item) ∧
order ′ = order ⊕ {item 7→ order(item)− no} ∧
stock ′ = stock ⊕ {item 7→ stock(item) + no}) ∨
(no > order(item) ∧
order ′ = order ⊕ {item 7→ 0} ∧
(item 7→ (no − order(item))) ∈ reject ! ∧
stock ′ = stock ⊕ {item 7→ stock(item) + order(item)}))) ∨
(item 6∈ dom order ∧
(item 7→ no) ∈ delivery? ∧
(item 7→ no) ∈ reject ! ∧
order ′ = order ∧
stock ′ = stock) ∨
(item 6∈ dom delivery? ∧
order ′ = order)) ∧
reply! = delivery done ∧ cost ′ = cost

C.2 telephonenetwork.tex

This specification is taken from [31, p. 31-34].

[PHONE]

CON == PPHONE

Status ::= Yes | No

TN
reqs, cons : PCON

cons ⊆ reqs ∧
∀ c1, c2 : cons •
(c1 6= c2)⇒ (c1 ∩ c2 = ∅)

Init
TN ′

reqs′ = ∅
cons′ = ∅

efficientTN
TN

¬ (∃ cons0 : PCON •
(cons ⊂ cons0) ∧
(cons0 ⊆ reqs) ∧
∀ c1, c2 : cons0 •
(c1 6= c2)⇒ (c1 ∩ c2 = ∅))

DeltaTN
TN ; TN ′; ph? : PHONE

¬ (∃ cons0 : PCON • (cons ⊂ cons0) ∧ (cons0 ⊆ reqs) ∧
∀ c1, c2 : cons0 • (c1 6= c2)⇒ (c1 ∩ c2 = ∅))
¬ (∃ cons0 : PCON • (cons′ ⊂ cons0) ∧ (cons0 ⊆ reqs′) ∧
∀ c1, c2 : cons0 • (c1 6= c2)⇒ (c1 ∩ c2 = ∅))
¬ (∃ cons1 : PCON • (cons \ cons1) ⊂ (cons \ cons′) ∧
¬ (∃ cons0 : PCON • (cons1 ⊂ cons0) ∧ (cons0 ⊆ reqs) ∧
∀ c1, c2 : cons0 • (c1 6= c2)⇒ (c1 ∩ c2 = ∅)))

276

Call
∆TN
dialled? : PHONE
ph? : PHONE

reqs′ = reqs ∪ {{ph?, dialled?}}
¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′) ∧
¬ (∃ cons0 : PCON •
cons1 ⊂ cons0 ∧
cons0 ⊆ reqs ∧
∀ c1, c2 : cons0 •
(c1 6= c2)⇒ (c1 ∩ c2 = ∅)))

HangUp
∆TN
ph? : PHONE

reqs′ = reqs \ {c : cons | ph? ∈ c}
¬ (∃ cons1 : PCON •
(cons \ cons1) ⊂ (cons \ cons′) ∧
¬ (∃ cons0 : PCON •
cons1 ⊂ cons0 ∧
cons0 ⊆ reqs ∧
∀ c1, c2 : cons0 •
(c1 6= c2)⇒ (c1 ∩ c2 = ∅)))

Engaged
∆TN ; engaged ! : Status; other ! : PHONE ; ph? : PHONE

reqs′ = reqs
cons′ = cons
(engaged ! = Yes)⇒ ({ph?, other !} ∈ cons)

(engaged ! = No)⇒ ph? 6∈ (∪ cons)

¬ (∃ cons1 : PCON • (cons \ cons1) ⊂ (cons \ cons′) ∧
¬ (∃ cons0 : PCON • cons1 ⊂ cons0 ∧ cons0 ⊆ reqs ∧
∀ c1, c2 : cons0 • (c1 6= c2)⇒ (c1 ∩ c2 = ∅)))

C.3 hotelspecguestcomps.tex

This specification is taken from [57, p. 55-57].

HOTELROOM ::= Room1 | Room2 | Room3 | Room4 | Room5 | Room6 | Room7 |
Room8 | Room9 | Room10 | Room11 | Room12 | Room13 | Room14 | Room15

RESPONSE ::= no room vacant | not a guest | success | wrong number | add to tab ok

Hotel
current guest : PGUEST ; unoccupied room : PHOTELROOM
occupied room : PHOTELROOM ; occupies : GUEST ↔ HOTELROOM
tab : HOTELROOM ↔ N

current guest = dom occupies
occupied room = ran occupies
unoccupied room = HOTELROOM \ occupied room

InitHotel
Hotel ′

occupies′ = ∅
tab′ = ∅
occupied room ′ = ∅
unoccupied room ′ = HOTELROOM

277

ArriveGuest
∆Hotel ; guest? : GUEST
room! : HOTELROOM ; reply! : RESPONSE

room! ∈ unoccupied room
occupies′ = occupies ∪ {guest? 7→ room!}
tab′ = ({room!} −C tab) ∪ {room! 7→ 0}
reply! = success

DepartGuest
∆Hotel ; guest? : GUEST
bill ! : N; reply! : RESPONSE

∃ b : N • (guest? ∈ current guest ∧
(guest?, b) ∈ (occupies o

9 tab) ∧
b = bill ! ∧
occupies′ = {guest?} −C occupies ∧
tab′ = tab ∧
reply! = success)

ArriveError
ΞHotel
reply! : RESPONSE

unoccupied room = ∅
reply! = no room vacant

DepartError
ΞHotel
guest? : GUEST
reply! : RESPONSE

guest? 6∈ current guest
reply! = wrong number

AddToTab
∆Hotel ; room? : HOTELROOM
charge? : N; reply! : RESPONSE

∃n : N • (room?,n) ∈ tab ∧
room? ∈ occupied room ∧
tab′ = ({room?} −C tab) ∪ {room? 7→ (charge? + n)} ∧
occupies′ = occupies ∧
reply! = add to tab ok

AddToTabError
ΞHotel ; room? : HOTELROOM
charge? : N; reply! : RESPONSE

room? 6∈ occupied room
reply! = not a guest

C.4 club horz.txt

This specification is obtained from [57, p. 126-127].

[PERSON]

278

MESSAGE ::= OK

Club =̂ [members : PPERSON |#members ≤ 3]

Init =̂ [Club′ |members′ = ∅]

JoinOk =̂ [∆Club; name? : PERSON ; reply! : MESSAGE | name? 6∈ members ∧

#members < 3 ∧ members′ = members ∪ {name?} ∧ reply! = OK]

SumOfClub =̂ [ΞClub; sumC ! : N | sumC ! = #members]

LeaveClub =̂ [∆Club; name? : PERSON ; sumC ! : N|
name? ∈ members ∧ members′ = members \ {name?} ∧ sumC ! = #members]

C.5 counterMod4.tex

This specification was rewritten from its SAL version taken from [4].

CounterMod4
count : N

count ≤ 3

InitCounter
CounterMod4

count = 0

Mod4
∆CounterMod4; count ! : N

count ′ = (count + 1) mod 4
count ! = count ′

C.6 uniqueAllocator.tex

Allocator
used : PN1

alloc : FN1

#alloc ≤ 1

Init
Allocator

used = ∅
alloc = ∅

279

Request
∆Allocator

(alloc = ∅ ∧ used 6= N1)⇒ (∃n : N1 • n 6∈ used ∧ alloc′ = {n} ∧
used ′ = used ∪ {n})
(alloc 6= ∅ ∨ used = N1)⇒ (alloc′ = alloc ∧ used ′ = used)

Send
∆Allocator ; n! : N

alloc 6= ∅⇒ n! ∈ alloc ∧ alloc′ = ∅ ∧ used ′ = used
alloc = ∅⇒ n! = 0 ∧ alloc′ = alloc ∧ used ′ = used

C.7 carspark.tex

CarsPark
count : N
maximum : N

count ≤ maximum

InitCarsPark
CarsPark

count = 0
maximum = 3

Enters
∆CarsPark
space! : N

count < maximum
count ′ = count + 1
space! = maximum − count ′

maximum ′ = maximum

Leaves
∆CarsPark
space! : N

count > 0
count ′ = count − 1
space! = maximum − count ′

maximum ′ = maximum

C.8 birthdaybook.tex

[NAME ,DATE]

REPORT ::= ok | already known | not known

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

InitBirthdayBook
BirthdayBook

known = ∅

280

AddBirthday
∆BirthdayBook ; name? : NAME ; date? : DATE

name? 6∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

FindBirthday
ΞBirthdayBook ; name? : NAME ; date! : DATE

name? ∈ known
date! = birthday(name?)

Remind
ΞBirthdayBook ; today? : DATE ; cards! : PNAME

cards! = {n : known | birthday(n) = today?}

C.9 paperexample.txt

[PERSON ,TITLE]

black , brown, grey : PERSON
filmA,filmB ,filmC ,filmD : TITLE

State
members : PPERSON
rented : PERSON ↔ TITLE
stockLevel : TITLE 7→ N

dom rented ⊆ members
ran rented ⊆ dom stockLevel

Init
State′

members′ = ∅
stockLevel ′ = ∅

RentVideo
∆State
p? : PERSON
t? : TITLE

p? ∈ members
t? ∈ dom stockLevel
stockLevel(t?) > #(rented B {t?})
(p?, t?) 6∈ rented
rented ′ = rented ∪ {(p?, t?)}
stockLevel ′ = stockLevel
members′ = members

AddTitle
∆State
t? : TITLE
level? : N

stockLevel ′ = stockLevel ⊕ {(t?, level?)}
rented ′ = rented
members′ = members

281

DeleteTitle
∆State
t? : TITLE

t? 6∈ ran rented
t? ∈ dom stockLevel
stockLevel ′ = {t?} −C stockLevel
rented ′ = rented
members′ = members

AddMember
∆State
p? : PERSON

p? 6∈ members
stockLevel ′ = stockLevel
rented ′ = rented
members′ = members ∪ {p?}

CopiesOut
ΞState; t? : TITLE ; copies! : N

t? ∈ dom stockLevel
copies! = #(rented B {t?})

282

Appendix D

The States Animation of
telephonenetwork.tex

State 1

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!1986 : PHONE): false)) = false

reqs((LAMBDA (arg!1986 : PHONE): true)) = false

cons((LAMBDA (arg!1987 : PHONE): false)) = false

cons((LAMBDA (arg!1987 : PHONE): true)) = false

engaged = Yes

other = PHONE 1

invariant = true

State 2

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!1988 : PHONE): false)) = true

reqs((LAMBDA (arg!1988 : PHONE): true)) = false

cons((LAMBDA (arg!1989 : PHONE): false)) = false

cons((LAMBDA (arg!1989 : PHONE): true)) = false

engaged = No

other = PHONE 1

invariant = true

283

State 3

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!1990 : PHONE): false)) = true

reqs((LAMBDA (arg!1990 : PHONE): true)) = false

cons((LAMBDA (arg!1991 : PHONE): false)) = false

cons((LAMBDA (arg!1991 : PHONE): true)) = false

engaged = Yes

other = PHONE 1

invariant = true

State 4

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!1992 : PHONE): false)) = false

reqs((LAMBDA (arg!1992 : PHONE): true)) = true

cons((LAMBDA (arg!1993 : PHONE): false)) = false

cons((LAMBDA (arg!1993 : PHONE): true)) = false

engaged = Yes

other = PHONE 1

invariant = true

State 5

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!1994 : PHONE): false)) = false

reqs((LAMBDA (arg!1994 : PHONE): true)) = true

cons((LAMBDA (arg!1995 : PHONE): false)) = false

cons((LAMBDA (arg!1995 : PHONE): true)) = true

engaged = Yes

other = PHONE 1

invariant = true

State 6

--- Input Variables (assignments) ---

284

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!1996 : PHONE): false)) = true

reqs((LAMBDA (arg!1996 : PHONE): true)) = true

cons((LAMBDA (arg!1997 : PHONE): false)) = false

cons((LAMBDA (arg!1997 : PHONE): true)) = true

engaged = No

other = PHONE 1

invariant = true

State 7

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!1998 : PHONE): false)) = true

reqs((LAMBDA (arg!1998 : PHONE): true)) = true

cons((LAMBDA (arg!1999 : PHONE): false)) = true

cons((LAMBDA (arg!1999 : PHONE): true)) = true

engaged = No

other = PHONE 1

invariant = true

State 8

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!2000 : PHONE): false)) = true

reqs((LAMBDA (arg!2000 : PHONE): true)) = true

cons((LAMBDA (arg!2001 : PHONE): false)) = true

cons((LAMBDA (arg!2001 : PHONE): true)) = false

engaged = Yes

other = PHONE 1

invariant = true

State 9

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

285

--- System Variables (assignments) ---

reqs((LAMBDA (arg!2002 : PHONE): false)) = true

reqs((LAMBDA (arg!2002 : PHONE): true)) = true

cons((LAMBDA (arg!2003 : PHONE): false)) = false

cons((LAMBDA (arg!2003 : PHONE): true)) = false

engaged = No

other = PHONE 1

invariant = true

State 10

--- Input Variables (assignments) ---

ph? = PHONE 1

dialled? = PHONE 1

--- System Variables (assignments) ---

reqs((LAMBDA (arg!2004 : PHONE): false)) = true

reqs((LAMBDA (arg!2004 : PHONE): true)) = true

cons((LAMBDA (arg!2005 : PHONE): false)) = false

cons((LAMBDA (arg!2005 : PHONE): true)) = false

engaged = Yes

other = PHONE 1

invariant = true

Only 10 of 18.0 states were displayed.

Remark: the command (display-curr-states <max>)

can be used to display up to <max> states.

286

Appendix E

JFlex Specification: Lexer.flex

%%
%byacc j
%class ScannerCl
%{

int l i n e = 0 ;
private Parser yyparser ;

public ScannerCl (java . i o . Reader r , Parser yyparser){
this (r) ;
this . yyparser = yyparser ;

}

public int l ineCount (){
l i n e = l i n e + 1 ;
return (l i n e) ;

}
%}
%%

”\\ documentclass [12 pt , zed]{ ” a r t i c l e ”}” {
}

”\\ documentstyle [12 pt , zed]{ ” a r t i c l e ”}” {
}

”\\ documentstyle [12 pt , oz]{ ” a r t i c l e ”}” {
}

”\\ usepackage {z−eves }” {
}

”\\ begin {”document”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;

}

”\\end{”document”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return 0 ;

}

”\\ begin {” zed”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;

287

return Parser .BZED;
}

”\\end{” zed ”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EZED;

}

”\\ begin {” axdef ”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BAXDEF;

}

”\\end{” axdef ”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EAXDEF;

}

”\\ begin {” gendef ”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BGENAXDEF;

}

”\\end{” gendef ”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EGENAXDEF;

}

”\\ begin {”schema”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BSCHDEF;

}

”\\end{”schema”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .ESCHDEF;

}

”\\ begin {”genschema”}” {
return Parser .BGENSCHDEF;

}

”\\end{”genschema”}” {
return Parser .EGENSCHDEF;

}

”\\where” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .WHERE;

}

”\\ST” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .WHERE;

}

”\\power” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .POWER;

}

”\\ pset ” {

288

yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .POWER;

}

”\\ c r o s s ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .CROSS;

}

”\\prod” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .CROSS;

}

”\\ d e f s ” {
return Parser .DEFS;

}

” : := ” {
return Parser .DDEF;

}

”\\ ddef ” {
return Parser .DDEF;

}

”\\ in ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . IN ;

}

”\\mem” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . IN ;

}

”\\neq” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\nem” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\nmem” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ not in ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ subseteq ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ subset ” {

289

yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”<” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ l e q ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\geq” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”>” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ p r e f i x ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ s u f f i x ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ i n s eq ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ inbag ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ i r e s ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ e x t r a c t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ subbageq” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ p a r t i t i o n ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

290

}

”\\ r e l ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .REL;

}

”\\ fun ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\pfun” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ t fun ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ i n j ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ p i n j ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ t i n j ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ s u r j ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ psur ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ psur j ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ b i j ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

”\\ f f un ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

291

”\\ f i n j ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INGEN;

}

” [” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

”] ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

”\\ l s c h ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .LSBRACK;

}

”\\ r sch ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .RSBRACK;

}

”\\\\” {
return Parser .NL;

}

”\\ a l s o ” {
return Parser .NL;

}

”\\ backs la sh ” {
return Parser .NL;

}

”\\ bigcap ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ dint ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ d i n t e r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ bigcup ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\duni ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

292

”\\dunion” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ bool ” {
}

”\\ dcat ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\Delta ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .DELTA;

}

”\\dom” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\emptybag” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EMPTYBAG;

}

”\\ emptyseq” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EMPTYSEQ;

}

”\\ emptyset ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EMPTYSET;

}

”\\ ex i ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . EXISTS ;

}

”\\ e x i s t s ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . EXISTS ;

}

”\\ z e x i ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . EXISTS ;

}

”\\ e x i s t s 1 ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EXIONE;

}

”\\ ex ione ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EXIONE;

}

293

”\\ f a l s e ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .FALSITY;

}

”\\ a l l ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .FORALL;

}

”\\ f o r a l l ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .FORALL;

}

”\\ z a l l ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .FORALL;

}

”\\ f ov r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ zovr ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ z f o r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .REN;

}

”\\head” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ hide ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .HIDE;

}

”\\ zh ide ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .HIDE;

}

”\\ i f f ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . BIMPLIES ;

}

”\\ zeq ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . BIMPLIES ;

}

”\\ imp” {

294

yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . IMPLIES ;

}

”\\ i m p l i e s ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . IMPLIES ;

}

”\\zimp” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . IMPLIES ;

}

”\\ lambda” {
yyparser . yy l va l = new ParserVal (yytext ()) ;

return Parser .LAMBDA;
}

”\\and” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .AND;

}

”\\ land ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .AND;

}

”\\ zand” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .AND;

}

”\\wedge” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .AND;

}

”\\ lang ” {
return Parser .LDATA;

}

”\\ lbag ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;

return Parser .LBAG;
}

”\\ l da ta ” {
return Parser .LDATA;

}

”\\ l img ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .LIMG;

}

”\\ l no t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .NOT;

}

295

”\\ znot ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .NOT;

}

”\\ or ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .OR;

}

”\\ vee ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .OR;

}

”\\ l o r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .OR;

}

”\\ zor ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .OR;

}

”\\nat” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .UNSIGNEDNUMBER;

}

”\\natone ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .UNSIGNEDNUMBER;

}

”\\ negate ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .NEGATE;

}

”\\num” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .UNSIGNEDNUMBER;

}

”\\ i n t e g e r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .UNSIGNEDNUMBER;

}

”\\ pipe ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . PIPE ;

}

”\\ p r o j e c t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PROJECT;

}

”\\ z p r o j e c t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;

296

return Parser .PROJECT;
}

”\\ ran ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ rang ” {
return Parser .RDATA;

}

”\\ rbag ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;

return Parser .RBAG;
}

”\\ rdata ” {
return Parser .RDATA;

}

”\\ rimg” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .RIMG;

}

”\\ semi ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . SEMI ;

}

”\\zcmp” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . SEMI ;

}

”\\ s d e f ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .SDEF;

}

”@” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .SPOT;

}

”\\ b u l l e t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .SPOT;

}

”\\dot” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .SPOT;

}

”\\ spot ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .SPOT;

}

”\\ succ ” {

297

yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ squash ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ supset ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ supseteq ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INREL;

}

”\\ t a i l ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ theta ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .THETA;

}

”\\ t rue ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .TRUTH;

}

”\\Xi” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . XI ;

}

”\\ psetone ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ id ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ f s e t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ f i n s e t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ f s e t o n e ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

298

}

”\\ seq ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ seqone ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ i s e q ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\ l s e q ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .LSEQ;

}

”\\ r s eq ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .RSEQ;

}

”\\ l a s t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\head” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\bag” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

”\\map” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\mapsto” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\upto” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”+” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

299

”−” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\cup” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ uni ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\union ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ setminus ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ cat ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ uplus ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\uminus” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”∗” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ div ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\mod” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ cap” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ i n t ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;

300

return Parser . INFUN;
}

”\\ i n t e r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ s r e s ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ f i l t e r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\comp” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ fcmp” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\cmp” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ c i r c ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ otimes ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ oplus ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\bagcount ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ dres ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ r r e s ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

301

”\\ ndres ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\dsub” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ nr r e s ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser . INFUN;

}

”\\ inv ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .POSTFUN;

}

”\\ s t a r ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .POSTFUN;

}

”\\ plus ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .POSTFUN;

}

[A−Za−z] ([a−zA−Z0−9] |\\)∗ {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .WORD;

}

[0−9]+ {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .UNSIGNEDNUMBER;

}

([! ?] | [0−9])+ {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .DECOR;

}

” | ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BAR;

}

”\\bbar” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BAR;

}

”\\ cbar ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BAR;

}

”\\ zbar ” {

302

yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BAR;

}

” (” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

”) ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

”{” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

”}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

” ’ ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

” . ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

”\\ eq” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EQ;

}

”\\ Le f t r i gh ta r row ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EQ;

}

”=” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EQ;

}

” ; ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

” : ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

” , ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

303

}

”/” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .REN;

}

”ˆ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return (int) yycharat (0) ;

}

[\n]+ {
l ineCount () ;

}

[\ r]+ {
}

”\\ ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .DUMMY;

}

”\\ t1 ” {
}

[\ t] {
}

”\\#” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .PREGEN;

}

” \\ [” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .BTYPE;

}

” \\] ” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .EPYTB;

}

”\\{” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .SET;

}

”\\}” {
yyparser . yy l va l = new ParserVal (yytext ()) ;
return Parser .TES;

}

. {
St r ing s t rEr r = new St r ing (” Lex i c a l e r r o r on l i n e : ”+
(l i n e +1)+” : ”+yytext ()) ;
System . e r r . p r i n t l n (s t rEr r) ;
System . e x i t (1) ;

}

304

Appendix F

BYACC/J Specification:
Parser.y

%{
import java . i o . ∗ ;
import java . u t i l . ∗ ;
import java . lang . Object ;

%}

%token <sva l> UNSIGNEDNUMBER WORD DECOR EMPTYSEQ IN EXISTS BAR INGEN
%token <sva l> EMPTYSET POWER DELTA XI INFUN LSEQ RSEQ FORALL
%token <sva l> CROSS PREGEN BIMPLIES IMPLIES AND NOT OR RBAG TRUTH
%token <sva l> LSBRACK RSBRACK LIMG EQ REN HIDE DUMMY LBAG EMPTYBAG
%token <sva l> RIMG REL FALSITY SEMI LAMBDA INREL EXIONE SPOT
%token BZED EZED BAXDEF EAXDEF BSCHDEF ESCHDEF BGENSCHDEF POSTFUN
%token NL SDEF WHERE TES LDATA DDEF DEFS NEGATE PIPE SET THETA
%token PROJECT RDATA BTYPE EPYTB BGENAXDEF EGENAXDEF PIPE EGENSCHDEF

%type <sva l> expr0 expr2 . item expr3 expr4 ’ [’ ’] ’ expr2 . word word . decor
%type <sva l> expr word . tname . l i s t sch . de f tname . l i s t expr . word
%type <sva l> expr1 expr . l i s t ident dec l . part axiom . part schema . r e f
%type <sva l> expr2 d e f i n i t i o n . de f schema . t ex t ’ (’ ’ ; ’ pred1 rename . opt
%type <sva l> dec l . name dec l . name . l i s t r e l . item r e l . chain expr2 . chain
%type <sva l> decor s i gn zed . t ex t body . schema de f . l h s pred gen . ac tua l . opt
%type <sva l> gen . fo rmal s d e c l a r a t i o n ba s i c . d e c l . word s e t . expr
%type <sva l> rename . l i s t ’ , ’ expr1 . word body . schema . word schema . exp
%type <sva l> rename head . pred . sch ba s i c . d e c l l e t . de f ’) ’ ”\\}”
%type <sva l> abbrev . de f ” ’ ” gen . ax . de f word . schema . t ex t ”\\{”
%type <sva l> word . dec l . name expr4 . word r e l . chain . t a i l expr3 . word
%type <sva l> word . dec l . name . l i s t de c l . part . word word . pred1
%type <sva l> gen . ac tua l . opt . rename . opt word . sq . bracks expr0 . word
%type <sva l> head . gen . a c tua l . opt . rename . opt spot . t a i l
%type <sva l> head . s i gn . gen . ac tua l . opt . rename . opt ’ : ’

%l e f t PIPE
%l e f t SEMI
%l e f t HIDE
%l e f t PROJECT
%l e f t BIMPLIES
%r i g h t IMPLIES
%l e f t OR
%l e f t AND

305

%nonassoc NOT
%nonassoc ’ (’
%r i g h t ’) ’

%r i g h t INGEN REL
%l e f t INFUN
%l e f t CROSS
%l e f t ’ , ’
%l e f t SPOT
%l e f t EQ IN INREL

%%
s p e c i f i c a t i o n : s e c t i o n

| /∗ empty ∗/
;

s e c t i o n : paragraph
{

i f (! e r r f ound){
System . out . p r i n t l n (” Pars ing i s s u c c e s s f u l . ”) ;

}
}

| s e c t i o n paragraph
;

paragraph : no . box
| box
;

no . box : BTYPE gen . fo rmal s EPYTB
| BZED zed . t ex t EZED
;

box : BAXDEF body . schema . word EAXDEF
| BGENAXDEF gen . ax . de f EGENAXDEF
| BGENSCHDEF gen . sch . de f EGENSCHDEF
| BSCHDEF sch . de f ESCHDEF

;

zed . t ex t : gen . fo rmal s
| not . ba s i c . type . l i s t

{
i f (schCal) schCal = fa l se ;

}
;

body . schema : dec l . part
{
i f (genAxDef){

genAxDef = fa l se ;
}
else i f (schDef){

schDef = fa l se ;
}

}
| dec l . part . word WHERE axiom . part

;

body . schema . word : body . schema
| WORD

{
$$ = $1 ;

306

i f (genAxDef){
llGenAxDefVar . add ($$) ;

}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

d e c l . part . word : de c l . part
{

i f (genAxDef){
genAxDef = fa l se ;

}
else i f (schDef){

schDef = fa l se ;
}

}
| WORD

{
$$ = $1 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
genAxDef = fa l se ;

}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
schDef = fa l se ;

}
}

;

gen . ax . de f : ’ { ’ word . tname . l i s t ’ } ’
{

$$ = $2 ;
genAxDef = true ;

}
body . schema . word

;

gen . sch . de f : ’ { ’ WORD ’ } ’ ’ { ’ word . tname . l i s t ’ } ’ body . schema . word
;

word . tname . l i s t : tname . l i s t
{

$$ = $1 ;
}

| WORD
{

$$ = $1 ;
}

;

sch . de f : ’ { ’ WORD ’ } ’
{

$$ = $2 ;
schDef = true ;

}
body . schema . word
;

not . ba s i c . type . l i s t : not . ba s i c . type

307

| not . ba s i c . type . l i s t sep
{

i f (schCal) s epa ra to r = true ;
}
not . ba s i c . type

;

not . ba s i c . type : d e f i n i t i o n . de f
| schema . de f . horz
| abbrev . de f
;

d e f i n i t i o n . de f : de f . l h s DEFS expr . word
| WORD gen . fo rmal s DEFS expr . word
| l e t . de f

;

de f . l h s : PREGEN decor ident
| i dent REL decor ident
| i dent INGEN decor ident

;

ident : WORD decor
{

$$ = ($1+$2) . tr im () ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef) {

l l V a r i a b l e s . add ($$) ;
}

}
;

decor : DECOR
{

$$ = $1 ;
}

| /∗ empty ∗/
{

$$ = ”” ;
}

;

schema . de f . horz : WORD SDEF
{

schCal = true ;
i f (s epa ra to r){

l l S chCa l . add (” s epa ra to r ”) ;
s epa ra to r = fa l se ;

}
}

schema . exp
| WORD gen . fo rmal s SDEF
{

schCal = true ;
i f (s epa ra to r){

l l S chCa l . add (” s epa ra to r ”) ;
s epa ra to r = fa l se ;

}
}

schema . exp

308

;

abbrev . de f : i dent DDEF data . rhs . l i s t
;

tname . l i s t : word . tname . l i s t ’ , ’ WORD
{

$$ = $1 + $2 + $3 ;
}

;

d e c l . part : ba s i c . d e c l
| bas i c . d e c l . word sep dec l . part . word
;

axiom . part : pred sep axiom . part
| pred
;

sep : ’ ; ’
| NL
;

schema . exp : head . pred . sch schema . exp
| word . schema . exp1

;

data . rhs . l i s t : data . rhs
| data . rhs . l i s t BAR data . rhs
;

data . rhs : ident
| i dent LDATA expr . word RDATA
;

expr0 : LAMBDA spot . t a i l
{

$$ = $1 + $2 ;
}

| expr
{

$$ = $1 ;
}

;

expr : expr1
{

$$ = $1 ;
}

;

expr1 : expr1 . word REL decor
{

i s R e l a t i o n = true ;
i f (genAxDef){

hmTypeVar . put (llGenAxDefVar . getLast () . t oS t r i ng () , ” i s R e l a t i o n ”) ;
llGenAxDefTypes . add ($2) ;
i f (! $3 . isEmpty ())

llGenAxDefTypes . add ($3) ;
}
else i f (schDef){

hmTypeVar . put (l l V a r i a b l e s . getLast () . t oS t r i ng () , ” i s R e l a t i o n ”) ;

309

l lTypes . add ($2) ;
i f (! $3 . isEmpty ()) l lTypes . add ($3) ;

}
}
expr1 . word

| expr1 . word INGEN decor
{

i sFunct ion = true ;
i f (genAxDef){

hmTypeVar . put (llGenAxDefVar . getLast () . t oS t r i ng () , ” i sFunct ion ”) ;
llGenAxDefTypes . add ($2) ;
i f (! $3 . isEmpty ())

llGenAxDefTypes . add ($3) ;
}
else i f (schDef){

hmTypeVar . put (l l V a r i a b l e s . getLast () . t oS t r i ng () , ” i sFunct ion ”) ;
l lTypes . add ($2) ;
i f (! $3 . isEmpty ()) l lTypes . add ($3) ;

}
}
expr1 . word

| expr2 . chain
{

$$ = $1 ;
i f (! i sFunct ion){

i s R e l a t i o n = true ;
i f (genAxDef){

hmTypeVar . put (llGenAxDefVar . getLast () . t oS t r i ng () , ” i s R e l a t i o n ”) ;
}
else i f (schDef){

hmTypeVar . put (l l V a r i a b l e s . getLast () . t oS t r i ng () , ” i s R e l a t i o n ”) ;
}

}
}

| expr2
{

$$ = $1 ;
i f (! i sFunct ion && ! i s R e l a t i o n){

i sConstant = true ;
i f (genAxDef){

hmTypeVar . put (llGenAxDefVar . getLast () . t oS t r i ng () , ” i sConstant ”) ;
}
else i f (schDef){

hmTypeVar . put (l l V a r i a b l e s . getLast () . t oS t r i ng () , ” i sConstant ”) ;
}

}
}

;

expr1 . word : expr1
{

$$ = $1 ;
}

| WORD
{

$$ = $1 ;
i f (genAxDef){

llGenAxDefTypes . add ($$) ;
}
else i f (schDef){

l lTypes . add ($$) ;
}

310

}
;

expr2 . chain : expr2 . item
{

$$ = $1 ;
}

| expr2 . chain CROSS
{

i f (genAxDef){
llGenAxDefTypes . add ($2) ;

}
else i f (schDef){

l lTypes . add ($2) ;
}

}
expr2 . item

;

expr2 : expr2 . word INFUN decor
{

i f (genAxDef){
llGenAxDefTypes . add ($2) ;
i f (! $3 . isEmpty ())

llGenAxDefTypes . add ($3) ;
}
else i f (schDef){

l lTypes . add ($2) ;
i f (! $3 . isEmpty ()) l lTypes . add ($3) ;

}
}
expr2 . word

| POWER expr4 . word
{

$$ = $1 + ” ” + $2 ;

i f (genAxDef){
llGenAxDefTypes . s e t (llGenAxDefTypes .
s i z e ()−1 , $1+ ” ”+llGenAxDefTypes . getLast () . t oS t r i ng ()) ;

}
else i f (schDef){

l lTypes . s e t (l lTypes . s i z e ()−1 , $1+ ” ”+l lTypes . getLast () . t oS t r i ng ()) ;
}

}
| PREGEN decor expr4 . word

{
$$ = $1 + ” ” + $2 + $3 ;

i f (genAxDef){
i f (! $2 . isEmpty ()) llGenAxDefTypes .
s e t (llGenAxDefTypes . s i z e ()−1 , $1+$2+” ”+
llGenAxDefTypes . getLast () . t oS t r i ng ()) ;
else llGenAxDefTypes . s e t (llGenAxDefTypes . s i z e ()−1 , $1+” ”+
llGenAxDefTypes . getLast () . t oS t r i ng ()) ;

}
else i f (schDef){

i f (! $2 . isEmpty ()) l lTypes .
s e t (l lTypes . s i z e ()−1 , $1+$2+” ”+l lTypes . getLast () . t oS t r i ng ()) ;
else l lTypes . s e t (l lTypes . s i z e ()−1 , $1 +
” ”+ l lTypes . getLast () . t oS t r i ng ()) ;

}
}

311

| DUMMY decor expr4 . word
{

$$ = $1 + ” ” + $2 + $3 ;
i f (genAxDef){

i f (! $2 . isEmpty ()) llGenAxDefTypes .
s e t (llGenAxDefTypes . s i z e ()−1 , $1+$2+” ”+lGenAxDefTypes . getLast () . t oS t r i ng ()) ;
else llGenAxDefTypes . s e t (llGenAxDefTypes . s i z e ()−1 , $1+” ”+
llGenAxDefTypes . getLast () . t oS t r i ng ()) ;

}
else i f (schDef){

i f (! $2 . isEmpty ()) l lTypes . s e t (l lTypes . s i z e ()−1 , $1+$2+” ”+
l lTypes . getLast () . t oS t r i ng ()) ;
else l lTypes . s e t (l lTypes . s i z e ()−1 , $1+
” ”+l lTypes . getLast () . t oS t r i ng ()) ;

}
}

| expr4 . word LIMG
{

i f (genAxDef){
llGenAxDefTypes . add ($2) ;

}
else i f (schDef){

l lTypes . add ($2) ;
}

}
expr0 . word RIMG decor
{

i f (genAxDef){
llGenAxDefTypes . add ($5) ;
i f (! $6 . isEmpty ())

llGenAxDefTypes . add ($6) ;
}
else i f (schDef){

l lTypes . add ($5) ;
i f (! $6 . isEmpty ()) l lTypes . add ($6) ;

}
}

| expr3
{

$$ = $1 ;
}
;

expr2 . word : expr2
| WORD
{

i f (genAxDef){
llGenAxDefTypes . add ($1) ;

}
else i f (schDef) {

l lTypes . add ($1) ;
}

}
;

expr4 . word : expr4
| WORD
{

i f (genAxDef){
llGenAxDefTypes . add ($1) ;

}
else i f (schDef){

312

l lTypes . add ($1) ;
}

}
;

expr0 . word : expr0
| WORD
{

i f (genAxDef){
llGenAxDefTypes . add ($1) ;

}
else i f (schDef){

l lTypes . add ($1) ;
}

}
;

expr2 . item : expr2 . word CROSS
{

i f (genAxDef){
llGenAxDefTypes . add ($2) ;

}
else i f (schDef){

l lTypes . add ($2) ;
}

}
expr2 . word

;

expr4 : word . decor
{

$$ = $1 ;
}

| word . decor word . sq . bracks
{

$$ = $1 + $2 ;
}

| word . decor gen . ac tua l . opt
{

$$ = $1 + $2 ;
}

| UNSIGNEDNUMBER
{

$$ = $1 ;
i f (genAxDef){

llGenAxDefTypes . add ($1) ;
}
else i f (schDef){

l lTypes . add ($1) ;
}

}
| SET TES

{
$$ = ”EMPTYSET” ;

}
| SET s e t . expr
| EMPTYSET

{
$$ = $1 ;

}
| schema . r e f

{

313

$$ = $1 ;
}

| LSEQ expr . word RSEQ
{

$$ = $1 + $2 + $3 ;
}

| LSEQ expr . l i s t RSEQ
{

$$ = $1 + $2 + $3 ;
}

| EMPTYSEQ
{

$$ = $1 ;
}

| LSEQ RSEQ
{

$$ = ”EMPTYSEQ” ;
}

| LBAG expr . word RBAG
{

$$ = $1 + $2 + $3 ;
}

| LBAG expr . l i s t RBAG
{

$$ = $1 + $2 + $3 ;
}

| EMPTYBAG
{

$$ = $1 ;
}

| LBAG RBAG
{

$$ = ”EMPTYBAG” ;
}

| ’ (’ expr . word ’) ’
{

$$ = $1 + $2 + $3 ;
}

| ’ (’ expr . l i s t ’) ’
{

$$ = $1 + $2 + $3 ;
}

| theta . chain rename . opt
| theta . chain
| expr4 . word ’ . ’ i dent
| expr4 . word POSTFUN decor
| ’ (’ LAMBDA spot . t a i l ’) ’
;

expr3 : expr3 . word expr4 . word
{

$$ = $1 + $2 ;
}

| expr4
{

$$ = $1 ;
}

;

expr3 . word : expr3
| WORD
{

314

$$ = $1 ;
i f (genAxDef){

llGenAxDefTypes . add ($$) ;
}
else i f (schDef){

l lTypes . add ($$) ;
}

}
;

schema . r e f : head . gen . ac tua l . opt . rename . opt
{

$$ = $1 ;
}

| head . s i gn . gen . ac tua l . opt . rename . opt
{

$$ = $1 ;
}

| WORD gen . ac tua l . opt . rename . opt
{

$$ = $1 + ” ” + $2 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

head . gen . a c tua l . opt . rename . opt : WORD ” ’ ”
{

$$ = $1 + $2 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
| WORD ” ’ ”

gen . ac tua l . opt . rename . opt
{

$$ = $1 + $2 + ” ” + $3 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

head . s i gn . gen . ac tua l . opt . rename . opt : s i gn WORD
{

$$ = $1 + ” ” + $2 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

315

}
| s i gn WORD gen . ac tua l . opt . rename . opt

{
$$ = $1 + $2 + ” ” + $3 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

gen . a c tua l . opt . rename . opt : word . sq . bracks
{

$$ = $1 ;
}

| gen . ac tua l . opt
{

$$ = $1 ;
}

| rename . opt
{

$$ = $1 ;
}

| word . sq . bracks rename . opt
{

$$ = $1 + ” ” + $2 ;
}

| gen . ac tua l . opt rename . opt
{

$$ = $1 + ” ” + $2 ;
}

;

word . sq . bracks : ’ [’ WORD ’] ’
{

$$ = $1 + $2 + $3 ;
}

;

s e t . expr : word . schema . t ex t
{

$$ = $1 ;
}
TES

| spot . t a i l
{

$$ = $1 ;
}
TES

| expr TES
{

$$ = $1 ;
}

| expr . l i s t TES
{

$$ = $1 ;
}

;

spot . t a i l : word . schema . t ex t SPOT expr . word

316

{
$$ = $1 ;

}
;

expr . l i s t : expr . word ’ , ’ expr . word
{

$$ = $1 + $2 + $3 ;
}

| expr . l i s t ’ , ’ expr . word
{

$$ = $1 + $2 + $3 ;
}

;

gen . a c tua l . opt : ’ [’ expr ’] ’
{

$$ = $1 + $2 + $3 ;
}

| ’ [’ expr . l i s t ’] ’
{

$$ = $1 + $2 + $3 ;
}

;

theta . chain : THETA ident
;

rename . opt : ’ [’ rename . l i s t ’] ’
{

$$ = $1 + $2 + $3 ;
}

;

rename . l i s t : rename
{

$$ = $1 ;
}

| rename . l i s t ’ , ’ rename
{

$$ = $1 + $2 + $3 ;
}

;

rename : WORD ” ’ ” REN WORD ” ’ ”
{

$$ = $1 + $2 + ” ” + $3 + ” ” + $4 + $5 ;
}

| word . dec l . name REN word . dec l . name
{

$$ = $1 + ” ” + $2 + ” ” + $3 ;
}
;

d e c l . name : word . decor
{

$$ = $1 ;
}

;

word . de c l . name : de c l . name
{

317

$$ = $1 ;
}

| WORD
{

$$ = $1 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

word . decor : WORD DECOR
{

$$ = ($1+$2) . tr im () ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

s i gn : DELTA
{

$$ = $1 ;
}

| XI
{

$$ = $1 ;
}

;

schema . t ex t : d e c l a r a t i o n
{

$$ = $1 ;
}

| d e c l a r a t i o n BAR pred
{

$$ = $1 + ” ” + $2 + ” ” + $3 ;
}

| WORD BAR pred
{

$$ = $1 + ” ” + $2 + ” ” + $3 ;
}

;

d e c l a r a t i o n : ba s i c . d e c l
{

$$ = $1 ;
}

| d e c l a r a t i o n ’ ; ’ ba s i c . d e c l . word
{

$$ = $1 + ” ” + $2 + ” ” + $3 ;
}

;

pred : head . pred . sch pred
{

318

$$ = $1 + ” ” + $2 ;
}

| pred1
{

$$ = $1 ;
}

| WORD
{

$$ = $1 ;
}
;

b a s i c . d e c l . word : ba s i c . d e c l
{

$$ = $1 ;
}

| WORD
{

$$ = $1 ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

b a s i c . d e c l : schema . r e f
{

St r ing s t r ;
i f (schDef){

i f (! hmVarDecl . containsKey (l l V a r i a b l e s . getLast () . t oS t r i ng ())) {
hmVarDecl . put (l l V a r i a b l e s . getLast () . t oS t r i ng () , ” n u l l ”) ;

}
}

}
| WORD ” ’ ” ’ : ’ expr . word

{
St r ing s t r ;
i f (genAxDef){

$$ = $1+” ’ ” ;
llGenAxDefVar . add ($$) ;
for (int i =0; i<llGenAxDefTypes . s i z e () ; i ++){

i f (hmGenAxDef . containsKey (
llGenAxDefVar . getLast () . t oS t r i ng ())) {

s t r = hmGenAxDef . get (getLast () .
t oS t r i ng ()) . t oS t r i ng () ;
hmGenAxDef . put (llGenAxDefVar . getLast () .
t oS t r i ng () , s t r + ” , ”+
llGenAxDefTypes . get (i) . t oS t r i ng ()) ;

}
else hmGenAxDef . put (llGenAxDefVar . getLast () .
t oS t r i ng () , llGenAxDefTypes . get (i) . t oS t r i ng ()) ;

}

llGenAxDefVar . removeAll (llGenAxDefVar) ;
llGenAxDefTypes . removeAll (llGenAxDefTypes) ;

}
else i f (schDef){

$$ = $1+” ’ ” ;

319

l l V a r i a b l e s . add ($$) ;
for (int i =0; i<l lTypes . s i z e () ; i ++){

i f (hmVarDecl . containsKey (
l l V a r i a b l e s . getLast () . t oS t r i ng ())) {

s t r = hmVarDecl . get (l l V a r i a b l e s . getLast () .
t oS t r i ng ()) . t oS t r i ng () ;
hmVarDecl . put (l l V a r i a b l e s . getLast () .
t oS t r i ng () , s t r + ” , ”+
l lTypes . get (i) . t oS t r i ng ()) ;

}
else hmVarDecl . put (l l V a r i a b l e s . getLast () .
t oS t r i ng () , l lTypes . get (i) . t oS t r i ng ()) ;

}
l l V a r i a b l e s . removeAll (l l V a r i a b l e s) ;
l lTypes . removeAll (l lTypes) ;

}
else $$ = $1+” ’ ” + ” ” + $3 + ” ” + $4 ;

i sFunct ion = fa l se ;
i s R e l a t i o n = fa l se ;
i sConstant = fa l se ;

}
| word . dec l . name . l i s t ’ : ’ expr . word

{
St r ing s t r ;
i f (genAxDef){

$$ = $1 ;
for (int i =0; i<llGenAxDefTypes . s i z e () ; i ++){

i f (hmGenAxDef . containsKey (
llGenAxDefVar . getLast () . t oS t r i ng ())) {

s t r = hmGenAxDef . get (llGenAxDefVar . getLast () .
t oS t r i ng ()) . t oS t r i ng () ;
hmGenAxDef . put (llGenAxDefVar . getLast () .
t oS t r i ng () , s t r + ” , ”+
llGenAxDefTypes . get (i) . t oS t r i ng ()) ;

}
else hmGenAxDef . put (llGenAxDefVar . getLast () .
t oS t r i ng () , llGenAxDefTypes . get (i) . t oS t r i ng ()) ;

}
llGenAxDefVar . removeAll (llGenAxDefVar) ;
llGenAxDefTypes . removeAll (llGenAxDefTypes) ;

}
else i f (schDef){

$$ = $1 ;
for (int i =0; i<l lTypes . s i z e () ; i ++){

i f (hmVarDecl . containsKey (
l l V a r i a b l e s . getLast () . t oS t r i ng ())) {

s t r = hmVarDecl . get (l l V a r i a b l e s . getLast () .
t oS t r i ng ()) . t oS t r i ng () ;
hmVarDecl . put (l l V a r i a b l e s . getLast () .
t oS t r i ng () , s t r + ” , ”+
l lTypes . get (i) . t oS t r i ng ()) ;

}
else hmVarDecl . put (l l V a r i a b l e s . getLast () .
t oS t r i ng () , l lTypes . get (i) . t oS t r i ng ()) ;

}
l l V a r i a b l e s . removeAll (l l V a r i a b l e s) ;
l lTypes . removeAll (l lTypes) ;

}
else $$ = $1 + ” ” + $2 + ” ” + $3 ;

320

i sFunct ion = fa l se ;
i s R e l a t i o n = fa l se ;
i sConstant = fa l se ;

}
;

d e c l . name . l i s t : d e c l . name
{

$$ = $1 ;
}

| WORD ” ’ ” ’ , ’ WORD ” ’ ”
{

$$ = ($1+$2+$3+$4+$5) . tr im () ;
i f (genAxDef){

llGenAxDefVar . add ($$) ;
}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
| word . dec l . name . l i s t ’ , ’ WORD ” ’ ”
{

$$ = ($1+$2+$3+$4) . tr im () ;
i f (genAxDef){

llGenAxDefVar . s e t (llGenAxDefVar . s i z e ()−1 ,
llGenAxDefVar . getLast () . t oS t r i ng ()+$$) ;

}
else i f (schDef){

l l V a r i a b l e s . s e t (l l V a r i a b l e s . s i z e ()−1 ,
l l V a r i a b l e s . getLast () . t oS t r i ng ()+$$) ;

}
}

| WORD ” ’ ” ’ , ’ word . de c l . name
{

$$ = ($1+$2+$3+$4) . tr im () ;
i f (genAxDef){

llGenAxDefVar . s e t (llGenAxDefVar .
s i z e ()−1 , llGenAxDefVar . getLast () . t oS t r i ng ()+$$) ;

}
else i f (schDef){

l l V a r i a b l e s . s e t (l l V a r i a b l e s .
s i z e ()−1 , l l V a r i a b l e s . getLast () . t oS t r i ng ()+$$) ;

}
}

| word . dec l . name . l i s t ’ , ’ word . de c l . name
{

$$ = $1+$2+$3 ;
i f (genAxDef){

llGenAxDefVar . s e t (llGenAxDefVar . s i z e ()−2 , $$) ;
llGenAxDefVar . removeLast () ;

}
else i f (schDef){

l l V a r i a b l e s . s e t (l l V a r i a b l e s . s i z e ()−2 , $$) ;
l l V a r i a b l e s . removeLast () ;

}
}

;

word . de c l . name . l i s t : d e c l . name . l i s t
| WORD

{
$$ = $1 ;

321

i f (genAxDef){
llGenAxDefVar . add ($$) ;

}
else i f (schDef){

l l V a r i a b l e s . add ($$) ;
}

}
;

l e t . de f : i dent DEFS expr . word
;

gen . fo rmal s : ’ [’ word . tname . l i s t ’] ’
{

$$ = $2 ;
}
;

head . pred . sch : FORALL
{

i f (schCal){
l l S chCa l . add ($1) ;

}
}

word . schema . t ex t SPOT
{

i f (schCal){
l l S chCa l . add ($4) ;

}
}

| EXISTS
{

i f (schCal){
l l S chCa l . add ($1) ;

}
}
word . schema . t ex t SPOT
{

i f (schCal){
l l S chCa l . add ($4) ;

}
}

| EXIONE
{

i f (schCal){
l l S chCa l . add ($1) ;

}
}
word . schema . t ex t SPOT
{

i f (schCal){
l l S chCa l . add ($4) ;

}
}

;

word . schema . t ex t : schema . t ex t
{

i f (schCal){
l l S chCa l . add ($1) ;

}
}

322

| WORD
{

i f (schCal){
l l S chCa l . add ($1) ;

}
}

;

pred1 : r e l . chain
| schema . r e f
| TRUTH

{
$$ = $1 ;

}
| FALSITY

{
$$ = $1 ;

}
| NOT word . pred1

{
$$ = $1 + ” ” + $2 ;

}
| word . pred1 AND word . pred1

{
$$ = $1 + ” ” + $2 + ” ” + $3 ;

}
| word . pred1 OR word . pred1

{
$$ = $1 + ” ” + $2 + ” ” + $3 ;

}
| word . pred1 IMPLIES word . pred1

{
$$ = $1 + ” ” + $2 + ” ” + $3 ;

}
| word . pred1 BIMPLIES word . pred1

{
$$ = $1 + ” ” + $2 + ” ” + $3 ;

}
| ’ (’ pred ’) ’

{
$$ = $1 + $2 + $3 ;

}
;

word . pred1 : pred1
{

$$ = $1 ;
}

| WORD
{

$$ = $1 ;
}

;

r e l . chain : expr . word r e l . chain . t a i l
{

$$ = $1 + ” ” + $2 ;
}

;

expr . word : expr
{

323

$$ = $1 ;
}

| WORD
{

$$ = $1 ;
i f (genAxDef){

llGenAxDefTypes . add ($$) ;
}
else i f (schDef){

l lTypes . add ($$) ;
}

}
;

r e l . item : EQ
{

$$ = $1 ;
}

| IN
{

$$ = $1 ;
}

| INREL decor
{

$$ = $1+$2 ;
}

;

r e l . chain . t a i l : r e l . item expr . word
{

$$ = $1 + ” ” + $2 ;
}
| r e l . item r e l . chain

{
$$ = $1 + ” ” + $2 ;

}
;

schema . exp1 : LSBRACK
{

l l S chCa l . add ($1) ;
}
word . schema . t ex t RSBRACK
{

l l S chCa l . add ($4) ;
}

| schema . r e f
{

l l S chCa l . add ($1) ;
}

| NOT word . schema . exp1
{

l l S chCa l . add ($1) ;
}

| word . schema . exp1 AND word . schema . exp1
{

l l S chCa l . add ($2) ;
}

| word . schema . exp1 OR word . schema . exp1
{

l l S chCa l . add ($2) ;
}

324

| word . schema . exp1 IMPLIES word . schema . exp1
{

l l S chCa l . add ($2) ;
}

| word . schema . exp1 BIMPLIES word . schema . exp1
{

l l S chCa l . add ($2) ;
}

| word . schema . exp1 PROJECT word . schema . exp1
| word . schema . exp1 HIDE ’ (’ WORD ” ’ ” ’) ’

{
l l S chCa l . add ($2) ;
l l S chCa l . add ($3) ;
l l S chCa l . add ($4 + $5) ;
l l S chCa l . add ($6) ;

}
| word . schema . exp1 HIDE ’ (’
word . de c l . name . l i s t ’) ’

{
l l S chCa l . add ($2) ;
l l S chCa l . add ($3) ;
l l S chCa l . add ($4) ;
l l S chCa l . add ($5) ;

}
| word . schema . exp1 SEMI word . schema . exp1

{
l l S chCa l . add ($2) ;

}
| word . schema . exp1 PIPE word . schema . exp1
| ’ (’ schema . exp ’) ’

{
l l S chCa l . add ($1) ;
l l S chCa l . add ($3) ;

}
;

word . schema . exp1 : schema . exp1
| WORD

{
l l S chCa l . add ($1) ;

}
;

%%
/∗ d e c l a r e & i n i t i a l i z e g l o b a l v a r i a b l e s ∗/
LinkedLis t l lMatched = new LinkedLis t () ;
boolean e r r f ound = fa l se ;
stat ic LinkedLis t l l V a r i a b l e s = new LinkedLis t () ;
stat ic LinkedLis t l lTypes = new LinkedLis t () ;
stat ic LinkedLis t llGenAxDefVar = new LinkedLis t () ;
stat ic LinkedLis t llGenAxDefTypes = new LinkedLis t () ;
stat ic LinkedLis t l l S chCa l = new LinkedLis t () ;

stat ic HashMap hmTypeVar = new HashMap () ;
stat ic HashMap hmGenAxDef = new HashMap () ;
stat ic HashMap hmVarDecl = new HashMap () ;

stat ic boolean genAxDef = false , schDef = false , i sFunct ion = fa l se ;
stat ic boolean i s R e l a t i o n = false , i sConstant = false , schCal = fa l se ;
stat ic boolean s epa ra to r = fa l se ;

int countVar = 0 ;

325

/∗ a r e f e r e n c e to the l e x e r ∗/
private ScannerCl l e x e r ;

/∗ i n t e r f a c e to the l e x e r ∗/
private int yylex (){

int y y l r e t u r n = −1;
try {

yy lva l = new ParserVal (0) ;
y y l r e t u r n = l e x e r . yy lex () ;

}

catch (IOException e){
System . e r r . p r i n t l n (” I /O Error ”) ;

}

return y y l r e t u r n ;
}

public void yyer ro r (S t r ing e r r o r) {
int l ineN = l e x e r . l i n e ;
e r r o r = e r r o r + ”\n”+ ” Please check l i n e : ”+St r ing . valueOf (l ineN)+

”\n” + l e x e r . yytext ()+” with l ength : ”+l e x e r . yylength () ;
putError (e r r o r) ;

}

public Parser (Reader r) {
l e x e r = new ScannerCl (r , this) ;

}

public void putError (S t r ing e r r) {
System . e r r . p r i n t l n (e r r) ;
e r r f ound = true ;
i f (e r r . s tartsWith (” syntax e r r o r ”)){

System . e x i t (0) ;
}

}

326

Appendix G

fHead.tex and
output fHead.tex

The below specification is fHead.tex.
[NAME] [X]

headSeq : (seq1 X)→ X

∀ s : seq1 X • headSeq(s) = s(1)

State
name : seq1 NAME

Init
State′

Head
ΞState; a! : NAME ; b? : seq1 N; b!, c! : N

a! = headSeq[seq1 NAME](name) ∧ b! = headSeq(b?)
c! = headSeq(〈5, 2, 4〉)

The below specification is output fHead.tex.
[NAME]

headSeq : (seq1 NAME)→ NAME

∀ s : seq1 NAME •
headSeq(s) = s(1)

headSeq1 : (seq1 N)→ N

∀ s : seq1 N •
headSeq1(s) = s(1)

headSeq2 : (seq1 Z)→ Z

∀ s : seq1 Z • headSeq2(s) = s(1)

State
name : seq1 NAME

Init
State′

Head
ΞState; a! : NAME ; b? : seq1 N; b!, c! : N

a! = headSeq(name) ∧ b! = headSeq1(b?)
c! = headSeq2(〈5, 2, 4〉)

327

Appendix H

expandingschema 2.tex and its
expanded schema

The first specification is expandingschema 2.tex.

[COPY ,BOOK ,READER]

maxloans : N

Report ::= ReaderAlreadyRegistered | Ok | FurtherCopyAdded |
NewTitleAdded

Library
stock : COPY 7→ BOOK ; issued : COPY ↔ READER
shelved : FCOPY ; readers : FREADER

∀ x : COPY ; y1, y2 : READER •
(x 7→ y1) ∈ issued ∧ (x 7→ y2) ∈ issued ⇒ y1 = y2
shelved ∪ dom issued = dom stock
shelved ∩ dom issued = ∅
ran issued ⊆ readers
∀ r : readers • #(issued B {r}) ≤ maxloans

InitLibrary
Library ′

shelved ′ = ∅
readers′ = ∅

EnterNewCopy
∆Library; b? : BOOK

∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})
issued ′ = issued
readers′ = readers

328

AddCopyReport
ΞLibrary; b? : BOOK ; rep! : Report

b? ∈ ran stock ⇒ rep! = FurtherCopyAdded
b? 6∈ ran stock ⇒ rep! = NewTitleAdded

AddCopy =̂ EnterNewCopy∧AddCopyReport

Below is an expanded schema of the above specification which was generated
by our system.

AddCopy
∆Library; b? : BOOK ; rep! : Report

((∃ c : COPY | c 6∈ dom stock •
(stock ′ = stock ⊕ {c 7→ b?} ∧ shelved ′ = shelved ∪ {c})) ∧
issued ′ = issued ∧
readers′ = readers)
∧
(stock ′ = stock ∧
issued ′ = issued ∧
shelved ′ = shelved ∧
readers′ = readers ∧
b? ∈ ran stock ⇒ rep! = FurtherCopyAdded ∧
b? 6∈ ran stock ⇒ rep! = NewTitleAdded)

329

Appendix I

expandingsch2 4.tex and its
expanded schema

Below is the expandingsch2 4.tex specification.

Response ::= okay | sorry

CarsPark
count : N; maximum : N

count ≤ maximum

InitCarsPark
CarsPark

count = 0
maximum = 3

Enters
∆CarsPark

count < maximum
count ′ = count + 1
maximum ′ = maximum

NotEntered =̂ (¬Enters)

Below is an expanded schema of the above specification.

NotEntered
count : Z
count ′ : Z
maximum : Z
maximum ′ : Z

(¬ (count ≤ maximum) ∨
¬ (count ′ ≤ maximum ′) ∨
¬ (count < maximum) ∨
¬ (count ′ = count + 1) ∨
¬ (maximum ′ = maximum) ∨
¬ (count ∈ (N)) ∨
¬ (count ′ ∈ (N)) ∨
¬ (maximum ∈ (N)) ∨
¬ (maximum ′ ∈ (N)))

330

Appendix J

expandingsch5 2.tex and its
expanded schema

Below is the expandingsch5 2.tex specification. This specification is as
follows:

[MEMORY]

Calculator
store : MEMORY → Z
display : Z
arg2 : Z

Init
Calculator

∀m : MEMORY • store(m) = 0
display = 0
arg2 = 0

Add
∆Calculator

store′ = store
display ′ = display + arg2

AddI =̂ Add [argument/arg2, screen/display]

On the other hand, the below schema is an expanded schema of the above
specification.

AddI
store : P(MEMORY × Z)
store′ : P(MEMORY × Z)
screen : Z
display ′ : Z
argument : Z
arg2′ : Z

store′ = store ∧ display ′ = screen + argument ∧
store ∈ (MEMORY → Z) ∧ store′ ∈ (MEMORY → Z)

331

Appendix K

expandingsch6 1.tex and its
expanded schema

The below specification is expandingsch6 1.tex.

[MEMORY]

Calculator
store : MEMORY → Z
display : Z
arg2, arg21 : Z

Init
Calculator

∀m : MEMORY • store(m) = 0
display = 0
arg2 = 0

Enter
∆Calculator
value? : Z

store′ = store
display ′ = value?
arg2′ = display

Add
∆Calculator

store′ = store
display ′ = display + arg21

AddI =̂ Add \ (arg2)

Below is a new schema which was created from the above specification
generated by our system.

AddI
store : P(MEMORY × Z)
store′ : P(MEMORY × Z)
display : Z
display ′ : Z
arg2′ : Z
arg21 : Z
arg21′ : Z

∃ arg2 : Z •
store′ = store ∧ display ′ = display + arg21 ∧
store ∈ (MEMORY → Z) ∧ store′ ∈ (MEMORY → Z)

332

Appendix L

expandingsch7 1.tex and its
expanded schema

The below specification is similar to the above expandingsch5 2 specifica-
tion, but one new operational schemas have been added here.

Enter
∆Calculator
value? : Z

store′ = store
display ′ = value?
arg2′ = display

Composition =̂ Enter o
9 Add

The expanded schema which is shown as follows was generated by our sys-
tem.

Composition
∆Calculator
value? : Z

store′ = store ∧ display ′ = value? + display

333

