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ABSTRACT

Behaviour analysis and anomaly detection are key components of intelligent vision sys-

tems. Anomaly detection can be considered from two perspectives: abnormal events can be

defined as those that violate typical activities or as a sudden change in behaviour. Topic

modeling and change point detection methodologies, respectively, are employed to achieve

these objectives.

The thesis starts with development of novel learning algorithms for a dynamic topic

model. Topics extracted by the learning algorithms represent typical activities happening

within an observed scene. These typical activities are used for likelihood computation. The

likelihood serves as a normality measure in anomaly detection decision making. A novel

anomaly localisation procedure is proposed.

In the considered dynamic topic model a number of topics, i.e., typical activities, should

be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic

model is then developed where the number of topics is determined from data. Conventional

posterior inference algorithms require processing of the whole data through several passes.

It is computationally intractable for massive or sequential data. Therefore, batch and online

inference algorithms for the proposed model are developed. A novel normality measure is

derived for decision making in anomaly detection.

The latter part of the thesis considers behaviour analysis and anomaly detection within

the change point detection methodology. A novel general framework for change point detec-

tion is introduced. Gaussian process time series data is considered and a change is defined as

an alteration in hyperparameters of the Gaussian process prior. The problem is formulated

in the context of statistical hypothesis testing and several tests suitable both for offline

and online data processing and multiple change point detection are proposed. Theoretical

properties of the proposed tests are derived based on the distribution of the test statistics.
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Nj

i=1;
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zj′:j′′ — a set of topic assignments in the sequence of visual documents starting from the

j′-th document till the document j′′, zj′:j′′ = {xj}j
′′
j=j′ ;

φwk — a probability of word w in topic k, φwk = p(w|k);

φk — a distribution over words in topic k, φk = {φwk}w∈V ;

Φ — a matrix of distributions over words for all the topics, Φ = {φk}k∈V ;

θkj — a probability of topic k in document j, θkj = p(k|j);

θj — a distribution over topics in document j, θj = {θkj}k∈K;

Θ — a matrix of distribution over topics for all documents, Θ = {θj}j=∈J ;

nwj — a counter for the number of times word w appears in document j;

lwk — a counter for the number of times word w is associated with topic k;

η — a hyperparameter of a prior Dirichlet distribution for distributions φk;

α — a hyperparameter of a prior Dirichlet distribution for distributions θj ;

A(·) — a normality measure

Notations specific for the MCTM

B — a set of behaviours;

b — a behaviour, b ∈ B;

bj — a behaviour assigned to visual document j;

bj′:j′′ — a set of behaviour assignments in the sequence of visual documents starting from

the j′-th document till the document j′′, bj′:j′′ = {bj}j
′′
j=j′ ;
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θkb — a probability of topic k in behaviour b, θkb = p(k|b))1;

θb — a distribution over topics in behaviour b, θb = {θkb}k∈K;

Θ — a matrix of distribution over topics for all behaviours, Θ = {θb}b∈B;

ξb′b — a transitional probability to switch from behaviour b to behaviour b′, ξb′b = p(b′|b);

ξb — a transitional distribution to switch from behaviour b, ξb = {ξb′b}b′∈B;

Ξ — a transition probability matrix for a Markov chain of behaviours, Ξ = {ξb}b∈B;

ωb — a probability of behaviour b to be associated with the first document, ωb = p(b);

ω — a distribution over behaviours to be associated with the first document, ω = {ωb}b∈B;

nkb — a counter for the number of times topic k is associated with behaviour b;

nb′b — a counter for the number of times behaviour b is followed by behaviour b′;

nb — a counter for the number of times behaviour b is associated with the first document;

α — a hyperparameter of a prior Dirichlet distribution for distributions θb;

υ — a hyperparameter of a prior Dirichlet distribution for distributions ξb;

κ — a hyperparameter of a prior Dirichlet distribution for the distribution ω;

Ω — a set of parameters of the MCTM, Ω = {Φ,Θ,ω,Ξ};

Q(·) — the expected logarithm of the full likelihood of observed and hidden variables, that

is used in the EM-algorithm

1In the MCTM a topic mixture is associated with a behaviour rather than with a document as in
conventional topic models
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Notations specific for the dynamic HDP

G0 — a top-level Dirichlet process;

Gj — a document-level Dirichlet process;

H — a base measure for the top-level Dirichlet process;

njt — a counter for the number of words assigned to table t in document j;

mjk — a counter for the number of tables that have topic k in document j;

t — a table in a document-level Chinese restaurant, i.e., a document;

tji — a table assigned to the i-th word in document j;

tj′:j′′ — a set of table assignments in the sequence of visual documents starting from the

j′-th document till the document j′′, tj′:j′′ = {tji}j=j′:j′′,i=1:Nj
;

kjt — a topic assigned to table t in document j;

kj′:j′′ — a set of topic assignments in the sequence of visual documents starting from the

j′-th document till the document j′′, kj′:j′′ = {kjt}j=j′:j′′,t=1:mj· ;

α — a concentration parameter of a document-level Dirichlet process Gj ;

γ — a concentration parameter of a top-level Dirichlet process G0;

λ — a weighted parameter for topics used in an entire dataset

Notations for change point detection

N — the number of points in a training dataset;

τ — a time index;

τ i′:i′′ — a vector of time indices, τ i′:i′′ = {τi}i
′′
i=i′ ;
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yτ — an observation at time τ ;

yi′:i′′ — observations at the given time indices, yi′:i′′ = {yτi}i
′′
i=i′ ;

f(·) — a time series function;

fi′:i′′ — function values for the given time indices, fi′:i′′ = f(τ i′:i′′) = {f(τi)}i
′′
i=i′ ;

m(·) — a mean function of a Gaussian process;

µ — realisations of the Gaussian process mean function at the input points, µ = {µi}Ni=1 =

{m(τi)}Ni=1;

k(·, ·) — a covariance function of a Gaussian process;

K — realisations of the Gaussian process covariance function at the input points, K =

{Ki,j}Ni,j=1 = {k(τi, τj)}Ni,j=1;

ετ — additive noise of Gaussian process observations;

σ2 — a variance of the additive noise;

ϑ — a hyperparameter vector of a Gaussian process;

I — the identity matrix;

H0 — a null hypothesis;

H1 — an alternative;

τ∗ — change time;
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ψ(·) — the digamma function;

Γ(·) — the gamma function;

Cat(·) — a categorical distribution;

Dir(·) — a Dirichlet distribution;

DP(·, ·) — a Dirichlet process;

N (·, ·) — a Gaussian distribution;

GP(·, ·) — a Gaussian process;

χ2
n — a chi-squared distribution with n degrees of freedom;

χ
′2
n (·) — a non-central chi-squared distribution with n degrees of freedom



Chapter 1

INTRODUCTION

Intelligent video systems and analytics represent an active research field combining meth-

ods from computer vision, machine learning, data mining, signal processing and other areas

for mining meaningful information from raw video data. The availability of cheap sensors

and need for solving intelligent tasks facilitate the growth of interest in this area. Vast

amount of data collected by different devices require automatic systems for analysis. These

systems should be able to make decisions without human interruption or with minimal as-

sistance from a human operator. Video analytics systems should understand and interpret

a scene, detect motion, classify and track objects, explore typical behaviours and detect

abnormal events [97].

The application area of such systems is huge: preventing crimes in public spaces such

as airports, railway stations, or schools; counting objects at stadiums or shopping malls;

detection of breaks or leaks; smart homes for elderly people maintenance with fall detection

functionality and others.

Behaviour analysis and anomaly detection are essential parts of intelligent video sys-

tems [92, 19]. The objectives of anomaly detection are to detect and inform about any

unusual, suspicious and abnormal events happening within the observed scene. These may

be pedestrians crossing a road in a wrong place, cars running on the red light, abandoned

objects, a person fall, a pipe leak and others. Decisions made by a system should be in-

terpretable by a human therefore the system should also provide information about typical

behaviours to confirm its decisions.

This thesis develops machine learning methods for automatic behaviour analysis and

anomaly detections in video. The methods allow to extract semantic patterns from data.

These patterns can be interpreted as behaviours and they are used as a basis for decision

making in anomaly detection.
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1.1 Abnormal behaviour detection

The earliest video systems required permanent monitoring due to impossibility of data

recording. Despite the fact of significant improvements of technologies human operators still

perform anomaly detection. Human labour is expensive and exhausting due to the fact that

most of the time nothing important happens and operators lose concentration. Moreover,

human monitoring is unable to cover a significantly growing amount of data. This leads

to necessity of automated anomaly detection systems. However, even a formal definition

of abnormality is challenging, as it should include such informal concepts as “interesting”,

“unusual”, “suspicious”.

These systems should satisfy the number of requirements:

• Autonomous decision making. In real world applications it is impossible to predict

a priori all kinds of abnormalities that can happen. The system should then be self-

learning and be able to work without data labels.

• Interpretability. The decisions based on anomaly detections made by the system

can be crucial and affect people. Moreover, actions required by anomaly alerts can be

expensive to take. Therefore, humans should trust the system and understand why

the system makes a specific decision. Black-box algorithms are hence inappropriate

for a reliable anomaly detection system. Behaviour analysis can then be employed

jointly with anomaly detection to provide required explanation of system decisions.

• Real time execution. The system should detect an anomaly immediately to warn

human security staff. In some applications, such as crime investigation, offline systems

are sufficient to analyse past data. However, online systems are more critical, they

can replace current human operators. Therefore, an algorithm for anomaly detection

should be efficient.

This thesis presents methods to address these criteria. We employ the probabilistic

framework to model and interpret behaviours within the scene and to detect anomalies.

Two approaches are considered: topic modeling to extract typical local motion patterns

and to detect activities that violate these patterns (e.g., a car running on the red traffic
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(a) (b)

Figure 1.1: Samples of typical activities discovered by a topic model on busy road junction

data

light) and change point detection to identify global anomalies that break a normal motion

stream (e.g., panic in a crowd).

1.1.1 Topic modeling

Topic modeling [16] methods extract a latent structure in observed data allowing to represent

it in a low-dimensional space of so-called topics. Topics form sets of features that statistically

often appear together. Therefore, topics can be used to express normal patterns. In video

applications a topic can represent a typical local motion pattern or activity (Figure 1.1).

Note that topics would represent only normal activities and do not capture abnormal ones

even though they are present in data. In this context abnormal activities are understood

as those that happen rarely.

Likelihood of new observations based on extracted topics is a reasonable normality mea-

sure within the topic modeling approach. A likelihood value is low when an observation

does not fit to the learnt topics, i.e., normal activities. Therefore, a low likelihood value

would indicate that something atypical or abnormal happens.

Topic modeling addresses all the requirements for anomaly detection systems formulated

above. As topic modeling is fully unsupervised it does not require any labels in data, it

does not even assume that all observations in a training dataset are normal. Topics provide

3



Introduction

0 10 20 30 40 50 60 70 80 90 100 110

−1

0

1

Time

O
b
se
rv
ed

v
a
lu
es

Figure 1.2: Sample of a time series with a change point that separates different behaviours.

The time series represents coordinates of a dancing bee. In this figure two dance phases are

given: right turn (red) and waggle (green). A cross indicates the change point. Details of

the dance bee data are provided in Chapter 5.

descriptions of normal activities that help in explanation of anomaly detection decisions.

Recent advances in topic modeling allow to apply topic models on big and streaming data

efficiently, e.g., [63, 136].

The first part of the thesis is devoted to development of methods for behaviour analysis

and anomaly detection within the topic modeling approach.

1.1.2 Change point detection

Change point detection represents an alternative approach for behaviour analysis and anomaly

detection in video. Topic modeling methods extract typical behaviours and detect abnor-

mal events that cannot be explained by these behaviours. Change point detection can be

applied for discovering sudden changes in global behaviours. For example, it is useful for

crowd panic detection in public places or for behaviour segmentation in smart homes. In

contrast to topic modeling change point detection can be employed in unknown situations.

Change point detection [14] methods find changes in a probability distribution of stochas-

tic processes or time series. In the context of behaviour analysis different probability dis-

tributions represent different behaviours (Figure 1.2). If at the beginning of observation, a

normal behaviour is expected, then a change in the distribution may mean an anomaly.

The requirements for anomaly detection systems are also fulfilled within the change

point detection approach. Change point detection methods can work in an unsupervised

manner where parameters of underlying distributions are estimated from observed data.
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Interpretability is ensured by the correspondence between behaviours and probability dis-

tributions of observed data. Most of the methods for change point detection are online and

designed for quickest detection.

The developed methods for behaviour analysis and anomaly detection within the change

point detection approach are presented in the latter part of the thesis.

1.2 Key contributions and outline

Below is a brief overview of the content and main contributions presented in the thesis

chapters.

Chapter 2. This chapter reviews the concepts and algorithms that serve as a basis for the

methods proposed in this thesis. Knowledge mining from video starts from an analysis

of video data and extraction of informative features from it, therefore the review starts

from outlining the methods for video processing. The chapter then covers the current

state of the art in the area of anomaly detection in video. This thesis considers two

approaches for anomaly detection via topic modeling and change point detection. An

overview of both areas is presented at the end of the chapter.

Chapter 3. A dynamic topic model for behaviour analysis and anomaly detection in video

is considered in this chapter. The focus of this chapter is on development and compar-

ison of different learning algorithms for the topic model. Predictive likelihood of newly

observed data is used as a normality measure for decision making. A novel procedure

to localise a detected anomaly is proposed in the chapter. The key contributions of

this chapter consist of:

• New learning algorithms for the Markov clustering topic model are developed.

• An anomaly localisation procedure that follows concepts of probabilistic topic

modeling is designed.

• Likelihood expressions as a normality measure of newly observed data are derived.

• Comprehensive analysis of the algorithms over real video sequences is introduced.

Experiments show that the proposed methods provide more accurate results than
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the previously developed learning method in terms of anomaly detection perfor-

mance. The experiments also confirm effectiveness of the proposed anomaly

localisation procedure.

Chapter 4. A novel dynamic nonparametric topic model is proposed in this chapter. In

contrast to the model, analysed in the previous chapter, the number of model param-

eters is not fixed in advance and, in practice, it is determined from data. The model is

general and can be applied on any kind of data, where one is interested in extracting

typical patterns from dynamic data. The dynamics are assumed such that mixtures

of typical patterns at successive data points are similar. In this chapter the model is

considered in the context of behaviour analysis and anomaly detection in video. The

key contributions of this chapter are as follows:

• A novel dynamic nonparametric topic model is designed.

• An inference scheme that is combination of batch and online data processing is

developed.

• A normality measure for anomaly detection decision making is proposed.

• The introduced method is evaluated on both synthetic and real video data. The

results show that consideration of dynamics in a model significantly improves

anomaly detection performance.

Chapter 5. This chapter considers the problem of behaviour analysis and anomaly detec-

tion in video from a different perspective in comparison to the previous chapters. A

video is presented as a time series and the change point detection methodology is

employed for it. A novel general framework for change point detection is introduced

in this chapter. The Gaussian process time series model is considered. The problem is

formulated in the context of statistical hypothesis testing. Statistical tests proposed in

this chapter can be applied for both offline and online data processing to detect single

and multiple change points. The key contributions of this chapter can be summarised

as:

• The change point detection problem is formulated within the statistical hypoth-
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esis testing approach, where a change is defined as an alteration in hyperparam-

eters of a Gaussian process prior.

• A general framework for change point detection is proposed.

• Statistical tests for change point detection are defined and developed.

• Theoretical properties of the introduced statistical tests are derived.

• A change point detection method for online data processing able to detect mul-

tiple change points is designed.

• The proposed methods are thoroughly evaluated in terms of the typical change

point detection measures on synthetic and real video data. Results achieved by

the developed methods demonstrate a tradeoff between false alarm and missed

detection rates.

Chapter 6. The chapter presents an overview of the main results of the thesis and direc-

tions for future work based on the research provided in the thesis.

1.3 Disseminated results

The results presented in this thesis are disseminated in the following papers:

Journal papers

• O. Isupova, D. Kuzin, L. Mihaylova.“Learning Methods for Dynamic Topic Mod-

eling in Automated Behaviour Analysis”, in IEEE Transactions on Neural Net-

works and Learning Systems, provisionally accepted subject to minor correc-

tions, 2017

• O. Isupova, D. Kuzin, F. Gustafsson, L. Mihaylova. “Change Point Detection

with Gaussian Processes”, in IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, under review, 2017

Peer-reviewed conferences

• O. Isupova, D. Kuzin, L. Mihaylova. “Dynamic Hierarchical Dirichlet Process

for Abnormal Behaviour Detection in Video”, in Proceedings of the 19th Interna-

tional Conference on Information Fusion, 5-8 July 2016, Heidelberg, Germany,

pp. 750-757
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• O. Isupova, L. Mihaylova, D. Kuzin, G. Markarian, F. Septier. “An Expectation

Maximisation Algorithm for Behaviour Analysis in Video”, in Proceedings of 18th

International Conference on Information Fusion, 6-9 July 2015, Washington,

USA, pp. 126-133

• O. Isupova, D. Kuzin, L. Mihaylova. “Abnormal Behaviour Detection in Video

Using Topic Modeling”, in Proceedings of University of Sheffield Engineering

Symposium, 24 June 2015, Sheffield, UK

Workshops

• O. Isupova, D. Kuzin, L. Mihaylova. “Anomaly Detection in Video with Bayesian

Nonparametrics”, in ICML 2016 Anomaly detection Workshop, 24 June 2016,

New York, NY, USA

The following papers have been published covering the related work:

Peer-reviewed conferences

• D. Kuzin, O. Isupova, L.Mihaylova. “Structured Sparse Modelling with Hierar-

chical GP” in Proceedings of the Signal Processing with Adaptive Sparse Struc-

tured Representations (SPARS) Workshop, 5-8 June 2017, Lisbon, Portugal

• Z.Li, O. Isupova, L. Mihaylova, L.Rossi. “Autonomous Flame Detection in Video

Based on Saliency Analysis and Optical Flow”, in Proceedings of the IEEE Inter-

national Conference on Multisensor Fusion and Integration for Intelligent Sys-

tems, 19-21 September 2016, Baden-Baden, Germany, pp. 218-223

• D. Kuzin, O. Isupova, L. Mihaylova. “Compressive Sensing Approaches for

Autonomous Object Detection in Video Sequences”, in Proceedings of the 10th

Workshop Sensor Data Fusion: Trends, Solutions, and Applications, 6-8 October

2015, Bonn, Germany, pp. 1-6

8



Chapter 2

BACKGROUND

In this chapter a review of related works is provided. Presented concepts and methods are

used as a basis for the main contributions given in the later chapters. Video analysis starts

from processing raw data. The objective is to develop algorithms and tools for autonomous

systems that can extract knowledge from data. Section 2.1 gives a bird’s sight view on

the algorithms for video processing. Section 2.2 provides a survey of the current state of

the art in the area of anomaly detection in video, covering each step of the data analysis.

Section 2.3 delivers an introduction to the area of topic modeling that is used in Chapters 3

and 4. Section 2.4 overviews the area of change point detection, which is considered in

Chapter 5.

2.1 Outline of video processing methods

First step in video processing is to determine objects of interest within the scene and estimate

their motion. The following sections present a brief overview of the methods used for object

detection and tracking in video.

2.1.1 Object detection

There are a number of approaches for object detection depending on applications. The goal

can be to detect any moving objects or detect some specially defined objects such as faces

or vehicles.

2.1.1.1 Optical flow

The analysis of motion can significantly help in video processing and mining semantic in-

formation from it. Therefore, motion detection is an important step in video analytics.
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An optical flow is a vector field of apparent pixel motion between frames. Optical flow

estimation is one of the basic methods for motion detection.

The problem of finding an optical flow between two frames can be formulated as follows:

Input:

I1, I2 — two frames of one scene;

Output:

{u,v} = {uǐ,ǰ , vǐ,ǰ}
Ň,M̌

ǐ=1,ǰ=1
— the vector field of apparent pixel motion between the

input frames, where uǐ,ǰ , vǐ,ǰ are the horizontal and vertical displacements of the

pixel with the coordinates (̌i, ǰ) in the frame I1, i.e., the new location of this pixel

in the frame I2 is (̌i+ uǐ,ǰ , ǰ + vǐ,ǰ); Ň , M̌ are the sizes of the frame

Methods for optical flow estimation can be classified as global or local. The global

methods search for an optical flow {u,v} for the entire image. The local methods seek a

vector {uǐ,ǰ , vǐ,ǰ} for each pixel.

2.1.1.1.1 Global methods

The first global method for optical flow estimation was proposed in [67]. They use two basic

assumptions:

1. Colour consistency. Pixels do not change colour while moving from one frame to

another, i.e., I1(̌i, ǰ) = I2

(
ǐ+ uǐ,ǰ , ǰ + vǐ,ǰ

)
2. Spatial similarity. Neighbouring pixels move similarly and have similar optical flow

vectors, i.e., {uǐ,ǰ , vǐ,ǰ} ≈ {uĩ,j̃ , vĩ,j̃}, where (̃i, j̃) coordinates from the (̌i, ǰ)-th pixel

neighbourhood

Taking into account these assumptions a cost function for finding the global optical flow

for the whole frame can be formulated as follows:

E(u,v) =

Ň,M̌∑
ǐ,ǰ=1

[
ρcolour

(
I1(̌i, ǰ)− I2(̌i+ uǐ,ǰ , ǰ + vǐ,ǰ)

)
+

+λOF

(
ρspatial(uǐ,ǰ − uǐ+1,ǰ) + ρspatial(uǐ,ǰ − uǐ,ǰ+1)+

ρspatial(vǐ,ǰ − vǐ+1,ǰ) + ρspatial(vǐ,ǰ − vǐ,ǰ+1)
)]
, (2.1)
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where ρcolour and ρspatial are penalty functions, λOF is a regularisation parameter. An

optimisation method is then applied to find the optimal optical flow.

Global methods of optical flow estimation differ in penalty functions, optimisation meth-

ods and additional heuristics [139]. The global methods provide the most accurate results

but suffer from computational complexity as they require solving the optimisation problem

for the entire frame that makes them inappropriate for real-time frame processing.

2.1.1.1.2 Local methods

Local methods estimate the optical flow for each pixel. One of the most popular local

method for optical flow estimation is the Lucas-Kanade algorithm [100]. The following

assumptions are considered:

1. Colour consistency. This is the same assumption as for the global methods: a pixel

does not change its colour while moving.

2. Small displacement. A pixel has a small displacement from one frame to another.

As the pixel has the small displacement it is possible to apply the Taylor series expansion

for I2(̌i + u, ǰ + v) at the point (̌i, ǰ) (for notational simplicity subscripts of u and v are

omitted, in the context of local methods the optical flow of the current pixel at the point

(̌i, ǰ) is always assumed):

I2(̌i+ u, ǰ + v) ≈ I2(̌i, ǰ) +
∂I2

∂ǐ
(̌i, ǰ) · u+

∂I2

∂ǰ
(̌i, ǰ) · v (2.2)

The colour consistency assumption can be written as follows:

I2(̌i+ u, ǰ + v)− I1(̌i, ǰ) = 0 (2.3)

Combination of both assumptions (2.2) and (2.3) results in:

I2(̌i+ u, ǰ + v)− I1(̌i, ǰ) ≈ (I2(̌i, ǰ)− I1(̌i, ǰ))︸ ︷︷ ︸
It (̌i,ǰ)

+
∂I2

∂ǐ︸︷︷︸
Iǐ

(̌i, ǰ) · u+
∂I2

∂ǰ︸︷︷︸
Iǰ

(i, j) · v = 0 (2.4)

This is an underdetermined problem, because there is one equation and two unknown

variables, therefore more assumptions are required.
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3. Spatial similarity. This is the same assumption as for global methods: neighbouring

pixels have the same optical flow.

According to the spatial similarity assumption, each surrounding pixel (̃i, j̃) from the

window Pǐ,ǰ of the size Ǩ × Ľ is supposed to have the same optical flow:

It(̃i, j̃) + Iǐ(̃i, j̃) · u+ Iǰ (̃i, j̃) · v = 0 ∀(̃i, j̃) ∈ Pǐ,ǰ (2.5)

There are now Ǩ · Ľ equations and still two unknown variables. Therefore, this is an

overdetermined problem and it can be solved using the least squares method.

The conditions of the least squares solution being stable lead to the requirement that

the Lucas-Kanade method can be applied to find the optical flow only at interest points

such as edges and corners [134].

A review of other gradient-based methods for optical flow estimation can be found in [48].

The methods differ in the basic assumptions, types of estimators and types of motion.

The methods for optical flow estimation can be applied for object detection in video [172,

115, 35, 140, 33, 70, 165]. The optical flow methods are used on their own and in combination

with other approaches to improve the performance of detection.

2.1.1.2 Background subtraction

Background subtraction is one of the most popular techniques for object detection. The idea

is to separate a background model from the whole scene image. Background represents static

parts of the frame. Therefore, the result of this separation (or in other words subtraction)

is expected to be moving objects.

The general background subtraction problem can be formulated as follows:

Input:

I — the current frame;

Ibackground — the background model;

Output:

{M1, . . . ,MḰ} — the set of pixel-masks for each object in the frame I, where Ḱ

is the number of the objects
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2.1.1.2.1 Frame difference

In the simplest case background subtraction can be implemented as frame difference. In this

method the background model Ibackground is a frame with static background (no objects).

A foreground binary mask is then calculated as: Iforeground = abs (I − Ibackground) < cTHR,

where cTHR is a threshold. As the obtained mask Iforeground is usually very noisy, filtering

and blob extraction are often performed afterwards.

The main advantage of this method is its simplicity and computational efficiency. The

similar approach for contour detection represents the difference of successive frames. The

disadvantages of these methods include an inability to work with a slightly changing back-

ground, a moving background, illumination changes and others.

2.1.1.2.2 Gaussian Mixture Model

In the frame difference approach background pixels have a fixed value. Changing values can

be modelled as samples from a probability distribution. The common approaches are to use

a Gaussian distribution [167] or a mixture of Gaussian distributions [137]. The Gaussian

mixture model simulates situations when a pixel represents different types of background

at different time moments. For example, one pixel can belong to the sky in one frame and

to a tree leaf in another.

The parameter learning of the mixture model can be performed by the expectation-

maximisation algorithm but it cannot be applied for online learning. Therefore, the ap-

proximate fast procedure is proposed in [137]. New and small components of the mixture

model are treated as a foreground as they are poorly fitted with the background model.

The Gaussian mixture model for background subtraction is a good example of a com-

promise between accuracy and computation complexity. The learning procedure is very fast

while a background model is adaptive for light changes.

2.1.1.2.3 Other methods

The other approaches for background subtraction differ in features used for background

modelling, e.g., texture and colour features are used in [170]; in models for background, e.g.,

nonparametric estimation of a pixel intensity probability distribution is proposed in [41]; in

a spatial level of background modelling, e.g., a hierarchical approach including the pixel, re-
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gion and frame level for background subtraction is considered in [72]. A number of methods

are devoted to special problems of the field, for example, shadow removal from foreground

detection [73], specular reflection removal [94] and sudden illumination changes [148]. The

survey of conventional and most recent methods can be found in [117, 32, 20].

Background subtraction is one of the most widely used methods for object detection in

video processing. However, there are still challenges in the field [32]: moving background;

moving camera; camouflage (i.e., a foreground object is hardly distinguished from a back-

ground); “sleeping foreground” (i.e., a foreground object stops for a long period of time);

sudden global illumination changes.

2.1.1.3 Detection of special classes of objects

Both motion detection by optical flow estimation and background subtraction aim to detect

moving objects. The interest can be in detection of special classes of objects without con-

sidering their motion. Face detection [174] is an example of such kind of applications, where

the Viola-Jones face detector [153, 154] is one of the most popular algorithms. Pedestrians

represent another class of special objects [42]. Recently deep learning methods have been

applied for detection of wide classes of predefined objects simultaneously [54, 43, 123].

2.1.2 Object tracking

The next level of understanding and analysing the observed scene after object detection is

object tracking. Object tracking is the process of object localisation and association of its

location in the current frame with the previous ones, building a track for each object. A

track is a sequence of object locations over time.

The problem of object tracking can be formulated as follows:

Input:

I1, . . . , IJ — the sequence of frames;

Output:

{Tra}Ḱa=1 — the set of tracks, where Ḱ is the number of all detected objects

over the whole frame sequence, Tra = {xa,τa1 , . . . , xa,τaŃa
} is the track for the a-th

object, xa,τan is the location of the a-th object at time τan , Ńa is the total number

of moments when the a-th object is tracked
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The methods for object tracking can be classified into two very broad categories: tracking

matching methods and state space models.

2.1.2.1 Tracking matching methods

Tracking methods in this category do not model motion of the objects precisely. They may

rely on object detection followed by finding correspondence between detections in different

frames, or may be based on object appearance.

The former methods, in general, work by the following scheme: for each frame indepen-

dently some object detection method is applied and association between these detections in

different frames is then found. The association problem can be formulated as the assignment

problem [106]. A cost function for the assignment problem can be built based on different

assumptions, for example, smoothness of object velocities [131], correlation between new

detections and current object templates [96], or matching of the current object description

with a region that surrounds new detections [4].

Appearance-based methods seek regions in frames that are matching given object tem-

plates. One of the basic methods for such types of trackers is the mean-shift tracker [30].

The mean-shift tracker performs the gradient-ascent approach to find a new location of an

object maximising similarity with the given template. The task can be considered as a

binary classification problem distinguishing the object and the background [9].

2.1.2.2 State space models

The other category of tracking methods is based on state space models. These methods

estimate an object state (e.g., position, velocity and acceleration) considering a motion

model corrected by incomplete measurements. The measurements are obtained by an object

detection algorithm.

Let Xτ denote the state of the object at the time τ and Zτ the measurement of the object

obtained from the frame at time τ . The motion model represents a functional dependence

between the current and previous states:

Xτ = fmotion
τ (Xτ−1, vτ−1), (2.6)

where fmotion
τ (·, ·) is the motion function, vτ−1 is noise.
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The measurement model represents a dependence between the current object measure-

ment and its current state:

Zτ = hmeas
τ (Xτ , uτ ), (2.7)

where hmeas
τ (·, ·) is the measurement function, uτ is noise, assumed to be independent of vτ .

Bayesian filters are applied to find a posterior probability distribution p(Xτ |Z1:τ ) of

the current state Xτ given the sequence of the measurements up to the current moment

Z1:τ = {Z1, . . . ,Zτ}. Assuming that the posterior distribution for the previous state

p(Xτ−1|Z1:τ−1) is available, a recursive filtering procedure can be formulated as the fol-

lowing two steps:

prediction step

Compute the predictive density of the current state utilizing the motion model for

p(Xτ |Xτ−1):

p(Xτ |Z1:τ−1) =

∫
p(Xτ |Xτ−1)p(Xτ−1|Z1:τ−1)dXτ−1; (2.8)

update step

Compute the posterior probability of the current state utilizing the measurement

model for p(Zτ |Xτ ):

p(Xτ |Z1:τ ) =
p(Zτ |Xτ )p(Xτ |Z1:τ−1)∫
p(Zτ |X̃τ )p(X̃τ |Z1:τ−1)dX̃τ

(2.9)

Different further assumptions about the motion and measurement models and noise lead

to different methods. If both vτ and uτ are assumed to be independent and having Gaussian

distributions, both motion and measurement models are linear with additive noise, the

resulting filter is the Kalman filter [77]. The common extensions of the Kalman filter include

the extended and unscented Kalman filters [76]. Although they relax the functional linearity

constraint they fail to represent multimodal or heavily skewed posterior distributions. In

this case the particle filter can be used [56, 7]. The idea of the particle filter is to represent

a posterior distribution, which cannot be calculated analytically, with a weighted sum of

samples (particles). An overview of particle filtering for tracking in video can be found

in [104].
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2.2 Anomaly detection

In recent years a number of methods have been proposed for the anomaly detection problem.

One of the challenges in this field is the absence of one formal problem formulation due to

the broadness and informality of the desired objectives. The goal is to detect any unusual

events that can be of interest for a human operator and to warn about them. Formalisation

of the concept of normality can be achieved by answering the following questions:

• How to represent the video data? The raw video data should be expressed in a manner

suitable for further analysis and this representation should contain as much of relevant

information from the video as possible.

• How to model behaviours and/or activities happening within the observed scene?

How to make the system understand and explain activities? The system should have

a model of normal behaviour in order to detect abnormal behaviours.

• What should be considered as normal and what as abnormal? How to measure nor-

mality? The system should make a decision about normality or abnormality of the

given data.

The problem of abnormal behaviour detection can then be formulated as follows:

Input:

I1, . . . , IJ — the sequence of frames;

D(I1), . . . , D(IJ) — the descriptors of the frames;

Output:

label(D(Ij)) – the normal or abnormal label ∀j ∈ Jtest, where Jtest ⊆ {1, . . . , J}

Note that the decision about abnormality is not limited to be made at a frame level. It

can be done both more broadly for a sequence of successive frames and more precisely for

a region of a frame.

A review of the methods that answer the above questions is presented below.

2.2.1 Video representation

There is a number of different representations used for feature extraction. They can be

based on trajectories or pixel level features.
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2.2.1.1 Trajectory-based methods

This is an intuitive way of a data representation for the anomaly detection task. In most

cases abnormal behaviour can be determined when an individual motion differs from regular

motion patterns, i.e., when an individual trajectory differs from regular trajectories.

All object tracking methods are suitable for the anomaly detection problem. For exam-

ple, in [74] tracking of foreground corner points by the Kanade-Lucas-Tomasi algorithm [147]

is performed for anomaly detection purposes. For a given time interval, a set of trajectories

is collected by the tracking procedure. Two types of visual features are formed as follows.

The scene is divided by grid cells. Coordinates of cells that contain any of trajectories form

the first type of features. Features of the second type represent information about relative

shifts of cell points along trajectories.

In [13] video representation for anomaly detection is performed by the object detec-

tion and tracking framework proposed in [73]. Vectors that describe transitions of objects

along their trajectories and object size parameters are used as visual features for behaviour

modelling.

Background subtraction and tracking based on detections correspondence are imple-

mented in [112]. At every time moment each track is represented as a vector of current

object coordinates, object size parameters and a current velocity. To discretise this repre-

sentation k-means clustering is performed. Sequences of clusters indices for each trajectory

are used as visual features.

2.2.1.2 Methods based on pixel level features

The other authors argue that the tracking performance still suffers in crowded scenes and

use pixel-level features.

All kinds of image descriptors can be used as the visual features of the microscopic

type. The recent survey of visual descriptors can be found in [93]. In the literature devoted

to anomaly detection in video, there are examples of using very different kinds of image

descriptors. A raw value of pixel intensity can be treated as a visual feature [57]. In [28] a

frame sequence is divided into 3 dimensional cubes. The scale-invariant feature transform,

histogram of oriented gradients and histogram of optical flow features are extracted for each

voxel. The local features are then clustered to obtain a bag-of-words histogram for each
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cube.

Discretised optical flow is a widely used low-level feature. One of the discretisation

scheme [163, 69, 151, 84] is as follows. The scene is divided into small cells. For each cell a

mean optical flow is calculated. This mean motion is then quantised into the given number

of directions. This quantised motion and cell coordinates together form visual features. The

variations of this scheme include preprocessing of the frame with background subtraction

such that an optical flow is calculated only for foreground pixels [152, 91] or averaging of

the optical flow in a temporal domain among the number of successive frames [45].

The optical flow is also used as a building block for more sophisticated features. Par-

ticle advection inspired by fluid dynamics is proposed in [103]. The model considers small

particles moving under the optical flow similarly to leaves moving in a water flow. A social

force of interaction is then calculated based on the difference between the actual optical flow

for the particle and the average optical flow among neighbours of the particle. In [121] an

optical flow is averaged in a temporal domain. The desired velocity is defined as the spatial

average of the optical flow over a small neighbourhood of the particle position. In [171] the

length of the social force vector is calculated according to the distance between two particles

while the direction of the force vector is defined by the optical flow difference. The weighted

modification of the initial interaction force is considered in [176]. The modification includes

geometrical consistency, social disorder and crowd congestion constraints.

2.2.1.3 Dimensionality reduction

It is common to perform a dimensionality reduction step after extraction of low-level fea-

tures. This may be done by clustering [169] or topic modeling [151]. The adopted version

of the fuzzy clustering algorithm [66] is applied for the dimensionality reduction in [126].

In [31] a minimum subset of initial codewords is computed such that all the other elements

can be reconstructed using this optimal subset.

2.2.2 Behaviour model

The behaviour model is an abstraction used in a system for anomaly detection to interpret

activities happening in the scene. The behaviour models can be classified by the learning

procedure as supervised, semi-supervised, or unsupervised.
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Supervised models

Supervised models for abnormal behaviour detection are suitable for applications

where a particular type of abnormality is expected. These models also require a

labelled training dataset. An illustrative example of such kind of applications is fall

detection [109, 105].

Semi-supervised models

Semi-supervised models represent a compromise between complexity of a fully-

automatic system and expense of labelling the data. Systems that employ semi-

supervised models in anomaly detection can work by the following scheme [112, 69]: a

system makes alerts to a human operator about all types of abnormalities it finds and

the human operator can label some outputs as uninteresting or label missed anoma-

lies. The system should take into account the responses by the human operator and

improve the output.

Unsupervised models

Unsupervised methods [118] are used in fully autonomous systems where a system

cannot accept any responses from a human operator and it only informs him or her

about the abnormality. The human operator is assumed to react on the abnormal

events, not to participate in anomaly detection. Methods for semi-supervised and

unsupervised learning that represent a main interest in this thesis are reviewed in

more detail below.

Although the above classification is traditional for machine learning problems another

classification of behaviour models seems to be more discriminative according to the literature

review. In this classification the behaviour models are divided into two categories: template-

based and statistical models. The former contains models where an explicit template for

a normal behaviour is built. While the latter contains models where statistical regularities

are extracted from the data.

2.2.2.1 Template-based models

In this category a method extracts some templates from data and treats them as a normal

behaviour model. In [121] the sum of the visual features of a reference frame is treated as

20



Background

a normal behaviour template. Another common approach is clustering of visual features

where clusters are considered as normal behaviour templates [126, 171]. The agglomerative

clustering is implemented in [112], where a hidden Markov model is built for every cluster.

2.2.2.2 Statistical models

The statistical behaviour models find statistical regularities in the data to explain different

behaviours within the observed scene.

Behaviour modelling can be viewed as a classical classification problem. In the case of

unsupervised learning this is a one-class classification problem [144]. This may be solved

by the one-class support vector machine [28]. In the case of supervised learning all conven-

tional binary classifiers are suitable. For example, it may be the two-class support vector

machine [176, 71].

Another approach is to consider the problem within the probabilistic framework. His-

togram approximation of a probability distribution of the most recent observation is em-

ployed in [1]. A Gaussian distribution of a cluster of visual features is considered in [45].

Parameters of the Gaussian distribution are approximated with their sample estimates. The

Gaussian mixture model simulates a probability distribution of visual features in [13]. The

coupled hidden Markov model that represents spatio-temporal motion dependencies is used

for behaviour representation in [83].

Typical activities or behaviours can be considered as sets of features that often appear

together. Topic modeling is an approach to find such kind of statistical regularities thus a

topic model can be used as a behaviour model in anomaly detection [103, 91, 138, 152]. A

number of variations of the conventional topic models have been proposed recently. In [163]

different video clips are assumed to have similar mixtures of activities, that is modelled by

shared hyperparameters. Temporal dependencies among activities are considered in [69,

151, 84]. A continuous model for an object velocity is proposed in [74].

2.2.3 Normality measure

Once the behaviour model is defined a decision rule about abnormality has to be designed.

A new observation is labelled as normal or abnormal based on some normality measure.

If normal behaviour templates are available, the anomaly decision rule is based on com-
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parison of the new observation with these templates. In [121] the simple absolute difference

between the new observation and the reference normal template is used as the normality

measure. When the difference is larger than a threshold the new observation is considered

as abnormal. The Jensen-Shannon divergence [95], which is a symmetrised and smoothed

version of the Kullback-Leibler divergence, is used as a similarity measure between the new

observation and reference ones in [138]. The Z-score value is considered in [171, 112]. The

so-called sparse reconstruction cost is proposed as a normality measure in [31]. The idea is

that a normal behaviour is well represented in the basis built from the training data and has

a sparse coefficient vector in this basis while an abnormal behaviour cannot be explained

with the normal templates and has a dense coefficient vector.

In the case of the probabilistic models, such as topic or hidden Markov models, an

intuitive way is to use a likelihood function as normality measure [74, 91, 103, 45, 13, 163, 83].

In [1] the likelihood of the new observation is calculated in the multiple spatial locations. The

integrated decision about abnormality is then made based on the local likelihood measurers.

The comparison of the different normality measures based on the likelihood estimation is

provided in [152].

Chapters 3 and 4 consider the topic modeling approach for behaviour analysis and

anomaly detection. A brief introduction of topic modeling is provided below.

2.3 Topic modeling

Topic modeling is an approach to discover statistical patterns in the data. It was originally

developed for text mining [64, 18] although it was applied later in many areas including com-

puter vision, genetics [16], collaborative filtering [65, 102] and social network analysis [141].

For clarity the following explanation is provided for the text mining problem.

Topic modeling aims to find latent topics given the collection of unlabelled text docu-

ments that consist of words. It is assumed that topics should explain the appearance of

words in documents forming a hidden structure of the collection. In probabilistic topic

modeling the documents are assumed to be represented as mixtures of topics, where each

topic is a distribution over words. It is used for more compact document representation,

semantic information retrieval [168], analysing evolution of topics over the time [175, 25],

text classification [36] and others.
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2.3.1 Problem formulation

The simplest probabilistic topic modeling problem [64, 18] can be formulated as follows:

Input:

J — a set of documents;

V — a set of words;

F = ‖nwj‖w∈V,j∈J — a co-occurrence matrix of words and documents, where nwj

is the number of times the word w appears in the document j;

Assume:

K — a set of topics;

Output:

p(w|k) — a probability of the word in the topic ∀w ∈ V, k ∈ K;

p(k|j) — a probability of the topic in the document ∀k ∈ K, j ∈ J

Here the bag-of-word and bag-of-document assumptions are applied, i.e., the joint

probability of observed data is independent of the order of words in documents and the order

of the documents. The conditional independence assumption is also usually used,

which means that a word appearance in a document depends only on the corresponding

topic but not on the document:

p(w|k, j) ≡ p(w|k) (2.10)

Given the conditional independence assumption and the law of total probability a prob-

ability of a word in a document can be described by:

p(w|j) =
∑
k∈K

p(w|k)p(k|j) (2.11)

The following generative process is assumed for each j ∈ J :

1. choose the length of the document Nj ;

2. repeat Nj times:

(a) draw a topic k from p(k|j);

(b) draw a word w from p(w|k)
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The representation (2.11) can be viewed as a stochastic matrix1 factorisation problem

for the given word-in-document frequency matrix F̂:

F̂ = ‖ńwj‖w∈V,j∈J , ńwj =
nwj
Nj

(2.12)

The aim is to represent this matrix as a product of two stochastic matrices Φ and Θ

Φ = {φwk}w∈V,k∈K, φwk = p(w|k), φk = {φwk}w∈V ;

Θ = {θkj}k∈K,j∈J , θkj = p(k|j), θj = {θkj}k∈K

It is worth mentioning that the solution for this representation is not unique [156].

Indeed,

F̂ = Φ ·Θ = (ΦA) · (A−1Θ) (2.13)

for any A such that matrices ΦA and A−1Θ are stochastic.

2.3.2 Inference

There are two basic topic models: probabilistic latent semantic analysis (PLSA) [64] and la-

tent Dirichlet allocation (LDA) [18]. The former considers inference via maximum likelihood

estimation while the latter solves the problem within the Bayesian framework.

2.3.2.1 Probabilistic latent semantic analysis

In PLSA the parameters Φ and Θ are estimated by the maximum likelihood approach. The

full log likelihood of the collection using (2.11) can be written as follows2

log(L) = log

∏
j∈J

∏
w∈V

p(w|j)nwj

 =
∑
j∈J

∑
w∈V

nwj
∑
k∈K

φwk θkj (2.14)

The expectation-maximisation (EM) algorithm [39] is applied to parameters that max-

imise the log likelihood. This is an iterative procedure that repeats E and M-steps. During

the E-step the expected value of the topic posterior for each word and document pair is

approximated, keeping the current estimates of parameters fixed:

hkjw
def
= p(k|j, w) =

φwk θkj∑
k′∈K

φwk′ θk′j
∀k ∈ K, w ∈ V, j ∈ J (2.15)

1Stochastic matrix is a non-negative matrix with each column summing to one.

2The term p(j) is omitted as it is not used in parameter optimisation.
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The M-step finds parameter estimates, that maximise the log likelihood, keeping the

approximation of the topic posterior fixed:

φ̂wk =

∑
j∈J

nwkhkjw∑
w′∈V

∑
j∈J

nw′jhkw′j
∀w ∈ V, k ∈ K; (2.16)

θ̂kj =

∑
w∈V

nwjhkjw

Nj
∀k ∈ K, j ∈ J (2.17)

2.3.2.2 Latent Dirichlet allocation

In LDA the Dirichlet priors for the parameters Φ and Θ are considered:

φk ∼ Dir(η) ∀k ∈ K; (2.18)

θj ∼ Dir(α) ∀j ∈ J , (2.19)

where Dir(·) denotes a Dirichlet distribution, η and α are the corresponding parameters of

the Dirichlet distributions.

The Bayesian approach includes computation of a posterior distribution of latent vari-

ables. In the LDA a true posterior of the parameters is intractable. The main inference

schemes for the LDA are variational Bayes [18] and Gibbs sampling [58].

The variational Bayes scheme [75] finds the approximation of the true posterior of

latent variables in the class of factorised distributions. In the LDA latent variables are

the parameters Φ and Θ and topic assignments zji for the word i in the document j,

∀j ∈ J , i ∈ {1, . . . , Nj}. Let z = {zji}j∈J ,i∈{1,...,Nj} denote a set of all topic assignments.

The true posterior p(z,Φ,Θ|F,α,η) is then approximated by the factorised distribution:

q(z,Φ,Θ) =
∏
j∈J

Nj∏
i=1

q(zji|h̃ji)
∏
j∈J

q(θj |α̃j)
∏
k∈K

q(φk|η̃k), (2.20)

where q(zji|h̃ji) is the categorical distribution with the parameter vector h̃ji, q(θj |α̃j) and

q(φk|η̃k) are the Dirichlet distributions with the parameter vectors α̃j and η̃k, respectively.

The update formulae for the parameters of the factorised distributions within an iterative

optimisation procedure are:

α̃kj = αk +

Nj∑
i=1

h̃kji ∀k ∈ K, j ∈ J ; (2.21)

25



Background

η̃wk = ηw +
∑
j∈J

Nj∑
i=1

h̃kji1(wji = w) ∀w ∈ V, k ∈ K; (2.22)

h̃kji ∝ exp

(
ψ(α̃kj) + ψ(η̃wjik)− ψ

(∑
w∈V

η̃wk

))
∀k ∈ K, j ∈ J , i ∈ {1, . . . , Nj}, (2.23)

where wji is the word at the position i in the document j, 1(·) is the indicator function,

ψ(·) is the digamma function, α̃kj , αk, h̃kji and η̃wk are elements of the vectors α̃j , α, h̃ji

and η̃k, respectively.

After convergence the point estimates for the model parameters Φ and Θ can be obtained

with the expected values of the respective distributions:

φ̂wk =
η̃wk∑

w′∈V
η̃w′k

=

ηw +
∑
j∈J

Nj∑
i=1

h̃kji1(wji = w)

∑
w′∈V

(
ηw′ +

∑
j∈J

Nj∑
i=1

h̃kji1(wji = w′)

) ∀w ∈ V, k ∈ K; (2.24)

θ̂kj =
α̃kj∑

k′∈K
α̃k′j

=

αk +
Nj∑
i=1

h̃kji

∑
k′∈K

(
αk′ +

Nj∑
i=1

h̃k′ji

) ∀k ∈ K, j ∈ J (2.25)

The Gibbs sampling scheme [53] is an example of the Markov chain Monte Carlo

method. In this framework a Markov chain is built, that is used to represent an intractable

distribution by samples. In the Gibbs sampling schemes, the Markov chain is obtained by

sampling each one-dimensional hidden variable from its conditional distribution given the

current values for all the other latent variables. In LDA a collapsed version of Gibbs sampling

is employed where only topic assignment variables zji are sampled and the parameters Φ

and Θ are then estimated from the computed variables zji.

The Gibbs sampling update for the topic assignment zji is as follows:

zji ∼ p(zji = k|w, z−ji) ∝
l−jiwjik

+ ηwji∑
w∈V

(l−jiwk + ηw)

n−jikj + αk∑
k′∈K

(n−jik′j + αk)
, (2.26)

where w = {wji}j∈J ,i∈{1,...,Nj} is a set of all the words, lwk denotes the number of times

the word w is associated with the topic k, nkj denotes the number of times the topic k

is associated with the document j; the superscript −ji denotes the variables or counts

excluding those that correspond to the token i in the document j.
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The point estimates of the model parameters Φ and Θ from one posterior sample of z

can be calculated as follows:

φ̂wk =
lwk + ηw∑

w′∈V
(lw′k + ηw′)

∀w ∈ V, k ∈ K; (2.27)

θ̂kj =
nkj + αk∑

k′∈K

(
nk′j + αk′

) ∀k ∈ K, j ∈ J (2.28)

2.3.3 Extensions of conventional models

There are a lot of extensions of the conventional PLSA and LDA models, proposed over

the last decade. A review of the models including external information such as authors of

documents, dates of publications and correlations between documents can be found in [36].

A number of papers is devoted to the sparseness of the target distributions, e.g., [29]. In [156]

different forms of regularisation are presented to overcome the problem of non-uniqueness

of the matrix factorisation in topic modeling.

2.3.4 Dynamic topic models

In conventional topic models, the bag of documents assumption is used. They share the

same set of topics, but weights in a topic mixture for a particular document are independent

of weights for all other documents in a dataset. However, in some classes of applications it

is reasonable to assume similarity of topic mixtures in different documents.

Consider the analysis of scientific papers from a conference in text mining. It is expected

that if a topic is “hot” in the current year, it would be popular in the next year too. The

popularity of the topics changes through the years but in each two successive years the set

of popular topics would often be similar. It means that topic mixtures in documents in

successive years are similar to each other.

The same ideas are relevant in video processing. Documents are usually defined as short

video clips extracted from a whole video sequence. Topics represent some local motion

patterns. If the clips are sufficiently short, motions started in a given clip would continue

in the next clip. Therefore, it may be expected that topic mixtures in the successive clips

would be similar.

Two types of dynamics are considered in the topic modeling literature. In the first type,
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the dynamics are assumed on topic mixtures in documents [69, 84, 119]. This type of the

dynamics is described earlier. In the second type, the dynamics are assumed on the topics

themselves [157, 51, 26], i.e., the distributions over words change over time. There are also

papers where both types of dynamics are considered [17, 3].

2.3.5 Topic modeling applied to video analytics

In order to apply the topic modeling framework to video a visual document and word should

be defined. Usually, a whole video sequence is divided into non-overlapping clips and the

clips are treated as documents. Any kind of features extracted from the video (for example,

those mentioned in Section 2.2.1) can be used as words. The only requirement is that

features should be discrete, however, there are attempts to relax this constraint [74].

In video processing, topic models are used for scene recognition, semantic scene segmen-

tation, behaviour understanding and abnormal behaviour detection. For example, image

categorisation via supervised learning is implemented in [169]. For each category a topic

model is learnt and an image is assigned to a category with the largest likelihood. The sim-

ilar framework for supervised behaviour recognition is proposed in [90] where a two-level

hierarchical topic model is designed. In [173] topic representation of images is used as fea-

tures for the support vector machine classifier for image categorisation. The image retrieval

application of topic modeling is presented in [68]. In [158] simultaneous image labelling and

annotation using topic modeling is proposed. Topic modeling is used to weight observations

and predictions in a tracking framework in [125].

Topic modeling is a beneficial tool for finding latent statistical structures and depen-

dencies in data. The advantage of the framework is an ability to work with unlabelled data

and simplicity such that metadata and prior knowledge can be included to a model.

2.4 Change point detection

Behaviour analysis and anomaly detection in video can be considered as a change point

detection problem. Chapter 5 presents methods for detecting changes in behaviour within

the general framework of change point detection. This section briefly reviews the area of

change point detection and its application for anomaly detection in video.
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2.4.1 Change point detection in time series data

Change point detection methods are aimed to detect breaks in the time series stationary

regimes such that before a change the data follows one probability distribution and after a

change it starts to follow another distribution.

Input:

y = {y1, . . . , yN} — observations, where N is the number of observations;

Output:

τ∗ ∈ {1, . . . , N} — the time of a change point.

Change point detection is an important area that is applied in a wide range of fields:

anomaly detection [22]; cyber-attack detection [161]; finance and economics [99]; motion

segmentation [178, 55]; speech processing, analysis of biomedical signals, adaptive filtering

and tracking and other problems in signal processing [59, 85, 162, 61, 38].

Although introduced in 1954 the cumulative sum (CUSUM) algorithm [113] stays a very

popular method for change point detection. There are a lot of extensions of the original algo-

rithm introduced in the literature [166, 101, 89, 143]. The CUSUM algorithm is an example

of a stopping rule (or control chart) procedure developed for change point detection [124].

However, the CUSUM algorithm can be derived within a statistical hypothesis testing ap-

proach. Statistical hypothesis testing is an active area in change point detection where one

can formulate a null hypothesis corresponding to a case that there is no change against an

alternative that there is a change. A number of diverse algorithms within this approach

rely on different assumptions about a change nature and data distribution [142, 146, 86, 62].

Another direction in the change point detection area is the Bayesian approach where a pos-

teriori probability of a change is computed [135, 12, 23, 177, 44, 120].

The methods for change point detection can be classified into two categories: offline and

online. In the offline settings a whole dataset of observations is required to apply a method

for change point detection, e.g., change point locations can be found by minimising a global

penalty function [87, 88, 11]. In contrast online methods process data sequentially that

generate alarms about detected changes, e.g., by applying the full Bayesian inference [2], or

within a filtering framework [10], or by comparing dissimilarity between two subsets of data

indicating a change time between these two subsets [40]. There are methods, integrating

both offline and online approaches [5].
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Changes in time series data can be considered as functional switches, i.e., a data stream

follows one functional dependence before a change and after the change a data generative

model is expressed by another function. From this perspective Gaussian processes represent

a promising methodology for change point detection as they are often used as a prior on

functions [82, 164, 47, 21].

A Gaussian process is a generalisation of a Gaussian distribution into an infinite con-

tinuous domain, i.e., functions [122]. By definition a Gaussian process is a stochastic pro-

cess such that for any finite subset of time indices the corresponding random vector has a

multivariate Gaussian distribution. A Gaussian process is characterised by its mean and

covariance functions.

Gaussian processes are explored for change point detection in the literature. In [24] a

Gaussian process is used to perform a one-step ahead prediction and a control chart is used to

detect a change point based on the difference between a prediction and an actual observation.

The method is online and it uses the whole historical data to make a prediction. However,

inference in the Gaussian process framework faces scalability issues with the growth of the

training datasets. The use of all historical data adds an additional difficulty to the ability

of the algorithm to adapt to different stationary regimes to detect multiple changes.

Change points as changes in hyperparameters of a Gaussian process prior are consid-

ered in [128, 52], where in [52] change locations are incorporated into a covariance function.

Both methods work within the Bayesian approach and estimate the posterior probabil-

ity of a change. Following the Bayesian approach unknown hyperparameters should be

marginalised, although the obtained integrals are intractable. Therefore, these integrals

need to be approximated: e.g., by a grid-based method or Hamiltonian Monte Carlo [128]

and by Bayesian Monte Carlo [52].

The statistical hypothesis testing method for change point detection in Gaussian process

data is proposed in [80]. In this work a change is considered in a mean value of observed

data. This method is offline and designed for detection a single change point.

2.4.2 Anomaly as change point detection

If a representation of a behaviour in video is a time series, then a behavioural abnormality

can be defined as an abrupt change in the corresponding time series. The main research
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questions are then: how to represent a behaviour as a time series and how to detect changes

in this time series.

In [22] the Fourier transform is applied for crowd motion. Characteristic functions are

then used for estimation of motion probability distributions. Changes are detected by the

CUSUM algorithm. Optical flow histograms are the basis for the behaviour representation

in [34]. The idea is that within a normal crowd behaviour the successive histograms should

be similar as a general motion in the scene is the same. A change is then detected when

a similarity measure between histograms has a low value. The same idea with a more

sophisticated behaviour representation is presented in [50]. Abnormal events are often

characterised with higher velocities of the objects in comparison to the normal behaviour.

In [78] an anomaly is detected if the total velocity of moving particles within the current

frame is above a threshold. In [27] an anomaly is defined as a change in the direction of a

dominant social force vector.

2.5 Summary

This chapter presents an overview of relevant works. To start an analysis of a video sequence

one should first extract informative features from it. An overview of the current state of the

art in anomaly detection in video is then provided, followed by a brief introduction to the

areas of topic modeling and change point detection as employed in the following chapters

for behaviour analysis and anomaly detection in video.
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Chapter 3

PROPOSED LEARNING ALGORITHMS FOR

MARKOV CLUSTERING TOPIC MODEL

This chapter introduces the methods for the behaviour analysis and anomaly detection

in video using a topic model. Topics in video applications represent typical motion patterns

in an observed scene. These patterns can be used for semantic understanding of the typical

activities happening within the scene. They can also be used to detect abnormal events.

Likelihood of newly observed data is employed as a measure of normality. If something

atypical happens in a new visual document, then this document cannot be fitted with the

topics, or typical activities, learnt before, and it would have a low likelihood value.

The focus of this chapter is on development and comparison of learning algorithms for the

Markov clustering topic model. A novel anomaly localisation procedure is also introduced

in this chapter.

The results of the work presented in this chapter are disseminated in:

• O. Isupova, D. Kuzin, L. Mihaylova.“Learning Methods for Dynamic Topic Modeling

in Automated Behaviour Analysis”, in IEEE Transactions on Neural Networks and

Learning Systems, provisionally accepted subject to minor corrections, 2017

• O. Isupova, L. Mihaylova, D. Kuzin, G. Markarian, F. Septier. “An Expectation

Maximisation Algorithm for Behaviour Analysis in Video”, in Proceedings of 18th

International Conference on Information Fusion, 6-9 July 2015, Washington, USA,

pp. 126-133

• O. Isupova, D. Kuzin, L. Mihaylova.“Abnormal Behaviour Detection in Video Using

Topic Modeling”, in Proceedings of University of Sheffield Engineering Symposium, 24

June 2015, Sheffield, UK
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Figure 3.1: Structure of visual feature extraction: from an input frame (on the left) a map of

local motions based on optical flow estimation is calculated (in the centre). For visualisation

purposes the calculated optical flow is depicted by the presented colour code. The motion

is then quantised into four directions to get the feature representation (on the right).

The rest of the chapter is organised as follows. Section 3.1 describes the overall structure

of visual documents and visual words. Section 3.2 introduces the dynamic topic model. The

new learning algorithms are presented in Section 3.3. The methods are given with a detailed

discussion about their similarities and differences. The anomaly detection procedure is

presented in Section 3.4. The learning algorithms are evaluated with real data in Section 3.5

and Section 3.6 summarises the chapter.

3.1 Video representation

In order to apply the topic modeling approach to video processing it is required to define

visual words and visual documents. In this thesis a visual word is defined as a quantised

local motion measured by an optical flow [163, 69, 151, 84]. The optical flow vector is

discretised spatially by averaging among N̄ × N̄ pixels. Those pixel cells that have an

average optical flow that exceeds a threshold are called moving cells. The direction of the

average optical flow vector for moving cells is further quantised into the four main categories

— up, right, down and left (Figure 3.1). The location of a moving cell and its categorised

motion direction together form a visual word.
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The whole video sequence is divided into non-overlapping clips. Each clip is a visual

document. The document consists of all the visual words extracted from the frames that

form the corresponding clip.

Topics in topic modeling are defined as distributions over words. They indicate which

words appear together. In the video processing applications topics are distributions over

visual words. As visual words represent local motions, topics indicate the set of local motions

that frequently appear together. They are usually called activities or actions (e.g., [163, 69,

152]).

Once visual documents, words and topics are defined, a topic model for video processing

can be formulated.

3.2 Model

3.2.1 Motivation

In topic modeling there are two main kinds of distributions — the distributions over words,

which correspond to topics, and the distributions over topics, which characterise the doc-

uments. The relationship between documents and words is then represented via latent

low-dimensional entities called topics. Having only an unlabelled collection of documents,

topic modeling methods restore a hidden structure of the data, i.e., the distributions over

words and the distributions over topics.

Consider a set of distributions over topics and a topic distribution for each document

is chosen from this set. If the cardinality of the set of distributions over topics is less

than the number of documents then documents are clustered into groups, having the same

topic distribution within a group. A unique distribution over topics is called a behaviour

in this work. Therefore, each document corresponds to one behaviour. In topic modeling

a document is fully described by a corresponding distribution over topics, which means in

this case a document is fully described by a corresponding behaviour.

There are a number of applications where we can observe documents clustered into

groups with the same distribution over topics. Let us consider some examples from video

analytics where a visual word corresponds to a motion within a tiny cell. As topics represent

words that statistically often appear together, in video analytics applications topics define

some motion patterns in local areas.

34



Learning algorithms for MCTM

Let us consider a road junction regulated by traffic lights. A general motion on the

junction is the same with the same traffic light regime. Therefore, the documents associ-

ated with the same traffic light regimes have the same distributions over topics, i.e., they

correspond to the same behaviours.

Another example is a video stream generated by a CCTV camera from a train station.

Here it is also possible to distinguish several types of general motion within the camera

scene: getting off and on a train and waiting for it. These types of motion correspond to

behaviours, where the different visual documents showing different instances of the same

behaviour have very similar motion structures, i.e., the same topic distribution.

Each action in real life lasts for some time, e.g., a traffic light regime stays the same and

people get on and off a train for several seconds. Moreover, often these different types of

motion or behaviours follow a cycle and their changes occur in some order. These insights

motivate modelling of a sequence of behaviours as a Markov chain, so that the behaviours

remain the same during some documents and change in the predefined order. The model

that has these described properties is called a Markov Clustering Topic Model (MCTM)

in [69]. The next section formally formulates the model.

3.2.2 Model formulation

This section starts from the introduction of the main notations. Recall that V is the vocab-

ulary of words and K is the set of all topics. Denote by B the set of all behaviours, and b

is used to denote an element from this set.

Let wj = {wij}
Nj

i=1 denote the set of words for the document j, where Nj is the length

of the document j. Let w1:Jtr = {wj}Jtrj=1 denote the set of all words for the whole dataset,

where Jtr is the number of documents in the dataset. Similarly, denote by zj = {zji}
Nj

i=1

and z1:Jtr = {zj}Jtrj=1 a set of topics for the document j and the set of all topics for the whole

dataset, respectively. Let b1:Jtr = {bj}Jtrj=1 denote a set of all behaviours for all documents.

Note that w and b without subscript denote possible values for a word and behaviour

from V and B, respectively, while the symbols with subscripts denote word and behaviour

assignments in particular places in a dataset.

Recall that Φ denotes a matrix corresponding to the distributions over words given the

topics, Θ denotes a matrix corresponding to the distributions over topics given behaviours.
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For a Markov chain of behaviours a vector ω for a behaviour distribution for the first

document and a matrix Ξ for transition probability distributions between the behaviours

are introduced:

Φ = {φwk}w∈V,k∈K, φwk = p(w|k), φk = {φwk}w∈V ;

Θ = {θkb}k∈K,b∈B, θkb = p(k|b), θb = {θzb}z∈K;

ω = {ωb}b∈B, ωb = p(b);

Ξ = {ξb′ b}b′∈B,b∈B, ξb′ b = p(b′|b), ξb = {ξb′ b}b′∈B,

where the matrices Φ, Θ and Ξ and the vector ω are formed as follows. An element of a

matrix on the i-th row and i′-th column is the probability of the i-th element given the i′-th

one, e.g., φwk is a probability of the word w in the topic k. The columns of the matrices

then form distributions for corresponding elements, e.g., θb is a distribution over topics for

the behaviour b. Elements of the vector ω are probabilities of behaviours to be chosen by

the first document. All these distributions are categorical.

The introduced distributions form a set

Ω = {Φ,Θ,ω,Ξ} (3.1)

of model parameters and they are estimated during a learning procedure.

Prior distributions are imposed to all the parameters. Conjugate Dirichlet distributions

are used:

φk ∼ Dir(φk|η), ∀k ∈ K;

θb ∼ Dir(θb|α), ∀b ∈ B;

ω ∼ Dir(ω|κ);

ξb ∼ Dir(ξb|υ), ∀b ∈ B,

where η, α, κ and υ are the corresponding hyperparameters of the Dirichlet distributions.

As topics and behaviours are not known a priori and will be specified via the learning

procedure, it is impossible to distinguish two topics or two behaviours in advance. This is

the reason why all the prior distributions are the same for all topics and all behaviours.

The generative process for the model is as follows. All the parameters are drawn from

the corresponding prior Dirichlet distributions. At each time j a behaviour bj is chosen
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Algorithm 3.2.1 The generative process for the MCTM

Require: The number of clips – Jtr, the length of each clip – Nj ∀j = {1, . . . , J}, the

hyperparameters – η, α, κ, υ;

Ensure: The dataset w1:Jtr = {w11, . . . , wji, . . . , wJtr NJtr
};

1: for all k ∈ K do

2: draw a word distribution for the topic k: φk ∼ Dir(η);

3: for all b ∈ B do

4: draw a topic distribution for behaviour b: θb ∼ Dir(α);

5: draw a transition distribution for behaviour b: ξb ∼ Dir(υ);

6: draw a behaviour probability distribution for the initial document: ω ∼ Dir(κ);

7: for all j ∈ {1, . . . , Jtr} do

8: if j = 1 then

9: draw a behaviour for the document from the initial distribution: bj ∼ Cat(ω)1;

10: else

11: draw a behaviour for the document based on the behaviour of the previous docu-

ment: bj ∼ Cat(ξbj−1
);

12: for all i ∈ {1, . . . , Nj} do

13: draw a topic for the token i based on the chosen behaviour: zji ∼ Cat(θbj );

14: draw a visual word for the token i based on the chosen topic: wij ∼ Cat(φzji);

first for a visual document. The behaviour is sampled using the matrix Ξ according to

the behaviour chosen for the previous document. For the first document the behaviour is

sampled using the vector ω. Once the behaviour is selected, the procedure of choosing

visual words repeats Nj times. The procedure consists of two steps — sampling a topic zji

using the matrix Θ according to the chosen behaviour bj followed by sampling a word wji

using the matrix Φ according to the chosen topic zji for each token i ∈ {1, . . . , Nj}, where a

token is a particular place inside a document a word is assigned to. The generative process

is summarised in Algorithm 3.2.1. The graphical model, showing the relationships between

the variables, can be found in Figure 3.2.

1Here, Cat(v) denotes a categorical distribution, where components of a vector v are probabilities of a
discrete random variable to take one of possible values.
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Figure 3.2: Graphical representation of the Markov Clustering Topic Model

The full likelihood of the observed variables w1:Jtr , the hidden variables z1:Jtr and b1:Jtr

and the set of parameters Ω can be written then as follows:

p(w1:Jtr , z1:Jtr ,b1:Jtr ,Ω|η,α,κ,υ) =

p(ω|κ) p(Ξ|υ) p(Θ|α) p(Φ|η)︸ ︷︷ ︸
Priors

×

p(b1|ω)

 Jtr∏
j=2

p(bj |bj−1,Ξ)

 Jtr∏
j=1

Nj∏
i=1

p(wji|zji,Φ)p(zji|bj ,Θ)

︸ ︷︷ ︸
Likelihood

(3.2)

3.3 Parameter learning

In [69] Gibbs sampling is implemented for parameter learning in the MCTM. We propose

two new learning algorithms: based on an EM-algorithm for the maximum a posteriori

(MAP) estimates of parameters and based on variational Bayes inference to estimate pos-

terior distributions of the parameters. In this section we introduce the proposed learning
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algorithms and briefly review the Gibbs sampling scheme.

3.3.1 Expectation-maximisation learning

We propose a learning algorithm for MAP estimates of parameters based on the Expectation-

Maximisation algorithm [39]. The algorithm consists of repeating E and M-steps. Conven-

tionally, the EM-algorithm is applied to get maximum likelihood estimates (MLE). In that

case the M-step is:

Q(Ω,Ωold) −→ max
Ω
, (3.3)

where Ωold denotes the set of parameters obtained at the previous iteration and Q(Ω,Ωold)

is the expected logarithm of the full likelihood function of the observed and hidden variables:

Q(Ω,Ωold) = Ep(z1:Jtr ,b1:Jtr |w1:Jtr ,Ω
old) log p(w1:Jtr , z1:Jtr ,b1:Jtr |Ω). (3.4)

The subscript of the expectation sign means the distribution with respect to which the ex-

pectation is calculated. During the E-step the posterior distribution of the hidden variables

is estimated given the current estimates of parameters.

Here the EM-algorithm is applied to get MAP estimates instead of traditional MLE.

The M-step is modified in this case as:

Q(Ω,Ωold) + log p(Ω|η,α,κ,υ) −→ max
Ω
, (3.5)

where p(Ω|η,α,κ,υ) is the prior distribution of the parameters.

As the hidden variables are discrete, the expectation converts to a sum of all possible

values for the whole set of the hidden variables {z1:Jtr ,b1:Jtr}. The substitution of the

likelihood expression from (3.2) into (3.5) allows to marginalise some hidden variables from

the sum. The remaining distributions that are required for computing the Q-function are

following:

• p(b1 = b|w1:Jtr ,Ω
old) — the posterior distribution of a behaviour for the first docu-

ment;

• p(bj = b′, bj−1 = b|w1:Jtr ,Ω
old) — the posterior distribution of two behaviours for

successive documents;
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• p(zji = k|w1:Jtr ,Ω
old) — the posterior distribution of a topic assignment for a given

token;

• p(zji = k, bj = b|w1:Jtr ,Ω
old) — the joint posterior distribution of a topic and be-

haviour assignments for a given token.

With the fixed current values for these posterior distributions the estimates of parameters

that maximise the required functional of the M-step (3.5) can be computed as:

φ̂EM
wk =

(
ηw + l̂EM

wk − 1
)

+∑
w′∈V

(
ηw′ + l̂EM

w′k − 1
)

+

, ∀w ∈ V, k ∈ K; (3.6)

θ̂EM
kb =

(
αk + n̂EM

kb − 1
)

+∑
k′∈K

(
αk′ + n̂EM

k′b − 1
)

+

, ∀k ∈ K, b ∈ B; (3.7)

ξ̂ EM
b′ b =

(
υb′ + n̂EM

b′b − 1
)

+∑̃
b∈B

(
υb̃ + n̂EM

b̃b
− 1
)

+

, ∀b′, b ∈ B; (3.8)

ω̂ EM
b =

(
κb + n̂EM

b − 1
)

+∑
b′∈B

(
κb′ + n̂EM

b′ − 1
)

+

, ∀b ∈ B, (3.9)

where (a)+
def
= max(a, 0) [156]; ηw, αz, κb, and υb′ are the elements of the hyperparameter

vectors η, α, κ and υ, respectively, and:

• l̂EM
wk =

Jtr∑
j=1

Nj∑
i=1

p(zji = k|w1:Jtr ,Ω
old)1(wji = w) — the expected number of times,

when the word w is associated with the topic k;

• n̂EM
kb =

Jtr∑
j=1

Nj∑
i=1

p(zji = k, bj = b|w1:Jtr ,Ω
old) — the expected number of times, when

the topic k is associated with the behaviour b;

• n̂EM
b = p(b1 = b|w1:Jtr ,Ω

old) — the “expected number of times”, when the behaviour

b is associated to the first document, in this case the “expected number” is just a

probability, the notation is used for the similarity with the rest of the parameters;

• n̂EM
b′b =

Jtr∑
j=2

p(bj = b′, bj−1 = b|w1:Jtr ,Ω
old) — the expected number of times, when the

behaviour b is followed by the behaviour b′.
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During the E-step with the fixed current estimates of parameters Ωold, the updated

values for the posterior distributions of the hidden variables should be computed. The

derivation of the updated formulae for these distributions is similar to the Baum-Welch

forward-backward algorithm [15], where the EM-algorithm is applied to get the MLE for a

hidden Markov model. This similarity appears because the generative model can be viewed

as an extension of a hidden Markov model.

For effective computation of the required posterior distributions the additional vari-

ables άb(j) and β́b(j) are introduced. A dynamic programming technique is applied for

computation of these variables. Having the updated values for άb(j) and β́b(j) one can

update the required posterior distributions of the hidden variables. The E-step is then for-

mulated as follows (for simplification of notation the superscript “old” for the parameter

variables is omitted inside the formulae):


άb(j) =

Nj∏
i=1

∑
k∈K

φwji k θkb
∑
b′∈B

άb′(j − 1)ξb b̃, if j ≥ 2, ∀b ∈ B;

άb(1) = ωb
N1∏
i=1

∑
k∈K

φwi 1 k θkb, ∀b ∈ B;

(3.10)


β́b(j) =

∑
b′∈B

β́b′(j + 1)ξb′ b
Nj+1∏
i=1

∑
k∈K

φwj+1 i,k θkb′ , if j ≤ J − 1, ∀b ∈ B;

β́b(J) = 1, ∀b ∈ B;

(3.11)

Z =
∑
b∈B

άb(1)β́b(1); (3.12)

p(b1|w1:J ,Ω
old) =

άb1(1)β́b1(1)

Z
; (3.13)

p(bj , bj−1|w1:J ,Ω
old) =

άbj−1
(j − 1)β́bj (j)ξbj bj−1

Z

Nj∏
i=1

∑
k∈K

φwji kθkbj ; (3.14)

p(zji, bj |w1:Jtr ,Ω
old) =

1

Z
φwji zjiθzji bj β́bj (j)

∑
b′∈B

άb′(j − 1)ξbj b′

Nj∏
i′=1
i′ 6=i

∑
k′∈K

φwji′ k′θk′ bj , if j ≥ 2;

p(z1i, b1|w1:Jtr ,Ω
old) =

1

Z
φw1i z1iθz1i b1 β́b1(1)ωb1

N1∏
i′=1
i′ 6=i

∑
k′∈K

φw1i′ k′θk′ b1 ;

(3.15)
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p(zji|w1:J ,Ω
old) =

∑
b∈B

p(zji, b|w1:J ,Ω
old), (3.16)

where Z is a normalisation constant for all the posterior distributions of the hidden variables.

The details of the derivation are given in Appendix A.

Starting with some random initialisation of the parameter estimates, the EM-algorithm

iterates the E and M-steps until convergence. The obtained estimates of parameters are

used for further analysis.

3.3.2 Variational inference

We also propose a learning algorithm based on the variational Bayes (VB) approach [75] to

find approximated posterior distributions for both the hidden variables and the parameters.

In the VB inference scheme the true posterior distribution, in this case the distribution

of the parameters and the hidden variables p(z1:Jtr ,b1:Jtr ,Ω|w1:Jtr ,κ,υ,α,η), is approxi-

mated with a factorised distribution — q(z1:Jtr ,b1:Jtr ,Ω). The approximation is made to

minimise the Kullback-Leibler divergence between the factorised and true distributions. We

factorise the distribution in order to separate the hidden variables and the parameters:

q̂(z1:Jtr ,b1:Jtr ,Ω) = q̂(z1:Jtr ,b1:Jtr)q̂(Ω)
def
=

argminKL (q(z1:Jtr ,b1:Jtr)q(Ω)||p(z1:Jtr ,b1:Jtr ,Ω|w1:Jtr ,κ,υ,α,η)) , (3.17)

where KL denotes the Kullback-Leibler divergence. The minimisation of the Kullback-

Leibler divergence is equivalent to the maximisation of the evidence lower bound (ELBO).

The maximisation is done by coordinate ascent [75].

During the update of the parameters the approximated distribution q(Ω) it is further

factorised:

q(Ω) = q(ω)q(Ξ)q(Θ)q(Φ). (3.18)

Note that this factorisation is a corollary of our model and not an assumption.

The iterative process of updating the approximated distributions of the parameters and

the hidden variables can be formulated as an EM-like algorithm, where during the E-step

the approximated distributions of the hidden variables are updated and during the M-step

the approximated distributions of the parameters are updated.
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The M-like step is as follows:
q(Φ) =

∏
k∈K

Dir (φk; η̃k) ,

η̃wk = ηw + l̂VB
wk , ∀w ∈ V, k ∈ K;

(3.19)


q(Θ) =

∏
b∈B

Dir(θb; α̃b),

α̃kb = αk + n̂VB
kb , ∀k ∈ K, b ∈ B;

(3.20)


q(ω) = Dir(ω; κ̃),

κ̃b = κb + n̂VB
b , ∀b ∈ B;

(3.21)


q(Ξ) =

∏
b∈B

Dir(ξb; υ̃b),

υ̃b′ b = υb′ + n̂VB
b′b , ∀b′, b ∈ B,

(3.22)

where η̃z, α̃b, κ̃ and υ̃b are updated hyperparameters of the corresponding posterior Dirich-

let distributions and

• l̂VB
wk =

Jtr∑
j=1

Nj∑
i=1

1(wji = w)q(zji = k) — the expected number of times, when the word w

is associated with the topic k. Here and below the expected number is computed with

respect to the approximated posterior distributions of the hidden variables;

• n̂VB
kb =

Jtr∑
j=1

Nj∑
i=1

q(zji = k, bj = b) — the expected number of times, when the topic k is

associated with the behaviour b;

• n̂VB
b = q(b1 = b) — the “expected number” of times, when the behaviour b is associ-

ated with the first document;

• n̂VB
b′b =

Jtr∑
j=2

q(bj = b′, bj−1 = b) — the expected number of times, when the behaviour b

is followed by the behaviour b′.

The following additional variables are introduced for the E-like step:

ω̃b = exp

(
ψ (κ̃b)− ψ

(∑
b′∈B

κ̃b′
))

, ∀b ∈ B; (3.23)

ξ̃b̃b = exp

(
ψ
(
υ̃b̃b
)
− ψ

(∑
b′∈B

υ̃b′b

))
, ∀b̃, b ∈ B; (3.24)
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φ̃wk = exp

(
ψ (η̃wk)− ψ

(∑
w′∈V

η̃w′k

))
, ∀w ∈ V, k ∈ K; (3.25)

θ̃kb = exp

(
ψ (α̃kb)− ψ

(∑
k′∈K

α̃k′ b

))
, ∀k ∈ K, b ∈ B. (3.26)

Using these additional notations, the E-like step is formulated in the same way as the

E-step of the EM-algorithm, replacing everywhere the estimates of parameters with the

corresponding tilde introduced notation and true posterior distributions of the hidden vari-

ables with the corresponding approximated ones in (3.10) – (3.16). The full details of the

VB-algorithm derivation are presented in Appendix B.

The point estimates of parameters can be obtained by expected values of the posterior

approximated distributions. An expected value for a Dirichlet distribution (a posterior

distribution for all the parameters) is a normalised vector of hyperparameters. Using the

expressions for the hyperparameters from (3.19) – (3.22), the final parameter estimates can

be obtained by:

φ̂VB
wk =

ηw + l̂VB
wk∑

w′∈V

(
ηw′ + l̂VB

w′ k

) , ∀w ∈ V, k ∈ K; (3.27)

θ̂VB
kb =

αk + n̂VB
kb∑

k′∈K

(
αk′ + n̂VB

k′ b

) , ∀k ∈ K, b ∈ B; (3.28)

ξ̂ VB
b′ b =

υb′ + n̂VB
b′b∑̃

b∈B

(
υb̃ + n̂VB

b̃b

) , ∀b′, b ∈ B; (3.29)

ω̂VB
b =

κb + n̂VB
b∑

b′∈B

(
κb′ + n̂VB

b′
) , ∀b ∈ B. (3.30)

3.3.3 Gibbs sampling

In [69] the collapsed version of Gibbs sampling (GS) is used for parameter learning in the

MCTM. The Markov chain is built to sample only the hidden variables zji and bj , while

the parameters Φ, Θ and Ξ are integrated out (note that the distribution for the initial

behaviour choice ω is not considered in [69]).

During the burn-in stage the hidden topic and behaviour assignments to each token in

the dataset are drawn from the conditional distributions given all the remaining variables.

Following the Markov Chain Monte Carlo framework it would draw samples from the poste-
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rior distribution p(z1:Jtr ,b1:Jtr |w1:Jtr ,η,α,κ,υ). From the whole sample for {z1:Jtr ,b1:Jtr}

the parameters can be estimated by [58]:

φ̂GS
wk =

l̂GS
wk + ηw∑

w′∈V

(
n̂GS
w′ k + ηw′

) , ∀w ∈ V, k ∈ K; (3.31)

θ̂GS
kb =

n̂GS
kb + αk∑

k′∈K

(
n̂GS
k′ b + αk′

) , ∀k ∈ K, b ∈ B; (3.32)

ξ̂GS
b′b =

n̂GS
b′b + υb′∑̃

b∈B

(
n̂GS
b̃b

+ υb̃

) , ∀b′, b ∈ B, (3.33)

where l̂GS
wk is the count for the number of times when the word w is associated with the

topic k, n̂GS
kb is the count for the topic k and the behaviour b pair, n̂GS

b′b is the count for the

number of times when the behaviour b is followed by the behaviour b′.

The Rao-Blackwell-Kolmogorov theorem guarantees that the variance of the estimates

of parameters obtained by a collapsed Gibbs sampler is never higher that the variance of a

sample of the parameters from a full Gibbs sampler [98] and these estimates can be treated

as posterior samples.

3.3.4 Similarities and differences of the learning algorithms

The point parameter estimates for all three learning algorithms (3.6) – (3.9), (3.27) – (3.30)

and (3.31) – (3.33) have a similar form. The EM-algorithm estimates differ up to the

hyperparameter reassignment — adding one to all the hyperparameters in the VB or GS

algorithms ends up with the same final equations for the parameter estimates in the EM-

algorithm. We explore this in the experimental part. This “-1” term in the EM-algorithm

formulae (3.6) – (3.8) occurs because it uses modes of the posterior distributions while the

point estimates obtained by the VB and GS algorithms are means of the corresponding

posterior distributions. For a Dirichlet distribution, which is a posterior distribution for all

the parameters, mode and mean expressions differ in this “-1” term.

The main differences of the methods consist in the ways the counts lwk, nkb and nb′b are

estimated. In the GS algorithm they are calculated by a single sample from the posterior

distribution of the hidden variables p(z1:Jtr ,b1:Jtr |w1:Jtr ,η,α,υ). In the EM-algorithm the

counts are computed as expected numbers of the corresponding events with respect to the

posterior distributions of the hidden variables. In the VB algorithm the counts are computed
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in the same way as in the EM-algorithm up to replacing the true posterior distributions

with the approximated ones.

Our observations for the dynamic topic model confirm the comparison results for the

vanilla PLSA and LDA models provided in [8].

3.4 Anomaly detection

Online anomaly detection can be performed with the MCTM. Here anomalies in video

streams are considered. The decision making procedure is divided into two stages. In the

learning stage the parameters are estimated using Jtr visual documents by one of the learning

algorithms, presented in Section 3.3. After that during the testing stage a decision about

abnormality of new upcoming test documents is made, comparing the predictive likelihood of

each document with a threshold. The likelihood is computed using the parameters obtained

during the learning stage. The threshold is a parameter of the method and can be set

empirically, for example, to label 2% of the test data as abnormal. A comparison of the

algorithms based on a measure independent of threshold value selection is presented in

Section 3.5.

We also propose an anomaly localisation procedure during the testing stage for those

visual documents that are labelled as abnormal. This procedure is designed to provide

spatial information about anomalies, while documents labelled as abnormal provide tempo-

ral detection. The following sections introduce both the anomaly detection procedure at a

document level and the anomaly localisation procedure within a video frame.

3.4.1 Abnormal documents detection

The predictive likelihood of a new visual document wj given all the previous data w1:j−1

can be used as normality measure of the document [69]:

p(wj |w1:j−1) =

∫∫∫
p(wj |w1:j−1,Φ,Θ,Ξ)p(Φ,Θ,Ξ|w1:j−1)dΦdΘdΞ. (3.34)

If the likelihood value is small it means that the current document cannot be fitted to

the learnt behaviours and topics, which represent typical motion patterns. Therefore, this

is an indication for an abnormal event in this document. The decision about abnormality
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of a document is then made by comparing the predictive likelihood of the document with

the threshold.

In real world applications it is essential to detect anomalies as soon as possible. Hence an

approximation of the integral in (3.34) is used for efficient computation. The first approxi-

mation is based on the assumption that the training dataset is representative for parameter

learning, which means that posterior probability of the parameters would not change if there

is more observed data:

p(Φ,Θ,Ξ|w1:j−1) ≈ p(Φ,Θ,Ξ|w1:Jtr) ∀j > Jtr. (3.35)

The predictive likelihood can be then approximated as:∫∫∫
p(wj |w1:j−1,Φ,Θ,Ξ)p(Φ,Θ,Ξ|w1:j−1)dΦdΘdΞ ≈∫∫∫

p(wj |w1:j−1,Φ,Θ,Ξ)p(Φ,Θ,Ξ|w1:Jtr)dΦdΘdΞ. (3.36)

Depending on the algorithm used for learning the integral in (3.36) can be further ap-

proximated in different ways. We consider two types of approximation.

3.4.1.1 Plug-in approximation

The point estimates of parameters can be plugged into in the integral (3.36) for approxi-

mation:∫∫∫
p(wj |w1:j−1,Φ,Θ,Ξ)p(Φ,Θ,Ξ|w1:Jtr)dΦdΘdΞ ≈∫∫∫

p(wj |w1:j−1,Φ,Θ,Ξ)δΦ̂(Φ)δΘ̂(Θ), δΞ̂(Ξ)dΦdΘdΞ = p(wj |w1:j−1, Φ̂, Θ̂, Ξ̂), (3.37)

where δa(·) is the delta-function with the centre in a; Φ̂, Θ̂ and Ξ̂ are point estimates

of parameters, which can be computed by any of the considered learning algorithms us-

ing (3.6) – (3.8), (3.27) – (3.29) or (3.31) – (3.33).

The product and sum rules, the conditional independence equations from the generative

model are then applied and the final formula for the plug-in approximation is follows:

p(wj |w1:j−1) ≈ p(wj |w1:j−1, Φ̂, Θ̂, Ξ̂) =∑
bj−1

∑
bj

[
p(wj |bj , Φ̂, Θ̂)p(bj |bj−1, Ξ̂)p(bj−1|w1:j−1, Φ̂, Θ̂, Ξ̂)

]
, (3.38)
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where the predictive probability of the behaviour for the current document, given the ob-

served data up to the current document, can be computed via the recursive formula:

p(bj−1|w1:j−1, Φ̂, Θ̂, Ξ̂) =∑
bj−2

p(wj−1|bj−1, Φ̂, Θ̂)p(bj−1|bj−2, Ξ̂)p(bj−2|w1:j−2, Φ̂, Θ̂, Ξ̂)

p(wj−1|w1:j−2, Φ̂, Θ̂, Ξ̂)
. (3.39)

The point estimates can be computed for all three learning algorithms, therefore a nor-

mality measure based on the plug-in approximation of the predictive likelihood is applicable

for all of them.

3.4.1.2 Monte Carlo approximation

If samples {Φs,Θs,Ξs}Ss=1, where S is the number of samples, from the posterior distribu-

tion p(Φ,Θ,Ξ|w1:Jtr) of the parameters can be obtained, the integral (3.36) can be further

approximated by the Monte Carlo method:

∫∫∫
p(wj |w1:j−1,Φ,Θ,Ξ)p(Φ,Θ,Ξ|w1:Jtr)dΦdΘdΞ ≈

1

S

S∑
s=1

p(wj |w1:j−1,Φ
s,Θs,Ξs). (3.40)

These samples can be obtained (a) from the approximated posterior distribu-

tions q(Φ), q(Θ), and q(Ξ) of the parameters, computed by the VB learning algorithm,

or (b) from the independent samples of the GS scheme. For the conditional likeli-

hood p(wj |w1:j−1,Φ
s,Θs,Ξs) the formula (3.38) is valid.

Note that for the approximated posterior distribution of the parameters, i.e., the output

of the VB learning algorithm, the integral (3.36) can be resolved analytically, but it would

be computationally infeasible. This is the reason why the Monte Carlo approximation is

used in this case.

Finally, in order to compare documents of different lengths the normalised likelihood is

used as a normality measure A:

A(wj) =
1

Nj
log p(wj |w1:j−1). (3.41)
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3.4.2 Localisation of anomalies

The topic modeling approach allows to compute a likelihood function not only for the whole

document but for an individual word within the document too. Recall that the visual word

contains the information about a location in the frame. We propose to use the location

information from the least probable words (e.g., 10 words with the lowest likelihood values)

to localise anomalies in the frame. Note that we do not require anything additional to

a topic model, e.g., modelling regional information explicitly as in [60] or comparing a

test document with training ones as in [116]. Instead, the proposed anomaly localisation

procedure is general and can be applied in any topic modeling based method, where spatial

information is encoded as visual words.

The predictive likelihood of a word can be computed in a similar way to the likelihood

of the whole document. For the point estimates of parameters and plug-in approximation

of the integral it is:

p(wji|w1:j−1) ≈ p(wji|w1:j−1, Φ̂, Θ̂, Ξ̂). (3.42)

For the samples from the posterior distributions of the parameters and the Monte Carlo

integral approximation it is:

p(wji|w1:j−1) ≈ 1

S

S∑
s=1

p(wji|w1:j−1,Φ
s,Θs,Ξs). (3.43)

3.5 Performance validation

We compare the two proposed learning algorithms, based on EM and VB, with the GS

algorithm, proposed in [69], on two real datasets.

The performance of the algorithms is compared on the QMUL street intersection

data [69] and Idiap traffic junction data [152]. Both datasets are 45-minutes video se-

quences, captured of busy traffic road junctions, where we use a 5-minute video sequence

as a training dataset and others as a test. The documents that have less than 20 visual

words are discarded from consideration. In practice these documents can be classified to be

normal by default as there is not enough information to make a decision. The frame size

for both datasets is 288× 360. Sample frames are presented in Figure 3.3.

The size of grid cells is set to 8× 8 pixels for spatial quantisation of the local motion for
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(a) (b)

(c) (d)

Figure 3.3: Sample frames of the real datasets. The top row presents two sample frames

from the QMUL data, the bottom row presents two sample frames from the Idiap data.

visual word determination. Non-overlapping clips with a one second length are treated as

visual documents.

We also study the influence of the hyperparameters on the learning algorithms. In all

the experiments we use the symmetric hyperparameters: α = {α, . . . , α}, η = {η, . . . , η},

υ = {υ, . . . , υ} and κ = {κ, . . . ,κ}. The three groups of the hyperparameter settings are

compared: {α = 1, η = 1, υ = 1,κ = 1} (referred as “prior type 1”), {α = 8, η = 0.05,

υ = 1,κ = 1} (“prior type H”) and {α = 9, η = 1.05, υ = 2,κ = 2} (“prior type H+1”).

Note that the first group corresponds to the case when in the EM-algorithm learning scheme

the prior components are cancelled out, i.e., the MAP estimates in this case are equal to

the MLE. The equations for the point estimates in the EM learning algorithm with the

prior type H+1 of the hyperparameter settings are equal to the equations for the point
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Figure 3.4: Dirichlet distributions with different symmetric parameters ξ. For the represen-

tation purposes the three-dimensional space is used. On the top row the colours correspond

to the Dirichlet probability density function values in the area. On the bottom row there

are samples generated from the corresponding density functions. The sample size is 5000.

estimates in the VB and GS learning algorithms with the prior type H of the settings. The

corresponding Dirichlet distributions with all used parameters are presented in Figure 3.4.

Note that parameter learning is an ill-posed problem in topic modeling [156]. This means

there is no unique solution for parameter estimates. We use 20 Monte Carlo runs for all the

learning algorithms with different random initialisations resulting with different solutions.

The mean results among these runs are presented below for comparison.

All three algorithms are run with three different groups of hyperparameter settings. The

number of topics and behaviours is set to 8 and 4, respectively, for the QMUL dataset, 10

and 3 are used for the corresponding values for the Idiap dataset. The EM and VB algo-

rithms are run for 100 iterations. The GS algorithm is run for 500 burn-in iterations and 5

independent samples are taken with a 100 iterations delay after the burn-in period.

3.5.1 Performance measure

Anomaly detection performance of the algorithms depends on threshold selection. To make

a fair comparison of the different learning algorithms we use a performance measure which

is independent of threshold selection.

In binary classification the following measures [107] are used:
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• TP — true positive, the number of documents, which are correctly detected as positive

(abnormal in our case);

• TN — true negative, the number of documents, which are correctly detected as neg-

ative (normal in our case);

• FP — false positive, the number of documents, which are incorrectly detected as

positive, when they are negative;

• FN — false negative, the number of documents, which are incorrectly detected as

negative, when they are positive;

• precision =
TP

TP + FP
— a fraction of correct detections among all documents labelled

as abnormal by an algorithm;

• recall =
TP

TP + FN
— a fraction of correct detections among all truly abnormal docu-

ments.

The area under the precision-recall curve is used as a performance measure. This measure

is more informative for detection of rare events than the popular area under the receiver

operating characteristic (ROC) curve [107].

3.5.2 Parameter learning

We visualise the learnt behaviours for the qualitative assessment of the proposed framework

(Figures 3.5 and 3.6). For illustrative purposes we consider one run of the EM learning

algorithm with the prior type H+1 of the hyperparameter settings.

The behaviours learnt on the QMUL data are shown in Figure 3.5 (for visualisation

words representing 50% of a probability mass of a behaviour are used). One can notice that

the algorithm correctly recognises the motion patterns in the data. The general motion of

the scene follows a cycle: a vertical traffic flow (the first behaviour in Figure 3.5a), when

cars move downward and upward on the road; left and right turns (the fourth behaviour in

Figure 3.5d): some cars moving on the “vertical” road turn to the perpendicular road at

the end of the vertical traffic flow; a left traffic flow (the second behaviour in Figure 3.5b),
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(a) Behaviour 1 (b) Behaviour 2 (c) Behaviour 3 (d) Behaviour 4

Figure 3.5: Behaviours learnt by the EM learning algorithm on the QMUL data. The arrows

represent the visual words: the location and direction of the motion. The first behaviour

(a) corresponds to the vertical traffic flow, the second (b) and the third (c) behaviours cor-

respond to the left and right traffic flow, respectively. The fourth (d) behaviour correspond

to turns that follow the vertical traffic flow.

(a) Behaviour 1 (b) Behaviour 2 (c) Behaviour 3

Figure 3.6: Behaviours learnt by the EM learning algorithm on the Idiap data. The arrows

represent the visual words: the location and direction of the motion. The first behaviour (a)

corresponds to a pedestrian motion, the second (b) and the third (c) behaviours correspond

to the upward and downward traffic flows, respectively.

when cars move from right to left on the “horizontal” road; and a right traffic flow (the

third behaviour in Figure 3.5c), when cars move from left to right on the “horizontal” road.

Note that the ordering numbers of behaviours correspond to their internal representation

in the algorithm. The transition probability matrix Ξ is used to recognise the correct order

of behaviours in the data.

Figure 3.6 presents the behaviours learnt on the Idiap data. In this case the learnt

behaviours have also clear semantic meaning. The scene motion follows a cycle: a pedestrian

flow (the first behaviour in Figure 3.6a), when cars stop in front of the stop line and
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(a) Car moving on the opposite lane (b) Disruption of the traffic flow

(c) Jaywalking (d) Car moving on the sidewalk

Figure 3.7: Examples of abnormal events

pedestrians cross the road; a downward traffic flow (the third behaviour in Figure 3.6c),

when cars move downward along the road; an upward traffic flow (the second behaviour in

Figure 3.6b), when cars from left and right sides move upward on the road.

3.5.3 Anomaly detection

In this section the anomaly detection performance achieved by all three learning algorithms

is compared. The datasets contain the number of abnormal events, such as jaywalking, car

moving on the opposite lane and disruption of the traffic flow (see examples in Figure 3.7).

For the EM learning algorithm the plug-in approximation of the predictive likelihood is

used for anomaly detection. For both the VB and GS learning algorithms both the plug-in

and Monte Carlo approximations of the likelihood are used. Note that for the GS algorithm
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samples are obtained during the learning stage. As 5 independent samples from the GS

scheme are taken, the Monte Carlo approximation of the predictive likelihood is computed

based on these 5 samples. For the VB learning algorithm samples are obtained after the

learning stage from the posterior distributions, parameters of which are learnt. This means

that the number of samples that are used for anomaly detection does not influence the

computational cost of learning. We test the Monte Carlo approximation of the predictive

likelihood with 5 and 100 samples for the VB learning algorithm.

Table 3.1: Methods references

Reference Learning al-

gorithm

Hyperparameter

settings

Marginal like-

lihood approx-

imation

Number of

posterior

samples

EM 1 p EM type 1 Plug-in —

EM H p EM type H Plug-in —

EM H+1 p EM type H+1 Plug-in —

VB 1 p VB type 1 Plug-in —

VB 1 mc 5 VB type 1 Monte Carlo 5

VB 1 mc 100 VB type 1 Monte Carlo 100

VB H p VB type H Plug-in —

VB H mc 5 VB type H Monte Carlo 5

VB H mc 100 VB type H Monte Carlo 100

VB H+1 p VB type H+1 Plug-in —

VB H+1 mc 5 VB type H+1 Monte Carlo 5

VB H+1 mc 100 VB type H+1 Monte Carlo 100

GS 1 p GS type 1 Plug-in —

GS 1 mc GS type 1 Monte Carlo 5

GS H p GS type H Plug-in —

GS H mc GS type H Monte Carlo 5

GS H+1 p GS type H+1 Plug-in —

GS H+1 mc GS type H+1 Monte Carlo 5
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As a result, we have 18 methods to compare: obtained by three learning algorithms, three

different groups of hyperparameter settings, one type of predictive likelihood approximation

for the EM learning algorithm, two types of predictive likelihood approximation for the VB

and GS learning algorithms, where for the former there are two Monte Carlo approximations

using 5 and 100 samples. The list of method references can be found in Table 3.1.
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(a) QMUL data results
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(b) Idiap data results

Figure 3.8: Results of anomaly detection. The mean areas under precision-recall curves (a)

on the QMUL data and (b) on the Idiap data
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Note that we achieve a very fast decision making performance in our framework. Indeed,

anomaly detection is made for approximately 0.0044 sec per visual document by the plug-

in approximation of the predictive likelihood, for 0.0177 sec per document by the Monte

Carlo approximation with 5 samples and for 0.3331 sec per document by the Monte Carlo

approximation with 100 samples2.

The mean areas under precision-recall curves for anomaly detection for all 18 compared

methods can be found in Figure 3.8. Below we examine the results with respect to hyperpa-

rameter sensitivity, an influence of the likelihood approximation on the final performance.

We also compare the learning algorithms and discuss anomaly localisation results.

3.5.3.1 Hyperparameter sensitivity

This section presents a sensitivity analysis of the anomaly detection methods with respect

to changes of the hyperparameters.

The analysis of the mean areas under curves (Figure 3.8) suggests that the hyperpa-

rameters almost do not influence the results of the EM learning algorithm, while there

is significant dependence between hyperparameter changes and results of the VB and GS

learning algorithms. These conclusions are confirmed by examination of the individual runs

of the algorithms. For example, Figure 3.9 presents the precision-recall curves for all 20

runs with different initialisations of 4 methods on the Idiap data: the VB learning algo-

rithm using the plug-in approximation of the predictive likelihood with the prior types 1

and H of the hyperparameter settings and the EM learning algorithm with the same prior

groups of the hyperparameter settings. One can notice that the variance of the curves for

the VB learning algorithm with the prior type 1 is larger than the corresponding variance

with the prior type H, while the corresponding variances for the EM learning algorithm are

very close to each other.

Note that the results of the EM learning algorithm with the prior type 1 do not signifi-

cantly differ from the results with the other priors, despite of the fact that the prior type 1

actually cancels out the prior influence on the parameter estimates and equates the MAP

and MLE. We can conclude that the choice of the hyperparameter settings is not a problem

2The computational time is provided for a laptop computer with i7-4702HQ CPU with 2.20GHz, 16 GB
RAM using Matlab R2015a implementation.
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Figure 3.9: Hyperparameter sensitivity of the precision-recall curves. The top row corre-

sponds to all the independent runs of the VB learning algorithm with the prior type 1 (a)

and the prior type H (b). The bottom row corresponds to all the independent runs of the

EM learning algorithm with the prior type 1 (c) and the prior type H (d). The red colour

highlights the curves with the maximum and minimum areas under curves.

for the EM learning algorithm and we can even simplify the derivations considering only

the MLE without the prior influence.

The VB and GS learning algorithms require a proper choice of the hyperparameter

settings as they can significantly change the anomaly detection performance. This choice

can be performed empirically or with the type II maximum likelihood approach [107].
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Table 3.2: Mean area under precision-recall curves

Dataset EM VB GS

QMUL 0.3166 0.3155 0.2970

Idiap 0.3759 0.3729 0.3643

3.5.3.2 Predictive likelihood approximation influence

In this section the influence of the type of the predictive likelihood approximation on the

anomaly detection results is studied.

The average results for both datasets (Figure 3.8) demonstrate that the type of the

predictive likelihood approximation does not remarkably influence the anomaly detection

performance. As the plug-in approximation requires less computational resources both in

terms of time and memory (as there is no need to sample and store posterior samples and

average among them) this type of approximation is recommended to be used for anomaly

detection in the proposed framework.

3.5.3.3 Learning algorithms comparison

This section compares the anomaly detection performance obtained by three learning algo-

rithms.

The best results in terms of a mean area under a precision-recall curve are obtained by

the EM learning algorithm, the worst results are obtained by the GS learning algorithm

(Figure 3.8 and Table 3.2). In Table 3.2 for each learning algorithm the group of hyper-

parameter settings and the type of predictive likelihood approximation is chosen to have

the maximum of the mean area under curves, where a mean is taken over independent runs

of the same method and maximum is taken among different settings for the same learning

algorithm.

Figure 3.10 presents the best and the worst precision-recall curves (in terms of the area

under them) for the individual runs of the learning algorithms. The figure shows that

among the individual runs the EM learning algorithm also demonstrates the most accurate

results. Although, the minimum area under the precision-recall curve for the EM learning
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(c) Idiap data — best results
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Figure 3.10: Precision-recall curves with the maximum and minimum areas under curves for

the three learning algorithms (maximum and minimum is among all the runs with different

initialisations for all groups of hyperparameter settings and all types of predictive likelihood

approximations). (a) presents the “best” curves for the QMUL data, i.e., the curves with

the maximum area under a curve. (b) presents the “worst” curves for the QMUL data, i.e.,

the curves with the minimum area under a curve. (c) presents the “best” curves for the

Idiap data, (d) — the “worst” curves for the Idiap data.

algorithm is less than the area under the corresponding curve for the VB algorithm. This

means that the variance among the individual curves for the EM learning algorithm is larger

in comparison with the VB learning algorithm.

The variance of the precision-recall curves for both VB and GS learning algorithms are

relatively small. However, the VB learning algorithm has the curves higher than the curves
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(a) (b)

(c) (d)

Figure 3.11: Examples of anomalies localisation. The red rectangle is the manual locali-

sation. The arrows represent the visual words with the smallest predictive likelihood, the

locations of the arrows are the results of the algorithmic anomalies localisation.

obtained by the GS learning algorithm. This can be confirmed by examination of the best

and worst precision-recall curves (Figure 3.10) and the mean values of the area under curves

(Figure 3.8 and Table 3.2).

3.5.3.4 Anomaly localisation

We apply the proposed method for anomaly localisation, presented in Section 3.4.2, and get

promising results. We demonstrate the localisation results for the EM learning algorithm

with the prior type H+1 on both datasets in Figure 3.11. It can be seen that the abnormal

events correctly localised by the proposed method.
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3.6 Summary

This chapter presents two learning algorithms for the dynamic topic model for behaviour

analysis in video: the EM-algorithm is developed for the MAP estimates of the model param-

eters and a variational Bayes inference algorithm is developed for calculating the posterior

distributions of them. A detailed comparison of these proposed learning algorithms with

the Gibbs sampling based algorithm developed in [69] is presented. The differences and the

similarities of the theoretical aspects for all three learning algorithms are well emphasised.

An empirical comparison is performed for abnormal behaviour detection using two unla-

belled real video datasets. Both proposed learning algorithms demonstrate more accurate

results than the algorithm proposed in [69] in terms of anomaly detection performance.

The EM learning algorithm demonstrates the best results in terms of the mean values of

the performance measure, obtained by the independent runs of the algorithm with different

random initialisations. Although, it is noticed that the variance among the precision-recall

curves of the individual runs is relatively high. The variational Bayes learning algorithm

shows the smaller variance among the precision-recall curves than the EM-algorithm and

the VB algorithm answers are more robust to different initialisation values. However, the

results of the algorithm are significantly influenced by the choice of the hyperparameters.

The hyperparameters require additional tuning before the algorithm can be applied to data.

Note that the results of the EM learning algorithm only slightly depend on the choice of

the hyperparameter settings. Moreover, the hyperparameter can be even set to cancel prior

influence on the estimates of parameters obtained by the EM algorithm that equates MLE

and MAP estimates. Both proposed learning algorithms — EM and VB — provide more

accurate results in comparison to the Gibbs sampling based algorithm.

We also demonstrate that consideration of predictive likelihoods of visual words rather

than visual documents can provide satisfactory results about locations of anomalies within

a frame. In our best knowledge the proposed localisation procedure is the first general

approach in probabilistic topic modeling that requires only presence of spatial information

encoded in visual words.

In the MCTM the number of topics and behaviours is limited and should be specified

in advance. A novel nonparametric model is introduced in the next chapter.
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Chapter 4

DYNAMIC HIERARCHICAL DIRICHLET

PROCESS

In Chapter 3 the dynamic topic model and learning algorithms for it are considered. In

that model the numbers of topics and topic mixtures are fixed. This chapter introduces

a novel dynamic nonparametric topic model that allows a potentially infinite number of

topics and, in practice, the number of topics is determined by the data. The application

of the model for behaviour analysis and anomaly detection in video is considered in detail,

however, the proposed model is not limited to this application (discussion of other potential

application areas is presented in Section 6.2.4). In this chapter visual documents and words

are defined in the same manner as in the previous chapter (Section 3.1).

There are two types of dynamics in the topic modeling literature (Section 2.3.4). In the

proposed model the dynamics on topic mixtures in documents are considered. The model

is designed to encourage neighbouring documents to have similar topic mixtures.

Imagine that there is an infinitely long video sequence. Motion patterns, which are

typical for a scene, may appear and disappear and the total number of these patterns may

be infinite. The motion patterns are modelled as topics in the topic model, hence the

number of topics in the topic model may potentially be infinite. In real life this means that

with the growth of a data size the number of topics is expected to increase. This intuition

may be simulated by a nonparametric model [111].

In anomaly detection it is essential to make a decision as soon as possible to warn a

human operator. Therefore, batch and online inference for the model based on the Gibbs

sampler is developed in this chapter. During the batch offline set-up the Gibbs sampler

processes a training set of documents, estimating distributions of words in topics. During

the online set-up test documents are processed one by one. The main goal of the online

inference is to estimate a topic mixture for the current document, without reconsideration

63



Dynamic hierarchical Dirichlet process

of all the previous documents.

A final anomaly detection decision is based on a normality measure that is proposed

here based on predictive likelihood of new data.

The results of the work presented in this chapter are disseminated in:

• O. Isupova, D. Kuzin, L. Mihaylova. “Dynamic Hierarchical Dirichlet Process for

Abnormal Behaviour Detection in Video”, in Proceedings of the 19th International

Conference on Information Fusion, 5-8 July 2016, Heidelberg, Germany, pp. 750-757

• O. Isupova, D. Kuzin, L. Mihaylova. “Anomaly Detection in Video with Bayesian

Nonparametrics”, in ICML 2016 Anomaly detection Workshop, 24 June 2016, New

York, NY, USA

The remainder of the chapter is organised as follows. The hierarchical Dirichlet process

topic model is overviewed in Section 4.1. The proposed model is described in Section 4.2.

Section 4.3 presents the inference for the model, while section 4.4 introduces the anomaly

detection procedure. The experimental results are given in section 4.5. Section 4.6 sum-

marises the chapter.

4.1 Hierarchical Dirichlet process topic model

In contrast to the model from Chapter 3 and basic parametric topic models, such as LDA

and PLSA (Section 2.3.2), we consider a nonparametric set-up where the number of topics

is not limited: {φk}k=1:∞. Moreover, it is assumed that observing an infinite amount of

data we can expect to have an infinite number of topics.

This kind of mixture models with a potentially infinite number of mixture components

can be modelled with the hierarchical Dirichlet process (HDP) [145]. The HDP is a hi-

erarchical extension of the Dirichlet process (DP), which is a distribution over random

distributions [46]. Each document wj is associated with a sample Gj from a DP:

Gj ∼ DP(α,G0), (4.1)

where DP(·, ·) denotes a DP, α is a concentration parameter, G0 is a base measure. The

sample Gj can be seen as a vector of mixture component weights, where the number of

components is infinite.
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The base measure G0 itself is a sample from another DP:

G0 ∼ DP(γ,H), (4.2)

with the concentration parameter γ and the base measure H. This shared measure G0 from

a DP ensures that the documents will have the same set of topics but with different weights.

Indeed, G0 is almost surely discrete [132], concentrating its mass on the atoms φk drawn

from H. Therefore, Gj picks the mixture components from this set of atoms.

A topic, that is an atom φk, is modelled as the categorical distribution with a proba-

bility φwk of choosing a word w. The base measure H is therefore chosen as the conjugate

Dirichlet distribution, where η denotes a parameter of this Dirichlet distribution. As usual

a symmetric Dirichlet parameter is considered: throughout this chapter η = {η, . . . , η} is

used for simplicity.

Document j is formed by repeating the procedure of drawing a topic from the mixture:

θji ∼ Gj (4.3)

and drawing a word from the chosen topic for every token i:

wji ∼ Cat(θji) (4.4)

4.1.1 Chinese restaurant franchise

There are several versions of the HDP representation (as well as the DP) [145]. In this

work the representation called Chinese restaurant franchise is considered, as it is used for

the derivation of the Gibbs sampling inference scheme. In this metaphor, each document

corresponds to a “restaurant”; words correspond to “customers” of the restaurant. The

words in the documents are grouped around “tables” and the number of tables in each

document is unlimited. Each table serves a “dish”, which corresponds to a topic. The

“menu” of dishes, i.e., the set of the topics, is shared among all the restaurants.

Let tji denote a table assignment for token i in document j and let kjt denote a topic

assignment for table t in document j. Let njt denote the number of words assigned to

table t in document j and mjk denote the number of tables in document j serving topic k.

The dots in subscripts mean marginalisation over the corresponding dimension, e.g., m·k

denotes the number of tables among all the documents serving topic k, while mj· denotes
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Figure 4.1: Chinese restaurant franchise for the HDP

the total number of tables in document j. Marginalisation over both dimensions m·· means

the total number of tables in the dataset.

The data generative process is as follows. A new token comes to document j and chooses

one of the occupied tables with a probability proportional to the number of words njt

assigned to this table, or the new token starts a new table with a probability proportional

to α (Figure 4.1a):

p(tji = t|tj1, . . . , tji−1, α) =


njt

i− 1 + α
, if t = 1 : mj·;

α

i− 1 + α
, if t = tnew.

(4.5)

If the token starts a new table, it chooses a topic for it. This topic will be shared by all

tokens that may join this table later. The process of choosing a topic for a table can also

be formulated as customer-to-table assignment in a top-level restaurant, where customers
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are tables from document-level restaurants (Figure 4.1b). This top-level restaurant shows

global topic popularity.

Therefore, the token that starts a new table in a document-level restaurant chooses one

of the used topics with a probability proportional to the number of tables m·k that serve

this topic among all the documents, or the token chooses a new topic, sampling it from the

base measure H, with a probability proportional to γ:

p(kjtnew = k|k11, . . . , kjt−1, γ) =


m·k

m·· + γ
, if k = 1 : K;

γ

m·· + γ
, if k = knew,

(4.6)

where K is the number of topics used so far.

Once the token is assigned to the table tji with the topic kjtji , the word wji for this

token is sampled from this topic:

wjt ∼ Cat(φkjtji ). (4.7)

The correspondence between two representations of the HDP (4.1) – (4.4) and (4.5) –

(4.7) is based on the following equality: θji = φkjtji
.

4.2 Proposed dynamic hierarchical Dirichlet process topic model

In the HDP, exchangeability of documents and words is assumed, which means that the joint

probability of the data is independent of the order of documents and words in documents.

However, in video processing applications this assumption may be invalid. While the words

inside the documents are still exchangeable, the documents themselves are not. All actions

and motions in real life last for some time, and it is expected that the topic mixture in the

current document is similar to the topic mixture in the previous document. Some topics

may appear and disappear but the core structure of the mixture component weights only

slightly changes from document to document.

We propose a dynamic extension of the HDP topic model to take into account this

intuition. In this model the probability of topic k explicitly depends on the usage of this

topic in the current and previous documents mjk+mj−1k, therefore the topic distribution in

the current document would be similar to the topic distribution in the previous document.

The topic probability still additionally depends on the number of tables that serve this topic
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Figure 4.2: Chinese restaurant franchise for the dynamic HDP

in the whole dataset m·k, but this number is weighted by a non-negative value λ, which is a

parameter of the model. As in the previous case, it is possible to sample a new topic from

the base measure H.

The generative process can be then formulated as follows. A new token comes to a

document and, as before, chooses one of the occupied tables t with a probability proportional

to the number of words njt already assigned to it, or it starts a new table with a probability

proportional to the parameter α (Figure 4.2a):

p(tji = t|tj1, . . . , tji−1, α) =


njt

i− 1 + α
, if t = 1 : mj·;

α

i− 1 + α
, if t = tnew.

(4.8)

The token that starts a new table should choose a topic for this table. One of the used
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topics k is chosen with a probability proportional to the sum of the number of tables having

this topic in the current and previous documents mjk + mj−1k and the weighted number

of tables among all the previously observed documents, which have this topic, λm·k. A

new topic can be chosen for table t with a probability proportional to the parameter γ

(Figure 4.2b):

p(kjt = k|k11, . . . , kjt−1, γ) =


mjk +mj−1k + λm·k
mj· +mj−1· + λm·· + γ

, if k = 1 : K;

γ

mj· +mj−1· + λm·· + γ
, it k = knew.

(4.9)

Finally, word wji is sampled for token i in document j, assigned to the table tji = t,

which serves the topic kjt = k. The word is sampled from the corresponding topic k:

wji ∼ Cat(φk). (4.10)

4.3 Inference

Standard inference algorithms process an entire dataset. For large or stream datasets this

batch set-up is computationally intractable. Online algorithms process data in a sequential

manner, one data point at a time, incrementally updating the variables, corresponding to

the whole dataset. It allows to save memory space and reduce the computational time. In

this chapter combination of offline and online inference is proposed and this section describes

it in detail.

The Gibbs sampling scheme is used. The inference procedure consists of two parts.

Firstly, the traditional batch set-up of the Gibbs sampling is applied to the training set of

documents w1:Jtr . Then an online set-up for the inference is applied for the test documents

wj , j > Jtr. This means that the information about a test document is incrementally added

to the model, not requiring to process the training documents again.

In the Gibbs sampling inference scheme the hidden variables tji and kjt are sampled from

their conditional distributions. In the Gibbs sampler for the HDP model, exchangeability

of documents and words is used by treating the current variable tji as the table assignment

for the last token in the last document and kjt as the topic assignment for the last table in

the last document. There is no exchangeability of documents in the proposed model, but

words inside a document are still exchangeable. Therefore, the variable tji can be treated
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as the table assignment for the last token in the current document j, and the variable kjt

can be treated as the topic assignment for the last table in the current document j. The

documents are processed in the order they appear in the dataset.

The following notation is used below. Let V denote the size of the word vocabu-

lary (V = |V|), tj1:j2 = {tji}j=j1:j2,i=1:Nj is the set of the table assignments for all the

tokens in the documents from j1 to j2. Let kj1:j2 = {kjt}j=j1:j2,t=1:mj· denote the corre-

sponding set for the topic assignments. Let mj1:j2 k denote the number of tables having

topic k in the documents from j1 to j2. Let also wjt = {wji}i=1:Nj ,tji=t denote the words

assigned to table t in the document j.

Recall that lwk denotes the number of times word w is associated with topic k, let l·k

denote the number of tokens associated with topic k: l·k =
∑
w
lwk, regardless of the word

assignments. The notation lj1:j2
wk is used for the number of times word w is associated with

topic k in the documents from j1 to j2.

The superscript −ji indicates the corresponding variable without considering token i

in document j, e.g., the set variable t−jij1:j2
= tj1:j2 \ {tji} or the count n−jijt is the number

of words assigned to table t in document j excluding the word for token i. Similarly, the

superscript −jt means the corresponding variable without considering table t in document j.

4.3.1 Batch collapsed Gibbs sampling

4.3.1.1 Sampling topic assignment kjt

The topic assignment kjt for table t in document j is sampled from the conditional dis-

tribution given the observed data w1:Jtr and all the other hidden variables, i.e., the table

assignments for all the tokens t1:Jtr and the topic assignments for all the other tables k−jt1:Jtr
:

p(kjt = k|w1:Jtr
, t1:Jtr

,k−jt1:Jtr
) ∝ p(wjt|kjt = k,k−jt1:Jtr

, t1:Jtr
,w−jt1:Jtr

) p(kjt = k|k−jt1:Jtr
). (4.11)

The likelihood term p(wjt|kjt = k,k−jt1:Jtr
, t1:Jtr

,w−jt1:Jtr
) can be computed by integrating

out the distribution φk:

f−jt(wjt)
def
= p(wjt|kjt = k,k−jt1:Jtr

, t1:Jtr
,w−jt1:Jtr

) =

∫
p(wjt|φk) p(φk|k

−jt
1:Jtr

, t1:Jtr
,w−jt1:Jtr

)dφk =

∏
w∈V

Γ(lwk + η)

Γ(l·k + V η)

Γ(l−jt·k + V η)∏
w∈V

Γ(l−jtwk + η)
, (4.12)
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where Γ(·) is the gamma function. In the case when k is a new topic (k = knew = K + 1)

the integration is performed over the prior distribution for φknew . The obtained likelihood

term (4.12) is then:

f−jtknew(wjt) =

∏
w∈V

Γ(lwknew + η)

Γ(l·knew + V η)

Γ(V η)

(Γ(η))V
. (4.13)

The second multiplier in (4.11) p(kjt = k|k−jt) can be further factorised as:

p(kjt = k|k−jt1:Jtr
) ∝ p(kj+1:J |k−jt1:j , kjt = k) p(kjt = k|k−jt1:j ). (4.14)

The first term in (4.14) is the probability of the topic assignments for all the tables in the

next documents depending on the change of the topic assignment for table t in document j.

Consider the topic assignments in document j + 1 first. From (4.9) it is:

g−jtk (kj+1)
def
= p(kj+1|k−jt1:j , kjt = k) =

γ|K
born
j+1 | ∏

ḱ∈Kborn
j+1

(
mj+1ḱ − 1

)
! (1 + λ)mj+1l−1

mj+1·∏́
t=1

(
mj· + t́− 1 + λ

(
m1:j · + t́− 1

)
+ γ
) ×

∏
ḱ 6∈Kborn

j+1

mj+1 ḱ∏
t́=1

(
m−jt→k
jḱ

+ t́− 1 + λ
(
m−jt→k

1:j ḱ
+ t́− 1

))
∝

∏
ḱ 6∈Kborn

j+1

mj+1 ḱ∏
t́=1

(
m−jt→k
jḱ

+ t́− 1 + λ
(
m−jt→k

1:j ḱ
+ t́− 1

))
, (4.15)

where the sign of proportionality is used with respect to kjt, Kborn
j+1 is the set of the topics

that first appear in document j + 1, the superscript −jt→ k means that kjt is set to k for

the corresponding counts, | · | is the cardinality of the set.

The similar probabilities of the topic assignments for all the next docu-

ments j′ = j + 2 : Jtr depend on k only in the term m−jt→k1:j′−1 ·. It is assumed that the

influence of k on these probabilities is not significant and the first term in (4.14) is approx-

imated by the probability of the topic assignments (4.15) in document j + 1 only:

p(kj+1:J |k−jt1:j , kjt = k) ≈ g−jtk (kj+1). (4.16)

The second term in (4.14) is the prior for kjt:

p(kjt = k|k−jt1:j ) ∝


m−jtjk +mj−1k + λm−jt1:j k, if k = 1 : K;

γ, if k = knew.

(4.17)
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Substituting (4.16) and (4.17) into (4.14), p(kjt = k|k−jt1:Jtr
) is computed as follows:

p(kjt = k|k−jt1:Jtr
) ∝


g−jtk (kj+1)(mjt +mj−1k + λm1:j k), if k = 1 : K;

g−jtknew(kj+1)γ, if k = knew.

(4.18)

The topic assignment sampling distribution can be then expressed as:

p(kjt = k|w1:Jtr
, t1:Jtr

,k−jt1:Jtr
) ∝ f−jtk (wjt) p(kjt = k|k−jt1:Jtr

), (4.19)

where f−jtk (wjt) is given by (4.12) – (4.13) and p(kjt = k|k−jt1:Jtr
) is given by (4.18).

4.3.1.2 Sampling tji

The table assignment tji for token i in document j is sampled from the conditional dis-

tribution given the observed data w1:Jtr and all the other hidden variables, i.e., the topic

assignments for all the tables k1:Jtr and the table assignments for all the other tokens t−ji1:Jtr
:

p(tji = t|w1:Jtr
,k1:Jtr

, t−ji1:Jtr
) ∝ p(wji|t−ji1:Jtr

, tji = t,w−ji1:Jtr
,k1:Jtr

) p(tji = t|t−ji1:Jtr
) (4.20)

The first term in (4.20) is the likelihood of word wji. It depends on whether t is one of

the previously used table or it is a new table. For the case when t is the table, which is

already used, the likelihood is:

f−jikjt
(wji) = p(wji|tji = t, t−ji1:Jtr

,k1:Jtr
,w−ji1:Jtr

) =
lwji kjt + η

l· kjt + V η
(4.21)

Consider now the case when tji = tnew, i.e., the likelihood of the word wji being as-

signed to a new table. This likelihood can be found by integrating out the possible topic

assignments kjtnew for this table:

rtnew(wji)
def
= p(wji|t−ji1:Jtr

, tji = tnew,w−ji1:Jtr
,k1:Jtr

) =

K∑
k=1

f−jik (wji) p(kjtnew = k|k1:Jtr) + f−jiknew(wji) p(kjtnew = knew|k1:Jtr), (4.22)

where p(kjtnew = k|k1:Jtr) is given by (4.18).

The second term in (4.20) is the prior for tji:

p(tji = t|t−ji1:Jtr
) ∝


njt, if t = 1 : mj·;

α, if t = tnew.

(4.23)
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Then the conditional distribution for sampling a table assignment tji is:

p(tji = t|w1:Jtr
,k1:Jtr

, t−ji1:Jtr
) ∝


f−jikjt

(wji)njt, if t = 1 : mj·;

rtnew(wji)α, if t = tnew.

(4.24)

If a new table is sampled, then a topic for it is drawn from (4.19).

4.3.2 Online inference

In online or distributed implementations of inference algorithms in topic modeling global

variables (that depend on the whole set of data) are separated from local variables (that

depend only on the current document) [155, 136, 160].

For the proposed dynamic HDP model the global variables are the distributions φk,

which are approximated by the counts lwk, and the global topic popularity, which is esti-

mated by the counts m·k. Note that the relative relationship between counts is important,

rather than the absolute values of the counts. The local variables are the topic mixture

weights for each document, governed by the counts mjk. The training dataset is assumed

to be large enough such that the global variables are well estimated by the counts available

during the training stage and a new document can only slightly change the obtained ratios

of the counts.

Following this assumption, the learning procedure is organised as follows. The batch

Gibbs sampler is run for the training set w1:Jtr of the documents. After this training stage

the global counts lwk and m·k for all w and k are stored and used for the online inference

of the test documents: wj , j > Jtr. For each test document wj the online Gibbs sampler is

run to sample table assignments and topic assignments for this document only. The online

Gibbs sampler updates the local counts mjk. After the Gibbs sampler converges, the global

counts lwk and m·k are updated with the information obtained by the new document.

The equations for the online version of the Gibbs sampler differ from the batch ones in

the update formula for kjt. Namely, the conditional probability p(kjt = k|k−jt1:j ) in the topic

assignment sampling distribution (4.19) differs from (4.14). As successive documents are

not observed while processing the current document, this probability consists only of the
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prior term p(kjt = k|k−jt1:j ):

ponline(kjt = k|k−jt1:j ) =


m−jtjk +mj−1k + λm−jt1:j k, if k = 1 : K;

γ, if k = knew.

(4.25)

Substituting this expression into (4.19) the obtained sampling distribution for the topic

assignment in the online Gibbs sampler is:

ponline(kjt = k|w1:j , t1:j ,k
−jt
1:j ) ∝


f−jtk (wjt)(mjt +mj−1k + λm1:j k), if k = 1 : K;

f−jtknew(wjt) γ, if k = knew.

(4.26)

The updating distribution for the topic assignment in the online Gibbs sampler remains

the same as in the batch version (4.24).

The similar idea of online inference is used in the sequential Markov chain Monte Carlo

scheme [114]. In that approach a set of posterior samples obtained from the previous

observations are used instead of one that is used in the proposed algorithm. Using several

posterior samples can increase accuracy but it also multiplies computational complexity of

processing each document by the number of posterior samples.

4.4 Anomaly detection

Topic models provide a probabilistic framework for anomaly detection. Under this frame-

work a normality measure is the likelihood of data.

The Gibbs sampler provides estimates of the distributions φk and posterior samples of

the table and topic assignments. This information can be used to estimate the predictive

likelihood of a new clip. The predictive likelihood, normalised by the length Nj of the clip

in terms of visual words, is used as a normality measure in this chapter.

The predictive likelihood is estimated via a harmonic mean [58], as it allows to use the

information from the posterior samples:

p(wj |w1:j−1) =

 ∑
t1:j ,k1:j

p(t1:j ,k1:j |wj ,w1:j−1)

p(wj |t1:j ,k1:j ,w1:j−1)

−1

≈

(
1

S

S∑
s=1

1

p(wj |ts1:j ,k
s,w1:j−1)

)−1

, (4.27)
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where S is the number of the posterior samples, ts1:j and ks1:j are from the s-th posterior

sample obtained by the Gibbs sampler, and

p(wj |ts1:j ,k
s,w1:j−1) =

K∏
k=1

∏
w∈V

Γ(l1:j s
wk + η)

Γ(l1:j s
·k + V η)

Γ(l1:j−1 s
·k + V η)∏

w∈V
Γ(l1:j−1 s

wk + η)
. (4.28)

The superscript s on the counts means these counts are from the s-th posterior sample.

The anomaly detection procedure is then as follows. The batch Gibbs sampler is run on

the training dataset. Then for each clip from the test dataset first the online Gibbs sampler

is run to obtain the posterior samples of the hidden variables corresponding to the current

clip. Afterwards the normality measure:

A(wj) =
1

Nj
log p(wj |w1:j−1) (4.29)

is computed for the current clip. If the normality measure is below a threshold, the clip

is labelled as abnormal, otherwise as normal. And the next clip from the test dataset is

processed.

4.5 Experiments

In this section the proposed method is applied to behaviour analysis and anomaly detection.

The method is compared with the one, based on the HDP topic model, where for the HDP

topic model the online version of the Gibbs sampler and the normality measure are derived

similarly to the dynamic HDP. The methods are compared on both synthetic and real data.

The area under precision-recall curves, introduced in Section 3.5.1, is used as a performance

measure.

4.5.1 Synthetic data

The popular “bar” data [58] is used as a synthetic dataset. In this data the vocabulary

consists of V = 25 words, organised into a 5×5 matrix. There are 10 topics in total, the word

distributions φk of these topics form vertical and horizontal bars in the matrix (Figure 4.3).

The training dataset consisting of 2000 documents is generated from the proposed

model (4.8) – (4.10), where 1% noise is added to the distributions φk. Each of the docu-

ments has 20 words. The hyperparameters are set to the following values for the genera-

tion: α = 1.5, γ = 2, λ = 0.5.
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Figure 4.3: Graphical representation of the topics in the synthetic dataset. There are 25

words, organised into a 5 × 5 matrix, where a word corresponds to a cell in this greyscale

matrix. The topics are represented as the greyscale matrices, where the intensity of the cell

indicates the probability of the corresponding word in a given topic, the lighter the colour the

higher the probability value. For the presented topics black cells indicate zero probabilities

of corresponding words, white cells represent probabilities equal to 0.2 of corresponding

words.

Similarly, a test dataset consisting of 1000 documents is used, but where 300 random

documents are generated as “abnormal”. In the proposed model it is assumed that topic

mixtures in neighbouring documents are similar. In contrast to this assumption, topics for

an abnormal document are chosen uniformly from the set of all the topics except those used

in the previous document.

Both algorithms are run for these datasets, computing the normality measure for all

the test documents. The hyperparameters α, γ and λ are set to the same values as for

the generation, η = 0.2 (η is not used in generation as the word distributions in topics are

set manually). Each of the algorithms has 5 runs with different initialisations to obtain 5

independent posterior samples. Both batch and online samplers are run for 1000 burn-in

iterations.

In Figure 4.4 the precision-recall curves for the obtained normality measures are pre-

sented together with the precision-recall curve for the “true” normality measure. The “true”
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Figure 4.4: Precision-recall curves for the synthetic data obtained by both models. The

precision-recall curve, obtained by the likelihood, computed with the known true hidden

variables, is labelled as a “true” model.

normality measure is computed using the likelihood based on the true distributions φk and

the true table and topic assignments t1:j and k1:j , i.e., it corresponds to the model that can

perfectly restore the latent variables. Table 4.1 contains the obtained values for the area

under precision-recall curves.

Table 4.1: Dynamic HDP vs standard HDP. Area under precision-recall curves results

Dataset Dynamic HDP HDP “True” model

Synthetic 0.5147 0.2817 0.6046

QMUL 0.3232 0.0980 —

Idiap 0.3542 0.2586 —

The results show that the proposed dynamic HDP can detect the simulated abnormalities

and its performance is competitive to the “true” model. The original HDP method is not

expected to detect this kind of abnormalities, as they do not contradict its generative model,

and it is confirmed by the empirical results.
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(a) (b) (c) (d)

Figure 4.5: Sample topics learnt by the dynamic HDP on the QMUL data. The arrows

represent the visual words: the location and direction of the motion. (a) corresponds to

the vertical traffic flow. (b) corresponds to the right traffic flow. (c) and (d) correspond to

turns that follow the vertical traffic flow.

4.5.2 Real video data

Both the proposed dynamic HDP and standard HDP are applied to the real video data —

QMUL and Idiap, introduced in Section 3.5. Both algorithms have 5 runs with different

initialisations to obtain 5 independent posterior samples. The batch and online samplers

are run for 500 burn-in iterations.

The proposed inference scheme based on online processing of test documents achieves

a fast decision making procedure. Anomaly detection is made for approximately 0.5427

sec per visual document by the proposed dynamic HDP method with 5 posterior samples

obtained by independent Gibbs samplers using 500 burn-in iterations1.

The hyperparameters for the dynamic HDP model are set as follows: α = 0.001,

γ = 0.001 and η = 0.5 on both datasets and λ = 0.0005 for the QMUL data and λ = 0.5 for

the Idiap data. The standard HDP algorithm is used with the following settings: α = 0.001,

γ = 0.001 and η = 0.5 for both datasets.

Figure 4.5 shows visualisation of the topics learnt by the dynamic HDP for the QMUL

data. The topics represent clear semantic motion patterns. Figures 4.5c and 4.5d demon-

strate that topics can have overlapping subsets of visual words that in combination with

other words form different topics. In this example the right turn can be a part of vertical

1The computational time is provided for a laptop computer with Intel Core i5 CPU with 2.4GHz, 8 GB
RAM using C++ implementation.
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(a) (b) (c) (d)

Figure 4.6: Sample topics learnt by the dynamic HDP on the Idiap data. The arrows

represent the visual words: the location and direction of the motion. (a) and (b) correspond

to the upward and downward traffic flow, respectively. (c) and (d) correspond to pedestrian

motions on a crosswalk and sidewalk, respectively.

traffic flow or can be observed in the scene together with the left turn.

Sample topics extracted from the Idiap data by the dynamic HDP algorithm are given

in Figure 4.6. The examples show that topics in the dynamic HDP can represent both

global motion patterns such as traffic flows and local activities such as pedestrian motions

in different parts of the scene.

The precision-recall curves for anomaly detection obtained by both algorithms are pre-

sented in Figure 4.7. The corresponding values for the area under the curves can be found

in Table 4.1. The results provided in Figure 4.7 and Table 4.1 show that consideration of

the dynamics proposed in this chapter for the HDP topic model significantly improves the

performance of the algorithm in terms of anomaly detection. The improvement is achieved

on both real datasets.

The proposed dynamic HDP is also compared with the algorithms from Chapter 3 on

both datasets. For this 20 Monte Carlo runs are used with 5 posterior samples in every run.

The obtained average results are presented in Table 4.2.

The dynamic HDP achieves the best results on the QMUL data. However, on the

Idiap data MCTM methods demonstrate superior values of the performance measure. The

Idiap data contains much more abnormal events: 11% of test documents are abnormal in

comparison to 5% in the QMUL dataset. With these settings the definition of abnormal

events as those that happen rarely is not as reasonable as for the QMUL data. Therefore,

the flexibility of the dynamic HDP model can have a negative effect and abnormal activities
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Figure 4.7: Precision-recall curves obtained by the dynamic and vanilla HDP models on

both datasets

Table 4.2: Mean area under precision-recall curves results for all topic models

Dataset Dynamic HDP EM VB GS

QMUL 0.3244 0.3166 0.3155 0.2970

Idiap 0.3565 0.3759 0.3729 0.3643

might be learnt as typical. The limitation of model parameters prevents the MCTM methods

from learning it.

To sum up, the proposed dynamic HDP algorithm outperforms the MCTM methods

on the data with rare abnormal events. However, further developments are required to

increase detection performance on data with considerable amounts of abnormal data points.

Consideration of the dynamics is a promising direction here since the proposed dynamic

HDP method is shown to significantly outperform its non-dynamic counterpart on both

datasets.

4.6 Summary

In this chapter a novel Bayesian nonparametric dynamic topic model is proposed. The

dynamics are considered on topic mixtures in documents such that successive documents

are encouraged to have similar topic mixtures. This kind of dynamics for video processing
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is based on the fact that activities, expressed by topics, last for some time in real life.

Therefore, activities presented in the current visual document are likely to be presented in

the next document.

Note that the similar intuition is employed in the Markov clustering topic model con-

sidered in the previous chapter. The dynamic HDP introduced in this chapter represents a

more flexible model in comparison to the MCTM due to its nonparametric nature. The con-

cept of behaviours, namely the assumption of a limited number of topic mixtures, introduced

in the MCTM is reasonable in the context of well-structured data where a general motion

of an observed scene follows a cycle. Such type of data is analysed here; the data represents

a video of a road junction regulated by a traffic light. The unlimitedness of the number

of topics assumed in the dynamic HDP makes it applicable to more complex unstructured

data, e.g., surveillance video in public places such as shopping malls or airports.

The inference algorithm for the proposed dynamic HDP is divided into two phases. On

a training dataset the batch Gibbs sampler is applied. For making decision about test data

the online Gibbs sampler is designed that allows to incrementally update the model without

reprocessing previously observed data.

The proposed dynamic HDP topic model is applied for behaviour analysis and anomaly

detection in video. A normality measure based on predictive likelihood is derived for decision

making. Experiments on real video data show that the dynamic HDP significantly outper-

forms the conventional HDP in terms of anomaly detection performance. On the data with

rare abnormal events the dynamic HDP also outperforms all the MCTM methods presented

in the previous chapter.

Chapters 3 and 4 present topic modeling methods for behaviour analysis and anomaly

detection in video. An alternative change point detection approach is considered in the next

chapter.
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Chapter 5

CHANGE POINT DETECTION WITH

GAUSSIAN PROCESSES

This chapter introduces a novel framework for detecting anomalies as change points.

Chapters 3 and 4 present methods for behaviour analysis and anomaly detection based on the

topic modeling approach. In this approach an algorithm extracts typical patterns as topics.

During the testing phase, data which does not fit with the extracted patterns, is labelled

as abnormal. Anomaly detection can be viewed from another perspective. Anomalies can

be considered as a change in an underlying data distribution, employing the change point

detection methodology for anomaly discovery. For example, this approach is relevant in

such classes of applications as panic or evacuation detection, where input data can be an

average velocity of a crowd.

This chapter presents a general approach for change point detection, which can be used

for behaviour analysis (where periods between change points are considered as different

behaviours) and anomaly detection (where a change is considered as a break point between

normal and abnormal behaviours). In the proposed framework changes are considered as

functional breaks in input data. Functions governing observed data have a Gaussian process

prior and a change is defined as an alteration in hyperparameters of this Gaussian process.

A hypothesis testing framework is employed and statistical tests for change point detection

are proposed.

In this chapter input data is presented in a time series form. An overview of the methods

that process video data in such form is provided in Section 2.4.2.

The results of the work presented in this chapter are disseminated in:

• O. Isupova, D. Kuzin, F. Gustafsson, L. Mihaylova. “Change Point Detection with

Gaussian Processes”, in IEEE Transactions on Pattern Analysis and Machine Intel-
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ligence, under review, 2017

The rest of the chapter is organised as follows. Section 5.1 formulates a change point

detection problem for a Gaussian process time series model within a statistical hypothesis

testing framework. Section 5.2 describes the proposed likelihood ratio tests. Online statis-

tical tests are introduced in Section 5.3. The proposed methods are evaluated on simulated

data in Section 5.4 and on real data in Section 5.5. Section 5.6 summarises the chapter.

5.1 Problem formulation

Change point detection aims to detect abrupt changes in time series data. An abrupt change

is understood as a change in a latent probability distribution of observed data.

5.1.1 Data model

A time series can be modelled with a Gaussian process (GP) as follows:

yτ = f(τ) + ετ , (5.1)

where yτ is an observation at time τ ; f(·) ∼ GP(m(·), k(·, ·)) is a function of time with a

GP prior, where GP denotes a GP, characterised by a mean function m(·) and a covariance

function k(·, ·); ετ ∼ N (ετ |0, σ2) is white Gaussian noise with a zero mean and a variance σ2.

The mean and covariance functions of the GP are parameterised with vectors ϑm and ϑk,

respectively. Then ϑ = {ϑm,ϑk, σ2} denotes a vector of hyperparameters of a given GP.

Although in this thesis we consider only the GP time series model, the proposed methods

are directly applicable to the GP autoregressive model:

yτ = f(yτ−r, . . . , yτ−1) + ετ ,

where r is the order of the model.

For a given set of input points of time indices τ 1:N = {τi}Ni=1, where N is the number of

points, we can compute the posterior distributions of function values and observations [122]:

f1:N |τ 1:N ,ϑ ∼ N (f1:N |µ,K), (5.2)

where f1:N = f(τ 1:N ) = {f(τi)}Ni=1 are function f values for the given input time indices;

µ = {µi}Ni=1 = {m(τi)}Ni=1 are realisations of the GP mean function at the input points;
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K = {Ki,j}Ni,j=1 = {k(τi, τj)}Ni,j=1 are realisations of the GP covariance function at the input

points; and:

y1:N |τ 1:N ,ϑ ∼ N (y1:N |µ,K + σ2I), (5.3)

where y1:N = {yτi}Ni=1 are observations at the given time indices and I is the identity matrix.

The marginal log likelihood function of observed data is given by:

log p(y1:N |τ 1:N ,ϑ) = −1

2
(y1:N − µ)T

(
K + σ2I

)−1
(y1:N − µ)−

1

2
log det

(
K + σ2I

)
− N

2
log 2π, (5.4)

where det(·) is a determinant of a matrix.

5.1.2 Change point detection problem formulation

An abrupt change in GP time series data can be defined as a change in hyperparameters of

the GP. This means that the function f(·) from the data model (5.1) has a GP prior governed

by different hyperparameters before and after a change. The vectors of hyperparameters

before and after a change are denoted as ϑ0 and ϑ1, respectively. The final model for time

series data with an abrupt change is then formulated as:

yτ = f0(τ) + ε0
τ , ∀τ < τ∗; (5.5)

yτ = f1(τ) + ε1
τ , ∀τ ≥ τ∗, (5.6)

where τ∗ is a time instant when the change occurs and:

f0(·) ∼ GP(m0(·), k0(·, ·)); (5.7a)

ε0
τ ∼ N (0, σ2

0); (5.7b)

f1(·) ∼ GP(m1(·), k1(·, ·)); (5.7c)

ε1
τ ∼ N (0, σ2

1), (5.7d)

where ma and ka are the mean and covariance functions of the GP governed by the hyper-

parameter vector ϑa, σ
2
a is the variance of the additive noise defined by the hyperparameter

vector ϑa, for a ∈ {0, 1}.

The change point detection problem can be formulated within a statistical framework as

a hypothesis testing task. Let the null hypothesis H0 state that a GP prior of a function f
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has a hyperparameter vector ϑ equal to the initial value ϑ0 during the whole observation

period. Meanwhile let the alternative H1 claim that there exists a change time index τ∗

such that the hyperparameter vector ϑ of the GP has the initial value ϑ0 before the change

point and is equal to a new vector ϑ1 after the change time τ∗:

H0 : ϑ = ϑ0, ∀τ ; (5.8)

H1 : ∃τ∗ :


ϑ = ϑ0, τ < τ∗,

ϑ = ϑ1, τ ≥ τ∗.
(5.9)

The next sections provide a description of the proposed statistical methods for the testing

framework introduced in (5.8) – (5.9).

5.2 Gaussian process change point detection approach based on likelihood ratio

tests

This section introduces an approach based on two likelihood ratio tests for the change point

detection problem (5.8) – (5.9). The first proposed test is the likelihood ratio test (LRT) for

the considered problem. In this set-up both hyperparameter values ϑ0 and ϑ1 are assumed

to be known. In some class of the real world applications this assumption is unlikely to

hold therefore the second proposed test is the generalised LRT, where the hyperparameter

vectors ϑ0 and ϑ1 are estimated from the data.

5.2.1 Likelihood ratio test

Let y1:N be observed output variables, ϑ0 and ϑ1 are known hyperparameter vectors of the

GP before and after a change, respectively. Define a log likelihood ratio test statistic for

change point detection at time τ∗ as:

TLRT(τ∗|y1:N )
def
= 2 log

(
p(y1:τ∗ |τ 1:τ∗ ,ϑ0)p(yτ∗+1:N |τ τ∗+1:N ,ϑ1)

p(y1:N |τ 1:N ,ϑ0)

)
=

2 log p(y1:τ∗ |τ 1:τ∗ ,ϑ0) + 2 log p(yτ∗+1:N |τ τ∗+1:N ,ϑ1)− 2 log p(y1:N |τ 1:N ,ϑ0) (5.10)

where log p(y1:τ∗ |τ 1:τ∗ ,ϑ0) is the log likelihood of the data starting from the first time

moment till the time moment τ∗ computed based on the GP hyperparameter vector ϑ0;
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log p(yτ∗+1:N |τ τ∗+1:N ,ϑ1) is the likelihood of the data starting after the time τ∗ till the end

of the observation period given the hyperparameter vector ϑ1; log p(y1:N |τ 1:N ,ϑ0) is the

likelihood of the whole set of observations given the hyperparameter vector ϑ0.

Substituting the log likelihood expression (5.4) for the GP data the test statistic is given

as:

TLRT(τ∗|y1:N ) = −
(
ỹ1:τ∗

0

)T (
K̃1:τ∗

0

)−1
ỹ1:τ∗

0 − log det
(
K̃1:τ∗

0

)
−(

ỹτ
∗+1:N

1

)T (
K̃τ∗+1:N

1

)−1
ỹτ
∗+1:N

1 − log det
(
K̃τ∗+1:N

1

)
+(

ỹ1:N
0

)T (
K̃1:N

1

)−1
ỹ1:N

0 + log det
(
K̃1:N

1

)
, (5.11)

where ỹa = y − µa are the centralised observations and K̃a = Ka + σ2
aI is the covariance

function of the observed data, both the mean vector and covariance matrix are computed

given the hyperparameter vector ϑa, for a ∈ {0, 1}; superscript denotes the input point

indices, for which the corresponding variable is obtained.

The statistic TLRT(τ∗|y1:N ) represents the log likelihood of the data under assumption

that a change occurs at time τ∗ in proportion of the likelihood of the data without a change.

The likelihood ratio test to estimate the change time τ∗ can be formulated in the fol-

lowing way.

Definition 1. The likelihood ratio change point detection test is defined as:

max
τ∗

TLRT(τ∗|y1:N ) > cLRT,THR, (5.12)

where TLRT is given by (5.10) and cLRT,THR is a threshold. If the threshold cLRT,THR is

exceeded, the time moment τ∗ that maximises TLRT is chosen as the estimated change time.

For any given τ∗, the LRT is the optimal test according to the Neyman-Pearson

lemma [59].

The threshold cLRT, THR value should be greater than 0, as the statistic TLRT(N |y1:N )

value of the last time moment is equal to zero and this case by convention corresponds to

the “no change” decision by the test.

5.2.2 Generalised likelihood ratio test

The proposed generalised LRT allows to relax the assumption that the hyperparameters of

the GP are known. The generalised LRT is used as LRT (Definition 1), but values for the
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vectors ϑ0 and ϑ1 are estimated from the data. The generalised LRT statistic is given by:

TgLRT(τ∗|y1:N )
def
= 2 log

(
p(y1:τ∗ |τ 1:τ∗ , ϑ̂0)p(yτ∗+1:N |τ τ∗+1:N , ϑ̂1)

p(y1:N |τ 1:N , ϑ̂0)

)
=

2 log p(y1:τ∗ |τ 1:τ∗ , ϑ̂0) + 2 log p(yτ∗+1:N |τ τ∗+1:N , ϑ̂1)− 2 log p(y1:N |τ 1:N , ϑ̂0), (5.13)

where ϑ̂0 and ϑ̂1 are estimates of the hyperparameter vectors of the GP.

The estimates of the hyperparameters can be obtained by maximising the marginal

likelihood (5.4):

ϑ̂a = argmax
ϑa

log p(y|τ ,ϑa) =

argmax
ϑa

(
−1

2
(y − µa)

T (Ka + σ2
aI
)−1

(y − µa)−

1

2
log det

(
Ka + σ2

aI
)
− N

2
log 2π

)
, a ∈ {0, 1}. (5.14)

Details of the GP hyperparameter optimisation can be found in Appendix E.

5.2.3 Discussion

The likelihood ratio tests represent the core elements in change point detection and real-

isations of these tests for different problems are widely used in the literature [59]. These

tests are simple to interpret; they are easily implemented. The likelihood ratio test with

known hyperparameters is proven to be optimal. The generalised likelihood ratio test uses

the estimates of the hyperparameters and it might be expected to be near optimal if the

estimates of the hyperparameters are close enough to the true unknown values.

However, in real-world applications a practitioner might face some issues using the like-

lihood ratio tests. Firstly, tests are designed for offline data processing. This means the

whole dataset is required to start running the tests. It can be inappropriate for settings

when a decision should be made in an online manner and some actions are expected in

the case of an alarm about a change. For example, a change can mean some error in an

industrial line production and the line should be fixed as soon as possible in order to reduce

the number of defected products.

Secondly, the tests expect no more than one change point. Even if online processing

is not essential, this limitation to have no more than one change point implies further

constraints on applicability of the tests.
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In order to overcome these issues another family of statistical tests is proposed in the

next section. These tests work within a sliding window allowing both online data processing

and multiple change points detection.

5.3 Gaussian process online change point detection approach based on likeli-

hood estimation

This section introduces an online approach that relies on statistical tests that process se-

quential upcoming data. Let y1:τ be observed data up to the current moment τ , followed

the model (5.5) – (5.6). At each time τ we are interested if there is a change in a hyper-

parameter vector ϑ from its initial value ϑ0. Note that the new value ϑ1 is neither known

nor estimated from the data to make a decision about a change. After a change has been

detected, it may be relevant to estimate the new set of hyperparameters, and then restart

the test to look for the next change.

5.3.1 Test formulation

The following test statistic is computed for data within a sliding window of length L:

Tonline(yτ−L+1:τ )
def
= −2 log p(yτ−L+1:τ |τ 1:τ ,ϑ0) = −2 log p(yτ−L+1:τ |τ τ−L+1:τ ,ϑ0) =

(yτ−L+1:τ − µ0)T
(
K0 + σ2

0I
)−1

(yτ−L+1:τ − µ0) + log det
(
K0 + σ2

0I
)
− L log 2π (5.15)

Theorem 1. Consider the problem (5.8) – (5.9), where y1:τ is the observed data up to time

τ and ϑ0 is a known hyperparameter vector of the GP before a change. Let Tonline(yτ−L+1:τ )

be the likelihood-based statistic defined as (5.15). Then given that the null hypothesis H0 is

true:

Tonline(yτ−L+1:τ )− log det
(
K0 + σ2

0I
)
− L log 2π ∼ χ2

L, (5.16)

where χ2
L is a chi-squared distribution with L degrees of freedom.

Proof of the Theorem 1 is given in Appendix D.

Figure 5.1 shows a visual comparison of an empirical normalised histogram of the statistic

Tonline − log det
(
K0 + σ2

0I
)
− L log 2π and the analytical χ2

L distribution. The normalised

histogram is built based on 10 000 Monte Carlo simulations with y ∼ N (y|µ0 = 0,K0),
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Figure 5.1: Empirical normalised histogram of the test likelihood-based statistic with the

corresponding analytical χ2 distribution

where K0 is a squared exponential covariance matrix:

K0(i, j) = σ2
K exp

(
−(i− j)2

2`2

)
(5.17)

with the signal variance σ2
K = 0.5 and the length scale ` = 1. The length of the vector y

is 10. Noise-free observations are considered, therefore σ2
0 = 0. The Kolmogorov-Smirnov

test does not reject a hypothesis that the sample of Tonline is obtained from the corresponding

χ2
10 distribution with a significance level 0.05 and p-value of 0.495.

Once the statistic distribution under the null hypothesis is determined the test procedure

can be defined.

Definition 2. The online likelihood-based change point detection test is defined as:

Define Tonline(yτ−L+1:τ ) as given in (5.15), which is χ2
L-distributed under the null hypoth-

esis H0. Let e1 and e2 be quantiles of the χ2
L distribution such that: Fχ2

L
(e1) = αstat

2 and

Fχ2
L
(e2) = 1− αstat

2 , where Fχ2
L
(·) is the cumulative density function (cdf) of the χ2

L distri-

bution and αstat is a given significance level.

Reject H0 if Tonline(yτ−L+1:τ ) < e1 or Tonline(yτ−L+1:τ ) > e2.

89



Change point detection with GP

5.3.2 Theoretical evaluation of the test

Effectiveness of a statistical test is usually evaluated by probabilities of type-I and type-II

errors. A type-I error is a rejection of the null hypothesis when it is true (i.e., a false alarm),

while a type-II is a failure to reject the null hypothesis while the alternative is true (i.e.,

a missed detection). The probability of the type-I error for the proposed test is fixed and

equal to αstat. We do not evaluate the probability βstat of the type-II error directly, we

rather evaluate the power of the test, which is a complement to βstat.

The power of the test is defined as [14]:

B(ϑ)
def
= P(reject H0|H1 is true). (5.18)

The following distribution is useful in the context of the proposed test and its power:

Definition 3. Let ζi be independent random variables having a non-central chi-squared

distribution and ai be some coefficients, i ∈ {1, . . . , I}. Then a random variable ζ̃:

ζ̃ =
I∑
i=1

aiζi (5.19)

has a generalised chi-squared distribution.

A generalised chi-squared distribution has no closed-form expression but can be effi-

ciently estimated numerically [37].

Theorem 2. Consider the problem (5.8) – (5.9) and the online likelihood-based change

point detection test defined in Definition 2. Then the power of this test is:

B(ϑ) = 1 + Fβ(e1)−Fβ(e2), (5.20)

where Fβ(·) is the cdf of the random variable β. The variable β follows the generalised

chi-squared distribution plus a displacement:

β =

L∑
i=1

divi + log det
(
K0 + σ2

0I
)

+ L log 2π, (5.21)

where di are eigenvalues of the matrix A:

A =
(
K1 + σ2

1I
) 1

2
(
K0 + σ2

0I
)−1 (

K1 + σ2
1I
) 1

2 , (5.22)
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and vi are random variables: vi ∼ χ
′2
1 (o2

i ) while oi are components of a vector

o = PT
(
K1 + σ2

1I
)− 1

2 (µ1 − µ0), where P is a matrix, where columns are eigenvectors

of the matrix A.

Proof of the Theorem 2 is presented in Appendix D.

Theorem 2 allows calculating of the theoretical success rate of test application for any

given data distribution hyperparameters ϑ1.

The sliding window nature of the proposed test (Definition 2) makes it applicable for

online data processing. In practice the true hyperparameter vector ϑ0, which can be un-

known, may be replaced by its estimate. Note that the data that is used for hyperparameter

vector estimation is not limited to the sliding window employed in the test statistic compu-

tation. More historical data can be used, therefore an accurate estimate might be expected.

Moreover, if the estimates of the hyperparameters are updated based on recent data the

test would be able to detect multiple changes between different data distributions.

5.3.3 Test with estimated hyperparameters

Consider the online likelihood-based change point detection test (Definition 2) when the

initial hyperparameter vector ϑ0 is unknown. The value of ϑ0 can be estimated using

previously observed data yτ ′:τ ′′ , where τ ′ ≤ τ ′′ < τ , for example, by maximising the marginal

likelihood:

ϑ̂0 = argmax
ϑ0

log p(yτ ′:τ ′′ |τ τ ′:τ ′′ ,ϑ0). (5.23)

The test statistic Tonline est can then be computed as:

Tonline est(yτ−L+1:τ )
def
= −2 log p(yτ−L+1:τ |τ 1:τ ) ≈ −2 log p(yτ−L+1:τ |τ τ−L+1:τ , ϑ̂0). (5.24)

Here τ ′ and τ ′′ are set to form another sliding window of length L̃: τ ′ = τ − L̃ and

τ ′′ = τ − 1. In such settings the estimate ϑ̂0 of the hyperparameter vector is always

updated based on the most recent data and the test can be applied in an online manner.

Moreover, it allows to adapt the test to different data distributions and the test is able to

detect changes between the periods with stationary data distributions, i.e., when the data

model is:

yτ = f0(τ) + ε0
τ , ∀τ < τ∗1 , ϑ = ϑ0; (5.25)
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yτ = f1(τ) + ε1
τ , ∀τ∗1 ≤τ < τ∗2 , ϑ = ϑ1; (5.26)

yτ = f2(τ) + ε2
τ , ∀τ∗2 ≤τ < τ∗3 , ϑ = ϑ2; (5.27)

· · ·

and the goal is to detect all change points τ∗1 , τ∗2 , τ∗3 , . . . Due to the sliding window approach

the test after the change point detection adapts to new data allowing detection of a new

change point breaking the new data stationary regime.

5.3.4 Discussion

The tests proposed in this section provide a tool for online change point detection. As a

GP represents a prior for a wide variety of functions the proposed approach is general and

can be applied in very different scenarios. For example, when data is expected to follow a

smooth function a squared exponential covariance function can be used. If data is affected

by seasonal variations, periodic covariance functions can come into play.

To use the proposed tests, the particular form of a GP specified by a choice of a hy-

perparameter vector is required only for data before a change. No assumptions about the

distribution of data after a change are necessary. If data starts to follow a new rule, e.g., a

different covariance function is used in a GP, the method will detect a change.

5.4 Performance validation on synthetic data

This section presents a numerical evaluation of the proposed methods for change point

detection on synthetic data.

The following performance measures are used [59, 14]:

• Mean time between false alarms: E(τa − τ0| no change), where τa is a time of an

alarm, generated by a change point detection algorithm, and this alarm is false, τ0 is

a starting time. We consider the previous false alarm or a true missed change point

as a starting time;

• Mean delay for detection: E(τa − τ∗), where τ∗ is a true time of a change;
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• Missed detection rate: a probability of not receiving an alarm, when there has been a

change, which can be estimated as
#{missed detections}

#{change points}
.

A change point detection algorithm is required to maximise the first measure and min-

imise the other two. A reliable algorithm should achieve a tradeoff with respect to the three

criteria. Increase of the number of algorithm detections leads to reduction of the missed

detection rate, although there is a risk to increase the number of false alarms and hence it

might negatively affect the mean time between false alarms measure. On the other hand,

reduction of the number of detections might improve the performance in terms of false

alarms, however, it might also increase the missed detection rate.

It is a well-known problem [59, 14] that it is unclear how to distinguish correct detections

and false alarms. For example, an alarm at time point τa > τ∗, where τ∗ is a true time

of a change, can be considered as a delayed correct detection or as a false alarm. In this

work when the detection comes within a time window around the true change point it

is considered as a correct detection. The time difference between this detection and the

true change point contributes to the mean delay for detection performance measure. If the

detection comes outside of this time window it is treated as a false alarm. Therefore, the

mean time between false alarms is updated.

5.4.1 Data simulated by the proposed generative model

A time series generated by the model (5.5) – (5.6) is considered, where the change point

time τ∗ is set to 101. The total number N of observed points is equal to 200. Observed

data points are acquired at time moments τ 1:N = 1, 2, . . . , 200. Function values are sampled

based on the GP: f1:100 ∼ N (f1:100|0,K0) and f101:200 ∼ N (f101:200|0,K1) before and after

the change, respectively. Squared exponential covariance matrices are used:

Ka(i, j) = σ2
Ka

exp

(
−(τi − τj)2

2`2a

)
, a ∈ {0, 1}, (5.28)

which have two parameters: a signal variance σ2
Ka

and a length scale `a.

Corresponding noisy observations y1:100 and y101:200 are obtained by adding the

Gaussian-distributed random noise, which variance is set to σ2 = 0.1 both before and

after the change.
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Figure 5.2: Power of the GP-OLCDT as a function of the hyperparameters for the alter-

native H1. The null hypothesis hyperparameters are plotted as a diamond. Triangular

points correspond to the values of the alternative hyperparameters from the four considered

scenarios.

Theorem 2 allows to compute the power of the GP Online Likelihood-based Change

point Detection Test (GP-OLCDT) for any given hyperparameter vectors ϑ0 and ϑ1.

In the considered settings only the hyperparameters of a covariance function are chang-

ing: ϑa = {σ2
Ka
, `a}, a ∈ {0, 1}.

Figure 5.2 presents the power of the test values as a function of the hyperparameter

vector ϑ1 for the alternative H1. The hyperparameter vector ϑ0 for the null hypothesis H0

is fixed and its components are assigned as: `0 = 3 and σ2
K0

= 1. In the current settings

the proposed test performs well in the areas where the length scale is less after the change

than before it and the signal variance changes from small to large values before and after
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the change, respectively.

The following scenarios are examined in more detail:

1. `0 > `1 and σ2
K0

= σ2
K1

;

2. `0 < `1 and σ2
K0

= σ2
K1

;

3. `0 = `1 and σ2
K0

> σ2
K1

;

4. `0 = `1 and σ2
K0

< σ2
K1

.

Based on the results given in Figure 5.2 the proposed GP-OLCDT is expected to perform

better under the 1-st and 4-th scenarios while having difficulties under the 2-nd and 3-rd

scenarios. Indeed, in the 2-nd and 3-rd scenarios the hyperparameter vector ϑ0 value

before a change represents more flexible settings that allow to explain larger variety of data.

Therefore, the data after the change, based on the hyperparameter vector ϑ1, can be also

fitted with the model before the change. The likelihood function value would not then drop

significantly after the change, which causes low performance of the test.

The distribution of the test statistic for the GP-OLCDT can be determined based on

Theorem 1. The cdfs of the test statistic under the null hypothesis H0 and alternative H1

for all four scenarios are presented in Figure 5.3. The figure demonstrates that the cdfs of

the test statistic under the null hypothesis and alternative are very close to each other for

the 2-nd and 3-rd scenarios and it is difficult to distinguish the two cdfs. It further explains

the reasons of low power of the test values for these two scenarios.

For each of the scenarios the following methods are applied:

• the GP-OLCDT with known ϑ0 (section 5.3.1);

• the GP-OLCDT with batch estimated ϑ̂0, where the estimate is obtained by optimis-

ing marginal likelihood on the first part of data y1:100 (section 5.3.1);

• the GP-OLCDT with sliding estimated ϑ̂0, where the estimate is obtained by opti-

mising marginal likelihood on data yτ−L̃:τ−1 from a sliding window (section 5.3.3),

L̃ = 25;
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Figure 5.3: Cdfs of test statistic for the GP-OLCDT with the known hyperparameter vector

ϑ under the H0 and H1 hypotheses. The vertical lines correspond to αstat
2 and 1 − αstat

2

quantiles of the the test statistic distribution under the null hypothesis H0, the significance

level αstat is set to 0.01. These quantiles are used as lower and upper bounds for the test

statistic to make a decision of rejecting H0. The power of the test values are also marked

in the plots.

• the GP log likelihood ratio change point detection test (GP-lLRT) with known ϑ0

and ϑ1 (section 5.2.1);

• the GP generalised log likelihood ratio change point detection test (GP-glLRT) with

estimated ϑ̂0 and ϑ̂1, where the estimates are obtained based on first and last 25 data

points, respectively (section 5.2.2).
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Table 5.1: Scenarios characteristics for data simulated by the proposed generative model

Scenario Length scale,

`1

Signal variance,

σ2
K1

Power of the GP-OLCDT with

known hyperparameters

1 1 1 0.98996

2 20 1 0.056946

3 3 0.3 0.10001

4 3 4 0.95012

For all the GP-OLCDT tests the significance level is set to αstat = 0.01 and sliding window

width is set to L = 10.

The proposed tests are also compared with the stationary GP Bayesian Online Change

Point Detection (GP-BOCPD) algorithm [128]. In the stationary GP-BOCPD method the

data yτ is also assumed to be generated by a GP time series model. In contrast to the

proposed framework the functions f0 and f1 before and after a change are assumed to be

different realisations of the same GP prior whereas in the proposed generative model the

hyperparameters of the GP are different before and after the change.

The mean function in GP-BOCPD is also set to zero. The covariance function is the

sum of a squared exponential, a periodic, a constant, and “white noise” covariance func-

tions [122]. Within the GP-BOCPD framework change points are estimated via a posterior

probability of a run-length, i.e., the length of a time period since the last change point.

An alarm is generated if the posterior probability of a change point at a considered time

moment is more than a threshold. Here the threshold is set to 0.99.

The value of the hyperparameter vector ϑ0 is fixed for all four scenarios: `0 = 3 and

σ2
K0

= 1. The value for the hyperparameter vector ϑ1 after the change are provided in

Table 5.1. Table 5.1 also presents a power of the GP-OLCDT with known hyperparameters

for each scenario. The example of data generated for each of the scenarios can be found in

Figure 5.4.

Consider the average performance of all the methods based on 100 Monte Carlo simula-

tions for each of the scenarios. Table 5.2 presents the obtained values for the performance

measures. Here the first alarm generated after the true change time is treated as a correct
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Table 5.2: Change point detection performance on data simulated by the proposed genera-

tive model. MTFA – mean time between false alarms, MDFD – mean delay for detection,

MDR – missed detection rate.

Scenario Method MTFA MDFD MDR Power

1 GP-OLCDT with known ϑ0 157.67 1.31 0.00 0.99

GP-OLCDT with batch estimated ϑ0 164.53 1.24 0.00 0.99±0.00

GP-OLCDT with sliding estimated ϑ0 48.19 1.56 0.01 0.99±0.01

GP-lLRT 195.95 0.60 0.04 —

GP-glLRT 177.75 0.65 0.19 —

GP-BOCPD 129.65 2.40 0.00 —

2 GP-OLCDT with known ϑ0 157.67 11.50 0.10 0.06

GP-OLCDT with batch estimated ϑ0 164.53 10.83 0.13 0.06±0.02

GP-OLCDT with sliding estimated ϑ0 86.18 8.82 0.23 0.11±0.04

GP-lLRT 190.88 0.15 0.09 —

GP-glLRT 192.14 25.80 0.07 —

GP-BOCPD 190.56 11.52 0.37 —

3 GP-OLCDT with known ϑ0 157.67 13.63 0.02 0.10

GP-OLCDT with batch estimated ϑ0 164.53 14.16 0.08 0.10±0.04

GP-OLCDT with sliding estimated ϑ0 108.36 17.11 0.30 0.09±0.04

GP-lLRT 200.00 0.00 0.98 —

GP-glLRT 197.43 0.00 0.86 —

GP-BOCPD 195.65 13.28 0.50 —

4 GP-OLCDT with known ϑ0 157.67 0.64 0.00 0.95

GP-OLCDT with batch estimated ϑ0 164.53 0.56 0.00 0.96±0.02

GP-OLCDT with sliding estimated ϑ0 68.23 0.61 0.03 0.96±0.02

GP-lLRT 196.91 0.30 0.03 —

GP-glLRT 189.99 0.13 0.09 —

GP-BOCPD 188.13 2.14 0.00 —
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Figure 5.4: Sample observations generated under 4 scenarios by the proposed generative

model

detection, whereas other alarms are processed as false alarms.

The empirical performance of the GP-OLCDT in terms of the missed detection rate is

superior than the theoretical power estimates for the 2-nd and 3-rd scenarios (the missed

detection rate can be considered as a complement to the power of a test). In the 1-st and

4-th scenarios the empirical missed detection rate results of the GP-OLCDT confirm the

theoretical power performance. The analysis of the results given in Table 5.2 shows though

that the 2-nd and 3-rd scenarios are much more difficult for the analysis for all the methods

in comparison to the other two scenarios.

The GP-OLCDTs demonstrate better results than the GP-BOCPD in terms of the delay

for detection and comparable outputs with respect to both the time between false alarms and

the missed detection rate for the 1-st and 4-th scenarios. In the 2-nd and 3-rd scenarios the

GP-OLCDTs outperform the GP-BOCPD in terms of the missed detection rate having the

similar results for both the time between false alarms and the delay for detection. Although

the GP-OLCDT with sliding estimated ϑ0 has a slightly larger number of false alarms
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causing lower values of the corresponding performance measure than the other methods.

Likelihood ratio tests enable to find the most accurate estimates of change times in all the

cases.

5.4.2 Data simulated by the GP-BOCPD model

To make a fair comparison the methods are also applied on data generated by the GP-

BOCPD model, i.e., f1:100 and f101:200 are different realisations of the same GP with fixed

hyperparameters.

For data generation the same settings for the mean and covariance functions are used

as in the GP-BOCPD algorithm in Section 5.4.1.

Although the proposed methods are not limited to any particular type of covariance

functions, the squared exponential covariance function is used in the tests. As the data is

generated based on the other model rather than the one used in the test assumptions the

GP-OLCDT with known hyperparameters and GP-lLRT are not applicable in this setting.

Two scenarios are considered: (1) an “easy” one, where the changes are well distin-

guishable, and (2) a “difficult” one, where the changes are not easily detected. Figure 5.5

presents sample data obtained under both scenarios.
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Figure 5.5: Sample observations generated under 2 scenarios by the GP-BOCPD generative

model

Average performance results among 100 Monte Carlo runs can be found in Table 5.3.

Although the proposed methods use the data model assumptions different to the actual

generative model, they demonstrate better results than the GP-BOCPD in terms of both
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the delay for detection and the missed detection rate for the two scenarios. However, the

proposed methods generate more false alarms than the GP-BOCPD that leads to the lower

performance in terms of the time between false alarms.

Table 5.3: Change point detection performance on data simulated by the GP-BOCPD

model. MTFA – mean time between false alarms, MDFD – mean delay for detection, MDR

– missed detection rate.

Scenario Method MTFA MDFD MDR

“Easy” GP-OLCDT with batch estimated ϑ0 151.37 6.59 0.05

GP-OLCDT with sliding estimated ϑ0 94.48 4.25 0.24

GP-glLRT 181.19 0.87 0.30

GP-BOCPD 197.85 10.13 0.25

“Difficult” GP-OLCDT with batch estimated ϑ0 158.93 15.34 0.17

GP-OLCDT with sliding estimated ϑ0 144.66 20.24 0.54

GP-glLRT 162.76 4.08 0.64

GP-BOCPD 191.49 32.73 0.60

5.5 Numerical experiments with real data

In this section the proposed framework is applied to the honey bee dance video data [110].

Honey bees perform a dance as a way to communicate with each other and transfer knowl-

edge about locations of food sources. The dance can be decomposed into three phases:

“left turn”, “right turn”, and “waggle” (Figure 5.6). The goal is to find change points

between the dance phases (stationary behaviours). The original video data provided by the

authors [110] is pre-processed, where a dancer bee is tracked and its space coordinates and

body angle are extracted. The data consists of 6 sequences.

In this work only spatial coordinates of a tracked bee are processed to find change points

between different dance phases. To combine the output from both x and y coordinates of the

dancer bee, the methods are applied to both time series independently and then the union

of alarms from both time series is used as a resulting output of the method. A function f
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(a) Sample frame (b) Dance phases

Figure 5.6: Honey bee dance data. (a) is a sample frame of the original video. (b) is a

scheme of dance phases.

sampled from a vanilla GP prior is a scalar function, i.e., f : Rn → R. Although different

methods [6, 108, 149] have been proposed to overcome this constraint, here scalar-value

functions are considered.

Since the true data model is not known and multiple change points are expected to be

detected, the GP-OLCDT with sliding estimated hyperparameters is used. The following

settings are applied: a constant zero mean function, as input time series are centralised

and normalised in advance; a squared exponential covariance function. The sliding window

width L̃ for hyperparameter estimation is set to 25, and the sliding window width L of

data for test statistic computation is set to 5. The significance level αstat = 0.01 is used.

The initial values for optimising hyperparameters are set to zero after every change point

detection. If there is no change point detected the values of hyperparameters obtained from

the previous time step are used as initial values for the current time step.

The GP-BOCPD method is used with the following settings: a constant zero mean

function; a covariance function that is a sum of a rational quadratic, constant and “white

noise” covariance functions [149]. The first 250 data points are used for hyperparameter

learning in each sequence. The threshold value for alarm generation is set to 0.99.

We also compare the method based on penalised contrasts [87, 81]1(referred below as

“Contrast”). This is an offline change point detection algorithm. The number of change

1The implementation in Matlab 2016a is used (the function findchangepts).
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points and their locations are determined minimising a so-called contrast function. The

method is set to detect changes in the mean and the slope and the maximum number of

change points is equal to the true number of change points.

The nearest alarm within 5 time steps before and 15 time steps after a true change point

is treated as a correct detection. All other alarms are processed as false alarms. Samples

of the input data and change points detected by the methods are presented in Figure 5.7.

The obtained performance measures for all 6 sequences are given in Table 5.4.

Table 5.4: Change point detection performance on the bee dance data. MTFA – mean time

between false alarms, MDFD – mean delay for detection, MDR – missed detection rate.

Sequence Method MTFA MDFD MDR

1 GP-OLCDT 18.1429 2 0.36842

GP BOCPD 25.5833 12 0.84211

Contrast 18.2174 3.4 0.21053

2 GP-OLCDT 19.52 4.1818 0.5

GP-BOCPD 31.25 4.75 0.81818

Contrast 17.5385 2.2353 0.22727

3 GP-OLCDT 28.625 4.8571 0.5625

GP-BOCPD Inf Inf 1

Contrast 16.5 1.9231 0.1875

4 GP-OLCDT 12.3846 3.5385 0.23529

GP-BOCPD 21 8.5 0.64706

Contrast 11.5455 3 0.29412

5 GP-OLCDT 9.2609 3 0.32143

GP-BOCPD 23.6667 6.6875 0.42857

Contrast 10.2333 1.3846 0.071429

6 GP-OLCDT 15.9 4.5 0.6

GP-BOCPD Inf Inf 1

Contrast 11.7059 −0.076923 0.13333
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(a) Sequence 3. GP-OLCDT (b) Sequence 5. GP-OLCDT

(c) Sequence 3. GP BOCPD (d) Sequence 5. GP BOCPD

(e) Sequence 3. Contrast (f) Sequence 5. Contrast

Figure 5.7: Change point detection on honey bee dance data. Columns correspond to data

sequences (two out of total six sequences). The first row presents detections by the proposed

GP-OLCDT, the second row presents detections by the GP-BOCPD method, the third row

presents detections by the Contrast method. Colours of the data plots represent the true

dance phases: blue — “turn left”, red — “turn right”, green — “waggle”.
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Overall results show that the Contrast algorithm generates more alarms leading to low

values of all three measures. The GP-BOCPD method raises fewer alarms and therefore has

a good performance in terms of the false alarm measure but also has a very high proportion

of missed detections. The proposed GP-OLCDT demonstrates a tradeoff between the false

alarm and missed detection rates. In sequences 3 and 6 the GP-BOCPD fails to detect any

changes while the GP-OLCDT is able to detect around 40% of change points. In sequences

1 and 4 the GP-OLCDT demonstrates similar results to the offline Contrast method. The

analysis of the results given in Figure 5.7 confirms that the proposed GP-OLCDT generates

acceptable number of alarms based on tradeoff between the false alarm and missed detection

rates.

5.6 Summary

This chapter presents a general framework for change point detection in time series. A

function governing a time series is considered to have a Gaussian process prior. A change in

time series is defined as a change in hyperparameters of the Gaussian process, which means

a change in a form of functional dependence. The proposed framework can be applied for

behaviour analysis and anomaly detection in video, where behaviours are understood as

periods with a stationary data distribution between change points, and the change points

indicate anomalies as transition from one behaviour to another.

A change point detection problem is formulated within the statistical hypothesis testing

framework. We propose likelihood ratio based tests for both cases with known and unknown

hyperparameters of a Gaussian process before and after a change. For online change point

detection, likelihood-based tests operating within a sliding window are designed.

The theoretical properties of the developed methods are analysed based on the derived

probability distribution of the proposed test statistic.

The developed methods are evaluated on both synthetic and real data. Under compli-

cated scenarios of the synthetic data the methods demonstrate significantly better empirical

performance than the theoretical estimates. On synthetic data that violates the assump-

tions applied in the tests the proposed methods outperform the method, which generative

model is used in data simulation. The proposed methods are shown to detect changes on

real data between different behaviours of a dancing bee where another GP-based change
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point detection algorithm fails to find any changes. In the sequences where the other GP-

based algorithm finds change points the proposed one demonstrates 52% improvement in

the mean delay between the true change time and the time of detection.

The next chapter concludes the thesis and indicates directions for future work.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This chapter provides an overview of the statistical methods and principal contributions

presented in this thesis followed by an outline of open research directions for future work.

6.1 Summary of methods and contributions

Behaviour analysis and anomaly detection in video are essential parts towards passing the

Turing test in computer vision. Machine learning methods show promising results in the

context of artificial intelligence in various areas. This thesis develops machine learning

methods for unsupervised video processing that extract semantic patterns from data. These

patterns are then used for autonomous decision making in anomaly detection. All the

methods presented in the thesis can be used for online data processing, which makes them

applicable in proactive video analytics systems.

The two approaches for behaviour analysis and anomaly detection are examined in this

thesis. In the first part of the thesis extraction of typical local motion patterns and detection

of abnormal events, which cannot be explained by these patterns, are considered in the

context of topic modeling. Here the research is focused on situations where some periodicity

is expected in data and the goal is to detect events that do not fit to this routine, there can

be novel events or events appearing in the novel order. Examples of such types of data can

be jaywalking or vehicle U-turns in traffic surveillance data.

The second part of the thesis is devoted to detection of sudden changes in behaviours

by the change point detection methodology. Methods within this approach do not rely on

assumptions about periodicity in data, they are rather aimed to work in unknown situations

in contrast to methods presented in the first part. These methods are useful, for example,

in surveillance to detect panic in crowd behaviour among people in public places such as

stadiums or concert halls.
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Chapter 3 presents an examination of a topic model that considers dynamic dependencies

between documents. The aim of this chapter is to compare different learning schemes for

the topic model. Two novel learning algorithms are developed: based on MAP estimation

using the EM-algorithm and variational Bayes inference. The algorithms are thoroughly

compared with the existing Gibbs sampling scheme. Two different methods for likelihood

approximation used in final anomaly detection decision making are analysed. A more ef-

ficient method based on point estimates shows competitive results with a Monte Carlo

approximation method. A novel anomaly localisation procedure is proposed. This proce-

dure is elegantly embedded in the topic modeling framework. The empirical results based

on real video data confirm the superiority of the developed learning algorithms in terms of

anomaly detection performance and competence of the proposed localisation procedure.

The nonparametric perspective of the topic modeling approach for behaviour analysis

and anomaly detection is then studied in Chapter 4. A novel Bayesian nonparametric topic

model is proposed in this chapter. It is demonstrated that the current state of the art non-

parametric topic model — the HDP — is unable to capture abnormal events. Consideration

of the dynamics on topic mixtures in documents proposed in the novel model significantly

improves the ability of a topic model to detect anomalies. The intuition of the proposed

dynamics is based on the fact of motion continuance in real life. An efficient inference

algorithm is derived for the model, which is divided into two phases: a conventional batch

data processing on training data and an online algorithm for test data processing. A nor-

mality measure based on predictive likelihood of a newly observed document is developed

for decision making in anomaly detection.

Chapter 5 considers the problem of anomaly detection and behaviour analysis in the

context of change point detection. From this perspective periods between change points

can be considered as different types of behaviour. If at any moment a normal behaviour

is expected then a change point, detected after this moment, would indicate an anomaly.

Input data is assumed to be in a form of time series with a Gaussian process prior. A

general framework for change point detection is proposed in this chapter, where a change is

defined as alteration of the Gaussian process hyperparameters. The statistical hypothesis

testing approach is employed and several statistical tests are designed and analysed. The

statistical hypothesis testing approach allows to derive theoretical estimates of algorithm
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performance. One of the important benefits of the developed framework is that it avoids a

detailed specification of the time series function before and after a change, particular values

of hyperparameters are estimated from the data. The evaluation results on both synthetic

and real data show that the proposed methods achieve a reasonable tradeoff between false

alarms and missed detection rates.

6.2 Suggestions for future work

This section discusses of open research directions that arise based on the work presented in

this thesis. It also provides an outline of potential application areas outside video processing

where the proposed statistical methods can be employed.

6.2.1 Inference in topic modeling

As it is shown in Chapter 3 different inference algorithms can achieve different results in

terms of anomaly detection performance. They also have different computational efficiency.

6.2.1.1 Different Markov chain Monte Carlo samplers

In Chapter 4 a Gibbs sampler based on the Chinese restaurant franchise is developed for

the dynamic HDP. A split-merge extension of this Gibbs sampler for the standard HDP is

shown to improve a convergence rate [159]. In the original work on HDP [145] two other

samplers are also proposed: based on augmented representation and on direct assignments,

allowing to factorise the posterior across the documents. These Gibbs samplers can suffer

from slow convergence on sequential data since successive data points have a strong mutual

dependence [130]. To overcome this issue several methods have been proposed, including a

blocked Gibbs sampler [49] and beam sampler [150]. The implementation of these samplers

for the proposed dynamic HDP might improve its performance.

6.2.1.2 Variational inference

Another direction in exploring inference algorithms for the proposed dynamic HDP is varia-

tional inference [75]. Variational algorithms can be developed for online data processing [63],

which is essential for the anomaly detection problem. Design of an online variational in-
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ference algorithm for the proposed dynamic HDP can be based on its counterpart for the

standard HDP [160].

6.2.2 Alternative dynamics in topic modeling

Chapter 4 demonstrates that the proposed dynamics on topic mixtures make the HDP

topic model capable to detect anomalies in video data. The proposed dynamics are based

on the evident fact that if an activity is present in the current video clip it is likely to be

present in the next clip as well. Although it might be not the only dynamics, which can be

incorporated into the HDP topic model to further improve anomaly detection performance.

For example, it can be noticed that local activities, captured in one scene, rarely appear

or disappear randomly. The activities rather replace each other. Imagine there is an activity

that represents a pedestrian motion on a crosswalk. When pedestrians finish crossing a road,

this activity will disappear giving place to another activity that represents a pedestrian

motion on a sidewalk. A motion starting in one place of the scene does not usually totally

disappear (unless objects leave the scene), it rather continues in another place.

This intuition can be modelled with Markovian dependencies imposed on topic transi-

tions. For example, in [84] an infinite number of infinite hidden Markov models are used

for similar ideas. In the hidden Markov models topics are hidden states and visual words

are observed variables. These types of models might be expected to better explain complex

motion patterns and therefore improve both descriptive behaviour analysis and anomaly

detection performance.

6.2.3 Gaussian process change point detection

Gaussian process change point detection introduced in Chapter 5 represents a promising

approach in detection theory. It leads to a lot of avenues for further research, which are

outlined below.

The methods presented in Chapter 5 are directly applicable to autoregressive models.

It is worth exploring the performance of the methods with autoregressive data model on

real data. For the related Gaussian process change point detection method that employed

Bayesian inference it is shown that the autoregressive data model often better explains real

data than the Gaussian process time series model [128].

110



Conclusions and future work

As demonstrated in Section 5.4.1 there are data settings, in which the proposed statistical

test is theoretically proven to have a low performance. These specific data settings represent

situations when a data model before a change is more flexible than a data model after the

change, therefore data after the change is well described by the first data model. One of the

possible solutions can be imposing a hyperprior on the Gaussian process hyperparameters.

This prior should help to distinguish the distribution of the test statistic under models

before and after a change.

Straightforward inference in Gaussian processes has a cubic (with respect to the number

of training points) computational complexity due to inversion of a covariance matrix. In

the proposed methods the number of training points is bounded by the width of the sliding

window used in the test statistic computation. To ensure quickest change point detection the

width of this sliding window is kept small. Therefore, the cubic complexity is not an issue as

the number of training points is small. However, the width of the sliding window using for

hyperparameter estimation can be large to obtain accurate estimates of the hyperparameters

and methods for efficient Gaussian process inference can be studied for it. For example,

Kalman filtering reformulation of the Gaussian process regression problem [129] has a linear

computational complexity and it then represents a promising approach.

In Chapter 5 only a standard single output Gaussian process is considered, that leads

that only one-dimensional time series data is analysed. Multiple output Gaussian pro-

cesses [6, 108, 149] can be developed within the proposed framework for change point de-

tection to process multidimensional data.

Gaussian processes are not the only way to represent the prior knowledge. A Student-t

process is proposed as a promising alternative to Gaussian processes [133]. Student-t process

data can be studied in terms of applicability of the ideas proposed in Chapter 5 for change

point detection.

6.2.4 Potential applications of the proposed statistical methods

While throughout the thesis the developed statistical methods are considered in the context

of behaviour analysis and anomaly detection in video, they can be used in a wide range of

applications.

The Markov clustering topic model can be applied to any kind of data, where repeated
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behaviours are expected. It means that any data affected by seasonal variations can be

processed with the Markov clustering topic model, e.g., retail transactions or traffic logs in

computer systems. The model can be used for extracting typical patterns from data. It

can also be applied for anomaly detection, e.g., a fraud in retail or an intrusion attack on a

computer system. The proposed learning methods are then expected to improve descriptive

analysis of the typical patterns and anomaly detection performance.

The proposed dynamic HDP topic model can be used in text mining to analyse time-

stamped documents, such as news streams, tweets or scientific papers. This model can be

used for better data understanding or for anomaly detection, such as detection of atypical

trends in a social network or a novel area detection in scientific papers, for example, a

document with unusual topic mixture can indicate a pioneering work.

The proposed change point detection framework is a general tool and can be applied to

any time series data. An outline of the possible applications is presented in Section 2.4.1.
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Appendix A

EM FOR MCTM DERIVATION

This appendix provides the details of the derivation of the proposed EM learning algo-

rithm for the MCTM presented in Chapter 3.

The objective function in the EM-algorithm is:

Q(Ω,Ωold) + log p(Ω|η,α,κ,υ)
eq. (3.4)

=

Ep(z1:Jtr ,b1:Jtr |w1:Jtr ,Ω
old) log p(w1:Jtr , z1:Jtr ,b1:Jtr |Ω) + log p(Ω|η,α,κ,υ) (A.1)

Since both z1:Jtr and b1:Jtr are discrete, the expected value is a sum over probable values

and (A.1) is given as:

Ep(z1:Jtr ,b1:Jtr |w1:Jtr ,Ω
old) log p(w1:Jtr , z1:Jtr ,b1:Jtr |Ω) + log p(Ω|η,α,κ,υ) =∑

z1:Jtr

∑
b1:Jtr

(
p(z1:Jtr ,b1:Jtr |w1:Jtr ,Ω

Old) log p(w1:Jtr , z1:Jtr ,b1:Jtr |Ω,α,η,υ,κ)
)

+

log p(Ω|η,α,κ,υ) (A.2)

Substituting the expression for the full likelihood from (3.2) into (A.2) and (A.2) into (A.1)

and marginalising the hidden variables, we can write the objective function in the EM-

algorithm as:

Q(Ω,Ωold) + log p(Ω|η,α,κ,υ) =

Const+
∑
b1∈B

(
logωb1 p(b1|w1:Jtr ,Ω

Old)
)

+

Jtr∑
j=2

∑
bj∈B

∑
bj−1∈B

(
log ξbj bj−1

p(bj , bj−1|w1:Jtr ,Ω
Old)

)
+

Jtr∑
j=1

Nj∑
i=1

∑
zji∈K

(
log φwji zji p(zji|w1:Jtr ,Ω

Old)
)

+

Jtr∑
j=1

Nj∑
i=1

∑
bj∈B

∑
zji∈K

(
log θzji bj p(zji, bj |w1:Jtr ,Ω

Old)
)

+
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∑
b∈B

(κb − 1) logωb +
∑
b∈B

∑
b′∈B

(υb − 1) log ξbb′+

∑
b∈B

∑
k∈K

(αk − 1) log θkb +
∑
k∈K

∑
w∈V

(ηw − 1) log φwk (A.3)

During the M-step the function (A.3) is maximised with respect to the parame-

ters Ω with fixed values for p(b1|w1:Jtr ,Ω
Old), p(bj , bj−1|w1:Jtr ,Ω

Old), p(zji|w1:Jtr ,Ω
Old),

p(zji, bj |w1:Jtr ,Ω
Old). The optimisation problem can be solved separately for each parame-

ter. Optimisation of all parameters is performed similarly that leads to the equations (3.6) –

(3.8), here the details for the update of the parameters Φ are provided.

There is an optimisation problem for the parameters Φ:

Jtr∑
j=1

Nj∑
i=1

∑
zji∈K

(
log φwji zji p(zji|w1:Jtr ,Ω

Old)
)

+
∑
k∈K

∑
w∈V

(ηw − 1) log φwk −→ max
Φ

(A.4)

and constraints: ∑
w∈V

φwk = 1, ∀k ∈ K (A.5)

that ensure the columns of the matrix Φ form valid probability distribution vectors.

A Lagrangian for the problem (A.4) – (A.5) is given as:

L =

Jtr∑
j=1

Nj∑
i=1

∑
zji∈K

(
log φwji zji p(zji|w1:Jtr ,Ω

Old)
)

+

∑
k∈K

∑
w∈V

(ηw − 1) log φwk −
∑
k∈K

λφk

(∑
w∈V

φwk − 1

)
−→ max

Φ
, (A.6)

where λφk
are Lagrange multipliers.

To find Lagrange multipliers and parameter values φwk we equate the derivative of the

Lagrangian (A.6) to zero:

∂L

∂φwk
=

l̂EM
wk︷ ︸︸ ︷

Jtr∑
j=1

Nj∑
i=1

p(zji = k|w1:Jtr ,Ω
Old)1(wji = w) +ηw − 1

φwk
− λφk

= 0 (A.7)

λφk
φwk = ηw + l̂EM

wk − 1 (A.8)

We sum over w both sides and write (A.8) as:

λφk
=
∑
w′∈V

(
ηw′ + l̂EM

w′k − 1
)

(A.9)
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Substituting the expression for λφk
(A.9) into (A.8) we get the formula (3.6), where the

operation (·)+ is applied to ensure non-negativity of obtained values for φwk.

During the E-step p(b1|w1:Jtr ,Ω
Old), p(bj , bj−1|w1:Jtr ,Ω

Old), p(zji|w1:Jtr ,Ω
Old),

p(zji, bj |w1:Jtr ,Ω
Old) are updated with fixed values for the parameters. For the efficient

implementation the forward-backward steps are developed for the auxiliary variables άb(j)

and β́b(j):

άb(j)
def
= p(w1, . . . ,wj , bj = b|ΩOld) =

∑
b1:j−1

ωOldb1

 j−1∏
j′=2

ξOldbj′ bj′−1

 j−1∏
j′=1

Nj′∏
i=1

∑
k∈K

φOldwj′ik
θOldkbj′

 ξOldbj=b bj−1

Nj∏
i=1

∑
k∈K

φOldwjik
θOldk bj=b. (A.10)

Reorganisation of the terms in (A.10) leads to the recursive expressions (3.10).

Similarly for β́b(j):

β́b(j)
def
= p(wj+1, . . . ,wJtr |bj = b,ΩOld) =

∑
bj+1:Jtr

ξOldbj+1 bj=b

 Jtr∏
j′=j+2

ξOldbj′ bj′−1

 Jtr∏
j′=j+1

Nj′∏
i=1

∑
k∈K

φOldwj′ik
θOldk bj′

. (A.11)

The recursive formula (3.11) is obtained by interchanging the terms in (A.11).

The required posterior of the hidden variable terms p(b1|w1:Jtr ,Ω
Old),

p(bj , bj−1|w1:Jtr ,Ω
Old), p(zji|w1:Jtr ,Ω

Old), p(zji, bj |w1:Jtr ,Ω
Old) are then expressed

via the auxiliary variables άb(j) and β́b(j), which leads to (3.13) – (3.16). The details of

derivation of (3.14) are provided here. The other formulae can be obtained similarly.

According to the definition of conditional probability p(bj , bj−1|w1:Jtr ,Ω
Old) can be ex-

pressed as:

p(bj , bj−1|w1:Jtr ,Ω
Old) =

p(bj , bj−1,w1:Jtr ,Ω
Old)

p(w1:Jtr ,Ω
Old)︸ ︷︷ ︸

Z

(A.12)

The product rule allows to further rewrite the numerator in (A.12):

1

Z
p(bj , bj−1,w1:Jtr ,Ω

Old) =
1

Z
p(wj+1:Jtr |���w1:j , bj ,���bj−1,Ω

Old)×

p(wj |����w1:j−1, bj ,���bj−1,Ω
Old)p(bj |bj−1,����w1:j−1,Ω

Old)p(w1:j−1, bj−1|ΩOld), (A.13)

where the terms that are conditionally independent are cancelled out.
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The sum rule for the term p(wj |bj ,ΩOld) can be applied and (A.13) can be given as:

1

Z
p(bj , bj−1,w1:Jtr ,Ω

Old) =
1

Z
p(wj+1:Jtr |bj ,ΩOld)︸ ︷︷ ︸

β́b(j)

p(bj |bj−1,Ω
Old)︸ ︷︷ ︸

ξOld
bjbj−1

×

p(w1:j−1, bj−1|ΩOld)︸ ︷︷ ︸
άbj−1

(j−1)

Nj∏
i=1

∑
k∈K

p(wji|zji = k,��bj ,Ω
Old)︸ ︷︷ ︸

φOld
wjik

p(zji = k|bj ,ΩOld)︸ ︷︷ ︸
θOld
kbj

, (A.14)

which leads to the formula (3.14).
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VB FOR MCTM DERIVATION

The details of the derivation of the proposed variational Bayes learning algorithm for

the MCTM presented in Chapter 3 are given in this appendix.

We have separated the parameters and the hidden variables. Let us consider the update

formula of the variational Bayes inference scheme [15] for the parameters:

log q(Ω) = Const+ Eq(z1:Jtr ,b1:Jtr ) log p(w1:Jtr , z1:Jtr ,b1:Jtr ,Ω|κ,υ,α,η) =

Const+ Eq(z1:Jtr ,b1:Jtr )

(∑
b∈B

(κb − 1) logωb+
∑
b∈B

∑
b′∈B

(υb′ − 1) log ξb′ b+

∑
b∈B

∑
k∈K

(αk − 1) log θkb +
∑
k∈K

∑
w∈V

(ηw − 1) log φwk +
∑
b∈B

1(b1 = b) logωb+

Jtr∑
j=2

∑
b∈B

∑
b′∈B

1(bj = b′)1(bj−1 = b) log ξb′ b +

Jtr∑
j=1

Nj∑
i=1

∑
k∈K

1 (zji = k) log φwjik+

Jtr∑
j=1

Nj∑
i=1

∑
b∈B

∑
k∈K

1(zji = k)1(bj = b) log θkb

 (B.1)

One can notice that log q(Ω) is further factorised as in (3.18). Now each factorisation

term can be considered independently. Derivations of the equations (3.19) – (3.22) are very

similar to each other. We provide the derivation only of the term q(Φ):

log q(Φ) =

Const+ Eq(z1:Jtr ,b1:Jtr )

∑
k∈K

∑
w∈V

(ηw − 1) log φwk+

Jtr∑
j=1

Nj∑
i=1

∑
k∈K

1 (zji = k) log φwjik

 =

Const+
∑
k∈K

∑
w∈V

(ηw − 1) log φwk +

Jtr∑
j=1

Nj∑
i=1

∑
k∈K

log φwjik Eq(z1:Jtr ,b1:Jtr ) (1 (zji = k))︸ ︷︷ ︸
q(zji=k)

=

Const+
∑
k∈K

∑
w∈V

log φwk

ηw − 1 +

Jtr∑
j=1

Nj∑
i=1

1(wji = w)q(zji = k)

 (B.2)
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VB for MCTM derivation

It can be noticed from (B.2) that the distribution of Φ is a product of the Dirichlet distri-

butions (3.19).

The update formula in the variational Bayes inference scheme for the hidden variables

is as follows:

log q(z1:Jtr ,b1:Jtr) = Const+ Eq(ω)q(Ξ)q(Θ)q(Φ) log p(w1:Jtr , z1:Jtr ,b1:Jtr ,Ω|κ,υ,α,η) =

Const+
∑
b∈B

1 (b1 = b)Eq(ω) logωb +

Jtr∑
j=2

∑
b∈B

∑
b′∈B

1
(
bj = b′

)
1 (bj−1 = b)Eq(Ξ) log ξb′ b+

Jtr∑
j=1

Nj∑
i=1

∑
k∈K

1 (zji = k)Eq(Φ) log φwjik +

Jtr∑
j=1

Nj∑
i=1

∑
b∈B

∑
k∈K

1 (zji = k)1 (bj = b)Eq(Θ) log θkb

(B.3)

We know from the parameter update (3.19) – (3.22) that their distributions are Dirichlet.

Therefore, Eq(ω) logωb = ψ (κ̃b)−ψ
(∑

b′∈B κ̃b′
)

(see, for example, [15]) and similarly for all

the other expected value expressions.

Using the introduced notations (3.23) – (3.26) the update formula (B.3) for the hidden

variables can be then expressed as:

log q(z1:Jtr ,b1:Jtr) =

Const+
∑
b∈B

1 (b1 = b) log ω̃b +

Jtr∑
j=2

∑
b∈B

∑
b′∈B

1
(
bj = b′

)
1 (bj−1 = b) log ξ̃b′ b+

Jtr∑
j=1

Nj∑
i=1

∑
k∈K

1 (zji = k) log φ̃wjik +

Jtr∑
j=1

Nj∑
i=1

∑
b∈B

∑
k∈K

1 (zji = k)1 (bj = b) log θ̃kb (B.4)

The approximated distribution of the hidden variables is then:

q(z1:Jtr ,b1:Jtr) =
1

Z̃
ω̃b1

 Jtr∏
j=2

ξ̃bj bj−1

 Jtr∏
j=1

Nj∏
i=1

φ̃wjizji θ̃zjibj , (B.5)

where Z̃ is a normalisation constant. Note that the expression of the true posterior distri-

bution of the hidden variables is the same up to replacing the true parameter variables with

the corresponding tilde variables:

p(z1:Jtr ,b1:Jtr |w1:Jtr ,Ω) =
1

Z
ωb1

 Jtr∏
j=2

ξbj bj−1

 Jtr∏
j=1

Nj∏
i=1

φwjizjiθzjibj (B.6)
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VB for MCTM derivation

Therefore, to compute the required expressions of the hidden variables q(b1 = b),

q(bj−1 = b, bj = b′), q(zji = k, bj = b) and q(zji = k) one can use the same forward-

backward procedure and update formulae as in the E-step of the EM-algorithm replacing

all the parameter variables with the corresponding introduced tilde variables.
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Appendix C

DISTRIBUTIONS OF QUADRATIC FORMS

This appendix considers the distributions of quadratic forms of random vectors. These

distributions are used in the proofs of the main theorems for the proposed statistical tests

for change point detection given in Chapter 5. The proofs can be found in Appendix D.

Consider a distribution of a quadratic form yTK−1y, where y ∈ Rn is a random vector

distributed as multivariate Gaussian and K ∈ Rn×n is a deterministic matrix. Two cases are

particularly interesting in the context of the proposed statistical tests: the case when K is

a covariance matrix of the random vector y and the case when K is an arbitrary symmetric

matrix.

C.1 Quadratic form of the “own” covariance matrix

Let

y ∼ N (y|µ,K), (C.1)

i.e., we are interested how the quadratic form of the covariance matrix of the given random

vector is distributed.

Lemma 1. [79, Chapter 14.6] Let y ∼ N (y|µ,K). Then

yTK−1y ∼ χ′2n (o) , (C.2)

where

o =
n∑
i=1

(µy
′
i )2, µy

′
= {µy

′
i }

n
i=1 = K−

1
2µ, (C.3)

and χ
′2
n (·) is a non-central chi-squared distribution with n degrees of freedom.

Proof. Reorganise the input quadratic form:

yTK−1y = yTK−
1
2 K−

1
2 y︸ ︷︷ ︸

y′

= y′Ty′ =
n∑
i=1

y′2i , (C.4)
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Distributions of quadratic forms

where y′i is the i-th component of the vector y′.

Consider a distribution of y′. Here y′ def
= K−

1
2 y, where y ∼ N (y|µ,K), therefore y′

is also distributed as Gaussian. The following fact about the affine transformation of the

multivariate Gaussian random vector is used: if

ζ ∼ N (ζ|v,Σ) (C.5)

and

ζ′ = Aζ + p (C.6)

then

ζ′ ∼ N (ζ′|Av + p,AΣAT ). (C.7)

In our case

y′ ∼ N
(
y′|K−1µ,K−

1
2 KK−

1
2

)
= N

(
y′|µy′ , I

)
, (C.8)

where µy
′

= K−
1
2µ.

As the covariance matrix is an identity matrix, (C.8) is equivalent to:

y′i ∼ N
(
y′i|µ

y′
i , 1

)
, ∀i ∈ {1, . . . , n}, (C.9)

where µy
′
i is the i-th component of the vector µy

′
.

From (C.4) and (C.9) the quadratic form yTK−1y can be represented as a sum of the

squares of n independent normal random variables, which variance is equal to 1. According

to the definition of a non-central chi-squared distribution, it gives:

yTK−1y ∼ χ′2n (o) , o =
n∑
i=1

(µy
′
i )2. (C.10)

C.2 Quadratic form of an arbitrary symmetric matrix

Consider the case of a quadratic form of an arbitrary symmetric matrix, i.e.,

y ∼ N (y|µ,K′), (C.11)

and K is an arbitrary symmetric matrix.
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Distributions of quadratic forms

Lemma 2. [127] Let y ∼ N (y|µ,K′) and K be an arbitrary symmetric matrix. Then

yTK−1y has a generalised chi-squared distribution.

Proof. Transform the input quadratic form:

yTK−1y = yTK′−
1
2 K′

1
2 K−1K′

1
2 K′−

1
2 y︸ ︷︷ ︸

y′

= y′TK′
1
2 K−1K′

1
2 y′ =

(
y′ −K′−

1
2µ+ K′−

1
2µ
)T

K′
1
2 K−1K′

1
2

y′ −K′−
1
2µ︸ ︷︷ ︸

π

+K′−
1
2µ

 =

(
π + K′−

1
2µ
)T

K′
1
2 K−1K′

1
2

(
π + K′−

1
2µ
)
. (C.12)

The matrix K′
1
2 K−1K′

1
2 is symmetric as both matrices K and K′ are symmetric. There-

fore, the matrix K′
1
2 K−1K′

1
2 is normal and the spectral theorem is valid for it:

K′
1
2 K−1K′

1
2 = PDPT , (C.13)

where P is an orthogonal matrix and D is a diagonal matrix. Diagonal elements of D are

eigenvalues of K′
1
2 K−1K′

1
2 and columns of P are the corresponding eigenvectors.

Substituting (C.13) into (C.12) the quadratic form is further transformed as:(
π + K′−

1
2µ
)T

K′
1
2 K−1K′

1
2

(
π + K′−

1
2µ
)

eq. (C.13)
=(

π + K′−
1
2µ
)T

PDPT
(
π + K′−

1
2µ
)

=

(
PTπ + PTK′−

1
2µ
)T

D

PTπ︸ ︷︷ ︸
π′

+ PTK′−
1
2µ︸ ︷︷ ︸

µ′

 =

(
π′ + µ′

)T
D
(
π′ + µ′

)
. (C.14)

Since D is a diagonal matrix, (C.14) can be expressed as:

(
π′ + µ′

)T
D
(
π′ + µ′

)
=

n∑
i=1

dii

π′i + µ′i︸ ︷︷ ︸
ui

2

=

n∑
i=1

dii u
2
i︸︷︷︸

u′i

=

n∑
i=1

diiu
′
i, (C.15)

where dii is the i-th diagonal element of the matrix D, π′i and µ′i are the i-th elements of

the vectors π′ and µ′, respectively, i ∈ {1, . . . , n}.

Combining (C.12), (C.14) and (C.15) the input quadratic form can be expressed as:

yTK−1y =
n∑
i=1

diiu
′
i. (C.16)
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Distributions of quadratic forms

Consider now distributions of all the introduced random variables. The same fact (C.5)

– (C.7) about affine transformation of the Gaussian random variables is used as in the proof

of Lemma 1. For the introduced random variables it is:

y ∼ N (µ,K′) (C.17)

y′ = K′−
1
2 y ⇒y′ ∼ N (y′|K′−

1
2µ, I), (C.18)

π = y′ −K′−
1
2µ ⇒π ∼ N (π|0, I), (C.19)

π′ = PTπ ⇒π′ ∼ N (π′|0,PT IP) = N (π′|0, I), (C.20)

⇒π′i ∼ N (π′i|0, 1), (C.21)

ui = π′i + µ′i ⇒ui ∼ N (ui|µ′i, 1), (C.22)

u′i = u2
i ⇒u′i ∼ χ

′2
1 (oi), where oi = µ′2i (C.23)

Therefore, from (C.16) and (C.23) yTK−1y is linear combination of independent chi-

squared distributed variables. According to Definition 3, yTK−1y has a generalised chi-

squared distribution.

The quadratic form distributions presented in this Appendix are used in the proofs of

the theorems for the proposed change point detections test (Chapter 5), which can be found

in Appendix D.
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Appendix D

PROOFS OF THE THEOREMS FOR THE

PROPOSED TEST STATISTIC

This appendix presents proofs for the theorems from Chapter 5.

D.1 Proof of Theorem 1

Proof. Recall from (5.15) the test statistic can be expressed as:

Tonline(yτ−L+1:τ ) = (yτ−L+1:τ − µ0)T
(
K0 + σ2

0I
)−1

(yτ−L+1:τ − µ0) +

log det
(
K0 + σ2

0I
)

+ L log 2π. (D.1)

Here yτ−L+1:τ−µ0 ∼ N (yτ−L+1:τ |0,K0+σ2
0I). Therefore, the statistic Tonline(yτ−L+1:τ )

represents a quadratic form of the corresponding covariance matrix and an additive deter-

ministic displacement. According to Lemma 1 (Appendix C):

Tonline(yτ−L+1:τ )− log det
(
K0 + σ2

0I
)
− L log 2π ∼ χ′2L (0) = χ2

L (D.2)

where χ2
L is a chi-squared distribution with L degrees of freedom.

D.2 Proof of Theorem 2

Proof. Recall that according to the definition (5.18) a power of the test is a conditional

probability to reject the null hypothesis given that the alternative is true. The hypothesisH0

is rejected when Tonline(yτ−L+1:τ ) < e1 or Tonline(yτ−L+1:τ ) > e2, where e1 and e2 are

the corresponding quantiles, determined in Definition 2, and the hypothesis H1 is true

when ϑ = ϑ1, i.e., yτ−L+1:τ ∼ N (µ1,K1 + σ2
1I). The power of the test is then:

B(ϑ) = P(Tonline(yτ−L+1:τ ) < e1 ∧ Tonline(yτ−L+1:τ ) > e2)|ϑ = ϑ1) =
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Proofs of the theorems

P(Tonline(yτ−L+1:τ ) < e1|ϑ = ϑ1) + P(Tonline(yτ−L+1:τ ) > e2)|ϑ = ϑ1) =

P(Tonline(yτ−L+1:τ ) < e1|ϑ = ϑ1) + 1− P(Tonline(yτ−L+1:τ ) < e2|ϑ = ϑ1) =

1 + Fβ(e1)−Fβ(e2), (D.3)

where Fβ is a cdf of a random variable β and:

β = Tonline(yτ−L+1:τ ) =

(yτ−L+1:τ − µ0)T (K0 + σ2
0I)−1 (yτ−L+1:τ − µ0) + log det

(
K0 + σ2

0I
)

+ L log 2π (D.4)

Here yτ−L+1:τ − µ0 ∼ N
(
yτ−L+1:τ |µ1 − µ0,K1 + σ2

1I
)
.

According to Lemma 2 (Appendix C), the first term in (D.4) has a generalised chi-

squared distribution. The other two terms in (D.4) represent a deterministic displacement.

Following the derivation of the proof of Lemma 2 β can be represented as:

β =
L∑
i=1

divi + log det
(
K0 + σ2

0I
)

+ L log 2π, (D.5)

where di are eigenvalues of the matrix A:

A =
(
K1 + σ2

1I
) 1

2
(
K0 + σ2

0I
)−1 (

K1 + σ2
1I
) 1

2 , (D.6)

and vi are random variables: vi ∼ χ
′2
1 (o2

i ) while oi are components of a vector

o = PT
(
K1 + σ2

1I
)− 1

2 (µ1 − µ0), where P is a matrix, which columns are eigenvectors

of the matrix A.
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Appendix E

OPTIMISATION OF GAUSSIAN PROCESS

COVARIANCE FUNCTION

HYPERPARAMETERS

This appendix provides details about optimisation of Gaussian process covariance func-

tion hyperparameters that is used in the proposed statistical tests for change point detection

presented in Chapter 5.

Let y ∼ N (y|0,Kϑ + σ2
ϑI) be a noised observation vector of a Gaussian process (a

zero mean function is taken for simplicity, optimisation of hyperparameters of a GP mean

function is straightforward).

Consider the optimisation of a GP covariance function hyperparameter vector ϑ by

marginal likelihood maximisation [122]:

log p(y|τ,ϑ) = −1

2
yTK−1y − 1

2
log det (K)− N

2
log 2π −→ max

ϑ
, (E.1)

where K = Kϑ + σ2
ϑI.

The optimisation of (E.1) can be performed by a gradient based optimiser. Consider the

partial derivatives of the marginal likelihood:

∂

∂ϑj
log p(y|τ,ϑ) = −1

2
yT

∂

∂ϑj
K−1y − 1

2

∂

∂ϑj
log det (K) , (E.2)

where ϑj is the j-th component of the vector ϑ.

Use formulae of matrix derivatives [122]:

∂

∂ϑ
K−1 = −K−1∂K

∂ϑ
K−1, (E.3)

∂

∂ϑ
log det (K) = tr

(
K−1∂K

∂ϑ

)
, (E.4)

where
∂K

∂ϑ
is a matrix of element-wise derivatives.

126



Optimisation of GP hyperparameters

Substituting (E.3) and (E.4) into the partial derivatives expression for the marginal

likelihood (E.2) we obtain:

∂

∂ϑj
log p(y|τ,ϑ) =

1

2
yTK−1 ∂K

∂ϑj
K−1y︸ ︷︷ ︸

y′

−1

2
tr

(
K−1 ∂K

∂ϑj

)
=

1

2
tr

(
y′y′T

∂K

∂ϑj

)
− 1

2
tr

(
K−1 ∂K

∂ϑj

)
=

1

2
tr

((
y′y′T −K−1

) ∂K

∂ϑj

)
. (E.5)

The formula (E.5) for the partial derivatives of the marginal likelihood can be used for a

gradient descent optimisation to find an optimal value for the hyperparameter vector.
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