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Abstract 
 

This thesis presents a research study on Fall detection with a comprehensive survey on 

available related literature and an evaluation experiment. Fall detection is a major challenge 

in the public health care domain, especially for the elderly, and reliable surveillance is a 

necessity to mitigate the effects of falls. The technology and products related to fall detection 

have always been in high demand within the security and the health-care industries. An 

effective fall detection system is required to provide urgent support and to significantly 

reduce the medical care costs associated with falls. In this thesis, we initially give a 

comprehensive survey of different systems for fall detection and their underlying algorithms.  

Fall detection approaches are divided into three main categories: wearable device based, 

ambience device based and vision based. These approaches are summarised and compared 

with each other and a conclusion is derived with some discussions on possible future work. 

Then we present an evaluation of fall detection using optical flow. Optical flow is one of the 

widely used approaches in computer vision to estimate motion. The literature of optical flow 

is briefly reviewed and some of the methods are implemented with discussion on 

experimental results. The best output yielding algorithm with respect to accuracy is used to 

setup an evaluation of fall detection. The evaluation compares our experimental results with 

the results obtained using other techniques. At the end we draw a conclusion in general on 

our research study and in particular on our contributions: Fall detection survey and Fall 

detection Evaluation. We also point out the futuristic direction of our research study with 

suggestions on possible areas with further development.     
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Chapter 1 

Introduction 

1.1 Introduction 

The quality of an individual’s life is significantly affected by the levels of functional 

ability. Plenty of research has been done in this area to develop systems and algorithms for 

enhancing the functional ability of the elderly and patients. The maturity of cameras, sensors 

and computer technologies make such systems feasible. Such systems can not only increase 

the independent living ability of the elderly, by raising the confidence levels in a supportive 

care environment within the public sector, but also save on manual labour in terms of the 

presence of nurses or support staff at all times.   

The elderly population is expected to grow dramatically over the next decades. The 

number of people requiring will grow according, while the number of people able to provide 

this care will decrease. Without receiving sufficient, elderly are at risk of losing their 

independence. Thus an intelligent monitoring system allowing elderly people to live safely 

and independently at home is more than needed. 

A simultaneous increase in, fall related injuries and a decrease in qualified staff hires, 

is observed by Hospitals and nursing homes. “In countries like England, falls account for 

32.3% of reported patient safety incidents in hospitals [142]”. The implementation of 

preventative measures is step forward towards the solution of the problem through the 

minimisation of incidents leading to injury without necessitating a larger staff. Stopping falls 

from ever occurring is very difficult, but prevention and reduction of injuries would definitely 

lessen the dilemma. 
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In this research study, we studied algorithms and system design for automatic 

monitoring and detection of human actions and events of interests using video sequences. 

Recognising human behaviour/activity has become a popular research area recently. The 

existing techniques can only recognise simple actions with fixed lighting condition and no 

complex background clutter. To study a reliable system, many computer vision algorithms, 

e.g. Human detection and tracking, background subtraction, Motion detection etc have to be 

utilised and refined. 

 

1.2 Motivation 

Falls being 40% more likely to occur in a hospital are of the most common injuries in 

hospitals than in other industries and locations [143]. By comparison elderly population has 

likely possibility of falling approximately 50% more than the general population [144]. 

Doctors and care takers administration have been held responsible and liable in the lawsuits 

and therefore prone to overspend in areas like personnel [145].  

This research study attempts to suggest an optimal solution for common problem like 

fall that has had multiple attempts at solutions. Some, like a physical alarm, would be 

intrusive on the surrounding patients and may even increase the likelihood of falling [146]. 

Incorporating ideas from various approaches and algorithms within and widening the 

research area can yield the system for appropriate surveillance in places like hospitals and 

nursing homes.  

Many approaches currently and in the past require user’s direct input for the system to 

be able to function such as use of a belt-size alarm with a button on it that only sounds when 

pushed. The system prevents fall to an extent in some types of injuries but obviously failed to 

show robustness in the case of falls due to unconsciousness. Some techniques are based on 

generalisation of a fall action but their accuracy remains a big question mark in the case of 
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detecting most fall scenarios. As there has been no empirical evidence of a decrease in 

injuries resulting from falls so research is being sought out.  

 

1.3 Contributions 

There are two main contributions in this thesis. 

 

1.3.1 Survey on Fall Detection 

One of the main contributions of this research study is a comprehensive survey on 

currently implemented fall detection algorithms. The survey classified different approaches 

into different categories. 

 

1.3.2 Fall Detection using Optical Flow and Evaluation 

The other main contribution of this research study is using the idea of optical flow in 

the research area of fall detection surveillance. The implementation of fall detection using 

optical flow is discussed with respect to the results achieved in terms of both accuracy and 

efficiency. The evaluation of fall detection compares our achieved results with other 

techniques. 

 

1.3.3 System Spec Used 

Processor 2.00GHz Core 2 Duo 

Graphics Card 256 MB NVIDIA Quadro FX 570 

Memory 2048 MB of DDR2 Ram 

Coding Software MATLAB R2009a 



4 

 

Operating System Windows XP 

Datasets KTH, Fall Action, [148],[154] 

 

Once video sequences are processed into MATLAB, a detection program using an 

evolved approach from optical flow estimation will analyze through motion estimation and 

classification of the data to detect whether or not it is a fall.  

 

1.4 Thesis Outline 

This thesis is organised as follows: 

In Chapter 2 we presented a survey on fall detection approaches and techniques. 

Firstly, different types of fall are introduced, followed by the classification of fall detection 

methods. Secondly three different categories of fall detection approaches are reviewed. 

Finally, a conclusion is drawn and future direction of research in the area of fall detection is 

discussed. 

In Chapter 3 we reviewed the some of the related literature of Background 

Subtraction and focus our attention on an easy to implement approach with efficiency and 

accuracy. The reviewed approaches are taken from well recognised conferences and journals. 

Firstly Background Subtraction is introduced in terms of its applications both in the industry 

and in the research community. Considerable range of methods and algorithms are reviewed 

followed by a brief discussion. Secondly different methods are implemented and their 

implementation is discussed with respect to the outputs achieved.  

In chapter 4 we reviewed some of the related literature work of Optical Flow 

Estimation. Optical flow is introduced and its evolution is discussed through several 

techniques. We have reviewed wide range of optical flow algorithms from the very basics to 

the state of the art approaches. The reviewed approaches are discussed with the suggested 
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way forward to the future. Some approaches are implemented and their implementation is 

discussed in terms of the quality of the results. At the end of chapter 4, we have performed an 

evaluation of fall action detection using our implemented approach and compared it against 

two other techniques. 

Finally Chapter 5 draws the conclusion of our study and points out possible future 

work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

 

Chapter 2 

A Survey on Fall Detection: Principles and 

Approaches 

In this chapter, we give a comprehensive survey of different systems for fall detection and 

their underlying algorithms.  Fall detection approaches are divided into three main categories: 

wearable device based, ambience device based and vision based. These approaches are 

summarised and compared with each other and a conclusion is derived with some discussions 

on possible future work. 

2.1 Introduction 

Falls are a major cause of fatal injury especially for the elderly and create a serious 

obstruction for independent living. Statistics [62] show that falls are the primary reason of 

injury related death for seniors aged 79 or more and the second leading cause of injury related 

(unintentional) death for all ages. The demand for surveillance systems, especially for fall 

detection, has increased within the healthcare industry with the rapid growth of the 

population of the elderly in the world. It has become very important to develop intelligent 

surveillance systems, especially vision-based systems, which can automatically monitor and 

detect falls.  it has been proved that the medical consequences of a fall are highly contingent 

upon the response and rescue time. Thus, a highly-accurate automatic fall detection system is 

likely to be a significant part of the living environment for the elderly to expedite and 

improve the medical care provided whilst allowing people to retain autonomy for longer. 
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     The quality of an individual’s life is significantly affected by the levels of functional 

ability. Plenty of research has been done in this area to develop systems and algorithms for 

enhancing the functional ability of the elderly and patients. The maturity of cameras, sensors 

and computer technologies make such systems feasible. Such systems can not only increase 

the independent living ability of the elderly, by raising the confidence levels in a supportive 

care environment within the public sector, but also save on manual labour in terms of the 

presence of nurses or support staff at all times.   

     The rest of the paper is organised as follows. In Section 2, different types of fall are 

introduced, followed by the classification of fall detection methods. We review three different 

categories of fall detection approaches in Sections 3-5. Finally, we conclude and discuss 

future directions of research in Section 6. 

2.2 Classification of Falls and Fall Detection 

Techniques 

In this section, different kinds of falls are first identified. Specifying different types of falls 

help towards an understanding of the existing approaches. It also guides and contributes 

towards the design of new algorithms.  

     Different scenarios should be considered when identifying different kinds of falls: falls 

from walking or standing, falls from standing on supports, e.g. ladders etc., falls from 

sleeping or lying in the bed and falls from sitting on a chair. There are some common 

characteristics among these falls as well as significant different characteristics. It is also 

interesting to note that some characteristics of fall also exist in normal actions, e.g., a crouch 

also demonstrates a rapid downward motion. Noury et al. [61] and Yu [60] reviewed 

principles and methods used in existing fall detection approaches. These are the only review 

papers on fall detection and their scope is limited, which prompts us to write a comprehensive 

survey of recent fall detection techniques.  
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Figure 2.1: Fall from Sitting on a chair (Frames from Simulated fall sequence)  

     Existing fall detection approaches can be explained and categorised into three different 

classes to build a hierarchy of fall detection methods. Different methods under these 

categories are discussed further in the following sections. Fall detection methods can be 

divided roughly into three categories: wearable device based, ambience sensor based and 

camera (vision) based. Figure 1 depicts the classification of fall detection techniques. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Classification of fall detection methods 

     Wearable devices can be further divided into posture based and motion based devices. 

Ambience devices can be further classified into presence and posture based sensors. And the 

camera (vision) based systems can be further categorised into three classes as shape change, 
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inactivity and 3D head motion. Most of the existing approaches share the same general 

framework. Data acquisition varies from one sensor to multiple sensors and from one fixed 

camera to multiple cameras and moving cameras. Figures 2 & 3 illustrate the general 

framework for a fall detection system based on Wearable & Ambient and Vision based 

approaches respectively. 

 

 

 

 

 

 

Figure 2.3: Framework for existing wearable sensor and ambience based approaches 

 

 

 

 

 

 

Figure 2.4: Framework for existing vision based approaches 

2.3 Sensors Based Approaches 

2.3.1 Wearable Device Based Approaches 

Wearable device based approaches rely on garments with embedded sensors to detect the 

motion and location of the body of the subject. In the following we summarise the different 

methods. 
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2.3.1.1 Accelerometery 

Technological developments have yielded devices that can measure activity using 

accelerometers. Accelerometry is composed of measure of acceleration of the body or parts 

of the body. It is one of the most extensively-used methods implemented for measuring 

physical activities to monitor activity patterns. Merryn et al. [42] used an integrated approach 

of waist-mounted accelerometry. A fall is detected when the negative acceleration is 

suddenly increased due to the change in orientation from upright to lying position. A 

barometric pressure sensor was introduced by Bianchi et al. in [40], as a surrogate measure 

for altitude to improve upon existing accelerometer-based fall event detection techniques. 

The acceleration and air pressure data are recorded using a wearable device attached to the 

subject’s waist and analysed offline. A heuristically trained decision tree classifier is used to 

label suspected falls. Estudillo-Valderrama et al. [35] analysed results related to a fall 

detection system through data acquisition from multiple biomedical sensors, then processed 

the data with a personal server. The hardware and software design issues are clearly 

discussed when processing of bio-signals is involved during analysis. A wearable airbag was 

incorporated by Tamura et al. in [36] for fall detection by triggering airbag inflation when 

acceleration and angular velocity thresholds are exceeded. The system design consists of an 

accelerometer and a gyro sensor. Such a fall detection system can be very useful, especially 

at construction sites etc., for reducing fall related injuries. 

     Chen et al. [8] created a wireless, low-power sensor network by utilising small, non-

invasive, low power motes (sensor nodes). The on-board device performs the sampling of 

acceleration sequentially, thus reduces the burden on the network. The dot product of 

acceleration vectors, from the orientation information, produces the angle of change during 

the fall event. The acceleration vectors are calculated using the average across a one-second 
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window. The accelerometric data were analysed by Narayanan et al. in [19] and a platform 

based on the “PreventaFall” ambulatory monitor (PFAM) and MiiLink data portal (MiiLink) 

can be used to monitor the accelerometric data. In [21], Wang et al. applied reference 

velocities and developed a system that uses an accelerometer placed on the head.  The 

reference velocity is calculated using the backward integration of accelerations. By using the 

reference velocity and a predefined threshold, falls are distinguished from normal daily 

activities. 

2.3.1.2 Fusion of Accelerometry & Posture Sensors 

Physiological responses such as varying heart rate or blood pressure may result from physical 

activity and changes in body position. That makes the assessment of motion and posture a 

key factor in an ambulatory monitoring environment. Acceleration vectors were represented 

in a 3D space in [6] when Luo et al. implemented a group of sensors on a belt that filter noisy 

components with a Gaussian filter and generate a three dimensional body motion model that 

can be related to various body postures and the accelerometer’s outputs. A two-axis 

accelerometer with a posture sensor was used in [27] for fall detection. The authors 

developed a wrist-worn prototype that integrates a health monitoring device with tele-

reporting functionality for emergency telemedicine that contains a fall detector. The 

measured bio-signals have limited fidelity because the wrist area has limited body contact. 

This shortcoming could be overcome with further development in the posture sensor. 

     Ghasemzadeh et al. analysed machine learning and statistical techniques in [37] to create a 

physiological monitoring system that collects acceleration and muscle activity signals and 

performs analysis on those signals during standing balance. The objective of this system is to 

assess the behaviour of the electromyogram (EMG) signals to interpret the activity of 

postural control systems in terms of balance control. 

2.3.1.3 Inactivity with Accelerometry 
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Accelerometry provides detailed information of measurement of physical activity and 

inactivity.  This information can be used to measure more comprehensive relationships 

among movement frequency, intensity and duration. An array of relatively cheap infrared 

detectors was used by Sixsmith et al. in [24] for the design of a wearable system called Smart 

Inactivity Monitor using Array-Based Detectors (SIMBAD). The target motion was analysed 

to detect characteristic dynamics of falls. Inactivity periods were also monitored and 

compared within the viewing field with a map of acceptable periods of inactivity in different 

locations. Ghasemzadeh et al. in [38] implemented a similar approach for inertial sensor 

nodes that constructs motion transcripts from biomedical signals and identifies movements by 

taking collaboration between the nodes into consideration. The system relies on motion 

transcripts that are built using mobile wearable inertial sensors. 

     Srinivasan et al. [17] and Lee et al. [19] both used motion sensors along with wireless 

accelerometer sensor modules to monitor general presence or absence of motion. A smart fall 

sensor was designed by Noury et al. for fall detection in [3]. The software application 

transmits the data remotely through the network as well as exploiting data locally. The data 

are further analysed to determine the current state such as lying after a fall, sleeping, walking, 

etc.  

2.3.1.4 Tri-axial Accelerometry 

Tri-axial accelerometers are designed for simultaneous detection of acceleration in three axial 

directions.  Lai et al. in [41] combined several tri-axial acceleration sensor devices for joint 

sensing, when an accidental fall occurs. The model transmits the information fed by the 

sensors which are distributed over various body parts. The system can determine the possible 

occurrence of a fall when the acceleration significantly exceeds the usual acceleration range. 

The impact acceleration and normal acceleration can be compared to determine the level of 

injury. Inertial sensors and the data logging unit are combined by Wu et al. in [30] to develop 
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a portable pre-impact fall detection system. The inertial sensor unit consists of accelerometers 

and tri-axial angular rate sensors. The inertial frame vertical velocity is the key variable that 

detects the fall prior impact and is applied using a threshold detection algorithm. Adaptive 

thresholding has been quite successful for the reduction of false positives. 

     Embedded intelligence was employed in [7] for the design of a system that performs the 

vast majority of signal processing on-board the wearable unit. The tri-axial accelerometer 

output is acquired from the portable unit containing an embedded microcontroller and the 

tracking information regarding the user’s motion is transmitted to a local receiver unit. The 

analysis of acceleration thresholds in [16] was carried out where Kangas et al. used 

acceleration thresholds to detect falls using tri-axial accelerometric measurements taken at 

the waist, wrist, and head. The threshold values for different parameters are adjusted to 

optimise the detection of falls. 

     The trunk angle change was observed in [45] when Boissy et al. applied motion sensors on 

subjects to derive impact magnitudes and trunk angle changes. Motion sensors were placed 

on the front and side of the trunk along with three dimensional accelerometers. The 

deceleration as hitting the ground and trunk angle change in relation to hitting the ground 

represent two separate events. The fall detection algorithm is able to identify these two events 

as they are common to most falls. Wolf et al. [46] followed a popular low cost approach of a 

tri-axial accelerometer with a wireless transceiver. The algorithm is very similar to other 

accelerometric approaches discussed in this survey as data acquired from accelerometers are 

transmitted through a wireless transceiver for further sophisticated analysis. The algorithm 

applies acceleration thresholds to detect falls.   

     Zhang et al. [49] applied a similar idea of wearable tri-axial accelerometers for fall 

detection but with the introduction of non-negative matrix factorization (NMF). The method 

uses the vertical axis of the human body and acceleration sequences as input vectors. Vector 
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decomposition is performed through NMF. Finally a fall occurrence is determined via the k-

nearest neighbour algorithm. Interestingly, as opposed to [49], Zhang et al. in [51] used a cell 

phone with a tri-axial accelerometer embedded in it. Data pre-processing is performed using 

1-class support vector machine (SVM) and the wireless channel for Internet connection. 

Classification is achieved through the k-nearest neighbour (k-NN) algorithm and kernel fisher 

discriminant (KFD) analysis.    

2.3.1.5 Posture Based 

Multichannel accelerometry can be used to distinguish between posture and basic motion 

patterns. Body orientation as posture is measured to detect falls. Kaluza et al. [52] presented a 

posture-based fall detection algorithm. Falls along with abnormal behaviours are detected 

based on the ideology of reconstruction of an subject’s posture. Small inexpensive wireless 

tags are placed on body parts, such as hips, ankles, knees, wrists, shoulders and elbows, 

identifying them as significant places. The locations of the tags are detected by the motion 

capture system. The posture is reconstructed in a 3D plane after locating the tags. 

Acceleration thresholds along with velocity profiles are applied in the fall detection 

algorithm. 

     Kangas et al. carried out study with the aim of developing a new fall detector prototype in 

[56] based on fall associated impact and end posture. A waist-worn tri-axial accelerometer, 

transceiver and microcontroller unit is used for data acquisition, transmission and processing. 

Sensitivity and specificity are also defined with respect to different fall detection algorithms. 

Sensitivity and specificity are achieved based on fall associated impact and end postures. 

Some backward falls cannot be detected by impact monitoring. This may partly be caused by 

the study set-up with intentional falls. 

2.3.1.6 Discussion on Wearable Devices 
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Wearable devices have their advantages as well as disadvantages. The biggest advantage 

remains the cost efficiency of wearable devices. Installation and setup of the design is also 

not very complicated.  The devices are relatively easier to operate. The disadvantages include 

intrusion and fixed relative relations with the subject, which could cause the device to be 

easily disconnected. Such disadvantages make wearable devices an unfavourable choice for 

the elderly.    

2.3.2 Environmental Sensors Based Approaches 

Environmental sensors based devices attempt to fuse audio and visual data and event sensing 

through vibrational data. 

2.3.2.1 Audio & Video 

Image sensing and vision-based reasoning were presented in [2] by Tabar et al. for 

verification and further analysis of sensor-transmitted events. A bridge like operation via a 

wireless badge node is created between the user and the network. The badge node detects 

falls through event sensing functions. Along with fall detection it also creates a voice 

communication medium between the user and the Monitoring Control when the system 

detects a problem and alerts the control. The monitoring control continuously tracks the 

approximate location of the user using signal strength measurements via the network nodes. 

A fusion of image sensing and network nodes is created for further analysis of the field-of-

view and the user’s status during fall detection. 

     Zhuang et al. [54] proposed a different approach to the method in [48] using the audio 

signal from a single far-field microphone. A Gaussian mixture model (GMM) super vector is 

created to model each fall as a noise segment. The pairwise difference between audio 

segments is measured using the Euclidean distance. The kernel between GMM super vectors 

constitutes the support vector machine employed for the classification of various types of 



16 

 

noise and audio segments into falls. Accelerometric data with video streams are used in the 

algorithm in [57]. Wearable sensors transmit the motion data wirelessly. Classification is 

achieved from acquired data using support vector machines (SVM) to detect fall events. 

Finally video streams are transmitted from a context-aware server. The image sequences are 

coded according to both the patient and the network status.  

2.3.2.2 Event Sensing Using Vibrational Data  

The detection of events and changes using vibrational date can be useful in many ways such 

as monitoring, tracking and localisation etc.  A completely passive and unobtrusive system 

was introduced by Alwan et al. in [10] that developed the working principle and the design of 

a floor vibration-based fall detector. Detection of human falls is estimated by monitoring the 

floor vibration patterns. The principle is based on the vibration signature of the floor. The 

floor’s vibration signature generated by the human fall is different from normal activities, 

such as walking. A special piezoelectric sensor is used which is coupled to the floor surface. 

A battery powered pre-processing circuit alongside is employed to analyse the vibration 

patterns. A binary fall signal can be generated in the case of a fall event. 

     A slip-fall detection system, using the sliding linear investigative platform, was proposed 

in [23] by Robinson et al. Classification of acceleration thresholds has been used to identify 

true slip-falls. Data such as tri-axial head accelerations and the centre of pressure in terms of 

psychophysical response are measured. Slip-fall vibrations are distinguished easily due to 

noticeable small vibration translations. The movement parameters require precise control and 

its advantages are discussed in terms of usefulness. The concept of floor vibrations with 

sound sensing is unique in its own way in [34]. Pattern recognition is applied to differentiate 

between falls and other events. Shock response spectrum is one of the key special features 

used in classification. The system is unique in the detection of falls in critical cases, such as 
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an subject being unconscious or in a stressful condition. The algorithm can be further 

developed with the calibration of the floor 

     Rimminen et al. in [39] proposed to use a floor sensor based on near-field imaging. The 

shape, size, and magnitude of the patterns are collected for classification. A set of features is 

computed from the cluster of observations. The postural estimation is implemented using 

Bayesian filtering instead of the features being classified directly. The system has problems 

with test subjects falling onto their knees as this produces a pattern very similar to a standing 

person. Toreyet al. [48] fused the multitude of sound, vibration and passive infrared (PIR) 

sensors inside an intelligent environment equipped with the above fusion elements. Wavelet 

based feature extraction is performed on data received from raw sensor outputs. Regular and 

unusual activities, such as falls, are used for training the Hidden Markov Models (HMM). 

The process of fusion is applied to all outputs from sensors to detect falls.    

     Nyan et al. in [59] distinguished backward and sideway falls from normal activities using 

gyroscopes (angular rate sensors). The gyroscopes are securely placed on different positions, 

such as underarm and waist. The angular rate is measured for normal activities and falls in 

lateral and sagittal body planes. A high speed camera is used to capture video image 

sequences of motion for body configuration analysis in the event of a fall. High speed 

cameras have the frame rate of 250 frames per second. The fusion of high speed camera 

images and gyroscope data is synchronised. Gyroscopes rely on the idea of acceleration 

thresholds to differentiate fall events from normal activities.    

2.3.2.3 Discussion on Environmental Sensor Devices 

Most ambient device based approaches use pressure sensors for subject detection and 

tracking. The pressure sensor is based on the principle of sensing high pressure of the subject 

due to the subject’s weight for detection and tracking. It is a cost effective and less intrusive 

for the implementation of surveillance systems. However, it has a big disadvantage of sensing 
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pressure of everything in and around the subject and generating false alarms in the case of fall 

detection, which leads to a low detection accuracy.  

2.4 Vision Based Approaches 

Cameras are increasingly included, these days, in in-home assistive/care systems as they 

convey multiple advantages over other sensor based systems. Cameras can be used to detect 

multiple events simultaneously with less intrusion.  

2.4.1 Spatiotemporal  

Shape modelling using spatiotemporal features provides crucial information of human 

activities which is used to detect different events. Image analysis requires efficient and 

accurate shape modelling methods. Foroughi et al. [4] developed a method for detecting falls 

using a combination of the Eigen space approach and integrated time motion images (ITMI). 

ITMI can be described as a spatiotemporal database that contains motion information and 

time stamps of motion occurrence with an emphasis on the final action. Feature reduction is 

performed using the Eigen space technique. Feature vectors obtained from the feature 

reduction process are then fed to the Motion Recognition and Classification Neural Network 

classifier that can deal with motion data robustly. In [33], a mobile human airbag release 

system was designed for fall protection for the elderly. The system consists of 3D MEMS 

accelerometers, gyroscopes, a Micro Controller Unit and a blue-tooth module. The subject’s 

motion information is recorded by the accelerometers. A high speed camera is used for the 

analysis of falls. Gyro thresholding is applied to detect a lateral fall. The classification of falls 

is performed by using a support vector machine (SVM) classifier. The real time fall detection 

system contains an embedded digital signal processor.  

     An asynchronous temporal contrast vision sensor was developed for fall detection in [22]. 

The method extracts changing pixels from the background and reports temporal contrast 
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(compared to a threshold), which is equivalent to the change in image reflectance in the 

presence of constant lighting and finally an instantaneous motion vector computation reports 

fall events. The device requires a power socket nearby that makes the deployment of the 

system very simple. The motion detector protects the patient’s privacy because no data are 

communicated until an emergency is detected. 

2.4.2 Inactivity/Change of Shape 

In this section, we describe algorithms based on shape change analysis as well as inactivity 

detection. From tracking data, McKenna et al. in [1] automatically obtained spatial context 

models by using the combination of Bayesian Gaussian mixture estimation and minimum 

description length model for the selection of Gaussian mixture components through semantic 

regions (zones) of interest. Ceiling-mounted visual sensors are used to reduce the influence of 

occlusion. Human-readable summaries of activity are produced and unusual inactivity is 

detected through the resulting contextual model. The contextual model can differentiate 

unusual activities, such as falls, from normal activities. Foroughi in [5] applied an 

approximated ellipse around the human body for shape change. Projection histograms after 

segmentation are evaluated and any temporal changes of the head position are noted. 

Segmentation of moving subjects is obtained initially, and the next step involves extracting 

features by carrying out shape change analysis in the video sequence through an 

approximated ellipse around the human body. Further analysis of projection histograms (both 

horizontal and vertical) and temporal changes of the head position are carried out to extract 

feature vectors with optimised information. Extracted feature vectors are then fed to a MLP 

Neural Network similar to the earlier approach of Foroughi in [4] for classification of 

motions and fall events. Miaou et al. [9] captured images using an omni-camera called 

MapCam for fall detection. The personal information of each individual, such as weight, 

height and electronic health history, is also considered in the image processing task. Object 
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segmentation is performed by using methods such as background subtraction. Noise 

reduction is applied during and after segmentation for accuracy. A bounding-box like 

approach is used by creating a rectangle enclosing the subject. The ratio of height to width of 

the subject is calculated at each frame. The ratios are then analysed by considering the last six 

consecutive image frames and result, in total, in five ratio changes between two adjacent 

frames. The occurrence of fall becomes likely if the first three ratios are all greater than 1 and 

the last three ratios are all less than 1. The system’s decision of fall detection is based on the 

last two ratio changes with respect to a threshold. Each individual, due to different body 

figures, has different ratio changes between normal and fall states, and the Body Mass Index 

(BMI) value is used to adjust the threshold. Therefore, the system is flexible enough to adjust 

the detection sensitivity on individual basis. 

     Tao et al. [11] developed a detection system based on Miaou et al.’s [10] approach of 

using background subtraction (another approach based on the shape change analysis 

algorithm) but with an addition of foreground extraction, extracting the aspect ratio (height 

over width) as one of the features for analysis, and an event-inference module which uses 

data parsing on image sequences. A simple two-state machine in combination with falling 

motion inference is implemented. The two states are "standing/walking" and "falling down”. 

Rougier et al.’s [14] approach is based on a combination of motion history image (MHI) and 

human shape variation. The MHI is an image projected from multiple motion images. The 

recent information of motion in an image sequence is represented by the pixel intensity and 

the most recent motion is more emphasised than that happened in the past. Shape change 

analysis in combination with inactivity analysis is performed using the approximated ellipse. 

     Fall incident detection in a compressed-domain is discussed in [15]. Object segmentation 

within the compressed domain is applied for the extraction of moving subjects using the 

combination of global motion estimation and local motion clustering. The three extracted 
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features used are: short time period range of fall occurrence, significant and rapid centroid 

change of the falling human, and the vertical projection histogram of the falling human. Fleck 

et al. [32] proposed a very unique idea of processing the stream at the point of sight and 

transmitting the processed stream to the control leaving no further processing to be done 

except for the higher level abstraction. The system design consists of a distributed network 

that contains smart cameras. Geo-referenced tracking and activity recognition are performed 

simultaneously, embedding in each camera node. An FPGA module and a Power PC 

processor are used for low level computations. The efficiency of the automated video analysis 

algorithm plays an important role towards the performance of the system. The proposed 

system could be further developed with self-diagnostic tools. Further improvements such as 

comprehensive processing and better decision making could be used as one of the major 

research directions for future development.  

     Rougier et al in [64] proposed a classification method for fall detection by analyzing 

human shape deformation. Segmentation is performed to extract the silhouette and 

additionally edge points inside the silhouette are extracted using a canny edge detector for 

matching two consecutive human shapes using shape context. The mean matching cost and 

Procrustes analysis is applied for shape analysis. Both of these methods contribute in 

quantifying abnormal shape deformation. “A fall is characterized by a peak on the smoothed 

full Procrustes distance curve or mean matching cost curve followed by a lack of significative 

movement of the person just after the fall. [64]” GMM (Gaussian Mixture Model) Classifier 

is implemented to detect falls. Further computation of the sensitivity, specificity, accuracy 

and the error rate obtained from GMM classifier is performed for the analysis. Ensemble 

classifier is used later to combine the results of all cameras. The mean matching cost and the 

Procrustes analysis reduced the error rate to 4.6% and 3.8% respectively. Further 
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development can be made by the introduction of a remotely activated method which learns 

the inactivity zones automatically to improve the recognition results. 

     Wu et al. [43] uniquely identified velocity profile features between normal and abnormal 

activities, such as falls, for automatic detection. The fall activities contain forward and 

backward falls from standing and tripping, etc. Horizontal and vertical velocities are 

measured at different locations of the trunk. The trend of velocity increase shows an 

interesting pattern as it increases in one direction but does not in another. Two different 

characteristic patterns for falls are exhibited by the horizontal and vertical velocities. 

Differentiating falls from normal activities during the descending phase of falls heavily 

depends on these characteristics, i.e. the change in magnitude and timing when the change in 

magnitude occurs in both velocities.      

     Willimas et al [65] detected and localised falls through distributed network of overlapping 

smart cameras. The system design is composed of battery powered camera sensor nodes of 

same type on a single tier. Each node contains a camera sensor, an on board processor with 

RAM, wireless radio communication and flash memory. The system design works on a 

principle assumption of at least one leader node with calibrated camera to the world that has 

known homography between its image coordinates and the world coordinates of the 2D 

ground plane. Human detection is performed through background subtraction. Planar 

homography is estimated through the normalized Direct Linear Transform that gathers point 

correspondences between the two images of interest. Fall is detected through the feature of 

aspect ratio (width of the person divided by height) extracted from segmentation. Simple 

thresholding is used to classify the fall. Localization is achieved via automatically system 

estimated pair-wise camera homographies. Transformation of fall point into the destination 

node’s image coordinates is performed before every hop, until it reaches the leader and 

transformation into world coordinates is achieved through intelligent weighting procedure 
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(the inverse of the cumulative mean squared transformation). The system works under an 

assumption of at most one moving person about the environment and fairly stable lighting 

conditions due to the processor and RAM constraints. The idea of simplistic algorithmic 

design on low power devices is appealing to an extent but it is prone to false positives 

although the evaluation results show very low false positive rate due to the data set used. 

     Vishwakarma in [44] followed an adaptive approach for the detection of moving objects 

by using background subtraction as well as bounding boxes. The described fall model is 

based on feature extraction analysis, detection and classification. Features extracted include 

horizontal and vertical gradients, aspect ratio and the centroid angle to the horizontal axis of 

the bounding box. Falls are confirmed when the angle reaches a value less than 45 degrees. 

The image stream from the thermal detector is monitored by the fall detector proposed in 

[47]. The analysis is focused on measuring vertical velocities of the subject using the 

coloured segmentation algorithm and identifying features in the pattern of velocities over 

time. These velocity estimates are then fed into a neural network-based fall detector that 

identifies the characteristic patterns of velocities present during a fall. Cucchiara et al. [53] 

instead applied a multi-camera system for image stream processing. The processing includes 

recognition of hazardous events and behaviours, such as falls, through tracking and detection. 

The cameras are partially overlapped and exchange visual data during the camera handover 

through a novel idea of warping “people’s silhouettes”. The video server (multi-client, multi-

threaded transcoding) transmits sequences for further processing to confirm the validity of 

received data. The bandwidth usage is optimised through event-based transcoding and 

semantic methods. Anderson et al. [58] used a multi-camera system, similar to Cucchiara et 

al. [59], and applied silhouettes to form a 3D model of the human subject. The membership 

degree of the subject is measured using fuzzy logic to a pre-determined number of states at 

each image. The fall detection method consists of two levels. The first level deduces the 
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number of states for the object at each image. The second level deals with linguistic 

summaries of the object’s states called “Voxel Person”. Further derivations are performed 

regarding the activity. 

2.4.3 Posture  

The use of posture information contributes towards accurate fall detection. Different body 

positions are used to calculate postures. Specific types of postures are identified and localised 

in image sequences. Cucchiara et al. [25] carried out analysis of human behaviours by 

classifying the posture of the monitored person and consequently detecting falls. Projection 

histograms are calculated and compared with the stored posture maps (training). The tracking 

also deals with occlusions. Accuracy levels achieved are up to 95%. A different posture 

classification approach based on a neural fuzzy network was introduced in [32] by Juang et 

al. Standing, bending, sitting, and lying are the postures used for classification. After 

segmentation (background subtraction and extraction), projection histograms are used and 

discrete Fourier transform is applied. A neural fuzzy network is used for classification. The 

results could be improved with better segmentation, such as better elimination of shadows 

and filtering the illumination influence. 

     Thome et al. [12] developed a Hierarchical Hidden Markov Model (HHMM) with two 

layers for modelling motion. The first layer has two states, an upright standing pose and 

lying. Fall detection, in terms of sudden change, has dedicated motion features from the first 

layer. 3D angle relationships and their image plane projections have been carefully observed. 

After performing an initial image metric rectification, theoretical properties are derived from 

binding the error angle for a standing posture during the image formation process. This 

simply differentiates other poses as “non-standing” ones. Thus falls can be accurately 

detected from other actions, such as walking or sitting. Computer vision systems typically use 
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cameras only for recording and capturing video signals. Once transmission of the stream of 

images is completed, data processing is performed.  

     A support vector machine (SVM) approach is applied in [29] by Khandoker et al. for the 

classification of balance impairments, such as risks of fall for the elderly, based on the 

minimum foot clearance (MFC) principle which is used on the samples taken while walking 

on treadmill during training. Foot clearance data was collected using a 2-D Motion Analysis 

system. Unobstructed walking sequences were recorded for foot motion using a high speed 

camera. The SVM model builds on the effectiveness of multi-scale analysis of a gait variable 

which is based on a wavelet in comparison to histogram plot analysis during feature 

extraction. There is a clear indication of better performance of the SVM model based on 

multi-scale exponents (by wavelet analysis) in the results than the model based on MFC 

statistical features. 

2.4.4 3D Head Position Analysis 

Head position analysis is based on head tracking that determines the occurrence of large 

movement within the video sequence. Different state models are used to track the head based 

on the magnitude of the movement information. Rougier and Meunier in [50] obtained image 

streams from a monocular camera. This methodology of fall detection is based on 3D head 

trajectories and the idea that the subject’s head remains visible in the image sequence and 

undergoes a large movement when a fall occurs. The 3D ellipsoid is used for bounding 

around the head. The 3D ellipse is a projection of ellipses in 2D image planes. A particle 

filter extracts the 3D head trajectory for tracking. The 3D head trajectory also contains 

features, such as 3D velocities, which are applied for fall detection. 

     Hazelhoff et al in [63] aimed at incidents involving falls in unobserved home situations by 

presenting the design and real time implementation of a fall detection system. The design 

involves segmentation of foreground subjects in the image streams obtained from two fixed, 
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uncalibrated, perpendicular cameras. The direction of the main axis of the body and the ratio 

of the variances in x and y direction are calculated through principal component analysis 

(PCA). A head tracking module is used for human detection as well as increasing the 

robustness of the system. Head position is estimated as blob using Gaussian skin-colour 

model and is tracked by searching for skin-coloured blobs nearby the head position. The 

classification is performed through a Gaussian multi-frame classier. The system shows 

accuracy levels of 100% on un-occluded video sequences. The addition of occlusion only 

reduced the accuracy to 90%. Non perfect segmentations with the addition of occlusions 

reduced the accuracy to 44%. The system can be improved with further development of an 

advanced tracker.  

     In 3D head motion based analysis, the principle involving faster vertical motion than 

horizontal motion in a fall was proposed by Jansen and Deklerck in [13]. The method uses 

information extracted from images obtained using three dimensional visual approaches in 

combination with a context model. The contextual model interprets the fall occurrence 

differently. It depends on the time, location and duration of the fall event. 

2.4.5 Discussion on Vision Based Approaches 

Vision based systems tend to deal with intrusion better than other approaches. Recent 

research in computer vision on surveillance indeed provides a practical and complex 

framework. Most of the emphasis in the context of surveillance in computer vision is 

dedicated to methods with the ability of real time execution using standard computing 

platforms and low cost cameras. The methods with capability of dealing with robustness still 

leave a wide open area for further research and development. Video analysis of human 

behaviour containing semantic description of the activities belongs to higher level abstraction 

and lower level represents the segmentation of motion along with feature extraction in 

computer vision.  
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    Current posture related methods are classified depending on the use of a model. 3D 

techniques are not mostly automatic and usually require manual initialisation. Generally 

model dependent methods obtain posture relatively easily and are robust to occlusion to an 

extent after labelling the body parts. Many of the body modelling techniques are 2D models. 

Comparatively other non model based techniques compute the posture using features. 

    Models, learned through extended observation such as the interpretation of human 

activities in a scene, provide contextual representation of the activities. These models provide 

recognition and summary of the events and activities. Several techniques have been 

developed to learn these models automatically as manual techniques are useful to an extent. 

The range involved dealing with the complexity and abstraction of comprehensive activity 

and event analysis to fall detection automatically. However interpreting human behaviour and 

resulting pattern analysis depends on the choice of level of abstraction. 

     In 3D head motion analysis methods, principle of faster vertical motion than horizontal 

motion during a fall is applied. The head is initially located and then using filters 3D head 

position is estimated. The idea of using appropriate thresholds to distinguish fall from other 

actions is applied by computing vertical and horizontal velocities of the head [60].   

     Though some of the implementations discussed earlier have shown a diverse pattern when 

it comes to dealing with image sequences, still there is plenty of room for further 

development in this area. Fall detection has still not been implemented using the total optical 

flow of the image sequence or specifically analysing the optical flow of the subject after the 

subject has been tracked and located. Further higher level abstraction can be applied on 

calculated optical flow to achieve higher levels of accuracy and robustness.    

2.5 Discussion 

We have reviewed different techniques for the detection of a fall event. Table 1 lists various 

characteristics of those approaches. A comprehensive and robust fall detection system should 
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possess both high sensitivity and good specificity. The existing approaches have not 

comprehensively satisfied the accuracy as well as robustness of a fall detection system. 

However, the existing approaches do provide a framework to further develop techniques as 

well as modify the existing algorithms to achieve better performance. 

     As discussed earlier, sensor based approaches lack consistency when it comes to providing 

highly accurate automatic fall detection systems. Higher accuracy levels have been achieved 

to an extent using multi-dimensional combination of physiological and kinematic parameters. 

Further research and development should continue in terms of making the design more 

automatic and without much intervention.  

     Vision based approaches in comparison to others are certainly the area to look forward to. 

Most of the existing vision based approaches lack flexibility. These approaches are often case 

specific and dependent on different scenarios. There is a need for a reliable and robust 

generic fall detection algorithm. Both ambience and sensor based approaches share a 

common disadvantage, generally, of subject data not being visually verified by the control or 

care service provider for accuracy. 

     Continuous surveillance through vision/camera and sensor based systems also introduces 

some ethical issues concerning the respect of confidentiality and privacy and also the risk of 

dependency of the subject on the technology. A common definition of a fall and of a fall 

detection system would certainly benefit the research community as well as the healthcare 

industry for the evaluation of fall detection systems. From a research perspective, there are 

issues relating to the availability of data sets of falls for training as well as evaluation. A 

comprehensive data set containing different scenarios of falls with different camera angles 

and with both static and moving cameras should be publicly available for the scientific 

community for the development and research purposes.  
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Table 2.1: Brief comparison of different categories of fall detection approaches  

 
 

 
 

 

 

 

 

 

Approach Category Cost Intrusion Accuracy Setup 

  
Wearable 
Devices 
  

Tri-Axial Cheap Yes 
Scenario 
Dependent 

Easy 

Posture Cheap  Yes 
Scenario 
Dependent 

Easy 

Inactivity Cheap yes 
Scenario 
Dependent 

Easy 

Ambient 
  

Audio 
Cheap to 
Medium 

yes 
Scenario 
Dependent 

Easy / 
Medium 

Video 
Cheap to 
Medium 

yes 
Scenario 
Dependent 

Easy / 
Medium 

Vision 
based 
  
  
  
  

Body Shape 
Change 

Medium 
Low 
/dependent 

Higher / 
Non 
Specific 

Medium 

Posture Medium 
Low 
/dependent 

Higher / 
Non 
Specific 

Medium 

Inactivity Medium 
Low 
/dependent 

Higher / 
Non 
Specific 

Medium 

Spatiotemporal Medium 
Low 
/dependent 

Higher / 
Non 
Specific 

Medium 

3D Head 
Change 

Medium 
Low 
/dependent 

Higher / 
Non 
Specific 

Medium 
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Chapter 3 

Background Subtraction 

In this chapter the methods of background subtraction is reviewed and our 

implementation of background subtraction is demonstrated. Background subtraction is a 

primary step in majority of the surveillance related applications in computer vision. The 

successful extraction of foreground objects via background subtraction can lead to a 

considerable reduction of computational time of the rest of the algorithm due to reduced 

searching regions. A typical detection system is constructed through searching regions 

containing motion, reducing noise, lighting changes and object tracking in a video sequence. 

The most common technique used for separating an object’s motion from the rest of the scene 

with static camera setup is background subtraction. 

 Background subtraction produces a very useful medium of object segmentation with 

static background for applications used for surveillance and tracking etc. Distinctive object 

segmentation and precise tracking exhibits a greater challenge with respect to low 

computational complexity. Obtaining a background estimate with statistical computation is 

the basis of the idea. Combinations of semantic procedures have been used traditionally to 

reduce noise within the background subtraction process. Such operations are useful in 

successfully isolating foreground objects but the constancy around the borders of the 

segmentation can be affected by a noisy background. Background subtraction can 

significantly improve computational time and efficiency due to limited implementation 

regions for searching and noise reduction. Environmental changes, shadowing and highlight 

effects are factors that need catering for when dealing with indoor surveillance applications. 

Factors such as occlusions, variations in appearance, fast moving objects and denser moving 



31 

 

objects also require attention to detail to an extent to get a good quality of foreground mask 

after the subtraction of background. 

 Most background subtraction methods are based on a hypothesis of fixed background. 

The moving objects are extracted using this assumption. Further assumptions such as colour 

differencing are applied. That is, the moving object’s colour is considered to be different than 

the fixed background. The following equation describes the most commonly used background 

subtraction techniques; 

����� � �1 
� ��
�, �, ��� �  �0      ������
�� �                                              (3. 1) 

“Where Xt is the motion label field at time t (also called motion mask), d is a distance 

between Is the video frame at time t at pixel s and Bs the background at pixel s; τ is a 

threshold.” [127] 

 

3.1 Related Work 

The critical and foundational step in video surveillance, pedestrian detection and 

tracking etc is the classification of the moving subjects from the video sequence. The typical 

method of detecting the moving subjects used is “Background Subtraction”. Background 

subtraction is generally implemented by comparing each video frame with a reference or 

background model. Diverging pixels from the background in the respective frame are 

acknowledged as moving subjects. The acknowledged foreground pixels can be further 

developed to track and locate the subjects. The accuracy of the extracted foreground is in 

terms of its corresponding relation to the actual movement in the video sequence as 

background subtraction is implemented mostly as the first step in designing computer vision 

algorithms. There are several methods of background subtraction available but it is still 

complicated to classify moving subjects in a complex environment [66]. Many popular 
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methods specifically model the background with the assumption of a bootstrapping phase 

where the presentation of the image consists of the background frames only.  

 

3.1.1 GMM Based Approaches 

 Jwu-Sheng Hu et al [69] presents background subtraction involving shadow and 

highlight removal for indoor environmental surveillance. Precise extraction of Foreground 

regions is performed despite illumination variations and dynamic background. This current 

Gaussian mixture model (GMM) based background subtraction model is advancement of 

their earlier work [90] on colour-based probabilistic background model (CBM). Short-term 

colour-based background model (STCBM) and the long-term colour-based background 

model (LTCBM) are further extracted. A gradient-based version of the probabilistic 

background model (GBM) is built using the two extracted colour based models to improve its 

flexibility. A cone-shape illumination model (CSIM) as a new dynamic cone-shape boundary 

in the RGB colour region is presented to differentiate pixels among shadow, highlight, and 

foreground, thus solving the problem of Shadows and highlights from changes in 

illumination. The method which is a combination of the CBM, GBM, and CSIM 

distinguishes the background which can used to detect abnormal conditions. This method 

improves the ability to handle illumination variation both locally and globally. The accuracy 

of the background subtraction improves with improved illumination handling. 

 An adaptive background mixture model is proposed by Stauffer et al [70] by 

modelling each pixel as a mixture of Gaussians and using an on-line approximation to update 

the model for tracking. The Gaussians are computed through simple analysis every time the 

features of the Gaussians are updated. Non corresponding pixel computations to the 

background Gaussians are assembled through connected components. Finally a multiple 

hypothesis tracker is implemented for frame to frame tracking of the connected components. 
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Scenes containing visually overlapping subjects as well as presence of higher number of 

subjects affected the accuracy of the tracking system. The tracker was consistent with the fast 

lighting variations. A generic solution was proposed by Sun et al [72] in the form of a 

hierarchical Gaussian mixture model (HGMM) to handle sharp changes during background 

subtraction. The GMM is quite capable of dealing with gradual illumination changes. A 

HGMM works in a top-down style. State models of different scales are exercised because 

sharp changes cannot be alone identified at the pixel level. The intermediate scale’s GMMs 

are constituted in a similar way to identify sharp changes in the partial scene of each of the 

frames. The lowest scale’s implementation of pixel-wise GMM is quite capable of dealing 

with gradual illumination changes.. State models of different scales are used because sharp 

changes cannot be reliably identified at a pixel level. The intermediate scale’s GMMs are 

constituted in a similar way to identify sharp changes in the partial scene on each of the 

frame. The lowest scale’s implementation of pixel-wise GMMs is performed. All state 

models are arranged in a hierarchical mode accordingly and the HGMM responds quickly to 

sharp changes, although the system shows more robustness on estimation of background on a 

small sample set. Zivkovic [73] developed an efficient and simple adaptive approach for 

background subtraction using Gaussian mixture probability density. The parameters are 

constantly updated and the number of components of the mixture is constantly adapted by 

using recursive equations as an online procedure. 

 A boosted version of Gaussian Mixture Model (GMM) was proposed by Tang et al in 

[76]. The proposed version is developed with respect to spatio-temporal constraints. 

Furthermore, a method is devised to detect shadows and reduce noise. The GMM has the 

drawback of slower updating rate and initialisation procedure, which consumes times and 

space. In this implementation, GMM is boosted with the assumption of each channel’s own 

variation within RGB colour space. One learning rate is used in the updated version to 
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achieve a quicker correspondence of the variation value. Also a threshold value is changed 

from 0.002 to a larger value as previously proposed for accurate background selection and 

faster place, thus making this version more efficient. The process of shadow elimination 

works on the assumption of no change in chromaticity of the shadow area and lower levels of 

pixel intensities in the shadow area. The threshold method is applied to compute the intensity 

of the current pixel compared with the background pixel. Noise reduction involves two steps: 

the first step uses neighbourhood information to eliminate small isolation point; the second 

step uses a bounding box to locate an subject’s movement and all pixels outside bounding 

box are considered to be part of the background.  Tang et al in [77] carried out further 

development to their previous work in [76]. The idea of using an energy function (Graph cut) 

is applied to retrieve the fragments which are wrongly segmented as the background. A 

foreground weight is added with single Gaussian models to build the energy function. 

Therefore, the background weight is updated when a pixel is not considered to be a part of the 

foreground. The method is further developed with the introduction of space sampling method 

to lower the computational load. Resolution of the image is lowered and GMM is applied. 

The binary mask at the end of the processing is zoomed it back to its original resolution using 

an interpolation method.  

 [78] Suo et al used a GMM to present their model number adaptive method to 

increase efficiency. An updating method involving adapting the learning rate is used for 

accurate segmentation of slow moving subjects and subjects that stop for a while during 

motion. Gaussian distributions are used to model each pixel by the Gaussian mixture model. 

The corresponding parameters of all the Gaussians are initialised with the same values. A 

small number of Gaussians for a non-modelled pixel have higher value of weight. The others 

have almost equal values of weights at the end of the sample sequence of the frames. After 

resetting the model number the computation is reduced considerably. The updating method 
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proposes a higher value of the learning rate of the distribution representing background and 

lowered value of the distribution representing the moving subjects. The updating method 

rapidly updates the background model when the subject stops moving and still distinguishes 

it as foreground with appropriate segmentation but considers it as a part of background if 

subject stops for a longer duration of time. In [83] Zivkovic et al analysed pixel-level 

background subtraction through recursive equations. The training model is updated in order 

to adapt to changes with a choice of a suitable time adaptation period. The estimates of the 

mean and the estimates of the variances describe the Gaussian components. To limit the 

influence of old data, an exponentially decaying envelope is applied. The proposed algorithm 

uses an on-line clustering method. Additional clusters of small weights exhibit intruding 

foreground subjects.   The background model is approximated through the initial largest 

clusters. The subject is considered as part of the background if it doesn’t move for longer 

duration as its weight value is increased. A simple non-parametric adaptive density 

estimation method is also presented. Cheng et al in [84] & [86] used a finite Gaussian 

mixture model to propose a flexible method to estimate the background model. MAP 

(maximum a posteriori) is considered to be a flexible criterion for the estimation of the 

parameters. The EM (Expectation Maximisation) procedure is applied for MAP estimation of 

mixture models parameters.  The EM algorithm is based on the interpretation of identically 

distributed samples as incomplete data. The method achieves the optimal number of mixture 

components by driving the unnecessary components to elimination and concurrently 

estimating the mixture parameters. The GMM models both background scene and the 

foreground without discrimination. Some components are responsible for modelling the 

background scene and some for the foreground. Any pixel of the frame with standard 

deviation more than the threshold of 2.0 from any foreground components is recorded as part 

of background subtraction. The background model incorporates any changes to the scene 
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background through recourse to an online background model update. The update is same as 

for background model learning. A Multiple Gaussian component mixture through an online 

estimate is used to deal with the illumination change. The system effectively performs on 

outdoor, indoor and cluttered scenes.  

 Zhou et al modified the Gaussian mixture model (GMM) in [85] for background 

subtraction proposed by Stauffer et al in [70] and combined it with optical flow techniques 

with the support of temporal differencing to detect moving subjects. The modified approach 

uses the true mean value to accurately detect moving subjects. Background subtraction is 

achieved with pixel values more than 1.0-1.5 standard deviations away from the background 

distributions being marked as foreground. A range of coarse to fine views of the image is 

achieved by constructing a Gaussian pyramid for both the source and target images. Initial 

motion contains smaller pixel displacements and leads to an estimation at the coarsest level. 

The process of refining motion parameters is performed and continues until the finest level. 

Motion estimates are corrected through a temporal differencing approach. A simple fill-hole 

step is performed in post processing to deal with interior holes created when subject moves to 

a location previously occupied by a smaller subject after change detection. The approach 

provides reasonably precise located boundaries.   

 

3.1.2 Non GMM Based Approaches 

Mahadevan et al [67] proposed their idea for background subtraction in highly dynamic 

scenes by drawing inspiration from biological vision. Background subtraction is formulated 

as the complement of saliency detection. A saliency map is computed that classifies the 

background pixels at each location. A collection of spatio-temporal pieces are derived from 

each window as surround and center windows are centered at the location. The parameters of 

DT (an autoregressive generative model that represents the appearance of the stimulus) are 
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computed to obtain densities from center, surround and total windows. The saliency map is 

implemented with locations of less saliency threshold, which are allocated to the background. 

The background subtraction method depends on the approximate distinction of motion 

between the center and surround locations. This method doesn’t require training phase and is 

completely unsupervised. [68] Bayona et al reviewed the existing background subtraction 

approaches with stationary foreground and divided them into different categories. Various 

stationary subject detection methods using background subtraction technique are discussed 

with their comparison in typical surveillance scenarios. Different methods are selected from 

allocated categories and evaluation is performed to analyse the advantages and disadvantages 

of those approaches. The analysis shows higher accuracy of stationary subjects detection 

using background subtraction in simpler scenarios whereas the evaluation analysis is 

heterogeneous for more complex scenarios. Generally methods based on the characteristics of 

the background subtraction model present low accuracy.  

Haritaoglu et al [71] designed detection and tracking system to detect and track 

multiple people and monitor their activities in an outdoor environment. The system operates 

on monocular gray-scale video images/images from an infrared camera. The system learns 

and obtains the background model statistically to detect foreground subjects, even if there are 

moving foreground subjects in the field of view. The system consists of two steps to 

eliminate moving pixels from the background model. The first step involves the identification 

of stationary pixels through pixel-wise median filtering which is performed typically during 

20-40 seconds to distinguish moving pixels. At each pixel location, standard deviation and 

median value of intensities are computed. The second step involves the formulation of an 

initial background model via the processing of stationary pixels. The system uses two 

different methods to update the background to adapt to illumination changes and physical 

changes in the background scene i.e. pixel-based update and object-based update 
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respectively.  The system dynamically constitutes a change map to decide whether a pixel-

based or an object based update method is required. The change map is composed of three 

main components: detection support map, motion support map and change history map. The 

system shows the capability to simultaneously track multiple people even with occlusion. 

 A texture based technique was presented by Heikkila et al in [74] for background 

modelling. Each and every background pixel is identically modelled which also leads to a 

high speed parallel implementation. Local Binary Patterns (LBP), a gray-scale invariant 

texture primitive statistic, is chosen due to its characteristics as a measure of texture. The 

background model for the pixel is composed of an adaptive LBP histograms group. The 

calculation of LBP histograms is performed as a feature vector over a circular region around 

the pixel. The histogram intersection is used during the evaluation phase. The measure 

possesses an inherent property to compute the common part between histograms. It explicitly 

disregards the features only occurring on one of the histograms. The proximity measure’s 

threshold is a user defined parameter. Background processes do not necessarily generate all 

of the model histograms. The histogram’s higher weight reflects the probability of being a 

background histogram. The final stage involves the updating step. The model histograms are 

sorted in descending order of their weights. The histograms with higher weights are selected 

as background histograms. The system deals considerably with illumination variations found 

common in natural scenes. The method efficiently computes the proposed features. 

 The idea of comparison between video frames and a stationary background model is 

presented in [75] by Migdal et al. The connection between the moving subjects and spatio-

temporal occupancies, enforced by moving subjects, is capitalised upon by the model. To 

achieve this, Markov Random Fields (MRFs) are used and developed during the background 

subtraction process. MRFs present Probabilistic Graphical Models. The edges and nodes in 

MRFs present random variables and contingent affiliation between them respectively. Three 
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MRFs with different characteristics are used in total. Maximum A Posteriori (MAP) 

estimation contributes achieving segmentations. The computation of MAP estimation can be 

performed by applying the [89] Gibbs Sampler method.  

[79] Unger et al developed an algorithm to perform background subtraction for an 

unconstrained motion of the camera, rotation, zoom and lens distortion. The algorithm is 

based on global motion estimation and a weighted summation of motion compensated 

images. A Quartic model is used to model lens distortion and complex motion. This model is 

an extended version of the Affine Transformation model that has higher order values to 

express tilt and distortion. Optical flow estimation is applied for the calculation of the point 

correspondences as an input to the estimation of the global motion model. The background 

image’s pixel value is computed through calculations of a weighted sum of the pixels 

trajectory over time. Moving regions with small motion deviation, as predicted by global 

motion model, have a higher probability of being part of the background as compared to 

regions with higher motion deviation.  Motion deviation of the background is modelled as a 

Rayleigh distribution [90]. Post processing method uses colour segmentation on the original 

image. The luminance of the background subtracted image is averaged within the segments. 

An iterative diffusion method shares the background information among similar regions 

based upon similarity calculations and neighbouring dependencies between adjacent 

segments.  A region-based method for foreground detection and shadow removal was 

employed by Izadi et al in [81] in video sequences. The approach is based on processing two 

foregrounds resulting from colour and gradient based background subtraction techniques. The 

method is constructed on two assumptions. Moving subjects occupy almost up to three 

quarter of the scene and the inclusion of a background initialisation within the system. 

Background subtraction is performed in the colour domain with inspiration taken from the 

GMM presented in [83] by Zivkovic and van der Heijden. The modified version was 
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originally proposed by Stauffer et al in [70]. A single Gaussian distribution is applied to 

model each pixel’s gradient value in the gradient based background subtraction process. A 

Sobel kernel is used to filter the gray scale image at each frame. The Gaussian model is 

updated using each pixel’s gradient magnitude. Two binary maps, one each from colour 

based and gradient based background subtraction techniques are extracted. A median filter is 

used to reduce noise. A circular structuring element of 3-pixel diameter is used as descriptive 

close filtering to smooth outer edges and fill the gaps. The final image is generated by adding 

all non shadow regions to the enhanced image. The system performs significantly well for 

situations including non-stationary background, camouflage and shadows in video sequences. 

 A compressed form of background model for a long image sequence was represented 

by [82] Kim et al through sampling background values at each pixel and quantising them into 

codebooks. The model also has the capability to cope with local and global illumination 

changes. Code words contain clustered samples at each pixel based on brightness bounds and 

colour distortion metrics. The background is encoded on a pixel-by-pixel basis. For a pixel to 

be part of the background it has to meet the criteria of meeting brightness range of the 

codeword and colour distortion has to be less than the detection threshold. A colour model is 

designed to compute the evaluation of colour distortion and brightness distortion. The pixel is 

considered as foreground if matching codeword is not found. The algorithm is further 

improved by layered modelling/detection and adaptive codebook updating. The adaptive 

layered modelling contributes towards the acquisition of changes to the background. Variance 

with suitable learning rates and exponential smoothing of the codeword helps dealing with 

illumination changes. The system based on the codebook algorithm shows good 

characteristics on several background modelling problems.  

[87] Ko et al developed a background subtraction and modelling approach through the 

analysis of temporal variation in colour distributions/intensity. The conventional approach 
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follows spatio-temporal variations of regional and point statistics in isolation. The approach 

acts as a hybrid between texture and pixel-wise comparison. For each pixel location including 

spatial and temporal proximity values, a background model is built. The distribution is 

computed and contains feature values of the texture of the location. It is used in classification 

to compare it with the background model. The background model for a pixel is represented 

by a non-parametric density estimate. Each pixel is treated independently in the distribution. 

The distance between foreground model distribution and the corresponding background 

model distribution for that location is calculated to distinguish labels for background and 

foreground using a threshold value. The background is updated over time to accommodate 

any changes. The spatial consistency plays an important role in dramatically improved 

performance of the system. The algorithm is suggested to perform appropriately with large 

consistent changes in background. The approach also deals well with foreground subjects that 

have similarity in appearance to the background. Moreover, the system caters for subjects 

that do not dominate the scene with sudden motion and also for stationary periods.  The 

evaluation of numerous background subtraction approaches is performed in [88] by Parks et 

al and several post-processing techniques are proposed to improve the performance of 

foreground masks that result from foreground detection. Noise filtering is suggested to be 

applied to the foreground mask to remove erroneous blobs. The blob processing is examined 

to improve the blobs detected in the foreground mark through morphological closing to fill 

internal holes and small gaps and area thresholding to remove blobs that are insufficiently 

large to be of interest. The problem of ghosting, the incorrect detection of foreground when 

subject restarts its motion after stopping its earlier motion and eventually becoming part of 

the background scene, is addressed to an extent by reducing blobs with nearest zero value of 

the average optical flow as ghost blobs are motionless. Conditional background updating 
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using the foreground mask is performed to enhance the detection and to reduce the 

background model becoming polluted with foreground pixel information. 

 

3.2 Discussion 

 An efficient and accurate background subtraction technique remains crucial in 

determining the performance of the applications. The discussed methods earlier present a 

wide range with respect to the category of datasets used as well as applications. GMM based 

approaches have turned out to be one of the most reliable techniques to overcome and deal 

with noisy datasets. GMM based methods present decent robustness to video sequences 

containing significant background motion.  

 

3.3 Implementation of Background Subtraction  

 Several surveillance related applications in computer vision require background 

subtraction for foreground segmentation for post processing at higher level abstraction. The 

process of segmentation can be constructed initially using simplistic solutions such as using 

static background. Many existing background subtraction techniques have advantages and 

disadvantages when it comes to implementation in terms of computational load and 

performance. The implementations published by Seth Benton in [128] have been applied to 

discuss the efficiency and quality of the results.  

 

3.3.1 Frame Differencing 

 The simplest way of implementing background subtraction in terms of computational 

load etc is using the frame differencing technique. As the name suggests, it involves 
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subtraction of frames. The observed frame (current frame) is subtracted from the previous 

possible adjacent frame. A threshold value is used to compare difference in pixel intensities 

yielding a foreground mask. If the observed pixel value is greater than the threshold value 

then the observed pixel is assigned to the background. Background ���,�,�� is estimated to be 

the previous frame. The following equation represents the idea of frame differencing using 

threshold value in its most crude form; 

���,�,�� � ���,�,����                                                             (3.2) 

 ���,�,�� ! ���,�,���� � "�                                            (3.3) 

Where ���,�,�� and ���,�,���� represent current and previous frames respectively. Threshold 

value is represented by "�.  

 Assigning a suitable threshold value remains an open question in not only frame 

differencing technique but in all other approaches too. The threshold value can be assigned 

analytically. It can be assigned keeping in mind the noise in the video sequence to an extent. 

It can be changed with respect to the quality of the results.   

 This approach is very easy to implement with the greater advantage of modest 

computational load. There are no complex calculations involved in order to implement this 

method. The background model cannot be expected to stay the same for long periods of time. 

This technique carries another value added advantage of adaptability. The background is 

adaptable when it comes to changes such as illumination changes etc. As the background is 

constructed using previous frame therefore changes are adapted rapidly.  

 The uniformly distributed pixel values tend to become part of the background, thus 

affecting the quality of the results greatly. As this approach solely relies on frame 

differencing and relies on subject’s movement in terms of difference in pixel values therefore 

if the subject pauses for a period of one frame, it becomes part of the background.  
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Figure 3.1 Background Subtracted Image using Frame Differencing 

Figure 3.1 shows the result of background subtraction applied to one of image 

sequence from our fall dataset. The output doesn’t have a very clear foreground mask. We 

used threshold value of 50 to avoid noise. 

 

3.3.2 Mean Filtering 

 Mean filtering can be applied to improve the results obtained from the simple frame 

differencing method. Background ���,�,�� is considered as the mean of previous n frames. The 

estimated background model is represented as;  

���,�,�� � #
$ ∑ ���,�,��&�$�#'()                                               (3.4) 

*���,�,�� ! #
$ ∑ ���,�,��&�$�#'() * � "�                                        (3.5) 

Mean filtering has relatively higher memory requirements which also adds factor of time on 

computational load. A running average can resolve the issue of memory requirement to an 

extent. The mean background estimate can be represented by; 

���,�,�� � +,-
+  ���,�,���� . -

+���,�,��                                        (3.6) 

 

3.3.3 Approximate Median Filtering 
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 The idea of median filtering is constructed by buffering the previous frames of the 

video sequence. The median of the buffered frames is computed that yields the background 

estimate. Then frame differencing described earlier is applied to obtain background 

subtraction.  Therefore approximate median filtering refers the median of previous frames in 

a video sequence to establish a statistical background model for background subtraction. 

Median of the previous n frames is used with the assumption of background reappearing in 

the video sequence. The background estimate can be represented as; 

���,�,�� � /��
01 2���,�,��&�}                                        (3.7) 

 ���,�,�� ! /��
01 2���,�,��&�3 � "�                                  (3.8) 


 4 20, … , 1 ! 13 

 The computational load can further be improved by applying the method of the 

approximate median filtering. The background pixel value is incremented by 1 if the 

observed pixel value in the current frame is greater than the corresponding background pixel. 

Similarly The background pixel value is decremented by 1 if the observed pixel value in the 

current frame is smaller than the corresponding background pixel. The approximate median 

estimate is achieved eventually when half the pixel values are greater than the background 

and half are less than the background. The time of convergence depends on frame rate and 

movement in the video sequence.  

 The median procedure is very memory and time consuming operation due to memory 

requirements associated with this procedure which limits its applications. The performance 

exhibited by the median filter is comparable to complex approaches. The approach shows 

adequate levels of robustness.   
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Figure 3.2 Background Subtracted Image using Approx. Median Filtering 

Figure 3.2 shows the result of background subtraction applied to one of image 

sequence from our fall dataset using approximate median filtering. The output doesn’t have a 

very clear foreground mask and also include the noise due to the illumination changes. We 

used threshold value of 50 to reduce the effect of noise. 

 

3.3.4 Mixture of Gaussians 

 Mixture of Gaussians (MoG) is amongst the high complexity approaches. The 

approach described by Stauffer et al in [70] presented an adaptive background mixture model 

by modelling each pixel as a mixture of Gaussians and using an on-line approximation to 

update the model for tracking. The background model is parametric. An online model 

containing mixture of adaptive Gaussians is constructed to approximate this process. 

 

3.3.4.1 Online Mixture Model 

 MoG functions represent every pixel’s location. A Probability distribution function 

for the observed current pixel is given by; 

6���� � ∑ 7&,� 8 9���, :&,�, ∑&,��;&(�                                     (3.9) 
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Where K is the number of distributions and its value depends on the computational capacity 

and memory constraints. Usually 3 to 5 is used. ��is the current pixel’s value, 7&,� is an 

estimate of the weight (portion of the data accounted for by this Gaussian) of the ith Gaussian 

in the mixture at time t, :&,� is the mean value of the ith Gaussian in the mixture at time t, ∑&,� 

is the covariance matrix of the ith Gaussian in the mixture at time t and η is a Gaussian 

probability density function.  

9<��, :&,�, ∑&,�= �  -
�>?�@>�|∑|�- >

 ��-
>�B+�C+�D∑,-�B+�C+�                       (3.10) 

 

3.3.4.2 Model Adaptation 

 Gaussians are updated using on-line K-means approximation. To find a match, all 

new pixel values are compared with K Gaussian distributions. A match is assumed to be a 

pixel value within 2.5 standard deviations (2.5σ) of a distribution. The µ and σ parameters for 

matched distributions are updated as follows; 

:&,�E� � �1 ! F�:&,� . F��E�                                        (3.11) 

& 

G&,�E�H � �1 ! F�G&,�H .  F���E� ! :&,�E��I                               (3.12) 

Where 

F �  J 9<��|:&,�, GK=                                              (3.13) 

and J is learning rate. The prior weights of all distributions are adjusted as follows; 

7&,�E� � �1 ! J�7&,� .  J�/&,�E��                                    (3.14) 

where /&,�E� = 1 for the model for the matching Gaussian and /&,�E�= 0 for non matching. If 

no match is found then the current value replaces the least probable distribution as its mean 

value, a low prior weight and initial high variance. 
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3.3.4.3 Background Model Estimation 

 Heuristically, the Gaussian distributions which have the most supporting evidence and 

the least variance correspond to the background. The value of 7/G orders the Gaussians. The 

value is increased with increased evidence and decreased variance. The background model is 

constructed on choosing first B distributions.  

� � 0�MN
1O�∑&(�O 7& � "�                                           (3.15) 

T above represents a minimum region of expected background.  

 This approach requires intelligent parameter optimisation as well as initialisation of 

the Gaussians as it cannot deal with rapid illumination changes. All parameters have a 

significant impact on the performance of the method. The model provides fast recovery when 

background reappears and has an automatic pixel-wise threshold. 

 

Figure 3.3 Background Subtracted Image using Mixture of Gaussians 

Figure 3.3 shows the result of background subtraction using mixture of Gaussians 

applied to one of image sequence from our fall dataset. The output has considerable noise 

which affects the quality of the overall result. The connected points in the binary foreground 

mask gives good outer boundary of the subject but still missed out most of the information. 

We used threshold index of 0.25 instead of threshold value as per the original settings of the 

implementation. 
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3.3.5 Graph Cut 

 The graph based approach by Howe et al in [129] is implemented to construct a model 

of the static background. The model can be updated either dynamically frame by frame in a 

video sequence or offline. The next frame is compared on a per pixel basis with the 

background model.  

 The graph is constructed based on the image. A corresponding graph vertex Vi,j is 

created by each pixel in the image. Foreground and background are represented by two 

additional vertices as source and sink respectively. Six nodes: source, sink and vertices of 

four connected neighbours in the graph are connected by a typical vertex. Fewer neighbour 

links are formed for vertices corresponding to the pixels on the image edge. All pixel vertices 

are connected to source and sink. The weight of the links between the pixel vertices, the 

source s and sink t is derived directly from the difference between the current frame and the 

background at the corresponding pixel P&,Q: 

7��, R&,Q� � P&,Q                                                (3.16) 

7<R&,Q, �= � 2� ! P&,Q                                            (3.17) 

All neighbour links between pixel vertices have similar weights. The weights are 

equivalent to � times α. The value of α is typically close to 1.0. � acts parallel to the threshold 

value in the morphological method. It corresponds to the level where the pixel association to 

the foreground is greater than the background. Grouping of neighbouring pixels are 

administered by the value of α. The lower value of α shows weak pixel bonding similar to the 

result obtained using just threshold for background subtraction.  

 



50 

 

 

Figure 3.4 Background Subtracted Image using Graph Cut 

 

Figure 3.5 Background Subtracted Image using Graph Cut 

Figure 3.4 and 3.5 shows the result of background subtraction using graph cut applied 

to two of the image sequences. The output has no noise in 3.4 but very visible noise content 

in 3.5 that affects the quality of the overall result. The connected points in the binary image 

provide very good quality of the foreground. We used threshold value of 10 as per the 

original settings of the implementation to yield the best quality of foreground mask and 

minimum noise. Figure 3.5 clearly proves that the image sequence needs to have suitable 

lighting conditions for the graph cut to provide good quality foreground mask.  

 

3.4 Conclusion 

 Graph cut based approach for foreground extraction and background subtraction has 

exhibited results with reduced noise and acceptable accuracy in comparison with 
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morphological procedures based techniques. The graph based approach tends to deal with 

noise reduction by overcoming its effects adequately through information aggregation from a 

local neighbourhood around every pixel and remaining true to the underlying data. The 

efficiency of the method points out negatively towards its implementation in comparison with 

morphological procedures as empirically it runs at lower resolution and lower speed.  

 The use of background subtraction in the range of applications strongly suggests the 

likelihood of adoption of the new techniques and will definitely supply significant advantages 

in a number of fields. The use of graph cut in addition to other modern approaches will surely 

open the door for new applications. Therefore graph cut draws decent amount of attention 

from scientific community for further advancement especially in the area of foreground 

segmentation.  
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Chapter 4 

Optical Flow  

In this chapter the Optical Flow methodology is reviewed and our implementation of Optical 

Flow Estimation is demonstrated. We have applied the optical flow computation to test its 

accuracy in one of the real world applications as fall detection. We have also demonstrated an 

evaluation of fall detection using optical flow estimation for the computation of motion 

involved in the action and represented it as histogram of optical flow (HOF) as feature 

descriptor. We have computed the accuracy of out HOF descriptor and compared it against 

the other feature descriptors.  

 One of the fundamental properties of any video scene is its motion. The most often 

used representation of image motion is the optical flow field. The estimation of optical flow 

still remains one of the very important research areas in computer vision. Optical flow is 

indeed one of the very powerful tools to interpret motion analysis. Estimation of pixel motion 

in two consecutive frames yields the optical flow computation. A significant amount of 

information can be obtained from the apparent pixel motion such as brightness pattern due to 

a relative motion between a camera and the subjects. Several advanced approaches have been 

proposed starting from the original work of Horn and Schunck [124] as well as Lucas and 

Kanade [125]. Robust statistics have extended both approaches allowing the treatment of 

outliers due to occlusions or motion discontinuities, through the matching or smoothing. 

Advancement in the area of the optical flow research has not only improved the quality of 

optical flow estimation approaches but also provided an insight into how several techniques 

can work together through greater understanding of their functional implementation and 

component/parameter analysis.  
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4.1 Related Work 

 Lucas and Kanade’s [125] gradient-based method is among the most accurate and 

computationally efficient methods for optical flow estimation. [91] Brox et al proposed a 

novel variational approach containing an energy function based upon three assumptions: 

gradient constancy, brightness constancy and spatio-temporal smoothness constraint to 

preserve discontinuity. The approach is minimised with a numerical methods and is an 

integration of earlier published ideas. The use of warping is also known as coarse-to-fine 

technique. This idea is used to compute the non-linearised optical flow well in image 

registration. The image correspondence issues are solved through a multi-resolution method. 

To measure the displacement vector, some small variations are allowed in the grey value 

through an invariant criteria called gradient of the image grey value. Multi-scale ideas are 

applied to cater larger displacements. Using these assumptions and ideas, an energy function 

is derived that penalises deviations from these model assumptions. A piecewise smooth flow 

field generalises the smoothness assumption. Numerical methods including Euler-Lagrange 

equations and Taylor expansions are applied based on two nested fixed point iterations. The 

coarse-to-fine technique as single minimisation problem is developed. Energy functions are 

minimised in image registration through multi-resolutions. The angular errors are 

significantly small for optical flow estimation due to parameter variations insensitivity. [92] 

Lim et al described a method based on Lucas-Kanade’s gradient based method to achieve 

estimates of optical flow at a standard frame rate using high frame rate sequences. The optical 

flow estimates at standard rate are computed after estimates are further processed, aggregated 

and filtered. The optical flow estimates between two consecutive high speed frames is 

computed using the Lucas-Kanade method. A final estimate of optical flow between two 

consecutive standard frame rate images is built using this estimate. The error accumulation is 
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defended through warping and refining. Computational complications are reduced by 

warping gradients instead of the frame. A higher sampling frame rate is used to compute the 

small displacements between intermediate frames in the case of large displacements. 

Similarly in the case of small displacements, lower sampling frame rate is used to increase 

the efficiency. An approach of recovering dense optical flow field map from two images was 

proposed by Alvarez et al in [93]. The approach takes into account the symmetry across the 

images, possible occlusions and discontinuities in the flow field. The energy function is 

computed. The Nagel-Enkelmann operator [94] is applied to counteract smoothness of the 

flow map across boundaries of the images. The system is embedded into multi-resolution 

framework. The symmetry across the two images is reintroduced by simultaneous calculation 

of the flow from image1 to image2 and image 2 to image1. Partial differential equations are 

used to add explicit terms that deny the compatibility of the two optical flow computations. 

The system is capable of detecting large occlusions to ensure compatibility is achieved most 

of the time.  Brox in [95] improved the classic optic flow estimation techniques of Lucas and 

Kanade and of Bigun et al through a diffusion method to build a nonlinear structure tensor 

(ST). The conventional benefits of the linear ST are kept and additionally its problem of 

subject delocalization is also tackled. The linear ST is derived by smoothing each component 

through a Gaussian kernel with standard deviation. This approach appropriately reduces the 

noise. Diffusivity is kept at its maximum except at locations where discontinuities in the 

magnitude exist. The image gradient drives the diffusion. The new structure tensor adapts the 

diffusivity and constitutes a nonlinear diffusion process. The nonlinear ST improves the 

results of other methods where a linear ST is used. Nir et al [96] used a spatio-temporal 

model with varying coefficients multiplying a set of base functions at each pixel to introduce 

an estimation of optical flow. A general space-time model represents the flow field. The 

piecewise constant coefficients describe the true optical flow. The coefficient variations don’t 
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induce most of the local spatio-temporal changes in the flow rather the variations are mostly 

affected by the changes in the basis functions, thus making the coefficient regularisation more 

meaningful. The proposed smoothness term carries a penalty for spatio-temporal variations in 

the coefficient functions. The suggested over parameterisation models produce effective 

performance of optical flow recovery through the smoothness penalty term. 

 An analysis containing the spatial and temporal statistics of natural optical flow fields 

is performed in [97] by Roth et al. A system is devised to exploit the spatial statistics 

computed. A database of realistic optical flow fields from natural and manmade scenes (3D 

camera motions recovered from hand-held and car-mounted video sequences) is constructed. 

The difference in image coordinates under which a scene is viewed contribute towards its 

optical flow. Various characteristics are learnt by histogram patterns of statistics analysis and 

such properties are attributed to each type of motion i.e. translational camera motion and 

rotational camera motion.  The spatial statistics of optical flow are computed in overlapping 

patches and using the approach of Fields-of-Experts (FoE) approach in [98] by Roth et al 

which applies a Markov random field to model the prior probability of optical flow fields. 

Dense optical flow computations are performed when the new optical flow prior is integrated 

into a recent optical flow method by Bruhn et al [99] and the results are compared 

quantitatively. A comparison between new optical flow prior and previous robust priors is 

performed. The quantitative improvement of flow accuracy is demonstrated through the new 

optical flow prior. Efros et al [100] performed action recognition using a motion descriptor 

based on optical flow estimates in a figure centric spatio-temporal volume of stabilised 

human subjects and combined it with an associated measure of similarity. The Lucas-Kanade 

method is applied to compute the optical flow. The optical flow is processed as spatial pattern 

consisting of noisy estimates. The spatio-temporal motion descriptor is formulated by 

aggregating and smoothing noisy measurements of the optical flow. Optical flow was 
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employed by Brox et al [101] in order to compute additional point correspondences for 3D 

pose tracking. The supplementing of optical flow improves pose tracking. It also increases 

robustness of pose estimation by producing additional correspondences (2D and 3D) and 

resolves ambiguous situations. It also produces an improved initial pose estimate through 

motion estimation by means of the optical flow correspondences that can cater for large 

displacements. The approach deals smartly with textured, homogeneous, cluttered, blurring 

subjects or noise artifacts. Bruhn et al in [102], an extension of their earlier work in [99], 

combined global Horn and Schunck’s approach with the local Lucas–Kanade method to 

introduce the combined local-global (CLG) system for optic flow estimation. The CLG 

system uses the minimisation of the energy functional to compute the optic flow field. The 

system combines the dense flow fields of Horn–Schunck with the high noise robustness of 

Lucas–Kanade. Euler–Lagrange equations are implemented to minimise the energy function 

for the recovery of the optical flow field. Higher frequencies on coarser grids are the 

representation of lower frequencies on the finest grid, where they can be amply reduced. The 

system, through a multi-grid approach, delivers accurate results much faster. The optical flow 

estimation was regularised by Xiao et al in [103] through a flexible multi-cue driven adaptive 

bilateral filter. Even with highly desirable motion discontinuities the filter is able to compute 

the smoothly varying optical flow field. A two step, filter based updating model is applied on 

the conventional one step variational updating model. The occlusion detector detects the 

occlusion area by exploiting the natural property of the occlusion between two frames. The 

data and occlusion energy is balanced by the occlusion term in the variational framework. 

The multi-cue driven bilinear filter containing occlusion function and a one dimensional 

Gaussian substitutes the conventional anisotropic diffusion tensor in the variational 

framework. The multi-cue driven bilinear filter disables the influence of the occluded region 

completely during the diffusion process and also reduces the influence based on motion 
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dissimilarity. The system produces accurate optical flow field and performs effective 

occlusion handling. 

 McCane et al generated motion fields in [104] from polyhedral subjects using real 

scenes. A test data set is proposed to benchmark the optical flow methods containing 

complex synthetic sequences and natural sequences with ground truth. The ground truth of 

synthesised motion fields is obtained through tracing the ray of two adjacent frames. The 

method used is proposed by Mason et al in [105]. The 3D location of the intersection, the 

corresponding pixel location and the subject is recorded when a ray collides with an subject. 

Each subject and each subject-ray intersection is applied with a transformation. The new 

pixel location is yielded geometrically. The ground truth motion vector is computed through 

subtraction. The quantitative evaluations of the synthetic and natural sequences achieved are 

relatively consistent. Dalal et al developed a human/person detector in [106] combining 

motion/appearance descriptors with histograms of oriented differential optical flow to detect 

stationary and moving humans. Several motion coding methods are applied on data sets 

containing video sequences of human subjects with possible background and camera motion. 

The Histogram of Oriented Gradients (HOG) descriptor [107] is used to compute the visual 

appearance thus covering the stationary part of the person detector. Motion boundary coding 

is performed through Motion Boundary Histograms (MBH). The local orientations of motion 

Edges are captured by imitating the stationary image HOG descriptors. The calculation of 

relative limbs’ movement is performed using Internal Motion Histogram (IMH) descriptor.. 

A spatiotemporal differencing scheme is evaluated to compute the image intensity. Optical 

flow is implemented using a simple constant brightness assumption. A robust descriptor is 

obtained through oriented histogram voting by motion and appearance channels. The overall 

performance is improved when the features are used in combination with static appearance 

descriptors. The analysis of convergence results for the Horn and Schunck optical-flow 
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estimation method are presented by Mitiche et al [108]. The exercise of linear system of 

equations ordered to make definite symmetric positive matrix is performed explicitly. The 

exercise results in convergence of the iterative point-wise and block-wise Gauss–Seidel and 

relaxation approaches. The correspondence of block Jacobi, Gauss–Seidel, and relaxations 

approaches to the tri-diagonal block decomposition of the matrix also shows the convergence. 

Wedel et al in [109] proposed an improvement variant of Zach et al’s [110] method for the 

original duality based TV-L1 optical flow. The total variation (TV) regularization is employed 

to preserve discontinuities in the flow field. The intensity value artifacts due to illumination 

changes are modelled through a structure-texture decomposition approach. The approach is 

based on an assumption of shadows appearing only in structural part, which includes the 

main large subjects. The total variation based model of Rudin et al in [111] for image de-

noising is used to accomplish the structure-texture decomposition. An image is observed as 

structural and textual content. It correlates to main large subjects and fine scale details. The 

convergence to unfavourable local minima is avoided by employing a coarse-to-fine 

approach embedded with the energy minimisation method. The improvements increase the 

accuracy of the optical flow estimation considerably.  Brox et al in [112] & [119] combined 

the advantages of energy minimization methods and descriptor matching strategies to 

perform optical flow estimation with large displacements. The hierarchical segmentation of 

the image is used to extract regions as a better image coverage is rendered by the hierarchical 

segmentation. Regions correspond highly with separately moving structures than 

conventionally used blobs or corners. A sparse set of hypotheses for correspondences on 

regions is obtained through descriptor matching. In order to compute a dense accurate flow 

field, these correspondences from sparse descriptor matching are integrated into a variational 

scheme to influence the variational approach. Local information from the raw image data and 

a smoothness prior is combined with it to avoid the local optimization to get stuck in a local 
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minimum underestimating the true flow. The local optimization to the correct large 

displacement is achieved through global nearest neighbour matching. Exploiting image 

information compared to the interpolated point correspondences yields an accurate flow field. 

Line and optical flow histograms were used in [113] by Ikizler et al to present a concise 

illustration for human action recognition. The dense optical flow representation and global 

temporal information together with shape descriptors based on the distribution of lines is 

employed. Canny edges are implemented to calculate the probability of boundaries. The 

densest region of high response features is identified to localise human figures and the Hough 

transform is applied to fit straight lines into the boundaries. Orientations and spatial locations 

are processed with histogram to put together spatial information of the human body. A dense 

block based optical flow is extracted through previous frame matching. Orientation 

histograms of these optical flow estimates are generated. The performance of the algorithm is 

further enhanced by a simple feature i.e. the overall velocity of the subject in motion. The 

algorithm reduces classification time substantially. 

 Sun et al in [114] presented a complete probabilistic model of optical flow. The model 

encompasses spatial statistics, brightness inconstancy statistics and the relationship between 

flow boundaries and the image intensity structure of the flow field. The steered derivatives of 

optical flow are modelled. First model of spatial smoothness is achieved on the assumption of 

flow fields being independent of the reference image. The Steerable Random Field model 

[115] is generalised to a steerable model of optical flow by capturing the oriented smoothness 

of the flow fields. Before training the model, a Gaussian scale mixture (GSM) [116] 

representation is employed for empirical determination of scales and global variance. A 

further generalization of the constancy assumptions (gradient constancy and brightness 

constancy) is proposed. The constancy of responses to several general linear filters 

(derivative filters and Gaussian smoothing filter) is modelled. The generalized data term with 
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the steered model of flow improves performance substantially. Regularisation is applied in 

the images in [117] to compute scene flow by Vedula et al. The motion at every point in the 

scene is represented by a 3D flow field. Scene flow computation is based on assumption of 

optical flow calculation for each camera initially. Three different ways are discussed to 

combine optical flows i.e. known scene geometry from single camera, known scene geometry 

from multiple cameras and unknown scene geometry from multiple cameras. Scene flow 

from single camera is mainly computed for theoretical interest. Unknown scene geometry 

from multiple cameras helps constraining scene structure from the inconsistencies in multiple 

optical flows. In the known scene geometry from multiple cameras, the geometry of the scene 

is contained in the volume and is segmented into voxels. The voxel coloring algorithm [118] 

is applied to calculate the occupancy of each voxel. Various images are projected by each 

voxel. The occupancy of each voxel also depends on the consistency of measurements from 

the various images. In the unknown scene geometry from multiple cameras, the measure of 

likelihood for each voxel is calculated. The co-planarity measure is not greatly influenced by 

outliers therefore the visibility is ignored. The method can be further developed by arranging 

camera to compute efficient scene flow. In [120] Chaudhry et al used a histogram of oriented 

optical flow (HOOF) to represent each frame of a video and performed classification of 

human action recognition through HOOF time-series. HOOF features are non-Euclidean. The 

HOOF features are independent of the scale and the direction of motion. System parameters 

are learnt using kernels on the original histograms. The temporal evolution of HOOF features 

is modelled using Non-Linear Dynamical systems (NLDS). The Binet-Cauchy trace kernel 

for NLDS is computed as “the expected value of an infinite series of weighted inner products 

between the outputs after embedding them into the high-dimensional (possibly infinite) 

space” [120]. Different actions are classified by exploiting the temporal evolution of these 

histograms. This is based on an assumption of each action inducing a time-series of HOOF 
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with specific dynamics and different action inducing different dynamics. The comparison on 

the dynamics of HOOF time series is performed for action recognition. The application of 

HOOF features framework yields significant results. Optical flow was applied in [121] as a 

feature to extract information by Andrade et al from the crowd video data to build an event 

detector for emergencies in crowds. The adaptive mixture of Gaussians is implemented to 

model the background. A Gaussian spatio-temporal filter is implemented to reduce noise. The 

resulting mask is then used with the optical flow estimation. The robust dense optical flow 

algorithm by Black et al [122] is implemented to compute optical flow estimates. Smooth 

optical flow estimates are achieved at the motion boundaries. A median filter is applied for 

further noise reduction and to reduce flow vectors in the model. This reduced observation 

noise and only flow vectors inside foreground subjects are analysed. The optical flow features 

are encoded with Hidden Markov Models to allow for the detection of emergency or 

abnormal events in the crowd. Díaz et al presented a hardware implementation of the optical 

flow estimation in [123] through a pipelined optical flow processing system based on a field-

programmable gate array (FPGA) device. It allows change of configuring parameters to adapt 

the sensor to illumination conditions. The design of circuit included a customised digital 

signal processing system in a single chip of high computational power. It is built on pipeline 

resources and comprehensive intrinsic parallelism. Frames are received through the camera 

and stored in memory banks. Smoothing is applied through Spatial Gaussian filter. Temporal 

derivation and spatio-temporal smoothing of images is performed via the infinite-impulse-

response (IIR) temporal filter. After the calculation of spatial derivatives least square 

matrices are computed for the estimation of integration of neighbourhood velocities. Finally 

velocity estimation is performed through arithmetic operations using a customized floating-

point unit. The computation bit width increases throughout the pipeline structure. The 
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computing scheme can be further altered to improve the design as the modularity of the 

system enables it do so.  

 

4.2 Discussion 

 Most of the currently implemented approaches have strong resemblance with Horn 

and Schunck’s original method of optical flow estimation. The original algorithms of Horn 

and Schunck and Lucas-Kannade are both very competitive with respect to adequate 

implementation. The introduction of coarse-to-fine estimation solves the issues of filter 

constancy of high order as larger displacements. Illumination changes have been reduced to 

an acceptable extent. Other added functionalities include bi-cubic interpolation based 

warping, temporal averaging of image derivatives and graduated non-convexity to minimize 

non-convex energies.  

 

4.3 Implementation of Optical Flow Estimation 

 A wide variety of approaches have been presented to cater for the extraction of 

motion analysis from image sequences in the field of computer vision. Optical flow is the 

illusion of motion generated by the brightness patterns within an image scene. Relative 

motion between the subject and the observer produces optical flow. The optical flow can be 

computed using various approaches. The velocity vector fields represent the optical flow 

once it is computed. The image intensity conservation based approaches have attracted 

greater attention in order to enhance computational efficiency.  

 Several algorithms dealt with the issue of the inherent aperture using the idea of 

brightness constancy assumption and applied additional suppositions to build an optical flow 

estimate. Lucas and Kanade in [125] applied a constant motion model for parameter solution 



63 

 

over image regions to deal the with the aperture problem. The functional minimisation using 

mathematical tools from calculus was first employed by Horn and Schunk in [124] to solve 

optical flow problems. The idea of solving dense global optical flow fields was introduced by 

their pioneering work. They presented a quality function with two terms: deviations from the 

brightness constancy equation is penalised by a data term and variations in the flow field is 

penalised by the smoothness term. Many approaches with improvements have been presented 

using their work.    

 The optical flow computation via several methods over a video sequence in computer 

vision has been widely used in various applications especially in surveillance related 

implementations and motion detection etc. Several algorithmic implementations need to be 

efficient enough to be used in real time applications. Typical optical flow approaches are less 

efficient when it comes to implementing them as there is a significant amount of computation 

and memory use as well as time. Despite much research effort invested in addressing optical 

flow computation it remains a challenging task in the field of computer vision. The following 

implementations of few of the most common optical flow approaches have been applied to 

discuss the efficiency and accuracy including the approach with the use of median filtering.  

 

4.3.1 Optical Flow Computation 

 The typical methods for optical flow computation use images at time t and t + ∆t 

through Taylor series. Spatial and temporal derivatives are employed. The intensity of each 

of the voxel in a given image I is represented as: 

T�U, V, W�                                                               (4.1)  

Using the assumption of constant image intensity of each visible scene point over time, we 

can deduce the following: 


�X, Y, �� � 
�X . PX, Y . PY, � . P��                                     (4.2) 
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We can develop the Taylor series based on assumption of movement to be small; 


�X . PX, Y . PY, � . P�� � 
�X, Y, �� . Z[
Z\PX . Z[

Z]PY . Z[
Z+P� . ^. `. ".     (4.3) 

Where higher order terms are represented by one term as H.O.T. H.O.T can be ignored: 

 Z[
Z\PX . Z[

Z]PY . Z[
Z+P� � 0                                                  (4.4) 

Dividing by P�: 

Z[
Z\

a\
a+ . Z[

Z]
a]
a+ . Z[

Z+
a+
a+ � 0                                                   (4.5) 

This results in: 

Z[
Z\b� . Z[

Z]b� . Z[
Z+ � 0                                                     (4.6) 

 Velocity components of optical flow associated with the observed voxel are 

represented by b� and b� with respect to X-axis and Y-axis. The derivatives of the image at 


�X, Y, �� is represented by  
cd
c� , 

cd
c�  and  cd

c�. Which can also be represented by 
�, 
� and 
�. 


� e b� . 
� e b� � !
�                          (4.7) 

Equivalently 

f
g e bhi�  !
� 

 

4.3.2 Lucas Kanade Optical Flow Computation 

 Lucas Kanade’s method of optical flow calculation [125] is based on dividing image 

into patches and computing optical flow estimates for each of them thus making it a 

local/sparse method. It is essentially a differential two frames algorithm as it requires 

minimum number two frames to function. The algorithm also presents the hypothesis of 

uniform velocity for all the pixels in the neighbourhood. Using a m x n window (m > 1) 

centered at the pixel P we can deduce the following: 


�-b� . 
�-b� � !
�- 
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�>b� . 
�>b� � !
�> 

j 
 
�@b� . 
�@b� � !
�@                                                   (4.8) 

This can be rewritten in the form of matrices: 

kl
lm

�- 
�-
�> 
�>j j
�@ 
�@no

op qb�b�r �  
kl
lm
!
�-!
�>j!
�@no

op                                                (4.9) 

Using the least squares methods a possible solution could be given as shown in the following: 

qb�b�r �  s ∑
�t
H ∑
�t
�t∑
�t
�t ∑
�t

H u
��

s!∑
�t
�t!∑
�t
�t
u                                  (4.10) 

For a given window the equation 4.7 can be rewritten with the sums running from i =1 to n: 

��v, w� � x�
�v . 
�w . 
��H �X �Y                                      (4.11) 

 The integration is performed with respect to the dimension of the window. Using the 

assumption of uniform velocity all over window with non dependence of u and v on dx and 

dy, we can deduce the following system:  

v x 
�H �X �Y . w x 
� 
� �X �Y . x 
�
� �X �Y � 0                      (4.12) 

w x 
�H �X �Y . v x 
� 
� �X �Y . x 
�
� �X �Y � 0                      (4.13) 

Several parameters need attention in terms of tuning in order to obtain results at adequate 

levels and to reduce noise.  

• Window Size: As the algorithm is based on the hypothesis of uniform velocity for all 

the pixels in a given window of size m x n. This means the size of the window can be 

chosen as direct consequence, the density of optical flow vectors. 

• Threshold: In order to reduce the noise content between two frames the size of the 

temporal derivative of a pixel can be chosen to distinguish its movement. A temporal 

derivative of a pixel less than threshold will determine the non-movement of the pixel.  
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• Smoothing: Gaussian smoothing is represented by a matrix with the width of w x w, 

where w is the neighbourhood window. It is used in order to weight the sums in 

equation 1.9 such that the components far from the central pixel count less than those 

that are closer. 

yz
{z|{ � ! Q�}��
H~e�� e ����t,�,-�>���,�,-�>

>e�> �                             (4.14) 

Where G represents the standard deviation in the above Gaussian function. The pixels far 

from the center can be considered in terms of their importance depending on the value of 

the G. A video sequence with large spatial derivatives yields numerical problems of stability 

issues, as the algorithm deals with very small and very large numbers in the case of large 

spatial derivatives.    

 

 

Figure 4.1 Two adjacent frames from fall action sequence 
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Figure 4.2 Lucas-Kannade Optical Flow of two adjacent frames in Figure 4.1 

Figure 4.2 shows the representation of optical flow computation of two consecutive 

frames shown in figure 4.1. There is apparent noise in the representation, which seems to be 

part of the motion of the subject as well as the background. The overall optical flow 

representation requires further post processing to yield a better optical flow representation.  

 

4.3.3 Horn-Schunk Optical Flow Computation 

The use of variation methods was initiated by Horn and Schunk [124] for optical flow field 

computation. This approach presents a global constraint of smoothness over the optical flow 

field computation. The global energy function is formulated for the optical flow field. The 

energy function is minimised. The energy function presents two assumptions: constancy 
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imposed over the grey image by the grey value constancy (this means grey value of the image 

is not variable over time) and global smoothness of optical flow field. An additional 

assumption was presented in this approach in the form of a constraint. The variation in the 

optical flow remains smooth and, therefore, velocity components in the neighbourhood are 

uniform. The energy function can be presented as; 

min��,�� � � ��v, w� �X �Y��                                          (4.15) 

Where    

� � �� . J��                                                       (4.16) 

���v, w� � �
�v . 
�w . 
��H                                          (4.17) 

�� is the data term and ��  is a regularization term. The parameter J is a positive scalar 

quantity to trade off the goodness of ��  with ��. This relates to a standard choice of �� to be 

the following isotropic regularisation term. 

���v, w� � �
H �|fv|H . |fw|H�                                            (4.18) 

Two elliptic partial differential equations can be derived using variation calculus. 

J∆v ! 
�<
�v . 
�w . 
�= � 0                                          (4.19) 

J∆w ! 
�<
�v . 
�w . 
�= � 0                                          (4.20) 

The two velocity components u and v make this coupled system of equations symmetric. The 

equations can be simultaneously solved to determine the coupling effect. The following 

Gauss-Seidel relation is suggested in this approach.   

vKE� � v�K ! 
� d\���Ed]��Ed+
�Ed\>Ed]>                                                (4.21) 

wKE� � w�K ! 
� d\���Ed]���Ed+
�Ed\>Ed]>                                                (4.22) 

Where k is the iteration counter, v� and w� are average of the neighbouring points to u and v. 
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Figure 4.3 Two frames from fall action sequence 

 

 

Figure 4.4 Horn-Schunk Optical Flow of two frames in Figure 4.3 
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 Figure 4.4 shows the representation of optical flow computation of two frames shown 

in figure 4.3. Noise seems to be apparent in the representation which seems to be part of the 

motion of the subject as well as the background. The overall optical flow representation is 

requires further post processing to yield a better optical flow representation. 

 

4.3.4 Optical Flow Computation using Variational 

Approach 

 

Brox et al in [91] implemented a novel variational approach containing an energy 

function based upon three assumptions: gradient constancy, brightness constancy and spatio-

temporal smoothness constraint to preserve discontinuity. The approach is minimised with a 

numerical methods and is an integration of earlier published ideas. The use of warping is also 

known as coarse-to-fine technique. This idea is used to compute the non-linearised optical 

flow in image registration. The image correspondence issues are solved through a multi-

resolution method. To measure the displacement vector, some small variations are allowed in 

the grey value through invariant criteria called gradient of the image grey value. Multi-scale 

ideas are applied to cater larger displacements. Using these assumptions, an energy function 

is derived that penalises deviations from these model assumptions.  

 Let x = (x, y, t) T
 and w = (u, v, 1) T , the global deviations from the grey value 

constancy assumption and the gradient constancy assumption are measured as; 

���v, w� � � �|
�x . w� ! 
�x�|H . �|f
�x . w� ! f
�x�|H� �X�               (4.23) 

where γ represents a weight between both assumptions. An increasing concave function Ψ(s
2
) 

is implemented as outliers can impose influence on the estimation due to quadratic penalisers. 

It leads to a robust energy function; 
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���v, w� � � ��|
�x . w� ! 
�x�|H . �|f
�x . w� ! f
�x�|H� �X�              (4.24) 

A piecewise smooth flow field generalises the smoothness assumption through a smoothness 

term.  

��������v, w� � � ��|f�v|H . |f�w|H� �X�                                (4.25) 

The spatio-temporal smoothness is performed using assumption based on spatio-temporal 

gradient f� � ��X, �Y, ���. The total energy function is the weighted sum of the data term 

and the smoothness term: 

��v, w� � �� . J�������                                              (4.26) 

 Numerical methods including Euler-Lagrange equations and Taylor expansions are 

applied based on two nested fixed point iterations. The coarse-to-fine technique as single 

minimisation problem is developed. Energy functions are minimised in image registration 

through multi-resolutions. The angular errors are significantly small for optical flow 

estimation due to parameter variations insensitivity. 

 

4.3.5 Optical Flow Computation combining Classical 

Formulations with Modern Optimising Techniques  

 The accuracy of optical flow estimation algorithms has improved gradually as is 

evident from the results on the Middlebury optical flow benchmark [126]. The classical 

optical flow approaches in combination with modern optimization and implementation 

techniques perform well. The algorithm described in [130] by Sun et al is implemented to 

calculate accurate optical flow estimate. A baseline method is devised which is termed as 

“classical”. The classical method is based on original Horn-Schunk formulation. The method 

and model is systematically varied using different state of the art techniques.  

The classical optical flow subject function in its spatially discrete form is defined as; 
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��v, w� � ∑ 2F� �
��
, |� ! 
H<
 . v&,Q, | . w&,Q=� .  ¡F¢<v&,Q ! v&E�,Q= . F¢<v&,Q !&,Q

v&,QE�� . F¢<w&,Q ! w&E�,Q= . F¢<w&,Q ! w&,QE�=£3                          (4.27) 

“where u and v are the horizontal and vertical components of the optical flow field to be 

estimated from images I1 and I2,   is a regularization parameter, F� and F¢ are the data and 

spatial penalty functions respectively. Three different penalty functions are considered: (1) 

the quadratic HS penalty F�X� � XH; (2) the Charbonnier penalty F�X� � √XH . 4H [99], a 

differentiable variant of the L1 norm, the most robust convex function; and (3) the Lorentzian 

F�X� � ¥�M �1 . �>
H�>�, Note that this classical model is related to a standard pair-wise 

Markov random field (MRF) based on a 4-neighborhood.”[130] 

 

4.3.5.1 Baseline Method 

 The structure texture decomposition method by Rudin-Osher-Fatemi (ROF) in [132] 

is applied following the approach in [131] to cater for lighting variations. The input 

sequences are pre-processed and texture and structure components are linearly combined 

(20:1 proportion). The parameters’ setting is followed according to the description in [131]. 

 A standard incremental [99] [133] multi-resolution approach is applied to compute 

optical flow fields with larger displacements. The optical flow estimation at coarse level is 

used to warp the second image toward the first at the next finer level. The flow increment is 

computed between the warped second image and the first image. The value of standard 

deviation of the Gaussian anti-aliasing filter is set to be 
�

√H� where d is the down-sampling 

factor. Every level is down-sampled recursively from its nearest lower level. The down-

sampling factor of 0:8 in the final stages of optimisation, is used according to the settings in 

[114] during the construction of the pyramid. The number of pyramid levels is established 
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adaptively in such a way that the top level has a width or height of around 20 to 30 pixels. 

The flow increment is calculated at every pyramid level by using 10 warping iterations.   

 The data term is linearised at every warping step that contains the following type of 

computing terms; 

c
c� 
H�
 . v&,QK , | . w&,QK �                                               (4.28) 

where 
c

c� represents the partial derivative in the horizontal direction, vK and wK are the 

current optical flow estimates at iteration k. A 5-point derivative filter 
�

�H z!1 8 0 ! 8 1{ is 

applied to calculate the derivatives for the second image. Current optical flow estimate 

through bi-cubic interpolation is applied to warp the second image and its derivatives toward 

the first [131]. The spatial derivatives of the first image are calculated and averaged with the 

warped derivatives of the second image [134]. 
cd>
c�  is replaced with it. The corresponding 

spatial and temporal derivatives of pixels moving out of the image boundaries are set to zero. 

A 5 x 5 median filter is applied for the removal of outliers from the calculated optical flow 

fields after each warping iteration [131]. A graduated non-convexity scheme [135] [99] is 

used for the Charbonnier (Classic-C) and Lorentzian (Classic-L) penalty function. A 

quadratic subjective is linearly combined in varying proportions with a robust objective, from 

fully quadratic to fully robust. A single regularization weight λ is used for both the quadratic 

and the robust objective functions as opposed to [114].  

 

4.3.5.2 Development of Baseline method into Improved 

Model 

 The median filtering heuristic can be further formulated as an explicit objective 

function. An over-smoothed result is achieved when median is computed on a neighbourhood 
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centered on a corner or thin structure which is dominated by the surrounding. This can be 

resolved through the examination of the non local term. For a given pixel, if other pixels in 

the area, belonging to the same surface, are known then they can be assigned higher weights. 

The introduction of a weight factor into the non local term imposes the modification to the 

objective function [136] [137]: 

∑ ∑ �&,Q,&§,Q§� v̈&,Q ! v̈&§,Q§ .  ẅ&,Q ! ẅ&§,Q§ ��&§, Q§�©ªt,�&,Q                          (4.29) 

Where �&,Q,&′,Q′ shows the highly likely relationship of 
 ′, | ′ to the same surface as 
, |. �&,Q,&′,Q′  

can be approximated. The weights are defined according to their colour value distance, 

spatial distance and their occlusion state [138] [103] [139] as: 

�&,Q,&§,Q§  « �XR ¬!  &�&§ >E Q�Q§ >
H�-> !  d�&,Q��d�&§,Q§� >

H�>> ­ ��&§,Q§�
��&,Q�  ,                          (4.30) 

Eq. (22) in [138] is used to compute the occlusion ��
, |�. 
�
, |� is the colour vector in the lab 

space, G� = 7 and GH = 7. Higher weights represent the brighter values. In [141] the 

intervening contour defines affinities among neighbouring pixels for the local Lucas and 

Kanade algorithm [125]. Only the motion of sparse points is estimated using this scheme and 

dense optical flow field is then interpolated. Eq. 4.30 is solved approximately using the 

formula (3.13) in [140] for v̈ and ẅ as the following weighted median problem; 

min�®t,� ∑ �&,Q,&§,Q§ v̈&,Q ! v&§,Q§ �&§, Q§�©ªt,�¯2&,Q3 ,                                  (4.31) 

 The method Classic+NL-Full is for all the pixels. The solution becomes the median 

only in the case of all weights being equal. The faster version of this method without 

accuracy loss can be adopted. Motion boundaries can be detected for a given current optical 

flow estimate using a Sobel Edge detector. These edges can be dilated with a 5x5 mask to 

compute optical flow boundary regions. The weighting in Eq. 4.30 is applied in these regions 

using a 15x15 neighbourhood. Equal weights are applied to calculate the median in the non 

boundary regions using a 5x5 neighbourhood.  
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Figure 4.5 Two frames from fall action sequence 

 

 

Figure 4.6 Optical Flow of two frames in Figure 4.6 

 Figure 4.6 displays the representation of optical flow computation of two frames 

shown in figure 4.5. The representation shows very accurate vector magnitudes and direction. 

The approach caters for the larger movements appropriately. The overall representation is 
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quite easy to draw a general estimate of optical flow field. There is hardly any noise in the 

representation. The overall optical flow representation is quite accurate. 

 

4.4 Fall Detection Evaluation using different types of 

Feature Representation  

 Using simulated falls from [148] and some video sequences from our own dataset 

under supervised conditions and other actions as non falls from KTH dataset [155], the ability 

to distinguish between falls and non falls (other actions) was analysed and compared against 

two other approaches. Data analysis in terms of feature representation through descriptors 

was computed and classification was performed using MATLAB. The dataset of fall actions 

included; forward falls, backward falls and lateral falls left and right, performed with legs 

straight and flexed. An evaluation is performed using HOG3D, MHI and HOF for fall 

detection to analyse the results and draw the accuracy levels. 

 

4.4.1 Descriptors 

4.4.1.1 HOG3D 

Three dimensional histogram of oriented gradients (HOG3D) is used in our evaluation 

as one of the descriptors for feature representation. It was proposed by Klaser et al [149]. The 

descriptor is based on histograms of 3D gradient orientations. It is also regarded as an 

extension of Scale Invariant Feature Transform (SIFT) descriptor [150]. An integral video 

representation is used to compute the gradients. The spatio-temporal gradients are uniformly 

quantised through regular polyhedrons. A combination of shape and motion information at 

the same time is used by the descriptor. A nx x ny x nt cell scheme is used for a given 3D 
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patch. Normalisation is performed after concatenation of gradient histograms of all cells. The 

implementation is used from [151] and recommended parametric settings are applied. The 

number of spatial and temporal cells nx = ny = 4 and nt = 3, descriptor size ∆x (σ) = ∆y (σ) = 

8σ, ∆t (σ), ∆t (�) = 6� and the polyhedron type for quantizing orientations used is 

“Icosahedrons”. [152] 

 

4.4.1.2 MHI 

 MHI is a Motion-History Image formed to represent as how motion evolves. H� 

represents pixel intensity as a function of the temporal history of the motion at that point in 

an MHI. A simple replacement and decay operator is used: 

°̂�X, Y, �� � ¬ �                                                
� ±�X, Y, �� � 1
  max�0, °̂�X, Y, � ! 1� ! 1�   ������
��, �                  (4.32) 

 Where ±�X, Y, �� is a binary image sequence indicating regions of motion. The more 

recent motion pixels show brighter levels in a resulted scalar-valued image. The MHI can be 

thresholded above zero to generate Motion Energy Image (MEI). The direction of the motion 

in MHI is implicitly represented. Therefore the relation between the construction of the MHI 

and the direction of motion is important. A statistical description of the MHI is computed 

using moment based features. The settings in [153] are applied to achieve suitable shape 

discrimination in a translation and scale invariant manner. The MHI is flatten into a feature 

vector as the representation of the video sequence.   

 

4.4.1.3 HOF 

 An accurately estimated optical flow from video sequence is one of the best ways to 

extract motion. A HOF descriptor is used following the approach in [154] and [152] by 

Laptev et al and Wang et al respectively. The image sequence is divided spatially and 
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temporally into sub regions as the number of spatial and temporal cells nx = ny = 3 and nt = 2. 

The number of bins used in each region is 5. The total length of the descriptor is 90. 5-bin 

optical flow histograms (HOF) are computed. Normalized histograms are concatenated. The 

two dimensional histogram is calculated for each segment. The HOF descriptor settings are 

followed as described in [152], [151]. There is resemblance between HOF and HOG  

 

4.4.2 Experimental Setup 

 The datasets used for the evaluation is described below. The features are computed 

using three types of descriptors described above. The feature based classification is 

performed using support vector machine (SVM). 

 

4.4.3 Data Sets 

 We used two datasets. A very well-known dataset “KTH” and the other data set were 

taken from [148] and [154]. We also added some video sequences of our own simulated fall 

action.  

 

4.4.3.1 KTH Dataset 

 There are six different types of human actions in the KTH dataset: jogging, walking, 

hand waving, hand clapping, boxing and running. 25 subjects perform each action several 

times. The video sequences contain four different scenarios: indoors, outdoors, outdoors with 

different clothes and outdoors with scale variation. The background is fixed (static) in some 

sequences and homogenous in most. There are 2391 video sequences in total in the dataset. 

We used 100 sequences for the training set and 45 for the testing set. At least 10 video 

sequences were taken from each action class for the training set and 5 video sequences for the 



79 

 

testing set. The training and evaluation is performed on a SVM classifier and accuracy is 

computed as performance measure.  

 

4.4.3.2 Fall Action Data Set 

 There are fourteen different scenarios of human fall actions in the fall action 

dataset such as fall from walking, fall from sitting, fall from standing, backward fall, side 

way fall (left and right) etc. The background is static in all video sequences. Different 

subjects fall and the action is viewed from different viewpoints. The background is cluttered 

in the majority of the sequences including tables, chairs, etc. We have selected in total 46 fall 

video sequences for training set and 23 video sequences for testing with most of the fall types 

catered for. The training and evaluation is performed on a SVM classifier and accuracy is 

computed as performance measure.  

 

4.4.4 Experimental Results 

 Experimental results in a tabular form are presented for three descriptors we used. We 

have compared their accuracy.  

Table 4.1 System Detection Evaluation Results 

 HOF HOG3D MHI 

Accuracy 94% 82% 77% 

 

The HOF descriptor clearly achieved higher accuracy compared to HOG3D and MHI 

as shown in table 4.1. Figures 4.7, 4.9 and 4.11 show some of the images from the video 

sequences used from the fall action dataset and their respective estimated optical flow in 

figures 4.8, 4.10 and 4.12, which was used to compute HOF features.   
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Figure 4.7 Fall Image Sequences  

 

Table 4.2 System Detection Evaluation Format 

System                     Fall Action 
Detection        

Fall Non Fall 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

The table 4.2 presents tabular definition of TP, FP, FN and TN.  
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Table 4.3 Evaluation Results 

System                     Fall Action 
Detection        

Fall Non Fall 

Positive 21 (TP) 3 (FP) 

Negative 2 (FN) 42 (TN) 

 

The table 4.3 shows the accuracy breakdown of our fall detection system. The fall 

detection system only detected 2 false negatives (FN) of fall action as non fall out of 23 

action fall sequences and detected only 3 false positives (FP) of non fall action as fall out of 

45 non fall action sequences. 
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Figure 4.8 Optical Flows of the last two frames of Fall Image Sequences in Figure 4.7 
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Figure 4.9 Fall Image Sequences 
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Figure 4.10 Optical Flows of the last two frames of Fall Image Sequences in Figure 4.9 
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Figure 4.11 Fall Image Sequences 

 

 

Figure 4.12 Optical Flows of the last two frames of Fall Image Sequences in Figure 4.11 

We use a set of following criteria described in [156] to evaluate our system, including 

sensitivity and specificity. 
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Table 4.4 Final System Performance  

 
Accuracy 94% 

Sensitivity 91% 

Specificity 93% 

 

4.5 Discussion 

 Significant statistical improvements that lead to state of the art accuracy levels can be 

achieved through mere key adjustments. The application of median filter heuristics to 

intermediate optical flow estimates during warping and incremental estimation has shown 

fruitful results. Therefore this heuristic is of prominent interest as it has added robustness to 

the methods and improved the overall accuracy. It also enhanced the accuracy of the 

recovered optical flow fields, thus increasing the overall energy of the objective function. The 

new term integrates information over large spatial neighbourhoods robustly. The idea of 

outlier removal through median filtering after incremental estimation has shown very 

encouraging results. Not only is the energy of the final output of the optical flow estimation 

amplified through median filtering, but also median filtering has improved the overall 

accuracy by reducing noise in the flow estimates after warping iteration. The connections 

between median filtering and de-noising can be further exploited and large region of spatial 

neighbourhood can be regularised.       

 The challenges for optical flow algorithms focus on factors like motion discontinuities 

and large displacements etc. Solid progress has been made in the field of optical flow 
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estimation. Current methods applied on the Middlebury optical flow benchmark [126] show 

higher levels of accuracy. Most optical flow approaches are built on specific data term, prior 

term, and optimization procedure for the flow field computation. The algorithm must be able 

to deal with the aspects involved in making the optical flow complex and inherently 

ambiguous. The aspects make the optical flow intrinsically ill-posed such as texture-less 

regions and the aperture problem. Suitable penalty functions are required for prior and data 

terms to deal with factors like occlusions, noise, non-rigid motion and motion discontinuities. 

Optimisation procedures falling into local minima due to small subjects and larger 

displacement require attention. Furthermore illumination changes, motion blur, mixed pixels 

etc are some of the other commonly know aspects. 

 Most of the currently implemented approaches have strong resemblance with Horn 

and Schunck’s original method of optical flow estimation. The original algorithms of Horn 

and Schunck and Lucas-Kannade are both very competitive with respect to adequate 

implementation. The introduction of coarse-to-fine estimation solves the issues of filter 

constancy of high order as larger displacements. Illumination changes have been reduced to 

an acceptable extent. Other added functionalities include bi-cubic interpolation based 

warping, temporal averaging of image derivatives and graduated non-convexity to minimize 

non-convex energies. The above described added functionalities permit to implement 

optimised models. Also the neighbours in a broadened image block can be weighted 

adaptively. Surfaces and boundaries can be further explored in the temporal domain to extract 

additional explicit explanations. Using classical formulation and going beyond can yield 

advanced growth.  
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Chapter 5 

Conclusion  

5.1 Conclusions 

We have addressed several issues in human fall action detection analysis using optical flow 

estimation. The thesis is composed of two essential parts. An overview of fall action 

detection and optical flow estimation at the levels ranging from fundamental approaches to 

higher abstraction techniques in chapter 2 and chapter 4, the implementation of optical flow 

computation algorithms and using the most accurate algorithm of optical flow for fall 

detection evaluation in chapter 4. Chapter 2 contains our contribution of a detailed survey of 

currently implemented approaches and techniques for fall detection in all areas of research 

and industry including computer vision. Chapter 4 consists of our contribution of using 

optical flow technique for fall detection evaluation. In the following, we summarize the 

contents and findings of each individual chapter. 

Chapter 1 contained the introduction, motivation, our contributions and the structure 

outline of our research study. It introduced and described the facts and background of our 

research area “Fall Detection”.  Then we have described the motivation behind this research 

study using the available facts within our research area and industry. We have also briefly 

discussed the ongoing trends and frequency of research of our research area in the research 

community and industry.  We have also provided brief information about our contributions in 

the thesis. Finally we described the structure of thesis in an outline. 

Chapter 2 presented one of the contributions of our research study. We have 

presented a comprehensive survey of fall detection approaches and techniques used by the 

research community and the industry. Different types of fall action are introduced, followed 
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by the classification of fall detection methods into three categories i.e. Wearable devices, 

Ambient and Vision based. We have reviewed three different categories of fall detection 

approaches. At the end of the chapter, we have discussed, concluded and pointed out a way 

forward as the use of optical flow for the future research in the area of fall detection. This 

chapter has laid down an ideal foundation for our research study. 

Chapter 3 comprised of an overview of currently implemented background 

subtraction techniques. We initiated our research study with background subtraction as 

generally used procedure in surveillance related applications. The background subtraction can 

lead to minimised information for post processing for computational efficiency. We have 

implemented some of the background subtraction techniques and discussed their results. The 

dataset requirements in terms of lighting conditions, resolution and illumination changes etc 

were not met by our dataset once we constructed our dataset later in conjunction with the 

other datasets used in our research study. Therefore we haven’t used the background 

subtraction later in our research study.  

Chapter 4 presented our other contribution of this research study. We have described 

an overview of optical flow estimation techniques. We have implemented several optical 

flow estimation techniques such as Lucas-Kannade, Horn-Schunk, Variational approaches etc 

and discussed the quality of the results achieved. We have also recommended the technique 

built on classical formulations with modern optimising procedures that yielded the best 

quality of the experimental results. We have applied this recommended technique to 

demonstrate an evaluation of fall detection. We compared the experimental results achieved 

against the other techniques. The experimental results clearly demonstrated the superiority of 

our recommended approach in terms of higher achieved accuracy of 94%. 

 

5.2 Future studies 
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The analysis of fall detection can be further exploited for post processing. The fall 

action belongs to a category of actions which are not majorly intentional rather abnormal. 

The fact that fall is a natural but abnormal action draws greater deal of attention towards its 

complications. The study of such complicated actions can lay down ideal foundation for 

abnormal activity detection. This can further lead to perfect initiation of grounds for 

abnormal behaviour analysis in the area of surveillance, thus making the accurate automatic 

monitoring of such complex activities and behaviours possible in the real time industry 

applications. Despite the high accuracy achieved in our fall detection evaluation and 

experimental results, there are still few aspects that need further investigation. 

 

5.2.1 Fusion of Data  

The current surveillance research community and industry are focusing their research 

studies and applications using multiple cameras and multiple subjects. This requires further 

analysis of optical flow estimation techniques. Other than using visual information, audio, 

ultrasonic and infrared data can also be used to detect and analyse information especially in 

the area of surveillance as these additional sensors can provide significant and unique 

information. This stands out as one of the very complicated and challenging tasks in terms of 

fusion of data and its post processing. One of the problems in using such complicated and 

comprehensive data will be data fusion and standards to classify the use of information.  

 

5.2.2 Embedded Applications 

The optical flow estimation technique used in our experimental setup and evaluation 

does have higher memory requirements, thus adding to the computational load. 

Computational efficiency remains a very important criterion with respect to real time 
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applications within the industry. Further post processing analysis can be carried out to look 

for the factors affecting efficiency. Efficient approaches can be further exploited on suitable 

embedded platforms for experimentation. The optimised algorithms can be mapped using 

digital signal processing media processors to facilitate smart video surveillance e.g. accurate 

automatic surveillance in a care home etc. The system can be developed using standard 

hardware and simple technology for end user.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

References 

[1] S. J. McKenna and H. Nait-Charif, Summarising Contextual Activity and Detecting 

Unusual Inactivity in a Supportive Home Environment, 17th IEEE International Conference 

on Pattern Recognition, Vol. 4, pp. 323-326, 2004. 

[2] A. M. Tabar, A. Keshavarz and H. Aghajan, Smart Home Care Network using Sensor 

Fusion and Distributed Vision-based Reasoning, 4th ACM  International Workshop on Video 

Surveillance and Sensor Networks, 2006. 

[3] N. Noury, T. Herd, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, and T. 

Porcheron, Monitoring Behaviour in Home using a Smart Fall Sensor and Position Sensors, 

1st Annual International Conference On Micro Technologies in Medicine and Biology, pp. 

607-610, 2000. 

[4] H. Foroughi, A. Naseri, A. Saberi, and H. S. Yazdi, An Eigenspace-Based Approach for 

Human Fall Detection Using Integrated Time Motion Image and Neural Network, 9th IEEE 

International Conference on Signal Processing (ICSP), pp. 1499-1503, 2008.  

[5] H. Foroughi, B. S. Aski, and H. Pourreza, Intelligent Video Surveillance for Monitoring 

Fall Detection of Elderly in Home Environments, 11th IEEE International Conference on 

Computer and Information Technology (ICCIT), pp. 219-224, 2008.  

[6] S. Luo and Q. Hu, A Dynamic Motion Pattern Analysis approach to Fall Detection, IEEE 

International Workshop on Biomedical Circuits & Systems, pp. 1-5, 2004. 

[7] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell and B. G. Celler, 

Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer 

for Ambulatory Monitoring, IEEE Transactions on Information Technology in Biomedicine, 

Vol. 10(1), pp. 156-157, 2006. 



93 

 

[8] J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, Wearable Sensors for Reliable Fall 

Detection, 27th IEEE Annual Conference of Engineering in Medicine and Biology (EMBS), 

pp. 3551-3554, 2005. 

[9] S. G. Miaou, P. H. Sung and C. Y. Huang, A Customized Human Fall Detection System 

Using Omni-Camera Images and Personal Information, 1st Trans-Disciplinary Conference 

on Distributed Diagnosis and Home Healthcare (D2H2), pp. 39-42, 2006. 

[10] M. Alwan , P. J. Rajendran, S. Kell, D. Mack , S. Dalal, M. Wolfe, and R. Felder, A 

Smart and Passive Floor-Vibration Based Fall Detector for Elderly, IEEE International 

Conference on Information & Communication Technologies (ICITA), pp. 1003-1007, 2006. 

[11] J. Tao, M. Turjo, M. F. Wong, M. Wang and Y. P. Tan: Fall Incidents Detection for 

Intelligent Video Surveillance, Fifth IEEE International Conference on Information, 

Communications and Signal Processing, pp. 1590-1594, 2005. 

[12] N. Thome and S. Miguet, A HHMM-Based Approach for Robust Fall Detection, 9th 

IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 

1-8, 2006.  

[13] B. Jansen and R. Deklerck, Context aware inactivity recognition for visual fall detection, 

IEEE Pervasive Health Conference and Workshops, pp. 1-4, 2006. 

[14] C. Rougier, J. Meunier, A. St-Arnaud and J. Rousseau, Fall Detection from Human 

Shape and Motion History using Video Surveillance, 21st IEEE International Conference on 

Advanced Information Networking and Applications Workshops (AINAW'07), pp. 875-880, 

2007.  

[15] C. W. Lin and Z. H. Ling, Automatic Fall Incident Detection in Compressed Video for 

Intelligent Homecare, 16th IEEE International Conference on Computer Communications 

and Networks (ICCCN), pp. 1172-1177, 2007. 

 



94 

 

[16] M. Kangas, A. Konttila, I. Winblad and T. Jämsä, Determination of simple thresholds 

for accelerometry-based parameters for fall detection, 29th IEEE Annual International 

Conference on Engineering in Medicine and Biology Society (EMBS), pp. 1367-1370, 2007. 

[17] S. Srinivasan, J. Han, D. Lal and A. Gacic, Towards automatic detection of falls using 

wireless sensors, 29th IEEE Annual International Conference on Engineering in Medicine 

and Biology Society (EMBS), pp. 1379-1382, 2007. 

[18] Y. Lee, J. Kim, M. Son, and M. Lee, Implementation of Accelerometer Sensor Module 

and Fall Detection Monitoring System based on Wireless Sensor Network, 29th IEEE Annual 

International Conference on Engineering in Medicine and Biology Society (EMBS), pp. 

2315-2318, 2007. 

[19] M. R. Narayanan, S. R. Lord, M. M. Budge, B. G. Celler and N. H. Lovell, Falls 

Management: Detection and Prevention, using a Waist mounted Triaxial Acceleromete, 29th 

IEEE Annual International Conference on Engineering in Medicine and Biology Society 

(EMBS), pp. 4037-4040, 2007. 

[20] G. Wu and S. Xue, Portable Preimpact Fall Detector with Inertial Sensors, IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, Vol. 16, pp. 178-183, 2008. 

[21] C. C. Wang, C. Y. Chiang, P. Y. Lin, Y. C. Chou, I. T. Kuo, C. N. Huang and C. T. 

Chan, Development of a Fall Detecting System for the Elderly Residents, 2nd IEEE 

International Conference on Bioinformatics and Biomedical Engineering, ICBBE, pp. 1359-

1362, 2008. 

[22] Z. Fu, E. Culurciello, P. Lichtsteiner and T. Delbruck, Fall Detection using an Address-

Event Temporal Contrast Vision Sensor, IEEE Transactions on Biomedical Circuits and 

Systems, Vol. 2, pp. 88-95, 2008.  

[23] C. J. Robinson, M. C. Purucker and L. W. Faulkner, Design, Control, and 

Characterization of a Sliding Linear Investigative Platform for Analyzing Lower Limb 



95 

 

Stability (SLIP-FALLS), IEEE Transactions on Rehabilitation Engineering, Vol. 6, pp. 334-

350, 1998. 

[24] A. Sixsmith and N. Johnson, A Smart Sensor to Detect the Falls of the Elderly, IEEE 

Pervasive Computing, IEEE CS and IEEE ComSoc, Vol. 3, pp. 42-47, 2004. 

[25] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, Probabilistic Posture Classification 

for Human-Behavior Analysis, IEEE Transactions on Systems Man and Cybernetics - Part A: 

Systems and Humans, Vol. 35, pp. 42-54, 2005. 

[26] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovelland and B. G. Celler, 

Implementation of a Real Time Human Movement Classifier Using a Tri-axial Accelerometer 

for Ambulatory Monitoring, IEEE Transactions on Information Technology in Biomedicine, 

Vol. 10, pp. 156-167, 2006. 

[27] J. M. Kang, T. Yoo and H. C. Kim, A Wrist-Worn Integrated Health Monitoring 

Instrument with a Tele-Reporting Device for Telemedicine and Telecare, IEEE Transactions 

on Instrumentation and Measurement, Vol. 55, pp. 1655-1661, 2006. 

[28] C. F. Juang and C. M. Chang, Human Body Posture Classification by a Neural Fuzzy 

Network and Home Care System Application, IEEE Transactions on Systems, Man and 

Cybernetics Part A: Systems and Humans, Vol. 37, pp. 984-994, 2007. 

[29] A. H. Khandoker, D. T. H. Lai, R. K. Begg and M. Palaniswami, Wavelet-Based Feature 

Extraction for Support Vector Machines for Screening Balance Impairments in the Elderly, 

IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15,pp. 587-597, 

2007. 

[30] G. Wu and S. Xue: Portable Preimpact Fall Detector with Inertial Sensors, IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, Vol. 16, pp. 178-183, 2008. 



96 

 

[31] N. Thome, S. Miguet and S. Ambellouis, A Real-Time, Multiview Fall Detection System: 

A LHMM-Based Approach, Circuits and Systems for Video Technology, IEEE Transactions 

on Circuits and Systems for Video Technology, Vol. 18, pp. 1522-1532, 2008. 

[32] S. Fleck and W. Strasser, Smart Camera Based Monitoring System and Its Application 

toAssisted Living, 4th IEEE Workshop on Embedded Systems Security, Vol. 96,  pp. 1698-

1714, 2008. 

[33] G. Shi, C. S. Chan, W. J. Li, K. S. Leung, Y. Zou and Y. Jin; Mobile Human Airbag 

System for Fall Protection Using MEMS Sensors and Embedded SVM Classifier, IEEE 

Sensors Journal, Vol. 9,  pp. 495-503, 2009. 

[34] Y. Zigel, D. Litvak and I. Gannot; A Method for Automatic Fall Detection of Elderly 

People Using Floor Vibrations and Sound Proof of Concept on Human Mimicking Doll 

Falls, IEEE Transactions on Biomedical Engineering, Vol. 56,  pp. 2858-2867, 2009. 

[35] M.A. Estudillo-Valderrama, L.M. Roa, J. Reina-Tosina and D. Naranjo-Hernandez, 

Design and Implementation of a Distributed Fall Detection System - Personal Server, IEEE 

Transactions on Information Technology in Biomedicine, Vol. 13, pp. 874-881, 2009. 

[36] T. Tamura, T. Yoshimura, M. Sekine, M. Uchida and O. Tanaka, A Wearable Airbag to 

Prevent Fall Injuries, IEEE Transactions on Information Technology in Biomedicine, Vol.13, 

pp. 910-914, 2009. 

[37] H. Ghasemzadeh, R. Jafari and B. Prabhakaran, A Body Sensor Network With 

Electromyogram and Inertial Sensors: Multimodal Interpretation of Muscular Activities, 

IEEE Transactions on Information Technology in Biomedicine, Vol. 14, pp. 198-206, 2010. 

[38] H. Ghasemzadeh, V. Loseu and R. Jafari, Structural Action Recognition in Body Sensor 

Networks: Distributed Classification Based on String Matching, IEEE Transactions on 

Information Technology in Biomedicine, Vol. 14, pp. 425-435, 2010. 

 



97 

 

[39] H. Rimminen, J. LindstroNm, M. Linnavuo and R. Sepponen, Detection of Falls Among 

the Elderly by a Floor Sensor Using the Electric Near Field, IEEE Transactions on 

Information Technology in Biomedicine, Vol. 14, pp. 1475-1476, 2010. 

[40] F. Bianchi, S. J. Redmond, M. R. Narayanan, S. Cerutti and N. H. Lovell, Barometric 

Pressure and Triaxial Accelerometry Based Falls Event Detection, IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, Vol. 18, pp. 619-627, 2010. 

[41] C. F. Lai, S. Y. Chang, H. C. Chao and Y. M. Huang, Detection of Cognitive Injured 

Body Region Using Multiple Tri-axial Accelerometers for Elderly Falling, IEEE Sensors 

Journal, Vol. 11, pp. 763-770, 2011. 

[42] M. J. Mathie, A. C. F. Coster, N. H. Lovell and B. G. Celler, Accelerometry: Providing 

an Integrated, Practical Method for Long-term, Ambulatory Monitoring of Human 

Movement, Journal for Physiological Measurement (IOPScience), Vol. 25, 2004. 

[43] G. Wu, Distinguishing Fall Activities from Normal Activities by Velocity 

Characteristics, Elsevier Journal of Biomechanics, Vol. 33,  pp. 1497-1500, 2000. 

[44] V. Vishwakarma, C. Mandal and S. Sural, Automatic Detection of Human Fall in Video, 

Springer-Verlag 2nd international conference on Pattern recognition and machine intelligence 

(PReMI'07), 2007.     

[45] P. Boissy, S. Choquette, M. Hamel and N. Noury, User-Based Motion Sensing and 

Fuzzy Logic for Automated Fall Detection in Older Adults, Telemedicine and e-Health Mary 

Ann Liebert, Vol. 13, pp. 683-694, 2007. 

[46] K. H. Wolf, A. Lohse, M. Marschollek and R. Haux, Development of a Fall Detector 

and Classifier based on a Tri-axial Accelerometer Demo Board, IEEE Journal for Pervasive 

Computing & UbiWell workshop for Healthcare Applications, 2007. 



98 

 

[47] P. A. Bromiley, P. Courtney and N. A. Thacker, Design of A Visual System for Detecting 

Natural Events by the Use of an Independent Visual Estimate: A Human Fall Detector, TINA 

Vision Publications & Empirical Evaluation methods in Computer Vision, pp. 61-87, 2002. 

[48] B. U. Toreyin, E. B. Soyer, I. Onaran, and A. E. Cetin, Falling Person Detection Using 

Multi-sensor Signal Processing, 15th IEEE Signal Processing and Communications 

Applications Conference, SIU & EURASIP Journal on Advances in Signal Processing, Vol. 

8, 2007 & 2008. 

[49] T. Zhang, J. Wang, L. Xu and P. Liu; Using Wearable Sensor and NMF Algorithm to 

Realize Ambulatory Fall Detection, Springer-Verlag, Vol. 4222, pp. 488-491, 2006.   

[50] C. Rougier and J. Meunier; Demo: Fall Detection Using 3D Head Trajectory Extracted 

From a Single Camera Video Sequence, First International Workshop on  

Video Processing for Security (VP4S), 2006.   

[51] T. Zhang, J. Wang, P. Liu and J. Hou, Fall Detection by Embedding an Accelerometer in 

Cellphone and Using KFD Algorithm, International Journal of Computer Science and 

Network Security (IJCSNS), Vol. 6, 2006.   

[52] B. Kaluza and M. Lustrek, Fall Detection and Activity Recognition Methods for the 

Confidence Project: A Survey, 12th International Multi-conference Information Society, vol. 

A, pp. 22-25, 2009. 

[53] R. Cucchiara, A. Prati and R. Vezzani, A Multi-Camera Vision System for Fall Detection 

and Alarm Generation, Expert Systems Journal, Vol. 24, pp. 334-345, 2007. 

[54] X. Zhuang, J. Huang, G. Potamianos and M. Hasegawa-Johnson, Acoustic Fall 

Detection Using Gaussian Mixture Models and GMM Super-Vectors, IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.69-72, 2009.  

 



99 

 

[55] B. U. Toreyin, Y. Dedeoglu and A. E. Cetin, HMM Based Falling Person Detection 

Using Both Audio and Video, 14th IEEE Signal Processing and Communications Applications 

Conference, 2006 & Springer-Verlag, Vol. 3766, pp. 211-220, 2005. 

[56] M. Kangas, I. Vikman, J. Wiklander, P. Lindgren, L. Nyberg and T. Jamsa, Sensitivity 

and Specificity of Fall Detection in People Aged 40 Years and Over, Gait Posture, 

ELSEVIER 29, pp. 571-574, 2009. 

[57] C. Doukas, I. Maglogiannis, F. Tragkas, Dimitris, Liapis and G. Yovanof, Patient Fall 

Detection Using Support Vector Machines, International Federation for Information 

Processing (IFIP), SpringerLink, Vol. 247, pp. 147-156, 2007.  

[58] D. Anderson, R. H. Luke, J. M. Keller, M. Skubic, M. Rantz and M. Aud, Linguistic 

Summarization of Video for Fall Detection Using Voxel Person and Fuzzy Logic, Computer 

Vision and Image Understanding (CVIU), ELSEVIER, Vol. 113, pp. 80-89, 2009. 

[59] M. N. Nyan, F. E. H. Tay, A. W. Y. Tan and K. H. W. Seah, Distinguishing Fall 

Activities from Normal Activities by Angular Rate Characteristics and High-Speed Camera 

Characterization, Medical Engineering & Physics, ELSEVIER 28, pp. 842–849, 2006. 

[60] X. Yu, Approaches and Principles of Fall Detection for Elderly and Patient, 10th IEEE 

International Conference on e-Health Networking, Applications and Services (HealthCom), 

pp. 42-47, 2008. 

[61] N. Noury, A. Fleury, P. Rumeau, A. K. Bourke, G. Ó. Laighin, V. Rialle and J. E. 

Lundy, Fall Detection-Principles and Methods, 29th IEEE International Conference on 

Engineering in Medicine and Biology Society (EMBS), pp. 1663-1666, 2007.  

[62] C. Griffiths, C. Rooney and A. Brock, Leading Causes of Death in England and Wales – 

How Should We Group Causes? Health Statistics Quarterly 28, Office for National Statistics, 

2008. 



100 

 

[63] L Hazelhoff, J Han and P.H.N. de With, Video-Based Fall Detection in the Home Using 

Principal Component Analysis, Advanced concepts for Intelligent Vision Systems (ACIVS), 

SpringerLink, Vol. 5259, pp. 298-309, 2008 

[64] C Rougier, J Meunier, A St-Arnaud, and J Rousseau, Robust Video Surveillance for Fall 

Detection Based on Human Shape Deformation, IEEE Transactions on Circuits and Systems 

for Video Technology (CSVT), Vol. 21, pp. 611-622, 2011 

[65] A Williams, D Ganesan and Hanson, Aging in place: Fall detection and localization in a 

distributed smart camera network, 15th International Conference on Multimedia, pp. 892-

901, 2007 

[66] S. Cheung and C. Kamath, Robust techniques for background subtraction in urban 

traffic video, Journal on Applied Signal Processing, EURASIP, Vol. 05, pp. 2330-2340, 2005 

[67] V. Mahadevan and N. Vasconcelos, Background Subtraction in Highly Dynamic Scenes, 

IEEE conference on computer vision and Pattern Recognition, CVPR, pp. 1-6, 2008 

[68] Á. Bayona, J. SanMiguel and J. Martínez, Comparative evaluation of stationary 

foreground object detection algorithms based on background subtraction techniques, Sixth 

IEEE international Conference on Advanced Video and Signal based Surveillance, AVSS, 

pp. 25-30, 2009 

[69] J. Hu and T. Su, Robust Background Subtraction with Shadow and Highlight Removal 

for Indoor Surveillance, IEEE International Conference on Intelligent Robots and Systems, 

pp. 4550-4550, 2006 & Journal on Advances in Signal Processing, EURASIP, Vol. 07, 2007  

[70] C. Stauffer and W. Grimson, Adaptive background mixture models for real-time 

tracking, IEEE International Conference on computer vision and Pattern Recognition, CVPR 

1999 & IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, pp. 747-

757 2000 



101 

 

[71] I. Haritaoglu, D. Harwood and L. Davis, Real-Time Surveillance of People and Their 

Activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, pp. 809-

830, 2000 

[72] Y. Sun and B. Yuan, Hierarchical GMM to handle sharp changes in moving object 

detection, IET Electronics Letters, Vol. 14, pp. 801-802, 2004 

[73] Zoran Zivkovic, Improved Adaptive Gaussian Mixture Model for Background 

Subtraction, 17th International Conference on Pattern Recognition, ICPR, Vol. 2, pp. 28-31, 

2004 

[74] M. Heikkila and M. Pietikainen, A Texture-Based Method for Modelling the Background 

and Detecting Moving Objects, IEEE Transactions on Pattern Analysis and Machine 

Learning, Vol. 28, pp. 657-662, 2006 

[75] J. Migdal and W. Grimson, Background Subtraction Using Markov Thresholds, IEEE 

Workshop on Motion and Video Computing, WACV/MOTIONS, Vol. 2, pp. 58-65, 2005 

[76] Z. Tang and Z. Miao, Fast Background Subtraction and Shadow Elimination Using 

Improved Gaussian Mixture Model, IEEE International Workshop on Haptic Audio Visual 

Environments and their Applications, HAVE, pp. 38-41, 2007 

[77] Z. Tang and Z. Miao, Fast Background Subtraction Using Improved GMM and Graph 

Cut, Congress on Image and Signal processing, CISP, pp. 181-185, 2008 

[78] P. Suo and Y. Wang, An Improved Adaptive Background Modelling Algorithm Based on 

Gaussian Mixture Model, International Conference on Signal Processing, ICSP, pp. 1436-

1439, 2008  

[79] M. Unger, M. Asbach, and P. Hosten, ENHANCED BACKGROUND SUBTRACTION 

USING GLOBAL MOTION COMPENSATION AND MOSAICING, 15th IEEE International 

Conference on Image Processing, ICIP, pp. 2708-2711, 2008 



102 

 

[80] Y. Benezeth, P. Jodoin, B. Emile, H. Laurent and C. Rosenberger, Review and 

Evaluation of Commonly-Implemented Background Subtraction Algorithms, 19th 

International Conference on Pattern Recognition, ICPR, pp. 1-4, 2008 

[81] M. Izadi and P. Saeedi, Robust Region-Based Background Subtraction and Shadow 

Removing Using Colour and Gradient Information, 19th International Conference on Pattern 

Recognition, ICPR, pp. 1-5, 2008 

[82] K. Kim, T. Chalidabhongse, D. Harwood and L. Davis, Real-time foreground–

background segmentation using codebook model, Real Time Imagine, ELSEVIER, Vol. 11, 

pp. 172-185, 2005  

 

[83] Z. Zivkovic and F. Heijden, Efficient adaptive density estimation per image pixel for the 

task of background subtraction, Pattern Recognition Letters, ELSEVIER, Vol. 27, pp. 773-

780, 2006 

[84] J. Cheng, J. Yang, Y. Zhou and Y. Cui, Flexible background mixture models for 

foreground segmentation, Image and Vision Computing, ELSEVIER, Vol. 24, pp. 473-482, 

2006 

[85] D. Zhou and H. Zhang, Modified GMM Background Modelling and Optical Flow for 

Detection of Moving Objects, IEEE International Conference on Systems, Man and 

Cybernetics, Vol. 3, pp. 2224 – 2229, 2005 

[86] J. Cheng, J. Yang, and Y. Zhou, A Novel Adaptive Gaussian Mixture Model for 

Background Subtraction, Pattern Recognition and Image Analysis, SpringerLink and IbPRIA, 

Vol. 3522, pp. 193-216, 2005 

[87] T. Ko, S. Soatto, and D. Estrin, Background Subtraction on Distributions, 10th European 

Conference on Computer Vision & LNCS Springer-Verlag, Vol. 5304, pp. 567-580, 2008 



103 

 

[88] D. Parks and S. Fels, Evaluation of Background Subtraction Algorithms with Post-

processing, 5th IEEE International Conference on Advanced Video and Signal Based 

Surveillance, AVSS, pp. 192-199, 2008 

[89] S. Geman and D. Geman, Stochastic Relaxation, Gibbs distributions and the Bayesian 

Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 

1984 

[90] J. Ohm and H. Luke, Signal ubertragung, vol. 9, Springer-Verlag, 2005 

[91] T. Brox, A. Bruhn, N. Papenberg and J. Weickert, High Accuracy Optical Flow 

Estimation Based on a Theory for Warping, 8th European Conference on Computer Vision & 

Springer LNCS, vol. 4, pp. 25-36, 2004 

[92] S. Lim and Abbas El Gamal, Optical Flow Estimation using High Frame Rate 

Sequences, International Conference on Image Processing, Vol. 2, pp. 925-928, 2001   

[93] L. Alvarez, R Deriche, T. Papadopoulo and J. Sanchez,  Symmetrical Dense Optical 

Flow Estimation with Occlusions Detection, European Conference on Computer Vision 

(ECCV) and SpringerLink, Vol. 2350, pp. 721-725, 2002 

[94] H. Nagel and W. Enkelmann, An Investigation of Smoothness Constraint for the 

Estimation of Displacement Vector Fields from Image Sequences, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, Vol. 8, pp. 565–593, 1986 

[95] T. Brox and J. Weickert, Nonlinear Matrix Diffusion for Optic Flow Estimation, Pattern 

Recognition, SpringerLink, Vol. 2449, pp. 446-453, 2002 

[96] T. Nir, A. Bruckstein and R. Kimmel, Over-Parameterized Variational Optical Flow, 

International Journal of Computer Vision, SpringerLink, Vol. 76, pp. 205-216, 2007 

[97] S. Roth and M. Black, On the Spatial Statistics of Optical Flow, 10th IEEE International 

Conference on Computer Vision (ICCV), 2005 and International Journal of Computer Vision, 

SpringerLink, Vol. 74, pp. 33-50, 2007 



104 

 

[98] S. Roth and M. J. Black, Fields of experts: A Framework for Learning Image Priors, 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 860–867, 

2005 

[99] A. Bruhn, J. Weickert, and C. Schnorr, Lucas-Kanade meets Horn-Schunck: Combining 

local and global optic flow methods, International Journal of Computer Vision, SpringerLink, 

Vol. 61, pp. 211–231, 2005 

[100] A. Efros, A. Berg, G. Mori and J. Malik, Recognizing Action at a Distance, 9th  IEEE 

International Conference on Computer Vision (ICCV), Vol. 2, pp. 726-733, 2003 

[101] T. Brox, B. Rosenhahn, D. Cremers and H. Seidel, High Accuracy Optical Flow Serves 

3-D Pose Tracking: Exploiting Contour and Flow Based Constraints, European Conference 

on Computer Vision (ECCV) and LNCS, Springer-Verlag, Vol. 3952, pp. 98-111, 2006 

[102] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger and C. Schnorr, Real-Time Optic 

Flow Computation with Variational Methods, IEEE Transactions on Image Processing, Vol. 

14, pp. 608-615, 2005 

[103] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, Bilateral Filtering-based 

Optical Flow Estimation with Occlusion Detection, European Conference on Computer 

Vision and LNCS, SpringerLink, Vol. 3951, pp. 211-224, 2006 

[104] B. McCane, K. Novins, D. Crannitch and B. Galvin, On Benchmarking Optical Flow, 

Computer Vision and Image Understanding, ELSEVIER, Vol. 84, pp. 126-143, 2001 

[105] D. Mason, B. McCane, and K. Novins, Generating motion fields for the evaluation of 

optical flow algorithms on complex scenes, Computer Graphics International (CGI), pp. 65–

69, 1999  

[106] N. Dalal, B. Triggs, and C. Schmid, Human Detection Using Oriented Histograms of 

Flow and Appearance, European Conference on Computer Vision and LNCS, SprinherLink, 

Vol. 3952, pp. 428-441, 2006 



105 

 

[107] N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 

Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 

886–893, 2005 

[108] A. Mitiche and A. Mansouri, On Convergence of the Horn and Schunck Optical-Flow 

Estimation Method, IEEE Transactions on Image Processing, Vol. 13, pp. 848-852, 2004 

[109] A. Wedel, T. Pock, C. Zach, H. Bischof and D. Cremers, An Improved Algorithm for 

TV-L
1
 Optical Flow, Visual Motion Analysis, LNCS, Springer-Verlag, Vol. 5064, pp. 23-45, 

2009 

[110] C. Zach, T. Pock, and H. Bischof, A Duality Based Approach for Real time TV-L
1
 

Optical Flow, Proceedings of the 29th DAGM conference on Pattern recognition, Springer-

Verlag, LNCS, vol. 4713, pp. 214-223, 2007 

[111] L. Rudin 1, S. Osher and E. Fatemi, Nonlinear total variation based noise removal 

algorithms, Physica D 60: Nonlinear Phenomena, ELSEVIER, Vol. 60, pp. 259-268, 1992 

[112] T. Brox, C. Bregler and J. Malik, Large Displacement Optical Flow, IEEE 

International Conference on Computer Vision and Pattern Recognition (CVPR), pp.41-48, 

2009  

[113] N. Ikizler, R. Cinbis and P. Duygulu, Human Action Recognition with Line and Flow 

Histograms, 19th IEEE International Conference on Pattern Recognition (ICPR), pp. 1-4, 

2008 

[114] D. Sun, S. Roth, J. Lewis, and M. Black, Learning Optical Flow, European Conference 

on Computer Vision (ECCV) and LNCS, Springer-Verlag, Vol. 5304, pp. 83-97, 2008  

[115] S. Roth and M. Black, Steerable Random Fields, 11th IEEE International Conference on 

Computer Vision (ICCV), pp. 1-8, 2007 

[116] M. Wainwright and E. Simoncelli, Scale Mixtures of Gaussians and the Statistics of 

Natural Images, Neural Information Processing Systems (NIPS), pp. 855–861, 1999 



106 

 

[117] S. Vedula, S. Baker, P. Rander, R. Collins and T. Kanade, Three Dimensional Scene 

Flow, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, pp. 475-

480, 2005 

[118] S. Seitz and C. Dyer, Photorealistic Scene Reconstruction by Voxel Coloring, 

International Journal of Computer Vision, SpringerLink, vol. 35, pp. 151-173, 1999 

 

[119] T. Brox and J. Malik, Large Displacement Optical Flow: Descriptor Matching in 

Variational Motion Estimation, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 33, pp. 500-513, 2011 

[120] R. Chaudhry, A. Ravichandran, G. Hager and R. Vidal, Histograms of Oriented Optical 

Flow and Binet-Cauchy Kernels on Nonlinear Dynamical Systems for the Recognition of 

Human Actions, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 

1-8, 2009 

[121] E. Andrade, S. Blunsden and R. Fisher, Hidden Markov Models for Optical Flow 

Analysis in Crowds, 18th International Conference on Pattern Recognition (ICPR), Vol. 1, 

pp. 460-463, 2006 

[122] M. Black and P. Anandan, A framework for the Robust Estimation of Optical Flow, 4th 

International Conference on Computer Vision, pp. 231–236, 1993 

[123] J. Díaz, E. Ros, F. Pelayo, E. Ortigosa and S. Mota, FPGA Based Real Time Optical 

Flow System, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, pp. 

274-279, 2006 

[124] B. Horn and B. Schunck, Determining Optical Flow, Artificial Intelligence, Vol. 17, 

pp. 185–203,1981 



107 

 

[125] B. Lucas and T. Kanade, An Iterative Image Registration Technique with an 

Application to Stereo Vision, 7th  International Joint Conference on Artificial Intelligence, pp. 

674–679, 1981 

[126] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black and R. Szeliski, A Database and 

Evaluation Methodology for Optical Flow, International Journal of Computer Vision, 

SpringerLink, Vol. 92, pp. 1-31, 2007 & 2011 

[127] Y. Benezeth, P. Jodoin, B. Emile, H. Laurent and C. Rosenberger, Review and 

Evaluation of Commonly Implemented Background Subtraction Algorithms, 19th International 

Conference on Pattern Recognition (ICPR), pp. 1-4, 2008 

[128] Seth Benton, Background Subtraction Implementations, 

http://www.sethbenton.com/background_subtraction.html  

[129] N. Howe and A. Deschamps, Better Foreground Segmentation through Graph Cuts, 

ARVIX (Cornell University Library), 2004 

[130] D. Sun, S. Roth, and M. Black, Secrets of Optical Flow Estimation and their 

Principles, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 

2432-2439, 2010  

[131] A. Wedel, T. Pock, C. Zach, D. Cremers, and H. Bischof, An improved algorithm for 

TV-L1 optical flow, Dagstuhl Motion Workshop, 2008 

[132] L. Rudin, S. Osher, and E. Fatemi, Nonlinear Total Variation based Noise Removal 

Algorithms, Phys. D, Vol. 60(1-4), pp. 259–268, 1992 

[133] M. Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and 

Piecewise-Smooth Flow Fields, Computer Vision and Image Understanding (CVIU), Vol. 63, 

pp. 75–104, 1996 

[134] B. Horn, Robot Vision, MIT Press, 1986 



108 

 

[135] A. Blake and A. Zisserman, Visual Reconstruction, The MIT Press, Cambridge, 

Massachusetts, 1987 

[136] A. Buades, B. Coll, and J. Morel, A Non-Local Algorithm for Image De-noising, IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 2, pp. 60-65, 2005 

[137] G. Gilboa and S. Osher, Nonlocal Operators with Applications to Image Processing, 

Multiscale Model Simul., Vol. 7, pp. 1005–1028, 2008 

[138] P. Sand and S. Teller, Particle Video: Long-Range Motion Estimation using Point 

Trajectories, International Journal of Computer Vision (IJCV), Springer-Link, Vol. 80, pp. 

72–91, 2008 

[139] K. Yoon and I. Kweon, Adaptive Support-Weight Approach for Correspondence 

Search, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol.  28, 

pp. 650–656, 2006 

[140] Y. Li and S. Osher, A New Median Formula with Applications to PDE based De-

Noising, Commun. Math. Sci., Vol. 7, pp. 741–753, 2009 

[141] X. Ren, Local Grouping for Optical Flow, IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2008 

[142] F. Healey, S. Scobie, D. Oliver, A. Pryce, R Thomson, and B. Glampson, Falls in 

English and Welsh hospitals: a national observational study based on retrospective analysis 

of 12 months of patient safety incident reports, Quality and Safety in Health Care, vol. 17, pp. 

424-430, 2007 

[143] Simple Strategies can Reduce Falls and Liability: Women and Elderly Fall more 

Frequently, Rehab Continuum Report, 2004 

[144] Oldies, Depressed People more likely to take a Tumble, Thaindian News, 18 June 2008 

[145] L. Kowalczyk, Spending on Health Care rises 7 Percent in Hospitals, Drug costs 

contribute to faster acceleration 12, The Boston Globe, 8 Jan. 2002 



109 

 

[146] D.L. Gray-Miceli, A Nursing Guide to the Prevention and Management of Falls in 

Geriatric Patients in Long-term Care Settings, Medscape Today, 19 May 2005 

[147] Patient Alarm & Fall down Safety Alert, [Survival Store], [cited 2009 Jan 21], 

Available at: HTTP: http://www.survivalstore.com/r6s15lbb4.html 

[148] E. Auvinet, C. Rougier, J.Meunier, A. St-Arnaud and J. Rousseau, Multiple cameras 

fall dataset, Technical Report 1350, Montreal University, 2010 

[149] A. Klaser, M. Marszałek, and C. Schmid, A Spatio-Temporal Descriptor based on 3D 

Gradients, British Machine Vision Conference (BMCV), 2008 

[150] David G. Lowe, Distinctive Image Features from Scale-Invariant key Points, 

International Journal of Computer Vision (IJCV), Vol. 60, pp. 91-110, 2004 

[151] http://lear.inrialpes.fr/software 

[152] H. Wang, M. Ullah, A. Klaser, I. Laptev and C. Schmid, Evaluation of Local Spatio-

Temporal Features for Action Recognition, British Machine Vision Conference (BMCV), 

2009 

[153] Ming-Kuei Hu, Visual Pattern Recognition by Moment Invariants, IRE Transaction on 

Information Theory, Vol. 8, pp. 179-187, 1962 

[154] I. Laptev, M. Marszalek, C. Schmid and B. Rozenfeld, Learning Realistic Human 

Actions from Movies, IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), pp. 1-8, 2008 

[155] C. Schuldt, I. Laptev, and B. Caputo, Recognizing Human Actions: A local SVM 

Approach, International Conference on Pattern Recognition (ICPR), 2004 

[156] S. Siegel and N. Castellan, Nonparametric Statistics for the Behavioural Sciences, 2nd 

Ed., McGraw-Hill, 1988 

 

 


