The
University
Of
Sheffield.

Role of 5-Hydroxytryptamine (5-HT) in Urinary Bladder

Signalling and Colon-Bladder Cross-Organ Sensitization

By

Nipaporn Konthapakdee

A thesis submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy
The University of Sheffield
Faculty of Science

Department of Biomedical Science

April 2017



TABLE OF CONTENTS

PUBLICATIONS. ... ettt e 4
ACKNOWIEAEEMENTS. ...t 5
SUMMATY OF thESIS. . ettt ettt e e e e aaeaaanas 7
KN ) o) (oA T 15 Te) 1 R PP 9

Chapter 1: General introduction

1.1 Anatomy of the urinary bladder and cellular of the bladder wall......................... 10
1.2 Structure and function of the bladder wall..................o 12
1.3 Innervation of the urinary bladder................oooiii i 19
1.4 Micturition TefleX. .. ..o.ouuiniie i 28
1.5 5-HT receptors and fUnCtion............ooeiiiiiiiiiiitii i e 31
1.6 Role of 5-HT in the bowel and urinary bladder..................coooiiiiiiiiiiiinnn, 38
1.7 Pelvic cross-organ SensitiZation .............vuieuiirirtiiteeteiteataateateaeateaaeaneaneann 43
1.8 Bladder pathology.......c.ouuieii i 46
1.9 General aims and ODJECtIVES. ... ..ttt 51

Chapter 2: Materials and methods

2.1 ANIMALS. .o e 52
2.2 In vitro extracellular nerve recording...........oooviiiiiiiiiiii i, 53
2.3 Isolation and culture of primary urothelial cells.................cooiviiiiiiiiiiiiinn, 61
2.4 CalCium IMAGINE. ... e ettt et ettt et et et e ae e e 61
2.5 Investigation Of Zene EXPreSSION. .. ...ttt ittt et et et ettt ee et eeeeeneenenns 62
2.6 IMMUNONISTOCHEIMISIIY . ... ut ettt e e e e 67
2.7 Pharmacological agents and solutions..............coeviiiiiiiiiiiiiiiiii e 68

Chapter 3: Expression of 5-HT receptors and the functional roles of 5-HT in mouse

urothelial cells

3T INEOAUCTION. . e e ettt e 70
3.2 Experimental protocol and analysis.............coeiiviiiiiiiiiiiiiiii 73
3.3 mRNA expression of 5-HT receptors in mouse urothelium........................ooeeee 77
3.4 Effect of 5-HT and granisetron on mouse urothelial cells..........................o.... 79
3.5 DHSCUSSION. ¢ ettt et ettt ettt e e e et e e et 84



Chapter 4: Effects of 5-HT on baseline and mechanosensitive bladder afferent firing

4.1 INtrOdUCTION. . ...ttt ettt et e e e e e 88
4.2 Experimental protocol and analysis............coouiiriiiiiiiiiiiiiiiiiieieieaeaaen 93
4.3 Effect of 5-HT, 2-Me-5-HT, granisetron, and 5-MT on baseline afferent firing...... 94

4.4 Effect of 5-HT, 2-Me-5-HT, granisetron, and 5-MT on bladder mechanosensitivity 115
4.5 Effect of L-NAME on 5-HT attenuated mechanosensitive firing....................... 121

46 IS CUSSION. ..ttt ettt ettt ettt e et et e e et e et e e e 127

Chapter 5: Effects of 5-HT on bladder afferent firing in colonic TNBS-treated mice
ST INtrOQUCHION. ... e et e 136
5.2 Experimental protocol and analysis.............cooviiiiiiiiiiiiiiiii e 141
5.3 Effect of 5-HT on bladder mechanosensitive firing and bladder compliance in
TNBS-reated MICE. ... vttt e 145
5.4 mRNA expression of SERT and 5-HT producing enzymes in urothelial cells of
healthy control and CVH MICe........ooviiiiiitii i 154

5.0 IS CUSSION . .ottt ettt et ettt e et 155

Chapter 6: Is endogenous 5-HT present in the mouse urinary bladder?

6.1 INtrodUCHION. ...\t 161
6.2 Experimental protocol and analysis.............coooiiiiiiiiiiiiiiiiiiiiii e 165
6.3 Effect of citalopram on bladder afferent firing....................coooiiiiiiiiin., 168

6.4 mRNA expression of 5-HT producing enzymes and 5-HT-reuptake transporter (SERT)

in mouse urothelial cells...........oiiiiiiiiii 172
6.5 Immunohistochemistry to identify SERT and 5-HT in the urinary bladder............ 173
OO D T ) 16§ F 177
Chapter 7: General discussion, limitation and future study................................... 183
L 10 1 eY 4 21 o) ) R 194



PUBLICATIONS

Publications arising from this thesis:
Konthapakdee, N., Daly, D., Chapple, C. and Grundy, D. (2016) ‘Role of 5-hydroxytryptamine

in urinary bladder afferent signaling’, Neurourology and Urodynamics, 35, pp. S66—67.

Konthapakdee, N. (2015) ‘Pain in the Butt: The Bowel, The Bladder and Their Relationship’,

Getty Science, 5, pp. 10-11.



ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof David Grundy for giving me the
opportunity to do a PhD degree and expand my research field into bladder physiology and learn
electrophysiology. I will be forever thankful for his precious support and encouragement along

the course of this study. His guidance has allowed me to grow as a research scientist.

I greatly appreciate and would like to say very big thank you to Dr. Donna Daly. Her guidance
and discussion during my PhD research was priceless. Her enormous support not only in the
research but also in life will be always on my mind. Much opportunity and achievement along

my PhD degree arose from her encouragement.

My sincere thanks also goes to my advisors; Dr. Mohammed Nassar and Dr. Louise Robson,

and Dr. Elizabeth Seward. Thank you all for your kind support and useful guidance.

I gratefully acknowledge the Development and Promotion of Science and Technology Talent
Project (DPST), Thailand for the full funding. T could not have all the great chances to broaden
my view and experience without the kind support. I would like to also acknowledge the funding
support from Pfizer who provided me a worthwhile opportunity to do a research fellowship at

SAHMRI, Adelaide, Australia.

My deep appreciation goes out to Prof Stuart Brierley who gave me an opportunity to conduct
TNBS experiments at SAHMRI. I would like to extend my gratitude to Dr. Luke Grundy and all
colleagues in the Visceral Pain Group at SAHMRI who helped and supported me during 2
months. Special thanks to Luke, I do appreciate his kind help for everything during my time in

Adelaide.

I am very grateful to all my colleagues in David Grundy’s research group for your help and
support along the way. Thank you Mrs. Teresa Clarke, Dr. Wen Jiang, Dr. Yang Yu, Dr. Linda
Nocchi, Dr. Natasja Barki, and Dr. Christopher Keating. Special thanks to the other two
‘Grundy’s angels’, Miss Asma Almuhammadi and Miss Friedrike Uhlig for sharing good times

and challenging moments and being a great team to work with.



My special thanks also goes out to the support I received from all staff and colleagues in
department of Biomedical Science, especially D and E-floors Florey building; Miss Zainab
Mohammed, Miss Marta Simoe, Miss Judit Meszaros, Dr. Rania Madgami, Dr. Claudia Bauer,
Dr. Ciara Doran, Dr. Selvambigai Manivannan, Dr. Elanchezhian Rajan, Mrs. Deepa Bliss and
Mr. Will Collier. Thank you very much for your help, discussion, and invaluable support along

my study.

Many thanks to all of my Thai friends in Sheffield who supported me and fulfilled my life in
abroad. A big thank you to Dr. Oratai Weeranantanapan, Dr. Pornpen Panomwan, and Dr.
Supatthra Narawattana for your generosity and support. Special thanks to my housemates, Miss
Tanagorn Kwamman, Mr.Teera Watcharamongkol, Mr.Somsawat Rattanasoon, Miss Nareumon
Rueangkam for supporting and sharing many precious moments, especially great dinners after

work.

I am truly indebted and thankful to all staff members in the department of Physiology, Faculty
of Science, Prince of Songkla University, Thailand for being a good team and supporting me

during my study leave.

My last and the most important people, I would like to deeply express my gratitude to my
parents, grandmother, and younger brother for their love, support, and encouragement along my
PhD journey. A heartfelt and great thank you to my mum who always be there for me. Her love,
care, and understanding are the best thing I have and were a real driver to get my PhD
accomplished. Big thank you my best friend, Dr. Tonghathai Phairatana who always listens and
is there for me. Finally, thank you to myself for keeping going, staying positive and taking good

care of myself until I finished this PhD.



SUMMARY OF THESIS

This thesis investigates the role of 5-HT in bladder sensory (afferent) signalling in healthy
animals and in a mouse model of colon-bladder cross-sensitization. We primarily address the
effect of 5-HT and involvement of different 5-HT receptor subtypes on afferent nerve activity
using in vitro extracellular nerve recordings. 5-HT is known to be a key neurotransmitter that
regulates many essential roles in the body including the bowel but less is known about 5-HT’s
role in the urinary bladder. Moreover, research has focused on the role of 5-HT on bladder
efferent nerves and muscle contraction, while the role of 5-HT on bladder afferent nerves is still

an enigma.

We have investigated 5S-HT receptor expression in the urothelium and determined the effect of
5-HT on urothelial signaling and its contribution to bladder afferent activity, examining both
mechanosensitive and spontaneous nerve firing. In addition, the role of 5-HT on bladder
afferent activity was investigated in a TNBS-induced colonic inflammation model of colon-
bladder cross-sensitization. Finally we examined whether the urinary bladder has an

endogenous source of 5-HT.

We have made a number of novel findings: (i) various 5-HT receptors transcripts were
expressed in mouse urothelium with a notable exception of 5-HT3 receptors. Cultured urothelial
cells examined using calcium imaging responsed directly to 5-HT demonstrating that these 5-
HT receptors are functional; (i) 5-HT exerted excitatory effect on spontaneous afferent firing
but attenuated mechanosensitive responses to distension, these actions were mainly mediated
through 5-HT3 receptors, and were independent from muscle contraction; (iii) the effects of 5-
HT on spontaneous and mechanosensitive firing were attenuated in the post-inflammatory state
of colonic TNBS-treated mice. There was an accompanying downregulation in SERT mRNA
expression in the urothelium; (iv) citalopram, a selective 5-HT reuptake inhibitor, attenuated
mechanosensitive afferent discharge which was reversed by the 5-HT3 antagonist, granisetron.
mRNA expression of 5-HT producing enzymes, TPH1 and TPH2, and SERT were detected in
the urothelium. 5-HT positive cells were expressed in mouse urethra but not in the bladder

dome.



We conclude that 5-HT has the potential to modulate bladder afferent signaling by direct actions
on the afferent nerves and indirect effects via the urothelium with nitric oxide playing a
modulatory influence. The urothelium contains the necessary molecular machinery for
endogenous 5-HT production but the extent to which this 5-HT contributes to bladder signaling
in normal and diseased states requires further investigation and may represent a novel

therapeutic target to treat bladder symptoms.



ABBREVIATIONS

2-Me-5-HT  2-methyl-5-hydroxytryptamine QAB  overactive bladder syndrome

5-HIAA 5-hydroxyindoleacetic acid NPY neuropeptide Y

5-HT 5-hydroxytryptamine OCT optimal cutting temperature
5-HTP 5-hydroxy-L-tryptophan P2X purinergic receptor 2X
5-MT 5-methoxytryptamine P2Y purinergic receptor 2Y

ACh acetylcholine PAG periaqueductal gray

CGRP calcitonin gene related peptide = PCA principal component analysis
CNS central nervous system PKA protein kinase A

DRG dorsal root ganglia PLC phospholipase C

EC enterochromaftin cell PYY peptide Y

FITC fluorescein isothiocyanate ROS reactive oxygen species

GAPDH glyceraldehyde 3-phosphate ROCK Rho kinase

dehydrogenase RTX resiniferatoxin
GPCRs G protein-coupled receptors SERT serotonin reuptake transporter
HT high threshold SP substance P
IBD inflammatory bowel disease TNBS  2,4,6-trinitrobenzene sulphonic acid
IBS irritable bowel syndrome TNF tumor necrosis factor
IC interstitial cystitis TPH tryptophan hydroxylase
ICC interstitial cells of Cajal TRP transient receptor potential
IL interleukin VIP vasoactive intestinal polypeptide
1P, inositol triphosphate

L-NAME L-NG-Nitroarginine methyl ester

LT low threshold

MLCK myosin light chain kinase
MLCP myosin light chain phosphatase
NK neurokinin

NMDA N-methyl-D-aspartate

NO nitric oxide



Chapter 1

CHAPTER

GENERAL INTRODUCTION

1.1 ANATOMY OF THE URINARY BLADDER AND CELLULAR

COMPOSITION OF THE BLADDER WALL

The lower urinary tract is composed of the urinary bladder, the ureters, and the urethra. The
urinary bladder is a muscular hollow organ which has a major role to periodically store and
empty the urine. The human bladder has maximum capacity of 1000 mL but an average

capacity is 300-500 mL.

The bladder morphology consists of three main regions as follows;

- The dome primarily consists of the smooth muscle which is unique in both structural and
function from the smooth muscle of the trigone and the urethra.

- The trigone is a triangular shape tissue that is from the entry points of the ureters and the base,
connecting urethra. The trigone has the highest density of afferent nerve innervation.

- The bladder neck is the lower part of the bladder that connects the bladder to the urethra.

A schematic diagram of bladder structure is shown in figure 1.1.
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Figure 1.1 Schematic diagram representing the structure of the urinary bladder

(Mckinley, 2009).

The bladder wall comprises various kinds of cells organized into complex structures related to

their cellular function. The structure of the bladder wall is divided into;

- Urothelial layer is the most inner layer consisting of transitional epithelial cells called
‘urothelial cells’ are the first line barrier of the urinary bladder. In addition, glycosaminoglycan
(GAG) covers the apical site of the urothelium, which is beneficial for barrier function of the

urothelium (see review by Birder and Andersson 2013).

- Suburothelial layer is beneath the urothelial layer and is separated from the urothelium by the
basement membrane. The lamina propria has a number of cell types including interstitial cells of
Cajal (ICC), blood vessels, fibroblasts, muscularis mucosae and nerve terminals. These play a
major role in signal integration from the urothelium and the muscle layer (see review by

Andersson and McCloskey 2013).

- Muscularis layer consists of three layers of smooth muscle called ‘detrusor muscle’. The
detrusor smooth muscle contains inner and outer longitudinal muscles with the circular muscles
in the middle surrounding by connective tissue i.e., collagen (see review by Andersson and

Arner 2004).
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- Adventitia and serosa layers cover the outer layer of the bladder. This layer mainly contains

loose connective tissue (McKinley, 2009).

A schematic diagram of the cellular components of the bladder wall is depicted in figure 1.2

Glycosaminoglycan layer

Urothelium - 'f
Basal membrane )
Lamina propria _
Muscularis mucosae -
Detrusor smooth muscle -
Adventitia -
Serosa

Figure 1.2 Structure of the bladder wall (modified from Merrill ez al. 2016).

1.2 STRUCTURE AND FUNCTION OF THE BLADDER WALL

1.2.1) UROTHELIUM

Urothelial cells are transitional epithelial cells located between the bladder lumen and the basal
membrane, which are found in the renal pelvis, ureters, bladder body, upper part of urethra, and
glandular structure of prostate glands (Khanderwal et al. 2009). Urothelial cells consist of at
least 3 types; (i) umbrella cells (ii) intermediate cells and (iii) basal cells. Umbrella cells are the
most superficial layer of cells; they have a hexagonal shape with an average cell diameter

between 25-250 pum (Apocada, 2004; Khanderwal et al. 2009). They are connected via
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superficial proteins; uroplakins, assembled together with tight junction proteins; claudins and
occludins. Intermediate cells are found between the umbrella cell and the basal cell layers
(Hicks et al. 1974; Liang et al. 2001). The thickness of the intermediate layers varies between
species. In humans, it has been reported to range from 15-50 um (Jost et al. 1989). Some of the
intermediate cells and umbrella cells project cytoplasmic processes to the basal cells layer that
attach to the basal membrane, which help to maintain flexibility and bladder structure when the

bladder is dilated (Battifora, 1964; Jost et al. 1989; Apodaca, 2004) (Figure 1.3).

Umbrella cells

Intermediate cells

Basal cells

Figure 1.3 Schematic diagram depicting umbrella cells, intermediate cells and basal cells

layers in the urothelium (Birder and Anderson 2013).

Barrier function of the urothelium

Multiple layers of urothelial cells strengthen the barrier function to protect the rest of the
bladder from urine and luminal pathogens. In addition, there is a glycosaminoglycan (GAG)
layer that covers the surface of the urothelium, this is not only beneficial as a physical layer, but
also acts as a defense mechanism against bacteria or toxic substances in the urine (Grist and
Chakraborty 1994). The GAG layer is composed of several classes of mucopolysaccharides
(i.e., heparin sulfate, hyaluronic acid, and chondroitin sulfate) which have hydrorepellent
properties. Alterations in the GAG layer exposes the urothelium to toxic agents in the urine and
may contribute to bladder inflammation (Bassi ef al. 2011; Cervigni 2015). In addition,
uroplakin, superficial proteins with four transmembrane domains on the urothelial surface, plays
an essential role in permeability of the urothelium to control access of proteins, ionic, and non-

ionic substances (Acharya et al. 2004; Apocada, 2004).
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Sensory function of the urothelium

Many reports have purported a sensory role of urothelial cells to detect various stimuli i.e.,
mechanical, chemical, and noxious stimuli via an array of “sensor molecules” (i.e., channels and
receptors) expressed on the cells including, purinergic receptors (P2X and P2Y) (Birder et al.
2004; Burnstock 2001), muscarinic and nicotinic receptors (Beckel and Birder 2012; Beckel et
al. 2006), adrenergic receptors (Birder et al. 2003; Kullmann et al. 2011), TRP channels (Birder
et al. 2007; Birder ef al. 2002; Birder et al. 2001), TrkA (Murray et al. 2004), and prostaglandin

receptors (Wang et al. 2008) as summarised in table 1.1.

In response to mechanical and chemical stimulation, urothelial cells also have ability to release
mediators i.e., ATP, ACh, substance P, prostaglandin, and NO (Birder et al. 1998; Birder and
Andersson 2013; Birder ef al. 2003; Ferguson et al. 1997). This chemical message is possibly
sent via an autocrine and/or paracrine manners to the nearby cells (e.g. nerve terminals, blood
vessel, and ICC) in order to modulate bladder functions (Apodaca 2004; de Groat 2004; Birder

and Andersson 2013).

Birder and co-workers have shown that activation of (-adrenergic receptors mediated NO
release from urothelial cells via an increase of cAMP and intracellular Ca”" (Birder et al. 2002).
In addition, activation of urothelial cells with capsaicin or resiniferatoxin induced an increase in
intracellular Ca’" levels and also enhanced release of ATP and NO (Birder ef al. 2002; Vyklicky
et al. 2008; Yamada et al. 2009; deVries and Blumberg 1989), which may further act on nearby

cells to modulate bladder function.
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Table 1.1. Properties of ionic channels/receptors expressed within the urothelium (Birder

and Andersson 2013).
Channel/Receptor Activator(s)
TRPV1 Heat (>43°C), low pH, anandamide, vanilloids
TRPV2 Noxious heat (>53°C), mechanical
Moderate heat (>24°C), cell swelling, 40-PDD, 5'6'-
TRPV4 EET
TRPMS Cold (8-28°C), menthol, icilin
TRPA1 Mechanical, cinnamaldehyde, isothiocyanate
P2X (1-7) ATP
P2Y (P2Y2/P2Y4) Nucleotides (ATP; UTP; ADP)
P1 Adenosine
Endogenous catecholamines (norepinephrine;
Adrenergic alpha (-1, -2) epinephrine)
Endogenous catecholamines (noreadrenaline;
Adrenergic beta (-1, -2, -3) adrenaline), isoproterenol

Cholinergic muscarinic (M1—

MS5) acetylcholine

Cholinergic nicotinic

(a3, a5, a7, a3, 34) acetylcholine, nicotine, choline, cystisine

Estradiol, estrogen derivatives, selective estrogen-

Estrogen receptor (alpha; beta) | receptor modulators (SERM)

Degenerin/ENaC (DEG/ENaC)

family (ENaC; ASIC) Low pH, serum proteases, amiloride, mechanical?

Neurotrophins (trkA; p75; trkB) | NGF, BDNF

Bradykinin (B1; B2) Bradykinin
Tachykinin (NK1; NK2) Substance P, neurokinin A
Piezol" Mechanical

*(Coste et al. 2011)
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1.2.2) INTERSTITIAL CELLS OF CAJAL IN THE URINARY BLADDER

Interstitial cells of Cajal (ICC) in the bladder have been reported in the lower urinary tract in
various species i.e., guinea pigs, mouse, rabbits, and human (Davidson and McCloskey 2005;
Pezzone et al. 2003; Lyons et al. 2007; Sergeant et al. 2000; Hashitani and Lang 2010;
Rasmussen et al. 2009). Currently, ICC in the bladder have been found to form a network in 2
main areas; in the lamina propria and in the detrusor muscle layers. ICC in the lamina propria
(ICC-LP) and inter-muscle bundle ICC (ICC-IB) are stellate shaped, while intramuscular ICC

(ICC-IM) are branched and have an elongated morphology.

ICC are also located in the gastrointestinal tract and have been widely studied. They exert a key
role as a pacemaker to generate spontaneous electrical slow wave to the nearby smooth muscle
cells and initiate spontaneous muscle contraction. ICC could mediate both excitatory (via
cholinergic) and inhibitory (motor) motor input to the smooth muscle (Beckett et al. 2002;
Burns et al. 1996; Ward et al. 2000). In addition, ICC act as a mechanosensor and transducer to
detect mechanical and chemical stimuli and further modulate smooth muscle contraction (Won
et al. 2005; Ward et al. 2000). Moreover, ICC have been suggested to play a role in vagal

afferent signalling (Fox et al. 2001).

Unlike the gastrointestinal tract, the physiological roles of bladder ICC are still unclear.
However, previous studies using immunohistology clearly demonstrated that bladder ICC
expressed marker proteins vimentin, c-Kit (or CD117) similar to the gut ICC (Davidson and
McCloskey 2005). Previous investigations by immunofluorescence and electron microscopy
showed that ICC-LP and ICC-IM are in proximity to the nerve terminals (Johnston et al. 2010;
Davidson and McCloskey 2005; Johnston et al. 2010). The distance between ICC and nerves in
the bladder wall is within 20 nm (Johnston ef al. 2012), close enough to exert neurotransmitter
interaction (Burnstock, 1977; Burnstock, 1986). Moreover, previous studies have reported
bladder ICC also respond to ATP and carbachol by forming Ca’’ transients, indicating that
receptors expressed on the cells mediate functional responses (McCloskey and Gurney 2002;
Wu et al. 2004). Interestingly, Gray and co-workers (2013) studied bladder mucosal strip
stimulated with electrical field stimulation (EFS) and monitored intracellular Ca”" change using

calcium imaging in guinea pigs. They found that ICC-LP, ICC-IM and perivascular ICC
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responded to EFS by forming Ca’" transients, indicating that bladder ICC are functionally

innervated by nerves (Gray et al. 2013).

ICC connect to other nearby cells e.g. nerve terminals and smooth muscle cells via gap
junctions. These gap junctions provide a route for intercellular communication allowing low
molecular weight molecules to diffuse to neighbouring cells. Nemeth et al. (2000) demonstrated
gap junction proteins Connexin 43 in ICC colocallized with c¢-Kit in colon (Nemeth ez al. 2000).
In addition, low-resistance gap junction proteins provide electrical connection via changing the

intracellular Ca’* status in order to modulate the nearby smooth cell excitability (Drumm, 2014).

Recently, a new type of interstitial cells has been reported in bladder and gut. This group of ICC
expressed platelets derived growth receptor alpha (PDGFR) but not c¢-Kit (Monaghan et al
2012; Koh et al. 2012). PDGFRa+ cells are located in close proximity to motor neurons and
express neuronal receptors, suggesting that they may exert neuromodulatory function similar to
ICC (Monaghan et al. 2012; Koh et al. 2012; Lee et al. 2014). A schematic diagram depicted
ICC in the detrusor muscle is shown in figure 1.4. However, the exact physiological role of

these cells is still unclear.

Muscarinic —4&
receptor

PDGFRa* cell Smooth muscle cell
=< IccLe == Excitatory motor neuron (ACh)
e Gap junction ~ B=====a |nhibitory motor neuron (nitric oxide/ATP)

Figure 1.4 A schematic diagram demonstrated interaction of ICC, detrusor smooth muscle

cells, and motor neurons in the detrusor smooth muscle layer (Drumm ez al. 2014).
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1.2.3) DETRUSOR SMOOTH MUSCLES

Detrusor smooth muscles of the bladder have typical characteristics with long spindle shaped
cells and central nuclei. The muscle cells contain an intermediate filament protein vimentin that
is expressed in mesenchymal cells and surrounded by collagens (Drake et al. 2006; Smet et al.
1997). Detrusor smooth muscle cells express specific receptors in order to respond to particular
transmitters. The detrusor muscles are mainly controlled by neurotransmitters /mediators from
innervated autonomic nerves and local non-neuronal sources i.e., urothelial cells following
mechanical or chemical stimulation. For instance, a previous study using two bladder strips with
or without urothelium (denuded) indicated that urothelium produces inhibitory factor(s)
(unidentified) to inhibit detrusor contraction-induced by carbachol in pig bladder (Hawthorn et

al. 2000).

ACh via stimulation of muscarinic receptors (M2 and M3) plays a critical role to generate
detrusor contraction. In contrast, detrusor relaxation is mediated through noradrenalin activated
B-adrenergic receptors. A schematic diagram depicting an underlying mechanism of muscarinic
and B-adrenergic receptors induced detrusor muscle contraction and relaxation is shown in

figure 1.6.

The mechanism that underlies muscarinic receptor stimulation involves an elevation of
intracellular Ca’  concentration [C212+]i from the sarcoplasmic reticulum (SR) and Ca”' influx
from L-type Ca’" channels. Intracellular [Caﬂ]i is enhanced via Ca’-induced Ca’" release from
the SR. However, detrusor contraction and relaxation is mainly dependent on the
phosphorylation state of myosin light chain (MLC), which is potentiated by myosin light chain
kinase (MLCK) but reversed by myosin light chain phosphatase (MLCP). Binding of
intracellular Ca’" to calmodulin also increases MLCK activity and further enhances
phosphorylation of MLC to generate muscle contraction. Another mechanism to enhance
muscle contraction is mediated via an inhibition of MLCP activity by the protein kinase; Rho

kinase (ROCK) and protein kinase C (PKC) (Figure 1.5).

B-adrenergic receptor activation promotes detrusor relaxation via two main mechanisms; (i)

inactivation of voltage Ca”' channels mediated by hyperpolarization through an activation of K
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channels (Robertson et al. 1993; Xin et al. 2014) and (ii) reduction of contractile protein
sensitivity or inhibition of Ca’" sensitization that further modulates activity of MLCK and
MLCP (Conti and Adelstein 1981; Rembold 1992). Hayashi et al. (2016) investigated the
mechanism of cAMP-induced muscle relaxation using specific agonists and antagonists of
ROCK and PKC. They showed that ROCK but not PKC was inhibited by Ca’" sensitization
following carbachol application (Hayashi ez al. 2016).

Muscarinic receptor Ca** channel & adrenergic receptor

N

\ cAMP

ca2+

|_

Figure 1.5 A schematic diagram showing underlying cellular mechanisms of muscarinic

and f3-adrenergic activation in detrusor smooth muscle (modified from Michel 2015).

1.3 NEURAL INNERVATION OF THE URINARY BLADDER

The micturition reflex of the bladder requires coordinated neuronal control of 2 functional units;
a reservoir (the bladder) and an outlet (bladder neck, smooth and striated sphincter muscle of
the urethra) (Fowler et al. 2008; Morrisson et al. 2005). During urine storage, the outlet is
tightly closed and the bladder smooth muscle is relaxed to maintain low intravesical pressure.
During bladder emptying, the pelvic floor and the striated sphincter muscles are relaxed, the
detrusor muscle is contracted and the bladder neck is opened to allow the urine outflow. Co-
ordination of these functions is primarily regulated via efferent and afferent pathways (de Groat

1986).
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1.3.1) BLADDER EFFERENT PATHWAYS

Parasympathetic efferent signals trigger detrusor contraction. Preganglionic parasympathetic
neurons originate from the sacral spinal cord (S2-S4 laminae v-vii) and project axons in the
pelvic nerves (Yoshimura and de Groat 1997; de Groat and Yoshimura 2006). Postganglionic
parasympathetic nerves contain various neurotransmitters that regulate bladder contraction
(Sullivan and Yalla 2002). The major excitatory neurotransmitter to mediate detrusor
contraction is acetylcholine (ACh) (Andersson and Arner 2004). ACh regulates detrusor
contraction via binding to postganglionic muscarinic receptors. M2 and M3 receptors are
expressed in the bladder, however, a study using specific antagonists and knockout animals
showed that M3 receptors play a key role to mediate excitatory transmission via increased
intracellular Ca’’ [CaH]i (Matsui et al. 2000, 2002). M2 receptor activation is considered to
inhibit adenylate cyclase and may potentiate detrusor contraction via B-adrenergic inhibition
(Andersson and Arner 2004). However, cholinergic activation could be mediated by other
signalling pathways (de Groat and Booth 1993), e.g., 5-HT (via 5-HT4 receptors) has been
reported to potentiate electrical field stimulation (EFS) induced detrusor contraction in pig

bladder (Sellers et al. 2000).

In contrast to parasympathetic efferents, sympathetic activation mediates bladder relaxation.
Sympathetic efferent neurons originate from thoracolumbar spinal cord (T11-L2), and are
carried through hypogastric nerves (de Groat, 1997; de Groat and Yoshimura 2006). The
sympathetic post-ganglionic nerves release noradrenaline which activates both o- and B-
adrenergic receptors in the bladder body and the urethra. Noradrenaline binds to a-adrenergic
receptors in the smooth muscle of the urethra to trigger muscle contraction of the urethral

sphincter (Anderson and Arner 2004).

The somatic efferents are conveyed through pudendal nerves which arise from Onuf’s nucleus
in the ventral horn (T11-L2) of the spinal cord. Pudendal nerves innervate the external urethral
sphincter muscle to regulate muscle contraction via binding of ACh to nicotinic receptors (de
Groat, 1997, de Groat and Yoshimura 2006). A schematic diagram of bladder efferent

innervation is shown in figure 1.6.
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Figure 1.6 Schematic diagram showing efferent nerve innervation of the urinary bladder
(Fowler et al. 2008). (A) Nerve innervation of parasympathetic (green), sympathetic (blue), and
somatic (yellow). (B) Neural innervation and neurotransmitter release mechanisms that regulate
bladder function. ACh released from parasympathetic nerves binds to muscarinic receptors (M3
receptors) to mediate muscle contraction (green). Sympathetic innervation releases
noradrenaline (NA) which binds to B3 adrenergic receptors in the detrusor smooth muscle to
mediate muscle relaxation, while NA activates o1-adrenergic receptor in the urethra to
potentiate muscle contraction (blue). Somatic nerves control external urethral sphincter via
binding of ACh to nicotinic receptors (yellow). L1=first lumbar root; S1=first sacral root;
SHP=superior hypogastric plexus; SN=sciatic nerve; T9=ninth thoracic root; IMP=inferior

mesenteric plexus; HGN=hypogastric nerve; PEL=pelvic nerve; PP=pelvic plexus.

1.3.2) BLADDER AFFERENT PATHWAYS

The afferent nerves play an essential role to transmit sensory (mechanical, chemical, and
noxious) information from the bladder to the CNS, with the afferent information being carried
through pelvic, hypogastric, and pudendal nerves to second-order neurons in the spinal cord.
The cell bodies of these fibres are located in the dorsal root ganglia (DRG) and enter the spinal
cord at L1, L2, L6 and S1 lumbosacral levels (de Groat 1986; Janig and Morrison 1986;
Yoshimura and de Groat 1997). Pelvic nerves convey both non-painful (bladder fullness) and

pain sensation from the detrusor muscle whereas hypogastric nerves provide only minor
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innervation to the detrusor muscle. Hypogastric nerves primarily innervate longitudinal and
circular smooth muscle layers in the bladder neck and proximal urethra. The sensory input from
afferent fibres is projected via the lateral funiculus or the dorsal funiculus to periaqueductal grey
matter (de Groat 1997) and then relayed the sensory input to the pontine micturition centre to

initiate micturition (Blok et al. 1997).

In order to detect various stimuli and responses to chemical messengers, bladder afferent nerves
express a wide range of ion channels and receptors i.e., TRPA1, TRPV1, TRPMS, TrkA, TrkB,
purinergic, muscarinic, 5-HT, and oestrogen receptors (Bennett et al. 2003; Everaerts et al.
2008; Vizzard and Boyle 1999; Zhong et al. 2003). Moreover, histological studies have shown
that afferent nerves contain various kinds of neurotransmitters and mediators including CGRP,
substance P, neurofilament protein, neuronal nitric oxide synthase (Gabella and Davis 1998;
Smet ef al. 1997; Uemura et al. 1973). Experiments using retrograde transporters have shown
that 90% of dorsal root ganglion axons to the bladder at T10-L3 and 60% in L6-S1 spinal level
are CGRP positive (Gebella and Davis 1998). Rahnama’i and co-workers (2017) recently
reported the differential distribution of bladder afferent nerve characteristic in the suburothelium
in mouse bladder using immunohistochemistry. They found that suburothelium afferents in the
bladder base had higher CGRP and vesicular ACh transporter (VAChT) than those in the lateral

wall, suggesting functional heterogeneity of the bladder afferents (Rahnama’i et al. 2017).

These axon containing mediators are distributed in and penetrate the bladder wall into urothelial
cells, suburothelial cells, muscularis, and serosal layers. The suburothelial layer has been
reported to have the highest density of afferent nerves compared to other layers. The
suburotheial plexus is most dense at the bladder neck and trigone regions with the innervation
being more diffused in the bladder dome and the lateral wall (Andersson, 2002). Xue and
Gebhart identified mechanosensitive afferent fibres according to their receptive fields and their
response to mechanical stimuli (probing, stretching and stroking of the urothelium) in mice.
They classified pelvic mechanosensitive afferents into 4 classes with different proportions;
muscle fibres (63%), muscle/urothelial fibres (14%), serosal fibres (14%), and urothelial fibres

(9%) (Xu and Gebhart 2008).
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Two major types of bladder afferent fibres have been classified; myelinated A&-fibres and
unmyelinated C-fibres. In rats, small myelinated AOd-fibres (2-5 pm diameter) have a
conduction velocity greater than 1.3 ms ' and unmyelinated C-fibres (<2 pm diameter) have a
conduction velocity less than 1.3 ms’ (Waddell et al. 1989). A histological study revealed that
the major type of pelvic afferent nerves in rat bladder is unmyelinated C-fibres (~70-80%) (Vera
and Madelhaft 1992). Ad-fibres primarily signal bladder stretching (from tension receptor)
during ballder filling, whereas the C-fibres sense noxious stimuli i.e., high pressure bladder
distension (Gabella and Davis 1998; de Groat and Yoshimura 2009). This information is related
to the anatomical innervation, which A&-fibres mainly innervate the muscle layer, while C-
fibres are more wide spread in the detrusor and suburothelial layers and come into close
proximity to urothelial cells (Wakabayashi er al. 1993). Interestingly, a study has shown that
some of the C-fibres are volume receptors which respond to slow distension of physiological

volumes regardless of intravesical pressure (Morrison, 1999).

The mechanosensitive afferent fibres have also been classified according to the response to
mechanical stimulation into low threshold and high threshold fibres, defined from their initial
threshold during mechanical stimulation. The low threshold fibres are sensitive to normal
bladder filling, while the high threshold fibres are suggested to response only to high pressure
stimuli which represent noxious stimuli (Daly ef al. 2007; Sengupta and Gebhart 1994; Shea et
al. 2000). In rats, low threshold fibres have been reported to be a major population (~80%).
Another class of afferent nerves is silent fibres that are normally insensitive to bladder
distension; however, silent fibres can be sensitized by inflammatory mediators and become

active in response to mechanical stimulation (Rong et al. 2002).
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1.3.3) SENSORY NERVES OF THE URINARY BLADDER

Afferent nerves are crucial for bladder sensation in order to control and regulate bladder
function. Bladder afferents require different types of receptors to convey various kinds of
sensation to the CNS. Zagorodnyuk et al. (2009) conducted in vitro afferent nerve recordings
from guinea pig bladder. The strip tissues were challenged with different types of mechanical
stimuli (stretch, von Frey hair stroking and compression) and chemical stimuli (capsaicin, o,p-
methylene ATP and hypertonic solution) and the bladder sensory neurons were distinguished
into 2 major groups; stretch sensitive and stretch insensitive fibres. Stretch sensitive fibres were
subdivided into muscle mechanoreceptors and muscle-mucosal mechanoreceptors. Stretch-
insensitive fibres were classified into mucosal mechanoreceptors and chemoreceptors

(Zagorodnyuk et al. 2009).

1.) Muscle mechanoreceptors

Muscle mechanoreceptors generate afferent firing that is proportional to the intravesical
pressure. The stretch sensitive afferents that respond to bladder distension have been suggested
to be tension receptors that align ‘in-series’ with smooth muscle bundles (Iggo 1954; Shea et al.
2000). Zagorodnyuk et al. (2007) conducted in vitro experiment to remove the bladder mucosa
and record afferent firings in response to stretching. They reported that mucosal removal did not
change afferent firing in response to bladder distension, suggesting that these mechanoreceptors
are located in the muscle layer (Zagorodnyuk et al. 2007). In addition, some populations of
muscle mechanoreceptors are independent of intravesical pressure, exhibiting a plateau in firing
or even a decrease at higher intravesical pressures. This group of the receptors has been
suggested to be ‘volume receptors’ which are arranged ‘in parallel’ to muscle fibres in order to

sense volume inside the bladder (Morrison, 1997; Shea et al. 2000).

2.) Tension-mucosal receptors

Tension-mucosal receptors are sensitive to stretch, mild stroking with von Frey hair and
hypertonic solution (Zagorodnyuk et al. 2007), suggesting that the receptive fields may be
interspersed between the mucosa and the muscle layers. This type of receptor corresponds to
muscle-mucosal receptors in the pelvic afferents supplying the colon, which are unique to the

pelvic afferents (Brierley ef al. 2005).
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3.) Mucosal mechanoreceptors

This mechanoreceptor group responds to mucosal stroking with von Frey hair but is insensitive
to stretch. The mucosal mechanoreceptors have been identified in splanchnic and pelvic
afferents in mouse colon (Brierley et al. 2005) and pelvic nerves supplying the mouse bladder
(Zagorodnyuk et al. 2007). This class of mechanoreceptors shares similar responses
characteristic with silent receptors that do not show resting activity but activate responses to

chemical stimulation and could generate spontaneous firing following irritation.

4.) Chemoreceptors

This group of the receptors responses to exogenous chemicals and has sensitivity to a variety of
autocrine and paracrine mediators. Moss et al. (1997) reported a small population of receptors
that responded to potassium chloride application in the bladder (Moss et al. 1997). Moreover,
the chemoreceptor characteristic was further demonstrated in a study by Zagorodnyuk et al.
2007 which showed that some population of stretch-insensitive pelvic afferents responded to

acid and potassium application to the mucosa (Zagorodnyuk et al. 2007).

5.) Silent afferents

These afferent nerves are normally insensitive to high pressure mechanical stimulation or
noxious stimuli but become active following irritation or inflammatory response and are
therefore termed ‘nociceptors’. A study by Habler and colleagues (1990) showed that ~10% of
bladder distension unresponsive afferents became activated following bladder irritation with
mustard oil (Habler et al. 1990). Janig and Koltzenburg (1990) reported that there are ~20-30%
of silent afferent nerves in pelvic afferents (Janig and Koltzenburg 1990). However, the

mechanism of activation of silent receptors is still unclear.
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1.3.4) MECHANISMS OF MECHANOSENSITIVITY

Mechanotransduction is a process of converting mechanical force into electrical signals, which
is critical to the function of various tissues and organs including touch, hearing, flow-sensing in
kidneys, muscle, bone growth, vascular tone and blood flow (Chalfie, 2009; Hamill and
Martinac 2001). The urinary bladder constantly conveys mechanosensory information to the
CNS to regulate the micturition reflex. The mechanisms of mechanosensitivity in the bladder

are classified into direct and indirect mechanisms.

1.) Direct mechanotransduction

According to an anatomical structure of afferent nerves that penetrate in the bladder wall, this
allows the afferents to directly detect mechanical stimulation. A variety of ion channels have
been investigated for a role in directly detecting mechanical stimuli in various visceral organs
including, transient receptor potential (TRP) families (TRPA1, TRPV1, TRPV4), acid sensing
ion channels (ASIC1, ASIC2, ASIC3), Piezol and Piezo2 (Gillespie and Walker 2001; Brierley,
2010; Coste et al. 2011). In order to sense mechanical force and trigger a response, it requires
fast detection and high sensitivity to detect graded stimuli. Therefore, when ion channels are
activated, the channels open rapidly and the signals are amplified by entry or efflux of ions

promoting graded receptor potentials and action potentials (Gillespie and Walker 2001).

Two models have been proposed for direct mechanosensitivity of these ion channels; (i) bilayer
tension and (ii) tethered channels. Bilayer tension model has been explained as mechanical
force directly causes tension on the phospholipid cell membrane, a ‘tugging’ of
mechanosensitive channels leading to opening of the channels. The mechanism of tethered
model is mediated via linking between ion channels to the extracellular matrix and/or
intracellular proteins. Changing in tension of the proteins, therefore, opens the transduction
channels and allows ion flow to generate mechanotransduction (Gillespie and Walker 2001;

Barrit and Rychkov 2005; Christensen and Corey 2007).
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2.) Indirect mechanotransduction

Some groups of receptors are chemoreceptors and stretch insensitive which indirectly transfer
mechanical signals via release of neurotransmitters/mediators to the nearby cells. A number of
studies demonstrated that bladder distension triggers mediator release (i.e., ATP, ACh, and NO)
from the urothelium, which could potentially bind to their specific receptors on the urothelial
cells and other nearby cells (e.g. nerve terminals and ICC) (Birder and de Groat 2007). The
afferent nerves express an array of various sensors to sense these molecules i.e., 0-,B-adrenergic
receptors, P2X, P2Y, and muscarinic receptors (Birder et al. 1998; Birder et al. 2004; Chess-
Williams 2002). In addition, ICC which also sit beneath the urothelial layers express both P2X
and P2Y receptors (Wu et al. 2004). This information suggests that ICC may contribute to

indirect mechanotransduction.

Two mechanisms of indirect mechanotransduction have been proposed; (i) adjacent
mechanosensitive protein and (ii) ligand release models. The adjacent mechanosensitive protein
hypothesis requires mechanical activation of mechanosensitive proteins, leading to release of
diffusible second messengers or kinase activation to the ion channels. This further allows
channel gating and ion flux (Christensen and Corey 2007). The ligand release model has been
used to explain how mechanical force triggers extracellular ligand release which further
activates ion channels to promote ionic influx (Christensen and Corey 2007; Brierley, 2010).

Figure 1.7 summarizes the direct and indirect hypothetical models.
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Figure 1.7 Hypothetical model of mechanotransduction channels (Brierley 2010). (A)
Direct mechanotransduction mechanisms; 1) bilayer tension and 2) tethered channel, in which a
mechanical force directly opens ion channels (B) Indirect mechanotransduction mechanisms; 1)
adjacent mechanosensitive protein that the nearby proteins stretching promotes opening of the
channels and 2) ligand release mechanism requires intermediate mediators to activate and open

the channels.

1.4 MICTURITION REFLEX

The micturition reflex is a complicated process that requires co-ordination between the spinal
cord and the brainstem (pontine micturition center/Barrington’s nucleus) (via the bulbospinal
reflex). The neuronal circuits work as an on-off switching mechanism between the urinary
bladder and the urethral outlet activity (Mallory et al. 1991; Holstege et al. 1986; Yoshimura
and de Groat 1997). The pontine micturition center also receives many sensory signals from
various brain areas including, the periaqueductal gray (PAG), basal ganglia, and hypothalamus
(Fowler, 2008). The supraspinal reflex plays a predominant role in voiding, in which bladder
afferent signals arrive in the PAG and the signals are then relayed via the thalamus and the
insula enabling assessment of sensation. In addition, the higher brain area, prefrontal cortex is
involved in making conscious decisions regarding voluntary voiding (Griffiths and Tadic 2008).
The micturition reflex comprises the storage phase (bladder filling) and the voiding phase

(bladder emptying) as summarized in figure 1.8.
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The storage phase

The urinary bladder has an accommodation mechanism that initially allows urine filling without
an increase of the intravesical pressure. Bladder accommodation is an intrinsic property of the
detrusor (Tang and Ruch 1995) and partial contribution of low-threshold afferent firing during
filling which stimulates sympathetic outflow (de Groat and Yoshimura 2006). During urine
storage, the parasympathetic system is inhibited. Sympathetic activation leads to release of
noradrenaline which acts on B-adrenergic receptors in the bladder dome and promotes detrusor
relaxation. Simultaneously, noradrenaline binds to O-adrenergic receptors in the urethra to
potentiate urethral sphincter contraction as a guarding reflex. Increased intravesical pressure
during bladder filling further activates sympathetic outflow to allow urine storage (Fowler et al.

2008).

The voiding phase

Once the afferent signal reaches the threshold set by the pontine micturition center, the
sympathetic and the somatic nervous systems are switched off. Concurrently, the
parasympathetic nervous system is activated. Parasympathetic innervation in the bladder body
releases acethylcholine (ACh) which further binds to muscarinic receptors (M2 and M3),
leading to acute contraction of detrusor smooth muscle (Fowler et al. 2008). In addition, the
excitatory signal to the bladder urethra is inhibited and parasympathetic neurons release NO to
cause urethral sphincter relaxation (Anderson and Persson 1993), allowing urine expulsion

through the urethra (Chancellor and Yoshimura 2002).
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Figure 1.8 Neural circuits to control storage (A) and voiding (B) reflexes (Modified from
Fowler et al. 2008). (A) Storage reflex: Distention of the bladder wall during urine storage
evokes bladder afferent firing. This stimulates sympathetic outflow to contract the bladder outlet
(bladder base and urethra) and evokes detrusor relaxation. In addition, the pudendal nerves that
innervate the external sphincter are also activated. The pontine storage centre also sends
descending signals to increase urethral sphincter activity. All of these mechanisms promote
urine storage. (B) Voiding reflex: Intense bladder afferent signals via pelvic nerves activate the
bulbospinal reflex pathway (blue) and pass through the pontine micturition center. Thereafter,
parasympathetic outflow is sent to promote detrusor muscle contraction of the bladder body and
relaxation of urethral smooth muscle (green), while the sympathetic and pudendal efferents of
urethral outlet are inhibited (red). In addition, ascending pathways from the spinal cord signal to

relay neurons in the periaqueductal grey (PAG) before sending to the pontine micturition center.
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1.5 5-HT RECEPTORS AND FUNCTION

5-Hydroxytryptamine (5-HT; serotonin) was first identified as a vasoconstrictor substance in the
1940s (Rapport et al. 1947). 5-HT is an essential neurotransmitter that is well-documented to
regulate many processes in the body. In the brain, 5-HT plays a key role in the regulation of
mood, memory, anxiety, sexuality, appetite, and sleep. 5-HT also exerts diverse roles in
peripheral organs including cardiovascular, gastrointestinal, pulmonary, genitourinary systems,

and nociception (see review by Berger ef al. 2009).

The major source of 5-HT (95%) is produced in the gastrointestinal tract by enterochromaffin
cells (EC cells), but mast cells and myenteric neurons in the gut wall also produce 5-HT
(Gershon and Tack 2007), while about 5% is centrally produced from serotonergic neurons
originating from raphe nuclei in the brainstem (Berger et al. 2009; Bertrand and Bertrand 2010;

O'Hara and Sharkey 2007).

Both central and peripheral, 5-HT synthesis requires a rate limiting enzyme, tryptophan
hydroxylase (TPH). TPH has 2 isoforms; TPH1 and TPH2. TPH2 is a pre-dominant isoform in
neuronal tissues, while TPH1 is broadly expressed and produces 5-HT in non-neuronal tissues
(Cote et al. 2003; Walther et al. 2003). 5-HT biosynthesis requires 2 main steps; (i)
hydroxylation of tryptophan into 5-hydroxytryptophan (5-HTP) by TPH and (i)
decarboxylation of 5-hydroxytryptophan into 5-hydroxytrptamine (5-HT) by L-amino acid
decarboxylase (L-AADC) (Hakanson et al. 1970; Verbeuren 1989). After synthesis, 5-HT is
stored in vesicles by the vesicular monoamine transporter 1 (VMATI) (Rindi et al. 2004).
Following its release, 5-HT is taken back up into the nearby intestinal epithelial cells and

neurones by the serotonin transporter (SERT) (Wade et al. 1996).

5-HT which is not stored in the vesicles is degraded by monoamine oxidase (MAQO) and
aldehyde decarboxylase (ADH). These enzymes convert 5-HT into an inactive metabolite 5-
hydroxyindoleacetic acid (5-HIAA) (Egashira and Waddell 1984; Rodriguez et al. 2001). A

diagram of 5-HT biosynthesis and metabolism in the EC cells is shown in figure 1.9.
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Figure 1.9 Schematic diagram depicting 5-HT production in intestinal enterochromaffin

(EC) cells (Bertrand and Bertrand 2010).

1.5.1.) Classification and distribution of 5-HT receptors

5-HT receptors are ubiquitously expressed in the body in both central and peripheral organs. At
present 5-HT receptors are mainly classified into 7 subfamilies and at least 14 subtypes have
been identified. Most 5-HT receptors are G-protein coupled receptors (GPCR) with the

exception of the 5-HT3 receptors which are ligand-gated ion channel (Roth, 2006).

The structure of 5-HT1, 2, 4, 5, 6, and 7 receptors comprises 7 transmembrane domains with an
extracellular NH, terminal and a cytoplasmic COOH terminal. The third intracellular loop is the

active site which interacts with G-proteins (Barnes and Sharp 1999).

5-HT3 receptors are the only group of 5-HT receptor that are ligand gated ion channels. They
are member of the Cys loop superfamilies similar to nicotinic acetylcholine, GABA,, and
glycine receptors. 5-HT3 receptors comprise four transmembrane domains that form a pore with
a pentameric structure. The transmembrane domain two forms a central pore. NH, and COOH
terminals of 5-HT3 channels are on the extracellular side (Figure 1.10) (Reeves et al. 2001; Sine
and Engel 2006). The classification, distributions, and the responses of 5-HT receptors are

summarized in tablel.2.
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Figure 1.10 Model for subunit structure of 5-HT receptors (Baez et al. 1995). (A) Subunit
model of metabotropic 5-HT receptors (non-5-HT3) showing the seven transmembrane
structure of G-protein coupled receptors. (B) Subunit model of ligand gated 5-HT3 receptors

comprising 4 subunits that form a pentameric structure.

1.) Non-5-HT3 receptors

5-HT1 receptors

5-HT1 receptors are found in both CNS and PNS. In the brain, a dense expression of 5-HT1
receptors have been reported in the dorsal raphe nucleus, cerebral cortex and pyramidal cell
layer of hippocampus (Chalmers and Watson 1991; Miquel ef al. 1991). 5-HT1 receptors are
classified into 5-HT1A, 5-HT1B, 5-HT1D, 5-HTI1E, and 5-HT1F. The main mechanism of 5-

HT1 receptors is negatively coupled to adenylyl cyclase via Gi protein (Raymond et al. 2006).

Among the receptor subtypes, 5S-HT1A receptors are the most extensively studied. It has been
suggested that SHT1 receptors could function as autoreceptors in the raphe nuclei. S-HT1A
activation stimulates neuronal G-protein-gated inwardly rectified (GIRK) K channel (Andrade
and Nicoll 1987; Colino and Halliwell 1987; Doupnik et al. 1997), leading to neuronal
hyperpolarization to prevent over-excitability and inhibit neuronal 5-HT release. In addition, 5-
HT1A activation has been reported to stimulate PLC/IP3 and intracellular Ca’" mobilization and
coupled to mitogen-activated protein kinase (MAPK) pathway via indirect action of BY subunit

(Albert and Tiberi 2001).
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5-HT?2 receptors

5-HT2 receptors are mainly found in the forebrain and motor neurons with the low expression
level in the brainstem and spinal cord (Mengod et al. 1990). 5-HT?2 are classified into 5-HT2A,
5-HT2B, and 5-HT2C. 5-HT2 receptors are coupled to Gq protein to positively regulate
phospholipase C (PLC) to increase intracellular Ca’* via activation of the inositol pathway (Ip,)

(Hannon and Hoyer 2008).

5-HT4 receptors

5-HT4 receptors are ubiquitously expressed in both central and peripheral organs i.e., brain,
heart and gastrointestinal tract (Raymond ez al. 2006). 5-HT4 receptors activate stimulatory G
protein (Gs) and positively coupled to adenylyl cyclase and increase cAMP level, which
activate PKA pathway. Activation of 5-HT4 leads to various actions including inhibition of K"
channel (Fagni et al. 1992), facilitation of transmitter release (dopamine, ACh and 5-HT) in the
brain (Consolo et al. 1994; Bianchi et al. 2002; Ge and Barnes 1996), and mediation of colonic

relaxation, and activation of L-type Ca’ channels (Ouadid ez al. 1992).

5-HTS receptors

5-HTS5 receptors are negatively coupled to adenylyl cyclase via Gi proteins, which resemble 5-
HT1 receptors, however, 5-HT5 receptors show lower affinity to 5-HT and have sequence
homology to other 5-HT receptors of less than 50%. Two subtypes of 5-HTS5 are identified; 5-

HT5A and 5-HT5B receptors in rats (Matthes er al. 1993; Erlander et al. 1993).

5-HT6 receptors

5-HT6 receptors are primarily expressed in the brain with lower expression in the stomach and
adrenal gland (Monsma et al. 1993; Ruat et al. 1993). The primary cascade of 5-HT6 receptors
is linked to stimulatory G-protein which activates adenylyl cyclase and increases cAMP level.

(Ruat ef al. 1993; Grimaldi et al. 1998).

5-HT7 receptors

5-HT7 receptors have been found in both in central and peripheral organs. They are highly
expressed in the hippocampus, neocortex, and hypothalamus (Lovenberg et al. 1993; Thomas
and Hagan 2004). 5-HT7 receptors are also widely expressed in the periphery including

intestine (Liu ef al. 2001), stomach (Janssen et al. 2004), corneal epithelial cells (Crider et al.
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2003), adrenal glomerular cells (Lenglet et al. 2000), and blood vessels (Heidmann et al. 1998).
5-HT7 receptors are positively coupled to adenylyl cyclase and increase cAMP level via Gs

stimulation similar to 5-HT4 and 5-HT6 receptors (Shen et al. 1993).

2.) Ligand-gated ion channels

5-HT3 receptors

5-HT3 receptors are expressed in both central and peripheral organs including brain, spinal
cord, and gastrointestinal tract. 5-HT3 activation evokes rapid depolarization via influx of
monovalents (Na' and K') and lower permeability to divalents (Ca2+ and Mg2+) (Peter et al.

1988; Lummis, 2012).

5-HT3A and 5-HT3B receptor subunits are the major isoforms that form either homomeric or
heteromeric channels. Homomers of 5-HT3A and heteromers of 5-HT3A and 5-HT3B can form
functional receptors, whereas homomeric 5-HT3B receptors do not. However, previous studies
using patch clamp electrophysiology showed that the composition of 5-HT3 subunits is
important in determining channel properties. For example, homomeric 5-HT3A receptors had a
lower threshold to reach desensitization compared to hetomeric 5-HT3AB receptors.
Additionally, 5-HT3AB receptors had shorter recovery times after desensitization compared to
homomeric 5-HT3A receptors (Davies ef al. 1999; Hapfelmeier et al. 2003). However, there are
also other factors that could contribute to changing in properties of 5-HT3 desensitization
including, extracellular Ca’" level, developmental state of cells, and phosphatases (e.g.
calcineurin) (Gunthorpe ef al. 2000; Lobitz et al. 2001; Yakel et al. 1993). One explanation why
the 5-HT3B subunit can alter the kinetic properties of the 5-HT3 channels is that these channels
are more permeable to Na and K~ compared to Ca”'and impermeability to Mg2+ and so less
likely to cause desensitization (Davies et al. 1999). A summary diagram of all signalling

pathways of 5-HT receptor subtypes is shown in figure 1.11.
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Table 1.2 Summarized 5-HT receptor classification, location and actions (Hoyer et al.

1994).
Receptor | Subtypes Location Response
5-HT1 5-HT1A Neuronal, mainly in CNS | Neuronal hyperpolarization
5-HT1B CNS and some peripheral | Inhibition of neurotransmitter
nerves release
5-HT1D Mainly CNS Inhibition of neurotransmitter
release
5-HT1E Only CNS Inhibition of adenylyl cyclase
5-HT1F Mainly CNS Inhibition of adenylyl cyclase
5-HT2 5-HT2A Vascular smooth muscle, Vasoconstriction, platelet
platelets, lung, CNS, aggregation, bronchoconstriction
gastrointestinal tract
5-HT2B Mainly peripheral Rat stomach fundic muscle
contraction
5-HT2C CNS (high density in Increase phosphoinositide turnover
choroid plexus)
5-HT3 Peripheral and central Depolarization
neurons, gastrointestinal
tract
5-HT4 Gastrointestinal tract, Activation of ACh release in gut,
CNS, heart, urinary tachycardia, increased cCAMP in
bladder CNS neurons
5-HTS 5-HT5A, | CNS Not known
5-HT5B
5-HT6 CNS Activation of adenylyl cyclase
(HEK 293 cells)
5-HT7 CNS Activation of adenylyl cyclase
(Hela cells and COS cells)
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G-protein coupled receptors
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Figure 1.11 Diagram summarizing signal transduction pathways of 5-HT receptor

subtypes (Noda et al. 2004).
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1.6 ROLE OF 5-HT IN THE BOWEL AND THE BLADDER

1.6.1) 5-HT and bowel functions

The bowel is the major source of 5-HT in the body. 5-HT is secreted across the basolateral
membrane of EC cells in response to mechanical (intestinal wall distension), chemical (acid or
bases), or noxious stimuli (Berger et al. 2009; Bertrand and Bertrand 2010; O'Hara and Sharkey
2007). The secreted 5-HT in the bowel has three main functions; (i) bind to 5-HT receptors
expressed on either intrinsic or extrinsic nerves, (ii) act as a paracrine mediator to activate
nearby enterocytes, (iii) excess 5-HT could enter the circulation through blood vessels in the
lamina propria, which may exist in its free form or be taken up into platelets via the serotonin
transporter (SERT) (Bertrand and Bertrand 2010). SERT is also expressed on both apical and

basolateral sides of the enterocytes (Gill ef al. 2008).

The main function of SERT is to re-uptake 5-HT into EC cells of the intestinal epithelium and
platelets. Storing 5-HT in platelets has beneficial effects to protect and maintain 5-HT levels in
the circulation (O'Hara and Sharkey 2007). Free 5-HT is rapidly metabolized in the liver by
liver enzymes. One third of 5-HT is degraded by MAO into 5-hydroxyindoleacetic acid (5-
HIAA), while two third are processed and turned into 5-HTO-glucurunide. Stored 5-HT in
platelets distributes to the other organs via the circulation (Egashira and Waddell 1984; Gershon
et al. 1989). The schematic diagram of 5-HT production and location of EC cells in the

intestinal wall are shown in figure 1.12.

5-HT is well known to regulate many functions in the bowel including, intestinal motility,
segmentation, secretion, and vasodilation via activation of both intrinsic (myenteric and
submucosal plexuses) afferents and extrinsic (vagal and spinal) afferents. Extrinsic afferent
activation of 5-HT regulates gastric emptying, nausea, vomiting, and discomfort (Furness et al.
1999; Grundy and Schemann 2005; Grundy 2008). In addition, 5-HT also plays a key role in
intestinal inflammation (Keating et al. 2008; Wang et al. 2007, Mawe et al. 2006) and
regulation of cell proliferation of neurons and ICC (via activation of 5-HT2B) (Wouters et al.

2007). At least 5 subfamilies of 5-HT receptors, 5-HT1, 2, 3, 4 and 7 have been reported and
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regulate intestinal functions (Hoyer et al. 2002). 5-HT3 and 5-HT4 receptors have been reported

to play major roles and have been broadly investigated for their therapeutic potential.

5-HT3 receptors are expressed in epithelial, subepithelial layers, smooth muscle cells, ICC and
motor neurons. 5-HT3 receptors are therefore attractive targets to treat many intestinal
symptoms including nausea and abdominal discomfort. 5-HT3 antagonists have been widely
used to treat diarrhoea in IBD patients (Andersson ez al. 2008; Rahimi et al. 2008). IBS patients
treated with alosetron (5-HT3 antagonist) showed increased compliance of the colon (Delvaux
et al. 1998). In addition, 5-HT?3 antagonists have been used to treat nausea from chemotherapy-
induced emesis and nausea (Costall et al. 1986; Minnie and Sanger 1986). However, there have
been reports of adverse effects of 5-HT3 antagonist treatment for constipation (Talley et al.
1990). Interestingly, 5-HT3 receptors have been reported to play important roles in afferent
hypersensitivity in the bowel, which could be correlated to pathological symptoms in IBS and

IBD (Keating et al. 2008).

5-HT4 receptors are extensively expressed in the intestinal wall including intrinsic and extrinsic
afferent neurons, epithelial cells, globlet cells, and smooth muscle cells (Hoffman et al. 2012;
Liu et al. 2005). 5-HT4 activation increases peristaltic reflexes and gastric emptying. 5-HT4
knockout mice show impair colonic motility (Liu et al. 2009). Therefore, 5-HT4 agonist such as
cisapride and metoclopramide have been used to treat constipation in IBS patients (Evans et al.

2007; Baeyens et al. 1984).
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Figure 1.12 Schematic diagram demonsting 5-HT pathways in the intestinal wall (Mawe
and Hoffman 2013). 5-HT is released into the lamina propria and directly activates both
intrinsic and extrinsic afferent nerves. Some of the 5-HT is transported back to nearby epithelial

cells via SERT. 5-HT that enters the blood circulation is taken up and stored in platelets.

1.6.2) 5-HT and urinary bladder functions

Previous studies have investigated the central role of 5-HT in regulating micturition reflexes at
both spinal and supraspinal levels (Ishizuka er al. 2002; Ramage, 2006). Cell bodies of
serotonergic neurons are located in the raphe nuclei in the brainstem and send their projections
to many areas of the brain and spinal cord. Lumbosacral parasympathetic, sympathetic and
somatic nuclei receive serotonergic innervation from the raphe nuclei. The serotonergic neurons
in the raphe nuclei send bulbospinal projection to innervate the superficial of dorsal horn and
directly control the sensory information arising from second-order neurons in the dorsal horn
which receive the input from primary sensory neurons (Dahlstr and Fuxe 1964; Skagerberg and

Bjorklund 1985; de Groat et al. 1993).

A study showed that activation of raphe nuclei leads to inhibitory actions on bladder reflex
function (McMahon and Spillane 1982; Sugaya et al. 1998). Interestingly, a recent study by
Chiba and colleagues using a combination of microdialysis in the prefrontal cortex and
cystometrography (CMG), showed that 5-HT exerts an inhibitory role on micturition reflexes in
the rat. They found a real-time correlation between increased 5-HT levels in prefrontal cortex

and increased bladder intercontraction intervals. This effect was reduced by local application of
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5-HT1A agonist (8-OH-DPAT) into the prefrontal cortex, which also significantly decreased the

intercontraction interval (Chiba et al. 2016).

Within the research literature there is clear evidence of species variation which makes
interpretation of 5-HT function difficult. Multiple 5-HT receptor subtypes have been found in
many regions in the brain and spinal cord area that are involved in controlling micturition. At
present, S-HT1A, 5-HT2, 5-HT3, 5-HT4 and 5-HT7 receptors have been reported for their
expression and functional role in controlling bladder activity (Ishizuka et al. 2002; Ramage,

2006).

5-HT1A receptor expression has been found in Onuf's nucleus, the sacral parasympathetic
nucleus, and raphe nuclei, suggesting roles in controlling micturition reflex (Gobert ez al. 1995).
Even though 5-HT1A receptor activation has inhibitory action on adenylyl cyclase in spinal and
supraspinal level, activation of 5-HT1A receptors with the selective 5-HT1A agonist (8-OH-
DPAT) results in bladder contraction (Lecci et al. 1992) and the inhibition of the receptor using
selective receptor antagonist causes decrease in bladder contraction (Testa et al. 2000). The
potentiation of bladder activity of 5-HT1A receptor has been suggested to have a ‘disinhibition’
effect. Activation of 5-HT1A autoreceptors reduces 5-HT release from serotonergic neurons,
which further decreases an inhibitory action of 5-HT2C receptor activation (Ramage, 2006). In
contrast, in cats, 5S-HT1A receptors have been reported to play a role only in pathological
conditions i.e., bladder irritation with intravesical acetic acid and spinal cord injury (Gu et al.

2007).

Lecci and co-workers (1992) suggested different roles for spinal and supraspinal 5-HT1A
receptors. They showed that 5-HT depletion by 5,7-dihydroxytrptamine (5,7-DHT) required
higher effective dose of intracerebroventricular (i.c.v) administered 8-OH-DPAT, whereas the
effective dose of intrathecal (i.t.) 8-OH-DPAT was not changed (Lecci ef al. 1992). These
results suggested that 5-HT1A receptors in the brainstem act as autoreceptors, while 5-HT1A
receptors in the sacral spinal cord are heteroreceptors and may have a role in the regulation of

the release of other neurotransmitters (Ramage, 2006).
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5-HT2 expression has been reported in the Onuf's nucleus, hypothalamus and cortex. The
nonspecific 5-HT2 agonist, alpha-methyl-5-hydroxytryptamine maleate (i.c.v), increased
bladder contraction and decreased bladder capacity in rats (Ishizuka et al. 2002). The literature
has conflicting reports as to the role of 5-HT2 receptors which depends on the species used for
the study. 5-HT2A receptor activation plays a primary role in activation of EUS activity in rats,
whereas 5-HT2C activation inhibits EUS activity in guinea pigs (Thor et al. 1990; Danuser and
Thor 1996). Overall 5-HT2 receptors have inhibitory role in micturition reflexes but exert

stimulatory action on pudendal nerves to increase EUS activity (Ramage, 2006).

Ishizuka et al. reported a minor role of supraspinal 5-HT3 receptors using 5-HT3 agonists (2-
Me-5-HT) (i.c.v), which correlates with low densitiy of 5-HT3 receptor expression in the brain
(Ishizuka et al. 2002). Testa and colleagues (2000) have also reported that 5-HT3 receptor
antagonist (zalosetron) administration (i.c.v) had no effect on voiding contraction in
anesthetized rats (Testa ef al. 2000). However, the role of spinal 5-HT3 receptors has been
reported in cats by Espey and colleagues. Intrathecal administration of the 5-HT3 antagonist
(zalosetron) decreased the micturition threshold during bladder filling (Espey et al. 1999),
suggesting that spinal 5-HT3 receptor may play a role in control bladder function. This
information is supported by an investigation by Kidd et al. (1993) who showed 5-HT3 receptor

expression in the dorsal horn of the spinal cord (Kidd et al. 1993).

Using the selective 5-HT4 agonist RS67506 (i.c.v), it was found that supraspinal 5-HT4
receptors enhance the micturition reflex in response to bladder filling (Ishizuka et al. 2002).
However, this data is in contrast to an investigation in anaesthetized rats by Testa ef al. (2000).
They reported that the 5-HT4 antagonist RS39604 had no effect on the micturition reflex (Testa
et al. 2000). 5-HT4 receptor expression is high in nigrostriatal and mesolimbic areas, which
have been reported to modulate other neurotransmitter release e.g., dopamine and ACh (Barnes
and Sharp 1999). The action site and mechanism of 5-HT4 activation is still unclear and it could

be direct and/or indirect mechanisms via controlling other neurotransmitters (Ramage, 2006).

Doly and co-workers (2005) reported 5-HT7 receptor expression in the Onuf’s nucleus in rats,
suggesting its role in micturition (Doly et al. 2005). Using the specific 5-HT7 antagonist SB-

266970 (i.c.v) administration (10-30 ugkg_l) in rats showed an increase in intravesical pressure
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and volume threshold (Read et al. 2004). These data suggest that 5-HT7 receptors have a

stimulatory action on the micturition reflex (Ramage, 2006).

While many previous studies have purported the central mechanisms of 5-HT in controlling
micturition, there is still a lack of information about the modulatory role of 5-HT on bladder
afferent activity. Even though, a number of studies have reported 5-HT receptor expression in
the bladder urothelium, detrusor muscle, afferent and efferent nerve terminals, most studies
have focused on 5-HT efferent function to regulate detrusor contraction. The details of
expression profile and their functional roles of 5-HT in the bladder are reviewed in chapter 3

and 4.

1.7 PELVIC CROSS-ORGAN SENSITIZATION

An anatomical and functional relationship between the pelvic organs is important to allow
pelvic organs to work harmoniously. A clear example is the alternate function between the distal
intestine and the bladder. Bladder contraction is inhibited following rectal or colonic distention
(Kock and Pompeius 1963; Floyd et al. 1982), which explains the alternative processes between

defecation and urination (Vilensky et al. 2004).

The concept of neuronal cross-talk or ‘viscero-visceral reflexes’ refers to change in afferent
signals from one stimulated organ affecting afferent activity in another nearby organ. According
to previous investigations, cross-sensitization has been proposed to occur by both ‘central’
and/or ‘peripheral’ mechanisms (Malykhina, 2007; Brumovsky and Gebhart 2010; Daly et al.

2013).

Cross-organ sensitization becomes more prominent after many investigations reported that this
mechanism may contribute to an overlapping symptom profile between different pelvic organs
e.g., the colon, urinary bladder, uterus, and prostate gland. This mechanism therefore results in
difficulty with diagnosis and makes the treatment of patients less precise. Many clinical studies
have reported an overlap in pathological symptoms between the distal bowel, bladder, uterus,

and prostate gland (Francis et al. 1997; Mayer et al. 1999; Aaron and Buchwald 2001). For
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instance, irritable bowel syndrome (IBS) patients have been reported with bladder symptoms
i.e., nocturia, frequency, incomplete voiding, and pain during urination (Whorwell ez al. 1986).
Bladder inflammation reduced uterine contraction (Dmitrieva ef al. 2001). In addition, uterine

inflammation induced extravasation of the bladder and colon (Winnard et al. 2006).

Central cross-sensitization is driven by mechanisms in the brain and spinal cord, in which the
second order sensory neurons receive convergent sensory information from more than one
organ. In the brain, neuronal convergence has been found in thalamus and brain stem. A study
has shown that neurons in the Barrington’s nucleus of the pontine micturition center respond to
both colon and bladder distention (Hubscher and Johnson 2003; Rouzade-Dominguez et al.
2003). In the spinal cord, neuronal cross-talk from an inflamed organ could be transferred to
uninflamed structures via a direct connection of interneurons that receive afferent signals from

both organs (Berkley, 2005; Willis, 1999).

Peripheral cross-sensitization primarily depends on ‘axon-reflexes’ that are proposed to occur
because sensory neurons in the DRG have multiple axons innervating several organs. Therefore,
afferent hyperexcitability in one organ could converge with signals from an uninflamed organ
resulting in the release of excitatory neurotransmitters which further sensitize afferent nerves of
the second organ (Amir and Devor 1992; Brumovsk and Gebhart 2010; Malykhina, 2007).
Evidence for peripheral cross-sensitization among the pelvic organs comes from studies
showing that local administration of capsaicin in the inflamed colon (Peng et al. 2009) or uterus
(Peng et al. 2008) reduced the effect of urethral reflexes. A schematic diagram summarizing

cross-organ sensitization mechanisms is shown in figure 1.13.
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Figure 1.13 Possible mechanisms of neuronal cross-talk between pelvic organs (modified
from Malykhina, 2007). The convergence of afferent nerves, possibly occurs either at central
or peripheral mechanisms in 3 levels; (1) Dorsal root ganglion (DRG): DRG neurons that have
branching or multiple axons provide a direct neuronal connection between two organs. If the
DRG neurons that receive sensory information from an irritated organ have axonal connection
with an adjacent organ, changes in the excitability of the excited organ will generate antidromic
action potential or “axon-reflexes” via neurotransmitter release to the nearby organ. This
mechanism may trigger vasodilation or extravasation, and develop neurogenic inflammation in
the adjacent organ (red route). (2) Spinal cord: The afferent signals from the irritated organ that
arrive at the spinal cord converge on the same interneuron with another organ in the dorsal horn,
resulting in a convergent action potential to the unirritated organ (blue route). (3) Brain:
Following the convergence of neuronal pathways in the brain, descending signals according to
hyperexcitability of the irritated organ is conveyed to the adjacent organ (gold route). Red Cross
indicates convergent neurons. Anterograde signal from the brain, spinal cord, and DRG to the

organs is shown by dotted lines.
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1.8 BLADDER PATHOLOGY

1.8.1) Interstitial cystitis/painful bladder syndrome

Interstitial cystitis/painful bladder syndrome is a chronic bladder condition with bladder pain
and related irritant symptoms in the bladder and the pelvic regions lasting more than 6 months.
The International Continence Society (ICS) defined interstitial cystitis (IC) or painful bladder
syndrome (PBS): “The complaint of suprapubic pain related to bladder filling, accompanied by
other symptoms such as increased daytime and nighttime frequency, in the absence of proven
urinary infection or other obvious pathology” (Abrams et al. 2002). IC/PBS is diagnosed by
pain related to urinary bladder and other functional symptoms including, frequency, urgency,
and pain during urination without an obvious disease. It has been reported to affect children and
adults (Shear and Mayer 2006) with higher incidence in women. IC/PBS does not seem to vary

with age or ethnicity (Clemens et al. 2007).

The aetiology of IC/PBS is still unclear. At present three main factors have been proposed to
contribute to IC/PBS; alteration of urothelial permeability, mast cells activation and C-fiber

nerve activation (Sant, 2002).

Alteration of urothelial permeability

Impaired urothelial permeability leads to increased susceptibility to luminal stimuli (Hicks et al.
1974). The urothelium is densely coated with glycosaminoglycan (GAG) layers and tight
junction proteins which act as a protective barrier to prevent the leakage of potassium ions,
bacteria, and noxious substances (Khandelwal et al. 2009; Varley et al. 2006). The significant
role of the GAG layer has been shown by studies where the GAG layer is restored following
intravesical application of exogenous GAG (such as chondroitin sulphate). This treatment
reverses the permability of the bladder to *Rb" (Hauser et al. 2009) and significantly reduces
the recruitment of immune cells (Engles et al. 2012). A diagnostic test for permeability of

urothelium is an intravesicular potassium test (Parson’s test) (Bernie ef al. 2001; Parsons, 2002).

The Parson’s test determines changes in bladder permeability by infusion of a diluted potassium

solution (40 mEq in 100 mL of water) directly into the bladder. The solution is left in the
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bladder for 5 minutes and the patients is asked to rate the degree of provocation of frequency
and urgency from zero (no feeling) to five (pronounced feeling) (Parsons, 2002). The positive
diagnosis of IC is considered if the patients have a rating higher than two. However, a study has
reported sensitivity and specificity of this test are 59% and 69% respectively (Chambers et al.
1999) which calls into question its validity in diagnosing IC. Clinical studies have developed a
better way by using biomarkers as a tool for the diagnosis. Several biomarkers have been
suggested including urinary antiproliferative factor (APF) and urinary glycoprotein (GP-51).
However, there have been no studies to confirm if these markers are correlated to cystoscopic

and biopsy data (Erickson, 2001; Sant, 2002).

Mast cells activation

Mast cells are a key source of various proinflammatory mediators i.e., prostaglandins, tryptase,
leukotriene and histamine (Theoharides e al. 2001). Clinical evidence reports that 30-65% of
IC/PBS patients have mastocytosis. Previous studies have also reported an increased histamine
level in IC patients. Patients with antihistamine treatment (Hydroxyzines) and leukotriene
inhibitor showed improvement in IC/PBS symptoms (Bouchelouche et al. 2001; Theoharides et
al. 2001). Animal experiments using TNBS-induced colonic inflammation have shown an
increase in mast cell numbers in the bladder, which correlates with an impaired voiding function
(decreased voiding interval) (Fitzgerald et al. 2013). These studies suggest that IC/PBS may be

derived from mast cell activation mechanisms.

C-fiber nerve activation

It has been widely accepted that bladder afferent hypersensitivity correlates with bladder storage
symptoms. Activation of C-fiber afferents by inflammatory mediators e.g., substance P and
nerve growth factor (NGF) could recruit mast cells and trigger inflammatory mechanisms.
Moreover, increased expression of substance P and their receptors in C-fibres has been observed
in IC patients (Marchand et al. 1998). A clear role for C-fiber afferent activation by
neuropeptides contributing to bladder hyperexcitability was shown by Ustinova and co-workers
(2007). They showed that depletion of neuropeptides from afferent terminals by systemic
administration of capsaicin reduced hyperexcitability of C-fiber afferents in TNBS-induced
colonic inflammation. In addition to sensitization of C-fiber afferents, increased mast cells in

the bladder was also observed (Ustinova et al. 2007). This suggests that the aetiology of IC/PBS
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is complex. Bladder dysfunction from alteration of urothelial cells, inflammatory response
derived from mast cells and activation of C-fibres may act in a concerted way. Importantly, as
described in the previous section with respect to cross-sensitization mechanisms between the
pelvic organs, the released mediators from the insulted organ could sensitize neurons in
DRG/spinal cord/brain that receive sensory signals from another organ, leading to sensitization
of afferent nerve of the other pelvic organs (Sant, 2002). A schematic diagram of hypothesized

pathophysiology mechanism of IC/PBS is summarized in figure 1.14.

Urothelial dysfunction

Mast cell C-fibre nerve
activation ﬁ upregulation

1

Spinal cord and central nervous system
“Wind-up”

!

Visceral organ
hyperalgesia/allodynia

/ 31 1\

Urinary Gynecologic Pelvic floor Gastrointestinal

Figure 1.14 Summarized diagram of pathophysiologies of IC/PBS (modified from Sant,
2002).

1.8.2.) Overactive Bladder

Overactive bladder (OAB) is a complex pathophysiological bladder symptom. OAB shares
common irritant bladder symptoms to IC/PBS, except that pain is not a feature for this
condition. A survey study in 5 countries; Canada, Sweden, Germany, Italy and UK of patient’s
ages between 18-60 years in both sex showed that average of OAB prevalence is ~12%. It has
been reported similar prevalence in both sexes and the incidence tends to increase with age

(Irwin et al. 2006).
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The ICS defined OAB as urgency with or without urinary incontinence (Milsom et al. 2001),
frequency (voids >8 per day), (Wein and Rover 2002), and nocturia (Abrams et al. 2002). All of
these pathological symptoms occur without bladder infection or obvious pathology. OAB is

associated with urodynamic characteristic of detrusor overactivity (Abrams et al. 2002).

The complete aetiology of OAB is not fully understood but it has been suggested to be

multifactorial. The aetiology of OAB is classified into two classes:

- Idiopathic overactive bladder is referred to non-neurogenic cause that the aetiology is

undefined.

- Neurogenic overactive bladder is referred to OAB caused by dysregulation or degeneration
of neuronal pathways that could occur at multiple levels including, supraspinal, suprasacral
and in the level of sacral nerves.

At present, three main theories have been proposed for OAB and detrusor overactivity;

urothelium, myogenic, and neurogenic hypotheses.

Modulatory roles of the urothelium on bladder function are increasingly widely studied.
Changes in urothelial expression, function, and mediator release may play a role in developing
bladder dysregulation. For instance, NGF levels were increased in the bladder and the urine of
patients with PBS/IC, neurogenic and idiopathic detrusor overactivity and in animal models
exhibiting OAB symptoms (Lui ef al. 2009; Ochodnicky et al. 2011). NGF and its receptors
(TrkA) have been found in the urothelium (Ochodnicky et al. 2011; Murray et al. 2004). Frias et
al. reported the role of NGF to decrease threshold of TRPV1 signalling in the bladder and
TRPV1 is required for NGF mediated bladder symptoms (Frias et al. 2012). Moreover, the
suburothelial components including ICC and nerve terminals, which lie beneath the urothelium
could form an interaction as a functional unit to cause instability of the detrusor muscles. This
speculation is supported by an investigation by Ikeda and Kanai (2008) using an optical
mapping approach, showing that a mucosal component (urothelium and lamina propria) play a
role to regulate spontaneous detrusor contraction in normal and spinal cord transected rats

(Ikeda and Kanai 2008).

Myogenic factors are involved in changes in morphology, excitability and coupling of smooth

muscle cells that contribute to unstable detrusor contraction. Unstable bladder contractility in
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OAB could derive from changes in smooth muscle morphology. Increased connective tissue
between muscle fascicles and dense muscle arrangement have been observed in OAB with or
without urge incontinence (Morrison et al. 2002). Usually, the muscle bundle of normal bladder
is not well electrical coupled. Dense muscle arrangement allows a better of electrical coupling,
leading to tetanic contraction. This may explain enhanced spontaneous contractile activity in

this pathological condition (Steers and Facs 2002).

Impairment of central control and peripheral sensitization also contribute to OAB symptoms.
Changes in neuronal types may be a mechanism of developing urgency in OAB. For instance,
silent C-fibres that normally do not fire in the normal bladder may become active and provoke
micturition in OAB. Rats and cats with spinal cord injury have been shown to have change in
spinal micturition reflex (de Groat 1975; Mallory et al. 1989). This has been shown by systemic
injection of capsaicin which failed to inhibit the micturition reflex in normal cats, while chronic
spinal cord injury cats showed a reduction of spontaneous bladder contraction (de Groat et al.
1990). Intravesical application of selective C-fiber neurotoxin e.g., capsaicin and resiniferatoin
(RTX) alleviated OAB symptoms (Dasgupta ef al. 2000). In addition, urgency may be derived
from altered afferent threshold leading to bladder afferent hypersensitivity and recruitment of
silent nerve fibres which become activated (Steers et al. 2002). For instance, Vizzard and
colleagues have reported that there was an increase in neuronal NOS expression and this
contributes to bladder afferent hyperexcitability in chronic cyclophosphamide (CYP) bladder

irritation animals which is a model of chronic bladder pain (Vizzard et al. 1997).

The first-line treatment of neurogenic OAB are anti-muscarinic drugs e.g. Oxybutynin and
Tolterodine, which improve bladder capacity and delay an initial urge to void. These drugs,
however, have some unpleasant advert effects e.g. constipation and dry mouth (Kennelly and
Devoe 2008). Another option is chemical denervation. Using neurotoxic substances to denervate
afferent nerve fibres e.g. capsaicin, RTX, and Botulinum toxin (BTX), could alleviate bladder
unstable symptoms by preventing neurogenic inflammation derived from of
neuropeptide/mediator release. However, there is ongoing investigation and further
investigation still need to be ensure to use for OAB treatment (Fowler, 1999; Chancellor and de

Groat 1999; Schurch, 2000).
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1.9 GENERAL AIMS AND OBJECTIVES

As mentioned earlier, 5-HT has been suggested to participate in pathology of the bowel
especially in sensory functional disorders (i.e., IBS and IBD). The anatomical and functional
relationship between the bowel and the bladder raises an interesting question whether 5-HT
plays a modulatory role in regulating bladder afferent activity. In addition, there is little
information about how 5-HT and its receptor subtypes might contribute to bladder afferent
activity. Understanding the role of 5-HT on both spontaneous and mechanosensitive afferent
activity will provide additional information about its modulatory role on bladder sensory
function which is beneficial to understand mechanisms involved in bladder sensation.
Therefore, the overall aim of this thesis is to investigate the modulatory role of 5-HT on bladder
afferent firing in normal mice and in a mouse model of colon-bladder cross-sensitization. The

specific objectives are as follows;

1.) Examine 5-HT receptor expression in urothelial cells and study whether 5-HT directly

activates urothelial cells in vitro

2.) Investigate the effect of 5-HT on bladder afferent firing in both spontaneous and

mechanosensitive afferents and identify the 5-HT receptor subtype contribution

3.) Study the effect of 5-HT on bladder afferent firing in colon-bladder cross-sensitization using

a TNBS-induced colonic inflammation model

4.) Determine whether the urinary bladder could have an endogenous source of 5-HT
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CHAPTER

MATERIALS AND METHODS

2.1 ANIMALS

This study was performed in adult male mice (12-16 weeks old, 25-30 g) with C57/BL6 mice
background purchased from Charles River (Margate, UK). Mice were acclimatized for at least 7
days in the laboratory animal husbandry unit under 12:12-h light-dark cycle and had free access
to water and food. The animals were anaesthetized with isoflurane and humanely sacrificed by
cervical dislocation according to UK home office legislation regulating Schedule 1 procedures

(Scientific procedure Act 1986).

Thereafter, a midline incision was performed to expose the abdominal visceral organs. For
afferent nerve recordings, the mouse pelvic region, including the urinary bladder, kidneys,
ureter, and urethra, was immediately excised and placed in cold Krebs bicarbonate solution
(composition, mM: NaCl 118.4, NaHCO, 24.9, CaCl, 1.9, MgSO, 1.2, KH,PO, 1.2, glucose
11.7) which was bubled with 95%0,/5%CO,. For PCR, immunohistochemistry, and calcium

imaging, the bladder was excised and kept in Krebs solution as stated below.
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2.2 In vitro EXTRACELLULAR NERVE RECORDING

After killing the mice, a midline abdominal incision was performed and mice were bisected at
the L1-L2 spinal levels. The tail, hind limbs and gastrointestinal viscera were removed. Both
sides of the pelvic bone and the remaining pelvic region consisting of kidneys, ureters, testes,
urethra, and the bladder were transported to the recording chamber (Daly et al. 2014). The
preparation was continuously perfused at a rate of 5 mL minute’ with an oxygenated
(95%0,/5%CO0,) Krebs bicarbonate solution (described in the previous section) at constant

temperature at 35 °C.

Under a dissection microscope (Nikon, SMZ645), the tissue surrounding the urinary bladder
was removed without damage to the ureters and the bladder. The ureters were ligated using
suture (US7/0) to prevent back flow. The pubic symphysis was centrally cut and opened to
expose the urethra. A polythene catheter (0.28 mm) was inserted into the urethra to perfuse the
bladder with isotonic normal saline (0.9% NaCl) or pharmacological reagents using a perfusion
pump (Genie, Kent, multi-phaser TM model NE-1000) with a rate 100 pL minute . The bladder
dome was punctured at the apex with a syringe needle (BD microlance'", 19G 2”) and a two-
lumen catheter inserted. One arm of the catheter was connected to a pressure transducer
(DTXTM plus DT-XX, Becton Dickinson, Singapore) to monitor the intravesical pressure and
the other was connected to the 3 way tap to close for bladder filling or open for emptying the

bladder.

The bladder afferent nerve bundles (a mixture of pelvic and hypogastric nerves) which run from
the base of the bladder to the spinal cord were dissected from distal to the base, cut into a fine
branch and placed into a suction electrode which was attached to a Neurolog headstage (NL
100, Digitimer, Ltd, UK) and an AC amplifier (NL104) to amplify the signal (x10,000). The
multi-unit nerve signal was filtered (NL125, band pass filter), passed through the noise
eliminator (Humbug, Quest Scientific), a power 1401 analogue to digital interface, and
visualized on a computer running Spike 2 software (Version 7.1, Cambridge Electronic Design,
UK). The multi-unit afferent nerve discharge frequency was quantified using a spike processor

(Digitimer D130). The action potentials were counted from the pre-set threshold, which was set
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roughly at twice the baseline noise level. The schematic diagram and the photograph of the in

vitro afferent nerve recording set up are shown in figure 2.1 and 2.2.

Pressure transducer: record
intravesical bladder pressure

Intravesical pressure

Infusion pump

Urinary
Bladder

Afferent nerves

Outflow: closing tap allow
bladder filling

e
E\ec“od

LA e L L L
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Figure 2.1 In vitro afferent nerve recording is shown model to measure afferent nerve

activity and intravesical pressure.

1.
2.
EN
4.
5.
6.
7.
8.

Urinary bladder

Proximal urethra

Afferent nerve bundle

Right kidney

Left kidney

Right ureter

Left ureter

Recording electrode

Catheter connected to the bladder dome

. Catheter connected to the urethra
. Ground electrode

. Inflow

. Outflow

Figure 2.2 Photographs of the in vitro afferent nerve recording set up: the bladder afferent

nerve bundles and catheters positioned in the bladder dome and urethra are indicated.
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2.2.1) Experimental protocols

This part describes the general protocols used in the study. The specific details of the

experimental protocols are provided in the methods of each of the result chapters.

1.) Reproducibility of response and control of bladder distension

To evaluate the viability of the afferent nerves, the outflow tap was closed and the urinary
bladder was continuously perfused (100 pL minute”) with normal saline to allow bladder filling
until the intravesical pressure reached 50 mmHg when the outflow tap was opened to empty the
bladder. Concurrently, the afferent nerve activity was recorded. After the bladder preparation
was stabilized for 30 minutes, the bladder was distended by an intravesical infusion with normal
saline as described before. The bladder distension was repeated 3 times (10 minutes interval) to

establish reproducible bladder afferent responses before starting the experiment (Daly, 2007).

2.) Accommodation of bladder

In order to evaluate the effects of pharmacological reagents on bladder tone, the bladder was
filled with normal saline or antagonists to an intravesical pressure of 15 mmHg and the syringe
tap was closed. The preparation was stabilized for 30 minutes in order to allow the bladder to
accommodate to the change in intravesical volume before application of pharmacological

substances.

3.) Applying pharmacological agents

Intravesical application of pharmacological agents

To study the effect of a pharmacological agent on baseline afferent firing, the bladder
preparation was continuously perfused via the urethral catheter using a syringe pump with
isotonic saline (50 puL minute”) for 15 minutes to establish a baseline. This was followed by a

wash out period with normal saline perfused for 30 minutes.

In order to investigate the effects of pharmacological reagents on mechanosensitive afferent

activity, the bladder was perfused with isotonic saline or antagonist at a rate 100 pL minute” for
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30 minutes during which 3 periods of distension were performed (at 10 minutes interval). This

was followed by a 30 minute washout during which the bladder distensions were repeated.

Extraluminal application of pharmacological agents

The bladder was distended to an intravesical pressure of 15 mmHg and allowed to stabilize for
30 min. Agonists were dissolved to a pre-determined concentration in Krebs solution which was
perfused into the bath (5 mL minute'l) for 20 minutes. Thereafter, Krebs solution was perfused
for a further 30 minutes to wash out the drugs. The afferent peak firing and change in

intravesical pressure was determined and compared to a control period.

The effects of the pharmacological reagents on mechanosensitive afferent was determined using
the distension protocol described above. Following a 30 minute control period with 3
distensions, the bathing medium was switched to Krebs buffer containing drugs dissolved to a
pre-determined final concentration for a further 3 distensions before a 30 minute washout
period. The afferent response to bladder distension before, during and after drug application was

quantified.

2.2.2) Data analysis

Data were analysed either as an absolute level of afferent discharge (spike/sec) or as a
percentage change from the control. All data is expressed as mean + SEM with N representing
the number of the animals in each group.

1.) Bladder compliance

Bladder compliance is defined as a relationship between change in bladder volume and change
in bladder pressure. In this study the bladder was distended with isotonic saline to an

intravesical pressure of 0-50 mmHg and the volume was calculated from time as in equation 1.

Equation 1: Volume (uL) = Rate (uL minute”) x Time (minute)
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In this study bladder compliance is reflected by the volume infused necessary to generate a
particular intravesical pressure. An increase in volume would indicate greater compliance while

a decrease in volume would be indicative of increased detrusor tone.

2.) Single unit analysis

The afferent nerve signals recorded in this study were obtained from multi-unit nerve bundles
reflecting the firing of a number of distinct single afferent fibres. These single units could be
discriminated using the offline spike sorting function of Spike 2 software (version 7.1). Afferent
activity was sampled at 25,000 Hz. A spike template was determined from an individual spike
with a 2.5 millisecond period and composed of 60 data points. The shape of template spike was
used to analyze subsequent spikes and could be matched and colour coded. The same template

was used to analyze in all expreriments (Figure 2.3).

After a single unit “wavemark” channel had been obtained, further analysis provided details of

firing frequency that could be used in subsequent statistical analysis.
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Figure 2.3 Diagramatic representation of single unit analysis. (A) The template generated
from the tracing (ii) in B. using off-line function of Spike 2 software. (B) An example showing
an analyzed bladder afferent firing (ii) in response to pressure rise during bladder distension (i).
(iii) is the histogram showing whole nerve firing frequency of spikes passing a pre-set threshold,

which is discriminated into the individual single units in (iv).
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3.) Principal component analysis (PCA)

Principal component analysis (PCA) was performed after the wavemark analysis in order to
ensure the classified single units were sufficiently different to define as a single unit and to

demonstrate the variation in spike shapes using offline function from Spike 2 software.

PCA works by identifying the shape of individual single units based on spike shape, amplitude,
area, and slope. These analyzed data are normalized and scaled in a 3-dimensional manner and
shown as clusters of individual nerve fibres in a different colours. The extent of any overlap
between individual clusters could be examined by eye in a 3D display. Overlapping clusters

were not classified as distinct fibres.

An example of PCA is shown in figure 2.4. The six clusters of each single unit in figure 2.3
were assigned different colours and coded 01, 02, 03, 04, 05, 06. By examining the stimulus-
response to distension it was possible to classify nerve fibres as low threshold fibres (with a
threshold <15 mmHg) or high threshold (>15 mmHg) and to reveal firing profile of each single

unit in response to drugs.
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Figure 2.4 Example of principle component analysis. (A) Clusters of 6 individual nerve units
representing each template generated by Spike 2 software. (B) Wavemark of 6 units and raw

spike tracing (green).

2.2.3) Statistical analysis

Various statistical analysis were performed according to experimental design. Student’s t test,
One-Way ANOVA, and Two-Way ANOVA were considered significant at P<0.05. The post
hoc analysis was carried out where necessary. All statistical analysis and data plots were
performed using Graph Pad Prism (Version 6.00 for Windows, Graph Pad Software, San Diego

California USA, www.graphpad.com).
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2.3 ISOLATION AND CULTURE OF PRIMARY UROTHELIAL

CELLS

After cervical dislocation, the visceral organs were removed and the bladder was immediately
excised in to fresh Modified Eagle Media (MEM) (Gibco®) containing 0.7% HEPES and 1%
Antibiotic-Antimycotic (PSF) solution (Gibco®) at 37 C and transfered to a Sylgard® (Dow
Corning) coated dish. The bladder was dissected free of surrounding tissue and cut
longitudinally under a stereo microscope to expose the urothelium to the media. The tissue was
stretched and pinned. The media was removed and replaced with 2.5 mg/mL Dispase in MEM
at 37 C. The bladder was incubated in Dispase for 2 hours at room temperature in the tissue
culture hood. After the Dispase had been aspirated, the urothelium was gently scraped with a
scalpel under the stereo microscope and the cells were immediately placed in 0.5% trypsin-
EDTA (Gibco"). The solution was incubated at 37 °C for 10 minutes, and gently triturated every
a few minutes. The trypsin-EDTA was deactivated by adding pre-warm MEM with 10 % Fetal
Bovine Serum (FBS) (Gibco"). The cell suspension was centrifuged at 1500 rpm, 4 °C for 15
minutes. The solution was gently aspirated and the pellet was resuspended in pre-warmed

Keratinocyte-serum free medium (K-SFM) and centrifuged at 1500 rpm, 4 °C for 15 minutes.

For calcium imaging experiment, the cells were resuspended in K-SFM 200 pL and plated on
collagen IV (Sigma Aldrich Poole, UK) coated coverslips in a 12 wells plate and incubated in
5% CO,-95% O, at 37 °C overnight. For PCR, the cell pellet was washed by adding PBS and

centrifuged at 1000 rpm, 4 °C for 5 minutes and stored at -80 °C.

2.4 CALCIUM IMAGING

After an overnight incubation of primary urothelial cells at 37 °C, the cells were examined for
viability. Cells were incubated with 2 uM Fura 2 acetoxymethyl ester (Fura 2-AM) (Sigma-
Aldrich (Poole, UK)) for 30 minutes at 37 °C in the dark. Coverslips with cells were then sealed
on a chamber platform (Series 20, Warner Instruments, Hamden, CT, USA). Excitation lights
were generated by OptoLED light source (Cairn Research Limited, Kent, UK). Fluorescent

intensity of Fura2 was monitored and recorded using a digital camera (C4742-95 Hamamatsu
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Corporation, Sewickley, PA, USA), a Hamamatsu camera controller and a computer with

SimplePCI software (Version 6.6.0.0, Hamamatsu Corporation).

The cells were continually perfused by gravity with HEPES buffer (composition, mM: HEPES
10, NaCl 135, KCl 15, glucose 10, CaCl, 2, MgCl, 1) (1.5 mL minute’) to stabilise and remove
any excess Fura 2-AM for 30 minutes before imaging started. The cells was continuously
perfused with HEPES for 3 minutes to record the baseline. Thereafter cells were continuously
perfused with HEPES containing the pharmacological reagents for 3 minutes and then washed
again with HEPES for 15 minutes. At the end of experiment, the calcium ionophore ionomycin
(Sigma-Aldrich (Poole, UK)) (5 uM) was applied to the cells as a positive control. Only
urothelial cells that responded to ionomycin were included in the analysis. The whole

experiment was carried out in the dark and at room temperature.

Data analysis

Intracellular calcium was determined by the ratio of emission fluorescence under 340 nm and
380 nm excitation light. The response of urothelial cells to the drugs was reflected by the
change in intracellular calcium calculated as the net difference between baseline 340/380 ratio

and the peak ratio during drug application. All data were expressed as mean + SEM.

2.5 INVESTIGATION OF GENE EXPRESSION

2.5.1) RNA extraction

RNA from mouse urothelial cells and tissues i.e., dorsal root ganglion (DRG) neurons, small
intestine and brain was extracted to investigate mRNA expression. RNA purification was
performed using a RNeasy Mini Kit (QIAGEN 74104) according to manufacturer’s instructions.
The tissues up to 20 mg was disrupted and homogenized with TRIzol® reagent in 1.5 mL Pestle
and Microtube (VWR Labshop, 47747-366) using a Pestle Motor (VWR Labshop, 47747-370).
Isolated RNA was eluted in RNase-free volume 30-50 pL. The RNA concentration and quality
were determined by the Thermo Scientific NanoDrop™ 2000c spectrophotometer and the
NanoDrop 2000 software version 1.3.1 at absorbance wavelength of 260 and 280 nm. In
addition, RNA quality was determined as 260/280 nm ratio in the range of 1.8-2.0. The

extracted RNA samples were stored at -80°C.
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2.5.2) Reverse transcription

RNA samples was reverse transcribed into cDNA by High Capacity ¢cDNA Reverse
Transcription Kit with RNase Inhibitor (Applied Biosystems, 4374966) according to
manufacturer’s instructions. Reverse transcription mix was prepared in a PCR tube (25 pL) kept
on ice as shown in table 2.1. The reaction mixture was run using a thermal cycler (TECHNETC-
3000X, Stone, UK). A detail of reverse transcription programme is shown in table 2.2. The

synthesized cDNA was immediately used for PCR reaction or kept at -20 °C for storage.

Table 2.1 Component of cDNA synthesis reaction mix (for 20 pL per reaction)

Component Volume/Reaction (uL)
10x RT Buffer 2
25% ANTP Mix (100 mM) 0.8
10x RT Random Primers 2
MultiScribeTM Reverse Transcriptase 1
RNase Inhibitor 1
Nuclease-free H,0 3.2
RNA 10
Total 20

Table 2.2 Reverse transcription thermal cycle for cDNA synthesis

Step 1 Step 2 Step 3 Step 4

Temperature (°C) 25 37 85 4

Time 10 min 120 min 5 min 00
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2.5.3) Conventional reverse transcription polymerase chain reaction (RT-PCR)

mRNA expression of interested genes was examined using RT-PCR. PCR reactions were
prepared using Gotaq® Green Master Mix (Promega M7121) according to manufacturer’s

instructions as shown in table 2.3.

Table 2.3 Components of RT-PCR reaction (for 25 pL per reaction)

Component Volume/Reaction (uL)
GoTaq® Green master mix 12.5
Primers Forward 1.25
Primers Forward 1.25
cDNA (for 50 ng RNA)

Nuclease-free H,0O

Adjust volume to 25

Total

25

All the steps were performed on ice and avoiding DNase contamination. After mixing and spin
down, the reaction mixture was incubated in a thermal cycler machine in three steps of the PCR
cycle. The thermal changes were continued for 36 cycles The PCR product was either directly

studied or kept at -20 °C.

The PCR product (10 uL) and DNA ladder (5 pL) were separated by 1.5% gel electrophoresis
under electric field of 100 mA and 120 volts from power supply (MINIS-150VS, Fisher

Scientific) for 50 minutes.

The gel was visualized under UV light by a UV transilluminator (Gel Doc™ EZ Imager, BIO-

RAD, UK) and the ImageLab software. The gel was photographed to determine the expression

of the interested genes. The details of genes and primers are described in subsequent chapters.
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2.5.4) Quantitative real-time PCR

The quantification of mRNA expression of genes of interest was determined using TaqgMan
Gene Expression Master Mix (Applied Biosystems 4374657) according to the manufacturer’s
instruction as shown in table 2.4. The reaction was prepared on ice and mixed in Hard-Shell®
Thin-Wall 96-Well Skirted PCR Plates (BIO-RAD, HSP-9665). Prior to running the reactions,
the plates were covered with MicroAmpTM Optical Adhesive Film for 96-Well Plates (Applied
Biosystems, 43111971) and centrifuged briefly to spin down the contents and eliminate any air
bubbles from the solutions. The reaction for each sample and gene was run in duplicate. DNase
free water was used to replace cDNA as blank for each gene and plate. PCR reactions were
performed in BIO-RAD CFX96 TouchTM Real-time system (C1000 TouchTM Thermal
Cycler, Bio-Rad Laboratories Ltd. Hercules, USA) with the thermal cycling programme as

summarized in table 2.5.

Table 2.4 Components of quantitative real-time PCR reaction (for 20 ul per reaction).

Component Volume/Reaction (ul)
TagMan Gene Expression Master Mix 10
Probe 1
cDNA 1
Nuclease-free H,0O 8
Total 20

Table 2.5 Thermal cycle of real-time PCR used in this study.

AmpliTaq Gold®,
UDG incubation PCR
Step UP Enzyme Activation
Hold Hold Cycle (40 Cycles)
Time 2 minutes 10 minutes Denature Anneal/Extend
Temp 50 °C 95 °C 15 seconds 1 minute
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Data analysis

Cycle threshold (Ct) refers to the number of the cycle required to reach the point that a specific
PCR product is amplified in a linear way, and was determined for each of the genes of interest.
Higher Ct value indicated lower levels of mRNA expression. The level of mRNA expression of
genes of interest was determined relative to the house keeping gene, B-actin. The calculation

was demonstrated as follows:

Equation 2: Act = Ct tested gene — Ct housekeeping gene

Fold change refers to the relative change of gene expression between different samples and was

calculated as follows:

ACtsample 1 = Ct tested gene in sample 1 — Ct housekeeping gene in sample 1
ACtsample 2 = Ct tested gene in sample 2 — Ct housekeeping gene in sample 2
AAct = ACtsample 1 — ACt sample 2

Fold change = AN

Fold change was used to indicate change of gene expression in CVH animals compared to

healthy control animals.
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2.6 IMMUNOHISTOCHEMISTRY

2.6.1) Tissue fixation and cryo-embeding

The jejunum and bladder were collected and cleaned in phosphate buffer (0.01M PBS, made
from tablet, Sigma P4417), and then the whole tissue was fixed in 4% paraformaldehyde (PFA)
at 4 °C overnight. The tissue was cryoprotected through a series of sucrose gradients (10, 15,
and 30%), overnight in each solution or until the tissue sunk to the bottom of the vial.
Thereafter, the tissue was placed into moulds filled with optimal cutting temperature compound
(OCT, Bright Instrument Company, 53581), and bladder and jejunum orientated in a
longitudinal and transverse direction respectively. The moulds were kept on dry ice until OCT

was fully frozen and stored at -80°C (Figure 2.5).

ER;,,%

N

Fixed in 4% paraformaldehyde, overnight (4 -C)

4 (
_ =) )

Sucrose Sucrose Sucrose
10% 15% 30%

1

‘ Embedded in optimal cutting temperature compound
(OCT) on dry ice and kept at-80 °C

Figure 2.5 Diagram shows bladder and jejunum fixation and cryo-embeding processes.

2.6.2) Cryo-sectioning

The OCT blocks containing tissues were sectioned in a cryostat (Bright Instrument, OTF5000,
Huntingdon, UK) at 15 um. The cryostat was set up at -20°C for specimen temperature and -

15°C for the chamber. The whole tissue was sectioned and labelled in order and stored at -20°C.
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2.6.3) Immunostaining

The sectioned slides were left at room temperature for 15 minutes before placing in a closed
humid box. The slides were washed with PBS for 5 minutes (3 times) to remove OCT. Prior the
staining, sections were quenched with 50 mM NH,CI (VMR International, A893078) for 20
minutes and permeabilized with 0.1% Triton X for 30 minutes. To block non-specific staining,
the slides were incubated with blocking solution for 20 minutes. The blocking solution was
made from 5% normal serum of the species in which the secondary antibody was raised. The
primary antibody was applied to the slides and covered with parafilm. For each experiment, a
negative control was performed, in which the tissue was incubated with blocking solution
instead of the primary antibody. The slides was incubated with the antibody at 4 °C overnight.
Prior to the application of secondary antibody, slides were rinsed 3 times with PBS to wash any
excess primary antibody. Following this, slides were incubated with fluorophores conjugated
secondary antibodies for 2 hours at room temperature. Slides were mounted with coverslips
using VECTASHIELD Mounting Medium with DAPI (Vector, H1200). The slides were either

imaged immediately or kept at 4 °C for later analysis.

2.6.4) Microscopy and image analysis

The stained sections were observed under an Olympus BX51 microscope (Tokyo, Japan).
Images were captured using an Olympus ColorView II digital camera. The images were
displayed by ImagelJ software (1.43u, National Institutes of Health, USA). The light wavelength
for excitation and emission of DAPI, FITC, and Fluor 594 are 358/461, 490/525, and 590/617,

respectively.

2.7 PHARMACOLOGICAL AGENTS AND SOLUTIONS

The pharmacological reagents used in this study are listed in table 2.6. All the reagents were
dissolved in distilled water (dH,0) and Krebs solution where possible or DMSO (Sigma®) to
make a stock solution. The regents were either diluted in isotonic normal saline (for intraluminal
application) or Krebs solution (for extraluminal application) to get the working concentration.

Details of the concentration used are described in the results sections.
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Compounds Main action Company Catalogue | Solvent to
number | make stock
solution
1 | 5-Hydroxytryptamine | 5-HT receptor | Sigma H9523 dH,O
(5-HT) agonist
2 | Granisetrone 5-HT3 LKT G6802 dH,O
hydrochoride receptor Laboratories
antagonist
3 | 5-Methoxytryptamine | Full agonist for | Sigma M6628 dH,O0
(5-MT) 5-HT receptor
except 5-HT3
4 | 2-Methy5- 5-HT3 Tocris/Bioscience | 0558 dH,O0
hydroxytrptamine receptors
(2-Me-5-HT) agonist
5 | ML-9 Myosin light Cayman 10010236 DMSO
chain kinase Chemical
inhibitor
6 | Y-27632 Rho kinase Chemdea CDO0141 dH,O
inhibitor
7 | Citalopram Selective 5-HT | LKT C3477 dH,O
hydrobromide reuptake Laboratories
inhibitor
8 | L-NG-Nitroarginine Nitric oxide Sigma N5751 dH,O0
methyl ester synthase
(L-NAME) inhibitor
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CHAPTER

EXPRESSION OF 5-HT RECEPTORS AND THE
FUNCTIONAL ROLE OF 5-HT IN

MOUSE UROTHELIUM

3.1 INTRODUCTION

A significant role for urothelial cells in modulating bladder function has recently gained
support. Several studies have addressed the idea that urothelial cells are not only a passive
barrier to protect the urinary bladder from ions and solutes in urine, but also act as sensory
epithelium. Urothelial cells express an array of ion channels and receptors on their cell surface
which allows the cells to detect mechanical, chemical, and thermal stimuli and transduce these
signals by releasing an array of mediators (Apodaca 2004; Birder and Andersson 2013; Merrill
et al. 2016). The mediators released from the urothelial cells could either exert autocrine action
to bind to their receptors expressed on urothelial cells themselves or act in a paracrine manner
binding to receptors expressed on nearby cells, including smooth muscle cells, suburothelial
nerve plexuses and ICC (Birder, 2011; Birder and Andersson 2013; Merrill et al. 2016; Varley

et al. 2005).

A recent study has reported a direct regulatory role of serotonergic signalling in mouse
urothelium. Matsumoto-Miyai and co-workers highlight that 5-HT could modulate bladder
distention-induced ATP release from urothelial cells. Using the specific 5-HT1D antagonist,
GR-127935 and 5-HT4 antagonist, SB204070, they showed that 5-HT1D receptor inhibits
distension-induced ATP release, whereas, 5-HT4 receptor facilitates the ATP released. They
also examined mRNA expression of all 5-HT subtypes in mouse urothelial cells. 5-HT1D, 2A,
4, and 6 were detected in the urothelial cells. Moreover, 5-HT1A, 1B, 1D, 2A, 2B, 2C, 3A, 4,

and 7 have been reported in urothelial-denuded tissues (Matsumoto-Miyai et al. 2016).
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In contrast, mRNA expression of 5-HT3A and 3B receptors has been reported in the bladder
mucosa (Chetty et al. 2007). There is much less information of 5-HT receptor expression in
human urothelial cells. Only 5-HT2A receptor has been found in the human urothelium
(Ochodnick et al. 2012). This reported expression of 5-HT receptors may suggest that 5-HT

may exert a sensory role in urothelial cells.

5-HT receptors have also been demonstrated in the detrusor smooth muscle cells and DRG
neurons. Unpublished data of Matsumoto-Miyai et al. (2015) shows that 5-HT1A, 1B, 1D, 2A,
2B, 2C, 3A, 3B, 4, and 7 are expressed in mouse detrusor smooth muscle cells. Nicholson and
colleagues (2003) studied mRNA expression of 5-HT receptors by in situ hybridisation and
found that 5-HT1B, 1D, 2A, 2B, 2B, 3A, 3B, and 4 are expressed in rat DRG neurons
(Nicholson et al. 2003). A summary of 5-HT receptor expression in urothelial cells, detrusor

smooth muscles, and DRG neurons is shown in table 3.1

5-HT receptors have also been demonstrated to play a sensory role in other organs. In the
gastrointestinal tract, 5S-HT1A, 3, and 4 are detected in myenteric and submucosal neurons, ICC,
and enteroendocrine cells using immunohistochemistry (Glatzle et al. 2002). Mechanical
stimulation of mucosa evoke release of 5-HT which further activates 5-HT4 receptors in human
sensory CGRP neurons and 5-HT3 and 5-HT4 in guinea pig colon, which are involved in the
initiation of the peristaltic reflex (Foxx-Orenstein et al. 1996). 5-HT4 receptor activation has
been shown to inhibit visceral hypersensitivity in colorectum (Greenwood-Van Meerveld et al.
2006; Hoffman et al. 2012) and gastric distension-induced visceral pain (Seto et al. 2011). In
addition, 5-HT4 receptors are also expressed in the epithelial cells of other hollow organs
including ovary (Henriksen et al. 2012), airway (Murphy et al. 2013), and in the mucosa of the

esophagus (Yang et al. 2012).
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Table 3.1 5-HT receptors expression profile in bladder afferent pathway (modified from

Matsumoto-Miyai et al. 2015)

5-HT Urothelium | Detrusor muscle | DRG neurons | Urothelium Whole bladder

subtypes (mouse)zl (mouse)b (rat) ‘ (human)c (rat)d
5-HT1A - + n.d. = =
5-HT-1B - ++ ~ n.d. n.d.
5-HT1D ++ ++ ~ n.d. n.d.
5-HT2A + ++ ~ + ++
5-HT2B - + N n.d. ++
5-HT2C - ++ n.d. n.d. ++
5-HT3A e ++ ~ n.d. =
5-HT3B + + N n.d. n.d.
5-HT4 ++ + ~ n.d. ++
5-HTS5A - - n.d. n.d. -
5-HT6 = - n.d. n.d. =
5-HT7 - + n.d. n.d. ++

+ moderate expressions, ++ strong expression, - negative results, both positive and negative

results, n.d. not determined

! Matsumoto-Miyai et al. 2016

b Unpublished data of Matsumoto-Miyai et al. 2015
© Ochodnick et al. 2012

* Sakai et al. 2013

¢ Nicholson et al. 2003

* Chetty et al. 2007

Taken together, the above evidence suggests the important of 5-HT receptors in bladder sensory
function. However, especially in the urothelial cells, the expression profile of the receptors are
still contradictory. It is also interesting to investigate further whether 5-HT receptors expressed
in the urothelial cells could directly respond to 5-HT. Therefore, this chapter aimed to examine
mRNA expression profile of 5-HT receptor subtypes in urothelial cells using RT-PCR and

examined the direct effect of 5-HT on mouse urothelial cells by calcium imaging.
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3.2 EXPERIMENTAL PROTOCOL AND ANALYSIS

mRNA expression of 5-HT receptors in mouse urothelial cells

As described in section 2.5, RNA was extracted from mouse urothelial cells and mRNA
expression of all subtypes of all 5-HT receptors was determined by RT-PCR (N=3). The list of
primers are summarised in table 3.2. B-actin was used as a housekeeping gene and loading
control. cDNA sample from mouse DRG was used as a positive control for 5-HT1B, 1D, 1F,
2A, 2B, 2C, 3A, 3B, 4, and 7. cDNA sample from mouse brain was used as a positive control
for 5-HT1A, 5A, 5B, and 6. For negative control reactions distilled water was used instead of
cDNA samples. The mRNA expression was defined to be positive if it was consistent for all

three urothelial samples.

DNA sequencing of 5-HT receptors subtypes expressed in mouse urothelial cells

To confirm nucleotide sequences of 5-HT receptors expressed in mouse urothelial cells, PCR
product of 5-HT 1A, 1B, 1D, 2A, 2B, 4, 6, and 7 was amplified and extracted from the gels. The
extracted DNA sample of each gene was sent to a sequencing service (Faculty of Medicine, the
University of Sheffield) to determine the nucleotide sequences. The obtained sequences for each
gene were aligned with the expected PCR product and the homology was determined by
Chromas Lite 2.1.1 and Clone manager 9.0 software. The percentage match of the PCR product
sequences to the genes of 5-HT receptors subtypes was determined to confirm the reliability of

the PCR results.

Effect of 5-HT and granisetron on mouse urothelial cells

The direct effect of 5S-HT on urothelial cells was investigated using calcium imaging, which
represents changes in intracellular Ca’  concentration ([Ca’']i). Detailed calcium imaging
protocols and an explanation of the methodology are described in chapter 2 (section 2.4). The
methods of urothelial preparation are described in section 2.3. The experimental protocol was
summarised in figure 3.1. Following a control period of HEPES buffer perfusion for 3 minutes,
5-HT (100 pM) was constantly perfused into the chamber for 3 minutes. Thereafter the
urothelial cells were washed with HEPES buffer for 15 minutes. Finally, ionomycin (5 pM) was

applied into the chamber as a positive control to check cell viability.
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In a subset of experiments cells were pre-incubated with granisetron (1 uM), a selective 5-HT3
antagonist before 5-HT application. In order to determine the level of urothelial cells response
to 5-HT, we compared 5-HT response to ATP. ATP diluted in HEPES (10 puM) was perfused on
to cells for 90 seconds. After a wash out period of 15 minutes, the cells were perfused with

ionomycin (5 uM) (Figure 3.1).

Fura-2 is excited at 340 nm and 380 nm of light, and emitted at 510 nm. Intracellular Ca”'
change is indicated by the fluorescent intensity ratio at wavelength 340 and 380 nm. The
background intensity of each cell was subtracted from the response to obtain a mean change in
fluorescence intensity (ARF). The maximal response during 5-HT and ATP application was
calculated as percentages comparing to maximal response to ionomycin and fractional change
from baseline ratio of 340/380, which was calculated from area under the curve in equation 3

using Graph Pad Prism software. Data were expressed as mean + SEM.

Equation 3: Fractional change = (peak response value — baseline value)/baseline value
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Chapter 3

Product
Positive
Receptor Accession Primer sequences size
control

subtypes number (bps)

5-HT1A NM_ 008308 FW 5 TAAGAACTTCCCGCTCCAGT 3’ 103 Brain
RW 5> AGAAATGCAAGGGGATCTCC 3’

5-HT1B NM_010482 FW 5 CCAACACACAATAAATGCTCCT?’ 135 DRG
RW 5> CCAAGTCAAAGTGCGAGTCT 3’

5-HT1D NM_008309 Fw S’TACAAACACCCCTACTAAACGC 3’ 310 DRG
Rw 5’ ATGAGTGTTCAGCGTTGGTT 3’

5-HT1F NM._008310 Fw 5’GACCAGAGCCCCTTAGCTTC 3’ 340 DRG
Rw 5’TGCAGCTTCCGAGTCACAAT 3’

5-HT2A NM_ 172812 FW 5 CATCTCCCTGGACCGCTAC 3’ 150 DRG
RW 5 TCATCCTGTAGCCCGAAGAC 3’

5-HT2B XM 006529146 | FW 5 CCGATTGCCCTCTTGACAAT 3’ 120 DRG
RW 5> GGCACAGAGATGCATGATGG 3’

5-HT2C NM_008312 FW 5 TGAAACTGGTTGCTTAAAACTGA 3’ 126 DRG
RW 5> AGCTGCTACTGGACTTATGGA 3’

5-HT3A NM_013561 FW 5> CCACCTTCCAAGCCAACAAG 3’ 128 DRG
RW 5’ CTCCCTTGGTGGTGGAAGAG 3’

5-HT3B NM_020274 FW 5’ TGATTCTTCTGTGGTCCTGC 3° 154 DRG
RW 5 GCCTCAGCCCAGTTGTAAAC 3°

5-HT4 NM_008313 FW 5> ATGTTCTGCCTGGTCCGG 3’ 162 DRG
RW 5 GCCTCCCAACATTAATGCGA 3’

5-HT5A NM_008314 FW 5> AAGACCAACAGCGTCTCCC 3’ 124 brain
RW 5> TCCACGTATCCCCTTCTGTC 3’

5-HT5B NM_010433 Fw 5’TCTCCTTCGACGTGTTGTGC 3’ 469 brain
Rw 5’GAGTCTCCGCTTGTCTGGAA 3’

5-HT6 NM_021358 Fw 5’TGGGCAAAGCTCGAACATCT 3’ 386 brain
Rw 5’GTCACATACGGCCTGAGCTAT 3’

5-HT7 NM_008315 Fw 5’AAGTTCTCAGGCTTCCCACG 3’ 485 DRG
Rw 5’CAGTTTTGTAGCACAAACTCGCT 3’
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A.
HEPES / HEPES + HEPES / HEPES +
granisetron (1 uM)  5-HT (100 pM) granisetron (1 pM) Tonomycin (5 pM)
| | J \ J\ J
| | | !
3 min 3 min 15 min 1 min
B.
5-HT (100 pM) HEPES ATP (10 pM) HEPES Ionomycin (5 pM)
[ A I\ N L J
| | [ I T
3 min 15 min 1.5 min 15 min 1 min

Figure 3.1 Protocols of calcium imaging experiment used in this study. (A) Protocol used to
investigate the effect of 5-HT on intracellular Ca”' change in mouse urothelial cells. (B)
Protocol used to investigate the effect of 5-HT and ATP on intracellular Ca”’ change in mouse

urothelial cells.
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3.3 RESULTS: mRNA EXPRESSION OF 5-HT RECEPTORS IN

MOUSE UROTHELIUM

The bands of PCR products from RT-PCR are shown in figure 3.2. mRNA expression 5-HT1A,
1B, 1D, 2A, 2B, 4, 6, and 7 was detected in mouse urothelial cells (N=3) but not 5-HT 1F, 2C,

3A, 3B, 5A, and 5B\

DNA sequencing of 5-HT receptor subtypes expressed in mouse urothelial cells

The percentage match of the PCR product sequences to the genes of 5-HT receptors subtypes
was between 96-100% confirming the validity of the primers. mRNA expression of each

receptor subtype in mouse urothelial cells (Table 3.3).
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Positive Negative

Urothelial cells (N=3) control control

5-HT1A

5-HT1B

5-HT1D

5-HT1F

5-HT2A

5-HT2B

5-HT2C

5-HT3A

5-HT3B

5-HT4

5-HTSA

5-HTSB

5-HT6

5-HT7

B-actin

Figure 3.2 mRNA expression of 5-HT receptor subtypes in mouse urothelial cells. 5-HT1A,
1B, 1D, 2A, 2B, 4, 6, 7 but not 5-HT 1F, 2C, 3A, 3B, 5A 5B were found in mouse urothelial
cells. Urothelial cells for three mice were collected and mRNA expression was determined. -
actin was used as a housekeeping gene and either brain or DRG neurons was used as positive
control. Negative control was similar PCR reaction to others but there was no cDNA in the

reactions (N=3).

78



Chapter 3

Table 3.3 Percent match between PCR product sequences of 5-HT receptors subtypes and

the sequences from the database

5-HT receptors subtypes Percent matches
5-HT1A 100
5-HT1B 98
5-HT1D 99
5-HT2A 96
5-HT2B 96
5-HT4 100
5-HT6 98
5-HT7 100

3.4 RESULTS: EFFECTS OF 5-HT ON MOUSE UROTHELIAL

CELLS

Since many 5-HT receptor subtypes were found in mouse urothelial cells at gene expression
level, it was of interest to investigate whether the expressed 5-HT receptors directly exert their
functional response to 5-HT. The response in urothelial cells was compared between 5-HT (100

uM), 5-HT with pre-incubation of granisetron (1 uM), and ATP (10 uM).

A representative image of cultured urothelial cells and sample trace of calcium imaging in
response to 5S-HT are shown in figure 3.3. 5-HT triggered an increase of intracellular Ca”" (Ratio
340/380). In addition, there was no difference in relative fluorescent ratio between 5-HT and 5-
HT with pre-incubation of granisetron (5-HT, 57.11 + 2.68% vs. granisetron+5-HT, 63.20 +
1.17%) (Figure 3.4A), which is consistent with analysis of determining fractional change from
baseline of ratio 340/380 (5-HT, 0.22 + 0.01 vs. granisetron+5-HT, 0.26 + 0.02) (Figure 3.4B).
Percentages of responding cells to 5-HT and granisetron pre-incubation was also not different
(5-HT, 65.14 + 10.71% vs. granisetron+5-HT, 70.31 + 10.51%) (Figure 3.4C). These results
indicate that 5-HT could directly bind to non-5-HT3 receptors expressed in the urothelium and

. . .. 2+
trigger an increase in intracellular Ca™ level.
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Figure 3.3 Calcium imaging of mouse urothelial cells. (A) a representative image showed
urothelial cells labelled by Fura-2. Green and orange colours are software-generated colours to
discriminate difference of intracellular Ca’” concentration (B) Sample traces showing typical
urothelial cell response to 5-HT (100 pM) and ionomycin (5 pM) in calcium imaging
experiment. (C) Mean + SEM change in intracellular Ca”" levels of urothelial cells response to

5-HT (100 pM) from a single experiment (n=15).
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Figure 3.4 5-HT stimulated mouse urothelial cells through non-5-HT3 receptors. (A)
Relative increase of intracellular Ca’" (Ratio 340/380) in response to 5-HT and granisetron pre-
incubation (B) Fractional change from baseline of ratio 340/380 in response to 5-HT and
granisetron pre-incubation (C) Percentages of responding cells to 5-HT after pre-incubation of
granisetron, paired Student’s t-test, (5-HT, N=6, n=423 vs. granisetron+5-HT, N=5, n=163),

unpaired Student’s t-test. N refers to the number of animal and n indicates number of cells.

In addition, pattern and percentages of cell responses to 5-HT and ATP was determined. A
representative trace is shown in figure 3.5. 5-HT and 5-HT with granisetron pre-incubation
triggered an increase in relative fluorescence ratio less than ATP (5-HT, 57.11 + 2.68%,
granisetron+5-HT, 63.20 £+ 1.17% vs. ATP, 89.69+ 3.69%) (Figure 3.6A), which is consistent
with analysis of determining fractional change from baseline of ratio 340/380 (5-HT, 0.22 +
0.01 vs. granisetron+5-HT, 0.26 + 0.02, ATP 0.54 + 0.02) (Figure 3.6B). Interestingly, time to
peak response of 5-HT was significantly longer than ATP (5-HT, 225 + 21.19 sec, ATP, 92.29 +
16.07 sec) (Figure 3.6C). The total percentage of cells responding to ATP was 96.5%. 44.8% of

cells responded to both 5-HT and ATP. 3.5% of the cells responded to only 5-HT (Figure 3.6D).
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Figure 3.5 Urothelial cell response to 5-HT was lesser than ATP. (A) Sample traces showing
typical urothelial cell response to 5-HT (100 uM), ATP (10 uM) and ionomycin (5 uM) (B)
Mean + SEM change in intracellular Ca”" levels of urothelial cells response to 5-HT, ATP (10

uM) and ionomycin (5 uM from a single experiment (n=12).
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Figure 3.6 Urothelial cell Ca” responses to 5-HT were reduced relative to ATP. (A)
Relative increase in intracellular Ca’’ (Ratio 340/380) in response to 5-HT, 5-HT plus
granisetron, and ATP (B) Fractional change from baseline of ratio 340/380 in response to 5-HT,
5-HT+granisetron and ATP (One-way ANOVA with Tukey multiple comparison, ***P<0.001,
N=6, 5, 3 respectively) (C) Time to peak response to 5-HT and ATP of the responding cells
(***P<0.001, paired Student’s t-test) (D) Proportion of urotheial cells response to 5-HT, ATP,
and both 5-HT and ATP (N=3, n=88). N refers to the number of animal and n indicates number

of cells.
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3.5 DISCUSSION

The main findings in this chapter are
1.) mRNA of 5-HT 1A, 1B, 1D, 2A, 2B, 4, 6, and 7 but not 5-HT 1F, 2C, 3A, 3B, 5A, and
5B were expressed in mouse urothelial cells.
2.) 5-HT directly activated mouse urothelial cells by a mechanism that is not blocked by

granisetron and therefore it is unlikely to be 5-HT3 mediated.

5-HT3 receptors are not expressed on mouse urothelial cells.

In this study we found that 5-HT 1A, 1B, 1D, 2A, 2B, 4, 6, and 7 mRNA, which are all G-
protein coupled receptors, were detected in mouse urothelial cells. This correlated to the study
of Matsumoto-Miyai and co-workers (2016), which reported mRNA expression profile in
urothelium and urothelium-denuded bladder in mice using RT-PCR. The summarised table
comparing 5-HT receptor expression in this study and Matsumoto-Miyai et al. 2016 is shown in

table 3.4.

In the urothelium, 5-HT1D and 5-HT4 receptors are strongly expressed, whereas 5-HT2A and
5-HT6 show weak expression levels. A variety of 5-HT receptor subtypes (5-HT 1A, 1B, 1D,
2A, 2B, 2C, 3A, 4, and 7) were also detected in urothelium-denuded bladder (Matsumoto-Miyai
et al. 2016). We could also detect 5-HT1D and 5-HT4 subtypes in the urothelial cells, however,

we found broader types of the receptors in urothelial cells.

The partial contradiction in PCR result compared to the study by Matsumoto-Miyai and
colleagues could be derived from using different primers. Different sets of primers and PCR
conditions possibly contribute to a different efficiency to detect and amplify genes. The method
used to isolate urothelial cells could also be a reason that we did not detect 5-HT3 receptors in
urothelial cells as reported in the study by Chetty and colleagues. The present study determined
the expression profile only in the urothelial cells, while in Chetty’s study mucosa tissues include
lamina propria which could contain other cells expressing 5-HT3 receptors. Another possibility

that we could not detect 5-HT3 receptors is the level of 5-HT3 receptors expression in urothelial
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cells is very low relative to the other subtypes. However, all the PCR products of detected 5-HT
receptors were checked by DNA sequencing and all genes showed a high percentage matching
(96-100%) to the original sequences, suggesting that the designed primers are efficient and the

detected 5-HT receptor results were valid.

Table 3.4 Summary table of 5-HT receptor subtypes mRNA expression in mouse

urothelial cells in this study compared to Matsumoto-Miyai et al. 2016.

Urothelium Urothelium
5-HT subtypes

(Mitamamoto et al. 2016) (This study)
5-HTI1A = +
5-HT-1B - +
5-HT1D ++ +
5-HT2A + +
5-HT2B = +
5-HT2C - -
5-HT3A +/- 5
5-HT3B + -
5-HT4 ++ +
5-HT5A - -
5-HT5B ? -
5-HT6 - +
5-HT7 - +

One potential concern of this study is that the collected samples might contain non-urothelial
cells. The contamination of non-urothelial cells was previously detected using gene markers of
certain cell types such as vimentin for myofibroblasts (Drake et al. 2006), c¢-Kit for ICC
(Davidson and McCloskey 2005), and desmin for smooth muscle cells (Council and Hameed
2009). However, the technique used to collect the urothelial cells in this study is a standard
method which is also used in other studies (Zeitz et al. 2002; Daly et al. 2014; Nocchi et al.

2014; Matsumoto-Miyai ef al. 2016). As described in chapter 2 (section 2.3), the urothelial cells
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collection was performed gently with concern during cell scraping steps to avoid a

contamination of suburothelial cells and smooth muscle cells.

A key finding in this investigation is that there was no ligand-gated 5-HT3 receptors expressed
in mouse urothelial cells. Mitsomoto-Miyai and co-workers also reported an absence of 5-HT3
receptors expressed in the urothelial cells, but present in the rest of the bladder (Matsumoto-
Miyai et al. 2016), which could be the detrusor smooth muscle (Chetty ef al. 2007). In addition
to the detrusor muscle, 5-HT3 receptors have been reported in mucosal layers in mouse bladder
(Chetty et al. 2007). Apart from the urothelial layers, the suburothelial layers which contains
several types of neuronal and non-neuronal cells i.e., fibroblast-like cells, ICC, blood vessels,
and the nerve endings (Birder 2011). Kidd and co-workers reported 5-HT3 receptor expression
in afferent terminals within spinal dorsal laminae of rats (Kidd et al. 1993). Moreover, 5-HT3
receptor expression has been reported in ICC in intestine where it plays a role in enhancing
pacemaker activity (Liu ef al. 2011). It is possible that the other candidate cells that expressed
5-HT3 receptors in suburothelial layers could be efferent and/or afferent nerve terminals and
ICC. ICC lining in the lamina propria and the detrusor muscle layers (Davidson and McCloskey
2005) integrate sensory information from the urothelial cells to the detrusor smooth muscle and

also modulate spontaneous activity of the detrusor muscles (McCloskey, 2010).

5-HT directly stimulated non-5-HT3 receptors in mouse urothelial cells.

This is the first study to demonstrate that 5-HT directly triggered an increase in intracellular
Ca”" level in the urothelial cells. Granisetron had no effect on urothelial responses to 5-HT. This
result supports our RT-PCR data, which suggesting that there are no 5-HT3 receptors expressed
in mouse urothelial cells. 5-HT receptor candidates which might play a role in triggers
intracellular Ca’ could be 5-HT1A, 1B, 1D, 2A, 2B, 4, 6, and 7. However, some of these
receptors exert different transduction pathways. Only 5-HT 2A and 2B are reported to directly
augment intracellular Ca’ via coupling to Gq/11 protein and increase IP, level, whereas 5-HT4,
6, and 7 are reported to couple with Gs protein and further increase cAMP level. 5-HT1A, 1B,

and 1D are reported to couple to Gi/o, which contributes to decrease in cAMP level (
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Matsumoto-Miyai et al. 2015). This suggests that more than one signal transduction pathways

may be involved in 5-HT mediated an increase in intracellular Ca”' in the urothelial cells.

It was clearly showed in the sample tracing that a different pattern of the response has been
observed and the majority of 5-HT responded cells (~97%, 37 out of 38 cells), also responded to
ATP. Therefore the possibility that 5-HT signalling may also couple to other pathways cannot
be excluded. A recent study has established that 5-HT4 receptor play a role in facilitating
distension-induced ATP release from mouse urothelium (Matsumoto-Miyai et al. 2016). The 5-
HT stimulated increase in intracellular Ca’ observed in the present study could possibly be due

to ATP release which further acts on P2X receptors expressed on the urothelial cells.

However, our investigation clearly showed that the pattern and time to peak response between
5-HT and ATP was totally different. 5-HT took longer to get the maximum intracellular Ca”'
response, whereas the urothelial responded to ATP was more rapid and showed sharp peak
response. This different phenotypes of the response is correlated to the characteristic of non-5-
HT3 receptors which couple through G-protein pathway and require time to activate second
messenger pathway in order to release intracellular Ca”". In contrast, ATP could directly

activated ionotropic P2X receptors and rapidly trigger Ca”'influx (North, 2002).

The heterogeneity of the urothelial cells could contribute to heterogeneity of the pattern of cell
response. The mix of different populations of urothelial cell subtypes (umbrella cells,
intermediate cells, and basal cells) (Apodaca, 2004; Lewis, 2000) may have different 5-HT
receptor distribution. Therefore, this might be a reason that some urothelial cells failed to

respond to 5-HT or showed only small increases in intracellular Ca”’.

Taken together, these data demonstrated that various 5-HT receptors are expressed on the
mouse urothelium and could exert a functional response to mediate intracellular Ca’' increase.
The striking finding is relevant to the next chapter is the absence of 5-HT3 receptor expression
and the failure of granisetron to attenuate the response to 5-HT in mouse urothelial cells. The
direct modulatory role of 5-HT in urothelial cells could play roles in sensory functions of mouse

urinary bladder.
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CHAPTER

EFFECT OF 5-HT ON BASELINE AND
MECHANOSENSITIVE BLADDER

AFFERENT FIRING

4.1 INTRODUCTION

Activation of afferent nerves is the first step to send sensory information along the afferent
pathway in order to control bladder function. Hyperexcitability of bladder afferents is related to
bladder symptoms i.e. pain, urgency, and frequency (Yoshimura et al. 2003). As described in
chapter 3, various subtypes of 5-HT receptors are expressed in urothelial cells, suggesting 5-HT
could play roles in sensory function of the urinary bladder. This chapter addresses the functional

role of 5-HT on bladder afferent firing.

All 14 subtypes of 5-HT receptors have been reported to exert regulatory function on the
bladder as summarized in table 4.1. 5-HT mediates a different role on bladder function at
urothelium, efferent nerve terminals, detrusor muscle, and possibly at the afferent terminals. A
number of studies have addressed the peripheral actions of 5-HT on bladder functions as
depicted in figure 4.1. Matsumoto-Miyai and co-workers (2016) have addressed regulatory role
of 5-HT on ATP release from mouse urothelium during urine storage phase. 5-HT has an
inhibitory role in distension-induced ATP release mainly via 5-HT1D receptor, whereas 5-HT4

facilitates the release of ATP at earlier stage (Matsumoto-Miyai et al. 2016).

88



Chapter 4

Table 4.1 Transduction pathways and bladder effect of 5-HT receptor subtypes (adapted

from Matsumoto-Miyai et al. 2015)

Autonomic excitatory

5-HT Transduction | Smooth muscle
nerve terminals Urothelium Central pathway
subtypes pathway (Postjunctional)
(Pre-junctional)
* Micturition reflex and
external urethral sphincter
(EUS) (cat);
? Micturition reflex and tonic
EUS activity
¢ Cholinergic (spinal)/bursting EUS
5-HT1A Gi/o cAMP l Contraction transmission activity (supraspinal) (rat)
5-HT-1B | Gi/o cAMP l * Rhythmic bladder activity
Gilo cAMP {, v ATP
5-HT1D release
Gq/11 1P, ?, ?Neurogenic
[Cap]i ? contraction; ?Micturition reflex and EUS
5-HT2A Contraction TPurinergic transmission activity
Ga/11 1,4,
5-HT2B [Cab]i T Contraction
Gq/11 1P, ?, ¢ Micturition reflex
5-HT2C [Cap]iT Contraction TNeurogenic contraction
Ligand-gated fNeurogenic
cation contraction;
5-HT3A | channel TCholinergic
Contraction o
Ligand-gated transmission
cation
5-HT3B channel
Gs cAMP T T Neurogenic T ATP
contraction; release
? Cholinergic
transmission (human)/
purinergic (guinea pig)
5-HT4 transmission
5-HT5A Gi/o cAMP ¢
sHT6 | Gs cAMP 4
Gs cAMP T ?Neurogenic
Relaxation contraction; T Micturition reflex
(Pig bladder TCholinergic (supraspinal)
5-HT7 neck) transmission
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Many studies have displayed the roles of 5-HT receptors in detrusor smooth muscle. The 5-
HT1A antagonist (WAY-100635) could not prevent 5-HT-induced bladder strip contraction in
female rats (Sakai et al. 2013). In contrast, the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-
propylamino)tetralin, 8-OH-DPAT-induced isolated detrusor contraction and this effect was
reversed by an 5-HT1A antagonist (Mittra et al. 2007) in bladder outlet obstruction (BOO) rats.
5-HT2 subtypes have been reported to induce muscle contraction in rats (Kodama and Takimoto
2000) and dog (Cohen 1990). In BOO rat model, 5-HT2A and 5-HT2B antagonists reversed 5-
HT-induced contraction (Sakai et al. 2013a). A 5-HT3 receptor agonist inhibited detrusor
smooth muscle contraction after pre-incubation of the nerve blocker lignocaine, whereas 5-HT3
receptor activation elicited potentiation of bladder contraction following electrical field
stimulation in mouse bladder strips, indicating that excitatory 5-HT3 receptors are located in
efferent nerve terminals, whereas inhibitory 5-HT3 receptors are located in detrusor smooth
muscle (Chetty et al. 2007). Both 5-HT4 and 5-HT7 receptor antagonists, GR113808 and
SB269970 respectively, failed to prevent 5-HT-induced detrusor contraction in rats (Sakai et al.
2013). An opposite action of 5-HT7 receptor has been reported in the electrical field stimulation
of the detrusor muscle which the 5-HT7 receptor antagonist, SB258741 antagonized 5-HT-
evoked bladder strip contraction in rats (Palea et al. 2004). These opposing results could
possibly be due to the use of different 5-HT7 antagonists and have variation in the experimental
technique used to stimulate the muscle strips. However, 5-HT7 receptors have been established

to play a role in smooth muscle relaxation in the pig bladder neck (Recio et al. 2009).

In addition to postjuctional sites on detrusor muscle, many 5-HT receptor subtypes are reported
to regulate the bladder at prejuctional sites on efferent fibron. 5-HT1A receptors inhibited ACh-
release by EFS in isolated human detrusor strips (Agostino et al. 2006). 5-HT2A activation in
guinea pigs and 5-HT2C activation in rats facilitated EFS-induced neurogenic contractions
(Messori et al. 1995; Rekik er al. 2011). 5-HT2A receptors play a role in purinergic
transmission of 5-HT-induced detrusor muscle contraction in guinea pigs (Messori et al. 1995).
5-HT3 receptor agonists (2-Me-5-HT and 1-PBG) dose-dependently potentiated neurogenic
contraction induced by EFS in mice (Chetty et al. 2007). In isolated guinea pig detrusor
muscles, 5-HT3 receptors are reportedly involved in ACh release in 5-HT potentiated detrusor
contraction by electrical stimulation (Messori et al. 1995). 5-HT4 and 5-HT7 receptors are also

reported to facilitate neurogenic contraction. However, 5-HT4 mechanisms are different
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between. In guinea pigs, 5-HT4 receptor activation leads to a potentiation of purinergic
transmission (Messori et al. 1995), whereas in humans it is reported to facilitate ACh-release
from efferent terminals (Candura ef al. 1996). 5-HT7 receptors also facilitate ACh-release in

human urinary bladder (Agostino et al. 2006).

On afferent nerves, Chen and co-workers examined 5-HT subtypes mRNA expression in rat
embryonic sensory neurone cultures. Various 5-HT subtypes including 5-HT1B, 1D, 1F, 2A ,
2C, 3, 4, 5A, and 5B receptors expressed in embryonic DRG neurons (Chen et al. 1998). 5-
HT3A and 3B are expressed in afferent terminals in dorsal laminae of the spinal cord (Schmitt
et al. 2006) and in L4-L5 DRG (Chen ef al. 1998). In addition, 5-HT3 receptors have been
highlighted to play a key role in developing afferent hypersensitivity in post-inflammatory

jejujnum mouse model (Keating ez al. 2008).

Zagorodnyuk et al. (2009) conducted functional afferent recording in the bladder. They
classified types of mechanoreceptors using von Frey hair stimulation and reported that muscle-
mucosal mechanoreceptors are the major group (~75%) that responded to direct application of
5-HT (100 pM) in guinea pigs (Zagorodnyuk et al. 2009). In addition, the binding sites of 5-
HT1A, 1B, and 3 in the dorsal horn of the spinal cord were decreased in dorsal rhizotomy
(Laporte et al. 1995). This raises the interesting possibility that these 5-HT receptors are
transported to the distal afferents in the bladder wall and play a role in bladder sensory

pathways.
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Figure 4.1 Schematic diagram summarising peripheral 5-HT receptors expression and

function in the urinary bladder (modified from Matsumoto-Miyai et al. 2015).

In response to chemical and mechanical stimulation, urothelial cells release a number of
mediators including ATP (Kullmann ef al. 2008), ACh, and nitric oxide (NO) (Birder 1998). A
previous study showed that the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP) and the
NO substrate L-arginine, inhibited baseline and mechanosensitive firing in cyclophosphamide
(CYP) rats and these effects were reversed by the nitric oxide synthase (NOS) inhibitor, L-N°-
Nitroarginine methyl ester (L-NAME, 20 mM) (Yu and De Groat 2013). NOS has been reported
to be expressed in efferent nerves (Vizzard et al. 1994), detrusor muscle (Anderson and Persson
1994), afferent nerves (Vizzard 1997), and urothelium (Birder et al. 1998; Seo et al. 2014). It
would be interesting to investigate further if NO could be produced either from urothelium,

smooth muscle, or afferent nerves and affect afferent firing.

It has been hypothesized that 5-HT affects bladder afferent discharge either in a direct action on
the afferent nerve terminals or secondary to 5-HT induced bladder contraction. 5-HT3 receptors
may play a role in bladder afferent firing and NO may be produced and affect bladder afferent

firing.
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Objectives
This study aimed to investigate the effects of 5-HT on bladder afferent firing and identify the
contribution of the 5-HT receptor subtypes that contribute to 5-HT action using an in vitro

extracellular recording.

4.2 EXPERIMENTAL PROTOCOL AND ANALYSIS

Extracellular nerve recordings were performed to investigate the effect of 5-HT and related
pharmacological substances on bladder afferent nerve activity. The detail of the set-up is
outlined in chapter 2. After a control ramp distension period, different experimental protocols

were used, which are described in detail in each protocol figure.

The effect of drugs on baseline afferent firing was determined by measuring peak firing during
the drug application. Mechanosensitive afferent firing was determined by performing bladder-
distension evoked afferent firing and the afferent discharge at various intravesical pressure
points was determined. In addition spontaneous afferent firing which is the afferent firing
occurring between the ramp distensions was determined from the area under the curve (AUC)

which was normalized and expressed as a percentage change relative to the control period.

All afferent recordings were subtracted from baseline firing, 3 minutes before drug application.
This baseline subtraction was employed to eliminate variability between the bladder
preparations. Data are presented as mean = SEM. Statistical analysis includes Student’s t-test,
One-way ANOVA, and Two-way ANOVA which were applied in different experiments as

described in each result figure.
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4.3 RESULTS: EFFECT OF 5-HT, 2-ME-5-HT, GRANISETRON AND

5-MT ON BASELINE AFFERENT FIRING

4.3.1) EFFECT OF 5-HT ON BASELINE AFFERENT FIRING

Firstly, bladder afferent firing in response to 5-HT (10 uM and 100 uM) was determined. The
protocol is shown in figure 4.2. After a control period of three ramp distensions, the bladder was
constantly perfused with isotonic saline (50 pL minute') for 15 minutes to allow the
accommodation of the perfusion. Thereafter, 10 uM and 100 uM 5-HT was constantly perfused
into the bladder for 15 minutes, respectively. For a wash out period, the bladder was perfused

with isotonic saline for 15 minutes at the end of the experiment.

R N | sali 5-HT (10 pM) 5-HT (100 pM Wash
amp ormal saline 5-HT (10 uM)  5-HT (100 uM) (Normal saline)

distensions 50 pL min?! 50 pL min? 50 pL min?t

50 pL mint
| ] | J\ )
T | 1
15 mins 15 mins 15 mins 15 mins

Figure 4.2 Protocol used to study the effect of intravesical 5-HT (10 and 100 pM)

application on bladder afferent firing.

5-HT 10 puM did not give a significant increase of baseline affrent firing (baseline, 10.83 £+ 5.04
spike/sec, 5-HT 10 uM, 31.58 + 13.47 spike/sec). 5-HT 100 uM significantly increased the
afferent discharge compared to control (5-HT 100 puM, 47.38 + 16.71 spike/sec, *P<0.05, N=5)

(Figure 4.3). Therefore 5-HT 100 uM was selected for further experiments.
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Figure 4.3 5-HT dose-dependently enhanced bladder afferent nerve firing. (A) A
representative trace of intravesical 5-HT (10 and 100 uM) application on bladder afferent firing.
(B) Peak afferent firing in response to 5-HT 10 and 100 pM application. The afferent peak
firing in response to 5-HT 100 puM was significantly increased compared to the baseline firing,

*P<0.05 N=5, One-way ANOVA with Dunnett’s multiple comparison.

In order to investigate the effect of 5-HT on baseline afferent firing, the drug was applied either
into the bladder (intravesical) or bath (extraluminal) application. The protocols are summarised

in figure 4.4.
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A representative trace of intravesical and bath application of 5-HT is shown in figure 4.5.
Intravesical 5-HT application activated baseline afferent discharges (baseline, 2.13 + 0.63
spike/sec vs. 5-HT, 69.93 + 28.36 spike/sec), paired Student’s t-test, ¥P<0.05 (N=7) (Figure
4.6A). Constant perfusion of 5-HT into the organ bath stimulated baseline firing and triggered
an increase in intravesical pressure which represents bladder contraction (baseline, 24.03 £ 9.16
spike/sec vs. 5-HT, 111.30 + 26.09 spike/sec, *P<0.05) (Figure 4.6B). The time response profile
for 5-HT is shown in figure 4.6C where time to peak firing response to 5-HT was shorter in bath

application (253.30 + 39.11 sec) compared to intravesical application (865.7 + 78.83 sec)

(Figure 4.6D).
A.
P
Intravesical . A o,
Baseline (Normal saline)  application of 5-HT Wash (Normal saline) <A
L T\ T\ ]
! ! Y
15 mins 15 mins 30 mins
B.
Bladder was filled with Extraluminal (bath) Wash
normal to ~ 15 mmHg application of 5-HT (Krebs solution)
L J \ J \ ]
1 1 1
30 mins 20 mins 30 mins

Figure 4.4 Protocol for intravesical and extraluminal (bath) application of 5-HT (Blue
arrows = 5-HT in the insert cartoon).

(A) Intravesical 5-HT application protocol: The bladder was constantly perfused with normal
saline (50 puL minute'l) for 15 minutes for a baseline period. Thereafter, 5-HT (100 uM) diluted
in normal saline was constantly perfused into the bladder for 15 minutes followed by wash out
by normal saline for 30 minutes.

(B) Extraluminal (bath) 5-HT application protocol: The bladder was perfused with normal
saline until intravesical pressure reached ~15 mmHg for 30 minutes. Thereafter, 5-HT (100 pM)
diluted in Krebs solution was continuously perfused into a recording chamber for 20 minutes.

The preparation was washed out by Krebs solution for 30 minutes.
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Figure 4.5 Representative traces to illustrate baseline afferent responses to intravesical (A) and

bath (B) 5-HT (100 pM) application. (Blue arrows = 5-HT in the insert cartoon)
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Figure 4.6 5-HT stimulated baseline afferent firing. (A) Peak afferent firing in response to
intravesical 5-HT application (100 uM), paired Student’s t-test, ¥*P<0.05 (N=7). (B) Peak
afferent firing in response to 5-HT bath application (100 uM), paired Student’s t-test, *P<0.05
(N=6). (C) Time response profile of afferent response to intravesical and bath 5-HT application.
(D) Time to peak firing response to an intravesical application was longer than bath application,

**¥P<(0.001 unpaired Student’s t-test.
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4.3.2) RESULTS: EFFECT OF 2-ME-5-HT AND GRANISETRON ON

BASELINE AFFERENT FIRING

In order to examine the contribution of 5-HT3 receptors to the 5-HT-induced activation of
baseline afferent firing, a selective 5-HT3 receptor agonist (2-Me-5-HT, 100 uM) and the 5-
HT3 receptor antagonist (granisetron, 1 uM), were applied either into the bladder or the
recording bath. The protocol used to investigate and representative traces of baseline afferent
firing in response to intravesical and bath application of 2-Me-5-HT are shown in figure 4.7 and

4.8 respectively.

Granisetron was applied either into the bladder or into the organ bath for 30 minutes before 5-
HT application. The protocol and representative traces of baseline afferent firing in response to
pre-incubation with granisetron before intravesical and bath application of 5-HT are shown in

figure 4.9 and 4.10 respectively.

Intravesical and bath application of 2-Me-5-HT stimulated baseline afferent discharge (baseline,
12.95 + 7.01 spike/sec vs. intravesical 2-Me-5-HT, 76.04 + 27.28 spike/sec) (baseline, 20.14 +
7.79 vs. bath 2-Me-5-HT, 80.87 + 19.61 spike/sec) (Figure 4.11A, 4.11B *P<0.05).
Interestingly, granisetron pre-incubation reversed 5-HT-induced stimulation of bladder afferent
firing both intravesical (5-HT, 67.8 + 27.73 vs. graniestron+5-HT, 15.48 + 4.85 spike/sec) and
bath application (5-HT, 87.27 = 16.93 vs. granisetron+5-HT, 46.97 + 20.48 spike/sec) (Figure
4.11C, 4.11D). Granisetron on its own had no effect on baseline afferent firing (normal saline,

12.33 + 4.64 spike/sec vs. granisetron, 7.55 + 3.51 spike/sec) (Figure 4.11E).
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Figure 4.7 Protocol for intravesical and extraluminal (bath) application of 2-Me-5-HT

(Red arrows = 2-Me-5-HT in the insert cartoon).
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Figure 4.8 Representative traces to illustrate baseline afferent response to intravesical (A) and

bath (B) 2-Me-5-HT (100 pM) application. (Red arrows = 2-Me-5-HT in the insert cartoon).
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Figure 4.9 Protocol of granisetron pre-incubation before 5-HT application into the urinary
bladder in extracellular afferent nerve recording (Brown circles = granisetron, Blue
arrows = 5-HT in the insert cartoon). (A) Intravesical 5-HT application protocol: The bladder
was constantly perfused with normal saline with granisetron (1 uM) (50 pL minute’) for 15
minutes for a baseline period. Thereafter, 5-HT (100 pM) diluted in normal saline was
constantly perfused into the bladder for 15 minutes and the bladder was washed out by normal
saline with granisetron for 30 minutes.

(B) Extraluminal (bath) 5-HT application protocol: The bladder was perfused with normal
saline with granisetron (1 uM) until intravesical pressure reached ~15 mmHg for 30 minutes.
Thereafter, 5-HT (100 uM) diluted in Krebs solution was continuously perfused into a recording
chamber for 20 minutes. The preparation was washed out by Krebs with granisetron for 30

minutes.

102



Intravesical

Intravesical

Baseline
(Granisetron)

Spike (V)

pressure
(mmHg)

Intravesical 5-HT

Wash
(Granisetron)

Chapter 4

Spike frequency
(spike/sec)
2 8 =2 8

=

Baseline
(Granisetron)

T
7200

Bath 5-HT

g

0

Spike (uV)

k3

(mmHg)

pressure

Spike frequency
(spike/sec)

Wash
(Granisetron)

T T
7400

T
7600

T
7800

Time (sec)

Time (sec)

Figure 4.10 Representative traces to illustrate baseline afferent response to intravesical

(A) and bath (B) 5-HT (100 pM) application after pre-incubation of granisetron. (Brown

circles = granisetron, Blue arrows = 5-HT in the insert cartoon)
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Figure 4.11 2-Me-5-HT stimulated baseline afferent firing and granisetron attenuated 5-

HT induced increase in baseline afferent firing. (A) Peak afferent firing in response to

intravesical 2-Me-5-HT application (100 uM), paired Student’s t-test, *P<0.05 (N=7). (B) Peak

afferent firing in response to 2-Me-5-HT bath application (100 uM), paired Student’s t-test,

*P<0.05 (N=6). (C) Peak afferent firing in response to intravesical 5-HT application after

granisetron pre-incubation paired Student’s t-test, *P<0.05 (N=6). (D) Peak afferent firing in

response to bath 5-HT application after granisetron pre-incubation (N=5). (E) Mean afferent

firing compared between intravesical normal saline and granisetron application.
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4.3.3) RESULTS: EFFECT OF 5-MT ON BASELINE AFFERENT FIRING

In order to investigate the role of other 5-HT subtypes, 5-methoxytryptamine (5-MT, 100 uM),
a full agonist for 5-HT receptors except 5-HT3, was applied either into the bladder or a
recording chamber in order to examine the contribution of 5-HT1, 2, 4-7 receptors on baseline

afferent firing. The protocol used to study is shown in figure 4.12.

The representative trace of baseline afferent firing in response to 5-MT are shown in figure
4.13. Intravesical (baseline, 2.55 + 1.12 spike/sec vs. 5-MT, 17.60 + 4.99 spike/sec, *P<0.05)
and bath application of 5-MT (100 uM) significantly evoked baseline afferent firing (baseline,

25.39 + 7.93 spike/sec vs. 5-MT, 46.22 + 10.96 spike/sec, *P<0.05) as shown in figure 4.14.

A.
Ap A
Baseline Intravesical application Wash A :4
(Normal saline) of 5-MT (Normal saline)
i 1 1
| | |
15 mins 15 mins 30 mins

B. i,

Bladder was filled

with normal saline Extraluminal (Bath) Wash A A

to ~15 mmHg application of 5-MT (Krebs solution) | 5= A
L 1 1
| | |
30 mins 20 mins 30 mins

Figure 4.12 Protocol for intravesical and extraluminal (bath) application of 5-MT (Orange

arrows = 5-MT in the insert cartoon).
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Figure 4.13 Representative traces to illustrate baseline afferent response to intravesical

(A) and bath (B) 5-MT (100 uM) application. (Orange arrows = 5-MT in the insert cartoon).
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Figure 4.14 5-MT stimulated baseline afferent firing. (A) Peak afferent firing in response to
intravesical 5-MT application (100 puM), *P<0.05, paired Student’s t-test (N=5). (B) Peak
afferent firing in response to 5-MT bath application (100 uM), *P<0.05, paired Student’s t-test

(N=8).

4.3.4) RESULTS: EFFECT OF 5-HT WITH GRANISETRON, 2-ME-5-HT

AND 5-MT ON BLADDER CONTRACTION

To determine whether the effect of 5-HT with granisetron, 2-Me-5-HT, and 5-MT which
induced an increase in baseline afferent discharge could be secondary to an induction of muscle
contraction, Y-27632 (a Rho kinase inhibitor, 10 uM) was applied to the bladder to inhibit
contractile components prior to 2-Me-5-HT applicatiton to inhibit detrusor muscle contraction.

The protocol and representative trace are shown in figure 4.15.

Similarly, to study whether the effect of 5-HT with granisetron pre-incubation and 5-MT on
baseline afferent activation was due to potentiation of muscle contraction, Y-27632 and ML-9
(myosin light chain kinase (MLCK) inhibitor, 10 pM) were pre-incubated on the bladder prior
to 5-HT or 5-MT application. The protocols and representative traces are shown in figure 4.16

and 4.17 respectively.
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Intravesical pressure was significantly decreased in Y-27632 application prior to 2-Me-5-HT (2-
Me-5-HT, 3.07 £ 0.57 mmHg vs. 2-Me-5-HT with Y-27632 pre-incubation, 1.62 + 0.13 mmHg,
*P<0.05) (Figure 4.18A), indicating that Y-27632 could prevent detrusor contraction. However,
there was still an excitation of afferent firing (2-Me-5-HT, 87.43 + 23.78 spike/sec vs. 2-Me-5-
HT with Y-27632 pre-incubation, 73.16 + 13.26 spike/sec) (Figure 4.18B), suggesting that 5-
HT activated 5-HT3 receptors directly on the afferent nerve terminals and this was not a

secondary effect from induction of bladder contraction.

As expected, Y-27632 and ML-9 application with granisetron prior to 5-HT application
significantly decreased the 5-HT-induced increase in bladder contraction (5-HT, 8.83 + 1.37
mmHg vs. 5-HT with granisetron, Y-27632 and ML-9 pre-incubation, 1.85 + 0.85 mmHg)
(Figure 4.18C). Baseline afferent discharges in response to 5-HT was also significantly
attenuated after pre-incubation with granisetron and muscle contraction blockers (5-HT, 63.16 +
11.62 spike/sec vs. 5-HT with granisetron, Y-27632 and ML-9 pre-incubation, 4.26 + 1.54

spike/sec) (Figure 4.18D).

Pre-incubation with Y-27632 and ML-9 also inhibited bladder contraction from 5-MT
application (5-MT, 5.57 + 1.12 mmHg vs. 5-MT with Y-27632 and 5-MT pre-incubation, 0.52 +
0.30 mmHg) (Figure 4.18E). In contrast to 2-Me-5-HT, 5-MT did not activate baseline afferent
firing after incubation of muscle contraction blockers (5-MT, 48.04 + 13.47 spike/sec vs. 5-MT
with Y-27632 and ML-9 pre-incubation, 12.36 + 4.187 spike/sec) (Figure 4.18F). This indicates
that other 5-HT receptors (5-HT1, 2, 4-7) mediated 5-HT-induced baseline firing activation

through potentiation of bladder contraction.
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Figure 4.15 (A) Protocol used to investigate the effect of Rho kinase inhibitor (Y-27632)

prior to 2-Me-5-HT bath application. (B) Representative trace to illustrate baseline

afferent responses to bath application of 2-Me-5-HT in the presence of Y-27632 (Red

arrows = 2-Me-5-HT, Purple circles = Y-27632 in the insert cartoon).
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Figure 4.16 (A) Protocol used to investigate the effect of the Rho kinase inhibitor (Y-

27623), MLCK inhibitor (ML-9), and granisetron prior to 5-HT bath application. (B)

Representative trace to illustrate baseline afferent responses to bath application of 5-HT

in the presence of Y-27632, ML-9, and granisetron (Blue arrows = 5-HT, Purple and Yellow

circles = Y-27632 and ML-9 respectively, Orange circles = granisetron in the insert cartoon).
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Figure 4.17 (A) Protocol used to investigate effect of Rho kinase inhibitor (Y-27632) and
MLCK inhibitor (ML-9) prior to 5-MT bath application. (B) Representative trace to
illustrate baseline afferent responses to bath application of 5-MT in the presence of Y-
27632 and ML-9 (Orange arrows = 5-MT, Purple and Yellow circles = Y-27632 and ML-9

respectively in the insert cartoon).
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Figure 4.18 Y-27632 and ML-9 pre-incubation decreased the effect of 5-HT with

granisetron and 5-MT-induced stimulation of baseline afferent discharges but failed to

reduce 2-Me-5-HT activation. Comparison of intravesical pressure change and peak firing of

baseline afferent firing in response to 2-Me-5-HT and 2-Me-5-HT with Y-27632 pre-incubation

(N=5) (A-B), 5-HT and 5-HT+granisetron with Y-27632+ML-9 (N=6 and 5 respectively) (C-

D), 5-MT and 5-MT with Y-27632+ML-9 (E,F) (N=6). *P<0.05, **P<0.01, unpaired Student’s

t-test.
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Comparison of peak afferent discharges following bath application of various pharmacological
substances is showed in figure 4.19A. There was no significant difference in peak firing in
response to bath application of 5-HT and 2-Me-5-HT. In addition, Y-27632 application prior to
2-Me-5-HT did not attenuate baseline afferent firing. The afferent discharges in response to 5-
MT and 5-HT was decreased after pre-incubation with granisetron compared to 5-HT alone
(*P<0.05 and **P<0.01, respectively) and Y-27632 and ML-9 further attenuated these effects
(***P<0.001).

To determine the effects of various pharmacological reagents on bladder contraction, change in
intravesical pressure in response to the substances was compared to 5-HT alone. As shown in
figure 4.19B, there was no significant difference in the change in intravesical pressure in
response to 5-HT, 5-MT, and 5-HT after granisetron. The level of 2-Me-5-HT triggered bladder
contraction was significantly lower than 5-HT (*P<0.05). Pre-incubation of muscle contractile
component blockers prior to 2-Me-5-HT, 5-MT, and granisetron with 5-HT attenuated
intravesical pressure change. The effect of all pharmacological reagents on bladder contraction

and baseline afferent discharges is summarised in table 4.2.
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Figure 4.19 Comparison of baseline afferent firing (A) and bladder contraction (B) in response

to bath application of 5-HT, 2-Me-5-HT, 5-MT, and pre-incubation with granisetron and muscle

blockers (Y-27632 and ML-9). *P<0.05, **P<0.01, ***P<0.001, One-way ANOVA with Dunnett’s

multiple comparison.

Table 4.2 Summarised effects of 5S-HT and related pharmacological reagents on baseline

afferent firing and bladder contraction

5-HT | 2-Me-5-HT 2-Me-5-HT + 5-MT 5-MT + 5-HT 5-HT + granis
Y-27632 Y-27632+ | + granis +Y-27632
ML-9 +ML-9
Afferent
+++ +++ +++ ++ + ++ +
discharge
Contraction | +++ ++ + +++ + +++ ++

+++ strong, ++ moderate, +basal level
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4.4 RESULTS: EFFECT OF 5-HT, 2-ME-5-HT, GRANISETRON AND

5-MT ON BLADDER MECHANOSENSITIVITY

The effect of 5-HT and all pharmacological substances on mechanosensitive afferent discharges
were also investigated. The bladder ramp distensions were performed in the presence of
agonists. The protocols used in this study are summarised in figure 4.20A. After a control
period of ramp distension, the substance of interest was continuously applied to the organ bath 2
minutes prior the next distension. After 3 consecutive distensions, the bladder was washed with
Krebs solution for 30 minutes. Mechanosensitive afferent firing was determined at a range of an
intravesical pressures at 2, 15, and 25 minutes after the drug application. In a subset of
experiments the bladder was pre-incubated with granisetron, both intravesically and via bath

perfusion prior to 5-HT application (Figure 4.20B).

Representative traces showing mechanosensitive firing in response to 5-HT, 2-Me-5-HT,
granisetron, and 5-MT are displayed in figure 4.21 and 4.22, respectively. 5-HT attenuated
mechanosensitive afferent firing at 15 and 25 minutes after application (*P<0.05) (Figure
4.23A). This effect was reversed by granisetron pre-incubation (Figure 4.23C). 2-Me-5-HT had
a similar effect to 5-HT showing an inhibitory effect on mechanosensitive afferent firing at 15
and 25 minutes after application (**P<0.001, ***P<0.001, respectively) (Figure 23B). In
contrast, 5-MT did not change the afferent response to bladder distention at any time points

(Figure 4.23D).
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Figure 4.20 Protocol used to investigate the effect of agonists and antagonists on bladder
mechanosensitive and spontaneous afferent firing.

(A) Protocol used to investigate effect of 5-HT, 2-Me-5-HT, and 5-MT (100 uM) on
mechanosensitive afferent firing, (B) Protocol used to investigate effect of granisetron (1 uM)
on 5-HT-induced change in mechanosensitive afferent firing. Grey and blue areas indicate
where the data of control and response to agonist application were analysed at 2, 15, and 25

minutes respectively.
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Figure 4.21 Representative traces to illustrate mechanosensitive and spontaneous afferent
responses to bladder ramp distension during 5-HT (A) and 2-Me-5-HT (B) bath

application.
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Figure 4.22 Representative traces to illustrate mechanosensitive and spontaneous afferent

responses to bladder ramp distention during granisetron+5-HT (A) and 5-MT bath

application (B).
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Figure 4.23 5-HT attenuated mechanosensitive afferent response to ramp distensions
mediated via 5-HT3 receptors. (A-D) Comparison of bladder afferent responses to ramp
distension at 2, 15, and 25 minutes after bath application of 5-HT, 2-Me-5-HT, granisetron+5-
HT, and 5-MT, respectively *P<0.05, **P<0.01. ***P<0.001 vs. control, Two-way ANOVA

(N=5-6).

Even though 5-HT and 2-Me-5-HT attenuated afferent responses to bladder ramp distensions,
the spontaneous firing between the ramp distensions was augmented. S5-HT activated
spontaneous burst firing at 2 and 15 minutes after drug application (*P<0.05, ***P<0.001)
(Figure 4.24A). 2-Me-5-HT evoked spontaneous firing at 2 minutes (*P<0.05) (Figure 4.24B).
Granisetron decreased the 5-HT effect on spontaneous activation (Figure 4.24C). 5-MT had no
effect on spontaneous afferent firing (Figure 4.24D). In addition, application of 5-HT, 2-Me-5-
HT, 5-HT with granisetron pre-incubation, and 5-MT did not change bladder compliance

(Figure 4.25).
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Figure 4.24 5-HT activated spontaneous afferent firing between ramp distensions

mediated via 5-HT3 receptors. (A-D) Comparison of spontaneous afferent firing after 2, 15,

and 25 minutes bath application of 5-HT, 2-Me-5-HT, granisetron+5-HT, and 5-MT,

respectively, *P<0.05, ***P<0.001, One-way ANOVA with Dunnett’s multiple comparison

(N=5-6).
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Figure 4.25 Bladder compliance was not changed following 5-HT (A), 2-ME-5-HT (B),
pre-incubation with granisetron (C), and 5-MT application (D). Comparison of bladder

compliance at 2, 15, and 25 minutes after 5-HT bath application, Two-way ANOVA (N=5-6).

4.5 RESULTS: EFFECT OF L-NAME ON 5-HT ATTENUATED
MECHANOSENSITIVE FIRING

To determine whether 5-HT effects are mediated through NO production, the NOS inhibitor,
L-NAME (1 mM) was applied 30 minutes prior to the intravesical 5-HT (100 pM) application

and throughout the experiment. The experimental protocols are shown in figure 4.26.

A time control experiment was conducted to determine whether L-NAME had an effect on
bladder afferent firing. As shown in figure 4.27, there was no difference in baseline and
mechanosensitive firing between control and L-NAME treatment. Representative traces of

intravesical 5-HT application and pre-incubation of L-NAME are shown in figure 4.28.
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Similar to bath application, intravesical application of 5S-HT debilitated afferent firing response
to bladder at the 3" ramp distension (¥*P<0.05) (Figure 29A). Pre-incubation of L-NAME

prevented 5-HT-decreased afferent response to bladder distension (Figure 29B).

Intravesical 5-HT application increased spontaneous afferent firing after the 2" ramp distension
(**P<0.01) (Figure 4.30A). Interestingly, after the 2" and 3" ramp distensions, spontaneous
firing was enhanced during pre-incubation with L-NAME (**P<0.01 and *P<0.05, respectively)
(Figure 4.30B). In the presence of L-NAME, 5-HT induced an increase in spontaneous afferent
firing which was augmented after the 3" distension (5-HT, 295.10 + 44.78% vs. L-NAME pre-
incubation, 511.7 + 88.74%) (Figure 4.30C).

A. bath perfusion with Krebs
A .
(mmm]
H Time (sec)
)
Control Intrave5|ca| 5-HT Wash
(normal saline) (normal saline)
bath perfusion with Krebs/ Krebs with L-NAME
B. |
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L Tlme (sec)
i
(;ontrol L Intravesical .Wash o
Intravesical application application 5-HT Intravesical application
(normal saline/normal (normal saline/normal
saline with L-NAME) saline with L-NAME)

Figure 4.26 Protocol used to investigate the effect of intravesical 5-HT (A) and L-NAME
prior to 5-HT application (B) on bladder afferent firing. Grey and red areas indicate where
the spontaneous and mechanosensitive firing of control period and response to 5-HT application

for the 17, 2™, and 3" distention respectively.
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Figure 4.27 L-NAME had no effect on bladder afferent firing. (A) a representative trace of a
time control experiment to determine whether L-NAME (1mM) affected bladder afferent firing.
(B) Comparison of mechanosensitive afferent firing between the 3" control distension and the

3" distension of L-NAME, Two-way ANOVA (N=5).
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Figure 4.28 Representative traces to illustrate mechanosensitive and spontaneous afferent
response to bladder ramp distentions during intravesical 5-HT (A) and intravesical 5-HT

with pre-incubation of L-NAME (B).
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Figure 4.29 Pre-incubation with L-NAME reversed S5-HT-attenuated mechanosensitive
afferent firing. (A) Comparison of bladder afferent responses to ramp distensions after
intravesical application of 5-HT and (B) L-NAME pre-incubation with intravesical 5-HT

application, *P<0.05, Two-way ANOVA (N=7 and 5 respectively).
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Figure 4.30 Pre-incubation of L-NAME augmented S5-HT-activated spontaneous afferent
firing between ramp distensions (A) Comparison of spontaneous afferent firing responses to
intravesical application of 5-HT after ramp distensions and (B) in the presence of L-NAME,
*P<0.05, **P<0.01, One-way ANOVA with Dunnett’s multiple comparison. (C) Comparison of
spontaneous afferent firing between 5-HT and pre-incubation of L-NAME at different ramp

distensions, *P<0.05 Unpaired Student’s t-test (N=7 and 5 respectively).
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4.6 DISCUSSION

The main findings of this chapter are

1.) 5-HT stimulation of baseline afferent firing is mainly via 5-HT3 receptors;

2.) 5-HT3 receptor activation is independent of muscle contraction;

3.) Non-5-HT3 (5-HTI, 2, 4-7) receptors activated afferent firing via potentiation of
muscle contraction;

4.) 5-HT attenuated afferent firing in response to bladder ramp distension but increased
spontaneous afferent discharges mediated via 5-HT3 receptors;

5.) Inhibitory effect of 5-HT on mechanosensitive firing and augmentation of spontaneous

firing was related to NO signalling.

5-HT-stimulated baseline afferent firing is mainly via direct activation of 5-HT3

receptors, and independent of muscle contraction.

5-HT 10 pM and 100 pM stimulated baseline afferent firing in a concentration-dependent
manner. Even though a full concentration response curve for 5-HT was not carried out in this
study, a number of studies have shown the dose-response curve of 5-HT effects on detrusor
potentiation. Cumulative application of 5-HT (0.01-100 uM) demonstrated to increase bladder

contraction in a concentration dependent manner in rats (Sakai ef al. 2013).

Similar to many previous studies, we also found that 5-HT triggered bladder contraction as
indicated by an increase in intravesical pressure. 5-HT has been reported to potentiate detrusor
contraction in many species, including rodents, rabbits, and human (Chetty et al. 2007;
Lychkova and Pavone 2013; Candura et al. 1996; Messori et al. 1995; Corsi et al. 1991).
Interestingly, intravesical and extraluminal (bath) 5-HT application enhanced afferent discharge
with the same amplitude of the maximal responses, however, the present clearly showed that
intravesical application delayed the time to peak response to 5-HT. The explanation could be
that 5-HT penetrates and diffuses to bind to receptors on the nerve terminals and the detrusor
layers from serosal side easier than the intravesical side due to the barrier function of the

urothelial lining.
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2-Me-5-HT, a selective 5-HT3 agonist also evoked baseline afferent discharge with the same
peak firing response and time profile as 5-HT. As reported in chapter 3, even though 5-HT3
receptors were not expressed in mouse urothelium, Chetty and co-workers have shown that 5-
HT3 receptors are expressed in the detrusor and mucosal layers of female mice (Chetty et al.
2007). 5-HT3A and 3B mRNA expression has also been reported in afferent terminals in spinal
dorsal laminae (Kidd ef al. 1993) and lumbosacral DRG neurons (L4-L5) (Schmitt e# al. 2006).
It is possible that 5-HT and 2-Me-5-HT activate 5-HT3 receptors in the detrusor and/or afferent

terminals.

2-Me-5-HT triggered moderate bladder contraction compared to 5-HT and 5-MT, however,
baseline afferent firing was still activated after pre-incubation with Y-27632 to prevent the
contractile component. These data suggest that 5-HT directly activates 5-HT3 receptors in a
mechanism that is independent of detrusor contraction. The key contribution of 5-HT3 receptors
was also demonstrated by pre-incubation of granisetron, a 5-HT3 antagonist. As expected,
granisetron attenuated 5-HT-evoked baseline afferent stimulation however, intravesical pressure
was unchanged, suggesting that 5-HT3 receptors play a crucial role in 5-HT-enhanced baseline
afferent discharge confirming that the main action of 5-HT3 receptors was not secondary to

detrusor contraction but could be at the nerve terminals.

The pharmacological specificity of granisetron (1 uM) is one factor that needs to be considered.
Several 5-HT3 antagonists are available and considered to be used to be potent 5-HT3
antagonists including granisetron, ondansetron, and tropisetron. Sanger and Nelson (1989)
reported granisetron to be a potent and selective 5-HT3 receptor antagonist, in guinea-pig
isolated ileum, where the drug (0.01-1uM) potently inhibited 5-HT-induced muscle contraction.
The specificity of granisetron has also been confirmed, where granisetron failed to inhibit 8-
OH-DPAT (a 5-HT1A full agonist)-evoked inhibitory effect of electrical induced muscle
contraction (Sanger and Nelson 1989). Interestingly, granisetron on its own did not have an
effect on baseline afferent activity. This result indicates that in normal conditions, there might
be low concentration of extracellular 5-HT in the bladder wall. 5-HT3 may develop a more
dominant role in bladder afferent firing in pathological conditions such as inflammation which

5-HT levels may be elevated (Keating et al. 2008; Kidd et al. 2009).
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Our findings are correlated with a previous study that 5-HT3 receptors contribute to afferent
hyperexcitability in jejunum in a post-inflammatory mouse model using in vitro extracellular
nerve recordings (Keating ef al. 2008). Hall and co-workers proposed a role for 5-HT3 receptors
in bladder nociception in rats. They showed that systematic injection of 5-hydroxytryptophan
(5-HTP), a 5-HT precursor triggered bladder hyperexcitability in a study of the visceromoter
response to bladder distention; this effect was mediated by spinal 5-HT3 receptors (Hall et al.

2015).

The possibility that 5-HT stimulated afferent firing via regulation of neurotransmitter release in
the bladder wall could not be excluded. In the CNS, 5-HT has been found to regulate
neurotransmitter release, including ACh, dopamine, and noradrenaline (Fink and Gothert,
2007). 5-HT and 2-Me-5-HT reportedly facilitate dopamine release in rat striatal slices (Fink
and Gothert 2008). Clear evidence that 5-HT regulates the release of other mediators was
provided by Matsumoto-Miyai et al. (2016) who demonstrated that 5-HT mediated distension-
induced ATP release from urothelium (via 5-HT4 receptors) (Matsumoto-Miyai ef al. 2016).
ATP is a key neurotransmitter which sensitizes bladder afferent nerves as shown by testing with
OB-methylene-ATP, a P2X3 agonist (Rong ef al. 2002). It is possible that 5-HT activation could

mediate ATP release from urothelial cells and further sensitize afferent fibres.

In addition, in the present study 5-HT may regulate TRPV1 receptor activity, as shown in a
study of colonic sensory neurons. 5-HT increased the excitability of sensory neurons
innervating the colon in response to thermal ramp stimulation in wild type but not TRPV1
knock-out mice (Sugiuar 2004). It is also possible that 5-HT might decrease the threshold for
the activation of TRPV1 channels expressed in afferent fibres, which in turn would contribute to
excitation of 5-HT on baseline afferent firing. Grundy and co-workers (2014) showed that QU3-
methylene-ATP increased the hyperexcitability of bladder afferenta and this was attenuated in
TRPV1 knockout mice (Grundy 2014). However, experiments supporting the role of ATP and
TRPV1 in 5-HT-evoked baseline afferent firing should be studied in P2X and TRPV1 knockout

mice or in the presence of specific P2X and TRPV1 antagonists.
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Non-5-HT3 receptors (5-HT1, 2, 4-7) activated baseline firing via potentiation of

muscle contraction.

The present study found that the 5-HT1, 2, 4-7 agonist, 5-MT, evoked baseline afferent
discharge concurrent with bladder contraction. Many studies have reported expression of these
receptor subtypes in detrusor muscle. 5-HT has been reported to bind to receptors on
prejunctional excitatory nerves and on postjunctional detrusor smooth muscle cells (Matsumoto-
Miyai et al. 2015). However, each subtype of non-5-HT3 receptors employs a different
transduction pathway. For example, 5S-HT1A, 2A, 2B, 2C activation triggers bladder contraction

but in different ways: 5-HT1A activation decreases cAMP levels via G, protein, whereas 5-

i/o
HT2A, 2B, 2C activation is mediated through G, protein to increase intracellular Ca”" (Mittra et
al. 2007; Sakai et al. 2013). In contrast, a previous study in pig shows that 5-HT7 via Gs
stimulation induces bladder neck relaxation (Recio et al. 2009). In addition to the detrusor,
several studies have reported expression of non-5-HT3 receptors in the afferent pathway as
summarised in table 3.1. 5-HT1A and 1B are found in the dorsal horn of spinal cord (Laporte et
al. 1995). 5-HT1B, 1D, 2A are expressed in rat embryonic DRG neurons (Chen et al. 1998).
Moreover, our PCR data (chapter 3) shows 5-HT1A, 1B, 1D, 2A, 2B, 4, 6, and 7 receptors

expressed in mouse urothelial cells, exhibiting functional responses to 5-HT in the calcium

imaging study.

All subtypes of non-5-HT3 are G-protien receptors. G-protein coupled receptor activation leads
to activation of both Rho kinase and MLCK pathways (Liao et al. 2009). We found that after
inhibition of detrusor contraction with Y-27632 (a Rho-kinase inhibitor) and ML-9 (MLCK
inhibitor), 5-MT failed to activate baseline afferent discharge, indicating that 5-HTI, 2, 4-7
activated baseline afferent firing is due to potentiation of muscle contraction. Even though 5-
HTI1A, 1B, 1D, and 2A were detected in sensory nerve terminals (Matsumoto-Miyai et al.
2015), the contribution of these subtypes may not be essential to 5-HT signalling in bladder

afferents.
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5-HT3 receptors mediated an attenuation of mechanosensitive afferent firing.

In contrast to baseline afferent firing, 5-HT attenuated afferent firing in response to bladder
ramp distension, 15 and 25 minutes after the drug application. This 5-HT effect was mimicked
by 2-Me-5-HT. The contribution of 5-HT3 receptors was supported by granisetron’s reversed of
5-HT-induced attenuation of mechanosensitive afferent firing. On the other hand, 5-MT had no
effect on bladder afferent responses to bladder distension. These results indicate that 5-HT3

receptors play a major role in 5-HT-evoked attenuation of bladder mechanosensitivity.

In addition to mechanosensitive afferent firing, the key role of 5-HT3 receptors is highlighted
by the finding that 2-Me-5-HT mimicked 5-HT activated spontaneous firing during and after
drug application. Interestingly, effects of 5-HT and all pharmacological substances were not
reversible on washout. The excitation of spontaneous firing and attenuated effects still persisted
during the wash period. This may suggest that 5-HT also exerts indirect action on afferent firing

via regulation of the release of other mediators.

An explanation of the 5-HT and 2-Me-5-HT evoked excitation of spontaneous firing could be
due to recruitment of silent nociceptive C-fibres. The silent nociceptive receptors are induced to
function only in response to noxious stimulation or pathological conditions (Yoshimura and
Chancellor 2003). 5-HT also plays roles in the inflammatory response; particularly in the
intestinal tract where the majority of 5-HT (95%) is produced and secreted from EC cells to
regulate intestinal motility, secretion, and sensation. It has been shown that 5-HT secretion from
intestinal EC cells was increased after LPS and interleukin-18 stimulation in patients with
Crohn’s disease (Kidd ef al. 2009). Much evidence has indicated the role of 5-HT3 receptors in
inflammatory responses. 5-HT3 receptors are expressed in immune cells including T cells
(Khan and Poisson 1999), monocytes, and dendritic cells (Fiebich et al. 2004). Upregulation of
5-HT3 receptors expressed in nerve fibres of colonic mucosa has been displayed in a mouse

model of dextran sulfate sodium (DSS)-induced colitis (Matsumoto et al. 2012).

Interestingly, there was no change in spontaneous firing in response to 5-MT. Since 5-HT1, 2,
4-7 receptors exert an opposite transduction mechanism as summarised in table 4.1. 5-HT1A,
1B, 1D, and 5A receptors exert an inhibitory effect on bladder function, whereas 5-HT2A, 2B,

4, 6, and 7 have stimulatory action on detrusor contraction. It is possible that there is a
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counteractive action on mechanosensitive afferent firing between different 5-HT receptors. The
stimulatory effect on baseline afferent discharge by 5-MT was absent when the bladder was
distended. This indicates that bladder distension may elicit inhibitory neurotransmitter release,

which overcomes excitatory action of non-5HT3 receptors in baseline afferent firing.

In response to bladder distension, mechanotransduction of afferent nerves could be either a
direct activation on mechanosensitive-gated ion channels in afferent terminals or an indirect
chemical transduction of released mediators from non-neuronal cells (urothelial cells)
(Zagorodnyuk et al. 2009; Burnstock 2001; Hamill and Martinac 2001). Several line of
evidences support the notion that 5-HT could regulate release of other mediators which could
further exert an inhibitory effect on mechanosensitive afferent fibres. 5-HT3 receptors have
been reported to enhance cholinergic transmission in guinea pig isolated detrusor (Messori et al.
1995). Daly et al. has shown that muscarinic receptor activation with bethanechol or carbachol
depressed the afferent response to bladder ramp distensions in mice (Daly et al. 2010). This
raises the possibility that 5-HT3 receptor activation in the bladder wall may evoke ACh release

from neuronal and non-neuronal cells and further inhibit mechanosensitive afferent firing.

One concerning point is that an inhibitory effect of 5-HT on mechanosensitive afferent firing
could be due to receptor desensitization. In a previous study, Maricq and co-workers
demonstrated the functional response of 5-HT3 receptors expressed in Xenopus oocytes by
measuring a current in response to bath application of 5-HT or 5-HT3 agonists; 2-Me-5-HT,
PBG and mCPBG. 5-HT and all of the 5-HT3 agonists rapidly triggered an inward current and
desensitization after continuous perfusion of the drugs (Maricq et al. 1991). However, this is
unlikely as in the present study, baseline afferents between ramp distensions were still
stimulated. In this study, we did not apply the drugs directly onto the cells which expressed 5-
HT3 receptors. Application of agonists to the bladder tissue have a slower penetration
comparing to the direct activation into the cells. Therefore, the chance of 5-HT3 receptor

desensitization should be lower.
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Inhibitory effect of 5-HT on mechanosensitive firing and augmentation of

spontaneous firing was related to NO pathway.

In this study, the role of NO in 5-HT mediated attenuation of mechanosensitive firing has been
investigated. The NOS inhibitor, L-NAME, prevented the 5-HT-induced decrease in
mechanosensitive afferent firing. This is correlated with a study which showed that L-NAME
(20 mM) reversed SNAP (NO donor)-induced decrease in baseline and mechanosensitive
afferent firing in CYP rats (Yu and De Groat 2013). However, they found that NO had no effect
on bladder afferent firing in normal rats. Similar to this observation, L-NAME application had
no effect on afferent firing in the absence of 5-HT. Rather, the effect of L-NAME was exposed

only when 5-HT was presented.

Moreover, our study clearly shows that spontaneous afferent firing in response to 5-HT was
augmented when NOS was inhibited. This indicates that activation of 5-HT elicits NO
production which also exert an inhibitory effect on spontaneous firing. The role of NO has also
been reported in rat nodose ganglion. SNAP inhibited voltage-gated Ca”" channel currents and
this effect involved cGMP and PKG activation (Bielefeldt et al. 1999). In guinea-pigs, 5-HT3
activation evoked NO release from nerve endings, leading to relaxation of the proximal colon
(Sevcik ef al. 1998). It would be interesting to study further whether 5-HT3 stimulation in the
bladder wall could mediate NO release (from either urothelial cells, smooth muscle cells, or
nerve ending), which then acts downstream at nerve terminals to inhibit afferent discharge.
Application of 2-Me-5-HT or other 5-HT3 agonists with L-NAME should be performed to
confirm if 5-HT3 receptors also exert their role through the NO pathway. However, the source
of NO in the bladder wall is unclear that modulates afferent signalling, which could be released
from urothelial cells (Birder ef al. 1998), detrusor muscle (Anderson and Persson 1994), and

afferent nerves (Vizzard, 1997).
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5-HT evoked baseline afferent but attenuated mechanosensitive afferent firing.

The paradox phenomena of 5-HT3 receptor activation between baseline and mechanosensitive
afferent firing is possibly due to activation of a different nerve fibre population which varies in
receptor co-localisation. Zagorodnyuk and co-workers identified 4 major classes of
mechanoreceptors in guinea-pig bladder using a number of mechanical and chemical
stimulations; (i) muscle mechanoreceptor: activated by stretch and urothelial removal, this could
not affect firing; (ii) muscle-mucosal mechanoreceptors: activated by stretch, mucosal stroking,
O,B methylene ATP but not capsaicin, where removal of the urothelium reduced firing; (iii)
mucosal high-responding mechanoreceptors: could not be activated by stretch but mucosal
stroking, O3 methylene ATP, hypertonic normal saline and capsaicin, in which removal of the
urothelium reduced the nerve firing; (iv) mucosal low-responding mechanoreceptors: could not
be activated by stretch, weakly-activated by mucosal stroking, but not hypertonic saline, O[3
methylene ATP, and capsaicin, in which urothelial removal decreased the firing (Zagorodnyuk
et al. 2007). It is possible that 5-HT activation (via 5-HT3 receptors) in detrusor muscle
attenuates afferent firing, whereas mucosal 5-HT receptors which are stretch-insensitive, trigger
activation of baseline afferent firing. In addition, 5-HT3 receptors have been reported to localise
in both myelinated and non-myelinated afferent fibres (Zeitz et al. 2002), suggesting diverse

roles of 5-HT3 receptors in both normal sensation and nociception in the bladder.

The schematic diagram summarises possible mechanisms involved in 5-HT actions on baseline

and mechanosensitive afferent firing is depicted in figure 4.30.

In summary, this chapter demonstrates the ability of 5-HT to peripherally evoke baseline

afferent firing but an inhibitory effect on mechanosensitive afferent firing in mouse urinary

bladder, which is triggered mainly via 5-HT3 receptors.
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Figure 4.31 Schematic diagram summary of peripheral 5S-HT actions on bladder afferent
firing in this study. 5-HT stimulated baseline afferent firing but attenuated mechanosensitive
afferent firing mainly via direct activation of 5-HT3 receptors on afferent nerve terminals. Non-
5-HT3 receptors contribute to activation of baseline afferent firing through potentiation of
detrusor contraction. 5-HT3 receptors may mediate excitatory or inhibitory neurotransmitter

(NO) release and further modulate bladder afferent firing.
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CHAPTER

EFFECT OF 5-HT ON BLADDER AFFERENT

FIRING IN COLONIC TNBS-TREATED MICE

5.1 INTRODUCTION

The bowel and bladder are hollow organs that have similar functions in storing and eliminating
waste from the body. The interaction of neural circuits through convergence of afferent nerves
between the bowel and the bladder are essential to maintain physiological functions of these
organs (McMahon and Morrison 1982). These convergent neuronal circuits allow sensitized

afferents from one organ to affect the sensitivity of a second organ.

This ‘cross-organ sensitization’ has been reported in clinical investigations that have found that
40-60% of IBS patients to have bladder symptoms related to interstitial cystitis (IC) such as
nocturia, urinary urgency, frequency, and painful urination (Jones and Nyberg 1997; Matsumoto
et al. 2013; Novi et al. 2005; Prior et al. 1989; Zondervan et al. 2001). Conversely, about one-
third of IC patients have been reported to exhibit IBS symptoms such as abdominal pain,

discomfort, constipation, and diarrhea (Aaron and Buchwald 2001; Alagiri et al. 1997).

Few studies have investigated the actiology of overlapping symptoms between these two
organs. Most of the previous studies have proposed that ‘cross-sensitization’ between the bowel
and the bladder are mainly derived from an anatomical proximity of neuronal pathway of the
two organs, which leads to a convergence of sensory information. The cross-sensitization
mechanism of the afferents may occur at the central (spinal/ supraspinal cord) and/or peripheral

levels (antidromic axon reflexes) (Brumovsky and Gebhart, 2010; Christianson et al. 2008).
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Interestingly, Christianson and colleagues (2008) have clearly demonstrated the existence of
dichotomizing sensory neurons that innervate both organs by retrograde labelling of DRG
neurons using cholera toxin subunit B (CTB) fluorescent conjugates. Around 17% in rats and
21% in mice of the total CTB positive DRG neurons from lumbosacral and thoracolumbar
ganglion could be co-labelled from both organs (Christianson et al. 2008). A schematic diagram

of cross-organ sensitization between the bowel and bladder is depicted in figure 5.1.

Spinal thalamic

Bl
Bladder I adder ~ I
Coloﬁgﬁ?ﬁw

E— B. 2

Colon  Bladder

Figure 5.1 Schematic diagram depicts central (A, B) and peripheral (C) cross-sensitization
mechanisms between the bowel and the bladder (modified from Brumovsky and Gebhart
2010). (A) Convergence of sensory signals from the bowel and bladder to the same second
order spinal neuron. An insult in the colon (lighting symbol) increases excitability of the spinal
neuron, resulting in concurrent amplification of sensory input from the bladder by the spinal
neuron. (B) Activation from sensory input from the colon may activate spinal interneurons
(filled circle), which leads to increased depolarization of primary afferents from the bladder. (C)
Sensitized dichotomizing primary afferent neurons that innervate colon and bladder triggers an
antidromic axon reflex, leading to generation of bladder inflammation. The insert
immunofluorescence picture shows DRG neurons that innervate the colon (green), the bladder
(red), and both organs (oranges) in merged channel as indicated by the arrows (Christianson et

al. 2008).
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In addition to IBS, clinical investigations report high prevalence of patients with inflammatory
bowel diseases (IBD) which suffer from bladder symptoms (Banner, 1987; Francis et al. 1997).
Colitis is an inflammatory condition of the intestinal epithelial layer, which is the major form of
IBD. Patients with IBD have been characterized by bleeding, severe diarrhea, abdominal pain
(Fuss et al. 1996; Papaconstantinou et al. 2014). In terms of tissue structure, the mucosa is
thickened and has infiltration of neutrophils, macrophages, and monocytes (Ellrichmann et al.
2014). However, the underlying mechanisms contributing to overlapping bladder symptoms are

still ambiguous.

Various chemical-induced gut inflammation animal models have been employed to investigate
cross-talk between the bowel and the bladder including, 2,4,6-trinitrobenzene sulfonic acid
(TNBS), dextran sulphate sodium (DSS), oxalone, and acetic acid (Randhawa er al. 2014).
Among these intestinal inflammatory models, TNBS colonic irritation is one of the most widely
used to induce colonic inflammation or colitis in both acute and post-inflammatory states (Qin
et al. 2011; Randhawa et al. 2014). Acute colonic inflammation with TNBS treatment not only
results in changes in the tissue structure (i.e., epithelial distortion, crypt disruption, and
inflammatory cell filtration) but also hypersensitivity of colonic afferent nerves (Hughes et al.

2009; Motavallian ef al. 2013).

A number of studies have shown that animals with colonic TNBS treatment have persistent
colonic afferent hypersensitivity and that hyperexcitability persists after the inflammation has
resolved (28 days post-treatment) (Hughes et al. 2009). Therefore, the TNBS model is also
employed to investigate the mechanism of visceral hypersensitivity in the post-inflammatory
state, which is considered to represent IBS patients recovering from intestinal inflammation but
with persistent functional bowel symptoms. The actiology of IBS is still unclear, however,
hypersensitivity of afferent nerves innervating the bowels has been reported to be involved in

the pathophysiology of IBS (Drossman, 1999; Hungin er al. 2003; Keating et al. 2008).

Linden and co-workers (2003) highlighted a role for 5-HT in TNBS-induced colonic
inflammation. They reported an increase in 5-HT bioavailability in the colonic mucosa in
guinea pigs at 6 days after TNBS colonic administration (Linden et al. 2003). Animals with

TNBS-induced colitis showed suppression in expression and function of serotonin reuptake
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transporter (SERT), a key transporter protein that transports released 5-HT back into cells in the
gut wall (Linden et al. 2005). Decreased SERT expression levels in colonic inflammation is
consistent among various species including, human (Coates et al. 2004), mice (Linden ef al.

2005), and guinea pigs (Linden et al. 2003).

An elevated 5-HT level in colonic inflammation could also be derived from increased numbers
of EC cells, which have been reported in guinea pigs (Linden ef al. 2003) and humans with
Crohn’s disease (El-Salhy et al. 1997). In contrast, in mice, there was no change in the number
of EC cells in colonic mucosa, but a higher number of mast cells that can also release 5-HT, was

observed (Linden et al. 2005).

Fitzgerald et al. (2013) showed that there was a significant increase in the number of mast cells
in the bladder after 12 days of colonic TNBS administration in rats. In addition, the animals had
a reduced voiding interval and change in urothelial permeability (Fitzgerald et al. 2013). This
was correlated with the finding of Grundy et al. (2016) who showed that in the post-
inflammatory state (28 days post-treatment with TNBS) mice exhibited hypersensitivity of
bladder afferents and abnormal voiding frequency (Grundy ef al. 2016). Ustinova et al. reported
bladder hypersensitivity after colonic TNBS treatment in both acute (1 hour after treatment) and
chronic (10 days after treatment) states in female rats and reported no macroscopic or
microscopic changes in the bladder wall. However, they found that both acute and chronic states
showed a higher number of bladder mast cell (Ustinova et al. 2006; Ustinova et al. 2007). Mast
cells are known to play a role in inflammation and they release a number of inflammatory
mediators i.e., NGF, cytokines, histamine, substance P, VIP, and 5-HT. (Theoharides et al.
2012; Weitzman et al. 1985; Yu et al. 1999). These mediators may contribute to the

development of bladder symptoms after intestinal inflammation.

Interestingly, recent studies have reported the role of 5-HT3 receptors in mediating intestinal
inflammation. Tropisetron and ondansetron, 5-HT3 antagonists, reduced inflammatory signs
such as epithelial damage, MPO activity, and cytokine levels in TNBS-induced colitis in rats
(Motavallian-Naeini et al. 2012; Motavallian ef al. 2013). The role of 5-HT3 receptors in
generating post-inflammatory visceral hypersensitivity has been shown in mice infected with T.

spirallis which is a well-characterized animal model to study post-inflammatory IBS (Mayer
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and Collins 2002). T. spirallis infection triggers transient intestinal inflammation after which
the animals develop functional abnormalities of the bowel such as change in peristalsis,
hyperexcitability of afferent nerves, hypercontractility, and decreased threshold of the
visceromotor response to colorectal distension (Barbara ef al. 1997; Bercik et al. 2004; Akiho et
al. 2005). Keating et al (2008) showed that granisetron significantly decreased
hyperexcitability of jejunal afferent nerves in response to distension in the post-inflammatory
period (after 28 and 56 days). Concurrently, nodose ganglion neurons in these animals showed
reduced excitability in response to 2-Me-5-HT, suggesting a decrease in 5-HT3 receptor activity

in the post-inflammatory period in this animal model (Keating et al. 2008).

All of the above information raises the possibility that bladder hypersensitivity associated with
TNBS-induced colitis may involve a 5-HT3 receptor mechanism. Therefore, this study aims;

(1) to investigate the effect of 5-HT on mechanosensitive and spontaneous firing in acute TNBS
treated and chronic visceral hypersensitivity (CVH) mice;

(ii) to determine the role of 5-HT3 receptors on 5-HT mediated changes in bladder afferent
firing in CVH animals;

(iii) to examine change in mRNA expression of SERT, TPH1, and TPH2 in urothelium in CVH

mice.

140



Chapter 5

5.2 EXPERIMENTAL PROTOCOL AND ANALYSIS

All of the experiments in this chapter were conducted in the Visceral Pain Laboratory at
the South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. To
account for any potential difference of 5-HT response in healthy mice that was previously
conducted at the University of Sheffield, we firstly determined the effect of 5-HT on bladder
afferent firing in healthy control animals. In addition, we used the same organ bath to ensure

that there was no influence from a different experimental setup.

13-week old anesthetized mice were intracolonically administered with 2.,4,6-
trinitrobenzenesulfonic acid (TNBS) 0.01 mL (130 pg mL" in 30% ethanol) via a polyethylene
catheter to induce colonic inflammation. Histological examination of colon and bladder was
performed to monitor mucosal architecture and signs of inflammation, i.e., cellular infiltration,
crypts abscesses, and goblet cell depletion. The treatment and histological study were performed

by researchers in the Visceral Pain Group, SAHMRI.

A schematic diagram summarizing the time scale of treatment is shown in figure 5.2. In this
study we investigated TNBS-treated mice at 2 time points; acute TNBS (3 days post-treatment)
when there is an active inflammatory state and chronic visceral hypersensitivity (CVH) (28 days
post-treatment) when the inflammatory signs have resolved but the bladder afferent

hypersensitivity still persist.

Intra colonic
administration with TNBS
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28 days post-treatment
(CVH)

Figure 5.2 Schematic diagram of timeline for TNBS colonic administration in acute TNBS

and CVH mice.
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Effect of 5-HT on bladder afferent firing in acute TNBS treated and chronic

visceral hypersensitivity (CVH) mice

In vitro afferent nerve recording was performed to determine the effect of 5-HT in colonic

TNBS treated mice. Details of the experimental set-up are described in chapter 2.

The protocol used in this study is shown in figure 5.3. Repeated bladder distension during a
control period was followed by application of 5-HT (100 uM) diluted in Krebs and constantly
perfused into the recording chamber 2 minutes (5 mL minute'l), before the next bladder
distension. After 3 consecutive ramp distensions at 10 minute intervals, 5S-HT was washed out

with Krebs solution for a further 30 minutes.

To determine the contribution of 5-HT3 receptors to 5-HT mediated change in bladder afferent
firing in CVH mice, granisetron (1 uM), was applied to both intraluminal and extraluminal sides

of the prepatation for 30 minutes before 5-HT application and throughout thereafter.

The animals were divided into 4 groups;
(1) Healthy control (N=6)

(i) Acute TNBS (N=5)

(iii) CVH (N=6)

(iv) CVH + granisetron (N=6)
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Bath perfusion with Krebs/Krebs with granisetron
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2 min before
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Figure 5.3 Protocol used to investigate the effect of S-HT and 5-HT with granisetron pre-
incubation in colonic TNBS-treated mice. Grey and red areas indicate where the spontaneous
and mechanosensitive firing of control period and response to 5-HT application at 2, 15, and 25

minutes were analysed respectively.

The afferent firing response to bladder distension and spontaneous nerve firing between the
distensions were analyzed at 2 minutes, 15 minutes, and 25 minutes after 5-HT application. The
afferent nerve firing in response to bladder distension was substracted from 3 minutes baseline
firing before the distension. Data are presented as mean + SEM. Statistical analysis included
Student’s t-test, One-way ANOVA, and Two-way ANOVA which were tested in different

experiments as described in each result figure.

Moreover, single unit analysis was performed in order to determine the proportion of low
threshold, high threshold and silent fibres in the nerve bundles. Low threshold fibres are defined
as those that respond at intravesical pressure 0-15 mmHg. Single units that showed increased
firing between 15-50 mmHg are defined as high threshold fibres. Silent fibres are those units
that responded to distension only in the presence of 5-HT. The proportion of each type of unit
was analyzed using Fisher’s exact test to determine significant difference of prevalence of nerve

units in healthy control and CVH mice.
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mRNA expression of SERT, TPH1, and TPH2 in urothelial cells of healthy

control and CVH mice

Urothelial RNA samples extracted from healthy control and CVH mice were reversed

transcribed. The total amount of cDNA was diluted in DNase free water (1/10 dilution).

Commercial tagman probes were ordered from ThermoFisher Scientific Company and used to

determine mRNA expression of SERT, TPH1, and TPH2 in urothelial cells, comparing between

healthy control and CVH mice by quantitative real-time PCR. The level of gene expression was

normalized to B-actin (details of the calculation were described in section 2.5.4). The list of

primers is shown in table 5.1.

Table 5.1 Summary of primers used in quantitative real-time PCR

Genes Product code Accession number Sequences where probes bind

SERT | Mm00439391 ml1 | NM_010484.2 5’ CTACCAGAATGGTGGAGGGGCCTTC 3’
TPHI | Mm01202614 ml | NM 001136084.2 5> GTGCTGAAAATCTTCCAGGAGAATC 3’
TPH2 | Mm00557715 m1 | NM_173391.3 5’ TAGACTATTCCAGGAAAAACATGTC 3’
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5.3 RESULTS: EFFECT OF 5S-HT ON BLADDER
MECHANOSENSITIVE FIRING AND BLADDER COMPLIANCE IN

TNBS-TREATED MICE

5.3.1) RESULTS: BLADDER AFFERENT FIRING IN TNBS-TREATED

MICE

Representative traces of bath application of 5-HT in healthy control, acute TNBS, CVH, and

CVH together with granisetron are shown in figure 5.4 and 5.5 respectively.

There was no significant difference in mechanosensitive and spontaneous afferent firing
between healthy control and acute TNBS. However, acute TNBS caused a moderate (~25%
from healthy control) decrease of mechanosensitive afferent firing at 50 mmHg and showed

moderate increase of spontaneous firing (~21% compared with healthy controls).

In contrast, CVH mice had a significant increase in both mechanosensitive (~27%) and
spontaneous afferent firing (~160%) compared to healthy control mice (*P<0.05). Granisetron
reversed this hypersentivity of mechanosenstive firing in CVH mice (*P<0.05) (Figure 5.6A).
Even though there was no statistical difference in spontaneous firing between CVH with or
without granisetron, there was a trend to decreased (~48%) in CVH with granisetron (Figure

5.6B).
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Figure 5.4 Representative traces to illustrate spontaneous and mechanosensitive afferent
responses to bladder ramp distensions during 5-HT bath application in healthy control (A)

and acute TNBS mice (B).
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Figure 5.5 Representative traces to illustrate spontaneous and mechanosensitive afferent
responses to bladder ramp distensions during 5-HT bath application in CVH (A) and

CVH with granisetron pre-incubation (B).
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Figure 5.6 CVH mice showed mechanosensitive and spontaneous afferent hypersensitivity
which were reversed by granisetron. Comparison of mechanosensitive (A) and spontaneous
(B) afferent discharges before 5-HT application between healthy control, acute TNBS, CVH,
and CVH with granisetron mice. *P<0.05, Two-way ANOVA and One-way ANOVA with
Dunnett’s multiple comparison respectively (Healthy control and CVH, N=6; acute TNBS,

N=5; CVH, N=6; CVH+granisetron, N=5).
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5.3.2) RESULTS: EFFECT OF 5-HT ON BLADDER MECHANOSENSITIVE

AND SPONTANEOUS AFFERRENT FIRING IN TNBS-TREATED MICE

Similar that shown in chapter 4, bath application of 5-HT attenuated mechanosensitive afferent
firing at 15 and 25 minutes after 5-HT application in healthy control mice (*P<0.05 and
**¥P<(.01, respectively) (Figure 5.7A). In acute TNBS, CVH, and CVH with granisetron pre-
incubation, there was no significant change in mechanosensitive afferent discharges in response

to 5-HT at any time points (Figure 5.7B, C, D respectively).
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Figure 5.7 Attenuating effect of 5S-HT on mechanosensitive afferent firing absent in acute,
CVH, and CVH with granisetron pre-incubation. (A-D) Comparison of bladder afferent
response to bladder ramp distension at 2, 15, 25 minutes after 5-HT bath application, *P<0.05,
**¥P<(0.01, Two-way ANOVA, (Healthy control, CVH, CVH + granisetron, N=6; acute TNBS,

N=5).
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In contrast to mechanosensitive afferent firing, 5-HT augmented spontaneous afferent firing at 2
minutes after the drug application in healthy control and acute TNBS groups (*P<0.05) (Figure
5.8A, B). However, there was no significant difference in spontaneous firing in response to 5-
HT at any time points in CVH and CVH with granisetron pre-incubation (Figure 5.8C, D). The
animals in all groups had no change in bladder compliance in response to 5-HT application

(Figure 5.9).
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Figure 5.8 5-HT significantly increased spontaneous firing in healthy control and acute
TNBS but not CVH mice. (A-D) Comparison of bladder spontaneous afferent firing at 2, 15,
and 25 minutes after 5-HT bath application, *P<0.05, One-way ANOVA, (Healthy control,

CVH, CVH+granisetron, N=6; acute TNBS, N=5).
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Figure 5.9 5-HT had no effect on bladder compliance in healthy control, acute TNBS, and

CVH with or without granisetron pre-incubation. (A-D) Comparison of bladder compliance

at 2, 15, and 25 minutes after 5-HT bath application. Two-way ANOVA, (Healthy control,

CVH, CVH + granisetron, N=6; acute TNBS, N=5).

151



Chapter 5

Single unit analysis of bladder afferent nerve in healthy control and CVH mice is shown in
figure 5.10. In the healthy control group, the proportion of high threshold unit was 55.6%. Low
threshold and silent units were 37 % and 7.4%, respectively. In the CVH group, the proportion
of high threshold units was increased to 78%. This was concurrent with a decrease in low
threshold and silent unit proportion, 19.5% and 2.4% respectively. In the CVH with granisetron
group, the proportion of high threshold, low threshold and silent units was 66.7%, 27.8%, and

5.6%, respectively.

The afferent subunit composition of the CVH group was significantly changed compared to the
healthy control (P=0.0024). In contrast, there was no significant difference in nerve unit types

between CVH with and without granisetron (P=0.159).
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Figure 5.10 High threshold fibres were increased in CVH mice (A) Sample trace of
waveform analysis of low threshold and high threshold fibres in bladder afferent in response to
ramp distensions. Percentages of unit subtypes in healthy control (B), CVH mice (C), and CVH

mice with pre-incubation of granisetron (D).
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5.4 RESULTS: mRNA EXPRESSION OF SERT, TPH1 AND TPH2 IN

MOUSE UROTHELIAL CELLS FROM HEALTHY CONTROL AND

CVH MICE

As shown in figure 5.11, the level of SERT expression was significantly downregulated in CVH

urothelial cells (*P<0.05). There was no significant difference in TPHI and TPH2 mRNA

expression between healthy control and CVH.
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Figure 5.11 SERT mRNA expression was downregulated in urothelial cells of CVH mice.

(A) SERT, (B) TPHI1, (C) TPH2 mRNA expression in urothelial cells comparing between

healthy control and CVH mice (healthy control; N=4, CVH; N=6).
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5.5 DISCUSSION

The main findings in this chapter are

1.) There was an increase in bladder mechanosensitive and spontaneous firing in CVH mice but
not acute TNBS (if anything decreased) and this was reversed by granisetron;

2.) An attenuation effect of 5-HT on mechanosensitive firing was decreased in acute TNBS,
CVH, and CVH with granisetron mice;

3.) 5-HT-evoked spontaneous firing was blunted in CVH and CVH with granisetron pre-
incubation but not acute TNBS mice;

4. Bladder compliance did not change following 5-HT application in acute TNBS, CVH, and
CVH with granisetron groups;

5.) SERT mRNA expression was downregulated in urothelial cells of CVH mice.

Bladder afferent activity was changed in CVH but not acute TNBS mice.

In the present study, we showed that CVH but not acute TNBS mice exhibited
mechanosensitive and spontaneous afferent hypersensitivity. This is consistent with a study by
Grundy et al. showing that TNBS treated mice in the post-inflammatory period exhibited
bladder hypersensitivity and showed abnormal voiding patterns (Grundy et al. 2016). There was
no change in bladder compliance in any of the animal groups. This indicates that the change in
mechanosensitivity was not secondary to changes in muscle tone but mainly through a direct

afferent nerve component.

There is still uncertainty about the underlying mechanisms contributing to the bladder afferent
hypersensitivity in this animal model. A study by Ustinova et al. suggested that neurotrophic
factors from the muscle layer or colonic DRG neurons possibly influenced axonal sprouting and
neurite outgrowth in the spinal cord. This could lead to changes in sensory and/or motor
function in the bladder (Ustinova et al. 2007). Unpublished histological data from the Visceral
Pain Group, SAHMRI showed that colonic tissues from acute inflammation (from day 3 to day
7 post-treatment) animals showed active inflammatory signs in colon, i.e., mucosa disruption,
cellular infiltration, and crypt abscesses. These inflammatory signs were resolved by day 28

after TNBS treatment, which are consistent with an investigation by Hughes et al. 2009. There
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were no inflammatory signs observed in the bladder wall of the treated animals in any states (3,

7, and 28 days post treatment).

After 3 days of colonic TNBS treatment, bladder afferent activity (although attenuated) was not
significantly different from the healthy control group. Similar findings were reported by Keating
et al. (2008). They found an initial hyposensitivity (14-16 days post-infection) but post-
infectious hypersensitivity (28 and 56 days post-infection) of afferent nerves in the jejunum of
T. spirallis infected mice (Keating et al. 2008). We also found moderate attenuation in
mechanosensitive responses in acute TNBS groups (~25%) compared to healthy control groups.
This may be explained by previous findings showing that mediators from immune cells could

suppress colonic afferent activity (Hughes et al. 2009a; Labuz, 2006).

Ustinova et al. (2007) showed that systemic capsaicin injections 3 days before TNBS treatment,
which desensitizes sensory neurons and subsequently blocks neurotransmission of mediators,
significantly reversed hyperactivity of bladder afferent and normalized the number of mast cells.
This suggests that neuropeptides from C-fibres may play a significant role in developing bladder
afferent hypersensitivity (Ustinova et al. 2007). Various neuropeptides have been reported in
the bladder including VIP, CGRP, substance P, bradykinin (BK) (Arms and Vizzard 2011). A
study reported that BK via activation of BK2 receptor in the urothelium plays a key role in
cyclophosphamide-induced bladder inflammation in rats (Chopra et al. 2005). Interestingly,
Mense (1981) reported that under an elevated level of 5-HT, BK had increased ability to
sensitize muscle receptors of unmyelinated fibres of gastrocnemious-soleus muscle in cats

(Mense, 1981).

We performed offline single unit analysis in order to determine changes in nerve fiber
population between healthy control and CVH mice. Interestingly, we found an increase in the
proportion of high threshold fiber in CVH mice, while the proportion of low threshold and silent
nerves were decreased. Our finding is consistent with a study by Keating et al. (2008) which
reported an increase of high threshold units, while the number of low threshold units was

reduced in post-inflammatory state of mice infected with T. spirallis in jejunum. High threshold
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fibres that sense a noxious range of intravesical pressure (>15 mmHg) could be C-fibres which
are responsible for nociception. An increase in high threshold unit composition in the post-
inflammatory state may suggest an ability of low threshold and silent nerve units to develop to
high threshold fibres as an adaptive mechanism to detect noxious stimuli. However, more N

numbers in each group should be increased to corroborate this finding.

Bladder afferent firing in response to 5-HT in CVH and acute TNBS mice was

decreased.

The present study showed that the attenuation of mechanosensitive discharge by 5-HT was
absent in both acute TNBS and CVH mice. The excitatory effect of 5-HT on spontaneous firing
was preserved in the acute TNBS groups at 2 minutes after 5-HT application. In contrast, in
CVH mice the excitatory effect of 5-HT on spontaneous firing was absent despite an elevation
in baseline firing. The reason we did not observe an excitation of spontaneous firing after 5-HT
application in CVH mice could be that the baseline of spontaneous firing in CVH mice was
already elevated. In addition, the basal level of mechanosensitive and spontaneous firing was
attenuated by granisetron, suggesting that in CVH mice there might be an elevation in the

endogenous level of 5-HT.

A study by Linden and colleagues reported that 5-HT levels in the intestinal mucosa of TNBS-
induced colitis is increased in guinea pigs (Linden e al. 2003). Keating et al. (2008) reported
mice infected with T. spiralis had an increased 5-HT release and contents in the jejunum in both
acute inflammation and the post-infection recovery period. Moreover, nodose ganglion neurons
that innervate the jejunum showed decreased excitability to the 5-HT3 agonist (2-Me-5-HT).
This data indicates functional downregulation of 5-HT3 receptors of these neurons in post-
inflammatory animals (Keating et al. 2008). This raises the possibility that the reduction in
mechanosensitive response to 5-HT observed in acute TNBS and CVH animals may arise from
an adaptive response mechanism that decrease 5-HT3 receptor sensitivity in order to limit

hyperexcitation of afferent nerves.

157



Chapter 5

Unpublished data from the Visceral Pain Group, SAHMRI using retrograde labelling from the
urinary bladder found there was no significant difference in traced DRG neurons that expressed
5-HT3 receptors between healthy control mice (90%) and CVH mice (94%). This data may
suggest that in the post-inflammatory state, animals adjust 5-HT3 receptor sensitivity rather than
the level of the receptor expression. However, further experiments i.e., calcium imaging or
patch-clamp are needed to confirm 5-HT3 receptor sensitivity in DRG neurons innervating the
bladder in CVH animals. It would be also interesting to investigate further if there are changes
in 5-HT3 receptor expression in the afferent terminals and other sites in the bladder wall i.e.,

detrusor muscle.

Recent evidence has shown the contribution of 5-HT3 receptors to symptoms in IBS patients.
Cremon and co-workers (2011) reported that 5-HT release and EC immunopositive cells in
colonic mucosa were increased in IBS patients. An excitation of afferent nerves in rats by
supernatants from IBS patients was attenuated by granisetron (Cremon ef al. 2011). Motavalian
and colleagues (2013) have reported an anti-inflammatory effect of tropisetron, a 5-HT3
antagonist, in TNBS-induced colonic inflammation in rats. Tropisetron and ondansetron
reduced colonic damage, MPO activity, and inflammatory cytokine levels (Motavallian-Naeini
et al. 2012; Motavallian ef al. 2013). However, whether 5-HT3 receptors could ameliorate

bladder symptoms derived from intestinal inflammation would require further study.

SERT mRNA expression was downregulated in CVH mice.

This study, for the first time demonstrated that SERT expression in the bladder along with
SERT in the gut is reduced in the post-inflammatory state after colonic inflammation. Our
investigation is in agreement with studies reporting a decrease in function and expression of
SERT after TNBS-induced colitis in mice (Linden ef al. 2005) and guinea pigs (Linden et al.
2003). Decreased SERT expression has been shown to be associated with impaired 5-HT

reuptake in colonic inflammation (Linden et al. 2005).
5-HT producing enzymes, TPH1 and TPH2 mRNA expression were not significantly different

in urothelial cells between healthy control and CVH mice. Kerckhoffs and co-workers (2012)

have shown that TPH1 mRNA expression is downregulated in the rectum of IBS patients
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irrespective of their visceral hypersensitivity status (Kerckhoffs et al. 2012). This may suggest
an adaptive mechanism in response to high levels of 5-HT. However, while our findings are
consistent with altered 5-HT bioavailability, future studies are needed to determine actual
bladder 5-HT content and 5-HT reuptake in CVH mice in order to quantify changes in 5-HT
metabolism in the bladder. A schematic diagram depicting the axon-reflex mechanism
hypothesized to contribute to changes in 5-HT metabolism in the colon and bladder of CVH

mice is shown in figure 5.12.

With limited time to conduct experiments at SARMRI, Australia, we could not conduct further
experiments to confirm the findings. Afferent nerve recordings in TNBS-treated groups showed
higher variability compared to healthy control animals which may have contributed to a lack of
statistical power. This variability could be derived from variation in the immune responses of
each animal that could also influence the level of bladder hypersensitivity. Therefore, further
studies are required to increase N numbers in both afferent nerve recordings and the

quantification of mRNA expression to confirm our investigation.

In summary, this current investigation has provided initial information about the role of 5-HT in
bladder afferent activity of TNBS-induced colonic inflammation animals. However, further
investigation is required to elucidate the mechanisms of 5-HT involved in this model, which
would help to identify a new therapeutic drug target to treat bladder symptoms i.e., frequency,

urgency, and incontinence derived from neuronal cross-talk between the bowel and the bladder.
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Figure 5.12 Diagram depicting the axon-reflex mechanism hypothesized to contribute to

changes in 5-HT metabolism in the colon and bladder of CVH mice. In the post-

inflammatory period of colonic TNBS treatment, colonic afferents are sensitized due to

inflammation. Hypersensitized colonic afferents convey sensory signals to the dichotomizing

neurons in DRG that also receive afferent signals from the bladder (dotted arrows). The

dichotomizing neurons generate axon-reflexes to downregulate expression of SERT in the colon

and bladder, leading to an increase of 5-HT bioavailability in both the colon and the bladder.

Following an increase in local 5-HT levels in both organs, 5-HT3 receptor excitability and/or

expression may be decreased, which contributes to reduce sensitivity to 5-HT application.
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CHAPTER

IS ENDOGENOUS 5-HT PRESENT IN THE

MOUSE URINARY BLADDER?

6.1 INTRODUCTION

Regulation of 5-HT homeostasis is essential for many physiological processes in both central
and peripheral organs. In the brain, 5-HT dysregulation involves many psychiatric and
neurological symptoms including, anxiety, depression, motor control, sleep, and addiction (Roth
1994; Roth and Xia 2004). In the periphery, 5-HT imbalance leads to diverse pathological
states, i.e., irritable bowel syndrome (Stasi et al. 2014), cardiovascular diseases (Ramage and
Villalén 2008), metabolic disorders (Merahbi et al. 2015), and osteoporosis (Ducy and Karsenty
2010). In order to maintain balance of 5-HT levels, 2 processes are required to be regulated; 5-

HT production and 5-HT reuptake into the cells.

The major source of 5-HT (95%) is produced in the gastrointestinal tract by EC cells, but mast
cells and myenteric neurons in the gut wall also produce 5-HT (Gershon and Tack 2007), while
about 5% is centrally produced from serotonergic neurons originating from raphe nuclei in the
brainstem. Both central and peripheral 5-HT is synthesized from the substrate amino acid,
tryptophan. 5-HT synthesis requires a rate limiting enzyme, tryptophan hydroxylase (TPH).
TPH has 2 isoforms; TPH1 and TPH2. TPH2 is the pre-dominant isoform in neuronal tissues,
while TPH1 is broadly expressed and produces 5-HT in non-neuronal tissues (Lovenberg et al.

1967; Walther et al. 2003).
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The role of TPH enzymes in peripheral tissues has been studied in knockout animals. Li ef al.
found that TPH1 knockout mice exhibit normal gut functions (gastric empting, colonic motility,
and intestinal transit), while TPH2 knockout mice showed abnormality in all of the above
gastrointestinal functions. Double knockout mice of TPH1 and TPH2 exhibited changes in gut
functions similar to TPH2 knockout mice (Li et al. 2011). However, TPH1 knockout animals
showed a delayed onset and less severity to dextran sulphate sodium (DSS) induced colonic
inflammation including, disease activity index (weight loss and frequent stool), histological
damage score, and inflammatory cytokine levels (Ghia et al. 2009). According to this
information, TPH1 which mainly produces peripheral 5-HT (90%) seems to play a crucial role
in pathological conditions, i.e., colitis of the gastrointestinal tract, while neuronal TPH2 which
is a minor proportion (~10%) exerts a major role in regulation of gastrointestinal motility

(Amireault et al. 2013).

Excessive 5-HT is recycled into serotonergic neurons (in the brain) or into enterocytes (in the
bowel) via the function of the serotonin reuptake transporter (SERT). SERT is encoded by the
solute carrier family 6, member 4 (SLC6A4) which is a member of the Na' /CI dependent
transport family. SERT is expressed in many organs and the brain (Quick, 2003). Neuronal
SERT has been cloned in many species including, human (Ramamoorthy et al. 1993), rats
(Takayanag et al. 1995), mice (Chang et al. 1996), guinea pigs (Chen et al. 1998), and cows
(Mortensen et al. 1999). In peripheral organs, SERT has been detected in platelets (Brenner et
al. 2007), carotid bodies (Yokoyama et al. 2013), the pulmonary vascular endothelium (Lee and
Fanburg 1986), and the gastrointestinal tract (Gill et al. 2008). SERT knockout mice showed
abnormal bowel functions, i.e., alternate diarrhea and constipation due to overactivity and
inadequate colorectal movements (Chen et al. 2001) and increased sensitivity to colonic

nociception (Coates ef al. 2006).

Inhibition of SERT function is a target for antidepressant drugs. Serotonin reuptake inhibitors
(SSRIs) is one group of antidepressant drugs, which work via inhibiting 5-HT reuptake from the
synaptic cleft to the pre-synaptic neurons. The mechanisms of SERT and SSRI action are

depicted in figure 6.2.
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Figure 6.2 Schematic diagram of serotonin reuptake inhibitors (SSRIs) action (adapted
from Sangkuhl et al. 2009). In the presynaptic neuron, synthesized 5-HT is stored in the
synaptic vesicles. 5-HT that is not stored in the synaptic vesicles is metabolized into 5-
hydroxyindoleacetic acid by monoamine oxidase enzyme. An action potential stimulates Ca”-
dependent exocytosis to release 5-HT from the vesicles into the synaptic cleft. 5-HT
subsequently binds to 5-HT receptors. Excessive 5-HT in the synaptic cleft is taken back up into
the pre-synaptic neuron via SERT. SSRI inhibits SERT to prevent 5-HT reuptake, which results
in accumulation of 5-HT level in the synaptic cleft. (ADDC = L-amino acid decarboxylase, 5-
HIAA = 5-hydroxyindoleacetic acid, 5-HTR = S5-hydroxytryptamine receptors, MAOA =

monoamine oxidase enzyme, TPH = tryptophan hydroxylase, TRP = tryptophan).

Currently, five different SSRIs are used therapeutically; fluoxetine, fluvoxamine, paroxetine,
sertraline, and citalopram (Hiemke and Hértter 2000; Cipriani ef al. 2010). SSRI users report
adverse side effects including nausea, vomiting, sexual dysfunction, agitation (Mitchell 1994).
Interestingly, a retrospective follow-up study showed that SSRI users report increased urinary
incontinence (Movig et al. 2002). Citalopram (Celexa'") is a highly selective SSRIs; in clinical

treatment, reported side effects include, dizziness, nausea, tremor, erectile dysfunction, fatigue,
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abdominal pain. Interestingly, citalopram users are reported to have bladder adverse effects
including, polyuria, micturition frequency, urinary incontinence, and urinary retention (Forest
Laboratories Ireland, 2002), symptoms that might reflect alter sensory signalling. However, the

mechanism related to bladder symptoms remains elusive.

A recent study by Matsumoti-Miyai and co-workers (2016) demonstrated that application of
citalopram to mouse bladder strips inhibited urothelium-released ATP induced by bladder
distension, which mimicked the action of exogenous 5-HT. However, whether citalopram
directly affects bladder afferent nerve firing remains unknown. In addition, TPH1 transcripts are
expressed in mouse bladder (Matsumoto-Miyai et al. 2016). This information suggests that the

bladder may have the potential to produce 5-HT.

Recently, immunoreactive expression of 5-HT has been found in the prostate and urethra in
close proximity with CGRP immunoreactive nerve fiber in rats (Yokoyama et al. 2017). All of
the above information raises the possibility that 5-HT may be produced within the lower urinary

tract and SERT inhibition by citalopram may affect bladder afferent nerve firing.

To determine whether the urinary bladder has an endogenous source of 5-HT which can affect
bladder afferent signalling,

(i) to study the effect of citalopram on bladder afferent firing

(ii) to examine mRNA expression of 5-HT producing enzymes (TPHI and TPH2) and SERT in
mouse urothelial cells using RT-PCR

(iii) to investigate 5-HT and SERT expression in the bladder wall using immunohistochemistry.
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6.2 EXPERIMENTAL PROTOCOL AND ANALYSIS

Effect of citalopram on baseline and mechanosensitive afferent firing

In vitro afferent nerve recording was performed to investigate the effect of the selective 5-HT
reuptake inhibitor, citalopram on bladder afferent nerve activity. The details of the bladder

preparation were outlined in chapter 2.

Citalopram (1 pM) was applied to the bath and intravesically for 60 minutes and then washed
out for a further 60 minutes. The dose was designed according to a previous investigation by
Chiba et al. who showed that local application of citalopram (1 pM) increased extracellular 5-
HT (Chiba er al. 2016). The bladder was distended to 50 mmHg at 10 minutes interval
throughout the experimental protocol. In order to determine the role of 5-HT3 receptors in
citalopram mediated changes in bladder afferent firing, the 5-HT3 antagonist granisetron (1 M)
was applied to the bath and intravesically for 30 minutes prior to citalopram application. The

summarised protocol is shown in figure 6.3.

Mechanosensitive afferent firing at 30, 60, 90, and 120 minutes after the drug application was
investigated and compared to the last control distension response. The spontaneous firing
between the ramp distension at each time point was determined by peak afferent discharges
according to the same time points as mechanosensitive firing. All the afferent discharge was
subtracted from the baseline firing 3 minutes before drug application. Data was presented as
mean = SEM. Statistical analysis includes One-way ANOVA, and Two-way ANOVA as

appropriate.
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Bath perfusion with Bath perfusion Bath perfusion with
Krebs/ granisetron with citalopram Krebs/ granisetron
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Intravesical application citalopram Intravesu':al appll(:.atlon
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Figure 6.3 Protocol used to study the effect of citalopram on bladder mechanosensitive
and spontaneous afferent firing. Grey colour indicates area where the control data was
analyzed and blue colour indicates the area of spontaneous afferents obtained for each time

point after citalopram application (* = time points where data was analyzed).

mRNA expression of TPH1, TPH2, and SERT in mouse urothelial cells

RT-PCR was performed to examine mRNA expression of TPH1, TPH2, and SERT in mouse
urothelial cells as described in chapter 2 (section 2.5). Duodenum was used as a positive control
for TPHI1 and SERT. Brain was used as a positive control for TPH2. Negative control was

prepared in a similar fashion but cDNA was omitted (N=3).

Table 6.1 Summary of primer sequences used in RT-PCR

Accession Product size Positive
Genes Primer sequences
number (bps) control
TPHI | NM_009414 | FW 5 CTAGGAGTTCATGGCAGGTG3’ 83 Duodenum

RW 5> TTTCGAGTCTTTCACTGCACT 3’

TPH2 NM_173391 | FW 5> TTCCCAGGGTCGAGTACACA 3’ 216 Brain

RW 5° GTCTCTTGGGCTCAGGTAGC 3’

SERT | NM_010484 | FW 5 CATAGCCAATGACAGACAG 3’ 352 Duodenum

RW 5’CAAAACCAAGAACCAAGAC 3’
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Immunohistochemistry of 5-HT and SERT in the urinary bladder

5-HT and SERT protein expression was examined using immunohistochemistry. The detailed

protocol is described in chapter 2 (section 2.6). Bladder and jejunum specimens were fixed in

4% PFA, embedded in OCT and sectioned with a cryostat at 10 pm. The lists of primary and

secondary antibodies are summarised in table 6.2 and 6.3.

The jejunum was used as positive control for both genes to validate the antibodies and optimise

the staining protocol. All the slides were counterstained with DAPI to determine nucleus of the

cells. Blank control was performed using the same protocol but the primary antibody was

omitted.

Table 6.2 Summary of primary antibodies used in this study

Antigen Company | Catalogue number Source species Target species Dilution
5-HT Abcam AB66047 Goat Mouse, Rat, Human 1/400
SERT Abcam AB44520 Rabbit Mouse, Human 1/500

Table 6.3 Summary of secondary antibodies used in this study
Species Company Catalogue number Fluorophore Dilution
Rabbit anti-Goat Santa Cruz SC-2777 FITC 1/400
Goat anti-Rabbit Santa Cruz SC-2012 Alexa Fluor 594 1/500
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6.3 RESULTS: EFFECT OF CITALOPRAM ON BLADDER

AFFERENT FIRING

A representative trace of bladder afferent responses after treatment with citalopram is shown in
figure 6.4. Citalopram gradually attenuated mechanosensitive afferent firing and it reached
significance at 120 minutes after the drug application (**P<0.01) (Figure 6.5A). Bladder

compliance was increased at 90 and 120 minutes after drug application (*P<0.05) (Figure 6.5B).

The inhibitory effect of citalopram was reduced by pre-incubation with granisetron (Figure
6.5B). There was a trend to increase bladder compliance similar to ciatalopram, however, there
was no statistical difference in bladder compliance at any of these time points after granisetron

(Figure 6 6.5D).

Citalopram had no significant effect on spontaneous firing. At 30-60 minutes post application,
there was a trend towards a decrease and at 90-120 minutes there was a trend towards an
increase in spontancous firing (Figure 6.6A). Application of granisetron prior to citalopram
increased spontaneous firing 60 minutes following citalopram application (*P<0.05) (Figure

6.6B).
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Figure 6.4 Representative traces to illustrate bladder afferent firing in response to bladder
distension in the presence and after citalopram application (A) and with pre-incubation

with granisetron (B) (¥ = time points that data was analyzed).
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Afferent firing response to bladder ramp distention

—— Control (Granisetron)
30 min

—+— 60 min

—e— 90 min

—— 120 min

0 10 20 30 40 50
Pressure (mmHg)

Bladder compliance

-=— Control (Granisetron)

350+ 30 min
3009 =~ 60 min I } } i
250 ~= 90 min ' Ins
200 = 120 min
150 i
100+ 1

504

0 T T T T 1

0 10 20 30 40 50

Pressure (mmHg)

Figure 6.5 Citalopram and citalopram with granisetron pre-incubation decreased

mechanosensitive afferent firing. (A and B) Comparison of bladder afferent responses to

ramp distension at 30, 60, 90, and 120 minutes after citalopram application and pre-incubation

with granisetron, respectively. (C and D) Comparison of bladder compliance at 30, 60, 90, and

120 minutes after citalopram application and pre-incubation with granisetron before citalopram,

respectively, *P<0.05, **P<0.01, ***P<0.001 vs. control, Two-way ANOVA with Dunnett’s

multiple comparison (citalopram experiment, N=6 and granisetron-+citalopram, N=3).
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Figure 6.6 There was no significant difference in spontaneous firing after citalopram
application but pre-incubation with granisetron increased spontaneous firing. (A)
Comparison of bladder spontaneous afferent responses to ramp distensions at 30, 60, 90, and
120 minutes after citalopram application (N=6) and (B) pre-incubation with granisetron prior to

citalopram (N=3). *P<0.05, One-way ANOVA with Dunnett’s multiple comparison.
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6.4 RESULTS: mRNA EXPRESSION OF 5-HT PRODUCING
ENZYMES (TPH1, TPH2) AND 5-HT-REUPTAKE TRANSPORTER

(SERT) IN MOUSE UROTHELIAL CELLS

As shown in figure 6.7, mRNA expression of 5-HT producing enzymes, TPH1 and TPH2, and

SERT were detected in mouse urothelial cells (N=3).

Positive Negative
Urothelial cells (N=3)
Control Control

TPH1

TPH2

SERT

f3-actin

Figure 6.7 mRNA expression of 5-HT producing enzymes (TPH1 and TPH2) and SERT in
mouse urothelial cells. TPH1, TPH2, and SERT were detected in mouse urothelial cells. 53-
actin was used as a house keeping gene. Duodenum was used as a positive control of TPH1 and

SERT. Brain was used as a positive control for TPH2 (N=3).
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6.5 RESULTS: IMMUNOHISTOCHEMISTRY TO IDENTIFY SERT

AND 5-HT IN THE URINARY BLADDER

SERT staining from three bladders is shown in figure 6.8. SERT expression in jejunum was
shown as a positive control. In all three bladder samples, positive SERT immunoreactivity was
detected. The density of staining was greater in the urothelium but there was also some positive

detection in the lamina propria.

The expression of 5-HT was also examined, in these experiments, jejunum sections were
labelled with an anti-5-HT antibody as a positive control (Figure 6.9A). The schematic diagram

(Figure 6.9B) shows the regions from which positive 5-HT staining was detected.

Some positive cells were observed in the prostatic urethra (Figure 6.9C, E, F). 5-HT
immunopositive cells had various morphologies and were distributed mainly in the prostatic
urethra wall (Figure 6.9C, E, F) and around the glandular structures (Figure 6.9G-I). Most of the
cells projected cytoplasmic processes either to apical or basolateral sides of the lumen. A few
cells were thin and spindle shaped. Some of the cells projected their cytoplasmic processes in
two opposite directions. Higher magnification of a 5-HT immunopositive cell is showed in

figure 6.9J.
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Blank control: Jejunum

Figure 6.8 Representative images of mouse jejunum and bladder labelled with anti-SERT.
(A) SERT positive staining in jejunum (B) Blank control for jejunum (C) SERT
immunopositive staining was distributed in urothelium and lamina propria. (D) Blank control
for bladder. (E-F, G-H, and I-J) SERT immunopositive staining in the urothelium from the
three bladders, respectively. Green=SERT, U= urothelial layers, Lp= lamina propria, arrows

indicate SERT immunopositive staining.
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Blank control: Bladder

Figure 6.9 Representative images of mouse jejunum and urethra labelled with anti-5-HT.
(A) EC cells were labelled with anti-5-HT in villi of jejunum, (B) Schematic illustrates sagittal

section of male mouse bladder, red box indicates the prostatic urethra (PRUR) where 5-HT

175



Chapter 6

immunopositive cells were detected (Georgas et al. 2015), (C, E, F) 5-HT immunopositive
staining was distributed in prostatic urethra wall, (D) Blank control for bladder, (G-I) 5-HT
immunopositive cells distributed around glandular structures in the prostatic urethra, (J) Higher
magnification of 5-HT immunopositive cell that projected cytoplasmic process to luminal side
of the urethra. Green=5-HT, blue=DAPI, PRUR=prostatic urethra, arrows indicate 5-HT

immunopositive cells.
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6.6 DISCUSSION

The main findings of this chapter are

1.) Blocking SERT with citalopram attenuated mechanosensitive afferent firing but there
was no effect on spontaneous firing;

2.) Granisetron application prior to citalopram reversed an attenuation effect of citalopram
on mechanosensitive firing;

3.) Citalopram and granisetron application prior to citalopram increased bladder
compliance;

4.) TPHI and TPH2 mRNA expression was found in mouse urothelium;

5.) mRNA expression and protein expression of SERT were detected in mouse
urothelium;

6.) 5-HT positive cells were detected in the urethra.

Citalopram attenuated mechanosensitive firing but tended to increase

spontaneous firing over time.

For the first time, the data in this chapter show the effect of citalopram on bladder afferent
firing. Citalopram attenuated mechanosensitive firing at 120 minutes after the drug application,
which was a similar effect to exogenous 5-HT application that was shown in chapter 4. The
spontaneous firing tended to increase over time, however, there was no significant difference to

that of the control period.

Chiba and colleagues (2016) demonstrated that local perfusion of citalopram (1 uM) in the
prefrontal cortex increased 5-HT concentration, measured by in vivo microdialysis, by 600%
from baseline level after 60 minutes. They also showed that increased brain 5-HT level was
associated with a decrease in intercontraction interval of the bladder measured by
cystometrography (Chiba et al. 2016) - this suggests that changes in 5-HT centrally can drive

alteration is bladder voiding although a peripheral effect cannot be ruled out.

In the present study, citalopram showed an effect that only became significant at 120 minutes.

This is longer than the effect observed by Chiba and colleagues and suggests that in the brain
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there may be a higher concentration of 5-HT following SERT inhibition than in the periphery. It
might be that in the periphery, less 5-HT and lower SERT levels mean a longer period is needed
before 5-HT levels in the extracellular space reach a concentration sufficient to influence
afferent firing. Matsumoto-Miyai also reported the efficacy of citalopram to increase the level of
extracellular 5-HT in the mouse bladder. They showed that application of citalopram (10 uM)
for 30 minutes prior to bladder distension mimicked the inhibitory effect of exogenous 5-HT in

bladder distention-induced ATP release (Matsumoto-Miyai et al. 2016).

In chapter 4, the attenuation of mechanosensitivity in response to exogenous 5-HT is described
as being mediated by 5-HT3 receptors and blocked by granisetron. We found that pre-
incubation of granisetron prior to citalopram prevented an attenuation of mechanosensitive
discharge following citalopram application, suggesting that there might be an endogenous 5-HT
released after citalopram application. However, we observed an increase in bladder compliance
in response to citalopram, which in chapter 4 had not been observed. Could this mean that
citalopram also exerted independent effects compared with SERT and 5-HT? Citalopram is
known to affect a variety of ion channels including inhibition of L-type calcium channels.
Hamplova-Peichlova showed that citalopram decreased L-type calcium current (I) in rat
cardiomyocytes in a dose dependent manner (3 and 10 pM) (Hamplova-Peichlova et al. 2002).
In this respect it is interesting that in the current study there was an increase in compliance
reflecting a decrease in bladder detrusor tone. This persisted to a similar extent after granisetron
treatment although because of low N numbers this failed to reach significance. It is therefore
possible that the attenuated mechanosensitivity after citalopram is secondary to changes in
muscle tone rather than resulting from a direct effect of 5-HT on the afferent endings.
Additional studies would be necessary to determine if this is the case perhaps using muscle

blockers.

Even though citalopram has been proposed to be one of the most selective SSRI, it has been
reported to have some slight affinity to o -adrenergic receptors and histamine H1 receptors
(Owens et al. 1997). A previous study reported that activation of a-adrenergic receptors in

urothelial cells could enhance NO release (Birder et al. 1998). This NO released from urothelial
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cells may further affect afferent nerves in the suburothelial layer and the detrusor muscle.

Further experiments would be necessary to determine the contribution of NO to the response.

Our finding is inconsistent with the side effect profile reported by citalopram users, who have
polyuria, frequency and incontinence. However, this inconsistency may be derived from
differences in methodology and doses of citalopram administered. In our investigation, we
directly applied citalopram into the bladder. Another key difference is we excluded the afferent
nerves from the influence of central effects, which are the main target for citalopram to treat

their psychiatric conditions.

Our investigation employed an indirect method to detect 5-HT release from the bladder via
using SSRI drug to block SERT function and determine bladder afferent discharge. This has the
disadvantage that other pharmacological issues could influence the results, e.g., the off-target
action of citalopram described above. Measuring 5-HT levels in supernatants following bladder
distension by ELISA could be an alternative method. However, the sensitivity of the 5-HT
detection methods may be a limitation in tissue with limited sources of 5-HT (see below).
Generally, the sensitivity of commercially-available 5-HT detection kits is in the range 5
ng/mL-100 ng/mL (5-HT ELISA kit, abcam133053) and therefore might not sensitive enough to
detect small 5-HT release in volumes collected from bladder emptying in mice which are also
small volumes (~100-120 pL). Other detection methods might include western blot or
immunohistochemistry. Therefore, we performed immunohistochemistry in an attempt to

identify an endogenous source of 5-HT in the bladder.
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TPH1, TPH2, and SERT mRNA expression was detected in mouse urothelial

cells.

It has been reported that TPH1 transcript but not TPH2 is found in mouse bladder using nested
PCR. Matsumoto-Miyai and colleagues reported a small level of TPH1 mRNA expression in the
whole bladder tissue (Matsumoto-Miyai et al. 2016). However, in our study, both TPH1 and
TPH2 mRNA expression was detected in mouse urothelial cells. This discrepancy in TPH2
expression could partly be due to different methodology. Our study used urothelial cell lysates,
whereas the study of Matsumoto-Miyai, collected the whole bladder. If TPH2 expression was
mainly in the urothelium, the level for detection might be far lower in the samples from the

whole bladder making detection of TPH2 more difficult.

TPHI1 protein expression is found in EC cells, mast cells, nerve fibres, and cell bodies both in
rats and human in the gastrointestinal tract (Yu et al. 1999). Even though TPH2 is defined to be
a major TPH isoform in neuronal tissues, many studies have shown that TPH2 expresses in the
peripheral organs. Ortiz-Alvarado and co-workers (2006) have reported TPH2 expression in
enteric neurons in the gut and neuroepithelial cells in taste buds in mice (Ortiz-Alvarado et al.
2006). In rat, TPH2 has been found in retinal pigment epithelial cells (Zmijewski et al. 2009). In
catfish, TPH2 has been detected in muscle, heart, spleen, kidney, liver, and gill (Raghuveer et

al. 2011).

Our study, for the first time, showed that SERT mRNA is expressed in urothelial cells of the
mouse. Moreover, the immunohistochemistry experiment also suggests that SERT may also be
expressed at protein level in urothelial and submucosal layers. More investigations of SERT
expression have been described in the intestinal tissues. SERT mRNA and protein expression
have been shown in mucosal epithelial cells in rats, guinea pigs, and human (Wade et al. 1996;
Chen et al. 1998; Gill et al. 2008). The expression patterns are scattered in apical membrane of
enterocytes, intracellular part, and some nerve fibres in submucosal layers (Gill ef al. 2008).
Interestingly, co-expression of SERT and TPH1 has been reported in glomus cells in the carotid
body (Yokoyama et al. 2013). However, our study did not perform double staining SERT with
TPH enzymes. It would be interesting to examine if SERT and TPH are express in the same
cells or arrange in proximity. This would provide more information about any potential role of

SERT in the urinary bladder.
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5-HT expression was detected in mouse urethra.

Our study showed that 5-HT immunoreactive cells were distributed in the urethra wall. This is
correlated with a recent study by Yokoyama and co-workers (2017) in rat urethra. They showed
that 5-HT immunoreactive cells are densely distributed either in the proximal part of the
prostate urethra, epithelial cells of coagulating glands, prostatic glands, and seminal vesicles
(Yokoyama et al. 2017). A functional role for 5-HT-positive endocrine cells in the urethra has
also been studied. Fan and co-workers (2014) demonstrated that intravenous injection of 5-
HT1A agonist, 8-OH-DPAT decreased the flow rate of urine by potentiating urethra smooth
muscle and also decreased residual volume in anesthetized male rats. This suggests that urethral
5-HT may exert a fine tuning function during micturition by controlling smooth muscle

contraction in the urethra (Fan et al. 2014).

Various morphologies of 5-HT positive cells were observed in our study. Some of the cells had
a triangular shape which is a typical morphology for EC cells in the gut. Interestingly, most of
the cells located in the epithelial layers and extended their cytoplasmic processes either to the
apical or basolateral sides of the lumen. Some of the cells projected cytoplasmic processes to
both apical and basolateral sides. This raises an interesting possibility that 5-HT positive cells in
the urethra may exert sensory function to detect luminal change and convey sensory signals to

other nearby cells via 5-HT secretion.

Notably, from their oval nuclear shaped with spindle and elongated cytoplasmic processes, this
brings us to speculate that some of 5-HT containing cells might be ICC. ICC are thin spindle
shapes cells which, have been demonstrated in the bladder dome and the urethra (Lyons et al.
2007; McCloskey and Gurney 2002). Using ¢-Kit and vimentin immunostaining for ICC cell
makers, Davidson and McCloskey (2005) showed that several types of ICC distribute in the
bladder wall of guinea pigs either the lamina propria which form proximity to the urothelial
cells or the detrusor muscle which are found to line on the muscle edge, between the muscle
bundle, and close to cholinergic nerves (Davidson and McCloskey 2005). Expression of 5-HT
receptors on ICC in the gut have also been reported (Wouters er al. 2007a; Wouters et al.
2007b). Nevertheless, the higher relative number of ICC in the urethra than our 5-HT positive
staining is one point to consider. It may be possible that only a sub-population of ICC

expressed 5-HT. However, future study is required to rule out this speculation. Using
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immunohistochemistry with co-staining of ICC markers (c-kit and vimentin) and 5-HT could

rule out this hypothesis.

In the present study, we found TPH1, TPH2, and SERT expression in mouse urothelial cells and
5-HT positive cells in the urethra. The functional study of citalopram showed similar effects to
exogenous 5-HT although the pharmacology is unclear. All of this information may suggest that
5-HT may possibly be produced in the urinary bladder. Even though we could not detect 5-HT
expression in bladder dome, the explanation could be that in the normal state, the urinary
bladder may not produce and store 5-HT in the bladder wall. 5-HT production might be
enhanced in response to mechanical stimulation (bladder distension) or in pathological states,
i.e., inflammation or interstitial cystitis. In addition, 5-HT is a small labile peptide molecule, we

could not exclude the possibility that 5S-HT may be degraded during sample preparation.

The other candidate sources of 5-HT in the bladder wall are mast cells and platelets. Mast cells
synthesize 5-HT from 5-hydroxytryptophan and they have been reported to express TPH1 in rat
and human gastrointestinal tracts (Weitzman et al. 1985; Yu et al. 1999). Mast cells are
distributed in the lamina propria, adventitial blood vessels, and the detrusor muscle. However,
in healthy rats, there is a low density of mast cells compared to rats with colonic TNBS-treated

group (Fitzgerald et al. 2013b).

Our study provides only preliminary information about SERT and 5-HT expression in the
urinary bladder. To ensure the consistency and pattern of the expression, greater N numbers are
required. SERT and 5-HT immunopositive cells distribution needs to be systematically
quantified in each regions of the bladder. Double staining of 5-HT with other cell markers
including, mast cells (CD34), urothelial markers (uroplakin), platelet markers (CD41), and ICC
(c-Kit and vimentin) would also help to clarify an endogenous source of 5-HT in the bladder.
Therefore, all of the conclusions are derived from immunohistochemistry study in this chapter

require further investigation.
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CHAPTER

GENERAL DISCUSSION

This thesis describes a modulatory role for 5-HT on bladder afferent firing in healthy animals
and in a model of colon-bladder cross organ sensitization. Afferent nerves are the first key
component that sense mechanical (stretch and volume), chemical, and noxious stimuli and
convey the signal to the CNS in order to regulate the micturition reflex and mediate sensation.
Dysregulation of afferent nerve activity therefore leads to bladder pathological conditions such
as OAB and IC, in which patients have urinary frequency, urgency, nocturia, and pain during
urination (Klein 1988; Andersson 2002; Yoshimura and Chancellor 2003). IC has been reported
to affect people of all ages and both sexes (Held ef al. 1990). Bladder disorders impact quality
of life including decreased emotional well-being and impairment in sexual function (Coyne et
al. 2009; Irwin et al. 2006). 45% of the worldwide population has been estimated to have at
least one bladder symptom (Irwin ef al. 2011) and this causes a high amount of economic

burden for the health care system (Klotz et al. 2007; Ganz et al. 2010).

5-HT is widely known to be a key neurotransmitter/hormone regulating many physiological
functions both centrally and in the periphery. Especially in the bowel, 5-HT exerts crucial roles
in digestion, secretion, and motor functions (Berger et al. 2009; Grundy 2008). In addition to
providing beneficial roles, 5-HT has been reported to be an inflammatory mediator playing a
role in developing afferent hypersensitivity in the bowel, which is associated with pathological

symptoms such as abdominal pain, discomfort, diarrhoea, and constipation (Gershon and Tack
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2007; Grundy 2008; Sikander et al. 2009). Compared to the bowel, less information about the
modulatory role of 5-HT on bladder sensation and inflammation has been established. Most of
the previous investigations have focused on its roles in central brain mechanisms involved in
micturition and detrusor contraction. However, there is still little evidence for a modulatory role
of 5-HT on bladder afferent signalling and related to bladder storage symptoms (i.e., urgency
and frequency). Therefore, we were interested in investigating the role of 5-HT in bladder
afferent signalling. Importantly, 5-HT has been shown to be involved in intestinal inflammation,
so we hypothesized that 5-HT may play a role in bladder hypersensitivity derived from neuronal
cross-talk between the bowel and the bladder, to account for the overlapping symptoms

recorded in IBS and IC patients.

> Endogenous 5-HT in the urinary bladder

It has become widely accepted that the urothelium is not just a passive barrier to protect the
bladder but also exerts plastic and essential roles in immune response, permeability and cellular
communication in response to stimuli via secretion of various mediators such as ATP, NO,
ACh, substance P, bradykinin and others (Birder et al. 1998; Birder and Andersson 2013; Birder
et al. 2003; Ferguson et al. 1997). These urothelial mediators could activate the urothelium
itself in an autocrine manner and/or convey chemical signal to other nearby cells (i.e., afferent
nerve fibres, ICC and smooth muscle cells) in order to control bladder responses to certain
stimuli (Birder and Andersson 2013; Birder et al. 2003). However, since we have identified a
number of 5-HT receptor subtypes expressed in the urothelium, we hypothesized that the
urothelium may also be source of 5-HT in the bladder. In this respect we detected TPH1 and
TPH2 mRNA expression in the mouse urothelium. In addition to 5-HT producing enzymes, we
found SERT mRNA and protein expression. These data suggest that urothelial cells may be a
potential source of endogenous 5-HT. Our study is in line with Matsumoto-Miyai and
colleagues who showed that TPH1 transcripts are expressed in the mouse bladder (Matsumoto-

Miyai et al. 2016).

Our functional study on bladder afferent firing using the selective 5-HT reuptake inhibitor
citalopram showed an attenuation in afferent firing in response bladder distension. This mimics

the response to exogenous 5-HT except that the effect of citalopram takes a longer time to
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develop. This suggests that 5-HT may be endogenously produced by the bladder. Even though
pre-incubation with granisetron reduced the attenuation effect of citalopram consistent with an
action of endogenous 5-HT at 5-HT3 receptors, off-target actions of citalopram on other
receptors/channels cannot be ruled out as discussed in chapter 6. An indication of such off target
effects of citalopram may be the increased bladder compliance seen with citalopram but was not
observed with 5-HT administration. It is possible that one mechanism of citalopram to regulate
bladder afferents is via modulation of muscle tone. Therefore, in order to determine that 5-HT is
released from the bladder, other functional assays with higher accuracy and sensitivity should
be considered i.e., electrochemical detection using carbon fiber electrode. This method has been
used to directly detect 5-HT secretion from the gastrointestinal epithelial layer in real-time and
determine concentration following mechanical stimulation in the bowel (Bertrand and Bertrand

2010).

It is possible that endogenous 5-HT in the bladder may be metabolized into other mediators, for
example melatonin. In addition to the pineal gland, it has been shown that 5-HT can also be
converted to melatonin in the bowel, which in turn regulates many intestinal functions i.e.,
motility, pain, and inflammation (see review by Chen et al. 2011). However, melatonin
synthesis requires two key enzymes; N-acetytransferase and hydroxyindole-O-methyltransferase
(Hong and Pang 1995). However, there is still no clear evidence that these enzymes are present

in the bladder wall, and future study will be required to prove if this is the case.

Interestingly, patients on citalopram medication have been recorded as reporting bladder
symptoms such as urinary incontinence, frequency, and urgency. However, in our nerve
recording experiments we did not observe hyperexcitability of mechanosensitive afferents, but a
tendency for the spontanecous firing to increase over time. It is plausible that citalopram may
require a longer time period for the 5-HT concentration to reach a sufficient level to activate
afferent nerves. It may be possible that any adverse effect of citalopram on bladder functions
may be mediated through indirect mechanism that alter other signalling pathways. One possible
candidate for this could be ATP since recent evidence has shown that 5-HT potentiates
distension-induced ATP release from the urothelium (Matsumoto-Miyai et al. 2016). It is
important to recognize that in our study any influence of efferent and central nervous control

has been excluded. Therefore, it is reasonable to postulate that citalopram’s effect on the bladder
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may primarily be mediated through central mechanisms. Even though the mechanisms
underlying citalopram side effect the bladder, it may be implied from the other side effects e.g.,
appetite change, sleep deprivation, nausea, and headache (Ferguson, 2001), that CNS may be a

major site involving these adverse symptoms.

We detected TPH mRNA expression in the urothelial layer suggesting an endogenous source of
5-HT. However, we could not detect 5-HT expression in the bladder dome using
immunocytochemistry. As briefly discussed in chapter 6, one of the possible explanations for
this discrepancy could be that in a resting state (without mechanical or chemical stimulation)
condition; relatively small amounts of 5-HT are produced by the urothelial cells, which are
below the detection threshold for antibody staining. There might be an increase in 5-HT
production from the bladder following pathological insults such as inflammation as occurs with
interstitial cystitis giving 5-HT a prominent role in modulating the afferent response to
inflammation. An increase of 5-HT production following inflammation has been extensively
shown in the intestine (Linden ef al. 2003; Keathing et al. 2008; Rapalli et al. 2016). However,
we did not determine whether 5-HT expression or 5-HT levels are increased in our cross-organ
sensitivity TNBS model. With more time, 5-HT expression/levels in the bladder could be
measured in the inflammatory model and compared to the healthy state using
immunohistochemistry, HPLC, or electrochemical detection. Further investigations using an

array of inflammatory models would also be needed to explore this further.

Interestingly, we found 5-HT immunopositive straining of cells in the urethra, which
corroborates a recent study by Yokoyama and co-workers (2017). They showed that 5-HT
positive cells in proximity to CGRP positive nerve fibres (Yokoyama et al. 2017). In addition,
5-HT expression was detected in rat urethral epithelial cells and some of these formed a close
relationship with NOS positive cells in the suburothelial layer (Eggermont et al. 2016). Since
urethral afferents are conveyed through pudendal and hypogastric nerves, we cannot exclude the
possibility that some of the afferent nerves that we recorded (mixture of pelvic and hypogastric
nerves) may also originate from the urethra with close proximity to 5-HT positive cells. (Janig

and Morrison 1986).
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It is still unclear which types of cell express 5-HT in the urethra. Notably, from the location of
5-HT positive cells that are distributed in the urethra wall, around the glandular structure close
to the lumen, this may suggest various functions of 5-HT in the urethra. Possible candidate cells
could be urothelial cells, suggested by our RT-PCR study that found TPH1 and TPH2 mRNA
expression in the urothelium. Moreover, various cell types in the suburothelial layers such as
mast cells, platelets, and nerve terminals, which have been suggested to produce and/or store 5-
HT may be potential candidate cells for 5-HT expression in the urethra. However, double
staining with other cell markers i.e., uroplakin (for urothelial cells), tryptase (for mast cells), and
CD61 (for platelets) would allow a clearer interpretation of cell types and its role from

relationship with the nearby cells.

> Opposing actions of 5S-HT on spontaneous and mechanosensitive afferents

We have shown that 5-HT exerts opposite effects on mechanosensitive and spontaneous
afferent firing, both predominantly mediated via 5-HT3 receptors. Endogenous or exogenous
5-HT could bind to receptors at multiple sites in the bladder wall; (i) urothelial cells, (if)
detrusor muscle, (iii) afferent nerve terminals and (iv) other cells in the suburothelial and

muscularis layers.

In the urothelium we found various subtypes of non-HT3 receptor transcripts expressed on the
urothelial cells. In calcium imaging experiments, we found that 5-HT triggered an increase in
intracellular Ca’" via binding to non-5-H3 receptors (possibly 5-HT1A, 1B, 1D, 2A, 2B, 4, 6,
or 7) expressed on urothelial cells. It is possible that 5-HT may activate these receptor on the
urothelial cells directly conveying sensory signals to nerve terminals and/or nearby cells in the
suburothelium (i.e., ICC and blood vessels). We therefore cannot exclude the possibility that 5-
HT results in mediator release from the urothelium that then results in an indirect effect on
afferent firing. Several studies have reported a role of 5-HT in the release of other mediators
such as ATP and ACh (Fink and Gothert 2008; Matsumoto-Miyai et al. 2016). These
mediators could be released from the urothelium in response to mechanical and/or chemical
stimulation. However, further experiments are required to prove such interactions. For

example, pre-incubation with the P2 purinoreceptors antagonist (suramin) before 5-HT

187



Chapter 7

application could rule out if 5-HT exert indirect mechanism on afferent firing through mediated
ATP release.

As discussed in chapter 3, various 5-HT receptor subtypes including 5-HT3 have been found in
mouse detrusor muscle (Chetty et al. 2007). Our investigation also showed that 5-HT and 5-
MT (a full agonist of non-5-HT3 receptors) triggered bladder contraction concurrently to
sensitization of baseline afferent firing. The bladder compliance in response to all of agonists
was unchanged. Using Y-27632 and ML-9 to block detrusor contraction prior to application of
5-MT abolished the effect of 5-MT on baseline afferent firing. These data clearly demonstrate
that non-5-HT3 receptors induced activation of baseline afferent firing is dependent on
detrusor contraction. To determine whether 5-HT3 receptors-stimulated baseline afferent firing
is secondary to any induced detrusor contraction, bladders were treated with Y-27632 prior to
application of 2-Me-5-HT, a selective 5-HT3 agonist. We found no significant difference in
peak afferent discharge in response to 2-Me-5-HT after blocking the contractile components,

indicating that 5-HT3 modulate bladder afferent firing is independent of muscle contraction.

Since bladder distension could also lead to various types of mediator release including NO, we
explored the possibility using pharmacological tools. Our finding that a NOS inhibitor (L-
NAME) prevented 5-HT-induced attenuation of mechanosensitive afferent firing while
augmented excitation of spontaneous firing suggests that 5-HT may regulate NO production.
Our data is correlated with a study by Yu and de Groat (2013) who found that application of
SNAP (NO donor) and L-arginine (NO substrate) depressed bladder afferent firing in response
to bladder distension. The inhibitory effect of L-arginine was blocked by application of L-
NAME in cyclophosphamide (CYP) treated rats. These finding indicate that NO has a
depressive effect on hyperexcitability of bladder afferents in pathological conditions and may
suggest an anti-nociceptive role of NO in response to bladder inflammation (Yu and De Groat
2013). Our data showing the interaction of 5-HT and NO pathway supports the hypothesis that
NO may reflect an adaptive mechanism to counteract hypersensitivity of bladder afferents
following sensitization of bladder afferent nerves by 5-HT. However, there is still uncertainty
about the source of NO that could contribute to afferent modulatory effects. NOS has been
shown to be expressed and distributed in the bladder wall including, urothelium (Birder 1998,
2008), smooth muscles (Andersson and Persson 1993, 1995; Birder, 1998), parasympathetic

efferent nerves (Andersson and Persson 1995), and afferent nerves (Vizzard ef al. 1995, 1996).
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It is possible that any of these candidate sources may act in a concerted way to regulate bladder
afferents. However, future study should be conducted to measure NO release in response to

bladder distension comparing with and without 5-HT.

One possible explanation for the different effect of 5-HT on spontaneous and mechanosensitive
afferent firing could be that 5-HT has a differential effect on different populations of bladder
afferent fibres. As discussed in chapter 1 and 4, Xu and Gebhart classified mouse pelvic
afferent nerves based on their response to various stimulus into 4 major classes; urothelial
(9%), muscle/urothelial (14%), muscle (63%), and serosal (14%) afferents. Each class of
afferent may include different proportion of A8- and C-fibres. For instance, urothelial afferents
are not responsive to stretch but are activated in response to chemical stimuli, whereas muscle
afferents primarily response to stretch during bladder distension. It has been reported that the
majority of C-fibres innervate urothelial and suburothelial layers and some of these could be
volume receptors which do not response to intravesical pressure, while Ad-fibres innervate the
detrusor layer (Gabella and Davies 1998; Birder 2013; Kanai and Andersson 2010). These
polymodal properties (response to multiple stimuli) are similar to the mechanosensitive
afferent innervating the colon (Su and Gebhart 1998). It is possible that 5-HT potentiates other
mediator release (e.g. NO) that further modulates stretch sensitive afferent fibres. However,
one experiment which could rule out the different response to 5-HT among the different
population of afferent fibres is to use electrical stimulation of pelvic nerves to discriminate A&-
and C- fibres according to their conduction velocity. In addition, measuring bladder afferent
firing in response to 5-HT in urothelium denuded tissues would eliminate contribution of

mucosal stretch-insentitive fibers.

The opposing action of 5-HT on spontancous afferent and mechanosensitive or distension
sensitive afferents may suggest two distinct roles of its modulatory actions; (i) excitatory
mediator of bladder sensation to convey chemical stimulation or noxious stimuli (ii) inhibitory
mediator to attenuate afferent firing when there is an over distension or bladder

accommodation is limited.
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> Reduced sensitivity of bladder afferent firing to 5-HT in TNBS-induced

colonic inflammation

We employed TNBS-induced colonic inflammation to generate bladder hypersensitivity.
Experimental TNBS induction is a well characterized model of colonic inflammation via
activation of Thl cells (Kiesler et al. 2015) which resulting in release of proinflammatory
cytokines such as IL-18, IL-6, and TNF-O (Dohi et al. 2006). In addition, T cell activation
further recruits macrophages which also release various pro-inflammatory cytokines i.e., IL-6,
IL-8, IL-18, IL-12, TNF-&, NO and reactive oxygen species (Cloez-Tayarani and Changeux,
2007). This information is in line with investigations in IBD patients that have shown an
increase in pro-inflammatory cytokines i.e, TNF-Q, IL-6, and IL-18 release from macrophages,

neutrophils, and endothelial cells (Rahimi et al. 2007).

A number of studies successfully used TNBS-induced colonic inflammation to investigate
cross-organ sensitization mechanism between the bowel and the bladder. However, one point
that still needs to be considered is the extent to which this chemical injury model mimics
physiological phenomena in intestinal inflammation. Other models that could be more relevant
to physiological responses include nematode infection i.e., T.spirallis and infection with
pathogenic bacteria, which should be consider as alternative methods in order to generate cross-
talk mechanism. Various strain of bacteria have been reported to generate colonic inflammation
such as Salmonella, Campylobacter, Shigella, and Escherichia (Papaconstantinou and Thomas
2007). Ibeakanma et al. studied Citrobacter rodentium infection mouse model to mimic E.coli
infection in human. They showed that Citrobacter rodentium generated post-infectious
hyperexciatability of colonic DRG neurons (Ibeakanma et al. 2009). However, one challenge of
these physiological-induced model is the variability of mouse immunity which may be more

difficult to control in order to provide consistent inflammation levels for each animal.

CVH animals developed hypersensitivity in both spontaneous and mechanosensitive bladder
afferent firing. We found that the inhibitory effect of 5-HT on bladder mechanosensitive firing
was blunted in acute TNBS and CVH animals while there was no significant change in
spontaneous firing in the CVH group. This might be that in the post-inflammatory state, bladder

afferents are already sensitized by inflammatory mediators i.e., TNF-Q(, IL-18, IL-6, and 5-HT
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released from immune cells in the blood circulation, therefore the effect of 5-HT on bladder
afferent discharge may be masked. Nevertheless, there might also be an increase in 5-HT release
in CVH animals. This is suggested from the experiment in which granisetron reduced
hypersensitivity of spontaneous and mechanosensitive firing. A previous study has suggested an
increase in gastrointestinal 5-HT production in TNBS-treated animals. Linden et al. 2003
showed increased number of EC-cells which associated with 5-HT availability in colonic
mucosa of guinea pigs (Linden et al. 2003). However, future studies are required to determine

whether there is a change in 5-HT level in the bladder following TNBS treatment.

We observed a downregulation of SERT mRNA expression in urothelial cells of CVH mice.
This may indicate an impairment in 5-HT metabolism in the bladder in the post-inflammatory
state. Our study did not show change in TPH1 and TPH2 mRNA expression, however, the
urothelium may not be the only potential source of 5-HT. As discussed earlier, 5-HT could be
secreted from other cell types in the bladder wall i.e., mast cells and platelets, although these
were not evident from immunohistochemistry. Future study should address TPH1, TPH2, and 5-
HT expression in the bladder wall in CVH mice to examine if there is a change in 5-HT
production in the bladder following this post-inflammatory state. Decreased SERT expression in
the urothelium may result in an increase of 5-HT level in the bladder wall, which would
potentially activate 5-HT receptors on the bladder afferents. Importantly, ligand-gated 5-HT3
subtype may become desensitized in the continued presence of 5-HT or there may be a
downregulation of 5-HT3 expression and/or sensitivity after chronic exposure to endogenous 5-

HT.

Our data suggests that 5-HT signalling in the bladder of CVH animals is altered. One possible
mechanism could be that some colonic afferent fibres that were sensitized following TNBS
treatment may also have branching to innervate the bladder, leading to a reduction in 5-HT3
sensitivity and/or receptor expression in bladder afferents. This may reflect an adaptive
mechanism following chronic exposure of 5-HT. Further studies are needed to determine if 5-

HT3 receptor expression in the bladder wall and DRG neurons is altered in CVH animals.
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Functional studies using patch clamp could determine whether DRG neurons from CVH mice

have altered excitability following 5-HT3 agonist application.

Alternatively, it is also possible that other 5-HT receptor subtypes become dominant under
pathological conditions. As discussed in chapter 5, Rapalli et al. recently showed that 5-HT2A
receptors exert a major action in development of colonic and systemic inflammation in the
TNBS model with an additional moderate role of 5-HT4 receptors. In contrast, 5S-HT1A
receptors have an opposite effect to delay and prevent colitis progression. In addition, they
reported an increase in plasma nitrites, stable metabolites of NO in TNBS mice and
administration of 5-HT1A antagonist (WAY100135) augmented nitrite level (Rapalli et al.
2016). Such information raises an interesting point for future study to determine the role of
other 5-HT receptor subtypes including 5-HT2A, 5-HT4, and 5-HT1A in hypersensitivity of
bladder afferent nerves. However, the present study did not determine the contribution of non-5-
HT3 receptors in the TNBS model, future experiments are required to determine if this is indeed

the case.

The bladder, like the bowel, develops hypersensitivity in response to inflammation. Hughes and
colleagues (2009) studied colonic afferent sensitization in colonic TNBS-treated mice and
showed colonic afferent hypersensitivity in both acute inflammation (7 days post-treatment) and
in the recovery period (28 days post-treatment). However, in our study we found there was no
change in spontaneous and afferent firing in response to bladder distension in the acute phase of
TNBS colitis. This difference could be due to variation in experimental design and in particular
the timing of the investigation post-treatment. We selected 3 days post TNBS for our acute
assessment of bladder hypersensitivity while the colon was investigated after 7 days. In CVH
mice at day 28 we observed similar hypersensitivity in the bladder to that seen in the colon.
This would support the hypothesis that there is bladder and bowel neuronal convergence such
that sensitization of colonic leads to sensitization of bladder afferent via central and/or
peripheral cross-sensitization as discussed in chapter 5. Decreased SERT expression and
function have been shown in the colon following acute inflammation (6 days after TNBS

administration) (Linden et al. 2005). Bischoff and co-workers reported that SERT knockout
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mice had more severe colonic inflammation, which indicates an important role of 5-HT in
generating colonic inflammation (Bischoff et al. 2009). SERT downregulation in the urothelium
could be driven through antidromic activation from sensitized colonic afferents. Our
investigation relates to clinical evidence indicates that IBS patients still report bladder
symptoms in the recovery state of inflammation. However, we provided an initial information
about the role of 5-HT in bladder afferent firing in colon-bladder cross-organ sensitization.

Further investigation are required to better understand the underlying mechanism.

> Limitation and Future direction

With a limitation of time, many interesting questions still require future investigation to clarify
the role of 5-HT in bladder afferent signalling in health and disease. One important question that
we have been unable to answer definitively is the site of action for 5-HT for its modulatory
effect on bladder afferents. One approach might be to use pre-incubation with protamine
sulphate to eliminate the urothelial layer. This would help to determine if 5-HT receptors on the
urothelium contribute to the afferent effect. The endogenous source of 5-HT in the bladder is an
intriguing question that requires further investigation. Identifying the source of 5-HT in the
bladder is essential to understand the significance of 5-HT signalling in the bladder. Moreover,
since 5-HT bioavailability is increased in the bowel after inflammation, it would be interesting
to determine if this is also the case for the bladder. Using specific agonists/antagonists of non-
5-HT3 receptors would allow a clearer understanding of the mechanism by which 5-HT

contributes to bladder hypersensitivity following colon-bladder cross-organ sensitization.

Finally, we have clearly shown that 5-HT exerts a modulatory role in the bladder afferent
activity which is mainly mediated through 5-HT3 receptors. The next step in this study would
be to investigate changes in bladder afferent firing in 5-HT3 receptors or SERT conditional
knockout mice. This would help to confirm the role of 5-HT signalling in bladder afferent
activity in both normal and TNBS-induced colonic inflammation model. An understanding of 5-
HT signalling in bladder afferents would be essential to provide information for developing new
therapeutic drug target to treat bladder symptoms i.e., urinary frequency, urgency, incontinence,
and pain during urination, which may derive from neuronal cross-talk between the bowel and

the bladder.
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