
The University of She�eld

Department of Computer Science

A Labelling Technique Comparison for
Indexing Large XML Database

A dissertation is presented By:

Samer Al-khazraji

for the MPhil Degree

Under Supervision of:

Dr. Siobhán North

30/07/2016

Abstract

The �exibility nature of XML documents has motivated researchers to use it for

data transmission and storage in di�erent domains. The hierarchical structure

of XML documents is an attractive point to be researched for processing a user

query based on labelling where each label describes the node structure in the

tree. In this study, three categories of XML node labelling will be analysed

to address the open problem of each category. A number of experiments are

executed to compare performance of time execution and storage space required

for labelling XML tree.

Acknowledgments

I would like to express my appreciation and thanks my supervisor Dr. Siobhán

North for here guidance and support which develop my understanding to XML

technology through XML labelling. I would like to thank the department sta�

and my colleagues in the VT group to give me a kind environment during my

study. A big thanks to my parents, wife, daughter, and sons for their patience,

support, and love.

CONTENTS

Contents

Abstract i

Acknowledgment ii

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Problem de�nition and Motivation 2

1.3 Research Hypothesis and Methodology 4

1.4 Dissertation Outline . 5

2 XML Background 7

2.1 Preface . 7

2.2 What is The XML Language . 7

2.3 What is Markup Language . 8

2.4 XML Evolution and Importance 9

2.5 Well-Formed and Valid of XML Documents 10

2.6 The Context of XML elements 11

2.7 Models for XML Database . 12

2.8 XML Query Languages . 13

2.9 Conclusion . 17

3 XML Documents Similarity (Representation and Measurement 19

3.1 Introduction . 19

3.2 XML Data Representation . 19

Page iii

CONTENTS

3.2.1 Similarity approaches based on Tree-based Representa-

tion . 19

3.2.2 Similarity Approaches Based on Vector-Based Represen-

tation . 25

3.3 XML Similarity Measures . 26

3.3.1 Structure Similarity Measures 26

3.3.2 Semantic Similarity Measures 29

3.3.3 Structural and Semantic Similarity Measures (Hybrid) . . 33

4 Querying XML Documents 43

4.1 Introduction . 43

4.2 Query Processing Based on Smallest Common Ancestor SLCA . 44

4.3 Processing XML query contains NOT Operator 45

4.4 Improving of XML Query Processing Using XML Labelling Scheme 47

4.5 Using of XML Grammar to Enhance the XML Query Processing 48

4.6 Dominance Semantics to Improve the Precision of XML Query

Processing . 51

4.7 Processing Error Messages in the Query Processing 52

4.8 Semantics for Non-Expert Users for Querying XML Documents . 53

5 XML Labelling Schemes 57

5.1 Introduction . 57

5.2 Interval Labelling Schemes . 58

5.3 Pre�x Labelling Scheme (Dewey) 64

5.4 Multiplicative Labelling Scheme 77

6 Experiments and Statistical Analyses 89

6.1 Introduction . 89

Page iv

6.2 Execution of Static Labelling Schemes 91

6.2.1 Time for XML Database Labelling 91

6.2.2 The Space required for Static Labelling of XML Database 96

6.3 Execution of Dynamic Labelling Schemes 100

6.3.1 Time Required for Dynamic Labelling of XML Database . 101

6.3.2 The Space Cost for Storing Dynamic XML Database . . . 102

6.4 Experiment Results Evaluation 104

7 Conclusion and Future Works 107

7.1 Introduction . 107

7.2 Dissertation Summary . 107

7.3 The Results of the Experiments and Evaluation 115

7.4 Future Work . 116

References 117

Appendices 135

A Appendix: Pre�x Labelling Scheme 135

B Appendix: Interval Labelling Scheme 137

C Appendix: Vector Order-Centric Labelling Scheme Based on

Pre�x (V-Pre�x) 138

D Appendix: Vector Order-Centric Labelling Scheme Based on

Containment (V-Containment) 141

LIST OF FIGURES

List of Figures

1 The Context of Element of XML Schema Tree, Adapted from

(Al-Shaikh et al., 2010). 11

2 LevelStructure representation to heterogeneous XML documents,

Adapted from (Nayak and Xu, 2006). 21

3 Tree representations of XML Documents, Adopted from (Alishahi

et al., 2010). 22

4 LevelEdge representation of homogeneous XML documents, Adapted

from (Antonellis et al., 2008). 23

5 LevelEdge representation of XML documents, Adapted from (An-

tonellis et al., 2008). 24

6 Tree representations of XML Documents. 28

7 Tree Representation of XML Document. 30

8 The Models of SKSA, (Zhao and Tian, 2013). 31

9 Quality Measures Principles. 32

10 Tree Representations of XML Documents. 41

11 Tree Representation of XML Document. 45

12 Tree Representation of XML Document, adapted from (Lin et al.,

2014). 46

13 Ordered Labelled XML Tree. 49

14 Range Match Entrance. 50

15 Point Match entrance. 50

16 Tree Representation of XML Document. 55

17 Preorder/Postorder-Based Labelling Scheme. 58

18 Interval-Based Labelling Scheme (Using Containment Property). 59

19 ReLab Labelling Scheme. 60

Page vi

LIST OF FIGURES

20 The Reserved Space is su�cient and Before Tree Update. 62

21 The Reserved Space is su�cient and After Tree Update. 62

22 The Reserved Space is not Su�cient for the Whole Tree Before

the Tree Update. 63

23 The Reserved Space is not Su�cient for the Whole Tree After

the Tree Update. 64

24 The Reserved Space is zero Before the Tree Update. 65

25 The Reserved Space is zero After the Tree Update. 66

26 Tree Representation of XML Document. 66

27 Global Labelling Scheme. 67

28 Local Labelling Scheme. 67

29 Dewey Labelling Scheme. 68

30 ORDPATHs Labelling Scheme. 68

31 Insert Node Before the Leftmost in ORPATHs labelling scheme. . 69

32 Insert Node Between two Nodes in ORPATHs labelling scheme. . 69

33 Insert node between two nodes in DFPD. 70

34 Labelling Scheme for Dynamic XML update (LSDX). 71

35 Insert New Node Before the leftmost node. 72

36 Insert New Node Between two Siblings. 72

37 OrderedBased Labelling Scheme, adapted from (Assefa and Er-

genc, 2012). 74

38 Insert a Node Before the First Node in the OrderedBased La-

belling Scheme, Adapted from (Assefa and Ergenc, 2012). 75

39 Insert a Node Between Two Nodes in OrderedBased Labelling

Scheme, Adapted from (Assefa and Ergenc, 2012). 76

Page vii

LIST OF FIGURES

40 Insert a Node After the Last Node in the OrederedBased La-

belling Scheme, Adapted from (Assefa and Ergenc, 2012). 76

41 Top-Down Prime Number Labelling Scheme, Adopted from (Wu

et al., 2004). 78

42 Bottom-Up Prime Number Labelling Scheme Adapted from (Wu

et al., 2004). 79

43 Combine Paths in The Prime Number Labelling Scheme. 80

44 XML tree ordered with SC=1523 from the ordered nodes (0-5)

and SC=6 for the order node (6). 81

45 Insert a New Node in The Prime Number Labelling Scheme,

adapted from (Wu et al., 2004). 82

46 Modulo-Based labelling Scheme with P=29, adapted from Al-

Shaikh et al. (2010). 82

47 Insert a New Element as a First Child in V-Containment labelling

Scheme. 86

48 Insert a New Element as a Last Child in V-Containment labelling

Scheme. 87

49 Insert a New Element Between two Nodes in V-Containment la-

belling Scheme. 87

50 Insert a New Child in The V-Containment labelling Scheme. . . . 88

51 Insert a New Nodes in V-Pre�x labelling Scheme. 89

52 The Time Consumed for Static Labelling Nasa database using

Pre�x and Interval. 92

53 The Time Consumed for Static Labelling dblp database using

Pre�x and Interval. 93

Page viii

54 The Time Consumed of Static Labelling Treebank-e database us-

ing Pre�x and Interval. 94

55 Time Required for Static labelling XML Databases. 97

56 Space Required for Static Labelling Nasa XML Databases. 98

57 Space Required for Static Labelling dblp XML Databases. 99

58 Space Required for Static Labelling Treebank-e XML Databases. 100

59 Space Required in (KB) for Static labelling XML Databases. . . 101

60 Time Spent for Update three groups of elements in Nasa. 103

61 The Space required in KB to add three groups of elements in Nasa.105

62 Logarithm Calculation of the space required for the Update three

groups of elements in Nasa. 106

List of Tables

1 Table of Data type Similarity, Adapted from (Algergawy et al.,

2010). 34

2 Constraint Facets of Data Types, Adapted from (Dan, 2003). . . 37

3 Constraint Facets of Data types, Adapted from (Dan, 2003). . . . 38

4 The similarity Values of Cardinality Constraints, Adapted from

(Thuy et al., 2013). 39

5 The results of the queries based on LCE, ELCA, and SLAC. . . . 55

6 XML Databases. 90

7 Time Consumed for Static Labelling Nasa using Pre�x and Interval. 92

8 Time Consumed for Static Labelling dblp using Pre�x and Interval. 94

9 Time Consumed for Static Labelling Treebank-e using Pre�x and

Interval. 95

10 Time Consumed for Static Labelling Nasa, dblp , and Treebank-e

using Pre�x and Interval. 96

11 Space Required for Saving the Labels of Nasa, dblp, and Treebank-

e using the Static Pre�x and Interval Labelling Scheme. 99

12 The Mean of Time Required for Update three groups of Elements

in Nasa Database using Vector Order-Centric Labelling Scheme. 102

13 The space needed in KB to insert three groups of Elements in

Nasa Database using Vector Order-Centric Labelling Scheme. . . 104

1. INTRODUCTION

1 Introduction

1.1 Introduction

There is a large amount of exploitation of XML documents by di�erent appli-

cations in di�erent domains. the hierarchical structure of the documents makes

it a challenge to access the information in the documents. A lot of researchers

have investigated the improvement of a query process by simplifying the access

of the information which is saved in XML tree using various labelling schemes.

However, the tree structure of the XML tree is varies between wide and deep and

designing a suitable labelling scheme for di�erent tree structures is a challenge.

Another challenge that may face the researchers in developing an XML la-

belling scheme is that XML documents are dynamic and static labelling schemes

are costly because the tree nodes need to be relabelled with each tree update.

The relabelling process is costly from the time and storage perspectives because

labels represent both the location and relationships of a node.

In this dissertation, three models of labelling schemes will be demonstrated:

Interval labelling scheme, Pre�x labelling scheme, and Multiplicative labelling

scheme. The static technique for labelling trees will be explained to the issues

that relate with it which motivated researchers to develop dynamic labelling

schemes to avoid the relabelling process. While, dynamic labelling schemes

also have drawbacks which relate with storage size and may lead to relabelling

operations. This issue has attracted another group of researchers to design

other labelling schemes that employ mathematical operations and represented

by Multiplicative labelling scheme.

To study which labelling scheme is suitable for an XML document based on

tree structure, a number of experiments were executed on variants XML tree

Page 1

1. INTRODUCTION

structures. The results of these experiments identify the convenient labelling

scheme for an XML tree.

1.2 Problem de�nition and Motivation

The employment of XML document for data storage has increased and the need

for an e�cient database management system which should be similar to the

relational database management system is an urgent requirement (Almelibari,

2015). The index system in a relational database management system is de-

signed for a table structure (Wu et al., 2004), however, an XML document has

a hierarchical tree structure and it needs a di�erent indexing system. Node

labelling scheme has been employed as an indexing system in XML technology

to assign a unique label to each node that represents the node relationships

(Ml�ynková, 2008). Therefore, the structural query will be answered e�ectively

and e�ciency through labelling scheme without accessing the actual XML doc-

uments. In addition, processing user query based on the exact words will be

time consumption because the application will process all words in the docu-

ment that match the user query and also it needs large storage space to store

the processing words (Wang and Liu, 2003; Yu et al., 2005).

In this study, three categories of labelling schemes will be explained: the

Interval labelling scheme, the Pre�x labelling scheme, and the Multiplicative la-

belling scheme. The earliest Interval labelling schemes were proposed for static

XML documents and do not ful�ll the requirements for the dynamic XML data.

So, researchers developed dynamic models for interval labelling schemes, but

sometimes they still need to relabel the document because of the over�ow prob-

lem where the available space to label new nodes is not su�cient. Moreover,

this category of labelling scheme does not represent all relationships between

Page 2

1. INTRODUCTION

nodes such as sibling and it is costly in terms of both time and storage space

because it generate labels exponentially as will be explained later in chapter 5.

Di�erent groups of researchers adopted a scheme based on the Dewey index-

ing scheme use in libraries for labelling XML nodes (Sans and Laurent, 2008).

This scheme is capable of representing di�erent kinds of node relationships (As-

sefa and Ergenc, 2012). The labels in this section have two main parts separated

by a delimiter: the pre�x part which expresses ancestor path from the root and

the second part which expresses the current position of the node in the tree

(Assefa and Ergenc, 2012; Liu and Zhang, 2016; Tatarinov et al., 2002). The

dynamic algorithms for this kind of labelling scheme is costly from storage space

view point especially with deep trees (Haw and Lee, 2011; Xu et al., 2012).

Another group of researchers adopted atomic numbers to represent XML

node labels and mathematical operations to de�ne their relationships (Al-Shaikh

et al., 2010; Haw and Lee, 2011; Wu et al., 2004). In this study, three algorithm

were explained based on three mathematical principles: prime number, dom-

inator and nominator, and graph vectors. The characteristics of this class of

labelling schemes is that it has a complex procedure to �nd the nodes relation-

ships and over�ow problems frequently occur(Assefa and Ergenc, 2012).

The motivation for this dissertation is to �nd the most suitable labelling

scheme for labelling a speci�c XML tree where, XML trees have di�erent struc-

tures, some of them wide and another deep. So that, In the later technical

development, three realistic XML databases were chosen for evaluation pur-

poses: the dblp XML database is the widest tree with 3,332,130 elements and 6

levels, Treebank-e is the deepest tree as it has 24,376,66 elements and 36 levels,

and the Nasa XML database which is in between the other databases from the

depth and width perspective has 476,646 elements and 8 levels.

Page 3

1. INTRODUCTION

The experiments show that, the Pre�x labelling scheme is good for XML

trees which are wide but it is expensive from a storage space view point for

deep XML trees such as Treebank-e. The Interval labelling scheme is good

for deep XML trees from storage space view point but it is costly from time

and storage space perspectives. The last experiments were done on labelling

XML databases using an order vector-centric algorithm but the outcomes were

discounted because labelling gave incorrect results.

1.3 Research Hypothesis and Methodology

The aim of the dissertation is to answer the following hypothesis, There are

many XML databases which have been designed based on business requirement

with di�erent structures from the width and depth view point. On the other hand,

there are many labelling schemes have been developed to label these databases and

the label size will increase with continuous use of the XML database. Moreover,

the time required to generate the larger labels will increase as well. Therefore, it

is necessary to �nd a suitable labelling scheme to label a speci�c XML database

in fast and using minimal storage space.

The dissertation exploited System Development Methodology (SDM) (Almelibari

and North) which is heavily employed by software engineering researchers. The

methodology is used to test the hypothesis based in four phases, identify the

problem and design a solution, implement the solution for testing purpose, eval-

uate the result (e.g. an empirical evaluation), and contribute to knowledge

based on the outcomes of the research.

Page 4

1. INTRODUCTION

1.4 Dissertation Outline

The dissertation consist of three parts; part 1 consists of chapter 2 which in-

cludes a number of issues that relates with similarity comparison. Part2 consists

of two chapters, chapter 3 that includes the issues which relate to XML queries

and chapter 4 which involves the problems of labelling an XML tree. Part3 will

be chapter 5 and 6 for the practical work and statistical analysis respectively.

Chapetr 2 : This chapter discuss the representation of XML documents as

a tree or vector to compare the similarity between XML documents based on

structure, semantics, and structure and semantics (hybrid).

Chapter 3 : In this chapter, the process of retrieving of an optimum answer

to the user query based on the semantics LCA is discussed. A number of ap-

proaches were proposed to enhance XML query processing based on the Lowest

Common Ancestor LCA semantics which is an ancestor node that contains all

query keyword as a descendant nodes (Liu and Chen, 2007).

Chapter 4: The chapter illustrates algorithms of three categories of la-

belling schemes. The strength and drawbacks of each category will be explained

which motivated researchers to propose new labelling schemes which may cover

the drawbacks of the previous scheme and enhance the performance of XML

query.

Chapter 5: The practical work is illustrated in this chapter. Two ex-

periments were executed using static labelling schemes (Pre�x and Interval) to

measure the time and storage space required for labelling three XML databases.

Another two experiments were executed using one of the Multiplicative labelling

scheme to label Nasa databases dynamically.

The practical work and statistical analysis under LCA semantics will be il-

lustrated. In chapter 4, a number of labelling schemes which have been proposed

Page 5

1. INTRODUCTION

to enhance query processing will be explained. The last part will include chapter

5 which has the practical work and statistical results achieved from a number of

experiments to analyse the performance of three categories of labelling schemes

on three XML databases. A summary of each chapter will be dicussed in the

following sections:

Chapter 6:The results of the experiments in the chapter 5 were analysed

and evaluated with previous work.

All aspects which are mentioned in the previous section will be discussed in

more detail in the next chapters.

Page 6

2. XML BACKGROUND

2 XML Background

2.1 Preface

It is undoubtable that XML has become the standard for data transmission and

representation in a wide range of domains (Algergawy et al., 2010, 2011; Bertino

and Ferrari, 2001). This chapter will cover the meaning of XML and why it is

important. The structure of XML documents is part of this discussion and the

context of XML elements as well. This chapter will clarify both aspects: Well-

Formed XML and Valid XML. The types of XML databases will be covered and

the also the languages that are designed to deal with these data bases.

2.2 What is The XML Language

XML stands for Extensible Markup Language and also it is written as eXten-

sible Markup Language (Drol, 2008; Ethier, 2008; Piernik et al., 2015) and is

recommended by W3C since 1998 (Harold and Means, 2004; Lee and Foo, 2008).

(Drol, 2008) and (Lee and Foo, 2008) illustrated that XML embeds the informa-

tion of the content in the same �le using markup which will be described in the

next section. (Harold and Means, 2004) de�ned XML as a common syntax used

to mark up data with tags that are easy to understand by human. Moreover, it

gives digital data a standard format which is �exible enough to be customised

in di�erent techniques in addition to web sites such as data integration, classi�-

cation, clustering (Tekli et al., 2015) and query processing and query processing

(Assefa and Ergenc, 2012; Duong and Zhang, 2008; Liu et al., 2013a; Tatari-

nov et al., 2002). There is another employment of tags in XML technology in

addition to separate the information from the content and that is storage as is

explained in the next section.

Page 7

2. XML BACKGROUND

2.3 What is Markup Language

It is natural that computer data is vulnerable to destruction and the reliability

of computer language is limited to the ways it can be retrieved. For example,

�les of Lotus 1-2-3 which is a computer language required a lot of time and

investigation in retrieving its data as explained by (Harold and Means, 2004).

This is because Lotus language is a machine language and it is di�cult to read

for non-experts. The need for technology which is human and machine readable

as mentioned in previous section is important in this situation and XML is

a possible solution. (Wilde, 2012) de�ned markup as a special character or

sequence of characters to be distinguished from the content by the program

interpreter. Markup can carry any kind of information which may help for

information representation such as determining the space between characters,

adding page breaks, and changing the font size. (Wilde, 2012) and (Ethier, 2008)

found that there is another exploitation of markup in identifying the treeform

hierarchical structure of information based on elements. Each element in an

XML document is within markup delimiters called tags which indicate the start

and the end of the markup for the element. In this way, (Wilde, 2012) illustrated

that the markup makes it possible to code the document content (which will

classify XML document in section 1-7) and its structure in a technique which

allows both people and machines to interpret it clearly as shows in example (1).

Example 1.

<?xml version="1.0">

<Shop>

<Fruit> Apple </Fruit>

<Fruit> Pineapple </Fruit>

<Juice> Orange </Juice>

Page 8

2. XML BACKGROUND

</Shop>

In another context, a library, it is clear for non-experts users to understand

that the title of a book is XML Data. The expert user delimited the XML

element by start tag <Book-Title> and end tag < /Book-Title> and its content

is XML Data. There will be more detail about the context of XML elements in

later sections. HTML and SGML are also markup languages, but XML was been

adopted in many domains as mentioned in the earlier section and has become a

de facto standard technology for transfer and for representing information. The

reasons will be explained in the next section.

2.4 XML Evolution and Importance

There are two factors that motivated researchers to invent XML technology and

have made XML technology adopted by many applications: the complexity of

SGML and the in�exibility of HTML (Wilde, 2012).

The ancestor of XML is Standard Generalised Markup Language SGML

which was proposed at IBM in 1970s and it was developed in many ways to

be adopted by ISO standard 8879 in 1986. (Wilde, 2012) explained the tags

of SGML which are di�cult to understand. It was succeeded by HyperText

Markup Language HTML which has a small number of prede�ned tags and

those tags relate only to the layout of the document.

HTML's restricted set of tags, whilst ideal for the purposes for which they

were designed, can only be used to determine presentation. (Wilde, 2012) and

(Ethier, 2008) claimed that the XML data was developed to have the same

power as SGML in but greater �exibility in that it permitted user de�ned tags

and so could be used for purposes other than simply de�ning an appropriate

Page 9

2. XML BACKGROUND

layout.

In addition bene�t of XML documents, (Drol, 2008) explained is that an

XML document is a text �le and it is easy to transfer through a network.

However, XML data transferred among applications needs to be understood by

the destination application. This can be only done when XML document is

well-formed and valid as will be explained in the next section.

2.5 Well-Formed and Valid of XML Documents

(Wilde, 2012),(Drol, 2008; Ethier, 2008),(Lee and Foo, 2008), and(Harold and

Means, 2004) de�ned an XML document which conform the rules that describe

the syntax of XML as well-formed. They considered these rules to be basic

because they relate to the structure of XML document. A well-formed XML

document means that the XML elements are nested and a collection of char-

acters which is known as entities (Wilde, 2012) are correctly referenced by the

document then the XML document will be syntactically correct. If an XML

document is not well-formed, the application will not work properly and inter-

net browser will display an error message (Lee and Foo, 2008). On the other

hand, an XML document said to be a valid when it matches the rules that

describe the structure of the document known as an XML schema (Drol, 2008;

Ethier, 2008; Harold and Means, 2004; Lee and Foo, 2008; Wilde, 2012).

(Hegewald et al., 2006) stated that a valid XML document has a number of

advantages: it enhances the e�ectiveness of the operational data by detecting

invalid data during data transmission. An XML schema improves the query

processing through providing the element's semantics as will be shown in the

chapter 4.

Page 10

2. XML BACKGROUND

2.6 The Context of XML elements

(Wilde, 2012) described the structure of XML document as an hierarchical struc-

ture of elements which may have one or more elements of additional information.

This additional information is saved in the start tag of the element and called

an attribute. (Wilde, 2012) and (Algergawy et al., 2010) categorised XML ele-

ments into four classes according to their context: sibling, ancestor, child, and

leaf as illustrated in �gure (1).

Figure 1: The Context of Element of XML Schema Tree, Adapted from (Al-

Shaikh et al., 2010).

The sibling context of an element contains the preceding siblings and the

following siblings. The ancestor context of an element is the path from the

root element of tree of XML schema to the element. The child context of

an element is a set of intermediate child nodes including attributes which is

information relating to the node (w3schools, 2016) and sub-elements, while the

leaf context of an element is a set of leaf nodes of a sub-tree rooted at the

element. The hierarchical structure of XML elements needs to be stored in a

Page 11

2. XML BACKGROUND

data storage model (Win et al., 2003) that provides XML document processes

such as accessing, storing, and retrieving (Kim et al., 2007). The next section

will explain the common models storing XML document.

2.7 Models for XML Database

To understand the models of XML database, it is necessary to comprehend the

instances of XML document.(Kurt and Atay, 2002), (Gulbransen, 2002), and

(Powell, 2007) said XML documents exist in two instances: document-centric

and data-centric. (Gulbransen, 2002) and (Powell, 2007) de�ned a document-

centric XML as a document that is edited and read by humans such as a user

manual. However, they explained data-centric XML document as a machine

readable �le used to transfer messages between machines such as Web Ser-

vice Description Language (WSDL) (Christensen). Based on this classi�cation,

(Kurt and Atay, 2002) and (Bellahsène, 2003) categorised XML document into

two types: XML-enable databases and Native-XML databases (NXD).

An XML-enabled database is a conventional database management system

that supports XML documents as de�ned by (Win et al., 2003) and (Kurt

and Atay, 2002) such as Oracle XDK (Kurt and Atay, 2002) and Microsoft

SQL server (Microsoft, 2016. This approach uses an existing, mature database

management systems to manage XML (Win et al., 2003) and is normally applied

to data-centric XML documents (Bellahsène, 2003; Kurt and Atay, 2002).

Data in relational databases is stored in tables which represents one entity

type and consists of rows and columns. Rows (e.g. records) represent instances

of that entity type and columns which represent the value attributes of that

instance and is provided with an indexing mechanism to access data in the table

citep Codd:1970:RMD:362384.362685. Because an XML tree has an hierarchical

Page 12

2. XML BACKGROUND

structure (Assefa and Ergenc, 2012) and (Win et al., 2003) and (Kurt and Atay,

2002) adapting it for this type of database management system has several

limitations. The limitation includes the necessity to convert the data format

from XML into a relational form to save it in relational database. This process

of mapping data from XML into relational data and vice versa to retrieve it

is complex and time and space consuming when dealing with a large data.

In addition, any XML query also needs to be converted into a format that is

understood by the underlying database system which takes time and decreases

the performance of query processing.

Another model of XML document storage is the Native-XML database which

is de�ned by (Win et al., 2003) and (Kurt and Atay, 2002) as a data model of

storage that saves the XML documents and preserves its hierarchical structure

thus avoiding the mapping process. (Win et al., 2003) mentioned the restriction

of this database is that it needs more I/O resources to retrieve information with

a unique path. Moreover, (Assefa and Ergenc, 2012) clari�ed that an XML

tree's hierarchical structure and needs an indexing technique similar to that

used in the relational database management. The new indexing system should

be designed for hierarchical structures and capable of answering XML queries

e�ciently. An XML labelling scheme is the key of that technique

To process XML document e�ciently, it is important to study XML queries

and this is the subject of next section.

2.8 XML Query Languages

In the Section 2.3 it was explained that XML has user de�ned tags which makes

it a common standard for many application in di�erent domains. The heavy

use of Native-XML databases (NXD) to store data may lead to an increase

Page 13

2. XML BACKGROUND

the size of the data and a decrease the performance of XML database man-

agement because it does not have a single well-formed data model (Salminen

and Tompa, 2001). To keep an XML database at the highest level of perfor-

mance, (Chamberlin et al., 2000) suggested that the XML query language should

simulate the �exibility of XML and preserve the hierarchical structure of the

document. Moreover, they expect the XML database language to have the sim-

ilar operations (enumerated by (Tian et al., 2011)) such as storing, searching,

and retrieving to that of the Structured Query Language (SQL) in relational

databases. Many languages were designed for NXD such as: XML Link (XLink)

explained by (DeRose, 2001) as a language that declares some elements in XML

to be links between two or more resources.

The next XML language is XPath which was de�ned by (Berglund) and

(Robie and Snelson) as a language that provides an expression which represents

the hierarchical structure of a node in the XML tree and atomic values such

as integers, string, Boolean, and series that may contain references to nodes in

the XML tree and atomic values. Another XML language is XQuery which was

de�ned by (Boag and Simon) as a �exible language that is able to work with a

wide range of XML information sources.

To permit a user to structure an XML document known as XML Schema

((Ml�ynková and Ne£ask�y, 2013), W3C designed two XML schema languages:

Document Type De�nition (DTD)(Tim Bary, 2008) and XML Schema De�ni-

tion (Paul V Biron, 2004). The former was described by (Gong and Yao, 2013)

in their paper as using a few data types which are used to de�ne the types of

an XML element as explained in example (2).

In addition, (Harold and Means, 2004) claimed that DTD is good at de�ning

the structure of the XML documents in a narrative style documents such as

Page 14

2. XML BACKGROUND

Books, web pages, and reports. However, XML improves the representation of

simple documents: trading, and banking are examples of areas where a DTD is

too simple (Harold and Means, 2004). (Harold and Means, 2004) explained the

limitation of DTD as follows: the �rst, limitation of DTD can be found through

data type de�nition of element, for example DTD cannot de�ne the data type of

a price element as an integer greater than zero. Second, an XML parser can not

read a DTD because they have di�erent syntax. Third, a DTD cannot order the

children of an element, for instance DTD cannot order the children: FirstName,

MiddleName, and Surname for the ancestor element Parent. Finally, it is not

easy to combine two DTDs seamlessly to form a big database in contrast to

XML documents.

Their solution was XML schema (XSD) which is scalable, extensible, and

has a powerfull data type de�nition. (Harold and Means, 2004) explained that

the word schema means form or shape in Greek language and it entered to

the computer science through database technology.(Harold and Means, 2004)

clari�ed that the meaning of schema has grown from de�ning tables and data

type of each �eld in the table to de�ne the content of the documents as in the

example (3) which is the XML schema for the documents of example (1).

Example 2.

<!DOCTYPE Shop

[

<!ELEMENT Shop(Fruit, Juice)>

<!ELEMENT Fruit(#PCDATA)>

<!ELEMENT Juice(#PCDATA)>

<!ENTITY citrus "Orange" >

] >

Page 15

2. XML BACKGROUND

<?xml version="1.0">

<Shop>

<Fruit> Apple </Fruit>

<Fruit> Pineapple </Fruit>

<Juice> &citrus </Juice>

</Shop>

where,

DOCTYPE de�nes the Shop as a root element,

ELEMENT Shop de�ne the children of the root Shop,

ELEMENT Fruit and ELEMENT Juice are de�ned as a type of PCDATA,

ENTITY de�nes citrus as a reusable resource in XML �le and replace it with

Orange to be displayed in the output �le.

#PCDATA means parse character data between the tags.

Haw and Lee (2011) stated that an XML document can be queried using two

types of query processing: full text queries (keyword-base search) which is close

to the content retrieval in the technology of information retrieval or structural

queries (structural search) which are a complex queries that �nd matches on

the tree that have a similar structure and tags to those speci�ed in the query.

Structural queries are categoriesed by Haw and Lee (2011) into: a path query

(Simple Path Expression) that de�nes a single node (leaf) at a time based on

either Parent-Child (P-C) or Ancestor-Descendant (AD) relationships, or a twig

query (Branching Path expression) which de�nes two or more nodes based on

P-C, A-D and sibling relationships.

Example 3.

<xs:element name="Shop">

Page 16

2. XML BACKGROUND

<xs:complexType>

<xs: sequence>

<xs:element name="Juice" type="xs:string"/>

<xs:element name="Fruit" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

where,

xs : element name="Shop" is a de�nition of the root element Shop.

xs : complexType, it means the element Shop is a complex type (has chil-

dren).

xs : sequence, the complex type element shop has a sequence of elements.

xs : elementname = ”Juice”, is the de�nition of element Juice as a string.

xs : elementname = ”Fruit”, is the de�nition of element Juice as a string.

The use of XML schema is considerable through some XML applications

such as information retrieval. Providing users with a precise answer relies on

the accuracy of the similarity comparison. The accuracy can be accomplished by

including semantic information that can be found in the schema and structure

within the comparison process ans will be seen in the following chapters.

2.9 Conclusion

The �exibility of XML technology comes from the ability of XML users to de�ne

XML elements as they need them in di�erent areas (Harold and Means, 2004).

These features made XML technology a standard format for data transmis-

sion and representation through di�erent domains (Wilde and Glushko, 2008).

Domains which adopted XML include: Bioinformatics where (Achard et al.,

Page 17

2. XML BACKGROUND

2001) found that the �exibility of XML is a suitable environment to represent

Bio information. For the Geography domain, (Peng and Zhang, 2004) asserted

that XML was a better technology to transfer geographical information between

Geo-graphical Information systems GIS. In mathematical work, W3C released

Mathematical Markup Language MathML as one of the XML applications to

deploy the mathematical expression over the web (Carlisle, 2014). Distributed

Learning Transferring ADL has adopted XML to release e-learning applica-

tion dubbed Shareable Content Object Reference Model SCORM (ADL). This

application allows users to share and reuse teaching materials based on a dis-

tributed approach (Shih et al., 2006). (Tekli et al., 2009) added additional

domains such as: data warehousing, management and version control of doc-

uments, semi-structure document integration by determining the similar XML

document which created by di�erent sources to provide more information to the

user, clustering and classi�cation of XML documents, XML document retrieval.

The performance of these applications depends on the accuracy of the similarity

measurement which will be explained in detail in the next section.

Page 18

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

3 XML Documents Similarity (Representation and

Measurement

3.1 Introduction

(Tekli et al., 2007) claimed that the e�ciency of the similarity measures has

be-come the core to the performance of some technologies. For instance, data

man-agement and warehousin (Chawathe et al., 1996, 1999; Cobena et al., 2002),

XML query processing (Lin et al., 2014; Liu et al., 2013b; Schlieder; Zhou et al.,

2012a,b), XML document clustering (Aïtelhadj et al., 2012; Algergawy et al.,

2011; Costa and Ortale, 2012, 2013; Piernik et al., 2016; Posonia and Jyothi,

2013; Wang et al., 2012), XML document validation (Gal, 2007; Smiljani¢ et al.,

2005; Solimando et al., 2014; Tekli and Chbeir, 2012; Zerdazi and Lamolle, 2008).

To measure the similarity between XML documents, (Algergawy et al., 2011)

and (Asghari and KeyvanPour, 2015) argued they need a uniform representation

as will be explained in the next section.

3.2 XML Data Representation

(Algergawy et al., 2011) and (Asghari and KeyvanPour, 2015) claimed that

the XML data model is an important step to measure the similarity of XML

documents. This is because it identi�es the semantic and structural features

of the document. In this section, the recent studies will be explained which

adopted two kinds of modelling: Tree and Vector.

3.2.1 Similarity approaches based on Tree-based Representation

As explained in the section (2.3), (Wilde, 2012) and (Goldfarb and Prescod,

2001) stated that hierarchical structure of XML data has attracted many re-

Page 19

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

searchers to compute XML document similarity based on their tree-like struc-

ture. (Piernik et al., 2015) de�ned the tree-like structure of XML data as

follows:-

T = (NT , ET , LT , a)

Where,

NT={nroot, n1, , nn}, is a group of nodes where nroot is a root node of a tree.

ET={(n1,n2),: ni,nj ∈ NT }, is a �nite group of edges that connect between the

parent (n1) and its child (n2).

LT , is a group of node labels that correlated with the names of the correspond-

ing elements and attributes of an XML data.

a: NT → LT , is a function that maps each node into a label.

This structure was employed by many researchers such as (Nayak and Xu,

2006), (Antonellis et al., 2008), (Alishahi et al., 2010), (Guzman et al., 2013)

to measure the similarity between XML documents as will be studied starting

from the model of (Nayak and Xu, 2006).

(Nayak and Xu, 2006) proposed the LevelStructure algorithm to compute the

structural similarity between heterogeneous XML documents. They classi�ed

XML documents into two groups: homogeneous documents and heterogeneous

documents. The latter are documents which are derived from di�erent XML

schemas or Document Type De�nitions (DTD) which may have di�erent tree

structures but may have the same information included in the tag and known as

semantics (Kim et al., 2007) or may have not (i.e. synonyms rather than exact

names). The former are documents that are derived from sub-trees of the same

DTD. (Antonellis et al., 2008) claimed that the rise in the use of heterogeneous

Page 20

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

has had an impact on the performance of many applications such as data mining,

mathematical, and communication. This is because the di�erence in structure

between heterogeneous documents makes the measurement of similarity costly

in terms of both time and storage. Therefore, (Nayak and Xu, 2006) proposed

a new model called LevelStructure.

(Nayak and Xu, 2006) assigned a distinct number for each named node in

an XML tree, grouped nodes from each level of the XML tree by number and

arranged them as a list of levels. They did not take node relationships into

consideration. Therefore, it is possible to �nd XML documents with the same

LevelStructure representation with di�erent semantics as is shown in �gure (2).

Figure 2: LevelStructure representation to heterogeneous XML documents,

Adapted from (Nayak and Xu, 2006).

The parent of node Apple in tree 'A' is Juice and its number is 2, however,

Page 21

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

the parent node of Apple in tree 'B' is Fruit with number 3. The LevelStruc-

ture representation for level 3 of both trees seems to be similar, but they are

semantically di�erent.

To overcome the drawback of this approach of (Nayak and Xu, 2006), (Al-

ishahi et al., 2010) added another number to the number of node. The number

of the parent node is added to the current node as shown in �gure (3).

Figure 3: Tree representations of XML Documents, Adopted from (Alishahi

et al., 2010).

In contrast to (Alishahi et al., 2010) and (Antonellis et al., 2008) assigned a

number to each edge in the tree rather than assigning an additional number to

each node. The latter proposed another approach which is dubbed LevelEdge

Structure to improve the similarity computation of LevelStructure algorithms.

Page 22

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

(Antonellis et al., 2008) assigned a distinct number to each edge that connects

speci�c nodes. They argued that their proposed algorithm calculates the struc-

tural similarity of homogeneous XML document in addition to heterogeneous

document. The approach of (Antonellis et al., 2008) organizes the information

as a tree of levels and each level consist of a set of numbered edges that connect

two consecutive nodes as shows in �gure (4).

Figure 4: LevelEdge representation of homogeneous XML documents, Adapted

from (Antonellis et al., 2008).

The algorithm of Antonellis summarized the information about each level by

edge numbers instead of node numbers and that increased the performance when

computing structural similarity because they included the relationship between

Page 23

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

nodes in the similarity evaluation. (Antonellis et al., 2008) then compared the

structure of two XML trees through the comparison of edges at di�erent levels

but they reduced the quality of similarity measurement because they excluded

semantic computation. For example, if we replace the tag name 'orange' with

'citrus', the result will be di�erent as showed in �gure (5).

Figure 5: LevelEdge representation of XML documents, Adapted from (An-

tonellis et al., 2008).

(Guzman et al., 2013) argued that the model of (Antonellis et al., 2008) may

have some drawbacks with the similarity computation of heterogeneous XML

documents The former claimed LevelEdge theory compares identical edges which

have the same semantics but they are structurally di�erent (di�erent levels).

Page 24

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Therefore, Guzman suggested a novel algorithm to measure the structure and

semantics of XML documents as will be explained in the next model.

(Guzman et al., 2013) addressed the importance similarity measurement

based on semantics and proposed a new algorithm to measures semantic and

structural similarity between XML documents. They measure structure simi-

larity between XML documents based on the LevelEdge algorithm and compute

the semantic similarity using an online lexical English dictionary called Word-

Net that �nds synonyms, such as 'worker' and 'laborer' (Alqarni and Pardede,

2013).

In spite of this exploitation of the tree representation to evaluate the sim-

ilarity between XML data, it has some limitation as claimed by (Algergawy

et al., 2011). For example, tree cannot represent a structural relationship called

association which identi�es that two nodes are not in the tree, they are con-

ceptually in the same level in the tree (Algergawy et al., 2011). For example,

the association relationship has a substitute mechanism to represent student

information in English or in French, the tree cannot represents this kind of re-

lationship. Therefore, another group of researchers (Hagenbuchner et al., 2005;

Zhang et al., 2012) adopted a vector representation to measure the similarity

between XML documents as will be explained in the next section.

3.2.2 Similarity Approaches Based on Vector-Based Representation

(Asghari and KeyvanPour, 2015) described a vector as an XML element feature

that represents the element in the document such as, element name, element

label, and element level in an XML tree. There are a good number of researchers

who adopted that adopted vectors to calculate the similarity between XML

documents. For instance (Nayak and Xu, 2006) assigned a number to each

Page 25

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

node in the XML tree and(Antonellis et al., 2008) in used vectors to compare

the structural similarity as clari�ed in the previous section. (Zhang et al.,

2012) used vectors to represent the structural and semantic features of XML

documents as will be explained in section (3.3.3)

In this section, the common representations were described to facilitate the

computation of similarity between XML documents. The similarity is evaluated

based on three aspects which will be explained in the next section.

3.3 XML Similarity Measures

Measuring the similarity between XML documents has become the most impor-

tant issue for some domains: XML document validation, XML schema matching

(Algergawy et al., 2010) chemical compound di�erentiation (Deshpande et al.,

2005), �nding similar genetics in DNA sequences (Bell and Guan, 2003; Guan

et al., 2004).

In this section three classes of model compute similarity based on three

principles: E�ciency (Antonellis et al., 2008; Nayak and Xu, 2006; Yang et al.,

2012), E�ectiveness (i.e. XML node semantics) (Algergawy et al., 2010; Alqarni

and Pardede, 2013; Zhao and Tian, 2013), and E�ciency (i.e similarity of XML

node level) and E�ectiveness (similarity of semantics) (Guzman et al., 2013;

Mota et al., 2013; Thuy et al., 2013) are discussed. The models that employed

the �rst approach will be explained in the next section.

3.3.1 Structure Similarity Measures

The size of data storage for some applications that adopted XML data has

increased sharply with heavy use and measuring of similarity will become an

issue. This issue is addressed by (Yang et al., 2012) who designed a new approach

Page 26

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

to enhance the similarity computation for these kinds of applications quickly.

(Yang et al., 2012) addressed the e�ect of structural similarity between XML

documents on the performance of some applications such as clustering XML doc-

uments based on structural comparison (Choi et al., 2007; Lian et al., 2004) ,

chemical compound, similarity (Dehaspe et al., 1998), and extracting a similar

genetics in DNA sequences (Bell and Guan, 2003; Mannila et al., 1997). In

contrast to (Antonellis et al., 2008) in section (3.2.1) who matched edges based

on numbers, (Yang et al., 2012) considered three aspects in their paper to eval-

uate structural similarity: �rst, the level of the node, repeated substructures

and the type of node: simple node (i.e. terminal) node or complex node (i.e.

sub-root node). They classi�ed edges in XML trees as follows: Normal Edge

NE, an edge which connects the parent node with its children. Topological

Edge TE, an edge which connects the ancestor node and its descendant node.

In contrast to (Antonellis et al., 2008), (Yang et al., 2012) assigned numbers to

edges according to the edge classi�cation. The former assigned number to each

edge based on relationship between two nodes to compare the structural simi-

larity. According to the edge classi�cation of (Yang et al., 2012), the edges are

weighted in similarity calculations depending on the edge classi�cation. They

assigned a weight to each type of edge as follows: the weight of complete or

topological matching is 1, the weight of repeated matching is 1/2. Figure (6)

is an example of the method of (Yang et al., 2012) for assigning weights to the

edges of two trees. The edge Apple→ Red in the XML tree 'A' is a completely

matched edge to the edge Apple → Red in the XML tree 'B' and its weight

is 1. The edge Fresh → Apple in the tree 'A' is topologically matched to the

edge Fresh→ Apple in the XML tree 'B' and its weight is 1 as well. The edge

apple→ Red in the XML tree 'A' is matched to number of apple→ Red edges

Page 27

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

in the XML tree 'B' and its weight is (12).

Figure 6: Tree representations of XML Documents.

In the second step, (Yang et al., 2012) de�ned two trees: pattern tree, that

has the edges which are complete matching or topological matching or repeated

matching. Another tree which has repeated matching edges in the pattern

tree. For the last step they designed a mathematical operation to evaluate the

structural similarity between trees based on the edge weights.

Similarity computation of XML document based on structure may result in

incorrect information. For example, a user query "//Yellow-Apple" in the tree

of �gure (7) and the answer will be true if the semantic information is ignored.

Other researchers analysed the e�ciency of the XML similarity computation and

proposed some algorithms to increase the quality of the similarity measurement

as will be demonstrated in the next section.

Page 28

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

3.3.2 Semantic Similarity Measures

Applications such as keyword search which will be detailed in chapter (4) (Bao

et al., 2009; Chen and Papakonstantinou, 2010; Cohen et al., 2003; Guo et al.,

2003; Kong et al., 2009; Li et al., 2007, 2004; Liu and Chen, 2007; Liu and Cher,

2008; Schmidt et al., 2001; Sun et al., 2007; Tatarinov et al., 2002; Xu and

Papakonstantinou, 2005b, 2008; Zhou et al., 2010) suggest that XMLs schema

matching depends on the e�ectiveness of the similarity computation which is

expressed by the XML element semantics. In this section, recent models that

were proposed to improve the e�ectiveness of similarity evaluation which relies

on the XML element semantics will be explained starting from the approach of

(Zhao and Tian, 2013).

(Zhao and Tian, 2013) considered the signi�cant role of semantic similarity

measurement between XML data and XML query languages. Similarity evalu-

ation can enhance the performance of XML database management, for example

in duplicate data detection which is one of the database management activities.

(Mota et al., 2013) employed similarity measurement to improve the retrieval

of information. In �gure (7) for example, when a user queries Apple in the tree,

then the returned answer will be error and may miss returning a potentially

relevant answer to the user which is Red-Apple.

(Zhao and Tian, 2013) presented a new keyword query algorithm based on

semantics which is called (SKSA). The proposed the algorithm works as illus-

trated in the �gure (8).

They exploited a common semantic dictionary which is known as WordNet

(see section 3.2.1) that is used to �nd synonyms through the interface JWI

(MIT Java WordNet Interface) and save them in Semantic Space represented as

a linked list. The approach of (Zhao and Tian, 2013) is to parse and label an

Page 29

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Figure 7: Tree Representation of XML Document.

XML document using theDewey Labelling Scheme which will be explained in the

chapter (5). (Zhao and Tian, 2013) analysed the user query into keywords and

compared them with XML node labels. If the model does not �nd a matching

keyword in the XML node labels, it will use 'JWI' to �nd the synonyms in the

WordNet dictionary.

(Zhao and Tian, 2013) analysed the enhancement of the XML query pro-

cessing by improving the similarity evaluation between the keyword query and

XML document based on semantics. (Alqarni and Pardede, 2013) adopted a

di�erent method to improve the similarity measurement between XML schemas

based on semantics as will be explained in the next approach. (Alqarni and

Pardede, 2013) argued that it is possible to improve the e�ciency of the schema

similarity measurement by excluding dissimilar elements based on semantic fea-

tures. They suggested that the involvement of dissimilar elements in the process

of schema similarity evaluation is time consuming and reduces the e�ciency of

matching process. So they developed a �ltering system dubbed Internal Filtering

Page 30

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Figure 8: The Models of SKSA, (Zhao and Tian, 2013).

Threshold (IFth) to discard dissimilar elements from the similarity computation

process based on the di�erences of internal features (semantics). (Alqarni and

Pardede, 2013) found that a range of threshold values from 0.1 to 0.6 are the

reasonable because it accounted for 40% to 60% of the total similarity value.

Moreover, a threshold value higher than 0.6 may discard candidate elements

from the similarity measurement. Excluding dissimilar elements may enhance

the performance of the matching process but it impacts on the e�ectiveness of

the process because of the inverse relation between them.

(Alqarni and Pardede, 2013) measured the quality of the system matching

using Precision, Recall, and F-measure which depend on four principles which

relate on the results of the manual matching (Rm) and automatic matching

((Am) as shown in the �gure (9).

(Algergawy et al., 2010) de�ned four principles to measure system matching

e�ectiveness between XML schemas: False negative (A) = (Rm)− (Am), is the

information which is relevant (manually identi�ed) but not identi�ed by the

system. True positive is the information which is relevant (identi�ed manually)

Page 31

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Figure 9: Quality Measures Principles.

and was identi�ed automatically (B) = (Rm) ∩ (Am). False positive is the

information which is retrieved by the system but is not relevant (C) = Am−Rm.

True negative (D), is the information which is not relevant and is retrieved by

the system

Based on these principles, (Alqarni and Pardede, 2013) calculated Precision

as the percentage of relevant information 'B' to the total retrieved information

by the system 'B+C', P = B
B+C . For Recall evaluation, they computed the

ratio of retrieved relevant data to the total relevant data R = B
A+B . (Alqarni

and Pardede, 2013) assessed the Fmeasure using the formula

F −measure = 2− P ∗R
P +R

=
2 ∗ |B|

(|B|+|C|) + (|A|+|B|)

.

A combination of semantic and structural information in the similarity mea-

surement is required in some applications such as the health care domain (Thuy

et al., 2013) where, semantics is required for e�ciency of measurement whilst

structure improves the e�ciency of computation. An XML schema has both

structural and semantic information and this has attracted the attention of a

Page 32

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

group of researchers to the consideration of XML schemas in similarity evalua-

tion of XML documents as will be explained in the next section.

3.3.3 Structural and Semantic Similarity Measures (Hybrid)

High quality similarity measurement is required in some domains, for instance,

searching for the accurate information from XML databases (Chen and Pa-

pakonstantinou, 2010; Cohen et al., 2003; Guo et al., 2003; Li et al., 2007, 2004;

Schmidt et al., 2001; Tatarinov et al., 2002; Xu and Papakonstantinou, 2005b,

2008) and a healthcare domain (Thuy et al., 2013). This issue is analysed by

(Guzman et al., 2013) as demonstrated in section (3.2.1) and much e�ort has

been spent in the domain of similarity measurement based on structure and

semantic computation starting from (Algergawy et al., 2010).

(Algergawy et al., 2010) modelled an XML schema as tree and considered

two properties of elements in the XML schema: internal properties (element

semantics) and external properties (element structure). The internal properties

represent the semantics of XML elements and they adopt four characteristics:

name, data type, constraints, and annotation.

(Algergawy et al., 2010) tokenized each element name into set of tokens and

used the following formula to compute the token similarity of two elements

Nsim(T1, T2) =

∑
t1∈T1

[maxsimt2∈T2(t1, t2)] +
∑

t2∈T2
[maxsimt1∈T1(t2, t])]

|T1|+|T2|

where the �rst maxsim compared each token which belongs to the �rst element

name with the set of tokens of the second element and vice verse with the

second maxsim. To measure the token similarity, (Algergawy et al., 2010) also

adopted the WordNet dictionary to measure the semantics similarity and tree

edit distance to compute the syntactic similarity between the element names.

Page 33

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Table 1: Table of Data type Similarity, Adapted from (Algergawy et al., 2010).

XML Type1 Type2 Tsim

string string 1.0

string decimal 0.2

decimal �oat 0.8

�oat �oat 1.0

�oat integer 0.8

integer short 0.8

To evaluate the data type similarity, they exploited table (1) which was

published on the website of (Biron, 2004).

The constraints of the XML element was a third factor measured by (Alger-

gawy et al., 2010) to evaluate the internal similarity. The indicators minOccurs

and maxOccurs represent the number of appearance the element in the docu-

ment (w3schools, 2016). (Algergawy et al., 2010) adopted the following formulas

to compute the (max,min) cardinality constraints of two elements.

CSim(minOcurs) = 1− |minOccurs of T1 −minOcuurs of T2|
|minOccurs of T1|+|minOccurs of T2|

CSim(maxOccurs) = 1− |maxOccurs of T1 −maxOcuurs of T2|
|maxOccurs of T1|+|maxOccurs of T2|

The last characteristic calculated is the element annotation (Asim) (Alger-

gawy et al., 2010). This was done using a statistical study of the importance

of the word in the document. The last step in computing the similarity of in-

ternal features between two elements was to combine the similarity measures

Nsim, Tsim,Csim,Asim

Page 34

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

(Algergawy et al., 2010) assessed the similarity of features of pairs of el-

ements by evaluating the element in four contexts: child, leaf, sibling, and

parent (2.6). They measured the child (ChSim(El1, El2) and leaf similarity

LeafSim(El1, El2) between two elements using the following formula:

ChSim(El1, El2) =

∑i=k
i=1 [

j=k′

j=i maxInterSim(El(1i), El(2j)]

max(|K|, |k′|

.

wheremaxInterSim(El1, El2) is the maximum similarity between two childrenEl1

and El2 and k and k′ are the number of children of both elements El1 and El2

respectively. Then (Algergawy et al., 2010) computed the average similarity be-

tween the two sets of elements children using one of mathematical methods such

as cosine measure or Euclidean Distance. The measurement of the sibling sim-

ilarity was done by (Algergawy et al., 2010) through the same equation which

were used previously to compute the children and leaf similarity, but it was

used to compare the similarity between siblings of two elements. To evaluate

the similarity of the ancestor contexts of two elements PSim(P1, P2), (Alger-

gawy et al., 2010) employ tree edit distance method to measure the similarity

of each ancestor in the path of the element from the root. The �nal step in

the computation of the external feature similarity of element is combining the

similarity of the element's context:

ExterSim(El1, El2) = CombineE(ChSim(El1, El2)), LeafSim(El1, El2),

SibSim(El1, El2), PSim(El1, El2)).

Where CombineE is a function used to combine the values of external feature

similarity. Finally, (Algergawy et al., 2010) computed the similarity of two

elements based on semantic and structural similarity by combining the internal

Page 35

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

and external similarity measures.

In addition to (Algergawy et al., 2010) there is another group of researchers

who were attracted to computing the similarity between XML Schemas based on

semantics and structure. They thought that the involvement of semantic mea-

sures with structure may increase the e�ectiveness of the similarity evaluation

as will be explained in the approach of (Thuy et al., 2013).

(Thuy et al., 2013) addressed the problem of measuring the resemblance

of the two schemas in a health care domain. They considered a similarity

measurement based on structure and semantic characteristics of the elements in

both schemas. In contrast to the model of (Algergawy et al., 2010) who employed

four factors in the semantic similarity computing, (Thuy et al., 2013) compared

the semantic similarity of XML element from three views: data type, cardinality

constraint, and element name. (Thuy et al., 2013) analysed the element type as

either complex, which has children, or simple which is leaf. For complex type

elements, they compared the structural similarity of their children as will be

explained in the structural similarity measurement part. They assigned a value

0 to the data type similarity. If one of the elements is complex and the other

is simple their attributes are di�erent. To compute the data type similarity,

(Thuy et al., 2013) used 12 constraint facets which are in the table (2) where

'u' indicates that the data type has this facet.

Based on this information, (Thuy et al., 2013) designed the following formula

to �nd the values of the data types similarity which were saved in the table (3).

DSim(d1, d2) =
|{cfi|d1[cfi] = d2[cfi], 1 ≤ i ≤ n(cf)}|

n(cf)

Where, d1 and d2 are arbitrary data types presents in the table (2); cf

is the list of constraining facets: length, minLength, maxLength, pattern,

enumeration, whitespace,maxInclusive,maxEnclusive,minExclusive,minExclusive,

Page 36

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Table 2: Constraint Facets of Data Types, Adapted from (Dan, 2003).

Simple Data Type le
ng
th

m
in
le
ng
th

m
ax
le
ng
th

pa
tt
er
n

en
um

er
at
io
n

w
hi
te

sp
ac
e

m
ax
In
cl
us
iv
e

m
ax
E
xc
lu
si
ve

m
in
E
xc
lu
si
ve

m
in
In
cl
us
iv
e

to
ta
lD
ig
it
s

fr
ac
ti
on
D
ig
it
s

String u u u u u u

Date u u u u u u u

Decimal u u u u u u u u u

Integer u u u u u u u u u

Float u u u u u u u

Language u u u u u u

totalDigits, fractionDigits. n(cf) is the number of constraining facets which

in this case is twelve

For example, to compute the similarity value between integer and string data

types the equation proposed by ((Thuy et al., 2013)) was:

DSim(integer, string) =
3

14
= 0.25

where string and integer data types have 3 similar facts out of 12 facets.

The next factor that (Thuy et al., 2013) took into consideration for the

computation of semantic similarity is the cardinality constraint (i.e. occurrence

of the element). They employed the occurrence indicators which are maxOccurs

and minOccurs to de�ne the maximum and minimum number of occurrences of

the XML element may occur in XML instance.

CSim(e1(min,max), e2(min,max)) =
(1− |e1.min−e2.min|

|e1.min+e2.min|) + (1− |e1.max−e2.max|
|e1.max+e2.max|)

2

Page 37

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Table 3: Constraint Facets of Data types, Adapted from (Dan, 2003).

XML String Date Decimal Integer Float Language

String 1.00 0.25 0.25 0.25 0.25 0.50

Date 0.25 1.00 0.58 0.58 0.58 0.25

Decimal 0.25 0.58 1.00 0.75 0.58 0.25

Integer 0.25 0.58 0.75 1.00 0.58 0.25

Float 0.25 0.58 0.58 0.58 1.00 0.25

Language 0.50 0.25 0.25 0.25 0.25 1.00

Where CSim speci�es the cardinality constraint of the elements e1 and e2,

min and max refer to minOccurs and maxOccurs respectively. (Thuy et al.,

2013) assigned minOccurs 0 or 1 and maxOccurs 1 or 'unbound'. They found

that the usual value of maxOccurs is undetermined 'unbound' and the number

of occurrences of maxOccurs = 'unbound' is 5 times greater than maximum

value of the de�nite maxOccurs. To �nd the value of 'unbound', (Thuy et al.,

2013) designed the following equation:

d1[maxOccurs = bound] = 5 ∗MAX(d2[maxOccurs])

Based on the previous equations, (Thuy et al., 2013) computed the cardi-

nality constraints for two elements as shown in the table (4).

Similarly, (Algergawy et al., 2010)) employed a mathematical equation to

measure the cardinalty constraints between elements which was simpler than

that in (Thuy et al., 2013). Therefore, the values in the tables are di�erent.

(Thuy et al., 2013) adopted WordNet to compute the names of tags in or-

der to increase the precision of semantics similarity measurement between two

Page 38

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

Table 4: The similarity Values of Cardinality Constraints, Adapted from (Thuy

et al., 2013).

Min=0 Min=1 Min=0 Min=1

Max=unbound Max=unbound Max=1 Max=1

Min=0, max = unbound 1.00 0.5 0.67 0.17

Min=1, max = unbound 0.5 1.00 0.17 0.67

Min=0, max = 1 0.67 0.17 1.00 0.5

Min=1, max = 1 0.17 0.67 0.5 1.00

elements. They exploited a breadth-�rst search algorithm to �nd the synonyms

of the element in the WordNet. Breadth �rst search is a search strategy that

explores the tree from the root node outward in all directions level by level. The

algorithm starts exploring vertices of tree graph that have distance (i+1), then

vertices that have distance (i+2) and so on, until the target node is reached

which is the shortest path to the required node (Korf, 2010). The model of

(Thuy et al., 2013) use the Breadth �rst search is starting from the synonym

set on WordNet of the element e1 to the synonym set of the element e2, and

so on, until e2 is matched. The approach will return one of two results: '0'

if the names of the elements are not matched, or 0.9distance if they are, where

Distance refers to the level of the element.

(Thuy et al., 2013) combined the values of CSim,DSim, elementname of

two elements to produce the semantic similarity using the following formula:

SeSim(e1, e2) = α ∗NameSim(e1, e2) + β ∗DSim(e1, e2) ∗ CSim(e1, e2)

Where, SeSim represents semantics similarity, and and are weighted con-

Page 39

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

stants which are assigned values according to the consideration of the linguistic

similarity in the semantics similarity computation. (Thuy et al., 2013) restricted

their evaluation of the similarity computation by assigning 0.32 and 0.34 to the

weighted constants and respectively. (Thuy et al., 2013) gave users a role in

similarity measurement because they thought that it may lead to user satisfac-

tion with the measurement process because the result will re�ect the priorities

of the user in the similarity computation.

In comparison to the approach of (Algergawy et al., 2010) who depend on

the semantic information for structural similarity measure, (Thuy et al., 2013)

computed structural similarity taking into account the linguistic similarity of the

elements. They setup a threshold to decide whether the value of element names

similarity is acceptable to be considered in the structural similarity. (Thuy

et al., 2013) designed the following equation which considers the context of the

element in the tree and tags similarity:

StSim(e1, e2) =
sum_links(e1, e2) + sum_links(e2, e1)

leaves(e1) + leaves(e2)

where leaves(e1) and leaves(e2) are the number of descendants which are

rooted in e1 and e2 respectively. sum_links(e1, e2) and sum_links(e2, e1) are

the total number of descendants that have a similar tags from tree(e1) to tree(e2)

and vice versa. For example, the rate of the structural similarity between 'Apple'

in 'tree A' and 'tree B' in �gure (10) can be computed as follows:

StSim(Apple,Apple) =
1 + 1

2 + 2
=

2

4
=

1

2

After computing the elements structural similarity, (Thuy et al., 2013) com-

puted structural and semantic similarity between two elements using the follow-

ing equasion:

ESim(s, t) = δ ∗ SeSim(s, t)+)1− δ) ∗ StSim(s, t)

Page 40

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

where δ is a weighted value between 0 and 1.

Figure 10: Tree Representations of XML Documents.

Finally, (Thuy et al., 2013) employed the following equation to evaluate the

similarity between two schemas:

ScheSim(T1, T2) = ε ∗
k∑

i=1

SeSim(e1, e2) = (1− ε) ∗ TreeSim(T1, T2)

Where ScheSim is the schema similarity of T1 and T2, ε is a weighted value

between 0 and 1, k is the minimum number of elements in either tree T1 or T2,

SeSim is the semantic similarity between e1 and e2. (Thuy et al., 2013) did

not clarify the role of TreeSim in the equation, but it is possible that it is the

structural similarity between trees T1 and T2.

Conclusion

A number of algorithms to investigate the recognition of the XML tree similar-

ity have been presented in this chapter. To compare between XML documents,

Page 41

3. XML DOCUMENTS SIMILARITY (REPRESENTATION AND
MEASUREMENT

needs a uniform the representations of both documents. Therefore, two repre-

sentation were explained: tree and vector, which are common forms that were

exploited by researchers to evaluate the similarity of XML documents. After

that, a third measurements was employed to compute the similarity to increase

e�ciency and e�ectiveness 'hybrid'. Some researchers focused on improving the

similarity measurement by comparing the structures of the XML documents.

Other researchers considered the semantics of the XML elements and adopted

an online thesaurus such as WordNet to improve the semantic similarity by

�nding the synonyms of XML nodes. However, di�erent groups of researchers

adopted both structural and semantic similarity comparison to improve the per-

formance of XML database management system in some domains such as health

care.

As mentioned previously in this section, similarity measurement was ex-

ploited by (Zhang et al., 2003) to improve the query processing and fetch an

accurate answer to user queries and this may lead enhance the performance

of XMLdatabase management system. Increasing the performance of XML

database management system by improving XML query processing has attracted

the attention of many researchers as will be explained in the next section

Page 42

4. QUERYING XML DOCUMENTS

4 Querying XML Documents

4.1 Introduction

There is extensive use of XML for data representation and transformation in dif-

ferent domains such as data warehousing (Chawathe et al., 1996, 1999; Cobena

et al., 2002) cited in (Tekli et al., 2007), mathematics (Mathematics Markup

Language (MathML)) (Carlisle, 2014), healthcare (Thuy et al., 2013). This

high degree of adoption of XML data is attractive to software venders who have

developed di�erent kinds of XML databases such as: Timber, Oracle XML DB,

MarkLogic Server, and the Toronto XML Engine (Jagadish et al., 2002; Mark-

Logic, 2016; of Toronto, 2002) as cited in (Le et al., 2015). Proposing a user

friendly approach to answering user queries has attracted a good number of

researchers, for instance, (Cohen et al., 2003; Guo et al., 2003; Li et al., 2004;

Schmidt et al., 2001; Tatarinov et al., 2002).

In this chapter, structural and semantic similarity between a user query

and an XML document will be studied, the type of XML query will not be

considered. A number of query processing approaches will be explained which

rely on a the Lowest Common Ancestor LCA which is a node in the XML tree

that contains all query keyword as a descendant nodes (Liu and Chen, 2007).

The drawbacks of this approach were addressed by a group of researchers who

tried to improve the query processing and fetch the intended information to the

user as will be seen later beginning with (Schmidt et al., 2001).

(Schmidt et al., 2001) proposed an algorithm based on the semantics of LCA

to process XML query. The target of this model is to provide information for

a user who is unaware of the XML schema and query structure. Based on this

many researchers suggested other semantics to increase the meaningfulness of

Page 43

4. QUERYING XML DOCUMENTS

the answer returned as will be explained starting from the model of (Liu et al.,

2013b).

4.2 Query Processing Based on Smallest Common Ances-

tor SLCA

(Liu et al., 2013b) claimed that the intent of a user query can be identi�ed

through the query structure which may play an important role in retrieving

the information for a user precisely. So, they concentrated in their study on

query matching with the XML document based on element content, that is the

information between start and end tags (Microsoft, 2016) and query structure.

However, they did not consider attributes which are the information that relates

to the element (Microsoft, 2016) and data type. The approach of (Liu et al.,

2013b) starts by splitting the user query into units based on element (tag) and

content. For example a user writes the query 'Shop/ Juice/Orange' intending

to �nd the node in the tree in the �gure (11). The user query will be decom-

posed into three units: 'Shop', 'Juice', 'Orange' considering the node order from

the root. Based on the constructed group, (Liu et al., 2013b) de�ned a term

Keyword Query With Structure QWS which is a combination of two or more of

groups and describes the structure of the candidate answer to the user query.

For example, the candidate QWS which consist of two groups are: 'Shop, Juice',

'Shop, Orange', and 'Juice, Orange', A similar procedure will be implemented

to construct QWS of three groups 'Shop Juice Orange'.

To evaluate the results of QWSs, (Liu et al., 2013b) exploited the XSeek al-

gorithm which was designed by (Liu and Chen, 2007) and is based on a semantic

entity called Smallest Lowest Common Ancestor SLCA which is based on LCA.

A SLCA node is a LCA node in the tree which contains all query keywords and

Page 44

4. QUERYING XML DOCUMENTS

Figure 11: Tree Representation of XML Document.

none of its descendant is an LCA (Xu and Papakonstantinou, 2005b)). After

determining the SLCA node of the QWSs, the approach of (Liu et al., 2013b)

then computes the matching answers of QWSs and return the most common

answer to the user.

More work has been done based on the use of the SLCA node to retrieve

the required answers for the users in addition to (Liu et al., 2013b). (Lin et al.,

2014) proposed a new model to cover the weaknesses of the previous work (Lin

et al., 2011) called Relevant Matches with NOT 'RELMN' that did not work

properly in some cases in processing a user query as will be explained in the

next method.

4.3 Processing XML query contains NOT Operator

(Lin et al., 2014) described that RELMN has two steps: �rst, it searches for an

SLCA node in a tree that satis�es a user query but its descendant nodes do not

by a 'NOT' operator which known as 'Negative Keyword'. In the second step,

RELMN will prune a subtree of the identi�ed SLCA to a sibling subtree which

Page 45

4. QUERYING XML DOCUMENTS

has more positive keywords or less negative keywords. Let us consider the result

of the user query " 2015 ∧ Product ∧ ! 350ml" from the tree in �gure (12). The

SLCA node is 'Juice1' and the subtree 'Canned Juice1' will be excluded by the

subtree 'Canned Juice2' because the latter has more positive keywords than the

former.

Figure 12: Tree Representation of XML Document, adapted from (Lin et al.,

2014).

(Lin et al., 2014) illustrated that RELMN has drawbacks in the processing

of a user query that has a 'NOT' operator which may cause a 'false negative'

answer, an answer that is detected manually but not by the system (section

3.3.2). For example, let us suppose user writes the query 'Sunshine ∧ Product

∧ UK ∧ !250ml', the manual determination of the SLCA node is 'Shop' and the

query keywords are leaves of the nodes 'Canned Juice1' and 'Canned Juice4'

Page 46

4. QUERYING XML DOCUMENTS

repectively. However, RELMN will fetch 'Canned Juice4' only, because the node

'Juice1' has a negative word '250ml' as a descendant of 'Canned Juice2' and the

node 'Juice1' will be discarded by the sibling 'Juice2'. (Lin et al., 2014) proposed

a novel approach called Valid SLCA to to cope with the defect in RELMN by

excluding the descendant of negative elements rather than a subtree that has

a negative child. For instance, the result of the query 'Sunshine ∧ Product ∧

UK ∧ ! 250ml' will be 'Canned Juice1' and 'Canned Juice4' which match the

manual answer.

(Lin et al., 2014) analysed the enhancement of the processing of queries that

have a NOT operator based on the semantics SLCA. However, the determina-

tion of the SLCA node is considered by another researchers to improve query

e�ciency as will be seen in the next approach by (Zhou et al., 2012a).

4.4 Improving of XML Query Processing Using XML La-

belling Scheme

(Zhou et al., 2012a) studied the issue of computation of the SLCA node quickly

to responde to the query e�ciently. They adopted a Dewey Labelling Technique

(explained in the chapter (5)) to label tree nodes and de�ne the SLCA node

which has the query keywords. (Zhou et al., 2012a) partitioned the label list of

the XML tree into lists and for each list they calculated LCA node which was

a root node of a subtree that has all query keywords (Guo et al., 2003) one of

its children may be a SLCA node (Zhou et al., 2012a). The novel approach is

that they inspect each keyword 'Wi' in each subtree and examine the subtree

that has 'Wi' to see if it has minimum number of query keywords and return

the SLCA node if it does. If the tree 'T' has all query keywords and none of

its subtrees the algorithm will fetch the root node of the tree 'T' as an SLCA

Page 47

4. QUERYING XML DOCUMENTS

node.

(Zhou et al., 2012a) studied the e�cient response to a user query based

on SLCA which is based on LCA. Another team of researchers addressed the

determination of the LCA node based on range value queries.

4.5 Using of XML Grammar to Enhance the XML Query

Processing

(Zeng et al., 2013) stated that the use of LCA and its variant SLCA fetch exact

match subtrees for the user query but they do not support range queries. They

de�ned two terms in their algorithm: Normal Term 'Tn' which refers to the

exact match elements of the user query and Range Term Tr which refers to a

range of values speci�ed in the user query. To answer a range query, (Zeng et al.,

2013) proposed a new approach which consists of two steps: they adapted the

formal existence grammar of keyword search methods which is :

T → anonemptystringwithoutspace

Q→ T | QT

where T represents a 'Term', Q represents a keyword query, → represents 'as

de�ned', and | represents 'or'. The adapted grammar is

T → anonemptystringwithoutspace

Tr → T :< T |T :> T | T :<= T | T :>= T | T : T − T

Tn → thoseTarenotTr

Q→ Tn | Tr | QTn | QTr

where Tr represents a range term, Tn represents a normal term, and the

symbols :<, :<, :<=, :>= have the same meaning as the conventional symbols

Page 48

4. QUERYING XML DOCUMENTS

<,>,<=, >= but they are preceded by : to distinguish them from the prede-

�ned symbols. The second step in the model is that they designed a novel index

called Point and Range Hybrid-Entrance Index which has two entrances to sup-

port matching of both normal and range terms. For the point match entrance,

they used a B+ tree index as seen in the �gure (15) which contains the relevant

node labels of the XML tree in �gure (13). For the range terms, (Zeng et al.,

2013) used a hash table in which each entrance represents the range node name

and the relevant labels in the XML tree as shown in �gure (14) that contains

the node names and its labels in the XML tree.

Figure 13: Ordered Labelled XML Tree.

For instance, when a user writes the query 'Strawberry price :< ¿2'. The

novel approach will look for the node name 'Strawberry' in the point match

entrance and retrieve the label(s) '1.2.3.1.1' and '1.3.3.1.1' for the intended

Page 49

4. QUERYING XML DOCUMENTS

Figure 14: Range Match Entrance.

Figure 15: Point Match entrance.

node name. Based on the adaption in the grammar in the �rst step, the range

value of price will follow the pointer 'P1' and fetch the node label whose value

matches the user requirement in the query which shares the pre�x node label

of 'Strawberry' to provide the LCA node which is 'Canned Juice2' that has the

label '1.2.3'.

(Zeng et al., 2013) designed a new grammar to deal with range queries.

However, another team of researchers has a di�erent view of the accuracy of

LCA in providing the user with the intended answer.

Page 50

4. QUERYING XML DOCUMENTS

4.6 Dominance Semantics to Improve the Precision of XML

Query Processing

(Nguyen and Cao, 2012) claimed that the semantics of LCA has low precision as

it returns a large number of irrelevant answers. To increase the precision, they

designed a novel algorithm which starts from computing the mutual information

between two nodes which is a measure of the relationship between two nodes.

The mutual information consist of two parts: the probability of accessing the

node in the XML tree based on the pre�x path of the nodes. For instance, the

probability of accessing the node '200ml' in the �gure (13) based on the path

'/Shop/Juice/Canned Juice' is 1
2 , where, the other path leads to '350ml'. The

second part is �nding the join probability between two nodes. For example, the

join probability between '2' and '200ml' from the path '/shop/Juice/Canned

Juice/' is ' 122, but the join probability between '¿2' and '250ml' through the

path '/Shop/Juice/' is ' 14 . (Nguyen and Cao, 2012) processed the the resulting

information to measure the mutual information between two nodes. After they

measured the relationship between two nodes in XML tree, they employed the

evaluation and suggested a new semantics dubbed Dominance Lowest Common

Ancestor DLCA which is based on mutual information. (Nguyen and Cao, 2012)

de�ne DLCA answers as a tree whose nodes are have a strong relationship.

(Nguyen and Cao, 2012) did not depend on the top-k ranking algorithm which

is de�ned by the same author as a ranking function used to rank the answers

to user's queries by a measure of the relevance of the answer to the query

keywords. Instead they ranked them based on the measurement of the relevance

information. They claimed that the top-k model is costly, so they proposed a

new ranking strategy based on the score of the dominance relationship to provide

the user a more relevant answer.

Page 51

4. QUERYING XML DOCUMENTS

(Nguyen and Cao, 2012) addressed the issue of providing a large number of

irrelevant answers to the user and proposed a new approach to solve it. On the

other hand, a di�erent groups of researchers analysed the problem of returning

an error message when an expert user query the XML database as will be

demonstrated in the next model.

4.7 Processing Error Messages in the Query Processing

During a normal process of XML tree update, some of information in the tree

will be changed. When a user tries to query the database for a word which

has been deleted, the result will be an error message and this problem was

investigated by (Bao et al., 2015) and is called the MisMatch Problem. (Bao

et al., 2015) followed a number of steps in their approach starting from �nding

the data type of the intended node in the user query from the schema for the

XML tree in contrast to the approach of (Nguyen and Cao, 2012) which is

based on mutual information. They matched the query keywords with the nodes

in the subtree starting from the LCA node which made it possible to predict

the data type of the target keyword. Forexample, when a user wants to �nd

the price of canned apple juice with the size 250ml in the �gure (13), he/she

will write the query '/Canned Juice/Product/Size = 250ml/ price'. The new

algorithm will predict the data type of the user's intended answer by comparing

the path of each keyword in the query beginning from LCA node 'Canned Juice',

predict the targeted node and then extract the node's data type from schema.

Depending on the data type of the intended element, (Bao et al., 2015) evaluated

the user query and detected the MisMatch problem. To give a reason for the

MisMatch problem to the user, they de�ned a term called Distinguishability

which compares the similarity of the keywords in the descendant nodes of the

Page 52

4. QUERYING XML DOCUMENTS

LCA node. If the distinguishability of a keyword is higher than a prede�ned

threshold, it is important to be match it, but if it is less than the threshold it

is the reason for the MisMatch problem and it needs to be replaced.

The novel model tries to provide an approximate as an alternative answer

by replacing the MisMatch node with a node of the same type in di�erent

subtree. For instance, the query '/Canned Juice/Apple/Size = 350ml/price'

will result in the MisMatch problem because this product not available in the

shop. Thus, (Bao et al., 2015) suggested a substitute answer which is '/Canned

Juice/ Apple/Size = 250ml/price' where all keywords matched the user query

except 'Size' and this is the suggested to the user. (Bao et al., 2015) relied on

the approximate answer where its distinguishablility is less than the threshold to

reduce the number words replaced and provide the user fewer answers in a short

time. Similar to (Nguyen and Cao, 2012)), (Bao et al., 2015) suggested a new

ranking method to evaluate proposed answers which are based on three factors:

the number of keywords need to be changed, a comparison of the dimensions

of the suggested answer and the intended answer from the LCA node and the

distinguishability score.

(Bao et al., 2015) studied giving the user the bene�t of information in case

of a missing. However, another team of researchers analysed the assistance to

a non expert user in quering XML documents as will be illustrated in the next

approach.

4.8 Semantics for Non-Expert Users for Querying XML

Documents

(Agarwal and Ramamritham, 2015) studied the problems that relate to existing

query algorithms based on LCA method and its variants: SLCA and ELCA.

Page 53

4. QUERYING XML DOCUMENTS

SLCA semantics is de�ned in the approach of (Liu et al., 2013b). ELCA seman-

tics which is a node in the tree that has all occurrences of query keywords after

excluding all descendant subtrees that have the same set of key-words (Xu and

Papakonstantinou, 2005a). They claimed that these semantics do not always

provide useful answers to non-expert user where, they determine the LCA node

and retrieve the descendant nodes that match the query keywords. In contrast,

(Agarwal and Ramamritham, 2015) designed a novel theory called Generic Key-

word Search 'GKS' which retrieves useful information from any node in XML

tree based on part of query keywords. They called the nodes that contain part

of the query keywords as Least Common Entity 'LCE' and they used variable

's' to determine a least number of query keywords (either 2 or 3) to be searched

for in the XML tree. When the number of keywords in the subtree of the LCE

nodes is equal to the number of query keywords, then the LCE node will be

considered as a SLCA. For example, three users write the three queries Q1, Q2,

Q3 to retrieve information from an XML tree in the �gure (16) and 's=2'.

Q1 = (Price,Apple, Local)

Q2 = (Price,Apple, Imported)

Q3 = (Price,Apple, Local, Import)

The answers of these will be as follows in the table (5).

It is clear that the LCE approach fetched a larger number of results than

either ELCA or SLCA.

The model of (Agarwal and Ramamritham, 2015) is recently published, so

it has not yet been analysed by other researchers. From the previous example

the results of Q2 and Q3 in the table (5) demontrate that the LCE approach

brought a large number of results but some are irrelevant. The user requested

the price of an imported apple in the query Q2, but the new semantics fetched

Page 54

4. QUERYING XML DOCUMENTS

Figure 16: Tree Representation of XML Document.

Table 5: The results of the queries based on LCE, ELCA, and SLAC.

LCE ELCA SLCA

Q1 Fruit1, Cheap Apple Fruit1, Cheap Apple Cheap Apple

Q2 Fruit1, Cheap Apple, Fruit2, Cheap Orange Null Null

Q3 Fruit1, Cheap Apple, Fruit2, Cheap Orange Fruits Fruits

information about the local apple and imported orange. In Q3, where the user

requests data which relates to the imported and exported apple the proposed

approach supplied the user with information related to the orange. This leads

to reduced recall and increased precision of the query processing algorithm.

Conclusion

Many methods were studied in this chapter which relied on a comparison of

structure between a tree or subtree and the user queries in order to supply the

Page 55

4. QUERYING XML DOCUMENTS

users with the information they would like. As can be shown, most of the query

processing approaches adopted the semantics LCA which bring the user a root

node which has all query keywords. Exploiting this approach, researchers found

it has drawbacks and they proposed variants such as SLCA and ELCA which

are derived from LCA to increase the performance the query processing. To

overcome these faults, a number of alternative approaches were proposed for

instance LCE and DLCA. Another team of researchers addressed the problems

that relate to the user query where the 'NOT' operator is included in the query.

However, another group of researchers studied simplifying query processing

for users who are unfamiliar with information retrieval. They did not include

semantics in the query processing, but focused on a structural comparison to

simplifying the query writing for users who are unfamiliar with XML query

processing and they designed methods to help these users access the information

they wanted. More studies have aimed to improve the XML query processing

based on a structural comparison between the query and the XML document

using numbers, characters, and a combination of both. These numbers and

characters describe the path from the root node to the required information as

will be explained in the next chapter.

Page 56

5. XML LABELLING SCHEMES

5 XML Labelling Schemes

5.1 Introduction

(Assefa and Ergenc, 2012; Duong and Zhang, 2008; Fu and Meng, 2013) de�ned

XML labelling as a process of assigning each node in the XML tree a unique

label which expresses information about the node, such as, its position and

the relationships. Thus the labels are both an index to the nodes of the XML

tree and a sumary of relationships between them. (Assefa and Ergenc, 2012;

Duong and Zhang, 2008; Fu and Meng, 2013) state that a labelling scheme has

become an important requirement for an XML database due to the amount

of data involved. They argued that a good labelling scheme can be assessed

in terms of: compactness, the labels should be small to �t in main memory,

dynamism, updates to the XML should not require relabelling existing nodes

and �exiblibility the ablity to represent all kind of node relationships.

In this chapter three labelling techniques will be demonstrated: the Interval-

Based Labelling Scheme, the Pre�x-Based Labelling Scheme and the Vector-

Based Labelling Scheme. Early labelling schemes were developed for static

XML documents where the XML tree was not expected to change (Dietz, 1982;

Fu and Meng, 2013; Haw and Lee, 2011). In trees that are updated, a relabelling

process is required to maintain the performance of query processing (Yun and

Chung, 2008)). In this chapter, a group of labelling schemes will be explained

for central XML documents (neither compressed nor distributed) to clarify the

process of both statically and dynamically labelling a document. It will be

noticed that in what follows the nodes in some �gures contain numbers; these

numbers are to help distinguish one node from another and are not labels.

Page 57

5. XML LABELLING SCHEMES

5.2 Interval Labelling Schemes

(Haw and Lee, 2011) claimed that the earliest labelling scheme is the model of

node encoding proposed by (Dietz, 1982). (Dietz, 1982) proposed an algorithm

which assigns each node a label that consist of two integers based on the node's

position in the preorder and postorder of traversal of a tree data structure. In

this approach a node labelled (x, y) is ancestor of node labelled (v, w) when it

appears before (v, w) in a preorder traversal tree and after in postorder travesal

as shown in �gure (17).

Figure 17: Preorder/Postorder-Based Labelling Scheme.

The labelling scheme of (Dietz, 1982) can thus represent Ancestor-Descendant

'A-D' relationships (see section (2.6)) but cannot represent other structural re-

lationships such as Parent-Child 'P-C' (section (2.6)). So another technique

called Containment Labelling was designed to identify this relationship (Xu

et al., 2007). The new technique identi�es each node with a label which consist

of (start position, end position) which is su�cient to identify the range of its

descendant nodes (Subramaniam and Haw, 2014; Zhuang and Feng, 2012). A

common example of this labelling category is the approach of (Zhang et al.,

Page 58

5. XML LABELLING SCHEMES

2001). For two nodes, x labelled (x.start, x.end) and y labelled (y.start, y.end),

x is an ancestor of y if x.start < y.start and x.end > y.end. (Xu et al., 2007) also

labelled nodes with their level and so encoded another property. A node labelled

(x.start, x.end, x.level) is a parent of a node labelled (y.start, y.end, y.level) if

x is an ancestor of y and x.level = y.level− 1. This is illustrated in �gure (18).

Figure 18: Interval-Based Labelling Scheme (Using Containment Property).

More e�ort in the de�ning the node relationships in an XML tree was made

by (Subramaniam et al., 2014) who developed a new labelling scheme to repre-

sent structural relationships. (Subramaniam et al., 2014) designed the labelling

scheme called ReLab. Each node is labelled (level, ordinal, rID) where level is

the node level starting from '0' at the root node. ordinal is a unique identi�ca-

tion number assigned to a node in preorder tree traversal of the tree. Finally

rID, the region identi�er is the ordinal of the rightmost descendant node except

for leaf nodes who take the rID of their parent. The scheme is illustrated in

�gure (19).

The node labelled (2, 3, 4) in �gure (19) is the child of the node (1, 2, 4)

because the ordinal of the child node is between the ordinal of the parent and

its rID and so it is a descendant and the level is one more than the parent's

Page 59

5. XML LABELLING SCHEMES

Figure 19: ReLab Labelling Scheme.

level so it is a child.

A common drawback of this category of labelling scheme was addressed

by (Fu and Meng, 2013). They identi�ed that although they identify Ancestor-

Descendant relationships and Parent-Child they are unable to determine Sibling

Relationships SR (see section (2.6)) and the Lowest Common Ancestor LCA

node. A node in XML tree is said to be the LCA when all query keywords

occur in its descendants (Schmidt et al., 2001). (Fu and Meng, 2013) designed a

new labelling scheme intended to identify this case in the next labelling scheme

approach.

(Fu and Meng, 2013) proposed a new labelling scheme model called iTriple

Code that assigns a quaternary label to each node during a single Depth-First

traversal of the tree. The label consists of (start, end, parentid, pt) where start

and end are as explained previously, parentid is the identi�er of the parent node,

and pt is a table that contains a list labels of ancestors of the parent node. The

novel algorithm can determine the LCA node as it will starts the traversal from

a leaf node and follow the order of parent's 'ids' which are saved in a table.

The labelling schemes described so far are static interval-based labelling

Page 60

5. XML LABELLING SCHEMES

schemes which are unable to maintain the nodes relationships during the update

process as nodes are assigned numbers sequentially (Yun and Chung, 2008).

They pointed out that the preservation of gaps when numbring nodes for the

insertion of further nodes in the future may not be su�cient to avoid relabelling

of nodes as consequence rapid change of XML document. (Yun and Chung,

2008) explained that if the preserved space is not su�cient for the inserted

nodes over�ow problems cannot be avoided. To solve this problem, (Yun and

Chung, 2008) proposed a new data structure to label trees called a Nested Tree

Structure suitable for dynamic XML documents but still based on the interval

labelling scheme.

The (Yun and Chung, 2008) labelling scheme is another interval-based la-

belling scheme, so it labels nodes with a tuple of (DocID, StartPos, EndPos,

LevelNum). The DocID is the identi�er of the document, StartPos and EndPos

are assigned either by counting the number of words from the start element to

the end element in the document or by depth �rst traversal of the XML tree.

LevelNum is the depth of an element in a document. The positions can include

space for new nodes.

A node N1=(D1, S1, E1, L1) is parent of the node N2=(D2, S2, E2, L2)

when D1=D2 so both nodes are part of the same document, S1<S2, E1>E2 and

L2=L1 +1. The node N1 is an ancestor to the node N2, when D1=D2, S1<S2,

E1>E2 and L1<L2.

(Yun and Chung, 2008) studied three cases of XML tree update: the reserved

space su�cient for the newly inserted tree, the reserved space is not su�cient

for the inserted tree, and the reserved space is zero. In the �rst case of the tree

update, the model of (Yun and Chung, 2008) assigns labels to the inserted tree

sequentially and the labels of the original nodes will not be e�ected as shows in

Page 61

5. XML LABELLING SCHEMES

�gures (20) and (21).

Figure 20: The Reserved Space is su�cient and Before Tree Update.

Figure 21: The Reserved Space is su�cient and After Tree Update.

In the second case, only one integer value is needed to number the inserted

tree and the labels of the original tree do not need to be changed as shown in

�gures (22) and (23).

As can be seen from �gure (23), the labels of original nodes of the tree are

not a�ected by the update node because the novel algorithm assigns a new label

which is 1,3 to the root node (Author) of the new subtree that is considered as

a child and the nodes of the inserted tree are allocated with a new labels: 2,2

and 3,3.

Page 62

5. XML LABELLING SCHEMES

Figure 22: The Reserved Space is not Su�cient for the Whole Tree Before the

Tree Update.

The last case is the most complex because the reserved space is zero and

some nodes of the original tree have to be relabelled after tree update. The

model of (Yun and Chung, 2008) solved this problem by combining the original

tree with the inserted sub-tree and relabelling the nodes of the combination of

trees rooted from the parent of the inserted sub-tree. For example, the label 11,

22 of the root node Library in �gure (24) was changed to 1,18 in �gure (25).

(Haw and Lee, 2011; Lu and Ling, 2004) claimed that an interval-based

labelling scheme is �exible and represents all type of node relationship. How-

ever, XML trees sometimes change frequently and node relabelling cannot be

avoided, so it is not an ideal approach in this case. Therefore, a number of la-

belling schemes were proposed to represent all nodes relationships and to avoid

relabelling nodes during tree update as will discussed in the next sub-section.

Furthermore the time taken for label generation in Interval schemes grows

exponential because they visit each XML node twice (Sans and Laurent, 2008).

The need for a labelling scheme that produces labels in linear time and with the

Page 63

5. XML LABELLING SCHEMES

Figure 23: The Reserved Space is not Su�cient for the Whole Tree After the

Tree Update.

representation of the hierarchical structure of an XML tree is badly needed as

will be explained in the next section.

5.3 Pre�x Labelling Scheme (Dewey)

The technique underlying this category of labelling scheme is similar to the

Dewey Decimal Coding which is used by librarians (Sans and Laurent, 2008).

Using this scheme it is possible to �nd structural relationship from the label

(Assefa and Ergenc, 2012). This category of labelling scheme encodes the label

of a node's parent as a pre�x to its own label. The parent's and nodes own

labels are separate by a delimiter ',' or '.' (Assefa and Ergenc, 2012; Liu and

Zhang, 2016; Tatarinov et al., 2002).

The ordering of XML database is attracted many researchers (Duong and

Zhang, 2008), (Assefa and Ergenc, 2012), (Liu et al., 2013a), and (Subramaniam

et al., 2014) to improve the performance. (Tatarinov et al., 2002) and (Wu

et al., 2004) classi�ed XPath queries based on the order-sensitivity of the query:

Page 64

5. XML LABELLING SCHEMES

Figure 24: The Reserved Space is zero Before the Tree Update.

Preceding, Following. Queries in this class targeted all nodes before or after the

context node excluding any descendant or ancestor nodes.

For Example, in �gure (26) the query Library/Book[2]/Following::Author[2]

will retrieve the information following Library/ Book[2] in �gure (26). Preceding-

sibling and Following-Sibling queries will fetch the following or preceding sib-

lings of the context node. For instance, the query Library/ Book[2]/Following-

sibling::* will select all following sibling nodes of Book 2 in �gure (26). Position

queries will select the information from a speci�c node. For example, the query

Library/Book[2] will retrieve all the information related to the element Book 2

in �gure (26).

(Tatarinov et al., 2002) analysed the labelling of an XML document to answer

a di�erent kind of query and proposed an algorithym which is known as Dewey

Order. The novel model combines two techniques of node labelling that are

designed by the same author: Global Order, where the node is assigned a label

which is a node's global order in an XML tree as shown in the �gure (27)

and Local Order, where the node's label represents the node's order among its

Page 65

5. XML LABELLING SCHEMES

Figure 25: The Reserved Space is zero After the Tree Update.

Figure 26: Tree Representation of XML Document.

siblings as shown in the �gure (28). The Dewey order model merged these two

labelling schemes as shown in �gure (29).

Dewey Order encoding represents the nodes relationship in the nodes' la-

bels expressively. However, (O'Neil et al., 2004) argued that the the model of

(Tatarinov et al., 2002) is unsuitable for dynamic XML documents. So that,

the former suggested a new labelling scheme to cover the drawback of Dewey

Order labelling scheme as will explained in the next model. (O'Neil et al., 2004)

proposed a new labelling scheme called ORDPATHs to maintain the order of of

XML tree during update and to improve the query performance.

Page 66

5. XML LABELLING SCHEMES

Figure 27: Global Labelling Scheme.

Figure 28: Local Labelling Scheme.

They employed only odd numbers to encode the initial nodes in the XML

tree as shown in �gure (30) where the children of the root node Library were

assigned the labels (1,1) and (1,3). (O'Neil et al., 2004) exploited the negative

numbers to label a new node inserted before the leftmost of the siblings as shows

in �gure (31). They encode a new node inserted in between siblings using an

even numbers as shown in �gure (32).

(O'Neil et al., 2004) labelled a tree nodes using odd numbers with even

numbers for the update nodes which may increase the label size and as a con-

sequences may lead to an increase storage size and reduce query process and

labelling performance. More work has been done in pre�x labelling schemes to

update an XML tree with lower storage cost by reducing the size of label as will

Page 67

5. XML LABELLING SCHEMES

Figure 29: Dewey Labelling Scheme.

Figure 30: ORDPATHs Labelling Scheme.

be explained in the approach of (Liu et al., 2013a).

(Liu et al., 2013a) attempted the preservation of the relationship between

XML nodes after update by proposing a new method called Dynamic Float-

Point Dewey 'DFPD'. Their novel approach starts by labelling the XML nodes

from the root node with the parent node label as a pre�x of its child's using

depth-�rst tree traversal with the components separated by dot '.' and where

the last component is the local level of the child. To update an XML tree

dynamically, (Liu et al., 2013a) studied four cases of node insertion: before the

�rst child, after the last child, a new child and between two siblings. In the case

of an insert before the �rst child, the algorithm adds a negative component to

label of the new node '1.-1' similar to ORDPATHs algorithm. When inserting

Page 68

5. XML LABELLING SCHEMES

Figure 31: Insert Node Before the Leftmost in ORPATHs labelling scheme.

Figure 32: Insert Node Between two Nodes in ORPATHs labelling scheme.

a node after the last child of the root node, the approach will follow the Dewey

labelling order. For example, if a label of the last child is '1.5', then the label

of the inserted node is '1.7'. When inserting a new child node, the label of the

new child node will have an additional component. For instance, if the label of

the parent node is '1.22', then the label of the new node will be '1.22.1'. To

insert a new node between two existing nodes, the new model DFPD exploited

'nominator/ denominator' as a �oating-point number to label a new node as

shown in the �gure(33).

(Liu et al., 2013a) computed the label of the inserted node as follows:

Parentlabel.Z =
X ∗ previoussiblinglabel

siblinglabeldemonimator + Y ∗ nextsiblinglabel
nextsiblingdemonimator

previoussibloinglabel + nextsiblinglabel

Page 69

5. XML LABELLING SCHEMES

Figure 33: Insert node between two nodes in DFPD.

Where

Z is the label of the update node,

X and Y are the denominators of previous and next sibling respectively.

For example, in �gure (33) the label (1, 5/2) of the inserted node Book 21

is computed as follows:

1.Z =
2 ∗ 5

2 + 1 ∗ 2
1

1 + 1
= 1.

5

2

The label of the node Book 22 in �gure (33) is computed similarly and is

assigned the following label:

1.Z =
2 ∗ 5

2 + 1 ∗ 3
1

2 + 1
= 1.

8

3

The labelling scheme of (O'Neil et al., 2004) and (Liu et al., 2013a) addressed

the issue of labelling a dynamic tree using numbers which may increase the label

size and consume the storage space with continuous update. There is another

dynamic labelling scheme based on pre�xes which assigns labels to updated

nodes using a combination of letters and numbers as will be explained in the

next labelling scheme.

(Duong and Zhang, 2005) argued that a label such as '1.2.13.24.3' may con-

fuse a user about the depth of a node in an XML tree and with four delimiters to

Page 70

5. XML LABELLING SCHEMES

�gure out the node's relationship may require a lot of space for storage. There-

fore, they designed a new approach they dubbed Labelling Scheme for Dynamic

XML data (LSDX) to reduce a use of the delimiter and to support a dynamic

labelling of XML during update. (Duong and Zhang, 2005) combined alphabetic

letters with numbers to represent the node's label starting from the root node

which is assigned '0a' where 'a' refers to the node label and '0' represents the

node level where the top level, the root, is zero. They attached the label '1a.b'

to the �rst child of the root node where 'b' represents the node's label, '1' is a

level of the node 'b' and 'a' is the label of the parent as shown in �gure (34).

Figure 34: Labelling Scheme for Dynamic XML update (LSDX).

(Duong and Zhang, 2005) started labelling the child node from 'b' to a letter

'a' to an inserted node before the node 'b'. For example, if a user updates an

XML document by adding a node before the leftmost node 'b', LSDX approach

will assign a label '1a.ab' to maintain the alphabetic order of the updated node

as shows in �gure (35).

To insert new node between two siblings, the LSDX will generate a label

between the preceding node's label and the following node's label as demonstrate

in �gure (36). The novel approach assigns the label '1ab.bb' to the new node

which is between '1ab.b' and '1ab.c' alphabetically and it generates the label

Page 71

5. XML LABELLING SCHEMES

Figure 35: Insert New Node Before the leftmost node.

'1ab.bc' for the new node inserted after the node '1ab.bb'.

Figure 36: Insert New Node Between two Siblings.

The labelling scheme of (Duong and Zhang, 2005) follows alphabetic order

when a user insert a new node after the rightmost node and a new child to

an existing node. The repetition of letters to represent a position of a node

between siblings may impact on the storage size. For instance, if the user wants

to insert another node between node '1a.bb' and node '1a.c' in �gure (36),

LSDX will generate the label '1a.bbb' for the new node. (Duong and Zhang,

2008) addressed this case and suggested a novel techniques for labelling of XML

tree as will be explained in the next labelling scheme.

(Duong and Zhang, 2008) proposed a new labelling scheme called Com-

Page 72

5. XML LABELLING SCHEMES

pressed Dynamic Labelling Scheme 'Com-D' to cover the drawback of LSDX.

The former replaces the repetition of letters in the node's label with a number to

save a storage space. For example, the label '2abb.b' in the labelled tree shown

in �gure (36) is represented as '2a2b.b' in the model of (Duong and Zhang,

2008). Where, the �rst 2 represents the node's level, 'a' is the parent node's

label, the second 2 is the number of 'b's, and the 'b' after the delimiter is the

current node's label.

More work has been done on labelling XML documents based on pre�x

techniques and they employ a combination of letters and numbers to encode

each label in the XML tree as in the approach of of letters and numbers to

encode each label in the XML tree as the approach of (Duong and Zhang, 2005,

2008). However, they claimed that the scheme of (Duong and Zhang, 2008) may

not achieve its ambition to enhance the performance of query processing and

tree update because of the cost of the compressing and decompressing processes

for the labels. So, they designed a new scheme which employed a combination

of letters and numbers to label XML nodes without as much storage as will be

explained in the next scheme of (Assefa and Ergenc, 2012).

The (Assefa and Ergenc, 2012) labelling scheme consist of three sections

'Level, Order, Parentorder', where Level is a number that represents the level

of a given node in the XML tree starting from the level '0' for the root node

level. Order which gives the horizontal distance of the node from the most

left node on the level. (Assefa and Ergenc, 2012) exploited alphabetic order to

manage the order of element at the same level as will be shown in �gure (37)

Parentorder is order of the node's parent.

They exploited numbers to give the information about parent/child rela-

tionships and the alphabetic order to provide information about the siblings

Page 73

5. XML LABELLING SCHEMES

Figure 37: OrderedBased Labelling Scheme, adapted from (Assefa and Ergenc,

2012).

relationships. To �nd ancestor/descendant relationships, they needs to trace

the parent of the parent/child recursively until they reach the intended ancestor

or the root.

The model of(Assefa and Ergenc, 2012) labels the root node '0a' where 0

refers to a level number and 'a' to the character label of the node. Their novel

approach follows alphabetic order to label the nodes of a lower level starting from

'b' as shown in �gure (37). When the number of node in same level exceeds 25,

it concatenates an extra character to the node label after every 25th node. For

instance, if the label of a 25th node is 'z' then the label of the 26th node will be

'zb' and so on. This concatenation will increase the storage size and may have a

negative e�ect on the performance of the labelling scheme and query processing.

To label 100 nodes, requires 1(25) + 2(25) + 3(25) + 4(25) = 250 characters.

The �rrst 25 nodes will be labelled starting from 'b' to 'z', the second will be

labelled with a concatenation of two characters starting from 'bb' to 'bz' and

third 25 nodes will be labelled 'bbb' to 'bbz' and so on.

(Assefa and Ergenc, 2012) designed the following formula to optimise the

Page 74

5. XML LABELLING SCHEMES

calculation of the number of characters that are needed for each level.

Y = Ceil(
logM

log25
)

where M is the number of nodes of each level, Y is the number of characters

required to label M nodes, Ceil is a function which returns the smallest integer

equal to a given expression. For example, to label 100 nodes using the optimized

formula, requires 2 characters as shown in the following equation:

Y = Ceil(
log100

log25
) = 2

After determining the number of characters needed for node encoding, (As-

sefa and Ergenc, 2012) studied update in an XML tree in three cases: inserting

of a node before the �rst node in a level, inserting a node between two nodes,

and inserting a node after the last node of a level.

To insert a node before the �rst node of a given level, they added 'a' before

'b' to give a label to the inserted node greater than to the next sibling node

whilst retaining alphabetic order as shown in �gure (38).

Figure 38: Insert a Node Before the First Node in the OrderedBased Labelling

Scheme, Adapted from (Assefa and Ergenc, 2012).

For insertion of node in between two nodes, (Assefa and Ergenc, 2012) added

a new character to the label of the new node without a�ecting the labelling order

Page 75

5. XML LABELLING SCHEMES

of the nodes. The code of the new node is greater than the previous sibling and

less than the next sibling as we can see in �gure (39). The label of the previous

sibling is 'b', so (Assefa and Ergenc, 2012)) added another 'b' to the label of

the new node to maintain the order of the nodes of within the level.

Figure 39: Insert a Node Between Two Nodes in OrderedBased Labelling

Scheme, Adapted from (Assefa and Ergenc, 2012).

(Assefa and Ergenc, 2012) addressed the insertion of a new node after the

last node by incrementing the label order of the new node alphabetically as

shown in �gure (40). The label of the new node is 'e' which greater than that

of the previous sibling which is 'd'.

Figure 40: Insert a Node After the Last Node in the OrederedBased Labelling

Scheme, Adapted from (Assefa and Ergenc, 2012).

Page 76

5. XML LABELLING SCHEMES

(Assefa and Ergenc, 2012) employed numbers and characters to encode the

node labels of XML tree to de�ne the structural relationships based pre�x order

and to maintain these relationships despite dynamic update of the XML tree

whilst preserving the e�ciency of query processing.

Pre�x labelling schemes requires more storage space with the insertion of

more nodes in the depths of the XML tree, and this may lead to a lack of stor-

age space (Haw and Lee, 2011; Xu et al., 2012). Another group of researchers

adopted di�erent technique to label XML nodes in based on mathematical op-

erations to assign labels to nodes in minimal cost in time and storage as will be

explained in the next labelling scheme category.

5.4 Multiplicative Labelling Scheme

This kind of labelling schemes exploits atomic numbers to label XML nodes and

determine the node relationships through the arithmetic properties of the node's

label (Al-Shaikh et al., 2010; Haw and Lee, 2011; Wu et al., 2004). Researchers,

for instance (Wu et al., 2004) and (Al-Shaikh et al., 2010) argued that the

interval labelling scheme needs a lot of storage for dynamic tree labelling and

sometimes the relabelling process cannot be avoided. For the pre�x labelling

schemes, they claimed that label size will increase with any increase in the depth

of a tree and a consequences of this the storage cost will also increase. So they

studied the encoding of XML trees using mathematical operations to determine

the node relationships in the minimal storage size and fast query processing as

will be clari�ed in the labelling scheme approach of (Wu et al., 2004).

(Wu et al., 2004) exploited a mathematical property of prime numbers which

are numbers that are only divisible by one and themself (Scha�er, 2001) to label

XML nodes. They de�ned two properties to identify the A-D relationship (see

Page 77

5. XML LABELLING SCHEMES

section 2.6). Property 1 Divisibility: "if an integer number 'A' has a prime

factor which is not a prime factor of another integer 'B', then 'B' is not divisible

by 'A'. (Wu et al., 2004) exploited this property to de�ne the labels of the nodes

in a top-down tree traversal. The label of a child is produced by multiplying

the node's self label with its parent's label. Based on the Divisibility property,

the child's node label must be divisible by the parent label as can be seen in

�gure (41).

Figure 41: Top-Down Prime Number Labelling Scheme, Adopted from (Wu

et al., 2004).

The second property de�ned by (Wu et al., 2004) is used to number the

nodes of the XML tree using a bottom-up technique which is "In a bottom-up

prime number labelling scheme, for any node 'x' and 'y' in an XML tree, 'x'

is an ancestor of 'y' if and only if label(x) mod label(y)=0. The label of the

parent node is determined by the multiplication of the labels of its children.

For instance, the label of the parent node 15 in �gure (42) is the result of the

multiplication of its child node labels 3 and 5.

(Wu et al., 2004) mentioned in their paper that the size of the label depends

on the depth of the XML tree. For instance, in �gure (42) an XML tree is shown

Page 78

5. XML LABELLING SCHEMES

Figure 42: Bottom-Up Prime Number Labelling Scheme Adapted from (Wu

et al., 2004).

which is labelled using prime number labelling top-down. (Wu et al., 2004)

optimize the label size in four steps: �rst, they reserve a small prime numbers

for the root's children because they have an in�uence on the label size. Second,

the number 2 is the only even prime number and its exploited to encode the

leaf nodes based on abel size. Second, number 2 is the only even prime number

and its exploited to encode the leaf nodes based on 21, 22, 23, ..., 2n. Third, they

collapse the paths that occur multiple times as the path in �gure (43) which is

a combination of paths in �gure (41).

Final, they suggested decomposing a large tree into a number of sub trees

which are labelled separately with the roots of these sub trees labelled in a

global tree.

To maintain the order of nodes in an XML tree during update, (Wu et al.,

2004) employed Chinese Remainder Order which is a mathematical formula

used to �nd a relationship between a set of integers which are relatively prime

with a set of integer numbers (Zheng and of South Carolina, 2007). The map-

Page 79

5. XML LABELLING SCHEMES

Figure 43: Combine Paths in The Prime Number Labelling Scheme.

ping between these two sets of is done by de�ning a factor called Simultaneous

Congruence SC which is generated from the self labels and also used to deter-

mine node order in the from the self labels. For example, let 1523 be the 'SC' of

the prime numbers '1,3,5,7', the order numbers of the relevant prime numbers

'1,2,3,5,7' are '0,1,2,3,4' which are produced based on the equation:

1523 mod 1 = 0

1523 mod 2 = 1

1523 mod 3 = 2

1523 mod 5 = 3

1523 mod 7 = 4

as is explained in �gure (44).

To add a new node that has a self label 17 in order 3 in �gure (44), the

approach of (Wu et al., 2004) will search for the largest prime number and

update the values of 'SC' to keep the order of nodes in the tree. For example,

the values of 'SC' in �gure (44) will be updated to 1139 and 20 to contain the

new node and maintain the node order as clari�ed in �gure (45).

Page 80

5. XML LABELLING SCHEMES

Figure 44: XML tree ordered with SC=1523 from the ordered nodes (0-5) and

SC=6 for the order node (6).

As can be seen in �gure (45), the burden of the nodes order preservation lies

on the 'SC' by changing its values rather than updating the nodes order.

The labelling scheme of (Wu et al., 2004) may consume a lot of storage in

labelling a deep XML tree to determine the node relationships. This is because

the node label is produced by multiplying the descendant prime number with

its self label 'prime number' and the result will increase with increase in the tree

depth (Al-Shaikh et al., 2010). Therefore, (Al-Shaikh et al., 2010) designed a

new labelling scheme to label XML nodes based on prime modulo and modular

multiplication as will be explained in the next approach.

The approach of (Al-Shaikh et al., 2010) proposed a novel labelling scheme

which allocates each node a label that consist of two elements 'L,E' as show in

�gure (46) where 'L' is a prime number self label given to the node using the

breadth �rst technique and 'E' is constructed by the formula:

E = (S ∗ L)modP

, where 'E' is a label of a new node, 'S' is parent's label, 'L' is the node's self-

label, and 'P ' a globally large prime number modulo of the tree as clari�ed in

Page 81

5. XML LABELLING SCHEMES

Figure 45: Insert a New Node in The Prime Number Labelling Scheme, adapted

from (Wu et al., 2004).

the �gure (46).

Figure 46: Modulo-Based labelling Scheme with P=29, adapted from Al-Shaikh

et al. (2010).

To insert a new node into an XML document in �gure (46), (Al-Shaikh

et al., 2010) calculated the label of the inserted node based on the formula

above. In addition, they developed another equation to determine the structural

Page 82

5. XML LABELLING SCHEMES

relationship by de�ning the parent of the new child:

E = (S ∗ L) mod P

where 'L' is the multiplicative inverse of 'L' and it can be de�ned through the

inverse equation (Extended Euclidean Algorithm) EEA

(L ∗ L) mod P = 1

must be true.

For example, let us suppose that a new node has been inserted with the self

label 13 and a parent with the self lable 3 in �gure (46). The label 'E' of the

new nodes can be computed through the formula:

3X13 mod 29 = 10

The structural relationship of the insert a node with its parent can be found

as follows: �rst, �nd the inverse number of the label of the new node 13. The

inverse number of 13 can be calculated using EEA through the equation:

13X13mod29 = 1

If the computation of the left side of the equation equals to the right side which

is 1, then the number 13 = 9 is the inverse number of 13. The parent's label

of the new node can be computed by the equation: number of the label of the

new node 13. The inverse number of 13 can be calculated using EEA through

the equation:

13X13mod29 = 1

with the 'E' label of the parent node of the node 13.

Al-Shaikh et al. (2010) maps a self label of node to an order label which is

a natural order of node using 'SC' values. During tree update, the approach of

Page 83

5. XML LABELLING SCHEMES

Al-Shaikh et al. (2010) needs to update the values of 'SC' to maintain the node

order in the tree which may a�ect the labelling performance as claimed by (Xu

et al., 2012). Therefore, they proposed a new labelling scheme which exploits

vectors to encode XML nodes as will be explained in the next model of labelling

scheme.

(Xu et al., 2012) was attracted by graph vectors and their relationships which

are ordered by the tangent of the angle between the vector and x-axis. They

proposed a Vector Order-Centric encoding approach for labelling XML nodes

based on a vector which consist of a binary tuple (x, y) where x and y are

positive integers.

It is used to 'encode' a term in the method which means the representation

of a node's label as vector which consist of (x, y) . (Xu et al., 2012) applied

their vector encoding method to update of the XML documents dynamically to

avoid a costly relabelling process which may a�ect the performance of the query

and labelling scheme.

(Xu et al., 2012) adopted the vectors where the x value is positive (as it is

adopted in this explanation). They produce vectors based on the relationA +

B = (x1 + x2), (y1 + y2), where the vector of A is ′x1, y′1 and the vector of B

is ′x2, y′2. However, A represents a �rst label and B represents the last label

and the new label is generated through the equation ceilA+B
2 which is equal to

A+B.

They designed a set of principles to order vectors such as: for two vectors

A(x1, y1) and B(x2, y2), A precedes B 'A ≤ B' either y1

x1
≤ y2

x2
or x1 = x2

and y1 ≤ y2. The vectors 'A = B' when x1 = x2 and y1 = y2.

They applied the new method of label encoding on a containment labelling

scheme (which is a class of interval labelling scheme) called V-Containment with

Page 84

5. XML LABELLING SCHEMES

the preservation of the containment properties explained in section (5.2). This

will be discussed in detail later.

(Xu et al., 2012) employed an linear transformation to demonstrate the V-

Containment labelling scheme as follows:

f(i) = (1, i) for i ∈ Z

where Z is set of integers as an example of the transformation process.

In addition, they proposed a factor called Granularity Sum 'GS' to maintain

the order of the vectors during the tree update. The 'GS' of a node A(x,y) can

calculated by the formula:

x+ y

(Xu et al., 2012) addressed updating trees encoded by the Vector Order-

Centric method and they determined a set of principles for the tree modi�cation:

the range of the new node should be inside the range of its parent, the start of

the new node must be less than the end of the closest preceding sibling, the end

of the inserted node must greater than the start of the next sibling.

(Xu et al., 2012) studied the modi�cation of XML trees from four perspec-

tives: inserting node before the �rst node of the root, between siblings, after

the last child of the root, and adding a new child to a node in the tree.

In the �rst case of adding new node, the start and end of the inserted node

should be bound to the start of the root and the following sibling. For example,

if Book 1 in �gure (47) is inserted before Book 2, the label of Book 1 should

bound between the root and the following sibling and it will be computed as

follows:

(2 ∗ 1 + 1, 2 ∗ 1 + 2) = (3, 4), (1 + 1, 1 + 2) = (2, 3)

because the GS(parent) (1+1=2) < GS(child) (1+2=3).

Page 85

5. XML LABELLING SCHEMES

Figure 47: Insert a New Element as a First Child in V-Containment labelling

Scheme.

To insert a node after the last child node of the parent, (Xu et al., 2012)

proposed the equation:

((2 ∗ x1 + x2, 2 ∗ y1 + y2), (x1 + x2, y1 + y2))

to bound the start and end of the new node with the end of the preceding sibling

and the end of the parent. For instance, insert Book 4 into the XML tree in

�gure (48) and the the novel algorithm will assign the following label to the new

node:

(2 ∗ 1 + 1, 2 ∗ 10 + 9) = (3, 29), (1 + 1, 9 + 10) = (2, 19)

The next circumstance is the insertion a new node Edition between two

nodes. The start and end of the new node should be between the end of the

preceding node and the start of the following sibling as shown in �gure (49) and

they used the formula of the previous case to calculate the new node vector.

The child node is assigned a label '(3,17),(2,13)' which is a result of the

following equation:

(2 ∗ 1 + 1, 2 ∗ 4 + 9), (1 + 1, 4 + 9) = (3, 17), (2, 13)

Page 86

5. XML LABELLING SCHEMES

Figure 48: Insert a New Element as a Last Child in V-Containment labelling

Scheme.

Figure 49: Insert a New Element Between two Nodes in V-Containment labelling

Scheme.

and the inserted child is bounded by the preceding and following siblings.

The last case analysed by (Xu et al., 2012) is the insertion of a child to XML

tree. The novel approach will take into consideration the range of the parent

label and computes a label of the new node using the equation of the preceding

cases to �nd the vector of the updated node. For example, the label of the new

node First in �gure (50) is extracted from the information of the parent's label

as can be seen from the result of the formula:

((2 ∗ 1 + 1), (2 ∗ 7 + 8)), (1 + 1, 7 + 8) = (3, 22), (2, 15)

Page 87

5. XML LABELLING SCHEMES

Figure 50: Insert a New Child in The V-Containment labelling Scheme.

As (Xu et al., 2012)) applied the Vector Order-Centric approach to both

an interval labelling scheme, and a pre�x-based labelling scheme and called it

V-Pre�x Labelling Scheme. They initialize their approach on a pre�x version by

transforming each component of the node's label into a vector 'x,y'.

(Xu et al., 2012) studied the update of XML tree in four cases similar to the

V-Containment labelling scheme: insert a node before the �rst node of the root

as node Book 11 in �gure (51) which is assigned a label '(1,1).(1,0)' that is less

than the label '(1,1).(1,1)'.

Insert a node between siblings as when inserting the node publish in �gure

(51) which is assigned a label '(1,1).(1,2).(2,3)' where the vector '(2,3)' is results

from the formula:

((1 + 1), (1 + 2))

which are the labels of its siblings and '(1,1).(1,2)' is the pre�x path. Adding

a node after the last child of the root as shows in �gure (51) where the node

Book 3 is labelled '(1,1).(1,3)' because it is after the node Book 2. The last case

is inserting a node as child to an existing node in the tree. For example, the

Page 88

6. EXPERIMENTS AND STATISTICAL ANALYSES

node (XML) in �gure (51) is coded with label '(1,1).(1,2).(1,2).(1,1)' which is

its location and starts with the parent label '(1,1).(1,2)(1,2)'.

Figure 51: Insert a New Nodes in V-Pre�x labelling Scheme.

In this chapter, three classes of XML labelling schemes have been explained:

Interval, Pre�x, and Multiplicative. A number of experiments are discussed

in the next chapter to show the e�ect of XML datasets characteristics such as

number of siblings and depth of the tree on these labelling schemes.

6 Experiments and Statistical Analyses

6.1 Introduction

The dimensions of XML trees are di�erent from the depth and width point

of view. To investigate and compare static labelling schemes, three real XML

databases have been chosen Nasa, dblp, and Treebank-e, whose characteris-

tics are shown in the table (6). These databases available on the website of

the University of Washington for research purposes (UOW). These experiments

have been executed to determine the appropriate labelling scheme for speci�c

Page 89

6. EXPERIMENTS AND STATISTICAL ANALYSES

XML databases based on the time and space needed for labelling the XML tree

nodes. The Vector Order-Centric labelling scheme was chosen to update Nasa

dataset dynamically because its characteristics lie between dblp and Treebank-e

databases. To address the over�ow problem in the dynamic labelling schemes,

six experiments were executed on update Nasa: three experiments using V-

PreË�x and another three using V-Interval as will be explained in the section

6.3.

The experiments were encoded using JavaSE-1.8. To ensure accurate timing

results in the experiments the timed part of the experiment was placed in a loop

and the �rst 10 iterations were discarded. Java source code is compiled into

Java bytecode to be executed in the computer using the Java Virtual Machine.

During frequent executions of Java bytecode statements, JVM will generate

complied code for the iterated statements, as a result, this will skip the lookup

for those repeated statements (Oaks, 2014).

The integrated development environment IDE known as Eclipse 'Release

4.4.0RC1' is exploited to run Java codes on a machine has Intel (R) Core (TM)

i5-3570t CPU 2.30 GHz, RAM 4 MB, and windows 7 Enterprise.

Table 6: XML Databases.

XML database No. of elements Max Depth (Level) File Size

Nasa.xml 476646 8 23MB

dblp.xml 3332130 6 127MB

Treebank-e.xml 2437666 36 82MB

Page 90

6. EXPERIMENTS AND STATISTICAL ANALYSES

6.2 Execution of Static Labelling Schemes

Two labelling schemes were executed in these experiments: the Dewey Encoding

labelling scheme designed by (Tatarinov et al., 2002) and is chosen to represent

the pre�x labelling technique; and the containment labelling scheme proposed

by (Xu et al., 2007) to represent the interval labelling schemes. To address

which labelling scheme: Pre�x or Interval is suitable for labelling the XML

documents in table (6) from time perspective, six experiments were executed to

measure execution time for the generation of labels as will be explained in the

next section.

6.2.1 Time for XML Database Labelling

In this part of the experiments, two variables were measured: standard devi-

ation STD, which represents the distribution of the results around the mean,

where, a small value of STD means a repeatable experiment and a high level of

con�dence in the result and vice versa. The second variable will be a signi�cant

measurement which evaluates the mean of the speed of the labelling schemes.

These were executed 110 times for each database in the table (6) and the �rst

10 results were disgarded to ensure reliability.

Two experiments were executed to label the Nasa XML database using Pre�x

and Interval labelling schemes to analyse the time spent for labelling the nodes

of the database. As mentioned in the previous chapter, the Pre�x labelling

scheme labels XML nodes using depth-�rst traversal of a tree which visits each

node once. However, the Interval labelling scheme visits each node in a tree

twice: �rst to assign a value to the start part of the node's label and the second

visit to allocate a value to the end part of the node's label.

Figure (52) shows the time consumed for labelling the Nasa dataset using

Page 91

6. EXPERIMENTS AND STATISTICAL ANALYSES

both the Pre�x and Interval labelling schemes. The y-axis represents the time

in millisecond spent to label the database and the x-axis represents the type of

scheme.

Figure 52: The Time Consumed for Static Labelling Nasa database using Pre�x

and Interval.

Table (7) includes statistical information about the labelling of the Nasa

database based on the time measurements where 'No of Variables' represents

the number of experimental executions.

Table 7: Time Consumed for Static Labelling Nasa using Pre�x and Interval.

Scheme No. of Variables Mean std

Pre�x 100 262.96 14.716

Interval 100 307.07 5.883

It is clear that the mean time for the Preifx scheme is shorter than that for

Page 92

6. EXPERIMENTS AND STATISTICAL ANALYSES

the Interval scheme which means that labelling Nasa using the Pre�x scheme is

faster than the Interval encoding scheme because the technique of the former

generates label in linear time and the latter scheme produce labels in exponential

time (Sans and Laurent, 2008).

The next two experiments were executed to label the dblp database which

was wider and shorter than Nasa as shown in the table (6). Figure (53 shows

the time spent for labelling dblp using Pre�x is faster than that using Interval

for the same reason as for the Nasa. The axes are the same as those on the

Nasa �gure.

Figure 53: The Time Consumed for Static Labelling dblp database using Pre�x

and Interval.

The table (8) demonstrates that the di�erence of the mean time execution

for Pre�x is shorter than that for Interval.

An additional two experiments were performed on the Treebank database

which was wider than Nasa and narrower dblp but which was the deepest tree

Page 93

6. EXPERIMENTS AND STATISTICAL ANALYSES

Table 8: Time Consumed for Static Labelling dblp using Pre�x and Interval.

Scheme No. of Variables Mean std

Pre�x 100 1488.15 29.255

Interval 100 1911.89 24.688

as shown in table (6). The Pre�x and Interval labelling schemes were executed

to analyse the time needed to label a tree such Treebank-e. Figure (54) shows

that the time consumed for labelling Treebank-e using Pre�x is shorter than

that in Interval which a similar to the previous databases.

Figure 54: The Time Consumed of Static Labelling Treebank-e database using

Pre�x and Interval.

In spite of the fact that the Treebank-e is the deepest tree in the table (6),

the mean time for the Pre�x labelling scheme was shorter than for the Interval

labelling scheme and for the same reason of the experiment of dblp.

Page 94

6. EXPERIMENTS AND STATISTICAL ANALYSES

Table 9: Time Consumed for Static Labelling Treebank-e using Pre�x and In-

terval.

Scheme No. of Variables Mean std

Pre�x 100 1175.09 42.050

Interval 100 1362.24 17.280

Conclusion

To summarise, the �gure (55) represents the information of the table (10) which

includes statistical information about the time consumed for labelling Nasa,

dblp, Treebank-s databases using the Pre�x and Interval labeling schemes. In

spite of the di�erent characteristics of these databases, the time spent for la-

belling the three datasets using Pre�x is shorter than that using Interval tech-

nique. As mentioned previously, the process of label generation takes linear

time in Pre�x labelling scheme because the algorithm will visit the tree nodes

only once. However, the algorithm of Interval labelling scheme will visit nodes

of XML tree more than once and this will take exponential time which is longer

than linear time (Sans and Laurent, 2008). As a result, the time spent for la-

belling nodes of the XML databases which have di�erent structures using the

Pre�x technique is shorter than the Interval.

The statistical information in the table (10) demonstrates that Pre�x is more

suitable than Interval for labelling both wide (dblp) and deep XML databases.

Additional experiments were conducted to measure the space required to

store the label nodes of the databases: Nasa, dblp, and Treebank-e databases

as will be

Page 95

6. EXPERIMENTS AND STATISTICAL ANALYSES

Table 10: Time Consumed for Static Labelling Nasa, dblp , and Treebank-e

using Pre�x and Interval.

Scheme
Nasa dblp Treebank-e

Mean STD Mean STD Mean STD

Pre�x 262.96 14.716 1488.15 29.255 1175.09 42.050

Interval 307.07 5.883 1911.89 24.688 1362.24 17.280

6.2.2 The Space required for Static Labelling of XML Database

Storage space is another factor which is used to measure the performance of la-

belling schemes. Two sets of experiments were performed: one set was executed

to label the nodes of Nasa, dblp, Treebank-e databases using Pre�x and Interval

to analyse the space needed to store the labels. A series of experiments were

implemented to analyse the space required for labelling 'Nasa, dblp, Trebank-e'

using Pre�x and Interval labelling schemes.

Pre�x and Interval labelling schemes were implemented on Nasa to examine

the space required for node labelling. The node label which is encoded by

a pre�x label consists of a number of sections separated by delimiters that

represent the Parentchild P-D structural relationships of nodes or Ancestor-

Descendant A-D (Liu and Zhang, 2016) de�ned in the section (2.6).

To add a new label the Pre�x scheme will allocate 1 within a new section

which is preceded by the parent's label (Tatarinov et al., 2002). In contrast, the

Interval scheme assigns a new label which is in the range of the sequence from 1

to '2n', where 'n' is the number of tree nodes (Xu et al., 2012). Two experiments

were executed to measure the space needed to store the node labels of Nasa using

Pre�x and Interval. Figure (56) shows that the space required for storing labels

Page 96

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 55: Time Required for Static labelling XML Databases.

which were generated using Interval is larger than that using Pre�x. The size of

labels generated by the Interval scheme increases exponentially with the increase

of the tree level to keep the range label of the new child within the range of its

ancestor label (Tatarinov et al., 2002). On other hand, the label size increases

linearly using Pre�x because it assigns a new label section to the new child.

To analyse the space required to label the nodes of dblp database, the same

set of labelling schemes were implemented. The depth of the dblp tree is shal-

low in comparison with Nasa, but �gure (57) shows that the space needed for

storing labels which are generated by Interval is higher than that Pre�x which

matches the �gure of Nasa. However, the former is a wide tree which means

the Pre�x labelling scheme is preferable because of its linear property for gen-

erating labels. The labels that are generated by an interval labelling scheme

are computed exponentially based on the ancestor labels and the node size will

increase exponentially as well.

Page 97

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 56: Space Required for Static Labelling Nasa XML Databases.

The same labelling schemes, Pre�x and Interval, were executed to analyse

the time and space needed for labelling the Treebank-e database which the

deepest tree in the table (6). It is shown in �gure (58) that the space required

to store the labels that were produced by Pre�x is larger than Interval. As was

explained previously the Pre�x technique produces labels sequentially and the

label size depends on the node level in the tree. The tree depth of Treebank-e is

36 levels which means the label of a node at level 36 will consist of 36 sections.

In spite of the exponential property of Interval, the label sections of the same

node consist of 3 sections and should be smaller.

Conclusion

Table (11) listed the space needed to save the labels of the Nasa, dblp, and

Treebank-e databases.

The statistical information in the table (11) shows that interval labelling is

Page 98

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 57: Space Required for Static Labelling dblp XML Databases.

Table 11: Space Required for Saving the Labels of Nasa, dblp, and Treebank-e

using the Static Pre�x and Interval Labelling Scheme.

Scheme Nasa dblp Treebank-e

Pre�x 7119.90 37664.14 48921.83

Interval 7754.21 59858.03 44368.03

more space-e�cient for Treebank-e, the deepest tree. For shallow and wide trees,

interval labelling is more expensive in space, for deep trees, it is less expensive

in space, than pre�x labelling. For instance, the deepest tree in the table (6)

is Treebank-e which consists of 36 levels. The space required to save the labels

of the Treebank-e database produced by Pre�x labelling is 37,664 KB and this

number is doubled when saving the labels generated by Interval labelling as

shown in �gure (59). In contrast to Treebanke, Nasa and dblp have 8 and 6

levels respectively and the space needed to save their labels using the Pre�x

Page 99

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 58: Space Required for Static Labelling Treebank-e XML Databases.

method is smaller than that using Interval.

A group of experiments were conducted to measure the storage space re-

quired to label XML and the time that was spent doing it. The next experi-

ments were done to compute the space and time needed for labelling the nodes

dynamically during database update as will explained in the next section.

6.3 Execution of Dynamic Labelling Schemes

In the dynamic labelling experiments, the Nasa database was chosen because

its depth and width are between those of the dblp and Treebank-e datasets.

Three experiments were conducted using V-Pre�x and another three using the

V-containment (vector order-centric) labelling schemes to insert 200, 500, and

1000 elements respectively. These experiments were employed to measure the

time and space required for dynamic labbelling of the Nasa database as will be

explained in the next sections.

Page 100

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 59: Space Required in (KB) for Static labelling XML Databases.

6.3.1 Time Required for Dynamic Labelling of XML Database

Figure (60) clari�es the values of table (12) which show that the time spent to

label 200 and 500 elements using V-Pre�x is less than using V-Interval which is

similar to static labelling for Nasa in �gure (55). This is because V-Pre�x and

V-Containment are based on the Pre�x and Interval labelling scheme respec-

tively where the latter labelling scheme generates labels in exponential time as

mentioned in the section (5.2).

However, less time was required to update 1,000 elements in the Nasa database

using V-containment than V-Pre�x which contradicts the fact that exponential

time is longer than the linear time. This contrast will be explained in the next

Page 101

6. EXPERIMENTS AND STATISTICAL ANALYSES

Table 12: The Mean of Time Required for Update three groups of Elements in

Nasa Database using Vector Order-Centric Labelling Scheme.

Vector Scheme 200 Element 500 Element 1000 Element

V-Pre�x 541.40 1404.40 4078.60

V-Containment 786.40 1930.70 3166.30

section.

6.3.2 The Space Cost for Storing Dynamic XML Database

Three experiments were executed to measure the space required to store the

labels of the Nasa database after the addition of 200, 500, and 1,000 elements

as shown in table (13). The information of the table (13) is illustrated in �gure

(61) which shows that the storage space required to store labels generated using

V-Containment for 200 and 500 new elements is larger than that using V-Pre�x.

However, when labels for 1,000 elements were produced by V-Containment

the new space consumed was 3,166 KB which is smaller than 4,078 KB, the

space required for the same number of labels generated by V-Pre�x. A common

logarithm is used to calculate the logarithm values of �gure (61) to amplify the

value of the space required to store the updated 1,000 elements as shown in

�gure (62).

The problem of space decreasing during the update of 1,000 elements illus-

trates the problem of over�ow which was mentioned in the section (5.2) which

occurs when a node label is over a prede�ned size as demonstrated by (Assefa

and Ergenc, 2012; O'Connor and Roantree, 2012; Yun and Chung, 2008)). The

reason for the over�ow is the expensive computation of the vector and the use

of the UTF- 8 encoding mechanism (Yergeau, 2003) to label the nodes (i.e.

Page 102

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 60: Time Spent for Update three groups of elements in Nasa.

represent the structural relationship) which increases the label size over the

storage (Ghaleb and Mohammed, 2015; Xu et al., 2012). The explanation for

time decreasing during 1,000 node updates is because of this over�ow problem,

therefore, the results of the time computation match the result of (O'Connor

and Roantree, 2012) and were ignored by (Assefa and Ergenc, 2012) because

they were not reliable.

Conclusion

To conclude, the Vector Order-centric scheme is not consistent due to the prob-

lem of over�ow. After inserting 1,000 elements into the Nasa dataset, time and

Page 103

6. EXPERIMENTS AND STATISTICAL ANALYSES

Table 13: The space needed in KB to insert three groups of Elements in Nasa

Database using Vector Order-Centric Labelling Scheme.

Vector Scheme 200 Element 500 Element 1000 Element

V-Pre�x 109457.00 192053.00 852514.00

V-Containment 9024557.00 9368019.00 9499.55

space values decreased and the database needed to be relabelled. So, Vector

Order- Centric is not suitable when updating an XML databases with more

than 500 new nodes due to the costly relabelling process.

6.4 Experiment Results Evaluation

The results of the practical work in the dissertation can be compared with the

work of (Xu et al., 2012) who employed the three datasets in the table (6)

and the ((Ghaleb and Mohammed, 2015) who exploited dblp and Treebank-e.

The results of the experiments of static labelling schemes in this dissertation

are in agreement with the existing works of (Xu et al., 2012) and (Ghaleb

and Mohammed, 2015) when they initializing the node labels. The results of

the dynamic XML tree update using Vector Order-Centric labels match the

results of (O'Connor and Roantree, 2012) who did not mentioned the XML

datasets in their experiments. Moreover, the results match the outcome of

(Assefa and Ergenc, 2012) who employed xmlgen of the XMark database (Bench

Mark standard for XML Database Management) (Schmidt et al., 2002).

Page 104

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 61: The Space required in KB to add three groups of elements in Nasa.

Page 105

6. EXPERIMENTS AND STATISTICAL ANALYSES

Figure 62: Logarithm Calculation of the space required for the Update three

groups of elements in Nasa.

Page 106

7. CONCLUSION AND FUTURE WORKS

7 Conclusion and Future Works

7.1 Introduction

In this dissertation, a number of basic XML techniques which have exploited

di�erent technologies to enhance XML performance and are described in the

last chapter which includes 3 parts : dissertation summary, the results of the

experiments and evaluation, and future work.

7.2 Dissertation Summary

The dissertation started from the computation of the XML tree similarity in

chapter 3 which is fundamental to the applications of XML documents and can

play an important role in document performance. To measure the XML tree

similarity, two forms were exploited to unify the document representation: tree

(Alishahi et al., 2010; Antonellis et al., 2008; Guzman et al., 2013; Nayak and

Xu, 2006) and vector (Asghari and KeyvanPour, 2015; Nayak and Xu, 2006;

Zhang et al., 2012). These representations were adopted to measure the XML

documents in terms of three characteristics XML: semantics, structure, and

hybrid (semantics and structure).

In chapter 3, an algorithm for (Yang et al., 2012) was explained as an example

for e�cient similarity computation for XML documents. This computation is

required for some techniques and applications where structure must be measured

such as clustering based on structure (Choi et al., 2007; Lian et al., 2004),

Chemical compounds (Dehaspe et al., 1998), and similar genetics (Bell and

Guan, 2003; Mannila et al., 1997). Another team of researchers (Zhao and

Tian, 2013) and (Alqarni and Pardede, 2013) studied the semantic similarity for

applications such as query processing and data management to avoid duplicated

Page 107

7. CONCLUSION AND FUTURE WORKS

data.

To increase the e�ectiveness of similarity measures, they adopted online dic-

tionaries such as WordNet to �nd synonyms when the names of two element

have the same meaning but di�erent words, for instance, teacher and lecturer.

Some applications need to measure the similarity from both semantic and struc-

tural principles. For instance in XML schema matching (Algergawy et al., 2010)

and the healthcare domain (Thuy et al., 2013).

An XML schema describes the structure of the relevant XML documents

and has the semantic information of the elements. To measure the similarity

between two schemas e�ciently, it is necessary to compare the semantics and

structural similarity of the schemas. The information in the healthcare domain

is sensitive because it relates to peoples health.(Guzman et al., 2013) researched

the comparison of elements which have the same structure which have a di�erent

semantics such as data type. Therefore, they exploited WordNet as well to

enhance the e�ectiveness of the similarity measurement by measuring two words

that have the same meaning but di�erent names.

In chapter 4 the similarity technique was exploited to �nd useful information

for the user represented by a user query. The Chapter did not considered the

query types that are mentioned in the section 2.8, but it considered the algo-

rithms that used to fetch the required information based on a semantics called

LCA, a node which has all query keywords. (Liu et al., 2013b) researched the

query processing problem and proposed a method which split the user query

into groups based on the content and the tag. The resulting units were com-

pared with the XML document and returned the SLCA node which is based on

the LCA (Xu and Papakonstantinou, 2005b).

Another employment of the semantics of SLCA was represented by the model

Page 108

7. CONCLUSION AND FUTURE WORKS

of (Lin et al., 2014) who addressed the problem of a negative word which is

preceded by the NOT operator in the user query and which may fetch 'false

negative' results. The approach of (Lin et al., 2014) was an improvement on

the model of (Lin et al., 2011) who excluded subtrees that have a child as a

negative word and they may miss a number of useful answers. However, (Lin

et al., 2014) excluded the negative elements only and fetched more subtrees

which might have a required answer. More employment to the semantics of

SLCA was made by(Zhou et al., 2012a) to fetch a useful answer for the user

using Dewey labelling scheme. (Zhou et al., 2012a) labelled the XML tree by the

Dewey technique and scattered the tree into blocks and examined each subtree

that has a minimum number of keywords to be a candidate answer to the query.

As many researchers relied on the semantics SLCA to process user queries

e�ectively and e�ciently, another team of researchers such as (Zeng et al., 2013)

argued that the LCA and its variants is not capable of processing range queries.

Therefore, they designed a new grammar that has symbols <,>,<=, >= to

handle this kind of query and retrieved the required LCA node. Another in-

vestigation of the drawbacks of LCA was made by (Nguyen and Cao, 2012)

who claimed that this semantics fetches a large numbers of irrelevant answers.

Therefore, they suggested a new semantics called DLCA which is based on a

strong relationship between the root to the intended node. Another approach

was suggested by (Bao et al., 2015) to answer a query where its answer has

been deleted from the database. The algorithm of (Bao et al., 2015) analysed

the user query to give the user a reason the information missing and propose

an alternative answer based on the data type of the required element. Another

approach was designed by (Agarwal and Ramamritham, 2015) for users who

do not have experience of how to query the data in the XML database. They

Page 109

7. CONCLUSION AND FUTURE WORKS

propsed a new semantics called LCE that retrieves answer that contains at least

two keywords of the query. Another support for non expert users came from

(Gao et al., 2012) who presented an extension to the XPath query language that

enables the user to restructure their query based its answers.

In chapter 5, three classes of labelling schemes were explained: Interval,

Pre�x and Multiplicative. In the interval labelling scheme, the earliest scheme

designed by (Dietz, 1982)) was explained. It assigned labels to each node in an

XML tree which consisted of two numbers (start, end). Allocating labels can

be done based on a containment property: the labels of child nodes should be

contained in the range of the labels of its ancestors. The main drawback of this

scheme is determining the relationships among the nodes. Therefore, a number

of labelling schemes were proposed to cover this disadvantage.

The approach of (Dietz, 1982) did not cover the P-C relationship (see section

2.6) which may reduce the e�ectiveness of the query processing (Subramaniam

et al., 2014). So (Zhang et al., 2001) suggested a new labelling scheme that

allocated an additional section in the label, the node level, to express P-C rela-

tionships. The label in the approach of (Zhang et al., 2001) is (start,end,level),

where the level of the parent is one higher than that the level of the child. On the

other hand, (Subramaniam et al., 2014)) de�ned the relationship of the nodes

di�erently. Their node label consists of three sections (level, ordinal, rID) where

level can be used to de�ne P-C relationships and ordinal, is the node identi�er.

rID, is the number of the last descendant. The numbers 'ordinal' and 'rID' can

be seen as an interval range for the labels. Another model in this chapter was

proposed by (Fu and Meng, 2013) to determine siblings relationship and LCA

semantics which important in query processing (see Chapter 4). They designed

a node label based on four sections (start, end, parentid, pt), where start and

Page 110

7. CONCLUSION AND FUTURE WORKS

end have the same meaning as in the previous methods, parentid is the identi�er

of the parent node, and pt is the label list of the children.

These algorithms allocated labels statically to XML tree nodes, but XML

database can be updated frequently and a dynamic labelling scheme is very im-

portant to avoid the costly relabelling process. (Yun and Chung, 2008) suggested

a new labelling scheme based on Interval to label XML nodes dynamically. The

labels of the proposed scheme consist of (DocID, StartPos, EndPos, Level-Num),

where DocID is the document ID (maybe a subtree ID in the document). Start-

Pos is the start number of the �rst element in the subtrre. EndPos is the end

number of the last element in the subtree. LevelNum is the node's level number.

(Yun and Chung, 2008) studied insertion into XML trees in three cases: where

there is enough for space the new tree, there is not enough space for the new

tree, and there is no space.

The second section of this chapter was Pre�x Labelling scheme which is

similar to Dewey Decimal Coding used by librarians (Sans and Laurent, 2008).

This model de�ne the relationship of the nodes by delimiters that separates the

node label from the pre�x path which starts from the root by a delimiter (Assefa

and Ergenc, 2012; Liu and Zhang, 2016; Tatarinov et al., 2002).

In this section, the best known labelling scheme which is based on Pre�x and

is called Dewey order encoding and was proposed by (Tatarinov et al., 2002)

was explained. This scheme is a combination of two schemes of global order and

local order designed by the same author. However, this scheme cannot avoid the

relabelling process during update of the document. Therefore, (O'Neil et al.,

2004) proposed ORDPATHs labelling scheme as a dynamic model for Dewey

encoding. (O'Neil et al., 2004) initialised the node labels using odd numbers

and exploited even number to label inserted nodes in the middle of the tree and

Page 111

7. CONCLUSION AND FUTURE WORKS

negative numbers to label the nodes that are inserted at the rightmost end of

the tree.

Another dynamic labelling scheme based on Pre�x was demonstrated in this

chapter is DFPD. DFPD was designed by (Liu et al., 2013a) and used �oating-

point numbers based on 'nominator/denominator' to generate a label for a node

inserted between nodes. The generated label must follow the labelling order

(i.e. less than the next label and greater than the previous label) and otherwise

follows ORDPATHs technique.

An additional dynamic labelling scheme explained is LSDX which was in-

vented by (Duong and Zhang, 2005). This model used numbers to represent the

node level and characters rather than numbers to represent the node label to

save the storage. The label of an updated node will have characters that follow

alphabetic order of the siblings and represents the node level in the tree. But,

this scheme has a drawback which is character repetition that may increase the

size of the label. This drawback was covered as was demonstrated by (Duong

and Zhang, 2008) who modelled a dynamic labelling scheme to overcome the

repetition of characters in the approach of ((Duong and Zhang, 2005)). The

new scheme replace repeated characters with a number equal to the repeated

character, for example, '2abbb.a' will be '2a3b.a'.

The last dynamic labelling model which illustrated in chapter 5 was the

model of (Assefa and Ergenc, 2012) and called OrderBased. OrderBased re-

duced the use of a number characters to represent the order of the node using

a mathematical equation rather than of using character concatenation. Then,

(Assefa and Ergenc, 2012) addressed the problem of node update in the tree and

they assigned a character to the new node in a way which maintains alphabetic

order of the node labels at that level.

Page 112

7. CONCLUSION AND FUTURE WORKS

The third section was about schemes that adopted mathematical principles

to represent the structural relationship among the XML tree nodes. (Wu et al.,

2004) and (Al-Shaikh et al., 2010) claimed that the preceding schemes need

increasing storage as the depth and width the tree increased. So, they relied

on the mathematical concepts to represent the node relationship as discussed in

the Multiplicative labelling section.

(Wu et al., 2004) initialised the node labelling by exploiting two mathemati-

cal operations to represent the node relationships and suggested two properties:

divisibility of label nodes in top-down technique and modulo of label the node

in bottom-up tree traversal. To keep the node label's order during tree update,

they employed the chinese reminder theorem to determine the relationship be-

tween the self label which is an integer value and a prime number. Moreover,

they used a value called Simultaneous Congruence SC to de�ne the order of the

self label to maintain this order during the tree update. If the self label of the

new node a�ects the labels order, the method of (Wu et al., 2004) will change

the value of SC to contain the label of the new node rather than relabel all

nodes of the tree.

Modulus is another mathematical principle which was exploited by (Al-

Shaikh et al., 2010) and their theorem was explained in this chapter. The

model of (Al-Shaikh et al., 2010) is based on two factors: a prime self label

and a factor that can be achieved using an equation which based on the node's

self label, nodeÂ± parent label, and a large prime number which is employed

to order the node labels. To update the tree, they employed the same formula

used to generate a label for the new node. To determine the P-C relationship

of the new node with its parent, they exploited an inverse operation to �nd the

label of the parent from the new node.

Page 113

7. CONCLUSION AND FUTURE WORKS

The last multiplicative labelling scheme explained in the chapter 5 was a vec-

tor order-centric labelling scheme which was designed by (Xu et al., 2012). It

is adapted to work with di�erent labelling schemes to label the XML nodes dy-

namically based on a graphic vector which consists of (x,y). The �rst application

of vector order-centric labelling was on a Containment labelling scheme that is

one of the Interval schemes and the combination scheme called V-Containment.

(Xu et al., 2012) used the Containment labelling scheme as an initial scheme to

produce labels based on interval property. In their next step, they generated

vectors where 'x' is positive. After that, they transformed each number of the

node label into a correspondence vector in which the containment property is

maintained. To keep the order of vectors in the interval method during the

tree update, they de�ned the factor 'GS' and a set of rules. When the tree is

updated, the vector order-centric model will generate a vector for the new node

based on the node's location among its siblings (rightmost, middle, leftmost)

and must be under the parent vector range. (Xu et al., 2012) applied vector

order-centric approach on Dewey labelling scheme which is based on a pre�x

scheme. They used the Dewey algorithm to initialise the labels and generated

the corresponding vectors for the labels. After that, (Xu et al., 2012) trans-

formed each number of the node label into the correlating vector (i.e. each

number correlates to a vector). A new node will have a new vector based on the

pre�x method, i.e. it has the pre�x's path from the root and its vector will be

generated based on its position among its siblings. A new child will be given a

new section (vector) to follow the pre�x method of labelling schemes.

Page 114

7. CONCLUSION AND FUTURE WORKS

7.3 The Results of the Experiments and Evaluation

In the chapter 6, two sets of six experiments were executed to measure the time

and space needed to label three datasets statically: Nasa, dblp, and Treebank-

e which have di�erent width and depth. These experiments were executed to

compute the time and space required to label the three databases statically. A

stack of integers was employed to generate the labels of Interval method and two

stacks: of integer and strings were exploited to produce the labels in the pre�x

labelling scheme. It is shown from the experiments that the pre�x labelling

scheme is better than Interval for labelling di�erent XML tree structures from

the time point of view. However, Interval is preferred for labelling deep XML

trees such as Treebank-e which has 36 level which required 44,368 KB in compar-

ison to Nasa and dblp that consumed 775,421 KB and 59,858 KB respectively.

The results of these experiments matched the results of (Xu et al., 2012) and

(Ghaleb and Mohammed, 2015).

Another twelve experiments were executed to label Nasa dynamically using

Vector Order-Centric labelling scheme based on Pre�x (V-Pre�x) and Interval

(V-Containment). In addition to the data structures that were used in the static

labelling schemes, it used a hash table to make the transformation between

the node labels and the corresponding vectors. Using the UTF-8 encoding for

labelling nodes and the complexity of label computation (Gal, 2007) caused the

over�ow problem when labelling upto 1,000 elements. So, the results are not

reliable and were ignored as they reported by (Assefa and Ergenc, 2012) and

(Schmidt et al., 2002).

Page 115

7. CONCLUSION AND FUTURE WORKS

7.4 Future Work

XML databases are exposed to frequent updates and these changes should main-

tain the node label structure which is exploited by other applications such query

processing. An e�ective labelling scheme is one which is capable of keeping the

order of nodes in the tree during the dynamic update. As a result of the tree up-

date, the XML tree will increase in size and so will the label size which may e�ect

data access and processing. Therefore, the representation of a node label can

improve the performance of the labelling scheme during the update and avoid

the over�ow problem where the label size runs over the storage size (O'Connor

and Roantree, 2012). The representation of the node context through the label

need more investigation as future work to improve dynamic labelling schemes.

Page 116

REFERENCES

References

Xml data repository. URL http://www.cs.washington.edu/research/

xmldatasets/www/repository.html.

Xml schema- data types quick reference. website, 2003.

Frederic Achard, Guy Vaysseix, and Emmanuel Barillot. Xml, bioinformatics

and data integration. Bioinformatics, 17(2):115�125, 2001.

ADL. Scorm 2004 4th edition version 1.1 overview. Accessed: 2016-05-23.

Manoj K Agarwal and Krithi Ramamritham. Enabling generic keyword search

over raw xml data. In 2015 IEEE 31st International Conference on Data

Engineering, pages 1496�1499. IEEE, 2015.

Ali Aïtelhadj, Mohand Boughanem, Mohamed Mezghiche, and Fatiha Souam.

Using structural similarity for clustering xml documents. Knowledge and

Information Systems, 32(1):109�139, 2012.

Raed Al-Shaikh, Ghalib Hashim, AbdulRahman BinHuraib, and Salahadin Mo-

hammed. A modulo-based labeling scheme for dynamically ordered xml trees.

In Digital Information Management (ICDIM), 2010 Fifth International Con-

ference on, pages 213�221. IEEE, 2010.

Alsayed Algergawy, Richi Nayak, and Gunter Saake. Element similarity mea-

sures in xml schema matching. Information Sciences, 180(24):4975�4998,

2010.

Alsayed Algergawy, Marco Mesiti, Richi Nayak, and Gunter Saake. Xml data

clustering: An overview. ACM Computing Surveys (CSUR), 43(4):25, 2011.

Page 117

http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

REFERENCES

Mohamad Alishahi, Mahmoud Naghibzadeh, and Baharak Shakeri Aski. Tag

name structure-based clustering of xml documents. International Journal of

Computer and Electrical Engineering, 2(1):119, 2010.

Alaa Almelibari. Labelling Dynamic XML Documents: A GroupBased Ap-

proach. PhD thesis, University of She�eld, 2015.

Alaa Abdulbasit Almelibari and Siobhan North. Query processor for native xml

databases.

Ahmad Abdullah Alqarni and Eric Pardede. Internal �ltering approach toward

e�ciency optimization of matching large scale xml schemas. In Proceedings of

the 2013 16th International Conference on Network-Based Information Sys-

tems, NBIS '13, pages 464�469, Washington, DC, USA, 2013. IEEE Com-

puter Society. ISBN 978-1-4799-2510-0. doi: 10.1109/NBiS.2013.77. URL

http://dx.doi.org/10.1109/NBiS.2013.77.

Panagiotis Antonellis, Christos Makris, and Nikos Tsirakis. Xedge: clustering

homogeneous and heterogeneous xml documents using edge summaries. In

Proceedings of the 2008 ACM symposium on Applied computing, pages 1081�

1088. ACM, 2008.

Elaheh Asghari and MohammadReza KeyvanPour. Xml document clustering:

techniques and challenges. Arti�cial Intelligence Review, 43(3):417�436, 2015.

Beakal Gizachew Assefa and Belgin Ergenc. Orderbased labeling scheme for

dynamic xml query processing. In Multidisciplinary Research and Practice

for Information Systems, pages 287�301. Springer, 2012.

Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu. E�ective xml keyword

Page 118

http://dx.doi.org/10.1109/NBiS.2013.77

REFERENCES

search with relevance oriented ranking. In 2009 IEEE 25th International

Conference on Data Engineering, pages 517�528. IEEE, 2009.

Zhifeng Bao, Yong Zeng, Tok Wang Ling, Dongxiang Zhang, Guoliang Li, and

H. V. Jagadish. A general framework to resolve the mismatch problem in

xml keyword search. The VLDB Journal, 24(4):493�518, 2015. ISSN 0949-

877X. doi: 10.1007/s00778-015-0386-1. URL http://dx.doi.org/10.1007/

s00778-015-0386-1.

David A Bell and JW Guan. Data mining for motifs in dna sequences. In Inter-

national Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-

Soft Computing, pages 507�514. Springer, 2003.

Z. Bellahsène. Database and XML Technologies: First International

XML Database Symposium, XSYM 2003, Berlin, Germany, September

8, 2003, Proceedings. Lecture Notes in Computer Science. Springer,

2003. ISBN 9783540200550. URL https://books.google.co.uk/books?

id=2387N4nnB-IC.

Boag S. Chamberlin D. FernÃ¡ndez M.F. Kay M. Robie J. SimÃ©on J. Berglund,

A. W3c, xml path language (xpath) 2.0. Accessed: 2016-06-20.

Elisa Bertino and Elena Ferrari. Xml and data integration. IEEE internet

computing, 5(6):75�76, 2001.

Permanente K. Malhotra A. Biron, P.V. Xml schema part2:datatypes seconde

edition. website, 8 2004. URL http://www.w3.org/TR/xmlschema-2/. Last

access: 13.2.2016.

Chamberlin D. Fernndez M. F. Florescu D. Robie J. Boag, S. and J. Simon.

Xquery 1.0: An xml query language, technical report. Accessed: 2016-05-20.

Page 119

http://dx.doi.org/10.1007/s00778-015-0386-1
http://dx.doi.org/10.1007/s00778-015-0386-1
https://books.google.co.uk/books?id=2387N4nnB-IC
https://books.google.co.uk/books?id=2387N4nnB-IC
http://www.w3.org/TR/xmlschema-2/

REFERENCES

Ion P. Miner P. Carlisle, D. W3c, mathematical markup language (mathml)

version 3.0., 2014. URL http://www.w3.org/TR/MathML/. Accessed: 2016-

05-21.

Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An xml query

language for heterogeneous data sources. In International Workshop on the

World Wide Web and Databases, pages 1�25. Springer, 2000.

Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer

Widom. Change detection in hierarchically structured information. In ACM

SIGMOD Record, volume 25, pages 493�504. ACM, 1996.

Sudarshan S Chawathe et al. Comparing hierarchical data in external memory.

In VLDB, volume 99, pages 90�101. Citeseer, 1999.

Liang Je� Chen and Yannis Papakonstantinou. Supporting top-k keyword search

in xml databases. In 2010 IEEE 26th International Conference on Data En-

gineering (ICDE 2010), pages 689�700. IEEE, 2010.

Ilhwan Choi, Bongki Moon, and Hyoung-Joo Kim. A clustering method based

on path similarities of xml data. Data & Knowledge Engineering, 60(2):361�

376, 2007.

Curbera F. Meredith G. WeeraWarana S. Christensen, E. Web services descrip-

tion language (wsdl) 1.1. URL http://www.w3.org/TR/wsdl.

Gregory Cobena, Serge Abiteboul, and Amelie Marian. Detecting changes in

xml documents. In Data Engineering, 2002. Proceedings. 18th International

Conference on, pages 41�52. IEEE, 2002.

Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. Xsearch: A

semantic search engine for xml. In Proceedings of the 29th international con-

Page 120

http://www.w3.org/TR/MathML/
http://www.w3.org/TR/wsdl

REFERENCES

ference on Very large data bases-Volume 29, pages 45�56. VLDB Endowment,

2003.

Gianni Costa and Riccardo Ortale. On e�ective xml clustering by path common-

ality: An e�cient and scalable algorithm. In 2012 IEEE 24th International

Conference on Tools with Arti�cial Intelligence, volume 1, pages 389�396.

IEEE, 2012.

Gianni Costa and Riccardo Ortale. Developments in partitioning xml docu-

ments by content and structure based on combining multiple clusterings. In

2013 IEEE 25th International Conference on Tools with Arti�cial Intelligence,

pages 477�482. IEEE, 2013.

Luc Dehaspe, Hannu Toivonen, and Ross D King. Finding frequent substruc-

tures in chemical compounds. In KDD, volume 98, page 1998, 1998.

Maler E. Orchard D DeRose, S. W3c, xml link language (xlink) version 1.0.,

2001. Accessed: 2016-06-20.

Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis.

Frequent substructure-based approaches for classifying chemical compounds.

IEEE Trans. on Knowl. and Data Eng., 17(8):1036�1050, August 2005. ISSN

1041-4347. doi: 10.1109/TKDE.2005.127. URL http://dx.doi.org/10.

1109/TKDE.2005.127.

Paul F Dietz. Maintaining order in a linked list. In Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages 122�127. ACM, 1982.

W. Drol. Object-Oriented Macromedia Flash MX. Expert's voice. Apress,

2008. ISBN 9781430208389. URL https://books.google.co.uk/books?

id=wvIMcuyc1cgC.

Page 121

http://dx.doi.org/10.1109/TKDE.2005.127
http://dx.doi.org/10.1109/TKDE.2005.127
https://books.google.co.uk/books?id=wvIMcuyc1cgC
https://books.google.co.uk/books?id=wvIMcuyc1cgC

REFERENCES

Maggie Duong and Yanchun Zhang. Lsdx: a new labelling scheme for dynami-

cally updating xml data. In Proceedings of the 16th Australasian database

conference-Volume 39, pages 185�193. Australian Computer Society, Inc.,

2005.

Maggie Duong and Yanchun Zhang. Dynamic labelling scheme for xml data

processing. In On the Move to Meaningful Internet Systems: OTM 2008,

pages 1183�1199. Springer, 2008.

K. Ethier. XML and FrameMaker. Apress, 2008. ISBN 9781430207191. URL

https://books.google.co.uk/books?id=74X3suYvyoUC.

Lizhen Fu and Xiaofeng Meng. Triple code: An e�cient labeling scheme for

query answering in xml data. In Web Information System and Application

Conference (WISA), 2013 10th, pages 42�47. IEEE, 2013.

Avigdor Gal. The generation y of xml schema matching panel description. In

International XML Database Symposium, pages 137�139. Springer, 2007.

Yingfei Gao, Hui Tang, and Kuipeng Xue. E�ectively extracting useful infor-

mation from complex structured xml databases. In Computer Science and In-

formation Processing (CSIP), 2012 International Conference on, pages 1121�

1125. IEEE, 2012.

Taher Ahmed Ghaleb and Salahadin Mohammed. A dynamic labeling scheme

based on logical operators: A support for order-sensitive xml updates. Pro-

cedia Computer Science, 57:1211�1218, 2015.

Charles F Goldfarb and Paul Prescod. XML Handbook with CD-ROM. Prentice

Hall PTR, 2001.

Page 122

https://books.google.co.uk/books?id=74X3suYvyoUC

REFERENCES

Wei Gong and Peng Yao. Based on grammar analysis's expressiveness among the

di�erent xml-schema languages. In Software Engineering and Service Science

(ICSESS), 2013 4th IEEE International Conference on, pages 116�119, May

2013. doi: 10.1109/ICSESS.2013.6615268.

Ji W Guan, David A Bell, and Dayou Liu. Discovering maximal frequent pat-

terns in sequence groups. In International Conference on Rough Sets and

Current Trends in Computing, pages 602�609. Springer, 2004.

D. Gulbransen. Using XML. SPECIAL EDITION USING. Que, 2002.

ISBN 9780789727480. URL https://books.google.co.uk/books?id=

aqfvLQzR-GkC.

Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. Xrank:

Ranked keyword search over xml documents. In Proceedings of the 2003

ACM SIGMOD international conference on Management of data, pages 16�

27. ACM, 2003.

Renato Guzman, Irvin Dongo, and Regina Ticona Herrera. Structural and se-

mantic similarity for xml comparison. In Proceedings of the Fifth International

Conference on Management of Emergent Digital EcoSystems, pages 177�181.

ACM, 2013.

Markus Hagenbuchner, Alessandro Sperduti, Ah Chung Tsoi, Francesca Tren-

tini, Franco Scarselli, and Marco Gori. Clustering xml documents using self-

organizing maps for structures. In International Workshop of the Initiative

for the Evaluation of XML Retrieval, pages 481�496. Springer, 2005.

E.R. Harold and W.S. Means. XML in a Nutshell. In a Nutshell (O'Reilly).

O'Reilly Media, 2004. ISBN 9781449379049. URL https://books.google.

co.uk/books?id=NBwnSfoCStAC.

Page 123

https://books.google.co.uk/books?id=aqfvLQzR-GkC
https://books.google.co.uk/books?id=aqfvLQzR-GkC
https://books.google.co.uk/books?id=NBwnSfoCStAC
https://books.google.co.uk/books?id=NBwnSfoCStAC

REFERENCES

Su-Cheng Haw and Chien-Sing Lee. Data storage practices and query processing

in xml databases: A survey. Knowledge-Based Systems, 24(8):1317�1340,

2011.

Jan Hegewald, Felix Naumann, and Melanie Weis. Xstruct: E�cient schema ex-

traction from multiple and large xml documents. In 22nd International Con-

ference on Data Engineering Workshops (ICDEW'06), pages 81�81. IEEE,

2006.

Hosagrahar V Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks VS Lak-

shmanan, Andrew Nierman, Stelios Paparizos, Jignesh M Patel, Divesh Sri-

vastava, Nuwee Wiwatwattana, Yuqing Wu, et al. Timber: A native xml

database. The VLDB Journalâ��The International Journal on Very Large

Data Bases, 11(4):274�291, 2002.

Tae-Soon Kim, Ju-Hong Lee, Jae-Won Song, and Deok-Hwan Kim. Similarity

measurement of xml documents based on structure and contents. In Interna-

tional Conference on Computational Science, pages 902�905. Springer, 2007.

Lingbo Kong, Rémi Gilleron, and Aurélien Lemay Mostrare. Retrieving mean-

ingful relaxed tightest fragments for xml keyword search. In Proceedings of the

12th International Conference on Extending Database Technology: Advances

in Database Technology, pages 815�826. ACM, 2009.

Richard E Korf. Arti�cial intelligence search algorithms. Chapman & Hall/CRC,

2010.

Atakan Kurt and Mustafa Atay. An experimental study on query processing

e�ciency of native-xml and xml-enabled database systems. In International

Workshop on Databases in Networked Information Systems, pages 268�284.

Springer, 2002.

Page 124

REFERENCES

Thuy Ngoc Le, Zhifeng Bao, and Tok Wang Ling. Exploiting semantics for xml

keyword search. Data & Knowledge Engineering, 99:105�125, 2015.

W.M. Lee and S.M. Foo. XML Programming Using the Microsoft XML Parser.

Apress, 2008. ISBN 9781430208297. URL https://books.google.co.uk/

books?id=6bgYAAAAQBAJ.

Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. E�ective keyword

search for valuable lcas over xml documents. In Proceedings of the sixteenth

ACM conference on Conference on information and knowledge management,

pages 31�40. ACM, 2007.

Yunyao Li, Cong Yu, and HV Jagadish. Schema-free xquery. In Proceedings

of the Thirtieth international conference on Very large data bases-Volume 30,

pages 72�83. VLDB Endowment, 2004.

Wang Lian, Nikos Mamoulis, Siu-Ming Yiu, et al. An e�cient and scalable

algorithm for clustering xml documents by structure. IEEE transactions on

Knowledge and Data Engineering, 16(1):82�96, 2004.

Rung-Ren Lin, Ya-Hui Chang, and Kun-Mao Chao. Identifying relevant matches

with not semantics over xml documents. In International Conference on

Database Systems for Advanced Applications, pages 466�480. Springer, 2011.

Rung-Ren Lin, Ya-Hui Chang, and Kun-Mao Chao. Locating valid slcas for

xml keyword search with not semantics. ACM SIGMOD Record, 43(2):29�34,

2014.

Jian Liu and XX Zhang. Dynamic labeling scheme for xml updates. Knowledge-

Based Systems, 2016.

Page 125

https://books.google.co.uk/books?id=6bgYAAAAQBAJ
https://books.google.co.uk/books?id=6bgYAAAAQBAJ

REFERENCES

Jian Liu, ZM Ma, and Li Yan. E�cient labeling scheme for dynamic xml trees.

Information Sciences, 221:338�354, 2013a.

Xiping Liu, Lei Chen, Changxuan Wan, Dexi Liu, and Naixue Xiong. Exploiting

structures in keyword queries for e�ective xml search. Information Sciences,

240:56�71, 2013b.

Ziyang Liu and Yi Chen. Identifying meaningful return information for xml

keyword search. In Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 329�340. ACM, 2007.

Ziyang Liu and Yi Cher. Reasoning and identifying relevant matches for xml

keyword search. Proceedings of the VLDB Endowment, 1(1):921�932, 2008.

Jiaheng Lu and Tok Wang Ling. Labeling and querying dynamic xml trees. In

Asia-Paci�c Web Conference, pages 180�189. Springer, 2004.

Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Discovery of frequent

episodes in event sequences. Data mining and knowledge discovery, 1(3):259�

289, 1997.

MarkLogic. New generation big data requires a new generation database. web-

site, 2016. URL http://www.marklogic.com/. Last access: 4.3.2016.

Microsoft. Xml elements' attributes, and types (xml designer). website,

2016. URL https://msdn.microsoft.com/en-us/library/7f0tkwcx(v=

vs.80).aspx. Last access: 8.9.2016.

Irena Ml�ynková. An analysis of approaches to xml schema inference. In SITIS,

pages 16�23, 2008.

Irena Ml�ynková and Martin Ne£ask�y. Heuristic methods for inference of xml

schemas: Lessons learned and open issues. Informatica, 24(4):577�602, 2013.

Page 126

http://www.marklogic.com/
https://msdn.microsoft.com/en-us/library/7f0tkwcx(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/7f0tkwcx(v=vs.80).aspx

REFERENCES

Marta Mota, Paulo Caetano da Silva, and Sidney Viana. Similarity evaluation

in xml schema and xlink. In Proceedings of the 19th Brazilian symposium on

Multimedia and the web, pages 153�156. ACM, 2013.

Richi Nayak and Sumei Xu. Xcls: a fast and e�ective clustering algorithm

for heterogenous xml documents. In Paci�c-Asia Conference on Knowledge

Discovery and Data Mining, pages 292�302. Springer, 2006.

Khanh Nguyen and Jinli Cao. Top-k answers for xml keyword queries. World

Wide Web, 15(5-6):485�515, 2012.

S. Oaks. Java Performance: The De�nitive Guide: Getting the Most Out of

Your Code. O'Reilly Media, 2014. ISBN 9781449363543. URL https://

books.google.co.uk/books?id=aIhUAwAAQBAJ.

Martin F O'Connor and Mark Roantree. Scooter: A compact and scalable

dynamic labeling scheme for xml updates. In International Conference on

Database and Expert Systems Applications, pages 26�40. Springer, 2012.

University of Toronto. Toronto xml server. website, 2002. URL http://www.

cs.toronto.edu/tox/. Last access: 4.3.2016.

Patrick O'Neil, Elizabeth O'Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,

and Nigel Westbury. Ordpaths: insert-friendly xml node labels. In Proceedings

of the 2004 ACM SIGMOD international conference on Management of data,

pages 903�908. ACM, 2004.

Ashok Malhotra Paul V Biron, Kaiser Permanente. Xml schema part 2:

Datatypes second edition. website, 10 2004. URL http://www.w3.org/TR/

xmlschema-2/. Last access: 31.1.2016.

Page 127

https://books.google.co.uk/books?id=aIhUAwAAQBAJ
https://books.google.co.uk/books?id=aIhUAwAAQBAJ
http://www.cs.toronto.edu/tox/
http://www.cs.toronto.edu/tox/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

REFERENCES

Zhong-Ren Peng and Chuanrong Zhang. The roles of geography markup lan-

guage (gml), scalable vector graphics (svg), and web feature service (wfs)

speci�cations in the development of internet geographic information systems

(gis). Journal of Geographical Systems, 6(2):95�116, 2004.

Maciej Piernik, Dariusz Brzezinski, Tadeusz Morzy, and Anna Lesniewska. Xml

clustering: a review of structural approaches. The Knowledge Engineering

Review, 30(03):297�323, 2015.

Maciej Piernik, Dariusz Brzezinski, and Tadeusz Morzy. Clustering xml doc-

uments by patterns. Knowledge and Information Systems, 46(1):185�212,

2016.

A Mary Posonia and VL Jyothi. Structural-based clustering technique of xml

documents. In Circuits, Power and Computing Technologies (ICCPCT), 2013

International Conference on, pages 1239�1242. IEEE, 2013.

G. Powell. Beginning XML Databases. Programmer to programmer. Wiley,

2007. ISBN 9780471791201. URL https://books.google.co.uk/books?

id=-9vNi1tqpP0C.

Chamberlin D. Dyck M. Robie, J. and J. Snelson. W3c, xml path language

(xpath) 3.0. Accessed: 2016-05-20.

Airi Salminen and Frank Wm Tompa. Requirements for xml document database

systems. In Proceedings of the 2001 ACM Symposium on Document engineer-

ing, pages 85�94. ACM, 2001.

Virginie Sans and Dominique Laurent. Pre�x based numbering schemes for

xml: techniques, applications and performances. Proceedings of the VLDB

Endowment, 1(2):1564�1573, 2008.

Page 128

https://books.google.co.uk/books?id=-9vNi1tqpP0C
https://books.google.co.uk/books?id=-9vNi1tqpP0C

REFERENCES

F. Scha�er. Number Chart 1-100. Carson Dellosa Publishing Company Incor-

porated, 2001. ISBN 9780768212327. URL https://books.google.co.uk/

books?id=hvZAAAAACAAJ.

Torsten Schlieder. Similarity search in xml data using cost-based query trans-

formations.

Albrecht Schmidt, Martin Kersten, and Menzo Windhouwer. Querying xml

documents made easy: Nearest concept queries. In Data Engineering, 2001.

Proceedings. 17th International Conference on, pages 321�329. IEEE, 2001.

Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J Carey, Ioana

Manolescu, and Ralph Busse. Xmark: A benchmark for xml data manage-

ment. In Proceedings of the 28th international conference on Very Large Data

Bases, pages 974�985. VLDB Endowment, 2002.

Wen-Chung Shih, Chao-Tung Yang, and Shian-Shyong Tseng. A methodology

for retrieving scorm-compliant teaching materials on grid environments. In

International Conference on Asian Digital Libraries, pages 498�502. Springer,

2006.

Marko Smiljani¢, Maurice Van Keulen, and Willem Jonker. Formalizing the

xml schema matching problem as a constraint optimization problem. In In-

ternational Conference on Database and Expert Systems Applications, pages

333�342. Springer, 2005.

Alessandro Solimando, Giorgio Delzanno, and Giovanna Guerrini. Validating

xml document adaptations via hedge automata transformations. Theoretical

Computer Science, 560:251�268, 2014.

Page 129

https://books.google.co.uk/books?id=hvZAAAAACAAJ
https://books.google.co.uk/books?id=hvZAAAAACAAJ

REFERENCES

Samini Subramaniam and Su-Cheng Haw. Me labeling: A robust hybrid scheme

for dynamic update in xml databases. In Telecommunication Technologies

(ISTT), 2014 IEEE 2nd International Symposium on, pages 126�131. IEEE,

2014.

Samini Subramaniam, Su-Cheng Haw, and Lay-Ki Soon. Relab: A subtree

based labeling scheme for e�cient xml query processing. In Telecommunica-

tion Technologies (ISTT), 2014 IEEE 2nd International Symposium on, pages

121�125. IEEE, 2014.

Chong Sun, Chee-Yong Chan, and Amit K Goenka. Multiway slca-based key-

word search in xml data. In Proceedings of the 16th international conference

on World Wide Web, pages 1043�1052. ACM, 2007.

Igor Tatarinov, Stratis D Viglas, Kevin Beyer, Jayavel Shanmugasundaram,

Eugene Shekita, and Chun Zhang. Storing and querying ordered xml using

a relational database system. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 204�215. ACM, 2002.

Joe Tekli and Richard Chbeir. A novel xml document structure comparison

framework based-on sub-tree commonalities and label semantics. Web Se-

mantics: Science, Services and Agents on the World Wide Web, 11:14�40,

2012.

Joe Tekli, Richard Chbeir, and Kokou Yetongnon. Structural similarity evalua-

tion between xml documents and dtds. In International Conference on Web

Information Systems Engineering, pages 196�211. Springer, 2007.

Joe Tekli, Richard Chbeir, and Kokou Yetongnon. An overview on xml simi-

larity: Background, current trends and future directions. Computer science

review, 3(3):151�173, 2009.

Page 130

REFERENCES

Joe Tekli, Richard Chbeir, Agma JM Traina, Caetano Traina, and Renato

Fileto. Approximate xml structure validation based on document�grammar

tree similarity. Information Sciences, 295:258�302, 2015.

Pham Thu Thu Thuy, Young-Koo Lee, and Sungyoung Lee. Semantic and struc-

tural similarities between xml schemas for integration of ubiquitous healthcare

data. Personal and ubiquitous computing, 17(7):1331�1339, 2013.

Zongqi Tian, Jiaheng Lu, and Deying Li. A survey on xml keyword search. In

Asia-Paci�c Web Conference, pages 460�471. Springer, 2011.

C.M. Sperberg-McQueen Eva Maler FranÃ§ois Yergeau Tim Bary, Jeaqn Paoli.

Extensible markup language (xml) 1.0 (�fth edition). website, 11 2008. URL

http://www.w3.org/TR/2008/REC-xml-20081126/. Last access: 31.1.2016.

w3schools. Xsd idicatore. website, 2016. URL http://www.w3schools.com/

xml/schema_complex_indicators.asp/. Last access: 20.2.2016.

Guoren Wang and Mengchi Liu. Query processing and optimization for regu-

lar path expressions. In International Conference on Advanced Information

Systems Engineering, pages 30�45. Springer, 2003.

Xu Wang, Jinmao Wei, Baoquan Fan, and Ting Yang. Voting a�nity prop-

agation algorithm for clustering xml documents. In Computer Science and

Network Technology (ICCSNT), 2012 2nd International Conference on, pages

1907�1913. IEEE, 2012.

Erik Wilde. Wilde± WWW: technical foundations of the World Wide Web.

Springer Science & Business Media, 2012.

Erik Wilde and Robert J Glushko. Xml fever. Queue, 6(6):46�53, 2008.

Page 131

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3schools.com/xml/schema_complex_indicators.asp/
http://www.w3schools.com/xml/schema_complex_indicators.asp/

REFERENCES

Khin-Myo Win, Wee-Keong Ng, and Ee-Peng Lim. Enaxs: e�cient native xml

storage system. In Asia-Paci�c Web Conference, pages 59�70. Springer, 2003.

Xiaodong Wu, Mong-Li Lee, and Wynne Hsu. A prime number labeling scheme

for dynamic ordered xml trees. In Data Engineering, 2004. Proceedings. 20th

International Conference on, pages 66�78. IEEE, 2004.

Liang Xu, Zhifeng Bao, and Tok Wang Ling. A dynamic labeling scheme us-

ing vectors. In International Conference on Database and Expert Systems

Applications, pages 130�140. Springer, 2007.

Liang Xu, Tok Wang Ling, and Huayu Wu. Labeling dynamic xml documents:

an order-centric approach. Knowledge and Data Engineering, IEEE Transac-

tions on, 24(1):100�113, 2012.

Yu Xu and Yannis Papakonstantinou. E�cient keyword search for smallest lcas

in xml databases. In Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, SIGMOD '05, pages 527�538, New York,

NY, USA, 2005a. ACM. ISBN 1-59593-060-4. doi: 10.1145/1066157.1066217.

URL http://doi.acm.org/10.1145/1066157.1066217.

Yu Xu and Yannis Papakonstantinou. E�cient keyword search for smallest lcas

in xml databases. In Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, pages 527�538. ACM, 2005b.

Yu Xu and Yannis Papakonstantinou. E�cient lca based keyword search in

xml data. In Proceedings of the 11th international conference on Extending

database technology: Advances in database technology, pages 535�546. ACM,

2008.

Page 132

http://doi.acm.org/10.1145/1066157.1066217

REFERENCES

Ting Yang, Jinmao Wei, Baoquan Fan, Xu Wang, and Haiwei Zhang. Structural

similarity computation based on extended edge matching method. In Fuzzy

Systems and Knowledge Discovery (FSKD), 2012 9th International Confer-

ence on, pages 1201�1205. IEEE, 2012.

Francois Yergeau. Utf-8, a transformation format of iso 10646. 2003.

Je�rey Xu Yu, Daofeng Luo, Xiaofeng Meng, and Hongjun Lu. Dynamically

updating xml data: numbering scheme revisited. World Wide Web, 8(1):5�26,

2005.

Jung-Hee Yun and Chin-Wan Chung. Dynamic interval-based labeling scheme

for e�cient xml query and update processing. Journal of Systems and Soft-

ware, 81(1):56�70, 2008.

Yong Zeng, Zhifeng Bao, and Tok Wang Ling. Supporting range queries in xml

keyword search. In Proceedings of the Joint EDBT/ICDT 2013 Workshops,

pages 97�104. ACM, 2013.

Amar Zerdazi and Myriam Lamolle. Computing path similarity relevant to xml

schema matching. In OTM Confederated International Conferences" On the

Move to Meaningful Internet Systems", pages 66�75. Springer, 2008.

Chun Zhang, Je�rey Naughton, David DeWitt, Qiong Luo, and Guy Lohman.

On supporting containment queries in relational database management sys-

tems. In ACM SIGMOD Record, volume 30, pages 425�436. ACM, 2001.

Xue-Liang Zhang, Ting Yang, Bao-Quan Fan, Xu Wang, and Jin-Mao Wei.

Novel method for measuring structure and semantic similarity of xml docu-

ments based on extended adjacency matrix. Physics Procedia, 24:1452�1461,

2012.

Page 133

REFERENCES

Zhongping Zhang, Rong Li, Shunliang Cao, and Yangyong Zhu. Similarity

metric for xml documents. In Knowledge Management and Experience Man-

agement Workshop, 2003.

Guofeng Zhao and Shan Tian. Research on xml keyword query method based on

semantic. In Information Science and Cloud Computing Companion (ISCC-

C), 2013 International Conference on, pages 806�811. IEEE, 2013.

X. Zheng and University of South Carolina. Chinese Remainder Theorem Based

Single and Multi-group Key Management Protocols. University of South Car-

olina, 2007. ISBN 9780549212294. URL https://books.google.co.uk/

books?id=BbWuczr-7SAC.

Junfeng Zhou, Zhifeng Bao, Ziyang Chen, Guoxiang Lan, Xudong Lin, and

Tok Wang Ling. Top-down slca computation based on list partition. In

International Conference on Database Systems for Advanced Applications,

pages 172�184. Springer, 2012a.

Junfeng Zhou, Zhifeng Bao, Wei Wang, Tok Wang Ling, Ziyang Chen, Xudong

Lin, and Jingfeng Guo. Fast slca and elca computation for xml keyword

queries based on set intersection. In 2012 IEEE 28th International Conference

on Data Engineering, pages 905�916. IEEE, 2012b.

Rui Zhou, Chengfei Liu, and Jianxin Li. Fast elca computation for keyword

queries on xml data. In Proceedings of the 13th International Conference on

Extending Database Technology, pages 549�560. ACM, 2010.

Canwei Zhuang and Shaorong Feng. Full tree-based encoding technique for

dynamic xml labeling schemes. In International Conference on Database and

Expert Systems Applications, pages 357�368. Springer, 2012.

Page 134

https://books.google.co.uk/books?id=BbWuczr-7SAC
https://books.google.co.uk/books?id=BbWuczr-7SAC

Appendices

A Appendix: Pre�x Labelling Scheme

Pre�x Labelling Scheme ()

Input: XML File;

Output: Set of Labels;

begin

- Read the root element of the XML �le;

- stack = parent, child;

While (not End of File)

begin

- If (the tag is start tag)

begin

- if (child is empty)

begin

- child.push = 0;

- parent.push = 1;

end;

- else

begin

- read start tag;

- x = child.get(child.size-1);

- x++;

- child.push(((child.size) - 1), x);

- push.child (0);

Page 135

A. APPENDIX: PREFIX LABELLING SCHEME

- parent.get((parent.size) - 1);

- parent.push (parent,x);

end;

end;

- else

begin

- child.pop;

- parent.pop;

end;

end;

end.

Page 136

B. APPENDIX: INTERVAL LABELLING SCHEME

B Appendix: Interval Labelling Scheme

Interval Labelling Scheme ()

Input: XML File;

Output: Set of Labels;

begin

- Initialisation: counter = 0;

While (Not End of File)

begin

- Read the root element of the XML �le;

- If (the tag is start tag)

begin

- push counter to stack;

- counter++;

end;

else

begin

- pre = stack.pop;

- post = pre;

- if (pre != counter)

begin

- post = counter ++;

end:

- level = element depth in the stack;

- assign the label (pre.post.level) to the element;

end;

end.

Page 137

C. APPENDIX: VECTOR ORDER-CENTRIC LABELLING SCHEME
BASED ON PREFIX (V-PREFIX)

C Appendix: Vector Order-Centric Labelling Scheme

Based on Pre�x (V-Pre�x)

V-Pre�x ()

Input: max No. of Elements;

Output: Set of Vectors;

begin

- initialisation:

- max = max No. of XML elements;

- �rst = 1;

- last = max;

- HT = Hashtable;

Create (�rst, last);

begin

- if (HT.size == max)

- return;

- else

begin

- mid = ceil ((�rst+last) div 2);

- if (mid is not in HT)

begin

- xmid = xf irst+ xlast;

- ymid = yf irst+ ylast;

- HT.put (mid, (xmid, ymid);

Create (mid, last);

end;

Page 138

C. APPENDIX: VECTOR ORDER-CENTRIC LABELLING SCHEME
BASED ON PREFIX (V-PREFIX)

- else

- Create (�rst, mid);

end;

end;

Pre�x ()

Input: XML File;

Output: Set of Vector-Label;

begin

- Read the root element of the XML �le;

- stack = parent, child;

While (not End of File)

begin

- If (the tag is start tag)

begin

- if (child is empty)

begin

- child.push = 0;

- parent.push = HT.get(1);

end;

- else

begin

- read start tag;

- x = child.get((child.size) - 1);

- x++;

- child.push((child.size) - 1, x);

- push.child (0);

Page 139

C. APPENDIX: VECTOR ORDER-CENTRIC LABELLING SCHEME
BASED ON PREFIX (V-PREFIX)

- parent.get((parent.size) - 1);

- parent.push (HT.get(parent),HT.get(x));

end;

end;

- else

begin

- child.pop;

- parent.pop;

end;

end;

end.

Page 140

D. APPENDIX: VECTOR ORDER-CENTRIC LABELLING SCHEME
BASED ON CONTAINMENT (V-CONTAINMENT)

D Appendix: Vector Order-Centric Labelling Scheme

Based on Containment (V-Containment)

V-Containment ()

Input: max No. of Elements;

Output: Vectors;

begin

- initialisation:

- max = max No. of XML elements;

- �rst = 1;

- last = max;

- HT = Hashtable;

Create (�rst, last);

begin

- if (HT.size == max)

- return;

- else

begin

- mid = ceil ((�rst+last) div 2);

- if (mid is not in HT)

begin

- x(mid) = x(�rst) + x(last);

- y(mid) = y(�rst) + y(last);

- HT.put (mid, (x(mid),y(mid)));

Create (mid, last);

end;

Page 141

D. APPENDIX: VECTOR ORDER-CENTRIC LABELLING SCHEME
BASED ON CONTAINMENT (V-CONTAINMENT)

- else

- Create (�rst, mid);

end;

end;

Interval Labelling Scheme ()

Input: XML File;

Output: Set of Labels;

begin

- Initialise counter;

While (Not End of File)

begin

- Read the root element of the XML �le;

- If (the tag is start tag)

begin

- push counter to stack;

- counter++;

end;

else

begin

- pre = stack.pop;

- post = pre;

- if (pre != counter)

begin

post = counter ++;

end:

- level = element depth in the stack;

Page 142

D. APPENDIX: VECTOR ORDER-CENTRIC LABELLING SCHEME
BASED ON CONTAINMENT (V-CONTAINMENT)

- assign the label (HT.get(pre).HT.get(post).level) to

the element;

end;

end;

end.

Page 143

	Abstract
	Acknowledgment
	List of Figures
	Introduction
	Introduction
	Problem definition and Motivation
	Research Hypothesis and Methodology
	Dissertation Outline

	XML Background
	Preface
	What is The XML Language
	What is Markup Language
	XML Evolution and Importance
	Well-Formed and Valid of XML Documents
	The Context of XML elements
	Models for XML Database
	XML Query Languages
	Conclusion

	XML Documents Similarity (Representation and Measurement
	Introduction
	XML Data Representation
	Similarity approaches based on Tree-based Representation
	Similarity Approaches Based on Vector-Based Representation

	XML Similarity Measures
	Structure Similarity Measures
	Semantic Similarity Measures
	Structural and Semantic Similarity Measures (Hybrid)

	Querying XML Documents
	Introduction
	Query Processing Based on Smallest Common Ancestor SLCA
	Processing XML query contains NOT Operator
	Improving of XML Query Processing Using XML Labelling Scheme
	Using of XML Grammar to Enhance the XML Query Processing
	Dominance Semantics to Improve the Precision of XML Query Processing
	Processing Error Messages in the Query Processing
	Semantics for Non-Expert Users for Querying XML Documents

	XML Labelling Schemes
	Introduction
	Interval Labelling Schemes
	Prefix Labelling Scheme (Dewey)
	Multiplicative Labelling Scheme

	Experiments and Statistical Analyses
	Introduction
	Execution of Static Labelling Schemes
	Time for XML Database Labelling
	The Space required for Static Labelling of XML Database

	Execution of Dynamic Labelling Schemes
	Time Required for Dynamic Labelling of XML Database
	The Space Cost for Storing Dynamic XML Database

	Experiment Results Evaluation

	Conclusion and Future Works
	Introduction
	Dissertation Summary
	The Results of the Experiments and Evaluation
	Future Work

	References
	Appendices
	Appendix: Prefix Labelling Scheme
	Appendix: Interval Labelling Scheme
	Appendix: Vector Order-Centric Labelling Scheme Based on Prefix (V-Prefix)
	Appendix: Vector Order-Centric Labelling Scheme Based on Containment (V-Containment)

