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Abstract 

The popularity of the Internet and the demand for 24/7 services uptime is driving 

system performance and reliability requirements to levels that today’s data centres 

can no longer support. This thesis examines the traditional monolithic conventional 

server (CS) design and compares it to a new design paradigm known as 

disaggregated server (DS). The DS design arranges data centres resources in 

physical pools such as processing, memory and IO module pools; rather than 

packing each subset in a single server. In this work, we study energy efficient 

resource provisioning and virtual machine (VM) allocation in the DS based data 

centres compared to CS based data centres. First, we developed a mixed integer 

linear programming (MILP) model to optimise VM allocation for DS based data 

centre. Our results indicate that considering pooled resources yields up to 62% total 

saving in power consumption compared to the CS approach. Due to the MILP high 

computational complexity, we developed an energy efficient, fast and scalable 

resource provisioning heuristic (EERP-DS), based on the MILP insights, with 

comparable power efficiency to the MILP. Second, we extended the resources 

provisioning and VM allocation MILP to include the data centre communication 

fabric power consumption. The results show that the inclusion of the communication 

fabric still yields considerable power savings compared to the CS approach, up to 

48% power saving. Third, we developed an energy efficient resource provisioning 

for DS with communication fabric heuristic (EERP-DSCF). EERP-DSCF achieved 

comparable results to the second MILP and with it we can extend the number of 

served VMs where the MILP scalability for big number of VMs is challenging. 

Finally, we present our new design for the photonic DS based data centre 
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architecture supplemented with a complete description of the architecture 

components, communication patterns and some recommendations for the design 

implementation challenges. 
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The data centres are approaching the point of erupting; they are bursting at all 

seams, including storage, power, traffic, and processing needs [1]. The last few 

years have witnessed the adoption of clouds in the ICT sector and these have 

evolved very fast as a recognised, widely deployed, and accepted networking 

solution. Clouds have been exploited widely by companies, enterprises, and 

government organisations, as well as personal users; they are expected to be the 

main factor that will dominate the future Internet service model [2] by offering a 

ubiquitous access to network-based content and services, delivered to almost 

anywhere (network) that users wish rather than solely to desktop-based user 

applications [3]. One of the most significant current discussions in today’s ICT 

sector is the increased energy consumption due to the massive increase in the 

number of devices accessing the Internet – with around 40% of the world population 

having an Internet connection [4] – and the huge amount of generated data. 

According to [5], more than 2.5 quintillion bytes are being added to the total data 

traffic on a daily basis. Mobile data traffic is expected to grow at an annual rate of 

57%, reaching a throughput of 24.3 exabytes per month by 2019. Data centre power 

consumption is in the range of 100-130 GWh per year, as measured by the power 
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usage effectiveness (PUE) index, and computer room air conditioning consumes up 

to half the total power consumed by the data centre [5]. The generated data is 

massively aggregated and processed at core networks and data centres are the heart 

of these cores. These trends are accelerating data centre and cloud traffic growth and 

placing new requirements and demands on data centre and cloud-based 

infrastructures. Thus, there is currently a need for maximising the data centre 

performance and minimising its total cost of ownership (TCO) by increasing 

resource utilisation, reducing hardware acquisition and maintenance, and eventually 

delivering a better experience to end users. 

Virtualised data centres are key services in modern networking. However, in today’s 

traditional rigid architecture of current servers the ratios of CPU to memory to IO 

are mostly unchangeable inside data centres as they are confined within the 

boundaries of stand-alone servers [6]. The single box server adds barriers and 

difficulties including inefficient resource utilisation, prolonged provisioning, 

difficulties in big data management, and a high risk of blocking when deploying 

virtual data centre resource instances. Another challenge facing current data centres 

is the energy consumption of the physical infrastructure that provides resources for 

the cloud. Thus, energy management is a key challenge for data centres to reduce all 

their energy-related costs [7, 8]. 

Significant efforts have been dedicated to optimise the power consumption of 

conventional data centres including energy-efficient data centre designs [9] [10], 

energy-efficient inter- and intra-data centre network architectures [11, 12], designing 

energy-efficient cloud computing services and energy-efficient resource 

provisioning, and virtual network embedding for cloud systems [13, 14]. 
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To understand the usefulness of the DS concept, consider an example of a 

conventional ‘server in a box’ (CS), where a processing-intensive task is occupying 

the processor while the input/output (IO) module is idle. Other servers, due to the 

current CS’s constrained architecture, cannot access such an idle resource in this 

case. Similarly, a server running an application that involves intensive IO usage may 

have a large idle fraction of the CPU processing capability not accessible by other 

tasks that require access through the bottlenecked IO module. The DS concept 

removes the barriers of the CS approach and allows virtual machines (VMs) to 

construct servers on the fly, with the required specifications for a specific duration, 

and to release these resources at the end of the task, removing many barriers and 

improving the data centre efficiency significantly. 

Silicon photonics [15] is a promising technology that can enable DS, with light as 

the medium that transfers data from place to place instead of using electronics. With 

silicon photonics, data can move farther and at lower power consumption than with 

copper and an incredible amount of data can move over a single strand of fibre or 

optical waveguide instead of using bulky copper connections. Intel Silicon Photonic 

connectors, SiPh [16], provide OEO processing for full wavelength conversion at 

each node. This architecture will appear in more detail in Chapter 4 where our 

design architecture for the DS will be presented, with a full description for all the 

components and communications patterns. 

For energy efficiency in data centres, this work presents detailed analyses of the 

process of energy-efficient resource provision and server consolidation, and 

exemplifies its implication in the DS-based data centre. The approach exploits 

energy-efficient resource allocation in DS and shows the impact of server 

disaggregation on increasing the total resources utilisation, which will reduce the 
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overall energy consumption. The benefits were maximised using a mixed integer 

linear programming (MILP) mathematical optimisation, and a heuristic was 

developed and used to verify the MILP optimisation. The goal of the optimisation 

was to ensure that power consumption is minimised, which effectively resulted in 

the working resources being packed with as many VMs as they can hold before 

using new resources. The study also investigated the effect of including the 

communication fabric power consumption on the total power saving by developing a 

new MILP model to account for the power consumed by the new added networking 

elements. A new heuristic that mimics the MILP behaviour was developed to 

validate the MILP outcomes and extend the MILP scope to evaluate a higher 

number of VM requests. 

Regarding the DS architecture design, we proposed a new switch-based 

communication architecture for the photonic DS-based data centre architecture 

supplemented with a complete description of the architecture components, 

communication patterns, and some recommendations for the design implementation 

challenges. 

Finally, we study the idea of considering time as a new dimension associated with 

each VM and resource reallocation and VM migration concepts. The goal is to use 

the minimum number of resources by exploiting resource reallocation when a VM 

finishes its service time duration and leaves the system. In such cases, our approach 

reuses the released resources to serve new or migrated VMs. The total power 

savings were considered given different VM inter-arrival time (IAT) patterns. 
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The following primary objectives were set for the work reported in this 

thesis: 

1. To investigate the energy efficiency of DS-based data centres compared to CS 

design considering VM allocation and resource provisioning by allocating 

VMs in a resource pool rather than server boxes approach using mathematical 

modelling. Based on the insights gained through the mathematical modelling, 

to develop appropriate heuristics that can run in real-time environments as 

well as expand the data centre size and, accordingly, the number of served 

VMs. 

2. To develop and introduce a new design for the DS architecture with a 

complete and comprehensive description for all the design components, 

highlighting the communication patterns and traffic flows between the 

disaggregated resources and giving some recommendations for the design 

implementation challenges. 

3. To investigate the impact of the communication fabric power consumption on 

the overall system performance and energy efficiency based on the new DS 

design architecture. 

4. To establish the conditions under which the DS and CS designs result in 

similar power consumption. 

5. To assess the impact of VM migration and resource reallocation on the DS 

server’s power consumption. 
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The main contributions of this thesis are as follows: 

1. The development of a MILP that models the energy consumption of VMs’ 

allocation and resource provisioning in DS-based data centre when 

considering three heterogeneous resource types (processing resources, 

memory, and IO resources) and three VM types – processing intensive (PI), 

memory intensive (MI), and IO intensive (IOI). We have shown an average 

energy saving of up to 49% when considering the DS server design and our set 

of input parameters for both resources and VMs. 

2. A resource provisioning heuristic (EERP-DS) was developed for real-time 

implementation of the energy-efficient resource provisioning in a DS-based 

data centre. Comparable power savings and performance were achieved by the 

heuristic compared to the MILP power consumption. 

3. The design of a new DS switch-based server architecture with complete 

definitions and communication structure. 

4. The development of a mathematical optimisation model along with a heuristic 

(EERP-DSCF) for resource provisioning in a DS-based data centre with 

communication, based on our switch-based DS design. 

5. A heuristic (EERPVMM-DS) was developed to account for the power 

consumption by the DS-based server considering VM migration and resources 

release. 
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The original contributions in this thesis are supported by the following 
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 Journals 
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Disaggregated Servers”, to be submitted to IEEE/ACM Transactions on 

Networking. 

 Conferences 
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Following the introduction in Chapter 1, the rest of the thesis is organised as 

follows: 

Chapter 2 provides an overview of the main topics addressed in this thesis, 

including energy-efficient data centres and conventional data centres, with a focus 

on the problems encountered by these architectures. Attention is given to 

virtualisation and resource provisioning as a vital solution for some problems 

encountered by current data centres. A special section is dedicated to the DS design 

description followed by the anticipated benefits to be offered by the DS architecture 

and ending with a complete description of the technical challenges encountered by 

the DS design. The chapter reviews the work done by companies and academic 

researchers on the disaggregated data centre designs covering all the categories and 

disaggregation levels considered in the literature. 

Chapter 3 introduces the energy-efficient resource provisioning DS design MILP 

model with complete results and analysis. It proposes a heuristic for energy-efficient 

resource provisioning in the DS server design and compares its performance to the 

MILP model. It investigates the energy efficiency in the DS by improving resources 

utilisation as compared to the CS design. 

Chapter 4 introduces a new, innovative design for the DS server-based data 

centre with a comprehensive description of the design components and their 

functionality and some recommendations for reliable implementation. 

Chapter 5 introduces a MILP for energy-efficient resource provisioning in DS 

design with communication fabric power, and a heuristic (EERP-DSCF) is proposed 

with a comparable power profile to the MILP. 
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Chapter 6 introduces a heuristic (EERPVMM-DS) that accounts for the power 

consumption by the DS-based server considering VM migration and resources reuse. 

The thesis concludes in Chapter 7, which summarises this work’s main 

contributions and gives recommendations for future work. 
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The work presented in this thesis has had as its objective the study of the energy 

efficiency of the DS-based data centre, characterised by the resource provisioning 

and VM allocation and migration, and the presentation of new design architecture 

for the DS-based racks and the communication fabric among the disaggregated 

resources. This chapter provides an overview of the limitations in current server-

based data centres, and reviews virtualisation and DS-based data centres as a 

promising solution for current server-centric data centre shortcomings. We then 

survey the benefits, challenges, and enabling technologies for the DS with more 

detailed descriptions of the silicon photonics and optical interconnects for intra-rack 

communications. Finally, we review related work on the disaggregated data centre. 
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Today’s fast-growing number of data centres and the bursting traffic introduce 

energy consumption problems and motivate the need for “greening” in data centres 

by applying energy-saving techniques and implementing new data centre designs. 

Data centre power consumption can be attributed to the following: 1) processing and 

storage resources power; 2) communication fabric power; and 3) cooling and heat 

dissipation [17]. Improving the data centre energy efficiency can be achieved 

through: 1) energy-aware data centre management; 2) energy-efficient IT 

equipment; 3) energy-efficient cooling; and 4) renewable energy resources [18]. 

Fig. 2-1 shows the power dissipation points in a typical data centre [19, 20]. 

According to Fig. 2-2, IT equipment is the main energy consumer in a data centre. 

Consequently, introducing energy-efficient servers and networking components can 

introduce a remarkable reduction in the overall data centre power consumption. 

 

Fig. 2-1: Data centre components [19] 
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Fig. 2-2: Data centre power expenditure [20] 

 

Energy-efficient data centre management, including energy-aware VM scheduling 

and consolidation [21-23] can help reduce the overall data centre energy 

consumption. Secondly, in many science and technology areas, energy-aware ICT 

solutions are being proposed [24] and low-energy equipment and components are 

being developed, not only to decrease the energy cost, but also to help save our 

environment [25]. Building data centres with free cooling systems and utilising the 

local weather by using outside ambient air for cooling reduces the cost of energy 

required for cooling. Google and Facebook have begun to incorporate more and 

more outside cooling in their data centres by building their data centres in cold 

areas. This will reduce their total OPEX by building data centres without water 

chillers and using free cooling systems [26, 27]. Data centres use electricity so a data 

centre is as clean as the electricity supplied to it. Thus, employing renewable energy 

resources such as solar, hydro, and wind systems to provide the required electricity 

for powering the data centre can have a significant impact on the data centre’s 

energy efficiency [28, 29]. 
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A data centre can be thought of in one of two ways: either as a computational 

resources provider or as a raw computational resource utility provider. The first 

view is more preferred than the second due to its simplicity at the data centre level, 

as it pushes complexity out to the application environment. This is because it 

considers the data centre provider as the mediator between actual resources (such as 

servers, light-paths, etc.) and the network users. However, the second model 

considers the data centre as a services provider (analogous to water or gas services, 

they give you gas and you can use it for cooking or heating) and this approach 

provides guarantees on metrics (e.g. bandwidth, utilisation, and service level) and 

they give you raw resources, such as IaaS, and you can use these resources to deploy 

your own work, your own applications and management [30]. 

It is clear that in today’s traditional rigid architecture of current servers, the ratios of 

CPU to memory to IO are mostly unchangeable inside data centres as they are 

confined within the boundaries of stand-alone servers [31]. The single box server 

adds barriers and difficulties including inefficient resource utilisation, prolonged 

provisioning, difficulties in big data management [32], and a high risk of blocking 

when deploying virtual data centre resource instances. Another challenge facing 

current data centres is the energy consumption of the physical infrastructure that 

provides resources for the cloud. Thus, energy management is a key challenge for 

data centres to reduce all their energy-related costs [32, 33]. 

Significant efforts have been dedicated to optimising the power consumption of 

conventional data centres including energy-efficient data centre designs [34], 

energy-efficient inter-data-centre network architectures [35-37], designing energy-
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efficient cloud computing services and energy-efficient resource provisioning, and 

virtual network embedding for cloud systems [6, 38-40]. 

The above work is limited in that it relies on the single boxed server approach, 

where the flexible addition and removal of physical resources is very limited. 

Accordingly, the DS architecture is a potential approach to minimising data centres’ 

power consumption. In this model, servers’ resources are separated into discrete 

pools of resources that are mixed and matched in real time to create differently sized 

and shaped systems. This technique brings a new server vision for the data centres 

and motivates a plethora of potential new applications and services [41]. 

The revolutionary concept of DS will bring radical change to traditional data centres 

and can simplify the vertical scalability of VMs by decoupling the server 

components from each other. On the other hand, resources are combined according 

to their types in a stand-alone and type homogenous “resource rack”, constructing 

resource pools interconnected using an optical backplane. Here, a data centre 

network directly interconnects all resource racks via a high-bandwidth and low-

latency inter-rack switching fabric [32]. Therefore, DS design will bring sharing of 

CPU, memory, and network components, modularity, and independent allocation of 

resources, such that a certain resource is no longer tightly coupled to any other 

resource, which means that resources can be used more efficiently. 

 

The term virtualisation refers in general to the abstraction of computer resources for 

upper-layer applications, leading to the creation of a virtual version of the 

underlying physical resources for the application that using them. With 

virtualisation, applications gain access to more resources than the physically 
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installed resources on a single machine. The purpose behind virtualisation is to 

improve resource utilisation, to improve system security, reliability and availability, 

reduce costs, and provide greater flexibility. Full virtualisation of all system 

resources enables service providers to run multiple operating systems (OSs) on a 

single physical machine while in a non-virtualised system, the whole hardware 

resources are under the control of a single OS. 

With virtualisation, a new software layer is included, with responsibility to monitor, 

control access, and maintain coherency among the different virtual machines 

running on top of the hardware resources, so that these resources can be shared 

among multiple OSs that are “guests” to the underlying physical platform. This 

software layer is called the hypervisor or the virtual machine monitor (VMM), in 

general. 

From a user’s point of view, virtualisation is non-disturbing, since the user 

experiences are largely unchanged. However, for administrators, a virtual 

infrastructure gives them the advantage of flexibility in terms of being more 

organised and more responsive to dynamic resource management across the 

enterprise and to better leverage infrastructure investments. 

Many approaches are being implemented in order to improve service reliability and 

continuity in data centres, and one of its main aspects is the resource provisioning 

and VM consolidation. Another approach is doing regular preventive maintenance, 

such as replacing the components of the power parts (generators and backup 

batteries), replacing servers and switches, upgrading software, and fixing security 

vulnerabilities. According to [42], proper preventive maintenance can prevent 30% 

to 40% of system outages due to infrastructure hardware failures. In fact, preventive 
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maintenance is a routine task in large data centres, but what has not gained enough 

attention is the coordination between maintenance and VM resource provisioning 

[42]. 

Considering the efficient resource provisioning, and the computing resources that an 

application needs, the application environment varies over time for a given VM; 

thus, two types of resource provisioning approaches are being implemented in data 

centres. One approach is the static resource provisioning [16], which ensures the 

satisfaction of the computing needs of a particular application by providing enough 

resources for the expected peak demand and leading to over-provisioned VMs. 

However, implementing this approach in the allocation of resources will lead to 

under-utilisation of a data centre’s resources since there will be allocated resources 

that are not needed most of the time. So, the static provisioning cannot fit all 

applications requests, and will lead to either over-provisioning or under-

provisioning. The alternative solution is to be able to dynamically allocate and 

deallocate resources as needed for an application environment, with the deallocated 

resources available to be used for other application environments. This is referred to 

as the dynamic resource provisioning approach [43, 44]. The management system 

needs to make decisions about resource allocation in a situation where, at any point 

in time, the resource demands from all application environments exceed the resource 

supply. Policies are needed in advance as they are the basis for these decisions made 

by the management system where a policy is defined as any type of formal 

behavioural guide, and a change in policy should not mean a recompilation of the 

system [30]. 
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With the advent of mega trends in information and communication technologies 

(ICT) such as mobile, social, clouds, and big data, the required processing and 

services to fulfil these demands are becoming crucial. Considering traditional data 

centres’ infrastructures and services, it is believed that they need serious 

improvements and developments at both hardware and software levels. Recent 

architecture research has introduced a new server paradigm and data centre 

architectural design, the DS-based data centre. The DS has been touted as one of the 

promising solutions for future data centres [5]. The DS design is producing new 

building blocks for the data centres, which can be described as resource pools. These 

pools can be described as a collection of homogenous resources such as processors 

pools, memory pools, IO module pools, and storage pools. Virtual servers are 

constructed on the fly using resources from these pools to suit any incoming VM 

requests [45, 46]. 

Since the conception of the term DS, and the recognised declaration of the 

cooperation between Intel and Facebook to “disaggregate” the server, and as they 

displayed their initial prototype of the “Rack Scale Server” design at the Open 

Compute Summit in 2013 [32], several researchers and industrial organisations have 

attempted to provide different definitions of the DS as well as different levels of 

disaggregation [16] and [47]. In general, “disaggregation” means dividing a 

completely integrated thing (an “aggregate body”) into its component parts. In this 

context, a modern data centre is already disaggregated when compared to self-

contained solutions such as mainframes. 
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The most common and acceptable definition of DS is based on removing the server 

box limits from resources and aggregating server resources in their type respective 

pools. Servers can be constructed dynamically by allocating the specific amount of 

resources from these pools according to the requirements of workload under 

consideration. The hypervisor [35] is the first layer of software installed on a 

virtualised system and has direct access to the hardware resources. Thus, a 

hypervisor enhances resources manageability by interacting efficiently with the 

underlying hardware platform and provisions hardware resources to the VM 

requests, enabling greater scalability, robustness, and performance. In a DS-based 

data centre, the hypervisor or any other implementation needs to be re-architected to 

suit the new resource allocations and connectivity, and needs to match resource 

usage and provisioning to incoming requests. 

Fig. 2-3 highlights the main concept of DS. The design in Fig. 2-3 uses a hybrid 

electro/optical switching fabric in addition to the disaggregated resources pools. 

Therefore, resources both in the electronic IP layer (packet-switched) and the optical 

layer (circuit-switched) are needed. The IP switches are to aggregate traffic from 

resources and each IP switch is connected to an optical switch, which is connected 

to other optical switches by optical fibre links. Optical fibres provide the large 

capacity and fast data transmission required to support the communication between 

the disaggregated resources. Intel Silicon Photonic connectors, SiPh [16], provide 

OEO processing for full wavelength conversion at each node. 
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Fig. 2-3: DS architecture 

 

The growth in data centres and cloud workloads are spurring network vendors to 

rethink both network topologies and more specialised hardware resources; it marks 

data centre efficiency as a hot topic. Thus, systems’ vendors are working on and 

making frequent announcements on providing new networking equipment such as 

silicon photonics [16], as well as new architectural designs such as disaggregated 

systems [32]. 

The emergence of hyperscale data centres over the last decade has motivated the 

development of specialised architectures that partition workloads. These workloads 

can be run on more optimal hardware that suits the workload requirements. The DS-

based data centre has shown its potential in reducing capital expenses, by right-

sizing compute, storage, and network resources to fit each workload requirement, 

and also by reducing power consumption and other operational expenses [6].  

This architecture motivated the adoption of DS as a new server paradigm to be 

implemented in the biggest data centres. According to Intel, the goal for designing 

data centre structure at “rack-scale” is to minimise north-south flow by performing 
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data locality, by managing the placement of compute and storage resources to a row 

or a small group of racks, and by enabling east-west bandwidth on that local 

collection of racks [6]. 

Throughout the literature, the DS design has significant and plentiful advantages that 

can be of direct impact in solving problems facing traditional data centre and server 

designs. For example, modularity, higher packaging and cooling efficiencies and 

higher resource utilisation are among the suggested benefits. Below is an overview 

of the main benefits that DS brings to data centres’ administrators, owners, and users 

[48]: 

Reduces total cost of ownership: DS provides a common platform that is flexible 

for different applications and services, making it simpler to configure components, 

in order to optimise performance, regardless of the nature of the demand. 

Automation: DS drives continuous delivery of applications and services by 

composing pools of resources automatically optimised to support specific 

application and workload demands. 

Agility: can be achieved with DS by providing dynamic and rapid provisioning of 

resources that are specially dedicated for an application and demand workload 

needs. 

High scalability and resource utilisation: the DS design improves performance by 

matching workloads’ demands to resources that best meet the required service 

quality and service levels and that increase resources utilisation; however, resource 

aggregation and pooling combines a cost-effective platform with large shared 

resources, thereby enabling the provisioning of resource-intensive applications. 
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This section discusses the trade-off between cost and performance in building a DS-

based data centre system where resource modules in the data centre are pooled, for 

example, in memory-only, processor-only, IO-only, and storage-only chassis and 

racks. Analysis shows that the disaggregated data centre and server design will have 

a non-trivial performance penalty, and, considering data centre scale, this 

performance penalty could be serious. Increased latency and increased bandwidth 

cost are thought to be the main issues that could be a barrier to disaggregation [37].  

Considering data centre traffic flows (see Fig. 2-4 [38]), the main flow is within the 

data centre traffic, which is a combination of both inter- and intra-rack 

communication flows. The inter-rack traffic is the traffic between racks in the data 

centre and is handled by the data centre communication fabric, and the intra-rack 

traffic is the communication traffic within the same rack, which is carried by the 

rack backplane or rack communication fabric. When disaggregating, all or part of 

the intra-rack traffic will traverse the data centre fabric adding extra latency, extra 

bandwidth requirements, and demanding additional or new control and management 

resources to be used. Thus, it is important to bear in mind that the load on the data 

centre communication network will increase, and hence consideration has to be 

given to the data centre communication network in terms of latency and throughput 

requirements [6]. 
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Fig. 2-4: Main data centre traffic flows [38] 

Disaggregating the server resources will bring extra challenges regarding the data 

centre communication network and control and management systems; thus, the new 

control plane design must identify ways to handle the new resource connections and 

data centre network hierarchy, which must be reflected when planning the data 

centre scheduling algorithms and communication protocols [32]. 

An additional operational cost is exploiting new system components such as optical 

interconnects, which could be a source of increased cost to provide very fast 

communication fabric with huge bandwidth capacity [37]. 

To examine the feasibility and limitations of such a data centre communication 

network for the DS concept, Table 2-1 reviews the main communication types 

between resources within a server and a rack alongside their data rates, latency 

values, and energy consumption specifications [38]. 
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Link Latency  Data Rate Energy 

CPU-to-CPU Bus 5 ns 320 Gb/s 1 pJ/b 

CPU-to-Memory Bus 10-50 ns 800 Gb/s/CPU 25 pJ/b 

CPU-to-Peripherals Bus 1000 ns 128 Gb/s/device 35 pJ/b 

Table 2-1: Typical requirements of a conventional server components [38] 

Examining Table 2-1 clearly shows that the CPU-to-CPU traffic is latency sensitive 

and has a high throughput demand, which implies that it cannot be delegated to the 

external data centre network within the current network performance metrics. 

Therefore, such traffic should be kept within the same rack as much as possible. 

This problem can be downgraded by reducing CPU-to-CPU traffic by fulfilling each 

VM in a single CPU, by using enough CPU cores, or by keeping the communication 

among CPUs within the same CPU rack; however, the data centre scheduler will 

need to consider this when making scheduling decisions. The CPU-to-memory 

traffic is slightly less delay-sensitive than the CPU-to-CPU traffic, but demands a 

high bandwidth. However, these issues can be handled by considering optical 

interconnects, which provide means for fast and high throughput communications, 

and by using cache memory of high capacity or by adding more cache layers [39]. 

For the CPU-to-Peripherals traffic, such as network interfaces and disks, the 

required latency and bandwidth level are much less than the required values for the 

previous links, CPU-to-CPU and CPU-to-memory [41], which means that they can 

be accommodated within a unified network communication fabric, making their 

separation relatively simpler than the CPU-CPU and CPU-memory links [49]. 

Below are some metrics to consider for disaggregation [38]: 
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 Distance of the resource pool, which determines locality of the resources. Given 

that light travels in fibre at (2/3) of the speed of light in free space [50] and 

considering the maximum allowed communication latency, the maximum 

spanning distance between communicating racks should be upper-bounded by a 

specific threshold. 

 Deployment efficiency which calls for detailed understanding of physical / 

logical partitioning of resources for floor planning within the rack, row, and 

data centre. Key questions include how and where the design can be improved 

and if the designs meet  the objectives. 

 Utilisation efficiency is essential and includes the time to deploy an application 

and compose a system, resource utilisation, scaling for pools, and scalability of 

the resource pool. 

 

Data centre disaggregation can fit into any of four main categories: on-board 

(disaggregating server resources), backplane/intra-rack, intra-data centre/inter-rack, 

and inter-data centre links [16]. This section reviews the work on the disaggregated 

data centre with regard to some of these categories. 

On-board disaggregation means disaggregating server resources at the bus level as 

the board contains the server or servers, and connects to the backplane. Thus, this 

kind of disaggregation leads to pools of resources, such as CPU pools, memory 

pools, and IO pools, assembled inside a single rack or in separate racks. 

Researchers from HP Labs, University of Michigan, and Hewlett-Packard Labs [51] 

[33, 48, 52], studied the software and systems implications of disaggregated 

memory. They developed a software-based prototype to emulate disaggregated 
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memory by extending the Xen hypervisor to emulate a disaggregated memory 

design wherein remote pages are swapped into local memory on-demand upon 

access. After that, the group designed a new general architectural building block, a 

memory blade, which enables disaggregated memory across a system ensemble. 

A research group from the Polytechnic University of Catalonia, Barcelona [41], 

presented an Integer Linear Programming (ILP) formulation to optimally allocate 

virtual data center (VDC) requests on top of an optically interconnected 

disaggregated data centre infrastructure. It considered the case where different 

resource blades can be grouped into racks hosting all types of resources where each 

rack holds the total aggregated computing resources of a rack instead of server 

boxes – resource pools inside the rack. 

Disaggregating the backplane link that connects the racks contents to the top-of-rack 

switch results in an architecture where each board is a pool of CPU-only or memory-

only resources. 

In [34, 53-55], the authors presented an FPGA-based switch and interface card (SIC) 

and its application scenario in an all-optical, programmable disaggregated data 

centre network (DCN). It has been explained that this SIC card can be plugged into 

each server directly and it eliminates the need for the electronic top-of-rack switch 

while enabling direct intra-rack blade-to-blade communication to deliver ultralow 

chip-to-chip latency. 

Disaggregating at the inter-rack link level, which involves links between racks 

throughout the data centre, is the most common approach declared by Intel’s Rack 

Scale Architecture [16] when Intel and Facebook declared their Open Compute 

Project at the 2013 Open Compute Summit. This type exemplifies the 

disaggregation of computing hardware from storage and networking hardware. They 
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showed Intel’s photonic rack architecture to illustrate the total cost, design, and 

reliability improvement potential of a disaggregated rack environment of 100Gbps 

links between compute systems and a remote storage node. 

Mellanox Technologies has shown in [49] its InfiniBand switching fabric to 

disaggregate the IO and storage subsystem from the main computing system. 

InfiniBand is a switch-based serial IO interconnect architecture operating at a base 

speed of 2.5 Gb/s or 10 Gb/s in each direction (per port). InfiniBand enables 

“Bandwidth Out of the Box”, spanning distances up to 17m over ordinary twisted-

pair copper wires and it can span distances of several kilometres or more over 

common fibre cable. 

A research group has presented in [56] the design, implementation, and evaluation 

of a PCIe-based rack area network system called Marlin. Marlin is a memory-based 

addressing model for both IO device sharing among multiple hosts and inter-host 

communications, designed to support the communications and resource-sharing 

needs of disaggregated racks. 

In [57] the network traffic in 10 data centres belonging to three different types of 

organizations, including university, enterprise, and cloud data centres has been 

assessed to clarify the network-level traffic characteristics of the data centres. The 

authors have examined the range of applications deployed in these data centres and 

their placement, the flow-level and packet level transmission properties of these 

applications, and their impact on network utilization, link utilization, congestion, 

and packet drops. The observed traffic patterns implication for data centre internal 

traffic engineering as well as for recently proposed architectures for data center 

networks have been described as well. 
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In [58] the authors have reported upon the network traffic observed in some of 

Facebook’s data centres and their main focus was on the contrasting locality, 

stability, and predictability of network traffic in Facebook’s data centres, and their 

implications for network architecture, traffic engineering, and switch design. This 

work is to address the problem of the limited large-scale workload information 

available in the literature, in order to  help researchers and industry practitioners 

when  designing network fabrics to efficiently interconnect and manage the traffic 

within large data centres in an efficient fashion to satisfy the requirements of large 

cloud service providers. 

Inter-Data Centre (peripheral bus): The work emphasised that this is not the normal 

inter-data centre link, but a link purposed specifically to share a resource among data 

centres, eliminating the need for each data centre to perform the same operation [6]. 

A group from University of California, Berkeley, Futurewei Technologies, Santa 

Clara, and ICSI, Berkeley, CA [6], has explored key questions around the data 

centre network support for the disaggregated server, such as the bandwidth and 

latency demands due to disaggregation, the key application and hardware parameters 

that affect these demands and ways to meet these demands in a trial to draw the 

general headlines for implementing this design. They have concluded that the key 

enabling or blocking factor will be the network since communication that was 

previously contained within a single server now traverses the data centre fabric. 

The authors in [42] proposed a cloud architecture that disaggregates resources into 

virtual resource pools to provision virtual machines with the right amount of 

resources. Their cloud architecture creates a distributed and shared physical resource 

layer by providing virtual layer and cloud resource aggregation layer between 

applications and physical servers in real time. 
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At a workshop at OFC 2015, a group of companies including Facebook, Intel CIAN, 

IBM, Infenera, MIT, Mellanox, Corning, and Samtec presented their visions, work, 

and some metrics for the disaggregated data centre [38]. They described their 

designs and visions for the DS with complete design structures that show the 

implications of the DS paradigm in future data centres [38]. 

In [5] a collaboration between Tencent and Intel used a proof-of-concept 

demonstrator to show that disaggregated data centre and resource pooling, even in 

the early stages of development, can introduce better performance and reduced 

power consumption, and can improve the end users experience. They address the 

motivation for server disaggregation and explain the main challenges and the 

findings from the Tencent proof-of-concept. 

A Group has studied in [37] the trade-off between cost and performance in building 

a disaggregated memory system. The group constructed a simple cost model that 

compares the savings expected from a disaggregated memory system to the expected 

costs, such as latency and bandwidth costs, and then identified the level at which a 

disaggregated memory system becomes cost competitive with a traditional direct 

attached memory system.  

A software-defined architecture for the next generation data centre, dRedBox has 

been presented in [59], and a design prototype hardware architecture has been 

presented too. For the design, SoC-based micro-servers, memory modules, and 

accelerators are placed in separated modular server trays interconnected via a high-

speed, low-latency opto-electronic system fabric, and allocated in arbitrary sets in 

order remove the limitations of the monolithic common design of servers.  
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In [36], a group presented preliminary work that shows that optical interconnect 

technology enables CPUs and local memory to be placed metres away from each 

other without sacrificing bandwidth. With alternative architecture options for the 

server memory to CPU interconnect using an optically attached memory (OAM) 

system, the group showed that, with optical interconnect technology, bandwidth can 

remain high, even though CPU and memory are separated. 

 

This chapter presented a general review of energy-efficient approaches in data 

centres, and the motivations for the DS design by giving a brief review of the current 

conventional data centre with its drawbacks. It presented virtualisation and resource 

consolidation as a solution for these drawbacks and gave a review of the DS design, 

with its main benefits and promises, followed by the technical challenges facing this 

emerging data centre architecture. Finally, it gave a complete literature review that 

summarised the work done previously in the literature on disaggregated data centres, 

covering all the disaggregation levels and scenarios done previously. Unlike the 

work done in the literature, our aim is to provide detailed analyses of the impact of 

the physical disaggregation of the server resources on the overall data centre energy 

consumption by considering the VM allocation and resource provisioning in this 

new data centre server paradigm. This will be considered in the remaining chapters 

in this thesis.  
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With the rapid growth of data and processing intensive applications and the shift 

towards the cloud computing model, serious concerns are raised about the power 

consumption of data centres. To improve the energy efficiency of data centres, 

architecture design and hardware design must move in concert. In this chapter we 

evaluate the energy efficiency of VM placement in the data centre considering the 

DS concept as a new design of future data centres. This approach can introduce 

significant improvement for the data centre design where the previously “server 

dedicated components” are now shared among different servers. Based on the model 

insights, we develop heuristics to enable the implementation of the model concepts 

in real time environments. Different VM types have been considered to show the 

impact on the performance and energy efficiency of DS based data centres. We 

propose three types of VMs, memory intensive (MI) VMs, processing intensive (PI) 

VMs and IO intensive (IOI) VMs. 

 

In this section, a data centre comprises of a number of heterogeneous resources 

chosen from a set of known and well-characterised components (processors, 

memory and IO cards). Note that here, and for comparison purposes, we calculate 
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the power consumption of only these resources under the DS concept and under the 

conventional data centre, and leave an in-depth full data centre power consumption 

evaluation in the upcoming chapters. Given the requested VMs, the MILP model 

places VMs in the optimal location for minimum power consumption and tries to 

fully utilise the available resources by packing the resources (processors, memory 

and IO) with as many VMs as they can hold, in order to minimise the data centre’s 

power consumption by reducing the number of working resources. 

The power consumption of a resource is modelled in equation  (3-1). Each 

resource power consumption is composed of two parts, a fixed factor, 𝑋𝑀𝑖𝑛𝑗, which 

represents the idle power of the resource 𝑋, and a variable power term, ∆𝑋𝑗, 

(equation    (3-2))  linearly related to the resource utilisation 𝛿𝑋𝑗 [60]. 

𝑃𝑜𝑤𝑒𝑟 = 𝑋𝑀𝑖𝑛𝑗 + ∆𝑋𝑗 ∙ 𝛿𝑋𝑗  (3-1) 

∆𝑋𝑗 = (  𝑋𝑀𝑎𝑥𝑗 −  𝑋𝑀𝑖𝑛𝑗)    (3-2) 

where   𝑋𝑀𝑎𝑥𝑗  and  𝑋𝑀𝑖𝑛𝑗 are the maximum active power and the idle power of the 

𝑗th resource respectively. In [60] experiments have been conducted on several 

thousands of nodes under different types of workloads and they have shown that the 

predicted power by this model accurately predicts the power consumption by server 

systems with the error below 5% for this linear server power model. 

An idle power is defined as the power consumed by the resource when powered, 

with all links connected (and operating system driver loaded) but without the 

processing or transmission of any data. In practice it is the least amount of power 

required to keep the resource functional. Maximum power consumption is obtained 

by measuring the resource power usage while working at its full capacity. In our 

work we assume that a resource is turned off instead of staying in the idle state when 



  

34 

 

it is not being utilised by any VM. Below are the parameters and variables used in 

the model. 

Sets:  

VM Set of virtual machines 

PR Set of processors 

MR Set of memories  

IOR Set of IO modules 

Parameters:  

NPR Total number of processors 

NMR Total number of memory modules 

NIOR Total number of IO modules 

NVM Total number of VMs 

∆𝑃𝑗 Power delta of processor 𝑗 

∆𝑀𝑗 Power delta of memory 𝑗  

∆𝐼𝑂𝑗 Power delta of IO module 𝑗  

𝑃𝑗 The processing capabilities of processor 𝑗 (GHz) 

𝑀𝑗 Capacity of memory 𝑗 (GByte) 

𝐼𝑂𝑗 Total bit rate of NIC port 𝑗 (Gb/s) 

𝑉𝑃𝑖 Processing demands of VM 𝑖 (GHz ) 

𝑉𝑀𝑖 Memory demand of  VM 𝑖 (GByte)  

𝑉𝐼𝑂𝑖 IO demand of VM 𝑖 (Gb/s) 

𝑃𝑀𝑎𝑥𝑗 Maximum power consumption of processor 𝑗 (W) 

𝑃𝑀𝑖𝑛𝑗 The idle power consumption of processor 𝑗 (W) 
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𝑀𝑀𝑎𝑥𝑗 Maximum power consumption of memory 𝑗 (W) 

𝑀𝑀𝑖𝑛𝑗 The idle power consumption of memory 𝑗 (W) 

𝐼𝑂𝑀𝑎𝑥𝑗 Maximum power consumption of NIC port 𝑗 (W) 

𝐼𝑂𝑀𝑖𝑛𝑗 The idle power consumption of NIC port 𝑗 (W) 

𝑊 Very large number 

𝑒 Very small number 

𝑆𝐿𝐴 Agreed percentage of served VMs according to Service Level 

Agreement (SLA) 

𝑈𝑡𝑙 

 

The maximum allowed utilisation of each of the resources of the 

data centre 

Variables :  

𝜃𝑃𝑖𝑗 Portion of the processor j capability allocated to request 𝑖  

𝜃𝑀𝑖𝑗 Portion of the memory 𝑗 allocated to request 𝑖  

𝜃𝐼𝑂𝑖𝑗 Portion of the the 𝑗th IO port module allocated to request 𝑖 

𝛿𝑃𝑗 The fractional utilisation of processor 𝑗 

𝛿𝑀𝑗 The fractional utilisation of memory  

𝛿𝐼𝑂𝑗 The fractional utilisation of IO port module  

𝑌𝑃𝑖𝑗 𝑌𝑃𝑖𝑗 =1 if processor 𝑗 hosts request 𝑖, otherwise 𝑌𝑃𝑖𝑗=0 

𝑌𝑀𝑖𝑗 𝑌𝑀𝑖𝑗 =1 if memory 𝑗 hosts request 𝑖, otherwise 𝑌𝑀𝑖𝑗=0 

𝑌𝐼𝑂𝑖𝑗 𝑌𝐼𝑂𝑖𝑗 =1 if port 𝑗 hosts request 𝑖, otherwise 𝑌𝐼𝑂𝑖𝑗=0 

𝐾𝑃𝑖 𝐾𝑃𝑖 =1 if request 𝑖 processing requirement is being served, 𝐾𝑃𝑖=0  

if it is blocked  

𝐾𝑀𝑖 𝐾𝑀𝑖 =1 if request 𝑖 memory requirement is being served, 𝐾𝑀𝑖 =0  if 
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it is blocked 

𝐾𝐼𝑂𝑖 𝐾𝐼𝑂𝑖 =1 if request 𝑖 IO  requirement is being served, 𝐾𝐼𝑂𝑖=0  if it is 

blocked 

𝑋𝑃𝑗 𝑋𝑃𝑗 =1 if processor 𝑗 is active, otherwise, 𝑋𝑃𝑗 =0 

𝑋𝑀𝑗 𝑋𝑀𝑗 =1 if memory j is active, otherwise, 𝑋𝑀𝑗 =0 

𝑋𝐼𝑂𝑗 𝑋𝐼𝑂𝑗 =1 if module 𝑗 is active, otherwise, 𝑋𝐼𝑂𝑗 =0 

 

The power consumption of resources in a data centre based on the DS 

architecture and due to the resource provisioning is composed of: 

1) The power consumption of active processors  

∑ ((𝑋𝑃𝑗 · 𝑃𝑀𝑖𝑛𝑗)

𝑗∈𝑃𝑅

+ (∆𝑃𝑗 · 𝛿𝑃𝑗)) 
(3-3) 

2) The power consumption of active memories  

∑ ((𝑋𝑀𝑗 · 𝑀𝑀𝑖𝑛𝑗)

𝑗∈𝑀𝑅

+ (∆𝑀𝑗 · 𝛿𝑀𝑗)) 
(3-4) 

3) The power consumption of active IO ports 

∑ ((𝑋𝐼𝑂𝑗 · 𝑂𝑀𝑖𝑛𝑗)

𝑗∈𝐼𝑂𝑅

+ (∆IO𝑗 · 𝛿𝐼𝑂𝑗) (3-5) 

 

Objective: minimise: 

∑ ((𝑋𝑃𝑗 · 𝑃𝑀𝑖𝑛𝑗
𝑃)

𝑗∈𝑃𝑅

+ (∆𝑃𝑗 · 𝛿𝑃𝑗)) + 

∑ ((𝑋𝑀𝑗 · 𝑃𝑀𝑖𝑛𝑗
𝑀)

𝑗∈𝑀𝑅

+ (∆𝑀𝑗 · 𝛿𝑀𝑗)) + 
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∑ ((𝑋𝐼𝑂𝑗 · 𝑃𝑀𝑖𝑛𝑗
𝐼𝑂)

𝑗∈𝐼𝑂𝑅

+ (∆IO𝑗 · 𝛿𝐼𝑂𝑗)) (3-6) 

Note that objective (3-6) minimises the power consumption by consolidating 

resources into the minimum possible number of resources (due to the presence of an 

idle power component), so the number of the functioning resources is minimised.  

The model is subject to a number of constraints as follows: 

Capacity Constraints:   

𝛿𝑃𝑗 = ∑ 𝜃𝑃𝑖𝑗   ≤ 𝑈𝑇𝐿 

𝑖 ∈𝑉𝑀

 ∀ 𝑗 ∈ 𝑃𝑅 

 

(3-7) 

𝑃𝑗 ∙  𝜃𝑃𝑖𝑗 = 𝑉𝑃𝑖 ∙  𝑌𝑃𝑖𝑗         ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑃𝑅    (3-8) 

 𝜃𝑃𝑖𝑗 ≤ 𝑊 ∙  𝑌𝑃𝑖𝑗 ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑃𝑅 (3-9) 

𝜃𝑃𝑖𝑗 ≥ 𝑒 + 𝑌𝑃𝑖𝑗 − 1    ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑃𝑅 (3-10) 

𝛿𝑀𝑗 = ∑ 𝜃𝑀𝑖𝑗 ≤ 𝑈𝑡𝑙 

𝑖 ∈𝑉𝑀

 ∀ 𝑗 ∈ 𝑀𝑅 
(3-11) 

𝑀𝑗 ∙  𝜃𝑀𝑖𝑗 = 𝑉𝑀𝑖 ∙  𝑌𝑀𝑖𝑗         ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑀𝑅 (3-12) 

 𝜃𝑀𝑖𝑗 ≤ 𝑊 ∙  𝑌𝑀𝑖𝑗 ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑀𝑅 (3-13) 

𝜃𝑀𝑖𝑗 ≥ 𝑒 + 𝑌𝑀𝑖𝑗 − 1    ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑀𝑅 (3-14) 

𝛿𝐼𝑂𝑗 = ∑ 𝜃𝐼𝑂𝑖𝑗 ≤ 𝑈𝑡𝑙

𝑖 ∈𝑉𝑀

 ∀ 𝑗 ∈ 𝑁𝐼𝑂𝑅 
(3-15) 

𝐼𝑂𝑗 ∙  𝜃𝐼𝑂𝑖𝑗 = 𝑉𝐼𝑂𝑖 ∙  𝑌𝐼𝑂𝑖𝑗        ∀ 𝑖 ∈ 𝑉𝐼𝑂, 𝑗 ∈ 𝐼𝑂𝑅 (3-16) 

 𝜃𝐼𝑂𝑖𝑗 ≤ 𝑊 ∙   𝑌𝐼𝑂𝑖𝑗 ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝐼𝑂𝑅 (3-17) 

𝜃𝐼𝑂𝑖𝑗 ≥ 𝑒 +  𝑌𝐼𝑂𝑖𝑗 − 1    ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝐼𝑂𝑅 (3-18) 
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Constraint (3-7) calculates the total processing utilisation of each processor and 

ensures it is less than the allowed maximum utilisation, constraint (3-8) calculates 

the CPU utilisation of each processor per allocated VM, and constraints (3-9) and 

(3-10) allocate each VM to a certain processor.  

Constraints (3-11)-(3-14) repeat steps (3-7)-(3-10) but for the memory resources 

and constraints (3-15)-(3-18) repeat the same steps but for the IO modules. 

 

Slicing Constraints: 

 
  

∑ 𝑌𝑃𝑖𝑗

𝑗 ∈𝑃𝑅

 ≤  1 
(3-19) 

∀ 𝑖 ∈ 𝑉𝑀  

∑ 𝑌𝑀𝑖𝑗

𝑗 ∈𝑀𝑅

 ≤  1 
(3-20) 

∀ 𝑖 ∈ 𝑉𝑀  

∑ 𝑌𝐼𝑂𝑖𝑗

𝑗 ∈𝐼𝑂𝑅

 ≤  1 
(3-21) 

∀ 𝑖 ∈ 𝑉𝑀  

   Constraints (3-19)-(3-21) ensure that the model serves each VM using only one 

processor, one memory and one IO port respectively. If multiple VM copies or VM 

slicing is required, equations (3-19)-(3-21) should be upper bound by an appropriate 

number greater than 1.  

SLA Constraints:  

∑ 𝐾𝑃𝑖  ≥ 𝑁𝑉𝑀 ∙ 𝑆𝐿𝐴

𝑖 ∈ 𝑉𝑀

 
(3-22) 
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𝐾𝑃𝑖 ≤  ∑ 𝑌𝑃𝑖𝑗

𝑗 ∈𝑃𝑅

 
(3-23) 

 

∀ 𝑖 ∈ 𝑉𝑀  

𝑊 ∙ 𝐾𝑃𝑖 ≥ ∑ 𝑌𝑃𝑖𝑗

𝑗 ∈𝑃𝑅

 
(3-24) 

∀ 𝑖 ∈ 𝑉𝑀  

∑ 𝐾𝑀𝑖 ≥ 𝑁𝑉𝑀 ∙ 𝑆𝐿𝐴       

𝑖 ∈ 𝑉𝑀

 
(3-25) 

𝐾𝑀𝑖 ≤ ∑ 𝑌𝑀𝑖𝑗

𝑗 ∈𝑀𝑅

 
(3-26) 

∀ 𝑖 ∈ 𝑉𝑀  

𝑊 ∙ 𝐾𝑀𝑖 ≥ ∑ 𝑌𝑀𝑖𝑗

𝑗 ∈𝑀𝑅

 
(3-27) 

 

∀ 𝑖 ∈ 𝑉𝑀  

∑ 𝐾𝐼𝑂𝑖  ≥ 𝑁𝑉𝑀 ∙ 𝑆𝐿𝐴  

𝑖 ∈ 𝑉𝑀

 
(3-28) 

𝐾𝐼𝑂𝑖 ≤ ∑ 𝑌𝐼𝑂𝑖𝑗

𝑗 ∈𝐼𝑂𝑅

 
(3-29) 

∀ 𝑖 ∈ 𝑉𝑀  

𝑊 ∙ 𝐾𝐼𝑂𝑖 ≥ ∑ 𝑌𝐼𝑂𝑖𝑗

𝑗 ∈𝐼𝑂𝑅

 
(3-30) 

∀ 𝑖 ∈ 𝑉𝑀  

Constraints (3-22)-(3-24) guarantee that the number of served VMs is greater 

than a pre-specified value according to SLA, and constraints (3-25)-(3-27) provide 

similar guarantees as in (3-22)-(3-24) but for the memory resources, while 

constraints (3-28)-(3-30) are concerned in a similar fashion with the IO resources. 
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Active Resources: 

  

𝑋𝑃𝑗 ≤ 𝑊 ∙  𝛿𝑃𝑗  (3-31) 

∀ 𝑗 ∈ 𝑃𝑅  

𝑊 ∙ 𝑋𝑃𝑗 ≥ 𝛿𝑃𝑗  (3-32) 

∀ 𝑗 ∈ 𝑃𝑅  

𝑋𝑀𝑗 ≤ 𝑊 ∙ 𝛿𝑀𝑗  (3-33) 

∀ 𝑗 ∈ 𝑀𝑅  

𝑊 ∙ 𝑋𝑀𝑗 ≥ 𝛿𝑀𝑗  (3-34) 

∀ 𝑗 ∈ 𝑀𝑅  

𝑋𝐼𝑂𝑗 ≤ 𝑊 ∙ 𝛿𝐼𝑂𝑗 (3-35) 

∀ 𝑗 ∈ 𝐼𝑂𝑅  

𝑊 ∙ 𝑋𝐼𝑂𝑗 ≥ 𝛿𝐼𝑂𝑗 (3-36) 

∀ 𝑗 ∈ 𝐼𝑂𝑅  

Constraints (3-31)-(3-36) find the active resources, if the resource utilisation δx is 

larger than zero then the indicator 𝑋 is 1, otherwise 𝑋 is zero. 

 

In this section we develop a heuristic that mimics, in real time, the behaviour of 

the MILP as heuristics typically allow larger problems (here placing VMs in DS 

data centre) to be handled for a given amount of computational resources compared 

to the MILP, due to their lower computational complexity. The energy efficient 

resource provisioning with DS (EERP-DS) mechanism allows the data centre to 
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serve the incoming VMs assuming SLA value of 100%. The flowchart in Fig. 3-1: 

EERP-DS heuristic shows the heuristic which aims to pack incoming VM requests 

into the minimum number of resources so that minimal power is consumed through 

packing and by powering off un-utilised resources. 

Here we define the power factor (PF) which captures the energy efficiency of the 

different disaggregated resources. The PF is the resource ∆𝑃𝑗 divided by the resource 

capacity 𝐶𝑗. Therefore, low PF values reflect high energy efficiency. Note that if the 

idle power is very close to the maximum power for a given resource, then ∆𝑃𝑗  can be 

very small while in reality the resource power consumption may be high. 

Deceptively in this case the power factor can be low while the resource is not energy 

efficient. In our case, the practical power consumption values we used did not lead 

to this situation arising, but it is a condition that has to be checked. The heuristic 

first creates sorted lists for each resource type in an ascending order according to the 

values of their PF as resources with lower PF values are preferred. In a case where 

two resources have the same PF value, the resource with the highest capacity is 

listed first. At the end of this stage, there will be three sorted lists: processor list, 

memory list and IO module list.  

For each VM, starting from the top of the sorted lists, the heuristic then picks one 

resource from each sorted list and checks the chosen resource to determine if there is 

enough capacity on that resource type to serve the current VM request. If any of the 

resources (processors, memory, or IO modules) cannot serve any more VM requests, 

then the heuristic will proceed to the next resource in the corresponding sorted list 

and test it.  

First the chosen processor from the processor list is tested. If the current tested 

processor does not have enough capacity then the heuristic will pick up the next 
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processor from the processor sorted list, and if it has the ability to host the VM, then 

the heuristic will test the selected memory from the memory list. Again, if the 

memory does not have enough capacity to serve the VM under consideration, the 

next memory must be retrieved from the memory list; otherwise the chosen IO 

module must be tested. Finally, if the IO module can accommodate the network 

traffic requirements of the VM under consideration, it will be used directly; 

otherwise the next IO module must be retrieved from the IO list. The heuristic then 

allocates the selected resources to the current VM and updates these resources’ 

remaining capacities. The heuristic proceeds by reading the next VM to be served 

and repeats the same steps to serve all the incoming VMs.  

 

In this section we evaluate the MILP model and the EERP-DS heuristic and 

compare their performances to the CS approach considering the resource 

provisioning when presented with the same set of VMs. 

We built a DS architecture for evaluation by disaggregating the IBM system 

X3650 M3 server [61]. The IBM X3650 M3 server supports 11 processor types with 

different number of cores, and power characteristics. Table 3-1 shows the 11 

processor types with their maximum power draws. The IBM X3650 M3 server 

comes also with three standard memory bandwidth rates.  The memory is a DDR3 

SDRAM with three bandwidth values, where the evaluation in [60] for DDR3, gives 

the memory power consumption, see Table 3-2.  
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Fig. 3-1: EERP-DS heuristic 
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    In practice, and although the data centre may be fully disaggregated into resources 

(processors, memory, IO), these resources are in practice not a single fully 

reconfigurable block. Instead, to ease the resource handling, to ease the mounting of 

resources in racks and to ease the communication requirements, pools of resources can 

be defined. Note that a pool that has a single processor, a single IO card and memory 

is a conventional server.  We consider in this chapter a medium size pool of 

processors made of 6 processors of each of the 11 types in Table 3-1. We plan to 

optimise the size of the pool in future work. The active power consumption of the 

processors is set depending on the system described in [61]. The processor idle power 

consumption is set to 0.7 of its power consumption when fully utilised [60].   

    A pool of memory is made of 3 memory types, see Table 3-2. It contains a total of 

66 memory units where 36% of the used memories operate at 4 GB/s, and 28% 

operate at 8 GB/s, while the remaining 36% operate at 24 GB/s. The system is 

completed with a pool of 66 NIC ports where half of the ports support a rate of 1 Gb/s 

and the remaining are 10 Gbps, see Table 3-3. The numbers of the three used resources 

are equal in order to have a fair comparison with the CS data centres. 

We considered two types of IO ports in the evaluation, 1 Gb/s and 10 Gb/s data 

rates, and their power consumption is based on the work in [62]. As a conservative 

case, we consider the situation where an idle port consumes 0.7 of the power 

consumed when it is fully utilised. The maximum power of each port type is given in 

Table 3-3. Some of the input parameters of the model are given in Table 3-4.  

A VM is characterised by three main requirements, CPU requirement  CPi, memory 

requirement  CMi , and IO requirement  CIOi. In view of the available resources 

capacity, the request types under consideration and the SLA violation avoidance 
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needs, we have estimated the amount of resources that each VM type needs and 

proposed three types of VMs, MI VMs, PI VMs and IOI VMs. The details of the 

resource requirements for each VM type are shown in Table 3-5. 

Processors capacities (GHz) Processors Max. power consumption (W) 

3.46 130 

3.6 130 

2.93 130 

2.66 95 

3.2 95 

2.4 80 

2.53 80 

2.13 80 

2.26 60 

2.13 40 

1.86 40 

Table 3-1: Power consumption and capacity of IBM X3650 M3 server 

Memory Data Rate (GB/s) Memory Max. Power Draw (W) 

4 5.12 

8 10.24 

24 30.72 

Table 3-2: Memory data rate and power consumption 

    The results in Fig. 3-2 are based on our MILP optimisation and compare the power 

consumption of memory intensive virtual machines if these VMs are implemented 
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using a conventional data centre design CS and if they are implemented using a DS 

design. Fig. 3-2 shows that VMs implemented in a data centre using the DS approach 

achieve a best average power saving of 49% (given our set of parameters) when all the 

VM requests are MI. 

NIC Port Rate (Gb/s) NIC Port Max. Power Draw (W) 

1 1.9 

10 21.4 

Table 3-3: Network interface cards data rates and power consumption 

Number of processors 66 

Number of memory Chips 66 

Number of NIC ports 66 

Number of processors types 11 

Number of memory types 3 

Number of NIC port types 2 

Utl value 0.9 

SLA value 100% 

Table 3-4: Input parameters used in the optimisation model 

Request Type 
Processing 

(G CPU Cyclesps) 
Memory (GB) IO (Gbps) 

Processing 

Intensive 
1-3.3 0.05-0.2 0.05-1 

Memory Intensive 0.2-1 1-4 0.05-1 

IO Intensive 0.2-1 0.1-0.5 1-4 

Table 3-5: Resources required by each VM type 
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Considering the MI VMs, the memory requirements are the highest and therefore in 

these VMs memory is used to a much larger extent compared to other processing and 

IO resources utilisation, see Table 3-5. Thus, in the “traditional single box” server, we 

call here CS, the memory requirement of the VM may cause a whole server to be 

dedicated to a single VM, as the memory of the server cannot accommodate more 

VMs. This comes at the expense of losing free space in the processor and the IO port, 

thus most of the servers will host only one VM. However, in DS, the memory, the 

processor and the IO port are limited by the server box boundaries, thus the spare 

processor and the IO ports capacities can be accessed allowing additional VMs to be 

accommodated and leading to improved resource utilisation. 

    It is clear that processors consume the most power and memory resources consume 

the least power, while IO ports power consumption lies between the two. Thus, with 

MI VMs, the number of working processors and IO ports in the DS are much less than 

CS because they can be used efficiently in the DS architecture, which in turn will 

result in high power saving.  

    We optimised the DS infrastructure under processing intensive VM requests, and 

here we achieve about 11% power saving as shown in Fig. 3-3. With the PI VM 

requests the processing requirements are higher than memory and IO requirements, 

thus a large number of processors, which   consume the most power, will be used in 

both CS and DS. Thus, the power saving in this case will come from the memories 

and the IO ports, which explains why we observe a smaller power saving.  

    For IOI VM requests about 24% of the power consumed by CS will be saved when 

implementing DS approach, see Fig. 3-4. With IOI VM type, the bottle neck is usually 

the IO requirements, thus IO ports will not be used efficiently, which affects the use of 
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the whole server in the CS. With IOI VM type, the bottle neck is usually the IO 

requirements, thus IO ports will not be used efficiently, which affects the use of the 

whole server in the CS. However, with the DS the number of working processors and 

memories is less than the number of working processors and memories in CS, which 

results in a good power saving. Nonetheless, this will be less than the power saving 

achieved when serving MI VMs, because the power saving will come from the latter’s 

efficient use of processors and memories. Thus, serving MI requests will be the less 

efficient scenario with the CS, and this will lead to the maximum amount of power 

saved with the DS architecture. The IOI scenario is an intermediate case and serving 

PI requests will result in the minimum power saving.  

 

Fig. 3-2: Power consumption of MI VMs 

 

Fig. 3-3: Power consumption of PI VMs 
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Fig. 3-4: Power consumption of IOI VMs 

 

For the heuristic we use the same parameters used in the evaluation of the MILP 

model but with higher numbers of resources to expand the size of the resource pools 

under consideration and show the DS potential when implemented in big data 

centre. Our EERP-DS heuristic shows a very comparable results to the MILP power 

consumption such that MILP power consumption is only 9% less than heuristic 

power consumption. Reducing the cooling power consumption is implicitly 

considered through limiting the resource’s maximum utilisation.  
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Considering the MI VMs in CS, the memory requirements are the highest and 

may cause a whole server to be dedicated to a single VM as the memory of the 

server cannot host more VMs. To host more MI VMs, more servers need to be 

powered on with high memory utilisation and low CPU and IO port utilisation. The 

spare capacity in the CPU and IO ports of those servers cannot be made available to 

other VMs as these resources are physically bound inside servers that have already 

consumed their memory resource. However, in DS, memories, processors and IO 

 
(b) IOI requests power consumption 

 
(c) PI requests power consumption 

Fig. 3-5: Heuristics power consumption for CS and DS 
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ports are not limited by the server box boundaries, thus the spare processors and IO 

port capacities can be accessed by additional VMs to be accommodated, thereby 

leading to improved resource utilisation. Therefore, with MI VMs, the number of 

working processors and IO ports in the DS based data centre are much lower than in 

CS, which in turn results in a high average power saving of 60% for DS compared to 

CS (given our set of parameters), see Fig. 3-5.a. 

In the same manner, considering IOI VMs in CS results in inefficient use of 

processing and memory resources, which is not the case in DS. Thus, with the DS 

the number of working processors and memories is less than the number of working 

processors and memories in CS, which results in an average power saving of 36%, 

see Fig. 3-5.b. Nonetheless, this will be less than the power saving achieved when 

serving MI VMs due to the low power consumption of the efficiently utilised 

memories compared to the IO ports’ power consumption. Similarly, considering the 

PI VMs results in an average power saving of 11% as shown in Fig. 3-5.c. The 

power saved in this case comes from the efficient usage of low power consuming 

memories and IO ports, which explains why we observe a smaller power saving. 

 

 

In this chapter, we have investigated the energy efficiency of VM placement in data 

centres based on the DS approach and evaluated the power saving of this new server 

paradigm. The approach considered enables the separation of the computing, memory, 

storage and network resources of the server leading to better resource utilisation by 

“composing on the fly” servers with the exact required processing, memory and IO 
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capabilities to accommodate the virtual machines or tasks of interest. We have 

developed a MILP optimisation model, which optimally places VMs in the 

disaggregated data centre with the objective of minimising the power consumption. 

We have compared a data centre with DS architecture to a data centre using the 

normal rack of server units considering the VM placement and resource provisioning 

operations. To gain a good view for the operation of the proposed approach, we have 

considered three types of VMs: PI, MI and IOI in the model. The results show that 

with MI applications, the DS approach achieves the maximum power saving. When 

serving MI requests the MILP achieves (in DS versus CS) an average power saving of 

49% and for IOI requests the average power saving is 24%, while serving PI request 

results in 11% average power saving under the set of typical parameters and 

conditions we considered. For real time implementation, a simple heuristic is 

developed based on the model insights with comparable power values with the MILP 

model. The heuristic achieved power savings of 38% (MILP 49%), 18% (MILP 24%), 

and 10% (MILP 11%) for the MI, IOI, and PI respectively. These results considered 

20 VM requests (in DS versus CS) due to the high computational complexity of 

MILP. Furthermore, EERP-DS heuristic results showed that for extended data center 

size and serving big numbers of VMs (5000 VMs) the average power savings were 

60% when serving MI requests, 36% for IOI requests and 11% when serving PI 

requests (under the set of typical parameters and conditions we considered).  
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In this chapter we present our photonically enabled design, which uses Intel’s 

new photonic interconnect approach [16]. The design shares the memory and IO 

modules among multiple processors to form resource pools connected through a 

distributed switching fabric. The concept of distributed switch functionality and 

modular architecture design supports high granular resource deployment approaches 

which allow for greater resilience, upgradability, and scaling up a VM can be done 

directly and seamlessly with this modular architecture. This architecture can 

potentially enable re-partitioning of the resources in such a way that system 

resources can be better shared between different compute elements. 

Based on the ideas and guidelines given in [16] and [38], we have designed our 

modular architecture for the disaggregated server. We propose a new interconnect 

topology to support the communication between the disaggregated server blocks. 

Given a data centre system, the main communication components are inter and intra 

rack communications. Considering the inter rack communications, the 

communicating units (e.g. servers or disaggregated devices) are located in different 

racks, while, for the intra rack communication, these communicating units are 

located within the same rack. Thus, for DS the communication that were confined 

inside single servers are now an inter-rack traffic and traverse the whole data centre 

communication fabric.  
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To show the functionality of the suggested architecture and clarify its 

performance, we will define each type of these communications while we describe 

our design. Also we will show how each part of the architecture will perform its 

assumed function to support these communications. The following sections detail all 

the distributed components, focusing on each part of the architecture and the 

interconnecting components. 

 

In this section we highlight the main components required to establish an end to 

end connection and guarantee fast and durable communication path from source to 

destination based on our novel design for the DS architecture. In the literature, very 

few have considered full server disaggregation, the most common work is by 

disaggregating the IO and storage only rather than memory disaggregation, or by 

considering virtual resource sharing as a mean for disaggregation. We are the first to 

disaggregate without changing the CPU interface as we are considering the splitting 

of the same memory controller and letting the CPU, memory and IO to see the same 

old interfaces. The first component to consider is the memory controller [63]. In this 

design, we split the memory controller into three functional blocks. The first block is 

attached to the CPU itself, named CPU attached memory controller (CPUMC), and 

the second block is general to the whole memory rack, named middling memory 

controller (MMC), while the last block is attached to the memory module directly 

and is the memory attached memory controller (MEMC). Before we present our new 

disassembled memory controller (DMC), we need to examine the current classical 

memory controller. Fig. 2-1.a displays the complete architecture of the current 

memory controller [63]. It is mainly composed of two segments, the front end and 
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the back end. While the front end is independent of the memory module type and 

provides an interface to the back end segment of the memory controller, the back 

end is memory type dependent. It translates requests from the front end to the target 

memory.  

Functions such as buffering and instruction mapping and sequencing are 

performed in the front end part. This consists of buffers to store memory requests 

and responses. The buffers are attached to multiplexers/demultiplexers to 

send/receive one data word at a time [64]. The memory mapping decodes the 

memory address from the CPU address view to the memory address view (virtual 

memory to physical memory) and the arbiter decides the sequence in which requests 

from the CPU can access the memory modules. Thus, memory access requests are 

queued in the arbiter. The back end command generator generates the commands for 

the target memory. It is memory type dependent, thus we will keep it attached to the 

memory, and it is customised to handle different timings so that different 

components having different clock rates can access the same memory module.  

When disassembling the memory controller we construct the three functional 

blocks shown in Fig. 4-1.b. The first block of Fig. 4-1.b, starting from the left is the 

CPU directly attached to the CPUMC as the CPU needs to see the same old 

interface. Buffers from the memory controller are attached to the CPU directly and 

data are being selected from these buffers to be sent to their destination memory 

rack. In this block we have added a packetiser [65], after multiplexing the incoming 

memory access requests from the CPU. The packetiser’s role is to packetise the 

memory controller data to be switched between the CPU rack and the memory rack. 
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On the other hand, the depacketiser puts the responses from the memory in normal 

data form to be read by the CPU.  

The block in the middle is the MMC where the memory mapping and the arbiter 

functional blocks are integrated with the top of memory rack switch. The memory 

mapping and the switch arbiter form the control plane of the switch. When receiving 

memory access requests, in packets forms, the control plane of the memory 

controller reads the header of the packets and according to the ID of the destination 

memory module, a path is established to the intended memory module. Regarding 

the memory management, we assume its functionality will be added to the 

functionality of the control plane of the MMC and any changes to the management 

and control system can be manage through the control plane of the MMC. 

 

 
(a) Classical Memory Controller 
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(b) Disassembled Memory Controller 

Fig. 4-1: Memory controller 

Finally, the command generator is attached directly to the memory modules to 

form the MEMC as shown in Fig. 4-1.b. It generates commands to read from/write to 

the memory through the control path for control signalling, and through the data 

path for receive and send data. 

 

We have designed a modular software defined architecture that can replace the 

traditional single rack of servers, with three racks, namely CPU rack, memory rack 

and IO rack. These racks are connected and communicate using the new 

communication fabric described. In this architecture our DS design is built up by 

disaggregating the server into its main components where the switching between the 

racks is accomplished in a distributed manner through the use of the previously 

mentioned components in Table 4-1. 

Optical Connectors (SiPh) Intel Silicon Photonic interconnects [16]  
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MEXC 

Electronic switch that grooms different 

CPUs’ traffic to access RAM racks  

IOXC 

Electronic switch that grooms different 

CPUs’ traffic to access IO racks  

IO Packet Engine IO adapter [66] 

IO CTRL IO controller  

OXC Switch TOR optical switching units [52] 

DMC Blocks Disassembled memory controller blocks 

Table 4-1: Main components in our DS design 

Starting with the CPU rack, in this implementation, the new photonic 

interconnects and fibre cables are used to connect the CPUs throughout the rack via 

a point-to-point to a top of rack electronic memory switch (MEXC). These intra-

rack connections are all optical, i.e. different wavelengths are used for the set of 

computing trays in each rack.  

In this design the computing systems have been configured in trays, each tray 

contains a single CPU die and its associated cache memory and control. The control 

consists of CPUMC and PCIe interface connecting the CPU with the IO packet 

engine. Thus both PCI and Ethernet networking protocols can be implemented in the 

same rack system, all enabled by the functionality of the MEXC and IOEXC 

switches, using light as the transmission medium over fibre channels.  

Two IO packet engines are used in this design, one for each side of the CPU-IO 

link. This serial interface is configured to transfer the data, address and control 

information, required to communicate with external IO modules such as hard disks 

and Ethernet ports using a serial packetised protocol. The CPU side IO packet 
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engine provides an interface to the CPU and supports the IO switch IOEXC on top 

of the CPU rack, by packetising/depacketising the IO control/data signals, to be sent 

to their intended destination.  The IO side IO packet engine provides an interface to 

peripheral devices such as IO cards to support the communication between the 

disaggregated resources. This relies on the design idea given in [49], where the IO 

modules are disaggregated from the rest of the server box.  

Due to differences between the memory and IO packet formats two separate 

switches have to be implemented, one for the CPU-memory and the other for the 

CPU-IO communications. Another reason for separating the TOR Ethernet switches 

is that the CPU-Memory communication is latency intolerant. Here application 

specific switches have to be used, which are normally expensive but are high 

performance, in contrast to the CPU-IO traffic which is latency tolerant and 

commodity switches can be used to transfer such a traffic. Furthermore, the 

separation of the two forms of traffic reduces the load on the bottleneck MEXC and 

results in fast communication. These switches are very important for traffic 

grooming to collect traffic from different CPU cards to optimise the number of 

wavelengths used in the optical layer. These switches can be programmed to assign 

all traffic associated with a particular CPU to a specified port. The switch is 

programmable to allow software based implementation of the protocols used for 

communications at any particular port. The output from these switches are fed into 

an OXC switch which is the gateway for the rack to connect it with its neighbouring 

racks. 



  

60 

 

 

Fig. 4-2: DS architecture 

The connecting inter-rack links, linking the OXCs, are all optical to achieve high 

bandwidth, low latency data transmission and simplicity of wiring by using fewer 

number of cables/fibres which is an essential issue for certain dense applications. 

The number of output ports of each WDM OXC switch depends on the number of 

neighbours of the rack where the switch resides, where these outputs are connected 

to its neighbouring OXCs.  

In the memory rack, starting from the top, the OXC is connected to the middling 

memory controller via the fibres and silicon photonic interconnects. The middling 

memory controller, in turn, provides a path to the selected memory module. The 

middling memory controller combines both the switching and the MMC 

functionalities. After switching, the data are sent to the MEMC attached to the 

required memory module, optically.  
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Additionally, the design supports direct memory access (DMA) such that the 

memory rack can communicate with the IO rack directly without interrupting the 

busy CPU. This is because the memory and IO racks are interconnected through 

their optical switches, either by directly bypassing the electronic switches of the 

intermediate racks via a cut-through lightpath in the bypass scenario [67], or through 

the intermediate electronic switches, in a non-bypass scenario, i.e., all the data 

carried by the lightpaths is processed and forwarded by electronic switch [67]. 

The IO rack structure is relatively similar to the memory rack and it is 

disaggregated in a similar way to what is done in [49], with the use of the IOEXC to 

support the OXC. All the communication links here are optical to achieve fast and 

high bandwidth transmission. In this rack, the WDM OXC on the very top of the IO 

rack is connected to the electronic switch on top of the IO modules, IOEXC, and the 

IOEXC is connected optically to the different IO modules, which reside in the IO 

rack, through their packet engines and passing their IO controllers. 

Communication integrity, control and management are provided by a global data 

centre operating system (GOS). This operating system is a general control layer that 

has an inclusive view for the whole disaggregated racks with their connectivity in 

order to be able to provide fluency in communication and manage the connectivity. 

A hypervisor which is a software layer that runs on top of the hardware resources 

and provides virtual partitioning capabilities to higher-level virtualisation services 

can be coupled with the GOS. The Hypervisor enables the GOS to supervise and 

multiplex multiple operating systems to maintain and control the entire resources at 

all times and enable different operating systems to operate cooperatively. 
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CPU-to-CPU communication is managed by the top of memory rack electronic 

switch, MMC, and the MEXC, as communicating CPUs will interconnect through 

the remote memory modules, shared memory, they are using [68]. CPU-Memory 

rack communication is performed by mutual functionality between the OXCs, DMC 

blocks and the MEXC. The CPU-IO communication is facilitated by the 

functionality of IO packet engines on both racks to support the switching fabric 

implemented by the IOEXCs and the OXCs.  

In brief, in the CPU rack, there are CPU trays whose traffic is aggregated using 

an electronic switch and is forwarded to the destined rack through optical layer 

switching using the OXC switch. 

 

This section provides a comprehensive description of the design components 

highlighting the communication patterns and traffic flows between the disaggregated 

resources with some implementation suggestions. 

In our new design, packets have special packet formats. The CPUMC 

encapsulates the memory address and control information like Read, Write, number 

of successive bytes etc, as an Ethernet packet for communication between the 

processor and memory modules that are located in different racks. For example, a 

packet sent from a CPU contains an address part (header) and data (payload). The 

address contains, the IP of the destination rack and the ID of the specific module 

memory or IO, which the CPU wants to access. These are provided by the data 

centre global operating system. The rack IP is used by the CPU rack MEXC or 
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IOEXC switch, to forward the packet to the destination rack. On receiving the 

packet at the destination rack, the top of rack, MMC or IOEXC, reads the specific 

module ID and forwards the packet to its right destination module.  

Recall that our design is a packet switch based communication fabric where all 

the communication passes through the electronic (Ethernet) TOR switches. For high 

performance computing, such as the DS data centre, low latency switching is a key 

element to enable upper layer applications to get their job done as quickly as 

possible, thus, switch latency is becoming a very critical factor. Ethernet switching 

latency is defined as the time it takes for a switch to forward a packet from its 

ingress port to its egress port. Thus choosing the right switch for this job needs to be 

done with extensive care considering the main factors related to latency mentioned 

earlier. Many factors can affect the switch latency such as [50]: 

1) Switching method: cut-through or store-and-forward: With Store-and-forward the 

switch stores the received data in memory at the ingress of port, upon receiving 

the entire packet frame the switch then transmits the data frame using the 

appropriate egress port(s). This switching method introduces a relatively high 

latency which is proportional to the size of the frame being transmitted and 

inversely proportional to the bit rate. In contrast, with cut-through the switch 

starts to send the packet as soon as the destination becomes known, normally 

using the first 6 bytes, eliminating the need for the whole packet to be read into 

the switch. Obviously cut-through switching can achieve much faster 

performance and provides lower latency.  

2) Wireline Latency: fibre transmits data at about ⅔ of the speed of light [50]. Thus 

travelling long links makes this delay more significant. Note that for the distances 
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involved in our DS design which could traverse a maximum of few meters, this 

delay becomes trivial compared with other contributors to latency.  

3) Traffic patterns and packet size: different traffic patterns from full-mesh to port 

pair can affect the load on the switch and eventually the switch latency. The 

difference in latency between the most complicated configuration, mesh, and the 

simplest configuration, port pair, can be huge (300-500% or even higher) [69]. 

On the other hand, the packet size can affect the latency, long packets take more 

time in switching and may delay other packets. 

4) Traffic rate: describes the change from the physical line rate of the switch port to 

the potentially significantly lower throughput of the data flowing through the 

switch ports. Reducing the traffic flow through the switch reduces the switching 

latency. 

5) Number of utilised switch ports: change from the fully loaded configuration 

where all ports are used, to only few working ports affects the latency. Having a 

lower number of working ports means having less load which in turn reduces the 

switching latency. 

In addition, the internal switching fabric of the switch (the switch fabric consists 

of silicon that implements the store and forward engine, MAC address table, and 

VLAN, among other functions) will participate in the total latency introduced by the 

switch. Thus incorporating high performance and application specific switching 

components introduces a favourable impact on the total data centre performance 

[50]. 

In relation to the implementation of the design, we describe here some proposals 

and visions that can further reduce the total latency in our design: (i) we suggest the 

use of reduced switching protocol overhead and simple packet format, due to the 
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topology and data nature, which will jointly help in reducing the total system 

latency; (ii) our switches could be designed specifically for certain packets formats, 

like the CPU-MEM and CPU-IO and MEM-IO, instead of generic IP switches (iii) 

we propose the use of flexible protocol formats to handle different applications that 

have different latency restrictions. Thus for latency tolerant applications we allow 

the use of implicit circuit switching by establishing dedicated channels for a given 

time for this specific application; (iv) the use of MPLS as a simple switching 

technique or implicit circuit switching with time division multiplexing (TDM); (v) 

implementing optical switching (circuit, packet, and burst switching), as fast and 

reliable switching technique, which will also eliminate the need for some of the 

optical transceivers which perform optical to electrical to optical conversion when 

electronic switches are used. The elimination of the packetiser / depacketiser is also 

attractive; (vi) finally by looking at the latency reduction trends in the last several 

years in Ethernet switches, attributed to new advanced switching architecture design 

and improved silicon technology, the Ethernet switch latency is decreasing from 

double-digit milliseconds to sub-1 microsecond [69]. With this trend it is highly 

likely that the Ethernet switch latency will decrease in future to the point that fits the 

DS requirements.  

In response to the metrics given in Fig. 4-3, we suggest here several low latency 

switches showing that switches with the required performance exist. These switches 

include for example: 

The Cisco Nexus 3064 switch: Cisco has introduced an ultra-low latency of less 

than a microsecond, low-power, dense switch, the Cisco Nexus 3064 switch, part of 

the unified fabric family [70]. 

http://www.cisco.com/en/US/solutions/ns340/ns517/ns224/ns945/unified_fabric.html


  

66 

 

The Cisco SFS 7000P: the Cisco SFS 7000P is a new class of data centre 

switches that delivers scalable, high-performance, low-latency server switching with 

less than 200 nanoseconds (ns) of port-to-port latency for high-performance server 

clusters of all sizes [71]. 

Mellanox M4001Q 40Gb/s Infiniband Switch:  the SwitchX® M4001Q QDR 

and M4001F FDR InfiniBand blade switches for Dell PowerEdge M-series chassis 

delivers superior performance for applications that demand the highest bandwidth 

and lowest latency, a port-to-port latency of 170ns [72]. 

 

Fig. 4-3: Key metrics for disaggregation [38] 

In the following, we discuss the possibility of replacing the electronic switches in 

our design by optical switches, i.e. full optically switched disaggregated data centre.  

One of the suggestions is to use full optical switching in our design. Implementing 

full optical switching can reduce the problem of switching latency given that optical 

switches can have very low latency. Additionally, implementing optical switching 

can eliminate the need for electrical to optical transceivers at some points. This can 
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reduce the total transmission latency and power consumption. However, moving to 

optical switching has its own drawbacks such as the potential high cost associated 

with the new technologies used. Below are some optical switching techniques with 

some real world implemented switches that can be useful in the implementation of 

our design. 

Optical circuit switching: is a mature technology where data are transmitted in 

the form of optical signals and the transmission paths are point-to-point connections 

such that a dedicated path is established between communicating ends for the 

communication period. Optical circuit switching can be fast, however the 

communication patterns between the disaggregated resources are of high diversity 

throughout the day or over different days. Thus, this technique is useful for VMs 

that are maintained over long time periods, as for short time VMs, the path 

establishment frequency increases which might lead to performance degradation due 

to the associated latency and path set up time. Current switches such as the S320 

optical circuit switch [73], by CALIENT, delivers sub-60 nanosecond (ns) packet-

streaming latency performance, according to recent tests. Being inherently point to 

point technique, this approach might limit the number of memory modules assigned 

to each CPU. 

Optical packet switching: has been researched over the last two decades, yet it 

has not been deployed in commercial networks. The main obstacle facing optical 

packet switching is the lack of optical buffers, however recirculating optical buffers  

[74], electronic buffers with O/E/O conversion [75] and slow light technologies [76] 

are promising techniques. There have been some implementations of optical packet 

switching with latencies of 15.3 ns [77], and 25 ns [78]. The EpiPhotonics' unique 

http://www.calient.net/
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PLZT waveguide technology [79] enables a new generation of efficient and ultra-

fast photonics with potent advantages such as ultra-fast switching (< 5~10 ns) 

making it a potential base for implementing an optical packet switch [80]. 

Optical label switching: is a specific implementation of optical packet switching 

where each packet is given a label and the switching decision is made after the 

examination of the label assigned to each packet.  The switching occurs at the data 

link layer rather than at the network layer, thus switching is much faster. An optical 

label switch for WDM optical packet switching with latency of 105 ns has been 

developed [81].  

Optical burst switching: is implemented by aggregating the data packets into 

data bursts at the edge of the network to form the data payload. These bursts are 

transmitted optically after extracting the routing control signals from the data packet. 

The routing control signals are transmitted optically on a special control channel 

while the payload data is transmitted on a different channel(s). The communication 

channel is established for the duration of the burst and is subsequently released. The 

signalling stream is checked at each intermediate node while the data burst can cut 

through intermediate nodes. This form of switching can be useful for memory-IO 

communication which is typically bursty in nature (e.g. file downloading) unlike the 

CPU-MEM communications which is not usually bursty, i.e. is typically a 

continuous flow of read/write commands [82]. 

In conclusion, the best approach is to choose the one that best fits the application 

requirements and network restrictions, from the sets of implementation 

recommendations listed in the previous sections. Having large L1, L2 or even L3 
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caches reduces the impact of the main memory latency since the CPU can retrieve 

and execute new data easily from its caches. 

For the memory modules, we propose the use of high performance components to 

overcome the latency and communication delay bottlenecks. DDR4 [83] is the latest 

version of RAM technology, offering a range of improvements over its predecessor, 

DDR3 [84], such as greater range of available clock speeds and timings, lower 

power consumption. Having fast memory can speed up the whole system operation 

given that latency is a crucial point in DS design. Concerning energy efficiency, 

DDR4 reduced energy consumption makes it a good candidate for our design 

implementation.  

 

This chapter examined the traditional monolithic CS design and compared it to a 

new design paradigm, the DS data centre design, and investigated the advantages of 

the DS design over traditional CS design. The DS design arranges data centres 

resources in physical pools such as processing, memory and IO module pools; rather 

than packing each subset of such resources in a single server box. We presented our 

new design for the photonic DS based data centre architecture supplemented with a 

complete description of the architecture components and communication patterns. 

Our new DS architecture has been built using some new functional components in 

addition to some conventional components that can facilitate the communication and 

connectivity among the disaggregated resources.  Finally, some recommendations 

for the design and implementation have been suggested focusing on the 

requirements, the capabilities of different switching and implementation 

technologies and the challenges that can face this architecture. 
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In the literature a number of energy efficient inter data centre communication 

networks and architectures have been proposed and studied [85-87], however, data 

centre energy management is still a hot topic for both industry and academia. We 

believe that implementing the DS based data centres architecture can bring a variety 

of benefits considering different prospects including improved energy efficiency. In 

this chapter we focus on the energy efficiency gains of resource provisioning and 

VM allocation in a DS based data centre. Data centres are large computing facilities 

built for applications that have very diverse resource requirements and are supposed 

to last for 15 to 20 years. Some applications are network intensive, such as video 

streaming applications, and others are latency sensitive and/or CPU intensive, such 

as web search. The loads on a data centre vary throughout the day and are related to 

our daily life events. This in turn creates challenges in attempting to reduce power 

consumption while maintaining the data centre’s performance. Precise resource 

provisioning and management directly influence the overall data centre energy 

efficiency, and are of extreme importance in data centre design. Under provisioning 

of data centre resources means that resources will be the bottleneck, while over 

provisioning data centre resources means a loss in power and capital. Thus, accurate 

provisioning is of high importance and motivates data centre efficient design. Our 
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vision is that implementing DS to provide a solution for the problem of good 

resource provisioning can result in pleasing outcomes. 

Most previous work in the area of resource provisioning in data centres focused 

on dealing with the VM itself, such as slicing [21], queuing, and migration [88], and 

multiple VM multiplexing [44]. In this chapter and due to the limitations of current 

server design, we study the DS approach which can improve the data centre resource 

provisioning and resource utilisation. Thus, the aim is an efficient data centre in 

terms of power consumption and performance. 

 In the following paragraphs, we describe the type of the data centre we 

considered and how we can account for the power consumption associated with a 

requested VM running in the data centre. We present details of the assumptions and 

system configuration for the resource provisioning and VM placement using 

disaggregated resources. Each VM request is identified by a unique id, denoted by 

index 𝑖, and each CPU, memory and IO module in the data centre is similarly 

identified by a unique id, denoted by index 𝑗. Throughout the rest of the work we 

use VM and VM requests interchangeably to refer to requested resources by a VM.  

With the optimisation of the VM placement in DS based data centres, 

consideration has to be given also to the inter rack communication power 

consumption considering the new DS design structure. In the CS data centre, 

resource utilisation may not be as efficient as in the DS data centre, however the 

traffic which used to be contained within the same server or the same rack in CS 

data centre, now typically navigates through several racks spanning part of the data 

centre fabric [6].  



  

72 

 

 

As explained in Fig. 2-3 and in Chapter 4, each processing resource rack is served 

by two electrical switches, one for CPU-Mem communication and the other for 

CPU-IO communication; and on the top of the rack there is an optical switch. The 

memory rack and IO rack are each served by a single electrical switch and a top of 

rack optical switch. All optical switches on top of the racks are connected in a semi 

mesh connection. Inside each rack the transceivers [89] shown in Fig. 4-2, SiPh, 

support each port in each electronic switch. Each link is supported by transceivers 

and  packetisers (packet engines for communications with IO modules) [90] at each 

end, one next to the source resource and one next to the destination resource. In 

addition an optical Mux/Demux [91] is added after the transceivers at the link ends 

near the resources. As each transceiver operates at 100 Gb/s in our design and a 

single resource traffic could exceed this 100 Gb/s, more transceivers can be used by 

a single resource, imposing the need to add multiplexing units. For the added 

functionalities of the memory mapping and arbiter to the MMC, we consider an 

additional 5 W to each working MMC to account for the power consumption of 

these units. 

 VMs demand resources in both the IP layer and the optical layer, in addition to 

the underlying DS resources. For evaluation, we define the following sets, 

parameters and variables:  

Sets:  

𝑁𝑅 Set of all racks 
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𝑃𝑅 Set of CPU racks 

𝑀𝑅 Set of memory racks 

𝐼𝑂𝑅 Set of IO racks 

𝑁𝑎 Set of neighbour racks of rack 𝑎 

𝑉𝑀 Set of VMs to be served 

𝑁𝑃 Set of CPUs in each CPU rack 

𝑁𝑀 Set of memories in each memory rack 

𝑁𝐼𝑂 Set of IOs in each IO rack 

Parameters:  

𝑎 𝑎𝑛𝑑 b Denote end points of a physical fibre link in the optical layer 

𝑁𝑉𝑀 Total number of VMs 

𝑃𝑅𝑂 The CPUs processing capabilities (GHz) 

𝑀𝐸𝑀 Memory capacity of each memory module (GB) 

𝐼𝑂 Total transmission rate of each IO module (Gbps) 

𝑉𝑃𝑖 Processing demand of VM 𝑖 (GHz) 

𝑉𝑃𝑀𝑖 CPU-Memory traffic demand of VM 𝑖 (GBps) 

𝑉𝑀𝑖 Memory demand of VM 𝑖 (GB) 

𝑉𝑀𝐼𝑂𝑖 Memory-IO traffic demand of VM 𝑖 (Gbps) 

𝑉𝐼𝑂𝑖 IO demand of VM 𝑖 (Gbps) 

𝑉𝑃𝐼𝑂𝑖 CPU-IO traffic demand of VM 𝑖 (Gbps) 

𝐷𝑎𝑏 Distance between rack pair (𝑎, 𝑏) (m) 
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∆𝑃 Power Factor of the CPU (W), ∆𝑃 = 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛 

∆𝑀 Power Factor of the memory (W), ∆𝑀 = 𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛 

∆𝐼𝑂 Power Factor of the IO module (W), ∆𝐼𝑂 = 𝐼𝑂𝑚𝑎𝑥 − 𝐼𝑂𝑚𝑖𝑛 

𝑃𝑚𝑎𝑥 Power consumption of fully utilised CPU (W) 

𝑃𝑚𝑖𝑛 The idle power consumption of the CPU (W) 

𝑀𝑚𝑎𝑥 Power consumption of fully utilised memory (W) 

𝑀𝑚𝑖𝑛 The idle power consumption of the memory (W) 

𝐼𝑂𝑚𝑎𝑥 Power consumption of fully utilised IO module (W) 

𝐼𝑂𝑚𝑖𝑛 The idle power consumption of an IO module (W) 

𝑃𝑅𝑆 Electrical switch port power for source nodes (W) 

𝑃𝑅𝐼 Electrical switch port power for intermediate nodes (W) 

𝑃𝑂 Optical switch power (W) 

𝐵 Wavelength rate (Gbps) 

Variables:  

𝜃𝑃𝑖,𝑗
𝑝

 Portion of the processing capacity of processor j in processors rack 𝑝 

allocated to request 𝑖  

𝜃𝑀𝑖,𝑗
𝑚  Portion of the memory 𝑗 in memory rack 𝑚 allocated to request 𝑖 

𝜃𝐼𝑂𝑖,𝑗
𝑖𝑜  Portion of the transmission rate of port 𝑗 in IO rack 𝑖𝑜 allocated to 

request 𝑖 

𝛿𝑃𝑗
𝑝
 Total utilisation of processor 𝑗 in CPU rack 𝑝 
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𝛿𝑀𝑗
𝑚 Total utilisation of memory 𝑗 in memory rack 𝑚 

𝛿𝐼𝑂𝑗
𝑖𝑜 Total utilisation of IO module 𝑗 in IO rack 𝑖𝑜 

𝑌𝑃𝑖,𝑗
𝑝

 

 

𝑌𝑃𝑖,𝑗
𝑝 = 1 if processor 𝑗 in processors rack 𝑝 hosts request 𝑖, 

otherwise 𝑌𝑃𝑖,𝑗
𝑝 = 0 

𝑌𝑀𝑖,𝑗
𝑚  

 

𝑌𝑀𝑖,𝑗
𝑚 = 1 if memory 𝑗 in memory rack 𝑚 hosts request 𝑖, otherwise 

𝑌𝑀𝑖,𝑗
𝑚 = 0 

𝑌𝐼𝑂𝑖,𝑗
𝑖𝑜  𝑌𝐼𝑂𝑖,𝑗

𝑖𝑜 = 1 if port 𝑗 in IO rack 𝑖𝑜 hosts request 𝑖, otherwise 𝑌𝐼𝑂𝑖,𝑗
𝑖𝑜 =

0 

𝐾𝑖 𝐾𝑖 =1 if request 𝑖 is served, 𝐾𝑖=0  if it is blocked  

𝐾𝑖𝑝 𝐾𝑖𝑝 =1 if request 𝑖 processor requirements are served, 𝐾𝑖𝑝=0  if  

request 𝑖 is blocked  

𝐾𝑖𝑚 𝐾𝑖𝑚 =1 if request 𝑖 memory requirements are served, 𝐾𝑖𝑚=0  if 

request 𝑖 is blocked  

𝐾𝑖𝑖𝑜 𝐾𝑖𝑖𝑜 =1 if request 𝑖 IO requirements are served, 𝐾𝑖𝑖𝑜=0  if request 𝑖 is 

blocked  

𝑋𝑃𝑗
𝑝
 𝑋𝑃 =1 indicates that processor 𝑗 in processors rack 𝑝 is active, 

otherwise, 𝑋𝑃 =0 

𝑋𝑀𝑗
𝑚 𝑋𝑀𝑗 =1 indicates that memory j in memory rack 𝑚 is 

active, otherwise, 𝑋𝑀𝑗 =0 

𝑋𝐼𝑂𝑗
𝑖𝑜 𝑋𝐼𝑂𝑗

𝑖𝑜 =1 indicates that port 𝑗 in IO rack 𝑖𝑜 is used, otherwise, 𝑋𝐼𝑂𝑗
𝑖𝑜 
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=0 

𝑇𝑉𝑀 Total number of served VMs 

𝑄𝑃𝑀𝑝 Number of aggregation ports of the CPU-MEM electrical switch at 

processor rack 𝑝 

𝑄𝑃𝐼𝑂𝑝 Number of aggregation ports of the CPU-IO electrical switch at 

processor rack 𝑝 

𝑄𝑀𝐼𝑂𝑚 Number of aggregation ports of the electrical switch at memory rack 

𝑚 

𝑊𝑃𝑀𝑎,𝑏 Number of wavelengths that carry the CPU-MEM traffic in physical 

link (𝑎, 𝑏) 

𝑊𝑃𝐼𝑂𝑎,𝑏 Number of wavelengths that carry the CPU-IO traffic in physical 

link (𝑎, 𝑏) 

𝑊𝑀𝐼𝑂𝑎,𝑏 Number of wavelengths that carry the MEM-IO traffic in physical 

link (𝑎, 𝑏) 

𝑊𝑃𝑀𝑎,𝑏
𝑝,𝑚

 The number of wavelengths of lightpath (𝑝, 𝑚) passing through a 

physical link (𝑎, 𝑏); 

𝑊𝑃𝐼𝑂𝑎,𝑏
𝑝,𝑖𝑜

 The number of wavelengths of lightpath (𝑝, 𝑖𝑜) passing through a 

physical link (𝑎, 𝑏); 

𝑊𝑀𝐼𝑂𝑎,𝑏
𝑚,𝑖𝑜

 The number of wavelengths of lightpath (𝑚, 𝑖𝑜) passing through a 

physical link (𝑎, 𝑏); 

𝑃𝑀𝑖
𝑝,𝑚

 Indicator to connect the ith VM CPU-MEM traffic to the relevant 
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CPU and MEM racks 

𝑍𝑃𝑀𝑖
𝑝,𝑚

 Binary variable, index to the source-destination of the ith VM CPU-

MEM traffic 

𝑃𝐼𝑂𝑖
𝑝,𝑖𝑜

 Indicator to connect the ith VM CPU-IO traffic to the relevant CPU 

and IO racks 

𝑍𝑃𝐼𝑂𝑖
𝑝,𝑖𝑜

 Binary variable, index to the source-destination of the ith VM CPU-

IO traffic 

𝑀𝐼𝑂𝑖
𝑚,𝑖𝑜

 Indicator to connect the ith VM MEM-IO traffic to the relevant MEM 

and IO racks 

𝑀𝐼𝑂𝑖
𝑚,𝑖𝑜

 Binary variable, index to the source-destination of the ith VM MEM-

IO traffic 

𝑇𝑃𝑀𝑝,𝑚 Total CPU-MEM traffic (Gbps) 

𝑇𝑃𝐼𝑂𝑝,𝑖𝑜 Total CPU-IO traffic (Gbps) 

𝑇𝑀𝐼𝑂𝑚,𝑖𝑜 Total MEM-IO traffic (Gbps) 

The power consumption of a data centre based on the DS architecture is 

composed of two parts, the first part is the power consumed by active resources: 

 

1) The power consumption of active processors  

∑ ∑ ((𝑋𝑃𝑗
𝑝 ∙ 𝑃𝑚𝑖𝑛)

𝑗∈𝑁𝑃

+ (𝑃𝐹 · 𝛿𝑃𝑗
𝑝))

𝑝∈𝑃𝑅

  

2) The power consumption of active memories  

∑ ∑ ((𝑋𝑀𝑗
𝑚 · 𝑀𝑚𝑖𝑛)

𝑗∈𝑁𝑀

+ (𝑀𝐹 · 𝛿𝑀𝑗
𝑚))

𝑚∈𝑀𝑅
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3) The power consumption of active IO modules 

∑ ∑ ((𝑋𝐼𝑂𝑗
𝑖𝑜 · 𝐼𝑂𝑚𝑖𝑛)

𝑗∈𝑁𝐼𝑂

+ (𝐼𝑂𝐹 · 𝛿𝐼𝑂𝑗
𝑖𝑜)

𝑖𝑜∈𝐼𝑂𝑅

  

The second part is the power consumed by networking elements: 

1) Power consumption due to CPU-Memory traffic, which in turn is composed 

of: 

a) The power consumed by the electrical switches  

∑ 𝑃𝑅𝑆 ∙ 𝑄𝑃𝑀𝑝

𝑝 ∈ 𝑃𝑅

+ ∑ ∑ 𝑃𝑅𝐼 ∙ 𝑊𝑃𝑀𝑎,𝑏

𝑏∈𝑁𝑎𝑎∈𝑁𝑅

 

b) The power consumed by the optical switch 

∑ 𝑃𝑂

𝑎∈𝑁𝑅

 

2) Power consumption due to CPU-IO traffic, which is composed of: 

a) The power consumed by the electrical switch  

∑ 𝑃𝑅𝑆 ∙ 𝑄𝑃𝐼𝑂𝑝

𝑝∈𝑃𝑅

+ ∑ ∑ 𝑃𝑅𝐼 ∙ 𝑊𝑃𝐼𝑂𝑎,𝑏

𝑏∈𝑁𝑎𝑎∈𝑁𝑅

 

b) The power consumed by the optical switch 

∑ 𝑃𝑂

𝑎∈𝑁𝑅

 

3) Power consumption due to Memory-IO traffic, which consists of: 

a) The power consumed by the electrical switch  

∑ 𝑃𝑅𝑆 ∙ 𝑄𝑀𝐼𝑂𝑚

𝑚∈𝑀𝑅

+ ∑ ∑ 𝑃𝑅𝐼 ∙ 𝑊𝑀𝐼𝑂𝑎,𝑏

𝑏∈𝑁𝑎𝑎∈𝑁𝑅

 

b) The power consumed by the optical switch 

∑ 𝑃𝑂

𝑎∈𝑁𝑅

 

The model is defined as follows: 
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Objective: minimise: 

∑ ∑ ((𝑋𝑃𝑗
𝑝 ∙ 𝑃𝑚𝑖𝑛)

𝑗∈𝑁𝑃

+ (𝑃𝐹 · 𝛿𝑃𝑗
𝑝))

𝑝∈𝑃𝑅

+ 
 

∑ ∑ ((𝑋𝑀𝑗
𝑚 · 𝑀𝑚𝑖𝑛)

𝑗∈𝑁𝑀

+ (𝑀𝐹

𝑚∈𝑀𝑅

· 𝛿𝑀𝑗
𝑚)) + 

 

∑ ∑ ((𝑋𝐼𝑂𝑗
𝑖𝑜 · 𝐼𝑂𝑚𝑖𝑛)

𝑗∈𝑁𝐼𝑂𝑖𝑜∈𝐼𝑂𝑅

+ (𝐼𝑂𝐹 · 𝛿𝑂𝑗
𝑖𝑜) + 

 

∑ 𝑃𝑅𝑆 ∙ 𝑄𝑃𝑀𝑝

𝑝∈𝑃𝑅

+ 
 

∑ ∑ 𝑃𝑅𝐼 ∙ 𝑊𝑃𝑀𝑎,𝑏

𝑏∈𝑁𝑎𝑎∈𝑁𝑅

 + 
 

∑ 𝑃𝑅𝑆 ∙ 𝑄𝑃𝐼𝑂𝑝

𝑝∈𝑃𝑅

+ 
 

∑ ∑ 𝑃𝑅𝐼 ∙ 𝑊𝑃𝐼𝑂𝑎,𝑏

𝑏∈𝑁𝑎𝑎∈𝑁𝑅

 + 
 

∑ 𝑃𝑅𝑆 ∙ 𝑄𝑀𝐼𝑂𝑚

𝑚∈𝑀𝑅

+ 
 

∑ ∑ 𝑃𝑅𝐼 ∙ 𝑊𝑀𝐼𝑂𝑎,𝑏

𝑏∈𝑁𝑎𝑎∈𝑁𝑅

 + 
 

∑ 𝑃𝑂

𝑎∈𝑁𝑅

 (5-1) 

Equation (5-1) gives the model objective which is to minimise the resource 

provisioning power consumption and the communication fabric power consumption. 
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For simplicity and due to their small power consumption, we assume that the optical 

switches are always on. Note that NR unite all of PR, MR, and IOR, thus PO is being 

summed once over NR. PRS and PRI will explained later in detail to show the 

difference between their values. 

 

Subject to : 

1) Resource Allocation Constraints 

Capacity Constraints. 

  

𝛿𝑃𝑗
𝑝 = ∑ 𝜃𝑃𝑖,𝑗

𝑝   ≤ 𝑈𝑡𝑙 

𝑖∈𝑉𝑀

 
 (5-2) 

∀ 𝑗 ∈  𝑁𝑃,  𝑝 ∈ 𝑃𝑅   

∑ ∑ 𝜃𝑃𝑖,𝑗
𝑝 =

𝑗∈𝑁𝑃𝑝∈𝑃𝑅

𝑉𝑖
𝑝/𝑃𝑅𝑂 

 (5-3) 

∀ 𝑖 ∈ 𝑉𝑀   

𝜃𝑃𝑖,𝑗
𝑝 ≤ 𝑊 ∙ 𝑌𝑃𝑖,𝑗

𝑝
  (5-4) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈  𝑁𝑃, 𝑝 ∈ 𝑃𝑅   

𝜃𝑃𝑖,𝑗
𝑝 ≥ 𝑒 + 𝑌𝑃𝑖,𝑗

𝑝 − 1  (5-5) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈  𝑁𝑃, 𝑝 ∈ 𝑃𝑅   

𝛿𝑀𝑗
𝑚 = ∑ 𝜃𝑀𝑖,𝑗

𝑚 ≤ 𝑈𝑡𝑙 

𝑖∈𝑉𝑀

 
 (5-6) 

∀ 𝑗 ∈  𝑁𝑀, 𝑚 ∈ 𝑀𝑅   

∑ ∑ 𝜃𝑀𝑖,𝑗
𝑚 =

𝑗∈𝑁𝑀𝑚∈𝑀𝑅

𝑉𝑖
𝑚/𝑀𝐸𝑀       (5-7) 

∀ 𝑖 ∈ 𝑉𝑀   
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𝜃𝑀𝑖,𝑗
𝑚 ≤ 𝑊 ∙ 𝑌𝑀𝑖,𝑗

𝑚   (5-8) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈  𝑁𝑀, 𝑚 ∈ 𝑀𝑅   

𝜃𝑀𝑖,𝑗
𝑚 ≥ 𝑒 + 𝑌𝑀𝑖,𝑗

𝑚 − 1  (5-9) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈  𝑁𝑀, 𝑚 ∈ 𝑀𝑅   

𝛿𝐼𝑂𝑗
𝑖𝑜 = ∑ 𝜃𝐼𝑂𝑖,𝑗

𝑖𝑜 ≤ 𝑈𝑡𝑙

𝑖∈𝑉𝑀

 
 (5-10) 

∀ 𝑗 ∈  𝑁𝐼𝑂, 𝑖𝑜 ∈ 𝐼𝑂𝑅   

∑ ∑ 𝜃𝐼𝑂𝑖,𝑗
𝑖𝑜 =

𝑗∈𝑁𝐼𝑂𝑖𝑜∈𝐼𝑂𝑅

𝑉𝑖
𝑖𝑜/𝐼𝑂 

 (5-11) 

∀ 𝑖 ∈ 𝑉𝑀   

𝜃𝐼𝑂𝑖,𝑗
𝑖𝑜 ≤ 𝑊 ∙ 𝑌𝐼𝑂𝑖,𝑗

𝑖𝑜  (5-12) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈  𝑁𝐼𝑂, 𝑖𝑜 ∈ 𝐼𝑂𝑅   

𝜃𝐼𝑂𝑖,𝑗
𝑖𝑜 ≥ 𝑒 + 𝑌𝐼𝑂𝑖,𝑗

𝑖𝑜 − 1     (5-13) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈  𝑁𝐼𝑂, 𝑖𝑜 ∈ 𝐼𝑂𝑅   

Constraint (5-2) calculates the total processing utilisation of each processor and 

ensures that it is less than the maximum allowed utilisation. Constraint (5-3) 

calculates the utilisation of each processor per allocated VM, and constraints (5-4) 

and (5-5) allocate each VM to a certain processor in a certain CPU rack.  

Constraints (5-6)-(5-9) and (5-10)-(5-13) repeat the same steps of constraints 

(5-2)-(5-5) but for the memory and IO modules, respectively. 
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2) Service Level Constraints:  

∑ 𝐾𝑖  ≥ 𝑁𝑉𝑀 ∙ 𝑆𝐿𝐴

𝑖∈𝑉𝑀

 
(5-14) 

𝐾𝑖𝑝 ≤  ∑ ∑ 𝑌𝑃𝑖,𝑗
𝑝

𝑗∈𝑁𝑃𝑝∈𝑃𝑅

 
(5-15) 

∀ 𝑖 ∈ 𝑉𝑀  

𝑊 ∙ 𝐾𝑖𝑝  ≥ ∑ ∑ 𝑌𝑃𝑖,𝑗
𝑝

𝑗∈𝑁𝑃𝑝∈𝑃𝑅

 
(5-16) 

∀ 𝑖 ∈ 𝑉𝑀  

𝐾𝑖𝑚 ≤  ∑ ∑ 𝑌𝑀𝑖,𝑗
𝑚

𝑗∈𝑁𝑀𝑚∈𝑀𝑅 

 
(5-17) 

∀ 𝑖 ∈ 𝑉𝑀  

𝑊 ∙ 𝐾𝑖𝑚  ≥  ∑ ∑ 𝑌𝑀𝑖,𝑗
𝑚

𝑗∈𝑁𝑀𝑚∈𝑀𝑅 

 
(5-18) 

∀ 𝑖 ∈ 𝑉𝑀  

𝐾𝑖𝑖𝑜 ≤  ∑ ∑ 𝑌𝐼𝑂𝑖,𝑗
𝑖𝑜

𝑗∈𝑁𝐼𝑂𝑖𝑜∈𝐼𝑂𝑅

 
(5-19) 

 

∀ 𝑖 ∈ 𝑉𝑀  

𝑊 ∙ 𝐾𝑖𝑖𝑜  ≥  ∑ ∑ 𝑌𝐼𝑂𝑖,𝑗
𝑖𝑜

𝑗∈𝑁𝐼𝑂𝑖𝑜∈𝐼𝑂𝑅

 
(5-20) 

∀ 𝑖 ∈ 𝑉𝑀  

𝐾𝑖 = 𝐾𝑖𝑝 = 𝐾𝑖𝑚 = 𝐾𝑖𝑖𝑜    (5-21) 

∀ 𝑖 ∈ 𝑉𝑀  

Constraint (5-14) ensures that the total number of served VMs is within an 

acceptable predefined percentage of the incoming VMs requests. The 𝐾𝑖 value 
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depends on the outcomes from constraints (5-15)-(5-21) collectively. If all these 

constraints yield a value of 1, then 𝐾𝑖 is 1, otherwise 𝐾𝑖 is 0. 

3) Slicing Constraints:   

∑ ∑ 𝑌𝑃𝑖,𝑗
𝑝

𝑗∈𝑁𝑃𝑝∈𝑃𝑅

 ≤  1 ∀ 𝑖 ∈ 𝑉𝑀 (5-22) 

∑ ∑ 𝑌𝑀𝑖,𝑗
𝑚

𝑗∈𝑁𝑀𝑚∈𝑀𝑅 

 ≤  1 ∀ 𝑖 ∈ 𝑉𝑀 
(5-23) 

 

∑ ∑ 𝑌𝐼𝑂𝑖,𝑗
𝑖𝑜

𝑗∈𝑁𝐼𝑂𝑖𝑜∈𝐼𝑂𝑅

 ≤  1 ∀ 𝑖 ∈ 𝑉𝑀 
(5-24) 

 

Constraint (5-22) ensures that a VM  𝑖 processing requirement is served by only one 

CPU, i.e. this constraint prevents VM slicing. Constraints (5-23) and (5-24) repeat 

constraint (5-22) for the memory and IO requirements. If multiple VM copies or VM 

slicing is required, equations (5-22)-(5-24) should be upper bound by an appropriate 

number greater than 1. 

4) Active resources constraints:  

Active processors 

 

𝑋𝑃𝑗
𝑝 ≤ 𝑊 ∙  𝛿𝑃𝑗

𝑝
 (5-25) 

∀ 𝑝 ∈ 𝑃𝑅, 𝑗 ∈ 𝑁𝑃  

𝑊 ∙ 𝑋𝑃𝑗
𝑝 ≥ 𝛿𝑃𝑗

𝑝
 (5-26) 

∀ 𝑝 ∈ 𝑃𝑅, 𝑗 ∈ 𝑁𝑃  

Active memory modules  

𝑋𝑀𝑗
𝑚 ≤ 𝑊 ∙  𝛿𝑀𝑗

𝑚 (5-27) 

∀ 𝑚 ∈ 𝑀𝑅, 𝑗 ∈ 𝑁𝑀  
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𝑊 ∙ 𝑋𝑀𝑗
𝑚 ≥ 𝛿𝑀𝑗

𝑚 (5-28) 

∀ 𝑚 ∈ 𝑀𝑅, 𝑗 ∈ 𝑁𝑀  

Active IO ports  

𝑋𝐼𝑂𝑗
𝑖𝑜 ≤ 𝑊 ∙  𝛿𝐼𝑂𝑗

𝑖𝑜 (5-29) 

∀ 𝑖𝑜 ∈ 𝐼𝑂𝑅, 𝑗 ∈ 𝑁𝐼𝑂  

𝑊 ∙ 𝑋𝐼𝑂𝑗
𝑖𝑜 ≥ 𝛿𝐼𝑂𝑗

𝑖𝑜 (5-30) 

∀ 𝑖𝑜 ∈ 𝐼𝑂𝑅, 𝑗 ∈ 𝑁𝐼𝑂  

Constraints (5-25) and (5-26) jointly find the active processors by checking the 

utilisation 𝛿𝑃𝑗
𝑝
. Constraints (5-27) and (5-28) together check the active memory 

modules and constraints (5-29) and (5-30) repeat same steps but for the IO modules. 

5) Communication constraints: 

Generating the index matrix for the CPU-Memory traffic 

 

𝑃𝑀𝑖
𝑝,𝑚 ∙ 2 = ∑ 𝑌𝑃𝑖,𝑗

𝑝

𝑗∈𝑁𝑃

+ ∑ 𝑌𝑀𝑖,𝑗
𝑚

𝑗∈𝑁𝑀

 
(5-31) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑝 ∈ 𝑃𝑅, 𝑚 ∈ 𝑀𝑅  

𝑍𝑃𝑀𝑖
𝑝,𝑚  ≤  𝑃𝑀𝑖

𝑝,𝑚
 (5-32) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑝 ∈ 𝑃𝑅, 𝑚 ∈ 𝑅  

𝑍𝑃𝑀𝑖
𝑝,𝑚 ≥  𝑃𝑀𝑖

𝑝,𝑚 − 0.5 (5-33) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑝 ∈ 𝑃𝑅, 𝑚 ∈ 𝑀𝑅  

Generating the index matrix for the CPU-IO traffic 

𝑃𝐼𝑂𝑖
𝑝,𝑖𝑜 ∙ 2 = ∑ 𝑌𝑃𝑖,𝑗

𝑝

𝑗∈𝑁𝑃

+ ∑ 𝑌𝐼𝑂𝑖,𝑗
𝑖𝑜

𝑗∈𝑁𝑖𝑜

 
(5-34) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑝 ∈ 𝑃𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  

𝑍𝑃𝐼𝑂𝑖
𝑝,𝑖𝑜  ≤  𝑃𝐼𝑂𝑖

𝑝,𝑖𝑜
 (5-35) 
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∀ 𝑖 ∈ 𝑉𝑀, 𝑝 ∈ 𝑃𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  

𝑍𝑃𝐼𝑂𝑖
𝑝,𝑖𝑜 ≥  𝑃𝐼𝑂𝑖

𝑝,𝑖𝑜 − 0.5 (5-36) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑝 ∈  𝑃𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  

Generating the index matrix for the Memory-IO traffic 

𝑀𝐼𝑂𝑖
𝑚,𝑖𝑜 ∙ 2 = ∑ 𝑌𝑀𝑖,𝑗

𝑚

𝑗∈𝑁𝑃

+ ∑ 𝑌𝐼𝑂𝑖,𝑗
𝑖𝑜

𝑗∈𝑁𝐼𝑂

 
(5-37) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑚 ∈ 𝑀𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  

𝑍𝑀𝐼𝑂𝑖
𝑚,𝑖𝑜  ≤  𝑀𝐼𝑂𝑖

𝑚,𝑖𝑜
 (5-38) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑚 ∈ 𝑀𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  

𝑍𝑀𝐼𝑂𝑖
𝑚,𝑖𝑜 ≥  𝑀𝐼𝑂𝑖

𝑚,𝑖𝑜 − 0.5 (5-39) 

∀ 𝑖 ∈ 𝑉𝑀, 𝑚 ∈ 𝑀𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  

Constraint (5-31) connects each source CPU rack to its destination memory rack. 

Constraints (5-32) and (5-33) collectively generate source-destination index matrix 

for all CPU-Memory traffic depending on constraint (5-31). Constraints (5-34)-

(5-36) and constraints (5-37)-(5-39) repeat the same steps of (5-31)-(5-33) but for 

the CPU-IO traffic and Memory–IO traffic, respectively. 

Generating the traffic demand matrix: 

𝑇𝑃𝑀𝑝,𝑚 = ∑ 𝑉𝑃𝑀𝑖

𝑖∈𝑉𝑀

∙ 𝑍𝑃𝑀𝑖
𝑝,𝑚

 
(5-40) 

∀ 𝑝 ∈ 𝑃𝑅, 𝑚 ∈ 𝑀𝑅  

𝑇𝑃𝐼𝑂𝑝,𝑖𝑜 = ∑ 𝑉𝑃𝐼𝑂𝑖

𝑖∈𝑉𝑀

∙ 𝑍𝑃𝐼𝑂𝑖
𝑝,𝑖𝑜

 
(5-41) 

∀ 𝑝 ∈ 𝑃𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  
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𝑇𝑀𝐼𝑂𝑚,𝑖𝑜 = ∑ 𝑉𝑀𝐼𝑂𝑖

𝑖∈𝑉𝑀

∙ 𝑍𝑀𝐼𝑂𝑖
𝑚,𝑖𝑜

 
(5-42) 

∀ 𝑚 ∈ 𝑀𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅  

Constraint (5-40) generates the CPU-Memory traffic matrix based on the index 

matrix 𝑍𝑃𝑀 calculated previously in constraints (5-32) and (5-33), and constraints 

(5-41) and (5-42) generate the CPU-IO and Memory-IO traffic matrices, 

respectively. 

Traffic flow conservation: 

∑ 𝑊𝑃𝑀𝑎,𝑏
𝑝,𝑚

𝑏∈𝑁𝑎

− ∑ 𝑊𝑃𝑀𝑏,𝑎
𝑝,𝑚

𝑏∈𝑁𝑎

= {

(𝑇𝑃𝑀𝑝,𝑚  /𝐵)          𝑎 = 𝑝

−(𝑇𝑃𝑀𝑝,𝑚  /𝐵)        𝑎 = 𝑚

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5-43) 

∀𝑝 ∈ 𝑃𝑅, 𝑚 ∈ 𝑀𝑅, 𝑎 ∈ 𝑁𝑅 

∑ 𝑊𝑃𝐼𝑂𝑎,𝑏
𝑝,𝑖𝑜

𝑏∈𝑁𝑎

− ∑ 𝑊𝑃𝐼𝑂𝑏,𝑎
𝑝,𝑖𝑜

𝑏∈𝑁𝑎

= {

(𝑇𝑃𝐼𝑂𝑝,𝑖𝑜  /𝐵)          𝑎 = 𝑝

−(𝑇𝑃𝐼𝑂𝑝,𝑖𝑜  /𝐵)        𝑎 = 𝑖𝑜

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5-44) 

∀𝑝 ∈ 𝑃𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅, 𝑎 ∈ 𝑁𝑅 

∑ 𝑊𝑀𝐼𝑂𝑎,𝑏
𝑚,𝑖𝑜

𝑏∈𝑁𝑎

− ∑ 𝑊𝑀𝐼𝑂𝑏,𝑎
𝑚,𝑖𝑜

𝑑∈𝑁𝑎

= {

(𝑇𝑀𝐼𝑂𝑚,𝑖𝑜  /𝐵)           𝑎 = 𝑚

−(𝑇𝑀𝐼𝑂𝑚,𝑖𝑜  /𝐵)        𝑎 = 𝑖𝑜

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5-45) 

∀𝑚 ∈ 𝑀𝑅, 𝑖𝑜 ∈ 𝐼𝑂𝑅, 𝑎 ∈ 𝑁𝑅 

Constraints (5-43)-(5-45) are the flow conservation constraints for the CPU-

Memory, CPU-IO and Memory-IO traffic, respectively, in the networking elements 

switches. They ensure that the total incoming traffic is equal to the total outgoing 

traffic for all racks except for the source and destination racks. 

Wavelengths capacity constraints: 
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∑ ∑ 𝑊𝑃𝑀𝑎,𝑏
𝑝,𝑚

𝑚∈𝑀𝑅

≤

𝑝∈𝑃𝑅

𝑊𝑃𝑀𝑎,𝑏 

(5-46) 

∀ 𝑎 ∈ 𝑁𝑃, 𝑏 ∈ 𝑁𝑎 

∑ ∑ 𝑊𝑃𝐼𝑂𝑎,𝑏
𝑝,𝑖𝑜

𝑖𝑜∈𝐼𝑂𝑅

≤

𝑝∈𝑃𝑅

𝑊𝑃𝐼𝑂𝑎,𝑏 

(5-47) 

∀ 𝑎 ∈ 𝑁𝑃, 𝑏 ∈ 𝑁𝑎 

∑ ∑ 𝑊𝑀𝐼𝑂𝑎,𝑏
𝑚,𝑖𝑜

𝑖𝑜∈𝐼𝑂𝑅

≤

𝑚∈𝑀𝑅

𝑊𝑀𝐼𝑂𝑎,𝑏 
(5-48) 

∀ 𝑎 ∈ 𝑁𝑃, 𝑏 ∈ 𝑁𝑏 

Constraints (5-46)-(5-48) ensure that the summation of the wavelengths traversing a 

physical link in the optical layer do not exceed the total number of wavelengths in 

that link for the CPU-Memory, CPU-IO and Memory-IO traffics, respectively. 

Number of aggregations ports  

𝑄𝑃𝑀𝑝 =
1

𝐵
∙ ∑ 𝑇𝑃𝑀𝑝,𝑚

𝑚∈𝑀𝑅

 
(5-49) 

∀ 𝑝 ∈ 𝑃𝑅 

𝑄𝑃𝐼𝑂𝑝 =
1

𝐵
∙ ∑ 𝑇𝑃𝐼𝑂𝑝,𝑖𝑜

𝑖𝑜∈𝐼𝑂𝑅

 
(5-50) 

∀ 𝑝 ∈ 𝑃𝑅 

𝑄𝑀𝐼𝑂𝑚 =
1

𝐵
∙ ∑ 𝑇𝑀𝐼𝑂𝑚,𝑖𝑜

𝑖𝑜∈𝐼𝑂𝑅

 
(5-51) 

∀ 𝑚 ∈ 𝑀𝑅 

Constraints (5-49)-(5-51) find the total number of aggregation ports utilised by the 

CPU-Memory, CPU-IO and Memory-IO traffics, respectively, in each rack. 
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In the CS MILP evaluation we consider a pool of servers, rather than a pool of 

resources, the same resources used in the DS MILP are combined to form servers 

such that a CPU has its associated memory and IO resources in a closed server box 

and one resource utilization will affect the other two resources. For example CPU#1 

is associated with memory#1 and IO port#1 and if CPU#1 is fully utilized by VM#1 

then memory#1 and IO port#1 cannot be used by another VM even if they have 

enough capacity for the second VM. This is to be compared to the DS design. Thus, 

the number of servers is the same as the number of one type of the resources, such as 

total number of CPU resource. To account for the server power, we consider a fully 

loaded server power of 300 W [92]. The power consumption of each resource (eg. 

CPU, memory, IO card) in this server was comparable to the values we used in the 

DS. The power consumption of each resource was subsequently set exactly equal to 

the values used in DS to facilitate comparison. Out of the 300W, the idle power was 

then calculated as 150W which is typical for this type of server and is in agreement 

with experimental measurements in our lab.  

For the CS approach, each VM is allocated to the server that has enough CPU, 

memory and IO modules to accommodate the VM, otherwise a new server is 

powered on to host the requesting VM. 

In addition to the parameters and variable defined in Section 5.2, we define the 

following: 

Sets:  
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𝑁𝑆 Set of all servers 

𝑉𝑀 Set of VMs to be served 

Variables:  

𝛿𝑃𝑗 Total processor utilisation of server 𝑗 

𝛿𝑀𝑗 Total memory utilisation of server 𝑗 

𝛿𝐼𝑂𝑗 Total IO utilisation of server 𝑗 

𝑋𝑗 Indicates if server 𝑗 is active, 𝑋𝑗 = 1 otherwise 𝑋𝑗 = 0 

𝜃𝑃𝑖𝑗    Portion of the processing capacity of server 𝑗 allocated to 

request 𝑖  

𝜃𝑀𝑖𝑗 Portion of the memory capacity of server 𝑗 allocated to 

request 𝑖  

𝜃𝐼𝑂𝑖𝑗 Portion of the IO capacity of server 𝑗 allocated to request 𝑖  

𝑌𝑖𝑗 𝑌𝑖𝑗 = 1 if server 𝑗 hosts request 𝑖, otherwise 𝑌𝑖𝑗 = 0 

𝑁𝑂𝑆 Number of working servers 

 

The resource provisioning in CS based data centre MILP model is: 

Objective: minimise: 

∑ ((𝑋𝑗 · 𝑃𝑚𝑖𝑛)

𝑗∈𝑁𝑆

+ (∆𝑃 · 𝛿𝑃𝑗)) + 
 

∑ ((𝑋𝑗 · 𝑀𝑚𝑖𝑛)

𝑗∈𝑁𝑆

+ (∆𝑀 · 𝛿𝑀𝑗)) + 
 

∑ ((𝑋𝑗 · 𝐼𝑂𝑚𝑖𝑛)

𝑗∈𝑁𝑆

+ (∆IO · 𝛿𝐼𝑂𝑗)) 
 

+𝑁𝑂𝑆 ∙ 150 (5-52) 
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The objective (5-52) aims to minimise the total power (by consolidating VMs in the 

minimum number of working servers). 

Capacity Constraints:   

𝛿𝑃𝑗 = ∑ 𝜃𝑃𝑖𝑗   ≤ 𝑈𝑡𝑙 

𝑖 ∈𝑉𝑀

 ∀ 𝑗 ∈ 𝑁𝑆 (5-53) 

𝑃𝑗 ∙  𝜃𝑃𝑖𝑗 = 𝑉𝑃𝑖 ∙  𝑌𝑖𝑗         ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆    (5-54)  

 𝜃𝑃𝑖𝑗 ≤ 𝑊 ∙  𝑌𝑖𝑗 ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-55) 

𝜃𝑃𝑖𝑗 ≥ 𝑒 + 𝑌𝑖𝑗 − 1    ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-56)  

𝛿𝑀𝑗 = ∑ 𝜃𝑀𝑖𝑗 ≤ 𝑈𝑡𝑙 

𝑖 ∈𝑉𝑀

 ∀ 𝑗 ∈ 𝑁𝑆 (5-57) 

𝑀𝑗 ∙  𝜃𝑀𝑖𝑗 = 𝑉𝑀𝑖 ∙  𝑌𝑖𝑗         ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-58) 

 𝜃𝑀𝑖𝑗 ≤ 𝑊 ∙  𝑌𝑖𝑗 ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-59) 

𝜃𝑀𝑖𝑗 ≥ 𝑒 + 𝑌𝑖𝑗 − 1    ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-60) 

𝛿𝐼𝑂𝑗 = ∑ 𝜃𝐼𝑂𝑖𝑗 ≤ 𝑈𝑡𝑙

𝑖 ∈𝑉𝑀

 ∀ 𝑗 ∈ 𝑁𝑆 (5-61) 

𝐼𝑂𝑗 ∙  𝜃𝐼𝑂𝑖𝑗 = 𝑉𝐼𝑂𝑖 ∙  𝑌𝑖𝑗         ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-62) 

 𝜃𝐼𝑂𝑖𝑗 ≤ 𝑊 ∙   𝑌𝑖𝑗 ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-63) 

𝜃𝐼𝑂𝑖𝑗 ≥ 𝑒 + 𝑌𝑖𝑗 − 1    ∀ 𝑖 ∈ 𝑉𝑀, 𝑗 ∈ 𝑁𝑆 (5-64) 

Constraint (5-53) calculates the total processing utilisation of each processor in 

each server and ensures that it is less than the maximum allowed utilisation. 

Constraint (5-54) calculates the utilisation of each processor per allocated VM, and 

constraints (5-55) and (5-56) allocate each VM to a certain processor in a certain 
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server. Constraints (5-57)-(5-60) and (5-61)-(5-64) repeat the same steps of 

constraints (5-53)-(5-56) but for the memory and IO modules, respectively. 

Slicing Constraint: 
  

∑ 𝑌𝑖𝑗

𝑗 ∈𝑁𝑆

 =  1 ∀ 𝑖 ∈ 𝑉𝑀 (5-65) 

Constraint (5-65) ensures that each VM will be served by one server. This 

constraint will force service quality equal to 100% SLA. 

Active Resources Constraint:   

𝑋𝑗 ≤ 𝑊 ∙  𝛿𝑃𝑗 ∀ 𝑗 ∈ 𝑁𝑆 (5-66) 

𝑊 ∙  𝑋𝑗 ≥ 𝛿𝑃𝑗 ∀ 𝑗 ∈ 𝑁𝑆 (5-67) 

𝑁𝑂𝑆 = ∑ 𝑋𝑗

𝑗∈𝑁𝑆

 
 (5-68) 

Constraints (5-66) and (5-67) find the working servers and constraint (5-68) uses 

their results to calculate the total number of working servers. 

 

This section presents our EERP-DSCF heuristic that mimics the MILP model 

behaviour and expands the scope of the MILP model by providing lower complexity 

algorithms that enable real time operation of the DS data centre and enable the 

evaluation of relatively large size DS data centre clusters.  
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The flow chart of the heuristic is shown in Fig. 5-1. In this study we use 

homogenous resources, therefore, sorting resources according to their PF is not 

necessary. Thus, the heuristic picks the first CPU from the first CPU rack in the 

cluster and uses it for serving the first VM request. Then the heuristic decides the 

VM’s memory and IO racks allocation based on a joint criteria involving the 

resource availability and rack distance from the chosen CPU rack. Thus both 

packing and “open shortest path first (OSPF)” algorithms are applied together.  

 As shown in the flow chart, the heuristic picks the first VM and allocates the first 

CPU in the first CPU rack in the cluster. The heuristic then organises the memory 

and IO racks in a list according to their distances from the chosen CPU rack in an 

ascending order. Subsequently, the heuristic checks the resources availability in the 

newly organised lists. If the first memory rack has enough capacity to accommodate 

the VM under consideration, the heuristic uses it, otherwise, the next rack is tested. 

In the same fashion the heuristic checks the first IO rack in the list and allocates the 

chosen resources for the VM under consideration, otherwise, the next nearest IO 

rack is tested, and so on, till an available IO module is found. The heuristic tries to 

fill partially used resources and racks as much as possible before moving to next 

racks. After allocating resources to the first VM request, the heuristic loops for the 

rest of the VM requests until all VMs allocations are done. Finally, EERP-DSCF 

grooms the traffic from each rack according to their destinations and routes them 

among racks and calculates the total consumed power.  

 

To evaluate the performance of the proposed model and heuristic, we consider 

the example data centre shown in Fig. 5-2. It consists of 72 racks (24 racks of each 
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resource type) organised in an 89 matrix and 127 links as shown in Fig. 5-2 which 

represents the top view of the DS data centre considered. 

For the model, a smaller version of the data centre cluster shown in Fig. 5-3 is used 

due to MILP computational complexity. It comprises 9 racks (3 racks of each 

resource type) organised in a 33 matrix and 12 links, as shown in Fig. 5-3. It 

follows the same structure and racks sequencing of the data centre cluster in Fig. 5-2. 

The first column consists of three IO racks, the second consists of three CPU racks 

and the last column consists of three memory racks. We consider a scenario in 

which each rack contains 8 resources of its own type, each CPU rack contains 8 

processors, each IO rack contains 8 IO modules and each memory rack contains 8 

memory modules.  

 

For the heuristic, and due to its lower computational complexity, we evaluated the 

full 89 data centre shown in Fig. 5-2. Each column is of one type of resource racks 

and each rack of each type contains 42 resources of its type. Starting from the far 

left, the first column contains the IO racks, followed by the CPU racks, then the 

Memory racks, and this sequence is repeated for the next 6 columns. Note that each 

rack is only connected to the nearest neighbour racks using optical fibres. As for the 

heuristic, the distance between adjacent racks is set to 1m [93].  
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Fig. 5-1: EERP-DSCF heuristic flow chart 
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Fig. 5-2: DS based data centre structure under consideration 

For both the model and the heuristic, each rack has its own intra rack 

communication fabric and electrical and optical switches to facilitate the 

communication among racks and inter rack communication, as shown in Fig. 2-3 and 

exemplified in Fig. 4-2.  

Table 5-1 shows the parameters used for both model and heuristic. The power 

consumption of the resources we have used is consistent with our previous work in 

[94, 95], and for the network devices we use the values in Table 5-1 below. 

Power consumption of electrical switch port for source 

nodes 𝑃𝑅𝑆 

70.5 W  

Power consumption of electrical switch port for intermediate 

nodes 𝑃𝑅𝐼 

43.5 W  

Power consumption of electrical 100 Gbps switch port (Pr ) 40 W [96] 

Power consumption of an optical switch  85 W [97] 

Bit rate of each wavelength  100 Gbps 

CPU capacity  3.6 GHz [61] 
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CPU maximum power consumption  130 W [61] 

RAM capacity  8 GB [61] 

Memory maximum power draw  10.24 W [98] 

IO module rate 10 Gbps [61] 

IO module maximum power draw  21.4 W [39] 

100 Gbps Optical transceiver power consumption    3.5 W [89] 

100 GHz Multiplexer power (W) 4 W  [91] 

100 Gbps Packet engine (packetiser or packet engine) power  20 W [90] 

Table 5-1: Input Parameters for the model and simulation heuristic 

Regarding some of the power values given in Table 5-1 it is worth noting that for 

the electrical switch port power and the packetiser power, we have scaled up the 

values given in [96] for the switch port and [90] for the channel adapter, linearly to 

account for 100 Gbps port power. For the switch port power and according to [96] a 

10 Gbps port consumes 4 W, therefore, a switch port power is calculated as 410W 

(equivalent to 100 Gbps port). For the 100 Gbps packetiser, in [90] the 40 Gbps 

packetiser power consumption is 7 W, thus to scale up for 100 Gbps the total power 

is calculated as 72.5=17.5 W and an extra 2.5 W was added, i.e. 20 W in total in 

order to account for other possible functionalities such as buffering and arbitration, 

to be more conservative.  

We evaluate PRS and PRI by considering the scenario explained in Section 5.2 

where a transceiver power is added to each end of each link, and a packetiser power 

is considered for each source-destination pair. 
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 𝑃𝑅𝑆 = 40 𝑊(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ 𝑝𝑜𝑟𝑡) + 33.5 𝑊 (𝑡𝑟𝑎𝑛𝑠𝑐𝑖𝑣𝑒𝑟𝑠 𝑝𝑜𝑤𝑒𝑟) +

20 𝑊 (𝑝𝑎𝑐𝑘𝑒𝑡𝑖𝑧𝑒𝑟 𝑝𝑜𝑤𝑒𝑟) 

Here we consider 3 transceivers, the first is for the source resource, the second is 

for the destination resource, and the third is for the source electrical switch port. 

For each intermediate node we consider a switch port power plus a transceiver 

power, which yields: 

𝑃𝑅𝐼 = 40 𝑊(𝑒𝑙𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ 𝑝𝑜𝑟𝑡) + 3.5 𝑊 (𝑡𝑟𝑎𝑛𝑠𝑐𝑖𝑣𝑒𝑟 𝑝𝑜𝑤𝑒𝑟) 

 

Fig. 5-3: Substrate data centre for the MILP model 

In this section we use different values for the VM resources requirements and 

traffic demands which are assumed with respect to the three different VM types, PI, 

MI, and IOI. Table 5-2 lists the input parameters for the VMs requirements. 

Comparing the IO resources requirements to the actual traffic reveals that delay or 

may be blocking situations can occur on the egress ports. However, we have not 

considered its effects in our analysis presented in this work. 

 Using a computer with a 3.3 GHz CPU and 8 GB memory, our heuristic 

produced the results in less than one minute considering 1000 IOI VMs. This is a 

remarkable improvement over the MILP model which requires about 2 days to 

produce the results for only 20 IOI VMs using the same computer.  
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                     VM Type 

Demands 

PI MI IOI 

CPU (GHz) 2-3.6 0.1-0.3 0.1-0.3 

Mem (GB) 0.1-0.3 6-8 1-4 

IO (Gbps) 0.5-1 0.5-1 6-10 

CPU-M Traffic (Gbps) 10-100 10-50 5-20 

CPU-IO Traffic (Gbps) 1-3 1-3 1-3 

M-IO Traffic (Gbps) 1-3 1-5 6-10 

Table 5-2: Input parameters for the VMs requirements 

 

Fig. 5-4 compares the power consumption results of the MILP model for the DS 

and CS designs and the DS heuristic for 20 VM requests and considers the three VM 

types PI, MI and IOI. It shows clearly that the DS heuristic results and the DS MILP 

results are comparable and the heuristic follows the MILP closely.  

 

Fig. 5-4: Power consumption comparison of the DS MILP model, DS heuristic and CS MILP 

with communication fabric for 20 VM requests 
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Examining the results in Fig. 5-4 and comparing the DS MILP to the CS MILP 

shows that the PI VMs are the highest power consuming demands which leads to 

minimum power saving, about 3% while MI and IOI have comparable power 

consumptions and they have comparable power savings, about 42%. 

Fig. 5-5 shows the DS heuristic results for the power consumption of the 

networking resources, the resource provisioning power consumption and the total 

power consumption. The results can be explained by considering the cluster 

topology and size under consideration plus the number of served VMs, and the 

inputs, in particular the resources specifications and VM requirements. 

Fig. 5-5.a shows the PI VM requests results. Note that the resource power is 

higher than the networking power and it has higher impact on the total power 

consumption. Given the parameters in Tables 5.1 and 5.2 for the resources power 

consumption and VM demand values, the average CPU demand per VM is 3 GHz 

for the PI VMs type, thus huge number of CPUs will be used for VM allocation. As 

the CPU has high power consumption values, the resource power consumption is the 

highest and exceeds the network power consumption. 
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(b) MI 

 
(c) IOI 

Fig. 5-5: Power consumption of the EERP-DSCF with large number of VMs 

In relation to the networking power, Fig. 5-6 shows the active racks of each type 

when serving 1000 VM requests for the three VM types, PI, MI and IOI. Examining 

Fig. 5-6 reveals that considering 1000 PI VM requests results in a case where all the 

racks in the cluster are activated, regardless of their utilisation, where an active rack 

means there is an outgoing/incoming traffic. Clearly each CPU rack has an active 

memory and IO racks among its neighbours, enforced by the heuristic, thus all 

traffic in this case will be a single hop traffic resulting in about 80 kW networking 

power which is less than the power consumed by the resources. 

Fig. 5-5.b shows the evaluation for the MI VM requests and compares the two 

power components, the network and resources powers. As in PI, the network power 
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and resource power consumption increase with increasing number of VMs. The 

increase in resource power is far less however than the increase in network power 

consumption as memories consume few watts and only two CPU racks are enough 

to accommodate the processing requirements. Inspecting Fig. 5-6, and the MI results 

specifically, it can be seen that all the memory racks are used but only two CPU 

racks and two IO racks are used. This is due to the approach followed by our 

heuristic when performing the resource allocation and packing. The heuristic first 

allocates the best available CPU in order to reduce the number of working CPUs, 

resulting in only two working CPU racks, whereas the memory and IO allocations 

follow the CPU allocation by choosing the closest memory and IO racks to the used 

CPU rack that have enough capacity to accommodate the VM under consideration. 

Thus the traffic due to these CPU racks destined to the memory racks, which 

typically has moderate values, has to travel through long paths passing a significant 

number of multi-hop links, further increasing the network power consumption. In 

the same manner the traffic from the memory racks to the IO racks traverses almost 

the whole cluster, in some cases, to reach its destination. This leads to about 138 kW 

networking power consumption following resource packing which reduces the 

number of active resources (processing resources especially) which results in the 

minimum resources power consumption.  

Fig. 5-5.c shows the power consumption of the DS heuristic for IOI VMs. As the 

IOI VM type demands are the lowest among the other VM types on average in terms 

of resource requirements, and due to both good resource packing for this energy 

efficient heuristic, and traffic routing by the heuristic, this scenario resulted in the 

minimum network power consumption and minimum resources power consumption. 

Fig. 5-6 reveals that all IO racks are working in addition to only two power 
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consuming CPU racks and seven memory racks. Again this can be explained by 

observing the way the heuristic works. The heuristic first priority is to allocate the 

VMs in the smallest number of power hungry CPUs. After that, the memory and IO 

modules allocation follows the CPU allocation by choosing the closest available 

resources to the used CPUs. It can clearly be seen in Fig. 5-6 that the heuristic 

preferred memory racks # 9 and #10 instead of #6, #7 and #8. Examining Fig. 5-2 

shows that CPU racks 1 and 2 are closer to memory racks 9 and 10 compared to 

racks 6, 7 and 8. To show the effect of the inclusion of the communication on the 

overall power saving, Fig. 5-7 compares the total power consumption of the CS data 

centre design to the power consumption of the DS based data centre design when the 

latter includes the power consumption attributed to communications. The CS 

approach is implemented as a heuristic where the total number of coupled resources 

required to form server units to serve incoming VMs, are determined, then 150 W is 

added to the power consumption of the resources of each active server to account for 

the internal communication overhead. 

Fig. 5-7 shows that the average power saving for the PI DSCF is about 10% 

compared to the PI CSCF. This is due to the use of the power hungry processing 

resources in both DS and CS designs to high extent compared to the number of used 

memory and IO resources in the DS. However, due to the DS ability to pack higher 

number of VMs in fewer resources (i.e. memory and IO in this case), DS managed 

to save a significant fraction of the power compared to CS. Regarding the 

networking power consumption, as discussed earlier in this section, the allocation of 

VMs in the DS racks led to a communication pattern such that all traffic passes 

single hop paths leading to moderate network power consumption in spite of having 
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high traffic values associated with the PI VM demands, leading to overall total 

power saving compared to CS.  

 

Fig. 5-6: Active racks considering 1000 VM requests 

Fig. 5-7 shows that the total power saving for the MI DSCF design is about 53% 

compared to the MI CSCF design. The higher saving percentage for the MI results 

compared to the previous PI results is due to the efficient utilisation of the power 

intensive CPU resources in the DS compared to the CS which could power on large 

number of servers due to the congestion on the memory modules.  

In relation to the networking power consumption, serving MI requests increases 

the network power consumption in DS as compared to PI and IOI demands. Having 

a large number of working memory racks and a lower number of working CPU and 

IO racks increases the traffic among these racks and many traffic flows pass multi-
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hop paths.  However, the DS total power consumption (resources plus networking) 

is still lower than the CS total power consumption as CS operates large number of 

servers, roughly the same as the number of powered-on memory modules in the DS, 

which maintain the higher CS power consumption compared to DS. 

 

Fig. 5-7: Average power consumption of EEPR-DSCF compared to CS with communication 

fabric for large number of VMs ranging from 100 to 1000 VMs and considering the PI, 

MI and IOI VM types. 

Similarly, the IOI VMs scenario resulted in the highest power saving, with an 

average power saving of about 63% compared to CS. For the resource power, the 

IOI VMs consume the least power compared to the PI and MI scenarios. According 

to Fig. 5-6, the communication power, as explained earlier, is the smallest among 

other VM types, thus, the IOI total power is the smallest among other VM types, 

which yielded the highest power saving. 

Finally, we investigate the other extreme scenarios represented by mixed VM 

demands such as PI+MI VMs or PI+MI+IOI VMs. Table 5-3 captures the 

requirements for these mixed VM types. Note that we selected the maximum 
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demand values in each set of VM combinations to establish the power savings 

limits. 

The VMs requirements, resources and traffic values, have been chosen to cover 

the extreme values for the considered types to cover a variety of VM categories. 

Fig. 5-8 shows the total power consumption of the four different scenarios 

mentioned in Table 5-3, for both DS and CS servers. 

         VMType  

Demands 

PI+MI PI+IOI MI+IOI PI+MI+IOI 

CPU (GHz) 2-3.6 2-3.6 0.1-0.3 2-3.6 

Mem (GB) 6-8 1-4 6-8 6-8 

IO (Gbps) 0.5-1 6-10 6-10 6-10 

CPU-M Traffic 

(Gbps) 

10-100 10-100 10-50 10-100 

CPU-IO Traffic 

(Gbps) 

1-3 1-3 1-3 1-3 

M-IO Traffic (Gbps) 1-5 6-10 6-10 6-10 

Table 5-3: Input mixed VMs resources and traffic requirements 

The MI+IOI and PI+MI scenarios have the highest power savings, about 28% 

and 27% respectively. For the first scenario, MI+IOI, due to the low CPU demands 

and relatively low M-IO and CPU-IO traffic values; and low CPU-M traffic values, 

compared to the other VM types, this scenario resulted in the best power profile 

followed by the PI+MI scenario.  The mixed PI+MI scenario has higher CPU 

demand compared to the MI+IOI VMs scenario but lower IO demand and M-IO 

traffic compared to the other scenarios, PI+IOI and PI+IOI+MI. Thus it has higher 
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power savings than both but lower than MI+IOI due to its high CPU demand and 

CPU-M traffic. The last two scenarios, PI+IOI and PI+MI+IOI resulted in the 

minimum power savings 17% and 15% respectively. This is consistent with the 

resources demands and traffic values required by these VM types. 

 

Fig. 5-8: Power consumption of DS and CS heuristics considering variety of 1000 VM requests 

Regarding the traffic values, Fig. 5-9 is a case study which shows the effect of 

having high CPU-M traffic on the total power saving. This case study investigates 

the highest power saving scenario, IOI VMs, and it shows clearly that increasing the 

high CPU-M traffic increases the DS power consumption until it reaches the point 

where both designs have the same power profiles, around 225 Gbps traffic rate.  

With increase in the traffic, the CS design gives better power profile than the DS 

design. However, the evaluations conducted in this chapter are based on current 

technologies with very conservative assumptions. With future improved 

communications technologies, the DS architecture is expected to be a promising 

choice over several dimensions and especially the energy saving dimension. 
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Fig. 5-9: Heuristic results showing the effects of increasing the CPU-M traffic on the total 

power consumption considering 1000 IOI VMs. 

 

Fig. 5-10: Heuristic results showing the effect of decreasing the CS server idle power on the 

power savings considering 1000 IOI VMs. 

Another issue is the CS server idle power, in current work and as mentioned in 

Section 5.3, the CS server idle power was set to 150 W. For a full and 

comprehensive evaluation, variety of idle power values have been considered and 

the CS power was compared to the DS server power. The heuristic considered 1000 

IOI VMs. The results of these evaluations are shown in Fig. 5-10. In Fig. 5-10, the CS 

idle power was reduced from 150 W to 50 W and in each step the CS power was 
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compared to the DS power. Fig. 5-10 shows that the CS power consumption is 

reduced with reduction in the idle power but even at 50 W idle power, the DS server 

is still more efficient than the CS design. 

 

In this chapter, we have investigated the energy efficiency of resource provisioning 

and VM allocation in the DS based data centres compared to CS based data centres 

with consideration for the communication power by including the communication 

fabric components in the evaluation. A MILP optimisation was developed for the 

purpose to optimise VM allocation for DS based data centre considering the 

communication fabric power consumption. The results show that considering pooled 

resources yields considerable power savings compared to the CS approach. Both MI 

VMs and IOI VMs scenarios have shown comparable power profiles and up to 42% 

total power saving was achieved based on the MILP optimised system and about 3% 

power saving was achieved for the PI scenario. For real time implementation, we 

have developed an energy efficient resource provisioning heuristic for DS (EERP-

DSCF) based on the model insights with comparable power efficiency to the MILP. 

With heuristic, and due to its fast nature, we extended the size and number of served 

VMs. Up to 63% average power saving was achieved when serving IOI VMs, 53% 

when serving MI VMs, and 10% when serving PI VMs. 
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This chapter introduces an energy efficient heuristic that performs energy efficient 

resource provisioning and VM migration in the DS (EERPVMM-DS) schema [99]. 

We examined 1000 VM requests that demand various processing, memory and IO 

requirements. Requests have exponentially distributed inter arrival time and 

uniformly distributed service duration periods. Resources occupied by a certain VM 

are released when the VM finishes its service duration. The heuristic optimises VM 

allocations and dynamically migrates existing VMs to occupy newly released energy 

efficient resources. We assess the energy efficiency of the heuristic by applying 

increasing service duration periods. The results of the numerical simulation indicate 

that our power savings can reach up to 55% when compared to our previous study 

where VM service duration is infinite and resources are not released. 

 

Virtualisation and as mentioned in Chapter 2 is a key technology for cloud 

computing as it allows several VM instances to be embedded on the same physical 

machine by running them on top of a software layer known as a hypervisor. The 

hypervisor enhances resources manageability by simulating the underlying hardware 
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platform and provisions hardware resources to the VM requests, and consequently 

consents virtualisation which brings set of new services and applications to the data 

centres [88]. In addition to enabling higher utilisation of hardware resources, by 

packing VMs in minimum underlying physical resources, virtualisation facilitates 

VM movement from one host to another which is an important feature considering 

server consolidation, power consumption and data centre manageability. 

The migration procedure is a heuristic approach. VMs are instated by hosting 

them in the optimal available server that meets some criteria such as: resource 

availability, energy efficiency and latency bounds. If a VM finishes its service 

duration and releases its occupied resources in a particular server, the following 

qualifications must be guaranteed before performing VM migration to that server: (i) 

the target server has enough capacity to host the migrated VM, (ii) the migration 

will save some resources, (iii) the migration will not increase the migrated VM 

duration. If all these conditions are satisfied, then the migration can be done [100].  

Thus, recently there has been a huge shift toward virtualised data centres in order to 

address traditional data centres limitations, improve the data centre efficiency, 

improve resource utilisation, simplify resource management and reduce power 

consumption. 

 

In this work we develop a heuristic that completes our work which appeared in 

Chapter 3 and in [95] by considering VMs having finite service duration. The 

heuristic in Chapter 3 and in [95] assumed that VMs have infinite service durations, 

therefore, VMs are assumed to arrive all at once and occupy the resources 

permanently. This might be a reasonable assumption for certain classes of VMs, 

such as IaaS [101], however, many other VM requests are established for a limited 
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service duration, such as Amazon AWS [102]. We consider VM arrivals that follow 

a Poisson distribution, i.e. associated with exponentially distributed IAT. The IAT 

reflects how frequently jobs (i.e. VMs) are being submitted to the data centre while 

the service duration is the total period a VM needs to finish its processing task and 

then leaves the server.  

The EERPVMM-DS heuristic, Fig. 6-1, aims to pack incoming VMs in the 

minimum number of resources with minimal power to be consumed. According to 

equation (6-1), resource power consumption is proportional to its Power Factor (𝑃𝐹, 

equation (6-2)), and its utilisation (𝛿). Therefore, resources with small PF are the 

optimum candidates to host a VM.  

𝑃𝑜𝑤𝑒𝑟 = 𝑃𝑀𝑖𝑛𝑗
𝑥 + 𝑃𝐹𝑗

𝑥 ∙ 𝛿𝑥𝑗 (6-1) 

𝑃𝐹𝑗
𝑥 = (  𝑃𝑀𝑎𝑥𝑗

𝑥 −  𝑃𝑀𝑖𝑛𝑗
𝑥) (6-2) 

where 𝑃𝑀𝑎𝑥 and 𝑃𝑀𝑖𝑛 are the maximum active power, idle power, respectively. In 

this study the resource type can be processor, memory or IO port. The heuristic first 

assesses the resources according to their PF and capacity. The heuristic then 

constructs sorted lists of the resources (i.e. one list per resource type) by organising 

them in an ascending order starting with resources having smallest PF, and moving 

on to resources with higher PF, and if two resources of similar type have the same 

PF, then the resource with the highest capacity is favoured. The DS is presented with 

a set of requested VMs. All VMs information such as service durations and IATs are 

known for the heuristic at the beginning of the run time and from this information, 

the heuristic finds the total required time slots to serve all the requested VMs. The 

VMs to be served in each time slot are obtained by knowing the IAT of each VM 

and its service duration. A time slot is a unit of time and it could be in seconds, 
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minutes or hours. Each VM duration is represented by the number of time slots it 

needs. Each VM is expected to occupy some resources for at least one time slot.  

Then the heuristic creates a list of the number of VMs in each time slot by 

arranging the VMs in the time slots according to their arrival time and service 

duration. For example, if VM1 arrives at the first time slot and needs 3 time slots 

then it will appear in time slots 1, 2 and 3. Similarly, if VM2 arrives at the third time 

slot and needs 7 time slots then it will appear in time slots 3-9.   Subsequently, the 

heuristic must loop for all the time slots and serve the requested VMs in each time 

slot.  

For each time slot, and for each VM in this time slot, the heuristic selects one of 

the resources from the top of each sorted list; recall that there are three lists, 

processors list, memories list and IO ports list. Similar to our work in [95], the 

heuristic checks the chosen resources to find out if there is enough capacity on each 

resource type to serve the VM request. First the processor is tested, if it does not 

have enough capacity then the heuristic picks up a new processor from the processor 

sorted list, otherwise, the heuristic tests the selected memory. Again, if the memory 

does not have enough capacity to serve the VM under consideration, a new memory 

must be retrieved from the memory list; otherwise the selected IO port must be 

tested. If the IO port can accommodate the network traffic requirements of the VM 

under consideration, it is used directly; otherwise a new IO port must be retrieved 

from the IO list. 
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Fig. 6-1: EERPVMM-DS flowchart 

After choosing all three resources that can fulfil the current VM demands, the 

heuristic allocates these resources to the VM under consideration and updates the 

used resources’ remaining capacity. In each time slot, the heuristic tries to occupy 
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the remaining capacity of the already utilised resources by packing them with as 

many requests as they can serve and if any one of them cannot serve more VM 

requests then the heuristic proceeds to the next resource in the sorted list and uses it. 

For each time slot and after serving all the VMs in the current time slot, the heuristic 

calculates the total power consumed in that time slot. 

After that the heuristic moves on to the next time slot where the resources 

occupied by VMs that finished in that time slot are to be released. The loop 

continues by repeating the above steps until all VMs are served. Finally, the 

heuristic calculates the average power consumption of the DS due to serving the 

current VMs set. 

 

 

In this section we compare our current EERPVMM-DS heuristic and our 

previous heuristic described in Chapter 3, to show how considering VMs with finite 

serving duration affects the DS power consumption. We assume that the VMs IAT is 

exponentially distributed with mean of 1 minute, considering that we are dealing 

with data centre of average access rates[103, 104]. The IAT spans from few seconds 

to a maximum value of 5 minutes, and the serving durations are generated using the 

uniform distribution. We consider the same three types of VMs as in Chapte 3: (i) 

Processing Intensive Requests (PI), (ii) Memory Intensive Requests (MI) and (iii) IO 

Intensive Requests (IOI). 

For the simulation and evaluation of the DS architecture we are considering a set 

of heterogeneous resources by disaggregating the IBM X3650 M3 server system 

[61] and using the same parameters in Chapter 3 and [94]. Note that, given our set of 

resources, processors are the most intensive power consumers and memory 
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resources are the least power consumers, while the IO ports’ power consumption lies 

between the two. 

The results in Fig. 6-2 show the power consumption considering the DS and CS 

power consumption with infinite service durations, which appeared in Chapter 3, 

and DS power consumption with finite VM service durations. The graphs show 

clearly that considering VM with finite service durations with dynamic resource 

allocation has a positive impact on the total data centre power efficiency. 

In our simulation, we evaluated the power consumption of the different data 

centres designs considering 1000 VM requests, where each request has different 

resources requirements. We assessed the DS with a range of VMs serving durations 

to show the effects of increasing the VM average service duration on the DS power 

consumption. Our findings show that when dealing with low service durations, 

resources can be used more efficiently and freused as the number of VMs that finish 

their serving duration and leave the system are considerably high. Thus the 

resources can be reused to serve new incoming VMs, which eliminates or reduces 

the need to turn-on new resources. This is to be compared to our previous analysis in 

Chapter 3 where VMs were considered to have an infinite service duration and all 

VMs arrive at once.  
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(a) PI 

 
(b) IOI 

 
(c) MI 

Fig. 6-2: Power consumption evaluation considering CS and DS with infinite service duration 

and DS with finite service duration 
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By increasing the VM service duration, the number of VMs that leave the data 

centre decreases, resulting in continuous increase in the number of working 

resources, and consequently increase in the total power consumption. As limited 

number of VMs are leaving the system, new arriving VM requests will probably not 

be able to fit in any of the already working resources, thus new resources will be 

needed to be turned on, leading to an increase in the number of working resources. 

Investigating Fig. 6-2 reveals that when handling VMs with average service 

duration around 15 days, which could be any cloud service such as SaaS or PaaS 

[101], our new heuristic will approach in behaviour our old heuristic in [94], which 

indicates that almost all the incoming VM requests are staying in the system as if 

they have infinite durations, and the used resources remain under the occupancy of 

the already arrived VMs. 

From Fig. 6-2, it is apparent that serving VM requests with finite service duration 

reduces the power consumption of the DS compared to the case when VMs were 

assumed to have infinite service duration, and the average power savings for the 

considered range of VM service durations are 10% for the PI, 17% for IOI, and 18% 

for the MI. This is due to our given input parameters for the different resource types. 

Note that PI VMs scenario has the least power saving as the saving will be from the 

efficient use of the lower power consuming resources, i.e. the memory and IO ports, 

as compared to the high power consumption of processors. When considering the 

other two scenarios, i.e. MI and IOI VMs, the higher power saving will be achieved 

through the efficient use of the most power hungry processing resources, thus these 

scenarios will attain a higher power savings compared to the PI scenario. 

What is interesting in the data given by Fig. 6-2 is that, comparing the power 

consumption of the EERPVMM-DS heuristic to the old CS scenario unveils massive 
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power savings. About 55% of the consumed power in the old CS scenario can be 

saved when considering time for the MI VMs type, 36% for the IOI VMs type, and 

21% for the PI VMs type in average. 

This behaviour asserts the fact that considering VMs having finite service time, 

the resources will not be loaded with all VMs at the same time. Rather, after a VM 

finishes its serving duration, the used resources will be vacated from this VM, and 

therefore we can perform VM migration by moving VMs that still need further 

processing to vacated resources. Thus the most efficient resources, from the top of 

the resources’ lists will be used more likely than other resources as they will be 

reused after being vacated from finished VMs. This alongside the better resource 

packing are the main factors that achieve this improved power efficiency.  

In addition, the VM service durations are exponentially distributed which reduces 

the power consumption which means that the average service duration that is needed 

to produce the same performance as our old heuristic with infinite service duration is 

more than 15 days. Also increasing the mean IAT value to more than 1 minute 

reduces the total power consumption values. 

 

In this chapter, we introduced our new energy efficient EERPVMM-DS heuristic 

which performs resource provisioning and VM migration in the DS paradigm with 

finite VM service time. For simulation, we considered 1000 VM requests which 

have different processing, memory, IO, and serving duration demands, and 

considered a range of heterogeneous resources to be used for performing resource 

provisioning. The VMs are assumed to arrive with exponentially distributed inter 

arrival times and request uniformly distributed service durations. The heuristic 
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optimises VMs allocation and dynamically migrates VMs to occupy newly released 

energy efficient resources. The heuristic results showed that the power consumption 

of the data centre has been reduced remarkably as compared to our work which 

appeared in Chapter 3 that compares CS with infinite service duration and DS with 

infinite service duration. Respectively, compared to the CS and DS with infinite 

service duration, EERPVMM-DS power savings are 55% and 18% when 

considering MI VM requests, 36% and 17% for the IOI VM requests and 21% and 

10% when considering PI VM requests, on average.  

  



  

120 

 

 

In this chapter, the work presented in the thesis is summarised and the original 

contributions are specified. For the future, potential new directions for research that 

can be conducted as a result of work in this thesis are suggested. 

 

In this thesis, an investigation is reported considering the problems of optimising 

the energy consumption of resource provisioning in DS-based data centres 

considering three scenarios, resource provisioning in DS-based data centres 

considering power consumption of the processing resources, resource provisioning 

in DS-based data centres considering both resources and communication power, and 

resource provisioning in DS-based data centres with VM migration, and resources 

reallocation considering resources power only. These different research problems 

have been investigated and the first two problems have been formulated as a MILP 

model, and then a heuristic, whereas the third problem has been formulated only as a 

heuristic. A new and innovative DS modular architecture was developed and 

introduced as a promising server paradigm for future data centres. 

In Chapter 3 the energy efficiency of VM placement in a disaggregated data 

centre approach has been investigated and the power savings of the new approach 

has been evaluated. The approach considered enables the separation of the 

computing, memory, storage, and network resources of the server leading to better 

resource utilisation by “composing on the fly” servers with the exact required 
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processing, memory, and IO capabilities to accommodate the virtual machines or 

tasks of interest. A MILP optimisation model, which optimally places VMs in the 

disaggregated data centre with the objective of minimising the power consumption, 

has been developed. It was compared to a data centre using the normal racks of 

server units. Here consideration was given to the VM placement and resource 

provisioning operations. To gain a good view of the operation of the proposed 

approach, three types of VMs – PI, MI, and IOI – have been considered in the 

model. The results show that, given the set of input parameters used, a DS approach 

can reduce the energy consumption of resource provisioning by 11%, 49%, and 24% 

compared to the CS server considering the PI, MI, and IOI VMs, respectively. An 

EERP-DS heuristic has been developed and the results showed that the average 

power savings were 60% when serving MI requests, 36% for IOI requests, and 11% 

when serving PI requests (under the set of typical parameters and conditions we 

considered). 

In Chapter 4 we introduced a new photonic communication fabric for the DS-

based data centre. Our innovative modular and switch-based DS design was 

discussed with proposed techniques for intra- and inter-racks communication. 

Communication challenges such as latency and switching speed have to be 

addressed by this design, including the specifications of the equipment used such as 

power, speed, and reliability, to guarantee a reliable and fast communication among 

disaggregated resources. Some recommendations for the design implementation 

have been presented in consistency with some defined metrics for server 

disaggregation, with a comprehensive description of the difficulties and challenges 

that could face this architecture. 
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In Chapter 5 we studied the problem of VM placement in a DS-based data centre 

by analysing the energy efficiency of resource provisioning and VM allocation in 

DS server design, with considerations for the communication fabric power 

consumption, and compared it to the CS approach. An MILP optimisation was 

developed for the purpose of optimising VM allocation for the DS-based data centre 

while considering the communication fabric power. The results show that 

considering pooled resources with the communication power yields considerable 

power savings compared to the CS approach, and up to 42% total power saving was 

achieved form the MILP model. For real-time implementation, EERP-DSCF 

heuristic was developed based on the model insights with comparable power 

efficiency to the MILP. 

In Chapter 6 we introduced our new energy efficient EERPVMM-DS heuristic 

that performs resource provisioning and VM migration in DS server paradigm. The 

EERPVMM-DS heuristic was used to study the impact of adding service duration as 

a new dimension to the VM requirements. For simulation, we considered 1000 VM 

requests that have various processing, memory, IO, and serving duration demands, 

and considered a range of heterogeneous resources to be used for performing 

resource provisioning. The VMs are assumed to arrive with exponentially 

distributed inter-arrival times and request uniformly distributed service durations. 

The heuristic optimises VMs allocation and dynamically migrates VMs to occupy 

newly released energy-efficient resources. The heuristic results showed that the 

power consumption of the data centre has been reduced remarkably as compared to 

our old work in Chapter 3 that compares CS with infinite service duration and DS 

with infinite service duration. Respectively, compared to the CS and DS with 

infinite service duration, EERPVMM-DS power savings are 55% and 18% when 
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considering MI VM requests, 36% and 17% for the IOI VM requests, and 21% and 

10% when considering PI VM requests, on average. 

The results show that the DS based data center was able to achieve higher energy 

savings while fewer number of resources are required to serve the same set of 

incoming VMs compared to the CS based data center. Considering some extreme 

circumstances, the CS and DS server designs will give the same results. In terms of 

other factors that affect the performance of the data center, DS can achieve better 

resources modularity and fine grained levels of resource allocation.  

 

In this section several future directions for the topic of energy-efficient DS are 

proposed. 

 

The first possible future work is to address the limitations of this thesis 

mentioned above. One conceivable direction is to validate the findings of this work 

that were investigated using MILP mathematical modelling by using experimental 

evaluation. Another possible direction is to consider other metrics in the objective 

function such as delay, reliability, blocking rate, and locality of used resources by 

setting limits on spanning distance among resources used by the same VM, etc. In 

addition, experimental evaluation can be conducted by benchmarking DS-based data 

centres. 

 

Another extension to this work can be conducted by considering VM scheduling. 

This can reformulate the problem in a wider context where resource placement can 
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be jointly optimised with considerations for VM scheduling. This is better, in terms 

of optimisation scope and energy-efficiency gains, as each VM will be given a 

specific time slot and, upon finishing, it will be removed from the system and the 

vacated resources will be used to serve new or already available migrated VMs. 

 

Based on the IP/WDM network, applying the DS-based data centres and 

considering communication bandwidth among these distributed data centres will add 

a new prospect to the area better than isolating the data centres and optimising it 

separately from the rest of the core networks. 

 

This can be implemented by having different operators owning or managing big 

boxes of disaggregated resources and those operators can sell their resources to end 

users. Different operators can rent resources from each other and use them as if they 

were their own resources. 

 

Another interesting topic is to consider DS servers for PON data centres revising the 

MILP models and heuristics to reflect the new interconnection topology among the 

racks of disaggregated resources. However, some challenges will need to be tackled 

when considering the new DS server with PON data centres, such as latency, 

resource locality, and blocking. 
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