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Abstract 

 

The aim of this work was to produce and characterise porous glass-ceramic 

scaffolds that mimicked human trabecular bone through the foam replica 

technique. Parent glasses were formed via a melt quench route to produce glass 

frits, these were then processed into powders consisting of <45 µm particles 

confirmed through particle analysis. DSC analysis confirmed a glass transition 

region of ~ 750 °C, two crystallisation peaks were noted at 886 °C and 942 °C. 

Combining multiple glass batches exhibited properties consistent with single batch 

analysis, allowing for scale up of glass volumes and sample sizes for 

characterisation. Slurries of varying ratios of glass and binder (polyvinyl alcohol) 

were then produced and used to coat a polyurethane foam template. Two distinct 

heat treatments were then designed from initial studies; SEM analysis confirmed a 

dwell at 800 °C for 5 hours sufficiently sintered the glass particles, XRD analysis 

confirmed a tertiary dwell at 950 °C for 1 hour formed both apatite and wollastonite 

phases. 

Biaxial flexural testing and micro-CT analysis showed that with decreasing glass 

content within the initial slurry the resultant mechanical and architectural 

properties diminished. Excessive use of binder within the initial slurry was also 

found to diminish the consistency and properties of the scaffolds produced. Coating 

the porous scaffolds with fluorapatite was shown to be feasible; the crystallinity of 

the substrate was found to alter the resultant crystal morphologies. Human adipose 

derived stem cells (hADSC’s) were shown to both attach and proliferate on 

scaffolds, with or without a fluorapatite coating. 
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1. Introduction 

 

Throughout human history, materials have been used to alleviate pain, restore 

functionality and ultimately reduce mortality rates. As technologies advanced 

through the 20th century, several milestones were reached and medical devices such 

as hip replacements were becoming “gold standards” in the orthopaedic field (1, 

2). In terms of these medical devices, as more information was gathered on their 

clinical performance it was subsequently discovered that wear debris from the 

polyethylene component of the hip replacement (UHMWPE) led to osteolysis and 

prosthesis loosening (2). In addition to this a new phenomenon of “stress-

shielding” was reported; due to the disparity between the mechanical properties of 

the metallic femoral stem, poly(methyl methacrylate) (PMMA) (3) and the 

surrounding tissue, the natural response of the cells was to remove the “un-

necessary” tissue. This led to micro-motion of the metallic stem, pain and 

ultimately costly revision surgeries. 

Towards the end of the 20th century, a new concept was emerging, tissue 

engineering (TE) and regenerative medicine (RM). By combining engineering 

principles with cellular biology; materials and constructs could be created to restore 

functionality in the short term, and allow natural remodelling processes to take over 

in the long term, ultimately resulting in complete restoration to an affected area 

with none of the originally implanted material remaining (4).  

Several strategies were explored; early successes worth noting are that of Apligraf® 

and Dermagraft®; skin grafting products composed of synthetic polymers 

combined with fibroblasts (a common cell found in connective tissue, i.e. skin, 

muscle, etc.) which were FDA approved in 1998 and 2001 respectively (5). Initially 
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applied to a significantly large wound to provide immediate protection from 

infection; over time the polymer is broken down through natural processes, 

ultimately resulting in a fully healed area of skin with none of the original synthetic 

material remaining. This raised the question of whether this strategy could be 

employed to all structures of the body, e.g. bone, and whether treatments could 

reach the stage where previously damaged areas were indistinguishable from 

healthy areas post-operatively. 

Bone has an inherent ability to heal itself in the event of minor fractures, however 

when a significant wound is created an external material is required to aid in 

healing. This non-union defect is commonly termed as a “critical bone defect”, 

consisting of a gap larger than a few millimetres. Currently the gold standard of 

treatment is an autologous graft; trabecular bone is harvested from a healthy site 

(e.g. iliac crest) of the patient and transplanted to the affected site. Autologous 

transplants have the advantages of rapid integration and lack of rejection, this 

explains their wide use and claim of current “gold standard” in orthopaedic 

treatment (6). Where this treatment is deemed successful it is primarily limited by 

donor site availability  (and subsequent damage to the surrounding site post 

extraction) and severe pain suffered from the donor site (7). A synthetic material 

used as a bone substitute would eliminate the need to perform autologous 

transplants; it would be more readily available and reliable. 

Historically, synthetic implants have been constructed from materials that are 

classed as biologically “inert”; this results in the implant being encapsulated by 

fibrous tissue. Whilst encapsulation is an acceptable response to a biocompatible 

medical implant, this fibrous layer prevents them from bonding directly with the 

bone. As such, complications can arise after surgery in the form of micro-motion 
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and loosening of the implant, this in turn causes pain, ultimately resulting in 

revision surgery. An alternative to using an “inert” material is to use a “bioactive” 

material, such as certain compositions of glasses and ceramics. These materials 

form a direct bond to bone, achieved from eliciting specific biological responses at 

the bone-interface site, forming a physiochemical bond. A bioactive material will 

have a much greater chance of achieving a secure fixation and ultimately a much 

higher success rate. 

Calcium phosphate ceramics present themselves as likely candidates for creating a 

synthetic bone graft, primarily due to their inherent similarity to the mineral phase 

of natural bone. They have been shown to be resistant to the corrosive nature of 

bodily fluids and illicit negligible foreign body reactions (8). Such materials 

include fluorapatite (FA), hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), 

and α-tricalcium phosphate (α-TCP). Of these, FA and HA are very stable and will 

not readily absorb under physiological conditions. β-TCP and α-TCP are less stable 

and can be combined with HA to control degradation rates and allow for the 

formation of a bone bonding apatite layer on their surfaces. 

Certain compositions of glass-ceramics have also been of great interest in the 

biomedical field; especially with regards to repair/replacement of natural bone and 

for dental restoration (9-11). Glass-ceramics are polycrystalline solids prepared by 

the controlled crystallization of glasses. To produce a glass-ceramic, a base glass 

is first produced, then a specific heat treatment is applied to that glass, ideally 

resulting in the volume nucleation and growth of crystal phases within the glass; 

these act as an impediment for fracture propagation by causing deflection, 

branching or splitting of propagating cracks. The resultant glass-ceramic displays 

superior mechanical properties compared to the base glass.  
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Some glass-ceramics have been commercialised and marketed such as Dicor® 

(mica glass-ceramic), Ceravital® and Bioverit® (mica-apatite glass-ceramic) (12-

15). Among them the glass-ceramics containing apatite [Ca10(PO4)6(O,F2)] and 

wollastonite [Ca.SiO3] crystals (A/W glass-ceramics) as the predominant 

crystalline phases in the MgO-CaO-SiO2 glass matrix have received great 

importance as a biomaterial, especially in the replacement of natural bone (16-18). 

The discovery of A/W glass-ceramics by Kokubo et al. in 1982 (16) has drawn 

great attention principally due to their bioactive nature and ability to bond 

spontaneously to living bone in a short period. Additionally A/W are noted to have 

high mechanical properties such as toughness and strength for a long period in a 

body environment (17, 18). 

Currently A/W glass-ceramics have found special applications in the clinic; either 

in powder form as bone filler, bulk material for fabricating iliac crest prostheses, 

artificial vertebrae, spinal spacers, and intervertebral spacers (19, 20). Yamamuro 

(20) reported that A/W glass-ceramic has been successfully used in spine and hip 

surgery of patients with extensive lesions or bone defects. The development of a 

porous A/W glass-ceramic is the subject of current research through the use of 

various strategies, one such strategy is known as the foam replica technique. 

However, before these strategies are discussed in more detail the following sections 

aim to introduce the reader to the relative historical context and basic principles 

that have led to the strategy of tissue engineering and bone replacement materials. 
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2. Literature Review 

2.1.    Bone – Form and function 

Bone tissue may be considered mechanically as a complex composite material 

functioning to resist stress, provide articulation sites, and to give rigidity and shape 

to the body. In an extremely generalized model, bone may be split into two main 

types: cortical (compact) and cancellous (trabecular) bone. Cortical bone is much 

denser than cancellous bone, its thickness and shape are dependent upon the 

support required. Cancellous bone is highly porous (visible to the naked eye), this 

large porosity provides a large surface area to support complex stresses. Much like 

the Bauhaus principle of design its form follows its function; as such its 

remodelling and repair mechanisms are dictated via its structure and environment, 

as suggested by Wolff (21, 22). However the suggestion that compact bone is 

merely dense cancellous bone is not accurate when the mechanical properties of 

these materials are compared (23). The model of bone has changed dramatically 

over the years; once thought of as merely a static support structure, it is now known 

that bone is a site of high metabolic activity with constant turnover of extra cellular 

matrix (ECM) and migration of cells (24-26). However; before the mechanics and 

functionality of bone are discussed, the structure of bone from micro-to-macro 

level will be briefly outlined. This section aims to describe defined levels of bone, 

the constituents at each level and the resulting effect these levels have on the overall 

functionality of bone. 

 



6 
 

2.1.1. Bone Anatomy – Microscopic to Macroscopic 

Bone is a highly vascularized connective tissue (27); composed of a fibrous protein 

(collagen) providing flexibility and resistance to extension, stiffened by 

surrounding calcium phosphate crystals providing hardness rigidity. It is 

moderately hydrated; in a mature bone ~ 10-20 % of the bone’s mass is water. 

Considering its dry weight, 60-70 % is inorganic mineral salts (i.e. hydroxyapatite) 

and ~30 % is collagen (28, 29).  

Collagen comprises 80-90 % of the protein present in bone, the most common type 

of collagen found in bone is collagen type I. The collagen is covalently cross-linked 

which increases mechanical strength and makes the protein more chemically inert 

(30), the internal gaps between the collagen fibres provide the mineral deposition 

sites (31). Collagen is synthesised in bone through osteoblast activity; the 

tropocollagen produced polymerises extracellularly, cross-linking as they mature. 

Macromolecules are secreted from osteoblasts and young osteocytes, which attach 

to collagen fibres and crystals. Such macromolecules are osteopontin, osteocalcin 

and proteoglycans (biglycan and decorin), osteopontin, and transforming growth 

factor-β (TGF-β) (29). 

The mineral portion of bone (in mature bones) has been identified as 

hydroxyapatite (HA); the minerals exist in bone as small plates roughly                         

4 nm x 50 nm x 50 nm (32). The plates are closely packed together with their long 

axes almost parallel to the collagen fibrils; gaps between the crystals contain water 

and organic macromolecules. As stated previously bone is a site of high metabolic 

activity and turnover, this activity is regulated via the local cells, these cells shall 

be briefly described. 



7 
 

2.1.1.1. Mesenchymal Stem Cells 

Stem cells are a type of cell that have the potential to divide and mature into 

multiple cell phenotypes; mesenchymal stem cells (MSC’s) give rise to osteoblasts, 

chondroblasts, adipocytes, tenocytes, etc. MSC’s can be harvested from numerous 

sites in the body, a common site to harvest MSC’s is from bone marrow; other sites 

are noteworthy however, such as adipose tissue, dental pulp, periodontal ligaments, 

synovial membranes, trabecular bone, skin and muscle (33). Osteogenic 

differentiation of MSC’s are guided by various environmental factors, which shall 

be described in this section. 

2.1.1.1.1. Chemical induction 

A common method of inducing osteogenic differentiation in vitro is through the 

use of chemicals such as dexamethasone, ascorbic acid and beta glycerol 

phosphates (34-36). Aside from these routinely used compounds other hormones 

and growth factors have been found to have effects on MSC differentiation. Some 

of these are oestrogen (37), sonic hedgehog (38), fibroblast growth factor (FGF) 

(39, 40), vascular endothelial growth factor (VEGF) (41), and bone morphogenic 

protein (BMP) 2, 4, 7 and 9 (42-44). The specifics of these signalling pathways and 

their controlled effect on MSC’s are still debated within the literature; however the 

use of these growth factors seems necessary, to the point that commercially 

available versions exist, such as recombinant human BMP-2 (rhBMP-2). Currently 

these are costly; additionally they have been reported to cause adverse effects in 

high dosages, such as breathing difficulty, back and leg pain, haematoma and life 

threatening urogenital events (45).  
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2.1.1.1.2. Topography 

The effect of a substrates topography on cell behaviours was first demonstrated in 

1911 (46), this was later developed into the idea of “contact guidance” in 1945 by 

Paul Weiss (47). Contact guidance refers to cells aligning and orientating 

themselves to the patterns that they are cultured on; features as small as 5nm have 

been shown to instigate this effect (48), the key factors to consider are average 

surface roughness  (Ra) and the patterns on the surface (isotropic and anisotropic). 

In general, osteogenic MSC differentiation is linked with surface roughness’s ≈ 1 

µm. A study by Yang et al (49) cultured human bone marrow stromal cells 

(hBMSC’s) on HA discs (in osteogenic medium) with Ra values ranging from 0.2-

1.65 µm; discs with Ra values of  0.7-1.0 µm we found to be optimal in  terms of 

osteogenic differentiation. Faia-Torres et al conducted a similar study without the 

use of osteogenic inducers, i.e. MSC’s cultured on poly-epsilon-caprolactone 

(PCL) discs in basal media (50). Expression of osteogenic markers, alkaline 

phosphatase (ALP) and mineralization were found to be related to Ra; specifically 

peak ALP was attributed to an Ra value ≈ 0.93 µm. Anisotropic patterns have been 

shown to improve osteogenesis with careful design of the pitch of the ridges and 

grooves (≈ 50 µm) (51). Isotropic patterning is less understood, however it is 

generally accepted that this enhances osteogenic differentiation (52). 
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2.1.1.2.    Osteoblasts 

These cells are derived from osteoprogenitor (stem) cells of mesenchymal origin 

(bone marrow and other connective tissue). Osteoblasts are basophilic, cuboidal, 

mononuclear cells roughly 15-30 µm across with features typical of protein 

secreting cells (53). They are generally found on the forming surfaces of growing 

or remodelling bones, providing a covering layer (also found within cortical bone 

where osteons are undergoing remodelling). They are responsible for synthesis, 

deposition and mineralization of the bone matrix. Once they are embedded within 

the matrix they differentiate into osteocytes (54). Osteoblasts contain bundles of 

actin, myosin and other cytoskeletal proteins associated with maintenance of cell 

shape, motility and attachment. Osteoblasts have extended plasma membranes 

which can contact neighbouring cells (other osteoblasts and osteocytes) at 

intercellular gap junctions, providing co-ordination of the activity of groups of cells 

(54). 

2.1.1.3.     Osteocytes 

These are the major cell type of mature bone; osteocytes saturate the matrix and 

are interconnected by numerous dendritic processes, forming a complex cellular 

network. Where osteocytes are derived from osteoblasts, these cells do not secrete 

any new matrix. Osteocytes are ellipsoidal, with their long axis (~25 µm) parallel 

to surrounding lamella (53). Osteocytes lie within what is termed lacunae; a cavity 

filled with fluid with a wall of un-mineralized organic matrix up to 2 µm thick. The 

dendritic processes contact adjacent cells through their distal tips; these form 

communicating gap junctions, which maintain the electrical and metabolic 

equilibrium of the cellular network (29). The channels which these junctions are 

formed within are termed canaliculi, roughly 0.5 µm in diameter (29), acting to 
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supply a route for information to be transferred between cells and the diffusion of 

nutrients and waste via neighbouring osteocytes and blood vessels (54).  

2.1.1.4.     Osteoclasts 

As opposed to osteoblasts, osteoclasts are bone-destroying cells. These are large, 

multinucleated cells derived from precursor cells circulating within the blood (54). 

These cells may be described as being aggressive; osteoclasts clamp down onto the 

surface of bone, the ruffled border underneath acts to break down the bone. Organic 

and inorganic debris are packed into vesicles that pass through the cell body, these 

in turn are deposited into the space above. Osteoclasts are presumed to die 

(apoptosis) once the breakdown of the bone is completed (55).
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2.2    The Hierarchy of bone  

2.2.1.    Woven and Lamellar bone 

Collagen fibres aggregate to form fibrils, these and their mineral counterparts are 

arranged in two distinct forms to constitute the next defined structures of bone: 

woven and lamellar bone. Woven bone is laid down quicker than lamellar bone ( ~ 

4 µm/day and ~1 µm/day respectfully (29)) and is present in the foetus and in the 

callus that is produced during fracture repair. The collagen in woven bone is 

composed of fibrils 0.1-0.3 µm in diameter with random orientation of the fibrils 

and minerals (56) compared to lamellar bone which is less mineralized; and whose 

collagen fibrils (2-3 µm in diameter) and minerals are arranged in sheets (termed 

lamellae), whose thickness appears to alternate (57). The fibrils in lamellae may be 

best described as being orientated in small domains roughly 30-100 µm across. 

Within a domain the fibril orientation is constant; however this changes within one 

lamella and between each domain.  

2.2.2. Harvesian system and Fibrolamellar bone 

Osteoclasts form cutting cones ~ 200 µm in diameter and 300 µm long, this cavity 

is rapidly filled and the walls are smoothed, bone is then deposited on the internal 

face to create concentric lamellae (58). Through the central cavity lies (in general) 

a blood vessel and nerves, this system is termed a Harvesian system (or osteon), 

the entire process from osteoclastic activity to completion of the structure takes 

roughly 2-4 months (59). The concentric lamellae are composed of sheets of 

mineralized matrix and branching collagen fibres (2-3 µm thick).The collagen 

within these lamellae is orientated longitudinally at sites of tension, and obliquely 

at sites of compression, functioning to provide the maximum support possible by 

the material to the applied forces (60).  
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Fibrolamellar bone is another distinguishable bone structure, woven bone is rapidly 

laid down to be later filled with lamellar bone. A 2-D vascular network resides 

between each lamellar layer, which in turn is layered with woven bone (60). At this 

line the growth of bone is halted before the next stage is initialised, this results in 

alternating layers of woven and lamellar bone, allowing rapid growth (woven bone) 

whilst retaining sufficient mechanical properties (lamellar bone). 

2.2.3. Cortical and Cancellous bone 

These sub-structures all constitute the composite properties of bone at the sub-

macroscopic level, however these structures combine to give the two primary 

macro structures of bone clearly visible with the naked eye: Cortical and cancellous 

bone. Cortical bone is found primarily around the shafts of long bones and the 

peripheral lining of flat bones; it is ultimately solid (constituting ~ 80 % of the 

skeletons weight with a porosity ranging between 5-10 %), composed of the 

concentric lamellae described previously (54, 60). Spaces exist only for osteocytes, 

canaliculi and blood vessels. Conversely cancellous bone is highly porous            

(50-90 % porosity), composed of lamellar bone or fragments of Harvesian bone 

(29, 60). Cancellous bone is found at the end of long bones under synovial joints, 

filling of short and flat bones, and beneath protuberances where tendons attached 

(29). Cancellous bone is formed from struts termed trabeculae, the lamellar that 

form these struts do not necessarily run parallel with the external surfaces of the 

struts. The struts may be randomly orientated (usually denoted to struts deep within 

the bone); or orientated in an organized manner where stress patterns are 

reasonably constant, this organisation shall be discussed further in section 2.4.2.

 Anisotropy 
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2.3. Mechanical properties 

The hierarchical structure of bone from the molecular to macroscopic level results 

in complex mechanical properties. For vertebrates, it is imperative that the skeleton 

be stiff, stiffness of a material (or its resistance to deformation) can be described 

simply through calculation of its Young’s modulus. Generally, these properties are 

ascertained via applying a load to a specimen (mechanical testing) or by measuring 

the velocity of sound waves in bone (ultrasonic testing). Mechanical testing has the 

advantage of simplicity. Young’s modulus of bone can be determined through a 

variety of directions; additionally cancellous bone may be analysed with the 

inclusion of its cavities, where ultrasonic methods would struggle to attain 

properties of a porous medium (61). In general orientation alters the values 

obtained from either study employed (62), (63) with estimates of stiffness 

measured along the length of the bone being up to 2.4 times greater than tests 

applied at right angles to the specimen. The rate at which the specimen is deformed 

(strain-rate) has a measurable effect on the Young’s modulus calculated (64, 65), 

this is due to the slight viscoelastic property of bone.  

Simplistic models have been produced to describe the elastic properties; 

considering the composite structure of bone incorporating organic (collagen) and 

inorganic (hydroxyapatite) phases, this idea was built upon further using Voigt and 

Reuss models (66). These models describe the bone as a sandwich structure, 

composed of the materials with corresponding stiffness’s estimated to that of 

collagen and hydroxyapatite. 
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This model proved too simplistic however (67) and was developed further (68) into 

the following equation: 

 

𝐸𝑏 = 

𝐸𝑐𝑉𝑐(1 − 𝜈𝑐𝜈𝑏)

1 − 𝜈𝑐
2

 +  𝛴𝐸ℎ𝑎𝑉ℎ𝑎𝛼𝑛(𝑐𝑜𝑠4𝜑𝑛 − 𝜈𝑏𝑐𝑜𝑠2𝜑𝑛𝑠𝑖𝑛2𝜑𝑛) 

 

where subscript c is collagen, ha is hydroxyapatite, ν is Poisson’s ratio, 𝛼𝑛 is 

fraction of apatite crystals lying at an angle 𝜑𝑛 from the direction of stress. 

The first section of the equation relates to the collagen (assumed to have equal 

modulus in all directions), the second part describes the apatite. This model still 

proved insufficient to describe the Young’s modulus, with predicted values 

considerably lower than observed values. Attempts were made to model bone from 

the lamellar and Harvesian level (69-73); estimations were made of Young’s 

modulus, crystal spacing and orientation. Where these models showed the effects 

of fibril and crystal orientation, the scaling up of the values predicted still requires 

the use of large assumptions, meaning it is difficult to translate the microscopic 

characteristics to the macroscopic function. 

The anisotropy of bone was studied in long bones (62) assuming transversely 

isotropic properties of the Harvesian bone (i.e. axis of symmetry down the length, 

behaviours in all right angle directions to this axis are equal). Their study showed 

that the ultimate tensile strength in the circumferential direction is roughly 40 % of 

the longitudinal direction. This is expected as the collagen fibrils and subsequent 

structures are primarily orientated along the long axis. This idea of anisotropy has 
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helped in defining the fracture mechanics of bone; several studies (69, 74) showed 

that aspects of the hierarchical structure act to dampen the rate at which a crack 

propagates through bone. In general, it is reported that the microscopic structure of 

bone reduces stress-concentrating factors. One such example is the cement lines of 

Harvesian systems, acting to form weak interfaces at which cracks are dissipated, 

resulting in an increase in the total amount of energy required to fully propagate a 

crack. 

Despite the variations in methods, models and assumptions that must be made 

estimations of the strength of bone can be drawn. In compression and tension 

cortical bone is reported to have yield strengths of 131-224 MPa and 78-151 MPa 

respectfully when tested longitudinally (75). This is diminished to 106-133 MPa 

and 51-56 MPa when tested in the transverse direction (75); with bending strength 

ranging from 30-90 MPa. An estimate of the elastic modulus of cortical and 

cancellous bone has been given as 17 GPa and 6 GPa respectfully (75). Description 

of the strength of bone is inherently complex, whereas values of whole specimens 

and cortical bone can be ascertained through loading and bending tests, cancellous 

bone presents further complications. As this study shall be primarily focusing on 

replicating trabecular bone, the following section elaborates on the modelling of 

trabecular bone, specifically outlining the difficulties in determining the 

mechanical properties of such a complex structure. 
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2.4. Cancellous bone 

In a simplified model, cancellous bone may be thought of as a highly porous 

cortical bone; however, this model is misleading as cancellous bone is highly 

specialized and as such has specific mechanical properties. The methods used to 

estimate stiffness and strength in cortical bone cannot be applied here. As the struts 

of cancellous bone (trabeculae) form a complex structure the tissue can no longer 

be described simply as a uniform material. It is important to differentiate between 

the bone material, which forms the individual trabeculae; and the tissue as a whole, 

which includes the entire trabecular structure and pores. A wide range of values 

have been reported through studying trabeculae/or the trabecular structure as a 

whole. Studying individual trabeculae through buckling studies, standard 

mechanical testing and nanoindentation has reported values of Young’s moduli 

ranging from 1-14 GPa (76-79). It is generally accepted however that the Young’s 

modulus of trabecular bone (as a whole) lies somewhere around 6 -8 GPa (80), and 

that cancellous bone has a lower modulus than that of cortical bone.  

That begs the question as to why this is so. It has been suggested that the lamellae 

in trabeculae are less organised than in cortical bone (62), additionally it has been 

suggested that the mineral content of cancellous bone is less than cortical, about 

90-95 % of cortical (81). Errors due to specimen extraction are a significant factor 

to consider when ascertaining properties of trabecular (or cortical) bone via 

standard mechanical testing methods (82). End-artefacts created when the 

specimen is cut result in lower stiffness than when the specimen was in situ; errors 

due to end-artefacts have been reported to cause under-estimations of stiffness by 

~40 % (82, 83). Where these suggestions may account for some discrepancies 
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between values reported for cortical and cancellous bone, the problem is in reality 

much more complex. 

2.4.1. Apparent density 

Characterising cancellous bone requires the inclusion of its porous nature; a 

relationship between the elastic and strength properties with respect to apparent 

density gives an indication of the structural effect of the cancellous material (23, 

64, 80). The apparent density is the dry mass of the bone divided by the volume of 

the specimen (determined from the dimensions of the sample). The strength and 

modulus fitted well to a power law (where D is the apparent density): 

𝐸 = 𝑘𝐷3 , 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =  𝑘′𝐷2 

The exponent for stiffness in this relationship has been confirmed as 2 through a 

comparison of several studies utilising this relationship (23, 80). In the human 

skeleton, the apparent density of trabecular bone ranges from 0.1-1.0 g/cm3, in 

comparison cortical bone has an apparent density ~ 1.8 g/cm3.  

Due to the relatively small sample sizes utilised in standard mechanical tests 

(trabeculae strut thickness ~100-200 µm, length ~ 1-2 mm) new approaches to this 

problem have been developed. Using micro-CT scans a model of the tissue can be 

constructed; the mechanical properties of the model can be estimated from a “grey 

scale” produced from the scan, depicting the range of densities within the tissue 

(84). Then results of these calculations can then be compared to laboratory 

compression tests, through this it is possible to calculate what tissue material 

properties would provide the best agreement with the experimental results (85). 
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2.4.2. Anisotropy 

Despite the varying values reported in the literature for strength and moduli of 

cancellous bone, it is agreed that its mechanical properties are a function of its 

apparent density and the alignment of trabeculae with respect to the applied load 

(86, 87). Anisotropy is produced in cancellous bone, not through its individual 

trabeculae, but through the alignment of the trabeculae as an entire structure. This 

anisotropy has been reported in several studies (77, 88) showing ratios of greatest 

to least modulus of cancellous bone of almost 5 times when loaded in each of the 

three orthogonal directions. The architecture of the cancellous bone is therefore a 

defining characteristic of its mechanical properties, a description of the anisotropy 

and the direction of this anisotropy can be described through a feature termed 

fabric.  

This characteristic is difficult to pin down, however the general idea is the 

anisotropy of the material is modelled through an ellipsoid. The ellipsoid is 

composed of three orthogonal axes is arranged in space to depict the degree of 

anisotropy; for example, an elongated ellipsoid depicts trabeculae orientated 

preferentially in one direction, if the ellipsoid tends towards a spherical shape this 

depicts random orientation of the trabeculae. Cancellous bone acts not only to resist 

complex stresses, but also to dissipate energy from a whole bony structure.  

The ability of cancellous bone to absorb energy has been studied through standard 

mechanical testing regimes (89) reporting classic stress-strain curves. The report 

suggests that under compression there is a plateau effect (plastic zone); compared 

to tension where the peak of the curve is followed by an almost linear drop off. The 

study also showed the ability of the cancellous network to recover up to 96 % of 

its original height after compression to 85 % of its original height. This ability of 
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cancellous bone to cope well with compressive forces coincides well with one of 

its primary locations: beneath the articulating ends of long bones.  

In brief: the articulating ends of long bones are coated with articular cartilage; 

composed of collagen fibrils orientated from parallel to perpendicular from 

superficial to deep respectfully, saturated with glycosaminoglycans, proteoglycans 

and water. This material has fantastic frictional properties; however its tensile and 

compressive strengths leave much to be desired, reported to be roughly 20 MPa 

and 35 MPa respectfully (90, 91). By underlining the subchondral bone of these 

articulating surfaces with the cancellous network, the energy is absorbed in a 

uniform manner, minimising localised stresses that would be produced from an 

underlying solid material.  
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2.5. Fracture repair process 

In general, bone heals through the following stages: formation of a haematoma, 

migration of inflammatory and MSC’s (inflammation), formation of a callus 

(repair) and remodelling of the callus (remodelling) (92, 93). There are two 

mechanisms for bone healing: primary and secondary bone healing. Primary bone 

healing is rare; occurring when two cortical faces remain in close proximity (92), 

osteoclasts form a cutting cone through the fracture which is remodelled by 

osteoblasts. Primary bone healing requires rigid fixation through the use of plates 

and screws to prevent non-union.  Secondary bone healing requires slight mobility 

in the fixation (micromotion) to allow for proper callus formation (92). Three 

stages of bone healing are describable, each stage is influenced by local factors 

such as the degree of trauma and the type of bone affected. Other factors that can 

affect the bone healing process are the presence or absence of infection and 

systemic factors such as age, hormones and nutrition
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2.5.1. Inflammation stage (within 0 -72 hours of injury) 

The site of fracture bleeds extensively (including the surrounding tissues) resulting 

in the formation of a clot, or fracture haematoma. Platelets in the blood attach to 

the clot and release vasoactive mediators, growth factors and other cytokines, 

which attract inflammatory cells to the fracture site. Necrotic bone and tissue debris 

are removed via mast cells and macrophages followed by the stimulation of cells 

required to begin repairing the bone (92). 

 

2.5.2. Reparative stage (within 2 days to 2 weeks of injury) 

During this stage, osteoblasts (which are derived from the site of fracture and 

distant sites via the bloodstream) begin to lay down new bone matrix. A collagen 

rich matrix forms a soft callus into which new blood vessels grow, this is followed 

by ossification of the matrix that leads to the formation of woven bone (92). 

 

2.5.3. Remodelling stage (from 3 weeks onwards) 

The callus stops increasing in size, continuity between the bone fragments is 

achieved, at this stage maturation and remodelling of the callus begins. Where this 

stage begins roughly 3 weeks after injury (92) (during the reparative stage) it can 

continue for 6-9 years (93). Sequential resorption and deposition of woven bone is 

undertaken, gradually converting the woven bone to lamellar bone. This process of 

resorption and deposition is balanced via the external stresses placed on the bone; 

Wolff’s Law dictates the ultimate form of the bone (93). 
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2.6. Requirements of bone replacement materials 

As previously discussed bone has the inherent ability to regenerate, however if a 

large enough void is formed only a soft tissue scar s formed potentially leading to 

fracture of the bone. A bone replacement material is needed to aid in the healing 

process when a void of such a size is present; this replacement material bridges the 

gap and restores continuity between the tissues. In other scenarios such as treatment 

of scoliosis or chronic non-healing fractures, this material can be used as a stimulus 

for new bone formation. Aside from blood, bone is the most commonly 

transplanted material. Bone replacement materials are biomaterials, all 

biomaterials must have specific properties dependent upon their application. This 

section describes the specific properties required of a bone replacement material. 

Scaffolds designed for the replacement of trabecular bone aim to mimic the 

properties of native bone; porosity, average pore size, mechanical strengths, 

biocompatibility, these are the factors that must be considered and characterised 

when developing a trabecular bone replacement material. 

2.6.1. Mechanical Properties  

Replicating the mechanical properties of bone is difficult as the interaction of HA 

crystals and collagen fibres from the nanoscale contribute to its intrinsic properties. 

The mechanical properties of a trabecular bone replacement material should ideally 

be similar to natural bone; too low a strength and the graft will fail, too high and 

stress shielding may occur (94). Load application though normal activities 

encourages bone formation, a lack of load application causes bone resorption. If 

the bone replacement material used has a significantly higher modulus than the 

natural bone, it will lessen the loads applied to the surrounding bone, shielding the 

natural bone from stresses. This in turn results in bone resorption around the 
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implant leading to loosening of the implant. The mechanical properties of bone 

varies from site to site and wide range of values are reported in the literature. 

However, trabecular bone mechanical strengths are reported asː 2 – 12 MPa 

(compressive strength), 10 – 20 MPa (flexural strength) and 1 – 5 MPa (tensile 

strengths) (95). These values should be aimed for when characterising the initial 

scaffold produced, however as stated by Fu et al “Although the requisite 

mechanical properties of scaffolds for bone repair are still the subject of debate, it 

is believed that their initial mechanical strength should withstand subsequent 

changes resulting from degradation and tissue ingrowth in the in vivo bone 

environment “ (95). Bone in growth and remodelling will alter the mechanical 

properties in vivo over time, however the mechanical properties of the scaffold 

should initially be within the ranges described above.  

2.6.2. Fixation/Osseointegration 

Linked to the architectural properties the scaffold must have the ability to allow 

ingrowth of blood vessels and osteoprogenitor cells (96); if this is accomplished in 

addition to bonding of the surrounding bone tissue without fibrous encapsulation 

the scaffold can be described as osteoconductive (97, 98). Fixation of the material 

into the defect is equally important; with a bioactive material, the formation of a 

physiochemical bond is possible, increasing the chances of achieving a successful 

fixation. 

2.6.3. Porosity/Osteoconduction 

As vital as mechanical properties (perhaps more so in the case of trabecular bone 

treatments) the internal architecture must mimic that of the native tissue. A highly 

interconnected structure is required to promote ingrowth of new bone and 

vascularisation. It is generally accepted that pore sizes ranging from 100-600 μm 
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are required for mechanically strong bone ingrowth (99, 100). A minimum pore 

size of 100 μm is necessary for cell penetration, tissue ingrowth and 

vascularisation. A high degree of porosity is noted as being detrimental to scaffold 

strengths and implant reliability, a careful balance is required. 

2.6.4. Biodegradability 

Unlike metallic and non-degradable polymers that are currently used, 

biodegradable materials provide structure and support for timescales necessary to 

restore functionality and promote initial bone healing processes. As the material 

degrades, porosity is increased allowing further in-growth of native tissue and 

vascular networks. This degradation rate must be equal to or less than the natural 

remodelling rates (101). Another key aspect to consider of a biodegradable material 

is the removal of degradation products without invoking a cytotoxic response 

(102). 

2.6.5. Fabrication 

The key advantage of developing a synthetic scaffold is availability compared to 

conventional grafting options. As such, the fabrication methods must lend 

themselves to commercialisation; scaling-up is a challenge that must be considered 

from the earliest stages in the design cycle, reproducible batch production should 

be the minimum level achieved. 
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2.7. Fixation techniques 

Permanent fixation of the implant into the defect is vital to its success, as previously 

stated with inert materials fibrous encapsulation can prevent this and result in 

device failure. Three main types of fixation techniques are definable – 

morphological, biological, and bioactive. 

2.7.1. Morphological fixation 

This type of fixation is used for biologically inactive materials (or materials which 

are non-porous/dense) such as metals or alumina. The main advantage of this type 

of technique is the application of immediate stability allowing for weight bearing 

shortly after the procedure. Examples of this technique include press-fitting (103), 

use of a threaded component (104), or cementing a component in place, i.e. using 

PMMA during Total Hip Replacement (THR) (105-107). As previously noted if a 

tight mechanical fit is not achieved movement at the implant:bone tissue interface 

can result in the formation of a fibrous layer, this layer can thicken over time 

ultimately leading to implant failure (105). PMMA is a widely used bone cement; 

the success of using a bone cement is reliant upon the ability of the cement to 

penetrate into bone trabeculae forming a mechanical interface, PMMA (and other 

bone cements) do not form a chemical bond with the bone tissue. An advantage of 

using PMMA is due to its viscoelastic property allowing it to dissipate loads 

between the bone and implant; this minimizes localized regions of stress (108). 

PMMA is a self-polymerising material formed from mixing a solid PMMA powder 

with a liquid methyl methacrylate (MMA) monomer; a concern with the use of 

PMMA is the polymerising reaction, which is exothermic, this reaction can reach 

over 70 °C and when in contact with bodily tissue can lead to localised bone 

necrosis (109, 110). 



26 
 

2.7.2. Biological Fixation 

This fixation technique allows implants to withstand more complex stresses than 

implants fixed morphologically, this is achieved using a porous or textured surface, 

which allows tissue in growth. As previously stated, pores should be 100-150 μm 

in diameter to allow for vascularisation; additionally to prevent resorption the in 

grown tissue should be subjected to mechanical stresses. Drawbacks to this 

technique are the porous nature, which decreases the implants mechanical strength. 

Additionally (unlike morphological fixation) the strength of fixation is reliant upon 

tissue in growth, which can take up to 12 weeks to reach a sufficient level. 

2.7.3. Bioactive Fixation 

Through the use of a bioactive material a direct physiochemical bond is formed 

between the implant and the native bone tissue, this provides the strongest bond 

out of the three types to the extent that the implant or surrounding bone must be 

broken if revision is required (7, 111). As previously stated numerous bioactive 

materials are known and have been commersialised including bioactive glasses 

(Bioglass), bioactive glass-ceramics (e. g. Ceravital®, A/W glass-ceramic) and 

dense hydroxyapatite (e. g. Durapatite®, Calcitite®) to name a few. 
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2.8. Currently used materials 

2.8.1. Grafts 

The idea of using natural tissue to replace damaged tissue has existed for some 

time; societal restrictions on anatomical research were lifted over time and 

increased success and understanding of this technique was obtained. The three 

main types of grafts are xenografts, allografts and autografts, each of which will be 

briefly discussed. 

2.8.1.1. Xenografts 

From the Greek “xenos” meaning foreign, xenografts are tissues derived from a 

different species. Jean-Baptiste Denis performed one of the first blood 

xenotransfusions in the 17th century; this was followed by skin, corneal and even 

testicular transplantations through the 18th and 19th centuries (112). The main 

failings of these early attempts was that of immune rejection, as stated previously 

with the advent of immunosuppressant drugs whole organ transplants and bone 

grafts were repeatedly attempted through the 20th century with mixed success. The 

argument for xenograft/transplantation is that of an almost unlimited supply; 

however until the immunological and pathological issues associated with 

xenotransplantation have been addressed the following quote from Norman 

Shumway (a pioneer in heart transplantation) may hold true indefinitely 

“xenotransplantation is the future of transplantation, and always will be” (112). 

Possible strategies to counter the current issues associated with 

xenografts/transplantation are that of genetically modified animals (113-115). 
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2.8.1.2. Allografts 

From the Greek “allo” meaning other, allografts are tissues derived from the same 

species. As with autografts the most common site for harvesting the bone is from 

the iliac crest, as with xenografts screening and processing must be undertaken to 

reduce the risk of infection and rejection. Issues with donor availability, cryogenic 

storage and risk of fracture post implantation limit the practicality of allografts 

(116, 117) Although these materials exhibit good biocompatibility (118) they tend 

to become brittle and when sterilised, experience a significant loss of strength. 

Other studies conducted have implied that sterilized allografts are of acceptable 

mechanical strength, however their non-union rates were noted as being poor. 

Additionally the biomechanical properties of sterilized allografts have been noted 

to be dependent upon the radiation applied “moderate to high doses of gamma 

radiation (≥ 2.5 Mrad) will have a major impact on the allograft tissue 

biomechanical properties” (118, 119). 

2.8.1.3. Autografts 

Derived from auto meaning self, autografts are tissues harvested from the one area 

of the body to treat an area of the same body. Despite being considered the current 

gold standard autografts are commonly limited by the amount of tissue that can be 

harvested at any given time, meaning large defects are difficult to treat. 

Understandably, this technique has the advantage of alleviating the need for 

immunosuppressant drugs; however, donor site morbidity and pain are common 

side effects from such a procedure (120-122). For example; harvesting bone from 

the iliac crest can result in altered biomechanics of the patient which can lead to 

further complications, such as increased stress applied to cartilage which may lead 

to joint failure and ultimately joint replacement surgery (121, 123). 
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2.8.2. Polymers 

Polymers have limited applications in the orthopaedic field due to their low 

mechanical strength, however are successful in replacing articulating surfaces in 

hip and knee replacement surgeries. The most widely used polymer is ultra high 

molecular weight polyethylene; UHMWPE, this form of polyethylene has a high 

density and is not only able to withstand sterilisation processes (unlike its low 

density form) and exhibits excellent wear characteristics. Whilst it is able to absorb 

the cyclic impact stresses subjected to it problems persist in the long term, creep 

and fatigue of the material are commonly noted. In addition to this the opposing 

articulating surface is usually replaced with a metal or ceramic, as the polymer has 

a lower surface hardness it will eventually become scratched and produce wear 

debris. Wear debris of UHMWPE cannot be broken down by local macrophages 

through regular phagocytosis processes, this ultimately results in osteolysis (bone 

cell death) and loosening of the implant (124). Aside from UHMWPE and PMMA 

polymers are also widely used as surgical sutures; polymers such as poly(L-lactic 

acid) (PLLA), poly(glycolic acid) (PGA), and poly(lactic-co-glycolic acid) 

(PLGA) have been successfully used and shown to be degradable and 

biocompatible. However due to their low mechanical strengths and flexibility their 

use as a bone replacement material is very limited and unlikely. 
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2.8.3. Metals 

Metals have a long history of use within the orthopaedic field; they have sufficient 

mechanical strengths and can be manufactured on mass with relative ease. 

Specifically the three main metallic alloys used are titanium alloys, cobalt 

chromium and stainless steels. In general, metallic alloys cannot form a direct bond 

with bone and as previously stated can illicit fibrous encapsulation resulting in 

implant loosening and failure. A bioactive coating of hydroxyapatite can be applied 

to the surface to improve their integration with the natural bone (125), however the 

thickness of this coating must be specifically controlled. The coating must be thick 

enough to not only provide sufficient material for bone in growth; but also to 

account for the dissolution of this surface in vivo during the union stage, this surface 

may dissolve by up to 10-15 μm over a few months whilst this is taking place. 

However if a coating of 100-150 μm is applied the mechanical properties of the 

implant will be significantly deteriorated, this in turn can lead to fatigue failure 

under tensile loading. Furthermore the HA coating can have a poor adhesive 

strength and suffer from delamination (126, 127). Titanium alloys are an exception; 

they do not form a fibrous capsule and can become fully integrated with natural 

bone via the formation of an oxide layer (128), additionally their low modulus 

reduces the effects of stress shielding when compared with most other metallic 

implants. Friedman et al (129) however reported that titanium implants pose a risk 

due to wear debris. Metallic wear debris is of a significant concern; bodily fluids 

are corrosive and can not only reduce the mechanical stability of the metallic 

implant but also release metallic particles into the body, this can result in allergic 

reactions and neoplastic effects, which are un-desirable. Whilst it was stated that 

titanium alloys have a low modulus, metallic implants inherently have a higher 
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modulus than that of the surrounding natural bone, leading to stress-shielding. 

Metallic implants are arguably the most successful type of implant currently in 

clinical use; however, they present several undesirable drawbacks eliciting the 

development of alternative materials. 

2.8.4. Ceramics and glasses 

Ceramics are a relatively new material in the field of orthopaedics, they were first 

used in 1963 (97) and have been shown to be highly successful. The attraction and 

potential of using ceramics comes from there inherent similarity to the material 

they attempt to replace, i.e. their composition is similar to the mineral component 

of bone. In addition to this they exhibit high compressive strengths, are well 

accepted by the body and exhibit negligible foreign body reactions (130); however 

(unlike metallic implants), ceramics are inherently brittle and difficult to machine. 

When ceramics are used in a biological application they are usually termed 

“bioceramics”; they can be inert (i.e. alumina), resorbable (i.e. tricalcium 

phosphate), or bioactive (e.g. hydroxyapatite, bioactive glasses, and glass-

ceramics). Five distinct bioceramics are describable depending upon the heat 

treatments applied: 

1. Glass 

2. Cast or plasma-sprayed polycrystalline ceramic 

3. Liquid-phase sintered (vitrified) ceramic 

4. Solid-state sintered ceramic 

5. Polycrystalline glass-ceramic 
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2.9. Glass-Ceramics 

The focus of this project is the production of porous glass-ceramic (GC) scaffolds; 

this section aims to present in detail to the reader the relevant theory behind glass-

ceramics, their structure and formation, and the analysis techniques that can be used 

to verify their properties. 

2.9.1. Forming a glass 

As a material is heated or cooled it will undergo conformational changes in its 

structure as, constituent atoms, ion or molecules re-arrange into states of 

equilibrium. As a liquid is cooled through these temperatures its viscosity  (ν) 

increases dramatically as the materials constituents attempt to re-arrange into the 

equilibrium crystalline state; however, rapid cooling of certain materials may result 

in the formation of an X-ray amorphous glass, exhibiting only  a short ranged 

ordered network (131). To study conformational changes that occur during crystal 

and glass formation differential thermal analysis (DTA) or differential scanning 

calorimetry (DSC) must be employed. Upon cooling a liquid to Tm crystallisation 

occurs, shown by a large exothermic peak in the DTA/DSC plot, as the material 

settles into its low energy configuration this peak is followed by a drop in specific 

volume. However if the liquid is super-cooled there is no latent heat evolution (no 

specific volume change) as it passes through Tm, this indicates that the elements 

are still in their liquid arrangement. Eventually a small peak is observed in the 

DTA/DSC plot at Tg, suggesting a glass has formed with a non-equilibrium liquid-

like structure. Glasses differ structurally from crystalline materials in that whilst 

they lack long-range, repeating regular structures, they are comprised of similar 

interatomic forces, distances and co-ordinations (132). Vitreous silica is a good 

example of this; both its crystalline and amorphous states are comprised of a silicon 
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ion surrounded by four oxygen ions, each oxygen ion is in turn surrounded by two 

silicon ions, ultimately forming a tetrahedron (133). A tetrahedron in a crystalline 

state repeats in a regular manner, supplying long-range order within the structure; 

whereas in an amorphous state the tetrahedra are only exhibited with short range 

order. Theories of glass structure have been developed throughout the years; a 

relationship between the glass forming capacity of an oxide and the relative size of 

their cation with respect to the anion (oxygen) was established (132): 

𝑅𝑐

𝑅𝑎
≅ 0.3 

Where Rc and Ra are the radii of the cation and anion respectfully. This relationship 

shows that only specific structures allow for cations to be sufficiently spaced with 

respect to each other, so their repulsive charges do not interact too greatly with one 

another. Therefore, any oxide conforming to the equation above should 

theoretically be termed a glass former. Zachariasen (134) outlined four basic rules 

to describe a potential glass former: 

1. Each oxygen atom must be linked to no more than two cations. 

2. Low number of oxygen atoms surrounding a cation, i.e. triangular or 

tetrahedral co-ordination. 

3. Oxygen polyhedra only bonded at their vertices. 

4. At least three of the polyhedron vertices must be bonded to other polyhedra. 

 

This in turn allowed the prediction of several glass forming oxides such as SiO2, 

GeO2, B2O3, and P2O5.  
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The mechanical properties of the produced glass can be controlled via the 

crystallisation process (135), partially transforming a glass to a crystal creates a 

glass-ceramic, a material which comprises properties of both the base glass and the 

crystal phases formed. Crystallisation changes the atomic arrangement of small 

localized volumes forming interfaces between the glass and crystal. The 

crystallisation process can be described through two stages of nucleation and 

growth. Nucleation includes the initial formation of a small, stable crystal phase 

within the glass; this may occur randomly throughout the glass or at preferred sites 

(termed homogeneous and heterogeneous nucleation respectfully).  

2.9.2. Nucleating agents  

In producing A/W a nucleating agent is included (P2O5) inducing amorphous phase 

separation (APS). If multiple phases are more stable than one, an interface will 

form between the two causing skewed concentration distributions. Phase separation 

occurring above the liquidus forms two stable phases which remain after cooling; 

if these phases exist below the liquidus metastable phase occur, forming a single 

phase upon rapid cooling which can be recovered through an appropriate heat 

treatment.  

2.9.3. Heat Treatments 

Crystal formation and growth are dependent upon temperatures specific to the 

system, controlling the fine grain structure of a glass ceramic can be achieved 

through a controlled heat treatment. The temperatures that define nucleation and 

growth may overlap to a significant degree, in such a system a single heat treatment 

may be applied to maximise these factors. However in a system where nucleation 

and growth temperatures differ significantly a different heat treatment is required; 

there must be an initial dwell stage for nucleation to occur, followed by a second 
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higher temperature dwell to initiate rapid crystal growth. Nucleation processes 

must also be considered when defining a heat treatment; i.e. bulk and surface 

nucleation routes, differential thermal analysis (DTA) may be employed to predict 

which process governs the system.  

Bulk nucleation is depicted as a sharp peak on a DTA/DSC trace, whereas surface 

nucleation is depicted through a broader peak (136). Another consideration is the 

average particle size being used; surface nucleation is favoured by smaller 

particles, in the case of A/W larger particles shifts the crystallisation of the surface 

nucleating phase of wollastonite to a higher temperature. In the case of 

crystallisation of more than one phase, APS and surface or bulk nucleation 

preferences can be studied to define an optimum nucleation temperature. Through 

the use of DTA traces the variations between crystallisation temperature (constant 

heating) against crystallisation temperature (following a holding period at an 

assumed nucleation temperature) are plotted, the largest temperature shift observed 

depicts the optimum nucleation temperature (137). 

2.9.4. Sintering 

The sintering process a powder undergoes will determine the bond strengths 

between sintered particles (and ultimately the strength of the bulk material) and the 

materials porosity. Sintering temperature is << Tm and is determined by the 

material composition. During this process interfaces and contact angles within the 

material are reduced, the smaller the particle size used the faster the sintering rate 

as diffusion distances are smaller (138). The two main types of sintering shall be 

discussed: solid state sintering and liquid phase sintering. 
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2.9.4.1. Solid State Sintering 

A simple three stage model describes this process (139), it is assumed that initial 

contact of particles occurs at a single point and that the particles are spherical 

(Figure 2.1Error! Reference source not found.). At the stages pores between 

particles are interconnected, progression of necking causes a reduction pore 

diameter, ultimately resulting in final closure of the pores. During this process any 

gasses that may have been produced can become trapped, this preserves some pores 

to a degree and impedes densification.  

 

Figure 2.1 - Diagram of necking process which occurs during sintering 

 

The necking process can be described via the transport mechanisms of the pores; 

assuming they are accumulations of vacancies, the vacancy and mass transport 

occur via surface and bulk transport. Surface transport occurs at lower 

temperatures, resulting in necking with minimal densification as mass transport 

occurs on particle surface, involving surface diffusion and evaporation-

condensation resulting in mass transport to necking site. Bulk transport occurs at 

higher temperatures, involving volume diffusion, grain boundary diffusion, plastic 

flow and viscous flow. The favoured mechanism in glasses is viscous flow, in 
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crystalline materials grain boundary diffusion, volume diffusion and stress-induced 

plastic flow is favoured (139). 

2.9.4.2. Liquid phase sintering (LPS) 

Utilising the formation of a liquid phase during sintering, this process is associated 

with faster diffusion rates than solid state sintering, it involves three main stages: 

re-arrangement, solution-precipitation, and densification. In brief, capillary action 

pulls melted liquid into pores and causes grains to re-arrange into favourable 

packing structures. High capillary pressures (caused by particles in close 

proximity) cause atoms to precipitate through the solution to areas of lower 

chemical potential (areas where particles are close or in contact); termed contact 

flattening, this process of densification is similar to grain boundary diffusion. 

During this process the solid phase is (usually) soluble within the liquid phase 

formed; allowing for high levels of wetting and good contact between components 

(138). LPS can be utilised in free-form fabrication methods, e.g. selective laser 

sintering, porous A/W scaffolds have been produced via this method (137). 

2.9.5. DSC 

This technique of analysis involves exposing a reference material and a sample to 

an identical heating regime. The reference material chosen is stable within the 

temperatures of the heating regime; whereas the sample undergoes an exothermic 

or endothermic event, this results in a temperature differential which is used to 

identify the sample material. An exothermic event produces a peak (indicative of 

glass) and an endothermic event produces a trough, the position of the peaks is 

dependant the sample’s crystal structure and chemical composition. The glass 

transition temperature can also be investigated through DSC; Tg is not shown as a 

peak or trough however, it is depicted through a shift of the base line (140). 
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Tangents drawn from the start and end points of this transformation may be used 

to estimate Tg, it may also be thought of as the point of inflection during the 

transformation. 

The DSC trace produced is highly susceptible to experimental factors and 

(potentially) errors; shape and mass of the sample, testing atmosphere, formation 

of gasses during the test, thermocouple type and position, these factors must be 

taken into consideration when estimating the thermodynamic properties of the 

tested material. Theoretically the transformation energy could be estimated from 

the area under the DSC trace; however in practice this is difficult to achieve as 

thermodynamic transformation (which occurs during the test) alters heat transfer 

mechanics, resulting in the start and end points of the peak to lie out of plane with 

respect to each other (140).  

Through the use of multiple DSC studies (performed at different heating rates) the 

activation energy for crystallisation can be calculated using the Kissinger equation 

(141): 

𝑙𝑛 (
∅

𝑇𝑃
2) = −

𝐸

𝑅𝑇𝑃
+ 𝐶 

 

Where ∅ is the heating rate (K/min), R is the gas constant (J/Kmol), 𝑇𝑃 the 

crystallisation peak temperature (K), E the activation energy (KJ/mol) and C is a 

constant. E can then be determined by plotting 𝑙𝑛 (
∅

𝑇𝑃
2) vs 1000/𝑇𝑃 and calculating 

the gradient of this plot.  
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With the activation energy known the Avrami parameter of an exotherm, n, can 

then be determined (this utilises full width at half maximum (FWHM) of a peak) 

which indicates crystal growth occurring at an exotherm (141): 

 

𝑛 =  
2.5𝑅𝑇𝑃

2

(𝐹𝑊𝐻𝑀)𝐸
 

 

If n = 1, 1-D surface crystallisation; n = 2, planar surface nucleation; n = 3, 3-D 

bulk nucleation.  
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2.10. Bioactive materials 

As previously stated a bioactive material provides the greatest chance of providing 

a secure fixation of an implant. Hench et al defined a bioactive material as “a 

material that elicits a specific biological response at the interface of the -material, 

which results in the formation of a bond between the tissue and that material" 

(142). There are two distinct classes of bioactive materials, class A and class B and 

are defined as either osteoproductive or osteoconductive respectively (14). 

Osteoproductive implies that both an intracellular and extracellular response has 

occurred at the implant interface. Osteoconductive implies that only an 

extracellular response has occurred and the bone:implant interface promotes cell 

migration. Ranking of a bioactive material is done via the Index of Bioactivity (IB), 

this is calculated by dividing 100 by the time taken for 50 % of the bone:implant 

interface to chemically bond together (14, 143, 144). For reference: 

Bioactive materials which bond to hard tissue 0 < IB < 8 

Bioactive materials which bond to hard and soft tissue IB > 8 

 

For example: 

45S5   Class A material 

Synthetic HA  Class B material 
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2.11. Bioactive glasses 

Silicon has long been associated with bone formation (145, 146); in vivo studies 

showed abnormal bone development in silicon deficient chicks, in vitro studies 

reported collagen type I expression increased significantly in human osteoblasts 

with the supplementation of orthosilicate acid (147, 148).  “Bioglass” was 

originally  discovered in 60’s by Larry Hench; composed of a low silica content 

(<60 %) and a calcium/phosphorous ratio similar to that of HA,  this material was 

developed further into the composition 4S5S and commercially termed Bioglass® 

(149). This material was shown to support osteoblast attachment and proliferation 

(150); incorporating the material into healing callus (151), ultimately resulting in 

extensive scaffold integration with the host bone (142).  

Hench et al (142) discovered the first compositional ranges of bioactive glasses; 

these glasses contained SiO2, Na2O, CaO, and P2O5. Specifically these glasses 

contained less than 60 % SiO2, a high CaO/ P2O5 ratio and a high Na2O and high 

CaO content (142). The composition termed 45S5 (which has been subsequently 

branded Bioglass®) is noteworthy, this glass has 45 wt % SiO2 (S acts as the 

network former), and has a molar ratio of 5:1 of Ca to P, lower ratios of Ca to P are 

not able to bond to bone (152). Where Bioglass® has been used clinically (153) its 

mechanical properties are too low to be used for load bearing applications; this is 

due to its amorphous three-dimensional glass network.  

Certain forms of bioactive glasses form a physiochemical bond to bone via the 

formation of a hydroxy-carbano-apatite (HCA) layer when in contact with body 

fluid. The formation of this layer was described by Jones and Hench (144) as 

follows: 
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Stage 1. Rapid exchange of Na+ and Ca2+ with H+ or H3O+ from the solution 

Si-O-Na+ + H+ + OH-   Si-OH+ + Na+(aq) + OH- 

Stage 2. Cation exchange increases the hydroxyl concentration of the solution, 

soluble silica is lost in the form of Si(OH)4 to the solution, resulting from the 

breaking of Si-O-Si bonds and the continued formation of silanols at the glass 

solution interface. 

Si-O-Si + H2O   Si-OH + OH-Si 

Stage 3. Condensation and repolymerisation of the SiO2-rich surface layer 

-Si-OH + HO-Si-          -Si-O-Si- + H2O 

Stage 4. Migration of Ca2+ and PO4
3- groups to the surface forming a CaO-P2O5 

rich film on top of the SiO2 rich layer.  

Stage 5. Crystallisation of the amorphous CaO-P2O5 film (by incorporation of OH-

, CO3
2-, or F- anions) forming a HCA layer.   

These first five stages comprise the complete bonding of a bioactive glass to bone, 

these stages occur on the material side independent of the presence of tissues.  
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2.12. Bioactive glass ceramics – Apatite-Wollastonite 

To provide higher mechanical strengths bioactive glass-ceramic have been 

developed, a specific type contains an apatite crystal phase, which (combined with 

the uncrystallised residual glass) allows for direct tissue bonding (143). Briefly, 

comparisons can be made between the bioactivity (i.e. bone-bonding ability) of 

bioactive glasses and bioactive glass-ceramics, the formation of a surface apatite 

layer. However, a key difference has been noted for glass-ceramics, an amorphous 

silica layer is not created (154). Silanol groups are instead suggested, by Kokubo 

et al, to provide favourable nucleation sites which in turn form a HCA layer (18, 

155). This mechanism (studied in vitro and in vivo) is governed via the production 

of a Ca, P rich layer through the dissolution of components of the glassy phase, this 

in turn produces a thin layer of apatite which forms a strong chemical bond with 

bone (154). Where the bioactivity index of A/W is less than that of Bioglass© 45S5 

(roughly one fourth) this bond is so strong that reportedly the tensile fracture occurs 

in the bone itself rather than the A/W-bone interface (154). To reinforce the 

mechanical strength another crystal phase is present. Accordingly, A/W glass-

ceramic developed by Kokubo and co-workers contains both crystalline apatite 

(Ca(PO4)6(O, F2) and ß-wollastonite (Ca-SiO3), the increase in strength is attributed 

to the presence of the additional wollastonite phase. The key mechanical properties 

of A/W are presented in Table 2.1, however the main aspects of A/W are that the 

apatite induces direct bone bonding whilst the wollastonite phase prevents crack 

propagation (18, 156).  

An in vivo study conducted by Yamamuro et al (157) revealed that A/W binds to 

bone more tightly than hydroxyapatite. The ability of A/W to bond with bone was 

further described by Nakamura et al (158), this study compared the loads required 
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to pull out a bioceramic after 8 weeks of implantation (in the tibial condyle of 

rabbits). As shown in Table 2.2 the A/W implant exhibited the highest “failure 

load”, even higher than that of dense hydroxyapatite. 

Table 2.1: Physical and mechanical properties of A-W glass-ceramic (159) 

Property Value 

Density (g/cm3) 3.07 

Bending Strength (MPa) 215 

Compressive Strength (MPa) 1080 

Young’s Modulus (GPa) 118 

Vickers Hardness (Hv) 680 

Fracture Toughness (MPa.m0.5) 2.0 

 

 

Table 2.2 - Failure loads of ceramic materials at 8 weeks after implantation (158) 

Bioceramic Failure Load ± S.D. (kg) 

Alumina 0.13 ± 0.002 

Bioglass® 2.75 ± 1.80 

Dense hydroxyapatite 6.28 ± 1.58a,b 

A/W glass-ceramic 7.43 ± 1.19a,b 

ap < 0.001, significantly different from alumina-ceramics. bp < 0.05, significantly different 

from 45S5 Bioglass. 

Further characterisation of A/W in vivo was conducted by Oonishi et al (160); 

quantitative comparison of bone in growth rate was conducted, specifically with 

granules of Bioglass®, A/W glass-ceramic and HA (synthetic). These three types 

of bioactive particles were implanted into 6 mm holes drilled into the femoral 

condyles of rabbits. After 1 week of implantation it was noted that the new bone 
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around Bioglass® and A/W was greater than that of the HA particles. This trend 

was apparent at 2, 3 and 6 weeks after implantation; new bone formation was 

greatest around the Bioglass® particles, HA showed the least amount of new bone 

formation. At twelve weeks, the Bioglass® particles showed significant reduction 

in size (~ half to two thirds their original size); A/W showed no change in size but 

it was suggested that at the periphery of the particles chemical changes were 

occurring, HA bone formation at this time point was noted to be the same as the 6 

week time point.  

Overall it was concluded that bone in growth rates were Bioglass® > A/W > HA. 

The suggested cause of this is through the formation of an apatite layer (possible 

with Bioglass® and A/W) which provides a stimulatory role in osteogenic 

differentiation (161). Furthermore, it was proposed that the presence of silicon in a 

class A material accounts for the rapid bone in growth when compared to silicon-

deficient class B materials. 

The composition of the base glass and the heat treatment applied influences the 

resultant properties of A/W. Increased amounts of MgO and SiO2 increase the 

apatite crystallisation temperature, MgO content has more of an influence than 

SiO2. Conversely, the apatite crystallisation temperature decreases when the 

amount of P2O5 and CaO are increased, P2O5 content has more of an effect in 

reducing apatite crystallisation temperature than CaO (162). Minor additives such 

as Na2O, Fe2O3, CaF2, TiO2 and B2O3 can be included to enhance the properties of 

A/W; for example Na2O and P2O5 were shown to increase apatite formation in 

vitro, however B2O3, Fe2O3 and MgO were shown to decrease bioactivity (163, 

164). Furthermore, the addition of Al2O3 was shown inhibit the formation of a Ca, 

P-rich layer, diminishing the bone bonding ability of A/W, rendering it a non-
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bioactive material (165). For reference, compositions of several bioactive glasses 

and glass-ceramics that have been developed is given in Table 2.3. 

 

Table 2.3: Compositions of bioactive glasses and glass-ceramics 

 

Material 

Composition (wt %) 

SiO2 MgO CaO K2O P2O5 B2O3 Na2O CaF2 

13-93 53 5 20 12 4 0 6 0 

13-93B1 34.4 4.9 19.5 11.7 3.8 19.9 5.8 0 

13-93B3 0 4.6 18.5 11.1 3.7 56.6 5.5 0 

45S5 45 0 24.5 0 6 0 24.5 0 

58S 58.2 0 32.6 0 9.2 0 0 0 

6P53B 52.7 10.2 18 2.8 6 0 10.3 0 

70S30C 71.4 0 28.6 0 0 0 0 0 

A/W 34 4.6 44.7 0 16.2 0 0 0.5 

CEL 40.9 4.3 22.1 5.7 12.9 0 14.1 0 

CEL2 40.9 4.3 22.1 5.7 12.9 0 14.1 0 

ICEL 1.1 1.8 9.1 2.4 79.8 0 5.8 0 
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2.13. Bioactive coatings - Fluorapatite 

Bioactive coatings have been used in orthopaedics and dentistry since the 1980’s 

(166) and have shown good clinical success through 10-15 years follow up clinical 

studies (167-169). Several methods have been investigated such as enamelling 

(170-172), electrophoretic deposition (173, 174), thermal spraying (175-177) and 

“thin film technologies” (178-180). Coatings of hydroxyapatite have been shown 

to possess relative risk of de-bonding from the implant and limited stability within 

the body (181, 182); the application of a fluorapatite (FA) coating has been shown 

to have lower solubility, improved osseointegration and overall increased stability 

than that of HA coatings (182-184). Coating an A/W scaffold with FA in addition 

to possibly achieving faster osseointegration, has a second potential advantage; a 

common cause of implant failure is bacterial infection and the possibility of 

inducing an anti-bacterial surface modification through FA is worth investigating. 

Taking a biomimetic approach, cells present in the human body encounter features 

on both micrometre scale and nanometre scales. The use of a nanoscale (as opposed 

to a micro-scale) coating is also worth investigating as, in general, nanoscale 

surfaces have a high surface energy leading to increased initial protein adsorption 

which is very important in regulating the cellular interactions on the scaffold 

surface (185). Surface properties also have an impact on adhesion, together with 

charge distribution and the chemistry of the material. Indeed. the use of an FA 

nano-crystalline coating in bone grafts was recently patented under the claim that 

“wherein fluorapatite crystallites from the fluorapatite nano-crystalline coating 

immediately and continuously release fluorapatite to the cellular environment over 

the course of treating the cells. The compositions and methods promote cell 

differentiation, migration, and proliferation. Through the use of compositions and 
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methods provided herein, inhibition of the migration of connective tissue and 

epithelial cells to bone defect sites is realized for better bone restoration by 

osteoblast cells. Moreover, inhibition of inflammatory cells and bacteria at the 

surgical site are realized, further enhancing bone restoration” (186).  

A method of applying an ordered fluorapatite (FA) layer onto a substrate has been 

extensively studied via Liu et al (187). This method of coating is achieved via a 

hydrothermal processes (187-189); through control of the autoclaving time and 

pressures applied, ordered and disordered FA crystals can be produced. In brief; 

the ordered crystal structure is favoured over the disordered precipitate (Figure 

2.1), in vitro studies have shown increased cellular densities and responses (188). 

Furthermore, Al-Hilou et al looked at both disorded and ordered FA coatings with 

respect to their anti-bacterial behaviour and found that an ordered FA coating layer 

reduced not only bacterial viability but adhesion too (190). 

A/W alone has been shown to be bioactive and illicit a strong physiochemical bond 

at the bone:implant interface; however, the potential success of a porous glass-

ceramic scaffolds is reliant upon cellular attachment and proliferation throughout 

the entire scaffold. The work conducted utilising an FA coated substrate showed 

that vital cell adhesion molecules were up-regulated, such as: 

Secreted phosphoprotein 1 (SPP1) Thrombospondin 3 (THBS3) Integrin alpha 7 

and 8 (ITGA 7 and 8) Integrin beta 3 and 4 (ITGB3 and 4) Vitronectin receptor 

(αvβ3) and integrin alpha V (ITGAV). Where a purely porous AW scaffold may 

form a physiochemical bond at the interface site, including an FA coating 

throughout a porous scaffold could enhance cellular adhesion and promote rapid 

mineralisation. An FA coating has not been applied to a glass-ceramic, additionally 
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the hydrothermal process described has never been applied to a 3-D construct, the 

potential advantages of including an FA coating are therefore worth investigating. 

Another potential benefit is that such a coating may also enhance mechanical 

properties through occluding residual porosity in the struts caused by the burn out 

process during scaffold manufacture. 

 

Figure 2.1  – A) Ordered FA coating; B) Disordered precipitate. Reprinted 

with permission from Liu et al, 2011 (187)
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2.14. Current Strategies 

Construction of 3-D glass-ceramic scaffolds that satisfy these criteria can be 

achieved through a variety of methods, which have been extensively reviewed 

within the literature (191-195). In general, broad similarities can be drawn between 

these methods: the desired interconnected architecture is imposed upon the glass, 

which is subsequently heat-treated. The glass is commonly a component of a 

slurry/paste, which usually includes the use of a binder to adhere the glass particles 

to a mould. From this the desired architecture is formed through several creative 

methods such as through the use of foaming agents or even freezing the material, 

this section shall discuss these methods in more detail.  
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2.14.1. Organic filler (Porogen burn-out) 

A relatively simple method of introducing porosity to a scaffold is through the use 

of organic fillers, this method is arguably the most commercially viable in terms of 

the materials required and the limited number of steps required. The process 

involves mixing a chosen precursor powder (which like other methods discussed 

will undergo a final heat treatment) with an organic filler material; unlike other 

methods an aqueous solution is not always produced, simplifying the process 

further. Once the powder and organic filler has been mixed it generally undergoes 

uniaxial compression to form a crack free “green part”, the pressure applied is 

usually >100 MPa for 10 s, however some methods negate this step through the use 

of PVA as a binder. Once the green part has been formed it undergoes a heat 

treatment, the organic filler is burnt out leaving a porous scaffold. Where this 

method has the advantage of simplicity it equally suffers from this. There is little 

control over the interconnected structure; excessively large pore sizes (>500 µm) 

can form due to agglomeration of the organic filler particles and relatively low 

overall porosities are reported in the literature (196, 197) (see Table 2.4) 

Table 2.4: Porogen burn-out scaffold properties 

Glass 

powder 
Binder Other 

Pore 

Sizes 

(µm) 

Porosity 

(%) 

Strength 

(MPa) 
Year Author Ref 

CDA N/A Naphtalen / / / 2006 
Tancret et 

al 
(196) 

SNCM N/A 

Starch 

(Corn, 

Potato 

and Rice) 

20-

100 
40 6c 2005 

Vitale-

Brovarone 

et al 

(197) 

 

Mechanical strengthsː subscript c – compressive 
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2.14.2. Sol Gel 

A relatively complex method of creating a porous foam structure is through the sol-

gel technique (198-200). Briefly, the initial "sol" is prepared through a careful 

mixing of sol-gel precursors in distilled water with nitric acid, which acts as a 

hydrolysis catalyst. Once hydrolysis is completed the gelling agent is added with a 

surfactant followed by vigorous agitation; as the viscosity of the sol increases to an 

appropriate level the foamed sols are transferred to moulds, sealed, allowed to age 

and finally the residual solvent is allowed to evaporate. Once this preparation is 

completed the final thermal stabilization is undertaken. When compared to melt-

derived bioactive glasses, sol-gel derived glasses are reported to exhibit enhanced 

resorb-ability and bioactivity in vitro, additionally when implanted in vivo they 

exhibit improved bone bonding. These improved properties over melt-derived 

scaffolds have been attributed to excellent mesoporous textures (pores ranging 

from 2-50 nm), high interconnectivity (interconnected channels of 100 µm) and a 

high specific surface area (see Table 2.5). Obtaining this structure however requires 

a lengthy and complex process when compared to melt-derived scaffolds, 

furthermore when attempts were made to scale up the technique issues were 

immediately encountered (198). Where this technique presents a novel method of 

producing a highly porous (and well interconnected) glass-ceramic scaffold it is 

questionable whether its inherent complexity is suitable for large scale 

commercialisation.  
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Table 2.5: Sol gel scaffold properties 

 

Glass powder Other 
Pore Sizes 

(µm) 

Porosity 

(%) 

Mechanical 

Strength 

(MPa) 

Year Author Ref 

100S, 70S30C, 

58S 

TEOS, TEP,  calcium nitrate, HNO3, polyethyleneglycol 

trimethylnonyl ether, Tergitol TMN10, Teepol 
10 - 200 / / 2001 

Sepulveda et 

al 
(199) 

100S, 70S30C, 

58S 

TEOS, TEP,  calcium nitrate, HNO3, polyethyleneglycol 

trimethylnonyl ether, Tergitol TMN10, Teepol 
10 - 225 / / 2003 

Jones and 

Hench 
(201) 

Snowtex-S Hcl, sodium lauric sulfate ester / 

73 and 84 

(Calcined), 66 and 

68 (sintered)  

2.4f 2004 
Tomita and 

Kawasaki 
(200) 

58S 
TEOS, TEP,  calcium nitrate, HNO3, polyethyleneglycol 

trimethylnonyl ether, Tergitol TMN10, Teepol 
10 - 200 / / 2004 

Jones and 

Hench 
(202) 

70S30C 2N Nitric acid, TEOS, Teepol, HF, water 87 -122 82 - 88 0.36 – 2.26c 2006 Jones et al (203) 

70S30C 2N Nitric acid, TEOS, Teepol, HF, water 

561 - 743 

(modal pore 

diameter) 

84.5 - 92.0 / 2007 Jones et al (204) 

70S30C 
PEO, acetic acid, TMOS, Calcium nitrate tetrahydrate, 

De-ionized water, HF, NH4OH 
5 - 300 80 - 90 / 2009 

Marques and 

Almeida 
(205) 

45S5 
De-ionized water, 2N Nitric acid, TEOS, TEP, Sodium 

nitrate, Calcium nitrate, Teepol, HF 
200-1000 >90 ~ 0.5 – 2c 2011 

Chen and 

Thouas 
(206) 

70S30C and 

58S 

PEO, acetic acid, TMOS, Calcium nitrate tetrahydrate, 

De-ionized water, HF, NH4OH 
620 - 790 74 - 82 / 2011 

Almeida et 

al 
(207) 

Mechanical strengthsː subscript c – compressive, subscript f - flexural 
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2.14.3. Freeze Casting 

Freeze casting is similar in some respects to the foam replica technique; a slurry is 

produced that subsequently undergoes a heat treatment to produce a porous 

scaffold. However rather than using a polyurethane foam as a template, directional 

freezing is employed to introduce porosity (notably unidirectional which is 

specifically attractive for trabecular mimicry) which then undergoes a final heat 

treatment. The general process involves ball milling a slurry consisting of the 

precursor material, which remains as the final structure (glass or ceramic powder) 

after the application of a heat treatment, combined with an aqueous sublimable 

constituent, and a dispersant, which aids in producing a homogeneous mixture. 

Once the slurry has been prepared it is poured into moulds (usually polyethylene 

or rubber) which are in contact with a copper plate and kept sealed to prevent 

sublimation at this stage (208). The temperature of the copper plate is carefully 

controlled (liquid nitrogen is commonly used) to induce unidirectional freezing; 

samples then undergo an annealing step, a sublimation step and finally a heat 

treatment to produce a porous sintered scaffold. 

Table 2.6 details the various constituents and processes that have been investigated, 

the use of camphene has been extensively investigated as it freezes at room 

temperature making it an attractive prospect as a sublimation vehicle. This step can 

simply be done at room temperature by removing the cap on the moulds, unlike 

other methods which employ (for example) deionized water and require freeze 

drying under a vacuum pressure (commonly 2.1 Pa) (209). Where the freeze casting 

technique shows an obvious advantage of producing anisotropic scaffolds similar 

to trabecular bone, the use of camphene has been noted as being unsuitable for 

scale up due to its inherent cost. Recent efforts have been made to employ de-
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ionized water as the aqueous component to improve commercial viability; however 

as previously stated this requires further complications to the processing method 

(i.e. freeze drying under vacuum conditions), it is questionable as to whether this 

technique will lend itself to large scale production. 
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 Table 2.6: Freeze casting scaffold properties 

Glass powder Binder Other Pore Sizes (µm) Porosity (%) 
Mechanical Strength (MPa) 

(compressive) 
Year Author Ref 

Al2O3 / 
Camphene, Perfad 

9100 
/ 41 / 2005 Araki et al (209) 

45S5 / 
Camphene, 

Hypermer KD-4  
/ ~ 53 / 2006 Song et al (210) 

Alumina 

(AKP 30) 
/ 

Camphene, 

Hypermer KD-4  
102 - 210 59 - 82 11 to 95 2008 Yoon et al (211) 

CaP / 
Camphene, 

Hypermer KD-4  
121 (± 33) – 163 (± 47)   [1-

3 days freezing] 
62 - 65  

Normally – 4.6 (± 1);  

Parallel – 9.3 (± 1.6) 
2009 Soon et al (208) 

HA Polystyrene 
Camphene, 

Hypermer KD-4  
277 (± 47) to 141 (±11)   71 - 73  

1.1 (± 0.2) to  

2.3 (± 0.5);  
2009 Yook et al (212) 

13-93 / 
Camphene, 

Isotearic acid 
6 - 115  

19 (± 4) to 59 

(± 3) 

16 (± 2) - 180 (± 70) 

 [Parallel] 

2 – 13 

 [Perpendicular] 

2011 Liu et al (213) 

Baghdadite 

powder 

(Ca:Si:Zr   

3:2:1) 

PVA 
De-ionized water, 

Dolapix PE62 
/ 58.22 – 64.27 1.3 - 2.1 2014 

Sadeghpour et 

al 
(214) 
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2.14.4. Additive Manufacturing 

The concept of additive manufacturing (AM) is a process involving the use of 

computer aided design (CAD) files which are converted into multiple 2-D cross 

sectional layers, this in turn allows complex 3-D shapes to be precisely reproduced 

without the need of tools, moulds or dies. Several variations to this process have 

been developed; however two key strategies can be distinguished, powder 

deposition (3-D printing) and extrusion deposition (robocasting), the resultant 

scaffold properties of using these methods is described in Table 2.7. 

In general, a 3-D structure is formed through sequentially spraying a binder in the 

required 2-D shape and then applying the powder onto the binder. This process is 

undertaken on a mechanical platform that is lowered between the applications of 

each layer; these steps are repeated until the full 3-D structure is produced and is 

ready for a final heat treatment, this process is usually termed 3-D printing. 

Limitations to the precision with which the pre-heat treated scaffold can be 

produced are dictated by the minimum size of the nozzle used to form the 2-D 

binder shape and the step size the mechanical platform can be lowered by. Prior to 

the application of the heat treatment the scaffold is supported by the surrounding 

loose powder (which is not in contact with the binder layers); this material must be 

removed prior to heat treatment by a process termed “de-powdering”, usually 

involving the use of compressed air and/or ultrasonication. This has been noted as 

being another limitation to this method as the application of the de-powdering step 

damages the pre-sintered scaffold architecture. 

Two methods of 3-D printing are described in the literature, direct and indirect. 

Direct SLS involves sintering solely a layer of powder directly via a laser to form 

a 2-D structure, during this step adjacent particles are heated sufficiently to fuse 



58 
 

together. Once this 2-D layer has been sintered the platform is lowered, an 

additional powder layer is rolled over and the process is repeated until the 3D 

structure has been formed. As with 3-D printing the surrounding material is 

removed post-processing, however as sintering has already been undertaken the 

risk of damage to the scaffold architecture is absent. Indirect SLS differs by using 

a binder, the laser power is reduced which only bonds the powders; this creates a 

“green part”. This method allows for the production of composite materials before 

the final heat treatment is applied, an example of this is a study conducted by Xiao 

et al which introduced phosphate prior to the final heat treatment, allowing for 

specific material phases to be controlled during the final heat-treatment (137). 

Robocasting is a similar method that may be employed using similar technology, 

where 3-D printing involves sintering 2-D layers of powder sequentially; 

robocasting (direct-ink-write assembly, extrusion fabrication, etc) uses a CAD 

modelling system to sequentially layer a paste into a 3-D structure, which then 

undergoes a final heat treatment.  This method has been shown to produce scaffolds 

with high mechanical properties and repeatable interconnected structures (215, 

216).   
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Table 2.7: Additive manufacturing scaffold properties 

Glass powder Binder Other 
Pore Sizes 

(µm) 

Porosity 

(%) 

Mechanical Strength 

(MPa) 
Year Author Ref 

A/M and HA N/A N/A / / / 2005 
Lorrison et 

al 
(217) 

A/M and 45S5 

(control) 
Acrylic binder N/A / ~40 / 2007 

Goodridge et 

al 
(218) 

A/W Acrylic binder N/A / ~40 ~ 102c 2008 Xiao et al (137) 

13-93 Steric acid Distilled water 300 - 800 50 20.4c 2011 Kolan (219) 

6P53B / Pluronic F-127 500 ~60 
55c (perpendicular) 

136c (parallel) 
2011 Fu et al (220) 

6P53B PEI 
Distilled water, 

Pluronic F-127 
~100 60 136c 2011 Fu et al (221) 

13-93 Aquazol 5 

De-ionized water, 

EasySperse, Surfunol, 

Glycerol, PEG 400 

~300 50 140c (± 70) 2011 Huang et al (216) 

13-93 / 
Pluronic F-127, 

Distilled water 
300 47 

86 (± 9)c 

11 (± 3)f 
2013 Liu et al (215) 

Mechanical strengthsː subscript c – compressive, subscript f - flexural 
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2.14.5. Porous A/W glass ceramic scaffolds 

To date there have been limited studies conducted using porous A/W scaffolds; Ijiri 

et al conducted an in vivo study by subcutaneously implanting A/W glass rods in 

rats to determine potential ectopic bone induction (222). The rods were combined 

with either bovine bone morphogenic protein (bBMP), collagen or both to 

determine whether A/W would be suitable as a carrier for BMP. It was determined 

that porous A/W rods exhibited good osteoconductivity and; combined with their 

inherent high mechanical strength and ease of handling, showed potential for 

clinical use in terms of treating large cancellous bone defects or cranio-

maxillofacial lesions. Two in vivo studies conducted by Fujita et al (223) and 

Teramoto et al (224) used porous A/W rods provided by Nippon Electric Glass Co 

Ltd; the former investigated its potential use as an intermedullary plug in THR, the 

latter compared the resorption rates of A/W with that of β-TCP. 

The study by Fujita et al was conducted over the time scale of two years; the study 

replicated a standard THR procedure, after which all animals subjected the porous 

A/W-GC to load bearing expected of clinical use, i.e. within three weeks all 

animals were completely bearing their own body weight. radiological evaluation 

showed a gradual decrease in radiopacity until 24 months at which time the plug 

became radiolucent. Histological evaluation reported new bone formation around 

the plug at one month, at 6 months bone formation was apparent even at the centre 

of the plug. At 24 months resorption of the plug was almost complete and replaced 

by newly formed bone, this was confirmed additionally through SEM analysis 

which showed a Ca-P rich layer 10 micrometers thick. The results of the study by 

Fujita et al confirmed that porous A/W-GC is effective as an intramedullary plug 

and has good resorption rates over two years. 
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The study by Teramoto et al used the same scaffolds for a comparative study 

investigating the resorption rates of A/W-GC and β-TCP (produced by OLYMPUS 

Co Ltd); each were implanted into femurs of rabbits and examined up to 36 weeks, 

the porosities of the A/W-GC scaffold ranged from 70-90 % and the β-TCP 

scaffolds were set at 75 %. The main observation noted was the more gradual 

resorption rate of A/W-GC over the entire 36 weeks; compared to that of β-TCP 

which showed greater resorption rates and overall less abundant new bone 

formation. The main conclusions from this study showed that an A/W-GC scaffold 

of 70 % porosity provides not only the closest mechanical strength to that of human 

cancellous bone (compressive strength 20.1 ± 6.3 MPa), it presents good resorption 

rates, osteochonductive activity and new bone formation.  
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2.14.6. Foam Replica Technique 

This technique can produce porous scaffolds composed of a microstructure 

comparable to that of dry human trabecular bone. The foam replica technique 

involves selecting appropriate polyurethane (PU) foam to be used as a sacrificial 

green body; a slurry is then prepared containing the bioactive glass, a solvent and 

commonly a binder of some sort. The foam is then immersed in the slurry leading 

to a homogenous coating of the glass on the polymer substrate surface. Once dried 

a heat treatment (specific to the thermodynamic properties of the glass) is applied; 

the heat treatment is designed as such to ensure “burn-out” of the organic 

constituents, leaving only sintered glass in the required microarchitecture. This 

process has several fabrication advantages, the foam can be tailored to suit the 

required porosity and shape, porosities and pore sizes are capable of reaching high 

values (> 90 % porosity, > 500 µm). Choosing and characterising the polyurethane 

foam is relatively simplistic; commercially available foams can be utilised for the 

green body, whose porous nature may be verified through SEM analysis. It is worth 

noting that where pore sizes are characterised in terms of micrometres, 

manufacturers generally use pores per inch (PPI), this term is also widely used 

throughout the literature when describing the foam used in a study.   

The challenges associated with this technique are the methods of infiltrating the 

slurry homogeneously, ensuring retention of the inter-connected structure post 

burn-out, and application of a heat treatment used to ensure maximum densification 

of the ceramic. Two of the key disadvantages of the foam replica technique are 

removal of excess slurry from the foam template and residual hollow struts, which 

may remain post-heat treatment. Table 2.8 outlines the varying solutions to these 
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problems investigated through the foam replica technique, comparing the 

variations of bio-glass and glass-ceramics utilised. 

Chen et al (225) first attempted to apply the foam replica technique using a 

bioactive glass in 2006 using 45S5 Bioglass. The focus of the work was to: 

• Determine a suitable heat treatment to achieve sufficient densification (by 

ranging the dwell temperatures and times) 

• Perform initial characterisation through mechanical testing, and to, 

• Assess potential bioactivity through the application of the standard in vitro 

procedure described by Kokubo et al (226).  

High porosities were obtained (~90 %) and large pore sizes were noted (510-720 

µm) for all sintering conditions. An important observation was reported; in terms 

of achieving densification via viscous flow, increasing the dwell time was not a 

defining factor in achieving sufficient densification, for 45S5 Bioglass a dwell 

temperature at 1000 °C for 1h (deemed the optimal condition) produced the most 

extensive densification when compared to sintering at 900 °C for 5 h. Mechanical 

strengths were noted to be comparable to that of natural cancellous bone (0.2 – 0.4 

MPa) and HA scaffolds previously produced by Ramay and Zhang (227) with 

similar porosities, however difficulties were noted in obtaining the data due to 

samples shearing during uniaxial compression. 

A noteworthy study is that of Jun et al (228) who produced a composite scaffold 

of HA-A/W via the foam replica technique. The main argument for this approach 

is the difficulty in applying a sufficient heat treatment whilst retaining the desired 

architecture. It is stated that excessive viscous flow when sintering A/W above its 

glass transition temperature “often causes its three-dimensional (3-D) porous 
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structure to collapse”. However, its high strength, fracture toughness, excellent 

biocompatibility and bonding ability to real bones makes it an attractive addition 

to a scaffold produced using HA (45S5). Standard foam replica techniques were 

employed; slurries of HA and A/W were produced, HA slips were coated onto PU 

foams and heat-treated, A/W slips were then subsequently applied to the HA 

scaffold. As expected it was noted that scaffolds produced using HA alone were 

too fragile to handle to perform mechanical testing. When coated with A/W the 

mechanical strengths were increased significantly with only a slight drop in 

porosity (97 % to 93 %); increasing the compressive strength to ~ 1 MPa, attributed 

additionally to the elimination of sintering defects present from the underlying HA 

scaffold. This study showed conclusively the applicability of A/W for the 

use/enhancement of porous glass-ceramic bone tissue engineering (BTE) scaffolds; 

this study however still relied on HA as a base for scaffold production. 

The vast majority of foam replication studies utilise a single type of PU template 

(or compare multiple template types with one another), however two studies worth 

discussing are those of Hsu et al (229) and Bretcanu et al (230). Hsu et al suggested 

combining two PU foam templates of differing pore sizes (20, 30 and 45 PPI) via 

two techniques, scaffolds prepared in such a manner were termed functional 

gradient materials (FGM's). The first technique involved stitching together two 

differing PU foam templates; the second involved cutting out a section of foam and 

press fitting it into a pre-cut space into the other differing foam, these templates 

then underwent a standard dip coat process. To compare these FGM's to “standard” 

foam replica scaffolds homogeneous HA/TCP scaffolds were produced using 20, 

30 or 45 PPI foams and were prepared into standard four point bend test specimens. 

Through visible inspection, it is clear that combining two, differing PU foams 
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(through either method reported) creates differing zones of porosity and pore size 

morphology; however no porosity or pore size data is given for either method. The 

authors reported flexural strengths of 18.32–19.65 MPa for the homogeneous 

samples and 15.61 (± 2.72) MPa for the FGM samples. Though the bend strengths 

reported are high it is apparent (through visual inspection alone) that the porosities 

of the mechanical samples are low, visually differing significantly from the 

successfully created bi-modal structure shown. Given that no architectural analysis 

is given, it is difficult to ascertain whether the mechanical properties reported are 

representative of the highly porous FGM's. 

Bretcanu et al reported an alternative approach to introducing anisotropy in 2008 

(230). This study could be considered a continuation of the work conducted by 

Chen et al in 2006; 45S5 glass was utilised in this study as before, however 

poly(D,L-lactic acid) (PDLLA) was used as a binder and the heat treatment was 

slightly altered to 1100 °C for 1h to sufficiently sinter and crystallise the scaffold. 

The key difference in this study was the pre-forming of the PU foam template; an 

aluminium mould was used to apply a porosity gradient prior to the coating and 

heat treatment steps, when heated for 30 mins at 200 °C it was found that the foam 

would retain its moulded shape. In a similar manner as Hsu et al (2007), two PU 

foams of differing PPI (45 and 60 PPI) were combined within an aluminium mould 

and pre-formed in the same manner. Post-sintering analysis via SEM showed that 

a gradient porosity can be introduced to a scaffold produced via the foam replica 

technique; it is not known whether the most compacted end would allow for cell 

migration, however again this is an interesting approach. 

Vitale-Brovarone et al (2007) investigated applying the foam replica technique 

utilising a glass termed CEL2 (231); this glass is similar in composition to A/W, 
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belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O and produced through 

the melt quench route. As with the work by Chen et al (225) the initial studies 

focused on slurry constituents and optimising thermal treatments. By ranging the 

binder content (PVA) from 2-8 wt % and glass content from 40-50 % an optimal 

slurry was determined, namely 6 wt % PVA and 40 wt % glass. Where Jun et al's 

group produced a porous HA-A/W scaffold to counter act strut collapse due to 

viscous flow, Vitale-Brovarone's initial study showed that it is possible, by careful 

design of the thermal treatment, to achieve sufficient densification whilst retaining 

the desired architecture. The compressive strengths reported in this initial study 

were 1 (± 0.4) MPa; this reportedly low value was attributed to insufficient coating 

of the inner sections of the PU foam, further optimisation of the coating regime 

was expected to improve upon this value. Overall however this was a promising 

result; pore sizes ranged from 100-500 µm, porosities achieved were 70-75 % 

(agreeable with previous scaffolds implanted in vivo (223)), good biological 

behaviour via osteoblast proliferation was noted and the scaffold had sufficient 

mechanical strength to be handled. 

Further work by Vitale-Brovarone et al (2008 and 2009) investigated alternative 

materials to that of CEL2 (232, 233). The study in 2008 produced glass-ceramic 

containing fluorapatite crystals; this study was conducted primarily to compare the 

antibacterial effects of doping with an Ag aqueous solution, however the scaffold 

was also assessed architecturally and mechanically. The key points from this study 

(in terms of scaffold production) again confirmed that slurry constituents must be 

carefully balanced; insufficient binder and powder wt % leads to poor resultant 

architecture, coupled with this a final step to remove excess slurry can result in 

improved architectures. Overall, the production of a Fa-GC scaffold was 
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successful; they exhibited compressive strengths of 2MPa, open pores >100 µm 

and overall porosities of 75 % which lie within recommended values.  

The study conducted in 2009 focused on comparing a “specular” glass (based on 

P2O5) to that of CEL2 (based on silica), the key differences in these glasses are the 

relative amounts of SiO2 and P2O5. The silica based glass (CEL2) was composed 

of 45 mol. % SiO2 and 3 mol. % P2O5, the specular glass (termed ICEL2) was 

inverted and composed of 45 mol. % P2O5 and 3 mol. % SiO2. Thermal 

characterisation showed that ICEL2 (when compared to CEL2) exhibited a lower 

glass transition temperature; a single crystallisation peak (as opposed to two) and 

two crystal melting points, which again were both lower than that of CEL2. Both 

glasses exhibited a good degree of sintering, however a higher degree of sintering 

was noted for CEL2. Additionally the scaffolds produced using ICEL2 exhibited a 

“greyish” colour, indicating that residual carbon remained due to the lower 

sintering temperature used, due to the lower glass transition temperature. 

Mechanical characterisation showed inferior compressive strengths when using 

ICEL2, a 10-fold decrease was reported, 5.2 MPa for CEL2 compared to 0.4 MPa 

for ICEL2. Furthermore, in vitro testing showed the ICEL2 scaffolds underwent a 

high degree of dissolution, weight losses after 1 month of soaking in SBF were up 

to 17 (± 3) %. This suggests that a phosphate based GC could exhibit un-desirable 

absorption rates in vivo, much like the β-TCP scaffold comparison conducted by 

Teramoto et al (224). In summary, a silica-based GC scaffold presents itself as a 

more likely successful candidate. 

Another silcate based glass derived from the well established 45S5 is designated 

13-93, Fu et al (234) conducted a study utilising this glass and applied the foam 

replica technique. The optimal slurry constituents were defined as 35 wt % glass, 
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1 wt % PVA and 0.5 wt % EasySperse (used as a dispersant), subsequently excess 

slurry was removed via squeezing. Reported pore sizes ranged from 100-500 µm, 

overall porosity was 85 (± 2) % and the scaffolds had a compressive strength of 11 

(± 1) MPa. As with other studies that used uniaxial compression to characterise the 

mechanical properties, multiple failure regions were noted due to the complex 

failure characteristics. Again, this implies that porous GC’s fail in a manner unlike 

isotropic materials and could be an un-applicable testing method. However, this 

study provided further proof that a silicate based glass ceramic produced via the 

foam replica technique shows promise in producing a viable trabecular bone graft. 

Vitale-Brovarone et al continued developing a porous glass-ceramic scaffold 

utilising the previously described CEL2; the study conducted in 2009 is worth 

noting due to its emphasis on scaffold preparation, a detailed description of 

production methods and resultant mechanical properties was reported (235). The 

main emphasis is on slurry infiltration, applied heat treatment and use of a drying 

agent (ethylene glycol). The slurry impregnation methods were altered by repeating 

a 60 % compression of the saturated foam (3 times – Method A), applying an 

additional saturation step followed by 33 % compression (method B), or an 

additional saturation step followed by no compression (Method C). In addition to 

these methods alterations in drying times, the use of a drying agent and the applied 

thermal treatment were compared to assess their effect on the resultant scaffold 

properties. The heat treatments investigated were 950 °C for 3 h and 1000 °C for 

3h.  

All impregnation methods exhibited acceptable porosities (>50 %) showing good 

interconnectivity, where Method C showed the best coating of the PU foam, all 

methods exhibited clotted pores due to excess residual slurry. The porosities varied 
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from 53.5 (± 3.7) to 72.3 (± 3.3) %; the compressive strengths ranged from 1.3 ± 

0.4 to 5.4 (± 1.5) MPa, the main attribute to these ranges was increased coating of 

the struts and refinement of the heat treatment to increase strut densification. 

Applying additional drying steps to the pre-heat treated scaffold was reported to 

have minimal effect. For example with method A vs A-1 (A-1 included an 

additional drying step with extended heat treatment at 600 °C) the resulting 

porosities were 68.5 ± 4.6 and 72.3 ± 3.3 % , the compressive strengths were 1.6 ± 

0.5 MPa and 1.3 ± 0.4. 

Mantsos et al conducted a study in 2009 in a similar manner as Vitale-Brovarone 

et al (2009), a major focus of this study was varying sintering temperatures and 

times to assess the resultant effect on scaffold properties (236). A bioactive glass 

powder termed “0106” was used, this glass powder is silicate based belonging to 

the system SiO2–CaO–Na2O–P2O5–K2O–MgO–B2O3. The reasoning behind using 

this specific composition was that “it is anticipated that the glass will retain its 

amorphous structure after heat treatment”, this was expected to improve its 

potential bioactivity. In addition to using a boron containing glass scaffold a 

PDLLA coating was applied which has been reported to enhance mechanical 

properties (237). A key finding in terms of optimising the heat treatment was not 

only sintering at a high enough temperature but to apply a sufficient dwell at this 

temperature. Applying a heat treatment of 650 °C for 10 h resulted in poor 

densification; sintering at 680 °C for 3 h produced dense struts through excessive 

viscous flow, however the pore sizes were significantly reduced. An optimised heat 

treatment was determined (through trial and error) as 670 °C for 5 h, this produced 

pores in the range of 105-515 µm with an average porosity of 68 %. However the 

compressive strengths of the produced scaffolds were low, with or without a 
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PDDLA coating they were reported as 0.40 MPa (±0.05) and 0.60 MPa (±0.08). 

Furthermore the stress-strain curves produced are extremely erratic, completely 

absent of a linear slope (requiring a best fit line to “guide the eye”), implying 

multiple failure regions at all applied loads. From this study alone the use of a boron 

containing glass would appear to be a poor choice for producing a porous glass-

ceramic scaffold, however further studies by Fu et al showed that this is not the 

case. 

Fu et al developed upon replacing the silica content of the previously described 13-

93 glass with B2O3; specifically comparing 13-93 with that of 13-93B1 (one third 

of the molar SiO2 with B2O3) and 13-93B3 (completely replacing the SiO2 with 

B2O3), porous scaffolds were produced through the foam replica technique (234) 

and their resultant properties assessed. The main issues with using a borate-based 

bioactive glass are their rapid dissolution rates and potential toxicity, the first study 

(part I) concentrated on boron content in the pre-cursor glass and its in vitro 

characteristics. Scaffolds were produced in the same manner as described by Fu et 

al (234); compressive strengths increased with increased boron content, from 13-

93, 13-93B1 and 13-93B3 strengths were reported as 11 (± 1.0), 7 (± 0.5) and 5 (± 

0.5) MPa respectively (238).  

In terms of porosity and pore size distributions all scaffolds produced were 

reportedly the same, porosities ranged from 78-82 % and pore sizes ranged from 

100-500 µm. When in vitro conditions were applied it was shown that with 

increasing boron content (from 13-93 to 13-93B3) total weight loss of the scaffold 

decreased as did overall strength. A further in vitro study and in vivo implantation 

showed similar results, increased B2O3 content increased degradation and exhibited 

an increased toxic response (239). The in vivo results differed however; all scaffold 
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types were reported to support tissue in growth, this was attributed to the “dynamic” 

conditions as opposed to the “static” in vitro conditions. 

A further study conducted by Gu et al (240) continued this work by implanting 13-

93B1 scaffolds in rabbits to assess the in vivo response, scaffolds were implanted 

in a femoral head defect model and a critical size defect radii model. A key 

comparison in this study is the use of a platelet-rich plasma (PRP). PRP is known 

to stimulate bone formation through the introduction of growth factors; this study 

argues that the 13-93B1 scaffold could be used as such a carrier to promote bone 

growth, it is also arguable that any porous scaffold could be a carrier of PRP. Both 

scaffolds reportedly showed biocompatibility, when compared to un-filled defect 

control the PRP treated defect performed the best. It is noted in this paper that 

“scaffolds composed of borosilicate and, in particular, borate bioactive glasses is 

the toxicity of boron released during degradation”. Low concentrations of borate 

have been shown to be beneficial to new bone formation; high concentrations have 

been shown to be toxic. In terms of scale-up this implies that a higher degree of 

manufacturing tolerance would be required when compared to conventional 

silicate-based scaffolds, especially when the in vivo success of previously used 

scaffolds. 
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Table 2.8: Foam replica scaffold properties

Glass 

powder 
Binder Other 

Pore Sizes 

(µm) 

Porosity 

(%) 

Mechanical Strength 

(MPa) 
Year Author Ref 

45S5 PVA 
De-ionized 

water 
510 - 720 89-92 

0.27 - 0.42c 

0.4 - 0.5f 
2006 Chen et al (225) 

CEL2 PVA Distilled water 100 - 600 ~ 70 1c (± 0.4) 2007 Vitale et al (231) 

HA and 

A/W 
PVB Ethanol 300-800 ~ 93 ~1c 2007 Jun et al (228) 

Fa-GC PVA Distilled water 
0-50: 53 %,  

50-600: 47 % 
74.6 (± 3.4) 2 c  (± 0.6) 2008 Vitale et al (232) 

13-93 PVA 
Easysperse, 

Ethanol 
~ 100 - 500 85 (+/- 2) 11 c  (±1) 2008 Fu et al (234) 

45S5 PVA 
De-ionized 

water 

510-720 (assumed to be 

same as Chen 2006) 
90 - 95 

0.27- 0.42 c   

(assumed to be same as Chen 

2006) 

2009 Ochoa et al (241) 

CEL2 PVA Distilled water 
0-100: 84 %,  

100-1000: 16 % 

53.5 ± 3.7 to 72.3 

± 3.3 
1.3 c  ± 0.4 - 5.4 c  ± 1.5 2009 Vitale et al (235) 

CEL and 

ICEL2 
PVA Distilled water 100 - 500 

54.8 ± 4.5 (CEL2) 

and  

82.0 ± 6.7 (ICEL2) 

5.2 c  (± 2.0) and  

0.4 c  (± 0.2) 
2009 Vitale et al (233) 

CEL2 PVA Distilled water 100 - 500 54.0 ± 0.9 
Not Stated (assumed to be same 

as Vitale et al, 2009) 
2009 Renghini et al (242) 

0160 PVA 
De-ionized 

water 

105 – 515  

(optimised scaffold) 

68 (optimised 

scaffold) 

0.40 c  (±0.05) - 

 0.60 c (±0.08)  

[with PDLLA] 

2009 Mantsos et al (236) 

13-93, 

1393B1, 

13-93B3 

PVA 
Easysperse, 

Ethanol 
100 - 500 

78 (± 2) -  

82 (± 3.0) 
5 c  (± 0.5) - 11 c  (± 1) 2010 Fu et al (238) 

13-93B1 
Ethyl-

cellulose 
Ethanol 400 - 650 78 (± 8) 5.1 c  (+/-1.7) 2014 Gu et al (240) 

Mechanical strengthsː subscript c – compressive, subscript f - flexural  
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3. Aims 

The overall aims were to produce a porous A/W scaffold with characteristics 

comparable to that of trabecular bone, and to assess the biocompatibility of the 

optimised scaffold through the use of live/dead assays. To achieve the first aim; a 

range of slurry constituents, foam templates and heat treatments were used. The 

subsequent architectural and mechanical properties of the produced scaffolds were 

then characterised to assess their reproducibility and physiological relevance. To 

achieve the second aim; in vitro studies were conducted with hADSC’s on scaffolds 

which presented themselves as the most consistent and physiologically relevant 

post characterisation. Potential optimisation of in vivo integration was investigated 

through the use of a hydrothermal process, with the aim of applying a fluorapatite 

coating to the porous A/W scaffold. 

 

3.1. Objectives 

• Confirm glass production consistency through particle analysis and 

DSC. 

• Select key variables of scaffold production to carry forward to 

characterisation. 

• Characterise the architectural and mechanical properties of scaffolds 

produced through selected key variables. 

• Apply a hydrothermal process to glass-ceramic scaffolds, assess the 

ability of the scaffold to support an FA coating. 

• Conduct in vitro studies, with and without FA coatings, to assess the 

short term biocompatibility of the scaffold.
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4. Methods 

 

4.1. Glass Production and Analysis 

The A/W parent glass used in this study is that used by Xiao (137); glasses were 

produced in single 200 g batches and double 400 g batches to the final 

compositions listed in Table 4.1. The process and timing of producing multiple 

double batches is described in appendix 8.1. 

 

Table 4.1: List of reagents used for single and double batches of glass 

Reagent MgO CaO SiO2 P2O5 CaF2 

Supplier 
VWR 

International 

Fisher 

Scientific 

Tilcon 

Sands 

Sigma-

Aldrich 

VWR 

International 

mol. % 7.1 49.9 35.4 7.1 0.4 

wt % 4.6 44.7 34.0 16.2 0.5 

Mass (g) 

(single 

batch) 

9.2 159.6 68.0 32.5 1.0 

Mass (g) 

(double 

batch) 

18.4 319.2 136.0 65 2.0 

 

Reagents were weighed to the nearest 0.1 g (using a Satorius Roughing Balance, 

PT3100) and placed into a mixing container, a stainless steel agitation bar was 

added to the reagents which were mixed for 1h. The powder mix was transferred 
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to a slip cast alumina crucible, which in turn was placed within a larger mullite 

crucible containing a separating coating of calcined alumina powder, and covered 

with a lid. The crucible was then pre-heated in an Elite BCF 13/12-2416 furnace at 

500 °C and held at this temperature for 45 minutes. Following this the crucible was 

transferred to a Pyrotherm 1600 °C furnace (pre-heated to 1400 °C), the 

temperature was increased to 1450 °C where the powders are left to melt for 2 h. 

Following melting, the liquid glass was shock quenched into a cold water bath, and 

collected in a 36 µm filter using a Clarke CPE 110p pump. The glass frits were 

then placed in a drying cabinet for 24 h to dry. The glass frits were ground for 4 

minutes (8 cycles of 30 seconds) using a Gy-Ro Mill puck mill, the resulting 

powders were then sieved using a sieve stack (Otagon Digital) at amplitude 6 on a 

pulse setting for 90 minutes.  

All sieves used were BS1410/1986 certified, particles were sieved into the 

following fractions: <45 µm, 45-90 µm, 90-125 µm, 125 µm-1 mm, 1-2 mm and 

>2 mm. Sub 45 µm particle sizes were assessed through DSC (at a constant heating 

rate of 5K/min) within the temperature range 400-1100 °C in a nitrogen atmosphere 

to determine the glass transition temperature (Tg) and apatite (Tp1) and 

wollastonite (Tp2) crystallisation peaks.  
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4.1.1. Particle Analysis 

Particle size and distribution of the ground glass was analysed using a Malvern 

Mastersizer 2000; before each run the system was flushed with distilled water three 

times, after which a background reading was taken. A slurry was then prepared 

containing ~ 1 wt % glass particles, a dispersing agent and distilled water. The 

slurry was passed through the light scattering laser and optics using a Hydro S 

(Malvern) small volume sample dispersion unit, a constant stirring rate of 1800 

rpm was used throughout all readings. A glass bead refractive index of 1.520 was 

assigned to the glass particles, the water was assigned a refractive index of 1.330. 

3 readings were taken from each sample and an average was subsequently 

calculated. 
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4.2. Scaffold Production 

4.2.1. Foam Templates 

Reticulated PU foam templates ranging from 45 PPI - 90 PPI were supplied by 

Foam Engineers Ltd (see Figure 4.1) ; following the initial template optimisation 

study only the 90 PPI foam (pore sizes ranging from 40-450 µm) were used (see 

section 5.2.). 1000 cylinders 20 mm Ø x 10 mm and 1000 cylinders 20 mm Ø x 20 

mm of the 90 PPI foam were ordered, the dimensions of these templates were 

verified by sampling 10 % of each size using a travelling microscope.  

 

 

Figure 4.1 – Reticulated polyurethane foam template, 90 PPI. Original 

magnification x100
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4.2.2. Slurry Preparation and Coating Regime 

All slurries were prepared using distilled water, high molecular weight polyvinyl 

alcohol (Mowil 98, Mw ~ 196 000) and sub 45 µm A/W glass. To determine the 

optimal slurry constituents 2 variables were considered for each group investigated. 

Polyvinyl alcohol (PVA) was used as a binder for all slurries produced; PVA is 

used as an adhesive to bind the glass particles to the PU foam. Two types of PVA 

were initially investigated: low (average Mw 11 000 – 31 000) and high molecular 

weight (average Mw 196 000). As is discussed in section 5.2.1. the high molecular 

weight PVA was used for all subsequent testing. 

The slurry variables investigated thoughout this study are: 

1) The amount of binder used within the slurry, and  

2) The amount of glass used in the slurry.  

The first variable was denoted “binder solution”; this is simply the wt % of PVA 

dissolved in the distilled water, which was varied from 4-6 %. The second variable 

considered was denoted “Binder solution: Glass”, this was varied from a 2:1 ratio 

to a 1:1 ratio. Table 4.2 lists all slurry constituents that were investigated, 

depending on the slurry a specific code was given to that group which shall be used 

herein. 

To produce each slurry a 500 ml stock solution of PVA/distilled water mix was 

prepared to the required wt % prior to addition of the glass for each test. The 

distilled water was heated in a borosilicate beaker on a magnetic heating plate to 

91 °C and covered with tin foil to retain the required volume of water. PVA was 

weighed on a balance and gradually added over 1 h until it was completely 



79 
 

dissolved. Once the PVA/distilled water stock was prepared the required volume 

was pipetted into a separate beaker (which was kept stirring throughout this 

process). The sub 45 µm A/W glass was weighed in the same manner as the PVA 

and gradually added to this beaker, which was allowed to cool to room temperature; 

this final complete slurry was stirred for 2 h to ensure it was homogenous. 

Once the homogenous slurry was made the PU foam templates were coated; the 

templates were compressed between plastic tweezers, immersed in the slurry and 

allowed to relax, saturating the template. Following this the template was 

compressed for 5 seconds and allowed to relax for a further 15 seconds, this process 

was repeated 3 times to ensure the template was fully saturated with the slurry. The 

template was then removed from the slurry, briefly placed onto a glass microscope 

slide (to remove the excess which immediately pools at the base of the template) 

and allowed to dry for 24 h at room temperature. 

For clarification a brief example of an investigated slurry and its resultant code is 

given below: 

Example: A slurry containing 4 wt % PVA and a 1:1 ratio of binder solution to 

glass. 

1. 20 g of HMw PVA dissolved in 480 ml distilled water (binder solution 

stock) 

2. 100 ml of binder solution stock pipetted into beaker (binder solution) 

3. 100 g of sub 45 µm A/W glass homogeneously mixed into binder solution 

4. Slurry denoted 411 
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Table 4.2: Slurry constituents investigated 

PVA wt % in 

binder solution 

Binder 

solution:Glass 
Code 

4 

1:1 411 

4:3 443 

10:7 4107 

20:13 42013 

2:1 421 

5 

1:1 511 

4:3 543 

2:1 521 

6 

1:1 611 

4:3 643 

2:1 621 

 

 

4.2.3. Alternative coating regimes 

4.2.3.1. Applying compression 

Based upon the original foam template height a compression step was applied once 

the scaffold was coated; this was achieved by using a modified height gauge with 

a custom-built attachment, which housed a brass sieve pan (1 mm aperture). The 

sieve pan was lowered until it contacted the coated scaffold, zeroed, and then 

lowered to 10-50 % of the foam template height. A vacuum nozzle was then 

carefully used to remove the excess slurry which pooled around the base of the 

scaffold; the height gauge was then raised, the scaffold was turned over and the 

process was repeated. Once the process had been repeated the scaffold was left to 

dry for 24 h. 
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4.2.3.2. Vacuum Oven 

Once a batch of scaffolds had been coated they were placed on a sieve pan which 

was covered with a sheet of perforated parafilm; this was then placed within a 

vacuum oven, the pressure was set to 1-2 atm for 15 minutes to 1 h, followed by 

24h of drying at room temperature. 

4.2.3.3. Suspended 

Once scaffolds were coated they were suspended on a rack using high tensile nylon 

wire (0.1 mm φ) and left to dry for 24 h. 

4.2.4. Preparation of flat plates 

Slurries were prepared in the manner as described in section 4.2; using a 10 ml 

syringe the slurry was squeezed onto the lids of 12 well and 48 well cell culture 

plates (care was taken to contain the slurry within the raised lip of each well) and 

allowed to dry for 24 h. The plates were used as reference materials to estimate that 

the heat treatments applied were uniform across the furnace chamber by measuring 

the cross sectional shrinkage (see Figure 4.2). In addition to their use as reference 

samples, the plates were used to investigate higher crystallisation temperatures 

employed in heat treatment B (see section 4.3). Flat plates were also used as 

substrates for initial FA coating as they closer mimicked the stainless steel discs 

used in previous work. 
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Figure 4.2 –Furnace map.  Grey area depicts region of furnace chamber 

assumed to be a “dead zone” unsuitable for sample placement. 

 

4.2.5. Application of a “cortical shell” 

To simulate the cortical shell an additional step was investigated; scaffolds were 

produced through the method described in 4.2.2 and sintered through heat 

treatment A (see section 4.3.). Following this a beaker of paraffin wax was heated 

until melted; the sintered scaffold was then submerged by ~1 mm on either side to 

seal the faces off. Once the wax had dried the scaffold was fully submerged into a 

second slurry 543 slurry, allowed to dry and fired through heat treatment B. 
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4.3. Sintering and Crystallisation 

Once dried the scaffolds and plates were placed on plates of carbon free investment 

material and heat treated; the following diagrams depict the heat treatments that 

were investigated during this study and will be referred to as heat treatments A and 

B: 

Heat Treatment A: 

 

Heat Treatment B: 

 

For each heat treatment an initial burn out stage was undertaken, the temperature 

was ramped at 4 K/min to 400 °C and held at this temperature for 1h to ensure the 

PU foam and PVA was removed. To investigate the minimum dwell temperature 

and time necessary to sinter the glass particles heat treatment A was employed, the 

temperature was ramped at 5 K/min to α and held for (x) hours. The dwell 

temperature (α) ranged from 750 °C to 850 °C and dwell time (x) ranged from 1 to 

5 h.  Once heat treatment A was optimised to provide sufficient sintering of the 

glass particles it was used to design heat treatments B and C. These required the 

addition of a third step in the heat treatment, the temperature was ramped at 5 

K/min (from the previously defined α) to β and held for 1 h. The dwell temperatures 

(β) investigated were 950 °C (β1), 1025 °C (β2) and 1100 °C (β3) all with a dwell 

time of 1 h. Heat treatment B was used to investigate the dwell temperature and 

time required to crystallise the scaffold whilst retaining the desired architecture. 

Heat treatment C was used for comparative purposes, utilising a tertiary dwell 

0  - (4k) -> 400 (1h) – (5K) -> α (x) 

 

0  - (4k) -> 400 (1h) – (5K) -> 800(5h) – (5K) -> β1-3 (1h) 
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temperature sufficiently high enough to be detrimental to the resultant scaffold 

properties.  Generalized heat treatment profiles are illustrated in Figure 4.3 and 

Figure 4.4. 

 

 

Figure 4.3 – Generalized profile for heat treatment A 

 

 

Figure 4.4 – Generalized profile for heat treatment B 
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4.4. Fluorapatite (FA) coating 

The hydrothermal process previously described (187) was scaled up to a larger 

volume. A two part solution was prepared for the synthesis of FA crystals (all 

materials supplied via Sigma-Aldrich); the first part of the solution was prepared 

using 140.4 g of EDTA-Ca and 31.05 g of NaH2PO4 added to 1350 ml of distilled 

water, the pH was adjusted to 6.0 using NaOH and was continually stirred until 

fully dissolved. The second part of the solution was prepared using 3.15 g of NaF 

which was added to 150 ml of distilled water; the pH was adjusted to 7.0 using HCl 

and combined with the first part of the solution. Scaffolds, sectioned discs and 

plates were placed onto a custom made sample holder (Figure 4.5) in the EDTA-

Ca-Na2/ NaH2PO4 / NaF mixture and autoclaved at 121 °C at 2.4 x105 Pa for 10 h.  

Following this, the sample holder was removed from the remaining solution and 

the coated substrates were washed to remove the undesired disordered precipitate 

that forms within the solution. Coated substrates with placed in beakers of distilled 

water and sonicated for up to 1 h (one to four 15 min cycles), with the distilled 

water being replaced throughout this process. Once sonicated the substrates were 

placed in a drying cabinet at 60 °C for 24 h to ensure they were dried.

 



86 
 

 

Figure 4.5 - Diagram of FA coating rig, each tier consists of 4 countersunk holes of 17 mm Φ and a through hole of 10 mm Φ
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4.5. Architectural Analysis 

4.5.1. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy 

(EDX) 

SEM and EDX analysis was conducted on a Hitachi S-3400N variable pressure 

SEM (University of Leeds) and a Phillips XL30FEG SEM (University of 

Michigan), FA coated scaffolds were coated with Au (University of Leeds) or Pt 

(University of Michigan) using an Agar auto sputter coater to prevent charging. 

 

4.5.2. Micro Computed Tomography (micro-CT) 

Each scaffold was sectioned to ensure the maximum diameter was < 17 mm and 

the height was ≥ 7 mm, scaffolds were stacked into the sample holders and spaced 

using 90 PPI PU foam. The computed tomography scanning was conducted in a 

micro-CT scanner (μCT-100, Scanco Medical AG, Switzerland) consisting of a 

cone-beam x-ray source. The scanner settings were; voltage 90 kV, current 44 μA, 

integration time 300 ms, in combination with a beam hardening correction 

algorithm based on a HA- phantom (1200 mgHA/cm3) provided by the CT 

manufacture. Initial scans were conducted to optimise scanning protocol. Voxel 

sizes of 5, 10 and 15 µm were investigated for a range of slurry constituents and 

heating regimes. From these initial results voxel sizes of 10 µm were used for the 

subsequent studies.  

The morphological analysis of scans was conducted on volumes of interest. In all 

cases a Gaussian filter (sigma = 0.8, support = 1.0) was applied to minimize high 

frequency noise. Greyscale thresholding was conducted and the best fit was 

obtained considering the entire stack rather than a single slice. The following 
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morphological parameters were obtained from each of the thresholded image stacks 

using the manufacturer provided algorithms: 

Bone volume to total volume  BV/TV 

Surface density   BS/BV (mm-1) 

Trabecular number   Tb.N (mm-1) 

Trabecular separation   Tb.Sp (mm) 

Trabecular thickness   Tb.Th (mm) 

Additionally the pore size distribution of each image stack was obtained, this was 

given as a percentage distribution determined by the voxel size chosen. For clarity; 

using a 10 µm voxel size reported the percentage of pores within 0-10 µm, 10-20 

µm, 20-30 µm, etc, up to the maximum pore size within the sample. The porosity 

of each sample was calculated by subtracting BV/TV from 1 and converted to a 

percentage,  

i.e: Porosity = (1 – BV/TV) x 100 

As previously noted in the literature review pore sizes ranging from 100-500 µm 

are desirable properties, as are porosities ranging from 50-90 %. After analysis 

through mechanical testing the scaffolds chosen for micro-CT characterisation 

were: 521A, 443A, 443B, 543B and 643B. A sample size of 12 was used for each 

of the scaffold types characterised through micro-CT.
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4.6. X-ray Diffraction (XRD)  

Phase compositions of heat treated A/W glass were analysed using a Philips X’Pert 

diffractometer with a spinning disc attachment and recorded using X’Pert Data 

Collector Software. A 10 x 10 fixed incident beam mask was used with a CuKα x-

ray source. The step size used was 0.033423 °, the dwell was 3.18 seconds and the 

rotation speed was 4 seconds. Scans were conducted from 10-70 °2θ and 20-60 

°2θ. 

 

4.7. Mechanical Properties 

Common methods used to characterise the mechanical properties of scaffolds are 

uniaxial compression and flexural tests (195, 225). Uniaxial compression is the 

most commonly used due to its simplicity however ceramics generally have a 

higher compressive strength than tensile strength, they are most likely to fail in 

tension and as such is the most important mechanical property to determine (243).  

Uniaxial compression testing of porous, brittle materials suffers from trabecular 

buckling; resulting in multiple failure regions. Biaxial flexural testing allows for 

characterisation based on depth of a sample and averaging of a single specimen, 

this test method is also un-affected by sample edge defects. Furthermore, biaxial 

flexural testing requires disc shaped samples. This allowed for sample preparation 

to be kept consistent with respect to micro-CT preparation, FA coating and in vitro 

testing. Moreover, it was possible to carry out micro-CT and flexural strength 

measurements on the same samples. 

The BS EN ISO 6872:2008 standard describes the derivation of biaxial flexural 

strength with a piston on three ball bearing experimental setup. Where ISO 6872 
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specifies a specimen thickness of 1.2 mm the ASTM standard F 394-78 (of which 

ISO 6872 is based upon) does not specify a thickness. 

A study by Huang et al (243) investigated the BS EN ISO 6872:2008 standard; this 

was originally derived for piston-on-ring tests (not piston on three ball bearing 

tests), also this study investigated the use of this ISO standard with multilayered 

discs up to ~2 mm comprised of varying material properties. Huang et al concluded 

that the formula described in BS EN ISO 6872:2008 was still applicable for piston 

on three ball bearing testing. The work by Ban et al (244) investigated biaxial 

flexural strength of samples of varying thickness and concluded that “the biaxial 

strengths of the specimens with different dimensions were not significantly 

different”. Additionally this study concluded that the effect of geometry on biaxial 

strength is negligible. Though the BS EN ISO 6872:2008 standard specifies 

specific sample geometries, it has been shown to be widely applicable and flexible 

to user’s needs.  

Furthermore Fan et al (245) successfully conducted biaxial flexural testing of 

porous HA discs using a ring-on-ring experimental setup. The porosities 

investigated in their study ranged from 59 – 62 %. For the purposes of this study, 

it was decided that applying the BS EN ISO 6872:2008 standard would still be 

applicable, sample thicknesses were set at 1.5 mm ± 0.1 mm.  
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4.7.1. Biaxial flexural testing 

All scaffolds were sectioned using a Struers Accutom-5; an initial facing-off at the 

base of the scaffold was performed to zero the blade before subsequent cuts were 

performed (Figure 4.6). Each scaffold was sectioned into 4 discs of 1.5 ± 0.1 mm 

and air dried for 24 h in an Elite Lenton furnace at 65 °C prior to testing. The dry 

mass of each disc was measured using a Satorius 0.1 g balance, the cross-sectional 

area of each disc was obtained from the mean of 3 measurements of the diameter 

using a 150 mm electronic digital calliper (RS Components Ltd, certificate no: 

1348296).  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – Machining process applied to all scaffolds. 
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Once the dimensions were obtained, the discs/plates were placed loaded into the 

biaxial testing rig. The rig consists of a silver steel rod (10 mm Ø) with a flat 1.5 

mm tip, 3 mm stainless steel ball bearings arranged in an angle of 120 ° to each 

other formed a support circle of 10 mm. The discs were placed centrally and loaded 

at 1mm/min until failure using a 500 N load cell (LC500N/012845, certificate: 

E182100413090017). Prior to each testing session (or after the rig was cleaned with 

ethanol to remove the residual from previous tests) a run not containing a sample 

was performed, the rig was extended at 1 mm/min over 5 mm to ensure the average 

error of the machine was ≤ 0.5 N.  

Biaxial flexural strengths of each disc were calculated using the following 

equation: 

𝜎 =  
−0.2387𝐹(𝑋 − 𝑌)

𝑑2
 

Where σ is the maximum centre tensile stress (MPa), F is the load at fracture 

(N), 𝑑 is the specimens thickness at the fracture origin (mm), 

𝑋 = (1 + 𝜈) ln(𝑟2 𝑟3⁄ )2 + [(1 − 𝜈) 2⁄ ](𝑟2 𝑟3⁄ )2 

and  

𝑌 = (1 + 𝜈) ln(𝑟1 𝑟3⁄ )2 + [(1 − 𝜈) 2⁄ ](𝑟2 𝑟3⁄ )2. 

In which, ν is the Poisson’s ratio (assumed to be 0.25 for all specimens), 𝑟1the 

radius of the support circle (mm), 𝑟2the radius of the the loaded area (mm) and 

𝑟3the radius of the specimen (mm).
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4.7.2. Uniaxial compression testing 

The uniaxial compressive strength of specific scaffolds was determined using an 

Instron 3365 testing machine. Cylindrical scaffolds (20 mm in diameter and 10 mm 

in height) were compressed at a rate of 0.5 mm min-1, the contact surfaces were 

machined flat to provide parallel surfaces for the tests. Six samples were used for 

each test, the peak load was recorded from each test and the mean strength and 

standard deviation was calculated, the compressive strength for each scaffold type 

was calculated using the equation given below. 

𝜎𝑐 =
𝐹𝑝

𝐴𝑜
 

Where 𝜎𝑐 is the compressive strength, 𝐹𝑝 is the peak load recorded and 𝐴𝑜 is the 

original cross-sectional area of the sample. 

 

4.7.3. Statistical Analysis and sample sizes 

Data for biaxial flexural strength and apparent density were checked for normality 

using a Kolmogorov–Smirnov test and Shapiro-Wilk test. Both tests suggested that 

the data was not normally distributed. Data was subsequently analysed by Kruskal-

Wallis Test, with Post Hoc Bonferroni, with a significance of (p < 0.05) using SPSS 

version 19. A sample size of 12 was used for each group tested through micro-CT 

analysis and biaxial flexural testing.
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4.8. In vitro hADSC culture 

4.8.1. Scaffold and cellular preparation 

Scaffolds were sectioned through the method previously described in section 4.7.1 

to thicknesses of 0.8 ± 0.1 mm, this thickness was sufficient for fluorescent and 

confocal microscopy. Once sectioned, scaffolds were sterilized via high 

temperature and pressure autoclave process. STEMPRO® human adipose derived 

stem cells (Invitrogen - Catalog no. R7788-110) were revived from an initial 

population (1x106/ml in freezing medium) in a T-75 flask using MesenPRO RS™ 

basal medium (supplemented with MesenPRO RS™  growth supplement, 

penicillin streptomycin and L-glutamine) ; at ~ 80 % confluency the cells were 

washed 3 times with PBS , trypsinized and re-seeded into 3 T-175 flasks. Once this 

second passage had reached ~80 % confluency the cells were detached in the same 

manner and stored in liquid nitrogen (~1x106 cells/vial). 

 

4.8.2. Concentrated cell seeding and seeding density validation 

Seeding onto porous scaffolds required cells to be resuspended to a high 

concentration of ~ 5x103 cells/µl; the concentrated droplet was pipetted directly 

onto the scaffold surface, 50-100 µl of culture medium was added to the edge of 

each well to aid in retaining moisture during this process. After 2 hours of 

incubation the required amount of culture medium was finally added to each well. 

Seeding densities of 5x104, 1x105, 5x105 and 1x106 were investigated for 24 h and 

8 days, each time point and density consisted of 3 scaffolds, all cells used were 

expanded up to their third passage. 
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4.8.3. Confocal microscopy 

At the end of each required time point seeded discs were fluorescently marked with 

cell tracker green CMFDA (Mw: 464.86, 50 µg powdered, Ref: C7025) and 

ethidium homodimer-1 (Mw: 856.77, 2 mM in 1:4 DMSO/H2O, Ref: L3224) this 

was then diluted into Dulbeco’s modified eagle’s medium (DMEM) at 2 µl/ml and 

4 µl/ml respectively. After 2 h of incubation in the marking medium the discs were 

washed 3 times with PBS and imaged on a Leica TCS SP2 confocal laser scanning 

microscope with AOBS, 488 nm Ar/Kr laser line and HeNe 543 nm laser were used 

to excite the live/dead markers. 

 

4.8.4. Fixing and SEM observation 

Seeded discs were fixed with 2.5 % gluteraldehyde (25 % stock solution diluted to 

10:1 in PBS) for 3 h followed by serial dehydration in ethanol; 10 min in 50, 70 

and 90 % ethanol solutions diluted with distilled water, followed by 30 min in 

absolute ethanol. Once this process was completed, the discs were placed in a 

vacuum sealed desiccator for 24 h to ensure the samples were dried. 
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5. Results and Discussion 

5.1. Glass Production 

This section describes how the initial glass was analysed post-processing; DSC, 

SEM and particle analysis was conducted to verify that the precursor glass 

produced was acceptable for further use in subsequent studies. 

5.1.1. DSC 

Sub 45 µm A/W glass particles were analysed through a constant heating rate of     

5 K min-1; Figure 5.1 shows an example comparison of DSC traces, from each scan 

Tg was obtained from inflection of the trace, Tp1 and Tp2 were obtained from their 

respective peaks. Table 5.1 depicts the range of Tg, Tp1 and Tp2 from glasses 

produced at various dates; the production of a double batch or combining different 

batches of glass (bold in Table 5.1) showed no significant changes to the 

crystallisation peaks as shown in Figure 5.1. It was observed however that resultant 

Tg of the mixed glass was an approximate average of the two initial glasses, 

whereas Tp1 and Tp2 showed little change due to the mixing of different batches 

of glass powder. From this study it was assumed that combining several differing 

batches of glass was acceptable, allowing for an increase in slurry volume and 

ultimately sample size for characterisation.  
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Table 5.1 – Example of DSC analysis conducted at varying dates; samples in 

bold indicate double batches. 

Sample Tg Tp1 Tp2 

1 752.5 878.7 928.3 

2 758.4 891.5 947.6 

3 773.4 887.4 948.2 

4 755 889.8 947 

Average 759.8 886.9 942.8 

S.D. 9.37 5.7 9.7 

3+4 763.8 889.6 947.2 

 

The use of an alumina crucible has been suggested to potentially introduce 

aluminium contamination when used at high temperatures. A study conducted by 

Vickers (246), in parallel to this study, investigated this by conducting EDX 

analysis on A/W glass particles produced in exactly the same manner presented in 

this study. It was found that only very low levels (~ 0.3 mol. %) of aluminium were 

detected in the glasses produced. 

Furthermore, glass transition temperatures in this study are comparable to those in 

the literature; Kokubo (17) reported a Tg of 750 °C for particles of 44 µm average 

diameter when a heating rate of 5 K min-1 was used. If aluminium had indeed been 

incorporated into the glass structure as an intermediate oxide, it would be expected 

to push up Tg. 

Vickers (246) went on to investigate the effects of immersion of the scaffolds in 

SBF and saw significant apatite crystal formation within 24 hours comparable to 

previous studies and furthermore carried out an in vitro assay on the viability of 

A/W glass-ceramic scaffolds cultured with hMSC’s with no adverse effects 

reported. This supported the conclusions of an earlier in vitro study from our group 
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(247) in which hMSC’s were seeded in porous A/W glass ceramic scaffolds 

produced via SLS. MSC’s adhered, retained viability and proliferated on the 

scaffolds. Indeed, the expression of osteogenic markers by MSC’s was equivalent 

to or significantly greater on A/W scaffolds than on tissue culture plastic. In a 

subsequent in vivo study by Lee et al (248), MSC seeded and un-seeded A/W 

scaffolds were implanted subcutaneously in MF1 nude mice where osteoid 

formation and tissue in-growth were observed following histological assessment 

confirming the osteo-productive capacity of A/W scaffolds made at Leeds. 
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Figure 5.1 - Example of DSC traces from analysing glasses produced in double batches. Blue line – 4; Purple line – 3; Green 

line – 4+3 combined (equal weights).
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5.1.2. Particle Analysis 

Glasses were analysed periodically to ensure production was kept sufficiently 

constant; Figure 5.2 depicts the averaged particle size distribution of each glass 

sampled as a volume percentage, the codes correspond to the date at which the 

glass was produced. Overall it was observed that the distributions were skewed 

towards the desired particle size, i.e. 45 µm, and is comparable to previous studies 

(249, 250). Glass frit from multiple pours was mixed, ground and analysed; the 

particle size distribution was also within acceptable limits, this allowed for excess 

frit from previous grinds to be combined to a workable weight. The same was 

repeated for glass powders that had previously been ground and sieved, the process 

described in section 4.1 was repeated and the subsequent glass powder was 

analysed.  

 

 

Figure 5.2 – Particle analysis of various samples 
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The results showed that re-grinding would also produce glass powder within the 

desired size range. Figure 5.3 and Figure 5.4 depict glass particles post-processing 

through both routes. Considering the sieving process, it is reasonable to assume 

that a particle whose width is less than 45 µm but length is greater than this would 

not be separated out and would pass through the mesh. During the particle analysis, 

the beam is scattered and its diameter is reported assuming it is spherical; 

depending on the particles orientation as it passes the beam would result in larger 

particle sizes to be reported. It was therefore assumed that the sieving process 

produced sub-45 µm particles to a sufficiently accurate degree. 

 

Figure 5.3 – SEM of glass particles produced after milling and sieving 

 

Figure 5.4 – SEM of particles produced after re-grinding, milling and sieving
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5.2. Initial scaffold production 

The aim of this section was to specify: 

• The PPI of the PU foam templates that would be used 

• The type of PVA to use (and if it is necessary) 

• The range of PVA wt % to investigate 

• The range of binder solution: glass ratios to investigate 

• The heat treatments that would be investigated 

• To confirm that the heat treatments to carry forward for characterisation 

produced distinctly different crystal phases 

5.2.1. Initial selection of a foam template and binder 

Initial studies were conducted to select an appropriate foam template and binder (if 

any) to use for the subsequent investigations conducted throughout this project. 

From the initial DSC results heat treatment A was employed with a dwell 

temperature of 800 °C, the dwell times used for the initial studies ranged from 1-5 

h. It was immediately observed that a binder was required, Figure 5.5 to Figure 5.7 

depict the resulting scaffolds produced in absence of a binder for foams of 90, 60 

and 45 PPI.  

Considering that each scaffold produced in this initial study was prepared using 1:1 

slurries (i.e. one part glass for one part water) the resulting architectures post-heat 

treatment were surprisingly poor with almost negligible mechanical strengths. This 

study was repeated with low (average Mw 11 000 – 31 000) and high molecular 

weight (average Mw 196 000) PVA at 4 wt % (411 slurries). Improved results were 

only observed for scaffolds produced using the 90PPI foam template and HMw 

PVA. Reducing the wt % of PVA below 4 % produced similar results to not using 
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PVA at all; raising the PVA content over 6 wt % was impractical. Mixing the PVA 

into the distilled water homogenously was barely achievable even before adding 

the glass, which immediately increased the viscosity of the slurry further. From 

these initial tests it was evident that varying the wt % of PVA from 4-6 wt % and 

use of the 90 PPI foam would allow for a more controlled investigation. Prior to 

optimising the slurry constituents the 90 PPI PU foam was characterised to allow 

for the volumetric shrinkage of each scaffold to be calculated based upon the initial 

preparation techniques applied. The foam templates supplied were found to be 

acceptably uniform; sampling 10 % of each template type (20 mm Ø x 10 mm and 

20 mm Ø x 20 mm) showed the dimensions to be 19.778 mm Ø ± 0.408 x 10.151 

mm ± 0.051 and 19.885 mm Ø ±0.413 x 20.104 mm ± 0.06.  

 

 

Figure 5.5 - Initial scaffold produced using a 90PPI foam template, 1:1 

slurry containing no PVA 



104 
 

 

Figure 5.6 - Initial scaffold produced using 45 PPI foam template, 1:1 slurry 

and no PVA 

 

 

Figure 5.7 - Initial scaffold produced using 60 PPI foam template, 1:1 slurry 

and no PVA 
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5.2.2. Designing heat treatment A 

To confirm the minimum dwell time and temperatures required to produce a 

sufficiently sintered scaffold heat treatment A was further investigated. All 

scaffolds were produced using 411 glass slurries, at this stage only qualitative 

assessment was used via the SEM to confirm necking of the particles and retention 

of the desired architecture. 

As previously described the dwell times ranged from 1-5 h and dwell temperatures 

from 750 °C-850 °C (i.e. from ~Tg to ~Tg +100 °C); Figure 5.8 to Figure 5.10 

depict the scaffolds formed from a dwell time of 1 h only; it was clearly evident 

that to merely sinter the scaffold a longer dwell time was required. It was originally 

predicted that at the very least minimal necking of the particles would be observed 

based upon Tg predicted via the DSC. The lack of sintering at these temperatures 

may be due variations in heat transfer; the DSC is conducted using a minute, evenly 

distributed volume of powder within a platinum crucible, it may be considered an 

ideal scenario to heat treat the material being tested. Whereas in practice; the 

scaffold is composed of a much larger powder volume, un-evenly distributed across 

a foam template. Whether the sintering activation energy had been reached may 

still be insufficient to initiate the required viscous flow mechanisms.  

This may explain why a dwell time of 5 h was required at 800 °C; Figure 5.11 to 

Figure 5.16 depict scaffolds sintered for 5 h from 760 to 800 °C. As the dwell 

temperature and time was increased the desired necking and densification was 

achieved. Increasing the dwell temperature up to 850 °C with longer dwell times 

showed similar results. However, the aim of developing heat treatment A was to 

merely sinter the scaffold with minimal crystallisation at this stage, it was therefore 

concluded that a dwell temperature of 800 °C and dwell time of 5 h was to be used 
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as the basis for all subsequent tests. This result is directly comparable to a study 

conducted by Jun et al (251) who reported sintering at temperatures lower than Tg 

resulted in poor densification of the glass-ceramic particles. 

 

 

 

 

Figure 5.10 – 1 h dwell at 850 °C, 411 slurry. No evidence of sintering. 

  

Figure 5.8 – 1 h dwell at 750 °C, 

411 slurry 

 

Figure 5.9 – 1 h dwell at 750 °C, 

glass particles still exhibit angular 

morphology 
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Figure 5.11 – 5 h dwell at 760 °C, 411 slurry 

 

 

Figure 5.12 - Increased magnification image of scaffold depicted in Figure 

5.11, angular particle morphology still apparent. 
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Figure 5.13 – 5 h dwell at 785 °C, 411 slurry 

 

 

Figure 5.14 - Magnified image of scaffold depicted in Figure 5.13Error! 

Reference source not found.. Some evidence of particle rounding can be seen 

however, necking is still not evident. 
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Figure 5.15 – 5 h dwell at 795 °C, 411 slurry. Particle necking is visible, 

however densification is insufficient 

 

 

Figure 5.16 – 5 h dwell at 800 °C, 411 slurry. Increased level of densification 

and necking.  
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5.2.3. Reducing the glass required 

It was evident from an early stage that producing slurries of 1:1 binder solution: 

glass was impractical; the sheer volume of glass required immediately limited the 

sample size that could be produced. Coupled with this, from the SEM analysis it 

was clear that slurries of 1:1 ratio formed a scaffold with minimal unblocked pores 

as shown in Figure 5.17.  

 

Figure 5.17 - Scaffold depicting majority of blocked pores; heat treatment A, 

411 slurry. 

 

Initial tests were performed using the method described in section 4.2.3; however, 

regardless of the compression cycle performed the resulting scaffolds exhibited 

poor sintering, if at all, similar to that of scaffolds produced through insufficient 

dwell temperatures and times. Interestingly though the architecture of such 

scaffolds was retained in some areas to a surprising degree as shown in Figure 5.18 

this was not reproducible however and as such the compression method was 
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discarded. It is worth noting however that such a method is employed by Vitale-

Brovarone et al (235), perhaps through characterisation of the slurry viscosity prior 

to each coating and further optimisation of the PVA used such a method could be 

employed with this material. Regardless, reducing the glass content of the slurry is 

also desirable with respect to possible future scale up, the subsequent tests therefore 

concentrated on varying the slurry constituents without the compression method. 

Initial small scale tests were conducted with 443 slurries (produced using heat 

treatment A); immediately it was observed that the architecture was improved as 

was the degree of necking visible through SEM analysis. It was concluded from 

these initial tests that reducing the glass content would allow for a controlled 

investigation into optimising the scaffold production. 

 

 

Figure 5.18 - Example of a scaffold produced through 33 % compression of 

original foam template height post coating. Removal of slurry resulted in an 

extremely fragile scaffold post heat treatment. 
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5.2.4. Designing heat treatments B and C 

Determining an appropriate third step in the heat treatment was necessary to allow 

comparisons to be drawn between an amorphous scaffold and a crystallised 

scaffold. The results from the DSC showed the wollastonite crystallisation peak at 

~943 °C; dwell temperatures were tested from 950 °C – 1100 °C (previously 

termed β1, β2 and β3 in section 4.3), as with the design of heat treatment A 

qualitative assessment of architecture retention was then performed. Figure 5.19 

and Figure 5.20 illustrate that a dwell temperature above 950 °C produced an 

overall weakened structure, which is again comparable to the study conducted by 

Jun et al (251). It was postulated that at higher temperatures the viscosity could 

decrease to a level such that the glass particles flow away from one another, 

resulting in poorly defined trabecular struts and large areas that had collapsed.  

From these initial tests, a dwell temperature of 950 °C and dwell time of 1 h was 

carried forward for characterisation and comparison. This was denoted heat 

treatment B, Figure 5.21 to Figure 5.22 show scaffolds produced using a 443 slurry 

and heat treatment B (443B scaffolds). To quantify the potentially detrimental 

effect upon the resultant scaffolds properties a third heat treatment was defined, a 

tertiary dwell temperature of 1025 °C for 1h was used, this was denoted heat 

treatment C. 
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Figure 5.19 - Example of a scaffold produced through heat treatment C with 

a tertiary dwell temperature of 1025 °C 

 

  

Figure 5.20 - Large areas of strut collapse evident. 
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Figure 5.21 – SEM of a 443 scaffold produced using heat treatment B 

 

Figure 5.22 - SEM of a 443 scaffold produced using heat treatment B
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5.2.5. XRD 

Scaffolds were prepared through heat treatments A and B, sectioned into discs (as 

described in section 4.7.1.) and analysed through XRD. Figure 5.23 Figure 5.24 

depict the differences in crystal phases present due to the applications of heat 

treatment A and B respectively. As expected heat treatment A does not fully 

crystallise the scaffold resulting in the “amorphous halo”, compared to that of heat 

treatment B which exhibits both apatite and wollastonite phases and a “flattening” 

of the XRD trace. These initial XRD scans confirmed that heat treatments A and B 

would produce scaffolds of contrastable characteristics, allowing subsequent 

studies to be undertaken. 

 

 

Figure 5.23 – XRD trace of a scaffold after heat treatment A was applied 

(443 slurry). 
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Figure 5.24 – XRD trace of a scaffold after heat treatment B was applied 

(443 slurry). 

 

5.2.6. Summary 

Producing a porous A/W scaffold using the foam replica technique requires careful 

consideration of the foam template, slurry constituents and heat treatment. The 

initial studies aimed to design a practical approach to quantitatively characterise 

the key variables in scaffold production, narrowing down the broad possible inputs 

to a select few. Several variables were immediately discounted following initial 

testing (e.g. varying the PPI of the foam template, use of differing molecular 

weights of PVA, varying the heating rates, etc.). It is to be noted however that these 

variables were not considered insignificant. Future studies would investigate the 

significance of these variables with respect to the broad characterisation conducted 

in this project, allowing for further refinement of the scaffolds produced. From 

these initial studies heat treatments A, B and C were defined and carried forward 

for quantitative assessment. 
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5.3. Characterisation 

5.3.1. Production consistency 

The aim of this section was to: 

• Confirm that the area used within the furnace applied the heat treatments 

uniformly 

• Characterise and compare the resultant scaffold geometries 

5.3.1.1. Furnace Map 

Flat plates were prepared as described in section 4.2.4 using the slurry constituents 

listed in Table 5.2; heat treatment B was applied and the shrinkage in size was 

measured. It was noted that with decreasing glass wt % the shrinkage in size 

diminished slightly, however the standard deviation was low for both groups. From 

this, it was concluded that the furnace area used would provide a uniform 

application of the heat treatment for each subsequent batch of scaffold produced. 

Table 5.2: Shrinkage in size of flat plates 

Slurry 
Shrinkage of cross 

sectional area (%) 
S.D. 

443 8.24 0.4 

4107 7.28 0.55 

 

5.3.1.2. Scaffold shrinkage 

As described in section 4.7.1 the diameter of each sectioned disc was measured; 

this also allowed for the reduction in size post-heat treatment to be analysed down 

the length of the scaffold. Table 5.3 depicts the change in diameter from the original 

green part for each scaffold level (levels i-iv); overall the scaffolds showed a 

maximum change of ~ 24 %, this is at level i with the application of heat treatment 

B. The reduction in size diminishes towards the base of the scaffold resulting in a 

(consistently) truncated shape. 
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Table 5.3: Scaffold shrinkage 

PVA 

(wt %) 

Binder Solution:  

Glass 

Heat 

Treatment 

Disc Level 

i ii iii iv 

Average 

(%) 

S.D. 

Average 

(%) 

S.D. 

Average 

(%) 

S.D. 

Average 

(%) 

S.D. 

5 2:1 B 23.9 0.8 23.0 0.5 21.4 0.9 18.9 1.1 

4 10:7 A 19.6 0.5 19.0 0.6 17.3 0.6 15.4 0.4 

4 10:7 B 20.7 1.4 20.0 1.1 17.9 0.7 15.1 1.0 

4 4:3 A 22.3 0.5 21.4 0.5 20.2 0.7 17.8 0.8 

4 4:3 B 24.5 0.7 23.2 0.7 21.3 0.5 18.9 0.4 

5 4:3 B 23.9 0.8 21.9 0.8 20.1 1.0 17.2 0.8 
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5.3.2. Architecture 

• Characterise and compare the architecture of the scaffolds 

o Porosity 

o Pore size distributions 

• Compare resultant architectural properties to natural trabecular bone at 

clinically relevant sites 

5.3.2.1. Porosity 

Considering primarily the porosity of scaffolds produced through varying glass 

ratio the general trend observed was an inverse relationship, i.e. increasing the glass 

ratio resulted in a decrease in scaffold porosity. The porosities ranged from 43.1 ± 

0.7 to 56.3 ± 0.6 % respectively. Table 5.4 details the porosities of all scaffold types 

that were assessed through micro-CT. The range of porosities achieved in this study 

are comparable to that of previous studies (250, 252-254); however the vast 

majority of porous glass-ceramic scaffolds reported throughout the literature are 

much higher than 40 %, ranging commonly between 70-95 % (255-257). 

Table 5.4: Comparison of resultant scaffold porosities 

PVA 

wt % 

Binder 

Solution:Glass 

Heat 

Treatment 
Porosity (%) S.D. 

5 2:1 

A 56.3 0.6 

B 56.0 0.4 

4 

4:3 

A 44.0 0.1 

4 

B 

41.4 0.6 

5 43.1 0.7 

6 40.4 0.7 
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The effect of varying the wt % of PVA exhibited a more complex relationship; 

from 4 to 5 wt % a decrease in porosity was observed, however from 5 to 6% the 

porosity increased to levels similar to that of using 4 wt % PVA. This may suggest 

that the upper limit of the PVA wt % has been reached; rather than beneficially 

contributing binding of glass to the foam template, an excess of PVA may cause 

the glass to agglomerate within the pores rather than aiding the binding of particles 

to the foam template. Figure 5.25 to Figure 5.27 show 3D reconstructions of 543B 

scaffolds. Analysing solely the porosity is insufficient to reach such a conclusion; 

however, this trend was observed repeatedly when characterising other scaffold 

properties and is discussed in later sections. 

 

Figure 5.25 – 3D reconstruction of micro-CT scan, 543B scaffold 

 

Considering the heat treatment applied and the resultant porosity a similar trend 

was observed, in general scaffolds produced through heat treatment B exhibited a 

lower porosity than those produced through heat treatment A. This trend was less 
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apparent than that of varying the slurry constituents as can be seen when 

considering scaffolds produced using 521 slurries. These results suggest therefore 

that crystallising the scaffold has a minimal effect upon the overall porosity, this 

does not hold true however when considering the pore size distribution. 

 

Figure 5.26 – Cross-section of micro-CT scan of 543B scaffold (plan view) 

 

 

Figure 5.27 - Cross-section of micro-CT scan of 543B scaffold (profile view) 
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5.3.2.2. Pore Size Distribution 

When analysing the pore size distributions, three size groups are considered: pores 

≤ 40 µm, pores > 40 µm and ≤ 450 µm, pores > 450 µm. Pores > 40 µm and ≤ 450 

µm are not only within the recommended range reported in literature (203, 258, 

259) but are within the original bounds of the foam template. Pores larger than 450 

µm suggest insufficient coating of the foam template and/or collapse of struts. 

Table 5.5 and Figure 5.28 depict the pore size distributions of scaffolds produced 

through varying the slurry constituents and heat treatment. Overall, the pore size 

distributions are comparable to numerous strategies reported within the literature 

(260-262) 

Considering scaffolds produced using 521 slurries the pore size distribution is 

significantly dependent upon the heat treatment applied. Applying heat treatment 

A resulted in scaffolds with ~25 % of the pores larger than 450 µm, compared to 

applying heat treatment B which resulted in ~0.1 % of pores within this range. This 

trend diminishes with an increased glass ratio; considering 543 scaffolds, ~8 % of 

the pores were larger than 450 µm with the application of heat treatment A. When 

heat treatment C was used (i.e. a dwell temperature approaching the crystal melting 

point) the resultant pore size distribution is comparable to that of scaffold produced 

through heat treatment A. 
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Table 5.5: Comparison of pore size distributions (%) within desired ranges 

PVA 

wt % 

Binder 

Solution:

Glass 

Heat 

Treatment 
Φ ≤ 40 40 < Φ ≤450 450 < Φ 

5 2:1 

A 1.07 74.12 24.93 

B 1.95 98.04 0.08 

4 

4:3 

B 2.60 97.41 N/A 

5 

A 1.46 90.35 8.14 

B 2.67 97.35 N/A 

C 1.38 92.59 6.07 

6 B 1.33 87.88 10.78 
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As mentioned previously the PVA wt % affects the overall porosity; initially 

decreasing the porosity with increasing PVA content until an excessive amount is 

used and the trend reverses, this trend is also seen when analysing the pore size 

distribution. With the use of 643 slurries and heat treatment B the pore size 

distribution is similar to that of scaffolds produced through heat treatment A and 

C, with ~10 % of the pores larger than 450 µm. Comparing this to the use of 4 and 

5 wt % PVA the differences in pore size distributions are insignificant. This 

provides further evidence that excess use of a binder within the slurry negatively 

affects the resultant properties.  

5.3.2.3. Comparison to physiological values 

As the micro-CT scans were calibrated for bone (i.e. mgHA/ccm) the architectural 

characteristics of the scaffolds produced can be compared to that of natural tissue. 

Table 5.6 compares the common properties of natural trabecular bone to that of the 

scaffolds produced; values displayed in bold are of A/W scaffolds produced, 

specifically 521B and 443B scaffolds. The data presented in Table 5.6 is from a 

study conducted by Hildebrand et al (1999); this study was a detailed micro CT 

analysis of trabecular bone, 260 trabecular bone biopsies were scanned and 

analysed in the same manner as the scaffolds presented in this thesis. The key 

architectural properties obtained from these scans are as follows: Bone volume 

(BV/TV), surface density (BS/BV), trabecular thickness (Tb.Th), trabecular 

separation (Tb.Sp) and trabecular number (Tb.N). Bone samples were obtained 

from the following anatomical zones: iliac crest (ICF), femoral head (FRA), second 

and fourth lumbar spine (LS2B and LS4A) and calcaneal core (CAB). The 

properties of these trabecular bone samples are highly applicable to the potential 

use of a synthetic bone graft, these areas are commonly treated with metallic 
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fixation devices and as such are potential areas in which a porous A/W graft would 

be used. Furthermore, the iliac crest is commonly excised and used as an autograft 

material in orthopaedic surgery.  

It is immediately evident that BV/TV of natural tissues are much lower than that 

of the scaffolds, even when considering the scaffolds produced using the lowest 

content of glass (2:1 ratio of Binder solution:Glass). For clarification, the 

calculation of porosity (as a percentage) is as follows: 

Porosity = (1 – BV/TV) x 100 

As stated in Table 5.4 porosities of 521B and 443B scaffolds were 56 % and         

41.1 %; compared with natural trabecular bone whose porosities range from 73.9 

% (FRA) to as high as 91.7 % (LS2B), it is evident that natural trabecular bone is 

of a much higher porosity. However throughout the literature (through the use of 

the foam replica technique) lower porosities ranging from 50-80 % have been 

reported as desirable (7). 

Comparison of Tb.Th* shows that the struts that are present are similar to that of 

native bone; this suggests that where the foam template was successfully coated 

the resultant struts formed are physiologically relevant.  

The current issue in terms of architecture are the blocked regions of the scaffold; 

comparing Tb.Sp* and Tb.N* shows that the scaffolds are not only too dense but 

are occupied by too many struts. Interestingly the BS/BV ratios are similar to the 

lower levels reported for the human femoral head, iliac crest and the 2nd and 4th 

lumbar vertebra. This might suggest that the microenvironment that the cells would 

initially be exposed to in vivo would be similar to that of the native tissue; 
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specifically if the bone surface is similar it could ensure that cellular densities and 

therefore remodelling rates are comparable to that of natural processes (263). 

The difference in anisotropy of the scaffolds could be considered insignificant, 

additionally the scaffolds could almost be considered isotropic as their DA values 

are ~1. As the glass content within the slurry is decreased the structure of the 

scaffold trends towards rod-like as can be seen with the increasing SMI value. This 

would suggest that for future optimisation for the scaffold specific application 

could be targeted by careful slurry selection. For example, decreasing the glass 

content further could result in a scaffold mimicking that of the lumbar vertebra. 

However, as will be outlined in section 5.3.3. Mechanical properties, solely 

decreasing the glass content to further increase the porosity could prove detrimental 

to the mechanical stability of the scaffold. 

5.3.2.4. Accuracy of measurements 

All scans were conducted using the same sized volume of interest (VOI); this 

ensured that the porosities and pore sizes reported were calculated from equal 

amounts of scaffold material. The voxel size chosen was 10 µm; this was decided 

upon due to scanning and reconstruction times required, smaller voxel sizes would 

have significantly increased the processing time of scans. Decreasing the voxel size 

(to 5 or 1 µm, for example) would increase the resolution and give more details to 

pores of smaller geometries. Pores of a smaller size will still be present due to 

insufficient densification of A/W particles post-sintering, however this was not 

then focus of the micro-CT analysis. The focus was to assess the pore size 

distributions that were present within the recommended ranges for clinical use 

(100-500 µm), scans at 10 µm were sufficient to achieve this. Porosities reported 

would also differ if smaller voxel sizes were used. Micro porosities due to 
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insufficient sintering of A/W particles would not be represented in current scans, 

which could affect the results reported. The effect of decreasing voxel size on 

resultant architectural properties reported could be repeated, if a single scaffold 

type was chosen (same slurry constituents and heat treatment). However, for the 

purposes of investigating a range of starting conditions, the scanning conditions 

chosen are adequate to draw comparisons upon the differences in resultant 

architectural properties. 

 

5.3.2.5.  Summary 

In general it was shown that with increasing glass wt % the porosity and pore size 

distribution of the scaffold decreased, however this decrease was countered with 

an increase in architectural consistency. Overall porosities of scaffolds were 

dependant primarily on glass wt %, pore size distribution was dependent upon the 

application of a tertiary dwell stage. Comparison to physiological values showed 

that overall the porosities of the scaffolds produced were lower; however, the areas 

of the scaffold that are not blocked exhibit similar characteristics to that of natural 

trabecular bone. 
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Property Site/Specimen Mean SD Min Max 

BV/TV 

ICF 0.156 0.054 0.048 0.279 

LS2B 0.083 0.024 0.04 0.158 

LS4A 0.087 0.033 0.04 0.226 

FRA 0.261 0.078 0.118 0.481 

CAB 0.12 0.035 0.054 0.19 

521B 0.47 0.95 0.455 0.485 

443B 0.586 0.006 0.577 0.596 

BS/BV  

(mm-1) 

ICF 17.65 3.45 10.84 32.13 

LS2B 23.73 3.41 17.16 34.29 

LS4A 21.17 3.59 11.37 32.94 

FRA 13.12 2.92 7.17 21.19 

CAB 21.64 3.23 14.5 28.34 

521B 13.872 0.31 13.193 14.342 

443B 11.728 0.155 11.426 11.917 

Tb.Th  

(mm) 

ICF 0.151 0.027 0.087 0.225 

LS2B 0.122 0.019 0.082 0.165 

LS4A 0.139 0.028 0.092 0.224 

FRA 0.194 0.033 0.127 0.284 

CAB 0.129 0.018 0.102 0.169 

521B 0.144 0.003 0.139 0.152 

443B 0.171 0.002 0.168 0.175 

Tb.Sp  

(mm) 

ICF 0.747 0.15 0.523 1.307 

LS2B 0.792 0.135 0.572 1.268 

LS4A 0.854 0.143 0.602 1.164 

FRA 0.638 0.114 0.454 0.94 

CAB 0.679 0.107 0.456 0.982 

521B 0.162 0.011 0.15 0.189 

443B 0.118 0.002 0.115 0.122 

Tb.N  

(mm-1) 

ICF 1.402 0.265 0.788 2.051 

LS2B 1.278 0.201 0.77 1.774 

LS4A 1.161 0.181 0.843 1.609 

FRA 1.595 0.292 1.092 2.387 

CAB 1.462 0.202 0.998 2.09 

521B 3.287 0.109 3.078 3.419 

443B 3.463 0.026 3.418 3.513 

Table 5.6 - Comparison of scaffold architectural properties to human 

trabecular bone from various anatomical sites (264). 
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5.3.3. Mechanical properties 

• For all scaffold types tested: 

o Characterise biaxial flexural strength 

o Determine effect of slurry constituents 

o Determine effect of heat treatment applied 

o Characterise the Weibull modulus 

• Determine whether an additional layer could be applied and if this had a 

significant effect on the mechanical strength 

5.3.3.1. Biaxial Flexural Strength 

The biaxial flexural strength was calculated for the scaffold types by calculating 

the average flexural strength of each specimen from the four levels (i-iv), the mean 

flexural strength of each scaffold type was then derived from the averaged values. 

The resultant values for all scaffolds types tested are depicted in Table 5.7 and 

Figure 5.43. The following sections will present and discuss in detail the trends 

observed by varying the slurry constituents and heat treatments. 

Table 5.7: Average biaxial flexural strength of scaffolds 

PVA 

wt % 

Binder 

solution:Glass 

Heat 

Treatment 

Biaxial Flexural 

Strength (MPa) 
S.D. 

5 2:1 

A 2.06 0.54 

B 3.6 1.08 

C 1.96 0.67 

4 20:13 B 6.04 0.55 

4 10:7 
A 4.08 0.20 

B 5.66 0.90 

4 

4:3 

A 7.06 1.12 

B 8.85 1.23 

5 
B 9.82 1.47 

C 4.7 1.06 

6 B 5.46 0.83 
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5.3.3.2. Effect of slurry constituents 

In general, it was observed that the biaxial flexural strength of the scaffold 

increased as the glass content was increased. Considering scaffolds produced using 

heat treatment B only (see Figure 5.29) the strengths ranged from 3.60 ± 1.08 MPa 

to 9.82 ± 1.47 MPa. Varying the PVA wt % does not exhibit the same trend, 

increasing the PVA wt % eventually exhibits a detrimental effect on the mechanical 

properties. Figure 5.30 highlights the biaxial flexural strengths of scaffolds 

produced using 4:3 ratio of binder solution to glass and heat treatment B.  

 

Figure 5.29 - Comparison of change in biaxial flexural strength with 

increasing glass content 

 

As can be seen the strength increases from 4 to 5 wt %. PVA, increasing the PVA 

content to 6 % results in a dramatic drop in the strength by ~ 56 %. Additionally, 

statistical analysis showed that the strengths of the 643 scaffolds were not 
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reinforces the previous remark that there is a limit to the amount of binder that can 

be used within the slurry.  

 

Figure 5.30 – Comparison of average biaxial flexural strength with varying 

PVA wt %. 

 

5.3.3.3. Effect of heat treatment 

A similar trend to increasing the glass content was observed when comparing heat 

treatments A and B as shown in Figure 5.43. However; increasing the tertiary dwell 

temperature further (approaching the crystal melting point) showed a similar trend 

to that of varying the PVA wt %. Statistical analysis revealed that the application 

of heat treatment C resulted in scaffolds with strengths equivalent to those 

produced through heat treatment A, lower glass content and higher PVA wt %. This 

result implies that (as with varying the PVA wt %) there is an optimal tertiary 

temperature that can be employed.  
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5.3.3.4. Apparent Density 

The apparent density of scaffolds was obtained whilst dimensioning the discs for 

biaxial flexural testing; a comparison of scaffold types is depicted in Table 5.8, 

only scaffolds produced from 2:1 slurries fell below values obtained from natural 

trabecular bone (0.1-1.0 g/cm3 (23, 80)).  

Table 5.8: Comparison of apparent densities 

PVA wt % Binder solution: Glass Heat Treatment 
Apparent Density 

(g/cm-3) 

5 2:1 B 0.089 

4 10:7 
A 0.105 

B 0.104 

4 

4:3 

A 0.121 

B 0.116 

5 
B 0.121 

C 0.106 
 

As shown in Figure 5.31 an increase in apparent density correlates well with an 

increase in biaxial flexural strength. Such a relationship could be useful in 

estimating the potential strengths of scaffolds made in the future (see section 

5.6.1.) 

 

Figure 5.31 – Biaxial flexural strength vs apparent density 
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5.3.3.5. Potential stability 

As previously described increasing the glass content resulted in an increase in 

mechanical strength; however, 42013B and 4107B scaffolds showed no significant 

difference in strength.  Closer inspection of the load vs extension traces helps to 

explain this deviation from the trend. Figure 5.32 to Figure 5.35 illustrate varying 

scaffold types that were loaded until failure. As can be seen scaffolds produced 

from slurries containing 10:7 binder solution to glass ratio (Figure 5.35) or higher 

exhibit a consistent loading profile; whereas scaffolds produced using lower binder 

solution to glass ratios (see Figure 5.32 to Figure 5.34) exhibit multiple failure 

regions.  

This implies that these scaffolds are in fact failing at much lower loads in small 

regions; perhaps due to insufficient coating in certain regions resulting in poorly 

defined struts. Considering the potential application, the peak stresses that can be 

supported are not the only mechanical characteristic to value. It is worth noting that 

421A and 421B scaffolds were prepared for mechanical testing; however, as shown  

in Figure 5.32 the loading profiles were extremely erratic (if produced at all). This 

was due to random centralized flaws, which caused the loading tip to punch straight 

through the disc; it is suggested that if such scaffolds were to be re-tested, uniaxial 

compression could provide sufficient data to comment on their mechanical 

strengths. 
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Figure 5.32 – Example of a load vs extension trace - 421B scaffold. Loading 

tip punched through disc during test. 

 

 

 

 

Figure 5.33 – Example of a load vs extension trace – 521B scaffold 
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Figure 5.34 - Example of a load vs extension trace – 42013B scaffold 

 

 

 

Figure 5.35 - Example of a load vs extension trace – 4107B scaffold 
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5.3.3.6. Uniaxial compressive strength vs Biaxial flexural strength 

Limited testing was conducted using the uniaxial test method; however as it is 

commonly described in the literature a comparative test was conducted. 443A, 

443B, 543B and 643B scaffolds were produced and underwent uniaxial 

compression through the method previously described (see section 4.7.2.),the 

results are given in Table 5.9 and illustrated in Figure 5.36. The compressive 

strengths ranged from 2.32 (± 0.47) to 3.61 (± 0.42) MPa.  

Table 5.9: Uniaxial compressive strengths of 443A, 443B, 543B and 643B 

scaffolds 

Scaffold 
Average compressive strength 

(MPa) 

S.D. 

(MPa) 

443A 2.32 0.47 

443B 3.61 0.42 

543B 3.31 0.73 

643B 3.40 0.64 

 

 

Figure 5.36 – Uniaxial compressive strengths of 443A, 443B, 543B and 643B 

scaffolds 
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The values reported for the uniaxial test are lower than that of the biaxial test 

(illustrated in Figure 5.37), which is unexpected, it is generally agreed that the 

compressive strengths are higher than tensile strengths. However, the load vs 

extensions traces for the uniaxial tests show multiple failure regions, most likely 

due to repeated trabecular buckling (see Figure 5.39). This is unlike the trace shown 

in Figure 5.38, which depicts a clearly linear elastic region until failure of the 

material.   

Chen et al (225) in their work on bioglass derived glass-ceramic scaffolds noted 

that the scaffolds they had produced using a 60 PPI foam had compressive strengths 

(0.3-0.4 MPa) at the lower bounds of those of much more porous bone. They were 

considerably weaker, by a factor of ten, than those samples produced in this study, 

although direct comparison is difficult due to geometric considerations (rectangular 

samples were used) and a different starting glass formulation. They indicated that 

they considered these strengths sufficient to allow the samples to be manipulated 

and commented that scaffolds may not need to match the mechanical properties of 

bone. New tissue formation will create a biocomposite and increase the time-

dependant strength. Liu et al (2013) demonstrated for 13-93 bioactive glass 

scaffolds, that after 2-4 week subcutaneous implantation in rats, the initial elastic, 

brittle mechanical response of these caffolds changed to an elasto-plastic response 

(215).  

In terms of the test data, Chen et al noted that a typical stress strain curve for 

uniaxial compression was jagged; with distinct regimes corresponding to the failure 

in the thin struts, followed ultimately by densification of the collapsing foam (225). 

It was noted that compressive testing was often accompanied by shear processes 

such that compressive testing can lead to an underestimation of the modulus and 
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strength. Such features are also seen in this study. Measured values of flexural 

strength were also reported to be higher than compressive strength, as in this study. 

This finding may be explained by the above argument.  

Magdeski (265) found that when looking at the flexural and compressive properties 

of sintered alumina with a porosity range of 55-80 % that whilst there was a good 

correlation between data and theoretical model for flexural strength, there was no 

such correlation for compressive strength. This was attributed to the sensitivity of 

the alumina samples in compression to the method of load application, i.e. the load 

distribution over the entire contact surface, resulting in a failure mode characterised 

by a damage accumulation process. 

Sabree et al (266) produced porous wollastonite scaffolds with an internal porosity 

of ~42 %. They reported a considerable variation in the mechanical response of 

individual scaffolds during crushing experiments and attributed this, like the 

previous authors, to the fact that the top and bottom surfaces of the scaffolds were 

neither flat nor parallel. Unlike many studies they did not see a plateau region nor 

final increase in stress as the scaffold remnants were further compressed, rather the 

scaffolds displayed a chaotic region after the initial peak load followed by total 

collapse of the scaffold; they attribute this difference to geometric differences and 

the size of the scaffolds tested. Weibull modulus was low at ~3, compared to a 

value of 4.2 for a 4 point flexural test with compressive strengths reported in the 

range 12-24 MPa, claimed to be just larger than that of cancellous bone at ~10 

MPa, taken from Gibson (267).  
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It is suggested that future work could repeat this comparison of mechanical test 

methods to ascertain which method is the most reliable. It is suggested however 

that the tensile properties of a glass-ceramic are the most important to characterise 

as this is the most likely method of failure. 

 

Figure 5.37 – Comparison of uniaxial compressive strengths and biaxial 

flexural strengths 

 

Figure 5.38 – Load vs extension trace for 643B (Biaxial flexural test) 
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Figure 5.39 – Load vs extension trace for 643B (Uniaxial compression test)
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5.3.3.7. Weibull Modulus 

The Weibull modulus is a dimensionless parameter that is used to characterise the 

variability in failure of brittle materials. Due to the lack of ductility in brittle 

materials, the maximum stress that can be supported is dependent upon the 

distribution of flaws within the material. Aside from the desired porous structure, 

flaws within the scaffold are generated via lack of glass particle densification 

during sintering and the hollow struts formed via the burn out step. An even 

distribution of flaws will result in a high Weibull modulus value, implying a high 

level of repeatability in material properties (i.e. failure loads). Table 5.10 and 

Figure 5.40 depict the Weibull modulus for all scaffold types that underwent 

mechanical testing.  

 

Table 5.10: Weibull modulus of varying scaffold types 

PVA  

(wt %) 

Binder solution: 

Glass 

Heat  

Treatment 

Weibull  

Modulus 

5 2:1 B 3.38 

4 20:13 B 5.87 

4 10:7 

A 5.85 

B 7.66 

4 

4:3 

A 7.41 

B 8.68 

5 

B 8.04 

C 5.24 

6 B 7.82 
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In general, a similar trend was observed with respect to the biaxial flexural strength, 

increasing the glass content increases the Weibull modulus, application of heat 

treatment B results in a higher Weibull modulus. As discussed in section 5.3.3.3. 

application of a tertiary dwell temperature above 950 °C is detrimental to the 

resultant scaffold properties; this is further illustrated by the drop in the Weibull 

modulus from 8.04 to 5.24.  Interestingly the use of 6 wt % PVA does not exhibit 

such a significant reduction; this suggests that the decrease in biaxial flexural 

strength due to slurry constituents is more consistent than that attributed to the heat 

treatment applied. In a comprehensive study looking at biaxial flexural strength of 

porous hydroxyapatite discs, Fan et al (268) combined their data with that of six 

other published studies on BFS of HA. It was determined that, irrespective of 

manufacturing route or pore size distributions (unimodal or bimodal) for samples 

with a porosity between 10 and 55 %, the Weibull modulus was always in a 

relatively narrow band of ~4-11. The values determined in the current study agreed 

with this study. They further extended their study to incorporate data from other 

porous ceramic materials and found a similar trend in the relationship between 

Weibull modulus and porosity.  
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Figure 5.40 - Weibull modulus plots – Modulus derived from the gradients of the linear regressions. 
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5.3.3.8. Application of a “cortical shell” 

543A scaffolds were prepared and subsequently underwent additional processing 

steps as described in section 4.2.5. It was postulated that the addition of an “outer 

shell” would produce a scaffold with the highest biaxial flexural strengths; the 

resulting strengths were 9.56 ± 1.93 MPa. Statistical analysis showed there were 

no significant differences between these scaffolds and those produced through the 

“standard method” and fired through heat treatment B (i.e. standard 543B 

scaffolds). It was observed however that the outer shell had sintered and formed a 

dense outer coating ~ 60 µm thick whilst retaining the original porous structure 

(see Figure 5.41 and Figure 5.42); this implies that perhaps if additional coats were 

applied a thick enough layer could be deposited, increasing the scaffold strength 

further.  

 

Figure 5.41 – Attempt at applying an additional dense shell to a 543A 

scaffold. White arrows indicate additional thin deposited layer. 
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Figure 5.42 - Attempt at applying an additional dense shell to a 543A 

scaffold. White arrows indicate additional thin deposited layer. 

 

 

5.3.3.9. Summary 

Similar trends were observed to the architectural properties; increasing the glass 

content resulted in an increase in the biaxial flexural strength, an increase in 

strength was observed as PVA content in the binder solution was increased up to 5 

%. The heat treatment applied had a significant effect upon the flexural strength, 

heat treatment B resulted in the highest strengths for all scaffold types
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Figure 5.43 – Average biaxial flexural strengths of varying scaffold types 
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5.4. Fluorapatite coating 

The aim of this section was to: 

• Determine whether a fluorapatite coating could be applied to A/W 

• Determine if the initial slurry constituents had an effect on the resultant 

FA coating 

• Investigate whether the heat treatment applied to the scaffold effects the 

resultant FA coating 

• Investigate the effect of applying the FA coating technique to a 3D A/W 

structure 

 

Flat plates with varying glass content and PVA wt % were used to determine 

whether these variables could be discounted for investigating FA coating on 

scaffolds. Figure 5.44 illustrates an example of a flat plate coated with FA; from 

SEM observation there appeared to be no dependence between the initial slurry 

constituents and the resulting FA coating produced. It was noted however that the 

surface that was in contact with the investment material (i.e. the underside of the 

plate) was less sintered and as such detrimentally affected the FA coating produced. 

Subsequent scaffolds therefore were prepared from 543 slurries, the only substrate 

variables considered were the heat treatments (i.e. A or B). Overall it was shown 

that an FA layer could be formed regardless of the heat treatment applied; however, 

the crystallinity of the substrate strongly dictates the resulting FA crystal 

morphology and density. 
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Figure 5.44 – A) FA coating on a flat 543B plate, B) Magnification x10 

 

To confirm that a layer of fluorapatite had been formed EDX analysis was 

conducted on coated samples. As silicon would only be present in the amorphous 

glass phase and not in the fluorapatite needles EDX mapping was conducted 

comparing silicone and calcium. As shown in Figure 5.45 the underlying scaffold 

shows a high distribution of silicon unlike the surrounding coating; this is either 

due to presence of the amorphous glass phase or wollastonite (CaSiO3). Figure 5.46 

shows EDX mapping of silicon and calcium; the contrast in calcium content is 

clearly visible, traces of calcium are present in the underlying scaffold but vividly 

present in the surrounding FA coating.  

 

 

 

 

 

 

 

 

 

 

 

A B 
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Figure 5.45 – EDX map of a sectioned disc coated with FA, silicone only 

 

Figure 5.46 – EDX map of a sectioned disc coated with FA, silicone and 

calcium
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5.4.1. FA coating on sectioned discs 

The FA coating formed on discs produced through heat treatment A are shown in 

Figure 5.47 to Figure 5.51, the coating produced exhibits a “semi-ordered” 

morphology, comparable to previous studies conducted by Liu et al (187). From 

SEM observation alone there was no evidence of the 3-D structure negatively 

affecting the coating. It was postulated that on the underside of the pores/struts the 

ordered crystal structure would form and around the upper surfaces the previously 

described disordered structure would form. However; through SEM analysis it was 

clear that a consistent layer which followed the curvature of the pores and struts 

was produced across the entire surface of the scaffold. The crystals exhibit the same 

hexagonal cross section as previous studies; however they are much larger in size, 

a rough estimate from the SEM images would suggest the crystals are 500 nm in 

width and almost 4 µm in length.  

 

Figure 5.47 – FA coated sectioned disc; 543 slurry, heat treatment A. 
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Figure 5.48 – Magnified image of FA coated strut, crystals can be seen to 

follow the 3-D contours. 

 

 

Figure 5.49 – Interface of FA coating and underlying glass-ceramic strut; 

crystal length and width are estimated to be 4 µm and 500 nm respectfully. 
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Figure 5.50 - FA coating of a relatively small pore, 543A scaffold. 

 

 

Figure 5.51 – FA coating of thin strut, size disparity between ordered coating 

and disordered precipitate clearly visible. 
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The FA coating formed on the scaffolds produced through heat treatment B are 

shown in Figure 5.52 to Figure 5.54; the coating is much denser and is more 

comparable to the ordered structure described in previous work (187). Again, it 

was noted that the ordered coating layer was uniform over the 3-D surface with the 

c axis of the crystals orientated normally to the underlying substrate. 

Previous studies reported that with an increase in autoclave time the size of the 

crystals increased due to the disassociation of Ca2+ ions from the EDTA-Ca 

complex (189). The XRD analysis showed that scaffolds produced through heat 

treatment A were comprised predominantly of an apatite phase and an amorphous 

glassy phase. This could suggest that these scaffolds are contributing further to the 

crystal growth providing additional Ca2+, this is when compared to scaffolds 

produced through heat treatment B. XRD analysis showed that heat treatment B 

vastly decreased the amorphous phase, forming the more stable wollastonite phases 

in addition to apatite. This suggests that the FA layer produced on heat treatment 

B scaffolds is essentially dependent upon the Ca2+ within the solution, which is 

again more comparable to that of the previous studies. Performing mechanical 

testing on scaffolds post-coating could allude to this; if scaffolds produced through 

heat treatment A are contributing to the crystal growth it is expected that they 

would exhibit a reduction in strength.  
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Figure 5.52 – FA coating on a scaffold produced through heat treatment B. 

 

 

Figure 5.53 - FA coating on a scaffold produced through heat treatment B. 
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Figure 5.54 - FA coating on a scaffold produced through heat treatment B. 

 

5.4.2. FA coating through the scaffold 

The outer surfaces exhibited the same coating morphology as the sectioned discs 

as shown in Figure 5.55 and Figure 5.56, this implied good consistency not only 

with the scaffold production but also with the coating methodology. Upon 

sectioning the scaffold it was evident that the heat treatment alone does not dictate 

the type of coating produced, Figure 5.57 to Figure 5.59 illustrate this. Through the 

centre of the scaffold FA crystals are present yet sparse; regions of un-coated 

scaffold can be seen as can transitional areas showing the initial formation of 

crystals to their subsequent growth. Compared to the FA crystals formed at the 

surface their morphology and orientation diminishes with depth; even a rough 

estimation of their size is barely possible, the c-axis alone appears to be around 

200-300 nm. The orientations of these crystals appear to be less ordered; however, 
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in areas where the crystals have grown sufficiently they exhibit similar 

directionality, growing normally from the underlying substrate.  

As previously stated, the outer surfaces exhibited FA coating comparable to that of 

the sectioned discs; this was expected as they had undergone the same heat 

treatment, the dramatic reduction in crystal size however was not expected. If it is 

assumed that the pressure and temperature is uniform throughout the scaffold 

during the autoclaving process this reduction in crystal size must be due to either 

the pores decreasing the convection of the solution, a rapid depletion of Ca2+ within 

the pores, or a combination of the two. Compared with coating on the plates and 

sectioned discs there was virtually no disordered precipitate within the scaffold; in 

addition to this it is worth noting that the precipitate within the scaffold that could 

be observed was also significantly smaller. 

 

Figure 5.55 – FA coating of the outer surface of an un-sectioned scaffold. 
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Figure 5.56 - FA coating of the outer surface of an un-sectioned scaffold. 

 

 

Figure 5.57 – Sectioned scaffold depicting the FA coating produced within 

the interconnected structure 



159 
 

 

 

Figure 5.58 - Sectioned scaffold depicting the FA coating produced within 

the interconnected structure, patches of the un-coated substrate are visible 

 

Figure 5.59 – Example of disordered precipitate found within the scaffold. 
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5.4.3. Summary 

A coating of FA can be applied to a 3-D A/W scaffold; the crystallinity of the 

substrate dictates the morphology of the resultant FA crystals. Nano-scale FA 

crystals can be formed when the hydrothermal process is applied to a porous, 

interconnected structure. Scaffolds produced following heat treatments A and B 

showed significant coalescence and provide a relatively smooth surface. By coating 

a scaffold, its topography, chemistry and/or mechanical properties can be altered 

with respect to the original surface. For the first time an ordered, nanostructured 

bioactive coating has been applied to a 3D scaffold. For a trabecular bone scaffold, 

a coating process offers the potential for hierarchical topography, from the bulk 

(the scaffold) to the micro (the individual strut) to the nano (the coating). A nano-

structured surface has a large surface energy compared to a smooth surface, which 

in turn can have a significant effect on surface-protein interactions. The 

introduction of a nano topography through a coating can influence bone ingrowth 

by providing attachment sites for proteins important during healing. FA coatings 

produced hydrothermally have been shown by Liu et al to support, even without 

an osteoinductive supplement, MG-63 and human adipose derived stem cells to 

differentiate and mineralize (187, 269). Liu et al looked at as number of adhesion 

and matrix-focused pathway genes, and up- or down- regulation of 15 genes such 

as integrin molecules; integrin alpha M and integrin alpha 7 and 8 was noted, 

suggesting a modulating effect on these adhesion molecules by the ordered FA 

surface. 
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5.5 In vitro studies 

The aim of this section was to: 

• Define a suitable cell seeding density for confocal microscopy 

• Perform live/dead assays to ensure the scaffold can support hMSC’s 

• Investigate through SEM analysis (14 and 28 day time points) whether 

cells proliferated and the extent to which they had 

o With and without FA coatings 

 

5.5.1. Seeding density validation 

Initial confocal microscopy at the 18 h time point showed that seeding densities of 

5x105 and 1x106 per scaffold were sufficient to illustrate cell attachment; densities 

lower than 5x105 per scaffold were insufficient to allow for fluorescent detection. 

From these initial tests, it was clear that the scaffold could maintain good cell 

viability in the short term. At the 8-day time point cell spreading was observed as 

shown in Figure 5.60 and Figure 5.61; it was noted however that the vast majority 

of the dead marker was detected towards the surface of the scaffold that the cells 

were initially seeded onto (see Figure 5.62). Where the pores are clearly visible 

there were areas of the confocal, which appeared completely blank, this was due to 

blocked regions of the scaffold. It was concluded however that scaffolds sectioned 

into 800 µm thin discs would suffice for the subsequent long-term tests.  
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Figure 5.60 – Confocal microscopy image of hADSC’s cultured for 8 days on 

A/W scaffold, seeding density 1 x106. 

 

Figure 5.61 - Confocal microscopy image of hADSC’s cultured for 8 days on 

A/W scaffold, seeding density 1x106 
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Figure 5.62 – Profile view of scaffolds cultured for 8 days at 1x106 seeding 

density. White arrows indicate the direction of the initial cell seeding. 

 

5.5.2. 14 and 28 day culture 

Seeding densities of 5x105 and 1x106 were carried forward for longer culturing 

periods; by day 14 the cells were well connected and beginning to form confluent 

sheets for both seeding densities. At day 28 for both seeding densities the 

architecture of the underlying scaffold was completely masked by the fluorescence 

of the confluent sheets that had formed, SEM observation of dehydrated scaffolds 

allowed for clearer observation. It can be seen in Figure 5.63 to Figure 5.66 that 

preparing the discs for cell seeding creates artificially large pores that are greater 

than 500 µm across; despite this the cells were observed to bridge these gaps and 

form confluent sheets several cell layers thick.  
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Figure 5.63 - Scaffold cultured for 28 days, seeding density 5x105. 

 

 

Figure 5.64 - Scaffold cultured for 28 days, seeding density 5x105. 
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Figure 5.65 - Scaffold cultured for 28 days, seeding density 5x105. Cells 

observed to preferentially attach and proliferate around un-machined 

surfaces. 

 

Figure 5.66 - Scaffold cultured for 28 days, seeding density 1x106. 
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The cells appear to preferentially attach and proliferate on the un-sectioned surface; 

as can be seen in Figure 5.65, this is worth noting with respect to future in vivo 

study. If the scaffold is to be machined prior to implantation the internal 

architecture would appear to immediately support cell attachment; however if the 

machined surfaces are impeding cell attachment this could be detrimental to the 

scaffolds stability and ultimately its potential success. 

 

5.5.3. Short term FA culture 

Scaffolds were prepared as described in section 4.4. Fluorapatite (FA) coatingand 

section 4.8.1. Scaffold and cellular preparation, 1x106 hADSC’s were seeded onto 

each scaffold through the concentrated cell suspension method and cultured for up 

to 8 days. As no evidence can be presented to prove sporal contamination did not 

adversely affect the results this section has been omitted from the final report. The 

SEM analysis for the 36 h time point is supplied in appendix 8.2. 

5.5.4. Summary 

Qualitative assessment of hADSC’s cultured for up to 28 days showed basic 

biocompatibility of the scaffold; at seeding densities of 5x105 and 1x106 hADSC’s 

attached, proliferated and formed confluent sheets.  
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5.6. General Discussion  

Designing a synthetic replacement material for the application of treating critical 

bone defects requires control over specific characteristics; with respect to 

trabecular bone defects the primary needs of the scaffold are architecture and 

strength. Considering the potential application the process of secondary bone 

healing must be aided; during this process, the initial mechanical environment must 

be stable to ensure integration, not encapsulation, is achieved. The architecture 

must be such to support sufficient fluid flow and internal marrow pressures to illicit 

the appropriate cell signalling, nutrient transfer and subsequent long term 

remodelling processes. The aim of this work was to investigate whether these 

primary scaffold functions could be achieved with the use of A/W and the foam 

replica technique. Some aspects of these functions have been achieved through this 

initial study; scaffolds were shown to be composed of pores within the 

recommended range, struts were of appropriate dimensions, strengths ranged 

within acceptable limits and cells were shown to attach and proliferate in vitro to a 

promising degree. In addition to this, some aspects of specific optimisation for the 

treatment of bone defects have been shown. Fluorapatite can be coated on various 

scaffold types in all three spacial directions; this coating layer has been shown to 

be osteoinductive in previous work, however (to the authors knowledge) the 

application of this technique with a 3-D glass-ceramic scaffold has not yet been 

investigated.  Some aspects were not achieved; the major of which is the overall 

porosity and coating consistency, other aspects of the scaffold production will be 

discussed within this section. These aspects are either difficult to characterise, basic 

observations or require a specific study to focus on them. 
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5.6.1. Architecture vs Strength 

It is a common comparison to make that is found prevalently in the literature; 

architecture vs strength, or more specifically porosity vs mechanical failure. The 

general trends are in agreement with previous studies (270); with increasing 

porosity the mechanical strength decreases, less material to support the load results 

in a lower failure load. Figure 5.67 shows the change in biaxial flexural strength 

with increasing porosity; however, the resultant strength of the scaffold is also 

dependent upon the amount of PVA used and the applied heat treatment. 

Comparing scaffolds produced using a 4:3 ratio of binder solution to glass the 

mechanical strengths differ drastically, however their porosities differ by only 

~4%.  

 

 

Figure 5.67 – Biaxial flexural strength vs porosity 
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Applying a heat treatment with a tertiary dwell temperature (950 °C, i.e. heat 

treatment B) increases the mechanical strength. Considering scaffolds 443A and 

443B (the only difference being the applied heat treatment) the biaxial flexural 

strengths differed by 1.79 MPa and their porosities differed by 2.6 %. This 

confirmed that heat treatment B improved upon the mechanical strength by 

producing both apatite and wollastonite crystal phases. When comparing scaffolds 

443B, 543B and 643B (the only difference being the amount of PVA used in the 

slurry) the resultant mechanical strengths differ to a much greater degree with little 

difference in porosities. The mechanical strengths differed by 4.36 MPa (543B = 

9.82 MPa, 643B = 5.46 MPa) and the porosities differed by 2.7 % (543B = 43.1 %, 

643B = 40.4%), further comparison are given in Table 5.11.  

 

Table 5.11: Comparison of change in porosity and biaxial flexural strengths 

Δ Porosity (%) 
Δ Biaxial Flex Strength 

(MPa) 
Scaffolds compared 

15.61 1.86 643B and 521B 

12.85 6.22 543B and 521B 

2.76 4.36 543B and 643B 

0.85 2.76 543A and 543B 

 

This may imply that if future work focused on increasing the porosity of the 

scaffold (and producing a uniform coating of the PU foam) it may not necessarily 

result in a drastically weaker scaffold. 
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Both compressive and flexural tests are affected by porosity. In 1953, Ryshkewitch 

(271) first suggested the following equation to describe the porosity dependence of 

the strength, ,  

 = 0 exp(-nP) 

where 0 is the strength for nonporous body, P is the volume fraction porosity and 

n is a unitless, material-dependent constant. This has been refined over the last sixty 

years with a recent model being described by Fan et al (268) as: 

/0 = A[1-P/Pg]n = A 

where  is fracture strength of the porous ceramic, 0 is fracture strength of the 

theoretically dense ceramic, A and n are dimensionless constants. The degree of 

densification, is defined as (1-P/Pg), where Pg is the porosity at green porosity. 

Similarly, for young’s modulus the relationship between modulus and porosity can 

be described as  

E/E0 = A[1-P/Pg]n = A 

Where e is the Young’s modulus of the porous ceramic and E0 is the modulus of 

the theoretically dense ceramic 

Liu (1997) produced porous hydroxyapatite ceramics with porosities varying 

between 33 % to 78 % using polyvinyl butyral (PVB) as a pore forming agent 

(272). Uniaxial compressive strength was investigated as a function of pore size 

and porosity and the results were found to follow existing models linking strength 

to porosity (273). Without error bars and a small sample size it is difficult to 

interpret the data but it looks like for ~50 % porosity, the compressive strength was 
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~20 MPa. Until high levels of porosity, specimens with smaller (but still macro-) 

pores exhibited higher strengths for a given porosity than specimens with larger 

macro-pores. Le Huec et al similarly varied porosity (20-60 %) and pore size (5 to 

400 µm) in hydroxyapatite ceramics and tested compressive strength (274), it was 

found that not only pore volume but also pore size influenced compressive strength. 

Latella et al used biaxial flexure (piston and three ball support as in this study) to 

investigate the flexural strength of porous (43-71 %, pore size 6-22 µm) mullite-

alumina ceramics (275). They found that the data followed  a typical exponential 

type relationship consistent with previous work by the group and with other 

ceramics. Kwan et al (276) measured biaxial flexural strength of a range of alumina 

ceramics with different final porosities (range 10-44 %) using  two concentric rings 

of ball bearings. For comparison, they also produced 4-point bend specimens. 

Results demonstrated that both a power law model and exponential model could 

adequately describe the relationship between the porosity and strength (as for other 

ceramics). Strength values were dependant on test set up with the beams having a 

higher strength than the discs. The authors attributed the lower values to the bi-

directional stresses in the loading system, compared to uniaxial stresses for the 

bending test. 

Peng et al (277) found no differences in biaxial (piston on three ball as in this study) 

and 3-point bending flexural strength of lightly porous fluorapatite glass ceramics 

with applications as a veneer material in dentistry. They noted as did Kwan (276) 

that an assumption might be that for highly porous ceramics, strength could become 

dependent on the cross sectional area of solid material rather than the weakest flaw, 

i.e. the Griffith flaw model of ceramic strength could break down at high porosity. 

Lopes et al (278) measured ring on ring biaxial flexural strength of glass reinforced 
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HA and found that flexural strength depended more on porosity and the presence 

of secondary phases rather than on grain size. The effect of porosity on strength 

followed the classical exponential model proposed by Ryshkewitch. 

 

5.6.2. Comparison to values within the literature 

Three-point/four-point bend tests and biaxial flexural testing data can be compared 

(279); the study by Jin et al (2004) showed that, depending on the test method used, 

the resultant mechanical properties would differ yet still be reliable. In general, it 

was found that: “3-point bending strength > biaxial flexural strength > 4-point 

bending strength“. This should be taken into account when comparing the values 

of other scaffolds reported in the literature. The “optimised” scaffolds developed 

though this study are that of 443B and 543B, the properties of these scaffolds (see 

Table 5.12) are compared to other scaffolds reported in the literature. 

 

Table 5.12: Optimised scaffold properties 

Scaffold Porosity (%) 
Biaxial flexural 

strength (MPa) 

Uniaxial 

compressive 

strength (MPa) 

443B 41.4 (± 0.6) 8.85 (± 1.23) 3.61 (± 0.42) 

543B 43.1 (± 0.7) 9.82 (± 1.47) 3.31 (± 0.73) 
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The study conducted by Tomita and Kawasaki (200) reported flexural strengths of 

2.4 MPa with porosities ranging from 66 to 68 % (see table 2.5). Where the flexural 

strengths of these scaffolds are lower than that of the optimised scaffolds presented 

in this study this could be account for by the higher porosities. The scaffolds in this 

study were however produced via the sol-gel technique, rather than the foam replica 

technique. The study by Chen et al (as previously discussed) produced scaffolds 

via the foam replica technique and achieved much higher porosities than reported 

for the optimised scaffolds (225). The reported porosities ranged from 89 to 92 %; 

additionally the pore sizes were much larger, ranging from 510 to 720 µm. This 

may account for the low flexural strengths which ranged from 0.4 to 0.5 MPa, the 

use of 45S5 Bioglass® may also account for these low values. 

The vast majority of mechanical characterisation presented within the literature 

uses uniaxial compression; these values are summarised in Table 5.13 for clarity. 

As stated in section 5.3.3.6. the uniaxial compressive strengths of the scaffolds 

tested ranged from 2.32 (± 0.47) to 3.61 (± 0.42) MPa. These values are within the 

recommended ranges for trabecular bone (2-12 MPa); additionally the compressive 

strengths of the scaffolds tested are comparable to values reported within the 

literature. In general, compressive strengths reported for scaffolds produced using 

the sol-gel method are lower (0.36 – 2.26 MPa), however this again can be 

explained through their higher porosities. When compared to freeze casting the 

compressive strengths reported are often much higher, however this can be 

explained through the use of materials known to exhibit high mechanical strengths, 

ȋ.e. alumina.  

The key comparison to make is with scaffolds produced through the foam replica 

technique, specifically the work conducted by Vitale-Brovarone et al (231-233, 
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235). The porosities reported in these studies are higher than those of the optimised 

scaffolds (443B and 543B), the lowest porosities reported were 53.5 (± 3.7) and 

54.8 (± 4.5), which are roughly 10 % higher than both 443B and 543B scaffolds. 

However the compressive strengths of the optimised scaffolds (443B and 543B) 

are well within the ranges reported, 0.4 (± 0.2) to 5.4 (± 1.5). This implies that 

increasing the porosity, with an expected decrease in compressive strength, would 

still be feasible for future studies.  
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Table 5.13: Uniaxial compressive values for various scaffolds reported

Method Glass powder 
Pore Sizes 

(µm) 

Porosity 

(%) 

Strength 

(MPa) 
Year Author Ref 

Organic 

filler 
SNCM 20 -100 40 6 2005 

Vitale-Brovarone 

et al 
(197) 

Sol-gel 
70S30C 87 - 122 82-88 0.36 – 2.26 2006 Jones et al (203) 

45S5 200 - 1000 >90 ~ 0.5 – 2 2011 Chen and Thouas (206) 

Freeze 

casting 

Alumina  

(AKP 30) 
102 - 210 59 - 82 11 - 95 2008 Yoon et al (211) 

CaP 121 (± 33) – 163 (± 47) 62 - 65 
Normally – 4.6 (± 1); 

Parallel – 9.3 (± 1.6) 
2009 Soon et al (208) 

HA 277 (± 47) - 141 (±11) 71-73 1.1 (± 0.2) - 2.3 (± 0.5); 2009 Yook et al (212) 

Baghdadite 

powder 
/ 58.2 – 64.3 1.3 - 2.1 2014 Sadeghpour et al (214) 

Foam 

replica 

45S5 510 - 720 89 - 92 0.27-0.42 2006 Chen et al (225) 

CEL2 100 - 600 ~ 70 1 (± 0.4) 2007 
Vitale -  

Brovarone et al 
(231) 

HA and A/W 300 - 800 ~ 93 ~1 MPa 2007 Jun et al (228) 

Fa-GC 
0-50: 53 %, 

50 – 600: 47 % 
74.6 (+/- 3.4) 2 (± 0.6) 2008 

Vitale -  

Brovarone  et al 
(232) 

13-93 ~ 100 - 500 85 (± 2) 11 (±1) 2008 Fu et al (234) 

CEL2 
0 - 100: 84 %,  

100 - 1000: 16 % 

53.5 (± 3.7) –  

72.3 (± 3.3) 
1.3 (± 0.4) - 5.4 (± 1.5) 2009 

Vitale -  

Brovarone  et al 
(235) 

CEL and ICEL2 100 - 500 
54.8 (± 4.5) and  

82.0 (± 6.7) 
5.2 (± 2.0) and 0.4 (± 0.2) 2009 

Vitale -  

Brovarone et al 
(233) 

0160 105 – 510 68 (optimised scaffold) 0.40 (±0.05) - 0.60 (±0.08) 2009 Mantsos et al (236) 

13-93, 1393B1, 

13-93B3 
100 - 500 78 (± 2) to 82 (± 3.0) 5 (± 0.5) to 11 (± 1) 2010 Fu et al (238) 

13-93B1 400 - 650 78 (±8) 5.1 (±1.7) 2014 Gu et al (240) 
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5.6.2. Burn out artefacts 

It was repeatedly observed (regardless of the heat treatment applied or slurry 

constituents used) that artefacts would remain from the burn out process, as 

illustrated in Figure 5.68 and Figure 5.69. Considering the fracture mechanisms 

associated with brittle materials, it is fair to assume that crack propagation would 

begin at these sites. Whether the accumulation of these artefacts was higher for 

lower glass content scaffolds (i.e. scaffolds produced using a 2:1 or 20:13 slurry) 

is not known at this time, these artefacts may explain the “multiple failure” profiles 

associated with these scaffold types. It was found overall that a reduction in the 

amount of glass present (through slurry constituents or compression during the 

coating process) resulted in necking reduction and lower mechanical strengths. A 

sufficient amount of glass must surround each foam template strut, to not only 

sinter, but also allow the glass to seal up the voids left after the burn out process.  

 

Previous work has shown that an additional coating of PDLLA can fill in the 

micropores associated with sintering glass-ceramics and improve the mechanical 

properties (280); the aim of such a coating is to produce a composite material, 

similar to that of the organic and inorganic phases present in the natural tissue 

(236). Such work has shown limited success however, the polymer is shown to 

begin degradation after only 1 day of submersion in SBF. However, in the short 

term such a coating could be used to improve the initial mechanical stability of the 

scaffold. 

Zhang et al (2012) have produced hydroxyapatite scaffolds through a double slip 

casting method combined with a foam template and claim that these materials 
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have a flexural strength of 75 MPa and a porosity of 52 %, similar to the 

materials in the current thesis. Like in this study, the authors found that a high 

ceramic concentration in the slurry was required for better density and 

mechanical properties in the sintered products. They noted that too high a slurry 

viscosity could result in poor foam infiltration and refined their slurries 

accordingly with the addition of a suitable deflocculant and foaming agent. The 

second dip coating was analogous in one way to the approach taken with the FA 

coating in the current study in that it was designed to strengthen the connection 

between the pore walls and repair any defects.  

Martinez-Vazquez et al (2014) used polymer infiltration in a similar manner for  

β –TCP ceramic scaffold and claimed that an improved flexural strength was 

obtained when using a PCL infiltrate. They argued that unhealed defects (as seen 

in this study due to the burn out process and as a consequence of sintering) of the 

rods/struts facilitated crack propagation and effectively reduced the overall 

strength of the scaffold. Healing these defects through infiltration resulted in a 

significant increase in bending strength. The authors also commented that 

bending tests provided a much better means than compression to analyse 

toughening mechanisms on impregnated scaffolds.  
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Figure 5.68 – Burn out artefact along the length of a strut, scaffold produced 

through heat treatment A. 

 

 

Figure 5.69 – Burn out artefact through the centre of a strut, scaffold 

produced through heat treatment A. 
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It was observed during in vitro testing however that within these artefacts cells 

migrated, attached and proliferated within a short time frame as shown in Figure 

5.70. Previous work has shown the benefits of coating polyurethane grafts with a 

mixed solution containing cytokines, primarily VEGF (281). If these artefacts 

cannot be removed from the scaffold production process, they could be utilised as 

growth factor carrier sites. 

 

 

Figure 5.70 – hADSC’s bridging a burn out artefact gap, 8 day culture time 

point. 
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5.6.3. FA sonication 

Removal of the disordered precipitate after the hydrothermal process has been 

applied to a substrate is desirable; previous work has reported the ordered FA layer 

results in an 80 % increase in substrate integration in vivo, compared to 40 % due 

to disordered precipitate. Sectioned discs were sonicated under 15 min cycles for a 

maximum of 4 cycles; even then the removal of the disordered precipitate was 

almost random. Some cases showed complete removal; others showed damage to 

the underlying ordered layer, implying that 1 h of sonication can begin to remove 

the ordered FA coating. It is worth noting that the sonication process can actually 

be applied when the substrate is A/W; sonicating stainless steel etched discs for 

example, almost entirely removes the FA coated layer, implying that the interface 

with the A/W substrate is stronger.  

However; when considering the full sized scaffold (see section 5.4.2) there was 

almost no disordered precipitate visible within, simply sectioning of the outer 

surfaces removed the bulk of the precipitate. Therefore, it is suggested that 

applying the hydrothermal process to a 3-D, interconnected structure would not 

only optimise the substrate for osteointegration, but additionally it would alleviate 

the need to develop a method to remove the disordered precipitate whilst retaining 

the ordered. 
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5.7. Future Work 

As stated previously several variables were discounted for characterisation; 

considering the slurry, the viscosity was not characterised during this study, only 

the wt % of glass and PVA. Comparisons could be drawn between the architecture 

and specifically the apparent density of the scaffold produced from slurries of 

specific viscosities. This would allow for further optimisation of the coating regime 

in conjunction with optimising the sacrificial template. Foams ranged from 45 PPI 

– 90 PPI; it was found that below 75 PPI an insufficient amount of glass coated the 

struts, at 90 PPI good strut morphology was achieved but large areas of the scaffold 

remained blocked. Considering the low cost of the starting materials it would be 

reasonable to introduce 3-D printing to construct a sacrificial template of a specific 

pore size distribution. It is suggested that if the slurry viscosity and sacrificial 

template were specifically characterised the overall porosity of the resultant 

scaffolds could approach that of physiological values, whilst retaining sufficient 

coating of individual struts. 

Mechanical testing during this project focused on loading until failure, where this 

allows for characterisation of the upper limits of the scaffold it does not predict 

stability of the scaffold with respect to time. Cyclic loading of the scaffold could 

give insight into the potential success of the scaffold when subjected to repeat 

loading, which is more comparable to the in vivo scenario (282, 283). It is predicted 

that scaffolds composed of a broader pore size distribution, an SMI value 

approaching that of a rod-like model or lower crystallinity would fail at lower 

cycles. Such testing could also be applied to scaffolds seeded with cells; 

comparison could be drawn between static and mechanically stimulated in vitro 

culturing to estimate the potential increase in remodelling rates. 
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From the micro-CT scans an FE model could be developed by converting to 

DICOM or .STL format; from this through the use of software such as ScanIP, an 

FE model could be generated to study the stress distributions throughout the 

scaffold (284, 285). Mechanotransduction is a relatively new field; where it is 

generally agreed upon that mechanical forces govern numerous cell signalling 

processes, it is difficult to estimate whether the mechanical environment invokes 

changes to the chemical environment or if the chemical environment governs the 

remodelling processes (286). It is possible they are both one in the same; creating 

a positive feedback loop in healthy bone healing processes or a negative cascade 

leading to osteoporosis. If a computational model could simulate physiological 

loading to scaffolds of varying characteristics (i.e. varying porosity) the internal 

stress concentrations could be characterised and compared to remodelling rates of 

such scaffolds from ex-vivo samples. 

Analysis of glass-ceramic scaffolds coated with FA has only been qualitative up to 

this point; where it was shown through SEM analysis that the substrate crystallinity 

and 3-D architecture affected the resultant crystal morphologies, quantitative 

assessment is still required. In combination with Reitveld refinement both the 

substrate crystallinity and resultant FA coating could be assessed, allowing for 

further scaffold optimisation; not only with respect to mechanical properties, but 

additionally the scaffolds potential to support an ordered FA layer. Quantifying the 

differentiation potential of differing FA coatings could be achieved through the use 

of a recently developed reporter gene assay (287); comparisons could be drawn to 

scaffolds cultured with or without osteoinduction, and with or without FA coating, 

similar to previous studies undertaken with etched stainless steel discs (187). 
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6. Conclusions 

 

This work investigated the production and characterisation of porous apatite-

wollastonite glass ceramic scaffolds. The primary focus was upon developing a 

methodology that resulted in reproducible scaffolds that would allow for 

characterisation and ultimately conclusions to be drawn for future optimisation. 

Further assessment was carried out to estimate the biocompatibility of the scaffold 

and its potential to be optimised for bone healing. The following section 

summarises the findings of this work: 

 

• A/W can be used in conjunction with the foam replica technique to 

consistently produce porous glass-ceramic scaffolds. 

 

• Slurries consisting of a 4:3 ratio of binder solution to glass produce the most 

consistent scaffold type, mechanically and architecturally. 

 

• Excessive use of a binder within the slurry (i.e. > 5 wt % PVA) has a 

detrimental effect upon the resultant scaffold properties 

 

• A controlled burn out phase was defined as heating at 4K/min to 400 °C 

followed by a 1h dwell at this temperature. 

 

• Sintering of the sub 45 µm A/W particles requires a 5h dwell at 800 °C. 
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• Application of a tertiary dwell step at 950 °C for 1 h results in a crystallised 

scaffold composed of both apatite and wollastonite phases. 

 

• Application of a tertiary dwell step at temperature higher than 950 °C is 

detrimental to the resultant scaffold properties. 

 

• Porosities of scaffolds ranged from 40 % - 56 %, with increasing porosity 

the mechanical stability diminished. 

 

• Scaffolds produced from slurries with less than 20:13 glass to binder ratio 

exhibited multiple failure regions, implying they were less mechanically 

stable. 

 

• The Weibull modulus decreases with respect to glass content within the 

slurry 

 

• A fluorapatite layer could be formed on a heat treated A/W substrate in all 

3-D spatial directions 

 

• The crystallinity of the substrate dictates the FA crystal morphology. 

 

• Application of the hydrothermal process to an interconnected structure 

vastly decreases the resultant FA crystals, both in size and number. 
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• Porous A/W scaffolds supported human adipose derived stem cells up to 28 

days at seeding densities of 5x105 and 1x106. 

 

In conclusion, porous A/W glass-ceramic scaffolds were produced using the foam 

replica technique. The scaffolds were shown to exhibit properties within 

physiological limits; an ordered fluorapatite layer can be applied to further optimise 

the scaffold for bone healing, and the scaffold was shown to support human adipose 

derived stem cells. Several production aspects remain to be investigated; however, 

this study has shown the potential of this technique to provide a treatment for bone 

defect repair.  
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8. Appendix 

 

8.1. Appendix A – Work flow of double batch production 

 

 1st Batch 

 2nd Batch 

 

Time Weigh Mix Pack 

Elite 

BCF 

13/12-

2416 

furnace  

Pyrotherm 

1600°C 

furnace  

Pour 

08:00       

08:15       

08:30       

08:45       

09:00       

09:15       

09:30       

09:45       

10:00       

10:15       

10:30       

10:45       

11:00       

11:15       

11:30       

11:45       

12:00       

12:15       

12:30       
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12:45       

Time Weigh Mix Pack 

Elite 

BCF 

13/12-

2416 

furnace  

Pyrotherm 

1600°C 

furnace  

Pour 

13:00       

13:15       

13:30       

13:45       

14:00       

14:15       

14:30       

14:45       

15:00       

15:15       

15:30       

15:45       
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8.2. Appendix B – SEM analysis of FA coated scaffolds seeded with hADSC’s  

(36 hours) 
 

 

Figure 8.1 - FA coated scaffold cultured for 36 h, seeding density 1x106. 

 

 

Figure 8.2 - FA coated scaffold cultured for 36 h, seeding density 1x106. 
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Figure 8.3 - FA coated scaffold cultured for 36 h, seeding density 1x106. 

 

 

Figure 8.4 - FA coated scaffold cultured for 36 h, seeding density 1x106. Thin 

white bands show evidence of FA loss. 
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Figure 8.5 – Magnified image of region highlighted in Figure 8.4, cross 

section of FA layer clearly visible. 
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8.3. Appendix C – SPSS output of Biaxial Flexural Testing 

 

SPSS statistical outputs for the biaxial flexural tests,  

Tests of Normality 

 

Group 

Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

Biaxial 

Flexural 

Strength 

(MPa) 

70%,4%,800(5h) .156 19 .200* .878 19 .020 

70%,4%,800(5h)-

>950(1h) 
.119 20 .200* .948 20 .342 

MICRO_75%, 5%, 

800(5h)-950(1h) 
.106 48 .200* .971 48 .283 

MICRO_75%,4%, 

800(5h)-950(1h) 

.115 48 .135 .972 48 .304 

MICRO_50%,5%, 

800(5h)-950(1h) 

.059 44 .200* .979 44 .607 

75%,5%,800(5h)-

1025(1h) 
.232 20 .006 .888 20 .025 

75%,4%,800(5h) .184 20 .074 .922 20 .110 

50%,5%,800(5h) .154 14 .200* .937 14 .376 

50%,5%,800(5h) - 

1025(1h) 
.124 17 .200* .946 17 .393 

75%,6%, 800(5h), 

950(1h) 
.092 24 .200* .978 24 .860 

65%, 4%, 800(5h) 

950(1h) 
.287 12 .007 .697 12 .001 

75%, 5% B, Cortical 

Shell 
.125 22 .200* .950 22 .309 

*. This is a lower bound of the true significance, a. Lilliefors Significance Correction 
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ANOVA 

 

Biaxial Flexural Strength (MPa) 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 

Groups 
2213.559 11 201.233 142.897 .000 

Within 

Groups 
416.838 296 1.408   

Total 2630.396 307    
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Multiple Comparisons 

Dependent Variable:   Biaxial Flexural Strength (MPa) 

Bonferroni 

(I) Group (J) Group 

Mean 

Diff  

(I-J) 

Std. 

Error 
Sig. 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

70%,4%, 

800(5h) 

70%,4%,800(5h) 

->950(1h) 
-1.57128* .38017 .003 

-

2.8651 
-.2775 

MICRO_75%, 

5%, 800(5h) 

-950(1h) 

-5.73483* .32165 .000 
-

6.8295 
-4.6402 

MICRO_75%,4%, 

800(5h)-950(1h) 
-4.76095* .32165 .000 

-

5.8556 
-3.6663 

MICRO_50%,5%, 

800(5h)-950(1h) 
.48555 .32577 

1.00

0 
-.6231 1.5942 

75%,5%,800(5h) 

-1025(1h) 
-.62068 .38017 

1.00

0 

-

1.9145 
.6732 

75%,4%,800(5h) -2.97780* .38017 .000 
-

4.2716 
-1.6840 

50%,5%,800(5h) 2.02158* .41798 .000 .5991 3.4441 

50%,5%,800(5h) 

 - 1025(1h) 
2.12470* .39618 .000 .7764 3.4730 

75%,6%, 800(5h), 

950(1h) 
-1.37169* .36441 .013 

-

2.6119 
-.1315 

65%, 4%, 800(5h) 

950(1h) 
-1.95949* .43757 .001 

-

3.4487 
-.4703 
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75%, 5% B, 

Cortical Shell 
-5.47934* .37166 .000 

-

6.7442 
-4.2145 

70%,4%, 

800(5h)-

>950(1h) 

70%,4%,800(5h) 1.57128* .38017 .003 .2775 2.8651 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-4.16355* .31583 .000 
-

5.2384 
-3.0887 

MICRO_75%,4%, 

800(5h)-950(1h) 
-3.18967* .31583 .000 

-

4.2645 
-2.1148 

MICRO_50%,5%, 

800(5h)-950(1h) 
2.05684* .32003 .000 .9677 3.1460 

75%,5%,800(5h)-

1025(1h) 
.95061 .37526 .780 -.3265 2.2277 

75%,4%,800(5h) -1.40652* .37526 .014 
-

2.6837 
-.1294 

50%,5%,800(5h) 3.59286* .41352 .000 2.1855 5.0002 

50%,5%,800(5h) - 

1025(1h) 
3.69598* .39147 .000 2.3637 5.0283 

75%,6%, 800(5h), 

950(1h) 
.19959 .35929 

1.00

0 

-

1.0232 
1.4224 

65%, 4%, 800(5h) 

950(1h) 
-.38820 .43332 

1.00

0 

-

1.8629 
1.0865 

75%, 5% B, 

Cortical Shell 
-3.90806* .36664 .000 

-

5.1558 
-2.6603 

MICRO_7

5%, 5%, 

800(5h)-

950(1h) 

70%,4%,800(5h) 5.73483* .32165 .000 4.6402 6.8295 

70%,4%,800(5h)-

>950(1h) 
4.16355* .31583 .000 3.0887 5.2384 

MICRO_75%,4%, 

800(5h)-950(1h) 
.97388* .24223 .005 .1495 1.7983 
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MICRO_50%,5%, 

800(5h)-950(1h) 
6.22038* .24768 .000 5.3775 7.0633 

75%,5%,800(5h)-

1025(1h) 
5.11415* .31583 .000 4.0393 6.1890 

75%,4%,800(5h) 2.75703* .31583 .000 1.6822 3.8319 

50%,5%,800(5h) 7.75641* .36045 .000 6.5297 8.9831 

50%,5%,800(5h) - 

1025(1h) 
7.85953* .33493 .000 6.7197 8.9994 

75%,6%, 800(5h), 

950(1h) 
4.36314* .29667 .000 3.3535 5.3728 

65%, 4%, 800(5h) 

950(1h) 
3.77535* .38300 .000 2.4719 5.0788 

75%, 5% B, 

Cortical Shell 
.25549 .30553 

1.00

0 
-.7843 1.2953 

MICRO_7

5%,4%, 

800(5h)-

950(1h) 

70%,4%,800(5h) 4.76095* .32165 .000 3.6663 5.8556 

70%,4%,800(5h)-

>950(1h) 
3.18967* .31583 .000 2.1148 4.2645 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-.97388* .24223 .005 
-

1.7983 
-.1495 

MICRO_50%,5%, 

800(5h)-950(1h) 
5.24651* .24768 .000 4.4036 6.0894 

75%,5%,800(5h)-

1025(1h) 
4.14028* .31583 .000 3.0654 5.2151 

75%,4%,800(5h) 1.78315* .31583 .000 .7083 2.8580 

50%,5%,800(5h) 6.78253* .36045 .000 5.5558 8.0093 

50%,5%,800(5h) - 

1025(1h) 
6.88565* .33493 .000 5.7458 8.0255 

75%,6%, 800(5h), 

950(1h) 
3.38926* .29667 .000 2.3796 4.3989 
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65%, 4%, 800(5h) 

950(1h) 
2.80147* .38300 .000 1.4980 4.1049 

75%, 5% B, 

Cortical Shell 
-.71839 .30553 

1.00

0 

-

1.7582 
.3214 

MICRO 

50%,5%, 

800(5h)-

950(1h) 

70%,4%,800(5h) -.48555 .32577 
1.00

0 

-

1.5942 
.6231 

70%,4%,800(5h)-

>950(1h) 
-2.05684* .32003 .000 

-

3.1460 
-.9677 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-6.22038* .24768 .000 
-

7.0633 
-5.3775 

MICRO_75%,4%, 

800(5h)-950(1h) 
-5.24651* .24768 .000 

-

6.0894 
-4.4036 

75%,5%,800(5h)-

1025(1h) 
-1.10623* .32003 .041 

-

2.1954 
-.0171 

75%,4%,800(5h) -3.46336* .32003 .000 
-

4.5525 
-2.3742 

50%,5%,800(5h) 1.53603* .36413 .002 .2968 2.7753 

50%,5%,800(5h) - 

1025(1h) 
1.63915* .33888 .000 .4858 2.7925 

75%,6%, 800(5h), 

950(1h) 
-1.85725* .30113 .000 

-

2.8821 
-.8324 

65%, 4%, 800(5h) 

950(1h) 
-2.44504* .38647 .000 

-

3.7603 
-1.1298 

75%, 5% B, 

Cortical Shell 
-5.96489* .30986 .000 

-

7.0195 
-4.9103 

75%,5%, 

800(5h)-

1025(1h) 

70%,4%,800(5h) .62068 .38017 
1.00

0 
-.6732 1.9145 

70%,4%,800(5h)-

>950(1h) 
-.95061 .37526 .780 

-

2.2277 
.3265 
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MICRO_75%, 

5%, 800(5h)-

950(1h) 

-5.11415* .31583 .000 
-

6.1890 
-4.0393 

MICRO_75%,4%, 

800(5h)-950(1h) 
-4.14028* .31583 .000 

-

5.2151 
-3.0654 

MICRO_50%,5%, 

800(5h)-950(1h) 
1.10623* .32003 .041 .0171 2.1954 

75%,4%,800(5h) -2.35713* .37526 .000 
-

3.6343 
-1.0800 

50%,5%,800(5h) 2.64226* .41352 .000 1.2349 4.0496 

50%,5%,800(5h) - 

1025(1h) 
2.74538* .39147 .000 1.4131 4.0777 

75%,6%, 800(5h), 

950(1h) 
-.75101 .35929 

1.00

0 

-

1.9738 
.4717 

65%, 4%, 800(5h) 

950(1h) 
-1.33881 .43332 .145 

-

2.8135 
.1359 

75%, 5% B, 

Cortical Shell 
-4.85866* .36664 .000 

-

6.1064 
-3.6109 

75%,4%, 

800(5h) 

70%,4%,800(5h) 2.97780* .38017 .000 1.6840 4.2716 

70%,4%,800(5h)-

>950(1h) 
1.40652* .37526 .014 .1294 2.6837 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-2.75703* .31583 .000 
-

3.8319 
-1.6822 

MICRO_75%,4%, 

800(5h)-950(1h) 
-1.78315* .31583 .000 

-

2.8580 
-.7083 

MICRO_50%,5%, 

800(5h)-950(1h) 
3.46336* .32003 .000 2.3742 4.5525 

75%,5%,800(5h)-

1025(1h) 
2.35713* .37526 .000 1.0800 3.6343 



227 
 

50%,5%,800(5h) 4.99938* .41352 .000 3.5920 6.4067 

50%,5%,800(5h) - 

1025(1h) 
5.10250* .39147 .000 3.7702 6.4348 

75%,6%, 800(5h), 

950(1h) 
1.60611* .35929 .001 .3833 2.8289 

65%, 4%, 800(5h) 

950(1h) 
1.01832 .43332 

1.00

0 
-.4564 2.4930 

75%, 5% B, 

Cortical Shell 
-2.50154* .36664 .000 

-

3.7493 
-1.2538 

50%,5%, 

800(5h) 

70%,4%,800(5h) -2.02158* .41798 .000 
-

3.4441 
-.5991 

70%,4%,800(5h)-

>950(1h) 
-3.59286* .41352 .000 

-

5.0002 
-2.1855 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-7.75641* .36045 .000 
-

8.9831 
-6.5297 

MICRO_75%,4%, 

800(5h)-950(1h) 
-6.78253* .36045 .000 

-

8.0093 
-5.5558 

MICRO_50%,5%, 

800(5h)-950(1h) 
-1.53603* .36413 .002 

-

2.7753 
-.2968 

75%,5%,800(5h)-

1025(1h) 
-2.64226* .41352 .000 

-

4.0496 
-1.2349 

75%,4%,800(5h) -4.99938* .41352 .000 
-

6.4067 
-3.5920 

50%,5%,800(5h) - 

1025(1h) 
.10312 .42828 

1.00

0 

-

1.3544 
1.5607 

75%,6%, 800(5h), 

950(1h) 
-3.39327* .39908 .000 

-

4.7515 
-2.0351 

65%, 4%, 800(5h) 

950(1h) 
-3.98106* .46684 .000 

-

5.5699 
-2.3923 
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75%, 5% B, 

Cortical Shell 
-7.50092* .40571 .000 

-

8.8817 
-6.1202 

50%,5%, 

800(5h) - 

1025(1h) 

70%,4%,800(5h) -2.12470* .39618 .000 
-

3.4730 
-.7764 

70%,4%,800(5h)-

>950(1h) 
-3.69598* .39147 .000 

-

5.0283 
-2.3637 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-7.85953* .33493 .000 
-

8.9994 
-6.7197 

MICRO_75%,4%, 

800(5h)-950(1h) 
-6.88565* .33493 .000 

-

8.0255 
-5.7458 

MICRO_50%,5%, 

800(5h)-950(1h) 
-1.63915* .33888 .000 

-

2.7925 
-.4858 

75%,5%,800(5h)-

1025(1h) 
-2.74538* .39147 .000 

-

4.0777 
-1.4131 

75%,4%,800(5h) -5.10250* .39147 .000 
-

6.4348 
-3.7702 

50%,5%,800(5h) -.10312 .42828 
1.00

0 

-

1.5607 
1.3544 

75%,6%, 800(5h), 

950(1h) 
-3.49639* .37618 .000 

-

4.7767 
-2.2161 

65%, 4%, 800(5h) 

950(1h) 
-4.08419* .44743 .000 

-

5.6069 
-2.5615 

75%, 5% B, 

Cortical Shell 
-7.60404* .38321 .000 

-

8.9082 
-6.2999 

75%,6%, 

800(5h), 

950(1h) 

70%,4%,800(5h) 1.37169* .36441 .013 .1315 2.6119 

70%,4%,800(5h)-

>950(1h) 
-.19959 .35929 

1.00

0 

-

1.4224 
1.0232 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-4.36314* .29667 .000 
-

5.3728 
-3.3535 
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MICRO_75%,4%, 

800(5h)-950(1h) 
-3.38926* .29667 .000 

-

4.3989 
-2.3796 

MICRO_50%,5%, 

800(5h)-950(1h) 
1.85725* .30113 .000 .8324 2.8821 

75%,5%,800(5h)-

1025(1h) 
.75101 .35929 

1.00

0 
-.4717 1.9738 

75%,4%,800(5h) -1.60611* .35929 .001 
-

2.8289 
-.3833 

50%,5%,800(5h) 3.39327* .39908 .000 2.0351 4.7515 

50%,5%,800(5h) - 

1025(1h) 
3.49639* .37618 .000 2.2161 4.7767 

65%, 4%, 800(5h) 

950(1h) 
-.58779 .41956 

1.00

0 

-

2.0157 
.8401 

75%, 5% B, 

Cortical Shell 
-4.10765* .35027 .000 

-

5.2997 
-2.9156 

65%, 4%, 

800(5h) 

950(1h) 

70%,4%,800(5h) 1.95949* .43757 .001 .4703 3.4487 

70%,4%,800(5h)-

>950(1h) 
.38820 .43332 

1.00

0 

-

1.0865 
1.8629 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-3.77535* .38300 .000 
-

5.0788 
-2.4719 

MICRO_75%,4%, 

800(5h)-950(1h) 
-2.80147* .38300 .000 

-

4.1049 
-1.4980 

MICRO_50%,5%, 

800(5h)-950(1h) 
2.44504* .38647 .000 1.1298 3.7603 

75%,5%,800(5h)-

1025(1h) 
1.33881 .43332 .145 -.1359 2.8135 

75%,4%,800(5h) -1.01832 .43332 
1.00

0 

-

2.4930 
.4564 

50%,5%,800(5h) 3.98106* .46684 .000 2.3923 5.5699 
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50%,5%,800(5h) - 

1025(1h) 
4.08419* .44743 .000 2.5615 5.6069 

75%,6%, 800(5h), 

950(1h) 
.58779 .41956 

1.00

0 
-.8401 2.0157 

75%, 5% B, 

Cortical Shell 
-3.51986* .42587 .000 

-

4.9692 
-2.0705 

75%, 5% 

B, Cortical 

Shell 

70%,4%,800(5h) 5.47934* .37166 .000 4.2145 6.7442 

70%,4%,800(5h)-

>950(1h) 
3.90806* .36664 .000 2.6603 5.1558 

MICRO_75%, 

5%, 800(5h)-

950(1h) 

-.25549 .30553 
1.00

0 

-

1.2953 
.7843 

MICRO_75%,4%, 

800(5h)-950(1h) 
.71839 .30553 

1.00

0 
-.3214 1.7582 

MICRO_50%,5%, 

800(5h)-950(1h) 
5.96489* .30986 .000 4.9103 7.0195 

75%,5%,800(5h)-

1025(1h) 
4.85866* .36664 .000 3.6109 6.1064 

75%,4%,800(5h) 2.50154* .36664 .000 1.2538 3.7493 

50%,5%,800(5h) 7.50092* .40571 .000 6.1202 8.8817 

50%,5%,800(5h) - 

1025(1h) 
7.60404* .38321 .000 6.2999 8.9082 

75%,6%, 800(5h), 

950(1h) 
4.10765* .35027 .000 2.9156 5.2997 

65%, 4%, 800(5h) 

950(1h) 
3.51986* .42587 .000 2.0705 4.9692 

*. The mean difference is significant at the 0.05 level. 

 

 

 


