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Abstract 

The Sellafield site in Cumbria, UK maintains three steam heated evaporators which 

operate at sub-atmospheric pressure. They are used to evaporate and thus concentrate nitric 

acid based highly active liquor, which is a by-product arising from reprocessing spent nuclear 

fuels. Corrosion occurs on the internal surfaces of the evaporators in contact with the liquors. 

The rates of corrosion are a function of the local surface temperatures and heat transfer rates. 

Therefore accurate heat transfer predictions inside the evaporators is highly desirable as it 

enables good predictions to the rates of corrosion. 

The aim of this study was to use engineering calculations and computational fluid 

dynamics (CFD) to provide predictions of the continuity, momentum and energy transfer 

occurring inside evaporators operating at sub-atmospheric pressure. Three evaporator scales 

were chosen for this study: (i) two small unscaled cylindrical test rigs which were 0.1 m 

diameter, and had liquid fill depths of 0.1 m and 2.215 m respectively; (ii) a test rig 

representing a quarter scale slice of an industrial evaporator, and had a liquid fill depth of 

0.8m; (iii) and lastly Sellafield Evaporator C, which represented a full scale industrial 

evaporator design, and had a fill depth of 2.35 m. 

Thermal resistance investigations were performed on the unscaled cylindrical test rigs 

which proved conduction heat transfer through the walls removed all sensitivity to the 

specified boundary conditions. Single phase CFD simulations were also performed on the test 

rigs which showed a symmetrical geometry assumption could not be used to simplify the 

modelling approach. 

Two phase Eulerian-Eulerian CFD simulations were performed on the one quarter 

scaled test rig. A custom length scale for use in the interfacial area density was developed and 

used. The length was a function of a user prescribed rate constant. In the simulations 

evaporation at the free surface was modelled. Published experimental data was used to 

validate the simulations, and showed that the length scale required a rate constant of 1 Hz to 

simulate evaporating flows at sub-atmospheric pressure. 

The CFD models which were developed were applied to the simulations of the full scale 

industrial evaporator design, Sellafield Evaporator C. The results shows the evaporator 

behaved similar to an unconstrained thermosyphon reboiler with distinct counter rotating 

convection cells. Indications of nucleate boiling was not present on all heat transfer surfaces 

as previously thought, which meant surface corrosion rates may be lower than anticipated. 
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Chapter 1  

Introduction to the Work 

The highly active liquor (HAL) evaporators are steam heated vessels at the Sellafield 

site in the UK. The vessels form part of the highly active liquor evaporation and storage 

(HALES) operating unit. The purpose of the evaporators is to concentrate highly active 

raffinates up to 100-fold by evaporation (Wilson, 1996 chap. 9) into concentrate. These 

concentrates are termed highly active liquor (HAL), which after concentration is vitrified into 

a solid glass resin for eventual long term storage (Upson, 1984; Plumb and Mackay, 1988). 

Figure 1.1 (a) is the general arrangement of the HAL evaporators with superimposed 

dimensions (Upson, 1984), and Figure 1.1 (b) is a general schematic of the evaporators (Perry 

and Geddes, 2011). 

 

Figure 1.1: (a) General arrangement the evaporators (Upson, 1984); (b) general schematic of the 

evaporators (Perry and Geddes, 2011). 

The HAL evaporators comprise two main sections, a lower evaporating section and an 

upper disentrainment column. In the Sellafield evaporators the HAL has a depth of almost 2.3 

(a) (Upson, 1984) (b) (Perry and Geddes, 2011)
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m (Geddes et al., 2009). This corresponds to a free surface position at just above the helical 

coils in Figure 1.1 (b). The pressure above the free surface is termed the ullage pressure. 

The HAL evaporators are steam heated. A steam supply is routed through an external 

heating jacket and internal helical coils, which are both in contact with the liquor. As the 

steam condenses inside the jacket and coils, heat is transferred into the liquor causing it to 

evaporate and become concentrated. The jacket and coils are shown in Figure 1.1 (b). 

The evaporators are batch operated. During the evaporation of a liquor stock, a 

continuous feed of liquor from the stock tanks is supplied to the evaporator vessel at the same 

rate of evaporation (Perry and Geddes, 2011). This ensures that the free surface level is 

maintained during operation. There are two types of liquor streams: those from the thermal 

oxide reprocessing plant (THORP) and those from the Magnox reprocessing plant, both of 

which are at Sellafield. The THORP facility reprocesses spent fuel from advanced gas cooled 

reactors and light water reactors. The Magnox facility reprocesses fuel from legacy Magnox 

reactors. Liquor streams from the THORP facility take around 12 days to concentrate inside 

the evaporator, compared to 40 days for Magnox (Wakem et al., 2009). 

There are three HAL evaporators currently in operation at the Sellafield site. 

Evaporators A, B and C became operational in 1970, 1983 and 1990 respectively. The Nuclear 

Decommissioning Authority (NDA) are currently funding the construction of Evaporator D 

at the Sellafield site (Robson and Candy, 2009). Additionally there is an evaporator of a 

similar design in operation at the Rokkasho Mura nuclear reprocessing site in Japan (Plumb 

and Mackay, 1988). 

The continued operation of the Sellafield HAL evaporators is highly desirable for the 

remaining reprocessing operations. Without the availability of the evaporators, reprocessing 

of spent nuclear fuel would be under threat (Robson and Candy, 2009).  

1.1 Evaporator Issues 

The HAL concentrated in the evaporators are nitric acid based and consequently very 

corrosive. The rates of corrosion occurring on the evaporator surfaces in contact with the 

liquor, and by extension the thickness of the vessel walls are one of the factors which dictate 

the operational life of the evaporators (Upson, 1984; Plumb and Mackay, 1988; Perry and 

Geddes, 2011). The corrosion rates of the metal surfaces in contact with the HAL are a 

function of the temperatures of those surfaces, where an increase in temperature leads to an 

increase in corrosion rates (Perry and Geddes, 2011; Geddes et al., 2009). 
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To mitigate against excessive corrosion, the evaporators operate at sub-atmospheric 

pressure, where the pressure in the ullage space is operationally recorded at 50 - 70 mm Hg 

(Upson, 1984) (equivalent to 67 – 93 mbar). Operating at sub-atmospheric pressures reduces 

the temperatures required evaporation to occur, and thus minimises the operating temperature 

envelope. Since the vessels evaporate and concentrate liquors at a much lower temperature 

compared to operating at atmospheric pressures and above, the temperatures of the surfaces 

in contact with the liquor remain relatively low and hence reduces the rates of corrosion (Perry 

and Geddes, 2011; Geddes et al., 2009).  

During the evaporation process crystalline salt solids become precipitated (Wakem et 

al., 2009). The liquor must remain acidic in order to minimise excessive precipitation of 

crystalline salt solids during evaporation (Upson, 1984). One of the many crystalline salt 

solids which are in suspension inside the liquor is zirconium hydrogen phosphate (ZHP) 

(Geddes et al., 2009). Solids within the liquor also have the potential to inhibit effective heat 

transfer into the liquor (Wakem et al., 2009). However in addition to this the solids may 

themselves also be heat emitting due to decay heat. All of these factors contribute to the risk 

of corrosion. There is also the potential risk that crystalline salt solids settle on the base of the 

evaporator and act as a thermal blanket. This would result in increased surface temperatures 

of the base of the evaporator under the solids, and consequently will increase the rates of 

corrosion. The movement of the solids and its collisions with the internal structure of the 

evaporators may also lead to erosion, further contributing to the wear of the evaporator. 

The equivalent concentration, or normality of HAL changes with concentration factor. 

Higher acidic normalities result in higher rates of corrosion. Figure 1.2 is a plot of normality 

of nitric acid and HAL against concentration factor for an inlet feed acidity of 2.50 N (Upson, 

1984). During the early stages of HAL concentration the normality rapidly increases to 9 N 

within a concentration factor of 20, before reducing to a steady state at a concentration factor 

of 120 and above. This is in contrast to the behaviour of pure nitric acid which remains steady 

after a concentration factor of 40. Excessive precipitation of the crystalline salt solids does 

not occur in the HAL when the normality is at its highest due to the high acidic concentration. 

However this does have excessive corrosion potential.  

All three evaporators currently in operation at Sellafield are showing signs of internal 

surface corrosion on all heat transfer surfaces in contact with the liquor. Since surface 

corrosion rates are a function of surface temperature, the temperature distributions on those 

surfaces must be deduced as accurately as possible during evaporator operation. To 

accomplish this, the modes of heat transfer on each surface must be predicted. Thermal 

radiation heat transfer may also play a factor in the overall heat transfer system. 
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Figure 1.2: Acid concentration profiles during evaporation. The nitric acid concentration in the HAL 

increases rapidly to 9 N in early stages of evaporation, until concentration factor of 20 and then reduces to 

a steady concentration (Upson, 1984). Image reproduced with permission from Elsevier. 

1.2 Aims of this Study 

The aims of this study was to use engineering calculations and CFD to provide 

predictions of the continuity, momentum and energy transfer occurring inside evaporators 

operating at sub-atmospheric pressure. Specifically the aims were to: 

1. Determine the mechanisms driving heat transfer, evaporation and fluid flow 

within sub-atmospheric evaporators, and identify the modes of heat transfer 

occurring within the liquid. 

2. Establish the resistances to heat and fluid flow within the evaporator systems 

and determine how these resistances can affect normal operations of 

evaporators operating at sub-atmospheric pressure. 

3. Highlight existing and novel methods of using numerical models and methods 

to provide useful information on evaporating flows at sub-atmospheric 

pressure. 

4. With the previous points all taken into consideration, provide information on 

the distribution of heat transmission and corresponding temperature 

distributions on the internal surfaces of the evaporators. 
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1.3 Scope of the Current Work 

This study followed a methodological approach. In CHAPTER 1 the work was 

introduced and the aims clearly defined. In CHAPTER 2, a critical review of the available 

literature is conducted, identifying information that led to accomplishing the aims, also 

ensuring that the work in this thesis was novel. In CHAPTER 3 the methods which were used 

to ensure accurate solutions in the CFD simulations were discussed, which was critical for 

numerical accuracy. 

 In CHAPTER 4 two unscaled test rigs commissioned by the National Nuclear 

Laboratory were introduced. These test rigs were commissioned to try and provide flow 

conditions similar to those found in the industrial evaporator, Sellafield Evaporator C. A 

combination of one dimensional heat transfer network approaches, and two and three 

dimensional single phase CFD approaches were used to try and replicate the types of 

behaviour occurring in the test rigs. The two methods were compared against each other to 

ascertain their validity.  

 In CHAPTER 5 the scaled test rig is introduced, which is one quarter scale 

experimental test rig depicting a thin slice through Evaporator C. This test rig was far more 

representative of the evaporators operating at Sellafield. Multiphase CFD boiling simulations 

were performed on the scaled test rig, and experimental data was used to validate the CFD 

models. The methods used to simulate the scaled test rig were developed from the foundations 

established in CHAPTER 4. 

In CHAPTER 6 the physical dimensions of Sellafield Evaporator C are introduced. This 

draws special attention to the complexity of vessel. In addition to this the complex boundary 

conditions that were used in the CFD simulations for Evaporator C were discussed. 

In CHAPTER 7 multiphase CFD simulations using the validated CFD methods 

established in CHAPTER 5 were used to predict heat transfer and multiphase flows in 

Evaporator C. Finally in CHAPTER 8 the overall conclusions and recommendations for 

further work were discussed. 

Figure 1.3 illustrates a block diagram summarising the chapters and how they are 

interlinked to form the thesis. 
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Figure 1.3: Block diagram illustrating the structure of the thesis and the way the chapters are interlinked.  
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Chapter 2  

Literature Review 

2.1 Introduction 

The Sellafield site in Cumbria, UK is the country’s principal nuclear reprocessing site. 

Currently the site has no generating capacity as the previous four power reactors are being 

decommissioned. Future generating capacity close to the site is currently being considered. 

Principally the site is used to support the nuclear fuel cycle by reprocessing spent nuclear fuel. 

An outline of the nuclear fuel cycle is shown in Figure 2.1. 

 

Figure 2.1: Outline of the nuclear fuel cycle (adapted from Wilson (1996)). 

In the outline of the fuel cycle in Figure 2.1 the process termed Waste Treatment is 

critical to the cycle. Without it highly active waste arisings from the Reprocessing and 

Decommissioning steps cannot be processed, its amount reduced and managed. To do without 

the Waste Treatment step is not permissible as the Office for Nuclear Regulation have capped 

highly active waste arisings to be no greater than 6524 teU (Office for Nuclear Regulation, 

2015b). Hence in order to allow the fuel cycle to operate effectively, the Waste Treatment 

process must be available at all times, or risk halting the reprocessing operations. Waste 

arisings from the Reprocessing and Decommissioning steps of the fuel cycle in Figure 2.1 are 

predominantly HAL.  
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2.2 Origins of Highly Active Liquor (HAL) 

In the UK the main nuclear reactor types are the Magnox reactor and the advanced gas 

cooled reactor. Typically fuel within the reactors are replaced with newer ones when its ability 

to maintain criticality is only just achievable when the reactor is at full power (Wilson, 1996 

p. 89). 

On removal from the reactors, the fuel, now termed spent fuel, is placed in temperature 

controlled onsite spent fuel ponds where they are allowed to cool. Fuel elements are stored in 

the fuel ponds for around 1 year (Upson, 1984), but in some instances it may spend over 

twenty years in the fuel ponds (Wilson, 1996 p. 111). 

After sufficient cooling in the onsite ponds, the spent fuel is placed in transport flasks 

and transported to the Sellafield site for reprocessing (Upson, 1984). Although Magnox 

reactors are no longer in operation, any spent fuel from legacy operations are sent to the 

Magnox reprocessing plant. Spent fuel from advanced gas cooled reactors and pressurised (or 

boiling) water reactors are sent to the THORP reprocessing plant. Upon arrival at either the 

Magnox or THORP reprocessing plants in Sellafield, the spent fuel is removed from the 

transport casks and placed in fuel ponds at the Sellafield site where it is allowed to cool even 

further (Upson, 1984). 

After sufficient cooling at the Sellafield ponds, the fuel cladding is stripped from the 

fuel, and the fuel is then dissolved in nitric acid solution. Chemical separation processes 

recovers the unused uranium and plutonium from the solution. After chemical separation, the 

remaining product is a waste liquid, termed raffinate. Up to 99% of the fission product activity 

is contained in the liquid (Upson, 1984) which gives it its radioactive properties. The raffinate 

is also nitric acid based which causes it to be corrosive. Once the raffinate is ready to be 

processed, it is sent to the HALES plant for volume reduction and concentration prior to 

solidification by vitrification into a glass solid.  

2.3 Volume Reduction and Concentration 

Figure 2.2 is a flow diagram of the HALES plant at Sellafield (Upson, 1984) which 

houses Evaporator A, B or C (dashed red border). The image shows the processes raffinate 

undergoes prior to evaporation and post evaporation. 
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Figure 2.2: Flow diagram of the HALES plant at Sellafield (Upson, 1984). 

Volume reduction and concentration of the HAL is achieved in the following steps (Upson, 

1984): 

1. The raffinate is pre-cooled via the feed inlet cooler and then directed to the evaporator 

stock tank where it is allowed to cool further before being pumped to Evaporator A, B 

or C via an ejector system. 

2. The raffinate enters the evaporators. When sufficient liquor level has been achieved, 

steam feed supplied heat to the evaporator via an external heating jacket and internal 

helical coils, which allowed the liquor to evaporate under vacuum. To maintain a 

constant liquor level the rate of feed from the stock tank is approximately the rate of 

evaporation. This allows the evaporator to maintain steady state conditions.  

3. The generated vapour from the evaporation process is condensed in the overhead 

evaporator condenser to form distillate. Its activity is constantly monitored. In the event 

of high activity, the distillate can be re-routed to the evaporator stock tank; otherwise 

it is transferred to the medium active evaporation plant. 

4. This process continues until the required evaporation factor has been achieved at the 

end of the batch. The remaining contents within the evaporator is termed HAL 

concentrate. 

5. At the end of the batch evaporation the steam feed is deactivated and cooling water is 

pumped inside the external jacket and internal coils to ensure the concentrate 

temperature does not exceed 60°C before being vacuum ejected to a storage tank. 

6. Eventually there are two products that arise from evaporating the raffinate. These are 

the medium activity distillate (the condensed liquid form of the vapour), and the HAL 

concentrate (the remaining product after evaporation). The distillate and concentrate 
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are separately denitrated and following further processes are eventually made immobile 

by vitrification into a glass solid. 

2.4 Evaporators A and B 

Evaporators A and B came online in 1970 and 1983 respectively. Evaporator B is the 

principle evaporator out of the two, whilst A is the reserve in case B is out of commission. 

They are used to evaporate liquors arising from the Magnox plants only (Office for Nuclear 

Regulation, 2015a). Both evaporators contain an external heating jacket and four internal 

helical coils. 

Both evaporators are coming to the end of their operational life. Their operability is 

undermined by defects such as pinhole failures due to excessive corrosion of the evaporators 

walls by the liquor (Office for Nuclear Regulation, 2015a). Operational experience and best 

practices have helped to design and commission Evaporator C. 

2.5 Evaporator C 

Evaporator C can evaporate liquors arising from both Magnox and THORP facilities. 

Evaporator C comprises an external heating jacket and six internal helical coils (as opposed 

to four in Evaporators A and B). The evaporator is constructed from corrosion resistant 

18/13/1 stainless steel (Robson and Candy, 2009). Unlike Evaporators A and B, Evaporator 

C has not suffered a pinhole failure. To safeguard against failure a minimum wall thickness 

limit is set for the evaporator safety case. There is a safe operating thickness for the evaporator 

shell walls and the coil walls. Currently three of the six coils are removed from service due to 

reaching their end of life safety case limits (Office for Nuclear Regulation, 2015a). 

Recently there has been a drive to better understand the heat and flow transmission 

occurring in Evaporator C, in order to provide accurate temperature distributions and to better 

predict corrosion. Robson and Candy (2009) state in their work that “the remnant life [of the 

evaporators] is limited by the remaining corrosion allowance in the evaporator base”. The rates 

of corrosion are a function of the temperatures occurring on those surfaces (Plumb and Mackay, 

1988), therefore accurate predictions of surface temperatures of the evaporators is highly 

desirable. Determining accurately the surface temperatures would give some indication to the 

operators of such vessels on the corrosion rates which may substantiate life time extensions of 

the vessels. Additionally accurate predictions of the heat and flow in the existing evaporators 

would provide help to engineers to design better vessels in the future. 
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It is widely accepted in the limited literature that internal metal surface corrosion of the 

Sellafield evaporators is a major issue (Upson, 1984; Plumb and Mackay, 1988; Perry and 

Geddes, 2011), where the lifetime of the evaporators are limited by the rates of corrosion 

occurring on the inside metal surfaces. To mitigate against this the Sellafield evaporators are 

operated under a vacuum or reduced pressure. This has the advantage that the saturation 

temperatures of the liquor are far lower at vacuum compared to above vacuum pressures. 

Since the rate of corrosion is a function of temperature (Perry and Geddes, 2011), operating 

at vacuum has the benefit of reducing internal surface corrosion on the internal surfaces, since 

the operating envelope for temperature is low. According to Plumb and Mackay (1988) other 

benefits of operating the evaporators at a vacuum are: 

1. The potential for improving the evaporation capacity by increasing the 

temperature driving force. 

2. Adherence to design codes, some which state safe operation must be achieved 

within temperature safety limits. 

As well as the issue of corrosion occurring inside of the evaporators, operating at vacuum 

pressure presents a number of other operational issues which is the motivation for this work. 

2.6 Past Work Related to the Sellafield Evaporators 

Geddes et al. (2009) performed an iterative calculation procedure based on the 

precedence ordering technique (Heggs and Walton, 1998) to estimate the heat flux and 

temperature distribution over the length of the internal coils of the Sellafield evaporators. The 

authors assumed boiling occurred on all heated surfaces. Within the precedence ordering 

technique they used six different correlations for the boiling heat transfer coefficient, and then 

compared the respective surface temperatures evaluated from using the six boiling heat 

transfer coefficients. From the six boiling correlations that were used, the largest disagreement 

for the coil surface temperature was 9°C, and the process liquor was assumed to be water.  

Geddes et al.  (2009) also performed iterative precedence ordering calculations based 

on single phase free convection occurring from the coil surface of Evaporator C. They also 

performed calculations of boiling and free convection from a corroded surface. Their results 

showed that very large heat fluxes of 300 kW/m2 were achieved when the coil surface was 

not corroded and its surface temperature was around 88°C when using the Cooper (1984) 

boiling correlation. This contrasts a free convection simulation which was performed, which 

at the same surface temperature of that of the boiling correlation, a heat flux of only 15 kW/m2 

was achieved. Comparatively the heat flux for boiling from the equivalent corroded surface 

yields a heat flux of around 150 kW/m2, and no data is presented for free convection occurring 
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from a corroded surface. Unfortunately no mention was made as to which correlation was 

used for the equivalent free convection calculations, which means significant conservatism 

must be taken when using their convection results for a comparative study. In addition to this 

Geddes et al. used fixed values for the thermophysical properties of water. This does bring 

into question the reliability of the results that they achieved from the precedence ordering 

technique, since the thermophysical properties of water will be dependent on the surface 

temperature of the coils which was evaluated. Curve fitted correlations of the thermophysical 

properties of water are available (Alane, 2007) which are functions of temperature and 

pressure. 

In their work Geddes et al. (2009) also presented boiling saturation temperature curves 

with respect to depth for various corrosive liquors found in the industrial Sellafield 

evaporators. Most of the curves had an almost linear relationship for the boiling saturation 

temperature corresponding to liquor depth. 

Wakem et al., (2009) presented an overview of the heat transfer modelling work that 

was undertaken between National Nuclear Laboratory (NNL) and Sellafield Ltd to remove 

conservative predictions on the condition of the Sellafield evaporators. Wakem et al. used the 

precedence ordering technique in a similar manner to the work presented by Geddes et al., 

(2009) to predict the wall superheat of the HALES evaporators when using the Cooper (1984) 

boiling correlation. Although no numerical results are presented for this investigation, the 

authors claim that the calculated wall superheat was more than the minimum superheat 

required at the onset of nucleate boiling when using a well-known correlation for the onset of 

nucleate boiling. 

Wakem et al. (2009) also presented a brief CFD investigation, modelling one of their 

experimental test rigs as a 2D rectangular slice through the centre, and used water as the liquor 

in a single phase convection simulation. Although no information was provided as to if the 

simulation was laminar or turbulent, or if good CFD practices where adhered to (such as high 

resolution discretisation schemes, mesh analysis and solution independence), some 

noteworthy conclusions was drawn from their work. Firstly when the walls of the vessel were 

hot or cold, the circulatory behaviour of the fluid changed drastically. The extremity of this 

observation was seen since when the walls were “cold” there were many circulation cells, and 

no observable pattern could be defined. When the walls were “hot” the liquor behaved as two 

large circulation cells, where the liquor was driven up the centreline and walls. Furthermore, 

a definitive conclusion from both simulations of “cold” and “hot” walls is that the flow was 

strongly asymmetric and anisotropic, putting the authors assumption of a 2D rectangular slice 

through the centre into question. Results from a preliminary CFD investigation of heat and 

fluid flow localised to the base of the Sellafield HALES evaporators was conducted, however 
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no description is provided as to the nature of the investigation, nor were any definitive 

findings presented. 

Perry and Geddes (2011) developed an analytical correlation for the condensation heat 

transfer coefficient for condensing steam on the outer surface of the toroidal section of the 

external heating jacket in the Sellafield evaporators. The need for a bespoke condensation 

correlation for the toroidal section occurs since “corrosion levels [of the heat transfer surface] 

double with every 8°C rise in metal [surface] temperature” (Perry and Geddes, 2011). This 

quickly becomes a problem since the current model to predict the condensing heat transfer 

coefficient in the Sellafield evaporators uses an area average mean condensation (MC) heat 

transfer coefficient, which does not take the varying thickness of condensate into 

consideration. Hence the uniform film thickness assumption may incorrectly over or 

underestimate the surface metal surface temperature. Using the same assumptions as those 

used by Nusselt (1916), Perry and Geddes alleviated the uniform film thickness problem by 

developing a local condensation (LC) model, where the value of the condensation heat 

transfer coefficient is a function of the geometry profile of the Sellafield evaporators, and 

takes the form shown in Eq. 2.1. The value �̃� contains the terms for the thermophysical 

properties of the condensate film, and is expressed in Eq. 2.2. 

 ℎ = 𝜆𝑙 [
𝛿𝑙
4(𝑟0+𝑟𝑘)

4 3⁄ +4�̃�𝑟𝑘 ∫ (𝑟0+𝑟𝑘 cos𝜃)
4 3⁄ (cos𝜃)1 3⁄ 𝑑𝜃

𝜃

0

(cos𝜃(𝑟0+𝑟𝑘 cos𝜃))
4 3⁄ ]

−1 4⁄

 (2.1) 

The value �̃� contains the terms for the thermophysical properties of the condensate film, and 

is expressed as 

 �̃� =
𝜇𝑙𝜆𝑙(𝑇𝑠𝑎𝑡−𝑇𝑤)

𝜌𝑙(𝜌𝑔−𝜌𝑙)𝑔Δ𝐻𝑙𝑔
′  (2.2) 

Perry and Geddes arrived at this model by applying a mass, momentum and energy 

balance on a fluid element within a condensate layer attached to the toroidal section, in the 

same manner as the original Nusselt (1916) formulation. The Perry and Geddes formulation 

is slightly more involving as it accounts for the curvature of the knuckle, which is 

accommodated by integrating with respect to a polar coordinate system. The older MC model 

was compared to the newer LC model. The results of the surface temperatures and heat fluxes 

corresponding to the liquor depth for the MC and LC models were in agreement. However 

the newer LC model gave more accurate temperature and heat flux values at the bottom of the 

evaporator. Furthermore, the LC model was able to predict a thickening condensate layer at 

the underside of the evaporator, suggesting the newer LC correlation had been operating as 

designed. However the LC model should be compared with empirical data to reinforce the 

models’ strengths. As the Perry and Geddes LC models are based on the original assumptions 
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as those presented by Nusselt (1916), it also inherently shares its weaknesses as both models 

assume laminar condensation, and that only conduction heat transfer occurs within the film. 

Kwong and Graham (2011) presented CFD simulations of flow with solids present at 

the base of a Sellafield Evaporator C. The aim of the work was to determine the conditions in 

the liquor that would lead to an increase in internal surface temperatures, and hence increase 

in the rate of corrosion. The CFD simulations were single phase, and a porosity function was 

used to model a central blockage region and the heating coils. Despite the simulations being 

single phase, source terms were added to the momentum equations to represent the effect of 

boiling. Furthermore a layer of solids at the base of the evaporator was modelled as a non-

Newtonian power law viscous fluid, characterised by the Herschel–Bulkley non-Newtonian 

model. Furthermore a 2D axisymmetric approach was taken. 

Using the Herschel–Bulkley assumption, a parametric study was undertaken changing 

one of four parameters whilst keeping three fixed, where the parameters were the yield stress, 

viscosity of the non-Newtonian fluid (which represented the solids), consistency factor and 

power law index. From the parametric study, reducing the yield stress of the non-Newtonian 

fluid had the greatest contribution to erosion at the base of the simulated evaporator. 

Additionally, increasing the yield viscosity had a similar effect as decreasing the yield stress 

in that it contributed greatly to the erosion of the evaporator base. The consistency factor and 

power law index of the non-Newtonian fluid had little to no effect on the erosion of the base. 

Using the Herschel–Bulkley assumption to model solid movement at the base of the 

Sellafield evaporators was shown to be a computationally inexpensive method that provided 

physically realistic characteristics. However the approach of the Herschel–Bulkley 

assumption is limited. The works by Kwong and Graham do not show any indication of solid 

fluid interactions and particulate settling and this is very likely to occur within the free 

convection cells of the evaporator. Furthermore there is little to no evidence to suggest that 

adding source terms to the momentum equation to represent the effect of boiling at the base 

has any significant contribution to the results. In addition to this, the coils of the evaporator, 

and the central blockage region of the evaporator was modelled using a porous medium. This 

may lead to unphysical solutions as a porous medium would allow fluid to pass through it. 

However the benefit of this model is that Kwong and Graham have demonstrated a 

computationally inexpensive way to model the Sellafield evaporators using porous mediums 

to model flow resistances (such as the coils), and a non-Newtonian fluid to model solids close 

to the base acting as a viscous fluid. Although the works of Kwong and Graham may not be 

entirely accurate, it could be an appropriate starting point to multiphase simulations. 
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One of the main engineering problems in the Sellafield evaporators and NNL test rigs 

is that the magnitude of boiling and condensation phase change in the heat transfer system is 

not known for certain. This is also one of the primary reasons why it is difficult to predict 

metal surface temperatures in the Sellafield evaporators, and relate it to estimating the life of 

the various heating components. Hence CFD may be able to yield a solution to this 

engineering problem. 

2.7 Phase Change and Multiphase Flow 

The operation of the Sellafield evaporators is driven by heat transfer. There are three 

modes of heat transfer: conduction, convection and radiation (Incropera and Dewitt, 2002). 

These modes are well understood in terms of how they transfer heat from the heat source to 

the heat sink. Of the three modes, radiation is the fastest at transmitting heat. Thermal 

radiation is not dependent on the thermophysical properties of the medium through which the 

heat is transported. However it is dependent on the surface properties which radiation heat 

transfer is emitted from, and absorbed into. Rates of conduction and convection heat transfer 

are strongly dependent on the thermophysical properties of the medium through which heat 

transfer occurs. Heat transfer rates in convection are faster than conduction due to the eddy 

transport modes found in convection, which are much faster than molecular transport modes 

found in conduction. 

Boiling and condensing flows are types of convection processes. Convection heat 

transfer can be characterised by the heat transfer coefficient, which describes the heat flux 

transmitted from a surface per degree. The heat transfer coefficient is sensitive to the of the 

thermophysical properties of the liquid, the temperature difference (𝑇𝑤 − 𝑇∞) and the surface 

properties (Kreith et al., 2010 chap. 1). 

The magnitude of the convective heat transfer coefficient varies depending on the mode 

of heat transfer. Kreith et al. (2010 chap. 1) suggests the heat transfer coefficients take the 

values in Table 2.1. 
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Fluid 
Heat transfer coefficient  

[W/m2K] 

Air, free convection 1 – 5 

Superheated steam or air, forced convection 5 – 50  

Oil, forced convection 10 – 300  

Water, forced convection 50 – 3000  

Water, boiling 500 – 10000  

Steam, condensing 1000 – 20000  

Table 2.1: Range of heat transfer coefficients reported by Kreith et al. (2010 chap. 1). 

Bergman et al. (2011 chap. 1) also suggested a range of heat transfer coefficients in Table 2.2. 

Fluid 
Heat transfer coefficient  

[W/m2K] 

Gases, free convection 2 – 25 

Liquids, free convection 50 – 1000  

Gases, forced convection 25 – 250  

Liquids, forced convection 100 – 20000  

Boiling or condensation 2500 – 100000  

Table 2.2: Range of heat transfer coefficients reported by Bergman et al. (2011 chap. 1). 

Although the orders of magnitude are in agreement between the values presented in Table 2.1 

and Table 2.2, the maximum and minimum range of values are in disagreement. This suggests 

considerable errors should be expected when determining the heat transfer coefficient under 

varied conditions such as free convection, or boiling. 

In free convection systems circulations occurs due to the local density differences inside 

the liquid corresponding to the local temperature gradients. The effects of liquid circulations 

due to local density differences are prevalent in free convection systems and less so in forced 

convection systems. This is because liquid movement in the latter case relies on an external 

force to induce movement, such as a pump or an ejector system.  

In Figure 2.3 (Bergman et al., 2011 chap. 9) unstable fluid recirculation occurs because 

the density variations acts against the gravitational body force. The unstable regime occurs 

when 𝑇2 > 𝑇1. Liquid movement only occurs when the temperature gradients exceed a critical 

value leading to convection currents. When this happens the density of the fluid decreases 

against the direction of gravity, and the buoyancy forces are large enough to overcome viscous 

drag forces leading to unstable liquid circulations. In the unstable case in Figure 2.3 the 

density at position 1, 𝜌1 is greater than the density at position 2, 𝜌2. This enables a 

displacement effect, where dense packets of fluid at position 𝑇1 sink, and less dense packets 

of fluid at position 𝑇2 rise. For the stable case in Figure 2.3 fluid circulations do not occur 

when T1 > T2. This is because the fluid density at position 𝑇2 is greater than the density at 𝑇1. 

The net density difference occurs in the direction of the gravitational body forces and no bulk 
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motion of the fluid occurs. In this configuration heat transfer occurs primarily due to 

conduction in the liquid.  

 

Figure 2.3: (a) Convection regime involving unstable fluid circulations, where the density variation acts 

against gravitational forces; (b) a stable regime involving no fluid circulations. Image from Bergman et al. 

(2011).  

Engineers working in the field of thermal phase change have debated the definition of 

boiling for many years. In their early work Rohsenow and co-authors (Rohsenow and 

Hartnett, 1973; Rohsenow et al., 1985) originally defined boiling as "the process of 

evaporation associated with vapour bubbles in a liquid”. However liquid to vapour transition 

during thermal phase change is not confined to bubbles in a liquid. For example, vapour may 

be generated at the free surface of a liquid. To accommodate all types of boiling the most 

commonly accepted definition is that of Collier and Thome (1994) who state “boiling is 

defined as being the process of addition of heat to a liquid in such a way that generation of 

vapour occurs”. This definition is also accepted by the wider heat transfer community 

including the updated works of Rohsenow et al. (1998). 

There is no evidence to suggest that the definition of condensation has followed the 

same existential crisis as boiling. It is simply accepted as the process where a vapour is 

converted to its liquid state (Bejan and Kraus, 2003). Research into condensation achieved 

considerable attention after the German mechanical engineer, Wilhelm Nusselt laid the 

foundation and pioneered his analytical solution for the steady state condensation of vapours 

on vertical flat plates (Nusselt, 1916). 

Multiphase flows involve interactions between more than one material, for example 

fluid-fluid and fluid-solid interactions. Boiling and condensation fall under the category of 

multiphase flows. It is very difficult for engineers to predict the behaviour of multiphase 

flows. The difficulty arises from trying to predict the interactions between the different 

materials. These interactions are often transient in nature. Predicting those interactions are 

extremely difficult in simple domains such as vertical or horizontal pipes and ducts (see 

CHAPTER 6 for a discussion on in tube condensation and multiphase flows). Unfortunately, 
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applications in reality are rarely this simple, and often involve complex geometries. Some 

engineering examples of where multiphase flows are used in complex geometries are 

thermosiphon reboilers, stirred tank reactors and internal combustion engines. Just like phase 

change, multiphase flows are ubiquitous.  

 There are three established methods to predict the behaviour of multiphase flows, and 

all methods complement each other. These are engineering calculations, experimental 

investigations and numerical investigations. We can use engineering calculations to derive 

relations from first principles. For example in the book by Tritton (1988, chap.9) a comparison 

of the analytical solution for the drag coefficient of a falling sphere in a viscous fluid in the 

Stokes regime is compared to experimental observations. There is good agreement between 

the analytical solution and experimental observations. Beyond the Stokes regime, analytical 

solutions to the viscous flow equations do not exist, due to the complex nature of the problem. 

In their book, Clift et al. (1978, chap.5) provided a comprehensive review of different 

empirical and semi empirical drag formulations. The formulations are determined from 

detailed experimental analysis, where the flow equations do not otherwise have a simple 

analytical solution for the drag coefficient as found in the Stokes regime. One of the most 

widely used correlations for the drag coefficient (which is also included in the review by Clift 

et al.,) is that of Schiller and Naumann (1935). Numerical investigations can take the 

experimental analysis further. For example instead of analysing a single spherical particle 

falling in a fluid, investigators can investigate a population of falling particles to reveal 

complex solutions otherwise difficult to observe under experiment such as particle – particle 

interactions. On their own, engineering calculations, experimental investigations and 

numerical investigations are rarely sufficient to unravel the mysteries of multiphase flows. 

When combined they provide a powerful tool for engineers to use. 

2.8  Boiling 

The Sellafield evaporators boil highly active liquors (HAL) to achieve the required 

evaporation factors. Boiling inside pressure vessels has received considerable attention over 

many years. Due to its importance, and coupled with the fascination of the complex 

phenomena involved, vast literature is available on the subject (Rohsenow et al., 1998). Most 

of the available literature on boiling refers to atmospheric pressures and above. There are 

fewer equivalent studies for boiling at sub-atmospheric pressures. However the fundamental 

mechanisms which drive boiling are the same under all pressures. 

Boiling heat transfer is more complex than single phase convection. All of the variables 

associated with convection including those associated with the phase change are also relevant 
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(Kreith et al., 2010). Boiling can be classified as pool boiling or forced convective boiling. In 

pool boiling liquid convection and bubble detachment from a surface is self-induced without 

external influence such as a fan. In forced convective boiling, pool boiling mechanisms still 

exist with the added contribution from external means. Heat transfer coefficients from forced 

convective boiling are generally higher than in pool boiling. 

2.9 The Boiling Curve 

 Nukiyama (1966) conducted a well-known boiling experiment which involved heating 

a nichrome wire immersed in water at atmospheric pressure. As power to the nichrome wire 

was increased, bubbles began to form at the wire-water interface which was attributed to 

boiling. The result of the investigation is the Nukiyama boiling curve for saturated water at 

atmospheric pressure, as shown in Figure 2.4 (Bergman et al., 2011).  

  

Figure 2.4: Nukiyama’s boiling curve for water at atmospheric pressure. Image from Bergman et al. 

(2011). 

In Figure 2.4 region A, free convection occurs until the onset of nucleate boiling is 

achieved at point B. In region AB, isolated bubbles form at nucleation sites and separate from 

the surface. Point A is identified as the beginning of nucleate boiling. In region BP the 

contribution from surface heat flux begins to reduce, and in region PC the contribution from 

surface heat flux reduces until the critical heat flux is reached at point C. At this point 

considerable vapour is being formed, which makes it difficult for the liquid to continuously 
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wet the surface. At point CD the curve enters the transition zone where the formation of 

vapour bubbles is now so rapid that a vapour film begins to form on the surface. Finally at 

point DE film boiling dominates where the surface is completely covered by a vapour blanket. 

In this instance heat transfer from the surface to the liquid occurs by a combination of 

conduction and radiation through the vapour. 

2.9.1 Onset of Boiling 

At heated walls, the nucleation of vapour occurs with some degree of superheat above 

the saturation temperature. This is called the onset temperature of nucleate boiling. This is 

represented by point A in Figure 2.4. Table 2.3 summarises some of the most well-known 

correlations to predict the onset temperature of nucleate boiling.  

Expression Notes Source Equation 

Δ𝑇𝑠𝑎𝑡 = (
8𝜎𝑇𝑠𝑎𝑡𝑣𝑔�̇�

Δ𝐻𝑙𝑔𝜆𝑙
)

1 2⁄

 

Pool boiling correlation based 

on equating the temperature 

gradients in the thermal 

boundary layer. 

Davis & 

Anderson 

(1966) 

(2.3) 

Δ𝑇𝑠𝑎𝑡 = (
8𝜎𝑇𝑠𝑎𝑡𝑣𝑔�̇�

Δ𝐻𝑙𝑔𝜆𝑙
)

1 2⁄

Pr𝑙  

Study of the boundary layer 

distortion due to the presence 

of the bubble. 

Frost and 

Dzakowic, 

(1967) 

(2.4) 

Δ𝑇𝑠𝑎𝑡 =
2𝜎𝑇𝑠𝑎𝑡𝑣𝑔

𝑟𝑚𝑎𝑥Δ𝐻𝑙𝑔
+
�̇�𝑟𝑚𝑎𝑥
𝜆𝑙

 
Applicable for well wetting 

fluids such as refrigerants. 

Spindler, 

(1994) 
(2.5) 

Table 2.3: Well-known correlations to predict the onset of nucleate boiling in pool boiling situations. 

The Davis & Anderson (1966) correlation given by Eq. 2.3 is based on fitting 

temperature profiles. Figure 2.5 is an image showing the nucleation of three bubbles of 

different radii. Line XY is the critical temperature a bubble must achieve to allow it to grow. 

This activity occurs within the laminar sub-layer where heat transfer from the wall to the fluid 

is due to molecular conduction. Thus if the wall is at temperature 𝑇𝑤1 then the temperature 

profile never exceeds 𝑇𝑐𝑟𝑖𝑡. If the wall is at temperature 𝑇𝑤2 the temperature profile does 

exceed critical temperature profile at bubble radii at A and C. Any bubbles within this size 

range at temperature 𝑇𝑤2 will be able to grow. If the wall temperature is at 𝑇𝑤,𝑐𝑟𝑖𝑡 then the 

temperature profile just touches the critical temperature line XY tangentially which 

corresponds to bubble B. Davis & Anderson (1966) came to Eq. 2.3 by equating the slopes of 

the temperature profile and critical temperature line XY. 
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Figure 2.5: Bubble nucleation from a heated wall (Rohsenow et al., 1998). 

The fundamental assumption by Davis & Anderson (1966) is the linear temperature 

profile due to pure conduction through the laminar sub-layer in the boundary layer. However 

in the presence of bubbles this layer is distorted and the linear temperature profile is no longer 

valid.  

Rohsenow et al. (1998) report that despite Eq. 2.3 giving “reasonably good results in 

many cases” some deviations may occur. Namely due to the absence of accounting for the 

presence of bubbles and its effect on the required temperature difference, and the critical 

radius required to initiate bubble nucleation may be larger than the maximum radius allowed 

for bubble nucleation. 

A further observation which may significantly lead to errors is that the expression in 

Eq. 2.3 does not account for surface properties such as nucleation site density, and it does not 

account for bubble departure diameter and bubble departure frequency. It may be argued that 

these factors may not be required at the ONB, since the ONB is the precise moment just before 

boiling takes place, i.e. single phase convection is still the dominating mechanism for heat 

transfer. However those factors will be important when estimating boiling heat transfer rates 

using empirical correlations or modelling boiling using CFD. 

2.10 Wall Boiling 

A critical radius exists for a vapour bubble that is in equilibrium with the surrounding 

liquid as shown in Eq. 2.6. If the bubble radius is less than 𝑟∗ then the bubble will condense 

back into its liquid state. If the bubble radius is more than 𝑟∗ then the bubble has the potential 

to grow. 

 𝑟∗ =
2𝜎𝑇𝑠𝑎𝑡𝑣𝑔

Δ𝐻𝑙𝑔Δ𝑇𝑠𝑎𝑡
  (2.6) 

The derivation of the critical radius can be found in a number of well-known published works 

such as Hewitt et al. (1994) or Rohsenow et al. (1998).  
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Bubble nucleation occurs in one of two ways, homogeneous or heterogeneous 

nucleation. Under homogeneous, nucleation occurs in the bulk liquid due to statistical 

molecular fluctuations in the liquid phase, causing microscopic nucleation sites in the liquid 

itself (Rohsenow et al., 1998). Walls in contact with the liquid, and the properties of the walls 

such as conductivity and roughness have little to no effect on homogeneous boiling. The 

temperatures required to initiate homogeneous nucleation are extremely high. Hewitt et al., 

(1994) reports that for water at atmospheric pressure, even though the saturation temperature 

is around 100°C, the homogeneous nucleation temperature would be 320°C, that is, 220°C of 

superheat is required to change phase from liquid to vapour from within the liquid. 

Homogeneous nucleation occurs under very special circumstances where large 

superheats are required for phase change. Under these circumstances special conditions are 

usually met, such as using ultra smooth surfaces to prevent heterogeneous nucleation, and/or 

carefully removing dissolved gases which can aid heterogeneous nucleation (Rohsenow et al., 

1998). Given that the conditions required for homogeneous nucleation are difficult to achieve 

under controlled laboratory conditions, there is no evidence to suggest homogeneous 

nucleation is practical under large industrial conditions. However curiosity on the subject has 

driven investigators to study the phenomenon. Rohsenow et al., (1998) provides a brief 

introduction to homogeneous nucleation, and also recommends literature for further reading 

into the subject. 

Heterogeneous nucleation occurs far more commonly than homogeneous nucleation. 

Heterogeneous nucleation occurs at the interface between a solid surface and liquid. The 

superheat required to achieve boiling at the surface are orders of magnitude less than 

homogeneous. The surface properties in contact with the liquid play a more crucial role in 

heterogeneous boiling. Under heterogeneous conditions, bubbles are nucleated from 

microscopic cavities on the heat transfer surface in contact with the liquid. Trapped gasses 

grow from these nucleation sites under superheated conditions. Figure 2.6 is an illustration of 

nucleation cavities of various sizes. 
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Figure 2.6: Cavities at the solid liquid interface (Collier and Thome, 1994). 

 The degree of superheat is a function of the contact angle contact angle 𝜃 as shown in 

Figure 2.6 (Collier and Thome, 1994; Rohsenow et al., 1998). In Figure 2.6 (a), there is an 

absence of a nucleation site, and the bubble formed on the planar surface is formed via 

homogeneous nucleation and its associated large superheats as previously described. In Figure 

2.6 (b), (c) and (d) the nucleation sites are active sources of vapour generation. Small 

superheats, in the order of 10 – 15°C is required for bubble growth. 

Figure 2.7 shows bubble growth from an idealised cavity. As the bubble grows from 

the cavity, there is a minimum critical value which the bubble radius takes, which corresponds 

to the maximum superheat required to support bubble growth. Very small cavities have very 

small minimum critical values of bubble radius, which means high superheats are required to 

initiate nucleate boiling. In fact Rohsenow et al. (1998) suggests with increasing heat flux, 

and consequently increasing superheats, smaller cavities become more active.  

From what has been established so far, there is a clear distinction that nucleation size, 

nucleation site density, and the minimum critical radius for growth is a function of the surface 

heat flux, and consequently the degree of superheat. Other factors also arise when considering 

bubble departure from a heated surface. These are the bubble departure diameter from a 

nucleation site, and the bubble departure frequency. 

The bubble departure diameter is the theoretical size the diameter of the vapour bubble 

must have to detach from a heated surface. This should not be confused with the critical 

minimum radius of growth described earlier. Hence bubble growth from a surface does not 

guarantee bubble departure from that surface as vapour bubbles can collapse back into the 

bulk liquid if the conditions allow.  

 Vapour bubbles released from a heated surface follow a cyclic profile, which according 

to Collier & Thome (1994) is inversely proportional to the sum of the bubble growth time and 

the bubble waiting time. This is the bubble departure frequency. 
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Figure 2.7: Bubble growth from an idealised cavity (Hewitt et al., 1994). 

2.11 Wall Boiling Correlations 

 There are many correlations for the nucleate boiling heat transfer coefficient. The value 

they provide varies considerably (Hewitt et al., 1994) due to their formulation. For example 

some correlations do not take the boiling surface properties into consideration (such as the 

Forster and Zuber (1955) correlation) and others do (such as the Cooper (1984) correlation). 

Some of the most widely used and documented correlations are as follows (Hewitt et al., 

1994): 

 Forster and Zuber (1955) 

 Mostinski (1963) 

 Bier et al., (1982) 

 Cooper (1984) 

 Rohsenow (1951) 

 Gorenflo and Kenning (2010) 

 The Forster and Zuber (1955) boiling model  is one of the earliest correlations which 

was developed to predict the nucleate boiling heat transfer coefficient. It takes the form as 

shown in Eq. 2.7. 

 ℎ =
0.00122Δ𝑇𝑠𝑎𝑡

0.24Δ𝑃𝑠𝑎𝑡
0.75𝐶𝑝,𝑙

0.45𝜌𝑙
0.45𝜆𝑙

0.75

𝜎0.5Δ𝐻𝑙𝑔
0.24𝜌𝑔

0.24  (2.7) 

Hewitt et al., (1994) recommends using the Clausius-Clapeyron relation to evaluate the 

pressure drop in the Forster and Zuber boiling model as shown in Eq. 2.8. 
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 Δ𝑃𝑠𝑎𝑡 = exp [
Δ𝐻𝑙𝑔

�̅�
(
1

𝑇
−

1

𝑇𝑠𝑎𝑡
)] (2.8) 

Surface effects are not taken into consideration in the Forster and Zuber correlation, which 

puts the models reliability into question. 

 The Mostinskii (1963) correlation in Eq. 2.9 differs substantially from the Forster and 

Zuber correlation. It includes much fewer terms, and the boiling coefficient is a function of 

the heat flux. However in similar fashion to the Forster and Zuber model, no terms are taken 

into consideration to include surface effects. 

 ℎ = 0.00417𝑃𝑐𝑟𝑖𝑡
0.69�̇�0.7𝐹𝑃 (2.9) 

The pressure correction factor for the Mostinskii correlation is given as 

 𝐹𝑃 = 1.8𝑃𝑅
0.17 + 4𝑃𝑅

1.2 + 10𝑃𝑅
10 (2.10) 

The pressure correction factor in itself includes a reduced pressure term given as 

 𝑃𝑅 =
𝑃𝑠𝑎𝑡

𝑃𝑐𝑟𝑖𝑡
 (2.11) 

 Bier et al. (1982) uses an alternative correlation for the pressure correction factor in Eq. 

2.10. The alternative pressure correction factor by Bier et al. is recommended for design 

purposes as shown in Eq. 2.12 and the boiling model in Eq. 2.9 remains unchanged. 

 𝐹𝑃 = 2.1𝑃𝑅
0.27 + [9 + (1 − 𝑃𝑅

2)−1]𝑃𝑅
2 (2.12) 

The Cooper (1984) correlation in equation Eq. 2.13 is analogous to the Mostinskii and 

Bier et al. correlations in that a heat flux term is included in the evaluation of the heat transfer 

coefficient. However it deviates from the Forster and Zuber, Mostinskii and Bier et al. 

correlations as it contains a term to account for the surface properties, in this case known as 

the roughness parameter of the boiling surface. If the roughness parameter is not known it is 

recommended to assign it a value of unity. 

 ℎ = 55�̇�0.67𝑃𝑅
0.12−0.2 log𝑅𝑃(− log𝑃𝑅)

−0.55𝑀−0.5 (2.13) 

The pressure correction factor in the Cooper (1984) correlation is the same as that given 

in Eq. 2.10. 

In a similar fashion to the Cooper correlation, the Rohsenow (1951) correlation includes 

a term to account for the surface properties, denoted as a liquid-surface constant. However 

the Rohsenow correlation is slightly more involved and does not directly involve a term for 

the heat transfer coefficient as shown in Eq. 2.14. The heat flux must be solved for which can 

then output the heat transfer coefficient since �̇� = ℎ(𝑇𝑠 − 𝑇𝑠𝑎𝑡). 



~ 26 ~ 

 
𝐶𝑝,𝑙(𝑇𝑠−𝑇𝑠𝑎𝑡)

Δ𝐻𝑙𝑔
= 𝐶𝑆𝐹 {

�̇�

𝜇𝑙Δ𝐻𝑙𝑔
√

𝜎

𝑔(𝜌𝑙−𝜌𝑙)
}
0.33

[
𝐶𝑝,𝑙𝜇𝑙

𝜆𝑙
]
𝑛

 (2.14) 

The exponent n has a value of unity for water, and 1.7 for other fluids (Hewitt et al., 

1994). The value of the surface finish CSF is dimensionless, and values can be obtained from 

Collier and Thome (1996). For convenience some of the most common liquid surface 

combinations are presented in Table 2.4. 

Liquid surface combination CSF 

Water on polished copper 0.0128 

Water on lapped copper 0.0147 

Water on scored copper 0.0068 

Water on ground and polished stainless steel 0.0080 

Water on Teflon-pitted stainless steel 0.0058 

Water on chemically etched stainless steel 0.0133 

Water on mechanically polished stainless steel 0.0132 

Table 2.4: Commonly occurring liquid-surface combinations for use in the Rohsenow correlation (Collier 

and Thome, 1996).  

Hewitt et al. (1994) and Serth (2007) both demonstrated the accuracy and agreement of 

the five boiling correlations mentioned. They provided solutions for a sample boiling heat 

transfer problem which was solved five times, each using one of the five heat transfer 

coefficients. A wide and significant variation was found between each solution. The solutions 

from Hewitt et al., (1994) are displayed in Table 2.5. The five solutions differ very 

significantly, with a difference in the orders of magnitude. The wide variation in the solution, 

and the lack of agreement can be explained due to how boiling heat transfer is very sensitive 

to the precise conditions at the boiling surface (Serth, 2007). 

Boiling correlation Heat transfer coefficient (W/m2K) 

Forster and Zuber 5,512 

Mostinski 2,528 

Bier et al. 5,134 

Cooper 23,212 

Rohsenow 1,182 

Table 2.5: Solutions to the sample boiling problem presented in Hewitt et al., (1994). 

It is not practical to include detailed surface characteristics in a boiling correlation, as 

the boundary conditions will likely be based on ideal surface conditions. In practice ideal 

surface conditions are never met due to fouling of the surfaces (which include corrosion and 

erosion) over time. Additionally due to the often complicated design of process heat transfer 

equipment it may be difficult or impossible to observe directly the conditions at the heat 

transfer surface. This has implications on boiling models which require the user to input 
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surface properties. It means that surface conditions which cannot be directly obtained from 

process plant would need to be estimated, and then inserted into a boiling model. This in itself 

will introduce a significant error if surface properties are factored when estimating boiling 

heat transfer coefficients. For this reason it is ideal to design boiling heat transfer models 

which are largely independent of surface properties. 

The Gorenflo and Kenning (2010) nucleate boiling correlation is a recent addition to 

the literature when compared to the earlier Forster and Zuber (1955) nucleate boiling heat 

transfer coefficient. The Gorenflo and Kenning correlation differs substantially from all other 

nucleate boiling correlations previously discussed. It is presented in a dimensionless form of 

a reduced heat transfer coefficient as shown in Eq. 2.15. 

 
ℎ

ℎ0
= 𝐹𝑞𝐹𝑃𝐹𝑤 (2.15)  

As Eq. 2.15 shows, the reduced heat transfer coefficient is a function of a reduced heat 

flux term (𝐹𝑞), a pressure correction factor (𝐹𝑝∗) and a term to describe the influences of the 

boiling surface (𝐹𝑤). For boiling water, the reduced heat flux term is evaluated using  

 𝐹𝑞 = (
𝑞

𝑞0
)
𝑛

 (2.16) 

The exponent 𝑛 is evaluated using 

 𝑛 = 0.9 − 0.3𝑃𝑅 (2.17) 

where 𝑃𝑅 denotes the reduced pressure which can be determined used Eq. 2.11. The pressure 

correction factor 𝐹𝑃 is evaluated using  

 𝐹𝑃 = 1.73𝑃𝑅
0.27 + 6.1𝑃𝑅

2 +
0.68𝑃𝑅

2

1−𝑃𝑅
2  (2.18) 

To determine the influences of the boiling surface the following correlation should be used. 

 𝐹𝑤 = (
𝑅𝑎

𝑅𝑎0
)
2 5⁄

 (2.19) 

The values for the reference heat transfer coefficient and reference heat flux should be 

read from graphs of experimental data as shown in Figure 2.8 The reference roughness (𝑅𝑎0) 

should be taken as 0.4 μm. In Figure 2.8 the reference heat transfer coefficient is denoted by 

𝛼0 and deviates from the nomenclature used in this work. 
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Figure 2.8: Heat transfer coefficient and exponent n as a function of reduced pressure for boiling water 

(Gorenflo and Kenning, 2010). 

2.12  Boiling at Sub-Atmospheric Pressures 

Boiling can be classified as to whether it is sub-cooled boiling or saturated boiling 

(Bergman et al., 2011). In sub-cooled boiling the vast majority of the liquid is below the 

saturation temperature. Any vapour formation at heated walls in sub-cooled boiling condenses 

back into the bulk pool. In saturated boiling the local temperature is usually greater than the 

local saturation temperature which allows vapour bubbles to grow and detach from heated 

surfaces. 

Boiling at sub-atmospheric pressures occurs in many engineering processes such as 

thermosiphon reboilers, refrigeration systems, and heat exchangers (Tu, 1999). Despite this 

there are few equivalent studies of boiling fluids at these pressures compared to boiling at 

atmospheric pressures and above (Tu and Yeoh, 2002). There is a demand to better understand 

boiling at low pressures, especially sub-atmospheric pressures for industrial use, such as the 

evaporators used at the Sellafield site (D. a. McNeil et al., 2015). 
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2.13 Thermosiphon Systems 

It has been speculated in previous works that evaporators operating at sub-atmospheric 

pressure may behave similar to a thermosiphon reboiler. A thermosiphon is a passive 

pumpless heat exchange system, which is used to circulate a fluid for use in a number of 

industrial applications. A thermosiphon can be considered a pumpless system since fluid 

circulation occurs within the system due to the density difference corresponding to the 

difference in temperature within the process fluid. There are different types of thermosiphon 

systems which may or may not include boiling of the process fluid.  

Thermosiphons are used in a many engineering applications such as gas turbine blade 

cooling (Ogale, 1968). Ogale studied the thermal performance of gas turbine blades when 

they are filled with liquid metals. Heat from the hot gasses pass over the tips of the rotor 

blades and transferred to the blade root. The blade root is cooled by use of a secondary coolant 

(distilled water). The relative temperature difference between the tips of the blades and roots 

of the blades cause capillary action in the liquid metals, acting as an efficient and pumpless 

heat transmission mechanism. 

Vertical thermosiphon reboilers are used in separation processes, and are used as a 

reliable means of heat input into distillation, stripping and absorption towers (Alane and 

Heggs, 2011). Alane and Heggs also report they are also applied in the nuclear and 

desalination industries for concentration purposes. 

2.14 Other Relevant Works 

Milnes et al. (2012) successfully conducted a CFD investigation of the HyperVapotron 

fusion device, with validation against experimental data. A majority of the computational 

models chosen were within the RANS framework, where limited computationally intense 

large eddy simulations were conducted to improve the accuracy of the RANS approach. 

Milnes et al. used the RPI wall boiling model developed by Podowski et al. (1997) to model 

nucleate boiling at the wall. When compared to experimental data, it was found that the RPI 

model was able to accurately predict the onset of nucleate boiling and the increase of average 

void fraction. However the RPI model did under predict the peak void fraction by more than 

60% suggesting improvements in this area were essential. Improvements were made by using 

Ünal’s (1976) correlations for bubble departure diameter, and the inter phase heat transfer 

was fixed by fixing the inter phase Nusselt number to 2 (this value was determined when 

comparing experimental data with numerical results). Using the modified boiling model the 

results from the simulations were promising. Compared to the standard boiling model, the 
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modified boiling model reduced the error from 24% to 13% at a wall heat flux of around 10 

MW/m2. The modified RPI boiling model was also tested against three validation cases where 

the modified model was in some cases able to better predict the characteristics of those 

validation cases. The work by Milnes et al. gives an indication as to the sensitivity on 

boundary conditions of boiling and near wall turbulent flow, which the Sellafield evaporators 

share similar characteristics. 

Yeoh et al. (2008) studied low pressure subcooled boiling flows with the consideration 

of bubble departure frequency from a heated surface. The domain that was used resembled a 

vertical annular channel where forced convective subcooled boiling flow was modelled.  

Forced convective subcooled boiling flow through an upward channel will cause vapour 

bubbles to “slide” along the heated wall before they are detached. If the original hypothesis 

is true with regards to the existence of a subcooled nucleate boiling region in the Sellafield 

evaporators, then bubble slippage before departure from the wall may be significant. The 

study by Yeoh et al. involved advancing existing mechanistic models to include the sliding 

bubble phenomena and its effects, and incorporating it in a modified MuSiG model to 

simultaneously calculate bubble coalescence, breakage and condensation back into liquid. It 

is known as the improved wall heat partition model. 

It is argued by Yeoh et al. that Cole’s (1960) empirical correlation for bubble release 

frequency as shown in Eq. 2.20 may not be valid for low pressure sub-cooled boiling flows 

and hence a mechanistic approach to bubble release frequency should be adopted. 

 𝑓 = √
4𝑔(𝜌𝑙−𝜌𝑔)

3𝐷𝑏𝜌1
 (2.20) 

 The improved wall heat partition model incorporated into the MuSiG algorithm does 

produce promising results compared to the experimental data presented by Zeitoun and 

Shouskri (1997). The Sauter mean bubble diameter profiles were in good agreement with 

experimental data. The void fractions at the heated sections were also in agreement, however 

the CFD simulations contradicted experimental data for the void fractions near the channel 

exit for some boundary conditions. The mechanistic model also adequately predicted the 

bubble departure and lift off diameters. There was acceptable agreement between the CFD 

simulations and experimental data for the growth and waiting times of bubble frequency at 

local superheated and sub-cooled wall temperatures. 

Talebi et al. (2009) studied sub-cooled boiling flow in a vertical channel at low 

pressures. It has been suggested by Talebi et al. that empirical models developed for high-

pressure boiling applications are not valid at low pressures (1-2 bar). There may be further 

implications when considering pressures approaching close to vacuum conditions (0.05 – 0.9 
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bar). The investigation by Talebi et al. involved applying a two-fluid mathematical model to 

numerically solve the governing equations for sub-cooled boiling flow in a vertical channel 

by use of the commercial CFD package, Ansys CFX. The investigation was simplified to a 

two-dimensional rectangular channel where the SIMPLE scheme was used to solve the 

discretised equations. 

Talebi et al. simplified the investigation further by treating the liquid as a continuous 

phase, and the vapour bubbles as a dispersed phase. As a benchmark to validate the CFD 

investigation Talebi et al. used the boundary conditions and subsequent available 

experimental data published by Zeitoun and Shoukri (1997). There was good agreement 

between the numerical CFD results and the experimental data by Zeitoun and Shoukri. At 

high flow rates bubble coalescence played a significant role indicating the possible 

requirement of a turbulence model to capture the flow physics beyond laminar bubbly flows. 

Although there was good agreement between CFD and experiment it is difficult to ascertain 

how turbulence and bubble coalescence will affect the predictability of heat transfer. 

Convection and circulation of the process liquor will occur within the Sellafield 

evaporators. The circulation of fluid within these two can be considered as free convection 

circulation inside a cavity, which is known as Rayleigh–Bénard convection where the heated 

fluid may develop a regular pattern of convection cells inside differentially heated cavities as 

shown in Figure 2.9. 

 

Figure 2.9: Rayleigh–Bénard convection cells in a cavity heated from the bottom (permission is granted to 

copy, distribute and/or modify under the terms of the GNU Free Documentation License). 

Rossby (1969) conducted an experimental study of a thin uniformly heated rotating 

layer of fluid. It was reported by Rossby that the stability of the fluid depended greatly on the 

non-dimensional Rayleigh, Taylor and Prandtl numbers. Similarly Bergé and Dubois (1984) 

presented a physicist’s approach to Rayleigh-Bénard convection. They report that a critical 

Rayleigh number equal to 1707 exists which is a universal value independent of the fluid. At 



~ 32 ~ 

this critical number bulk fluid motion occurs due to convection, which presides over the 

stationary pure conduction heat transfer in the fluid. This value is also valid for large aspect 

ratio geometries where the horizontal length is much greater than the vertical length. It is 

reported that when the horizontal length of the domain is larger than the vertical depth a 

stationary roll pattern is generally observed where the axes of the rolls are usually 

perpendicular to the lateral walls, and the rolls are usually equidistant and parallel. In the work 

presented by Bergé and Dubois the aspect ratio is an important dimensionless quantity for 

Rayleigh-Bénard convection. For rectangular shaped domains it is the ratio of the horizontal 

to vertical dimensions. For a cylindrical domain it is the ratio of the radial to the vertical 

dimensions, which may be representative of the geometry of the Sellafield evaporators. 

Conjugate heat transfer may be significant if large temperature differences occur at the 

boundaries. Heggs et al. (1990) investigated the effect of wall thermal conductivity and 

thickness of a vertical cylindrical duct, and how it affected flow and temperature distributions 

of fluid travelling vertically upwards against gravity. In the investigation the Prandtl, 

Reynolds and Grashof numbers were kept constant at 7, 50 and 10000 respectively. The 

Grashof number was deliberately chosen to be large to encourage flow reversals in most 

situations studied. The finite difference method was employed to solve the governing 

equations. The ratio of pipe wall to fluid thermal conductivities had values of 50, 5 and 0.5. 

Considering typical values of the thermal conductivity of water which was the test fluid that 

was used, the ratios covered tubes of wall materials with thermal conductivities in the range 

of 0.275 – 35.0 W/mK which covered pipe materials such as stainless steel and many plastics. 

The ratio of the radii of the outside to inside walls had values of 1.1, 1.25 and 1.4. Hence the 

variables of the investigations were pipe wall thermal conductivities and the pipe wall 

thicknesses. 

Heggs et al. discovered that large values of the ratio of the wall to fluid thermal 

conductivity had significant upstream effects on the flow and temperature distributions inside 

the cylindrical pipe. Small values of the ratio of the wall to fluid thermal conductivity had 

significant downstream effects on the flow and temperature distributions. It was concluded 

that it may be invalid to completely omit wall domain boundary conditions in combined 

convection where flow reversals are present. It was found the pipe wall thermal conductivities 

and the pipe wall thicknesses are an influencing factor on the flow and temperature 

distributions inside the cylindrical pipe, especially where the Reynolds number of flow is low. 

This is a significant factor to consider when modelling the Sellafield evaporators. If conjugate 

effects are important they may need to be included within the numerical models. 
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2.15 Summary 

The selection of the papers reviewed have yielded important details regarding the heat 

transfer and multiphase flow conditions that are expected inside the Sellafield evaporators. 

The literature states that boiling at sub-atmospheric pressures may be difficult to model, and 

that further tweaks may be needed to enhance boiling and turbulence models specific to the 

application. In addition to this, modelling free convection using numerical techniques may 

present a challenge when considering if it is laminar or turbulent. Furthermore, convection 

(and implicitly boiling and condensation) may directly be effected within numerical 

simulations if wall conjugate heat transfer is not modelled. 
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Chapter 3  

Statement on Numerical Accuracy and Procedure 

3.1 Introduction 

Numerical accuracy is paramount to the results presented in this thesis. Numerical error 

can occur due to a multitude of reasons. These are, but are not limited to, using a poor quality 

mesh, using the wrong models (or lack thereof), and obtaining poor or no convergence. The 

purpose of this chapter is to discuss how numerical accuracy was obtained in the CFD 

simulations. This comprised of meeting stringent quality controls for the mesh; performing 

mesh sensitivity studies; ensuring full residual convergence for all governing equations; 

ensuring global flux imbalances were no more than 1% of the total flow entering and leaving 

the domain; and applying appropriate monitor points to monitor key flow variables to ensure 

the solution being solved was physically realistic. 

3.2 Mesh Considerations 

Without a good quality mesh to resolve flow features in pertinent regions, numerical 

round off error and numerical diffusion may be introduced into the simulation which will 

influence the end results. To remove these errors, a user would typically undertake more than 

two simulations on increasing mesh densities in pertinent regions, in order to ascertain a mesh 

independent solution for a particular variable of interest. For example one may be interested 

in near wall velocity at some locations in the solution domain. This value of the near wall 

velocity may change with mesh density. In order to remove this uncertainty a mesh sensitivity 

study should be performed to isolate the best mesh for that variable. An example of how the 

mesh density may change the results is shown by Figure 3.1. 

In this example mesh 3 would be chosen as the ideal mesh to proceed with for further 

simulations. This is because further mesh refinement does not yield a significant increase in 

accuracy for the near wall velocity, but will unnecessarily consume more computational 

resources and likely increase simulation compute times. 

The formal grid convergence index (GCI) procedure developed by Celik et al. (2008) 

was used to perform the mesh sensitivity studies in this study. It is a method that is used to 

determine the uncertainty due to mesh discretisation in CFD simulations. It uses the Richardson 

extrapolation method, in addition to a custom method developed by Celik et al., to provide 

discretization error estimation. This is a rigorous procedure that has been used with success in 

many works which use CFD in a wide range of diverse applications. For example, Harrison et 
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al. (2010) used the method in their works to report the discretization error and select an 

appropriate mesh for their CFD simulations, which predicted wakes in horizontal axis tidal 

turbines, and compared their results to experimental data. Aydin (2012) used the method in his 

work to arrive to a final mesh independent simulation, which modelled free surface flow in a 

triangular labyrinth side weir, which is a common problem within hydraulic engineering. Further 

diverse examples of the use of GCI as the mesh sensitivity procedure of choice can be found in 

the works by Westra et al. (2010), Promvonge et al. (2010) and Trivedi et al. (2013). The GCI 

method is also the preferred method of some peer reviewed journals to report the uncertainty 

due to discretization in CFD applications. 

 

Figure 3.1: The effect of near wall velocity as a function of increasing mesh density. 

3.2.1 Steps for the Mesh Sensitivity Study 

For the CFD results reported in this thesis a mesh sensitivity study was performed using 

the GCI procedure. The mesh sensitivity studies were performed in simplified situations. It is 

well known that evaporation simulations require far smaller time steps to simulate accurately due 

to the small time scales involved in the calculations. They also require more computational 

resources since they are far more elaborate models which produce large computational matrices 

during the compute process. Performing repetitive evaporation simulations on more than two 

meshes is not prudent as it is very time consuming. Rather than perform a mesh sensitivity study 

on a difficult evaporation problem, a simpler yet related problem of free convection prior to free 

surface evaporation was chosen as the flow problem which was required to be independent of 

the mesh resolution. Free convection simulations require less elaborate numerical models, and 

do not require as small a time step for convergence as boiling simulations do. This reduces the 

requirements both from the constraint of time and computational resources. 
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The GCI procedure comprises generating at least three significantly different meshes for 

the desired problem, differing by their mesh density. Increased mesh density between the meshes 

was applied in regions of importance to the simulations, for example at heated walls and at free 

surface positions. Figure 3.2 is an example of increasing mesh density for four different meshes 

at the surfaces of the physical flow domain (part of the work presented in CHAPTER 5). 

   

    

Figure 3.2: Starting from top left, clockwise: meshes 1 to 4 used in the GCI study to ascertain the 

uncertainty due to discretization and to enable the selection of a suitable mesh. The meshes form part of 

the work presented in CHAPTER 5. 

When at least three significantly meshes were generated, mesh size of each mesh was 

represented mathematically as defined by Eq. 3.1. 

 ℎ = [
1

𝑁
∑ (Δ𝑉𝑖)
𝑛
𝑖=1 ]

1

3
 (3.1) 

Meshes were refined globally, but more so in positions where variables needed to be 

independent of the mesh resolution, such as wall temperatures. The refinement factor between 

the meshes (between mesh 1 and 2; mesh 2 and 3, and so on) is defined as shown in Eq. 3.2. 

 𝑟 =
ℎ𝑐𝑜𝑎𝑟𝑠𝑒

ℎ𝑓𝑖𝑛𝑒
 (3.2) 
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From experience Celik et al. (2008) reported that the refinement factor between the meshes must 

be greater than 1.3. In this work, if it was found that it was not greater than 1.3, then meshes 

would be refined to meet this condition. Allowing for the identities in Eq. 3.1 and 3.2 being 

satisfied, identical simulations were performed on all meshes, for each physical flow domain, 

for each chapter where CFD results are presented. 

 In all of the works presented in this study the GCI sensitivity study was based on the 

results from the simulations of transient free convection. Convergence details of these 

simulations such as the residual target are discussed in the next section. Transient free 

convection was chosen as it is the condition prior to evaporative flows at the free surface. 

Steady state pure conduction heat transfer in the system (no momentum transfer), and steady 

state free convection was not chosen as the benchmark test cases for the mesh sensitivity 

study. This is because a steady state pure conduction solution is unphysical inside the liquid, 

and solution convergence for steady state free convection is not guaranteed. 

 ℎ1 < ℎ2 < ℎ3 < ℎ4 (3.3) 

 𝑟21 =
ℎ2

ℎ1
𝑟32 =

ℎ3

ℎ2
𝑟43 =

ℎ4

ℎ3
 (3.4) 

Once identical simulations on the relevant meshes were complete, pertinent variables 

important to the investigation were outputted. These were the variables which were required 

to be independent of the mesh resolution. Examples included wall temperatures, interfacial 

area densities and velocity monitor points. The relative difference between the variables due 

to the change in mesh density is denoted as shown in Eq. 3.5. 

 𝜀21 = 𝜙2 − 𝜙1 𝜀32 = 𝜙3 − 𝜙2 𝜀43 = 𝜙4 − 𝜙3 (3.5) 

In the GCI method the apparent order between subsequent meshes (mesh 1, 2 and 3; 

mesh 2, 3 and 4, and so on) was determined using the expression in Eq. 3.6. The expression 

for the apparent order 𝑝1,2,3 is provided. The expression for apparent order 𝑝2,3,4 follows a 

similar naming convention, but is not shown here. 

 𝑝1,2,3 =
1

ln(𝑟2,1)
|ln |

𝜀32

𝜀21
| + 𝑞(𝑝)| (3.6) 

The function 𝑞(𝑝) is defined by Eq. 3.7.  

  𝑞(𝑝) = ln (
𝑟21
𝑝
−𝑠

𝑟21
𝑝
−𝑠
) (3.7) 

The function 𝑠 is defined as 

  𝑠 = sgn (
𝜀32

𝜀21
) (3.8) 
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In order to solve for the apparent order in Eq. 3.6, an iterative approach was taken since the 

solution is a function of itself, as shown by Eq. 3.7, where 𝑟 is raised to the power of the 

apparent order. This was solved for in the computing program MATLAB using the Newton 

Raphson iterative technique, converging to a tolerance of 1 x 10-6.  

Once the apparent order for the meshes were computed, extrapolated values of the 

variables were deduced. This was achieved by using the expression in Eq. 3.9. 

 𝜙𝑒𝑥𝑡
21 =

𝑟21
𝑝
𝜙1−𝜙2

𝑟21
𝑝
−1

 (3.9) 

In a similar fashion extrapolated values between mesh 2 and 3, and so on, were calculated, 

denoted by 𝜙𝑒𝑥𝑡
32  et cetera. With this, error estimates of the variables were determined. The 

approximate relative error was determined by the expression in Eq. 3.10. 

  𝑒𝑎
21 = |

𝜙1−𝜙2

𝜙1
| (3.10) 

A similar procedure was followed for 𝑒𝑎
23 and if required, 𝑒𝑎

34. The extrapolated relative error 

was determined using the expression in Eq. 3.11. 

  𝑒𝑒𝑥𝑡
21 = |

𝜙𝑒𝑥𝑡
12 −𝜙1

𝜙𝑒𝑥𝑡
12 | (3.11) 

Again, 𝑒𝑒𝑥𝑡
32  and if required, 𝑒𝑒𝑥𝑡

43  were deduced using a similar convention. Finally the fine 

grid convergence index was determined using the expression in Eq. 3.12. In a similar fashion 

GCI𝑓𝑖𝑛𝑒
32  and if necessary GCI𝑓𝑖𝑛𝑒

43  were deduced. 

  GCI𝑓𝑖𝑛𝑒
21 =

1.25𝑒𝑎
21

𝑟21
𝑝
−1

 (3.12) 

 The approximate relative error in Eq. 3.10 provides a comparison in the variables 

between two meshes. The flaw in this method is that there is no indication to determine which 

value is the correct value. To alleviate this issue, the extrapolated relative error described by 

Eq. 3.10 benchmarks the calculated value of a variable for each mesh against the extrapolated 

variable. The extrapolated variable arises from the Richardson extrapolation. Although 

Richardson extrapolation has it shortcomings, the authors of the GCI mesh sensitivity method, 

Celik et al. (2008) mention that it is the most reliable method available to predict numerical 

uncertainty. The fine grid convergence index assesses the overall performance between the 

meshes for the variables of interest. Large values of GCI for each variable relate to large 

discretization errors due to the mesh. Small values of GCI relate to small errors. No guidelines 

are provided by Celik et al. (2008) as to the value which GCI should take. In this work it is taken 

close to 1%, and lower if possible. Celik et al. (2008) also mention GCI values can be seen as a 

numerical version of experimental error bars for particular variables of interest. The mesh which 
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produced the lowest errors based on the GCI method was chosen as the mesh on which to 

perform further complex simulations. 

3.3 Mesh Quality Controls 

In the framework of CFD, physical flow domains are discretised into a mesh, and the 

conservation equations governing the physical problem are solved for in control volumes. 

Ansys CFX is a vertex centred finite volume CFD solver. This means that control volumes 

are created around cell vertices. Cell centred finite volume CFD solvers also exist, where 

mesh cells physically represent the control volume. Commercial examples of cell centred 

finite volume CFD codes are Ansys Fluent and CD Adapco Star CCM+. Figure 3.3 (Kroll et 

al., 2010 chap. 4) illustrates the differences between vertex centred and cell centred schemes. 

The computational node (represented by the white circle) is surrounded by the control volume 

(shaded area labelled 𝐾𝑚). The example illustration shows a tetrahedron mesh. If a hexahedral 

mesh was used a similar convention would follow. The minor difference would be the control 

volume shapes, where both vertex centred and cell centred would yield hexahedral control 

volumes. 

 

Figure 3.3: (Left) A vertex cantered CFD scheme; (right) a cell centred CFD scheme (right). Image 

adapted from Kroll et al., (2010 chap. 4). 

Kroll et al. (2010) mention vertex centred schemes are popular. This is because they 

provide more fluxes per variable that is solved for, and offer half the memory footprint 

compared to cell centred schemes. Aside from the lower memory usage, the vertex centred 

scheme as found in Ansys CFX is desirable for the types of flows considered in this study. 

Buoyancy driven flows rarely follow an ordered pattern and usually contain adverse pressure 

gradients. These gradients give rise to velocity gradients which are not ordered. Having a 
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vertex centred control volume with many control volume faces helps to capture those velocity 

gradients since more fluxes are captured. This means the interpolation of velocity between 

control volume vertices are less exaggerated.  

Vertex centred and cell centred CFD codes can both read the same mesh. How those 

codes store information on those meshes is the underlying fundamental difference (vertex 

centred or cell centred schemes dictate how information such as pressure and velocity arrays 

are stored on control volume faces and vertices). Due to this difference, each code has a 

special set of mesh requirements. This means if a single mesh was created, it may satisfy the 

requirements for a good mesh in Ansys CFX (vertex centred), yet not satisfy the requirements 

for a good mesh for Ansys Fluent (cell centred), since both codes have mesh requirements 

tailored to their schemes (vertex centred or cell centred). 

All of the meshes used in this thesis were stringently designed so that they satisfied the 

mesh requirements of the chosen CFD solver, Ansys CFX. The meshes were created in the 

highly customisable and documented meshing code, ICEM CFD, which is a versatile tool in 

creating high quality meshes for CFD applications. ICEM CFD has its own internal 

requirements for a good quality mesh which were also satisfied (the requirements by Ansys 

CFX and ICEM CFD do not contradict each other, so it was possible to satisfy the 

requirements of both algorithms). These mesh requirements were satisfied for all cell types in 

the mesh. These are hexahedrons, tetrahedrons, pyramids, and prisms and their 2D 

counterparts (quads and triangles), as shown in Figure 3.4 (Paul et al., 2004 chap. 5). More 

information on discretizing physical flow domains into a mesh for CFD with particular 

emphasis on industrial applications can be found by the works of Paul et al. (2004). 

Ansys CFX has three principal mesh requirements. These are mesh orthogonality, mesh 

expansion and mesh aspect ratio and all three requirements were satisfied at all times. 

Satisfying these requirements is important as not doing so will increase discretisation error 

and encourage divergence, which cannot be afforded in difficult to converge numerical CFD 

simulations such as evaporation. 
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Figure 3.4: The different types of cells that can be used in the meshes (Paul et al., 2004 chap. 5). 

3.3.1 Mesh Orthogonality 

The mesh orthogonality is defined as the deviation from optimum angles in a cell. A 

perfectly orthogonal hexahedral or quad cell has 90° angles. Likewise a perfect equilateral 

pyramid, prism or triangle cell has angles of 60°. Figure 3.5 (Ansys Inc, 2010a) is an example 

of mesh orthogonality in two cells, where each cell has two vectors denoting cell direction.  

 

Figure 3.5: Mesh orthogonality in a triangle and quad cell (Ansys Inc, 2010a). 

Meshes were checked so that the minimum and maximum permissible orthogonality face 

angles were no less than 10° and no more than 170°. 

3.3.2 Mesh Expansion Ratio 

Mesh expansion ratio is the rate of change of one cell relative to the next adjacent cell. 

It is measured by the ratio of the maximum to minimum distances inside the control volume. 

The mesh expansion for two cells is shown in Figure 3.6 (Ansys Inc, 2010a). The acceptable 

range for the mesh expansion ratio is no greater than 20, with lower expansion ratios offering 

greater accuracy in the results. For the meshes designed in this thesis, a maximum limit of 18 
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was set to limit the effect of numerical diffusion in pertinent areas of the physical flow 

domain.  

 

Figure 3.6: Mesh expansion ratio between two cells (Ansys Inc, 2010a). 

3.3.3 Mesh Aspect Ratio 

The mesh aspect ratio is the last mesh metric which Ansys CFX uses to benchmark 

meshes against. It is the ratio of maximum edge length to minimum edge length for a control 

volume. Figure 3.7 (Ansys Inc, 2010a) illustrates this between two cells in more detail.  

 

Figure 3.7: Mesh aspect ratio between two cells (Ansys Inc, 2010a). 

All of the simulations performed in this study were done so in double precision. For double 

precision numerics, the mesh aspect ratio must not exceed 1000. For all meshes generated 

checks were made to ensure this was the case. For reference, if using a single precision solver, 

a mesh aspect ratio must be no more than 100. 

3.4 Mesh Types 

There are three types of mesh, structured, unstructured, and hybrid. Hybrid is a 

combination of structured and unstructured types. Structured and unstructured meshes differ 

in the way the cells are aligned in the physical flow domain. Structured meshes typically 

contain ordered hexahedral cells that are aligned with the direction of the flow. Unstructured 

meshes typically contain random cells of tetrahedron, prism and pyramid cells which are not 

aligned with the direction of flow. Please note, unstructured hexahedral meshes are possible. 
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In the early days of CFD, mesh data in structured meshes was written in logical arrays. 

The first row in the first column in the first matrix of the array contained information on the 

position of first node in the mesh (and so on for the subsequent mesh nodes). This had memory 

saving advantages, where structured CFD solvers could take advantage of this mesh file 

storage format (Mazumder, 2015). This convention has since been dropped, and mesh data is 

stored and passed to the CFD solver in other (unordered) formats which are more efficient for 

today’s computer hardware standards. Hence nowadays most, if not all CFD solvers are 

unstructured solvers, in that they do not expect to read in structured mesh data. Despite this it 

is desirable to CFD engineers to design meshes to structured standards (cells aligned to flow 

direction). This is because they reduce numerical diffusion in the solution since the cells are 

aligned with the flow direction, and they contain fewer cells for the like-for-like unstructured 

counterpart.  

Figure 3.8 is a comparison between structured (top) and unstructured (bottom) meshes 

for a simple pipe, with a radius of 2 cm and a length of 10 cm. For the purposes of the example, 

and to provide a fair comparison, the mesh controls for both meshes were kept the same, with 

a minimum cell size of 5.7 x 10-3 cm, and maximum cell size of 0.5 cm. The inflation at the 

walls had 10 layers with a total thickness of 0.5 cm, and each layer growing by a factor of 1.2. 

For the structured mesh the cell count was 13120, and in the unstructured mesh the cell count 

was 27947. 

        

        

Figure 3.8: (Top) Structured mesh with cells aligned in the direction of flow for a simple pipe problem; 

(bottom) unstructured mesh with the cells not aligned in the direction of flow. 

In the structured mesh example the cells are arranged logically flowing longitudinally 

along the length of the pipe, and increasing radially in size due to inflation from the walls. 
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The entire mesh in the structured example is made up of hexahedral cells, including the 

inflation layers, as shown in the top right image in Figure 3.8. If the flow direction was from 

an inlet to an outlet in the pipe the structured mesh would be aligned to the direction of the 

flow. 

In the unstructured example the inflation layers on the wall, which comprises prism 

cells follows the length of the pipe. However the prism cells on the surface of the walls are 

not ordered. Furthermore the tetrahedron cells flood fills the remaining volume in complete 

random order. As a consequence of the greater node connectivity in the unstructured example, 

the unstructured mesh has 72% more cells than the structured mesh (13120 cells compared to 

27947 cells). Furthermore the cells in the unstructured mesh have no general alignment, where 

cells are positioned against the general expected flow direction, which would increase false 

numerical diffusion. If solutions on both meshes were required to be solved for within the 

same wall clock time, the unstructured mesh would require greater computational resources 

compared to the structured mesh. 

3.5 Structured Meshes 

Structured meshes rely on blocking topologies. Blocking topologies are hexahedron 

“blocks” which decompose the physical flow domain and allow for local mesh controls to be 

applied to each block. The blocking topology for the pipe example is shown in Figure 3.9. 

This is one type of blocking topology called an O-Grid. Other topologies such as, but not 

limited to C-Grid and H-Grid exist. Further details on blocking and structured meshes can be 

found in Ansys ICEM guide. Generally, structured meshes require time and careful planning 

to create good blocking topologies in order to generate a successful mesh. However this comes 

with a time penalty, where the first attempts at creating blocking topologies for a structured 

mesh may not be successful, and a lot of time may be spent planning on the topology layout. 

The time penalty diminishes with increased experience to structured meshing. Furthermore, 

there is a trade-off where significant time is saved during the compute process when solving 

a CFD solution on the mesh, and significant solution accuracy compared to unstructured 

meshes are achieved due to the ordered nature and reduced number of cells. 
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Figure 3.9: O-Grid blocking topology for the structured mesh of a pipe example. 

Structured meshes are relatively straight forward to generate on simple physical flow 

domains such as the pipe example. However they require more thought and consideration for 

applications which are not as straight forward. The CFD simulations on the unscaled test rigs 

in CHAPTER 4, and simulations on the one quarter scaled test rig in CHAPTER 5 utilises 

structured meshing. Although meshing these geometries using a structured approach was not 

as straight forward as the pipe example, they were able to be blocked and meshed in a 

structured manner. 

3.6 Unstructured Meshes 

Unstructured meshes are suited to complex geometries. The generation of unstructured 

meshes does not require the planning of intricate blocking topologies. However unstructured 

mesh generation introduces challenges in their own right. Some of these challenges include, 

but are not limited to, ensuring a good quality surface shell mesh, and ensuring inflation layer 

collision does not occur. Perhaps one of the most challenging aspects of unstructured mesh 

generation is to manage the transition between different cell types, and ensuring that the 

transition produces satisfactory cells. For example the cells which make up the inflation layers 

are prism cells. The bulk volume of the physical flow domain is made up of tetrahedron cells. 

In addition to this it is not unusual to have inflation layers to end abruptly due to a multitude 

of reasons. This means pyramid cells will have to be introduced which act as the transfer 

medium between a five sided prism cell, and a four sided tetrahedron cell. Figure 3.4 and 

Figure 3.8 has illustrated some of these concepts. 

There are many methods and algorithms to generate an unstructured mesh. Some of the 

more popular methods are documented in the works by Shewchuk (1997), Owen (1998), and 

more recently by Blazek (2015). The CFD simulations for Evaporator C used an unstructured 

approach. The CFD setup is described in CHAPTER 6 and the CFD results are presented in 

CHAPTER 7. The geometry for Evaporator C is complex, containing internal sweeping 

structures inside the vessel, to which it was very difficult to apply a structured blocking 

topology. Therefore an unstructured approach for meshing was deemed the most suitable.  



~ 47 ~ 

The method used to generate the unstructured mesh was built from best practices, and 

trial and error suited to the geometry of Evaporator C. The method comprised 8 steps. 

1. Apply pre-mesh clean-up of the geometry. This involved deleting duplicate and 

overlapping geometry curves, checking for holes in the geometry, and ensuring 

geometry good practices were met. 

2. Set the global mesh sizing controls. For example the maximum and minimum cell sizes; 

the minimum size proximity; the number of cells in gaps that met the minimum size 

proximity, and inflation settings. Set the local sizing controls on parts that are different 

to the global settings. 

3. Generate a uniform octree mesh using a suitable edge criterion and a suitable number 

of post mesh smoothing iterations. 

4. Delete the octree volume mesh, but retain the octree surface shell mesh. 

5. Smooth the surface mesh according to good mesh orthogonality metrics, and then 

smooth the surface mesh further with the Laplace smoothing algorithm. 

6. Generate the volume mesh from the smoothed Octree surface mesh, by harnessing the 

Delaunay algorithm coupled with the TGrid advancing front method. 

7. Apply inflation at the boundaries of interest using the post prism boundary method. 

Ensure inflation at boundaries do not collide in regions where physical space is very 

small. 

8. Perform post mesh generation checks including checking for poor quality cells, 

ensuring all cells met the maximum and minimum mesh metric requirements and 

export the mesh into a readable format for the CFD solver. 

3.7 Convergence Control 

Successful solution convergence of CFD simulations is paramount in order to present 

results based on those simulations. Without solution convergence, the results from the 

simulations may be unphysical and erroneous. In all of the final CFD solutions presented in 

this study, full solution convergence was achieved. There are three factors which define 

solution convergence. These are (i) ensuring that the root mean square of the residual level 

for all governing transport equations has reduced sufficiently; (ii) the global imbalance for 

each governing equation should be less than 1% of the total fluxes in and out of the physical 

flow domain; (iii) and ensuring monitor points of variables in pertinent locations do not 

exhibit sporadic behaviour. The achievement of these factors are dictated not only by the mesh 

quality as previously discussed, but also the type of analysis (steady state or transient), the 
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numerical scheme (high resolution schemes) and the suitability of the chosen time step to 

describe the flow. 

Ansys CFX uses a coupled algebraic multigrid method to solve the system of governing 

equations. Once discretised, all governing equations are non-linear, but may be expressed in 

quasi-linear form, as follows 

 [𝐴(𝜑)][𝜑] = [𝑏(𝜑)] (3.13) 

where 𝐴(𝜑) is a matrix which depends on the solution (𝜑), and 𝑏(𝜑) is a source vector, which 

also depends on the solution (𝜑). Eq. 3.13 is solved iteratively by the process of linearization. 

Given an approximate solution to the variable 𝜑𝑛, the matrix and source vector are evaluated 

at 𝜑𝑛, and these are then used to construct a linear equation for the next solution 𝜑𝑛+1, as 

follows: 

 [𝐴(𝜑𝑛)][𝜑𝑛+1] = [𝑏(𝜑𝑛)] (3.14) 

The linearised equations may be solved using an iterative linear equation solver, thus 

yielding the improved solution 𝜑𝑛+1. The Algebraic Multigrid Method (AMG) is usually 

selected, because of its superior scalability properties for large meshes.  

The above linearization procedure is repeated iteratively, until the exact solution to the 

non-linear equation in Eq. 3.13 is approached. Such iterations are called outer iterations, or 

coefficient loops, in order to distinguish them from the inner iterations employed to solve the 

linear system Eq. 3.14. 

The convergence of the non-linear iterative procedure is monitored by computing the 

local residual error at the start of each coefficient loop. This is a measure of how well the 

solution obeys Eq. 3.13 at each grid point, and is given by 

  𝑟𝑛 = 𝑏 − 𝐴𝜑𝑛 (3.15) 

where 𝐴 =  𝐴(𝜑𝑛) and 𝑏 = 𝑏(𝜑𝑛). The magnitude of the residual vector is called the residual 

norm, and is usually defined by the root mean square of the residual vector values summed 

over all grid nodes, or by the maximum absolute value of the residual vector values. The 

iterative procedure is assumed to be converged when the magnitude of residual error has fallen 

below a user-specified convergence criterion. 

In practice, the convergence criterion is in fact applied to a normalized residual vector, 

in order to make it non-dimensional, and hence applicable universally to all equations in the 

system. The normalized residuals take the form 

  [�̃�𝜑] =
[𝑟𝜑]

𝑎𝑃Δ𝜑
 (3.16) 
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where 𝑎𝑃 is a measure of the diagonal component of the matrix 𝐴, and Δ𝜑 is a measure of the 

solution change. The precise details of how the normalization factors are computed are rather 

complex, and are not given in the user documentation, as they are regarded as proprietary. 

Root mean square residual errors are not enough on their own to determine if a solution 

is converged. Global solution imbalances are used with the root mean square residuals to 

determine convergence. The global solution imbalance is the ratio of the equation imbalance 

to the maximum flow inside the domain. A negative value indicates total flow lost out of the 

physical flow domain, and a positive imbalance indicates total flow gained into the physical 

flow domain. Ideally this should be zero. However due to numerical round off error, this 

cannot be entirely possible. A global solution imbalance of less than 1% of the total flow is 

acceptable, with lower values being more desirable. For all simulations reported in this thesis 

the global solution imbalances were checked to ensure they were less than 1%. 

The final check for convergence is monitoring of key variables in pertinent locations in 

the solution domain. For a steady state simulation, when a solution is fully converged the 

monitored variables should not change with accumulated iteration. If it does then it could 

indicate either that the steady state solution is not fully converged, or a pseudo steady state 

solution has been found. In either case a transient approach should be taken as such behaviour 

of the monitored variables is an indication of transient behaviour.  

The suitability of the time step was determined individually for each respective case 

(simulations of the unscaled test rigs, scaled test rigs, and Evaporator C). This is described in 

their respective chapters. A universal time step does not exist which describes all types of 

flows, which would aid successful convergence of the linearized solution.  

3.8 Summary 

This chapter serves as the statement of numerical accuracy for this study. In this chapter 

many different possible sources for numerical error was introduced, and the steps taken to 

alleviate numerical error was discussed. To treat discretization error, and subsequently the 

steps taken to perform a mesh sensitivity study the GCI method developed by Celik et al. 

(2008) was used. The meshes were designed stringent quality controls ensuring adherence to 

good values of cell orthogonality, expansion ratio and aspect ratio. In addition to this, structured 

meshes were used for the unscaled and scaled test rigs, and unstructured meshes used in the more 

complex industrial Evaporator C case. The simulations were computed against stringent 

convergence criteria, harnessing good best practices to ensure successful convergence. This 

included solving all simulations to residual standards of 1x10-5, ensuring global imbalances 
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were less than 1% of the total flow for each conservation equation, and monitoring solution 

variables to ensure a physically realistic solution had been achieved. 
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Chapter 4  

Computational Analysis on the Unscaled Test Rigs 

4.1 Introduction 

The National Nuclear Laboratory have commissioned two small-scale test rigs, which 

are cylindrical, non-radioactive and steam heated, in order to characterise the transport 

phenomena occurring within the industrial evaporator design, Sellafield Evaporator C. These 

two test rigs are termed the short and a tall test rig respectively. The main difference between 

the two is the volume and depth of liquid they can accommodate. The test rigs boil liquids 

under conditions similar to those found in Evaporator C, and hence, provide insight into the 

flow phenomena occurring within Evaporator C. 

It would have been very difficult to perform a heat transfer analysis on the industrial 

evaporator design, Sellafield Evaporator C without first performing an analysis on a simpler, 

smaller system first to establish a foundation to build upon. The behaviour in the unscaled 

short and tall test rigs were analysed to establish this foundation. Firstly, a one-dimensional 

thermal resistance investigation on the test rigs yielded heat flux and temperature 

distributions. Secondly, single-phase CFD simulations provided a greater information on the 

behaviour of the test rigs, and set a foundation for the proceeding CFD simulations on the 

one-quarter scale test rig and the industrial evaporator. Figure 4.1 is a schematic of the short 

and tall test rigs. In Figure 4.1 the cylindrical glass walls are not drawn. 

The two test rigs are cylindrical glass vessels, and have an internal diameter of 0.1 m. 

The base of the test rigs is stainless steel and has a thickness of 0.02 m. In both test rigs, dry 

saturated steam condenses underneath the stainless steel base plate. This heats the liquid 

column above it. The steam pressure is 2.46 bar, which has a saturation temperature 

corresponding to 126.9 °C. The ullage pressure above the free surface for both test rigs is set 

to 0.1 bar. As vapour evaporates from the free surface, it condenses in an overhead condenser 

and returns as sub-cooled condensate. This is supplied back into the rigs above the free 

surface. This maintains a constant volume at all times, as is found in Evaporator C. 

The short test rig depicted by Figure 4.1 (left) has a fill depth of 0.1 m. This gives a 1:1 

ratio for the diameter to fill depth. The short test rig provides insight into the transport 

phenomena when the vessel width and fill depth are equal, or almost equal, which is true in 

Evaporator C. The internal diameter of Evaporator C is 3.05 m and the fill depth is 2.35 m. 

Hence, the ratio of diameter to fill depth for Evaporator C is 1:1.3, which is slightly more than 
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the short test rig. The only mode of heating into the short test rig is the steam heating occurring 

underneath the base plate. 

 

Figure 4.1: Schematic of the short test rig (left) and tall test rig (right), not drawn to scale. 

The tall test rig has a fill depth of 2.215 m. The ratio of diameter to fill depth is 1:22.15. 

This is considerably more than the ratio for the short test rig, and more than the ratio for 

Evaporator C. The large ratio found in the tall test rig is due to the large fill depth. Principally 

the tall test rig provides insight into the flow phenomena in the liquor, when there is a large 

head effect, which occurs in Evaporator C. The fill height of Evaporator C is 2.35 m, which 

is slightly more than the fill height in the tall test rig. 

Three water jackets at intermittent heights around the tall test rig provide additional 

heating and the rig contains a draught tube as shown in Figure 4.1 (right). The inclusion of 

the three heating jackets is an attempt at replicating steam condensation on the outer walls of 

the jacket in Evaporator C. The purpose of the draught tube is to replicate the effect of the 

physical presence of the internal helical coils and other associated equipment found in 

Evaporator C. The ratio of the annulus to core area of the draught tube is the same as the 

annulus to core area of the internal helical coils of Evaporator C. The annulus area is the inside 

cross sectional area of the outer shell of Evaporator C; and the core area is the inside cross 
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sectional area of the helical core of the inner evaporator coils. The draught tube has the same 

scaling factor as Evaporator C, as shown in Eq. 4.1. 

 𝑆𝐹 =
Annulus Area

Core Area
=
𝜋
4⁄ (𝐷𝑠ℎ𝑒𝑙𝑙

2 −𝐷𝑖𝑛𝑛𝑒𝑟 𝑐𝑜𝑖𝑙𝑠
2 )

𝜋
4⁄ 𝐷𝑖𝑛𝑛𝑒𝑟 𝑐𝑜𝑖𝑙𝑠

2 = (
𝐷𝑠ℎ𝑒𝑙𝑙

𝐷𝑖𝑛𝑛𝑒𝑟 𝑐𝑜𝑖𝑙𝑠
)
2
− 1 (4.1) 

The dimensions of the short and tall test rigs and the thermosphysical properties of the 

associated materials found in the test rigs are summarised in Table 4.1. The configuration of 

the tall test rig is shown in Figure 4.2 (NNL Private Communication, 2013). The short test rig 

has an identical configuration with the test section replaced by the short test rig. 

Property Symbol Value 

Short test rig liquid fill height 𝛿𝑦,𝑆ℎ𝑜𝑟𝑡 0.1 m 

Tall test rig liquid fill height 𝛿𝑦,𝑇𝑎𝑙𝑙  2.215 m 

Draught tube inner diameter 𝑎 0.023 m 

Draught tube outer diameter 𝑏 0.025 m 

Draught tube stand-off clearance 𝑐 0.02 m 

Draught tube top clearance 𝑑 0.15 m 

Bottom wall height for the tall test rig 𝑊𝐵𝑜𝑡  0.25 m 

Middle wall height for the tall test rig 𝑊𝑀𝑖𝑑 0.185 m 

Top wall height for the tall test rig 𝑊𝑇𝑜𝑝 0.18 m 

Bottom jacket height for the tall test rig 𝐽𝐵𝑜𝑡  0.49 m 

Middle jacket height for the tall test rig 𝐽𝑀𝑖𝑑 0.78 m 

Top jacket height for the tall test rig 𝐽𝑇𝑜𝑝 0.33 m 

Wall thickness of the outer glass of both test rigs Not denoted 0.002 m 

Glass thermal conductivity (Pyrex) 𝜆𝐺𝑙𝑎𝑠𝑠 1.4 W/mK 

Base plate thickness 𝛿𝑦,𝑃𝑙𝑎𝑡𝑒 0.02 m 

Base plate radius 𝑟𝑃𝑙𝑎𝑡𝑒  0.05 m 

Thermal conductivity (AISI 302 stainless steel) 𝜆𝑃𝑙𝑎𝑡𝑒 15.1 W/mK 

Density (AISI 302 stainless steel) 𝜌𝑃𝑙𝑎𝑡𝑒  8055 kg/m3 

Specific heat capacity (AISI 302 stainless steel) 𝐶𝑃,𝑃𝑙𝑎𝑡𝑒 480 J/kgK 

Table 4.1: Test rig dimensions and thermophysical properties of the liquid. 

 



~ 54 ~ 

 

Figure 4.2: Tall test rig configuration. The short test rig has a similar configuration (NNL Private 

Communication, 2013). 
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4.2 Previous Work Undertaken 

Previously the National Nuclear Laboratory performed experimental and computational 

studies on the two test rigs. A program of experimental work on the short test rig ended more 

than five years ago, but unfortunately, the results from the studies were not made formally 

available by NNL. However, the investigators did informally describe the behaviour in a 

personal communication, which stated nucleate boiling occurred on all heated surfaces in the 

test rig. The geometry and operating conditions of the short test rig were described in the 

previous subsection. 

The National Nuclear Laboratory also performed past experimental and numerical 

studies on the tall test rig. The studies comprised an experimental programme consisting of 

two phases, and one simulation study, which used symmetric CFD domains to model the test 

rigs. 

The experimental program for the tall test rig comprised two phases. In phase one of 

the programme (NNL Private Communication, 2011), the thermal hydraulics of the water in 

the column with and without the draught tube present was investigated by increasing the steam 

pressure. The ullage pressure was kept at sub-atmospheric conditions at 0.1 bar, and the steam 

saturation pressure and hence temperature was increased from 2.61 to 6.57 bar. This 

corresponded to saturated steam temperatures of 128.8 and 162.4 °C respectively. The 

approximate range of heat fluxes through the base plate was 30 to 57.8 kW/m2. The water 

inside the heating jackets did not exceed 127°C and total heat input into the jackets did not 

exceed 3 kW. 

The main finding of phase one was that without the draught tube, temperature of the 

water close to the top surface of the base plate rose with increasing steam pressure and 

temperature. The pattern of the liquid circulations in the liquid column seemed random and 

disordered. In contrast to this, with the inclusion of the draught tube the water temperature 

close to the top surface of the base plate remained steady with increasing steam pressure and 

temperature. The water temperature remained close to the local saturation temperature at the 

positions where measurements were made. The draught tube caused the water to recirculate 

in an ordered pattern, upwards between the draught tube and vessel walls, and downward in 

the core of the draught tube which impinged on the upper plate surface. 

In phase two (NNL Private Communication, 2013) a more comprehensive program of 

experimental work was performed and the recommendations of the pilot study in phase one 

were implemented. The main recommendations were mainly geometrical ones concerning the 

test rig, and improvements on the standard operating procedure. Some improvements included 
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increasing the size of some of the glassware, and replacing the existing under sized condenser 

with a more suitable one. The experimental work in phase two comprised a myriad of 

experimental tests, which tested each variable in the configuration of the tall test rig. This 

included variations of the height of the stand-off of the draught tube (denoted by 𝑐 in Figure 

4.1), changing the steam pressure and temperature inside the pressure cooker, changing the 

jacket temperatures, changing the water depths, and changing the ullage pressure. The 

emphasis of the study was to observe how each configuration and operating conditions 

affected the thermohydraulic behaviour under sub-atmospheric pressures, even though the 

ullage pressure varied.  

The main findings of phase two reinforced the main findings in phase one. At sub-

atmospheric ullage pressure, water at the free surface travels down the centre of the draught 

tube and displaces warmer water close to the upper surface of the plate. This forced a 

convective cooling effect on the upper plate, which resulted in steady temperatures. The flow 

with the tube in place resembled a thermosyphon reboiler system. 

The CFD simulation study performed by the National Nuclear Laboratory (NNL Private 

Communication, 2013) used the commercial code Ansys Fluent to model the flows inside the 

tall test rig, at atmospheric pressure. The CFD simulations were single phase, simulating sub-

cooled buoyancy driven flow inside the liquid column, at three draught tube standoff distances 

(denoted by 𝑐 in Figure 4.1) of 20, 40 and 60 mm. A summary of the boundary conditions 

that were used for the simulations are tabulated in Table 4.2, and represents one of the 

configurations which was tested in phase two of the experimental program. The temperatures 

of the lower, middle and upper jackets were set to boundary conditions of 70, 60 and 50 °C 

respectively. The non-heated walls and free surface had mixed boundary conditions applied 

to it, using a heat transfer coefficient of 3 W/m2K, and outside ambient temperature 20 °C for 

the non-heated walls, and outside ullage temperature 45 °C for the free surface. The free 

surface was treated as a free slip zero shear wall.  

Investigations of two physical flow domains were reported: firstly axisymmetric 

conditions represented the physical geometry for all three draught tube standoff distances. 

Secondly, one partial 3D flow domain, swept 180° about the central axis represented the 

physical geometry for the 40 mm standoff case only. The meshes used a structured hexahedral 

approach, and the flow numerics for advection and diffusion were second order transient. 

Lastly the 𝑘 − 𝜔 SST turbulence model was used to capture turbulence effects.  

The axisymmetric simulations computed total transient time of 100 minutes. The results 

yielded satisfactory behaviour for momentum, where the bulk circulation rates followed the 

general pattern produced in the experimental test rigs. However, the values of the velocities 
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were slightly higher than expected in the CFD simulations compared to experiment. The 

energy fields did not agree, with predictions of temperatures 13 °C hotter than expected at the 

vicinity of the upper plate. Despite the minor errors in the momentum and energy fields, the 

CFD investigation was commendable as it yielded important information on the potential heat 

and flow distributions inside the test rig.  

The partial 180° 3D simulations computed a total transient time of 35 minutes. The 

partial 3D simulations suffered the same drawbacks as the axisymmetric simulations where 

the direction of the momentum of the bulk flow appeared to be accurate. However, the 

magnitude of those circulations and the corresponding temperatures were greater than 

expected. 

Property Value 

Ullage pressure 1 bar 

Initial temperature 20 °C 

Steam temperature 110 °C 

Ambient “outside” temperature 20 °C 

Ullage temperature 45 °C 

Lower jacket temperature 70 °C 

Middle jacket temperature 60 °C 

Upper jacket temperature 50 °C 

Non-heated walls heat transfer coefficient 3 W/m2K 

Free surface heat transfer coefficient 3 W/m2K 

Table 4.2: Boundary conditions of the CFD investigation performed by the National Nuclear Laboratory. 

4.3 Review of the Unscaled Test Rigs 

The short and tall test rigs are not scaled geometries of Evaporator C. Hence, they are 

not physically representative of Evaporator C. Furthermore, the test rigs do not accommodate 

like for like boundary conditions. For example, the test rigs do not allow for condensation on 

all heated surfaces, only underneath the stainless steel base plate. In addition to this, there is 

no heat generation inside the water to represent heating from the internal helical coils in 

Evaporator C. 

 In the short test rig although the aspect ratio (vessel diameter to fill height) is similar 

to Evaporator C, the short test rig does not account for the head effect. Furthermore heating 

to the water is via steam condensation underneath the base plate. Additional external heating 

to the liquid column was not implemented which would have represented the external heating 

jacket in Evaporator C. Lastly, the short test rig does not contain any apparatus inside it to 
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disturb the natural buoyancy driven flow patterns, as found in Evaporator C such as the 

internal heating coils. 

In the tall test rig, the draught tube forced the flow to behave in an unnatural way, which 

yielded circulation patterns that may not be representative of those found inside the industrial 

evaporator, Sellafield Evaporator C. The draught tube was justified since Evaporator C has a 

core to annulus ratio between the vessel shell and the inner coils. Other geometrical factors 

within Evaporator C were not present inside the tall test rig. For example the spaces between 

the three internal helical coils. In order to accommodate this in the tall test rig two additional 

concentric draught tubes would need to be present inside the test rig. This would certainly 

disrupt the flow behaviour in the tall test rig compared to the single draught tube 

configuration. 

Despite the shortcomings of the two test rigs, the investigations performed on them 

provided relatively important insights into the possible flow phenomena occurring inside 

Evaporator C. 

4.4 Thermal Resistance Investigation on the Unscaled Test Rigs 

The thermal resistance investigation involved generating systems of algebraic equations 

that described the one dimensional heat flux and temperature distributions inside the two 

unscaled test rigs. The equations emanated from the solution of heat fluxes through thermal 

resistance networks, as shown by the single thermal resistance representation in Eq. 4.2, 

 
�̇�

𝐴
= �̇� =

𝑇2−𝑇1

𝑅
 (4.2) 

where �̇� is the heat flux (heat transfer rate per unit area) between temperatures 𝑇1 and 𝑇2 and 

𝑅 denotes the specific thermal resistance (the reciprocal of the heat transfer coefficient), 

which has units of m2K/W, and not the absolute thermal resistance, which has units of K/W.  

Figure 4.3 illustrates the thermal resistance networks for the short and tall test rigs under 

three theoretical heat transfer modes in the water: pure conduction, free convection and 

nucleate boiling on the upper plate surface. The thermal resistance networks assumed that 

heat transfer occurred vertically through the test rigs, and ignored heat transfer in other 

directions. 

Each resistance denoted by 𝑅 in Figure 4.3 describes a mode of heat transfer. 

Resistances 𝑅1 and 𝑅2 are steam condensation underneath the base plate and conduction 

through the base plate respectively. These were common for all three cases that were under 

consideration. The remaining resistances in Figure 4.3 (a), (b) and (c) were particular for each 
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case, and their descriptions are in their respective sub-sections. Each resistance was governed 

by two temperatures and a common heat flux.  

 

Figure 4.3: Thermal resistance networks for case (a) pure conduction through the liquid column, case (b) 

free convection in the liquid column, and case (c) nucleate boiling in the liquid column. 

The temperatures in the thermal resistance networks in Figure 4.3 corresponded to a 

particular position in the test rigs. For all three cases 𝑇𝑠𝑡𝑚, 𝑇𝑝𝑙 and 𝑇𝑝𝑢 corresponded to the  

temperatures at the positions of the condensing steam, lower plate and upper plate 

respectively. For the pure conduction case in Figure 4.3 (a), 𝑇𝑓𝑠 and 𝑇𝑢𝑙𝑔 corresponded to the 

temperatures at the free surface and ullage headspace respectively. For the free convection 

case in Figure 4.3 (b), 𝑇𝑙𝑖𝑞 was the liquid temperature halfway between the upper plate surface 

and the free surface, and 𝑇𝑓𝑠 and 𝑇𝑢𝑙𝑔 had the same definition as described for the pure 

conduction case in Figure 4.3 (a). Lastly, for the nucleate boiling case in Figure 4.3 (c), 𝑇𝑠𝑎𝑡 

was the local saturation temperature corresponding to the local pressure at the upper plate 

surface, and 𝑇𝑢𝑙𝑔 had the same definition as before. In each case, there was a common heat 

flux.  
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In each test case in Figure 4.3, a number of equations similar to that in Eq. 4.2 were 

generated which described heat transfer through each thermal resistance. Each investigation 

had two known temperatures at the extremes of the system. The remaining variables were 

unknown, which were the heat flux, and intermediary temperatures. Since the number of 

equations was the same as there were unknowns, it is possible to solve for the variables in the 

system using the computer program detailed in APPENDIX 1, which harnessed the Newton 

Raphson iterative method to provide a solution to the network. 

4.4.1 Assumptions 

The assumptions used in the thermal resistance investigation was as follows: 

1. The heat transfer analysis was one dimensional in the vertical 𝑦 direction. 

2. Two temperatures in the system were known (Dirichlet boundary conditions) which 

were the steam and ullage temperatures for the pure conduction and free convection 

cases (a) and (b) respectively; or the steam and liquid saturation temperatures for 

nucleate boiling case (c). 

3. The ullage pressure was set to 0.1 bar. 

4. For all three cases, the common steam saturation temperature was set to 126.9 °C.  

5. For the pure conduction and free convection cases the ullage temperature was set to 

45.8°C corresponding to the ullage saturation pressure of 0.1 bar. For the nucleate 

boiling cases the saturation temperatures of the liquid at the upper plate surface were 

51.7 °C and 70.4 °C for the short and tall test rigs respectively. 

6. The liquid column contained water and fouling was not considered. 

7. In the pure conduction case, the thermal conductivity of water was constant throughout 

the liquid column. 

8. In the free convection case the liquid was divided by two rotating convection cells 

between the upper plate and free surface. 

9. In the boiling case, nucleate boiling occurred on the upper plate surface. 

10. Radiation heat transfer was ignored and the sidewalls were adiabatic. 

11. A program written in the computer language MATLAB computed solutions to the 

governing equations. This used the Newton Raphson iterative approach as the main 

solver. Details of this program are described in APPENDIX 1. 

12. Curve fitted correlations as a function of temperature were used for the thermophysical 

properties of water (Alane, 2007).  

4.4.2 Test Case A: Pure Conduction through the Liquid Column 

Figure 4.3 (a) represents the thermal resistance network diagram for the pure 

conduction case through the liquid column. There were four resistances in sequence described 
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by Eq. 4.3 to 4.6. Eq. 4.3 describes the condensation resistance underneath the base plate, Eq. 

4.4 and 4.5 describes the conduction resistances through the base plate and liquid column 

respectively, and Eq. 4.6 describes the free convection resistance in the ullage headspace. The 

four unknown values that were determined were the heat flux, lower plate, upper plate and 

free surface temperatures.  

 �̇� =
𝑇𝑠𝑡𝑚−𝑇𝑝𝑙

𝑅𝑐𝑠𝑛
= ℎ𝑐𝑠𝑛(𝑇𝑠𝑡𝑚 − 𝑇𝑝𝑙) (4.3) 

 �̇� =
𝑇𝑝𝑙−𝑇𝑝𝑢

𝑅𝑃𝑙𝑎𝑡𝑒
= (

𝜆

𝛿𝑦
)
𝑃𝑙𝑎𝑡𝑒

(𝑇𝑝𝑙 − 𝑇𝑝𝑢) (4.4) 

 �̇� =
𝑇𝑝𝑢−𝑇𝑓𝑠

𝑅𝐿𝑖𝑞𝑢𝑖𝑑
= (

𝜆

𝛿𝑦
)
𝐿𝑖𝑞𝑢𝑖𝑑

(𝑇𝑝𝑢 − 𝑇𝑓𝑠) (4.5) 

 �̇� =
𝑇𝑓𝑠−𝑇𝑢𝑙𝑔

𝑅𝑐𝑣𝑛
= ℎ𝑐𝑣𝑛(𝑇𝑓𝑠 − 𝑇𝑢𝑙𝑔) (4.6) 

Two correlations for the condensing heat transfer coefficient were used independently 

of each other in Eq. 4.3. These were the analytical Nusselt (1916) heat transfer coefficient for 

condensing vapours on vertical surfaces; and the empirical Gerstmann and Griffith (1967) 

correlation for condensing vapours underneath downward facing surfaces. 

The analytical Nusselt heat transfer coefficient took the form shown in Eq. 4.7. 

 Nu =
ℎ𝑐𝑠𝑛𝐿

𝜆𝑙
= 0.943 [

𝜌𝑙(𝜌𝑙−𝜌𝑔)𝑔Δ𝐻𝑙𝑔
′ 𝐿3

𝜇𝑙𝜆𝑙(𝑇𝑠𝑡𝑚−𝑇𝑝𝑙)
]
1 4⁄

 (4.7) 

The enthalpy of vaporisation in Nusselt’s correlation was replaced with an augmented 

enthalpy of vaporisation (Rohsenow, 1956), which took into effect the condensate sub-

cooling as shown in Eq. 4.8. 

 Δ𝐻𝑙𝑔
′ = Δ𝐻𝑙𝑔 + 0.68𝐶𝑝,𝑙(𝑇𝑠𝑡𝑚 − 𝑇𝑝𝑙) (4.8) 

Although the Nusselt formulation was designed for vertical surfaces, it was useful to use it 

here, as it was arguably the most widely used condensing heat transfer coefficient used in the 

open literature. In addition to this, the small accuracy of phase change heat transfer 

coefficients nullifies most of the conditions under which they must be used. 

 The second correlation used for condensing heat transfer coefficient was that of 

Gerstmann and Griffith (1967). The coefficient is a function of the vapour phase Rayleigh 

number. Its formulation was different to the traditional formulation (the product of Prandtl 

and Grashof numbers) as shown in Eq. 4.9. 

 Ra =
𝑔𝜌𝑙(𝜌𝑙−𝜌𝑔)𝛥𝐻𝑙,𝑔

𝜇𝑙(𝑇𝑠𝑡𝑚−𝑇𝑝𝑙)𝜆𝑙
(

𝜎

𝑔(𝜌𝑙−𝜌𝑔)
)
3 2⁄

 (4.9) 
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The Nusselt number in the Gerstmann and Griffith correlation was found to be dependent on 

the Rayleigh number regime as shown in Eq. 4.10, where 106 < Ra < 108 denoted laminar 

flow, and 108 < Ra < 1010 denoted turbulent flow. 

 Nu = { 0.69Ra
0.20 106 < Ra < 108

0.81Ra0.193 108 < Ra < 1010
 (4.10) 

The relation in Eq. 4.11 determined the Nusselt number, and consequently allowed the heat 

transfer coefficient to be determined.  

  Nu =
ℎ𝑐𝑠𝑛

𝜆𝑙
(

𝜎

𝑔(𝜌𝑙−𝜌𝑔)
)
0.5

 (4.11) 

The free convection heat transfer coefficient in the ullage region in Eq. 4.6 was treated 

as a hot surface facing upward from the free surface (or a cold surface facing downward) 

(McAdams, 1954) as shown in Eq. 4.12. 

 Nu =
ℎ𝑐𝑣𝑛𝐿

𝜆𝑙
= 0.54Ra

1 4⁄ 104 ≤ Ra ≤ 107 Pr ≥ 0.7

0.15Ra1 3⁄ 107 ≤ Ra ≤ 1011 𝑎𝑙𝑙 Pr
 (4.12) 

In this instance the Rayleigh number for Eq. 4.12 took the traditional definition (as opposed 

to the custom definition in Eq. 4.9) as shown in Eq. 4.13. 

  Ra = GrPr =
𝑔𝛽Δ𝑇𝐿3

𝜈𝑘
 (4.13) 

4.4.3 Test Case B: Free Convection in the Liquid Column 

The network for free convection in Figure 4.3 (b) had five sequential thermal 

resistances. The first two resistances were identical to Test Case A, which were condensation 

on the lower plate surface, and conduction through the base plate. These were described by 

Eq. 4.3 and 4.4 respectively.  

The following two resistances in Figure 4.3 (b) represented free convection in the liquid 

column. It was assumed there were two convection cells inside the liquid column which were 

treated as a hot surface facing upward from the upper plate as shown in Eq. 4.14, and a cold 

surface facing downward from the free surface as shown in Eq. 4.15 (McAdams, 1954), and 

hence the heat transfer coefficients were treated by Eq. 4.12. This assumed there was a 

temperature, 𝑇𝑙𝑖𝑞 at the midpoint of the liquid column. 

The free convection resistance in the ullage head space was also identical to the 

previous case, which is described by Eq. 4.6. Hence the governing equations for Test Case B: 

Free Convection in the Liquid Column were (in order of thermal resistances) Eq. 4.3, 4.4, 

4.14, 4.15 and 4.6. The five unknown values that were determined were the heat flux, lower 
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plate temperature, upper plate temperature, mid liquor temperature and free surface 

temperature. 

 �̇� =
𝑇𝑝𝑢−𝑇𝑙𝑖𝑞

𝑅𝑐𝑣𝑛
= ℎ𝑐𝑣𝑛(𝑇𝑝𝑢 − 𝑇𝑙𝑖𝑞) (4.14) 

 �̇� =
𝑇𝑙𝑖𝑞−𝑇𝑓𝑠

𝑅𝑐𝑣𝑛
= ℎ𝑐𝑣𝑛(𝑇𝑙𝑖𝑞 − 𝑇𝑓𝑠) (4.15) 

4.4.4 Test Case C: Nucleate Boiling in the Liquid Column 

The network diagram for nucleate boiling in Figure 4.3 (c) had three resistances. In 

order of their resistance to heat transfer, these were condensation underneath the stainless 

steel base plate, conduction heat transfer through the base plate, and nucleate boiling on the 

top surface of the base plate. The condition of vapour once it was generated was not 

considered. For example, it was not considered if vapour collapses back into the liquid 

column, or rises through the liquid column and thereby escaping at the free surface.  

The thermal resistances described by Eq. 4.3 and 4.4 in Test Case A remained 

applicable for the nucleate boiling case. Eq. 4.16 described nucleate boiling occurring at the 

upper plate surface. Hence the governing equations for Test Case C: Nucleate Boiling in the 

Liquid Column were (in order of thermal resistances) Eq. 4.3, 4.4 and 4.16. The five unknown 

values that were determined were the heat flux, lower plate temperature and upper plate 

temperature. 

 �̇� =
𝑇𝑝𝑙−𝑇𝑠𝑎𝑡

𝑅𝑏𝑜𝑖𝑙
= ℎ𝑏𝑜𝑖𝑙(𝑇𝑝𝑙 − 𝑇𝑠𝑎𝑡)  (4.16) 

It was assumed that nucleate boiling occurred at the upper plate surface, where the local 

saturation temperature corresponded to the local saturation pressure, which depended on the 

liquor depth and the ullage pressure in the headspace. The saturation temperature was 

determined using Antoine’s vapour pressure correlation as shown in Eq. 4.17, which used the 

constants suggested by Linstrom and Mallard (Linstrom and Mallard, 2001), which for 𝐴, 𝐵 

and 𝐶 were 5.20389 bar, 1733.926°C and -39.485°C respectively. 

 log10 𝑃𝑠𝑎𝑡 = 𝐴 −
𝐵

𝐶+𝑇𝑠𝑎𝑡
 (4.17) 

The saturation pressure was evaluated as shown in Eq. 4.18. 

  𝑃𝑠𝑎𝑡 = 𝑃𝑢𝑙𝑔 + 𝜌𝑔𝛿𝑦𝐿𝑖𝑞𝑢𝑖𝑑 (4.18) 

From Eq. 4.18 the two saturation pressures at the upper surface of the plate for the short and 

tall test rigs were computed as 0.11 bar and 0.31 bar respectively. These figures were 

computed when the ullage pressure is set to 0.1 bar, the density of water as 998 kg/m3, and 

the liquid depth at either 0.1 m or 2.215 m (depending on the test rig). Hence, from Eq. 4.17, 
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the saturation temperatures were 51.7°C and 70.4°C for the short and tall test rigs respectively. 

For the boiling case, at the free surface it was assumed the liquor flashes to vapour. 

Six individual correlations were used for the nucleate boiling heat transfer coefficient 

in Eq. 4.16. The first was the Forster and Zuber (1955) correlation defined in Eq. 4.19. 

 ℎ𝑏𝑜𝑖𝑙 =
0.00122Δ𝑇𝑠𝑎𝑡

0.24Δ𝑃𝑠𝑎𝑡
0.75𝐶𝑝𝑙

0.45𝜌𝑙
0.45𝜆𝑙

0.75

𝜎0.5𝛥𝐻𝑙𝑔
0.24𝜌𝑔

0.24  (4.19) 

The second and third were the Mostinski (1963) and Bier et al. (1983) correlations, 

which shared the same expression for heat transfer coefficient shown in Eq. 4.20, however 

differed by their definition for the pressure correction factor as shown by Eq. 4.21 and 4.22 

respectively. 

 ℎ𝑏𝑜𝑖𝑙 = 0.00417𝑃𝐶
0.69�̇�0.7𝐹𝑃 (4.20) 

 𝐹𝑃 = 1.8𝑃𝑅
0.17 + 4𝑃𝑅

1.2 + 10𝑃𝑅
10 (4.21) 

 𝐹𝑃 = 2.1𝑃𝑅
0.27 + [9 + (1 − 𝑃𝑅

2)−1]𝑃𝑅
2 (4.22) 

The fourth and fifth correlations were the Cooper (1984) and Rohsenow (1951) 

correlations, shown by Eq. 4.23 and 4.24 respectively. 

 ℎ𝑏𝑜𝑖𝑙 = 55�̇�
0.67𝑃𝑅

0.12−0.2 log𝑅𝑃(− log𝑃𝑅)
−0.55𝑀−0.5 (4.23) 

 ℎ𝑏𝑜𝑖𝑙 = 𝐶
1 0.33⁄  (4.24) 

In the Rohsenow correlation the constant 𝐶 was defined by Eq. 4.25. 

 𝐶 =
𝐶𝑃(𝑇𝑝𝑙−𝑇𝑠𝑎𝑡)

𝐶𝑆𝐹𝛥𝐻𝑙𝑔
(
𝐶𝑝𝜇𝑙

𝜆𝑙
)
−𝑛
(
ℎ𝑏𝑜𝑖𝑙Δ𝑇𝑠𝑎𝑡

𝜇𝑙𝛥𝐻𝑙𝑔
√

𝜎

𝑔(𝜌𝑙−𝜌𝑔)
)

−0.33

 (4.25) 

The exponent n was taken as unity, which is valid for boiling water (and 1.7 for other fluids) 

(Hewitt et al., 1994). The value of the surface finish was dimensionless, and values were 

obtained from Collier and Thome (1996). In this investigation, its value was 0.0080. 

 The sixth and final correlation used for the boiling coefficient in Eq. 4.16 was that by 

Gorenflo and Kenning (2010), as shown in Eq. 4.26. 

 ℎ𝑏𝑜𝑖𝑙 = ℎ0𝐹𝑃 (
�̇�

�̇�0
)
𝑛
(
𝑅𝑝

𝑅𝑝,0
)
0.133

 (4.26) 

The correlation was a function of a pressure correction factor, which for boiling water is 

determined using Eq. 4.27. 

 𝐹𝑝 = 1.73𝑃𝑅
0.27 + (6.1 +

0.68

1−𝑃𝑅
)𝑃𝑅

2 (4.27) 

The exponent, 𝑛 in Eq. 4.26 was determined using the correlation in Eq. 4.28. 
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 𝑛 = 0.9 − 0.3𝑃𝑅
0.15 (4.28) 

The values for the reference heat transfer coefficient, surface roughness and heat flux were 

5600 W/m2K, 0.4 μm, and 20,000 W/m2 respectively. 

 Hewitt et al. (1994) reported that there are large deviations between the boiling heat 

transfer coefficients, and no general guidelines could be provided on the boiling correlation 

that should be used. Hence, in this study, six widely different correlations were used. 

 The wall superheat required to initiate nucleate boiling for each test case was calculated 

using the Davis and Anderson (1966) correlation, as shown in Eq. 4.29. 

 Δ𝑇𝑂𝑁𝐵 = 𝑇𝑝𝑢 − 𝑇𝑠𝑎𝑡 = (
8𝜎𝑇𝑠𝑎𝑡𝜈�̇�

𝐻𝑙𝑔𝜆𝑙
)
0.5

 (4.29) 

4.4.5 Results of the Investigations of the Thermal Resistance 

Networks 

The results from the thermal resistance investigation for the three cases: conduction, 

free convection and boiling are shown in Table 4.3, Table 4.4 and Table 4.5 respectively. The 

overall heat transfer coefficients were orders of magnitude lower in case A and B than in case 

C. This is because the values of the free convection heat transfer coefficients in the ullage 

region were small, which reduced the overall heat transfer coefficient, since they 

corresponded to higher thermal resistances. In cases A and B, convection heat transfer in the 

ullage region was the dominating thermal resistance. Comparatively the results show 

condensation heat transfer offered little resistance to heat transfer in both cases. 

In case C, the dominating thermal resistance was conduction heat transfer through the 

base plate. The overall heat transfer coefficients for case C were far greater than for cases A 

and B. All three cases shared the same conduction thermal resistance through the base plate, 

and in all three cases, their resistance values were the same. To reduce the conduction thermal 

resistance, and consequently increase the heat flux through the system, the thickness of the 

base plate would need to be reduced; or alternatively a base plate material with a higher 

thermal conductivity than stainless steel would need to be used. 

In case C with the exception of the Cooper correlation, all boiling heat transfer 

coefficients were in the same order of magnitude, despite their very diverse formulations. 

Rohsenow et al. (1998) reported that the square root of the molecular weight in the Cooper 

correlation was an oversimplification which could yield significant errors in the value of the 

boiling heat transfer coefficient. This may explain why the Cooper correlation produced such 

high heat transfer coefficients compared to the other boiling models. 
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There is very little variation in the solutions when using either the Nusselt or 

Gerstmann and Griffith condensing correlations on both test rigs. This is because the thermal 

resistance due to conduction in the plate removed any sensitivity of the solution to using 

different condensation or boiling heat transfer coefficients. For all boiling heat transfer 

coefficients, the temperature difference between the upper plate surface and liquor saturation 

exceeded the calculated wall superheat required to initiate nucleate boiling when calculated 

using Eq. 4.29. 
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Condensing 

Correlation 

𝑻𝒑𝒍 

(°C) 

𝑻𝒑𝒖 

(°C) 

𝑻𝒇𝒔 

(°C) 

�̇� 

(W/m2) 

𝒉𝒄𝒔𝒏 

(W/m2K) 

(𝝀 𝜹𝒚⁄ )𝑷𝒍𝒂𝒕𝒆 
(W/m2K) 

(𝝀 𝜹𝒚⁄ )𝑳𝒊𝒒𝒖𝒊𝒅 

(W/m2K) 

𝒉𝒖𝒍𝒈 

(W/m2K) 

𝑼 

(W/m2K) 

𝜟𝑻𝑶𝑵𝑩 

(°C) 

 Results for the Short Test Rig 

Nusselt 126.8 126.7 102.5 148 181905 755 6.13 2.62 1.83 0.5 

Ger. & Grif. 126.8 126.7 102.5 148 41767 755 6.13 2.62 1.83 0.5 

 Results for the Tall Test Rig 

Nusselt 126.8 126.8 56.9 19 358626 755 0.28 1.74 0.24 0.1 

Ger. & Grif. 126.8 126.8 56.9 19 67973 755 0.28 1.74 0.24 0.1 

Table 4.3: Results from test case A: pure conduction through the liquid column. The boundary conditions are steam and ullage temperatures, which have values of 126.9 

°C for steam, and 45.8 °C for the ullage respectively. 

Condensing 

Correlation 

𝑻𝒑𝒍 

(°C) 

𝑻𝒑𝒖 

(°C) 

𝑻𝒍𝒊𝒒 

(°C) 

𝑻𝒇𝒔 

(°C) 

�̇� 

(W/m2) 

𝒉𝒄𝒔𝒏 

(W/m2K) 

(𝝀 𝜹𝒚⁄ )𝒑𝒍𝒂𝒕𝒆 

(W/m2K) 

𝒉𝒑𝒖 

(W/m2K) 

𝒉𝒑𝒅 

(W/m2K) 

𝜶𝒇𝒔 

(W/m2K) 

𝑼 

(W/m2K) 

𝜟𝑻𝑶𝑵𝑩 

(°C) 

 Results for the Short Test Rig 

Nusselt 126.8 126.5 126.1 125.7 228 157666 755 520 520 2.85 2.81 0.6 

Ger. & Grif. 126.8 126.5 126.1 125.7 228 37694 755 520 520 2.85 2.81 0.6 

 Results for the Tall Test Rig 

Nusselt 126.8 126.5 126.1 125.7 228 157666 755 520 520 2.85 2.81 0.4 

Ger. & Grif. 126.8 126.5 126.1 125.7 228 37694 755 520 520 2.85 2.81 0.4 

Table 4.4: Results from test case B: free convection in the liquid column. The boundary conditions are steam and ullage temperatures, which have values of 126.9 °C for 

steam, and 45.8 °C for the ullage respectively. 
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Boiling 

Correlation 

Condensing 

Correlation 

𝑻𝒑𝒖 

(°C) 

𝑻𝒑𝒍 

(°C) 

�̇� 

(W/m2) 

𝜶𝒄𝒔𝒏 

(W/m2K) 

(𝝀 𝜹𝒚⁄ )𝒑𝒍𝒂𝒕𝒆 

(W/m2K) 

𝜶𝒃𝒐𝒊𝒍  
(W/m2K) 

𝑼 

(W/m2K) 

𝜟𝑻𝑶𝑵𝑩 

(°C) 

 Results for the Short Test Rig 

Forster and 

Zuber 

Nusselt 125.0 61.0 48364 26446 755 3637 611 8.7 

Ger. & Grif. 122.4 60.7 46583 10559 755 3563 588 8.5 

Mostinskii 
Nusselt 125.0 60.0 49095 26315 755 3994 620 8.7 

Ger. and Gr. 122.4 59.8 47224 10524 755 3887 596 8.5 

Bier et al. 
Nusselt 124.9 56.4 51670 25872 755 5904 653 8.9 

Ger. and Gr. 122.1 56.3 49651 10399 755 5742 627 8.8 

Cooper 
Nusselt 124.5 48.1 57708 24939 755 132000 729 9.4 

Ger. and Gr. 121.4 48.1 55336 10133 755 128340 699 9.3 

Rohsenow 
Nusselt 124.8 55.7 52225 25780 755 6538 660 9.0 

Ger. and Gr. 122.0 55.5 50181 10372 755 6366 634 8.8 

Gorenflo and 

Kenning 

Nusselt 125.1 64.4 45838 26922 755 2733 579 8.4 

Ger. and Gr. 122.7 64.3 44106 10697 755 2650 557 8.3 

 Results for the Tall Test Rig 

Forster and 

Zuber 

Nusselt 125.7 79.2 35084 29425 755 3979 621 4.5 

Ger. and Gr. 123.9 79.0 33853 11396 755 3905 599 4.4 

Mostinskii 
Nusselt 125.7 79.6 34775 29512 755 3763 616 4.4 

Ger. and Gr. 123.9 79.5 33525 11423 755 3668 594 4.4 

Bier et al. 
Nusselt 125.6 78.1 35870 29209 755 4634 635 4.5 

Ger. and Gr. 123.8 78.0 34561 11340 755 4515 612 4.4 

Cooper 
Nusselt 125.4 70.7 41284 27875 755 130070 731 4.8 

Ger. and Gr. 123.2 70.7 39675 10972 755 126660 702 4.7 

Rohsenow 
Nusselt 125.5 75.7 37638 28745 755 7077 666 4.6 

Ger. and Gr. 123.6 75.6 36236 11212 755 6900 642 4.5 

Gorenflo and 

Kenning 

Nusselt 125.8 82.3 32835 30080 755 2760 581 4.3 

Ger. and Gr. 124.1 82.2 31664 11580 755 2682 561 4.2 

Table 4.5: Results from test case C: nucleate boiling in the liquid column. The boundary conditions are steam and liquid saturation temperatures, which have values of 

126.9 °C for steam, and 47.7 °C and 70.4 °C for liquid saturation for the short and tall test rigs respectively.
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4.4.6 Thermal Resistance Results: Discussion and Summary 

The thermal resistance investigation was shown to be a rapid technique in predicting 

the temperature and heat flux distributions inside a heat transfer system. The limitations to 

the thermal resistance investigation was that it is one-dimensional. Information in other 

dimensions was not taken into account. However the one dimensional assumption allowed 

the rapid computation of a solution, even with non-linear heat transfer correlations. 

The investigation had shown that using different condensation and boiling 

coefficients did not yield a significant change in solution. This is because conduction through 

the base plate was the limiting thermal resistance. It effectively removed sensitivity of the 

system to the types of condensing and boiling correlations used. 

4.5 CFD Investigation of the Unscaled Test Rigs 

A limitation of the thermal resistance investigation was that it did not provide 

information regarding the mass and momentum transfer inside the liquid columns, such as 

velocities and pressures. Instead, assumptions had to be made, such as the number of 

convection cells occurring within the liquid column (in the free convection cases), or the 

position of boiling inside the system (in the nucleate boiling cases). Furthermore, the thermal 

resistance investigation was only one-dimensional; hence, further information was required 

of the heat transfer and circulations inside the test rigs. 

CFD simulations were performed of the two test rigs and their results compared to 

the results from the thermal resistance investigation. For the short test rig, simulations for 2D 

axisymmetric and full 3D geometries were performed, in order to ascertain if axisymmetric 

conditions were a viable alternative to a full 3D simulation. Furthermore, a full 3D simulation 

was performed on the tall test rig. The commercial code Ansys CFX v14.0 was used to 

perform the CFD simulationsin this chapter. 

Upon start-up, the thermal behaviour of the liquor in the test rigs is dominated by 

pure conduction for a finite time, until a critical Rayleigh number is achieved wherein free 

convection dominates until phase change takes place. The primary time of interest for the 

CFD cases is when phase change occurs in the bulk liquor. During this time a pseudo steady 

state condition exists, where flow features repeat periodically. 

4.5.1 Governing Equations 

In a later section of this chapter it is shown that the momentum and heat transfer inside 

the system was turbulent, based on calculations of the Rayleigh number. Due to this 
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reasoning, provisions were made for the modelling of turbulence inside the system by use of 

the eddy viscosity hypothesis.  

The CFD code Ansys CFX solves a set of conservation equations for each fluid phase. 

Single phase flow in the simulations was considered. Multiphase boiling flow was not 

simulated. However a mathematical indicator was developed to show where boiling may take 

place in the system. The conservation equations that were solved were the Unsteady Reynolds 

Averaged Navier Stokes (URANS) equations. In addition to the momentum equations, 

turbulence transport equations were solved for in order to predict turbulent viscosity within 

the framework of the eddy viscosity hypothesis. The single phase continuity equation is 

shown in Eq. 4.30. 

 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑈𝑗) = 0 (4.30) 

The single phase unsteady momentum equation for eddy viscosity based turbulence models 

is described by Eq. 4.31. 

 
𝜕𝜌𝑢𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑃′

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇𝑒𝑓𝑓 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)] + 𝑆𝑀 (4.31) 

The modified pressure term 𝑃′ contains contributions from the static pressure 𝑃 and normal 

turbulent stresses, as defined in Eq. 4.32. The second term on the left hand side is the 

contribution from turbulent kinetic energy, 𝑘. The third term accounts for dilatational stresses, 

and is only significant for compressible flow 

 𝑃′ = 𝑃 +
2

3
𝜌𝑘 +

2

3
𝜇𝑒𝑓𝑓

𝜕𝑢𝑘

𝜕𝑥𝑘
  (4.32) 

The effective viscosity 𝜇𝑒𝑓𝑓 contains contributions from the molecular viscosity 𝜇 and the 

turbulent viscosity 𝜇𝑡, as defined in Eq. 4.33. 

 𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡  (4.33) 

The turbulent viscosity is sometimes known as the eddy viscosity, and is computed by 

the classes of RANS turbulence models known as eddy viscosity models (EVMs). These 

models employ the eddy viscosity hypothesis, which assumes that turbulent mixing can be 

modelled in a manner similar to molecular mixing. In such models, the eddy viscosity is given 

by 

 𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
  (4.32) 

where 𝑘 is the turbulent kinetic energy, 𝜀 is the rate of turbulence energy dissipation, and 𝐶𝜇 

is an empirical constant, usually assumed to be equal to 0.09. The class of EVMs referred to 

as 𝑘 − 𝜀 models solve modelled transport equations for 𝑘 and 𝜀. The class of EVMs referred 
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to as 𝑘 − 𝜔 models solve modelled transport equations for 𝑘 and the turbulence frequency 

𝜔 = 𝐶𝜇
−1 𝜀 𝑘⁄ , in which case the eddy viscosity is expressed as in Eq. 4.34. 

 𝜇𝑡 = 𝜌
𝑘

𝜔
  (4.33) 

Wilcox (2006) provided further details on the most common turbulence models and their 

transport equations. 

The 𝑘 − 𝜀 class of turbulence models are distinguished by their requirement of 

supplementary logarithmic wall functions at the walls. This is because the 𝜀 transport equation 

is singular, so cannot be integrated all the way up to the wall. On the other hand, the 𝑘 − 𝜔 

class of turbulence models can be integrated all the way up to the wall. Hence they are reputed 

to provide more reliable predictions of wall boundary layers. On the other hand, they prove 

to be unphysically sensitive to free stream turbulence far from walls. 

A class of hybrid models has been developed, which blend the 𝑘 − 𝜀 and 𝑘 − 𝜔 

models in such a way to combine the advantages of each (Menter, 1994). The baseline (BSL) 

𝑘 − 𝜔 model blends the 𝜔 and 𝜀 transport equations in a way which is equivalent to the 

Wilcox 𝑘 − 𝜔 model near walls, and equivalent to the standard 𝑘 − 𝜀 model far from walls.  

The Shear Stress Transport (SST) 𝑘 − 𝜔 model is based on the BSL 𝑘 − 𝜔 model, with 

additional terms included to account for near wall shear stress transport. The model generally 

provides good predictions for flows, which involve strong streamline curvature, adverse 

pressure gradients, wall bounded flows and flow separations. For completeness, the governing 

equations for 𝑘 and 𝜔 are provided below. 

 
𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑘) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘3
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘𝑠 + 𝑃𝑘𝑏 − 𝛽

′𝜌𝑘𝜔  (4.35) 

 
𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝜔) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜔3
)
𝜕𝜔

𝜕𝑥𝑗
] 

                   +(1 − 𝐹1)2𝜌
1

𝜎𝜔2𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
+ 𝛼3

𝜔

𝑘
𝑃𝑘𝑠 ++𝑃𝜔𝑏 − 𝛽3𝜌𝜔

2 (4.36) 

𝑃𝑘𝑠 and 𝑃𝑘𝑏 denote shear production and buoyancy production terms. 𝐹1 is the blending factor 

between the 𝜔 and  𝜀 transport equations, and is a complex function of wall distance and 

turbulence quantities. The 𝑘 − 𝜔 SST model has been used extensively in modelling flows in 

industry and academia (Menter et al., 2003). It is a well-validated turbulence model, having 

been used with success in a variety of diverse applications. Consequently, the CFD 

simulations presented here were based on single phase, transient turbulent flow using the k - 

ω SST turbulence model (Menter, 1994).  
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The thermal energy equation for solids, that is for conjugate problems is shown in Eq. 

4.37. The velocity term refers to solid motion if it is modelled. In the absence of solid motion, 

and for constant material properties, Eq. 4.37 reduces to the ubiquitous parabolic Laplace heat 

equation. 

 
𝜕(𝜌ℎ)

𝜕𝑡
+ ∇ ∙ (𝜌𝒖ℎ) = ∇ ∙ (𝜆∇𝑇) + 𝑺𝐸 (4.37) 

The single phase thermal energy equation for fluids is almost identical to that of solids. 

For fluids, using eddy viscosity based RANS models, the relation is shown in Eq. 4.38. In this 

case, the velocity term refers to fluid motion. Turbulent mixing is modelled using the eddy 

diffusion hypothesis (EDH), which assumes that turbulent heat fluxes are proportional to 

mean enthalpy gradients, with a constant of proportionality equal to 𝛤𝑡, known as the eddy 

diffusivity. 

 
𝜕(𝜌ℎ)

𝜕𝑡
+ ∇ ∙ (𝜌𝒖ℎ) = ∇ ∙ (𝜆∇𝑇 + Γt∇𝐻) + 𝜏 ∶ ∇𝒖 + 𝑺𝐸   (4.38) 

Γt is assumed to be proportional to the eddy viscosity, as indicated in Eq. 4.39. 𝜎𝑡 is an 

empirical constant known as the turbulent Prandtl number. 

                                                 Γt =  
𝜇𝑡

𝜎𝑡
       (4.39) 

 The source term for fluids includes the fluid shear stress terms and the velocity 

gradients. The term 𝜏 ∶ ∇𝑢 represents viscous dissipation and is always positive. 

4.5.2 Assumptions in the CFD Models 

A number of assumptions were made in the CFD modelling. It was assumed the liquid 

in the test rigs was water, and that the flow was turbulent. Buoyancy turbulent production and 

dissipation source terms were treated within the turbulence model. Condensation heat transfer 

underneath the base plate was modelled by a condensation heat transfer coefficient on the 

bottom surface of the base plate, coupled with an outside temperature equal to the steam 

saturation temperature. Similarly the wall thickness of the glass walls was not taken into 

consideration in the physical flow domains. To account for these, they are absorbed in the 

prescription of the wall boundary conditions in terms of an overall external heat transfer 

coefficient. No fouling or contact resistance was assumed on any of the heat transfer surfaces. 

The simulations were single phase and did not consider two phase boiling flows. 

Furthermore radiation heat transfer was not considered to have an effect contributing to the 

system. The flows inside the test rig were assumed to be turbulent in nature. This was 

determined by computing the Rayleigh number for the flow, which was defined by Eq. 4.13. 

The temperature difference in the Rayleigh number was taken to be the overall driving 



~ 73 ~ 

temperature for the system, which was the difference between steam and ullage temperatures. 

This had the effect of inflating the calculated Rayleigh number, but also represented its upper 

limit. The thermophysical properties were computed on the saturation line and at a mean 

temperature between these two temperatures. Traditionally the properties are evaluated at a 

mean film temperature, however this is not known. The length scale was taken to be the height 

of the liquid column for each respective test rig. Table 4.6 lists the properties which were used 

to compute the Rayleigh number for the short and tall test rigs. 

Property Value 

Steam temperature 𝑇𝑠𝑡𝑚 [°C] 126.9 

Ullage temperature 𝑇𝑢𝑙𝑔 [°C] 45.8 

Driving temperature 𝛥𝑇 [°C] 81.1 

Mean temperature 𝑇𝑚𝑒𝑎𝑛 [°C] 86.35 

Kinematic viscosity 𝜈 [m2/s] 3.39 x 10-7 

Thermal diffusivity 𝛼 [m2 /s] 1.65 x 10-7 

Thermal expansivity 𝛽 [K-1] 6.82 x 10-4 

Length scale for the short test rig 𝐿 [m] 0.1 

Length scale for tall test rig 𝐿 [m] 2.215 

Acceleration due to gravity 𝑔 [m/s2] 9.81 

Rayleigh number for the short test rig 9.71 x 109 

Rayleigh number for the tall test rig 1.05 x 1014 

Table 4.6: Rayleigh number properties for the short and tall test rigs. 

The short test rig was computed to have a Rayleigh number of 9.71x109 and the tall test 

rig is computed to have a Rayleigh number of 1.05x1014. Bergman et al. (2011) mention that 

values less than 108 are laminar, and more than 108 are turbulent. Therefore based on the 

Rayleigh number computations the flows inside the short and tall test rigs were deemed both 

turbulent in nature. The short test rig Rayleigh number was close to the transition between 

laminar and turbulent regimes. The system was assumed to be turbulent for the task of 

performing the simulations since using a turbulence model in CFD can aid solution 

convergence. 

4.5.3 Boundary Conditions 

Three test cases were simulated, which were 2D axisymmetric and 3D geometries for 

the short test rig, and a 3D geometry for the tall test rig. The 2D axisymmetric and 3D cases 

for the short test rig had identical boundary conditions, barring some minor differences to 

account for the difference in geometry. The 3D case for the tall test rig also shared identical 

boundary conditions as the short test rig, with additional conditions to account for the heating 

jackets as show in Figure 4.1. 
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In all three cases the free surface was modelled as an opening boundary condition. An 

opening condition allowed fluid to leave or re-enter, or to do a combination of both at different 

positions on the boundary where it was applied. This does not imply a multiphase simulation 

was performed, where the free surface was explicitly tracked. Rather, fluid was allowed to 

leave or re-enter the domain based on the velocity components at that surface. 

As part of the prescription of the opening boundary condition, the opening pressure and 

temperature was defined. The opening pressure was set to the ambient pressure outside of the 

opening. This was the ullage pressure. The opening temperature was set to the temperature at 

which liquid was allowed to return back inside the domain. This was set to the ullage 

temperature corresponding to the ullage pressure. Hence the opening pressure and 

temperatures were set to 0.1 bar and 45.8 °C respectively. It must be noted setting the ullage 

temperature to 45.8 °C had the effect of forcing the liquid to re-enter the domain at a 

temperature not necessarily at the same as the temperature it left with.  

In the short and tall test rigs, ambient heat loss from the non-jacketed side walls and 

from the non-insulated sides of the base plate were taken into consideration. At the vertical 

sides of the baseplate, the correlation recommended by Churchill and Chu (1975) as shown 

in equation Eq. 4.34 was used. This is a well-known correlation which is valid for heat transfer 

from vertical surfaces. This was applied with an ambient outside temperature taken as 26.9 

°C. The thermophysical properties were evaluated at the ambient air temperature. 

 Nu =
ℎ𝑐𝑣𝑛𝐿

𝜆𝑙
= (0.825 +

0.387Ra1 6⁄

[1+(0.492 Pr⁄ )9 16⁄ ]
8 27⁄ ) (4.34) 

At the non-jacketed walls of the liquid column an average heat transfer coefficient was 

applied. This took into consideration the wall glass thickness, 𝛿𝑥 as shown in equation Eq. 

4.35.  

 ℎ𝑤𝑎𝑙𝑙 =
1

(
𝛿𝑥

𝜆
)
𝑔𝑙𝑎𝑠𝑠

+
1

ℎ𝑐𝑣𝑛

 (4.35) 

Although the test rigs were cylindrical, the use of a planar relation for the conduction 

resistance was not considered detrimental. In later simulations similar conditions were treated 

as radial systems. 

The tall test rig had an internal draught tube completely submerged within the liquid. 

These walls were treated as adiabatic no slip walls. Furthermore, the tall test rig had three 

heating jackets. Physically these jackets are water jackets. Unfortunately further information 

was not supplied by the National Nuclear Laboratory regarding their operating conditions. 

However it was advised the temperatures inside the jackets were approximately 50, 60 and 70 

°C for the top, middle and lower jackets respectively. Hence, in the CFD modelling, the 
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temperatures of the liquid in the jackets were set to fixed temperatures of 50, 60 and 70 °C 

for the top, middle and lower jackets respectively. 

In both test rigs, condensation underneath the base plate was treated with a heat transfer 

coefficient applied to the lower plate surface with an outside temperature. The correlation 

applied was the Nusselt (1916) heat transfer coefficient described by Eq. 4.7. The outside 

temperature was the steam temperature which was 126.9 °C. The justification was that the 

results from the thermal resistance investigation showed the problem was insensitive to the 

type of condensing correlation that is used. 

4.5.4 Boiling Indicator 

An implicit method of detecting phase change was used by defining a new variable 

called 𝑇∗ as defined by equation 4.36. Using this definition, if 𝑇∗ is greater than zero, then 

boiling may occur, and if 𝑇∗ is less than zero, boiling will not occur. The saturation 

temperature was not provided directly by the CFD solver. This was defined by using the 

Antoine’s vapour pressure equation as shown in equation (4.17), and it was inserted into Eq.  

4.36 as a user defined expression. 

 𝑇∗ =
𝑇𝑙𝑜𝑐𝑎𝑙−𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
 (4.36) 

4.5.5 Convergence Strategy 

During experimental operation, the test rigs operated at a pseudo steady state condition. 

The transient averaged temperatures and velocities fluctuated around mean values. In order 

to replicate this within the framework of the CFD investigation, the simulations were initially 

advanced in time to overcome the initial transient effects. This was achieved by initially using 

a steady state solver with large false time steps. Proceeding this a transient simulation using 

smaller transient time steps were used to for the final reportable simulation results. 

The convergence strategy used was to first solve a pure conduction simulation (no flow, 

no turbulence modelling) with large false time steps employed for the fluid and solid domains 

shown in Eq. 4.37. The thermal diffusivity term in Eq. 4.37 was calculated independently for 

the solid (baseplate) and fluid (liquor) domains. 

 𝛿𝑡 ≈
𝐿2

𝑘
 (4.37) 

The result for the pure conduction case was then used as the initial state for a free 

convection steady state simulation using first order upwind schemes for the advection 

numerics. The first order upwind scheme induces additional numerical dissipation, so 

increases the likelihood of achieving a steady solution. This in turn was used as the initial 

state for a more accurate simulation using high resolution schemes for the advection numerics. 
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The false time step for the steady state simulations in the fluid domain was determined by 

using the relationship shown in Eq. 4.38 This time step was chosen to resolve the frequency 

of internal gravity waves in the buoyant flows. Time steps larger than this were avoided, as 

they lead to lack of convergence (Ansys Inc, 2010a). 

 𝛿𝑡 ≈ √
𝐷

𝛽𝑔Δ𝑇
 (4.38) 

All of the measures up to this point were to ensure a suitable initial guess for the final 

transient simulations which were computed for 30 s for the short and tall test rigs. A 

simulation time of 30 s was arbitrarily chosen to ascertain if periodic flow features occured 

within this window.  

 In the transient simulations, high resolution numerics for the advection scheme and a 

second order backward Euler method for the transient scheme were used. An adaptive time 

stepping approach was taken which allowed the solver to select a suitable time step for 

convergence. In this approach, the solver computed a suitable time step within a user specified 

minimum and maximum range of time steps and minimum and maximum number of 

coefficient loops per time step. The solver attempts to increase or decrease the time steps, 

based on achieving successful convergence of each equation within the specified range of 

coefficient loops. 

 For the adaptive time stepping configuration, the minimum and maximum time steps 

chosen were 0.01 and 29 s respectively. The minimum and maximum number of coefficient 

loops were 1 and 6 respectively. Lastly the time step decrease and increase factors were 0.75 

and 1.1 respectively. Convergence of each simulation was ensured by letting the root mean 

square and maximum non-dimensionalised residuals of the momentum, mass, energy and 

turbulence equations fall to at least 10-4. Additionally to ensure conservation of the solved 

equations domain imbalances were monitored at the end of every simulation to ensure that 

they were less than 0.01 % of the maximum imbalance over the entire domain. Lastly, the 

values of temperature and velocity at selected monitor points inside the domain were recorded 

during the simulation to monitor for pseudo steady state periodic flow features. 

4.5.6 Computer Hardware Used for the Simulations 

The simulations were performed on the high performance computing facilities at the 

University of Leeds facility ARC2 (Advanced Research Computing 2). The simulations were 

performed on 3 nodes of 16 CPUs (48 CPUs) with 32GB of error correcting code memory 

per node available to the CFD solver. The transient free convection simulations took around 

10 wall clock hours to complete. 
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4.5.7 Physical Flow Domain 

The physical flow domains for the two test rigs comprised a solid base plate, and a 

liquid column above the baseplate. Heat transfer through the base plate was treated as a 

conjugate heat transfer problem. The flow domains did not include the head space above the 

liquid free surface. Hence the test rigs were modelled as single phase. Furthermore the 

physical flow domains neglected the thickness of the glass walls surrounding the liquid 

column. 

Two flow domains were tested for the short test rig. These were a 2D axisymmetric 

domain, and a full 3D domain. The purpose of this was to ascertain if buoyancy driven flows, 

such as those found in the unscaled test rigs and in Evaporator C, could be modelled by using 

symmetric conditions. If so, this would reduce model complexity and reduce simulation 

compute times. Figure 4.4 (left) shows the 2D axisymmetric domain superimposed on the 3D 

domain which shows their relative differences. Figure 4.4 (centre) and (right) are the 2D 

axisymmetric and 3D flow domains respectively. 

 

Figure 4.4: (Left) 2D axisymmetric and 3D physical flow domains, (centre) 2D axisymmetric flow domain, 

(right) 3D flow domain. 

The 2D axisymmetric geometry was rotated 2 degrees about the central 𝑦 axis. To 

prevent poorly shaped elements from being formed at the axis, and to facilitate hexahedral 

cells inside the domain, the geometry tapered to a finite radius, rather than tapering directly 

to the axis. This is known as nipping the tip as shown in Figure 4.5. To the authors knowledge, 

this procedure is not formally documented, but is recommended within circles of the CFD 

community. The radius of the nip tip 𝑟𝑛𝑝 should be sufficiently small that such that removal 

material will not cause detriment to the results. In the 2D axisymmetric geometry, this value 
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was taken as 1e-6 m. The base plate radius was 5 cm. So the nip tip radius represented less 

than 1% of the base plate radius. Nipping the tip had the advantage of producing high quality 

hexahedral elements close to the axis. This is desirable to prevent spurious results in those 

areas due to poorly formed elements.  

 

Figure 4.5: The 2D axismymmetric geometry is tip is nipped in order to facilitate hexahedral cells during 

the meshing procedure. 

For the tall test rig, only a 3D physical flow domain was used. This is shown by Figure 

3.1. The image on the left in Figure 3.1 shows the wireframe of the geometry, exposing the 

internal draught tube. The image in the centre shows the bottom portion of the tall test rig, 

and the image on the right shows the top portion of the tall test rig.  
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Figure 4.6: The 3D physical flow domain for the tall test rig. (Left) wireframe view showing the internal 

draught tube, (centre) bottom section of the test rig, (right) top section of the test rig. 

4.5.8 Mesh Sensitivity Study 

A mesh sensitivity study was performed for all three physical flow domains. These were 

the 2D axisymmetric case and 3D case for the short test rig, and the 3D case for the tall test 

rig. The meshes were of the structured type, comprising hexahedral cells. Three meshes were 

generated for each simulation case, and the formal grid convergence index (GCI) procedure 

developed by Celik et al. (2008) was used to perform the mesh sensitivity studies. The meshes 

generated adhered to the stringent quality criteria set out in CHAPTER 3. Structured meshes and 

their benefits, along with the GCI mesh sensitivity study procedure were also discussed in 

CHAPTER 3. 

For all three studies, 2D axisymmetric and 3D for the short test rig, and 3D for the tall 

test rig two variables were chosen as the parameters to ensure a mesh independent solution. 

These were the area averaged transient average heat transfer coefficient and 𝑌+ values at the 

upper plate surface. The mesh density at the remaining walls had the same density as that of 

the wall at the upper plate surface. Therefore using variable values at the upper plate surface 

to gauge global mesh performance was prudent without exhausting effort. 

Three meshes were tested in each mesh sensitivity study. The mesh statistics for the 

three meshes used in the 2D axisymmetric mesh independence study are listed in Table 4.7. 
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The wall clock time taken to produce a simulation time of 30 s for each mesh is also included 

in Table 4.7. As expected, the computational time increased with mesh density. 

 
Mesh Statistics Mesh Size  

Mesh Max. Face 

Angle [°] 

Min. Face 

Angle [°] 

Max. 

Edge 

Length 

Ratio 

Max. Cell 

Vol. Ratio 

No. of 

Nodes 

No. of 

Elements 

Compute 

time 

[min] 

1 91.1 88.9 180.9 1.44 25740 12551 121.8 

2 95.6 84.4 304.6 1.44 39480 19344 150.2 

3 93.3 85.6 480.7 1.42 61115 29800 187.3 

Table 4.7: Mesh statistics for the three meshes used in the 2D axisymmetric mesh independence study on 

the short test rig. 

The generated parameters for the mesh sensitivity study on the 2D axisymmetric case 

and the final grid convergence index are shown in Table 4.8. For the heat transfer coefficient 

on the upper plate surface the grid convergence index (GCI) is 0.4% between meshes 3 and 

2, compared to 2.6% between meshes 2 and 1. The extrapolated errors are comparatively very 

large. This is because the extrapolated values of the heat transfer coefficient are orders of 

magnitude less than the true values, which is an artefact of using the Richardson extrapolation 

method. This large variation is due to the Richardson extrapolation step, and illustrates why 

it should not be used in isolation to determine mesh independence. The GCI for the area 

averaged 𝑌+ are 20.9% between meshes 2 and 1, and 16.6% between meshes 3 and 2. At face 

value, these seem very high. However since all three 𝑌+ values fall within the required limits 

(less than 1), the low near wall 𝑅𝑒 number formulation near wall is utilised, which was the 

aim of the ultra fine mesh refinement at the walls in order to take full advantage of the 𝑘 − 𝜔 

SST turbulence formulation. Based on this information the mesh that is used for the CFD 

analysis is mesh 2. 

The blocking strategy and final mesh used for the 2D axisymmetric simulations are 

shown in Figure 4.7. The hexahedral cells at the radial axis of the geometry (and the remaining 

cells) met all the quality requirements which were outlined in CHAPTER 4. This meant the 

nip tipping of the geometry worked as intended, and removed the possible generation of 

poorly shaped elements in that region. Out of the three meshes, which were tested, mesh 2 

was chosen.  
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ϕ = Area averaged heat 

transfer coefficient on 

the upper plate surface 

ϕ = Area averaged 𝒀+ on 

the upper plate surface 

𝝓𝟏 770 [W/m2K] 0.27 

𝝓𝟐 848 [W/m2K] 0.06 

𝝓𝟑 861 [W/m2K] 0.02 

𝒓𝟐𝟏 1.16 1.16 

𝒓𝟑𝟐 1.16 1.16 

𝑷 12.15 11.99 

𝝓𝒆𝒙𝒕,𝟐𝟏 -94 [W/m2K] 0.25 

𝝓𝒆𝒙𝒕,𝟑𝟐 -16 [W/m2K] 0.04 

𝒆𝒂𝒑𝒙,𝟐𝟏 10.1% 77.6% 

𝒆𝒂𝒑𝒙,𝟑𝟐 1.6% 61.4% 

𝒆𝒆𝒙𝒕,𝟐𝟏 919.4% 6.0% 

𝒆𝒆𝒙𝒕,𝟑𝟐 5309.2% 33.9% 

𝑮𝑪𝑰𝟐𝟏 2.6% 20.9% 

𝑮𝑪𝑰𝟑𝟐 0.4% 16.6% 

Table 4.8: Mesh statistics for the three meshes used in the 2D axisymmetric short test rig mesh 

independence study. 

        

 

Figure 4.7: (Starting top left and going clockwise) hexahedral blocking strategy; planar view of the global 

mesh resolution; zoomed in view of the near wall inflation at the interface of the water column (orange) 

and baseplate (purple); and zoomed in plan view of the hexahedral cells accommodating the nipped tip.  

The mesh statistics for the 3D geometry for the simulations on the short test rig are 

listed in Table 4.9. All of the mesh statistics met the requirements set out on CHAPTER 3. 
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Mesh Statistics Mesh Size  

Mesh Max. Face 

Angle [°] 

Min. Face 

Angle [°] 

Max. 

Edge 

Length 

Ratio 

Max. Cell 

Vol. Ratio 

No. of 

Nodes 

No. of 

Elements 

Compute 

time 

[min] 

1 128.5 63.4 98.4 1.39 185520 181154 274.7 

2 131.2 54.8 112.1 1.41 416014 406224 824.7 

3 102.0 83.2 411.4 1.40 942299 920124 1098.7 

Table 4.9: Mesh statistics for the three meshes used in the 3D short test rig mesh independence study. 

Furthermore, the results from the mesh independence study on the three meshes of the 3D 

short test rig investigation are listed in Table 4.10. The results followed a similar pattern to 

the independence study for the 2D axisymmetric short test rig case. The extrapolated error for 

the heat transfer coefficients were very large, due to the very small-extrapolated values based 

on the Richardson extrapolation. However the grid convergence index error falls to within 

acceptable limits. Based on this information mesh 2 was used. 

 
ϕ = Area averaged heat 

transfer coefficient on 

the upper plate surface 

ϕ = Area averaged 𝒀+ on 

the upper plate surface 

𝝓𝟏 910 [W/m2K] 1.40 

𝝓𝟐 1035 [W/m2K] 0.41 

𝝓𝟑 1050 [W/m2K] 0.10 

𝒓𝟐𝟏 1.309 1.309 

𝒓𝟑𝟐 1.313 1.313 

𝑷 8.04 4.36 

𝝓𝒆𝒙𝒕,𝟐𝟏 -141 [W/m2K] 1.43 

𝝓𝒆𝒙𝒕,𝟑𝟐 -17 [W/m2K] 0.45 

𝒆𝒂𝒑𝒙,𝟐𝟏 13.8% 70.6% 

𝒆𝒂𝒑𝒙,𝟑𝟐 1.4% 75.7% 

𝒆𝒆𝒙𝒕,𝟐𝟏 743.5% 2.1% 

𝒆𝒆𝒙𝒕,𝟑𝟐 6304.1% 8.2% 

𝑮𝑪𝑰𝟐𝟏 2.2% 39.5% 

𝑮𝑪𝑰𝟑𝟐 0.2% 41.5% 

Table 4.10: Mesh statistics for the three meshes used in the 3D short test rig mesh independence study. 

The blocking strategy and final mesh used for the 3D short test are shown in Figure 4.8. 

The blocking strategy is such that the final mesh was in the format of an O-Grid in order to 

capture the curvature of the edges of the test rig. An O-Grid is one type of topology for the 

structured meshing approach, which was explained briefly in CHAPTER 3. 
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Figure 4.8: (Starting top left and going clockwise) hexahedral O-Grid blocking strategy; isometric view of 

the global mesh resolution; zoomed in view of the near wall inflation at the walls of the test rig; and plan 

view of the hexahedral cells in an O-Grid configuration.  

The mesh statistics of the final case, the 3D tall test rig simulations are listed in Table 

4.11. The simulations for the tall test rig took noticeably longer to compute since they require 

more cells in the physical flow domain. 

The results from the last mesh independence study are listed in Table 4.12. The grid 

convergence indices for the heat transfer coefficient increase between meshes 2 and 3, 

compared to meshes 1 and 2, suggesting slightly greater error is associated with mesh 3. Mesh 

1 failed to meet the required 𝑌+ of less than 1, where meshes 2 and 3 did. However the GCI 

errors are large for the 𝑌+ variable. This is due to the large spread in the data, and that only 

three meshes were tested. Therefore the data sample was limited. Despite this, a 23% GCI 

relative error for mesh 2 is acceptable as the 𝑌+ values still fall within the requirements, which 
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was required to be less than 1. Based on this information mesh 2 was used for the CFD 

simulations on the tall test rig. 

 
Mesh Statistics Mesh Size  

Mesh Max. Face 

Angle [°] 

Min. Face 

Angle [°] 

Max. 

Edge 

Length 

Ratio 

Max. Cell 

Vol. Ratio 

No. of 

Nodes 

No. of 

Elements 

Compute 

time 

[min] 

1 134.6 56.5 65.4 1.56 602877 581664 1350 

2 169.8 10.2 2308.5 1.56 1183596 1158528 4200 

3 171.5 42.0 2351.0 1.56 1712804 1676528 8100 

Table 4.11: Mesh statistics for the three meshes used in the 3D tall test rig mesh independence study. 

 
ϕ = Area averaged heat 

transfer coefficient on 

the upper plate surface 

ϕ = Area averaged 𝒀+ on 

the upper plate surface 

𝝓𝟏 1071 [W/m2K] 1.37 

𝝓𝟐 1055 [W/m2K] 0.18 

𝝓𝟑 1012 [W/m2K] 0.11 

𝒓𝟐𝟏 1.258 1.258 

𝒓𝟑𝟐 1.131 1.131 

𝑷 10.21 7.61 

𝝓𝒆𝒙𝒕,𝟐𝟏 17 [W/m2K] 1.44 

𝝓𝒆𝒙𝒕,𝟑𝟐 61 [W/m2K] 0.11 

𝒆𝒂𝒑𝒙,𝟐𝟏 1.5 [W/m2K] 87.0 

𝒆𝒂𝒑𝒙,𝟑𝟐 4.1% 38.2% 

𝒆𝒆𝒙𝒕,𝟐𝟏 6122% 5.1% 

𝒆𝒆𝒙𝒕,𝟑𝟐 1644% 59% 

𝑮𝑪𝑰𝟐𝟏 0.2% 23% 

𝑮𝑪𝑰𝟑𝟐 2.0% 31% 

Table 4.12: Mesh statistics for the three meshes used in the 3D tall test rig mesh independence study. 

The blocking strategy for the tall test rig required more thought and planning than for 

the 2D axisymmetric and 3D cases for the short test rig. This is because the tall test rig 

contained the draught tube, which complicates the geometry with regards to the blocking 

topology. The final blocking topology was an o-grid contained within an o-grid. This is better 

illustrated by the topology in Figure 4.9, which shows the blocking strategy in the absence of 

the draught tube (where the standoff appears, as denoted by 𝑐 in Figure 4.1), and in the 

presence of the draught tube. A planar view of the mesh resolution is also detailed in Figure 

4.9, again without and with the draught tube; and an isometric view of the mesh at the 

horizontal midpoint of the test rig is shown, along with the internal mesh layout close to the 

draught tube. 
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Figure 4.9: (Starting top left and going left to right) hexahedral O-Grid blocking strategy in the absence of 

the draught tube; O-Grid blocking strategy with the draught tube; plan view of the mesh in the absence of 

the draught tube; plan view of the mesh around the draught tube; one cell thick isometric illustration of 

the mesh around the draught tube; and planar view of the internal mesh close to the draught tube. 

 



~ 86 ~ 

4.5.9 Simulation Results and Comparison to Thermal Resistances 

In this section the results from the final 30 s simulation times are discussed. The 

simulations performed prior to this are not discussed because they were not fully converged 

solutions, and they existed purely to accelerate the flow fields for the conservation equations 

and thus provide an initial guess for the final transient runs. Furthermore only time averaged 

results are presented for all three cases. The steady state simulations prior to the transient 

simulations advanced the solution sufficiently in time. This removed any evolution of the 

solution with respect to time. Hence the results were pseudo steady state, where the variables 

were fluctuating around a mean value. 

Proof of convergence is presented for the 2D axisymmetric short test rig. The 3D short 

test rig and the 3D tall test rig followed similar convergence behaviour. The root mean square 

residuals for the 2D axisymmetric case are shown in Figure 4.10, and the temperature and 

velocity monitor points are displayed in Figure 4.11 and Figure 4.12. The residuals are plotted 

in log base 10, and indicate all conservation equations to not exceed 1.0x10-5. The global 

imbalances during the simulation compute time are less than 1% of the total fluxes into and 

out of the domain. The temperature plots in Figure 4.11 remain constant with respect to time 

indicating the steady state solution prior to the transient simulation had advanced the 

simulation as intended. The velocity plots in Figure 4.12 show more chaotic behaviour. This 

is to be expected since the top of the test rigs are modelled as an opening, allowing water to 

leave and re-enter the domain as required, significantly disturbing the flow patterns. 

 

Figure 4.10: Root mean square residuals (log10) for the 2D axisymmetric case. 
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Figure 4.11: Monitor points of temperature at three pertinent locations during the simulation compute 

process.  

 

Figure 4.12: Monitor points of velocity at two pertinent locations during the simulation compute process.  

Figure 4.13 illustrates four key variables in the 2D axisymmetric case, which are 

transient averaged over the simulation time (30 s). These variables are the temperatures, 

dimensionless 𝑇∗ (defined in Eq. 4.36), velocity magnitudes and direction, and eddy viscosity 

ratios. The largest temperature variation occurs through the base plate. There is little 

temperature variation in the liquid, and remains close to 45°C, which is also very close to the 

saturation temperature of 45.8°C, which corresponds to the ullage pressure of 0.1 bar. This 

implies the system is well-mixed, allowing relatively colder fluid from the free surface to 

displace warmer currents in the water. The contours of 𝑇∗ reveal values greater than 0 occur 

at the upper plate surface, which indicates potential regions of boiling. It is a potential and not 

a certainty, because nucleate wall boiling requires some degree of superheat to achieve the 

onset of boiling. The streamlines indicate two core counter rotating convection cells, 
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constrained within the radial centre line (left wall) and the outer glass wall (right). There are 

two smaller counter rotating convection cells at the upper plate surface, which have relatively 

low velocities of 0.8 to 1.0 cm/s. The contours of eddy viscosity ratio are an indication of the 

turbulence intensity. The eddy viscosity ratio is the ratio of turbulence viscosity and dynamic 

molecular viscosity. As a guide, values greater than 10 transitions into turbulent flows, and 

lower than 10 tending to 0 indicates laminar flow. The flow is laminar at the upper plate 

surface and the outer glass wall, and is turbulent in the bulk liquid, including at the line of 

symmetry (this is the radial axis, which is the left hand side wall). Laminar flow is featured 

at the upper plate surface and outer glass wall, because zero slip conditions are applied which 

evaluated wall shear stresses on those surfaces, as shown in Eq. 4.39. On the other hand 

symmetry boundary conditions apply zero shear conditions on their respective surfaces, which 

results in greater velocities at the symmetry surfaces, which consequently increases the eddy 

viscosity ratio at those surfaces, as shown in the contours of eddy viscosity. 

 𝜏𝑤 = −𝜇
𝑑𝑢𝑖 

𝑑𝑛
 (4.39) 

Figure 4.14 shows the equivalent contours of temperature, dimensionless 𝑇∗, 

streamlines and eddy viscosity ratio for the 3D short test rig case. The contours of temperature 

and dimensionless 𝑇∗ are in agreement with the 2D axisymmetric short test rig case. Most of 

temperature variation occurs across the base plate. Furthermore, the values of dimensionless 

𝑇∗ are greater than zero at the upper plate surface, agreeing with the 2D axisymmetric case. 

The behaviour of the streamlines and the contours of the eddy viscosity ratio are in 

disagreement with the 2D axisymmetric case. The 3D short test rig shows two large counter 

rotating convection cells for the entire domain, compared to two large, and two small counter 

rotating convection cells for the 2D axisymmetric half domain. Furthermore, the values of the 

eddy viscosity ratio in the centre of the 3D short test rig are lower than those at the line of 

symmetry in the 2D axisymmetric case. 

The simulations using a 2D axisymmetric geometry produce an unphysical solution 

because the imposition of axisymmetry enforces an unstable solution which is broken in the 

simulations using a full 3D geometry. In the 2D axisymmetric case, the instantaneous time-

dependent solution is forced to be axisymmetric, constrained by the physical free slip wall 

which represents the symmetry line. In the full 3D case the instantaneous time-dependent 

fields are not restricted to be axisymmetric. The time-averaged 3D solution is axisymmetric; 

however this axisymmetric solution cannot be predicted using 2D axisymmetric conditions. 

Therefore symmetric conditions may not be permitted to model buoyancy driven flows found 

in the unscaled test rigs; the scaled test rig; and Evaporator C. 
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Figure 4.13: (Starting top left and going clockwise, transient averaged values over 30 s) temperature in the 

baseplate and liquid column; dimensionless 𝑻∗ in the water indicating boiling regions; streamlines in the 

water with superimposed arrow heads indicating flow direction; and eddy viscosity ratio indicating 

turbulence intensity. 
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Figure 4.14: (Starting top left and going clockwise, transient averaged values over 30 s) temperature in the 

baseplate and liquid column; dimensionless 𝑻∗ in the water indicating boiling regions; streamlines in the 

water with superimposed arrow heads indicating flow direction; and eddy viscosity ratio indicating 

turbulence intensity. 

Figure 4.15 and Figure 4.16 are time averaged contours of temperature, dimensionless 

𝑇∗, water streamlines and eddy viscosity ratio inside the tall test rig, with Figure 4.15 

displaying an area close to the upper plate surface, and Figure 4.16 showing an area at the top 

opening, where the free surface would be. A complete visual illustration of these variables in 

their entirety inside the tall test rig is displayed in Figure 4.17. In all three figures, the contours 

of temperature exhibit the same behaviour as the short test rig where the largest temperature 

difference occurs across the baseplate. The entire liquid column remains close to 45 °C, 

despite additional heating into the water via three external heating jackets. 

The contours of 𝑇∗ indicate behaviour far different to that in the short test rig. The 

bottom half of the water column is sub-cooled, as shown in 𝑇∗ contours in Figure 4.15. This 
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is in contrast to the values of 𝑇∗ at the top of the test rig where the free surface is, which 

clearly reveals a superheated region where the local saturation temperature is exceeded. This 

is better illustrated by the contours of 𝑇∗ in Figure 4.16. Figure 4.17 shows how the water 

column switches behaviour from sub-cooled to superheated approximately half way up the 

test rig. This is attributed to the absolute pressure inside the system, which more than doubles 

from the free surface (0.1 bar) to the upper plate surface (0.31 bar), which directly effects the 

local saturation temperature (45.8 °C at the free surface, and 70.2 °C at the upper plate 

surface). This immediately suggests boiling is highly sensitive to large hydrostatic heads in 

systems under a vacuum, which is the type of system found in Evaporator C.  

The streamlines for the system are counter intuitive. The flow direction travels 

downward between the draught tube and vessel walls, and upward through the draught tube. 

This is counter intuitive because additional heating is supplied to the water via the three 

external heating jackets. Therefore the local water density and temperature at the outer walls 

should be less than the local density and temperature inside the unheated core, which would 

suggest downward travel inside the draught tube, and upward travel at the outer walls. The 

draught tube forces circulations of the water counter to its natural flow direction. The standoff 

value for the draught tube was taken as 2 cm, and in the experimental campaigns this is a 

variable. In the experimental campaigns discussed in Section 4.2, the stand-off values were 2 

cm and greater, and for values greater than 2 cm the water travelled down the draught tube, 

counter to that simulated here. Therefore the momentum behaviour is clearly sensitive to the 

stand-off distance. Small clearances similar to the stand-off are found in Evaporator C. One 

example is the distance between the steam sparger and the vessel shell, and the geometries of 

are described in CHAPTER 6. Therefore the bifurcation phenomena found in the tall test rig 

may be present inside Evaporator C. 

The contours of eddy viscosity ratio in Figure 4.15, Figure 4.16 and Figure 4.17 imply 

largely laminar flow, where its value tends to a value of 10, and lower. The contours suggest 

the greatest region of turbulence is at the free surface. This does not have any significant 

connotations in single phase flow in the absence of evaporation at the free surface. However 

when a more detailed analysis is undertaken in the next section, where the free surface and 

boiling is physically modelled, the transfer of turbulence across the free surface may be 

significant.  
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Figure 4.15: (Starting top left and going clockwise, transient averaged values over 30 s, displaying the 

bottom portion of the test rig) temperature in the baseplate and liquid column; dimensionless 𝑻∗ in the 

water indicating boiling regions; streamlines in the water with superimposed arrow heads indicating flow 

direction; and eddy viscosity ratio indicating turbulence intensity. 
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Figure 4.16: (Starting top left and going clockwise, transient averaged values over 30 s, displaying the top 

portion of the test rig) temperature in the baseplate and liquid column; dimensionless 𝑻∗ in the water 

indicating boiling regions; streamlines in the water with superimposed arrow heads indicating flow 

direction; and eddy viscosity ratio indicating turbulence intensity. 
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Figure 4.17: (Starting left to right, transient averaged values over 30 s, displaying the entire tall test rig) 

temperature in the baseplate and liquid column; dimensionless 𝑻∗ in the water indicating boiling regions; 

streamlines in the water with superimposed arrow heads indicating flow direction; and eddy viscosity 

ratio indicating turbulence intensity. 
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4.6 Comparison: Thermal Resistance and CFD Investigations 

Table 4.13 lists the values of the area average temperatures and heat transfer 

coefficients for all three cases, 2D axisymmetric short test rig, the 3D short test rig, and the 

3D tall test rig. The areas were taken as the lower plate surface, the upper plate surface, a user 

defined surface in the midpoint of the water column, and at the opening, which treats the free 

surface. The bulk temperature for the condensation heat transfer coefficient underneath the 

base plate is 126.9°C. Likewise the bulk temperature for the remaining heat transfer 

coefficients on all other surfaces is the ullage temperature, which is 45.8°C. 

Test Rig 𝑻𝒔𝒕𝒎 

[°C] 

𝑻𝒑𝒍 

[°C] 

𝑻𝒑𝒖 

[°C] 

𝑻𝒎𝒊𝒅 

[°C] 

𝑻𝒇𝒔 

[°C] 

𝑻𝒖𝒍𝒈 

[°C] 

𝒉𝒄𝒔𝒏 

[W/m2K] 

𝒉𝒑𝒖 

[W/m2K] 

𝒉𝒎𝒊𝒅 

[W/m2K] 

𝒉𝒇𝒔 

[W/m2K] 

2D 

Axisym. 
126.9 125.8 83.9 47.4 46.8 45.8 28909 837 0.1 6.4 

3D 

Short 
126.9 125.7 79.1 47.0 46.8 45.8 28596 1035 25 37 

3D Tall 126.9 125.7 82.5 55.9 50.1 45.8 28697 921 4.2 1268 

Table 4.13: Area average values of temperature and heat transfer coefficient at the lower plate surface, 

upper plate surface, mid surface in the water column and free surface. The bulk temperatures for the heat 

transfer coefficients for the surface underneath the base plate is the steam temperature 126.9 °C, and all 

other surfaces is the ullage temperature 45.8 °C. 

The CFD values in Table 4.13 do not correspond well with the pure conduction results 

in the thermal resistance investigation presented in Table 4.3. The natural reason is because 

Table 4.3 is a completely different heat transfer system compared to the CFD case (pure 

conduction versus free convection). The CFD temperature distributions in Table 4.13 do not 

agree with the temperature distributions calculated for the free convection thermal resistance 

cases. However, despite this, the same orders of magnitude of the heat transfer coefficients 

reported for both investigations are obtained. This suggests fixing the heat flux in one 

direction in the thermal resistance case may not be prudent as the heat flux is implied to vary 

in the CFD cases, and hence in reality. 

The temperatures and heat transfer coefficients reported in the CFD simulations agree 

to the same order of magnitude with the nucleate boiling thermal resistance investigation 

presented in Table 4.5. This is despite using boiling correlations for the thermal resistance 

case, and the CFD cases being single phase convective flow. The likely explanation is due to 

the velocities at the upper plate forcing larger heat transfer rates on that surface, which yields 

larger heat transfer coefficients. The CFD simulations did indicate boiling may occur on the 

upper plate surface. 
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4.7 Summary 

In this chapter one dimensional thermal resistance investigations were performed on 

the short test rig and the tall test rig. In addition to this, CFD simulations of the two test rigs 

were also performed. A structured hexahedral meshing approach was taken to reduce 

discretization error in the meshes, and a mesh sensitivity study was performed, with the final 

meshes used indicating that the discretisation error was no more than 2%, but the extrapolated 

errors were high. In order to challenge the assumption that symmetry may be used as a 

modelling technique, two cases for the short test rig were performed, which were 2D 

axisymmetric and full 3D. For the tall test rig only a full 3D simulation was performed. 

Thermal resistance networks were proved to be a computationally inexpensive tool to 

predict temperatures, heat transfer coefficients, and heat fluxes in a heat transfer system when 

compared to complex and expensive CFD simulations.  They provided useful information 

such as temperature distributions and values of heat fluxes, without needing to resort to 

expensive methods such as CFD 

However, there is poor agreement between pure conduction and free convection thermal 

resistance cases and the CFD investigation. There is, however, reasonable agreement between 

the nucleate boiling case and CFD investigations. In the nucleate boiling thermal resistance 

case ,there is good agreement between the six different boiling heat transfer coefficients used, 

and the solutions in all three thermal resistance cases are not sensitive to the type of 

condensation heat transfer coefficient used. 

Poor flow physics is observed in the 2D axisymmetric geometry in the CFD simulations 

of the short test rig. This is because the symmetry planes enforce an unphysical solution that 

is broken in the simulations using a full 3D geometry. Hence, the use of 2D axisymmetric 

conditions to model buoyancy driven flow in the test rigs is not recommended, even if the 3D 

solution is symmetric.  

 𝑇∗ distributions in the short test rig indicate that nucleate boiling at the upper plate may 

occur, and in the tall test rig, the 𝑇∗ distributions indicate that the liquor is heated above its 

saturation temperature in the upper regions of the test rig. The CFD simulations have shown 

that phase change in the liquor is highly dependent on the pressure head of the liquid column. 

The symmetry will be broken in Evaporator C which has a similar fill height to vessel 

width. This is because Evaporator C has blockages such as the internal structure including the 

coils, which were not represented inside the short test rig. Furthermore the draught tube in the 

tall test rig forces the behaviour of the water to behave in a way counter to its natural tendency. 
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Chapter 5  

Computational Analysis on the Scaled Test Rigs 

5.1 Introduction 

The thermal resistance and CFD investigations on the two unscaled test rigs provided 

insight into the potential for boiling in systems similar to Evaporator C. The thermal resistance 

investigation was one dimensional and limited in the information it could output. The CFD 

simulations provided greater insights into possible locations of boiling, but did not actually 

simulate it. Furthermore, in the absence of experimental verification, it would have been 

difficult to ascertain if boiling simulations on the unscaled test rigs may or may not have been 

correct. Lastly, all indications of evaporation suggested that it may occur principally in two 

locations, at heated surfaces, and at the free surface. 

The purpose of this chapter is to describe how the CFD models were developed and 

validated to perform boiling water simulations in a one quarter scaled test rig slice of 

Evaporator C. The simulations were multiphase phase flows, performed within the Eulerian-

Eulerian modelling framework. 

5.2 The Scaled Test Rig 

The test rig (D. McNeil et al., 2015) represents a one-quarter scale thin slice of the 

evaporating section of Evaporator C, as shown in Figure 5.1. The test rig comprised a main test 

section, and two additional sections stacked on top of each other. All sections were manufactured 

from stainless steel, but accommodated a glass-viewing window to observe flow patterns. The 

lower section was the main test section. It is 0.75 m wide, 1 m high and 98 mm deep. The lower 

section also contained two tube bundles, a left hand side bundle and a right hand side bundle. 

The right hand side tube bundle was raised 32 mm higher than the left hand side bundle. This 

was intended to replicate the sloping effect of the internal helical coils of Evaporator C, as shown 

by Figure 5.1 (right). The tube bundles were made of brass, had an outside diameter of 28.5 mm, 

and were 5 mm thick. Finally, the front face of the lower test section was a glass panel. 
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Figure 5.1: One-quarter scale thin slice test rig (left) of the evaporating section of Evaporator C (right). 

Test rig image courtesy of McNeil et al. (2015), and Evaporator C image courtesy of Perry & Geddes 

(2011). 

An issue with the one-quarter scale design is that the head effect of the liquid column 

would disappear if the Evaporator C liquid depth was also scaled, since the liquid depth in 

Evaporator C was 2.35 m, and one quarter of this is 0.59 m. Therefore two additional test sections 

were required, stacked on top of the main test section, to accommodate greater liquid depths as 

found in Evaporator C. The two test sections had heights of 0.6 m each. This allowed liquid 

depths up to 2 m to be tested. 

The vessel had two methods of heating. These were via the coils, and/or via heating pads, 

which were attached to the sides of the vessel. Heating from the coils was achieved via Joule 

heated rod heaters inserted into the cavities of the brass tubes. The heating pads on the sides of 

the vessel were also Joule heated. 

The test facility, shown in Figure 5.2, is located at the Heriot-Watt University. The scaled 

test rig operates in a closed system, devoid of air, and the operating liquid is deionised water. 

McNeil et al. (2015) described how the scaled test rig achieved operating conditions: 

1. The vacuum pump was activated until the pressure inside the system read 500 mbar. 

(a) (Upson, 1984) (b) (Perry and Geddes, 2011)
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2. The drain valve was opened, allowing deionised water to flow from the storage tanks to 

the test section, and the valve shut when the desired liquid depth was achieved.  

3. The hot well drain valve was opened, allowing water to flow to the hot well from the 

storage tank, and the valve closed when the desired water height was achieved in the hot 

well sight glass. 

4. Remaining air from the system was purged by activating the circulating pump, and 

opening the water control valves and the evaporator entry shut-off valves. When steady 

state flow was obtained inside the evaporator, the shut-off valve was closed. 

5. The required head space ullage pressure was achieved by activating the vacuum pump 

under the correct settings corresponding to the required pressure. 

6. The heat supply was activated at 90% of full power which, after some time, caused the 

water to boil. This allowed any remaining air to accumulate inside the hot well, which 

allowed the final opportunity to remove the remaining air from the system. 

7. Any vapour that was generated at 90% full power was condensed in the overhead 

condenser and pumped back to the test section. McNeil et al. (2015) reported that steady 

state conditions were achieved in around 3 hours of operation. 

8. Finally, the required heating conditions were applied, which allowed experimental 

readings to take place. 

The experimental readings were comprised of temperatures which were outputted from 

a number of k-type thermocouples embedded in strategic locations inside the test section. 

There were three groups of thermocouples. The first group were termed stream 

thermocouples, and were placed inside the bulk liquid. The second group were termed tube 

thermocouples, and were embedded inside the brass tube walls. The final group of 

thermocouples were termed the fluid thermocouples, and placed between the heated coils. 
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Figure 5.2: The Heriot-Watt facility which houses the scaled test rig (D. McNeil et al., 2015).  

5.3 Past Work 

McNeil et al. (2015) performed an experimental investigation of boiling water at low 

pressure 50 mbar, and comparatively high pressure 850 mbar, in the one quarter scale test rig. 

Two water depths were tested for the low pressure series: 0.8 m and 2 m. The high pressure 

series tested water depths at only 0.8 m. Heating to the water was supplied by the tubes only, 

and the side heating pads were not activated. The tube heat flux range for the low and high 

pressure series was varied from 10 to 70 kW/m2. 

At 50 mbar pressure, for both high and low water levels, vapour generation on the tube 

walls was not observed until heat fluxes of 40 kW/m2 or greater were achieved. Below this 

heat flux value, the tubes were in the single phase convective regime with very little 

nucleation. This suggests that the wall temperatures were less than the temperature onset of 

nucleate boiling for that given condition. 

Above 40 kW/m2, and at 50 mbar pressure for both water depths, the tubes were in the 

sub-cooled nucleate boiling regime. Vapour bubbles were generated, but did not detach from 



~ 101 ~ 

the tube walls, and collapsed back into the sub-cooled liquid. During the 50 mbar tests, the 

bulk liquid temperature was largely uniform during boiling, and was similar to the saturation 

temperature at the free surface. Due to the input of heat into the system, vapour generation at 

the free surface did occur. A constant water level was maintained by condensing the off gas 

vapour and returning it back to the main test section. In the low pressure tests, the local 

saturation pressure changed significantly with pool depth since the hydrostatic pressure head 

of the pool was a large fraction of the total pressure. 

For the tests at 850 mbar, the local saturation pressure does not change significantly 

with pool depth (0.8 m), since the pressure head was a smaller fraction of the total pressure. 

For the high pressure tests, boiling occurred on all tube surfaces at all tube heat fluxes tested. 

This indicated that large superheats were required for boiling at 50 mbar, compared to boiling 

at 850 mbar. 

5.4 Computational Approach and Boundary Conditions 

Since boiling inside Evaporator C occurs at low pressures, the 50 mbar, 0.8 m depth dataset 

of McNeil et al., (2015) was used to help develop and validate the CFD models. The 0.8 m 

depth was chosen, and not the 2 m depth, to save on computational resources, since a 0.8 m 

depth required a smaller computational physical flow domain, and hence fewer mesh cells 

compared to the 2 m depth case. The high heat flux data set of 65 kW/m2 was chosen. This is 

because, at these heat fluxes, sub-cooled nucleate boiling was observed. Hence the CFD 

simulations modelled evaporative flows under these conditions in the scaled test rig. 

The CFD domain had the same dimensions as the test rig described by McNeil et al. An 

annotated schematic of the CFD domain with the indicated 0.8 m water level is shown in Figure 

5.3 (Left). The coils were not modelled as a conjugate heat transfer problem. Instead only the 

outside profile of the coils were included in the physical flow domain, and  appropriate heat 

fluxes were applied to those surfaces. Inside the CFD domain, monitor points of temperature, 

velocity, dimensionless 𝑇∗, volume fraction, and absolute pressure were recorded at the positions 

which corresponded to the stream and fluid thermocouple positions in the actual test rig, as shown 

in Figure 5.3 (Right). The stream thermocouples begin at TS5 and end at TS15, because 

thermocouples TS1 to TS4, and TS16 to TS18 were above the free surface position, and therefore 

superfluous for the CFD investigation (they would be used if CFD simulations of the 2 m water 

depth were performed).  
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Figure 5.3: (Left) general arrangement of the experimental test rig, (right) thermocouple positions in the 

experimental test rig. 

The CFD boundary conditions were identical to the experimental boundary conditions of 

McNeil et al. The ullage pressure was set to 50 mbar. All 36 tube surfaces had a heat flux of 65 

kW/m2 applied to them. The liquid depth was set to 0.8 m. The entire geometry of the scaled test 

rig was not modelled. Instead the headspace above the free surface was cut off at an arbitrary 

height above the free surface such that the position of the vapour opening in Figure 5.3 (Left) 

had no influence on the flow physics at the free surface. Hence, the vapour opening was modelled 

as an opening boundary condition, with an opening temperature of 32.9 °C (corresponding to 

saturation pressure of 50 mbar). This allowed generated vapour above the free surface to escape, 

as is possible in the scaled test rig. To maintain a constant water level the liquid feed inlet above 

the free surface was included in the physical flow domain, at the same position as found in the 

experimental test rig. The liquid feed rate was set equal to the rate of evaporation to guarantee 

continuity, and the incoming feed had a temperature of 11 °C. 

In the CFD investigation the non-heated walls were assumed to be heat loss walls. The 

boundary walls were not modelled as a conjugate heat transfer problem, but rather as a thin 

wall problem. Hence heat loss from the walls of the unscaled test rig were assumed to be via 

conduction heat transfer through the wall thicknesses, and a combination of convection and 

radiation heat transfer to the environment. This was modelled by inputting an overall heat 

transfer coefficient and a specified temperature at the boundaries of the physical flow domain. 

The outside temperature was assumed to be 15 °C. A similar method of heat loss was taken 
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in modelling the flows inside the unscaled test rigs in CHAPTER 4. Figure 5.4 illustrates the 

modes of heat loss from the scaled test rig. 

 

Figure 5.4: Heat from the physical flow domain and lost from the walls of the flow boundaries via 

conduction, and a combination of convection and radiation to the surroundings. 

The heat loss heat transfer coefficient, ℎ𝑙𝑜𝑠𝑠 for each wall was determined using the 

expression as shown in Eq. 5.1. The expression is a function of the wall normal thickness 

𝛿𝑛𝑤𝑎𝑙𝑙 and the thermal conductivity 𝜆𝑤𝑎𝑙𝑙, and contains contributions due to convection ℎ𝑐𝑣𝑛 

and radiation ℎ𝑟𝑎𝑑. 

 ℎ𝑙𝑜𝑠𝑠 = [
𝛿𝑛𝑤𝑎𝑙𝑙

𝜆𝑤𝑎𝑙𝑙
+

1

(ℎ𝑐𝑣𝑛+ℎ𝑟𝑎𝑑)
]
−1

 (5.1) 

In Figure 5.3 (Left) the viewing window is a 19 mm thick borosilicate glass, with thermal 

conductivity 1.13 W/m K (Wilson, 2004) and thermal emissivity of 0.9. The sidewalls and back 

plate are 5 mm thick stainless steel walls, of thermal conductivity 15.1 W/m K (taken to be AISI 

302), and thermal emissivity of 0.33 (corresponding to lightly oxidised stainless steel). Values of 

the thermal emissivity of glass and steel and the thermal conductivity of steel were taken from 

Bergman et al., (2011). The Churchill and Chu (1975) free convection heat transfer coefficient 

in Eq. 5.2 was used for the convective heat transfer component in Eq. 5.1, which was also 

reported in Bergman et al., (2011). This correlation was used as it is valid under all ranges of 

Rayleigh number. 

  Nu =
ℎ𝑐𝑣𝑛𝐿

𝜆
= {0.825 +

0.387Ra1 6⁄

[1+(0.492 Pr⁄ )9 16⁄ ]
8 27⁄ }

2

 (5.2) 

The radiation heat transfer coefficient in Eq. 5.1 was computed by using the linearized 

relation as shown in Eq. 5.3. 

 ℎ𝑟𝑎𝑑 = 𝜀𝜎(𝑇𝑤𝑎𝑙𝑙 + 𝑇𝑎𝑖𝑟)(𝑇𝑤𝑎𝑙𝑙
2 + 𝑇𝑎𝑖𝑟

2 ) (5.3) 

This simplification for the radiation heat transfer coefficient is only valid where the 

surroundings are much larger than the heated surface. Since the scaled test rig is in a large 

laboratory room at the Heriot-Watt facility this assumption holds true. 
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5.5 Statement on Nucleate Boiling and Evaporation 

Within the framework of the CFD, thermal phase change at the free surface due to 

evaporation was modelled. However thermal phase change at the heated walls due to 

nucleation was not modelled. The rationale behind this was that, in the experimental study, 

any vapour bubbles which nucleated at the coil surfaces quickly collapsed back inside the 

bulk sub-cooled water, therefore it was assumed that modelling such complex physics in CFD 

was unnecessary. In addition to this, modelling wall boiling is computationally restrictive due 

to the small time scales involved (bubble detachment, growth, collapse, coalescence and 

breakup), and due to the limited information in the literature on wall boiling at sub-

atmospheric pressures. 

The most popular and widely used wall nucleate boiling model in CFD is the so-called 

RPI boiling model, developed by Kurul & Podowski (1991). This model has been 

implemented into most commercial and open source CFD solvers and has been validated and 

used extensively in high pressure boiling applications. The RPI boiling model is a mechanistic 

phase change model, applied at heated walls where bubble nucleation is expected to occur, 

and complements a bulk boiling phase change model, but does not replace it. The bulk boiling 

phase change model is described later. 

This model was originally developed for flow applications above atmospheric 

pressures, such as in pressurised water nuclear reactors, and high pressure steam generators, 

and this model has been used with success in those and other applications. See for example 

the work of  Milnes et al. (2012) who used the RPI wall boiling model to model boiling flows 

in the hypervapotron high heat flux cooling device employed in fusion reactors. 

The wall boiling model comprises a number of sub models for nucleate boiling at the 

wall. The original model of  Kurul & Podowski (1991) employed empirical correlations for 

these sub-process, many of which were only valid for boiling at high pressure, hence require 

modification for boiling at atmospherics and sub-atmospheric pressures (Tu and Yeoh, 2002). 

These are listed below. For brevity, references are given, but detailed equations are omitted. 

 Bubble departure diameter, 𝑑𝐵𝑤: the original model of Kurul & Podowski (1991)) 

employed the correlation of Tolubinsky and Kostanchuk (1970), which was developed 

for pressurised water data, and expresses the bubble departure diameter as a function 

of local liquid sub-cooling. 

 Wall nucleation site density, 𝑛′′: the current models implemented, and those that are 

widely used assume a formulation proposed by Lemmert and Chawla (1977) whereby 

the number of nucleation sites per unit area is modelled as a function of wall superheat. 
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 Bubble detachment frequency, 𝑓: The correlation by Von Ceumern-Lindenstjerna 

(1977) is employed. This depends on the acceleration due to gravity, so it is based on 

pool boiling., which is somewhat at odds with the application of the model to high 

pressure forced convective boiling 

 Bubble waiting time, 𝑡𝑤: is modelled according to Tolubinsky and Kostanchuk (1970). 

It is assumed that the waiting time between each bubble departure is 80% of the bubble 

detachment period. 

 Area influence factors: Kurul and Podowski (1991) assumed that the diameter of 

influence of a nucleating bubble is twice the bubble departure diameter. In addition to 

this, the maximum area fraction for bubble influence is also required to be known 

In addition to these mechanistic sub-models, the heat flux to the wall is split into three separate 

contributions, due to evaporative, convective, and quenching heat transfer. 

 Evaporative heat transfer, 𝑄𝑒: The evaporative heat transfer rate at the wall is given in 

terms of the above quantities, as follows: 

  𝑄𝑒 =
𝜋

6
𝑑𝑏𝑊
3 𝜌𝑔𝑓𝑛′′Δ𝐻𝑙𝑔 (5.4) 

 Convective heat transfer, 𝑄𝑐: is assumed to occur in the near wall region away from the 

influence of departing bubbles. Kurul and Podowski (1991) modelled this using a 

convective heat transfer coefficient ℎ𝑐 based on the Stanton number correlation for 

convective heat transfer in a pipe 

  𝑄𝑐 = ℎ𝑐(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑙) (5.5) 

 

 Quenching heat transfer, 𝑄𝑞:  refers to the heating of sub-cooled liquid as it displaces 

the space occupied by rising bubbles between the bubble and the superheated wall. This 

is assumed to occur in the area of influence of the rising bubbles. The quenching heat 

transfer coefficient is modelled according to Del Valle & Kenning (1985) based on the 

solution of the transient heat conduction equation in a semi-infinite slab. In this model 

  𝑄𝑞 = ℎ𝑞(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑙) (5.6) 

Where the quenching heat transfer coefficient ℎ𝑞 is a function of the bubble departure 

frequency 𝑓 and the waiting time 𝑡𝑤. 

The partitioning of the wall heat flux into evaporative, convective and quenching parts yields 

an equation relating the total wall heat flux to the wall temperature: 

  𝑄 = 𝑄𝑒 +𝑄𝑐 + 𝑄𝑞 (5.7) 
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This relationship is non-linear, so it has to be solved iteratively to determine the wall 

temperature for a specified wall heat flux. Once determined, the wall temperature gives the 

three individual components of the wall heat flux, including the evaporation rate. 

The original model of Kurul and Podowski (1991) was found to be strongly mesh 

dependent. This was mainly due to the use of the Stanton number correlation for convective 

heat transfer, which employed the liquid velocity at the centre of the near-wall cell, and the 

use of the Tolubinsky and Kostanchuk (1970) correlation for bubble departure diameter, 

which depended on the near wall liquid sub-cooling. These problems were solved by Krepper 

et al., (2007) who modelled the convective heat transfer using turbulent wall functions, and 

computed near-wall liquid sub-cooling at a fixed vale of 𝑌+ = 250 for use in the bubble 

departure diameter and quenching heat transfer correlations. 

Based on the large number of sub models which would be required to be adapted to 

sub-cooled nucleate boiling, a separate independent investigation would have be undertaken 

to critically evaluate each sub model and provide bespoke formulations for boiling at 

pressures close to vacuum. In addition to this, formulations would also have to be developed 

which describe complex interface structures, such as a vapour bubbles escaping at the free 

surface if it occurs.  However in the first instance, a bulk phase change model, that is boiling 

and condensation at liquid-vapour interfaces, would need to be validated first, which this work 

attempted to do. Lastly, the work by McNeil et al. (2015) suggests that, at very low pressures, 

such as those found in Evaporator C, vapour bubbles nucleated at walls tend to collapse back 

into the sub-cooled bulk liquid. Therefore bypassing wall boiling in the first instance was an 

adequate first step into attempting to solve this complex problem. 

5.6 The Eulerian - Eulerian Approach 

There are two methods to solve the conservation equations in the Eulerian - Eulerian 

framework, the homogeneous and inhomogeneous approaches. For a given transport process, 

the inhomogeneous approach assigns individual transport equations to each phase. For 

example, for the case of momentum transport, each phase is governed by its own momentum 

transport equation which determines its own velocity field. The phasic momentum equations 

are coupled together by the inclusion of terms which take into account interphase transfer 

processes such as interfacial drag, and momentum transfer due to interphase mass transfer 

(Drew and Passman, 2006). Throughout this chapter, variables assigned to the liquid phase 

will be given the subscript 𝛼, and variables assigned to the vapour phase will be given the 

subscript 𝛽. 
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The homogenous approach to momentum transfer assumes that the individual phase 

velocities may be described by a shared velocity field. This is a reasonable assumption in 

separated flow with a free surface. The governing conservation equations are derived by 

summing the individual phasic momentum transport equations over all of the phases denoted 

by subscripts 𝛼 and 𝛽. Thus, the homogeneous momentum equation is described by Eq. 5.8. 

 
𝜕

𝜕𝑡
(𝜌𝛼𝛽𝑼) + ∇ ∙ (𝜌𝛼𝛽𝑼⊗𝑼− 𝜇𝛼𝛽(∇𝑼 + (∇𝑼)

𝑇)) = −∇𝑃 (5.8) 

The mixture density 𝜌𝛼𝛽 and viscosity 𝜇𝛼𝛽 are given by Eq. 5.9 and Eq. 5.10 respectively, 

and are a function of the phasic volume fraction, 𝑟𝛼 or 𝑟𝛽. 

 𝜌𝛼𝛽 = 𝜌𝛼𝑟𝑎 + 𝜌𝛽𝑟𝛽 (5.9) 

 𝜇𝛼𝛽 = 𝜇𝛼𝑟𝑎 + 𝜇𝛽𝑟𝛽 (5.10) 

Eq. 5.8 is essentially a single phase momentum equation with variable density and 

viscosity to account for the difference in phase properties. All interfacial transfer terms in the 

inhomogeneous momentum equations cancel out in the summation procedure, as they are 

equal and opposite. 

For the simulations computed in this chapter, a homogeneous approach for momentum 

was taken. A homogeneous approach to momentum is less computationally intensive since 

there are fewer equations to solve compared to an inhomogeneous approach. The 

inhomogeneous approach also requires knowledge of the interfacial drag coefficient, which 

was difficult to determine for complex transient flows such as boiling under vacuum. 

Researchers at the Helmholtz Zentrum Dresden Rossendorf (HZDR) in Germany have 

investigated modelling approaches to simulate inhomogeneous interphase transfer such as 

drag, turbulence and momentum in complex flow phenomena (Thomas Höhne and Lucas, 

2011), however these are for restricted  cases and require further generalisation. 

In a similar manner to momentum, a homogeneous approach to turbulence was 

employed, using the two equation k – ω shear stress transport model (Menter, 1994), which 

was also used in the single phase simulations of the scaled test rig in CHAPTER 4. The 

difference in this case is common fields of turbulence kinetic energy and specific dissipation 

rates are shared amongst both phases in the homogeneous turbulence approach. 

The mass conservation equations are the same for both homogeneous and 

inhomogeneous approaches, as shown in Eq. 5.11. If an inhomogeneous approach to 

momentum were to be employed, the velocity term in Eq. 5.11 would be phase specific. A 

simple volume conservation law used, which states that volume fractions must sum to unity 

within the control volume.  
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𝜕

𝜕𝑡
(𝑟𝛼𝜌𝛼) + ∇ ∙ (𝑟𝛼𝜌𝛼𝑼) = 𝛤𝛼𝛽 (5.11) 

The source term 𝛤𝛼𝛽 is very important to the continuity equation. It describes the 

interphase mass flow rate per unit volume from one phase to another. The source term is 

direction specific. For example, phase change due to boiling would yield a positive value for 

the source term in the vapour phase continuity equation, and a negative value for the liquid 

phase continuity equation, with the opposite occurring for phase change due to condensation. 

However the source term is not exclusive to boiling and condensation, and may be used to 

model a diverse range of applications such as melting, solidification and isothermal cavitation. 

The interphase mass flow rate per unit volume due to thermal phase change is expressed in 

Eq. 5.12. This is the bulk phase change model that was mentioned earlier. It can accommodate 

both boiling and condensation and is the product of the interfacial area density (IAD), 𝐴𝛼𝛽 

and interphase mass transfer rate, �̇�𝛼𝛽, which itself is described by the liquid side interfacial 

heat flux �̇�𝛼 = ℎ𝛼(𝑇𝛼 − 𝑇𝑠𝑎𝑡), divided by the enthalpy of vaporisation Δ𝐻𝑙𝑔. The IAD is 

fundamental to this investigation, and is discussed in the following subsection. 

 𝛤𝛼𝛽 = 𝐴𝛼𝛽�̇�𝛼𝛽 = 𝐴𝛼𝛽
ℎ𝛼𝛽(𝑇𝛼−𝑇𝑠𝑎𝑡)

Δ𝐻𝑙𝑔
 (5.12) 

Heat transfer is the main driving mechanism for the flow phenomena studied in this 

work. It is responsible for driving the entire system and is tightly coupled with momentum 

and continuity. Heat transfer across the boundaries and into the liquid causes the density 

variations and allows the liquid to recirculate. This was modelled by the momentum equation. 

At the same time heat transfer in the liquid caused it to reach saturation conditions, leading to 

evaporative mass transfer, which were modelled by adding source terms to the continuity 

equations. It is prudent then to model heat transfer as accurately as possible. 

A homogeneous approach for energy transport is appropriate in situations where 

thermodynamic equilibrium can be assumed between both phases, due to very fast interphase 

heat transfer from one phase to the other, assumed to be almost instantaneous. This can be 

modelled by solving for a common temperature field, or by solving for individual phasic 

internal energy or static enthalpy fields, with thermodynamic equilibrium enforced by setting 

an extremely large interphase heat transfer coefficient between the two phases. Neither was 

appropriate for this application, as Eq. 5.12 indicates that interphase mass transfer takes place 

at a finite rate, governed by a finite interfacial heat transfer coefficient and interfacial area 

density. Therefore, the homogeneous approach to energy transport would not have allowed 

saturated vapour to be modelled at a different temperature that is in contact with the liquid. 

Hence an inhomogeneous approach to the energy conservation equation was required which 

allowed each phase to possess individual temperature fields, and did not assume instantaneous 
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interphase heat transfer. The inhomogeneous energy conservation equation for the liquid 

phase which was used is described by Eq. 5.13.  

 
𝜕

𝜕𝑡
(𝑟𝛼𝜌𝛼𝐻𝛼) + ∇ ∙ (𝑟𝛼𝜌𝛼𝑼𝜶𝐻𝛼 − 𝑟𝛼𝜆𝛼∇𝑇𝛼) 

 = 𝑟𝛼𝑆𝛼 +∑ 𝑄𝛼𝛽
𝑁𝑝
𝛽=1

 (5.13) 

The term 𝑆𝛼 denotes the total external heat source per unit volume to phase 𝛼, and  𝑄𝛼𝛽 

denotes the interphase heat transfer to the phase 𝛼 from phase 𝛽. This includes contributions 

from both sensible heating and interphase mass transfer. 

Since an inhomogeneous approach to energy was employed for the liquid phase, there 

is an expectation that an equivalent energy conservation equation for the vapour phase should 

also be used. However it was assumed that the vapour phase was at saturation conditions at 

all times, which requires only the saturated pressure and temperature to be known. This was 

determined using Antoine’s thermodynamic relation which was described in CHAPTER 4. 

Constant properties were used for the water phase, and the Boussinesq approximation 

was use to predict the density variations in the liquid. An ideal gas approximation was used 

for the vapour phase. 

In summary, a homogeneous approach to momentum and turbulence was taken. An 

inhomogeneous approach to energy was adopted, allowing each phase to possess its own 

temperature field. It is interesting to note that simulating phase change using a homogeneous 

energy approach is termed the equilibrium phase change model, and the opposite of this is the 

non-equilibrium phase change model. 

5.7 Interphase Heat Transfer 

The interphase heat transfer term in Eq. 5.13, denoted by 𝑄𝛼𝛽, describes the interphase 

heat transfer to the liquid phase 𝛼 from the vapour phase 𝛽. It takes the formulation shown in 

Eq. 5.14.  

 𝑄𝛼𝛽 = 𝐴𝛼𝛽�̇�𝛼𝛽 (5.14) 

The interfacial heat flux �̇�𝛼𝛽 is determined by applying an overall heat balance across 

the interphase contact area, including contributions from both sensible heat flux, and heat flux 

due to interphase mass transfer. The sensible heat fluxes from the interface into both phases 

are denoted by Eq. 5.15. 

 �̇�𝛼𝑠 = ℎ𝛼(𝑇𝑠 − 𝑇𝛼),                     �̇�𝛽𝑠 = ℎ𝑏(𝑇𝑠 − 𝑇𝛽) (5.15) 
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In Eq. 5.15 𝑇𝑠 denotes the interfacial temperature. Assuming thermodynamic 

equilibrium at the interface, 𝑇𝑠 = 𝑇𝑠𝑎𝑡. Since the vapour is assumed to be saturated at all times, 

there is negligible sensible heat transfer to the vapour phase, but significant heat transfer to 

the subcooled liquid phase. A zero resistance approach was adopted for the vapour phase, 

using a large vapour-side heat transfer coefficient ℎ𝑏 → ∞. This had the effect of forcing the 

vapour temperature to be the same as the interfacial temperature, which was assumed to be 

the saturation temperature at all times (determined by Antoine’s thermodynamic relation, 

which was described in CHAPTER 4). 

The interfacial heat transfer coefficient ℎ𝛼 was prescribed in terms of the dimensionless 

Nusselt number, Nu which was defined as shown in Eq. 5.16 in terms of the  interfacial length 

scale, 𝐿𝛼𝛽 and mixture conductivity 𝜆𝛼𝛽. 

 Nu =
ℎ𝛼𝐿𝛼𝛽

𝜆𝛼𝛽
 (5.16) 

The interfacial length scale was related to the interfacial area density, and is discussed 

in the next sub section. Pure conduction was assumed to occur across the interphase contact 

area as shown in Eq. 5.17. 

 �̇�𝛼𝑠 = (𝜆𝛼
𝑇𝛼−𝑇𝑠𝑎𝑡

𝐿𝛼𝛽
) �⃗�  (5.17) 

The relation in Eq. 5.17 assumed pure conduction occurred normal to the interface, �⃗� . From 

Eq. 5.17 the equivalent “conductive heat transfer coefficient” was described by Eq. 5.18. 

 ℎ𝛼 ≡ 𝜆𝛼𝛽
1

𝐿𝛼𝛽
 (5.18) 

This expression was substituted into Eq. 5.16 to yield a value of 1 for the interfacial Nusselt 

number, which controlled the interfacial heat transfer depending on the value of the length 

scale 𝐿𝛼𝛽. Sun et al., (2012) used the assumption of pure conduction across the water - vapour 

interface with success to develop a volume-of-fluid phase change model. The assumption 

performed well when it was benchmarked against a one dimensional Stefan problem and a 

two dimensional film boiling problem which yielded excellent agreement between the 

analytical solutions and the simulated results. 

Finally, the total interfacial heat fluxes to phases 𝛼 and 𝛽, including both sensible heat 

fluxes, and contributions due to phase change, are given by Eq. 5.19. 

 �̇�𝛼𝛽 = �̇�𝛼𝑠 + �̇�𝛼𝛽𝐻𝛼𝑠,                  �̇�𝛽𝛼 = �̇�𝛽𝑠 − �̇�𝛼𝛽𝐻𝛽𝑠                     (5.19) 
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In Eq. 5.19, �̇�𝛼𝛽 denotes the total interfacial heat flux to phase 𝛼 from phase 𝛽, �̇�𝛼𝛽 denotes 

the interfacial mass flux to phase 𝛼 from phase 𝛽, and 𝐻𝛼𝑠, 𝐻𝛽𝑠 denote interfacial values of 

liquid and vapour phase enthalpies. 

From an overall heat balance �̇�𝛼𝛽 + �̇�𝛽𝛼 = 0, and Eq. 5.19 determines the interfacial 

mass flux: 

 �̇�𝛼𝛽 =
�̇�𝛼𝑠+�̇�𝛽𝑠

𝐻𝛽𝑠−𝐻𝛼𝑠
 (5.20) 

Under the additional assumption of zero resistance to heat transfer on the vapour side, 

and assuming that interfacial enthalpies are equal to the liquid and vapour saturation 

enthalpies, 𝐻𝛼𝑠 = 𝐻𝛼,𝑠𝑎𝑡, 𝐻𝛽𝑠 = 𝐻𝛽,𝑠𝑎𝑡, Eq. 5.20 determines Eq. 5.12, repeated here for 

convenience, 

 𝛤𝛼𝛽 = 𝐴𝛼𝛽�̇�𝛼𝛽 = 𝐴𝛼𝛽
ℎ𝛼(𝑇𝛼−𝑇𝑠𝑎𝑡)

Δ𝐻𝑙𝑔
 (5.12 repeated) 

where Δ𝐻𝑙𝑔 = 𝐻𝛽,𝑠𝑎𝑡 −𝐻𝛼,𝑠𝑎𝑡 is the latent heat of vaporisation. 

5.8 The Interfacial Area Density 

The governing conservation equations for mass, momentum and energy are time-

averaged. The two phases in this study, water and vapour are treated as interpenetrating 

continua. Due to the averaging process, all of the information regarding the contact area 

between the phases per unit volume is lost, and therefore needs to be prescribed to the CFD 

solver. This is called the interfacial area density. It is also sometimes called the interfacial 

area concentration. Hence within the framework of Eulerian – Eulerian flow, interface 

structures and their positions can be tracked, however the contact area per unit volume of the 

phases, that is the interfacial area density, IAD, is a fundamental variable which also needs to 

be modelled. 

Good predictions of the IAD are imperative, since the interfacial transfer of momentum, 

heat and mass is directly dependent on the contact surface area between the two phases. There 

are a number of correlations which attempt to describe the IAD. Unfortunately, a universal 

correlation does not yet exist for the IAD to describe all types of flow, since many flows are 

chaotic and contain a combination of complex morphologies such as free surface, bubbly and 

droplet flows. Researchers at the Helmholtz Zentrum Dresden Rossendorf (HZDR) in 

Dresden, Germany have developed an algebraic interfacial area density (AIAD) model which 

attempts to describe the interfacial contact area general gas-liquid and liquid-liquid flow 

(Thomas Höhne and Lucas, 2011). However, this has only been validated using non-phase 
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change applications, and requires further development and validation before it may be used 

for problems with phase change. 

ANSYS CFX contains a simpler algebraic model for the IAD, known as the mixture 

model, which treats both fluids symmetrically, as indicated by Eq. 5.21. In the ANSYS Fluent 

software, it is called the symmetric model (Ansys, 2011). 

 𝐴𝛼𝛽 =
𝑟𝛼𝑟𝛽

𝐿𝛼𝛽
 (5.21) 

The quantity 𝐿𝛼𝛽 is known as the interfacial length scale. It must be prescribed by the 

user as a constant value, or as a function of the flow field. Thus, the mixture model is not a 

uniquely defined model in its own right. Rather, it is a tool to enable researchers to investigate 

specific models which conform to this structure, as was done here. The formulation can be 

used to attempt to model all kinds of flow, such as dispersed gas in a continuous liquid, 

dispersed liquid in a continuous gas, or the interactions between two continuous fluids 

(Thomas Höhne and Lucas, 2011). 

5.9 The Interfacial Length Scale 

The interfacial length scale brings closure to all of the models that have been discussed 

here. In this work, an expression for 𝐿𝛼𝛽 was derived for boiling and condensing flows which 

was applied to the expression for the IAD in Eq. 5.21, and was an extension of the work of 

Lee (1980) , who developed a bulk phase change model. Before the proposed formulation is 

discussed for the interface length scale, 𝐿𝛼𝛽 that was used, the model of Lee (1980) is first 

introduced. 

5.9.1 The Lee (1980) Bulk Phase Change Model 

Lee (1980) developed a generalised bulk phase change model, which was used to 

simulate liquid - vapour phase change, as shown in Eq. 5.22. The model provided the 

volumetric mass transfer rate for boiling or condensation, which had units of kg/m3s. Detailed 

derivations of this model can be found in the texts by Lee (1980).  

𝛤𝛼𝛽
+ = 𝛽𝑟𝛼𝜌𝛼

𝑇𝛼−𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
, 𝑇𝛼 > 𝑇𝑠𝑎𝑡, Liquid phase (boiling)

𝛤𝛼𝛽
− = 𝛽𝑟𝛽𝜌𝛽

𝑇𝑠𝑎𝑡−𝑇𝛽

𝑇𝑠𝑎𝑡
, 𝑇𝛽 < 𝑇𝑠𝑎𝑡, Vapour phase (condensation)

 (5.22) 

The model is a function of a phase change rate constant, 𝛽, which has units of frequency and 

takes a value depending on the flow regime. In the work of Lee (1980) it was taken to be 0.1 

Hz. 
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Yang et al., (2008) implemented Lee’s model (1980) as a source term in the continuity 

equations using the CFD code ANSYS Fluent to predict boiling flows of refrigerant R141B 

in a coiled tube. An experimental investigation was first undertaken to achieve a benchmark 

to test the CFD results against. The CFD methods used the specialised Eulerian – Eulerian 

volume of fluid (VOF) method to track the liquid – gas interface during phase change. The 

reported interface structures were consistent with those observed in the experiments, as shown 

in Figure 5.5, and the numerically reported heat fluxes and temperatures corresponded with  

the experimental readings. 

 

Figure 5.5: Works by Yang et al., (2008) using the bulk boiling model proposed by Lee (1980) 

implemented into the commercial CFD package Ansys Fluent. Left hand side indicates flow patterns from 

experiment, right hand side indicates flow patterns from the numerical study. 

Yang et al., used a phase change rate constant of 100 Hz in their investigations. Larger values 

of 𝛽 caused their simulations to diverge, whereas smaller values caused significant deviation 

between the interfacial temperature and the saturation temperature. 

DeSchepper et al., (2009) also implemented the model of Lee (1980) into the CFD code 

ANSYS Fluent, to simulate the evaporation of hydrocarbon feedstock in a steam cracker. The 

same modelling approach as Yang et al. (2008) was used. In addition to this, DeSchepper et 

al., also attempted to include heat transfer contributions to the energy fields due to phase 

change. This was modelled using additional source terms in the energy equations, by 
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appending the latent heat of vaporisation or condensation to the original expressions as shown 

in Eq. 5.23. The energy conservation equations were not treated by  Yang et al. (2008). 

𝛤𝛼𝛽
+ = 𝛽𝑟𝛼𝜌𝛼

𝑇𝛼−𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
Δ𝐻𝑙𝑔, 𝑇𝛼 > 𝑇𝑠𝑎𝑡, Liquid phase (boiling)

𝛤𝛼𝛽
− = 𝛽𝑟𝛽𝜌𝛽

𝑇𝑠𝑎𝑡−𝑇𝛽

𝑇𝑠𝑎𝑡
Δ𝐻𝑙𝑔, 𝑇𝛽 < 𝑇𝑠𝑎𝑡, Vapour phase (condensation)

 (5.23) 

In their work DeSchepper et al., benchmarked their CFD simulations against industrial 

data for the mass weighted volume fraction of the liquid phase at the outlet. For their given 

conditions, industrial plant data suggested that the mass weighted volume fraction of the 

liquid at the outlet of the hydrocarbon steam cracker was equal to 0.3. The CFD simulations 

predicted a value of 0.49. It was suggested that the discrepancy occurred due to the 

simplifications made in the boundary conditions in the CFD model. Interestingly DeSchepper 

et al. used a value of 0.1 Hz for the phase change rate constant, which was orders of magnitude 

smaller than that of Yang et al., (2008).  

Alizadehdakhel et al., (2010) also used the model to predict phase change in a closed 

loop thermosyphon system, and compared the CFD results to experimental data. The 

numerical implementation was the same as DeSchepper et al., (2009), including the 

specification of 0.1 Hz for the phase change rate constant. In the experimental work, surface 

temperatures as a function of heat transfer rate inside the thermosyphon were measured, and 

this was used as the basis for comparison in the equivalent CFD work. There was good 

agreement between the experimental data and the CFD investigation for the temperature 

profiles inside the thermosyphon.  

Finally, Goodson et al., (2010) used the model to simulate boiling flows in a vapour 

venting micro channel, and compared simulation results to experimental data performed by 

other authors. The CFD results compared well against the flow patterns and interface 

structures produced in the equivalent experimental study. The study by Goodson et al., (2010) 

was the only one shown to have been used with success at small scales (micro channels), 

whereas the other studies concentrated on larger scales. In their work, Goodson et al., (2010) 

used a phase change rate constant of 100 Hz to compute their simulations.  

Many other authors have used the model of Lee (1980) in CFD solvers, for a range of 

engineering applications. In the works discussed above, it is interesting to note that the large 

range of values taken for the value of  the phase change rate. Lee (1980), DeSchepper et al. 

(2009) and Alizadehdakhel et al., (2010) all used a value of 0.1 Hz, whereas the works by Yang 

et al., (2008) and Goodson et al., (2010) used a value of 100 Hz. Clearly, a universal value of 

the rate constant does not exist, and must be determined for each application. 
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The model by Lee (1980) was used in this work to form the basis of prescribing an 

expression for the interface length scale 𝐿𝛼𝛽, which was required for the interfacial area density 

in Eq. 5.21 which closed the Eulerian – Eulerian approach. 

5.10 Proposed Interfacial Length Scale  

In this work, the Lee (1980) phase change model in Eq. 5.22 is generalised by 

introducing a complementary volume fraction term, as shown in Eq. 5.24.  This ensures that, 

when either one of the volume fractions  𝑟𝛼 or 𝑟𝛽 approaches zero, the interphase mass transfer 

rate also approaches zero. 

 𝛤𝛼𝛽 = 𝛽𝑟𝛼𝑟𝛽𝜌𝛼
𝑇𝛼−𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
 (5.24) 

Only the liquid phase is taken into consideration. This is because, in this work, the vapour phase 

is assumed to be at the saturation temperature at all times, and therefore  
𝑇𝑠𝑎𝑡−𝑇𝛽

𝑇𝑠𝑎𝑡
= 0. This does 

not mean in the formulation for the length scale 𝐿𝛼𝛽, condensation was disregarded since in Eq. 

5.24 when 𝑇𝛼 < 𝑇𝑠𝑎𝑡 would occur. Hence, a more generalised form of Eq. 5.24 replaces the 

phase specific density with the mixture density as described by Eq. 5.9, resulting in the 

generalised form in Eq. 5.25. 

 𝛤𝛼𝛽 = 𝛽𝑟𝛼𝑟𝛽𝜌𝛼𝛽
𝑇𝛼−𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
 (5.25) 

The bulk thermal phase change model that was used was described in Eq. 5.12. Replacing the 

IAD term 𝐴𝛼𝛽 in Eq. 5.12 for its definition in Eq. 5.21 yielded Eq. 5.26.  

 𝛤𝛼𝛽 =
𝑟𝛼𝑟𝛽

𝐿𝛼𝛽

ℎ𝛼(𝑇𝛼−𝑇𝑠𝑎𝑡)

Δ𝐻𝑙𝑔
 (5.26) 

The bulk thermal phase change model defined in Eq. 5.26 is analogous to the generalised 

model by Lee (1980) , defined by Eq. 5.25. Equating these provides a relationship between the 

interface length scale 𝐿𝛼𝛽 and the phase change rate constant 𝛽 as shown in Eq. 5.27. 

 
𝑟𝛼𝑟𝛽

𝐿𝛼𝛽

ℎ𝛼(𝑇𝛼−𝑇𝑠𝑎𝑡)

Δ𝐻𝑙𝑔
= 𝛽𝑟𝛼𝑟𝛽𝜌𝛼𝛽

𝑇𝛼−𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
 (5.27) 

The volume fraction terms and temperature difference terms cancelled out. This yielded the 

expression as shown in Eq. 5.28. 

 𝐿𝛼𝛽 =
ℎ𝛼

𝛽

𝑇𝑠𝑎𝑡

Δ𝐻𝑙𝑔

1

𝜌𝛼𝛽
 (5.28) 
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The heat transfer coefficient in Eq. 5.28 is replaced with the Nusselt number correlation 

described by Eq. 5.16. This allows the final expression for the interfacial length scale to be 

determined as shown in Eq. 5.29. 

 𝐿𝛼𝛽 = (
Nu

𝛽

𝑇𝑠𝑎𝑡

Δ𝐻𝑙𝑔

𝜆𝛼𝛽

𝜌𝛼𝛽
)

1
2⁄

 (5.29) 

Therefore substituting the proposed interfacial length scale into the expression for the IAD in 

Eq. 5.21 completes the Eulerian – Eulerian model. The IAD with the proposed length scale 

model is shown in Eq. 5.30. 

 𝐴𝛼𝛽 =
𝑟𝛼𝑟𝛽

𝐿𝛼𝛽
= 𝑟𝛼𝑟𝛽 (

Nu

𝛽

𝑇𝑠𝑎𝑡

Δ𝐻𝑙𝑔

𝜆𝛼𝛽

𝜌𝛼𝛽
)
−1 2⁄

 (5.30) 

The proposed length scale is a function of the flow dynamics, which therefore allows 

the IAD to be a function of the flow dynamics. It is applicable at a saturated interface which 

has thermal conductivity and density mixture properties, 𝜆𝛼𝛽 and 𝜌𝛼𝛽, which depended on the 

phase volume fraction. The interfacial Nusselt number can take any value the user requires. 

The model must be fine-tuned for individual applications by determining the value of the rate 

constant 𝛽 for each application. 

In this work an interfacial Nusselt number of unity is taken, as derived in section 5.7. A 

range of values was tested for the rate constant, and their results were compared to experimental 

data reported by McNeil et al., (2015). The values tested range from 0.1 Hz to 100 Hz, and 

correspond to the range reported in the literature discussed in section 5.9.1. The effect the rate 

constant has on the interfacial length scale and on the IAD is displayed in Figure 5.6. For the 

graph, the thermophysical properties of water were evaluated at 50 mbar saturated pressure 

(ullage pressure used in the work by McNeil et al., (2015)) and assuming the volume fractions 

are at 0.5. 

In Figure 5.6 the effect on the length scale and interfacial area density can be observed 

when increasing the rate constant. Beginning with rate constant of 0.1 Hz, as used by Lee (1980), 

DeSchepper et al., (2009) and Alizadehdakhel et al., (2010) yields an interface length scale 

of 0.9 mm, which corresponds to an interfacial area density less than 1000 m-1. Increasing rate 

constant decreases the interfacial length scale, yet increases the interfacial area density. At a 

rate constant of 100 Hz, which was used by Yang et al., (2008) and Goodson et al., (2010), 

the interfacial length scale becomes very small, less than 0.1 mm, but the interfacial area 

density increases to approximately 9000 m-1. 
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Figure 5.6: Interfacial length scale and area density as a function of the phase change rate constant 

assuming interfacial volume fractions for both phases are 0.5. Note the horizontal axis is logarithmic. 

5.11 Energy and Material Balance 

In the simulations, bulk evaporation was modelled. The bulk rate of evaporation was 

not reported in the works of McNeil et al., (2015). Therefore, this was evaluated by 

performing an energy and material balance, so that the experimental evaporation rates could 

be compared to the evaporation rates produced by the CFD simulations. The energy balance 

is shown in Eq. 5.31. 

 �̇�𝑐𝑜𝑖𝑙𝑠 + �̇�𝑓𝑒𝑒𝑑 − �̇�𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 − �̇�𝑒𝑣𝑎𝑝 = 0 (5.31) 

In the experimental test rig, there were 36 electrically heated tubes, and for the 

experimental configuration which the CFD simulations were benchmarked against, each tube 

operated at a heat flux of 65 kW/m2. The outside surface area of each tube is 0.316 m2, 

therefore the total energy input from 36 coils was calculated at 20532 W. The feed was 

assumed to enter the test rig at a temperature of 11 °C, and at the same rate as the vapour 

leaving the free surface, which maintained a constant level. McNeil et al., (2015) reported 

that the cooling power of the condenser was found to be 96% of the heating power. This 

suggests 4% of the heating power was attributed to heat loss, which is 821 W. Lastly, heat 

was lost at the free surface due to evaporation at 50 mbar. The completed energy balance is 

shown in Eq. 5.32. 

 20532 [W] + �̇�𝑓𝑒𝑒𝑑Δ𝐻𝑙,𝑓𝑒𝑒𝑑[𝑊] − 821[𝑊] − �̇�𝑒𝑣𝑎𝑝Δ𝐻𝑙𝑔,𝑒𝑣𝑎𝑝[𝑊] = 0 (5.32) 

The single phase enthalpy of feed Δ𝐻𝑙,𝑓𝑒𝑒𝑑 at 11 °C was known, and the enthalpy of 

vaporisation at the free surface Δ𝐻𝑙𝑔,𝑒𝑣𝑎𝑝 was also known. In addition to this, the rate of 
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evaporation was assumed to be the same as the rate of feed, therefore the overall evaporation 

and feed rates were determined to be 0.0078 kg/s. 

5.12 Initial Conditions 

The initial conditions of the simulations were set to the same conditions that were used 

in the low pressure low level experimental test. Thus, the initial liquid depth was 0.8 m, and 

the ullage pressure was 50 mbar. In the tests, the ullage region was devoid of air, and consisted 

of pure saturated vapour, with pressure and temperature of 50 mbar and 32.8 ºC. The initial 

temperature of the water was set to 31.8 °C. This was justified as a means of accelerating the 

thermal flow fields of the water. The initial velocity was set to 0 mm/s, with a mean global 

turbulence intensity set to 5%. The heat flux on the coils were set to 65 kW/m2, and all other 

surfaces had the heat loss heat transfer coefficients applied to them, as described by Eq. 5.1. 

The ambient outside temperature was assumed to be 15 ºC. Initially the value of the rate 

constant was set to 0.1 Hz. 

5.13 Solution Strategy 

The solution strategy used for the simulations on the scaled test rig was not the same as 

that for the unscaled test rigs. The strategy used is as follows:  

1. Three significantly different meshes were generated, where each successive mesh 

increased in element density according to the Grid Convergence Index (GCI) procedure 

(Celik et al., 2008), described in CHAPTER 3. 

2. A steady free convection simulation was performed on mesh 1 (the boiling model was 

not activated), beginning from the initial conditions. The purpose of this step was to 

establish and stabilise the flow fields for the next step. 

3. In this step, the mesh sensitivity study was performed. Transient free convection 

simulations were performed on meshes 1 to 4, using the results of the steady free 

convection simulation as the initial condition. This step was also used to generate the 

the initial conditions for subsequent bulk boiling simulations. The dimensionless 𝑇∗ 

scale, described in CHAPTER 4, was monitored at three points equidistant on a 

horizontal line, and 2 cm below the free surface, as shown in Figure 5.7. Since the 

simulations were multiphase, the dimensionless 𝑇∗ scale became phase specific. Hence 

𝑇∗ in the water phase is denoted by 𝑇𝛼
∗. The transient free convection simulations were 

set to stop when 𝑇𝛼
∗ = 0 at any one of these three points, as this indicated that phase 

change was imminent.  
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Figure 5.7: Three equidistant points 2 cm below the free surface were monitored to enable a stop control 

to stop the transient free convection simulations when 𝑻𝜶
∗ = 𝟎 at any of these points. 

When 𝑇𝛼
∗ > 0 boiling may occur, and when 𝑇𝛼

∗ < 0 the liquid is subcooled. The reason 

for this procedure is that, if a boiling simulation is started from an initial guess with 

significantly superheated liquid, the CFD code tends to diverge very quickly, due to the 

large amount of vapour that is generated very quickly in the superheated regions 

(Milnes at al. 2012). At the end of the simulations, the results were analysed as part of 

the mesh sensitivity study, and a suitable mesh was selected for onward simulations in 

the phase change cases. 

4. Using the chosen mesh from the sensitivity study, the bulk thermal phase change model 

was activated using a rate constant of 0.1 Hz. The purpose of this was to evolve the 

flow fields as much as possible to achieve a pseudo-steady state condition, which was 

subsequently used as the initial condition in the final transient simulations described in 

the next step. At the end of one steady state boiling simulation, the value of the rate 

constant was increased by a factor of 10 using the previous steady state boiling result 

as the initial state. This procedure was performad for four values of the rate constant, 

0.1, 1, 10 and 100 Hz. 

5. Finally, to home into a final converged boiling solution, transient boiling simulations 

were performed for 60 simulation seconds, for all four values of the rate constant. The 

steady state boiling results corresponding to each rate constant were employed as the 

initial conditions for the final transient cases.  

5.14 Numerical Accuracy 

The time step for the simulations was determined using the expression in Eq. 5.33 

(Ansys Inc, 2010b) as a base line, and then halving it as a conservative measure to ensure the 

time step was within the bounds of simulation stability. 

Liquor feed inlet
Free surface position 

(0.8 m depth)

Central monitor point 

for the stop control



~ 120 ~ 

 Δ𝑡 = √𝑔𝐿 (5.33) 

The term 𝐿 is denoted to be a suitable length scale, so 𝐿𝛼𝛽 was chosen, which depended on 

the value of the rate constant. Using the time step selection strategy for the unscaled test rigs 

in this investigation caused the simulations to diverge, as that strategy produced time steps 

that were too large. 

The residual target for all conservation equations in all simulations was 1E-5. This 

could not be achieved for the steady state simulations since the physical problem was transient 

in nature. Furthermore this level of tight convergence was not required for the steady state 

simulations as their purpose was to be used as a tool to accelerate the flow fields. Pseudo-

steady state was ensured by monitoring key variables such as evaporation rate, temperature 

and velocity, and ensuring they did not fluctuate significantly with iteration. The steady state 

analysis used high resolution schemes for the advection and turbulence numerics. 

In all transient simulations time step convergence was obtained between 1 and 11 

iterations per time step, or coefficient loops. The transient cases maintained high resolution 

for the advection and turbulence numerics, and a second order backward Euler scheme for the 

transient numerics. For the transient simulations global equation imbalances of less than 1% 

was achieved to ensure conservation of all solved equations. This was not achieved for the 

steady state simulations as they were not fully converged. 

Monitor points of interest, such as bulk stream temperature, bulk stream velocity, 

evaporation and liquor feed rates were monitored to ensure that the simulation produced 

physically realistic results during the solution process.  

In all simulations, the implicit volume fraction coupling approach was adopted, where 

the volume fractions were coupled to and solved in the same matrix as pressure and velocity. 

This had the advantage of allowing for larger than usual time steps in otherwise time step 

sensitive multiphase simulations. The disadvantage was increased memory demand during 

the solving process. This was due to the solver performing large matrix inversions containing 

the variables pressure, velocity and volume fractions. This is in contrast to performing matrix 

inversions containing pressure and velocity variables in a segregated solver. 

5.15 Computational Resources 

The simulations were performed on the high performance computing facilities at the 

University of Leeds facility ARC2 (Advanced Research Computing 2). The simulations were 

performed on 3 nodes of 16 CPUs (48 CPUs) with 32GB of error correcting code memory 

per node available to the CFD solver. The highest solve time for the transient free convection 
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simulations was 10 wall clock hours, and the highest solve time for the transient boiling 

simulations was around 340 wall clock hours. These time exclude simulation queue wait 

times. 

5.16 Mesh Sensitivity Results 

Three meshes were generated as part of the sensitivity study. The generated meshes 

were structured, containing hexahedral cells only. Although structured meshes are not a 

requirement in modern CFD applications, they are desirable since they reduce numerical 

diffusion, as the cells are more likely to be aligned with the direction of the flow. This was 

discussed in CHAPTER 3, and structured meshes were used for the work in CHAPTER 4. 

The blocking strategy that was used for all three meshes is shown in Figure 5.8. Since 

the computational domain had the same depth everywhere, the blocking strategy used a swept 

approach, where the blocks were swept uniformly across the thickness of the domain. The 

strategy harnessed numerous block splits, which was required to perform the O-grid blocking 

at the coils, knuckle, and liquid feed. This approach is commonly referred to as a top-down 

approach. Due to the many O-grids that were required around the coils, and feed, the blocking 

strategy was far more complex than that of the unscaled test rigs, and required more thought 

in order to achieve a successful mesh.  
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Figure 5.8: (Beginning top left, clockwise) Blocking strategy for the overall computational domain; O-

Grid blocking at the coils and knuckle; double O-Grid blocking at the inlet feed. 

The final mesh that was selected as the solution independent mesh is shown in Figure 

5.9, which was mesh 2. There were some sudden jumps in mesh sizing, primarily at the region 

just below the liquid feed. Although the mesh statistics for each mesh did not violate the 

criteria set out in CHAPTER 4, such sudden jumps should be avoided where possible. 

Unfortunately, this could not be avoided, without a significantly increase in the number of 

cells. However since the sudden jump occurs is in the ullage head space, its effect is expected 

to be insignificant, since the ullage head space is not a significant area of interest to the CFD 

results. 
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Figure 5.9: (Beginning top left, clockwise) Overall mesh in the computational domain; o-grid mesh at 

water inlet; uniform mesh thickness; and o-grid mesh at the coils and knuckle. 

The meshes were designed to be solution independent around the coils and at the free 

surface. The values of 𝑌+ and IAD were targets as the independent variables at the coils and 

free surface respectively. This meant there was local mesh refinement around the coils and 

the free surface area.  

The statistics for the three meshes which were generated are tabulated in Table 5.1. 

Each mesh ran a transient free convection simulation, using a rate constant of 0.1 Hz, and 

using the steady state free convection results as the initial state. The simulations were stopped 

at the onset of boiling. This was described in section 5.13 Solution Strategy. The simulation 

times taken to reach 𝑇∗ = 0 at the free surface is tabulated in Table 5.1. All three meshes 

reached  𝑇∗ = 0 at the free surface to within 2 s of each other. This was despite each 

successive mesh refining the free surface area significantly. 
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Mesh Statistics Mesh Information  

Mesh 
Max. Face 

Angle [°] 

Min. Face 

Angle [°] 

Max. 

Edge 

Length 

Ratio 

Max. 

Element 

Volume 

Ratio 

No. of 

Nodes 

No. of 

Elements 

Sim. 

time for 

𝑻∗ = 𝟎 

[s] 

1 154.7 26.8 11.6 5.2 283888 249480 18.15 

2 154.8 26.0 38.6 5.6 1067261 965928 18.95 

3 154.9 26.0 89.0 5.6 1549436 1414530 19.95 

 Table 5.1: Mesh statistics for the three meshes used in the sensitivity study. 

The generated values from the GCI mesh sensitivity study are tabulated in Table 5.2. 

The largest IAD that was produced was 1071 m-1 for mesh 1, and the smallest was 1012 m-1 

for mesh 3. The percentage difference between these is 5.7%. However the discretisation error 

due to the meshes are far smaller. The grid convergence index between meshes 2 and 1 is 

0.02%, and between 3 and 2 is 1.9%. This means the errors on the IAD values due to the 

meshes fall to within acceptable limits for all three meshes. In fact mesh refinement at the 

free surface seems to have little effect on the values of the IAD. 

 
ϕ = Area and transient 

average interfacial area 

density [m-1] 

ϕ = Area and transient 

average 𝒀+on all coil 

surfaces 

𝝓𝟏 1071 [m-1] 1.37 

𝝓𝟐 1055 [m-1] 0.18 

𝝓𝟑 1012 [m-1] 0.11 

𝒓𝟐𝟏 1.570 1.570 

𝒓𝟑𝟐 1.136 1.136 

𝑷 10.41 2.52 

𝝓𝒆𝒙𝒕,𝟐𝟏 16 [m-1] 1.75 

𝝓𝒆𝒙𝒕,𝟑𝟐 59 [m-1] 0.25 

𝒆𝒂𝒑𝒙,𝟐𝟏 1.5% 87.0% 

𝒆𝒂𝒑𝒙,𝟑𝟐 4.1% 38.2% 

𝒆𝒆𝒙𝒕,𝟐𝟏 6719.4% 21.9% 

𝒆𝒆𝒙𝒕,𝟑𝟐 1688.5% 28.2% 

𝑮𝑪𝑰𝟐𝟏 0.02% 51.3% 

𝑮𝑪𝑰𝟑𝟐 1.9% 126.4% 

Table 5.2: Results from the mesh sensitivity study using the GCI method (Celik et al., 2008). 

Relying solely on the GCI values for the IAD was superficial. Figure 5.10 (Top) shows 

the instantaneous values of volume fractions at the last time step at the free surface for all 

three meshes. With each successive mesh, smearing of the volume fractions at the free surface 

reduced. A sharp interface was required, since it reduced numerical diffusion across the 

interface, which was important since the transfer of continuity, momentum and energy 
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occurred across this interface, which was a fundamental part of this study. Figure 5.10 

(Bottom) shows how smearing was reduced for each successive mesh.  

 

 

Figure 5.10: (Top) Instantaneous values of volume fractions of water at the last time step for mesh1 (left), 

mesh 2 (centre) and mesh 3 (right). (Bottom) Volume fractions zoomed in at the free surface, for mesh 1, 

mesh 2 and mesh 3 respectively. Volume fraction smearing at the free surface is reduced with each 

successive mesh, and hence numerical diffusion across the interface is reduced with each successive mesh. 

One of the goals for the mesh sensitivity study was to refine the mesh such that a value 

𝑌+ < 1 at the heated coils could be achieved. This was very difficult since 𝑌+ by its very 

definition is a function of the wall shear stress. This changes as a function of the flow regime, 

which over time undergoes sudden changes as is the nature of buoyancy driven flow, such as 

sudden reversed flow, vortex shedding and impingement at the coils. Therefore guaranteeing 

𝑌+ < 1 at for all time steps was very difficult. Observing transient averaged values of 𝑌+ was 

useful as it provided mean values of 𝑌+ for the entire transient simulation without having to 

critically analyse each transient time step. 

In Table 5.2 the transient averaged 𝑌+ values for all three meshes are listed. Mesh 1, 2 

and 3 produced values of 1.37, 0.18 and 0.11 respectively. Mesh 2 and 3 demonstrated 𝑌+ 

values were less than 1, which was required for the turbulence wall treatment.  

From the mesh sensitivity study mesh 2 was chosen to be the mesh independent of the 

solution. For the IAD Figure 5.10 (Bottom) showed further mesh refinement after mesh 2 did 
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not significantly reduce smearing of the volume fractions at the free surface. With regards to 

𝑌+, since the values reported were less than 1 on mesh 2, it satisfied the criteria that 𝑌+ < 1. 

The large errors were attributed to the large relative difference between the 𝑌+ values 

reported.  

5.17 Presentation of the Results 

It is very difficult to display 3D flow phenomenon in a 2D perspective. The visual 

results such as contours and velocity vectors are presented on the mid-plane unless explicitly 

stated, as shown in Figure 5.11. In order to provide a meaningful CFD analysis, the CFD 

results were compared to the experimental results of McNeil et al., (2015). One of the methods 

used was to compare experimental thermocouple data with CFD temperature data at the same 

locations where the thermocouples existed in the test rig. The thermocouple positions are 

shown in Figure 5.3 (Right). The contours of volume fraction in Figure 5.10 were plotted on 

the mid-plane shown in Figure 5.11. 

  

Figure 5.11: Mid plane (blue) in the computational domain where the results are plotted on. 

5.18 Results: Free Convection, 𝜷 = 𝟎. 𝟏 Hz 

Since the transient free convection simulations were also used for the simulations in the 

mesh sensitivity study, only the results from mesh 2 are shown, which was the mesh selected 
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in the study for further work. Figure 5.12 displays the root mean square residuals of the 

transient free convection simulation on mesh 2, and a rate constant rate constant, 𝛽 = 0.1 Hz. 

Convergence of all equations per time step was achieved to a maximum root mean square 

residual of 1x10-5. Coefficient loop convergence per time step is not shown on the graph. The 

simulation took 18.95 simulation seconds to reach 𝑇∗ = 0 on the stop control on the right 

hand side of the domain (see Figure 5.7). The residual graph is a representative example and 

subsequent residual graphs for the other simulations discussed will not be shown as they were 

identical. 

 

Figure 5.12: Root mean square residuals for the free convection simulation using mesh 2 and a rate 

constant of 0.1 Hz. 

Figure 5.13 (Top) displays the stream temperatures corresponding to each respective 

thermocouple location. The readings begin between 32°C and 33°C for all thermocouple 

locations. This provided the initial conditions in step 2, outlined in the subsection 5.13 

Solution Strategy. During the course of the simulation the stream temperatures do not 

fluctuate more than 38°C, and on observation, all temperatures fluctuate around the 34°C 

mark. The saturation temperature at the free surface corresponding to 50 mbar is 33°C. During 

the simulation, the bulk liquid temperature throughout the domain remains close to the 

saturation temperature at the free surface. McNeil et al., (2015) also witness a similar 

pheonomena in their boiling studies, where the stream temperatures were very close to the 

free surface saturation temperature.  

Figure 5.13 (bottom) represents the fluid temperatures between the coils of the right 

hand side tube bank in the geometry (see Figure 5.7 for clarification). In a similar fashion to 

the stream temperatures, the fluid temperatures are in close agreement to the free surface 

saturation temperature, despite a heat flux of 65 kW/m2 being driven through each heating 

coil. The information in Figure 5.13 suggests that heat is quickly dissipated, due to advection 
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rather than diffusion. If the dissipation was dominated by diffusion then the stream and fluid 

temperatures would be much higher, corresponding to pure conduction in the liquid. 

 

 

Figure 5.13: Temperature plots from the transient free convection simulation, on mesh 2, and 𝜷 = 0.1 Hz. 

(Top) stream temperatures, (bottom) fluid temperatures. 

One of the advantages of the CFD analysis is its ability to output information in a more  

complete way than the capabilities of experimental analysis. Figure 5.14 (Top) represents 𝑇∗ 

variations in the water corresponding to the stop control positions (see Figure 5.7 for 

clarification) and respective stream thermocouple positions. The values are all negative, 

which indicates that the water is sub cooled below its local saturation temperature. The only 

value which is not negative is the one corresponding to Stop Right at the end of the simulation, 

which was one of three monitors which were used to control when the transient free 

convection simulation would stop just prior to boiling at the free surface. 

Figure 5.14 (Bottom) is a plot of velocity variation at each thermocouple position. 

Although velocities were not produced as an output in the experimental works of McNeil et 
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al., (2015), they are outputted here as they complement the data set. The highest velocities are 

80 mm/s and the lowest around 10 mm/s by the end of the simulation. The simulations of the 

tall unscaled test rig in CHAPTER 5 produced velocities of up to 230 mm/s in the centre of 

the draught tube, which is almost three times the velocities produced in the scaled test rig. 

This suggests the momentum behaviour induced due to the draught tube in the tall unscaled 

test rig is not indicative of the momentum behaviour found in the scaled test rig. 

 

 

Figure 5.14: (Top) 𝑻∗ variations at the three stop positions, and at the stream thermocouple positions. 

(Bottom) water velocity variations inside the test rig at the stream thermocouple locations. 

Figure 5.15 (top) displays transient averaged contours of temperature in the liquid and 

on the coil surfaces. The contours of temperature in the water were clipped to a maximum of 

40 °C, because the temperature contours in the liquid were dominated by a very narrow band 

of high temperature water next to the coils, which skewed the scale and made the analysis of  

the temperature distributions very difficult. For reference, in the unclipped range, the 

maximum transient averaged temperature in the liquid was 115 °C, directly adjacent to the 
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coils, and the remaining bulk liquid was at 32°C. The temperature distribution in the liquid 

shows plumes of high temperature water rising above the coils. These plumes were localised 

to the upper surfaces of the coils. The contours of wall temperature show non-uniform 

distributions on the coil surfaces. The upper hemispheres of each coil surface were hotter than 

all other locations. This corresponded to the temperature distributions in the water, where 

plumes were seen rising above the coil surfaces. 

Figure 5.15 (middle) shows the contours of time averaged 𝑇∗ in the liquid and free 

surface, which showed values greater than 0 in the liquid directly above the coil surfaces, and 

having a value of 0 at the free surface. The 𝑇∗ contours indicate that the water is superheated 

above the coils. If a wall boiling model had been activated at the coils, then nucleation may 

have occurred. However this is a crude approximation to the problem, since other factors 

which affect wall boiling such as the onset temperature of nucleate boiling, nucleation site 

density, and other parameters (as detailed in Section 5.4) would also need to be determined. 

The 𝑇∗ parameter is a better bulk boiling indicator, where an interface already exists between 

the liquid and vapour, such as the free surface. This is because the complex parameters which 

are required to be satisfied for wall boiling are not required for boiling at the free surface, and 

is simply controlled by the transfer of latent heat across the interface. Therefore the contours 

of 𝑇∗ at the free surface, where the values were 0 suggested boiling at the free surface, were 

imminent in that area. 

Figure 5.15 (bottom) illustrates the transient averaged heat transfer coefficient 

distributions on the coil surfaces, and the streamlines on the mid plane (as shown in Figure 

5.11). The bulk temperature for the heat transfer coefficient was set to 32.87 °C, which was 

the saturation temperature corresponding to the ullage pressure 50 mbar. The greatest heat 

transfer coefficients occur on the lower hemisphere of the bottom three coils of the left tube 

bank. These had a value of 1594 W/m2K, and the lowest value was 226 W/m2K which 

occurred on the upper hemisphere of the coils. This could be explained by observing the 

transient averaged streamlines and direction of flow in Figure 5.15 (bottom). The water travels 

down the centre of the vessel, and upward between the coils and vessel walls. Two distinct 

convection cells were generated. The impingement of the water on the lower surfaces of the 

coils induces large heat transfer coefficients. Kreith et al., (2010) suggested water which 

undergoes convection has heat transfer coefficients corresponding to 300–18,000 W/m2K. 

Using this guideline, the tubes in the scaled test rig are in the convection regime. 
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       Figure 5.15: (Top) transient averaged contours of temperature distributions in the liquid and on the 

coil surfaces; (middle) transient averaged 𝑻∗ distributions in the liquid and at the free surface; (bottom) 

heat transfer coefficient distributions on the coil surfaces, and velocity variations streamlines inside with 

superimposed velocity vectors. 
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The boiling simulations were compared to the experimental boiling data of McNeil et 

al., (2015), which is discussed in the next section. 

5.19 Steady State Boiling Results 

In the boiling cases, the bulk thermal phase change model was activated using the transient 

free convection simulation as the initial state. This was step 4 of the solution strategy, outlined 

in section 5.13. The boiling simulations did converge to a steady state solution. Monotonic 

convergence was not achieved for the solution residuals. Before the simulation ended, measures 

were taken to ensure a pseudo steady condition had been achieved. This was done by observing 

the monitor points of certain key variables, such as the rate of evaporation, temperature, velocity, 

and volume fractions. Those variables fluctuated around a mean value suggesting the problem 

was pseudo steady, but could only be modelled accurately using a transient solver. The results 

from these simulations are not presented, since they are not complete solutions to the problem. 

Figure 5.16 demonstrates the mass flow of evaporation and feed as a function of iteration for the 

rate constant 0.1 Hz. The evaporation rates are negative as mass physically leaves the system, 

whereas the feed rates are positive since mass renters the system. The two rates are equal and 

opposite because the feed rate was set to the same rate of evaporation. 

 

Figure 5.16: Evaporation rate and liquid feed rate of the steady state boiling simulation, using the 

transient free convection results as the initial state, and with a rate constant 𝜷 = 𝟎. 𝟏 Hz.  

Figure 5.17 represents the water velocity during the steady state solve process at the 12 

thermocouple positions. Velocity at position TS5 showed erratic behaviour after 7500 

iterations, whilst the velocities at the remaining thermocouples were steady. 
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Figure 5.17: Water velocity at the thermocouple positions. 

Figure 5.18 is a plot of volume fractions at six equidistant positions in the ullage head space. 

All values remained close to 0.9, which suggested some water in its liquid phase remained in 

the head space. 

 

Figure 5.18: Vapour volume fraction at six points in the ullage space above the free surface. 

An interesting observation was that, when the rate constant was set to greater than 1 

Hz, (that is 10 and 100 Hz) in the steady state simulations, calculation of the simulations was 

very difficult using the time step described by Eq. 5.33. The simulations often diverged after 

1000 iterations, and the monitor points yielded physically unrealistic values for the 

evaporation and feed mass flow, which reported values of at least 10 kg/s. In addition to this, 

the monitor points of water velocities reported values in the region of 50 m/s. This was clearly 

a numerical error, which required investigating. In response to the erroneous simulations, a 

number of parameters were changed for the 1 and 10 Hz cases. 
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1. For the 10 and 100 Hz cases, the time step was halved twice, from the calculated value 

reported by Eq. 5.33. Unfortunately, this did not improve the simulation behaviour and 

divergence of the solution was achieved. 

2. The steady state boiling simulations began with the initial condition of the transient free 

convection simulation, using the rate constant at the free surface equal to 0.1 Hz. Hence, 

better initial states were provided to the 10 and 100 Hz cases. These were the steady 

state boiling case when 𝛽 = 1 Hz.  Even when providing a closer initial state to the 10 

and 100 Hz cases, the simulations still diverged. 

3. To force a solution, the numerics were switched from high resolution for the advection 

and turbulence schemes, to upwind. This introduces a lot of false diffusion which aids 

the overall convergence of the solution. It was hoped that this step would be successful, 

and would act as the initial state for additional high resolution steady state boiling cases 

for the 10 and 100 Hz cases. However, divergence occurred even when using upwind 

schemes and small time steps. 

4. As a last resort, coarser meshes were used. These meshes corresponded to a resolution 

less than that reported by the statistics of mesh 1 in Table 5.1. With an extremely coarse 

mesh the simulations of 10 and 100 Hz were slightly more stable, in that the simulations 

were computed for a longer number of iterations before eventually diverging. 

5. As a further last resort, steps 1 to 4 were repeated, but by using a transient solver. The 

simulations did not diverge, however the results were physically unrealistic and 

unreportable. Large mass flow were produced for the evaporation and feed, and the 

magnitude of the water velocities were comparable to speeds achieved in transonic 

flow. 

Due to the simulation issues faced with the rate constants of 10 and 100 Hz, they were not 

used for further analysis. Only 0.1 and 1 Hz were used. The omission of the 10 and 100 Hz 

rate constants was taken prudently, and only when all reasonable doubt was removed as to its 

possible success. 

Recall that, in the works of Lee (1980), DeSchepper et al., (2009) and Alizadehdakhel 

et al., (2010), a rate constant of 0.1 Hz was used. They suggested values greater than this caused 

numerical divergence in their simulations and significant deviations between the interfacial 

temperature and the saturation temperature. However, Yang et al., (2008) and Goodson et al., 

(2010) used a value of 100 Hz, and also claimed using values less than 100 Hz caused significant 

deviation of the interfacial temperature from the saturation temperature. Clearly, the two groups 

of works are contradictory in their advice provided. 

A significant differentiator between the two groups of work who used either 0.1 Hz or 100 

Hz is the interface structure. The works of Lee (1980), DeSchepper et al., (2009) and 
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Alizadehdakhel et al., (2010), who used 0.1 Hz, were all largely stratified flows, with small 

volume fractions of bubbles and droplets. The works of Yang et al., (2008) and Goodson et 

al., (2010) were largely bubbly and droplet flows, with little stratification. This helps to 

explain why the steady state boiling simulations using 10 and 100 Hz diverged significantly, 

since the free surface in the scaled test rig is stratified at the free surface. Therefore, in order 

to gauge the value of the rate constant 𝛽, information on the flow structure must be known. 

This explanation also agrees with the mathematical modelling. In the proposed length 

scale in Eq. 5.29 for the mixture model IAD in Eq. 5.21, small values of 𝛽 yield large length 

scales, providing small values of the IAD. Conversely large values of 𝛽 yields small length 

scales, providing large values of the IAD. Since bubbles and droplets have large IADs 

compared to planar surfaces, a small value of 𝛽 would be required at the free surface. In 

addition to this, small values of IAD limit the transfer of continuity, momentum and energy 

across the interface, yielding lower evaporative mass flow compared to that which would be 

provided if a high rate constant were used. This gives additional credence to the theory that 

the rate constant is dependent on the interface structure, which is required to be known in 

order to prescribe the IAD. 

5.20 Transient Boiling Results (𝜷 = 𝟎. 𝟏 Hz and 1 Hz) 

The transient boiling simulations represented the last step in the solution strategy which 

was described in section 5.13. They also represent the stage where two values of the rate 

constant were tested (0.1 Hz and 1 Hz; support for 10 Hz and 100 Hz was discontinued at this 

stage due to the numerical instabilities), and benchmarked against experimental data. 

Unlike the steady state boiling cases, the transient cases did converge satisfactorily for 

each time step, to within 1 and 11 iterations per time step. Furthermore the domain imbalances 

throughout the simulations were between ±1 % of the global fluxes in the domain. 

Figure 5.19 represents the evaporation rates corresponding to 𝛽 = 0.1 and 1 Hz. The 

graph also includes the theoretical evaporation rate calculated in the energy and material 

balance, in section 5.11. The theoretical evaporation rate had a value of 0.0078 kg/s. In 

addition to this, the transient averaged evaporation rates are also plotted for both rate 

constants. The average evaporation rate for 𝛽 = 0.1 Hz was 0.071 kg/s, and for 𝛽 = 1 Hz 

was 0.016 kg/s. 

In Figure 5.19 sporadic peaks were found in the evaporation rates for both  𝛽 = 0.1 and 

1 Hz. For 𝛽 = 0.1 Hz a cyclic evaporation rate occurred which had a negative trend, with the 

greatest evaporation rate reading 0.20 kg/s. The evaporation rate for 𝛽 = 0.1 Hz plateaued at 
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6 s and fluctuated around 0.05 kg/s. For 𝛽 = 1 Hz, cyclic evaporation rates were also 

achieved, having a minimum of 0 kg/s and a maximum of 0.05 kg/s for the first 8.5 s. After 

this time, the evaporation rate quickly rose to a value of approximately 0.25 kg/s. 

 

Figure 5.19: Evaporation rates for 𝜷 = 0.1 and 1 Hz for 10 s simulation time. 

It is far more reasonable to compare the average values of the evaporation rates to the 

theoretical one. The theoretical evaporation rate was calculated from the energy and material 

balance, which assumed steady state conditions. During operation when the scaled test rig is 

analysed over a long time frame, it is also steady state, as is Evaporator C. The theoretical 

evaporation rate was determined to be 0.0078 kg/s and the average evaporation rates for 𝛽 =

0.1 Hz and for 𝛽 = 1 Hz were 0.071 kg/s and 0.016 kg/s respectively. These corresponded to 

relative errors of 810% and 105% respectively. 

For both rate constants, the average evaporation rates were over predicted compared to 

the expected evaporation rate. For 𝛽 = 0.1 Hz the average evaporation rate was skewed by 

the initial state at 𝑡 = 0 s, which had a relatively high evaporation rate of 0.20 kg/s. This 

initial state was supplied by the steady state boiling simulations which were performed prior 

to the transient simulations. The large values of the evaporation rates for 𝛽 = 0.1 Hz were 

due to the values taken by the IAD. At 𝛽 = 0.1 Hz, the length scale was 0.9 mm, which 

provided an IAD value of approximately 278 m-1. The average evaporation rate reduced 

significantly by 126% from 0.071 kg/s for 𝛽 = 0.1 Hz to 0.016 kg/s for 𝛽 = 1 Hz. The length 

scale for 𝛽 = 1 Hz was 0.3 mm, which was three times less than that for 𝛽 = 0.1 Hz. This 

corresponded to an IAD value of 878 m-1. Therefore more realistic evaporation rates were 

achieved with 𝛽 = 1 Hz, which had a greater IAD than 𝛽 = 0.1 Hz. 

The average evaporation rate for 𝛽 = 1 Hz was skewed by the rising trend in the last 

1.5 s of the simulation. This had a very high rate of evaporation due to the absence of a wall 
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boiling model. The free surface contained a superheated layer of water which originated from 

the coils. This layer continually flashed to steam, and the thickness of this layer varied with 

time. In the last 1.5 s of the simulations for the 𝛽 = 1 Hz case, the thickness of the layer was 

considerably greater than the previous 8.5 s. In the last 1.5 s the flash evaporation due to the 

combined effects of the latent heat and superheat generated evaporation rates greater than 

expected. If a wall boiling model were activated, the latent heat contained within the liquid 

may have nucleated into vapour bubbles. The average rate of evaporation for 𝛽 = 1 Hz for 

the first 8.5 s is 0.006 kg/s, and is plotted in Figure 5.20. 

 

Figure 5.20: Evaporation rates for 𝜷 = 1 Hz for the first 8.5 s simulation time. 

The relative errors between the theoretical evaporation rate of 0.0078 kg/s and the 8.5 s 

averaged rate of 0.006 kg/s for 𝛽 = 1 Hz is 26%. This excludes the unphysical behaviour 

exhibited after 8.5 s, which yielded the unrealistic rates of evaporation. 

The results suggest that a rate constant between the values 1 Hz and 10 Hz would yield 

an evaporation rate close to the expected value of 0.0078 kg/s. However, the simulations for 

the case 𝛽 =10 Hz were numerically unstable. Furthermore increasing the rate constant has 

the effect of reducing the simulation time step, as described by Eq. 5.33. The simulations were 

performed on the high performance computing facilities at the University of Leeds ARC2 

(Advanced Research Computing 2) facility. The simulations were performed on 3 nodes of 

16 CPUs (48 CPUs) with 32GB of error correcting code memory per node available to the 

CFD solver. The solve time for 𝛽 = 0.1 Hz was 144 hours, and for 𝛽 = 1 Hz was 292 hours. 

These were solved on mesh 2, which had 965928 cells, and the domain represented a one 

quarter scale slice of Evaporator C. It is clear that Evaporator C would require a greater 

number of computational cells, due to its large size compared to the scaled test rig. Therefore 

a rate constant greater than 1 Hz, would decrease the solver time step, which would increase 

simulation run times which, and this would be a very limiting factor when simulating 
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Evaporator C. Therefore significant time investment would be required in order to home into 

a rate constant which yields an evaporation rate close to 0.0078 kg/s. In addition to this, 𝛽 =

1 Hz yielded a 26% error for the rate of evaporation, outputting an average value of 0.006 

kg/s compared to the expected value of 0.0078 kg/s. Greater accuracy would require 

disproportionately greater computational resources. Based on these arguments 𝛽 = 1 Hz was 

selected as the rate constant for future simulations of Evaporator C. 

The proceeding illustrations demonstrate the simulated behaviour of the scaled test rig 

for 𝛽 = 1 Hz. The results for 𝛽 = 0.1 Hz showed similar behaviour to 𝛽 = 1 Hz, and since 

𝛽 = 1 Hz was selected as the chosen rate constant. Visual results for 𝛽 = 0.1 Hz are not 

shown. Figure 5.21 are the instantaneous values of volume fractions at 0 s, 5 s, and 10 s for 

𝛽 = 1 Hz. The volume fractions show significant smearing at the free surface. This was due 

to transition from liquid to vapour due to evaporation. Bubbly and misty structures occur at 

evaporating free surfaces. However, those length scales were not captured by the simulations, 

due to the mesh resolution, which was too low to capture the micro scale phenomena 

associated with bubbly and misty flow. 

   

Figure 5.21: Volume fractions at 0 s, 5 s and 10 s for 𝜷 = 𝟏 Hz. 

Figure 5.22 are the instantaneous isosurfaces when the volume fraction of water 𝑟𝛼 was 0.5. 

The isosurfaces are coloured by the interfacial area density. The free surface has an IAD of 

813 m-1, and the incoming water has an IAD of 361 m-1. The IAD reduces when the free 

surface is close to the side walls of the physical flow domain. This suggests that the greatest 

rate of heat transfer through the water-vapour interface occurs at the centre. The isosurfaces 

also show that the free surface is chaotic, having no discernible pattern. 
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Figure 5.22: Isosurface at 𝒓𝜶 = 𝟎.𝟓, coloured by interfacial area density, at 0 s, 5 s and 10 s for 𝜷 = 𝟏 Hz. 

Figure 5.23 shows the temperature distributions in the water. The distributions did not 

vary significantly, having values close to 32.9 °C, which is the saturation temperature 

corresponding to the 50 mbar ullage pressure. Since the temperature in the pool was at least 

34 °C at the free surface, then the temperature distributions indicate the free surface was 

superheated by 1.1 °C. The stagnant temperatures inside the pool are supported by the 

experimental data of McNeil et al., (2015), who also reported the same finding. At 0 s two 

plumes develop and begin to coalesce and by the end of the simulations. 

   

Figure 5.23: Temperature distributions in the water at 0 s, 5 s and 10 s for 𝜷 = 𝟏 Hz. 

In Figure 5.24 the 𝑇∗ distributions show a band of superheated water at the free surface, 

coloured in orange. In this band 𝑇∗ > 0 which suggested the temperature of this band was 

greater than the local saturation temperature. This is in support of the temperature 

distributions in Figure 5.23. As the superheated layer flashed to steam, it was continually 
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supplied with heat from the coils, and hence the superheated layer did not disappear as the 

simulation time progressed.  

   

Figure 5.24: 𝑻∗ distributions in the water at 0 s, 5 s and 10 s for 𝜷 = 𝟏 Hz. 

The stagnant temperatures inside the water during boiling suggest that circulations 

occurred which were able to dissipate heat effectively through the liquid. This is supported 

by the streamline distributions shown in Figure 5.25. The distributions generally show that 

water travels down the centre of the vessel, and vertically upward through the heated coils. A 

distinct vortex develops at 0 s, at the left hand side tube bank, which over time increases 

intensity. The vortex above the right hand side tube bank is broken during the evaporation 

process. The greatest velocities reported in the simulations were 20 cm/s in the centre of the 

domain, and strong vortex region at the left hand side tube bank contains the lowest velocities. 

Consequently, the behaviour of the scaled test rig can be interpreted as that of an 

unconstrained thermosyphon. 

It is interesting to relate these patterns to those produced for the unscaled test rigs. The 

patterns in Figure 5.25 are in agreement with the patterns produced for the three-dimensional 

simulations of the short test rig, which produced a similar behaviour. In the short test rig, 

water flowed down the centre, and rose up adjacent to the vessel walls. In contrast to this, the  

velocity behaviour of the tall test rig which contained a draught tube produced flow patterns 

where the water flowed down the sides of the vessel walls, and up the centre.  
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Figure 5.25: Steamline distributions with superimposed velocity vectors in the water at 0 s, 5 s and 10 s for 

𝜷 = 𝟏 Hz. 

5.21 Comparison to Experimental Data 

The information in Table 5.3 and Table 5.4 contains the values of the tube wall surface 

temperatures and tube wall heat transfer coefficients for the two rate constants tested, which 

were 0.1 Hz and 1 Hz. The tables also contain the experimental tube wall temperatures 

reported by McNeil et al., (2015), and the computed relative percentage errors between the 

temperatures for 𝛽 = 0.1 Hz and 1 Hz and the experimental temperatures. In Table 5.3 and 

Table 5.4, the rows shaded in green indicate values from the CFD investigations. The rows 

shaded in blue refer to experimental temperatures, and finally shaded in purple refer to the 

percentage errors between CFD and experiment. 

The surface heat fluxes were 65 kW/m2, and the heat transfer coefficient was defined 

in terms of the ullage temperature, which was 32.9 °C corresponding to the ullage pressure of 

50 mbar. The data is presented for the coils in the left hand side tube bank only in the test rig. 

The row numbers begin from bottom closest to the base of the test rig, to top closest to the 

free surface. The column numbers begin from the left closest to the test rig walls, to right, 

closest to the centre of the test rig. 

The CFD values for the temperatures and heat transfer coefficients on the right hand 

side coil of the test rig were similar to those on presented in Table 5.3 and Table 5.4. Only 

data from the left hand side tube bank were extracted as McNeil et al., (2015) presented their 

experimental data for the left hand side tube bank. 
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 Row 1 Row 2 Row 3 

Column 1 2 3 1 2 3 1 2 3 

𝑻𝒕𝒖𝒃𝒆,𝜷=𝟎.𝟏 [°C] 75.4 77.8 77.0 78.1 77.8 76.1 79.6 77.5 75.0 

𝑻𝒕𝒖𝒃𝒆,𝜷=𝟏 [°C] 75.8 78.9 78.2 78.8 78.3 76.4 77.7 77.6 78.7 

𝑻𝒆𝒙𝒑 [°C] 64.1 63.2 60.2 56.4 59.9 60.5 55.2 60.5 60.9 

𝑬𝒓𝒓𝜷=𝟎,𝟏 [%] 17.6 23.1 27.8 38.4 29.9 25.8 44.3 28.1 23.2 

𝑬𝒓𝒓𝜷=𝟏  [%] 18.3 24.9 29.8 39.7 30.7 26.3 40.8 28.2 29.2 

𝑻𝒔𝒂𝒕 [°C] 48.6 47.5 46.3 

𝑻𝑶𝑵𝑩 [°C] 7.4 7.3 7.2 

𝒉𝜷=𝟎.𝟏 [W/m2K] 1399 1327 1364 1310 1305 1375 1202 1287 1408 

𝒉𝜷=𝟏 [W/m2K] 1184 1236 1256 1206 1201 1327 1202 1159 1099 

Table 5.3: Transient averaged and area weighted wall temperatures and wall heat transfer coefficients for 

𝜷 = 𝟎. 𝟏 Hz and 𝜷 = 𝟏 Hz. The data are for the left hand side tube bank of the test rig for rows 1 to 3. 

 Row 4 Row 5 Row 6 

Column 1 2 3 1 2 3 1 2 3 

𝑻𝒕𝒖𝒃𝒆,𝜷=𝟎.𝟏 [°C] 80.8 79.4 75.4 80.2 79.3 78.5 79.6 78.6 77.7 

𝑻𝒕𝒖𝒃𝒆,𝜷=𝟏 [°C] 76.4 76.3 77.3 76.0 75.2 76.0 75.1 74.1 73.8 

𝑻𝒆𝒙𝒑 [°C] 56.7 59.3 58.6 53.8 56.4 56.1 51.8 52.0 52.6 

𝑬𝒓𝒓𝜷=𝟎,𝟏 [%] 42.6 33.8 28.7 49.0 40.7 40.0 53.6 51.2 47.6 

𝑬𝒓𝒓𝜷=𝟏  [%] 34.8 28.6 32.0 41.2 33.5 35.5 44.9 42.5 40.2 

𝑻𝒔𝒂𝒕 [°C] 45.1 43.9 41.7 

𝑻𝑶𝑵𝑩 [°C] 7.0 7.0 6.8 

𝒉𝜷=𝟎.𝟏 [W/m2K] 1142 1193 1376 1111 1125 1206 1151 1149 1177 

𝒉𝜷=𝟏 [W/m2K] 1204 1172 1094 1185 1055 1045 1078 1041 1064 

Table 5.4: Transient averaged and area weighted wall temperatures and wall heat transfer coefficients for 

𝜷 = 𝟎. 𝟏 Hz and 𝜷 = 𝟏 Hz. The data are for the left hand side tube bank of the test rig for rows 4 to 6. 

Comparatively there is little difference between the temperatures and heat transfer 

coefficients reported for 𝛽 = 0.1 Hz and 𝛽 = 1 Hz. Therefore, data on the tube walls were 

almost independent of the rate constant, and consequently the interfacial length scale and the 

interfacial area density. These CFD models were used to simulate boiling flows in the same 

way for Evaporator C. If the selected rate constant is incorrect, there would be reasonable 

confidence to suggest the surface data of the CFD results of Evaporator C simulations would 

be reasonably unaffected. 

The smallest and largest errors between experimental temperatures and the CFD 

temperatures were 17.6% for row 1, column 1, and 53.6% for row 3, column 1, for 0.1 Hz. 

Likewise for 1 Hz the smallest and largest errors were 18.3% for row 1, column 1, and 44.9% 

for row 3, column 1. In both cases row 1, column 1 and row 3, column 1 provide the smallest 

and largest errors. This is due to the momentum behaviour of the water over those coils. 
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Referring to Figure 5.25, row 1, column 1 exhibits high velocities which have the potential to 

advect heat and provide a quenching effect. On the other hand, row 3, column 1 has relatively 

moderate to low velocities, which reduces heat transfer rates from that coil. 

Wall boiling was not modelled in the CFD simulations. Therefore, excess superheat 

accumulated at the coil surfaces, and left the system via boiling at the free surface. The 

consequence of not modelling wall boiling is that the reported wall temperatures in the CFD 

were 10 – 20 °C greater than the experimental values, due to the accumulated superheat. 

One of the aims of this investigation was to provide accurate predictions of the wall 

temperatures at the heated surfaces in Evaporator C. By not modelling wall boiling, caution 

should be advised since excess temperatures reported by the CFD can have the effect of over 

predicting corrosion rates. Perry and Geddes (2011) report that the corrosion rates double with 

every 8 °C rise in surface temperature. However, vapour nucleation from wall boiling would 

have condensed back into the liquid pool because it was sub cooled at all times, as shown by 

the temperature and 𝑇∗ distributions in Figure 5.23 and Figure 5.24 respectively. However 

this behaviour is not guaranteed in Evaporator C. 

In Table 5.3 and Table 5.4, the saturation temperature for each row was determined at 

the centroid of each coil. The saturation temperature decreases with increasing row number, 

as expected. As the row numbers increased, the hydrostatic head had a lesser effect on the 

saturation pressure. 

The temperature for onset of nucleate boiling was determined by evaluating the 

correlation by Sato and Matsumura (1964), Eq. 5.34 at each coil. 

 Δ𝑇𝑂𝑁𝐵 = 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡 = (
8𝜎𝛼𝛽𝑇𝑆𝑎𝑡�̇�𝑤𝑎𝑙𝑙

𝜆𝛼Δ𝐻𝑙𝑔𝜌𝛽
)
0.5

 (5.34) 

The onset values had a range between 6.8 °C and 7.4 °C. The values were calculated directly 

by inputting Eq. 5.34 into the CFD solver. The thermophyiscal properties of water were 

assumed constant, and 𝑇𝑂𝑁𝐵 extracted at the post processing stage of the simulations. McNeil 

et al., (2015) also determined the onset temperatures using Eq. 5.34, but did so by evaluating 

variable thermophysical properties as a function of pressure and temperature from steam 

tables. The reported onset wall superheat temperatures were typically between 4 °C and 6 °C. 

Therefore, the computational simulations overshot the evaluation of Eq. 5.34 by at least 1 °C 

for the expected minimum and maximum range. 

The magnitude of the heat transfer coefficients on each coil corresponded to the single 

phase convection heat transfer. There were no significant deviations in the heat transfer 

coefficients for the coils and for the different values of the rate constants. The heat transfer 
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coefficients could not be compared to those reported by McNeil et al., (2015) because they 

were based on nucleate boiling flow, and therefore not suitable for a comparative study. 

5.22 Summary 

The model of Lee (1990) has been generalised, and implemented in ANSYS CFX, and 

the predictions of the generalised model have been compared with the experimental 

investigations of McNeil  et al. 2015 on a scaled test rig designed to replicate some of the 

features of flow in Evaporator C. The original model of Lee (1990) included source terms in 

the liquid and vapour continuity equations, based on an empirically determined rate constant 

𝛽. In order to translate the model into the thermal phase change model framework in ANSYS 

CFX, it was necessary to modify it slightly, and re-express it in terms of a model for the 

interfacial area density (IAD). The ANSYS CFX mixture model framework was selected for 

this, in which the IAD is expressed in terms of a modelled interfacial length scale, which 

depends in turn on the rate constant 𝛽. The value of this constant was not known a priori, and 

four values were tested, which were 0.1 Hz, 1 Hz, 10 Hz and 100 Hz. 

Using rate constants of 10 and 100 Hz caused excessive numerical instabilities within 

the solution and a fully converged solution was not accomplished. Fully converged solutions 

were accomplished using rate constants of 0.1 Hz and 1 Hz. The results using a rate constant 

of 0.1 Hz yielded excessive evaporation rates at the free surface which were unrepresentative 

of the true rates of evaporation. The rate constant 1 Hz yielded a solution closer to the 

physically realistic expected value. 

The results using the rate constants 0.1 Hz and 1 Hz have little effect on the heat and 

momentum distributions inside the water, but do have significant implications on the 

evaporative mass transfer across the interface. There was good agreement between the stream 

temperatures reported in the experimental data and the numerical results outputted from the 

CFD investigations. This was despite the CFD investigations not allowing for wall boiling to 

occur on the heated coils. 

The flow patterns during boiling appear to confirm the motivating hypothesis that the 

flow behaves like an unconstrained thermosyphon reboiler, with internal temperatures similar 

to the temperature adjacent to the ullage region. The results also indicate that most phase 

change occurs as flash evaporation on the top, not as boiling from the coils, as originally 

thought. 
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Chapter 6  

The Industrial Evaporator Design 

6.1 Introduction 

Geometrically the industrial evaporator, Sellafield Evaporator C is unlike the unscaled 

and scaled test rigs. The evaporator is far greater in size compared to the test rigs which were 

simulated in CHAPTER 4 and 5. However the unscaled and scaled test rigs do provide 

insightful knowledge on the potential flow regimes inside Evaporator C. For example the 

investigation on the short and tall test rigs proved that in steam heated systems, conduction 

through the metal would be the limiting resistance to heat transfer. There is no reason to 

believe this would not be true for Evaporator C. The scaled test rig was able to show under 

evaporative conditions the liquid pool remains close to the free surface saturation temperature 

with little temperature variation in the water. Therefore nucleated vapour from heated walls 

would condense back into the liquid pool, whilst the free surface undergoes evaporation. On 

this premise it is expected Evaporator C would follow similar behaviour. 

Prior to full operation, during the period of 13 March to 31 March 1990, Evaporator C 

was tested on a continuous run as part of the system commissioning studies. During the 

commissioning tests, water was evaporated, and the system was tested for control, durability, 

performance, induced stresses associated with the external heating jacket and internal helical 

coils, and operator instructions. The conditions which these tests were performed under were 

recorded. The CFD simulations of Evaporator C were performed based on the conditions in 

the commissioning tests. Condensation inside the steam heated jackets and coils were not 

simulated directly. They were accommodated by applying an overall heat transfer coefficient 

at the surfaces in contact with the water which accommodated condensation inside the jacket 

and coils, and conduction through the walls. 

In order to perform simulations on Evaporator C, a CAD geometry had to be produced 

from old engineering drawings. The engineering drawings for Evaporator C were supplied by 

National Nuclear Laboratory. These described the general arrangement and detailed 

dimensions of Evaporator C. The drawings were produced in 1978, stored on microfilm media 

and unfortunately were of poor quality when reprinted. This meant some dimensions which 

were not printed clearly had to be estimated based on the dimensions of adjacent pipework 

and fittings. The reproduction of the CAD geometry from the engineering drawings was 

arduous. Despite their shortcomings, the drawings were sufficient enough for a CAD 

geometry to be recreated. The CAD geometry was produced beyond a high degree of 
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confidence that it represented that which was described in the engineering drawings for 

Evaporator C. 

Once the geometry was produced, it was meshed so that a CFD analysis could be 

performed. Meshing the CAD geometry was challenging due to the complex structure of the 

vessel. This required careful attention in order to avoid degenerate cells within the mesh. 

Hence an ordered structured mesh which was used for the analysis of the test rigs in 

CHAPTER 4 and 5 could not be produced for Evaporator C. Instead an unstructured approach 

was taken. Details of the mesh are outlined in CHAPTER 7. 

6.2 The Design of Evaporator C 

The design of Evaporator C can be thought of as two component systems: the outer 

shell, and the inner apparatus. The shell of Evaporator C comprises two sections, a lower 

evaporating section, and an upper distrainment section. The external heating jacket is an 

attachment to the lower evaporating section. The shell of Evaporator C houses the inner 

apparatus which also contributes to its operation. These are: 

1. Upper inner coil and condensate outlet 

2. Upper middle coil and condensate outlet 

3. Upper outer coil and condensate outlet 

4. Lower inner coil and condensate outlet 

5. Lower middle coil and condensate outlet 

6. Lower outer coil and condensate outlet 

7. Liquor feed pipe which is positioned above the free surface 

8. Three liquor outlet pipes submerged inside the liquor 

9. Steam sparger which is used to agitate and dislodge settled particulate solids 

10. Three thermometer probes 

11. Density probe 

12. Pneumercator probe used to measure local pressure 

13. Packing frame which fixes and supports the positions of the internal apparatus 

The evaporator is constructed from corrosion resistant austenitic stainless steel of grade 

18/13/1 (Dobson and Phillips, 2006). This material is a specific variant of the generalised 

stainless steel AISI 304 (Richardson, 2009 chap. 2), which has a thermal conductivity of 14.9 

W/mK. 
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6.3 Evaporator C Design: Outer Shell 

Figure 6.1 represents the reproduced CAD geometry of the outer shell of Evaporator C. 

The steam heated evaporating section is coloured in purple, and the ullage section above it is 

coloured in green. The geometry represents the inner walls of the evaporator in contact with 

the water. Hence the wall thicknesses and external heating jacket are not shown, and were not 

directly modelled in the CFD simulations. Figure 6.1 is annotated with dimensions which 

provides a sense of scale, especially when compared to the unscaled test rigs in CHAPTER 4 

which were 0.1 m in diameter, and the scaled test rig in CHAPTER 5 which was 0.75 m wide. 

  

Figure 6.1: Outer shell details of Evaporator C. 

The evaporating section can be thought of as being made of three component parts: an 

upper cylindrical section, a lower dished section, and a toroidal knuckle section. The toroidal 

knuckle section is at a tangent to the cylindrical and dished sections. This allows a smooth 

transition between the vertical cylinder walls and the curved lower dish. 

In Figure 6.1 the external heating jacket surrounds the purple evaporating section. 

Hence steam heating is supplied to the evaporating section only, and not to the green ullage 

section above it. Figure 6.2 is a half slice of Evaporator C which shows the jacketed 
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arrangement. In Figure 6.2 the ullage section is not shown. Steam enters the external heating 

jacket via one inlet only and leaves as condensate via one outlet, hence Figure 6.2 does not 

represent a symmetrical situation. Furthermore the internal apparatus such as the heating coils 

and instrumentation are not shown in Figure 6.2.  

 

Figure 6.2: Outer shell details of Evaporator C. 

At this stage it is pertinent to reveal that the free surface depth is 2.35 m. From the 

information in In Figure 6.1 the heated portion of the outer shell, coloured in purple, is 2.224 

m. Therefore a band of liquid 0.126 m thick at the free surface that is in contact with the outer 

shell is not directly heated by the jacket. During normal operation, thermal conduction inside 

the shell walls would cause this band to be heated. However since Evaporator C is not being 

modelled as a conjugate problem, heat transfer at the free surface may be slightly under 

predicted. 

The overall dimensions of the outer shell are summarised in Table 6.1. The values 

should be cross referenced with the information in In Figure 6.1 and Figure 6.2 to provide 

some context. 
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Description Symbol Value 

Inner diameter of upper 

cylindrical section 
𝒓𝒗,𝒊𝒏 1.524 m 

Outer diameter of upper 

cylindrical section 
𝒓𝒗,𝒐𝒖𝒕 1.556 m 

Inner diameter of toroidal 

knuckle 
𝒓𝒌,𝒊𝒏 0.305 m 

Outer diameter of toroidal 

knuckle 
𝒓𝒌,𝒐𝒖𝒕 0.337 m 

Inner diameter of lower dish 𝒓𝒅,𝒊𝒏 2.743 m 

Outer diameter of lower dish 𝒓𝒅,𝒐𝒖𝒕 2.775 m 

Total height of the jacketed 

section 
- 2.224 m 

Total height of the ullage walls - 1.557 m 

Depth of the liquid - 2.35 m 

Thermal conductivity of vessel 

(stainless steel grade 18/13/1) 
𝝀 14.9 W/mK 

Table 6.1: Dimensions of the outer shell of Evaporator C. Data to be read in conjunction with Figure 6.1 

and Figure 6.2. 

In Figure 6.2 steam enters the jacket close to the free surface, and condenses on the 

outer wall surfaces of the evaporator shell. The enthalpy from the steam condensation is 

transferred to the water inside the evaporator via conduction through the evaporator walls. 

This process is most efficient at 𝑦 = 0 m on the cylindrical part of the shell, when the 

condensate thickness is at its lowest point. The condensate adheres to the outer surfaces of the 

evaporator walls due to surface tension effects, which is commonly referred to as condensate 

retention (Briggs and Rose, 1994). Natural gravity drainage and the continuous addition of 

steam causes the condensate layer to grow with vertical position. The increasing thickness of 

the condensate limits the amount of heat transfer into the vessel due to the thermal resistance 

of the condensate. At the end of the vertical cylinder the condensate transitions onto the 

toroidal knuckle region and eventually onto the lower dished sections, where it is drained. 

Steam condensation would also occur on the jacket surfaces not in contact with the evaporator. 

Therefore a proportion of the enthalpy released by condensation will be lost to the ambient 

surroundings and will not be transferred into the vessel. 

Condensing heat transfer coefficients would be greatest at the top of the heating jacket 

where condensation begins to occur, and less at the bottom of the jacket where it is fully 

flooded. In fact at the bottom of the jacket, if it is fully flooded, the heat transfer regime would 

be single phase convection in the condensate, which yields far lower heat transfer coefficients 

compared to condensation. 
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6.4 Evaporator C Design: Internal Apparatus 

The internal apparatus of Evaporator C was difficult to reproduce compared to the 

relatively simple shell geometry as shown by Figure 6.1. Due to the unique geometrical 

variations, each part had to be drawn individually. For example, the lower inner coil could 

not be replicated and made larger to represent the lower middle coil due to geometrical non-

similarity. Figure 6.3 is the reproduced CAD drawings of the internal apparatus of Evaporator 

C and illustrates the complex nature of the internal structure of Evaporator C. The illustration 

represents the outer surfaces of the internal apparatus in contact with the liquid. 

 

Figure 6.3: Internal apparatus of Evaporator C in four different projections.  
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An annotated top projection of the internal apparatus of Evaporator C is shown in Figure 6.4. 

The direction of the arrows indicates the direction of flow inside the apparatus. For the case 

of the six heating coils, flow enters as gaseous steam, and leaves as liquid condensate.  

 

Figure 6.4: Annotated top projection of the internal apparatus of Evaporator C. Arrow direction indicates 

the direction of flow inside the apparatus. 

Figure 6.5 displays the annotated isometric projection of the internal apparatus of Evaporator 

C. Once again the direction of the arrows indicates the direction of flow inside the apparatus. 

In the CAD geometry the instrumentation equipment and the supporting packing frame were 

not included. Recall the instrumentation comprised three thermometer probes, one density 

probe and one pneumercator probe. The instrumentation was deliberately excluded in 

anticipation of ensuring a small mesh size as possible. The instrumentation probes have a 

small diameter 1.27 cm and a long length of 2 m. Meshing around the small features of the 

instrumentation equipment would yield a significantly large mesh size due to the requirement 

of needing small cell sizes to capture the circumference. The supporting frame was not 

included in the CAD geometry due to its geometrical complexity. In addition to this, it was 
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felt that the coils provided suitable blockage to the flow negating the need to include the 

packing frame, which is designed to be as least obtrusive to flow as possible. 

 

Figure 6.5: Annotated isometric projection of the internal apparatus of Evaporator C. Arrow direction 

indicates the direction of flow inside the apparatus. 

Evaporator C was designed to have no penetrations in the vessel below the liquid 

surface (Perry and Geddes, 2011). This is a safety feature designed into the evaporator to 

remove potential points of leakage at weld points. This better visualised when the internal 

apparatus is coupled together within the shell of the evaporator, as shown by Figure 6.6. 
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Figure 6.6: Complete Evaporator C CAD assembly showing the external shell, and the internal apparatus. 

The dashed blue line indicates the liquid depth. 

The internal apparatus is also constructed from the same material as the outer shell, 

which is grade 18/13/1 stainless steel. It is not prudent to list every dimension of each part of 

the internal apparatus, since they are geometrically complex. However a brief overview of the 

dimensions of each part is supplied. 

6.4.1 Helical Coils 

The internal helical coils comprise two sections: a steam section and a condensate 

section. This is clearly displayed in Figure 6.7, which details the lower inner coil, and is true 

for the remaining five coils. The section coloured in orange is the steam section, and the 

condensate section is coloured in red. Steam enters the steam section coloured in orange, and 

begins to condense with respect to position travelled on contact with the inside walls of the 

coils. This means the physics inside the condensing steam section is two phase heat transfer 

flow, containing gaseous steam and condensed liquid. The condensate section coloured in red 

is single phase convective flow, which contains liquid condensate. Each coil contains a steam 

trap housed inside the stub at the interface of the steam and condensate sections, which is 

circled in Figure 6.7. The steam trap collapses all steam by the time it has reached the 

condensate section. Hence the conditions inside the coils will always be changing, and it is 

very unlikely that steady conditions are ever reached. 
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Figure 6.7: Lower inner coil with the main details annotated. 

The coils also have the ability to replace incoming steam with cooling water. This is 

also true for the external heating jacket. The primary use of this is to cool the concentrated 

batch of liquor after the desired reduction rate has been achieved. The condensate section 

houses another parallel pipe within it (not displayed in Figure 6.7) which effectively makes 

the condensate line a double concentric pipe. When cooling water is used instead of steam, it 

leaves via the inner pipe. Consequently condensate leaves via the outer annulus. In this study, 

the condensate section of each coil was treated as a single non double concentric pipe. The 

key dimensions of the coils are listed in Table 6.2. In the interests of brevity these are not the 

complete dimensions which would enable complete replication of the coils by the reader. 

However they do relay sufficient bulk information of the coils. 

The coils took a significant amount of time to draw in this investigation. In service to 

the time invested in recreating the complex coils in the CAD geometry, they are shown in 

Figure 6.8, in isometric projection. 
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Description Symbol Value [m] 

Coil tube inner radius 𝒓𝒄𝒐𝒊𝒍𝒕𝒖𝒃𝒆,𝒊𝒏𝒏𝒆𝒓 0.044 

Coil tube outer radius 𝒓𝒄𝒐𝒊𝒍𝒕𝒖𝒃𝒆,𝒐𝒖𝒕𝒆𝒓 0.057 

Radius of the helical section 

for inner coils 
𝒓𝒉𝒆𝒍𝒊𝒙,𝒊𝒏𝒏𝒆𝒓 0.762 

Radius of the helical section 

for middle coils 
𝒓𝒉𝒆𝒍𝒊𝒙,𝒎𝒊𝒅𝒅𝒍𝒆 1.04 

Radius of the helical section 

for outer coils 
𝒓𝒉𝒆𝒍𝒊𝒙,𝒐𝒖𝒕𝒆𝒓 1.32 

Approximate helix height for 

inner coils 
𝒚𝒉𝒆𝒍𝒊𝒙,𝒊𝒏𝒏𝒆𝒓 0.601 

Approximate helix height for 

middle coils 
𝒚𝒉𝒆𝒍𝒊𝒙,𝒎𝒊𝒅𝒅𝒍𝒆 0.703 

Approximate helix height for 

outer coils 
𝒚𝒉𝒆𝒍𝒊𝒙,𝒐𝒖𝒕𝒆𝒓 0.753 

Approximate condensate pipe 

height for upper coils 
𝒚𝒄𝒔𝒕,𝒖𝒑𝒑𝒆𝒓 1.85 

Approximate condensate pipe 

height for lower coils 
𝒚𝒄𝒔𝒕,𝒍𝒐𝒘𝒆𝒓 2.71 

Approximate number of full 

helix turns for the inner coils 
- 2.37 

Approximate number of full 

helix turns for the middle coils 
- 2.77 

Approximate number of full 

helix turns for the outer coils 
- 2.96 

Table 6.2: Key geometrical values of the six helical coils.  

 

Figure 6.8: (Top row, left to right) upper inner coil, upper middle coil, upper outer coil. 

(Bottom row, left to right) lower inner coil, lower middle coil, lower outer coil. 
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6.4.2 Liquor Feed, Liquor Outlets and Steam Sparger 

The liquor feed pipe does not physically come into contact with the liquid. The feed 

pipe is fixed in a position above the free surface, such that replenished liquid drops onto the 

free surface as the liquor is evaporated. To maintain the same liquor level the rate of 

replenishment must be the rate of evaporation. 

The liquor feed pipe has an internal diameter of 0.048 m, and an outside diameter of 

0.10 m. The feed pipe was reproduced according to the internal diameter dimensions as only 

the feed rate through the internal diameter need be modelled, therefore the walls of the feed 

pipe were treated as thin walls. An annotated diagram of the liquor feed pipe is shown in 

Figure 6.9. The feed pipe is 0.838 m from the centreline of the evaporator and the outlet is 

0.44 m above the free surface. 

 

Figure 6.9: Annotated diagram of the liquor feed pipe above the liquid free surface. 

The three liquor outlets are identical to each other. The liquor outlets have an outer 

diameter of 0.089 m, and 1 cm thick walls. In the CAD geometry the outer surface in contact 

with the liquid was drawn. The liquor outlets were included in the simulations of Evaporator 

C only to reproduce the blockage effects against the flow of the liquid. Their configuration 

inside Evaporator C is shown in Figure 6.10.  
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Figure 6.10: Annotated diagram of the liquor outlet pipes. 

The liquor outlets operate via vacuum ejection. The suction points of the liquor outlets 

are positioned as close to the bottom most dip of the dished base as possible. This is to ensure 

as much concentrated liquor is collected as possible at the end of a processed batch. The 

clearance between the three liquor outlets and the bottom of the base is 0.64 cm, as shown in 

Figure 6.11. 

 

Figure 6.11: Clearance between the liquor outlets and the base of the evaporator shell. 
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The final apparatus is the steam sparger which is used to dislodge settled particles at 

the base of the evaporator. The steam sparger has an outside diameter of 0.06 m. The general 

arrangement of the steam sparger and its dimensions are shown in Figure 6.12. The steam 

enters the sparger via the inlet at the top, and exits via three outlets submerged inside the 

liquid near the base of the evaporator, as shown in Figure 6.13. The image also displays the 

close proximity of the steam sparger to the base of the evaporator, running parallel with it. 

The dimensions provided on the original microfilm drawings were drawn to good 

mechanical engineering standards. The least amount of information was provided as to not 

overwhelm the reader by displaying many dimensions. In spite of adhering to good standards, 

drawing the CAD geometry was a difficult and arduous process. It involved performing 

forensic analysis of the presented dimensions, and back calculating to determine more 

fundamental dimensional information. This was performed by utilising trigonometric 

functions and general shape theory. Not all dimensions could be calculated to complete the 

CAD assembly. Where this was the case good engineering judgement was exercised and some 

dimensions approximated. 

 

Figure 6.12: Steam sparger general arrangement and dimensions. 

 

3
.4

5
 m



~ 159 ~ 

 

Figure 6.13: (Left) Steam sparger flow direction, (right) steam sparger seated parallel to the base. 

6.5 The Physical Flow Domain of Evaporator C 

In order to reduce the mesh size of Evaporator C, and consequently reduce the 

simulation run times, the redundant volume in the ullage space was removed from the overall 

Evaporator C geometry. This is better visualised in Figure 6.14. A volume in the ullage section 

was sliced on a plane coincident with the liquor feed outlet. Simulation details of the feed 

entering the system and boiling at the free surface could still be captured. Hence the physical 

flow domain in Figure 6.14 (right) was used for the simulations of Evaporator C. 

This method provided good simulation stability when it was used in the simulations of 

the scaled test rig in CHAPTER 5. In the case of the scaled test rig and the Evaporator C 

physical flow domain, just enough volume was included in the ullage space such that: 

1. Details of the liquor feed was not obstructed 

2. Evaporation at the free surface could still be modelled 

3. The position of the top most face, which acts as an opening boundary condition did not 

influence the simulation results in any way 
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Figure 6.14: (Left) Evaporator C physical flow domain with large ullage area, (right) smaller physical 

flow domain which is used in the simulations of Evaporator C. 

6.6 Evaporator C Operating Conditions 

In the simulations water is used as the liquor that is being evaporated. The liquor has a 

depth of 2.35 m, and steam heated by the external heating jacket in contact with the evaporator 

shell, and the internal helical coils submerged inside the liquor. The steam pressure and 

temperature inside the jacket is 2.3 bar and 124.7 ºC, and for the coils is 2.5 bar and 127.4 ºC 

respectively. The remaining unheated areas of the evaporator shell are treated as heat loss 

walls, with an ambient outside temperature of 15 °C. The remaining apparatus inside the 

liquor such as the liquor outlets and steam sparger are treated ad adiabatic walls. The ullage 

pressure above free surface is assumed to be 0.1 bar based on the data from the commissioning 

tests, and information provided in the open literature (Upson, 1984; Robson and Candy, 2009; 

Geddes et al., 2009). The evaporation rate and the feed rate are assumed to be equal and 

opposite. The inlet feed temperature is 20°C. 

6.7 Energy and Material Balance on Evaporator C 

The prescription of the boundary conditions inside the coils requires the knowledge of 

the steam mass flow rate. Therefore a reverse energy and material balance must be performed 

on Evaporator C. The steam mass flow rates are not required for the prescription of the 

boundary conditions in the external heating jacket as they are not a function of the steam mass 

flow rate. The precise correlations used for the boundary conditions are discussed later. The 

energy balance is described by Eq. 6.1.  
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 �̇�𝐼𝑛 − �̇�𝑂𝑢𝑡 + �̇�𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − �̇�𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = �̇�𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (6.1) 

The energy balance assumes steady state conditions which is a realistic assumption for 

Evaporator C, since under operation the evaporation rates are steady. That is the rate of 

evaporation is equal to the feed rate which maintains a constant liquor level. To maintain this 

steady evaporation rate, the steam supply is also likely to be steady when analysed over a long 

time period. This is not unrealistic since the evaporator operates for several weeks evaporating 

one batch of liquor at a time. 

In Eq. 6.1 it is assumed that no generation, consumption or accumulation of energy 

occurs in the system. The problem then reduces to  

 �̇�𝐼𝑛 − �̇�𝑂𝑢𝑡 = 0 (6.2) 

During operation crystalline salt solids are precipitated as the liquor is evaporated. These 

solids are heat emitting, and the liquor itself may also be heat emitting due to radioactive 

decay heat. Therefore a complete analysis of Evaporator C would take heat generation into 

consideration, however it is not considered for this work. The energy inputs and outputs into 

and out of Evaporator C are listed in Table 6.3.  

Heating Types Denoted by 
Heat Input or 

Output? 

Evaporation at free surface �̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 Output 

Liquor replenishment from the liquor feed �̇�𝐹𝑒𝑒𝑑,𝐼𝑛 Input 

Steam heating to the liquor via the external jacket �̇�𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 Input 

Heat loss from the non-heated walls in contact with 

the liquid 
�̇�𝐿𝑜𝑠𝑠,𝑂𝑢𝑡  Output 

Steam heating to the liquor via the internal helical 

coils 
�̇�𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 Input 

Table 6.3: Summary of heat inputs and outputs in Sellafield evaporator C. 

Table 6.3 summarises five heating types. At the free surface evaporation occurs, which 

is considered a type of heat output from the liquid and is denoted by 𝑄𝐸𝑣𝑎𝑝,𝑂𝑢𝑡. Conversely, 

liquor is replenished at the same rate of evaporation. This occurs via the feed pipe which is 

positioned above the free surface. The liquor replenishment into the system is considered a 

heat input and is denoted by 𝑄𝐹𝑒𝑒𝑑,𝐼𝑛. Steam heating via the external jacket is denoted by 

𝑄𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 and is a heat input. There are two sides to the external steam jacket. One side is 

directly in contact with and faces inward toward the evaporator. The other side is not in 

contact with the evaporator, and is directed outward away from the evaporator to the 

surroundings. In this case 𝑄𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 refers to the former case and not the latter. There is some 

area of the walls of the ullage headspace in contact with the liquid which is not being heated, 

and is denoted by 𝑄𝐿𝑜𝑠𝑠,𝑂𝑢𝑡 in Table 6.3 as it will behave as a heat loss wall. Lastly steam 
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heating to the liquor via the internal helical coils is denoted by 𝑄𝐶𝑜𝑖𝑙𝑠,𝐼𝑛. There are six 

coils in total, and 𝑄𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 is the sum of the heating contribution from each coil. Figure 

6.6  

The information in Table 6.3 is summarised as shown by Eq. 6.3. 

 �̇�𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 + �̇�𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 + �̇�𝐹𝑒𝑒𝑑,𝐼𝑛⏟                    
Heat Inputs

−�̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 − �̇�𝐿𝑜𝑠𝑠,𝑂𝑢𝑡⏟              
Heat Outputs

= 0 (6.3) 

In the commissioning tests the rate of evaporation was recorded and known, which implied 

the feed rate is also known since it is equal and opposite to the evaporation rate. Therefore 

rearranging Eq. 6.3 into known quantities on the left hand side, and unknown to the right 

yields Eq. 6.4, and consequently Eq. 6.5. 

 �̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 − �̇�𝐹𝑒𝑒𝑑,𝐼𝑛 = �̇�𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 + �̇�𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 − �̇�𝐿𝑜𝑠𝑠,𝑂𝑢𝑡  (6.4) 

  (�̇�Δ𝐻𝑙𝑔)𝐸𝑣𝑎𝑝,𝑂𝑢𝑡
− (�̇�Δ𝐻𝑙)𝐹𝑒𝑒𝑑,𝐼𝑛 = �̇�𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 + �̇�𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 − �̇�𝐿𝑜𝑠𝑠,𝑂𝑢𝑡 (6.5) 

During evaporator operation a constant liquor level is maintained. This implies the rate 

of evaporation is equal to the feed rate �̇�𝐹𝑒𝑒𝑑,𝐼𝑛 = �̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡. Upson (1984) and Robson and 

Candy (2009) state 60 m3/day of nitric acid based liquor is evaporated in Evaporators A, B, 

and C. Data from the commissioning tests reveal evaporation rates of 90 m3/day of water. 

However it is not clear if both evaporation rates were obtained under identical conditions. 

In this investigation the data from the commissioning tests are used to provide the 

operating conditions for the simulations. Therefore the evaporation rate of water is used. 

Coupled with the knowledge that the thermophysical properties of water are known, where as 

highly active liquor is not. Given the density of water at 0.1 bar is 990 kg/m3, then 90 m3/day 

of evaporating water is equivalent to 1.03 kg/s. Therefore �̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 = �̇�𝐹𝑒𝑒𝑑,𝐼𝑛 =

1.03 kg/s. 

The mass flow rates on the left hand side of Eq. 6.5 are known. Evaporation at the free 

surface occurs at 0.1 bar and at saturated conditions, therefore the enthalpy of vaporisation is 

known. The single phase enthalpy due to the feed entering the system at 20ºC is known. 

Substituting the known quantities into Eq. 6.5 yields �̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 − �̇�𝐹𝑒𝑒𝑑,𝐼𝑛 =

(�̇�Δ𝐻𝑙𝑔)𝐸𝑣𝑎𝑝,𝑂𝑢𝑡
− (�̇�Δ𝐻𝑙)𝐹𝑒𝑒𝑑,𝐼𝑛 = 2380388 W. The calculated values are summarised in 

Table 6.4. 

 

 

 



~ 163 ~ 

Description Denoted By Value 

Evaporation rate / feed rate 
�̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 / 

�̇�𝐹𝑒𝑒𝑑,𝐼𝑛 
90 m3/day 

Evaporation rate / feed rate 
�̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 / 

�̇�𝐹𝑒𝑒𝑑,𝐼𝑛 
1.03 kg/s 

Heat transfer due to liquor replenishment from the liquor feed �̇�𝐹𝑒𝑒𝑑,𝐼𝑛 86490 W 

Heat transfer due to evaporation at free surface �̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡 2466878 W 

Heating requirement 
�̇�𝐸𝑣𝑎𝑝,𝑂𝑢𝑡
− �̇�𝐹𝑒𝑒𝑑,𝐼𝑛 

2380388 W 

Table 6.4: Summary of the evaporation and feed flow rates, and their respective energy inputs and 

outputs. 

From all of the information presented so far the energy balance is summarized by Eq. 6.6. 

 �̇�𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 + �̇�𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 − �̇�𝐿𝑜𝑠𝑠,𝑂𝑢𝑡 = 2380.4 kW (6.6) 

The proportional contribution to 2380.4 kW can be determined by analyzing the heat transfer 

surface areas since, 

  �̇� = 𝑄 = ℎ𝐴Δ𝑇 (6.7) 

the surface areas 𝐴 in contact with the liquid can be compared for �̇�𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛, �̇�𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 and 

�̇�𝐿𝑜𝑠𝑠,𝑂𝑢𝑡. 

The information in Table 6.5 describes the inside and outside surface areas for the steam 

section for each heating coil. The information is divided into total and partial areas. Total area 

refers to the entire area of a section irrespective of if it is in contact with the liquor. Partial 

areas refer only to the area of a section that is in contact with the liquor. The total unwound 

length corresponding to the total and partial areas for the inside and outside areas of the tubes 

are also listed. Table 6.6 describes the inside and outside surface areas and lengths of the 

condensate section of each helical coil. Table 6.7 contains information on the helical coils for 

the combined (steam and condensate sections) total and partial outside surface areas, and the 

combined total and partial inside surface areas. These surface areas are required to determine 

the contribution of the energy balance in Eq. 6.6. 
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Coil 

Steam 

Section 

Total Area 

[m2] 

Steam 

Section 

Partial 

Area [m2] 

Steam 

Section 

Total 

Length [m] 

Steam 

Section 

Partial 

Length [m] 

Steam 

Section 

Total Area 

[m2] 

Steam 

Section 

Partial 

Area [m2] 

 Outside surface area   Inside surface area 

TIC 5.62 4.94 15.65 13.77 4.37 3.85 

TMC 7.97 7.34 22.19 20.43 6.20 5.71 

TOC 10.35 9.71 28.81 27.05 8.05 7.56 

BIC 5.76 5.01 16.04 13.94 4.48 3.89 

BMC 8.29 7.60 23.08 21.16 6.45 5.91 

BOC 10.95 10.16 30.50 28.30 8.52 7.90 

Table 6.5: Surface areas and lengths of each helical coil in the steam section. 

Location 

Condensate 

Total Area 

[m2] 

Condensate 

Partial 

Area [m2] 

Condensate 

Total 

Length [m] 

Condensate 

Partial 

Length [m] 

Condensate 

Total Area 

[m2] 

Condensate 

Partial 

Area [m2] 

TIC 0.98 0.39 2.74 1.10 0.76 0.31 

TMC 1.06 0.39 2.96 1.07 0.83 0.30 

TOC 1.05 0.42 2.92 1.17 0.82 0.33 

BIC 1.29 0.70 3.58 1.94 1.00 0.54 

BMC 1.33 0.72 3.69 2.00 1.03 0.56 

BOC 1.30 0.73 3.62 2.03 1.01 0.57 

Table 6.6: Surface areas and lengths of each helical coil in the steam section. 

Location 

Combined 

Outside Total 

Area [m2] 

Combined 

Outside Partial 

Area [m2] 

Combined Inside 

Total Area [m2] 

Combined Inside 

Partial Area [m2] 

TIC 6.60 5.34 5.14 4.15 

TMC 9.03 7.72 7.02 6.01 

TOC 11.40 10.13 8.86 7.88 

BIC 7.05 5.70 5.48 4.44 

BMC 9.61 8.31 7.48 6.47 

BOC 12.25 10.89 9.53 8.47 

Table 6.7: Combined outside and inside surface areas of the coils.  

There is a hydrostatic head effect in the condensate line due to the height of the 

condensate line between the condensate inlet and the condensate outlet. This is better 

represented in Figure 6.15.   
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Condensate stub 
 

Figure 6.15: Example of the hydrostatic head effect in the top inner coil. 

In Figure 6.15 the hydrostatic head effect ignores the stub, which is below the condensate 

inlet. The top three coils have a head of 1.85 m, and the bottom three coils has a head of 2.71 

m which was described in Table 6.2. This corresponds to absolute pressures of 1.17 and 1.25 

bar, assuming the reference pressure is 1 bar. Table 6.8 summarises this information, along 

with some selected thermophysical properties of the condensate at the respective pressure 

heads. This information is required at a later stage.  

Coil 

Group 

Pressure 

Head [m] 

Hydrostatic 

Pressure 

[bar] 

Saturation 

Temperature 

[ºC] 

Saturated 

Liquid 

Enthalpy 

[J/kg] 

Saturated 

Vapour 

Enthalpy 

[J/kg] 

Top Coils 1.85 1.17 104 436688 2682275 

Lower 

Coils 
2.71 1.25 106 444825 2685262 

Table 6.8: Hydrostatic pressure and selected thermophysical properties of condensate in the condensate 

line. 

Table 6.9 lists the areas of the outer shell walls that are in contact with the liquid. The 

mass flow of steam entering the jacket and each coil is required. The steam pressure for the 

jacket and coils are 2.3 and 2.5 bar respectively, however this is not enough information to 

determine the mass flow.  

 Location Surface Area [m2] 

Jacket vertical wall 15.25 

Jacket knuckle wall 2.95 

Jacket dish wall 6.33 

Total jacketed area 24.54 

Area of the walls in the ulllage region that are in contact 

with the liquid 
1.26 

Table 6.9: Parts of the outer walls that are in contact with the liquid. 

The mass flow inside the jacket and coils can be determined by first calculating the 

proportional heat duty on each surface, and then dividing by the vaporisation enthalpy as 

shown by Eq. 6.8. 

Hydrostatic head effect 
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 �̇� =
𝑄

Δ𝐻𝑙𝑔
 (6.8) 

In order to accomplish this, the proportional heat duty on each surface was first determined. 

There is a proportionality of heat transfer rates between the different surfaces, where the 

proportionality is given by Eq. 6.9. 

  Jacket⏟  
𝑄𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛

∶ TIC: TMC ∶  TOC ∶ BIC ∶ BMC ∶ BOC⏟                      
𝑄𝐶𝑜𝑖𝑙𝑠,𝐼𝑛

∶ Loss⏟
𝑄𝐿𝑜𝑠𝑠,𝑂𝑢𝑡

 (6.9) 

In Eq. 6.9 heat transfer due to the coils have been subdivided into its six parts (for example 

TIC refers to “top inner coil” et cetera). Only the heat transfer surfaces in contact with the 

liquid are considered. This is because the surfaces in contact with the liquid yields a heat 

transfer rate into the liquid of 2380.4 kW and evaporation rate of 1.03 kg/s of water (recall 

not all of the coil surfaces are in contact with liquid). 

 The contribution by each surface toward the calculated heat transfer rate was 

determined by examining the total heat flux. 

 �̇� =
𝑄𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛+𝑄𝐶𝑜𝑖𝑙𝑠,𝐼𝑛−𝑄𝐿𝑜𝑠𝑠,𝑂𝑢𝑡

∑ (Area in contact with the liquid)𝑛
𝑖=1  

 (6.10) 

Since the total heat transfer rate is 𝑄𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛 +𝑄𝐶𝑜𝑖𝑙𝑠,𝐼𝑛 − 𝑄𝐿𝑜𝑠𝑠,𝑂𝑢𝑡 = 2380.4 kW, and since 

the total area in contact with the liquid (termed partial area) is 73.90 m2 then the overall 

combined partial heat flux into the system is 32211 W/m2. This information is summarised in 

Table 6.10. 

Description Value 

Heat input based on partial areas [W] 2380388 

Combined partial area in contact with the liquid [m2] 71.38 

Heat flux input based on partial areas [W/m2] 33350 

Table 6.10: Summary of heat transfer and heat fluxes into Evaporator C during steady evaporation. 

The area relating to the unheated walls of the ullage section in contact with the liquor was 

assigned a negative prefix to account for that fact that the ullage walls behave as heat loss 

walls (that is 𝑄𝐿𝑜𝑠𝑠,𝑂𝑢𝑡 is negative). 

The partial heat flux 33350 W/m2 was multiplied by each area in contact with liquor to 

determine its contribution to 2380.4 kW. A tabulation of the results are listed in Table 6.11. 
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Heat Transfer Area 
Partial Heat Transfer 

Rate [W] 

Top inner coil partial steam area 164912 

Top inner coil partial condensate area 13137 

Combined top inner coil1 178048 

Top middle coil partial steam area 244701 

Top middle coil partial condensate area 12853 

Combined top middle coil1 257555 

Top outer coil partial steam area 323987 

Top outer coil partial condensate area 13957 

Combined top outer coil1 337944 

Bottom inner coil partial steam area 166993 

Bottom inner coil partial condensate area 23198 

Combined bottom inner coil1 190191 

Bottom middle coil partial steam area 253356 

Bottom middle coil partial condensate area 23942 

Combined bottom middle coil1 277298 

Bottom outer coil partial steam area 338925 

Bottom outer coil partial condensate area 24259 

Combined bottom outer coil1 363184 

Jacket vertical wall 508586 

Jacket knuckle wall 98402 

Jacket dish wall 211258 

Combined coil areas1* 𝑸𝑪𝒐𝒊𝒍𝒔,𝑰𝒏 1604220 

Combined external heating jacket* 

𝑸𝑱𝒂𝒄𝒌𝒆𝒕,𝑰𝒏 
818246 

Ullage walls in contact with the liquid* 

𝑸𝑳𝒐𝒔𝒔,𝑶𝒖𝒕 
-42078 

Total* 2380388 

Table 6.11: The contribution to the total heat transfer rate, 2380388 W by each surface in contact with the 

liquid.  

In Table 6.11 the total partial heat transfer rate is 2380388 W, which agrees with the 

value in Eq. 6.6. The total value was calculated by summating the values in Table 6.11 tagged 

with the superscript *. The contribution due to the combined partial coil areas was calculated 

by summating the values tagged with the superscript 1. In Table 6.11 the total heat transfer to 

the liquid is greater for the coils than for the heating jacket. In fact the coils contribute almost 

twice the amount of heat than the external heating jacket does. 
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6.8 Mass Flow of Steam Calculations 

The surface area of the external heating jacket not facing Evaporator C is 27.55 m2. 

This is 1.12 times more than the area of the external heating jacket facing the evaporator, 

which is 24.54 m2 as read from Table 6.9. When the steam enters the jacket it condenses on 

both sides of the jacket: (1) the side directly in contact with the evaporator, (2) and side which 

is not in contact with the evaporator and which faces outward. Therefore when determining 

the steam mass flow through the jacket, the entire condensing area must be taken into 

consideration. Therefore the heat transferred to this surface via steam heating must be 1.12 

times more than steam heating to the walls of the heating jacket in contact with the evaporator 

which was calculated as 818246 W. 

 �̇� =
𝑄𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛+1.12𝑄𝐽𝑎𝑐𝑘𝑒𝑡,𝐼𝑛

Δ𝐻𝑙𝑔|2.3 bar
 (6.11) 

Hence the steam mass flow through the jacket is 0.79 kg /s, calculated using the relation in 

Eq. 6.11. 

The steam enters the coils from above the free surface as shown in Figure 6.7. The 

steam will condense inside the coils before it has reached the free surface due to pressure 

losses in the steam, and due to the relative ambient ullage temperature being at a relatively 

low temperature. Therefore this was taken into consideration when the steam mass flow 

through the coils was determined. 

As an example we take the top inner coil partial steam area, which transmits heat into 

the system at 164912 W (see Table 6.11). The partial heat transfer area is 4.94 m2 (as described 

in in Table 6.5). This yields a heat flux of 33350 W/m2. In fact when any surface is chosen 

Table 6.11, and its heat transfer rate converted to a heat flux by dividing by the area, the value 

will yield 33350 W/m2. Therefore using this value and multiplying it by the total coil areas 

(as tabulated in Table 6.5, Table 6.6 and Table 6.7) produces the heat transfer rates in Table 

6.12. 
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Location 
Partial Heat 

Transfer Rate [W] 

Total Heat 

Transfer Rate [W] 

Percentage 

Change [%] 

Top inner coil partial steam 

area 
164912 187426 14 

Top inner coil partial 

condensate area 
13137 32796 150 

Combined top inner coil1 178048 220223 24 

Top middle coil partial 

steam area 
244701 265729 9 

Top middle coil partial 

condensate area 
12853 35401 175 

Combined top middle 

coil1 
257555 301129 17 

Top outer coil partial steam 

area 
323987 345031 6 

Top outer coil partial 

condensate area 
13957 35004 151 

Combined top outer coil1 337944 380035 12 

Bottom inner coil partial 

steam area 
166993 192125 15 

Bottom inner coil partial 

condensate area 
23198 42855 85 

Combined bottom inner 

coil1 
190191 234980 24 

Bottom middle coil partial 

steam area 
253356 276437 9 

Bottom middle coil partial 

condensate area 
23942 44209 85 

Combined bottom middle 

coil1 
277298 320646 16 

Bottom outer coil partial 

steam area 
338925 276437 18 

Bottom outer coil partial 

condensate area 
24259 43308 79 

Combined bottom outer 

coil1 
363184 408506 12 

Table 6.12: Total heat transfer rates in the coils. 

In Table 6.12 it is evident condensation heat transfer occurring in the coils above the 

free surface cannot be ignored. This is because the percentage change between the heat 

transfer rates associated with the partial and total areas are not negligible. The condensate 

lines are more sensitive to this, with the smallest heat transfer change being 79%. 

A simplified schematic depicting the internal helical coils at the steam/condensate 

interface is shown in Figure 6.16. The stub in the condensate line is not depicted. 
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Figure 6.16: A simplified depiction of the steam coils showing the steam and condensate mass flow. 

The mass flow of steam entering each helical coil is equal to the mass flow of 

condensate leaving at the condensate outlet. They are governed by Eq. 6.12 and Eq. 6.13. 

  𝑄𝑇𝐼,𝑆𝑡𝑒𝑎𝑚 = �̇�Δ𝐻𝑙𝑔 (6.12) 

  𝑄𝑇𝐼,𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 = �̇�Δ𝐻𝑙 (6.13) 

For Eq. 6.13 the change in enthalpy is related to the change in temperature assuming isobaric 

heat capacity as shown in Eq. 6.14. 

  Δ𝐻𝑙 = 𝐶𝑃,𝑙Δ𝑇 (6.14) 

Hence substituting this into Eq. 6.13 yields Eq. 6.15. 

  𝑄𝑇𝐼,𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 = �̇�𝐶𝑃,𝑙Δ𝑇 (6.15) 

Therefore by taking the overall heat of the coils into consideration the mass flow in each coil 

can be determined by the expression in Eq. 6.16. 

  �̇� =
𝑄𝑇𝐼,𝑆𝑡𝑒𝑎𝑚+𝑄𝑇𝐼,𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒

Δ𝐻𝑙𝑔+𝐶𝑃(𝑇𝑠𝑡𝑚,𝑙−𝑇𝑐𝑠𝑡,𝑜𝑢𝑡)
 (6.16) 

In Eq. 6.16 all values are known except from the mass flow of steam �̇� and the condensate 

outlet temperature 𝑇𝑐𝑠𝑡,𝑜𝑢𝑡. The condensate outlet temperature is likely to take values between 

10 °C to 100 °C as the reference ambient temperature for the absolute pressure is 1 bar. These 

values are tabulated in Table 6.13. These values are an extreme. This is because the liquid 
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enthalpy at the condensate section is determined at saturated conditions (that is at the onset of 

phase change) and not at subcooled conditions.  

Cond. 

Temp. 

[°C] 

Temp. Diff. 

𝜟𝑻 = 𝑻𝒔𝒕𝒎 − 𝑻𝒄𝒔𝒕 
[°C] 

UIC 

Mass 

Flow, 

�̇�𝑼𝑰𝑪  

[kg/s] 

UMC 

Mass 

Flow,

�̇�𝑼𝑴𝑪  

[kg/s] 

UOC 

Mass 

Flow, 

�̇�𝑼𝑶𝑪 

[kg/s] 

LIC 

Mass 

Flow, 

�̇�𝑳𝑰𝑪 

[kg/s] 

LMC 

Mass 

Flow, 

�̇�𝑳𝑴𝑪  

[kg/s] 

LOC 

Mass 

Flow, 

�̇�𝑳𝑶𝑪  

[kg/s] 

10 117.4 0.082 0.112 0.142 0.088 0.120 0.153 

15 112.4 0.083 0.113 0.143 0.088 0.121 0.154 

20 107.4 0.084 0.114 0.144 0.089 0.122 0.155 

25 102.4 0.084 0.115 0.145 0.090 0.123 0.156 

30 97.4 0.085 0.116 0.147 0.091 0.124 0.158 

35 92.4 0.086 0.117 0.148 0.091 0.125 0.159 

40 87.4 0.086 0.118 0.149 0.092 0.126 0.160 

45 82.4 0.087 0.119 0.150 0.093 0.127 0.161 

50 77.4 0.088 0.120 0.151 0.094 0.128 0.163 

55 72.4 0.089 0.121 0.153 0.094 0.129 0.164 

60 67.4 0.089 0.122 0.154 0.095 0.130 0.166 

65 62.4 0.090 0.123 0.155 0.096 0.131 0.167 

70 57.4 0.091 0.124 0.157 0.097 0.132 0.169 

75 52.4 0.092 0.125 0.158 0.098 0.133 0.170 

80 47.4 0.092 0.126 0.160 0.099 0.135 0.171 

85 42.4 0.093 0.128 0.161 0.100 0.136 0.173 

90 37.4 0.094 0.129 0.162 0.100 0.137 0.175 

95 32.4 0.095 0.130 0.164 0.101 0.138 0.176 

100 27.4 0.096 0.131 0.165 0.102 0.140 0.178 

Table 6.13: Steam and condensate mass flow rates for the six internal helical coils as a function of 

condensate temperature. 

The values of temperature difference against mass flow in Table 6.13 have been plotted 

in Figure 6.17. There is no information as to the true temperature of the condensate, and where 

this temperature reading is taken. As a conservative estimate the mean value of the maximum 

and minimum temperature was taken (100 °C and 10 °C) which yields a value of 45 °C. The 

resultant mass flow of steam is tabulated in Table 6.14. 
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Figure 6.17: Steam and condensate mass flow as a function of temperature difference between the inlet 

steam (fixed at 127.4 °C) and the condensate temperature (variable). 

Mean 

Condensate 

Temperature 

[°C] 

Temperature 

difference 

𝑻𝒔𝒕𝒎,𝒍 − 𝑻𝒄𝒔𝒕,𝒐𝒖𝒕 

[°C] 

UIC 

Mass 

Flow 

[kg/s] 

UMC 

Mass 

Flow 

[kg/s] 

UOC 

Mass 

Flow 

[kg/s] 

LIC 

Mass 

Flow 

[kg/s] 

LMC 

Mass 

Flow 

[kg/s] 

LOC 

Mass 

Flow 

[kg/s] 

45.0 82.4 0.091 0.124 0.156 0.097 0.132 0.168 

Table 6.14: Mass flow of steam in the internal helical coils. 

From an engineering design point of view, it is likely that the steam feed to the coils 

originate from a common steam feed. Therefore the overall steam feed to the coils would be 

0.768 kg/s. 

6.8.1 Comparison with Evaporator C Commissioning Data 

When Evaporator C was commissioned, the plant underwent a number of operational 

tests before being allowed to evaporate highly active liquor. During the commissioning 

period, tests were conducted for control, durability and performance under different 

configurations. The commissioning tests used water as the process fluid inside Evaporator C. 

A selection of some of the relevant results from the commissioning data is displayed in 

Table 6.15. The steam pressures used in the tests were reported at 2.3 kg/cm2. This is around 

2.26 bar. However in the commissioning report it is not clear where this reading was taken 

inside the steam line. Furthermore, the condensate temperatures reported are mean 

temperatures, and once again it is not clear at which position downstream of the condensate 

line these readings were taken, and over how many days the average was taken. So this data 

is used as a gauge for general accuracy when compared to the calculated values in Table 6.14. 
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 Test Date 

20/08/1990 

Test Date 

22/08/1990 
Average 

Evaporation rate, �̇�𝐞𝐯𝐚𝐩  (m3/day) 90.0 91.7 90.9 

Evaporation rate, �̇�𝐞𝐯𝐚𝐩 (kg/s) 1.04 1.06 1.05 

Jacket condensate temperature, 

𝑻𝒋𝒌𝒕,𝒄𝒔𝒕 [°C] 
82 80 81 

UIC condensate temperature, 

𝑻𝑼𝑰𝑪,𝒄𝒔𝒕 [°C] 
82 82 82 

UMC condensate 

temperature, 𝑻𝑼𝑴𝑪,𝒄𝒔𝒕 [°C] 
84 84 84 

UOC condensate temperature, 

𝑻𝑼𝑶𝑪,𝒄𝒔𝒕 [°C] 
72 78 75 

LIC condensate temperature, 

𝑻𝑳𝑰𝑪,𝒄𝒔𝒕 [°C] 
83 83 83 

LMC condensate temperature, 

𝑻𝑳𝑴𝑪,𝒄𝒔𝒕 [°C] 
86 87 86.5 

LOC condensate temperature, 

𝑻𝑳𝑶𝑪,𝒄𝒔𝒕 [°C] 
83 84 83.5 

Table 6.15: Condensate data from the commissioning tests. 

The general condensate temperatures reported in Table 6.15 from the commissioning 

tests are higher than the mean temperature approach reported in Table 6.14. Unfortunately the 

condensate temperatures from the commissioning reports cannot be used as the conditions 

under which they were generated had not be specified. 

6.9 Boundary Conditions: The Outer Shell 

The external heating jacket comprise of three sections, a vertical section, a knuckled 

section and a dished section. Since each section is geometrically unique they were treated 

independently with regards to the boundary conditions on those surfaces. A depiction of the 

external heating jacket with its three sections is pictured in Figure 6.18. This is a more detailed 

version of the same picture presented in Figure 6.2. 

There are two common resistances to heat transfer into the vessel. These are steam 

condensation on the outside surface of the shell, and conduction heat transfer through the 

shell. This is analogous to the work performed in CHAPTER 4 for the unscaled test rigs. 

Those were heated in a similar manner: dry saturated steam condensed on the lower surface 

of the horizontal stainless steel baseplate, and conduction heat transfer transmitted the heat 

into the water column above it. The underlying governing equations which describe the 

conditions shown in Figure 6.18 are shown in Eq. 6.17 and Eq. 6.186.18. 

 �̇� = ℎ𝑐𝑠𝑛(𝑇𝑠𝑡𝑚 − 𝑇𝑤,𝑜𝑢𝑡) (6.17) 

 �̇� = ℎ𝑐𝑑𝑛(𝑇𝑤,𝑜𝑢𝑡 − 𝑇𝑤,𝑖𝑛) (6.18) 
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It is not strictly accurate to call ℎ𝑐𝑑𝑛 a heat transfer coefficient, as it is simply a resistance to 

conduction heat transfer through the vessel walls due to the wall thickness and thermal 

conductivity. However for simplicity and consistency in the nomenclature ℎ𝑐𝑑𝑛 is used to 

refer to conduction through the walls. 

 

Figure 6.18: Depiction of condensation heat transfer and nomenclature used for the external heating 

jacket in Evaporator C. 

The relations shown in Eq. 6.17 and Eq. 6.186.18 combine to form an overall relation 

shown in Eq. 6.19, where the overall heat transfer coefficient is described by Eq. 6.20. 

 �̇� = ℎ(𝑇𝑠𝑡𝑚 − 𝑇𝑤,𝑖𝑛) (6.19) 

 ℎ = (
1

ℎ𝑐𝑠𝑛
+

1

ℎ𝑐𝑑𝑛
)
−1

 (6.20) 
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In the CFD analysis the heat flux �̇� and inside wall temperature 𝑇𝑤,𝑖𝑛 are solved for 

implicitly in the usual iterative approach. At the boundaries the heat transfer coefficient ℎ is 

prescribed along with the “outside temperature” which is the steam saturation temperature. 

This approach is not novel here, as this type of approach was used in CHAPTER 4 and 

CHAPTER 5. 

Three different condensation heat transfer coefficients in Eq. 6.20 were used depending 

on the location on the heated portion of the outer shell (vertical wall, toroidal knuckle and 

dished bottom). In Eq. 6.20 conduction through the vertical section of the external heating 

jacket is treated as a hollow cylinder, which is described by Eq. 6.21. 

 ℎ𝑐𝑑𝑛 =
𝜆𝑤

𝑟 ln(
𝑟𝑣,𝑜𝑢𝑡
𝑟𝑣,𝑖𝑛

)
 (6.21) 

Conduction through the walls of the knuckle is treated as conduction through a hollow sphere, 

and is described by Eq. 6.22. 

  ℎ𝑐𝑑𝑛 =
𝜆𝑤

𝑟2[(
1

𝑟𝑘,𝑖𝑛
)−(

1

𝑟𝑘,𝑜𝑢𝑡
)]

 (6.22) 

Finally conduction through the walls of the lower dish is also treated as conduction through a 

hollow sphere, and is described by Eq. 6.23. 

  ℎ𝑐𝑑𝑛 =
𝜆𝑤

𝑟2[(
1

𝑟𝑑,𝑖𝑛
)−(

1

𝑟𝑑,𝑜𝑢𝑡
)]

 (6.23) 

Assuming steady conditions, heat transfer rates in one direction in radial systems are 

constant. However under the same conditions heat flux rates in one direction are not constant, 

and are dependent on the position 𝑟 between the outer and inner radii 𝑟1 and 𝑟2. This means 

in order to use Eq. 6.21, Eq. 6.22 and Eq. 6.23 the position 𝑟 needs to be defined. This is taken 

as the inner radius that is in contact with the liquor. Therefore for Eq. 6.21 𝑟 = 𝑟𝑣,𝑖𝑛, for Eq. 

6.22 𝑟 = 𝑟𝑘,𝑖𝑛 and finally for Eq. 6.23 𝑟 = 𝑟𝑑,𝑖𝑛. 

6.9.1 The External Heating Jacket: Vertical Walls 

For the vertical walls of the external heating jacket the analytical Nusselt heat transfer 

coefficient is used for the condensation heat transfer coefficient shown by Eq. 6.24. 

 Nu =
ℎ𝑐𝑠𝑛𝐿

𝜆𝑙
= [

𝑔𝜌𝑙(𝜌𝑙−𝜌𝑔)𝜆𝑙
3Δ𝐻𝑙𝑔

′

4𝜇𝑙(𝑇𝑠𝑡𝑚−𝑇𝑤,𝑜𝑢𝑡)𝑦
]

1

4

 (6.24) 

In Eq. 6.24 the heat transfer coefficient is a function of the vertical position. This is because 

the condensate film thickness increases with position, as shown in Figure 6.18. The 

characteristic length is taken as the height of the vertical section of the external heating jacket, 
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which is 1.59 m. The modified latent heat takes place of the regular latent heat at shown in 

Eq. 6.25. This allows the condensate sub-cooling effects due to advection to be taken into 

account, and was originally proposed by Rohsenow (1956). 

  𝛥𝐻𝑙𝑔
′ = Δ𝐻𝑙𝑔 + 0.68𝐶𝑃,𝑙(𝑇𝑠𝑡𝑚 − 𝑇𝑤,𝑜𝑢𝑡) (6.25) 

6.9.2  External Heating Jacket: Knuckle Section 

The knuckled section allows a smooth transition between the upper vertical and lower 

dished walls of the evaporator. The correlation described by Perry and Geddes (2011) is used 

to treat the condensation heat transfer coefficient on the knuckle. This was discussed in 

CHAPTER 2, and is displayed again in Eq. 6.26, and is best understood when referred to 

Figure 6.18. 

 ℎ𝑐𝑠𝑛 = 𝜆𝑙 [
𝛿𝑙
4(𝑟0+𝑟𝑘)

4 3⁄ +4�̃�𝑟𝑘 ∫ (𝑟0+𝑟𝑘 cos𝜃)
4 3⁄ (cos𝜃)1 3⁄ 𝑑𝜃

𝜃

0

(cos𝜃(𝑟0+𝑟𝑘 cos𝜃))
4 3⁄ ]

−1 4⁄

 (6.26) 

The correlation requires the user to discretise the path from 𝑝𝑘,1 to 𝑝𝑘,2 in Figure 6.18 

into elements, where the angle between the elements is denoted by 𝜃, and where the origin is 

where 𝑟𝑘,𝑖𝑛 and 𝑟𝑘,𝑜𝑢𝑡 = 0 m. No guidance is provided by Perry and Geddes as to how many 

elements should be used between 𝑝𝑘,1 and 𝑝𝑘,2. Figure 6.19 is an illustration of the knuckle 

region only. In Figure 6.19, the top left quadrant shows the theoretical condensate layer 

attached to the knuckle, coloured in salmon pink. The top right quadrant shows the model 

condensate layer thickness coloured in olive green, when the knuckle has just two nodes, and 

one element. There is a linear fit in the condensate profile, and the portion of condensate 

coloured in daffodil yellow is lost. The amount of loss decreases when the number of nodes 

increases to 3, as shown in the lower left quadrant of Figure 6.19. Finally, in the last quadrant, 

there is very little loss of condensate. Please note, Figure 6.19 is a representative example 

purely for illustrative purposes only, and is not to scale. 
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Figure 6.19: Condensation film thickness on the knuckle, showing the effect of increasing the number of 

elements for the Perry and Geddes (2011) condensation heat transfer model. 

The correlation in Eq. 6.26 is a function of the condensate layer thickness at each 

element in the knuckle, and the thickness must be computed for each element. The thickness 

is determined using the correlation in Eq. 6.27. 

  𝛿𝑘 = [
𝛿𝑙
4(𝑟0+𝑟𝑘)

4 3⁄ +4�̃�𝑟𝑘 ∫ (𝑟0+𝑟𝑘 cos𝜃)
4 3⁄ (cos𝜃)1 3⁄ 𝑑𝜃

𝜃

0

(cos𝜃(𝑟0+𝑟𝑘 cos𝜃))
4 3⁄ ]

1
4⁄

 (6.27) 

The condensate thickness in Eq. 6.27 is itself a function of the condensate thickness in the 

previous section. For example, to compute the thickness in the first element the condensate 

thickness that leaves the vertical walls of the external heating jacket needs to be determined. 

This is the condensate at the interface of the royal blue and salmon pink area in Figure 6.18. 

This thickness is determined using the well-known Nusselt formulation as shown in 6.28. 

  𝛿𝑣 = [
4𝜆𝑙𝜇𝑙(𝑇𝑠𝑡𝑚−𝑇𝑤,𝑖𝑛)𝑦

𝑔𝜌𝑙(𝜌𝑙−𝜌𝑔)ℎ𝑙𝑔
]

1

4
 (6.28) 

Lastly the correlations for the condensing heat transfer coefficient and condensate 

thickness requires the user to determine the definite integral with respect to the angle in the 

Theoretical condensate profile 

on the knuckle

Model profile with 1 element, n 

= 2

Model profile with 2 elements, 

n = 3
Model profile with 8 elements, 

n = 9

𝜃 

𝜃 
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knuckle. The thermophysical properties in Eq. 6.26 and Eq. 6.27 is grouped into a constant, 

as shown in Eq. 6.29. 

  �̃� =
𝜇𝑙𝜆𝑙(𝑇𝑠𝑎𝑡−𝑇𝑤)

𝜌𝑙(𝜌𝑔−𝜌𝑙)𝑔Δ𝐻𝑙𝑔
′  (6.29) 

6.9.3 External Heating Jacket: Dished Section 

Prescription of the condensation heat transfer coefficient at the dished section brings 

the external heating jacket to a completion. The bottom of the dish is where the condensate is 

allowed to drain from, as shown by Figure 6.18. This means in theory, the condensate should 

be at its thickest here, or fully flooded. 

The correlation by Popiel and Boguslawski (1975) was used to estimate the 

condensation heat transfer coefficient at the dished section, where the thickness of the 

condensate takes the thickness of the condensate of the last element in knuckle region. The 

local condensation heat transfer coefficient is described by Eq. 6.30. 

 ℎ𝑐𝑠𝑛 = 𝜆𝑙 [
4�̃�𝑟𝑑,𝑜𝑢𝑡 ∫ (sin𝛼)

5
3𝑑𝛼+𝛿4(sin𝛼)

8
3

𝛼1
𝛼2

(sin𝛼)
8
3

]

−
1

4

  (6.30) 

Note the thermophsyical properties are grouped into a constant described by Eq. 6.29.  

The correlation by Perry and Geddes (2011) for the condensation of vapours on the 

knuckle region follows the technique used by Popiel and Boguslawski (1975). In fact, in Eq. 

6.26, if 𝑟𝑘,𝑚𝑖𝑑 = 0 and 𝑟𝑘,𝑜𝑢𝑡 = 𝑟𝑑,𝑜𝑢𝑡 then the correlation reduces to Eq. 6.30 which is for 

spheres. 

6.9.4 External Heating Jacket: Final Remarks 

Condensation on each of these geometries will yield different condensing heat transfer 

coefficients on those surfaces because the condensate layer profile varies with respect to 

position. Therefore the analytical Nusselt condensation formulation is used for the vertical 

walls, as shown in Eq. 6.24, the custom Perry and Geddes formulation for the knuckle is used, 

as shown in Eq. 6.26, and finally the Popiel and Boguslawski formulation for the dish as 

shown in Eq. 6.30. 

The condensation heat transfer coefficients are a function of the temperature difference 

between the steam and the outside wall surface. This can be obtained by rearranging Eq. 6.17 

to make the outside wall temperature the subject of the formula. However this relies on 

knowing the wall heat flux and heat transfer coefficient (which itself is a function of the 

temperature difference) at each iteration in the compute process, which is unknown and is 

being solved for. Therefore by using the rearranged version of Eq. 6.17 to satisfy the 
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temperature difference would give rise an iterative recursion error, where the solution is a 

function of the value being solved for. This is very dangerous to implement into a CFD 

configuration as it leads to numerical instability of the CFD solution. However if the inside 

wall temperature in Eq. 6.17 was a function of a single field variable (either heat flux or 

outside wall temperature) then this would not be a problem as the problem is not being 

constrained and maintains some degree of freedom. Hence as an estimate, the outside wall 

temperature is treated as a halfway point between the steam temperature and the inside wall 

temperature as shown in Eq. 6.31. 

  𝑇𝑤,𝑜𝑢𝑡 =
(𝑇𝑠𝑡𝑚+𝑇𝑤,𝑖𝑛)

2
 (6.31) 

Finally the “outside temperature” used in conjunction with the heat transfer coefficient 

applied to the surfaces of the external heating jacket was 124.7 ºC corresponding to 2.3 bar 

saturation pressure. 

6.10 Boundary Conditions: Internal Helical Coils 

In a similar fashion to the external heating jacket the boundary conditions at the coils 

took the form of a heat transfer coefficient and “external temperature”. In this case the heat 

transfer coefficient was a combination of the in tube condensation heat transfer coefficient 

and conduction heat transfer through the tube walls as described by Eq. 6.19 and Eq. 6.20. 

Conduction heat transfer through the coil walls takes the expression as shown in Eq. 

6.32. 

 ℎ𝑐𝑑𝑛 =
𝜆𝑤

𝑟𝑐𝑜𝑖𝑙,𝑜𝑢𝑡 ln(
𝑟𝑐𝑜𝑖𝑙,𝑜𝑢𝑡
𝑟𝑐𝑜𝑖𝑙,𝑖𝑛

)
 (6.32) 

The condensing heat transfer coefficient inside the tubes varies according to position and 

steam quality. Recall from Figure 6.7 the coils have horizontal and vertical components. From 

Figure 6.7 steam enters the coils at the horizontal position, and then travels downward before 

reaching the helical spiral, which can be thought of as a horizontal tube. It leaves the coil 

system via the condensate which is in the vertical position. Therefore two modes of in tube 

condensation will occur inside the internal helical coils of Evaporator C. These are in tube 

condensation inside horizontal tubes, and in tube condensation inside vertical tubes. 

When in tube condensation occurs in horizontal pipes, the flow of the condensate film 

adheres to the upper hemisphere of the tube, and floods the lower hemisphere as shown in 

Figure 6.20.  
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Figure 6.20: Cross section of in tube condensation for a horizontal pipe. Image courtesy of ESDU-94041 

(1994). 

The typical vapour condensate profile for low liquid loadings in horizontal pipes is shown by 

Figure 6.21. This behaviour may occur at the beginning of the internal helical coils where the 

condensate effects are at their lowest. 

 

Figure 6.21: Vapour condensate profile for low liquid loadings in a horizontal pipe. Image courtesy of 

ESDU-94041 (1994). 

The typical vapour condensate profile for high liquid loadings in horizontal pipes where the 

condensate fully floods the coils is shown by Figure 6.22. This could occur toward the end of 

the steam section of the helical coils just prior to reaching the condensate line. 

 

Figure 6.22: Vapour condensate profile for high liquid loadings in a horizontal pipe. Image courtesy of 

ESDU-94041 (1994). 

In tube condensation behaves differently when the position of the tube is in the vertical 

position. The idealised behaviour of the vapour condensate profile for high liquid loadings in 

vertical pipes is shown in Figure 6.23. 



~ 181 ~ 

 

Figure 6.23: Vapour condensate profile for high liquid loadings in a vertical pipe. Image courtesy of 

ESDU-91024 (2001). 

Based on this information, condensation heat transfer coefficients describing in tube 

condensation in either the horizontal position or vertical position was applied to satisfy the 

condensation heat transfer coefficient requirements in Eq. 6.20. 

6.10.1 Internal Helical Coils Geometrical Division  

To facilitate a varied condensation heat transfer coefficient as a function of position 

inside the helical coils, the steam section of the coils were divided into component parts at the 

geometry production stage. This is shown in Figure 6.24 for the lower inner coil. The 

remaining five coils followed the same format. The condensate line was not divided. 

Dividing the steam section by individual areas was done strategically in order to apply 

unique thermal boundary conditions to those areas. Correlations for in tube condensation heat 

transfer coefficients are a function of steam quality, and mass flow which was calculated via 

the energy balance. The steam quality was assumed to be 1 at the inlet and 0 by the time it 

had reached the condensate line. A proportion of the steam quality was applied to each steam 

area in Figure 6.24 weighted by their surface area. Steam areas 2 and 4 were treated as 

horizontal pipes. 
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Figure 6.24: Partitioned steam areas of the lower inner coil. The remaining five coils followed the same 

format. 

6.10.2 Internal Helical Coils: Condensation Heat Transfer Coefficient 

The  in tube condensation heat transfer coefficients described in guide ESDU-94041 

(1994) for the horizontal portion of the tubes, and ESDU-91024 (2001) for the vertical portion 

of the tubes was used respectively. The procedure was based on the work of Nusselt (1916) 

who studied laminar film condensation on vertical surfaces and inside tubes; and the work of 

Taitel and Dukler (1976) who provided models predict two phase flow regime transitions 

inside tubes; and finally and Breber et al., (1980) who provided a model to predict in tube 

steam condensation inside horizontal tubes. 

The guides outline the procedure process to determine the condensing heat transfer 

coefficients inside the internal helical coils. The procedure process for the horizontal sections 

of the internal helical coils was as follows. 

1. Calculate the dimensionless superficial gas phase velocity inside the tubes. 

 𝑗𝑔
∗ =

�̇�𝑔

𝜋

4
𝐷𝑐𝑜𝑖𝑙
2 [𝐷𝑐𝑜𝑖𝑙𝜌𝑔(𝜌𝑙−𝜌𝑔)𝑔]

1
2

 (6.33) 

2. Calculate the Martinelli parameter. 

Steam inlet

Condensate 

outlet

Steam area 1
Steam area 2

Steam area 3

Steam area 4

Steam area 5

Steam area 6
Steam area 7

Steam area 8

Steam area 9
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 𝑋𝑡𝑡 = (
1−𝑥𝑔

𝑥𝑔
)
0.9

(
𝜌𝑔

𝜌𝑙
)
0.5
(
𝜇𝑙

𝜇𝑔
)
0.1

 (6.34) 

3. Calculate the product of the dimensionless superficial velocity and the cube root of the 

Martinelli paramter. Based on flow maps by Taitel and Dukler (1976) and Breber et 

al., (1980) then if: 

 𝑗𝑔
∗𝑋𝑡𝑡

1 3⁄ > 1 and 𝑋𝑡𝑡 ≤ 1.5 then the flow may be assumed annular 

 𝑗𝑔
∗𝑋𝑡𝑡

1 3⁄ ≤ 1 and 𝑋𝑡𝑡 ≤ 1.5 then the flow may be assumed stratified 

 𝑋𝑡𝑡 > 1.5 then the flow may be considered slug/plug 

If the flow is annular inside the horizontal tube section then the heat transfer coefficient took 

the form as shown in Eq. 6.35. The dimensionless Nusselt number in Eq. 6.35 took the 

definition as described by Eq. 6.36. 

 ℎ𝑐𝑠𝑛 = Nu𝜆𝑙 [
𝜌𝑙(𝜌𝑙−𝜌𝑔)𝑔

𝜂𝑙
2 ]

1 3⁄

 (6.35) 

 Nu = [0.31Re𝑐𝑠𝑡
−1.32 (

Re𝑐𝑠𝑡
2.4Pr𝑐𝑠𝑡

3.9

2.37×1014
)
1 3⁄

+
Pr𝑐𝑠𝑡
1.5τ𝑖

∗

771.6
]

1 2⁄

 (6.36) 

The Nusselt number in Eq. 6.36 is a function of condensate film Reynolds number as shown 

by Eq. 6.37 and Eq. 6.38  respectively. 

  Re𝑐𝑠𝑡 =
4(1−𝑥𝑔)�̇�

𝜋𝐷𝑖𝑛𝑛𝑒𝑟𝜂𝑙
  (6.37) 

  Pr𝑐𝑠𝑡 =
𝜇𝑙𝐶𝑃,𝑙

𝜆𝑙
 (6.38) 

The dimensionless interfacial shear stress also features in the definition of the Nusselt number 

in Eq. 6.36 which is shown in Eq. 6.39. 

 

𝑥𝑔 < 0.81 τ𝑖
∗ = 𝛺 (

𝑥𝑔

1−𝑥𝑔
)
1.4

Re𝑐𝑠𝑡
1.8

𝑥𝑔 > 0.81 τ𝑖
∗ = 0.383𝛺 (

Re𝑐𝑠𝑡

1−𝑥𝑔
)
1.8 (6.39) 

Finally the thermophysical properties are absorbed inside the operator 𝛺 which has the 

definition as shown in Eq. 6.40. 

  𝛺 =
0.252𝜇𝑙

1.177𝜇𝑔
0.156

𝐷𝑖𝑛𝑛𝑒𝑟
2 𝑔2 3⁄ 𝜌𝑙

0.553𝜌𝑔
0.78 (6.40) 

If the condensing heat transfer coefficient was determined to be in the stratified flow 

regime in the horizontal pipes then the relation in Eq. 6.41 was used. 
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Re𝑠𝑡𝑚 > 7780 ℎ𝑐𝑠𝑛 = 0.09Re𝑠𝑡𝑚

0.2 𝛺

(𝐷𝑖𝑛𝑛𝑒𝑟Δ𝑇)
0.25

Re𝑠𝑡𝑚 ≤ 7780 ℎ𝑐𝑠𝑛 =
0.54𝛺

(𝐷𝑖𝑛𝑛𝑒𝑟Δ𝑇)
0.25

 (6.41) 

The steam Reynolds number is defined as shown in Eq. 6.42. The thermphysical properties 

was absorbed by the operator 𝛺 which did not have the same definition defined by Eq. 6.40, 

but took the definition in Eq. 6.43. 

  Re𝑠𝑡𝑚 =
4𝑥𝑔�̇�

𝜋𝐷𝑖𝑛𝑛𝑒𝑟𝜂𝑔
 (6.42) 

  𝛺 = [
𝑔𝜌𝑙(𝜌𝑙−𝜌𝑔)𝜆𝑙

3Δ𝐻𝑙𝑔

𝜇𝑙
]
1 4⁄

 (6.43) 

Finally if the flow regime in the horizontal sections of the internal helical coils was in 

the slug/plug regime then the heat transfer coefficient took the form as shown in Eq. 6.44. 

The definition of the condensate Prandtl number were the same as that defined for annular 

flow. The condensate Reynolds number was defined as shown in Eq. 6.45 which was a 

function of the void fraction as shown in Eq. 6.46. 

 ℎ𝑐𝑠𝑛 = 0.023
𝜆𝑙

𝐷𝑖𝑛𝑛𝑒𝑟
Re𝑐𝑠𝑡

0.8Pr𝑐𝑠𝑡
0.4 (6.44) 

  Re𝑐𝑠𝑡 =
4�̇�(1−𝑥𝑔)

𝜋𝜂𝑙𝐷𝑖𝑛𝑛𝑒𝑟(1−𝜀𝑔)
 (6.45) 

  𝜀𝑔 =
1

1+(
1−𝑥𝑔

𝑥𝑔
)(
𝜌𝑔

𝜌𝑙
)
2 3⁄  (6.46) 

Finally the mean condensing heat transfer coefficient for the vertical portion of the 

steam section of the internal helical coils was provided by the relation in Eq. 6.47. The 

modified Nusselt number is provided by Eq. 6.48. 

 ℎ𝑐𝑠𝑛 = Nu𝜆𝑙 [
𝑔𝜌𝑙(𝜌𝑙−𝜌𝑔)

𝜇𝑙
2 ]

1 3⁄

 (6.47) 

  Nu = (Re𝑐𝑠𝑡
−0.44 +

Re𝑐𝑠𝑡
0.8Pr𝑐𝑠𝑡

1.3

1.718×105
+
Pr𝑐𝑠𝑡
1.5τ𝑖

∗

771.6
)
1 2⁄

 (6.48) 

The condensate Prandtl number took the same form as that shown in Eq. 6.38. The 

dimensionless mean interfacial shear stress is defined in Eq. 6.49. 

  τ𝑖
∗ = 𝛺Re𝑐𝑠𝑡

1.8 (
Re𝑐𝑠𝑡

Re𝑠𝑡𝑚
)
0.4
(1.25 + 0.39

Re𝑐𝑠𝑡

Re𝑠𝑡𝑚
)
−2

 (6.49) 

The operator for the thermophysical properties took the form described by Eq. 6.40. The 

condensate Reynolds number was defined by Eq. 6.37, and the steam Reynolds number by 

Eq. 6.42.  
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The driving temperature in the condensation heat transfer coefficients was the steam 

temperature for the coils, which was 127.4 ºC corresponding to 2.5 bar. The calculated 

parameters, including the local heat transfer coefficients at each area on the steam section of 

the internal helical coils are tabulated in Table 6.16, Table 6.17, Table 6.18, Table 6.19, Table 

6.20 and Table 6.21. 

Condensate leaving the internal helical coils would be sub cooled single phase liquid. 

ESDU-91024 (2001) reports that for sub cooled condensate leaving a vertical pipe the single 

phase heat transfer coefficient can be predicted by the relation in Eq. 6.50. This correlation 

has the benefit of accounting for buoyancy body forces in its prescription, which is absent in 

heat transfer correlations of the form Nu = 𝑥Re𝑛Pr𝑛. The correlation in Eq. 6.50 is based on 

recommendations by Mueller (1983). 

 ℎ = 0.0057Re0.4Pr0.34 (
𝜇𝑙
2

(𝜌𝑙−𝜌𝑔)
2)

−1 3⁄

𝜆𝑙
−1 (6.50) 

The heat transfer coefficient for the condensate section of the internal helical coils was 

coupled with an outside temperature. This was the mean condensate temperature 45.0 °C 

which is tabulated in Table 6.14 along with other key information relating to the coils. 
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Upper Inner Coil 
Area 1 

Horizontal 

Area 2 

Horizontal 

Area 3 

Vertical 

Area 4 

Horizontal 

Area 5 

Horizontal 

Area 6 

Horizontal 

Area 7 

Horizontal 

Area 8 

Horizontal 

Area 9 

Horizontal 

Steam Quality, 𝒙 0.97 0.93 0.89 0.84 0.84 0.81 0.05 0.01 0.00 

Mass Flow Rate of Steam, 

�̇�𝒔𝒕𝒎 [kg/s] 
0.088 0.084 0.081 0.076 0.076 0.073 0.004 0.001 0.000 

Mass Flow Rate of 

Condensate, �̇�𝒄𝒔𝒕 [kg/s] 
0.003 0.007 0.010 0.014 0.014 0.017 0.086 0.090 0.091 

Dimensionless Superficial 

Velocity, 𝒋𝒈
∗  

0.421 0.402 0.386 0.366 0.365 0.351 0.021 0.003 0.000 

Martinelli Parameter, 𝑿𝒕𝒕 0.002 0.005 0.008 0.011 0.011 0.014 0.746 3.926 - 

Product, 𝒋𝒈
∗𝑿𝒕𝒕

𝟏 𝟑⁄
 0.054 0.070 0.076 0.082 0.082 0.084 0.019 0.005 - 

Flow Regime Stratified Stratified Stratified Stratified Stratified Stratified Stratified Slug Plug 

Almost 

single 

phase 

condensate 

Vapour Phase Reynolds 

Number 
95516 91007 87434 82927 82637 79443 4741 781 0 

Liquid Phase Reynolds 

Number 
164 438 654 927 945 1138 5665 5905 5952 

Condensing Heat Transfer 

Coefficient [W/m2K] 
18070 17839 2751 17402 17385 17204 9257 305 209 

Overall Heat Transfer 

Coefficient (Condensation 

and Wall Conduction) 

[W/m2K] 

981 980 753 979 979 978 933 236 174 

Table 6.16: Upper inner coil calculated parameters for in tube condensation heat transfer coefficients. 
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Upper Middle Coil 
Area 1 

Horizontal 

Area 2 

Horizontal 

Area 3 

Vertical 

Area 4 

Horizontal 

Area 5 

Horizontal 

Area 6 

Horizontal 

Area 7 

Horizontal 

Area 8 

Horizontal 

Area 9 

Horizontal 

Steam Quality, 𝒙 0.99 0.95 0.93 0.90 0.89 0.87 0.05 0.01 0.00 

Mass Flow Rate of Steam, 

�̇�𝒔𝒕𝒎 [kg/s] 
0.122 0.118 0.115 0.111 0.111 0.108 0.007 0.001 0.000 

Mass Flow Rate of 

Condensate, �̇�𝒄𝒔𝒕 [kg/s] 
0.002 0.006 0.009 0.013 0.013 0.016 0.117 0.123 0.124 

Dimensionless Superficial 

Velocity, 𝒋𝒈
∗  

0.584 0.565 0.551 0.532 0.530 0.518 0.031 0.004 0.000 

Martinelli Parameter, 𝑿𝒕𝒕 0.001 0.003 0.005 0.007 0.007 0.009 0.686 4.586 - 

Product, 𝒋𝒈
∗𝑿𝒕𝒕

𝟏 𝟑⁄
 0.060 0.084 0.094 0.103 0.103 0.107 0.028 0.007 - 

Flow Regime Stratified Stratified Stratified Stratified Stratified Stratified Stratified Slug Plug 

Almost 

single 

phase 

condensate 

Vapour Phase Reynolds 

Number 
132468 128118 124871 120523 120198 117369 7084 900 0 

Liquid Phase Reynolds 

Number 
112 375 572 836 855 1027 7710 8084 8139 

Condensing Heat Transfer 

Coefficient [W/m2K] 
19717 19542 3646 19226 19212 19091 9257 373 269 

Overall Heat Transfer 

Coefficient (Condensation 

and Wall Conduction) 

[W/m2K] 

986 985 808 984 984 984 933 274 213 

Table 6.17: Upper middle coil calculated parameters for in tube condensation heat transfer coefficients. 
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Upper Outer Coil 
Area 1 

Horizontal 

Area 2 

Horizontal 

Area 3 

Vertical 

Area 4 

Horizontal 

Area 5 

Horizontal 

Area 6 

Horizontal 

Area 7 

Horizontal 

Area 8 

Horizontal 

Area 9 

Horizontal 

Steam Quality, 𝒙 0.99 0.96 0.95 0.92 0.91 0.89 0.04 0.01 0.00 

Mass Flow Rate of Steam, �̇�𝒔𝒕𝒎 

[kg/s] 
0.155 0.151 0.148 0.144 0.142 0.139 0.007 0.002 0.000 

Mass Flow Rate of Condensate, 

�̇�𝒄𝒔𝒕 [kg/s] 
0.002 0.006 0.008 0.012 0.014 0.017 0.149 0.154 0.156 

Dimensionless Superficial 

Velocity, 𝒋𝒈
∗  

0.740 0.721 0.708 0.689 0.681 0.666 0.033 0.010 0.000 

Martinelli Parameter, 𝑿𝒕𝒕 0.001 0.003 0.004 0.006 0.006 0.008 0.817 2.454 - 

Product, 𝒋𝒈
∗𝑿𝒕𝒕

𝟏 𝟑⁄
 0.070 0.099 0.111 0.122 0.126 0.132 0.031 0.013 - 

Flow Regime Stratified Stratified Stratified Stratified Stratified Stratified Stratified Slug Plug 

Almost single 

phase 
condensate 

Vapour Phase Reynolds Number 167712 163478 160396 156162 154259 150995 7427 2259 0 

Liquid Phase Reynolds Number 109 365 552 809 924 1122 9822 10135 10272 

Condensing Heat Transfer 

Coefficient [W/m2K] 
20997 20854 4495 20601 20534 20417 9257 566 324 

Overall Heat Transfer Coefficient 

(Condensation and Wall 

Conduction) [W/m2K] 

989 988 843 988 988 987 933 366 247 

Table 6.18: Upper outer coil calculated parameters for in tube condensation heat transfer coefficients. 
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Lower Inner Coil 
Area 1 

Horizontal 

Area 2 

Horizontal 

Area 3 

Vertical 

Area 4 

Horizontal 

Area 5 

Horizontal 

Area 6 

Horizontal 

Area 7 

Horizontal 

Area 8 

Horizontal 

Area 9 

Horizontal 

Steam Quality, 𝒙 0.96 0.91 0.82 0.78 0.77 0.72 0.05 0.01 0.00 

Mass Flow Rate of Steam, �̇�𝒔𝒕𝒎 

[kg/s] 
0.093 0.088 0.080 0.075 0.075 0.069 0.005 0.001 0.000 

Mass Flow Rate of Condensate, 

�̇�𝒄𝒔𝒕 [kg/s] 
0.004 0.008 0.017 0.021 0.022 0.027 0.092 0.096 0.097 

Dimensionless Superficial 

Velocity, 𝒋𝒈
∗  

0.444 0.423 0.381 0.360 0.358 0.332 0.022 0.004 0.000 

Martinelli Parameter, 𝑿𝒕𝒕 0.003 0.006 0.013 0.016 0.017 0.022 0.751 3.455 - 

Product, 𝒋𝒈
∗𝑿𝒕𝒕

𝟏 𝟑⁄
 0.064 0.077 0.089 0.092 0.092 0.093 0.020 0.006 - 

Flow Regime Stratified Stratified Stratified Stratified Stratified Stratified Stratified Slug Plug 

Almost single 

phase 
condensate 

Vapour Phase Reynolds Number 100535 95841 86240 81549 81186 75345 5023 959 0 

Liquid Phase Reynolds Number 259 543 1125 1409 1431 1785 6047 6293 6351 

Condensing Heat Transfer 

Coefficient [W/m2K] 
18319 18086 2916 17324 17304 16962 9257 336 220 

Overall Heat Transfer Coefficient 

(Condensation and Wall 

Conduction) [W/m2K] 

982 981 765 979 979 978 933 254 182 

Table 6.19: Lower inner coil calculated parameters for in tube condensation heat transfer coefficients. 
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Lower Middle Coil 
Area 1 

Horizontal 

Area 2 

Horizontal 

Area 3 

Vertical 

Area 4 

Horizontal 

Area 5 

Horizontal 

Area 6 

Horizontal 

Area 7 

Horizontal 

Area 8 

Horizontal 

Area 9 

Horizontal 

Steam Quality, 𝒙 0.98 0.95 0.89 0.86 0.85 0.83 0.05 0.01 0.00 

Mass Flow Rate of Steam, �̇�𝒔𝒕𝒎 

[kg/s] 
0.129 0.125 0.117 0.113 0.113 0.109 0.006 0.002 0.000 

Mass Flow Rate of Condensate, 

�̇�𝒄𝒔𝒕 [kg/s] 
0.003 0.007 0.015 0.019 0.019 0.023 0.126 0.130 0.132 

Dimensionless Superficial 

Velocity, 𝒋𝒈
∗  

0.618 0.598 0.560 0.540 0.539 0.522 0.029 0.009 0.000 

Martinelli Parameter, 𝑿𝒕𝒕 0.002 0.004 0.008 0.010 0.010 0.012 0.785 2.219 - 

Product, 𝒋𝒈
∗𝑿𝒕𝒕

𝟏 𝟑⁄
 0.072 0.093 0.112 0.117 0.118 0.121 0.027 0.012 - 

Flow Regime Stratified Stratified Stratified Stratified Stratified Stratified Stratified Slug Plug 

Almost single 

phase 
condensate 

Vapour Phase Reynolds Number 140028 135576 126877 122428 122120 118273 6541 2128 0 

Liquid Phase Reynolds Number 181 451 978 1248 1266 1499 8270 8537 8666 

Condensing Heat Transfer 

Coefficient [W/m2K] 
20011 19839 3858 19307 19294 19130 9257 517 282 

Overall Heat Transfer Coefficient 

(Condensation and Wall 

Conduction) [W/m2K] 

986 986 818 985 984 984 933 345 222 

Table 6.20: Lower middle coil calculated parameters for in tube condensation heat transfer coefficients. 
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Lower Outer Coil 
Area 1 

Horizontal 

Area 2 

Horizontal 

Area 3 

Vertical 

Area 4 

Horizontal 

Area 5 

Horizontal 

Area 6 

Horizontal 

Area 7 

Horizontal 

Area 8 

Horizontal 

Area 9 

Horizontal 

Steam Quality, 𝒙 0.98 0.95 0.91 0.88 0.88 0.85 0.04 0.01 0.00 

Mass Flow Rate of Steam, �̇�𝒔𝒕𝒎 

[kg/s] 
0.164 0.160 0.152 0.148 0.148 0.143 0.006 0.002 0.000 

Mass Flow Rate of Condensate, 

�̇�𝒄𝒔𝒕 [kg/s] 
0.004 0.008 0.016 0.020 0.020 0.025 0.162 0.166 0.168 

Dimensionless Superficial 

Velocity, 𝒋𝒈
∗  

0.784 0.765 0.729 0.710 0.709 0.685 0.030 0.010 0.000 

Martinelli Parameter, 𝑿𝒕𝒕 0.002 0.003 0.007 0.008 0.008 0.011 0.943 2.513  

Product, 𝒋𝒈
∗𝑿𝒕𝒕

𝟏 𝟑⁄
 0.096 0.116 0.137 0.143 0.144 0.150 0.030 0.014  

Flow Regime Stratified Stratified Stratified Stratified Stratified Stratified Stratified Slug Plug  

Vapour Phase Reynolds Number 177728 173434 165252 160960 160665 155301 6852 2366 0 

Liquid Phase Reynolds Number 271 532 1027 1288 1305 1630 10626 10898 11041 

Condensing Heat Transfer 

Coefficient [W/m2K] 
21324 21186 4797 20768 20758 20571 9257 593 343 

Overall Heat Transfer Coefficient 

(Condensation and Wall 

Conduction) [W/m2K] 

989 989 853 988 988 988 933 377 258 

Table 6.21: Lower outer coil calculated parameters for in tube condensation heat transfer coefficients. 
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6.11 Boundary Conditions: Ullage Walls 

The unheated ullage walls in contact with the liquid was treated as heat loss walls, in 

the same way they were treated for the investigation on the scaled test rig in CHAPTER 5. 

Hence heat loss from the unheated walls was a combination of conduction through the 

unheated portions of the external shell, and a combination of convection and radiation. These 

correlations were described by Eq. 5.1, Eq. 5.2 and Eq. 5.3 in CHAPTER 5. The ambient 

outside temperature was taken as 15°C. 

6.12 Boundary Conditions: Liquor Feed and Internal Apparatus 

The mass flow of the liquor feed was set equal and opposite to the rate of evaporation, 

and had an inlet liquor temperature of 20 °C. The unheated internal apparatus in contact with 

the liquid (steam sparger and liquor outlets) were treated as adiabatic walls.  

6.13 Operating Conditions 

The CFD models which were developed to simulate boiling flows inside the scaled test 

rig in CHAPTER 5 were used to model the flows inside Evaporator C. Hence two phase 

Eulerian – Eulerian boiling simulations were performed. The custom formulation for the 

interfacial length scale was used in the prescription for the interfacial area density. Based on 

the validation studies on the scaled test rig in CHAPTER 5, the phase change rate constant 

took a value of 1 Hz. In the simulations water was taken as the process fluid, which was the 

same fluid that was used in the commissioning tests of Evaporator C. The water depth was 

2.35 m. The top surface of the physical flow domain was set to an opening boundary 

condition. 

6.14 Summary 

The design of Evaporator C was explored, which shows the vessel to have a complex 

geometrical setup. Based on engineering drawings, a CAD model of Evaporator C was 

prepared to facilitate a CFD boiling analysis. Analysis of Evaporator C has shown there to be 

large areas inside the vessel which will act as blockages against the natural flow of liquor. 

These blockages are caused by the presence of six internal helical coils which provide heating 

to the liquor, three liquor outlets which extract liquor concentrate at the end of a batch, and a 

steam sparger which helps to dislodge settled solids at the base of the evaporator. 
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Instrumentation is also present, such as thermocouples, a pneumercator and a density probe. 

However these were not included in the evaporator CAD geometry as they would make 

meshing the vessel extremely difficult, and would give rise to an extremely high number of 

mesh cells. 

Each of the evaporator coils houses steam traps at the interface of the steam and 

condensate piping sections. The steam traps ensure no steam is allowed to continue on into 

the condensate piping sections. The incoming steam temperature in the coils is 127.4 ºC 

corresponding to 2.5 bar, however the steam mass flow was not known, which had to be 

determined in order to apply the appropriate thermal boundary conditions. Another heat 

transfer mode into the evaporator vessel occurs via an external heating jacket attached to the 

evaporator outer shell. The external heating jacket surrounds the liquor, except from a small 

area at the free surface. The incoming steam inside the jacket is 124.7 ºC corresponding to 2.3 

bar saturation pressure. 

The total heat flux input into Evaporator C to evaporate 90 m3/day of water (1.03 kg/s) 

in steady state mode is 33350 W/m2. By performing a reverse energy and material balance 

based on the available information, the conditions required for the CFD analysis was 

determined, and the results presented in CHAPTER 7. 
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Chapter 7  

Simulation Results of the Industrial Evaporator 

7.1 Introduction 

The results of the simulations of the industrial evaporator, Sellafield Evaporator C are 

presented here. The computational methods which were used for the scaled test rigs were used 

to simulate Evaporator C, using a phase change rate constant of 1 Hz. The boundary 

conditions were described in CHAPTER 6. 

First a steady state free convection simulation was performed to establish the flow 

fields. This was used as the initial state for the second step, which was to perform transient 

free convection simulations on three meshes which increased in cell density. The transient 

free convection simulations were the basis of the mesh sensitivity study, and were used to 

ensure that boiling conditions had been reached at the free surface prior to activating the 

boiling model. Once a suitable mesh was determined from the sensitivity study, a steady state 

boiling simulation was performed on the chosen mesh, using the transient free convection 

result as the initial state. The purpose of this was to advance the boiling flow fields sufficiently 

in time to overcome the initial transient effects. Lastly, transient boiling simulations were 

performed for a total time of 10 s. 

7.2 Mesh Generation 

Unstructured patch dependent meshes were used for the simulations of Evaporator C. 

These were different to the structured meshes used for the unscaled and scaled test rigs in 

CHAPTER 4 and CHAPTER 5 respectively. 

The method described in CHAPTER 3 was used to generate the unstructured patch 

dependent meshes. In summary the method used was to first generate an octree volume and 

surface mesh. The volume elements were then deleted and the surface mesh was retained. The 

surface mesh was then refined using smoothing algorithms, and then a Delaunay volume mesh 

was created, using the smoothed surface mesh as seed points. Lastly inflation layers were 

inserted to relevant boundaries of interest.  

Three meshes were generated for the mesh sensitivity study for Evaporator C. Mesh 2 

was selected as the independent mesh in the mesh sensitivity study. The mesh generation steps 

that were used to generate the meshes are described here. Unstructured meshing method was 

used because of the difficulty of designing blocking topologies associated with structured 
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meshes. Since the Evaporator C geometry is very complicated, generating a block topology 

and hence structured meshes would have been extremely difficult. 

7.2.1 Geometry Diagnostics 

Geometry diagnostics were required prior to meshing. In the structured approach used 

in CHAPTER 4 and 5, these were simple tests of the geometry to check for undesired sharp 

edges and slivers in the physical domain. More detailed tests were required for the 

unstructured meshes since an unstructured patch dependent mesh was used which is very 

sensitive to badly formed features on the surfaces of the geometry (described in CHAPTER 

3). 

The tests required checking for and removing hard and soft edges and points. These 

were unnecessary construction edges and points which were superfluous, and once removed 

did not alter the proportions of the geometry. The geometry was checked for completeness by 

scanning for holes. Closely sealed “watertight” geometries are required for unstructured patch 

dependent meshes. During the checking process, no holes were detected. In addition to this, 

sharp angles, slivers and spikes which were unrepresentative of the physical geometry were 

scanned for and removed. All surfaces and bodies were also tested to ensure they met the 

requirements for the meshing algorithm. 

7.2.2 Octree Mesh 

In the first step of the mesh generation process an octree mesh was computed. The 

octree method is a robust mesh method which guarantees a successful mesh generation at the 

expense of mesh quality. This is achieved by using a “top-down” algorithm where the mesh 

is seeded within the volume of the physical flow domain, and grows in an orderly fashion 

from the inside out. When the mesh is expanded to surface boundaries from the inside out, 

the ordering stops, and the remaining gaps are flood filled with random tetrahedron cells based 

on cell quality. Further details on octree meshes and their applications to CFD can be found 

in the works of Owen (1998). 

Table 7.1 summarises the octree settings that were selected for all three meshes tested 

in the mesh sensitivity study. The mesh size for the octree meshes increased substantially with 

refinement. It is important to note these are not the final meshes that were generated for the 

CFD simulations. They were the final meshes generated for the octree step of the mesh 

generation.  
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Mesh 

Maximum 

element size 

[m] 

Minimum 

Cell Quality 

Maximum 

Number of 

Iterations 

No. of Nodes 

in Octree 

Mesh 

No. of Elements 

in Octree Mesh 

1 0.03 0.5 5 5,377,287 31,899,600 

2 0.02 0.4 5 7,342,848 43,557,588 

3 0.01 0.4 10 12,720,135 75,457,187 

Table 7.1: Octree statistics for the three meshes used in the mesh sensitivity study. 

Using the octree meshes generated in Table 7.1 would yield erroneous results in the CFD 

simulations. This is because surface meshes associated with the octree methods require 

refinement, and inflation layers need to be inserted. Figure 7.1,  

Figure 7.2  and Figure 7.3 illustrate the octree mesh for mesh 2 on an x-y plane at the position 

of the free surface; the outer and middle coils and knuckle; and lower dished area respectively. 

The ordered nature of the octree mesh can be seen for the bulk volume, flanked by the 

disordered flood filled tetrahedron cells at the surface boundaries. 

 

Figure 7.1: Octree refinement for mesh 2 where the liquid-vapour free surface would appear. Plotted on 

an x-y plane intersecting the geometry. 
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Figure 7.2: Octree mesh for mesh 2 at the position of the outer and middle coils, and knuckle. Plotted on 

an x-y plane intersecting the geometry. 

 

Figure 7.3: Octree mesh for mesh 2 at the lower dished area and the steam sparger. Plotted on an x-y 

plane intersecting the geometry. 

The purpose of the octree mesh generation step was to guarantee a mesh was generated 

since the octree method is a guaranteed mesh method. The additional purpose was to achieve 

a patch dependent surface mesh. The volume mesh was of little use and was deleted as 

described in the next sub section. 

7.2.3 Laplace Surface Mesh 

Once the top-down octree mesh was generated, the volume mesh was deleted, but the 

surface mesh was retained. This meant the surfaces had a mesh associated with them, and the 
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bulk volume did not. The three surface meshes were of fair quality but required refining in 

order to meet good mesh standards. Furthermore a good surface mesh was required for the 

next step in the mesh generation which was creating a Delaunay volume mesh, which required 

good surface mesh statistics.  

The Laplace mesh smoother was used as the refining algorithm for the surface mesh 

smoothing due to its ability to capture boundary surface details in patch conforming methods. 

Furthermore the Laplace algorithm generally produces good surface mesh qualities with 

relatively low number of cells compared to other methods such as orthogonal smoothers 

(Freitag, 1997). 

The surface mesh was refined according to the mesh quality criteria set out in 

CHAPTER 3. Laplace surface mesh smoothing was accomplished for all three meshes to 

within 30 smoothing iterations. Table 7.2 summarises the surface mesh characteristics for all 

three meshes used in the sensitivity study. 

Mesh 

No. of Nodes in the 

Smoothed Surface 

Mesh 

No. of Elements in the 

Smoothed Surface 

Mesh  

1 395,434 795,095 

2 416,332 836,941 

3 438,334 880,989 

Table 7.2: Surface mesh statistics after applying the Laplace mesh smoother. 

The smoothed surface mesh is displayed in Figure 7.4, Figure 7.5 and Figure 7.6, which 

illustrated the meshes on the lower outer coil; the central core; and an isometric view above 

the evaporator. 

 

Figure 7.4: Surface mesh for mesh 2 after smoothing using the Laplace method. Image is of the lower 

outer coil, with some of the intermediate and inner coils shown. 
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Figure 7.5: Surface mesh for mesh 2 after smoothing using the Laplace method. Image is of the central 

core of Evaporator C. 

 

Figure 7.6: Surface mesh for mesh 2 after smoothing using the Laplace method. Image is an isometric 

view looking above into the core of Evaporator C. 

7.2.4 Delaunay Volume Mesh 

Once the high quality surface mesh was refined by using the Laplace smoother, a 

volume mesh was generated by using the Delaunay algorithm, using the surface mesh as the 

initial seed points. The algorithm may generate a mesh without existing seed points, however 

this usually does not guarantee a successful volume mesh, and the end product is usually a 

poor volume mesh. Therefore the Delaunay algorithm was used to obtain a high quality 

volume mesh, seeded from the high quality surface mesh. 
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The Delaunay mesh comprised pure tetrahedral cells. The mesh is shown in Figure 7.7 

on a surface in the x-y plane intersecting the geometry. Figure 7.8 illustrates the Delaunay 

mesh in a y-z plane intersecting the geometry, and Figure 7.9 is the mesh in the x-z plane. The 

Delaunay mesh method produced a smooth transition from the boundaries, and gradually 

increased in size in the bulk volume. This is in contrast to the Octree volume mesh shown in 

Figure 7.1 which features a uniform volume mesh, and no smooth transition from the surfaces 

of the domain. The transition volume ratio from cell to cell was set to 1.18. This was important 

to implement since sudden transitions as featured in the Octree volume meshes generate 

spurious results in those areas. 

 

Figure 7.7: Delaunay mesh for mesh 2 plotted on an x-y plane intersecting the geometry. 
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Figure 7.8: Delaunay mesh for mesh 2 plotted on a y-z plane intersecting the geometry. 
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Figure 7.9: Delaunay mesh for mesh 2 plotted on an x-z plane intersecting the geometry. 

7.2.5 Inflation Layers and Final Mesh 

To complete the mesh generation process, inflation layers were inserted at the 

boundaries of the external heating jacket, the ullage walls, and at the walls of the helical coils 

and associated condensate pipes. They were not inserted at the adiabatic boundaries of liquor 

outlets and the steam sparger. This was because capturing boundary layer flows on those 

surfaces was not important to the investigation, and applying inflation layers to those surfaces 

would have significantly increased the mesh density and solution run times. 

The post-mesh inflation algorithm was selected as the chosen inflation law. This was 

one of two available laws, the other being pre-mesh inflation. As the name suggests, pre-mesh 

inflation occurs before the volume mesh is generated. If it was used, it would occur before 

generating a volume mesh using the Delaunay algorithm. The advantage of using pre-mesh 

inflation is that it generates good quality prism cells for the inflation layers if the geometries 
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do not contain small gaps. In pre-mesh inflation, since a volume mesh has not been created 

prior to implementation, the pre-mesh algorithm is not aware of potential collision locations. 

This makes pre-mesh inflation difficult to implement in complex geometries containing small 

gaps and small features as found in Evaporator C.  

If the geometries do contain small gaps, the post-mesh inflation law should be used, 

which inserts inflation layers after the volume mesh has been created. This is advantageous 

as, since the volume mesh already exists, collisions and other common problems for inflation 

are known beforehand. The post-mesh law does not guarantee collision free inflation layers, 

but it does make them far less likely compared to pre-mesh. The trade-off occurs in inflation 

quality. Post-mesh laws require good quality surface and volume meshes, which were 

achieved using the Octree surface mesher coupled with the Laplace smoother; and the 

Delaunay volume mesher using mesh expansions no greater than 1.18. 

The final mesh that was used had the same complexion as that described in the 

Delaunay step, with the exception of inflation layers inserted to the pertinent locations 

previously described. Mesh 2, which contained five inflation layers in pertinent wall regions, 

was the mesh which was selected from the sensitivity study is shown in Figure 7.10, Figure 

7.11 and Figure 7.12. 

 

Figure 7.10: Details of the final mesh (mesh 2) showing inflation layers at the lower outer and middle coils 

and the knuckle. Mesh displayed on the x-y plane intersecting the geometry. 
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Figure 7.11: Details of the final mesh (mesh 2) showing inflation layers between the bottom dish and the 

steam sparger. Mesh displayed on the x-y plane intersecting the geometry. 

 

Figure 7.12: Details of the final mesh (mesh 2) showing inflation layers on the coils, but not on the liquor 

outlet pipe. Mesh displayed on the x-y plane intersecting the geometry. 

The meshes were designed to be solution independent at the free surface. This was 

obtained by ensuring that the IAD at the free surface was independent of the mesh. Each 

subsequent mesh increased the density of inflation layers to ensure the values of 𝑌+ were less 

than 1, which ensured a low Reynolds number formulation at the walls could be harnessed, 

which in turn ensured accurate wall temperature predictions. These were the same methods 

employed for the mesh sensitivity study for scaled test rig in CHAPTER 5. 

The statistics for the three meshes which were generated are tabulated in Table 5.1. 

Each mesh ran a transient free convection simulation, using a rate constant of 1 Hz, which 



 

~ 206 ~ 

was validated in CHAPTER 5. The simulations were stopped at the onset of boiling at the 

free surface where 𝑇∗ = 0. The simulation times taken to reach 𝑇∗ = 0 at the free surface is 

tabulated in Table 5.1. From the sensitivity study, mesh 2 was chosen as the mesh to proceed 

with boiling simulations. 

 

 
Mesh Statistics Mesh Information  

Mesh 

Max. 

Face 

Angle [°] 

Min. Face 

Angle [°] 

Max. 

Edge 

Length 

Ratio 

Max. 

Element 

Volume 

Ratio 

No. of 

Nodes 

No. of 

Elements 

Sim. 

time 

for 

𝑻∗ = 𝟎 

[s] 

1 164.0 0.73 78.1 197.6 3,172,219 11,727,360 7.3 s 

2 136.6 11.1 20.0 38.0 3,842,709 15,316,294 12.6 s 

3 152.3 19.4 17.6 59.9 4,353,425 19,235,423 12.7 s 

 Table 7.3: Mesh statistics for the three meshes used in the sensitivity study. 

The generated values from the GCI mesh sensitivity study are tabulated in Table 7.4. 

The table shows the sensitivity results for the area and transient average interfacial area 

density. The area and transient average 𝑌+ is absent. This is because the combined area 

average 𝑌+ on a large combined surface area (surfaces in contact with the the external heating 

jacket and six coils) would skew 𝑌+ unfavourably and would be misleading. Therefore 

through the mesh independence study the 𝑌+, was monitored on each independent surface to 

ensure on average during the simulation time it had fallen to less than 1.   

 
ϕ = Area and transient 

average interfacial area 

density [m-1] 

𝝓𝟏 1014 [m-1] 

𝝓𝟐 852 [m-1] 

𝝓𝟑 840 [m-1] 

𝒓𝟐𝟏 1.20 

𝒓𝟑𝟐 1.562 

𝑷 8.85 

𝝓𝒆𝒙𝒕,𝟐𝟏 16 [m-1] 

𝝓𝒆𝒙𝒕,𝟑𝟐 43 [m-1] 

𝒆𝒂𝒑𝒙,𝟐𝟏 1.5% 

𝒆𝒂𝒑𝒙,𝟑𝟐 4.1% 

𝒆𝒆𝒙𝒕,𝟐𝟏 4573% 

𝒆𝒆𝒙𝒕,𝟑𝟐 400.5% 

𝑮𝑪𝑰𝟐𝟏 5.6% 

𝑮𝑪𝑰𝟑𝟐 1.1% 

Table 7.4: Results from the mesh sensitivity study using the GCI method (Celik et al., 2008). 
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The largest IAD that was produced was 1014 m-1 for mesh 1, and the smallest was 840 

m-1 for mesh 3. Mesh 1 produced a very high IAD at the free surface because it was extremely 

coarse. On further refinement the IAD did not deviate significantly from that produced in 

mesh 2, which had a value of 852 m-1. The grid convergence index between mesh 2 and 3 for 

the IAD is 1.1 %. Coupled with low values for the 𝑌+ mesh 2 was chosen as the mesh that 

was independent of the solution. Despite using only five inflation layers in mesh 2 (at least 

ten layers are recommended in the viscous sublayer for) the 𝑌+ values still remain acceptable.  

7.3 Presentation of the Results 

The results for the unscaled test rigs, and the scaled test rig were simple to present in 

comparison to Evaporator C due to their symmetrical nature. The unscaled test rigs were 

symmetrical cylindrical vessels with no complex internal structures, and the scaled test rig 

was a planar slice. However the presentation of the results for Evaporator C required more 

attention due to the asymmetric nature of the vessel, and the asymmetric flow physics. 

In an effort to present the Evaporator C results in a meaningful way the following 

conventions were adopted. The flow distributions inside the water were presented on two 

intersecting planes in the x-y and y-z coordinate frames as shown by Figure 7.13. The planes 

correspond to an orientation map ranging from 0° to 360°. Hence plane x-y has extents 

equivalent to 0/360° and 180°, and y-z has extents equivalent to 90° and 270° respectively. 

The flow distributions on the outer surfaces (jacket and ullage wall) were plotted on a 

projection from 0° to 360° as shown in Figure 7.14. Finally, the distributions on the internal 

surfaces, such as the coils were plotted on all surfaces displayed in isometric view as shown 

in Figure 7.15 for the lower coils. 



 

~ 208 ~ 

 

Figure 7.13: Intersecting planes in the x-y and y-z coordinate frames showing their relation to the internal 

structure (left) and without the internal structure (right). 

 

Figure 7.14: Projection map from 0° to 360° for the outer surface of the evaporator. 

 

0°/360° 0°/360° 90° 90° 

180° 
180° 270° 

270° 

0°/360° 90° 180° 270° 0°/360° 
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Figure 7.15: Isometric views of the lower inner coil (top left); lower middle coil (top right); and the lower 

outer coil (bottom). 

The procedure that was taken to achieve successful evaporation results was described 

in CHAPTER 6. This was the same procedure as taken to simulate evaporative flows for the 

scaled test rig in CHAPTER 5. The results for the initial steady state free convection 

simulations are not shown here. They were performed to establish the flow fields and supply 

an initial condition for the transient free convection simulations, which were in turn used as 

the basis for the mesh sensitivity study. The steady state boiling simulations were performed 

using the transient free convection result as the initial state in order to advance the boiling 

flow fields in time, in preparation for the final transient boiling simulations of Evaporator C. 

The convergence behaviours of the simulations were similar to those presented for the 

unscaled and scaled test rigs. Significant errors during the solving procedure were not 

encountered and the general guidelines outlined in CHAPTER 3 for numerical accuracy were 

adhered to. Lastly, due to the sheer size of Evaporator C, which has many surfaces of interest, 

the area and transient averaged results are displayed. 
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7.4 Monitor Points 

Monitor points were enabled during the simulation process to monitor key values such 

as rates of evaporation, water velocities, temperature, and volume fractions to ensure that 

physically realistic values were being calculated. Five monitor points as shown by the yellow 

crosshairs in Figure 7.16 (Top) were inserted onto fictitious planes intersecting the evaporator 

at five horizontal positions. The first four planes were positioned such that they were 25%, 

50%, 75% and 100% from the base of the evaporator, and inside of the liquid. This meant that 

the plane at 100% height corresponded to the free surface, and 50% height corresponded to 

the half way fill level. A fifth plane was inserted into the ullage area to monitor variables 

pertaining to the ullage region. Figure 7.16 (bottom) shows the vertical positions of the 

monitor points, fitted onto fictitious planes which are not visible. The total number of monitor 

points was therefore 25 (20 monitor points inside the liquid, and 5 monitor points inside the 

ullage area). 

 

Figure 7.16: (Left) Plan view of the evaporator showing five monitor points on a plane; (right) profile view 

of the evaporator showing the monitor points at five vertical positions, four of which are inside the liquid. 

7.5 Transient Free Convection Results 

A steady state free convection simulation was performed using 100 iterations in order 

to establish the flow fields for the transient simulations. The transient free convection 

simulations took to 12.6 s to reach evaporative boiling conditions at the free surface for mesh 

2, beginning with the steady state free convection simulations as the initial state. Figure 7.17 

displays contours of the transient averaged volume fractions of the water. The volume 

fractions show that the water level is positioned just above the upper coils. 
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Figure 7.17: Transient average volume fractions in the x-y and y-z coordinate frames. 

Figure 7.18 displays transient averaged contours of temperature inside the water. The 

water temperatures in the bulk liquid remain close to 45 °C and increase in temperature in the 

vicinity of the heated surfaces. The temperatures were close to the ullage temperature which 

had a value of 45.8 °C corresponding to ullage pressure of 0.1 bar. This behaviour was also 

exhibited in the unscaled and scaled test rigs, where the bulk liquid was close to the saturation 

temperature corresponding to the ullage temperature. The uniform temperature distributions 

inside the bulk liquid imply strong liquid recirculation which is able to transmit heat 

effectively within the water. The illustration also shows plumes of heat emanating from the 

heated surfaces and rising to the free surface. This was also exhibited in the simulations of 

the scaled test rig. 

 

Figure 7.18: Transient average water temperature in the x-y and y-z coordinate frames. 

Figure 7.19 illustrates the transient average 𝑇∗ contours in the water. The contours show 

the water is slightly superheated at the free surface, and sub-cooled everywhere else. The 

definition of 𝑇∗ was described in CHAPTER 4, which was a function of the local saturation 

temperature. The local saturation temperature in Evaporator C at the free surface is 45.8 °C, 

and at the base of the evaporator is 71.4 °C. The temperature distributions in Figure 7.18 
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remained relatively constant at approximately 45 °C. Since this did not exceed the local 

saturation temperature corresponding to the liquid head, it explains the sub-cooled nature of 

the contours in Figure 7.19. 

 

Figure 7.19: Transient average T* in the x-y and y-z coordinate frames. 

Figure 7.20 displays transient average velocity distributions of the water inside 

Evaporator C. These visualisations were obtained by plotting streamlines of the transient 

averaged velocity field, and then by using the streamlines as graphical objects on which to 

display velocity vectors. The distributions show the greatest velocity was 10 cm/s in a very 

small region, close to the free surface and the jacketed wall. The distributions indicate two 

large counter rotating convection cells. Liquid travels down the centre of the vessel, and up 

between the coils returning to the free surface. There are striking similarities between the 

distributions in Evaporator C and those simulated for the scaled test rig. Both cases show the 

same velocity distribution patterns indicating the scaled test rig has the required qualities in 

order to predict the flow distributions inside Evaporator C.  

 

Figure 7.20: Transient average velocity distributions in the x-y and y-z coordinate frames. 
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In the free convection simulations, detailed analysis of variables such as heat 

distributions on walls in contact with the liquid are not shown. This is in the interest of brevity. 

However these will be shown for the results from the transient boiling simulations. 

The most striking observation of the free convection simulations is the similarity 

between the behaviour found in Evaporator C compared to the behaviour found in the scaled 

test rig. The results from Evaporator C show that the temperature inside the liquid remains 

close to the free surface saturation temperature, which was also reported for the simulations 

in the scaled test rig which was benchmarked against experimental data. This has the 

consequence of boiling at the free surface as the 𝑇∗ contours suggest in Figure 7.19. In Figure 

7.20 the patterns for the velocity vectors show an ordered pattern. This is despite the blockages 

present inside the evaporator vessel, such as the internal coils and the steam sparger. The 

patterns dictate that the liquid travels down the centre of the evaporator core region, and 

upwards past the coils close to the vessel walls. This pattern was predicted by the scaled test 

rig in CHAPTER 5, and even in the short unscaled test rig in CHAPTER 4. This pattern was 

not predicted by the tall unscaled test rig in CHAPTER 4 because the draught affected the 

natural tendency of the liquid column. 

7.6 Steady State Evaporation 

The transient free convection simulations were used to provide the initial conditions for 

the evaporative boiling simulations. Hence at the end of the transient simulations the thermal 

phase change model was activated. In order to overcome the initial transient behaviour when 

the thermal phase change model was activated the simulations were first performed in steady 

state. This was the same approach taken to simulate boiling in the scaled test rig in CHAPTER 

5. The steady state simulations were performed for 10,000 iterations to ensure the initial 

transient behaviour had been overcome when the thermal phase change model was activated. 

The overall evaporation rate was monitored during the simulation, and values of absolute 

pressure, temperature, velocity and volume fraction were monitored at the monitor points 

previously described.  

A pseudo steady condition was achieved in the steady state boiling case. Values of the 

monitored variables fluctuated around mean values. The RMS solution residuals were 

extremely erratic and did not reduce less than 1x10-3, therefore the simulation was not strictly 

converged despite achieving pseudo steady behaviour for the monitored variables. However 

this was considered acceptable as the main purpose of the steady state boiling simulations 

were to advance the simulation beyond the initial transient effects. The steady state boiling 
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simulations were used as the initial state for final transient boiling simulations. The final 

results of the transient boiling simulations will be presented in detail in the coming section.   

7.7 Transient Boiling Results 

Transient boiling simulations were performed with a total simulation time of 10 s, using 

the steady state boiling simulation as the initial state. From the analysis the transient averaged 

results are presented, rather than instantaneous results, unless otherwise stated.  

7.7.1 Volume Fractions 

The volume fractions of water are plotted on the outer evaporator shell and in the x-y 

and y-z coordinate frames are shown in Figure 7.21 and Figure 7.22 respectively. During 

boiling there is an absence of a sharp free surface, as witnessed by the free convection 

simulations. Significant smearing of the free surface due to boiling is prevalent at the walls 

of the vessel shown in Figure 7.21. The large smeared band is less obvious inside the liquid, 

as shown in Figure 7.22.  

 

Figure 7.21: Volume fractions of water plotted on the outer evaporator shell. 
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Figure 7.22: Volume fractions of water plotted in the x-y and y-z coordinate frames. 

The isosurface corresponding to water volume fraction values of 0.5 at the free surface 

is displayed in Figure 7.23. Liquor dropping down from the feed is outlined by the black 

circle. The isosurface shows that the free surface is not uniform. Distortions and ripples appear 

at the free surface due to the effect of boiling. As the water is evaporated, liquid from the feed, 

which has been circled, replenishes the vessel. 

 

Figure 7.23: Isosurface corresponding to water volume fraction = 0.5. 

In Figure 7.23, wavy features are present, due to instabilities caused by boiling at the free 

surface. These disturbances were not evident inside the free convection simulations. Since the 

isosurface is weighted according to volume fraction, the free surface structure in Figure 7.23 

would vary if it was set to display volume fractions of water anywhere between 0 and 1. 

Therefore in Figure 7.23 the volume fraction was set to 0.5 because it indicates the half way 

transition from water to vapour. 
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7.7.2 Temperature and 𝑻∗ Distributions 

The temperature distributions inside Evaporator C are extremely important to this 

investigation. From the temperature distributions occurring on the heat transfer surfaces, 

information on the potential rates of corrosion can be determined (Wakem et al., 2009). The 

rates of corrosion yields information on the expected lifetime of the evaporator vessel. 

Corrosion rates as a function of temperature are not discussed here. However the temperature 

distribution results do provide information for researchers who wish to determine corrosion 

rates based on the findings in this work. 

The temperature distributions inside the liquor are shown in Figure 7.24. The 

distributions indicate uniform temperature distributions inside the liquid having a temperature 

of 45°C, which is close to the free surface saturation temperature of 45.8 °C. Larger 

temperature gradients occur in the liquid at the vicinity of the heated walls where the 

temperature reaches 50 °C. The temperature distributions are plotted on the x-y and y-z 

coordinate frames and where water is present with at least a volume fraction of 0.5. Therefore 

temperature distributions inside the ullage space are not shown, and if they were shown they 

would be limited to the saturation temperature, which is 45.8 °C. Since the water temperature 

is close to this value, it would be difficult to see the free surface if the temperature of the 

ullage space was included. 

 

Figure 7.24: Temperature distributions in the water plotted in the x-y and y-z coordinate frames. 

The temperature distributions plotted in Figure 7.25 are the inside wall surface 

temperatures of the shell of the evaporator, where the volume fraction of water is at least 0.5. 

Small localised high temperature regions are present at the knuckle and base of the evaporator, 

having a value of 60 °C. 
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Figure 7.25: Projection map of temperature on the inner surface of the evaporator shell in contact with 

the water. 

At the inside surfaces of the evaporator shell the temperature is largely 50 °C. This 

corresponds to the plot in Figure 7.24 which suggests the water temperature directly adjacent 

to the heated shell walls are 50 °C. The driving temperature inside the external heating jacket 

was set to 124.7 °C corresponding to a steam pressure of 2.3 bar. There is large temperature 

difference between the steam and the temperature on the inner surface of the shell, 

corresponding to a driving force of 124.7 – 50 = 74.7 °C. This driving temperature occurs 

across the resistances in parallel due to condensation resistance inside the jacket, resistance 

due to conduction and through the shell walls. 

Figure 7.26 is the temperature distributions on the outer surfaces of the apparatus 

housed inside the evaporator. These are the internal helical coils, the liquor outlets and the 

steam sparger. The immediate observation is that the distributions on the outer surfaces of the 

apparatus are uniform showing similar behaviour to the temperature distributions of the inner 

surface of the evaporator shell. 
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Figure 7.26: Temperature distributions on the outer walls of the evaporator internal apparatus in contact 

with the water. 

The temperature distributions on the coils are shown by Figure 7.27. The distributions 

on the liquor outlets and the steam sparger are not shown as they were set to adiabatic walls, 

and hence will have a temperature equal to the liquid in contact with it. The driving 

temperature inside the coils was set to 127.4 °C corresponding to a steam pressure of 2.5 bar. 

The condensation heat transfer coefficient inside the coils was set to vary depending on steam 

quality. Hence at the inlet the quality was set to 1 and varies to 0 at the condensate pipe. 

Despite this the temperature distributions on the walls remained relatively uniform, with the 

largest temperature driving force equalling 127.4 – 65 = 62.4 °C. This behaviour was also 

observed on the internal surfaces of the evaporator shell, where despite the varied condensing 

heat transfer coefficient as a function of position, the temperature driving force remained 

steady at 74.7 °C. Since the overall driving force at the coils are larger than that of the external 

heating jacket, it can be concluded more efficient heat transfer occurs from the coils and into 

the liquid, compared to from the jacket and into the liquid. 
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Figure 7.27: (Top) Temperature distributions on the outer walls of the lower coils, and (bottom) the upper 

coils. 

The temperature distributions at the liquid surface are shown in Figure 7.28. The plot 

shows the incoming water, at a temperature of 20 °C, which replenishes the evaporated liquid. 

The evaporated liquid is at 45.8 °C which is to be expected as it is the saturation temperature 

corresponding to the ullage pressure of 0.1 bar. 

 

Figure 7.28: Isosurface of water coloured by water temperature when the volume fraction is 0.5. 
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𝑇∗ distributions are an effective way at illustrating where the water is superheated or 

sub-cooled. They have the potential of showing if phase change will take place and its position 

within the physical flow domain. The 𝑇∗ distributions were determined for the simulations of 

the unscaled test rigs in CHAPTER 4 and the scaled test rig in CHAPTER 5 which showed if 

boiling may or not occur under the given boundary conditions. The 𝑇∗ distributions for the 

inner surface of the evaporator shell in contact with the water is shown in Figure 7.33. 

 

Figure 7.29: Contours of 𝑻∗ on the inner surface of the evaporator shell in contact with the water. 

The contours indicate a band of superheated liquid is present in the vicinity of the liquid 

free surface. This corresponds with the contours of volume fraction which show boiling 

occurs at the free surface. An interesting observation is that when Figure 7.33 is compared to 

the 𝑇∗ contours inside the liquid as shown by Figure 7.30, the superheated band of liquid is 

far smaller. This suggests nucleate boiling is likely to occur at the inner surface of the 

evaporator shell, but only in the vicinity of the free surface. This is a significant finding as 

wall boiling was not considered in this investigation. This has implications on the predicted 

surface temperatures in the vicinity of the free surface, as they may be over predicted.  
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Figure 7.30: Contours of 𝑻∗ of the water plotted in the x-y and y-z coordinate frames. 

The 𝑇∗ contours on the outer surfaces of the internal apparatus (internal helical coils, 

liquor outlets and steam sparger) are shown in Figure 7.31. The immediate observation is that 

there are small bands of superheated areas on the outer surfaces which are greater than 0. This 

is shown more clearly in Figure 7.32 which shows the 𝑇∗ contours on each individual coil. 

   

Figure 7.31: Contours of 𝑻∗ on the outer surfaces of the internal apparatus of the evaporator. 

The 𝑇∗ contours on the coils show large areas of the first pass of the upper coils are 

superheated. This superheat gradually reduces with vertical position to become sub-cooled. 

In the of the lower coils the vertical surfaces corresponding to the steam supply and 

condensate return legs of the pipework show superheated areas. Therefore boiling may even 

occur on the lower coils, but close to the position of the free surface. 
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Figure 7.32: Contours of 𝑻∗ on the outer surfaces of the internal helical coils; top row illustrate the upper 

coils and the bottom row indicates the lower coils.  

The superheated areas depicted in Figure 7.29, Figure 7.30, Figure 7.31, Figure 7.32 

correspond to the vicinity of the free surface, where the absolute pressure is at its lowest. This 

results in a reduced saturation pressure and hence temperature which makes it more likely for 

nucleate boiling to occur on the heated surface in the area of the free surface. 

7.7.3 Heat Transfer Coefficient and Heat Flux Distributions 

The heat transfer coefficients for the surfaces in contact with the liquid are based on the 

ullage temperature behaving as the bulk temperature, taking a value of 45.8 °C. This was 

chosen because this temperature remains constant inside the heat transfer system, and thus 

provides a useful for comparison purposes. Hence the heat transfer coefficient takes the form 

as shown in Eq. 7.1. The heat transfer coefficients are based on the surfaces in contact with 

the liquid surface only, hence the variables are subscripted with the phase symbol for the 

liquid 𝛼. 

 ℎ𝛼 =
�̇�𝑤𝑎𝑙𝑙,𝛼

𝑇𝑤𝑎𝑙𝑙,𝛼−𝑇𝑢𝑙𝑔
 (7.1) 

The heat transfer coefficient distribution on the inner surface of the shell in contact with 

the liquid is shown in Figure 7.33. The distribution is distorted by large values of heat transfer 

coefficient present at the free surface which has values of 23000 W/m2K. The values are high 
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at the free surface due to evaporation. The contours in Figure 7.33 have clipped to have a 

water volume fraction of at least 0.5. Therefore the regions where the heat transfer coefficient 

is very large is limited in size, but occurs at the free surface. This is realistic and expected 

behaviour since boiling occurs at the free surface, and therefore the heat transfer coefficient 

at the free surface would be very high. To better visualise the plot in Figure 7.33, the legend 

is clipped to have a maximum value of 5000 W/m2K, as shown in Figure 7.34.  

 

Figure 7.33: Local heat transfer coefficient distribution on the inner wall of the evaporator shell in contact 

with the liquid. 

 

Figure 7.34: Clipped heat transfer coefficient distribution on the inner wall of the evaporator shell in 

contact with the liquid. 

The heat transfer coefficient distribution in Figure 7.34 shows that the inner shell walls 

in contact with the liquid are in the single phase convection regime. Bergman et al., (2011 

chap. 1) suggests surfaces in contact with water are in the forced convection regime if the heat 

transfer coefficients have values between 100 – 20000 W/m2K. 

The heat transfer coefficient distribution on the coil surfaces are shown in Figure 7.35. 

The heat transfer coefficient distribution has been clipped to a maximum value of 20000 

W/m2K. The lower coils which is approximately 1.5 m below the liquid free surface is mainly 
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in the convection regime. There are some localised areas where the heat transfer coefficient 

reaches a maximum of 20000 W/m2K. These areas are increased for the upper coils which are 

closer to the free surface. In these areas sub-cooled nucleate boiling may occur. 

 

   

Figure 7.35: (Top) Clipped heat transfer coefficient distributions on the outer walls of the lower coils, and 

(bottom) the lower coils. 

 

The heat flux distribution on the inside surface of the evaporator shell is shown by 

Figure 7.36. The distribution shows that the maximum heat flux at that surface is 

approximately 25 kW/m2. In Figure 7.36 there are small areas, coloured in blue where the 

heat flux is negative. This is because in that region the liquid is contact with the walls of the 

unheated ullage section of inner surface of the evaporator wall. Recall from CHAPTER 6 the 

free surface position is 2.35 m, which is slightly higher than the height of the jacket, 2.2 m. 

Since the ullage section acts as heat loss walls with an ambient outside temperature of 15 °C, 

then any contact of warmer fluid would yield a negative heat flux, indicating heat flow out of 

the evaporator vessel. This also explains why the heat flux suddenly jumps from negative 

values to almost 25 kW/m2 almost instantaneously – it is because a small portion of the wall 

in contact with the liquid at the free surface is not heated. The heat flux at the inner walls of 

the evaporator shell is highest where boiling occurs at the free surface.  
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Figure 7.36: Heat flux distribution on the inner surface of the evaporator shell. 

The heat flux distribution on the coil surfaces are slightly higher than those presented 

for the evaporator shell in Figure 7.36. The distribution shows a maximum heat flux of 50 

kW/m2 is achieved where the coils are in the vicinity of the free surface. This is also where 

boiling occurs. 

It is interesting to link these results to the thermal resistance work performed in 

CHAPTER 4. In the thermal resistance investigation of the unscaled test rigs, when boiling 

correlations (Forster and Zuber, Mostinskii, Bier et al., Cooper and Rohsenow, and Gorenflo 

and Kenning) were applied to the heated surface the reported heat flux was around 50 kW/m2. 

This suggests that if it is known that boiling does occur, along with its position inside the 

evaporator, then the heat transmitted at the surface may be predicted by one dimensional heat 

transfer correlations, despite the evaporator complexity. This gives credence to the thermal 

resistance methodology in its ability to predict physically representative phenomena. 
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Figure 7.37: (Top) Heat flux coefficient distributions on the outer walls of the lower coils, and (bottom) the 

lower coils. 

7.7.4 Velocity Distributions 

The velocity distributions inside the water during boiling are shown Figure 7.38. During 

boiling conditions the liquid travels down the central core of the evaporator, and up the 

vertical walls. There are two distinct counter rotating recirculation zones in each plane. The 

circulation patterns correspond with those predicted in the scaled test rig. Despite the scaled 

test rig being a one quarter thin slice of Evaporator C, there does appear to be significant 

agreement with regards to the magnitude and direction of travel.  

 

Figure 7.38: Transient average velocity distributions of the water during boiling in the x-y and y-z 

coordinate frames. 

The velocity patterns do reinforce the concept that the evaporator operates similar to an 

unconstrained thermosyphon reboiler situation. Thermosyphons represent passive pumpless 

heat exchange systems. This is an important discovery as it was previously assumed before 

the works of McNeil et al. (2015) that Evaporator C did not operate in this manner. 
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7.7.5 Interfacial Area Density 

The interfacial area density controls the transfer of mass, momentum and energy 

through the interphase contact area. In the models used in this work, it is determined by setting 

a value for the thermal phase change rate constant. From the validation work conducted in 

CHAPTER 5 when simulations were performed of the scaled test rig, the rate constant was 

determined to be equal to 1 Hz. This value was also used for the simulations of Evaporator C 

in this chapter. The interfacial area density corresponding 1 Hz for the Evaporator C 

simulations are shown in Figure 7.39.  

 

Figure 7.39: Transient average interfacial area density on the isosurface of water when the volume 

fraction is 0.5.  

The interfacial area density contours at the free surface indicates higher values at the shell of 

the evaporator, and lower values in the core region. This indicates that the model allows for 

the greatest interfacial transfer of mass, momentum and energy in the areas of Figure 7.39 

where the interfacial area density is greatest. 

7.8 Summary 

Free convection and evaporation simulations were performed of the industrial 

evaporator, Sellafield Evaporator C. The system was driven by applying fixed heat transfer 

coefficients at the heated walls. The heated walls comprised the external heating jacket, and 

the internal helical coils in contact with the liquid. For both the jacket and the coils, the heat 

transfer coefficient accommodated the thermal resistances due to steam condensation and 

conduction through walls. The driving steam temperature inside the jacket was 124.7 ºC 

corresponding to 2.3 bar, and for the coils 127.4 ºC corresponding to 2.5 bar. The remaining 

surfaces of the shell were set to ambient heat loss conditions, and the non-heated surfaces 
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submerged inside the liquid were treated as adiabatic walls. Finally the liquid was treated as 

water, had a level of 2.35 m and the ullage pressure above the free surface was 0.1 bar. 

The two principle conditions which were tested in Evaporator C were transient free 

convection, and transient boiling at the free surface. The transient free convection case was 

also the basis for the mesh sensitivity study, which paralleled the same procedure performed 

for the mesh sensitivity study for the scaled test rig in CHAPTER 5. The chosen mesh from 

the mesh sensitivity study was mesh 2. The total number of cells was 15,316,294, which 

included prism inflation cells, and tetrahedral cells inside the bulk volume. Structured 

hexahedral meshing, which was used in the meshes of the unscaled and scaled test rigs was 

not possible for the Evaporator C geometry due to its complexity, and inability to form 

successful blocking topologies. 

A methodological approach to achieving boiling results in the Evaporator C simulations 

was used. First a steady state free convection simulation was performed, where temperatures 

inside the liquor was sub cooled. The purpose of this initial step was to initialise the flow 

fields. This was also the initial state for transient free convection simulations, which were 

stopped at the onset of boiling at the free surface. The thermal phase change model was then 

activated, and steady state simulations of boiling at the free surface were allowed to occur. 

Liquor was continually replenished as vapour left the system to maintain a steady liquor level 

as found in real plant conditions. Finally, to home into a final converged and reportable 

solution, transient boiling simulations were then performed. 

The final transient free convection simulations took around 2 months to complete; and 

the boiling simulations took 6 months to complete, which did not account for human and 

numerical errors which required the need to restart the runs. 

The free convection and evaporative boiling simulations of Evaporator C shows that at 

all times the liquor remains close to the free surface saturation temperature corresponding to 

0.1 bar ullage pressure, which was 45.8 °C. This behaviour was also repeated in the unscaled 

and scaled test rigs. This indicates that the flow inside the evaporator vessel under steady 

operation represents a well-mixed system. This is further supported by the flow patterns 

during operation. The flow patterns shows that the liquor is drawn down from the free surface. 

The liquor impinges onto the lower surface and circulates around the evaporator vessel as it 

returns to the free surface, over the heated coils. This reinforces the concept that the 

evaporator vessel behaves like a thermosyphon reboiler system. 

The contours of the dimensionless 𝑇∗ variable shows that boiling is likely to occur on 

the heated surfaces close to the free surface. Therefore the metal surface temperatures are 

likely to be highest on the upper coil surfaces where boiling is likely to occur, and on the 
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jacket surfaces close to the free surface. Boiling is likely to occur in those regions since 𝑇∗ is 

greater than zero in those areas. This means the rates of corrosion occurring on the boiling 

surfaces will be higher than the surfaces which do not undergo boiling. Therefore in future 

work, nucleate wall boiling should be considered as the next step in ensuring greater accuracy 

in the wall temperatures. 

The heat transfer coefficients on the surfaces in contact with the liquor were defined in 

terms of the ullage temperature acting as the bulk temperature. This was chosen since the 

ullage temperature is a known value which does not change with flow regime. From the 

analysis of the heat transfer coefficients, most of the surfaces indicate they are in the single 

phase convection regime, where free convection occurs. However at the free surface where 

boiling does occur the heat transfer coefficients increase rapidly and describe coefficients 

associated with nucleate wall boiling.  

The investigations from the simulations of Evaporator C have shown that the heat 

transfer surfaces at the top of the vessel, close to the free surface, are hotter than the remaining 

surfaces. At those surfaces, nucleate wall boiling is likely to occur. 
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Chapter 8  

Conclusions and Future Work 

8.1 Conclusions 

Successful heat transfer and multiphase flow analysis via CFD simulations has been 

performed on an industrial evaporator, Sellafield Evaporator C. This was achieved by first 

modelling single phase flow and heat transfer distributions inside two small-scale test rigs. 

This allowed a baseline understanding to be developed on modelling buoyancy driven flow 

under sub-atmospheric pressures. This baseline was developed upon and a more complete 

multiphase boiling simulations of the one-quarter scale thin slice test rig was achieved. 

Multiphase boiling simulations of the scaled test rig yielded an interfacial length scale as a 

function of a rate constant, which controlled the value of the interfacial contact area per unit 

volume of the water and vapour phases. This was achieved by comparing the simulations 

against experimental data, and thus validating the work. All of the lessons learnt, and models 

developed were used to model Sellafield Evaporator C. 

The small-scale test rigs are two steam heated water columns. The two test rigs differed 

primarily by size. The short test rig had a vessel width and water depth of 0.1 m. The tall test 

rig had a width of 0.1 m, and a water depth of 2.235 m. The pressure above the water line in 

both test rigs was 0.1 bar. Both test rigs were heated by condensing dry saturated steam 

underneath a stainless steel base plate which the water column sat upon. Heat transfer through 

the boundaries and into the water caused the water to boil. This system is analogous to the 

way Sellafield Evaporator C operates. 

As a first step one dimensional thermal resistance investigations were performed on the 

test rigs. These involved generating a series of one dimensional heat transfer transport 

equations which described the heat flux, temperature and heat transfer coefficient 

distributions inside the two test rigs. Three idealised cases were tested in the thermal 

resistance investigation: (i) pure conduction in the water column, (ii) free convection in the 

water column, (iii) and nucleate boiling on the upper plate surface. 

Heat transfer coefficients were selected from the open literature which were used to 

describe free convection and boiling for the three cases. The governing equations produced 

an n by n system, where the number of equations equalled the number of unknowns. The 

investigations showed that the system was insensitive to the condensation heat transfer 

coefficient that was used. This was because conduction heat transfer through the base plate 

was the dominating thermal resistance. In the boiling cases, six boiling heat transfer 
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coefficients were benchmarked. Five of the six correlations predicted similar heat transfer 

coefficient distributions; except from one of the six, which was the Cooper (1984) correlation. 

The correlation produced boiling heat transfer coefficients orders of magnitude greater than 

the others that were tested. 

Thermal resistance networks were proved to be a computationally inexpensive tool to 

predict temperatures, heat transfer coefficients, and heat fluxes in the heat transfer system 

when compared to complex and expensive CFD simulations. They provided useful 

information such as temperature distributions and values of heat fluxes, without needing to 

resort to expensive methods such as CFD. 

CFD simulations of the two test rigs was also performed. Two geometries for the short 

test rig were compared. These were a 2D axisymmetric geometry, and a full 3D geometry. 

Poor flow physics is observed in the 2D axisymmetric geometry. This is because the 

symmetry planes enforce an unphysical solution that is broken in the simulations using a full 

3D geometry. Hence, the use of 2D axisymmetric conditions was not suitable to model 

buoyancy driven flow. Full 3D simulations of the tall test rig was performed. The tall test rig 

contained a draught tube which forced the momentum behaviour of the water against its 

natural tendency. 

Indicators for boiling showed that nucleate boiling at the upper plate may occur, and in 

the tall test rig, the 𝑇∗ distributions indicate that the liquor is heated above its saturation 

temperature in the upper regions of the test rig. The CFD simulations have shown that phase 

change in the liquor is highly dependent on the pressure head of the liquid column. 

There was poor agreement between pure conduction and free convection thermal 

resistance cases and the CFD investigation. There was reasonable agreement between the 

nucleate boiling case and CFD investigations. 

Multiphase boiling simulations of the one-quarter scale slice test rig was performed. 

The model of Lee (1990) has been generalised, and implemented in ANSYS CFX, and the 

predictions of the generalised model have been compared with the experimental 

investigations of McNeil et al. (2015) on a scaled test rig designed to replicate some of the 

features of flow in Evaporator C. The original model of Lee (1990) included source terms in 

the liquid and vapour continuity equations, based on an empirically determined rate constant 

𝛽. In order to translate the model into the thermal phase change model framework in ANSYS 

CFX, it was necessary to modify it slightly, and re-express it in terms of a model for the 

interfacial area density (IAD). The ANSYS CFX mixture model framework was selected for 

this, in which the IAD is expressed in terms of a modelled interfacial length scale, which 
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depends in turn on the rate constant 𝛽. The value of this constant was not known a priori, and 

four values were tested, which were 0.1 Hz, 1 Hz, 10 Hz and 100 Hz. 

Using rate constants of 10 and 100 Hz caused excessive numerical instabilities within 

the solution and a fully converged solution was not accomplished. Fully converged solutions 

were accomplished using rate constants of 0.1 Hz and 1 Hz. The results with using a rate 

constant of 0.1 Hz yielded excessive evaporation rates at the free surface which were 

unrepresentative of the true rates of evaporation. The rate constant 1 Hz yielded a solution 

closer to the physically realistic expected value. 

The results using the rate constants 0.1 Hz and 1 Hz have little effect on the heat and 

momentum distributions inside the water, but do have significant implications on the 

evaporative mass transfer across the interface. There was good agreement between the stream 

temperatures reported in the experimental data and the numerical results outputted from the 

CFD investigations. This was despite the CFD investigations not allowing for wall boiling to 

occur on the heated coils. 

The flow patterns during evaporation appear to confirm the motivating hypothesis that 

the flow behaves like an unconstrained thermosyphon reboiler, with internal temperatures 

similar to the temperature adjacent to the ullage region. The results also indicate that most 

phase change occurs as flash evaporation on the top, not as boiling from the coils, as originally 

thought. 

Simulations of Evaporator C were performed using the modelling techniques 

established for the simulations of the scaled test rig in CHAPTER 5. The two phase Euler – 

Euler framework was used. From the validation work of the scaled test rig the interphase rate 

constant took a value of 1 Hz for the Evaporator C simulations. 

Original estimates of the condition of Evaporator C assumed boiling occurred on all 

heat transfer surfaces. The simulations have shown this is not true for the lower portion of the 

evaporator vessel where the hydrostatic pressure, and hence saturation pressure is at its 

greatest. In fact the lower portions of the evaporator vessel operated in the single phase 

convective regime, whilst the upper regions close to the free surface underwent boiling. 

Under operation the bulk liquor temperatures remained constant, and close to the free 

surface saturation temperature corresponding to 0.1 bar. The flow patterns during operation 

were similar to an unconstrained thermosyphon reboiler.  



 

~ 234 ~ 

8.2 Future Work 

An updated industrial evaporator design, Sellafield Evaporator D is currently being 

commissioned for use at the Sellafield site. The new evaporator shares many design 

similarities to Evaporator C and would therefore be an obvious recipient of further work in 

this field. 

The results of Evaporator C show that boiling does have the potential to occur on the 

coil surfaces close to the free surface. Therefore wall boiling simulations should be performed 

in conjunction with evaporation at the free surface. This would require detailed investigations 

into developing sub models applicable to wall boiling at sub-atmospheric pressures. In 

addition to this, the simulations should be performed for a longer time. In this study, the 

evaporation simulations only lasted 10 s. There is no guarantee different flow patterns will 

not emerge after this time. Therefore simulations should be performed for longer in order to 

truly appreciate repetitive flow patterns. 

Performing wall boiling simulations would require a more detailed formulation for the 

interfacial area density which would take into consideration bubbly flow, droplet flow, free 

surface flow, and the interactions between the three. Researchers at Helmholtz-Zentrum 

Dresden-Rossendorf (T Höhne and Lucas, 2011) are currently researching similar systems, 

but under isothermal conditions without phase change present. Therefore an extension of 

those models to include heat transfer would be an obvious starting position, which would 

allow possible wall boiling simulations. Such studies would have to take a fully 

inhomogeneous approach to the conservation equations which would significantly increase 

simulation compute times. 

The boundary conditions in this study were fixed for Evaporator C. Steam condensation 

was not modelled directly. Condensation heat transfer coefficients were supplied to the heated 

surfaces, which had the effect of fixing the heat flux into the system. To allow for a physically 

realistic simulation, the entire system should be modelled. This will be a coupled simulation 

of condensation inside the external heating jacket and inside the helical coils, conjugate 

conduction through the metal walls, and boiling in the liquor. This would provide a near 

complete analysis of the evaporators. 

The Sellafield evaporators boil highly active liquor, which is nitric acid based. The 

current investigations assumed water inside the test rigs which is not physically representative 

of highly active liquor. Therefore simulations of HAL should be performed which would 

provide far greater accuracy for the temperature distributions on the heated surfaces. 
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It was previously mentioned in CHAPTER 2 that salt solids precipitate during the 

evaporation process and are transported with the liquid itself. Solids within the system have 

the potential to completely change the thermal behaviour of the system, and therefore should 

be modelled in the future. 
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Appendix 1: The Newton Raphson Algorithm 

Heat transfer engineers frequently encounter problems where non-linear heat transfer 

transport equations require solving. Difficulty arises when the solution is a function of one or 

more of the unknown variables inside the heat transfer system. This peculiarity arises from 

the use of the heat transfer coefficient, which usually is inconveniently a function of the 

driving temperature and heat flux, both of which are usually the quantities being solved for. 

The heat transfer coefficient is the figment of the imagination of the heat transfer engineer. 

One method that can be used to overcome this problem is by using the precedence 

ordering technique (Heggs and Walton, 1998) which involves algebraic manipulation and 

substitution of heat transfer equations to derive a final equation which describes the heat 

transfer system in its entirety. The final equation may reduce to a simpler form, and hence an 

explicit solution may be available.  The advantage of the precedence ordering method is that 

it will indicate if an explicit solution exists, and if it does it will indicate which variables the 

heat transfer system is dependent on. If an explicit solution to the final equation that was 

derived does not exist, then an iterative approach must be used to determine the unknown 

values implicitly. The precedence ordering method has some drawbacks:  

1. It requires algebraic manipulation, which is often very complicated which may give 

rise to errors, and it may be impossible to carry out algebraic manipulation due to 

the complicated mathematical nature of heat transfer coefficients and how they are 

expressed. 

2. It is impossible to use the precedence ordering technique using curve fitted 

equations for the thermophysical properties of fluid, as shown in Appendix A for 

example. 

3. If an explicit solution does not exist then one must resort to using implicit methods 

to determine the solution of the unknowns. 

The method used for the works in this document uses the Newton Raphson implicit 

iterative solver in the first instance, which removes the need for complex algebraic 

manipulation. Essentially the system of equations that are solved are described by 𝑛 number 

of equations with 𝑛 unknowns. There must be the same number of equations describing the 

system as there are unknowns.  

For the successful use of the Newton Raphson method, a code must be written in 

MatLab, FORTRAN, C or any other language of choice. The MatLab Newton Raphson code 

written by Walkley (2011) was used as a basis, and was heavily modified to improve its 

performance. 
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To better explain how the Newton Raphson method is employed consider a simple 

system of equations, with two equations and two unknowns. The unknowns are 𝑥1 and 𝑥2. 

 𝑓1 = 𝑥1
3 + 𝑥2

2 = 0 (0.1) 

 𝑓2 = 𝑥1
2 − 𝑥2

3 = 0 (0.2) 

In the MatLab code, the user simply needs to input the above two equations as they are 

displayed, and supply a sensible initial guess for 𝑥1 and 𝑥2, and a specified convergence 

precision, where a precision of 1e-6 is usually sufficient. Algebraic manipulation is not 

required of the two equations. Without user intervention the Newton-Raphson method 

arranges the two equations in the matrix format 

 𝐹(𝑥) = (
𝑓1(𝑥1, 𝑥2)

𝑓2(𝑥1, 𝑥2)
) = (

𝑥1
3 + 𝑥2

2

𝑥1
2 − 𝑥2

3) = 0 (0.3) 

A Jacobian matrix which contains the derivatives is computed as 

 𝐽𝐹(𝑥) =

(

 
 
 

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓1

𝜕𝑥𝑛
𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
⋯

𝜕𝑓2

𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1

𝜕𝑓𝑛

𝜕𝑥2
⋯

𝜕𝑓𝑛

𝜕𝑥𝑛)

 
 
 
  (0.4) 

In the Newton Raphson method the derivatives in the Jacobian matrix is determined using 

finite differences, where 

 
𝜕𝑓𝑛

𝜕𝑥𝑛
=
𝑓𝑛(𝑥+𝛿)−𝑓𝑛(𝑥)

𝛿
 (0.5) 

For the system of equations f1 and f2 the Jacobian is computed as 

 𝐽𝐹(𝑥) = (
3𝑥1

2 2𝑥2
2𝑥1 −3𝑥2

2) (0.6) 

Once the Jacobian is computed the solution is updated using the recursion algorithm 

 𝑥(𝑘+1) = 𝑥(𝑘) − 𝐽𝐹(𝑥
(𝑘))

−1
𝐹(𝑥(𝑘)) (0.7) 

In the first iteration for the solution x(k+1) the initial guess x0 is used. In the second 

iteration for the solution x(k+2) the solution from x(k+1) is used in place of x0. The difference in 

the solution between x(k+1) and x(k+2) is continually computed to ensure that the residual is no 

less than the tolerance specified. When sufficient recursions occur, and when the tolerance 

criteria is met the final solutions are found. For this example the final solutions for x1 and x2 

are -1 and 1 respectively. 
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The same algorithm was used in this study to determine the unknown values in the 

thermal resistance investigation. The following code written in the MatLab language shows 

the structure of the Newton-Raphson algorithm. Firstly the recursion algorithm “newtonSys” 

is given as 

function [ x,f ] = newtonSys( fnon, fjac, x0, tol, maxIt ) 

  

% Basic Newton algorithm for systems of nonlinear equations 

%  function [ x,f ] = newtonSys( fnon, fjac, x0, tol, maxit ) 

% Input: fnon - function handle for nonlinear system 

%        fjac - function handle for Jacobian matrix  

%        x0 - initial state (column vector) 

%        tol - convergence tolerance 

%        maxIt - maximum allowed number of iterations 

% Output: x - final point 

%         f - final function value 

  

fprintf(' x     |f(x)|\n') 

  

n = length(x0); 

  

x = x0;             % initial point 

f = feval(fnon,x);  % initial function values 

it = 0; 

  

while (norm(f)>tol) && (it<maxIt)  

   

  J = feval( fjac, n, x, f, fnon ); % build Jacobian 

  delta = -J\f;                           % solve linear system 

   

  x = x + delta;       % update x 

  f = feval(fnon,x);   % new function values 

  

  it = it + 1; 

  % Print the new estimate and function value. 

  fprintf(' %d %12.6f\n',it,norm(f)) 

   

end 

  

if( it==maxIt) 

    fprintf(' WARNING: Not converged\n') 

else 

    fprintf(' SUCCESS: Converged\n') 

end 

The Jacobian algorithm takes the following form which the “newtonSys” script above 

“calls in” (much like a subroutine found in Fortran and other traditional languages).  
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function J =  fdJacobian( n, x0, f0, fnon ) 

  

% Finite difference approximation to the Jacobian 

%  function J =  fdJacobian( n, x0, f0, fnon ) 

% Input: n - number of equations 

%        x0 - current solution 

%        f0 - current function value 

%        fnon - nonlinear function handle 

% Output: J - Jacobian matrix  

  

J = zeros(n); 

  

h = 10*sqrt(eps); % perturbation  

  

for j = 1:n   % compute column by column 

  

    x = x0; 

    x(j) = x(j) + h;         % perturb variable x_j 

    f = feval( fnon, x );    % perturbed residual 

    J(1:n,j) = ( f - f0 )/h; % add in column j 

  

end 

The only user input would be to input the system of equations and tolerance, and 

execute the command to run the Newton Raphson algorithm. For the problem described above 

the system of equations is written in the following script as 

function y = example( x ) 

% function [ y ] = example( x ) 

% system of 2 nonlinear equations 

  

y = zeros(2,1); 

y(1) = x(1)^3 + x(2)^2; 

y(2) = x(1)^2 - x(2)^3; 

  

end 

The script which contains the system of equations is executed in MatLab command window 

using a single line which obeys the following format 

>> newtonSys(@example,@fdJacobian,[4;5],1e-6,20) 

Where “example” is the name of the system of equations, “fdJacobian” is the script which 

calculates the Jacobian, [4;5] is the initial guess, 1e-6 is the tolerance and 20 is the maximum 

number of iterations. Executing this command reveals the solution for x1 and x2 as shown 

below.  

>> newtonSys(@example,@fdJacobian,[4;5],1e-6,20) 

x     |f(x)| 

 1      42.184857 

 2      12.821803 

 3      3.999149 
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 4      1.247068 

 5      149.021393 

 6      4146.011778 

 7      1219.111420 

 8      359.552115 

 9      105.650117 

 10     30.808608 

 11     8.840648 

 12     2.446174 

 13     0.617861 

 14     0.120802 

 15     0.011125 

 16     0.000144 

 17     0.000000 

 SUCCESS: Converged 

 

ans = 

   -1.0000 

    1.0000 

 

 

 


