
Multi-train trajectory planning

By:

Jonathan C J Goodwin

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

The University of Sheffield
Faculty of Engineering

Department of Mechanical Engineering

October 2016

Abstract

Although different parts of the rail industry may have different primary con-

cerns, all are under increasing pressure to minimise their operational energy

consumption. Advances in single-train trajectory optimisation have allowed

punctuality and traction energy efficiency to be maximised for isolated trains.

However, on a railway network safe separation of trains is ensured by signalling

and interlocking systems, so the movement of one train will impact the move-

ment of others. This thesis considers methodologies for multi-train trajectory

planning.

First, a genetic algorithm is implemented and two bespoke genetic opera-

tors proposed to improve specific aspects of the optimisation. Compared with

published results, the new optimisation is shown to increase the quality of

solutions found by an average of 27.6% and increase consistency by a factor

of 28. This allows detailed investigation into the effect of the relative priority

given to achieving time targets or increasing energy efficiency.

Secondly, the performance of optimised control strategies is investigated

in a system containing uncertainty. Solutions optimised for a system without

uncertainty perform well in those conditions but their performance quickly

degrades as the level of uncertainty increases. To address this, a new genetic

algorithm-based optimisation procedure is introduced and shown to find robust

solutions in a system with multiple different types of uncertainty. Trade-offs

are explored between highly optimised trajectories that are unlikely to be

achieved, and slightly less optimal trajectories that are robust to real world

disturbances.

Finally, a massively parallel multi-train simulator is developed to acceler-

ate population-based heuristic optimisations using a graphical processing unit

(GPU). Execution time is minimised by implementing all parts of the sim-

ulation and optimisation on the GPU, and by designing data structure and

algorithms to work efficiently together. This yields a three orders of magnitude

increase in rate at which candidate control strategies can be evaluated.

Acknowledgements

Thanks to my supervisors, David Fletcher and Rob Harrison, for supporting

and guiding me through the PhD process. I am also grateful to the other group

members Adam, Jon, Emma and Rahi for their encouragement throughout.

Meena Dasigi at Network Rail has kindly provided valuable industrial insight

and thanks to Paul Richmond for introducing me to GPU computing. The

E-Futures Doctoral Training Centre (and in particular Neil Lowrie) gave me

the rare chance of developing my interdisciplinary studies. Most recently, I

am grateful to my employers at MachineWorks for allowing me the flexibility

to complete this thesis.

Lots of thanks to my parents for their endless proofreading, love and sup-

port. Thanks also to my wife Sarah for her encouragement and support, proof-

reading, and making sure I ate. Our church family at The Crowded House

have been crucial in looking after both of us, particularly with the arrival of

Thomas four months before my submission. Finally, I am grateful for Thomas’

company during my late-night writing sessions.

Contents

Acknowledgements i

Table of contents iii

Terminology, abbreviations and symbols vii

1 Introduction 1

1.1 Background . 1

1.2 Scope of work . 3

1.3 Thesis structure . 4

2 Literature review 7

2.1 Single-train trajectory planning 8

2.1.1 Analytical results . 8

2.1.2 Heuristic search methods 11

2.2 Multi-train trajectory planning 14

2.2.1 Headway constraints on a single line 15

2.2.2 Electrical interactions between trains 17

2.2.3 Other network interactions 18

2.3 Optimisation in uncertain systems 18

2.3.1 Techniques used in ‘noisy’ genetic algorithms 21

2.3.2 Robust train trajectory planning 22

2.4 Evaluation and research direction 22

3 Multi-train trajectory optimisation to maximise rail network

energy efficiency under travel-time constraints 25

3.1 Implementation and validation of G1 26

3.1.1 Overview of Yang’s formulation 28

iii

3.1.2 Validating traction trajectories 31

3.1.3 Implementing braking 32

3.1.4 Validating simulation 34

3.1.5 Validating optimisation performance 35

3.1.6 Method of traction energy calculation 39

3.2 G2: Link-wise mutation operation 39

3.3 G3: Insertion and deletion operations 41

3.4 Comparing optimisation performance of G1 to G4 48

3.5 Investigating system properties 52

3.5.1 Trade-off between energy consumption and traverse time 52

3.5.2 Effect of varying α . 59

3.5.3 Effect of train schedule 64

3.6 Chapter conclusions . 66

4 Robust multi-train trajectory planning for real world condi-

tions using a ‘noisy’ genetic algorithm 67

4.1 Introduction . 67

4.2 A robust multi-train optimisation (G5) 68

4.2.1 Uncertain control point application 69

4.2.2 Uncertainty in dwell times at stations 70

4.2.3 Model parameters . 74

4.3 Investigating performance of the robust optimisation 75

4.3.1 No training noise . 77

4.3.2 Control point application training noise 79

4.3.3 Station dwell time training noise 81

4.3.4 Both control point application and station dwell time

training noise . 85

4.4 Comparison with closed-loop performance 87

4.5 Evaluation of G5 . 92

4.6 Chapter conclusion . 92

5 A massively parallel multi-train simulator for accelerating pop-

ulation based heuristic optimisations 95

5.1 The need for a new model . 95

5.1.1 Advantages of the model used in G1 to G5 96

5.1.2 Limitations of model used in G1 to G5 97

iv

5.1.3 Conclusion . 100

5.2 Introduction to GPUs and CUDA 101

5.2.1 Background on CPU architecture 102

5.2.2 GPU architecture and the CUDA abstraction 104

5.2.3 Principles for efficient GPU algorithms 111

5.3 Design choices for the GPU accelerated model 113

5.3.1 Soft headway constraints 114

5.3.2 Parallelisation strategy 117

5.3.3 Pre-calculating journey information 119

5.3.4 Fixed block signalling 122

5.3.5 Control sequence . 125

5.4 Description of the GPU accelerated simulation 128

5.4.1 Overall structure . 129

5.4.2 Data structures . 131

5.4.3 Journey simulation . 134

5.4.4 Timing synchronisation 151

5.4.5 Compatibility check . 155

5.4.6 Scoring . 158

5.5 Optimisation algorithms . 158

5.5.1 Fine-grained selection 159

5.5.2 Breeding . 159

5.6 Validation and sensitivity analysis 160

5.7 Measuring performance . 167

6 Conclusions and further work 173

6.1 Conclusions . 173

6.2 Further work . 177

6.2.1 Sensitivity analyses . 178

6.2.2 Potential applications 180

6.2.3 Extension of the model 184

6.2.4 Improvements to optimisation algorithm 186

References 193

Appendices 207

I Introduction to Genetic Algorithms 207

v

II Input data for base case in Chapter 3 213

IIIRoulette wheel selection on a GPU 217

IV Basic kinematics of trains 221

IV.0.5 Physics of train motion 221

IV.0.6 Solving the equations of motion 222

vi

Terminology

Adhesion - the grip between wheel and rail limiting the maximum traction

force that can be applied

Block - (in signaling) the resolution to which train locations are detected and

restricted in fixed block signaling

Block - (CUDA abstraction) a group of simultaneously executed threads

Closed-loop control - feedback is available on the current state of the railway

network (e.g. positions and velocities of trains) which can be used to tune

future control instructions

Coalesced memory access - adjacent threads in a block access adjacent mem-

ory addresses allowing full utilisation of the available memory bandwidth

control point - the position at which a specific control action is defined for

a train

Continuous control - instead of being controlled with notches, the traction

level of many modern electric trains can be varied continuously

CUDA - an application programming interface (API) created by Nvidia which

enables general purpose processing on GPUs.

Delay minutes - the total number of minute of train delay attributed to a

single train

Device - a GPU

Discrete control - many older trains are controlled using discrete traction/brake

notches

Fixed block - the positions of the signal blocks, which ensure a safe separation

of trains, are static (i.e. fixed relative to the track)

Global memory - the GPU RAM. This is separate to the chip where execution

occurs so data stored here is accessed much slower than data stored in

vii

registers or shared memory

Golden run - a perfectly controlled train journey that yields optimum energy

efficiency

Grid - (CUDA abstraction) a group of independently executed blocks

Host - the computer containing the device

Kernel - (CUDA abstraction) a function that can be executed in parallel on a

GPU using a grid

Line speed - the maximum speed allowed for that train of that section of

railway line

Link - the track joining two stations

Moving block - the positions of the signal blocks, that ensure a safe separation

of trains, are defined relative to each train (i.e. the braking distances in

front of each train must not overlap)

Network - the connectivity of the railway tracks (not power distribution net-

work)

Noise - random variation due to uncertainty

Pareto optimal - a solution where one performance metric cannot be improved

without degrading another

Thread - a sequence of instructions executed in order (on a single data stream)

Training noise - random variation in some parameters during the optimisation

process

Trajectory - the velocity profile of a train usually plotted against distance of

time

Utilisation noise - random variation in some parameters while a pre-optimised

control is being applied

Warp - (CUDA abstraction) batches of 32 threads within a block that are

given exactly the same instructions during execution

viii

List of Abbreviations

ANN - Artificial Neural Network

ATO - Automatic Train Operation

ATP - Automatic Train Protection

CP - Control Point

CPU - Central Processing Unit

DAS - Driver Advice Systems

DT - Dwell Time

ERTMS - European Rail Traffic Management System

GA - Genetic Algorithm

GPU - Graphics Processing Unit

HGA - Hierarchical Genetic Algorithm

MARK - Minimum Allele Reserve Keeper

MILP - Mixed-integer Linear Programming

MPGA - Multi-population Genetic Algorithm

NLP - Nonlinear Programming

NOC - Necessary Optimality Conditions

PMP - Pontryagin Minimum Principle

RAM - Random Access Memory

ROC - Rail Operating Centers

RNG - Random Number Generator

SIMD - Single Instruction stream Single Data stream

SISD - Single Instruction stream Multiple Data stream

ix

List of Symbols

Chapter 2

δ uncertainty in the application of control

γ uncertainty in uncontrolled parameters in the system

Chapter 3

∆t a small time step (over which constant acceleration is as-

sumed)

D link length, the distance between two stations

xn control point, given as a distance from the start of the link

(0 ≤ x < D)

y braking point, where maximal braking must be applied to

come to a stop at distance D

xi link control strategy; made up of a list of control points.

xi = (x1, x2...xn...xn max) where n max is an odd positive

integer. (Note: x0 = 0, xn max+1 = D)

X network control strategy; made up of a list of link control

strategies. X = (x1, x2...xi...xi max) where i max is the total

number of links traversed by all trains

T (X) total traverse time of a particular network control strategy

E(X) total energy consumption of a particular network control

strategy

G(X) penalty for operational interactions between different trains

caused by a particular network control strategy

α weighting between energy and time

max the maximum value in a list of numbers

pop size the number of candidate solutions in the GA population

x

Pc probability that the crossover procedure is applied an each

individual in the population

Pm probability that the mutation procedure is applied an each

individual in the population

M initial mutation distance

Tr minimum distance between operation transitions

Ph probability of applying the link-wise operator h(x)

Pi probability that the insertion procedure is applied an each

individual in the population

Pd probability that the deletion procedure is applied an each

individual in the population

Pins link probability of inserting a pair of control points on each link

Pdel link probability of deleting a pair of control points on each link

Pins pair probability of inserting a pair of control points between con-

trol points n and n+ 1

Pidel pair probability of deleting a pair of control points n and n+ 1

rand a pseudo-random number is generated within the specified

range

Chapter 4

ce the value of energy relative to time

N the number of re-samplings when explicitly averaging the

properties of the final population

xi

Chapter 5

∆d a small time step (over which constant acceleration is as-

sumed)

floor round down a number to the nearest integer

vmax the maximum possible speed limit

vmin the lowest speed allowed between scheduled stops

vATP the maximum speed which enables future speed limits to be

observed

ceil round up a number to the nearest integer

log the natural logarithm of a number

xii

Chapter 1

Introduction

1.1 Background

The long-term increase in cost and volatility of the global energy market,

coupled with concern over CO2 emissions, means that minimising energy con-

sumption has become increasingly desirable for all industries. This is particu-

larly true in the transport sector, which accounted for 27% of Global [1] and

39% of UK [2] energy consumption in 2011. Although different parts of the

rail industry may have different primary concerns, all are under increasing

pressure to minimise their operational energy consumption. However, in gen-

eral, rail is already a relatively efficient transport mode, accounting for 8.7%

of passenger and 9.0% of freight traffic in the UK, while constituting only 1.9%

of its transport sector energy consumption in 2011. [3] This means that it is

possible to reduce overall energy consumption by modal shift to rail instead

of less-efficient transport modes such as road and air. Given the projected

increases in transport demand, maximising the capacity of railway networks

is also increasing in importance, both economically and environmentally. Al-

though there is no definitive definition of capacity, at an operational level it is

1

accepted that increasing the frequency of trains, while maintaining acceptable

levels of punctuality, constitutes an increase in capacity. UK rail industry has

summarised the situation via the 4 C’s (capacity, cost, carbon, and customers)

identified in [4] and through the Rail Technical Strategy[5].

Operational methods for minimising traction energy consumption and max-

imising punctuality are often preferable to upgrades in network infrastructure

and/or rolling stock. Physical improvements usually require large capital in-

vestment and/or only improve performance in a very specific way. In contrast,

operational improvements (for example timetabling, rescheduling, train con-

trol) can be easier and less expensive to introduce and have the potential to

affect several different performance measures. In Great Britain, improvements

in operation have been incentivised through the setting of ambitious targets

by regulatory organisations and brought to bear through a system of finan-

cial penalties and incentives. For example, if a train averages 15 kWh/km

over the 250 km journey from Sheffield to London[6], then the total energy

consumption will be 3750 kWh costing approximately £560 (0.15 £/kWh).

However, at the time of writing, a single first class ticket for this journey may

cost as much as £265[7]. Also, train operators may be charged over £100 for

every minute of train delay attributed to them[8]. So, while reducing energy

consumption of rail operations is desirable, in practice the incentive for doing

so can be small relative to the incentives for maintaining punctual operation.

In all real systems there is some degree of uncertainty originating from

both internal and external sources. This makes maintaining punctual oper-

ation more difficult. While some perturbations may be very large (e.g. in-

frastructure or rolling stock failure) most are small (e.g. a few seconds caused

by an obstruction delaying door closure) allowing scheduled operation to be

recovered. However, if services are running close to maximum capacity, with

2

short headway distances and very little slack time built into the schedule,

then even small perturbations may cause problems. Also, it is important to

remember that generally trains do not operate in isolation. Instead, typically

a number of trains move around a network, with safe separation of trains en-

sured by a signalling and interlocking systems. A direct consequence of the

signalling system is that the movement of one train can effect the movement

of other trains. So, as the density of operations is increased, the likelihood of

perturbations propagating across the network also increases.

1.2 Scope of work

In this thesis, consideration is given to increasing the energy efficiency of

railway networks through better operational control. This is a very large topic

and could include a number of different research areas: trajectory planning,

automatic train control, timetabling and re-scheduling. Since all of these are

well developed areas in their own right, and are also yet to be fully integrated

with each other, the scope of this thesis must be clearly defined. Investigations

in this work will consider:

• Multiple trains (not just a single train). As will be seen in section 2.1,

there is already a large body of work considering trajectory optimisation

for a single train operating in isolation. While this may be sufficient to

optimise some systems, McClanachan and Cole [9] observe that “If the

journey time of one train is extended to save energy, then this could

aversely influence the schedules and energy usage of other trains on the

same network.” This means to maximise the performance of a whole

system, the impact of interactions between trains should be taken into

account and the movement of all trains should be optimised together.

3

• Trajectory optimisation (not scheduling). Traction energy consumption

and degree to which trains interact are determined by both their sched-

uled operations and the specific trajectories they follow in order to im-

plement the schedule. This means, although they are usually addressed

separately, scheduling and trajectory optimisation are really part of the

same overall problem. However, to increase the tractability of this prob-

lem this thesis will explore methods that explicitly optimise the train

trajectories.

• Planning (not real-time control). The actual trajectory each train follows

is determined by both its theoretical target trajectory and the control

used to implement this. Good control must react to the changing state of

the system while seeking an overall goal, for example optimising energy

consumption or punctuality. This thesis will not focus on real time

optimisation/control but on techniques used in the ‘off-line’ planning of

train trajectories.

Therefore, this thesis will consider methodologies for multi-train trajec-

tory planning with the aim of maximising punctuality and traction energy

efficiency.

1.3 Thesis structure

Chapter 2 provides a review of trajectory optimisation literature. Both single-

and multi-train trajectory planning are considered, along with some robust

optimisation techniques.

Chapter 3 documents the development of a new multi-train trajectory op-

timisation, building on a state of the art model. This provides a, genetic algo-

rithm based, multi-train trajectory optimisation. Validation of the improved

4

multi-train simulator is detailed before going on to investigate the performance

of the optimisation. Several new algorithms are proposed to address specific

limitations in the optimisation, and the effectiveness of the resulting optimi-

sations is quantified. The improved optimisation consistency allows a more

detailed investigation of the effect of varying the weighting between different

objectives in the cost function.

In chapter 4 a new approach to multi-train trajectory optimisation is devel-

oped to find robust solutions in the presence of uncertainty. The effectiveness

of this robust optimisation was investigated in the presence of two different

types of uncertainty: the accuracy of control point application, and variation

in station dwell times. First, solutions are found with robustness with re-

spect to a single type of uncertainty; then with robustness to both types of

uncertainty simultaneously. Finally, the performance of the robust solutions

is compared to the estimated performance of closed-loop control.

Chapter 5 describes the development of a massively parallel multi-train

simulator. This is designed to accelerate population based heuristic optimi-

sations on a desktop computer by using a GPU. All parts of the simulation

and optimisation are implemented on the GPU, removing the need to slow

memory transfers between the host and device. Also, the data structure and

algorithms proposed are designed together, to minimise execution time by

maximising coalesced memory access. Soft constraints allow decoupling of

movement simulation and headway checking. This, in combination with a dis-

tance step based approach to modelling vehicle movements, allows an efficient

parallelisation strategy to be adopted. The new simulation is then validated

through a sensitivity analysis of ∆d, the size of the distance step used when

modelling vehicle movement, and the rate of simulation investigated.

Finally, chapter 6 draws together the findings of this thesis and explores

5

topics of further work.

6

Chapter 2

Literature review

Given the scope detailed in Section 1.2 this literature review focusses on multi-

train trajectory planning. For a general review of train trajectory optimisation

literature readers are directed to [10] and [9], the latter of which is focused

on freight applications where specific issues such as in-train dynamics are of

greater importance. There is also a great deal of work in the area of opti-

mal rail timetable creation and also rescheduling, where the aim is usually to

recover from perturbations back to the timetabled service. These are both

closely related to the multi-train trajectory planning problem; they too must

take into account interactions between trains, and ultimately their outputs

(scheduled journey times) are the other major constraints when minimising

journey energy use. McClanachan and Cole [9] did not find “a truly inte-

grated scheduler and train control optimizer”, which was stated as necessary

“to completely optimize a whole railway system”. Therefore, only works which

explicitly consider the optimisation of train velocity profiles, with respect to

energy consumption, have been considered here. Additionally, it is generally

accepted that other progress may have been made in the area of train tra-

jectory optimisation, but has not been disseminated due to its commercial

7

value.

The trajectory optimisation problem for a single train is usually approached

in two ways, either analytically or numerically. Section 2.1.1 contains a dis-

cussion of analytical results, for which specific optimal train trajectories are

usually found using Nonlinear Programming (NLP) techniques. Next, meth-

ods which use searching are discussed in Section 2.1.2, with particular detail

given to genetic algorithms as these are more relevant to the method of multi-

train optimisation investigated. Section 2.2 contains a discussion of works

that specifically consider the multi-train problem. Section 2.3 looks at robust

optimisation and its application to trajectory planning. Finally, the approach

taken in this thesis is outlined in Section 2.4 and set in the context of the

existing literature.

2.1 Single-train trajectory planning

2.1.1 Analytical results

Interest in optimising the trajectory of trains to minimise their energy con-

sumption began in the late 1960s. By application of the Pontryagin Minimum

Principle (PMP), Ichikawa [11] solved the control problem for a linear train

model (resistance proportional to velocity) finding the optimal control strat-

egy to have four phases: full power, constant speed, coasting, and maximum

braking. This assumed a flat track and did not consider line speeds. In 1985

Asnis et al. [12] used PMP to solve the same control problem more generally,

this time with an arbitrary resistance force and varying levels of regenerative

braking efficiency. The results are consistent with those of Ichikawa but add

that, in the case of 100% efficient regenerative braking there will be no coast-

ing phase. Howlett [13] also verified these results in 1990, and reformulated

8

Figure 2.1: The four phases of the optimal velocity profile on flat track:
(a) maximum traction, (b) cruising, (c) coasting, (d) maximum brak-
ing. Control phases (b) and/or (c) may not occur under certain condi-
tions leading to the trajectories shown by dotted lines.

the problem in terms of finding the location of the switching points between

the different phases (see Figure 2.1).

To allow useful application in most real world scenarios these idealised

models must be extended to include both variable speed limits and gradients.

Analytical solutions to these, more complex, problems have been formulated

in two different ways - those assuming trains with continuous control (where

the acceleration or traction power can take any value within the limits) and

those assuming discrete control (where the traction power can take only a

finite number values).

In 2000, Khmelnitsky [14] considered the continuous control problem for

a system which modelled both gradients and speed limits as arbitrary vari-

able functions of the distance. He uses PMP to show that, even with a very

variable gradient profile, a complicated control sequence may contain up to

four different types of mode: Maximum traction, speed holding (using trac-

tion or braking), coasting, and maximum braking. He observes that regions

of speed holding tend to occur on shallow grades and steep falls, and uses

properties of the optimal solution to show that the points of exit from these

9

stable regions can be derived from the roots of a monotone function. The

roots of this monotone function are then found using a dichotomous search

algorithm. Liu and Golovitcher [15] obtained similar results, but state that

the algebraic optimality conditions found by Golovitcher (Golovitcher 1986a,b,

1989a,b) are simpler than the differential equation that must be solved in [14].

However, Wen [16] comments that for a non-convex optimal control problem

“the Necessary Optimality Conditions (NOC) like PMP do not guarantee a

global optimal solution”. Howlett also developed a similar approach for the

problem in [17].

If a train is going up a hill sufficiently steep that it will slow down even

under full power then the hill is said to be steep. Likewise, if the train speeds

up when no power is applied then the slope is a steep downhill. Vu [18]

showed the form of optimal control on a steep uphill is application of full

power, starting before the hill and continuing after the hill until the holding

speed is regained. This is illustrated in Figure 2.2. Similarly for a steep

downhill Section, coasting begins before the hill and continues after the hill

until the speed drops back to the holding speed.

In 1995, Howlett and Pudney [19] showed that instead of modelling a train

as a distributed mass there is an equivalent control problem for a train mod-

elled as a point mass. They also showed that discrete control can be used

to approximate continuous control with an arbitrary accuracy, dependent on

the number of control points. While continuous control may be a good ap-

proximation for many modern electric locomotives, there are situations which

are more suited to discrete control. Diesel locomotives have different throttle

notches, each giving a constant rate of fuel supply to the engine, and therefore

each giving roughly constant power. This observation is commonly attributed

to Benjamin et al. [20]. Much of the work on discrete optimal control has been

10

Figure 2.2: The optimal trajectory on a single steep Section follows a
hold-traction-hold pattern. (a) Initially the train maintains the holding
speed (vhold). (b) At some point before reaching the steep Section
maximum traction is applied. The train speed increases above vhold
before the steep slow Section, but then drops below vhold on the steep
Section. (c) At some point after the steep Section the speed returns to
vhold and the traction is reduced to hold this speed.

carried out at the University of South Australia by Howlett, Pudney, Cheng

and colleagues.

2.1.2 Heuristic search methods

Due to the complexity of the modelled system, analytical methods must make

approximations to simplify the problem [10], so simulation methods allow for a

more realistic model. However, simulation-based optimisations are usually too

slow to use where, for example, Automatic Train Operation (ATO) is desired

- often light rail and metro systems. Here, other techniques have been used to

find a ‘good enough’ solution in a reasonable time.

Several different types of searching algorithm have been proposed for single-

train trajectory optimisation, including genetic algorithms, ant colony optimi-

sation [21, 22, 23] and dynamic programming [24]. However, here a detailed

review has only been undertaken for those based on genetic algorithms. The

reasons for this are discussed in Section 2.4; after considering the multi-train

11

trajectory optimisations and robust control literature (see Sections 2.2 and

2.3.1), it became clear genetic algorithms were most relevant to the research

direction pursued in this thesis.

Genetic algorithms

Genetic algorithms (GAs) are a type of heuristic optimisation that mimic

evolution by natural selection; a population of ‘chromosomes’ (candidate so-

lutions) compete against each other, with information from the ‘fittest’ (best

scoring) candidates more likely to pass to the next generation. For readers

unfamiliar with GAs a brief introduction can be found in Appendix I.

In 1997, Chang’s use of a GA to find the position and number of control

points is widely cited as the first use of a GA to directly optimise train trajec-

tories [25]. Each chromosome consisted of a sequence of control points for the

same journey, usually alternating between traction and coasting. These were

randomly initiated and used, in combination with an automatic train protec-

tion (ATP) system, to control the train during each simulation. The ATP

was used to prevent line speed violations and bring the train to a stop at its

destination. Each chromosome was then scored based on the modelled train

energy consumption, punctuality, and jerk performance. These scores were

used to select parent chromosomes in a tournament selection process, with

offspring then produced using mutation, crossover, duplication, and deletion

operations. If no individuals in the new population were as fit as the previous

best and best alternate (different dimensioned) chromosomes then their elitist

reintroduction occurred. The performance of this GA was found to compare

favourably to a Fuzzy controller, described in the same paper.

In 1999, Han et al. [26] applied a GA similar to Chang’s to a 920 m long

metro journey and concluded that it performed better on this system than an

12

optimisation proposed by Howlett and Pudney [19].

In 2000, Cheng et al. [27] formulated the system as an unconstrained prob-

lem, with the penalty function also including the line speed limit. He proposed

optimisation by a GA followed by a local optimisation, and also detailed that

his simulation model used the Runga-Kutta method.

In 2004, Colin Cole [28] optimised the trajectory of a freight train whilst

considering the forces between all 107 vehicles of the train. The increased

computational difficulty of this problem meant the GA had to be tailored to

perform well with only a small population and few generations. Cumulative

speed violations were again included in the fitness function, but this time the

probability of applying different genetic operators was also adjusted as the

optimisation progressed. Reproduction was performed by the breeding of the

best specialists, to avoid ignoring less dominant cost function criteria early on.

It was also noted that, where the fitness function contains many parameters,

it is difficult to choose the weights between them without effectively negating

the contribution of some parameters.

In 2004, Wong and Ho [29] applied a GA to very a simple trajectory

optimisation, which found the position of up to two coasting points given a

re-motoring velocity, and also stated the benefits of applying two different

GA techniques. The first, Hierarchical Genetic Algorithm (HGA), allowed

one gene to control the expression of other genes - in this case determining

the number of coasting points. The second, Minimum-Allele-Reserve-Keeper

(MARK), was intended to help fast convergence whilst allowing exploration

of the search space.

In 2007, Bocharnikov et al. [30] formulated the trajectory optimisation

problem as the optimisation of three parameters: Kv (re-motoring velocity,

as fraction of line speed), Kf (traction force, as fraction of maximum), and

13

Kbr (braking force, as fraction of maximum). As expected the GA used to

optimise these parameters found Kf = Kbr = 1 in the detailed example, and

Kv appeared to vary depending on the fitness function weighting between

energy and time.

In 2008, Landi et al. [31] used an on-board monitoring system to gather

electromechanical data and build a journey specific train model, including

overhead line voltage and current. This model was then used as part of a

GA to optimise the duration of application of a predefined order of traction

conditions: first gear (manoeuvre), series, parallel, reduced field 1, rf 2, rf 3,

and coast.

In 2009, Wei et al. [32] implemented a GA with a number of differences from

Chang and Sim [25]. Instead of just optimising the location of control points,

for alternating traction and coasting operation, each control point also defines

the control action to be used - full power, partial power, coasting, partial brak-

ing, or full braking. This allows more trajectories to be defined, some of which

may be closer to the global optimum. A multi-population genetic algorithm

(MPGA) is chosen to allow the algorithm to maintain multiple local solu-

tions. Each generation a predefined number of the fittest solutions migrate to

a neighbouring population. Also, within each sub-population the fitness score

of each solution is negatively affected by short Hamming distances to other

solutions; this is intended to maintain diversity within each sub-population.

Finally, an annealing selection based genetic operator is proposed for varying

the length of individual solutions.

2.2 Multi-train trajectory planning

McClanachan and Cole [9] state that, “If the journey time of one train is ex-

14

tended to save energy, then this could aversely influence the schedules and

energy usage of other trains on the same network.” Somewhat surprisingly

then, there has been comparatively little work on the problem of multi-train

trajectory optimisation, compared to the single-train problem. This is proba-

bly due the greatly increased complexity of the problem - a non-linear problem

with many discontinuities. Three different types of interaction are considered

below.

2.2.1 Headway constraints on a single line

In 2008, Acikbas and Soylemez [33] used a novel approach to multi-train op-

timisation. Similar to Bocharnikov et al. [30], coasting and re-motoring ve-

locities were used as the control variables. The time and energy performance

of the network could then be simulated using the SimuX software, capable

of modelling a multi-train system with overhead line voltages. However, the

proposed GA optimisation would have been too slow using this method of

evaluation, so SimuX was used to train an Artificial Neural Network (ANN)

of the system. Once trained the ANN could evaluate solutions ∼900 times

faster than SimuX, with an error of less than 3%, allowing optimisation by

GA. Results showed optimisation of coasting points in the multi-train case

actually saved less energy, for same time increase, than the single train case.

This was mainly attributed to better use of regenerative braking in a system

with multiple trains.

In 2009, Ding et al. [34] investigated trajectory optimisation for trains fol-

lowing one another under moving block signalling. The control problem was

formed as minimising energy consumption, given a fixed traverse time and ve-

locity constraints. An algorithm was stated for determining the traction/brake

notches of the lead train. The following train then attempts to maintain the

15

“scheduled time interval standard” using another predefined algorithm. No

attempt was made to show the optimality of either procedure.

In 2011, Gu et al. [35] also investigated trajectory optimisation for follow-

ing trains under moving-block signalling. Flat track with a constant speed

limit was assumed, which simplified the problem. This meant that for normal

operations, the optimal traction-cruise-coast-brake profile could be used (see

Figure 2.1) and conventional non-linear programming methods used to find

the switching points between phases. Live calculation of the following train’s

trajectory also means that the optimisation can be used for ATO, where the

optimisation can handle perturbations such as the lead train stopping.

In 2011, Lu and Feng [36] optimised the trajectories of two trains under

4-aspect signalling. Instead of using ATP to ensure static velocity constraints

were obeyed, soft constraints were used. The cost function incorporated a

linear weighted sum of energy consumption, trip time error, static overspeed

(exceeding line speed constraints) and dynamic overspeed (exceeding speed

constraints ensuring the safe separation of trains). A GA was used to opti-

mise a series of control points, which encoded both a control notch (traction,

coast, brake) and the position at which this control should be applied. A two-

point parallel crossover operator was adopted allowing exchange between the

candidate control strategies of the lead train and following train.

In 2013, Wang et al. [37] solved the two-train problem, where one train

is following another, under moving-block signalling using mixed-integer linear

programming (MILP). They then extended this work in [38] to include fixed-

block signalling and solution using pseudo-spectral methods. Pseudo-spectral

methods were found to give slightly better results than MILP but took two

orders of magnitude longer to calculate. The optimisation was also carried

out using the greedy (lead train trajectory optimised independently of the

16

second train) and the simultaneous approach. As expected, the simultaneous

approach gave slightly better results but took longer to calculate. However,

since the number of constraints scaled linearly with the number of train trajec-

tories being optimised it was noted that “the computation time of the bigger

[multi-train] problem will be much longer”.

In 2014, Zhao et al. [39] developed a multi-train simulator that used ATP

to ensure trains obeyed both line speeds and signalling constraints. Trajecto-

ries could be controlled using train target speeds. These were then optimised

using an enhanced Brute Force algorithm. Before performing the Brute Force

optimisation, the range allowed for each journey’s target speed was narrowed

using the target traverse times and minimum headways. A case study was

used to investigate the effect of 3 different driving styles (flat-out, optimal,

and cautious) under 6 different signalling systems. It was found that, for

a similar energy consumption, punctuality was increased by using more ad-

vanced signalling systems. This is a good reminder that trajectories resulting

from optimisations that used ATP to enforce headway constraints are heavily

influenced by both the driving style and signalling system used. This study

was extended in [40] to consider optimisation using an ant-colony optimisation

and a genetic algorithm. Both heuristic optimisations were shown to find near

optimal results and greatly reduce the computation time.

2.2.2 Electrical interactions between trains

In 2004, Albrecht [41] used a two level optimisation to minimise the total

energy consumption and power peaks of a network. At a high level, syn-

chronisation of train movements was optimised, using a GA, to give better

utilisation of regenerative braking energy; at a low level, individual train tra-

jectories were optimised using dynamic programming and a linear resistance

17

train model. Reduced energy consumption and power peaks were reported, in

a case study, when applying the higher level GA.

In 2007, Miyatake and Ko [42] stated that the model in [41] could be im-

proved because it assumed a traction-coasting-braking trajectory and did not

consider the exchange of energy between the trains. Miyatake formulated the

control problem to overcome these shortcomings and developed an approxi-

mate method for solving the problem faster. This showed improved energy

savings, and the interesting result that energy from braking could be used to

increase the kinetic energy of a nearby train, which essentially acts as an energy

storage device. Miyatake, has since taken this model further [43] comparing

different optimisation techniques and considering energy storage devices.

2.2.3 Other network interactions

Although much of the scheduling literature considers other network interaction

(such as stations and junctions) few trajectory optimisations could be found

that considered anything other than a single line, linear system.

In 2012, Yang et al. [44] described a GA based optimisation for the multi-

train trajectory problem on a branched network. The GA was similar to that

proposed by Chang and Sim [25], but adapted to work on a network. The

algorithms used for simulation were also given in detail, including interactions

in the form of headway constraints. In the context of a branched network these

headway constraints could have other effects such as delaying departure times

from stations. Yang also investigated the effect that the relative importance

of traverse time and energy consumption had on the solutions found.

18

2.3 Optimisation in uncertain systems

Most trajectory planning work (for both single and multiple trains) is focussed

on finding the optimal solution for a predefined schedule. Usually control

seeks to maintain the scheduled traverse time for a length of track, whilst

minimising the energy consumption [9]. The problem is constrained by the

dynamic performance limits of trains and restrictions on velocity and headways

(imposed to ensure safe operation). The traditional formulation of the multi-

train trajectory planning problem can be formalised as:

f(X)→ min (2.1)

where X is a control strategy for all trains on the network, and f(X) is a cost

function usually based on the traverse times and energy consumptions of all

train journeys.

It is assumed that if the ‘optimal’ control strategy is identified, then it can

be implemented resulting in optimal performance of the system. However,

the optimum is likely to lie on the limit of the feasibility boundary so will be

very sensitive to noise [45]. In this context ‘noise’ refers to the many small

uncertainties that most current models do not consider but which do exist in

reality. These mean that if most optimised control strategies (for a noiseless

system) were applied to real operation then it is likely they would not perform

as well as expected, and may in-fact result in severely sub-optimal outcomes.

Most of these uncertainties fall into two different groups classified by Chen et

al. [46] as:

Type 1 - variations in performance caused by variations in uncontrolled

parameters.

19

Type 2 - variations in performance caused by variations in the design

(control) variables.

When controlling a train it is just not possible for all drivers to consistently

follow a control strategy perfectly accurately. Automatic train control systems

can achieve a very repeatable application of control, but modern systems de-

liberately make small variations in control to avoid problems with localised

track wear in the positions where control actions are applied. Either way,

there will be variation in the position of control point application equivalent

to Type 2 uncertainty. Including this uncertainty the problem becomes:

f(X + δ)→ min (2.2)

where δ is the uncertainty in the in control application.

Likewise, in the context of train control, Type 1 uncertainties may be

caused by variation in the properties of the vehicles, track being traversed or

movement authority given. For example, even when composed of the same

types of rolling stock, the mass, resistance, traction and braking characteris-

tics of nominally identical trains will vary slightly. Also, some characteristics

of the line, for example, the level of adhesion or overhead line voltage, are

unlikely to be constant and will be affected by external factors. The combina-

tion of these uncertainties in train and track means that the expected rate of

acceleration or deceleration of a train will not be known precisely in advance.

Other external factors can also influence the definition of the problem being

solved. Variation in station dwell times may extend or reduce the target tra-

verse time for a journey, whilst equipment failures may cause large delays and

may even stop services altogether. Including both Type 1 and 2 variations the

problem becomes:

20

f(X + δ, γ)→ min (2.3)

where γ represents the changing operating conditions of the system.

The function f(X+ δ, γ) has an effective cost function, F (X), which gives

the distribution of scores for a given X found by integration over δ and γ.

Since the optimum of f(X) is not necessarily the same as the robust optimum

of F (X), there is often a trade-off between the quality and the robustness of

solutions. [47]

2.3.1 Techniques used in ‘noisy’ genetic algorithms

It has been widely noted that GAs can still effectively optimise systems in the

presence of noise. Arnold [48] found that they performed particularly well on

problems with both high dimensionality and high noise, when compared to

a number of other direct optimisation strategies. This ability to find robust

solutions in the presence of uncertainty has been demonstrated in many pa-

pers (see [47] for a comprehensive review), which consider both Type 1 and 2

uncertainties. In many practical situations the analytical form of the effective

cost function, F (X), is not known but numerical approximations can be used

to estimate its statistical properties. Each time the cost function in Equation

(2.3) is evaluated its value will vary stochastically, but the expected (mean)

score F̂ (X) can be estimated by averaging a number of random samples.

F̂ (X) =
1

N

N∑
i=1

f(X + δ, γ) (2.4)

where N is the number of times the control strategy is re-sampled.

This is referred to as explicit re-sampling as each candidate solution is

evaluated multiple times. The larger N used, the more likely that F̂ (X) is

21

close to the actual mean but since evaluation of candidate solutions is usually

the most computationally expensive part of an optimisation there is a balance

between getting a good enough estimate of the expected score against the

effort spent achieving this. However, GAs do not just operate on a single

candidate solution, but simultaneously on a population of candidate solutions.

Clustering of candidate solutions tends to occur in promising areas of the

search space, making it likely that a number of similar candidate solutions are

evaluated during each iteration of the algorithm. This is known as implicit

re-sampling and reduces the reliance of the search on any single (potentially

misleading) evaluation. In the extreme case (of infinite population) Tsutsui

[49] showed that noise does not affect GAs that use a fitness proportional

selection scheme. So, the effect of noise may be reduced either by explicit re-

sampling (more evaluations of each candidate solution) or implicit re-sampling

(increasing the population size).

2.3.2 Robust train trajectory planning

Energy efficient train operation has been studied since the late 1960s, the main

results from which have been discussed in Sections 2.1 and 2.2. However, there

has been almost no consideration of the effect Type 1 and 2 uncertainties may

have on the optimisation. In 2013 Li et al.[50, 51] did consider the case of

stochastic resistance coefficients for a single-train. They showed that on flat

track the traditional coasting mode can be replaced with a ‘quasicoasting’

mode, where a small amount of traction or braking may be applied to offset

differences in train resistance.

22

2.4 Evaluation and research direction

To make the numerical problems tractable it is necessary to make simplifica-

tions. Wang et al. [10] note that introducing non-linear terms into the model

equations or constraints often causes difficulties for analytical solutions. For

example, many of the analytical approaches to the single-train problem rely

on having a constant maximum traction force. In reality, both the maximum

traction and braking force are likely to vary with velocity - being limited by

adhesion, power or passenger comfort. Likewise, traction efficiency is likely to

vary with velocity. Whilst it is true that many of the heuristic search optimi-

sations do not include these non-linearities, in most cases it would be trivial

to introduce them. This means that, at present, real world systems can be

more accurately modelled using numerical simulations than by the models un-

derpinning analytical optimisations. Since the aim is to find solutions that are

likely to be usable in real systems, numerical simulations (and consequently

searching methods) are likely to give the best results. Also, few analytical

results could be found for the multi-train problem.

Most of the multi-train trajectory optimisations found (see Section 2.2)

either used GAs or MILP. MILP problems have the advantage that many

commercial and free solvers are available, so simple problems (e.g. two trains)

can be solved efficiently[37]. However, Wang et al. [37] also state that “when

the number of trains taken into account increases, the size of the MILP prob-

lem will grow quickly”. Even for a single train, Optimisation of the integer

variables in a MILP problem is a combinatorial search so cannot be solved in

polynomial time. This will limit the size of problem that can be optimised

using MILP. Since searching techniques generally use simulation as a ‘black

box’ to evaluate each control sequence, they are not as affected by the number

23

of constraints (though to some extent this depends on how the simulation is

implemented). Again, this suggests that searching techniques using numerical

simulation are more likely to be easily applied to realistic problems.

Many different types of searching optimisation have been applied to train

trajectory optimisation. When considering which research direction to pursue

it was necessary to choose which optimisation techniques to focus on. Section

2.3.2 highlights the limited consideration of robustness when planning train

trajectories. Realistic systems will always contain sources of uncertainty so

it would be desirable to choose an optimisation technique that can also find

robust solutions. As discussed in Section 2.3.1 GAs have shown to perform

well in this respect. There are also many examples of GAs being applied to

trajectory optimisation but as yet none could be found which sought to find

robust solutions. For these reasons GAs were chosen as the preferred type

of optimisation technique. However, it should be emphasised that GAs are

not necessarily superior to other heuristic search techniques. Wolpert’s no

free lunch theorem [52] states that, “for any algorithm, any elevated perfor-

mance over one class of problems is offset by performance over another class

[of problem]”. So, while it is likely that GAs can be tuned to perform better

on train trajectory optimisation, this will be equally true for many other types

of optimisation algorithm.

Finally, before GAs can be investigated for multi-train trajectory optimisa-

tion, a simulation methodology must be chosen for evaluating the performance

of candidate control strategies. At the time this research was undertaken the

author did not have access to a suitable multi-train simulator. The work

presented by Yang et al. [44] used a GA to perform multi-train trajectory

optimisation and was unusual because it did this in the context of a branched

railway network. The algorithms used for the multi-train simulation were also

24

documented in detail. For these reasons this thesis will use Yang’s model as a

starting point to explore multi-train trajectory planning.

25

Chapter 3

Multi-train trajectory

optimisation to maximise rail

network energy efficiency

under travel-time constraints

This chapter is based on a published paper [53] 1 but includes additional de-

tail on the implementation and validation of the model. The work presented

focuses on trajectory optimisation of multiple trains in a network, with the

aim of improving overall network punctuality and energy consumption. To

do this, operational interaction between trains must be considered. For the

reasons discussed in Section 2.4, the work by Yang et al. [44] was chosen as

the most relevant state of the art and was therefore the starting point for

further investigation. First, a new multi-train trajectory optimisation was

1Jonathan C J Goodwin, David I Fletcher and Robert F Harrison, Multi-train Trajectory
Optimisation to Maximise Rail Network Energy Efficiency Under Travel-time Constraints,
Proc IMechE Part F: J Rail and Rapid Transit, 230 (4), pp. 1318-1335.

27

implemented in C++, reproducing the state of the art. This is described in

Section 3.1 along with the model’s validation against published results and

a number of improvements. Next, two specific limitations were described in

Sections 3.2 and 3.3. Algorithms were proposed to address these and the per-

formance of the resulting optimisations investigated in Section 3.4. Together,

these improvements were shown to optimise an average of 27.6% further than

published results in combination with increasing consistency of optimisation

by a factor of 28 (Section 3.5.3). Finally, the improved optimisation consis-

tency allowed a more detailed investigation into the effect of varying α, the

weighting between different objectives in the cost function, in Section 3.5.

3.1 Implementation and validation of G1

The network N1 (illustrated in Figure 3.1) was previously investigated by

Yang et al. [44] using the modelling methodology and optimisation hereafter

referred to as Y1. Basic familiarity with Y1 is assumed, for which an overview

can be found in Section 3.1.1. Y1 was implemented from scratch, and this new

model is referred to as G1. Every effort has been made to ensure that G1 is as

accurate a reproduction of Y1 as possible, enabling comparison with results

from improved optimisation procedures G2, G3 and G4. All G1 experiments

were tested on the same railway network as used in [44] and used the same

procedures, constraints and variables unless otherwise stated.

Using control sequences resulting in indistinguishable trajectories, the sim-

ulation results from Y1 and G1 also gave the same total traverse energy and

total traverse time to within 0.02% and 0.00% respectively. If links are com-

pared individually then the variations in the energy and time are slightly

larger, averaging ±0.25% and ±0.09% respectively, but cancelled due to the

28

4

1

23

Figure 3.1: Illustration of network N1, the topology and train journeys
of which were previously defined and investigated by Yang et al. [44]

cost function formulation. However, these errors are still relatively small and

are most likely due to slightly different methods of calculating the braking

point, and/or different rounding assumptions made at the start and end of

braking (see Section 3.1.3).

The following points highlight important areas in the implementation of

G1.

• The fuzzy variables mentioned by Yang were found to simplify analyti-

cally, allowing them to be implemented as conventional (single valued)

variables.

• As will be justified below, in Section 3.1.2, it was necessary to use a sim-

plified traction force of f(v) = 360 kN, over the whole range of velocities,

for consistency with the output from Y1. This led to modelling a less

realistic train but enabled comparison of optimisation results. As the

primary aim of this research was to investigate trajectory optimisation

techniques, the realism of the system being modelled was not critical.

• Also below, an algorithm is proposed for establishing the proper site to

apply the braking operation, at the end of each link. It was not specified

in Y1 how the braking site was calculated.

29

• On closer inspection of the algorithms described in [44] it can be seen that

the energy calculation method in Y1 uses the resultant force (traction

force + resistance force) on each train to calculate its traction power

consumption. This has profound implications on the calculated energy

use of trains suggesting that, in all situations, speed holding uses no

energy. It is expected that using the traction force alone would prove

to be a more realistic formulation. However, to allow comparison, these

unmodified algorithms were used during validation of G1 but will be

revised in Section 3.5.

3.1.1 Overview of Yang’s formulation

Yang et al. [44] described a multi-train trajectory model and optimisation.

This formulation will be referred to as Y1 throughout this thesis. Y1 modelled

the rail network in Figure 3.1 as a finite graph; nodes representing stations,

and edges representing bidirectional single-track railway links. Each link has

a length, over which a speed limit profile is defined, whereas the nodes have

no modelled properties. Unless stated otherwise, all optimisation investigated

in this chapter were applied to the same network (N1).

In Y1, train motion on each link is defined as alternating sections of max-

imum traction and coasting, controlled by position vector x, with application

of the maximum braking operation interrupting the final coasting section at

distance y to ensure stopping at the end of the link (Figure 3.2). The notation

used in this chapter is listed in Appendix II and values of parameters are given

in Table 3.1.

Train movements defined by each network control strategy, X, are sim-

ulated by implementing Newton’s laws of motion using a piece-wise linear

approximation (∆t = 1 s). Details of this are given in Appendix IV. Links are

30

Figure 3.2: Traction and coasting operations are applied alternately as
each link is traversed. The position of the control points determines
the trajectory each train follows between origin O and destination D.

traversed in the order defined by X and constraints imposed during simulation

to ensure: feasible solutions, safe operation, ride comfort and sufficient time

for operations at stations. As well as checking the feasibility of each solution,

the simulation allows an objective function to be evaluated for each X. Target

values for the total traverse time and total energy consumption are defined, as

T and E respectively. The deviations from these targets were then formulated

into a single equation, Equation (3.1), using a linear weighted sum method:

Fα(X) = α ·max

{
E(X)− Ē

Ē
, 0

}
+ (1− α) ·max

{
T (X)− T̄

T̄
, 0

}
(3.1)

where the weighting factor, α ∈ [0, 1], allows a different relative importance

to be placed on energy consumption or traverse time.

Since Equation (3.1) only considers energy and time spent traversing links,

a penalty accounting for operational interactions in stations, G(X), is added

to Equation (3.1). This results in the overall objective score for each network

control strategy, given in Equation (3.2). G(X) can be customised for different

31

Genetic algorithm Simulation

1. Initialisation

3. Crossover

Check
feasibility

Compute

objective

Output
optimised

control
strategy

Y N

2. Selection

4. Mutation

End
condition?

Figure 3.3: The structure of the optimisation algorithm used in Y1.

situations, but here is defined as the sum of departure delays, weighted by the

relative priorities of different trains.

Objective score = Fα(X) +G(X) (3.2)

A GA (Figure 3.3) is used to minimise Equation (3.2), by searching for

near-optimal X. Constraint checking is integrated into the genetic operators to

ensure that any offspring, resulting from the breeding of parent chromosomes,

is a feasible solution. The overall process is represented in Figure 3.3, where

the loop will keep iterating new populations of solutions (expected to increase

in fitness) until the end condition is reached. For Y1, a fixed number of

generations is defined, after which the best solution found is accepted. For

consistency, the same parameters as used in Yang’s best optimisation (Table

3.1) are used when implementing G1 .

32

Table 3.1: The GA parameters used in this chapter [44, Table 4, ex-
periment 9]. ∗Personal communication from L. Yang [54].

Parameter Value

Pc (probability of crossover) 0.6
Pm (probability of mutation) 0.8
pop size 40
Number of generations 800
α (weighting between energy and time) 0.3
M (initial mutation distance) ∗ 100 m
Tr (minimum distance between opera-
tional transitions) ∗

500 m

Parameter used in roulette wheel selection
(also referred to as α in [44]) ∗

0.2

3.1.2 Validating traction trajectories

In [44] the traction force (kN), of all trains on the network, is modelled using

the piecewise function of train velocity given in Equation (3.3).

f(v) =

 360 if0 ≤ v ≤ 180km/h

360− 6
7(v − 180) if180 ≤ v ≤ 300km/h

(3.3)

When Equation (3.3) was combined with the other forces, and the piecewise-

linear model of train movement implemented in G1, the result appears to show

identical traction characteristics to Y1 below about 200 km/h. However, as

can be seen in Figure 3.5, above this velocity the trajectories diverge - with

Y1 following instead the profile described by G1 using the traction force given

by Equation (3.4).

f(v) = 360, if0 ≤ v ≤ 300km/h (3.4)

Equation 3.3 is equivalent to an 18 MW train, which would already be

one of the highest power high-speed trains in production, while Equation 3.4

33

is equivalent to a 30 MW train. This suggests that Equation 3.4 does not

realistically model any existing train but has still been used in G1 to pro-

vide consistency with the traction characteristics demonstrated by Y1. As the

primary aim of this research was to investigate trajectory optimisation tech-

niques, the realism of the system being modeled was not critical. The traction

characteristics resulting from Equations 3.3 and 3.4 are compared in Figure

3.4 and the resulting train acceleration profiles in Figure 3.5.

Figure 3.4: Comparison of traction characteristics.

3.1.3 Implementing braking

Yang mentions “a suitable brake site” and “the proper site for using braking

operation” but in neither case specifies how this is found. Another relevant

consideration not discussed in [44] is the rounding error introduced at the end

of the link. In Y1 the train must not come to rest before the end of the link, as

passing the end of the link is the end condition for the braking algorithm. This

means any residual velocity at the end of the line will result in a faster traverse

34

Figure 3.5: Comparison of simulated train velocity profiles resulting
from different traction characteristics.

time but increased energy consumption compared to the ideal case. Given the

discretised nature of the model, which only switches operational modes after

an integer number of seconds, it is unlikely that braking will bring a train

to rest at exactly the link end position. The proposed method of calculating

the final coast-brake segment used in G1 also removes this small systematic

error. G1 determines the correct site for braking implicitly by using a back

calculated stopping process [32] [55] detailed in Procedure 1.

35

Figure 3.6: Finding the site for braking.

Procedure 1: Back calculated stopping process.

Step 1. Calculate the coasting profile to the end of the link in the normal

way (Figure 3.6 - points 1 to 6).

Step 2. Calculate the braking profile backwards from the end of the link

until it crosses the coasting profile (Figure 3.6 - points 7 to 10).

Step 3. The two profiles are then joined by averaging the velocity over

the remaining distance (between points 3 and 9 on Figure 3.6),

allowing an estimate of the time interval to be made. Energy

consumption between points 3 and 9 was approximated to be half

coasting and half braking.

3.1.4 Validating simulation

The train model in G1 was implemented assuming the linear traction force

Equation (3.4) and back calculated stopping process (Procedure 1) detailed

above. To estimate error in model G1, control points for the simulation were

taken directly from [44, Fig. 5], instead of using the GA optimisation, and

validated against the data for Y1 from [44, Table 5].

If the magnitudes of the errors are summed, then the total difference in

36

Table 3.2: Comparison of simulation outputs using the same control
strategy.

Y1 G1 G1 error (%)
Train (journey) Energy /kWh Time /s Energy /kWh Time /s Energy Time

1 (1 to 4) 798.015 664 799.725 663.4 0.21 -0.09
1 (4 to 2) 763.768 724 761.101 724.1 -0.35 0.02
2 (2 to 4) 884.459 663 884.852 664.6 0.04 0.25
2 (4 to 3) 881.108 644 881.532 643.9 0.05 -0.01
3 (3 to 4) 805.627 639 808.383 638.3 0.34 -0.10
3 (4 to 1) 768.395 653 764.676 652.5 -0.48 -0.07

Network total 4901.371 3987 4900.269 3986.9 -0.02 0.00

energies and times for each journey is 1.48 kW h and 0.54 s respectively over

the whole network. These errors are negligible when one considers that the

total distance travelled by trains in the model is 180 km. However, since

the error in G1 does not appear to be systematically high or low, a simple

summation of errors cancel to -0.18 kW h and -0.02 s. It is these values which

are used by the cost function in Equation (3.1) to score the network, meaning

that both Y1 and G1 have the same score of 0.0331. This is the measure

ultimately used by the optimisation process to compare the fitness of different

control strategies, meaning Y1 and G1 are indistinguishable (to 3 s.f.) for the

simulated control strategy.

Overall, it appears that the reproduced model is a good representation of

the original, with the nominal differences probably arising from alternative

methods for calculating the braking point for trains at the end of each link.

3.1.5 Validating optimisation performance

As with the model/simulation presented in Section 3.1.4, every effort has been

made to implement the GA in G1 using the same algorithms and parameters

described for Y1. [44] Table 3.1 lists the parameter values used, some of which

37

were obtained via personal communication [54]: It was also assumed that each

link was initialised to have 3 switching points. Notation used to describe both

Y1 and G1 can be found in Appendix II.

For many of the parameters used in Y1 there was little justification given

for the values used. However, the authors did document a simple optimisation

of the following GA parameters:

• probability of performing a crossover operation (Pc)

• probability of performing a mutation operation (Pm)

• total number of chromosomes in the population (pop size)

• number of generations for which the GA was run

Ten different sets of these parameters were randomly generated by Yang,

and the optimisation run just once with each set. This means the consistency

of Y1 (using the same set of parameters) was not recorded, but only the

variance in the optimised score (using different sets of parameters). This

variance, of 0.0001, was stated as illustrating “the robustness and steadiness of

the proposed solution methodology”, even though it is equivalent to a standard

deviation of 0.012, or ±25% of the average score. Yang then selected the set

of parameters used in finding the best optimised score, and used them in

some further investigations. The same sets of parameters tested by Yang were

adopted for the optimisation in G1, with each optimisation being run one

hundred times (n = 100) to assess the consistency of the optimisation process

(see Table 3.3).

The consistency of the optimisation in G1 appears to be quite poor, with

each set of parameters tested having a large standard deviation compared to

its average score. Also, the average and standard deviation in scores varies

38

Table 3.3: Optimisation results using G1 with the sets of parameters
from [44, Table 4]. The optimisation was run one hundred times (n =
100) with each set of parameters. ∗Scored using Equation (3.2) - lower
is better.

Set of
Parameters

Pc Pm pop size Generations
Mean computation
time /s

Mean
score∗

σ in
score

1 0.7 0.8 40 1000 116 0.052 0.018
2 0.4 0.5 30 1000 59 0.055 0.018
3 0.4 0.6 30 800 52 0.053 0.016
4 0.5 0.7 30 900 61 0.050 0.019
5 0.6 0.7 40 1000 96 0.051 0.017
6 0.5 0.6 30 1500 87 0.051 0.018
7 0.8 0.5 30 1000 57 0.054 0.019
8 0.8 0.9 40 1000 120 0.051 0.017
9 0.6 0.8 40 800 82 0.055 0.019
10 0.7 0.9 50 800 112 0.048 0.015

Table 3.4: Combined optimisation results. ∗Scored using Equation
(3.2) - lower is better.

Experiment n Mean computation time /s Mean score∗ σ in score

G1 combined 1000 84 0.052 0.018
Y1 combined 10 775 0.048 0.012

only slightly between different sets of parameters, which suggests that varying

these parameters has little effect on the optimisation. This allows all the

repeats to be combined into one larger dataset even though they are using

different sets of parameters. The result of this, for both Y1 and G1, can be

found in Table 3.4.

The two larger data sets, Y1 combined and G1 combined, allow the distri-

butions of optimisation results observed in Y1 and G1 to be compared. How-

ever, given a sample of their results it cannot be proven that the two models

are identical. Instead, the probability the null hypothesis (that Y1 and G1 are

identical) is incorrect can be estimated, allowing it to be rejected with a given

39

Figure 3.7: Empirical cumulative probability distributions of optimisa-
tion results.

degree of confidence. A p-value is the probability that the null hypothesis is

rejected even when it is true. The Kolmogorov-Smirnov test was carried out

using R [56] to compare the two distributions in Figure 3.7. This yielded a

p-value of 0.7293, meaning that the null hypothesis cannot be rejected using

the typical confidence level of 0.05. In-fact, even using the extremely relaxed

confidence level of 0.7 the null hypothesis can still not be rejected. In other

words there is no significant difference between Y1 and G1.

Simulations were run on one core of a personal computer with an AMD

Phenom II N850 Triple-Core 2.2 GHz processor. It is therefore surprising

that the average computational time per optimisation was only 11% of that

reported by Yang, who used a higher specification 2.67 GHz Intel processor.

This difference in optimisation speed may reflect the efficiency with which the

40

algorithms were implemented or simply the level of optimisation used when

compiling the code. The larger variation in the optimisation quality of G1

and the small number of published results from Y1 makes agreement between

the optimisation procedures difficult to prove with a high degree of certainty.

However, there is very little evidence that optimisations by Y1 and G1 give

significantly different distributions of results.

3.1.6 Method of traction energy calculation

On closer inspection of the algorithms in Yang et al. [44] it was found that

the traction energy consumption was calculated using the resultant force act-

ing on each train (∆work = resultant force × ∆distance) using a piece-wise

linear approximation. This formulation meant that increased resistance forces

at high speed caused a reduction in resultant force and, therefore, a reduction

in the energy use of trains. To enable like-for-like comparison with previously

published results, the initial investigation into the performance of different op-

timisations was performed without changing the method of energy calculation

(Section 3.4). However, the more realistic formulation of calculating energy

using (∆work = traction force×∆distance) was adopted for Section 3.5.2 and

all subsequent investigations.

3.2 G2: Link-wise mutation operation

The mutation operation proposed by Yang has the advantage that it tends

towards the previous solution, which is known to be feasible. However, this

places extra constraints on the optimisation process; in this case requiring the

same mutation size of all control points on the network. Below, a modified

mutation operation is proposed that finds separate feasible mutation sizes

41

for each link independently. This requires the ability to alternately apply a

genetic operator to, and then check the feasibility of, the control strategy for

each link in the network. A genetic operator that is applied in this way will

be called a link-wise genetic operator and will be applied using Procedure

2 (detailed below). A mutation operation adapted to work as a link-wise

operator is proposed in Procedure 3. Together these procedures allow link-

wise mutation to be performed on a population. It is intended that this should

place fewer constraints on the optimisation process, thereby allowing better

local optimisation.

Procedure 2: Alternating a genetic operation and feasibility checking.

Step 1. For each chromosome (in any order)

Step 2. If Ph < rand[0, 1] then go to step 10

Step 3. For each link control strategy (in the order) defined by X

Step 4. Apply link-wise genetic operator (x′′ = h(x′))

Step 5. If x′′ is feasible then go to step 8

Step 6. If x′ is feasible then x′′ = x′ and go to step 8

Step 7. Else, go to step 10

Step 8. Next link

Step 9. X′′ replaces X′ in the population

Step 10. Next chromosome

Here Ph is the probability of applying the link-wise operator h(x).

42

Procedure 3: Single link mutation.

Step 1. Predetermine an initial distance of mutation M > 0, let m = M

Step 2. Randomly give a mutation vector d with the same length as x′

Step 3. Let x′′ = x′ +md

Step 4. Correct x′′ to the feasible form (using the procedure in Yang et al. [44])

Step 5. Check validity of x′′ using simulation

Step 6. If x′′ is feasible then end procedure, else let m = m/2

Step 7. If m > (a small positive distance) then go to step 3, else end procedure

Here d is a vector with elements randomly defined as +1 or -1

The mutation operation in G1 was replaced with the link-wise mutation

operation (defined in Procedure 2 and Procedure 3) to make optimisation G2.

Unlike G1, mutation in G2 does not guarantee that a feasible network control

strategy will be produced. This is the same situation as already existed for

the crossover operation. In the case where neither the mutated (x′′) or pre-

mutation (x′) link control sequences are feasible, Procedure 2 will reach step

7 and the current chromosome will not be mutated. However, the improve-

ment in optimisation performance discussed later suggests that, in the system

studied, the potential for this event to occur is outweighed by the benefit of

having a less-constrained genetic operator.

3.3 G3: Insertion and deletion operations

As well as having good local optimisation, the other main problem that must

be overcome in complex optimisation problems is how to avoid getting stuck in

local minima. GAs seek to do this by having diversity within a population and

also the potential to reintroduce lost diversity using mutation. However, as

43

0

100

200

300

0 10000 20000 30000
Distance (m)

V
el

oc
ity

 (
km

/h
)

A
B
C

Figure 3.8: Train trajectories generated by optimisation G2. The lines
A and B illustrate proposed local minima observed in the results. Us-
ing mutation, these must interconvert by passing through some un-
favourable intermediate similar to the one illustrated by line C.

will be discussed in the results section, neither optimisation with the original

mutation operation (G1) nor the proposed link-wise mutation operation (G2)

appear to be successful in avoiding local minima. In particular, solutions

with two distinct patterns of control strategies were observed: those with

the second traction operation before the drop in line speed limit, and those

with the second traction operation after the drop in line speed limit. These

are illustrated in Figure 3.8 as A and B respectively. If the population has

converged, and only contains one of these control strategy patterns, then the

other can only be reintroduced using mutation. However, since the distance

of reduced line speed limit (3 km) is large compared with the mutation size

(≤ 100 m), many generations of poorly scoring intermediate strategies make

rediscovery of an A-like solution from a population of B-like solutions unlikely

(and vice versa). If control points are excluded from a region of the line then,

by definition, the mode of train control in this region cannot be changed, which

may lead to a suboptimal solution. In this case, solution A fails to exploit

the rise in line speed from 20,000 m onwards. Conversely, too many control

points in a region may lead to a restricted control strategy, as a minimum

distance between operation transitions must be maintained, again leading to

suboptimal solutions.

44

It is probable that increasing the population size would cause diversity re-

sulting in a reduced likelihood of getting stuck in local minima, but this would

also greatly increase the computational burden from simulation. In biology

there are three classes of single nucleotide mutation: point mutation, inser-

tion, and deletion. Both the original mutation procedure and the link-wise

mutation used in G2 are analogous to a DNA point mutation in biology, as

one control point is modified, but the total number of control points remains

the same. For this reason procedures are proposed for the probabilistic inser-

tion and deletion of pairs of control points (see Figure 3.9). Chang and Sim

[25] used similar operations, duplication and deletion, but it is believed the

operations proposed here are more effective for the following reasons:

• The probability of insertions and deletions is biased towards locations

where they are most likely to be needed.

• As much as possible, the effect of the operations on the ‘downstream’ tra-

jectory is minimised, decreasing the probability of producing infeasible

solutions.

Procedures 4 and 5 (detailed below) enable both of these and capture

the following logic. It is proposed that the probability of insertion between

two adjacent control points is proportional to the distance between them.

This will bias insertion towards areas of the control sequence currently lacking

control points. The total probability of insertion or deletion happening on

each link was implemented as Pins link = 0.25 and Pdel link = 0.25, respectively

(these probabilities were tuned ‘by hand’ and found to be large enough to give

sufficient exploration, but small enough not to impede convergence). Using

the notation illustrated in Figure 3.2 the probability of inserting a pair of

control points between control points n and n+ 1 is given by:

45

insertion

deletion

insertion

deletion

optimisation
process

V
el
oc
ity

Distance

V
el
oc
ity

Distance

V
el
oc
ity

Distance

V
el
oc
ity

Distance

optimisation
process

Figure 3.9: Extracts from train trajectories illustrating how they are
affected by the insertion and deletion operations (for simplicity, mod-
ification of the neighbouring control points has not been shown here).
During the optimisation process, control points may be moved by mu-
tation and crossover, extending or contracting the distance for which
the traction or coasting operation is applied.

46

Pins pair(xn) = Pins link
xn+1 − xn

D
(3.5)

where 0 ≤ n ≤ n max.

Similarly, the probability of deleting a pair of control points should be

proportional to their ‘shortness’, to bias for removal of potentially redundant

genetic material. The probability of deleting the pair of control points n + 1

is given by:

Pdel pair(xn) = Pdel link
(1− (xn+1 − xn)/(xn max − x1))

(n max− 2)
(3.6)

where 1 ≤ n ≤ (n max− 1).

As can be seen in Figure 3.9, the insertion or deletion of control point

pairs causes downstream changes to the velocity profile of the train. To limit

this, and so maximise the chance of insertion or deletion resulting in a feasible

solution, two strategies are proposed. The first is to minimise the distance

between the inserted pair of control points (i.e. ∆d = Tr, the minimum dis-

tance between operational transitions). The second is to move the position of

neighbouring control points in order to conserve the total distance over which

each control operation is applied. As with link-wise mutation, the insertion

and deletion procedures were applied probabilistically to the population using

Procedure 2 (step 4), with a probability of Pi = 0.6 and Pd = 0.6, respectively

(again, these were tuned ‘by hand’ in combination with Pins link and Pdel link).

47

Procedure 4: Link-wise insertion (valid for n max ≥ 1)

Step 1. Let n = 0

Step 2. If Pins pair(xn) < rand[0, 1] then go to step 14

Step 3. If (xn+1 − xn) < 2Tr then go to step 11

Step 4. If 0.5 < rand[0, 1] then go to step 8

Step 5. If n = 0 then go to step 9

Step 6. If (xn − xn−1) < 2Tr then go to step 11

Step 7. xn ← xn − Tr, go to step 11

Step 8. If n = n max then go to step 6

Step 9. If (xn+2 − xn+1) < 2Tr then go to step 11

Step 10. xn+1 ← xn+1 + Tr

Step 11. If (xn+1 − xn) < 3Tr then go to step 14

Step 12. Let d = xn + Tr + ((xn+1 − xn)− 3Tr) · rand[0, 1]

Step 13. Insert new control points into x at position d and d+ Tr

Step 14. n← n+ 1

Step 15. If n ≤ n max go to step 2

48

Table 3.5: Summary of the major innovations of each optimisation
procedure defined in this paper.

Optimisation Innovation

G1 Implementation of the model and GA optimisation de-
scribed by Yang et al. [44]

G2 Introduces a new (link-wise) mutation operation to
replace the original mutation operation of G1

G3 Introduces the new genetic operations of insertion and
deletion alongside the original GA optimisation of G1

G4 Combines the innovations of G2 and G3

Procedure 5: Link-wise insertion (valid for n max ≥ 1)

Step 1. Let n = 1

Step 2. If Pdel pair(xn) < rand[0, 1] then go to step 10

Step 3. Let d = xn+1 − xn

Step 4. If 0.5 < rand[0, 1] then go to step 7

Step 5. If n = 1 then go to step 8

Step 6. xn−1 ← xn−1 + d, go to step 9

Step 7. If n = (n max− 1) then go to step 6

Step 8. xn+2 ← xn+2 − d

Step 9. Remove control points xn and xn+1

Step 10. n← n+ 1

Step 11. If n ≤ (n max− 1) go to step 2

G3 was implemented by adding the insertion in deletion operations to G1.

A summary of the major innovations of each optimisation procedure defined

in this chapter is presented in Table 3.5.

49

3.4 Comparing optimisation performance of G1 to

G4

For each of the formulations described in Table 3.5, 100 independent opti-

misations were carried out to assess the effectiveness and consistency of the

optimisation process. Initialisation of 100 populations was also performed,

without any further optimisation, and the best solution from each population

recorded. Comparison of these results is given in Table 3.6 and Figure 3.10

followed by a detailed analysis of each individual optimisation. The optimi-

sation dynamics of G1 and G4 are also compared. Ideally an optimisation

would consistently find the solution that has the lowest score (i.e. the global

optimal solution); so the smaller the spread in scores, and the lower the scores

found, the better the optimisation. However, since the objective score asso-

ciated with the globally optimal solution is not known for this system, the

performance of each optimisation is quantified relative to the performance of

G1 using Equation 3.7 and Equation 3.8.

% improvement in mean score achieved by GX = 100× SGX − SG1

SG1 − SG0
(3.7)

σ ratio (fractional improvement in consistency) achieved by GX =
σG1

σGX
(3.8)

where G0 is no optimisation (random initialisation only), GX is any optimisa-

tion (G1 to G4), SGX is the mean score after optimisation with GX, and σGX

is the standard deviation in objective scores after optimisation with GX.

50

Figure 3.10: Histograms comparing the distribution of results from
different optimisation techniques (lower scores are better). The im-
provement in optimisation performance from (a) to (e) can be seen by
the monotonic decrease in the mean and standard deviation in scores
achieved. Normal distribution curves are shown for clarity, although
strictly only the data in (a) is normally distributed having a (Shapiro-
Wilk) p-value > 0.05. [56] The significance of the multimodal distri-
bution observed in (c) is discussed below.

51

Table 3.6: The result of optimisation using G1 to G4 (each assessed
using a sample of 100 independent optimisations).

Objective score Improvement compared to G1
Optimisation Mean σ Mean (%) σ ratio

None (random initialisation only) 0.1740 0.0349 -100.0 0.6
G1 0.0550 0.0195 0.0 1.0
G2 0.0264 0.0126 24.0 1.6
G3 0.0172 0.0020 31.8 9.7
G4 0.0131 0.0007 35.2 29.5

Optimisation using G1

It can be seen by comparing Figure 3.10(a) and (b) that G1 is effective in op-

timising the system described by Yang et al. [44]. However, after optimisation

there is still a large variation in the objective score of results, caused by the

trajectories of the optimised results that are illustrated in Figure 3.11. The

trajectories show that in some places there is good consensus in the position

of control points found (e.g. point A in part 3 of the Figure), whereas in

other places (e.g. points B and C) large variations are clear. Large variation

within a single, uninterrupted region of the search space is consistent with

either poor local optimisation or lack of selection pressure where there is no

significant change in objective score between different solutions. However, the

large variation in objective scores seen in Figure 3.10(b) suggests the latter is

unlikely. Also, as will be seen for optimisation with G2, if local optimisation is

improved then C separates into two local minima. These issues are addressed

by the innovations introduced in optimisation G2 and G3, respectively.

Optimisation using G2

The optimised profiles in Figure 3.10(c) have lower objective score values than

in Figure 3.10(a) or (b) (i.e. better), but no longer appear to be normally

52

distributed and instead a clustering of the results is observed. This suggests

that G2 is finding local minima in the search space and is consistent with

improved local optimisation. Both these inferences are supported by analysing

the trajectories underlying the distribution of scores, shown in Figure 3.12.

The improvement in local optimisation can be seen for most control points,

specifically, the variation in positions found for control point B is much less

than in Figure 3.11. Also, solutions place control point C (the position of

the second traction application) in one of two well-separated locations. These

two types of solution are not easily interconverted using the original mutation

alone, so if one is lost from the population the search may become confined to

a local minimum (see Figure 3.8).

Optimisation using G3

Optimisation G3 was specifically developed to address the occurrence of local

minima in the optimised solutions, highlighted in the results of optimisation

G2. It is clear from Figure 3.13 that this has been successful and that the

trajectories of solutions found by G3 have a much clearer consensus. Figure

3.10(d) also shows that the objective scores resulting from these trajectories

have a smaller variance and better average. It is particularly interesting to

note that the optimised trajectory of train 3 (station 3 to 4) in Figure 3.13

now appears to approximate to the optimal profile we expect for a train on

flat track: maximum traction, speed holding, coasting, and maximum braking.

[11] However, a slight blurring of some trajectories in Figure 3.13 compared

with the equivalent positions in Figure 3.12 suggests that G2 achieved slightly

better local optimisation than G3.

53

Optimisation using G4

Optimisation G4 combines the innovations of G2 and G3 allowing it to find

solutions with both a clear consensus and very little local variation in tra-

jectories (Figure 3.14). Figure 3.10(e) also shows the improved optimisation

performance and consistency. Together these give us much greater confidence

that each optimisation using G4 will find a ‘near optimal’ network solution.

Optimisation dynamics

As well as different final results, the optimisations G1 to G4 also displayed

different dynamics during the optimisation process. Figure 3.15 shows that

after 800 generations there was still widespread variation among the G1 runs,

whereas G4 runs consistently converged after about 200 generations.

3.5 Investigating system properties

3.5.1 Trade-off between energy consumption and traverse time

When scoring each network control strategy, X, both G1 and G4 use Equation

(3.1) to determine the contribution of energy and time to the objective score.

There is a region of the search space, E(X) ≥ Ē and T (X) ≥ T̄ , where X does

not meet either the energy or the time target. Most solutions are expected to

lie in this region since, in general, going faster uses more energy and there is

no improvement in score once the targets have been achieved. In this region

Equation (3.1) reduces to:

T (X) = mα · E(X) + cα (3.9)

where mα = − αT̄
(1−α)Ē

, and cα = T̄ (Fα(X)+1)
(1−α)

54

F
ig

u
re

3
.1

1:
T

h
e

co
n
si

st
en

cy
of

tr
ai

n
tr

a
je

ct
or

ie
s

fo
u

n
d

u
si

n
g

G
1

to
op

ti
m

is
e

N
1

(1
00

in
d

ep
en

d
en

tl
y

op
ti

m
is

ed
tr

a
je

ct
or

ie
s

a
re

ov
er

la
id

).
T

h
e

p
os

it
io

n
of

co
n
tr

ol
p

oi
n
ts

ar
e

la
b

el
le

d
to

in
d

ic
at

e:
A

-
st

ro
n

g
co

n
se

n
su

s,
B

-
la

rg
e

lo
ca

l
va

ri
at

io
n

,
C

-
n

ea
r

gl
ob

a
l

va
ri

a
ti

o
n

.

55

F
igu

re
3.12

:
T

h
e

co
n

sisten
cy

of
tra

in
tra

jectories
fou

n
d

u
sin

g
G

2
to

op
tim

ise
N

1
(100

in
d

ep
en

d
en

tly
op

tim
ised

tra
jecto

ries
are

overlaid
).

T
h

ere
is

a
stron

g
con

sen
su

s
in

th
e

p
osition

of
con

trol
p

oin
ts

A
an

d
B

;
h

ow
ev

er,
th

e
tw

o
d

istin
ct

lo
cation

s
of

C
su

g
gest

a
t

least
tw

o
d

iff
eren

t
lo

cal
m

in
im

a
are

p
resen

t
in

op
tim

ised
solu

tion
s.

56

F
ig

u
re

3
.1

3:
T

h
e

co
n
si

st
en

cy
of

tr
ai

n
tr

a
je

ct
or

ie
s

fo
u

n
d

u
si

n
g

G
3

to
op

ti
m

is
e

N
1

(1
00

in
d

ep
en

d
en

tl
y

op
ti

m
is

ed
tr

a
je

ct
or

ie
s

ar
e

ov
er

la
id

).
A

cl
ea

r
co

n
se

n
su

s
is

se
en

,
th

ou
gh

b
lu

rr
in

g
of

so
m

e
tr

a
je

ct
or

ie
s

su
gg

es
ts

th
er

e
is

a
sm

al
l

a
m

o
u

n
t

of
lo

ca
l

va
ri

a
ti

o
n

.

57

F
igu

re
3.14

:
T

h
e

co
n

sisten
cy

of
tra

in
tra

jectories
fou

n
d

u
sin

g
G

4
to

op
tim

ise
N

1
(100

in
d

ep
en

d
en

tly
op

tim
ised

tra
jecto

ries
a
re

overlaid
).

A
clea

r
con

sen
su

s
is

ob
served

alon
g

w
ith

m
in

im
al

lo
cal

variation
on

tra
jectories.

58

G1

G4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0 100 200 300 400 500 600 700 800
Generation

O
bj

ec
tiv

e
sc

or
e

Figure 3.15: Average genetic algorithm progress from 100 optimisations
using G1 and G4. The grey areas show the one standard deviation
about the mean objective score levels.

This defines a line of constant Fα(X) along which the combinations of en-

ergy and time are equivalent in the cost function. For the above investigations

using G1 to G4, α = 0.3, Ē = 4800 kWh, and T̄ = 3840 s, so the gradient of

this line is, mα = −0.3429 (this will vary with the parameters chosen). The

intercept cα is dependent on the level of optimisation. In solutions from G4

the penalty for delays D(X) is usually very small (mean = 0.0003, standard

deviation = 0.0005), so we can assume that the objective score ∼ Fα(X). The

lowest G4 score of 0.0131 gives an intercept, cα ∼ 5558. This line of best

score is shown on Figure 3.16, along with the energy and times of solutions

obtained using different methods. In optimisations with two or more compet-

ing objectives there often exists a set of solutions where one objective can not

be improved without increasing a different objective. Such solutions are said

to be Pareto optimal and the set of these solutions makes up the Pareto front.

The line of best score, calculated using Equation (3.1), appears give a tangent

59

TargetGT

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

qq

q

q

qq

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q

qq

q

q

q

q

q

q

q

q q

q

q

Ta
rg

et
GE

3720

3840

3960

4080

4200

4320

4440

4560

4680

4800

4920

5040

5160

3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100
TotalGenergyG/kWh

To
ta

lGt
im

eG
/s

q

InitialisationGonly

G1

G4

Ta
rg

et
GE

TargetGT

3820

3840

3860

3880

3900

3920

4750 4800 4850 4900 4950 5000 5050

Figure 3.16: The total energy and traverse times of the network solu-
tions obtained by: random initialisation only, optimisation using G1
and G4 (100 solutions of each). Equation (3.9) is used to find the line
of constant Fα(X) for the best scoring solution found by G4 (dotted
line). It can be seen from the expanded area that G4 solutions vary in
energy and time, but all have very similar objective scores.

to the Pareto front in Figure 3.16.

It is clear from Figure 3.16 that both optimisations lead to better solutions

when compared with the randomly generated initial solutions. However, G1

solutions appear to be clustered around the target energy limit but with a

large variation in total time, leading to a large variation in score. In contrast,

all the G4 solutions are located close to the line of constant Fα(X), again

suggesting that it is a much better and more consistent optimisation. It can

also be seen that some solutions found by G4 meet the target time, whereas

others are much closer to meeting the target energy. It seems likely that the

60

trajectories found using lower α and therefore placing a higher importance on

target time, would not be significantly different from the solutions found with

α = 0.3 and that increasing α may also have little effect. For this reason,

before investigating the effects of varying α, a new method of traction energy

calculation is introduced. Not only is this method based on a more realistic

formulation, but by increasing the energy consumption at high speeds it also

increases the difference between solutions that can achieve the target energy

consumption and target traverse time.

Revised method of energy calculation

From this point onwards the formulations of G1 to G4 have all been amended

to use the more realistic method of traction energy calculation described in Sec-

tion 3.1.6. With this improved formulation the optimisation G4 now yields tra-

jectories that appear to exhibit an approximation to speed holding at around

200 km/h, see Figure 3.17.

3.5.2 Effect of varying α

The weighting parameter α ∈ [0, 1] in Equation (3.1) can be varied. A low

value of α means the optimisations will prioritise meeting the time target,

whereas a high α will prioritise meeting the energy target. By varying α used

in the scoring of optimisation G4 (Figure 3.18) we can see that the optimised

objective scores appear to be proportional to α below α = 0.2 (low α), and also

above α = 0.4 (high α). This is consistent with the total time and total energy

of solutions being near constant in this region, which Figure 3.19, showing the

output of multiple repeated simulation runs, confirms to be the case.

Figure 3.19 appears to show a Pareto front similar to those typically found

when comparing run times versus energy consumptions of single-train opti-

61

F
igu

re
3.17

:
T

h
e

co
n

sisten
cy

o
f

tra
in

tra
jectories

fou
n

d
u

sin
g

th
e

n
ew

form
u

lation
of

G
4

to
op

tim
ise

N
1

(100
in

d
e-

p
en

d
en

tly
op

tim
ised

tra
jecto

ries
are

overlaid
).

62

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

O
bj

ec
tiv

e
sc

or
e

low α

medium α

high α

Figure 3.18: The effect of varying α on the optimal objectives. Dark
points are the average of 100 optimisations and have max-min error bars
(hardly visible). The two lines are linear regression lines through points
at low α = (0.05 to 0.2) and high α = (0.4 to 0.9). The small grey points
(appearing similar to a chain or dotted line) are single optimisations
giving a higher resolution at medium α values (0.2 < α < 0.4).

63

Ta
rg

et
EE

TargetET

3700

3800

3900

4000

4100

4200

4300

4600 4800 5000 5200 5400 5600 5800 6000
TotalEenergyE/kWh

To
ta

lEt
im

eE
/s

lowEα

mediumEα

highEα

Figure 3.19: Pareto front of total traverse time against total energy
consumption. The dark points are shown for consistency with Figure
3.18, and all come from sets of 100 repeats.

64

4600

4800

5000

5200

5400

5600

5800

6000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

A
ve

ra
ge

 to
ta

l e
ne

rg
y

/k
W

h

3700

3800

3900

4000

4100

4200

4300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

A
ve

ra
ge

 to
ta

l t
im

e
/s

Figure 3.20: Varying the objective weighting, α, causes a step-like
response in the optimised solutions found.

misation results [57]. Furthermore, clusters of extreme solutions of min-time

and min-energy, as described in Bocharnikov et al. [30], are found for low

α and high α, respectively. This suggests that the optimisation is effective,

though the small number of intermediate solutions means the components of

the objective function respond like step functions with regard to variation in

α. Plotting the results in an alternative form this can be seen in Figure 3.20.

The step behaviour requires further investigation under a broader range

of conditions, but could be a very useful property in the context of railway

operation. While optimising for either shortest travel time, or least energy

usage, it would be difficult to timetable trains subject to a continuous range

of travel times on a single route. Much easier to manage would be a distinct

division into ‘fast’ trains, and ‘energy saver’ trains, with a broad range of

optimised driving styles producing one behaviour or the other, i.e. the outcome

is resilient to real-world application of the optimised strategy. This concept

of resilience of optimised strategies is explored further in Chapter 4.

65

Table 3.7: The results from applying optimisation G1 and G4 to net-
works N1 to N5 (100 independent optimisations were carried out for
each combination of optimisation and network).

Objective scores after optimisation
None (random
initialisation)

G1 G4 Improvement of G4
compared to G1

Network Mean σ Mean σ Mean σ
Mean
(%)

σ ratio
(σG1/σG4)

N1 0.185 0.026 0.091 0.011 0.069 0.0004 23.5 25
N2 0.258 0.032 0.160 0.013 0.1331 0.0005 28.0 28
N3 0.164 0.034 0.065 0.010 0.0457 0.0003 19.4 34
N4 0.244 0.030 0.157 0.010 0.1287 0.0004 32.2 27
N5 0.262 0.025 0.166 0.015 0.1318 0.0006 35.1 26

Average 27.6 28

3.5.3 Effect of train schedule

A thorough investigation into the scalability of the proposed optimisations

is a topic for future research. However, it is important to investigate the

characteristics of the optimisations with respect to different train timetables to

ensure the results described so far can be generalised and are not just artefacts

of the specific timetable defined for network N1. In order to investigate this

point, four new networks were defined - each based on network N1 but with

changes affecting the scheduling of trains (Figure 3.21). The result of applying

optimisations G1 and G4 to each of these networks is given in Table 3.7.

It can be seen from Table 3.7 that even when the optimisations are applied

to networks with different timetables, the overall pattern of improvements

(first observed in Table 3.6) still hold true - G4 finds better scoring solutions

than G1 (by an average of 27.6%) and also does so much more consistently

(by an average factor of 28). The smallest improvement in mean optimised

score, of 19.4%, is observed for network N3. However, rather than suggesting

degraded performance of G4 it is thought this may be caused be a chance

66

Figure 3.21: Four networks based on network N1 (see Figure 3.1). The
associated timetables and energy targets are the same as N1 except
for the following changes: (N2) 25% decrease in both target traverse
times of train 3, (N3) 25% increase in both target traverse times of
train 3, (N4) trains 1 and 2 must dwell at station 5 for at least 30 s and
20 s respectively, (N5) target energy and traverse times are increased
by 50% for both the journeys that traverse the longer link between
stations 1 and 4.

improvement in the performance of G1 (due to the increased proximity of

well-optimised solutions to initialisation - see Figure 3.16). Comparing the

relative scores of different networks to N1 we see that the more challenging

targets of N2 are consistent with its higher mean score, whereas N3 has more

relaxed targets resulting in a lower score. The situation for N4 is slightly

more complex, with two obvious factors likely contributing to its increased

mean score: the additional stop/starts increases energy consumption and the

extra dwells have potential to cause knock-on delays at station 4. Although it

is difficult to pick out either as the dominant cause of increased mean score in

N4, the energy and traverse time targets for each journey in N5 are equivalent

to those in N1 (when normalised by the distance being travelled). Thus,

considering all train journeys in isolation we would expect similar optimised

scores. However, when optimised considering interactions between trains, the

mean score of N5 is significantly higher than that of N1. This suggests that

the root cause of the increase in score is from interactions between different

67

trains on the network - in this case the delay of train 3 at station 4 as it

waits for train 1 to clear the longer link. The significant effect of interactions

between trains when evaluating a timetable highlights the fact that multi-train

trajectory optimisation is closely linked to the field of schedule optimisation,

particularly if energy consumption is considered, as in Yang et al. [58]

3.6 Chapter conclusions

Several improvements have been proposed and demonstrated to advance the

capability of the multi-train trajectory optimisation originally proposed by

Yang et al. [44] Two new genetic operators, tailored to the problem formula-

tion, were developed: a less-constraining mutation operation and a procedure

to insert and delete pairs of control points. Together, these improvements

were shown to optimise an average of 27.6% further than published results

when compared with randomly initialised solutions. This was achieved in

combination with increased consistency (1/28th of the standard deviation in

objective score of solutions), and faster GA convergence (less than one-quarter

the number of generations). The resulting optimised trajectories now appear

consistent with those expected by optimal control theory.

The improved optimisation consistency allowed a more detailed investiga-

tion of the effect of varying α, the weighting between different objectives in

the cost function, to be conducted. For the system studied, the components

of the objective function respond like step functions with regard to variation

in α, causing the optimal objective solutions to switch rapidly between the

extreme solutions of minimum time and minimum energy.

68

Chapter 4

Robust multi-train trajectory

planning for real world

conditions using a ‘noisy’

genetic algorithm

4.1 Introduction

In Chapter 3 optimisation G4 was proposed and demonstrated to consistently

find highly optimised train trajectories for a multi-train system. However, as

observed in Section 2.3, the optimum solution is likely to lie on the limit of

the feasibility boundary so will be very sensitive to noise [45]. In this context

‘noise’ refers to the many small uncertainties that most current models do

not consider but which do exist in reality. This means the highly optimised

solutions found by G4 are likely to be difficult to implement in a real system.

There are two possible approaches to address this problem: (i) implement a

69

closed-loop (i.e. real time) optimisation or (ii) find trajectories that are robust

to the noise expected in the system being optimised. The first approach has

the potential to give better results but requires a fast multi-train trajectory

optimisation and is beyond the scope of this PhD. Even for the relatively

simple systems studied in Chapter 3 optimisation G4 took around 1 minute to

execute so is likely to be too slow to use as a real time optimisation. However,

the second approach seems more achievable. This is because G4 uses a genetic

algorithm which could potentially be adapted, using the techniques described

in Section 2.3.1, to find robust control strategies.

The development of a robust multi-train trajectory optimisation (G5) from

G4 is described in Section 4.2. In Section 4.3 G5 is then used to find control

strategies optimised for use in systems with different levels of uncertainty in

control point application and dwell time at stations. Finally, the performance

of closed-loop control is estimated in Section 4.4 and compared to the perfor-

mance of the robust optimisation.

4.2 A robust multi-train optimisation (G5)

A general methodology for robust optimisation using a GA was presented in

Section 2.3.1. This is applied to optimisation G4 to give a robust multi-train

trajectory optimisation, hereafter referred to as G5. Two sources of noise are

considered: variation in control point (CP) application, and the variation in

the dwell time (DT) at stations. These were chosen as prominent examples of

type 1 and 2 uncertainty present in many railway systems.

70

Figure 4.1: Effect of uncertainty in control point application on train
velocity trajectories: (a) When applied without any noise, a control
strategy may consistently pass close to a feasibility boundary without
the possibility of violations arising. (b) When implemented with noise
the same control strategy may break the safety constraints, which will
result in it being evaluated as ‘invalid’ for that simulation.

4.2.1 Uncertain control point application

A control point (CP) is a location where the train moves between states of

traction, speed holding, coasting or braking. Optimisation can be used to es-

tablish the best places to make these control changes. However, the planned

positions may not be followed accurately, whether by a human driver or auto-

matic control. Adapting the model described in [53] to introduce an example

of Type 2 uncertainty into the system was achieved by temporarily adding

a zero mean normally distributed random distance to the position of each

control point for the duration of each simulation. Instead of the next con-

trol action being applied as soon as the train passed the distance specified in

the control sequence, the control action was applied with the specified level

of uncertainty (Figure 4.1). However, this modification led to two closely re-

lated situations becoming possible, both of which required alterations to the

algorithms discussed in Chapter 3.

Firstly, each time a candidate control strategy was simulated there was a

chance that the trajectories taken did not maintain safe operation (either by

71

exceeding the speed limits or headway constraints). To discriminate against

invalid candidates, while maintaining the same population of valid candidate

solutions in the modified optimisation, any candidate solution evaluated as

invalid was discarded and replaced with a different candidate probabilistically

selected from the previous generation. This policy of re-selection (and sub-

sequent re-simulation) is equivalent to using explicit re-sampling to find the

expected probability of a candidate being valid, biased towards greater re-

sampling of high performing candidate solutions. Instead of the probability of

a candidate solution passing to the next generation being proportional to its

expected fitness rank, the total probability is now proportional to its expected

fitness rank multiplied by the probability that it is valid.

Secondly, it is possible that the ‘best’ control strategy found by the opti-

misation in fact relies on very specific deviations on control point application.

These deviations would be unlikely to reliably occur in reality which could eas-

ily result in invalid operation if the control strategy was implemented without

these deviations present. To screen out these cases, the final population was

re-simulated without any noise and any candidates found to be invalid were

discarded.

4.2.2 Uncertainty in dwell times at stations

Although the running times of trains are themselves subject to some varia-

tion, this is within the control of the drivers or dispatchers in most cases. In

contrast, station dwell times (DTs) are inherently unpredictable and harder

to control [59]. This is largely due to the boarding and alighting of passengers,

the speed of which is affected by many uncontrollable variables, such as the

number and configuration of train doors, and the configuration of the platform

to reduce congestion between alighting and joining passengers. In addition to

72

Figure 4.2: Distribution in stochastic dwell times (DTs). The proba-
bility distributions used in this system when introducing noise in the
DT. The situation dependent minimum DT (dotted vertical line) is de-
pendent on the minimum DT, the scheduled departure time, and train
dispatching. Equation (4.1) is used to combine these constraints with
a DT probability distribution (in this case, mean = 90 s, sd = 30 s)
to give the distribution of possible DTs (shaded area) possible in that
specific situation. (i) and (ii) illustrate the two extreme types of DT
distribution.

73

the fleet characteristics there can also be specific local issues such as the fa-

miliarity of travellers with the journey, the rate of passenger arrival at the

station, and the volume of luggage being carried. For example, an airport sta-

tion having mostly occasional travellers carrying large items of luggage would

be expected to have different DT characteristics to a station with mainly daily

commuters without luggage (cf. Figure 4.2(i) and (ii)). Variation in station

DTs was introduced into the model as an example of Type 1 uncertainty. Simi-

lar to the introduction of CP noise, uncertainty in the DT was implemented by

replacing deterministic DTs with stochastic DTs. Modification of the existing

algorithms in [53] enabled the optimisation to continue functioning effectively.

The departure time of each train was determined using Equation (4.1).

departure time = max



arrival time + stochastic DT,

arrival time + minimum DT,

scheduled departure time,

time of headway conflict resolution


(4.1)

Different studies suggest different ways to represent station DTs, including:

normally distributed [60], log-normally distributed [59], Weibull distributed

[61]. For simplicity this study assumed the stochastic component of the DT

was normally distributed. However, once combined with other operational

constraints (introduced in Equation (4.1)) the actual distribution of DTs will

end up being more positively skewed (see shaded area in Figure 4.2), and so

agree better with the majority of the other studies. To enable the uncertainty

in DT to be varied smoothly between the two extreme examples shown in

Figure 4.2, the standard deviation in the stochastic component of DT was

chosen to always be one third of the mean, with distributions having mean =

74

[30, 45, 60, 75, 90, 105, 120, 135, 150] s and standard deviation = [10, 15, 20,

25, 30, 35, 40, 45, 50] s respectively. This resulted in the series of distributions

shown in Figure 4.2, although in real application of the model these could be

tuned to the characteristics of a specific station, line, fleet or known passenger

behaviour.

Current operational practice is more accurately reflected by defining a

schedule, rather than the target traverse times used in G1 to G4. This meant

it was necessary to adopt a different cost function, shown in Equation (4.2).

cost function =
i max∑
i=1

max(0, arrival time - scheduled arrival)

+ ce
(i max∑

i=1

energy consumed on journey
)

(4.2)

where ce is a constant giving the relative value of energy compared to time

delays, and i max is the total number of journeys taken on the network. This

is similar to the cost function in [39, equation 1].

If given financially, the value of arriving late is similar to the current UK

concept of ‘delay minutes’, but without any attribution to the causer of the

delay. When optimising train movement of the system as a whole, attributing

delay is no-longer meaningful as it is the total cost for the system which is

being minimised even if this may disadvantage some particular services. This

is an implementation issue beyond the scope of the work presented here, but

it is expected that improved estimates of optimal system performance could

be used to better quantify the costs attributed to different parties in the event

of disruption.

One further modification necessary to make the GA procedure function

75

well in a noisy environment was the method of identifying the best candidate

solution found. Without noise, the best candidate solution was simply the

control strategy that was evaluated as having the lowest cost function score.

This ‘all-time best scoring’ control strategy could be found at any time during

the optimisation progress. However, in a noisy system the best score found

(after a single evaluation of each candidate solution) was very unlikely to iden-

tify the candidate with the best expected score. Instead, the best score often

turned out to be an outlier from a candidate solution with a fairly mediocre

expected score. For example, even when a control strategy causes DT varia-

tion to frequently introduce large delays, the distribution of DTs means there

is still a small chance that all DTs will be small. A solution evaluated under

these improbable conditions will have an artificially high score, predicting high

performance which would be unlikely to be realised. To overcome this, the ex-

pected score and probability of being valid was estimated explicitly (using

Equation (2.4) with N = 50) for all the individual candidate solutions in the

final population only. These measures were then combined, and the control

strategy with the lowest (expected score / expected probability of being valid)

chosen as the output of the optimisation. This method of identifying the best

control strategy is similar to the effective selection pressure on the population

used during the optimisation process. Explicit averaging over the final pop-

ulation required an additional (N ∗ pop size) evaluations to be carried out,

but was found to greatly improve the quality of the final candidate solution

chosen.

4.2.3 Model parameters

The underlying model in G5 is identical to that used in G4 except for the mod-

ifications explained above. The GA parameters used in this investigation are

76

Table 4.1: Model and GA parameters used in this investigation.

Parameter value

M (initial size of mutation) /m start = 200
end = 0

selection pressure in roulette wheel selection 0.05
pop size 100
number of generations 200
ce (relative value of energy) /min/kWh 0.0015
N (re-samplings when explicitly
averaging final population) 50
minimum dwell time /s 30

shown in Table 4.1. As is often the case with GAs, no systematic optimisation

of parameters has been conducted. However, the GA performance achieved is

sufficient to demonstrate the validity of the proposed technique for increased

robustness. Eiben observes [62] that parameters may have different optimum

values throughout the optimisation process, and suggests that a suboptimal

choice of parameter function (varying with the number of generations) can

often lead to better results than a suboptimal choice of a ‘rigid’ parameter.

Illustrative of this, most GA parameters were kept constant as the optimisa-

tion progressed but it was found that a linear decrease in the size of mutation,

with each generation, yielded improved performance.

4.3 Investigating performance of the robust optimi-

sation

It is important to draw a distinction between training noise (the level of un-

certainty during the optimisation process) and utilisation noise (the level of

uncertainty in the system where the optimised control strategy is applied).

Since GAs are not deterministic, each optimisation was repeated 50 times at

77

Table 4.2: Target schedule for the system modelled (cf. Figure 3.1).

Scheduled time /s

Origin First stop Second stop

Train (arrive) depart arrive depart arrive

1 (-60) 0 675 735 1482
2 (-60) 0 701 761 1366
3 (-60) 0 599 659 1296

each combination of training noise being investigated. The same set of 50

independently initialised populations was used for the repeats at each noise

level to ensure it was the optimisation affecting results and not an artefact of

different initial populations. After completion of each optimisation a sensitiv-

ity analysis was conducted. The performance of the chosen control strategy

was explicitly estimated more accurately, using Equation (2.4) (N = 500), at

each different level of utilisation noise. Again, at each noise level the same set

of 500 utilisation noise instances were used on all 50 repeats to ensure that

the optimisation was the only factor changing.

As in Chapter 3, network N1 (Figure 3.1) was used to test the new op-

timisation. The same number of train routes and stops were retained but,

given the use of a new cost function in Equation (4.2), a target schedule was

defined based on a scheduled DT of one minute and traverse times with 10%

slack (Table 4.2). Provided there are no interactions between trains, flat-out

(i.e. maximum permissible speed) control will result in the minimum possible

traverse times. An estimate of flat-out control was made by conducting 100

optimisations to a target schedule with: unachievably short traverse times

(100 s), no energy cost (ce = 0), and long DTs to avoid interactions between

trains (1000 s). Ten percent was then added to the minimum traverse time

found for each journey to create the schedule in Table 4.2.

78

Although only nominal estimates of CP and DT noise levels and the relative

value of energy and time (ce) were used, the overall pattern of results observed

is expected to remain the same if different, more system specific, values were

used instead.

4.3.1 No training noise

The first series of optimisations was carried out without any training noise dur-

ing the optimisation process. The results of this are shown in Figure 4.3. This

is equivalent to a conventional optimisation developed for application in ideal

conditions (i.e. when there will be no uncertainties during utilisation). With

that in mind, it would be expected that its performance when utilised with

no control point or DT noise would be good, but would deteriorate markedly

under real conditions. For the system studied, the utilisation DT distribu-

tion was found to have no effect on the validity of control strategies, and the

variation in utilisation CP noise had negligible effect on the expected score

of a control strategy. These relations did not appear to change for different

combinations of training noise so are not discussed further.

From Figure 4.3(a) it can be seen that the probability of an optimised

control strategy being valid drops quickly as CP application noise is increased,

and stays at a low level. The optimised solutions found by the GA are very

close to the constraints imposed to ensure safe operation (in this case velocity

limits). When utilised in a system with no noise they always keep the safety

constraints and are therefore considered valid solutions. However, as soon

as a small amount of CP noise is introduced during the utilisation of the

control strategies the probability of speed limit violations occurring (through

a situation similar to the one illustrated in Figure 4.1) becomes high. Far

from being surprising, this lack of robustness is exactly the behaviour we

79

Figure 4.3: The average robustness and expected score of control strate-
gies found under conditions of zero training noise were investigated by
simulating their utilisation at different noise levels. Shaded areas show
one standard deviation. (a) Effect of variation in utilisation CP noise
on the probability the control strategy is evaluated as valid (utilisation
DT noise = 0 s). (b) Effect of variation in utilisation DT noise on the
expected score of operations (utilisation CP noise = 0 m).

80

would expect from near optimal solutions to the noiseless problem [45]. In

other words, by not considering uncertainty (i.e. training CP noise) during the

optimisation we have unwittingly sought non-robust solutions (with respect to

CP noise).

Similarly, Figure 4.3(b) shows that, above a certain threshold, increased

utilisation DT has an almost linear effect on the expected score of a control

strategy, i.e. increasing poor performance. In seeking to minimise energy

consumption the optimisation has found solutions that make full use of the

scheduled traverse time on each journey (since losses due to air resistance are

reduced at lower speeds). This means that recovery time has been minimised

so any late departure will cause a late arrival (with this effect amplified as

delays propagate across the network). Below DT noise = 45 s this lack of

recovery time is not an issue because the stochastic DT has a very low proba-

bility of being greater than the scheduled DT (60 s) - see Figure 4.2. However,

above DT noise = 60 s the majority of dwells are extended and, since there is

minimal recovery time, any increase in DT increases the expected score of eval-

uations. Again, by not considering any uncertainty during the optimisation

we have unwittingly sought solutions that are by their very nature non-robust.

4.3.2 Control point application training noise

The second series of optimisations was carried out with different levels of

training CP noise during the optimisation process, the results of which are

illustrated in Figure 4.4.

Figure 4.4(a) shows that increasing the CP training noise leads to the

optimisation finding control strategies that are substantially more robust to

variation in CP application. However, from Figure 4.4(b) it can be seen that

when utilised at a zero CP and DT noise there is a small increase in cost for

81

Figure 4.4: Control strategies were optimised using different levels of
CP training noise (labelled on the figure), but without any training
DT noise, during the optimisation process. The average robustness
and expected score of these control strategies were investigated by sim-
ulating their utilisation at different noise levels. Shaded areas show
one standard deviation. (a) Effect of variation in utilisation CP noise
on the probability the control strategy is evaluated as valid (utilisation
DT noise = 0 s). (b) Effect of variation in utilisation DT noise on the
expected score of operations (utilisation CP noise = 0 m).

82

Figure 4.5: Control strategies were optimised using different levels of
training DT noise (labelled on the figure), but without any control
point (CP) training noise, during the optimisation process. The aver-
age robustness and expected score of these control strategies were inves-
tigated by simulating their utilisation at different noise levels. Shaded
areas show one standard deviation. (a) Effect of variation in utilisation
CP noise on the probability the control strategy is evaluated as valid
(utilisation DT noise = 0 s). (b) Effect of variation in utilisation DT
noise on the expected score of operations (utilisation CP noise = 0 m).

this increase in robustness. Even in the worst case of this, seen at a utilisation

CP noise of 100 m, increasing the CP training noise from 0 to 100 m causes the

probability of the control strategy being evaluated as valid to increase from

0.04 to 0.86 (>2000%), but the expected score to increase by only 2.3%.

4.3.3 Station dwell time training noise

The next series of optimisations were carried out with different levels of DT

training noise during the optimisation process. The results for training DT

noise (mean) = [30, 45] and [135, 150] s were found to be almost identical

83

Table 4.3: The effect of utilisation noise on the expected benefit from
different levels of training noise (variation in DT noise only, CP noise
= 0 in all cases).

Expected % score reduction
(relative to training DT noise = 0)

Training DT utilisation DT noise = 0 utilisation DT noise
noise (mean) /s = training DT noise

45 -1 0
60 -4 1
75 -9 6
90 -14 10
105 -18 12
120 -20 11

to training DT noise (mean) = 0 and 120 s respectively so are omitted from

Figure 4.5. For the first case, this is because the training noise level is too

low to have a noticeable effect - the vast majority of random DT instances

are less than the scheduled DT used in the system (60 s) and therefore rarely

affect the actual departure time (see Equation (4.1)). In the second case, this

is because the training noise level is too high - the optimisation can no longer

distinguish genuine improvements in control above the noise. This is discussed

in more detail in Section 4.4.

It can be seen from Figure 4.5(b) that increasing the DT training noise

leads to solutions that have a lower expected score when utilised at high DT

noise (i.e. are more robust). Figure 4.5(a) shows a secondary benefit to the

control of slightly increased robustness to variation in CP accuracy. In this

case, introducing one type of noise has led to the system becoming more

robust to another type of noise that was not selected for during optimisation.

However, the increase in robustness is accompanied by an increase in expected

score when utilised at low DT noise - seen in Figure 4.5(b). This suggests that

the optimisation is working effectively, because the solutions being found are

84

Table 4.4: Average properties of the control strategies resulting from
different combinations of training noise (all utilised at, CP noise = DT
noise = 0).

Training noise (CP DT)

0 0 100 0 0 90 100 90

Mean speed /ms−1 45.6 45.7 47.1 46.6
Mean journey time /s 658 656 636 644
Mean journey energy /kWh 1008 1038 1148 1152

well suited to the environment they were trained for, but that particular care

should be taken to make sure that the training noise matches the noise level at

which the solution with be utilised. This is highlighted in Table 4.3 where the

performance when the utilisation noise matches the training noise is found to

be much better than when the utilisation noise is fixed but the training noise

varied. In situations where the utilisation noise levels of a real system are

not known, estimates must always be made when implementing the training

noise. It follows that all non-robust optimisations make the (usually implicit)

assumption that noise levels on all parameters are zero. For many situations,

particularly metro applications, this may be an acceptable approximation but

it is unlikely to hold in complex, interconnected, stochastic systems such as a

busy mainline rail network.

The reason for this trade-off, between the score of solutions (utilised DT

noise = 0) and their increased robustness, can be understood by looking at

the traverse times of the trains and the corresponding energy consumptions.

For convenience the convention CP DT will be used to describe the training

noise levels used during optimisation (e.g. 0 90 denotes a training CP noise

of 0 metres and a training DT noise of 90 seconds). The average scheduled

journey time in the system modelled is about 661 seconds and it can be seen

from Table 4.4 that the average journey time with 0 0 gives about 3 seconds

85

of recovery time per journey. In-fact, on closer inspection of the schedule in

Table 4.2 we observe that the first journey by train 1 is scheduled to arrive

after train 3 has begun its second journey. However, we can also see from

Figure 3.1 that these journeys take place on the same section of track (joining

stations 1 and 4). So, to maintain the headway constraints (i.e. avoid a head-

on collision) train 1 must arrive before train 3 departs. The optimisation

consistently achieves this by controlling train 3 such that it arrives 16 seconds

early. Therefore, the average journey time with 0 0 effectively has less than

1 second recovery time. This results in 0 0 keeping the schedule while having

the lowest average speed and therefore the lowest energy consumption in Table

4.4. Previously this would have been considered a success, since the service is

punctual and energy efficient, but when considering robustness we find that

it is actually a ‘brittle’ solution, with utilisation noise rapidly leading to sub-

optimal performance. It is also a good reminder that trajectory planning and

timetable/schedule optimisation are closely coupled problems [9].

If the training DT noise is increased to 90 s (training noise 0 90) then

the average recovery time increases to about 23 s per journey. This allows

punctual operation to be maintained in systems where there is a significant

probability that DT will be longer than scheduled, but at the cost of running

faster and using slightly more energy. Interestingly, fast running (in order to

build up recovery time) is similar to typical driver behaviour [63] but in this

case has been found by a direct optimisation, which has no ‘understanding’ of

the system it is optimising or prior knowledge of existing operational concepts.

The recovery times used in the 0 90 solutions are different for each journey

and are not trivial to find. They cannot be estimated simply by considering

the scheduled traverse times. Instead, they depend on the different speed lim-

its and headway restrictions experienced by each train as it moves through the

86

network. In particular, headway restrictions will determine how delays prop-

agate across the network causing some train journeys to be more susceptible

to knock-on delays than others.

4.3.4 Both control point application and station dwell time

training noise

So far the proposed procedure has shown success in finding solutions with in-

creased robustness to a single type of noise - CP application and DT, respec-

tively. However, in real systems there may be uncertainty in many parameters

simultaneously, so it is important to investigate the performance of the pro-

posed procedure in this situation. The performance when high levels of CP

and DT training noise are used simultaneously is shown in Figure 4.6.

It can be seen from Figure 4.6(a) that the robustness of control strategies

to noise in CP application is predominantly influenced by the training noise

level of CP used during optimisation. In terms of maximising robustness to

CP variation the performance of the 100 90 optimisation is very close to the

performance of the 100 0 optimisation, and is actually marginally better. In

contrast, Figure 4.6(b) shows the performance of the 100 90 optimisation is

similar, but slightly worse, than the 0 90 optimisation. Including both training

noises simultaneously has led to worse performance than just applying training

DT noise on its own. It is thought this is due to degradation in the optimisation

performance as the total noise level increases. This idea is discussed in more

detail in Section 4.4. However, the performance of the 100 90 optimisation is

still an improvement over the 0 0 optimisation. This shows that the proposed

optimisation procedure is capable of finding solutions that are more robust to

two different types of uncertainty simultaneously.

87

Figure 4.6: The performance of optimised solutions found with different
combinations of training noise (CP DT): no training noise (0 0), higher
levels of CP and DT training noise applied separately (100 0 and 0 90
respectively), and also simultaneously (100 90). The dashed vertical
lines emphasise the level of the training noise used.

88

4.4 Comparison with closed-loop performance

The proposed optimisation procedure for robust trajectory planning (G5) gives

clear benefits over its non-robust counterpart (G4). However, since they are

concerned with trajectory planning, both G4 and G5 are open-loop optimi-

sations. This means that when being utilised, the control of each train is

assumed to be independent of the actual conditions being experienced - the

optimisation is trying to find one solution that works well over all probable

situations. For example, if the control strategy is blindly followed, a very late

train will not increase its speed to make up time and so will incur a larger delay

penalty than necessary. Conversely, a train which finds itself running ahead of

time will not slow down and may therefore consume more energy than it may

otherwise have done. In a noisy system a good closed-loop optimisation has

the potential to perform better than any open loop optimisation but must be

carried out in real time. Closed-loop control would demand a communications

infrastructure and real time optimisation which is not yet available on most

mainline railway networks. A good closed-loop optimisation has the potential

to perform better than any single open-loop solution, but by how much?

When utilising a robust solution, the expected performance was estimated

using the Monte-Carlo method, Equation (2.4). It is possible to estimate the

lower bound in performance of closed-loop optimisation by applying the open-

loop optimisation separately to each noise level instance. This was carried out

at each level of DT noise while CP noise was kept at zero. The same 500 util-

isation instances (used when explicitly averaging closed-loop solutions) were

used at each noise level. No optimisation repeats were carried out due to the

increased computational cost of closed-loop estimation; an entire optimisation

must be carried out for every single sample taken during the Monte-Carlo

89

Figure 4.7: The effect of utilisation DT noise on the expected score
of solutions found using different types of optimisation: (i) closed-loop
estimates, (ii) robust open-loop (training noise = utilisation noise),
(iii) non-robust open-loop (training noise = 0), (iv) flat-out operation.
Both (ii) and (iii) are the average of 50 optimisation repeats, while the
other types of optimisation were not repeated.

evaluation. It is important to emphasise that this method estimates the lower

bound of closed-loop performance and the optimisation actually has informa-

tion on all the DTs that will happen in the network. In reality a closed-loop

optimisation would only have definite information on DTs that have already

happened.

For the system and noise levels studied, Figure 4.7 presents the estimated

performance of a closed-loop optimisation. As would be expected, the closed-

loop optimisation outperformed both the non-robust and robust open-loop

optimisations over all DT noise levels. However, for this system, the perfor-

mance of the robust optimisation appears to be about half way between the

performance of the non-robust and closed-loop optimisations. In fact, between

90

Figure 4.8: The performance of different types of optimisation when
evaluated with the same set of utilisation noise instances (N = 500; CP
noise = 0 m, DT noise (mean) = 90 s): (i) closed-loop estimates, (ii)
robust open-loop (training noise = utilisation noise), 50 optimisation
repeats, (iii) non-robust open-loop (training noise = 0), 50 optimisation
repeats. (a) Scores at different instances of the utilisation noise against
the closed-loop score for that utilisation instance. Horizontal grey lines
link the scores from each instance of utilisation noise. (b) The dis-
tribution of scores from each type of optimisation. Robust open-loop
solutions are about half way between the closed-loop estimate and the
non-robust open-loop solutions.

91

utilisation DT noise (mean) = 60 to 150 s, the robust optimisation was able

to find open-loop solutions giving an average of 44% of the benefit afforded

by closed-loop control (relative to the non-robust open-loop solutions). This

relative benefit peaked at 55%, at a utilisation DT noise (mean) of 105 s.

In the system studied, energy is inexpensive relative to the cost of delays

(2000 kWh:3 minutes delay) so at high levels of DT noise we expect the optimal

open-loop solution to approach that of flat-out operation as this will minimise

delays. The performance of this solution is given by Figure 4.7(iv). At low

utilisation DT noise the flat-out solution uses a lot of unnecessary energy so is

much worse than the solutions found by the robust optimisation. However, at

high utilisation DT noise the flat-out solution actually performs better than

the robust optimisation as it results in fewer late arrivals.

This illustrates an important limitation of the proposed optimisation pro-

cedure: when noise levels are too large (relative to the variability in the cost

function) the optimisation will struggle to converge on the robust optimum.

This is a known effect [64] and is likely to result in deterioration of both the

speed of convergence and quality of the final solution found. Re-sampling,

both explicitly and implicitly (through increasing the population size), should

improve convergence of the GA but eventually the limit of computational re-

sources will be reached. Although not ideal, it is thought this lack of conver-

gence may be advantageous when seeking an open-loop solution for application

in a real system. Any non-robust optimisation, even when equipped with the

most accurate deterministic cost function evaluation, may appear to find a

good solution but if this is then implemented in a noisy system it is likely

to result in poor performance. In contrast, the proposed robust optimisation

(equipped with accurate estimates for all uncertainty distributions present in

the system) should either find a practically useful solution or will not converge.

92

If the optimisation does not converge for a particular system then this is likely

to be because the uncertainties being modelled are too large. If uncertainties

cannot be reduced then lack of optimisation convergence is likely to indicate

that that system is not well suited to open-loop control or else the optimisation

horizon is too large - something non-robust control will never indicate.

Since each point in Figure 4.7 shows the aggregated optimisation perfor-

mances (i.e. the mean and standard deviation in the expected score over N

repeats) it is instructive to consider these results in more detail. The dis-

aggregated data behind three points of Figure 4.7, from lines (i) to (iii) at

utilisation DT = 90 s, is presented in Figure 4.8. At this noise level the same

500 instances of utilisation DT noise were used for the Monte-Carlo method

when evaluating the performance of each solution found. Within each of these

utilisation instances, marked by the horizontal grey lines on Figure 4.8(a), it

becomes apparent that the open-loop solutions found by the robust optimisa-

tion are consistently better than those found by the non-robust optimisation.

The only exception to this seems to be for a small number of instances, at very

low scores, where all DTs happen to be almost entirely unperturbed. Figure

4.8(b) shows the distribution of scores resulting from each of the 50 solutions

found by both the robust and non-robust optimisations. A distribution is also

shown estimating closed-loop performance but it should be emphasised that

this does not represent a single solution. The tight overlap of distributions

shows the non-robust optimisation to consistently find very similar solutions,

whereas the robust optimisation has a larger variation in the shape of distribu-

tions. However, solutions found by the robust optimisation have distributions

skewed towards lower (better) scores.

93

4.5 Evaluation of G5

In seeking to increase energy efficiency, driver training [65] and Driver Ad-

vice Systems (DAS) [63] often use the concept of a ‘golden run’ - a perfectly

controlled train journey that yields optimum energy efficiency. The ‘golden

run’ has essentially represented the non-robust, open-loop, single-train opti-

mal solution for a train journey. This has obvious limitations but the one big

advantage is that open-loop solutions can be implemented without the com-

munication infrastructure and real-time optimisation required for closed-loop

control. Despite not being as good as the closed-loop performance, the robust

optimisation at DT noise (mean) = 90 s still has an expected score 10% lower

than its non-robust counterpart. Since the score is intended to be proportional

to the operational cost of the robust solution it may still be worthwhile im-

plementing, conveniently replacing the ‘golden runs’ currently used in driver

training and DAS.

4.6 Chapter conclusion

When planning train trajectories it is important to consider the robustness of

control strategies if they are to be implemented in real systems. Real systems

contain many uncertainties, such as the accuracy of control point applica-

tion or variations in station dwell times. If these are not considered during

the optimisation process then it is unlikely that the control strategies found

will be robust enough to perform as predicted in real operation. Similarly

non-systematic approaches (e.g. excessive recovery time built into schedules,

or driving trains aggressively in an effort to keep to the timetable) may be

over conservative and reduce capacity or increase energy use unnecessarily.

A new, genetic algorithm based, optimisation procedure has been described

94

which seeks to find robust solutions to the multi-train trajectory planning

problem. The procedure is easily generalisable to include many different un-

certainties in the system. Here it was shown to be effective in finding robust

control strategies in the presence of two different types of uncertainty: the ac-

curacy of control point application, and variation in station dwell times. These

uncertainties were first considered separately, before it was shown that they

could be considered simultaneously in the optimisation and still achieve simi-

lar levels of robustness. For both types of uncertainty investigated, a trade-off

between the robustness and the expected score of the solution was observed,

reminding us that robustness is not cost free. This means that for best results

the training noise level used during the optimisation progress should reflect,

as accurately as possible, the noise level that will be experienced when the

optimised control strategy is utilised. The performance of a closed-loop opti-

misation was also estimated and, as would be expected, this achieved better

performance than open-loop solutions found by both the non-robust or ro-

bust optimisations. However, for the system and noise levels investigated,

the robust open-loop solutions were found to afford up to 55% of the benefit

of closed-loop control (compared to non-robust solutions). This suggests the

proposed robust optimisation may be worth further investigation, especially

considering that open-loop solutions can influence implementation (e.g. via

DAS) without the communication infrastructure and real-time optimisation

required for optimised closed-loop control.

95

Chapter 5

A massively parallel

multi-train simulator for

accelerating population based

heuristic optimisations

5.1 The need for a new model

The usefulness of the model first proposed by Yang has been shown in the pre-

vious chapters. However, as this work was undertaken, some limitations also

became apparent. Many of these limitations are surmountable by modification

of the existing model but, as is detailed below, others are more fundamental

and require extensive change.

97

5.1.1 Advantages of the model used in G1 to G5

One nice property of Yang’s formulation is that the trajectory each train

follows is exclusively determined by its own control strategy. This causes

restrictions on the train trajectory to change depending on the position of

other trains. How each train reacts to this information (i.e. an autonomous

agent behaviour) further influences the final result obtained. The effect of

this is that headway constraints are enforced by modifying the trajectories

of trains whilst leaving their control strategies unchanged. In contrast, the

formulation used in G1 to G5 only allows control strategies that obey the

headway constraints. This enables the optimisation to search for the best

trajectory to achieve a safe operation. For example, there are many ways to

stop at a red signal so the optimisation can seek to find the most efficient one

or may be able to avoid approaching the red aspect altogether.

A ‘journey’ can be defined as the movement of a train between two stops.

On Yang’s graph-based network model this means each edge of the graph

equates to a journey, each of which is simulated sequentially in the order they

were scheduled. This means that the partial separation of signalling and sim-

ulation also enables whole train journeys to be simulated without interruption

maximising the probability of cache hits and therefore fast computation (this

concept is explained more in Section 5.2.1).

Also, since Yang’s formulation is a time-stepping model (assuming linear

acceleration over a small time interval) it is trivial to model non-linear traction,

braking, resistance and efficiency characteristics. This is much more difficult

using explicit methods [10].

98

5.1.2 Limitations of model used in G1 to G5

One of the advantages of Yang’s formulation is the fact that a train’s control

strategy directly determines its trajectory. However, this is implemented using

hard constraints which leads to several major disadvantages.

Firstly, there is a potential of many journey simulations to be wasted.

If a journey is simulated but found to violate the constraints, it must be

re-simulated until a valid control sequence is found. This means that compu-

tational resources are being wasted as many calculations may be carried out

only for the results to be discarded. In order to minimise this Yang initially

suggested using very restrictive mutation operations which guarantee not to

invalidate the control of later journeys when changing earlier ones. This mu-

tation operation was analysed in Chapter 3 and found to adversely affect the

performance of the optimisation.

Secondly, random initialisation may be very time consuming. For an arbi-

trary network, schedule and interlocking there is not even a guarantee that a

valid control strategy exists. Yang’s initialisation algorithm appears to work

well for the systems studied as it quickly found valid solutions. However, this

random initialisation was found to take a significant time as the optimisation

became more complex. For example, using a larger number of control points

during initialisation increased the number of attempts before the population

was filled with valid solutions. Each failed attempt was discarded, again wast-

ing calculations.

Thirdly, it was not able to model junctions. An indirect implication of sim-

ulating whole journeys is that headway constraints cannot be checked through

nodes. This is because the journeys on the other side of the node may not

have been simulated yet, and means that each train must come to a stop at

every node on its route. This prevents nodes from accurately representing

99

junctions, as trains are not be able to pass through them at speed. Since,

the interaction of trains at junctions can often be the ‘bottleneck’ in railway

networks [66] it is important to be able to represent them in a multi-train

trajectory optimisation.

Finally, the order of departure from each node is pre-determined. This

means the optimisation relies heavily on the input schedule being optimised.

Since trajectory optimisation and scheduling are really two parts of one larger

optimisation it would be desirable if they could be considered simultaneously

[9].

There are also a number of other limitations of the model initially proposed

by Yang. These are less fundamental than the limitations discussed so far, so

could have been added to the existing formulation. However, since a new

model will be developed it is helpful to consider other areas where it could

improve upon the model used in G4 and G5.

Firstly, although more detailed than many other models [30, 33], the train

control available in the current formulation is relatively limited. It is restricted

to the position of switching points between traction-coasting pairs, which lim-

its the areas of the search space that can be described. For example, braking

is only possible when coming to a stop at the end of a journey. So if a drop

in line speed requires a train to slow, then the only mechanism available to

achieve this is coasting. This leads to train trajectories that are slower than

if braking was also possible. Although such trajectories are inherently energy

efficient, journey times, punctuality and capacity are higher priorities on most

modern railways networks. Even if they weren’t it is preferable for the opti-

misation to have the potential to find a solution over the whole search space.

Analytical results have shown five operational modes are sufficient to describe

the optimal control of a single train: maximum traction, tractive speed hold-

100

ing, braking speed holding, coasting and maximum braking. However, despite

the many simplifications made (see Section 2.1.1), the author has not found

any similar analytical result for a multi-train system in open literature. Such

a result would depend on the signalling system used as well as the (poten-

tially different) dynamics of all interacting trains. As such, it may be that

optimal control requires intermediate levels of traction and braking, which are

not currently included in the model.

Secondly, algorithms for a number of processes were not fully described by

Yang. Notably, the methods for establishing ‘the proper site for using braking

operation’ and checking speed limits were not explicitly given. In the initial

implementation of the model both of these consumed a relatively large percent-

age of the total computation time. A naive implementation of speed checking

in G1 took over 30% of the total CPU time. It involved making a linear search

through the array of speed limits for the current link after every time-step was

taken. When this was identified as a problem it was replaced with a simple

but more efficient algorithm that took under 1% of the total CPU time. In

this improved implementation the current speed limit and position of the next

change in speed were both recorded after each linear search. This meant that

the next linear search of speed limits was only triggered when the specified

position had been reached. While this example is a relatively minor thing

in itself, it highlights the fact that whenever a process is carried out a large

number of times (e.g. every time-step of the simulation) its implementation

must be carefully considered. Related to this, track geometry such as gradi-

ents, curves, or tunnels was not considered in the original formulation. Since

most rail networks are not completely straight and flat these elements must

be considered if realistic systems are to be modelled. It would be desirable

for a general methodology to be proposed that could efficiently include any

101

property of the track that varies with distance.

Finally, no parallelisation strategy was proposed in the initial formula-

tion. For most heuristic optimisations solution evaluation is the most time-

consuming step so decreasing the time taken can bring many benefits. Most

obviously, if the number of iterations are kept constant then the optimisation

can be carried out faster. This can allow the optimisation to be applied in

different situations (e.g. a slow optimisation may only be suitable for planning

purposes whereas the same solution found faster might open up the possibility

of real time control). Alternatively, the same amount of time could be spent

on the optimisation and more iterations could be carried out. This usually in-

creases the quality of optimisation by finding more highly optimised solutions.

Similarly, the time and number of iterations could be kept constant but the

size of the optimisation population could be increased. This helps optimisa-

tions avoid local minima and more reliably find good solutions - particularly

important in more complex problems.

5.1.3 Conclusion

As discussed in 5.1.1 and 5.1.2, a next generation simulator should:

• uses a train’s control strategy to directly determine its trajectory

• can easily incorporate non-linear traction, braking and efficiency char-

acteristics of trains

• makes better use of computational resources by not discarding informa-

tion stored in invalid solutions

• can perform efficient random initialisation on more complex systems

102

• can simulate trains moving through junctions (allowing it to model more

realistic networks)

• has the option to integrate trajectory optimisation and timetabling

• uses a greater range of control actions allowing it to explore more of the

search space

• can efficiently include any property of the track that varies with distance

(e.g. gradients, curves, and tunnels)

• is suitable for parallel computation

At the time of writing the author is not aware of any multi-train simulators

that meet that above criteria and are either open source or well documented in

literature. Therefore, before progressing further with optimisation algorithm

development, the decision was made to develop a multi-train simulator suitable

for accelerating population-based heuristic optimisations.

5.2 Introduction to GPUs and CUDA

Once the logic of a computer program is fixed small changes in run time can

be made through compiler choices and code optimisation. However, in broad

terms, in order to solve the same problem faster it must be run on more

powerful hardware. The Central Processing Unit (CPU) of a computer is con-

ventionally where these calculations take place. However, recently Graphical

Processing Units (GPUs) have become easier to use for general purpose com-

puting. In a desktop environment they offer increased computation power over

CPUs at an affordable price. However, most existing algorithms discussed in

the field of trajectory optimisation have be sequential so are not well suited to

103

implementation on a GPU. To help understand why this is the case (and ulti-

mately how to devise efficient parallel algorithms) a brief introduction to GPU

architecture is given. Since many of the same optimisations used by CPUs are

employed to some degree by GPUs, this section starts with an overview of CPU

design principles in 5.2.1. This is followed by a comparison with GPU hard-

ware design in 5.2.2, which also introduces the CUDA programming model.

Finally, principles for efficient GPU algorithms are discussed in 5.2.3. Readers

already familiar with these concepts may wish to go straight to Section 5.3.

5.2.1 Background on CPU architecture

Latency is the time elapsed between an instruction being issued and its exe-

cution being completed. Sections of an algorithm that are executed in serial

are referred to as threads, and CPUs are generally optimised to provide low

latency on a single thread. In general each CPU core has a Single Instruction

stream and a Single Data stream (SISD) so low latency on a single thread is

achieved by maximising the performance in three main areas[67]:

• Clock speeds

• Execution optimisation

• Caching

Clock speeds determine the rate at which each instruction can be exe-

cuted. The processor ‘clock’ produces a square wave which ensures that each

execution has finished before the next one begins. The higher the frequency

of square wave a processor can operate at, the less time each instruction takes

to execute. However, increasing the clock speed also increase the heating of

components. This heat must be dissipated so, although higher clock rates are

104

possible with special cooling equipment[68], the clock speed of mainstream air

cooled processors has levelled off at around 4-5 GHz [69].

Execution optimisation seeks to maximise the utilisation of the processor

hardware. There are several stages to executing a single command so if a naive

approach was taken, and each instruction executed sequentially, then most of

the processor would be idle most of the time. As a simple example we can

consider the case where each command must first be fetched, then decoded,

than executed. If each of these stages takes one clock cycle to complete then a

processor could execute one instruction every three clock cycles. To avoid this

problem most modern processors use an instruction pipeline, where execution

of the next instruction can begin before the previous instruction has finished.

In the above example this would allow up to 3 instructions to be in the pipeline

at the same time, potentially tripling the throughput of the CPU. However,

this brings its own challenges as later instructions may depend on the results of

earlier ones or conditional branching (e.g. ‘if statements’) may change which

instructions are executed. There are many complex techniques to address

this, such as out of order execution and branch prediction, but they all seek

to minimise the time processor components are not doing useful calculations.

Caching reduces the average time it takes to read data from memory. Ac-

cessing Random Access Memory (RAM) is relatively slow compared to the

processor, so it may take tens of CPU clock cycles for data requested from

RAM to become accessible to the CPU [70, chap. 5]. If not addressed this

would usually be the limiting factor to execution speed and undo much of the

gain brought about by having high clock speeds and good execution optimisa-

tions. Faster types of memory are available but they are expensive so can’t be

used in large amounts. When one piece of data is requested from RAM most

modern architectures will actually copy a larger block of data to the cache - a

105

faster type of memory within the CPU. Although this does not speed up the

first memory request, consecutive instructions often access data stored close

together in memory. If the next request is for data already stored in the cache

then it can be serviced much faster. On average this leads to a reduction

in the time the processor spends waiting while data is fetched and therefore

decreases the overall latency on the CPU.

The techniques discussed above give insight into how CPUs have become

so fast at implementing serial algorithms. However, using current technology

there is a practical limit to the speed a single core can process instructions.

About a decade ago improvements in both CPU clock frequencies and ex-

ecution optimisations began to stagnate and since then the trend has been

towards CPUs with multiple cores and parallel execution. [67] This means

significantly accelerating the simulation of control strategies would require ef-

ficient parallel algorithms to be developed even if CPUs remained the target

architecture.

5.2.2 GPU architecture and the CUDA abstraction

In contrast to CPUs, Graphics Processing Units (GPUs) started as hardware

dedicated to accelerating the rendering of computer graphics and have always

been highly parallel. The desire for real time graphics (driven by the video

games industry) requires the ability to rapidly update all pixels on a screen.

This can be a very computationally intensive task but is made up of many

small independent calculations. To address this, GPUs have been designed to

maximise the aggregate throughput over many threads, rather than minimise

the latency on a single thread. Over time more non-graphics functionality has

been added to GPUs until they have become programmable parallel processors

[71]. Below follows a brief introduction to GPU architecture and how different

106

approaches have been used to maximise their efficiency. The abstraction used

by the CUDA programming model is also introduced. This allows the same

code to be compiled and run on different generations of Nvidia graphics hard-

ware. A basic understanding of both is need before a parallelisation strategy

can be chosen and specific algorithms designed. Since most GPUs have rel-

atively similar architectures (at least conceptually), the principles discussed

below should be generally applicable to GPUs from many different manufac-

turers.

The main features of GPUs is their massively parallel nature - while CPUs

may have multiple cores (e.g. 2, 4, 8 or occasionally more) it is typical for

GPUs to have hundreds or even thousands of cores. In-fact, GPUs do not have

independent ‘cores’ in the same sense that CPUs do. They are classified as

Single Instruction stream Multiple Data stream (SIMD) devices, which means

each instruction unit issues the same instruction to many compute cores. Each

of these cores then performs the same operation in parallel but on different

items of data. For computations that have a high degree of parallelism this

difference in architecture gives GPUs access to several performance benefits.

In direct contrast to CPUs, which maximise performance using high clock

speeds, execution optimisation, and large caches, GPUs achieve high aggregate

throughput primarily by maximising performance in the areas of:

• Number of transistors dedicated to data processing

• Latency hiding

• Memory access patterns

Firstly, a SIMD architecture contributes to GPUs having higher ratio of

transistors dedicated to data processing than CPUs do. For a given size and

manufacturing technique there is fixed number of transistors that can fit on a

107

Figure 5.1: GPUs typically have smaller caches and simpler control
optimisation. This allows a larger proportion of their transistors to be
devoted to the arithmetic logic units (ALUs) used for data processing.
[72, fig. 3]

processor chip, so the more of these transistor that are dedicated to caching

and flow control the less are dedicated to data processing. A small number

of instruction units issuing instructions to many data processing cores gives

GPUs a higher ratio of transistors dedicated to data processing than CPUs.

This ratio is increased further as GPUs tend to do less execution optimisation

and have smaller caches. This is shown schematically in Figure 5.1.

Secondly, GPUs hide latencies by switching to different threads when there

is a delay in execution. Like CPUs, any data dependencies or memory latency

that causes execution to pause reduces the amount of useful computation that

can be carried out. However, in devoting more transistors to data processing

GPUs must keep their compute cores supplied with work without the benefit of

complex execution optimisations and large caches. They achieve this by having

multiple threads resident (i.e. stored in on-chip registers) at any one moment.

Since the threads are already in registers, the additional time overhead for

consecutive execution of instructions from different threads is very small. This

is very different to the case for CPUs where there is a relatively large cost to

switching between different threads (known as context switching).

108

Figure 5.2: The CUDA abstraction organises threads as a grid of blocks.
These can be indexed in one-, two- or three-dimensions. [72, fig. 6]

109

To illustrate this latency hiding for a modern GPU it is helpful to consider

CUDA’s abstraction and how this relates to the physical hardware. CUDA’s

abstraction allows SIMD by running a single series of instructions (the kernel)

on multiple threads organised as a grid of blocks of threads. This is illustrated

in Figure 5.2. Threads within the same block are executed simultaneously and

serviced by the same instruction unit. In practice they are not all executed

at exactly the same time but batches of 32 threads (known as a warp) are

all given the exactly the same instruction. The differences in results comes

from the fact that the data in the thread registers will be different - at the

very least each thread stores a unique ID number of its position with that

block. Hardware restrictions mean there is a maximum number of threads per

block (currently 1024) so in order to run a larger number of parallel threads

CUDA allows a kernel to launch multiple blocks. This is known as a grid, and

within a grid the different blocks may be executed in any order. Having a

grid of blocks allows the hardware more flexibility when scheduling execution

but means the algorithms implemented in the kernel must be independent

of the execution order of different blocks. Since the maximum number of

blocks per grid is not limited by hardware it can be very large and is currently

limited to 231 − 1 = 2, 147, 483, 647. [72, appendix G] By considering how

threads in this hierarchy may be implemented in hardware we can also get an

idea of the minimum number of threads needed to hide data dependencies.

Typically, each warp (of 32 threads) is processed by a group of 8 physical

cores. If the pipeline of each core has a latency of 16 for dependent instructions

then we need at least 128 resident threads (4 batches of 32) in order to hide

these dependencies without execution optimisation. These threads may all

be from the same block but it would be just as valid for them to be from 4

different grids, each containing one block of 32 threads. This flexibility allows

110

scaling across different hardware and also, by having a more active threads,

can contribute to hiding the larger latencies of memory access.

Finally, the third technique GPUs exploit to gain performance is the de-

crease in average latency when threads reading from contiguous memory loca-

tions. CUDA refers to the CPU as the host and the GPU as the device. Both

host and device have their own Dynamic Random Access Memory (DRAM)

which are addressed separately and usually connected via a PCI or PCIe con-

nection. Host DRAM if often simply referred to as RAM, so to avoid confusion

device DRAM is referred to as global memory. Similar to RAM access on a

CPU, it take a relatively long time for a thread to access data stored in global

memory. However, global memory is accessed via 32-, 64- or 128-byte transac-

tions and if threads of the same block access data that is close enough together

then a single transaction may serve multiple threads. The extreme case of this

is where adjacent threads access adjacent memory addresses allowing full utili-

sation of the available memory bandwidth. This is known as coalesced memory

access.

Simulation of train trajectories is compute intensive so (assuming a good

parallelisation strategy is devised) the number of floating point operations per

second is likely to be a good indicator of the speed of computation. Figure

5.3 compares the theoretical speed of Intel CPUs and Nvidia GPUs. As might

be expected for hardware designed to maximise aggregate throughput, GPUs

excel in this performance metric. As discussed above, the main reason for

this is that GPUs devote more transistors to data processing than CPUs do.

In striving for low latency on a small number of threads CPUs devote many

more of their transistors to complex control optimisation and large caches. In

contrast, GPUs hide latencies by switching to different threads when there is a

delay in execution. To capitalise on their excellent parallel computation speed,

111

Figure 5.3: Theoretical data processing power of CPUs and GPUs
measured in Floating-Point Operations per Second (FLOP/s). [72,
fig. 1]

112

Table 5.1: Approximate latency for GPU threads accessing different
types of memory

memory type latency /cycles source

shared 38 [73]
global ∼440 [73]
host RAM (via PCIe) ∼10,000 [74]

which is particularly relevant to multi-train simulation, GPUs were chosen as

the target architecture for the new model.

5.2.3 Principles for efficient GPU algorithms

The properties of the GPU architecture discussed in Section 5.2.2 lead to

several principles for devising fast algorithms. They can be grouped into three

categories [72, chap. 5]:

• Maximise parallel execution

• Optimise memory usage

• Optimise instruction usage

In order to fully utilise the GPU hardware, algorithms must contain as

much parallelism as possible. This maximises the chance that all components

can be kept busy and so is likely to give the best total performance. This

parallelism must also map well on to the system. For example, there must

be a sufficient number of threads per block and this number should be a

multiple of 32 (the number of threads in each warp). Also, the number of

blocks should be large enough that each instructions unit has multiple blocks

to switch between allowing it to hide latencies.

The read-latency of different types of memory varies by around three orders

of magnitude (see Table 5.1). This means memory usage should be optimised

113

to avoid algorithms becoming limited by memory throughput. Data transfer

between host and device has a relatively low bandwidth so the data stored on

the host RAM has the highest latency for a thread to access. To address this,

memory transfer between host and device should be minimised - both in total

size and frequency [75]. Each memory transfer has a relatively large overhead

so grouping many small transfers into one larger one will improve performance.

Alternatively, if a relatively small amount of computation is taking place on

the host between each transfer then it may be that this computation should be

moved on to the device. Even if the computation is slightly slower on the device

this is likely to be offset by the time gained by removing host-device memory

transfer. Finally, even if host-device memory transfers are unavoidable, it

may be that they can be overlapped with computations to limit their effect

on overall performance. Next, global memory access should be optimised.

Again, this means minimising the transfer of data between global memory

and on chip memory (e.g. registers, caches, and shared memory). Ideally,

all global memory reads should be coalesced to allow full utilisation of the

available memory bandwidth (see discussion in Section 5.2.2). Where this

is not possible, shared memory may allow algorithms to exploit patterns in

memory layout. Shared memory is effectively a user managed cache. If it can

be filled using coalesced reads by all threads in a block, scattered reads/writes

can then be performed in shared memory making them an order of magnitude

faster. Stores to global memory are asynchronous so not as likely to cause

stalls directly. However, they use the same memory bus as reads, so will

contribute to a loss of performance if this bus becomes saturated.

Finally, when memory throughput is no longer the limiting factor, in-

struction usage should be optimised. This involves minimising the use of low

throughput arithmetic instruction and minimising intra-warp divergence. The

114

normal implementation of transcendental functions such as sin, cos, or exp

compile to many native instructions. If their use can not be avoided by al-

gorithm modification, another possibility is to replace them with faster (but

less accurate) intrinsic functions. In CUDA this can be done manually or by

using the nvcc compiler option (-use fast math). Also, Nvidia’s GTX hard-

ware is primarily targeted at graphics applications so double-precision floating

point calculations are significantly slower than their single-precision equiva-

lents. Floating point numbers allow computers to represent a larger range of

numbers compared to a fixed point representations using the same number

of bits. However, this leads to a loss of precision so the two different sizes

of floating point number are commonly used. Single-precision floating point

numbers are encoded using 32 bits and, for situations where higher precision is

required, a 64 bit (double-precision) floating point can be used. For the latest

generation of Nvidia graphics cards built on the Maxwell architecture, includ-

ing the GTX 750Ti card used in this thesis, the peak rate of double-precision

operations is 1/32 that of single-precision operations[76]. The other major

instruction optimisation is to minimise intra-warp divergence. All threads in

a warp must executed the same instruction so if threads follow different paths

through an algorithm then some threads will be inactive until the paths re-

join. This leads to a loss of performance and can be avoided by: minimising

the branching algorithms or making sure that all threads in a warp follow the

same path.

5.3 Design choices for the GPU accelerated model

These design choices address the limitations of the previous formulation, dis-

cussed in Section 5.1.2. Generally, the design choices are described in the or-

115

der they were made. This means later design choices are dependent on earlier

ones. The parallelisation strategy adopted is only possible due to the choice

to have soft headway constraints. Likewise, the method for checking headway

violations uses the concept of journey features and also assumes soft headway

constraints. Both journey feature and the form of the control strategy chosen

are designed for efficient execution using the parallelisation strategy adopted.

5.3.1 Soft headway constraints

Constraints are referred to as ‘hard’ if all solutions are required to satisfy

them. Many of the more fundamental limitations of Yang’s model stem from

its use of hard headway constraints. These include:

• waste of computational resources as all information stored in invalid

solutions is discarded

• difficulty performing random initialisation on more complex systems as

no information can be passed to successive attempts

• unable to model junctions as it is not possible to check headway con-

straints through nodes

While hard constraints make sense for the final solution (safe separation

must be maintained between all trains at all times) they are not necessarily

best during the optimisation process. So called ‘soft’ constraints would allow

solutions that breach headway constraints to be penalised in proportion to

their infringement, rather than completely discarded. Retaining information

stored in invalid solutions enables the optimisation to learn from failed at-

tempts and so make better use of computational resources. This difference in

information is represented in Figure 5.4 It is trivial to check the final solution

116

Figure 5.4: (a) and (b) are a 2D representation of the same search space
but with hard and soft constraints respectively. In (a) black represents
regions where hard constraints are broken (i.e. invalid solutions) so the
solutions at points A and B indistinguishable. In (b) areas are shaded
in proportion to the extent to which soft constraints are broken (darker
points representing larger penalties). Although both points A and B
still break constraints it is now clear that point B is less bad than point
A.

117

with hard constraints since any headway penalty will indicate that the con-

straints were breached in some way. If large penalties are given for breaking

constraints then the heuristic optimisations will prioritise keeping these con-

straints. The use of soft headway constraints has been applied in number of

single-train trajectory optimisations Cheng et al. [27], Colin Cole [28].

Soft headway constraints are also likely to aid initialisation in complex

systems. In a system where the majority of randomly generated solutions are

invalid then a formulation using hard constraints will take many attempts to

complete initialisation. If the randomly generated solutions are equally spread

over the whole search space then the mean number of attempts needed is

the reciprocal of the fraction of valid solutions in the search space multiplied

by size of the population being initialised. For example, in Figure 5.4(a)

approximately 1/4 of the search space gives valid solutions, so to initialise a

population of 100 solutions we would expect to need around 400 attempts.

Additionally, soft headway constraints also allow journey simulation and

headway checking to be completely separated. This has three main advan-

tages. Firstly, junctions are now trivial to model as headway constraints can

be checked after all journey simulation has occurred. Secondly, it allows a

much greater degree of parallelisation to be exploited. Since the boundary

conditions of all train journeys are known (each train starts and ends a jour-

ney at rest), checking headway constraints separately allows all the simulation

of all train journeys to occur in parallel. This fact is exploited when devising a

parallelisation strategy in 5.3.2. Finally, it removes the requirement that trains

depart stations in a predefined order, allowing some degree of schedule opti-

misation to occur at the same time as trajectory optimisation. However, since

trajectory optimisation will remain the primary purpose of the new model,

train routes will still be predetermined. This is important for the method,

118

introduced in 5.3.3, that describes any property of the track that varies with

distance.

5.3.2 Parallelisation strategy

Before deciding how to remedy other limitations outlined in Section 5.1.2 it

was necessary to choose a parallelisation strategy. The first decision is how to

divide the problem into independent tasks that can be executed concurrently

(i.e. the order of execution will not affect the result). Next, there should be

some level of parallelism within each of these independent tasks. This fits the

CUDA abstraction of a grid of thread blocks, where threads within a block

are executed in parallel (simultaneously), but different blocks are executed

concurrently (independently). Given GPUs are the target architecture, the

optimisation principles discussed in Section 5.2.3 must be considered.

Many heuristic optimisations explore the search space using a population

of solutions, so evaluating each solution (network control strategy) separately

is one way to divide up the problem. However, as discussed above, when sim-

ulating each network control strategy it is also possible to divide this problem

into the simulation of separate journeys. Considering each different train is

another natural way to split up the problem. These options lead to several

possible parallelisation strategies, two of which will be discussed here.

Firstly, each network control strategy could be evaluated concurrently.

This is likely to be a good abstraction for a CPU as it is easily scalable to

many cores and requires no communication between cores except to return

the simulation results. On a GPU this leaves the decision of whether trains

or journeys should be calculated in parallel. Neither of these seems to lend

themselves to a particularly advantageous CUDA thread structure, although

a block for each network control strategy containing a thread for each train

119

may offer advantages if hard headway constraints were being enforced. If a

time-stepping simulation was used then headway checking could be integrated

into the simulation loop allowing trains to react to signals. It is likely that

by using shared memory this process could be made relatively fast. However,

each thread would require different train data and also read different track

data as the simulation progressed. A lot of data would have to be read from

global memory (a relatively slow operation) and it is unlikely that reads of

track data would be coalesced. All of this would slow simulation. Also, since

the number of threads per block is currently limited to 1024 this would limit

the modelled system to a maximum of 1024 trains.

Alternatively, each journey could be evaluated concurrently. This leaves

the option of simulating the multiple possible trajectories, produced by dif-

ferent control strategies over the same journey, simultaneously. In the CUDA

programming model this means within each block the journey is the same for

all threads, but each thread uses the control from a different individual in

the population. This has the advantage that all threads in each block require

the same train data. Also, if a distance-stepping simulation is used, then all

threads will require the same track data at the same time (see Section 5.3.3).

They can also use coalesced loads to read control points (see Section 5.3.5)

and are likely to have low thread divergence. Therefore, this parallelisation

strategy was adopted as it looked the most likely to enable fast simulation on

a GPU. Since the start time of a journey will depend on any previous journeys

made by that train, a timing synchronisation stage will be necessary before

headway constraints can be checked. However, this is likely to be a small

overhead compared to trajectory simulation.

120

5.3.3 Pre-calculating journey information

One desirable capability of the new model would be to have a general method

for efficiently including any property of the track that varies with distance

(e.g. gradients, curves, and tunnels). Since journey simulation is the most

computationally intensive part of the optimisation, anything happening inside

this main simulation loop must be as efficient as possible. Since the route of

each train is not part of the optimisation it is possible to pre-process the data

needed during the simulation of each journey. From this point any distance-

based event is referred to as a feature. If the distance of all features encountered

are calculated relative to the start of each journey then they can be stored in

a single array in the order they will be encountered. This removes the need for

any searching of data inside the simulation loop and also also ensures the next

feature is stored in the adjacent memory address (maximising the likelihood

of cache hits).

Different types of features can be stored, each offering further opportunities

to use pre-calculation to remove calculations from the simulation loop.

Firstly, the gradient profile of the track must be described by using fea-

tures. However, if it was stored directly then the force on the train would be

calculated multiple times during the simulation of each journey. Since this

involves the interaction of the mass distribution of the train and the gradient

profile this would be a relatively expensive procedure. Relative to distance,

the result will be the same for the whole population and will also be constant

between generations so repeated calculation does not seem the most efficient

approach. Instead, assuming the train length and mass distribution of the

train are constant, the component of train acceleration due to the track gra-

dient can be calculated once and stored in the features. This is a similar idea

to the result shown by Howlett and Pudney [19], where any control problem

121

Figure 5.5: The process of converting a line speed limit to an automatic
train protection speed limit (vATP) described by a series of features.
(a) First, the braking trajectories needed for the train to obey each
drop in line speed, and the final stop, are calculated. (b) The speed
limit and braking trajectories are approximated as linear functions of
distance. Each linear section is described by the feature immediately
preceding it. A series of features can then describe the vATP limit over
the whole journey (ten features in this example).

122

for a train with distributed mass has an equivalent point mass problem.

Secondly, the maximum speed limit at any point can be encoded using

features. However, similar to the gradient profile, if this is done directly then

many calculations will be repeated when finding a suitable brake site at the

end of the journey (and for each drop in line speed limit). As discussed in

5.1.2 this is a relatively costly procedure for which no well-defined algorithm

was given. An alternative approach, used by Chang and Sim [25], is to pre-

calculate speeds as would be used in a simple Automatic Train Protection

(ATP) system to prevent line speed violations and bring the train to a stop at

its destination. This is not a complete ATP system, as it does not react to the

interlocking constraints of the signalling system, so will be referred to a vATP

(with the ‘v’ standing for velocity, to signifying it only enforces the line speed

limit). The vATP will be implemented by pre-calculating braking trajectories

when there is a line speed drop. These braking trajectories are specific to

each train and will be approximated by a polygon curve. The features can

then describe a piecewise linear speed profile, where each linear vATP limit is

defind by:

vATP = md+ c (5.1)

where d is the distance from the start of the journey, andm and c are constants.

This process is illustrated in Figure 5.5.

Finally, features can encode critical positions used in the implementation

of a signalling system. This is a more complex topic and is addressed in Section

5.3.4.

123

5.3.4 Fixed block signalling

Railway networks use signalling systems to ensure the safe separation between

trains is maintained at all times. There are various different types of signalling

system, but most modern systems can be classified as fixed block or moving

block. Fixed block signalling was implemented in the new model for the rea-

sons outlined below. It should also be noted that signalling blocks are in no

way related to the blocks of threads used by the CUDA programming model.

Although the word ‘block’ has different meanings in different disciplines it is

fundamental to both railway signalling and CUDA programming. This thesis

will use the word in both ways, relying on the context for clarity.

Fixed block signalling systems divide all lines into areas called blocks. Each

block is then protected by signals which communicate movement authority to

other trains. Safe signal states are ensured by the interlocking between the

different blocks. The size, position and interlocking of the blocks are care-

fully calculated so that a safe braking distance is always maintained between

adjacent trains. Figure 5.6(a) illustrates this for three aspect signalling. How-

ever, since there is no information about the speed or position of either train

within its block the worst cases must be assumed when designing a fixed block

signalling system. This means there is usually some ‘wasted’ capacity, for

example when a train is travelling below the maximum permissible speed its

braking distance will be shorter than the worst case assumption. Another

example is when the lead train is about the leave a signalling block but the

following train must still drive as if the lead train is still right at the start of

that block. Reducing the size of signal blocks and increasing the number of

signal aspect types will allow the trains in both these examples to run closer

together, thereby increasing capacity. This is illustrated in Figure 5.6(b). In

physical systems there is a limit to the amount of extra capacity that can be

124

Figure 5.6: Different signalling systems. (a) Three aspect fixed block
signalling system. Each block must be at least as long as the train’s
maximum stopping distance (including some safety margin). Since the
lead train may be anywhere in the block the capacity ‘wasted’ will be up
to the length of the stopping distance. In reality other safety measures
are usually present, such as signal overlaps or an absolute block of
separation, which will both reduce capacity further. (b) Four aspect
fixed block signalling system. Each block must be at least half as long
as the train’s maximum stopping distance. This halves the ‘wasted’
capacity compared to three aspect signalling but requires twice the
signalling and track equipment. (c) Moving block signalling system.
The ‘wasted’ capacity is reduced to a minimum (the limit tended to by
n-aspect fixed block signalling).

125

unlocked this way. Firstly, the number of different aspects that drivers can

safely react to is likely to be limited, especially considering the amount of

time they have to react to them will also decrease. Secondly, the increased

installation and maintenance cost of the additional signalling and track equip-

ment may not be economically justifiable. Moving block systems unlock this

capacity by defining blocks relative to the position of each train rather than

at fixed locations on the track. The train must regularly update its moving

block, which usually consists of the length of the vehicle, its stopping distance

and some safety margin. The moving blocks of different trains are then com-

pared to check that they do not overlap. This is illustrated in Figure 5.6(c).

Level 3 of the European Rail Traffic Management System (ERTMS) proposes

moving block technology at a conceptual level[77], although initial trails used

a ‘virtual fixed block’[78].

From the perspective of implementing a fast simulation, fixed-block sig-

nalling has many advantages over moving block signalling. The size, position

and interlocking of blocks are all calculated in advance so during simulation

only the occupancy of blocks, and the compatibility of these occupancies,

needs to be calculated. In contrast, moving block signalling requires regular

calculation of stopping distances. For the proposed model, calculating the

exact stopping distance would be a very computationally expensive process.

The greater frequency with which blocks must be compared would also add to

the computational burden. If/when moving block signalling is required then

it can be approximated arbitrarily closely by using very small fixed blocks and

a large number of different signal aspects. While this may quickly become

infeasible for a physical system it is likely that the new model will achieve a

very fine resolution before block comparison becomes limiting.

For these reasons a fixed block signalling system will be implemented in

126

the new model. During journey simulation the speed and time that each train

enters or clears a block must be recorded. This allows block events to be

stored using the journey features described in Section 5.3.3. The interlocking

between different blocks can be defined and different signal aspects defined by

specifying speed limits for block exit. This process is described in detail in

Section 5.4.5.

5.3.5 Control sequence

The form of control used in the old model turns out to be poorly suited to

efficient implementation on a GPU due to the difficulty of ensuring coalesced

memory access patterns. Also, as stated earlier, control actions were restricted

to traction, coasting and final braking only - restricting the area of the search

space that could be described. To overcome these issues a new form for the

control strategy is defined in Equations (5.2) to (5.6). Rather than each control

point defining the distance of a switch between traction and coasting, each

control point becomes a distance-action pair (dn, cn). The control action (cn)

is a continuous variable where 0.0 describes coasting, positive values up to +1.0

describe the fraction of maximum traction applied and negative values down

to -1.0 describe the fraction of maximum braking applied. This increases the

search space that it is possible to describe. The control distance (dn) is also a

continuous variable specifying the position that control is applied. However,

to facilitate efficient implementation on GPUs, each control distance (dn) lies

within a fixed range which means the number of control actions (nmax + 1)

is fixed for each journey. A trajectory defined by the new control strategy is

illustrated in Figure 5.7.

The number of control points (nmax + 1) defined for journey j can be

127

Figure 5.7: A trajectory illustrating the new form of the control strat-
egy. A series of distance ranges are defined (of size controlD) each
containing a single control point. Every control point specifies both
the control action (cn) to apply and the exact distance (dn) at which
it should be applied.

determined using Equation (5.2).

nmax = floor(Dj/controlD) + 1 (5.2)

where Dj is the length of journey j, controlD is the size of the control distance

range, and floor rounds down to the nearest integer

Equations (5.3) and (5.4) define the range of values that each control dis-

tance (dn) and control action (cn) can take.

(n− 1)controlD ≤ dn < ncontrolD (5.3)

− 1 ≤ cn ≤ 1 (5.4)

for n ∈ [1, nmax]

However, since the train begins a journey from rest, and most stations are

close to horizontal, it is required that the first control action be tractive. It

128

is anticipated that even for a station with a downward gradient some traction

will be applied. This is a first control point is special case and is defined in

(5.5) and (5.6).

dn=0 = 0 (5.5)

0 < cn=0 ≤ 1 (5.6)

By placing these restrictions on the control strategy, coalesced global mem-

ory accesses can be guaranteed on the GPU. The parallelisation strategy cho-

sen in Section 5.3.2 means that the trajectories, resulting from different control

strategies over the same journey, are simulated in parallel. Since, a distance-

stepping model is used, the position along the journey remains in sync between

the different simulation threads. If the distance ranges for control points are

the same across the whole population of solutions then when the start of a

new range is reached all threads can load the next control point at the same

time. In contrast, if the position of control points were not restricted by dis-

tance ranges then there would be no guarantee that the position of the control

points would correlate between different threads. This would lead to fewer

coalesced memory transactions and therefore less efficient use of the available

memory bandwidth. The actual structure of the data needed for coalesced

memory access is discussed more in Section 5.4.2 but is made possible by the

properties of the control strategy defined here.

Also, the insertion and deletion operations described in Section 3.3 should

no longer be necessary. This is because they were needed to escape local

minima in the search - where a large distance separated adjacent control points.

Provided the distance range determined by controlD is sufficiently small this

situation is no longer possible with the new form of control. This is fortunate

as the new, fixed length, control strategy is not compatible with insertion and

129

deletion operations in their current form.

Finally, since soft headway constraints have been introduced, station dwell

times are no longer determined by whether trains are clear to depart from

a station. To some extent the time of departure can be influenced by the

control of movement on the previous journey, but this in not adequate on

its own. This means the dwell time at stations should also become a control

variable in order to better meet target arrival time whilst obeying headway

constraints. The minimum departure time may be restricted by a scheduled

departure time or simply by the minimum dwell time needed for operations

(e.g. boarding and alighting). This makes the model similar to some energy

aware schedule optimisation techniques which use dwell and traverse times to

control the schedule [58].

5.4 Description of the GPU accelerated simulation

The design choices described in Section 5.3 are implemented in a new GPU

accelerated model, which will be referred to at G6. The critical process in

the model used in G1 to G5 was simulating train journeys, with over 90% of

computation time spent in this function. This meant the journey simulation

step was the focus of optimisation efforts when devising G6. The level of detail

in the following sections reflects the importance of this journey simulation

stage to the overall performance of the multi-train simulation.

In light of the design decisions (described in Section 5.3) the design process

proceeded as follows:

• The components of the objective score were defined (headway violations,

delays, energy consumption).

130

• The content of the output data from the journey simulation step was

determined by inputs required by the subsequent steps.

• The content of the input data to the journey simulation step was deter-

mined by its required outputs.

• The structure (i.e. memory layout) of both the input and output data

for journey simulation was designed alongside its algorithms to ensure

good memory access patterns.

• The other algorithms and data structures were then designed to fit in

with the journey simulation data structures.

As such, the importance of the data structures devised cannot be over

emphasised. In order to fully grasp the significance of the algorithms discussed

below, one must always keep in mind the data structures that are being read

from or written to.

5.4.1 Overall structure

When considered at the highest level of abstraction the optimisation can be

split into two parts (i) simulation and (ii) the optimisation algorithms them-

selves. These are show in Figure 5.8.

Figure 5.8: The two alternating stages of the model - simulation and
optimisation.

The lowest available bandwidth is between the host and device so host-

device data transfer has the greatest potential for negatively impacting per-

131

formance. To avoid this all parts of both simulation and optimisation were

implemented on the GPU. This was a significant undertaking but meant that

host-device data transfer only had to happen at the start and end of the whole

optimisation so did not cause a significant overhead.

Given the design decisions in Section 5.3, the simulation stage must act

on a whole population of control strategies at once. It takes a population of

control strategies, performs phenotype evaluation, and then outputs a score

for each member of the population. The cost function depends on three fac-

tors: total energy consumption, total delay (time after scheduled arrival), and

headway violations (determined by the number and severity of signal block

incompatibilities). Each of these leads to a distinct stage during phenotype

evaluation before scoring can occur, These stages are illustrated in Figure 5.9.

Figure 5.9: The four stages of simulation are designed to allow efficient
computation on a GPU. The algorithms behind each stage are described
in Sections 5.4.3 to 5.4.6.

First, the movement of each train over each of its journeys is simulated.

This gives the traction energy consumption, the time taken to traverse each

journey, and the relative times the train entered or left signalling blocks that

were encountered. The traction energy consumption it not dependent on any

other journey so does not require any further processing. However, the other

two data structures require further processing before they can be compared

132

with either the schedule or block occupancies from other journeys. Second,

timings are synchronised between all journeys with each solution. Thirdly,

the times at which each signal block is occupied must be compared to ensure

that safe operational headways are maintained between all trains. Finally, the

three different penalties can be added up for each solution and then combined

to give an overall score.

Figure 5.10: A genetic algorithm was implemented as the optimisation
algorithm since it is easily implemented on a GPU. The two stages of
the GA are illustrated here and described in Sections 5.5.1 and 5.5.2.

5.4.2 Data structures

As discussed in Section 5.2.3 minimising memory latency is crucial for efficient

GPU algorithms. Since host-device data transfer has already been minimised

(by choosing to implement both simulation and optimisation on the GPU),

efficiently accessing global memory within the device now becomes the primary

objective. The efficiency with which this takes place is not only determined

by the algorithms processing the data but crucially also by the memory layout

of the data itself.

Coalesced memory access requires that consecutive memory locations are

accessed by consecutive thread IDs. The C programming language guarantees

to store arrays in a contiguous block of memory, so for a 1D array consecutive

thread IDs must access consecutive array indexes. The situation is slightly

more complex for 2D arrays since they are still stored in one contiguous block

133

of memory. To arrange a 2D array in 1D memory C uses row-major order

which means consecutive elements of each row are stored in contiguous mem-

ory. Where a kernel accesses a 2D array coalesced access can occur if consec-

utive thread IDs access consecutive columns in the same row. Because of the

parallelisation strategy adopted (see Section 5.3.2) all 2D arrays have thread

IDs determined by the population number (pID) and block IDs determined by

the journey number (jID). This means data is structured so that the row and

column indices are jID and pID respectively. The benefit of this is illustrated

in Figure 5.11.

Figure 5.11: (a) Coalesced memory access makes full use of each mem-
ory transaction. (b) The transpose of the same data array causes a
strided memory access pattern. In this case the memory bandwidth is
halved but a larger number of columns would reduce this further.

There are also a number of situations where the amount of data to be stored

varies between journeys. For example, a longer journey will require more

control actions than a shorter one or different journeys may contain a different

134

number of signal block events. There are two approaches to structuring this

data that allow coalesced memory access: to pad the data so that all rows

are the same length, or store it in a compressed storage format. The padding

approach is simpler whereas the compressed approach is more memory efficient

in most cases but introduces an additional level of indirection. However, this

additional lookup only takes place once at the start of each journey so it is

likely to result in a relatively small overhead. GPUs don’t have expandable

memory so this memory could become a limitation if complex networks are

modelled or large population sizes used. For this reason the more memory

efficient compressed storage format was chosen, and implemented as an index

lookup table and a 1D array. This is illustrated in Figure 5.12.

Figure 5.12: The compressed data storage format used to encode 2D
arrays with rows of variable length (sometimes referred to as a ‘jagged’
array). The data is compressed into a 1D array and a second 1D array
is used to look up the start location of each row within the first array.
This minimises the memory used but still allows coalesced memory
access.

135

5.4.3 Journey simulation

Journey simulation was the most computationally expensive part of evalua-

tion. Because of this particular attention was made to its optimisation. Due

the importance clearly communicating how arrays are indexed, the detailed

algorithms described in Section 5.4.3 are give in CUDA/C++ code. This also

allow important detail, such as the data types used for different variables, to

be communicated in a standard way.

An overview of the journey simulation algorithm is show in Figure 5.13.

This was implemented as a single CUDA kernel, the source code of which is

given below. Sections of CUDA/C++ code are denoted by a box containing a

monospaced font. For clarity (and ease of comparison to Figure 5.13) impor-

tant aspects of this algorithm are discussed under Sections A to I. The order

of the kernel code is preserved.

A Set-up the thread parameters

CUDA uses the global declaration specifier for kernel functions. This

function is called from the host but run on the device. The majority of the

function parameters are inputs with output only possible to the outT, outB

and penE data structures. One might expect RNGStatesSim to be changed

since the random number generator (RNG) will give the same sequence of

pseudo-random numbers if its state is not updated. However, since the RNG

is only used to introduce random errors in train parameters it is desirable to

get the same result for each train (each tID) across all journeys within the

same solution (same pID). In order for these instances to vary ‘randomly’ with

each successive population the RNG states must be updated once per gener-

ation after all journeys have been simulated. This takes place at the start of

time synchronisation (see Section 5.4.4). As discussed in Section 5.3.2, tak-

136

Figure 5.13: The algorithm used to simulate train movement over each
journey. Here, d, t, v, and E are used as abbreviations for distance,
time, velocity, and energy respectively. Detailed description of labelled
stages A to I are given in Section 5.4.3.

137

ing distance-steps allows memory coalescing when loading track features and

control action. The size of the distance-step (∆d) is defined by deltaD so

changing this variable controls the balance between the speed and accuracy

of the simulation. A small deltaD will mean more distance-steps are taken

leading to a more time consuming but more accurate simulation. Conversely,

a simulation using a large deltaD will execute faster but at the cost of re-

duced accuracy. A sensitivity analysis into the effect of deltaD on simulation

accuracy is performed in Section 5.6.

// define CUDA kernel

__global__ void simJ (

float deltaD, unsigned int pSIZE,

float controlD, bool with_noise,

const control_class* allControl,

const unsigned int* allC_from_jID,

const feature_class* allFeatures,

const unsigned int* allF_from_jID,

const train_class* allTrains,

const train_class* allTrainErrors,

const curandStatePhilox4_32_10_t* RNGStatesSim,

const unsigned int* outB_from_jID,

float* outT, block_occ_class* outB, float* penE)

{

In contrast to normal C functions, where multiple calls to a function must

take place sequentially, CUDA kernels are launched as a grid of thread blocks.

This allows a kernel to execute multiple times in parallel and was described

in Section 5.2.2. Each thread has two IDs, each of which may contain 3-

138

dimensions (denoted x, y and z). The IDs are defined by the thread’s posi-

tion in a block (threadIdx) and that block’s position in the grid (blockIdx).

Within the kernel, these IDs must then be mapped on to the problem being

solved. As discussed in Section 5.4.2 it is important that consecutive thread

IDs have consecutive pID as this allows coalesced memory access. However,

threadIdx is currently limited to 1024 values so in order to enable larger pop-

ulation sizes, pID is also split across blocks. The number of threads per block

is given by TILE SIZE pop (128 threads per block was found to give the best

performance).

// Map launch configuration on to problem

unsigned int jID = blockIdx.x;

unsigned int pID = blockIdx.y * TILE_SIZE_pop +

threadIdx.x;

if (pID >= pSIZE)

return;

Since each journey is simulated independently of the others, the distance

the train has travelled (d), total time elapsed (totalT) and the total traction

energy consumption (totalE) are all calculated relative to the start of that

journey. This means they are all initialised to zero. Importantly, the choice

of data types for these accumulators was also considered carefully. Single-

precision floating-point numbers (32 bits in size) only have a precision of 7

decimal digits [79]. If the accumulator has a value more than 106 times larger

than the value to be added to it then the result may be rounded to the same

value held initially. If this takes place many times then the end result is

likely to be significantly different to the expected value. A simple solution

to this would be using double-precision floating-points to store all accumula-

139

tors, since they have 16 digits of precision so are far less likely to encounter

pathologic rounding errors. However, as might be expected on GTX hardware

(see 5.2.3) performing multiple double-precision arithmetic operations caused

a significant increase in kernel execution time.

For the traverse time of a journey:

largest possible total time = D/vmin (5.7)

smallest possible time increment = ∆d/vmax (5.8)

where D is the journey length, ∆d is the distance-step, and vmax and vmin

are the maximum and minimum velocities respectively. If a single-precision

floating-point variable was used to store the accumulated time then Equations

5.7 and 5.8 can be combined to give the safe usage limits for a single-precision

accumulator (Equation 5.9).

D

∆d

vmax
vmin

< 106 (5.9)

In the new simulation vmin = 0.1 m/s so simulation of a high speed train

with a vmax = 100 m/s would be limited by D/∆d < 103. It is reasonable to

expect users may wish to model situations close to this limit. For example, a

100 km journey with a resolution of ∆d = 10 m would not even guarantee one

decimal digit of precision from each distance-step. Whether this is an accept-

able resolution is discussed in Section 5.6 but at the very least it demonstrates

that using a single-precision floating-point accumulator places an unrealistic

burden on the user to check each case modelled.

140

To overcome this problem double-precision time and energy accumulators

were used (totalT and totalE respectively) but both were ‘cached’ via single-

precision floating-point variables. This process is detailed in stage I but its

effect is that for most distance-steps only single-precision floating-point oper-

ations occur but the safe usage limits are now given by:

nvmax
vmin

< 106 (5.10)

D

n∆d

vmax
vmin

< 1015 (5.11)

where n is the number of values cached before the accumulator is updated.

Given n = 50 was used in the simulation an extreme use case (D = 10, 000

km, ∆d = 0.1 m, vmax = 100 m/s, vmin = 0.1 m/s) still yields at least one

decimal digit of precision from each distance-step.

In contrast, the decision was made to use a single-precision floating-point

variable as the total distance accumulator (d). Unlike, the energy and time

accumulators, the values of which are only retrieved when recording signal

block events or at the end of the journey, the distance is used every simula-

tion step taken. This removes the possibility of caching via a single-precision

floating-point variable. However, since the size of each distance-step and the

length of the longest journey are both known in advance they can be com-

pared to check for potential rounding errors. The longest journey simulated

must be no greater than 106 times the smallest significant decimal digit of

the distance-step (∆d). For example, ∆d cannot be less than 1 m when the

longest journey is 1000 km. This seems a reasonable level of accuracy whilst

still allowing most rail networks to be modelled.

141

// Define accumulators

float d = 0.0f;

double totalT = 0.0;

double totalE = 0.0;

float cachedT = 0.0f;

float cachedE = 0.0f;

unsigned int cached_counter = 0;

Where compressed data structures are used, one additional memory read

is required in order to find the index of the specific journey being simulated.

Since these memory reads take place outside the simulation loop they are

only executed once and therefore unlikely to significantly impact the overall

performance of the kernel. Also, the ID of the train being simulated (tID)

is stored in the first element of the journey features so must be looked up

before the train parameters can be loaded. This works well as the journey

features are pre-calculated and are specific to both the properties of the train

and the route it takes. There is also the option to introduce noise in the train

parameters. This is intended to allow robust optimisation using the technique

described in Chapter 4.

// Lookup first element of compressed data structures

const feature_class * nextF = allFeatures +

allF_from_jID[jID];

const control_class * nextC = allControl + pID +

allC_from_jID[jID] * pSIZE;

block_occ_class * nextB = outB + pID +

outB_from_jID[jID] * pSIZE;

142

// Load train parameters

const unsigned int trainID = nextF -> get_id();

++nextF;

float nextF_d = nextF -> get_d();

train_class thisR = allTrains[trainID];

// Introduce random error in instance of train parameters

if (with_noise)

{

curandStatePhilox4_32_10_t local_curandState =

RNGStatesSim[trainID * pSIZE + pID];

train_class this_error = allTrainErrors[trainID];

thisR.add_error(&this_error, &local_curandState);

}

Before entering the main simulation loop it is necessary to declare the

variables that will be used. The value of the first control action must be

retrieved from memory but initial values of the other variables either don’t

matter or are given sensible default values. It is important that v and v old

are not initialised to zero as this may cause undefined behaviour (divide by

zero). Instead, they are initialised to a very small positive number. Unlike

the other variables the line speed limit and acceleration due to the gradient

(vATP and aGrad respectively) are defined as linear functions of d in line with

the implicit problem formulation, Section 5.1.1.

143

// Initialise control

float c = nextC -> get_c();

float d_read_nextC = 0.0f;

nextC += pSIZE;

float c_bufferC = c, d_bufferC = FLT_MAX;

// Initialise physics varaibles and limits

float v = FLT_MIN, v_old = FLT_MIN;

float v_max_new = FLT_MAX, v_max_old, v_max;

float a, a_cmin, a_c, a_vmin, a_vmax;

float deltaT = 0.0f;

linear_eq_class vATP(0.0f,0.0f), aGrad(0.0f,0.0f);

B Load and process the next feature

On entering the main simulation loop, it is first necessary to check for journey

features and process them accordingly. Journey features are pre-calculated for

a specific train traversing a specific length of track. Each feature is then listed

in an array ordered by their distance from the start of the journey. By taking

distance-steps during simulation, intra-warp divergence is avoided here, which

mean all threads in a warp will follow the same execution branch. This is

particularly important as each thread must load the next feature from global

memory - a potentially time-consuming instruction. However, since all threads

load the same feature at the same time, compute 2.0 devices (and later) will

only load this value once and then broadcast it to all the threads using L1

cache [80, p115].

Before loading the next journey feature the cached accumulators are up-

dated as the total time must be up to date. Once the new journey feature

144

has been loaded it must be processed according to the type of data it stores.

This method allows each journey to be described using a single array con-

taining different types of data. It is hoped that this will allow easy extension

of the simulation to incorporate different new types of journey features (e.g.

tunnels, electrical sections, neutral sections, track curvature, etc). The types

of features implemented are:

• FEATURE vATP: the line speed (maximum permissible velocity) to be en-

forced during simulation. This is analogous in function to Automatic

Train Protection (ATP) systems, which prevent the driver accidentally

exceeding speed restrictions. Each feature gives the gradient (m) and

intercept (c) of the linear function (v = md+c). Over the whole journey

these features are described by a continuous piecewise linear function of

the line speed limit. No step discontinuities are allowed between consec-

utive linear pieces. This guarantees that either v max old or v max new

will store the lowest speed restriction passed while the distance-step was

being taken, preventing the algorithm in stage G missing brief drops in

line speed.

• FEATURE aGrad: the component of train acceleration due to the track

gradient. When pre-calculating journey features the train length and

mass distribution of the train are assumed to be constant. This allows

the net force on the train to be calculated at each point along the line.

Since the train’s mass is constant the acceleration at each point is stored

as this reduces the calculation during simulation. Again, each feature

stores the gradient (m) and intercept (c) of a linear function (this time,

a = md+ c).

• FEATURE block entry: the position at which the train enters a new

145

signal block. When this is encountered the signalling block ID (bID),

the train ID (tID), and the speed and time at which the train enters the

block are all saved. This information is needed for headway checking,

detailed in Section 5.4.5. The sign of the speed is used to encode whether

the train is entering or leaving a signalling block (-ve for entry, +ve for

exit). Also, since the exact position of the block entry will always be

passed while taking the last distance-step, both the time and speed are

rounded to the worst case values. It should be noted that the signalling

block ID referred to here is unrelated to the block ID used by the CUDA

programming model.

• FEATURE block exit: the position at which the train clears a signal

block. (See description of block entry)

• FEATURE end: signifies the end of the journey. Until this point totalE

has actually stored the sum of the acceleration due to traction force over

all distance-steps. Since distance steps are of a constant size, multiplica-

tion by mass and distance only happens once at the end of each journey

rather than once for every distance-step taken.

Finally, the next feature is retrieved and its position checked against the

current train position. This allows multiple features to be at the same position

on the journey and still be processed correctly.

while (true) {

while (d >= nextF_d) {

// Update accumulators

cached_counter = 0;

totalT += cachedT;

146

cachedT = 0.0f;

totalE += cachedE;

cachedE = 0.0f;

// Process journey feature

switch (nextF -> get_type())

{

case FEATURE_vATP:

vATP.set(nextF -> get_m(), nextF->get_c());

v_max_old = fminf(v_max_old, vATP.f(nextF_d));

break;

case FEATURE_aGrad:

aGrad.set(nextF -> get_m(), nextF -> get_m());

break;

case FEATURE_block_entry:

nextB -> set(nextF -> get_id(), trainID,

-fmaxf(v, v_old), totalT-deltaT);

nextB += pSIZE;

break;

case FEATURE_block_exit:

nextB -> set(nextF -> get_id(), trainID,

fmaxf(v, v_old), totalT);

nextB += pSIZE;

break;

case FEATURE_end:

outT[jID * pSIZE + pID] = totalT;

penE[jID * pSIZE + pID] =

147

totalE * thisR.get_mass() * deltaD +

totalT * thisR.get_hotelPow();

return;

}

++nextF;

nextF_d = nextF -> get_d();

}

C Load the next control point

Instead of each thread loading the next control action individually, at the

point it will be applied, all the threads load their next control action at the

same position and then hold it in a register until the point when it must be

applied. This requires that all control sequences for a given journey are the

same length (though they may vary between different journeys) and that each

control point lies within a predefined distance range. A more detailed discus-

sion of the control sequence is given in Section 5.3.5 . This is another example

of how taking distance-steps during simulation prevents thread divergence and

enables coalesced global memory access. The while loop is necessary to cor-

rectly update control in the case that the control point lies within deltaD of

the start of the next distance range or deltaD > controlD.

while (d >= d_read_nextC)

{

c = c_bufferC;

d_bufferC = nextC -> get_d();

c_bufferC = nextC -> get_c();

nextC += pSIZE;

d_bufferC += controlD;

148

}

D Update the current control action

Since the distance at which each new control action is defined will vary between

each individual in the population, it is likely that some threads will execute

these instructions while others will be left idle. This intra-warp divergence has

a negative impact on the overall performance but since this branch contains

very few instructions the overall effect is likely to be very small. Also, notice

stages B, C and D are all within conditional statements based on distance so

are only executed intermittently, as the train reaches a specific distance along

the journey.

if (d >= d_bufferC)

{

c = c_bufferC;

d_bufferC = FLT_MAX;

}

E Update speed restrictions

Before the next distance-step can be simulated the speed restrictions must be

calculated for the current position. Ideally, the trajectory would be checked

against the exact profile of the speed limit but this would be relatively time

consuming. Instead, the most restrictive speed limit passed (during the current

distance-step) is used when implementing vATP. This is sufficient for safe

operation and will follow the exact profile of the speed limit more closely as

smaller distance-steps (∆d) are taken.

149

v_max_old = v_max_new;

v_max_new = vATP.f (d + deltaD);

v_max = fminf (v_max_old, v_max_new);

F Calculate components of acceleration

Components of each train’s acceleration are grouped into two variables: ac-

celeration due to traction or braking (a c), and acceleration due to external

factors like resistance and gradients (a). The current control action (c) deter-

mines the initial value of a c which will start off as some fraction of either the

maximum acceleration (resulting from maximum traction) or the minimum

acceleration (resulting from maximum service braking).

a = aGrad.f(d) - thisR.get_resistanceAcc(v);

a_cmin = -thisR.get_brakingAcc(v);

if (c > 0.0f)

a_c = c * thisR.get_tractionAcc(v);

else

a_c = -c * a_cmin;

G Amend control acceleration

The train must obey the speed limits so the control accelerations needed to

maintain these are calculated (a vmax and v vmin). As well as the maximum

velocity, a minimum velocity was also defined (V MIN = 0.1 m/s) to prevent

non-positive velocities occurring and causing divide by zero errors or erroneous

results. These limits are then enforced by modifying the control acceleration

as necessary. The maximum speed limit is treated as ‘soft’ limit so is only

kept as far as realistic traction limits allow. This means the maximum speed

limit (defined by the FEATURE vATP features) should include a safety tolerance

150

as discussed in Section 5.3.3. Where a line speed is reduced a vmax should low

enough that the train can apply maximum service braking to meet this speed

restriction. In contrast, the minimum speed limit is enforced as a ‘hard’ limit

as the model cannot handle non-positive velocities. The implicit assumption

here is that the train will always be able to produce the required traction

force (i.e. a cmax ≤ a vmin). This will be an acceptable assumption for most

passenger trains but may be problematic for freight, where a lower power

to weight ratio makes getting stuck on a steep incline a realistic possibility.

A solution to this would be to use the journey features in step B to define

a variable minimum speed limit which could be pre-calculated to include a

safety tolerance. Finally, once the control acceleration has been checked (and

possibly corrected) the net acceleration of the train can be calculated.

a_vmax = (v_max * v_max - v * v)/(2.0f * deltaD) - a;

a_vmin = (V_MIN * V_MIN - v * v)/(2.0f * deltaD) - a;

if (a_c > a_vmax)

a_c = (a_vmax < a_cmin) ? a_cmin : a_vmax;

if (a_c < a_vmin)

a_c = a_vmin;

a += a_c;

H Take distance-step

The new speed and time of the train are calculated by assuming linear ac-

celeration over a small distance-step (deltaD, referred to elsewhere as ∆d).

The traction (or regeneration) efficiency may vary with velocity so, as with

the other functions of v, the change in total energy consumption is calculated

before v is updated.

151

if (a_c > 0.0f)

cachedE += a_c / thisR.get_tractionEff(v);

else

cachedE += a_c * thisR.get_regenEff(v);

d += deltaD;

v_old = v;

v = sqrt(v * v + 2.0f * a * deltaD);

deltaT = (2.0f * deltaD) / (v + v_old);

cachedT += deltaT;

I Update cached accumulators

As discussed in step A a good balance of performance and accuracy is achieved

by using single-precision floating-point variables (t cached and e cached) to

cache changes in the total energy and total time accumulators (totalE and

totalT respectively - both double-precision floating-point variables). However,

this method requires the cache variables to be regularly added to the totals

and then be reset. This is implemented using a counter (cached counter),

which is incremented once every distance-step simulated. Usually (49 out of

every 50 cycles) the accumulators will not be updated, minimising the total

number of double-precision floating point operations that must be performed.

The simulation loop is then run again, continuing until a FEATURE end journey

feature is encountered.

++cached_counter;

if (cached_counter >= 50) {

cached_counter = 0;

totalT += cachedT;

152

cachedT = 0.0f;

totalE += cachedE;

cachedE = 0.0f;

}

}

}

5.4.4 Timing synchronisation

The parallelisation strategy chosen in Section 5.3.2 means that all journeys

are simulated independently of one another. As a direct consequence of this,

all times output from the journey simulation stage are given relative to the

departure time at the start of each journey. However, one train may be sched-

uled to make a number of stops and, since a journey is defined as the motion

of a train between two consecutive stops, the true departure time is dependent

on the traverse times of any preceding journeys that train has made and the

dwell times at each station stop. This means that before train punctuality

can be calculated, the timings for all journeys must be synchronised with each

other. Timing synchronisation is also necessary for any data recorded due

to journey features - this means signal block entry and exits times must be

synchronised to a single, network wide, time frame. This involves adding the

true departure time to the time that has been recorded for each block event.

First, the true departure times are calculated for each journey. As always,

when devising an efficient GPU algorithm to do this, it is important to consider

global memory access patterns. All data output from journey simulation uses

the index within the population (pID) as the column index for each array. This

means, when choosing a parallelisation strategy for timing synchronisation,

it makes sense to have each thread operating on the times from a different

153

pID. The CUDA abstraction requires that these threads are organised into

thread blocks (which are not to be confused with signalling blocks used in

interlocking). Each thread block must executed independently of the others

so, since each arrival time only depends on the preceding journeys made by that

train, one thread block is used for each train (indexed by tID). Consecutive

journeys of each train are indexed by consecutive jIDs, which allows a look-up

array (jiD from tID) to be used to convert from tID to jID. This is similar

to the compressed data storage format illustrated in Figure 5.12, but with an

extra dimension (each array element contains another array indexed by pID).

// define CUDA kernal

__global__ void syncT (

unsigned int pSIZE,

const unsigned int* jID_from_tID,

const schedule_class* allS,

const float* allDwells,

const float* outT,

float* depT,

float* penT,

curandStatePhilox4_32_10_t* RNGStatesSim,

bool with_noise)

{

// Map launch configuration on to problem

unsigned int tID = blockIdx.x;

unsigned int pID = blockIdx.y * TILE_SIZE_pop + threadIdx.x;

if (pID >= pSIZE)

return;

154

// look-up jID using tID

unsigned int jID = jID_from_tID[tID];

unsigned int jID_end = jID_from_tID[tID + 1];

Next, the other variables used in the kernel are defined. Since t is an

accumulator, a double precision floating point data type is used to minimise

the impact of rounding errors. The random number state is only loaded if

randomly varying the dwell time (giving a G6 the potential for using robust

optimisations of the type described in Chapter 4).

// define thread variables

double t = -FLT_MAX;

schedule_class tempS;

float dwell_time;

curandStatePhilox4_32_10_t local_curandState;

if (with_noise)

local_curandState = RNGStatesSim[tID * pSIZE + pID];

Finally, a loop is run within the kernel, iterating over all the journeys that

train makes, in the sequence with which they are scheduled (allS). The dwell

time is calculated and added to the arrival time. This yields the departure

time for the start of the current journey, which is saved to a global array (depT)

with the same format as the traverse times output from journey simulation

(outT). This traverse time is then added to the departure time to give the

arrival time at the end of the journey, which allows the punctually of each

train journey to be evaluated. Again, the same memory format as outT is

155

used for penT. All memory access are either coalesced or broadcast via L1

cache.

// for all the journeys made by this train

while (jID < jID_end)

{

tempS = allS[jID];

// find the departure time

dwell_time = fmax (tempS.get_minDwell (),

allDwells[jID * pSIZE + pID]);

if (with_noise)

dwell_time = fmax (dwell_time,

tempS.get_meanDwell () +

tempS.get_sdDwell () *

curand_normal (&local_curandState));

t = fmax (tempS.get_depart (),

float (t + dwell_time));

depT[jID * pSIZE + pID] = float (t);

// find the arrival time and calculate the punctuality

t += outT[jID * pSIZE + pID];

penT[jID * pSIZE + pID] = (float)t-tempS.get_arrive();

++jID;

}

if (with_noise)

RNGStatesSim[tID * pSIZE + pID] = local_curandState;

}

Once the true departure times for each journey have been calculated, it

156

is trivial to synchronise signal block events. Efficient memory access patterns

can be achieved for this using the same parallelisation strategy as used for the

journey simulation stage in Section 5.4.3.

5.4.5 Compatibility check

Once all the timings have been synchronised, signal block events must be

compared to establish to what extent each candidate network control strategy

results in train movements that that maintain safe operational headways. In

the case that no headway violations are found, this gives the same safety

guarantees as a signalling system. However, checking the compatibility of

signal block events only occurs after all train movements have been simulated.

This makes it very different to a signalling system, where train movements are

affected by the state of the signals. The design decision to have ‘soft’ headway

constraints was made in Section 5.3.1, and enabled the choice of parallelisation

strategy used for journey simulation. Readers familiar with railway signalling

may initially be horrified by the idea of ‘soft’ headway constraints. However,

this does not mean unsafe candidate solutions will be tolerated in the final

result. Instead, it is a common optimisation technique used to bias candidate

control strategies during the optimisation towards better solutions.

Before the level of compatibility between interlocked signalling blocks can

be calculated, it is necessary to pair together the entry and exit events that

together define how long a train occupied that block for. First the blocks

events are sorted by their block index (bID), then by the train index (tID),

and then by the times at which the order events occur. This order turns out to

be independent of the control strategy applied so, instead of performing this

sort after every round of evaluation, the mapping between the array of signal

block events output form journey simulation (outB) and the sorted array of

157

Figure 5.14: The six possible situations when comparing exit and entry
times of two signal block occupancies.

block events (sortB) is stored in another array. By iterating through the

indices of sortB, the sorting and pairing of block events can be done together,

minimising the number of memory transfers. If no pair is found then it can be

assumed that the train entered the block a time minus infinity, or else exited

the block at time plus infinity. Again, good memory access patterns can be

ensured by consecutive thread should operate on the signal block events with

a consecutive population index pID.

Once the sorted array of signal block occupancy pairs has been created,

the interlocking between signal blocks is used for compatibility checking. The

first stage when checking compatibility between two blocks is to establish if

the time period they are occupied for overlap. Figure 5.14 illustrates the six

possible situations when comparing timing of two blocks. In cases 1 and 2

there will be no interaction between trains as they the times they are in the

signal block do not overlap. As well as specifying which (dependent) signal

blocks are effected by each (independent) signal block, the interlocking data

158

must also specify how they are interlocked. This is done be specifying the

maximum permissible exit velocity (v exit) as discussed in Section 5.3.4. If

two signal blocks interlocked and their occupancy overlaps then safe operation

is only guaranteed if the speed of the train in the dependent block is below

v exit. If this is not the case then block compatibility checking will give a

signal block penalty (penB) proportional to the magnitude of the over-speed.

A special case is when v exit = 0, which can never be kept as the velocity of

all trains will always be greater than V MIN (see Section G). This means v exit

= 0 is equivalent to a red aspect being displayed at the entry of the dependent

signal block if the independent signal block is occupied. In this instance, cases

3 to 6 are penalised proportional to the minimum difference in time that that

would be needed to avoid a collision. For cases 3 and 4 this is simply the time

the overlap occurred for. This gives the optimisation important information

about which candidate solution is closer to achieving safe operation. Again,

good memory access patterns can be ensured by consecutive threads operating

on the signal block events with a consecutive population indices (pID). Since,

at the very least, the occupancies of each signal block must be compared

against themselves, one CUDA block was launched for each signal block.

Within each block, sortB elements are not ordered by time but first by

trains index (tID) and then by time. This means that an all on all compar-

ison must be used when checking the compatibility between different block

occupancies. While this did not result in excessive execution times when op-

timising network N1 (see Section 5.7) it will scale as the square of the number

of elements in each block. An improvement that could be made would be to

add another step, sorting sortB by bID and then time. This would allow early

termination when comparing signal block occupancies.

159

5.4.6 Scoring

The final stage of evaluating a population of candidate control strategies is

to output a score. This score was found by summation of the penalties penE,

penT and penB, produced in Sections 5.4.3, 5.4.4 and 5.4.5 respectively. Yet

again, good memory access patterns can be ensured by consecutive thread

should operate on the signal block events with a consecutive population index

pID.

5.5 Optimisation algorithms

The GPU accelerated simulation G6, is compatible with any type of popula-

tion based heuristic optimisation. In order to minimise data transfer between

the host and the device it is desirable to also run the optimisation on the GPU.

For simplicity of efficient implementation on the GPU, a fine-grained genetic

algorithm was implemented, although roulette-wheel selection could also be

used (see appendix III) but would require an additional step to sort scores.

Once selection has taken place the, using the fine-grained GA described in

Section 5.5.1, genetic operators must be applied the to new generation of can-

didate solutions. Model G6 has different different control variables to previous

models:

• each control distance (dx) now lies within a fixed range

• each control action(cx) is now a continuous variable (between -1 and +1)

• a new control variable to define the minimum dwell time at each stop is

now introduced

This means that the previous genetic operators cannot be used unmodified.

Also, since it is important to minimised the amount of global memory access,

160

Figure 5.15: The structure of the spacial population for the fine-grained
GA. Candidate solution on the edges of the population are neighbours
with the opposite end of their row or column. Two parents are selected
from the vertical and horizontal neighbourhood (both including the
central point).

both mutation and crossover operators are applied in the same stage, described

in Section 5.5.2.

5.5.1 Fine-grained selection

Fine-grained GAs map the population to a spacial distribution and perform

selection and reproduction locally. This maps well to GPU hardware Yu et al.

[81]. The fine-grained GA implemented in G6 maps the population to a 2D

network, illustrated in Figure 5.15. Since two parents must be selected, elitist

selection was used to select the first parent from the vertical neighbours and

the second parent from the horizontal neighbours.

5.5.2 Breeding

Once two parents have been selected, reproduction be carried out. Since the

control strategies for each journey can be changes independently of one an-

other on CADA block was launched for each jID with consecutive threads

161

operating on control strategies with consecutive population indices pID. This

is the parallelisation used in journey simulation. First the parent was chosen

based on the probability of crossover. This means that whole journeys are ex-

changed between each candidate solution rather than performing the crossover

half way through the journey. The probability of mutation was also applied

to each journey. If mutation took place the dwell time and each control point

were modified randomly (by predefined standard deviations) whilst copying

from the parent to the new population index. By using a fine grained GA,

memory throughput is optimised as there is a increased chance that consecu-

tive threads will access control strategies with consecutive population indices

pID. It may be that the spatial mapping of the population can be optimised

to increase the chance of this even further.

5.6 Validation and sensitivity analysis

Sections 5.4 and 5.5 described the development of the new, GPU accelerated,

simulation and optimisation G6. It is important to validate the accuracy of

this simulation. This ensures that the underlying algorithms are correct and

also that they were implementation correctly. However, as G6 uses a distance-

stepping simulation (assuming linear acceleration over the small distance in-

terval ∆d) the size of ∆d used will also affect the accuracy of the simulation.

For this reason, validation of G6 is carried out against G5 in combined with a

sensitivity analysis of ∆d. The validation shows good agreement subject to a

realistic choice of problem discreetisation.

Since the simulation used in optimisations G1 to G5 has already been

validated against literature (see Section 3.1.4), this simulation was used to

validate the accuracy of the G6. To do this, 100 random initialisations were

162

Table 5.2: Sensitivity analysis of the step length (∆d) using in G6
compared to G5 (∆t = 1 s). The difference in simulated energy con-
sumption and traverse time was calculated for 600 journeys at each
∆d.

% error in energy % error in time
∆d /m mean σ mean σ

0.01 0.2 0.7 11.8 1.1
0.1 -0.9 0.7 8.1 1.5
1 -1.0 0.8 6.3 1.9
10 -1.1 0.7 1.6 1.8
50 -0.9 0.9 0.2 1.3
100 -0.5 1.1 -0.5 1.2
1000 4.6 10.6 -0.1 112.5

carried out using G5. G5 used the same model parameters as used in Chapter

4, with both training and utilisation noise level set to zero. The best control

strategy from each initialisation was saved, along with the simulated energy

consumption and traverse time for each journey. These control strategies were

of the form described in Figure 3.2, where each control point specifies the

distance at which control is switched between maximum traction and coasting.

All 100 control strategies were then converted to the form used in G6 (see

Section 5.3.5) using a controlD of 500 m. This ensured that minimum distance

between operational transitions (defined in Table 3.1) could be maintained and

all control strategies used G6 stored identical information to those used in G5.

These control strategies were then used to initialise G6 (population size =

100) and simulation performed with ∆d =1 cm, 10 cm, 1 m, 10 m, 50 m, 100

m and 1 km. The results from this are shown in Table 5.2 and Figure 5.16,

and will be discussed starting will large ∆d and moving to smaller ∆d.

The simulation in G6 uses a distance-stepping model (assuming linear ac-

celeration over the small distance interval ∆d) so it is expected that using a

large ∆d will result in poor approximation of non-linear characteristics. Since

163

Figure 5.16: Sensitivity analysis

the maximum traction force of the train decreases with velocity it is unsur-

prising that the simulations using ∆d = 1 km yield trajectories with faster

acceleration and therefore an increased average energy consumption on each

journey. However, using the same logic, the average traverse times for each

journey should be significantly reduced, but this is not the case. The reason

for this is alluded to by the large standard deviation in the journey time error

(over 112% for ∆d = 1 km). Each control point is only applied from the dis-

tance step after it is passed, so increasing ∆d causes a decrease in the accuracy

with which control is applied. This effect is illustrated by the trajectories in

Figure 5.17. In the 100 network control strategies simulated at ∆d = 1 km

this led to one particularly extreme case, where a traction control point was

superseded by the next coasting control point before it was ever applied. This

caused the train to coast until it reached the minimum allowed velocity (0.1

164

m/s), resulting in an extremely long traverse time of 12690.5 s. Without this

one journey the mean error in traverse time would be -1.9%.

It would be possible to modify the simulation in G6 to reduce the extent of

errors caused both of these effects at large ∆d. Firstly, a Runge-Kutta method

could be used to reduce the error caused by assuming constant acceleration

over each distance step. Secondly, maintaining a minimum distance between

operational transition which is greater than ∆d would ensure that no control

points are ‘lost’ during simulation. Also, where control changes, it would be

possible to take an additional step in the simulation. This would ensure that

each control point is applied at exactly the right distance, but is likely to cause

thread divergence (and therefore increased execution time on the GPU) unless

∆d ≥ controlD. However, this idea may be worth implementing for journey

features, which will sufferer from the same decrease in accuracy at large ∆d

but will not cause thread divergence. A compromise, to increase the accuracy

of control application without causing thread divergence, would be to average

the control applied over that distance step. While this is unlikely to give the

‘correct’ answer, weighting each control according to the distance it is applied

for may reduce the total size of the error.

Similar to G6, G5 uses a discretized model but assumes a linear acceleration

over the small time interval ∆t = 1 s. It is likely that the two models will best

agree when resolutions of the simulations are most similar. The mean traverse

time simulated by G5 was 772.4 s which, given ∆t = 1 s and journeys of 30

km, is equivalent to an average distance step of 38.8 m. This fits well with the

observations in Figure 5.16, where the simulation with G6 and ∆d = 100 m

gave the smallest difference in traverse time and energy consumption compared

to simulation by G5. ∆d = 10 m was also relatively similar but with a slightly

decreased average energy consumption and increased traverse time over each

165

Figure 5.17: Train trajectories simulated by G6 illustrate two sources
of modelling error caused by taking large ∆d steps. (i) before reaching
the first control point the train velocities have diverged due to reduced
accuracy with which large ∆d can model the non-linear traction char-
acteristics of the train. (ii) the first control point is at 4151.9 m but is
only applied from the distance step after it is passed. This leads to a
reduction in the accuracy of control point application as ∆d increases,
in this case longer application of maximum traction before coasting is
applied.

166

Figure 5.18: Train trajectories simulated by G6 - brake to stop.

journey. This difference between G5 and G6, when ∆d = 10 m, is likely due

to the increased accuracy of G6 resulting in simulation of train trajectories

with slightly reduced acceleration. This effect is illustrated in Figure 5.17 and

accounts for the difference in velocity when passing the first control point at

4151.9 m.

As ∆d decrease below 10 m it might be expected that the simulation would

be able to model non-linearities even more accurately. However, while this

appears to be the case at ∆d = 1 m, the increase in accuracy over ∆d = 10

m is small and other factors lead to a decrease in the overall accuracy of

the simulation. Figure 5.18 illustrates the largest of these factors - how the

train brakes to a stop at the end of a journey. Braking is triggered when

a train’s velocity is greater than the automatic train protection speed limit

167

(vATP) defined by a series of journey features (see Section 5.3.3). In G6 the

vATP limit is re-calculated each distance step using single-precision floating

point arithmetic. Floating points numbers have a limited precision so lose

accuracy when adding numbers of very different scales or subtracting very

similar numbers. In this case, vATP is very close to zero so loss of precision is

caused by the later and will increase if longer journeys are simulated. When

simulating with ∆d = 10 m the rounding error in vATP is not a problem as it

can be seen in Figure 5.18 that the train applies maximum service braking and

is almost stationary at the end of the journey. It is expected that the simulated

trajectories will be above the vATP limit as this limit was calculated by making

a piece-wise linear approximation, rounding down from the maximum braking

trajectory (see Section 5.3.3). However, the trajectory resulting from the

∆d = 1 m simulation using G6 is able to reach the vATP limit before the end

of the journey causing it to travel the last 4 m of the journey at the minimum

allowed speed of 0.1 m/s. This final 4 m will add just under 40 s to the

overall journey time. If all journey times in the ∆d = 1 m simulations were

extended by a similar amount then this would account for the 4.7% increase

in the average journey time between ∆d = 10 m and ∆d = 1 m simulations

(see Table 5.2).

To overcome this, the vATP limit could be defined using:

vATP = m(d+ c′) (5.12)

where m is the same as the constant m used in Equation (5.1) and c′ is a

related to the constant c in Equation (5.1) by the relation c′ = c/m.

This allows the subtraction to occur before the multiplication so, since

Section 5.4.3.A has already considered the accuracy associated with a single-

168

precision floating point representation of distance, we can be confident that

Equation (5.12) will not suffer from the same rounding error as Equation (5.1).

Also, since the train can not come to rest during the journey simulation, it

makes sense to specify an allowed level of residual velocity at the end of the

journey. This could take the form of low but constant speed limit at the end

of the journey, the exact form of which is a topic for further research.

Finally, at very small ∆d (≤ 1 cm) it is likely that accumulation of floating

point arithmetic errors further decreases accuracy of the simulation. The use

of double-precision floating point numbers is probably the best way to reduce

this sort of error, but will come at the cost of a greatly increased execution

time on most consumer GPUs.

5.7 Measuring performance

Having established in Section 5.6 that the accuracy of G6 shows good agree-

ment for 10 ≤ ∆d ≤ 100 m, the execution speed of G6 can now be investigated.

This was carried out using a relatively low specification desktop computer, 2.4

GHz Intel Core Duo E4600 with 2 GB RAM, equipped with one 1.084 GHz

GeForce GTX 750 Ti with 2 GB RAM. To allow comparison with previous

models, optimisations using G6 were performed on network N1, using the

same target schedule and cost function as Chapter 4. Since ∆d = 50 m has

been shown to give a similar accuracy to previous models, this was chosen as

the step length for simulation. Also, the population size used was varied to

demonstrate the full potential of G6. Execution times included the time spend

reading in the problem description and the random initialisation of the popu-

lation, and were recorded using the time elapsed between the start and end of

each optimisation. The results of these optimisations are shown in Table 5.3.

169

Table 5.3: Comparison of the rate at which different models can eval-
uate candidate solutions. Y1 and G1 both used ∆t = 1 s and their
execution times were from [44, Table 4] and Table 3.3 respectively.
Optimisations using G6 used ∆d = 50 m and were repeated 10 times.

mean execution time

model pop size Generations
whole
optimisation /s

per candidate
solution
simulated /ms

speed-up factor
(per candidate
solution simulated)

Y1 40 800 463 14.5 1
G1 40 800 82.4 2.58 6
G6 40 800 0.658 0.0206 704
G6 64 800 0.663 0.0130 1117
G6 1024 800 1.54 0.001889 7673

It is clear from the results in Table 5.3 that G6 affords a significant speed-

up compared to both Y1 and G1. The same simulation used in G1 was also

used in G2 to G5. When pop size = 40, G6 simulated each candidate solution

over 100 times faster than G1. However, it is expected that the efficiency of

computation will increase if pop size is a multiple of 32. This is because GPUs

execute threads in batches of 32, and the parallelisation strategy (discussed in

Section 5.3.2) means the total number of threads is a multiple of the population

size. When pop size = 64, the optimisation evaluated 60% more candidate

solutions compared with pop size = 40, but the total increase in simulation

time was less than 1%.

Also, as discussed in Section 5.2.2, GPUs hide memory latency by switching

between different blocks of threads. This means enough blocks must be active

to hide memory latency and minimise the total execution time. For the journey

simulation stage, the number of CUDA blocks is determined by:

number of journeys ∗ ceil(pop size

TILE SIZE pop
) (5.13)

where the ceil operation rounds up to the nearest integer. Only 6 journeys are

170

being simulated in this optimisation and TILE SIZE pop = 128, so pop size =

64 will only allow CUDA to launch 6 blocks. This will not be enough to all to

fully hide hide memory latancy on the GTX 750 Ti used in this investigation.

It is possible to increase the number of CUDA blocks available for the GPU to

schedule by increasing the pop size. Using G6 with pop size = 1024 means

a total of 48 blocks are launched for the journey simulation stage. Again,

the results in Table 5.3 show that increasing pop size greatly increases the

aggregate speed with which candidate solutions are evaluated. This is due

the increased latency hiding when launching more blocks and allows G6 an

increase in execution speed of three orders of magnitude compared with G1.

For pop size = 1024, the journey simulation stage (discussed in Section 5.4.3)

took 92% of the total kernel execution time, suggesting it is still the most

critical step determining the total execution speed.

While the three orders of magnitude speed-up between G1 and G6 is useful

in practice, it is specific to both the algorithm implementation and the hard-

ware used to execute them. We can get an idea of the potential speed-up due

to hardware by comparing the theoretical throughput of the specific hardware

used. The CPU used to evaluate G1 was an AMD Phenom II N850@2.2 GHz

(see Section 3.1.5). No multi-threading was implemented and double precision

arithmetic was used so the theoretic throughput of 8.8 GFLOP/s is given by:

the number of double precision floating-point operations per second (4 for the

AMD K10 processor family) multiplied by the number for cycles per second

(the clock speed of 2.2 GHz). G6 was evaluated on a GTX 750Ti GPU which

is listed as having a theoretical peak throughput of 1,389 GFLOP/s for single

precision floating-point operations. This suggests that of the reported 1238

times speed-up factor between G1 and G6, a factor of over 150 is potentially

due to hardware differences alone, with the other factor of 8 split between al-

171

gorithmic improvements and a more highly optimised implementation for the

GPU architecture. However, this speed up due to hardware is only made possi-

ble because the new algorithms have been optimised for the GPU architecture.

Many of the same optimisations developed for G6 (e.g. parallel execution, safe

use of single precision floating point variables, journey features, etc.) should

be equally effective in optimising CPU based algorithms. Papers such as Lee

et al. [82] are a reminder that it is important to optimise the CPU implemen-

tation before a fair comparison can be made. However, due to the trend in

Figure 5.3 it is expected that the benefit from execution on GPU architecture

will still afford a 10 times speed-up, even with similar levels of optimisation

for the CPU and GPU implementations.

G6 has shown to greatly increase the speed at which candidate solutions

can be evaluated compared to previous multi-train simulations. When per-

forming heuristic optimisations the ability to evaluate the performance of can-

didate solutions faster is always advantageous. This could be used to give

the same level of optimisation in a shorter time, better local optimisation (by

running the optimisation for more iterations), or a better ability to cope un-

certainty and avoid local minima (by using a larger population size). However,

due to the new form of control strategy implemented in G6, effective optimi-

sation will only be achieved once the optimisation algorithms and parameters

have been tuned this specific representation of the multi-train trajectory plan-

ning problem. This should not be considered a trivial task and is analogous

to the work described in Chapter 3. To illustrate this, the trajectories result-

ing from 10 optimisation with G6 (pop size = 40) are shown in Figure 5.19.

This is similar to Figure 3.11, illustrating both a strong consensus between

the solutions in some areas and a large degree of local variation in other areas.

172

F
ig

u
re

5.
19

:
T

h
e

co
n

si
st

en
cy

of
tr

a
in

tr
a

je
ct

or
ie

s
fo

u
n

d
u

si
n

g
G

6
(p
o
p
s
i
z
e

=
40

)
to

op
ti

m
is

e
N

1.
T

ra
je

ct
or

ie
s

fr
om

10
in

d
ep

en
d

en
tl

y
o
p

ti
m

is
ed

n
et

w
o
rk

co
n
tr

ol
st

ra
te

gi
es

ar
e

ov
er

la
id

.

173

Chapter 6

Conclusions and further work

6.1 Conclusions

In this thesis, several new algorithms have been proposed and demonstrated to

improve multi-train trajectory planning. A generalizable procedure has been

proposed for multi-train trajectory planning in the presence of uncertainty and

a new multi-train simulator has been developed for accelerating population

based heuristic optimisations of train movement.

In Chapter 3, several improvements were proposed and demonstrated to

advance the capability of the multi-train trajectory optimisation originally

proposed by Yang et al. [44]. The published model and optimisation was im-

plemented as G1 and validated against the published results. After carrying

out repeated optimisation using G1, the control strategies produced were ex-

amined and two problems identified. Firstly, there was a large local variation

in the position of some control points after optimisation, suggesting poor local

optimisation. A less-constraining mutation operation was proposed in Section

3.2 and demonstrated to improve the local optimisation of the GA. Secondly,

once the local optimisation performance had been improved, a specific type of

175

local minimal was also identified in Section 3.3. For a trajectory defined by

traction coasting pairs, the mutation operation introduces variation in the po-

sition of the control points. If the control strategy becomes limited by a region

of reduced line speed, and this region is much longer that the maximum muta-

tion distance, then unfavourable intermediate control strategies must persist

for several generations in order for a control point to pass from one side of

the region to the other. To overcome this, and ensure that control points

cannot become excluded from a region where they are needed, a procedure to

insert and delete pairs of control points was proposed. These were shown to

further increase the quality of solutions found by the GA optimisation. These

improved operations were combined in optimisation G4, the performance of

which was investigated in Section 3.4. G4 was shown to optimise an average

of 27.6% further than G1 when compared with randomly initialised solutions.

This was achieved in combination with increased consistency (1/28th of the

standard deviation in objective score of solutions), and faster GA convergence

(less than one-quarter the number of generations). This improved optimisation

consistency allowed a more detailed investigation of the effect of varying α, the

weighting between different objectives in the cost function, to be conducted

in Section 3.5.1. For the system studied, the components of the objective

function respond like step functions with regard to variation in α, causing the

optimal objective solutions to switch rapidly between the extreme solutions of

minimum time and minimum energy.

When planning train trajectories it is important to consider the robustness

of control strategies if they are to be implemented in real systems. Real sys-

tems contain many uncertainties, two of which were investigated in Chapter

4: the accuracy of control point application, and variations in station dwell

times. The highly optimised control strategies found by G4 performed well

176

when utilised in a system with no uncertainty, but quickly degraded as the

level of uncertainties increased. To address this, a new, genetic algorithm

based, optimisation procedure was described in Section 4.2. This procedure

seeks to find robust solutions to the multi-train trajectory planning problem

and is easily generalizable to include many different uncertainties in the sys-

tem. Here it was implemented as optimisation G5, and shown to be effective

in finding robust control strategies in the presence of both types of uncertainty

under investigation. These uncertainties were first considered separately, in

Sections 4.3.2 and 4.3.3, before it was demonstrated, in Section 4.3.4, that they

could be considered simultaneously in the optimisation and still achieve simi-

lar levels of robustness. For both types of uncertainty investigated, a trade-off

between the robustness and the expected score of the solution was observed,

reminding us that robustness is not cost free. This means that for best results

the training noise level used during the optimisation progress should reflect,

as accurately as possible, the noise level that will be experienced when the

optimised control strategy is utilised. A procedure for estimating the perfor-

mance of a closed-loop optimisation was also developed and investigated in

Section 4.4. As would be expected, this achieved better performance than

open-loop solutions found by both the non-robust (G4) or robust (G5) opti-

misations. However, for the system and noise levels investigated, the robust

open-loop solutions were found to afford up to 55% of the benefit of closed-

loop control (compared to non-robust solutions). This suggests the proposed

robust optimisation may be worth further investigation, especially considering

that open-loop solutions can influence implementation (e.g. via DAS) without

the communication infrastructure and real-time optimisation required by for

optimised closed-loop control.

Chapter 5 documents the development of a new multi-train simulator, de-

177

signed to accelerate population based heuristic optimisations using a GPU.

This new model and optimisation, G6, also removes many of the limitations

of the model used in optimisations G1 to G5. Firstly, soft constraints mean

information stored in invalid candidate solutions is no longer discarded, re-

ducing the number of wasted calculations. They also allow a high level of

parallelisation, which is important for algorithms targeting a GPU architec-

ture, and make integrated scheduling and trajectory optimisation possible to

some extent. Secondly, the simulation is now capable of modelling junctions,

allowing more realistic networks to be modelled. Thirdly, as well as encoding

the position at which it should be applied, each control point also encodes

the full range of control action possible (from maximum service braking to

maximum traction). This increases the number of control strategies that can

be defined. Fourthly, G6 was designed for efficient implementation on parallel

architectures. All parts of the simulation and GA were moved onto the GPU,

removing the need to slow memory transfers between the host and device.

Also, the data structure and algorithms proposed were designed together, to

maximise coalesced memory access on the GPU. Finally, in Section 5.6, G6

was validated against previous multi-train simulation. A sensitivity analy-

sis of ∆d, the resolution used during journey simulation, was conducted and

showed agreement subject to realistic choice of problem discreetisation. For

10 ≤ ∆d ≤ 100 m the average energy consumption and traverse time of jour-

neys simulated by G6 were within 1.6% of the values evaluated by G4. On a

low specification desktop computer, equipped with a £110 GPU, G6 was able

to simulate journeys at an aggregate rate of over 95,000,000 km/s (∆d = 50

m). This constitutes a 3 orders of magnitude speed-up over G4 (∆t = 1 s) and

is the equivalent of simulating a 250 km journey (e.g. from Sheffield to Lon-

don) in under 2.5 µs. When performing heuristic optimisations the ability to

178

evaluate the performance of candidate solutions faster is always advantageous.

However, due to the new form of control strategy implemented in G6, effec-

tive optimisation will only be achieved once the optimisation algorithms and

parameters have been tuned this specific representation of the multi-train tra-

jectory planning problem. This should not be considered a trivial task and is

analogous to the work described in Chapter 3. Once an effective optimisation

has been developed to use with G6, the greatly increased rate of simulation

could be used to give the same level of optimisation in a shorter time, bet-

ter local optimisation (by running the optimisation for more iterations), or a

better ability to cope uncertainty and avoid local minima (by using a larger

population size). These would intern increase the feasibility of investigating a

larger number of other application of multi-train trajectory planning, some of

which are discussed in 6.2.2.

6.2 Further work

The investigations undertaken have raised many research questions beyond

the scope of this work. In particular, the GPU accelerated model described

in Chapter 5, G6, has many potential applications. However, due to the new

form of control strategy implemented in G6, the optimisation parameters must

be optimised and new genetic operators developed before optimisation using

a GA will be effective. This is not a trivial task and is analogous to the

work described in Chapter 3. As well at the more theoretical improvements

(outlined in Sections 6.2.1 to 6.2.4) G6 would also benefit from some practical

improvements. Improved pre-processing of input data, such as converting line

speeds to FEATURE TYPE vATP journey features, would increase the usability of

the optimisation and therefore the number and complexity of applications that

179

could be investigated. Better visualisation tools would also aid in the analysis

of results. Also, compatibility with standardised data formats, such as RailML

[83], would be highly desirable. RailML was being developed concurrently with

the research reported here so was not available at the beginning of the project.

6.2.1 Sensitivity analyses

A sensitivity analysis of ∆d has already been conducted in Section 5.6. How-

ever, before considering potential applications of the current model, its sensi-

tivity to other variables should be carefully investigated.

Enabled by faster computation and communication technologies, many

capacity constrained railway networks are moving towards the use of moving-

block signalling systems. G6 cannot model these directly, but can approximate

them with arbitrary accuracy by using journey features to add more signalling

blocks (with more complex interlocking). This concept is described in Section

5.3.4. A sensitivity analysis should be conducted into the number of signalling

blocks used to approximate moving block signalling. Also, the size of the

distance step, ∆d, during simulation will affect the accuracy with which signal

block events can be recorded. This means the effect of ∆d size should also

be considered with respect to approximating moving block signalling. As well

as checking the accuracy of results, it would be interesting to know how the

performance of compatibility checking scales with the number of signal blocks

being modelled. Since it was not limiting in the case studies investigated,

the algorithm used to check compatibility (interlocking between signal block

occupancies) has not been carefully optimised. This issue of scalability could

also be investigated more generally. For example, how do the total number

of trains, journeys, journey features, interlocking, control points, etc. affect

optimisation performance? This could be split into two categories: (i) how

180

different algorithms involved in simulation affect the total computation time

of each generation (ii) how different systems (problem spaces) affect the rate

of GA convergence.

Another sensitivity analysis that could be conducted is the effect of differ-

ent sources of uncertainty on the robust optimisation methodology described

in Chapter 4. However, apart from station dwell times, literature on the un-

certainties associated with different parameters seems to be quite sparse. This

may be because this information has traditionally been difficult to measure, as

reliable uncertainty measurements can require a lot of data collection. How-

ever, the increased used of sensors monitoring many components in the railway

industry is leading to the production of large quantities of data. This ‘big data’

may well contain sufficient detail and repeat-coverage to, not only estimate

parameters needed for modelling, but also estimate the uncertainties associ-

ated with them. Whether the actual uncertainties can be obtained or not,

it will still be possible to investigate the magnitude of different uncertainties

needed to significantly affect the outcome of the robust optimisation. These

uncertainties can also be combined during the optimisation, although if the

total uncertainty becomes too large then the optimisation will not converge.

Increasing the population size will help the optimisation function effectively

with higher levels of uncertainty, so it may be that other modifications to the

optimisation will also improve its performance. Further modifications to the

optimisation algorithm are discussed in Section 6.2.4. However, in situations

where the optimisation does not converge it may be that that system is not

suitable for (off-line) trajectory planning.

181

6.2.2 Potential applications

The model (G6) developed in Chapter 5 showed greatly increase simulation

speed which opens up many potential applications.

The current multi-train trajectory optimisation could be used to investi-

gate the effect of degraded operation of sections of track, on the overall network

performance. If this degraded operation takes the form of a reduced line speed

then it can easily be incorporated into the model. Comparing the performance

of optimised train movements, before and after the line speed is reduced at a

particular location, will indicate the impact of of that change on the system. If

this process was repeated over a whole network then a ‘heat map’ of that net-

work could be created indicating the areas where it is particularly important to

avoid degraded operation. This could be helpful when targeting maintenance

work or considering where it may be worthwhile investing in higher quality

infrastructure components. It is expected that the results from this would

simply show with the busiest sections of track identified as the most critical.

However, it is also possible that multiple infrastructure components may fail

at the same time, causing degraded operation at two locations. Network in-

teractions may mean these have a reinforcing effect, where two failures have

a greater impact than the sum of the failures separately. Identifying these

second order interactions is a much larger problem due to its combinatorial

nature. It may be that G6 is fast enough to make solving this problem pos-

sible on some realistic networks. Conversely, the same method could be used

to examine the benefit of upgrading areas of track to allow an increase in line

speed.

Another problem that could be addressed is how to develop schedules that

are robust to small perturbations. The current optimisation has no facility

for re-routing of trains so small perturbations are those which do not require

182

re-routing or cancellation of services. The closed-loop optimisation technique

described in Section 4.4 can then be used to assess the impact of a partic-

ular perturbation instance. A Monte-Carlo method can be used to estimate

the impact of likely disruptions allowing the robustness of a schedule to be

quantified. This information can then be used as a fitness function allowing

the robustness of the schedule to be optimised, though this would require a

schedule optimisation algorithm to be developed.

In fact, there are certain situations in which G6 can already perform some

implicit schedule optimisation. The last stop must have a scheduled target

time otherwise there will be no incentive for the train being optimised to go fast

and the resulting trajectory will not be realistic. However, if no target arrival

or departure times are scheduled for intermediate stops the optimisation will

choose the times which allow it to best meet its other objectives. This would be

an example of a “truly integrated scheduler and train control optimizer” of the

sort McClanachan and Cole [9] could not find in literature. Also, this situation

could equally apply to routing trains through a junction. The current schedule

does not explicitly define the order trains must pass through a junction, though

where trains have a common route before or after the junction it may define

this implicitly (using the scheduled arrival or departure times). In either case,

the trajectories found by the optimisation will determine the actual order the

trains pass through the junction.

It would also be interesting to see if the trajectories found, using the opti-

misations described in this thesis, could be utilised in a real system. However,

since different systems use different methods of control, the specifics of how this

might occur would vary. It is likely that many ATC systems use proprietary

software making target trajectories difficult or expensive to modify. Also, since

a change will constitute modification of a safety critical process, it is likely to

183

need extensive testing and safety validation. However, the majority of trains

on the GB mainline are still controlled by drivers. In this case, the drivers

ensure safe operation but their behaviour may be more easily modified. Driver

Advice Systems (DAS) exploit this and try to improve the performance of a

system, either by giving the driver direct advice on how to drive (e.g. target

speeds) or by giving them additional information (e.g. time ahead or behind

the schedule). This may be a more feasible route to testing the success of

optimised trajectories. It is thought that the robust optimisation described in

Chapter 4 may be particularly useful in this type of application, as it can take

into account the level of accuracy with which a driver may apply the control

strategy. Also, a related application, would be to compare the performance

of trajectories from current driver against optimised trajectories. This may

allow improved operational performance through allowing more tailored driver

training but would also have the potential to work the other way, highlighting

areas where the optimisation or simulation could be improved.

As well as training real drivers, the optimised trajectories could be used

to optimise the behaviour of simulated driver algorithms. To some extent

drivers allow a railway network to be modelled as a multi-agent system - each

driver makes independent decisions based on limited information on their local

surroundings. Many networks will be so large that real-time multi-train tra-

jectory optimisation of the whole system at once is likely to remain infeasible.

However, agent based control would allow some optimisation to take place at

a local level. In optimisations that use ATO to enforce headway constraints

(for example [39]) the driver behaviour is an important factor in determin-

ing the overall network performance. By tuning agent behaviour (i.e. driving

styles) it may also be possible to optimise the performance of the network as

a whole. This raises research questions such as, how much information does

184

each agent (driver) need in order to allow them to make good decisions? One

approach to optimising agent behaviour would be to use many examples of

optimised networks to train an Artificial Neural Network (ANN). The perfor-

mance of the ANN driver could then be assessed by using it to control trains

in a conventional multi-train simulator such as BRaVE[84].

Another approach to optimising the performance over a very large net-

work would be to split it into a number of more manageable sub-problems.

These sub-problems could then be solved using the multi-train optimisations

described in this thesis. This is linked to the idea of distributed control where,

instead of one central controller controlling the whole system, a number of

separate control elements are distributed throughout the system. The GB

mainline railway network already operates using distributed routing and signal

control. Traditionally this has been done at a very local level using thousands

of signal boxes, but this has gradually been consolidated until soon only 12 Rail

Operating Centres (ROCs) will control the whole network[85, 86]. It is likely

that the current optimisations would work at the relatively small (signal-box)

scale. If each local optimisation could be performed independently then this

would provide a scalable approach to optimising larger networks. However,

this requires predefined boundary conditions (i.e. train locations, speeds and

times) at the start and end of each optimisation. In reality, unless boundaries

are at scheduled stops then it will be difficult to predefine the boundary with-

out restricting the optimisation. How to handle these boundaries efficiently

would be a topic for further research. It is possible that the local optimisation

could be carried out in parallel and the boundary conditions updated between

each iteration. This would lend itself well to scaling G6 across multiple GPU,

since the boundary conditions are a very small amount of data and could be

transferred asynchronously to avoid blocking execution.

185

6.2.3 Extension of the model

As well as the applications currently possible there are also a number of ap-

plications that would become possible with relatively minor extension of G6.

Once these more fundamental investigations have been performed on the

current implementation of G6, it may be desirable to extend the simulation

so that other factors can be considered in the optimisation cost function. In-

cluding power networks in the simulation is an obvious next step, especially

as accurate simulation of energy consumption is such a critical aspect of tra-

jectory optimisation. There has been a reasonable amount of research into

this already (see Section 2.2.2) but time constraints meant it could not be

implemented during the course of this PhD. The concept of journey features

(introduced in Section 5.3.3) was designed to allow easy incorporation of dis-

tance based track features within the model. For example, two new types of

journey feature FEATURE circuit entry and FEATURE circuit exit could be

used to trigger the recording of the time and ∆energy at the boundaries be-

tween different power distribution circuits. Like signalling blocks, if a higher

resolution of data was required for the power network model then more circuit

features could be added. Modelling the power network then opens up many

more potential applications for the optimisation. These include: reducing

power peaks, maximising the use of energy from regenerative braking (partic-

ularly relevant on DC networks), designing the layout of new power networks,

and investigating the effect of line side (or on board) energy storage. Some of

this is being investigated in the EPSRC project TransEnergy[87].

Another, candidate for extending the simulation is to include the move-

ment of passengers. Trajectory optimisation can affect the arrival and depar-

ture times of trains and these arrival and departure times are already stored

within the model. One cost function parameter that could be calculated using

186

this data is the passenger over-crowding at stations. For example, consider

the situation where two trains arrive at exactly the same time at a terminus

station. All the passengers on both train will enter the station at the same

time, potentially leading to over-crowding and its associated dangers. How-

ever, if these trains were to arrive a few minutes apart then it may be that this

temporal delay would lead to a more even utilisation of the station’s resources.

If some measure of over-crowding was calculated then it could be incorporated

in the cost function causing the optimisation to try to minimise this as well.

Passenger satisfaction is a related area which could be incorporated into the

model. There are many factors that affect this but a few that are particularly

relevant to trajectory optimisation are: connections, unexpected stops and

jerk.

• In a similar way to over-crowding, the relative arrival and departure

times of different trains at the same station will effect what connections

can be made. Passengers generally want shorter journey times so as

well as the minimising the traverse time of individual train journeys,

what connections can be made may have a significant effect on the total

journey time.

• Passengers on a train may not notice the difference between 50 mph

and 100 mph, but they will certainly notice the difference between 50

mph and 0 mph. Unplanned stops between stations are likely to have an

adverse impact on the journey quality perceived by passengers. It may

be that if the train has maintained a lower speed in an earlier part of

that journey it would have arrived at the same time (using less energy)

and also avoided having to slow to a speed that annoys passengers.

• Passenger satisfaction may also be adversely affected by excessively high

187

or frequent acceleration and jerk. These are directly due to the velocity

profile of the train but are not currently considered in optimisation G6.

For simple problems the new GPU accelerated simulation may allow multi-

train trajectory optimisation to take place fast enough to be integrated into

automatic control systems. This would allow optimised recovery from minor

disruptions. One fundamental issue that must be addressed when implement-

ing this is that a heuristic optimisation using G6 is not guaranteed to find

any usable solutions (unless run for an infinite amount of time). For simple

problems this does not seem to be a common issue, but if no solution was

found it is likely to cause the control systems problems. A simple solution to

this would be use to the heuristic optimisation in combination with a simpler

optimisation that guarantees finding a solution, even if this solution is not

well optimised. The main thing limiting the application of G6 to real-time

control is the speed that the multi-train trajectory optimisation can occur. To

a large extent this will be determined by the specific optimisation algorithm

used. Possible improvements to this are suggested in Section 6.2.4

6.2.4 Improvements to optimisation algorithm

Since GAs were used in this thesis this section suggests a number of modifi-

cations to the GA that may improve optimisation performance. However, it

should be emphasised that GAs are not necessarily better suited than other

types of optimisation for solving the multi-train trajectory optimisation prob-

lem. All heuristic optimisations are similar in that they seek to explore a

search space, and find the global minima (or maxima) using the fewest possi-

ble number of evaluations. To do this they all use information from previous

evaluations to concentrate their search in promising areas. As highlighted

by Chapter 3, the exact operations performed by the optimisation algorithms

188

have a huge effect on the quality of the resulting optimisation. In fact, the

suitability of the operations used is likely to have a larger effect than the ‘type’

of optimisation used. This section focusses on how particular optimisation is-

sues could be addressed using a GA. However, since G6 is compatible with

any type of population based heuristic optimisation, future efforts to improve

the optimisation could equally well focus on addressing the same issues using

other types of optimisation. The two main issues are:

• Focusing effort in promising areas of the search space

• Avoiding local minima in the search space

As discussed during validation in Section 5.6, the simulation accuracy of

G6 can be modified by varying the simulation distance step, ∆d. It may be

beneficial to vary the size of ∆d steps during the course of an optimisation. The

candidate solutions in early generations are unlikely to be of a high quality and

are also likely to be easily distinguishable from each other. This means that

simulation using a large step size (with lower accuracy) may yield sufficient

information for selection to be effective. Conversely, as optimisation progresses

simulation of solutions may need to be more accurate in order to select the best

candidate from the population. This may make better use of computational

resources, using more accurate (and therefore time consuming) simulation only

when it is necessary. Another variation of this idea would be to use a new

type of journey feature to modify ∆d as a journey is simulated. This would

allow a higher simulation resolution in areas where a accuracy is required

(e.g. at the start and end of the journey, where there is a change in speed

limit, over particularly steep gradients, or around junctions). However, in the

intermediate areas, where the train is likely to maintain a steady speed and

power consumption, larger ∆d may provide sufficient accuracy.

189

A similar idea is to increase the complexity of control as the optimisation

process progresses. Some trajectory optimisations use simple control strate-

gies such as a single target velocity for each train journey [39]. This greatly

decreases the size of the search space compared with G6, where both the posi-

tion and traction setting must be optimised for each control point. A smaller

search space will allow promising areas to be identified faster but in doing do

is also unlikely to describe true optimal solution. Firstly, one way to apply

this would be to limit the number of values control could take. For single

train trajectory optimisation it has be shown, see Section 2.1.1, that four op-

erational modes are sufficient to describe optimal control: maximum traction,

cruising, coasting, and maximum braking. It is likely that restricting control

to these discrete modes would lead to faster convergence. However, in certain

situation these may not be sufficient to describe the optimal trajectories of

multiple trains, with different tractions parameters. Secondly, increasing the

resolution of control as the optimisation progresses may improve the speed

with which the search space is narrowed (early in the optimisation). However,

it would still allow a finer resolution of control which may be necessary to

describe highly optimised solutions. In G6, a simple way to implement this

would be to double the control resolution every n generations. If each newly

inserted control point was initially set the same as the one preceding it then

the phenotype of the solution would not be effected by insertion. Subsequent

local searching would then modify these control points allowing optimisation

of their positions and traction levels.

Generally, early on in the optimisation the main task is exploring the whole

search space and identifying promising regions, whereas late in the optimisa-

tion the priority shifts to local optimisation of these areas. It is likely that

different optimisations will perform best at these two tasks so ideally this

190

should be reflected by changing the behaviour of the GA. GAs usually try to

avoid local minima by allowing some less fit solutions to enter the next gen-

eration. In contrast, Greedy algorithms choose the locally optimal solution at

each stage, so are specialised at local optimisation. Most GAs, including the

ones developed in this thesis, have a parameter defining the selection pressure.

At one extreme (selection pressure = 0) the GA will perform a random walk

and randomly select solutions to be kept in the next generation. At the other

extreme (selection pressure = 1) the GA will turn into a greedy algorithm,

exclusively selecting the best solution to populate the next generation. Nor-

mally an intermediate value is chosen for the GA but, as discussed in Section

4.2.3, it may be better to vary (in this case increase) this value throughout

the progress of the optimisation to cause a smooth transition between the GA

and Greedy algorithms. Again, this emphasised the importance of tuning the

GA parameters. Ideally, systematic optimisation of all GA parameters should

be undertaken.

Another way of focusing effort in promising areas of the search space is

to exploit any prior knowledge we may have about the search space. A good

example of this is [39] where the allowed range for each target speed is re-

stricted based on the scheduled train service interval and the minimum line

headway between trains. Alternatively, if the GA is being used as part of

a feedback loop then it is likely that in most cases the new global minima

will lie close to the old global minima. This means that the area around the

old solution is likely to be a good place to look for the next solution. Both

of these would be implemented through GA initialisation. The effect of GA

initialisation on overall optimisation performance is another area that could

be explored in more detail. This could answer research questions such as:

Do the initialisations used cover the search space evenly? If not, what sort

191

of bias do they introduce, and will this help or hinder the optimisation? An

alternative method to enhance initialisation for real-time control is to seed the

population with a number of different pre-optimised solutions. For example,

closed-loop control is likely to have to recover from small perturbations. The

closed-loop optimisation technique described in Section 4.4 could be used to

optimise a number of probable perturbation instances. Although this might

be a time consuming process it could be performed off-line - before the time

critical optimisation process has begun. These pre-optimised solutions could

then be used to initialise the population. When each real-time optimisation

takes place it is likely the situation being optimised will be similar to some

of the pre-optimised solutions. This should lead to an increased speed of GA

convergence, potentially allowing real-time control in situations where it would

not have been feasible with random initialisation. Other techniques for ap-

plying evolutionary optimisations in dynamic environments can be found in

[88].

As well as speeding up the search it is important to avoid converging on

local minima in the search space. GAs try to ensure this by having a pop-

ulation of candidate solutions. However, this relies on there being sufficient

variation within the population - if all the candidate solutions are very close

together then they could get stuck in the same local minima. There are a num-

ber of methods to encourage diversity within GA populations which could be

explored. The fitness function could include an explicit penalty for solutions

that lie close together. Wei et al. [32] use Hamming distances to quantify

the difference between solutions. Hamming distance is the minimum num-

ber of substitutions to change one control into another. This works well for

discrete control (as used in [32]) but measures such as the square of the Eu-

clidean distance may be more suitable for the continuous control variables

192

used in G6. Also, since both the distance and control action at each control

point have predefined ranges, it would be trivial to normalise the compari-

son metric. The largest difference between each control point distance would

be control d and the largest distance between control point actions would

be |cmax traction − cmax brake| = 2. This normalisation may be helpful when

combining the comparison metric with the rest of the fitness function.

Where there are several contributions to the fitness function, multi-objective

optimisation seeks to find solutions that lie on the Pareto front defined by the

trade-off between these two values. This is similar to the investigations in

Section 3.5.2 where α, the relative importance of energy consumption and

traverse time, was varied. However, multi-objective optimisation essentially

seeks to optimise over a range α values simultaneously. Many GA selection

operations have been proposed for use in multi-objective optimisation. They

keep track of Pareto optimal solutions - those where one fitness function con-

tribution cannot be improved without degrading the performance of another.

This process would yield a number of solutions suited to different situations.

The decision could then be made, possibly by an expert operator, which single

solution would be best to implement in the real system.

193

References

[1] International Energy Agency. Key World Energy Statis-

tics. http://www.iea.org/publications/freepublications/

publication/key-world-energy-statistics-2013.html. Accessed:

December 2013.

[2] Department of Energy and Climate Change, UK. Statistical press release:

Digest of UK energy statistics 2013. https://www.gov.uk/government/

collections/digest-of-uk-energy-statistics-dukes#2013, . Ac-

cessed: December 2013.

[3] Department of Energy and Climate Change, UK. ECUK (Energy con-

sumption in the UK) 2013 - Transport data tables. https://www.gov.uk/

government/statistics/energy-consumption-in-the-uk, . Accessed:

December 2013.

[4] UK Government. Delivering a sustainable railway: white pa-

per CM 7176. http://webarchive.nationalarchives.gov.

uk/20091010004003/http://www.dft.gov.uk/about/strategy/

whitepapers/whitepapercm7176/multideliversustainrailway, 2007.

Accessed: October 2016.

195

http://www.iea.org/publications/freepublications/publication/key-world-energy-statistics-2013.html
http://www.iea.org/publications/freepublications/publication/key-world-energy-statistics-2013.html
https://www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes#2013
https://www.gov.uk/government/collections/digest-of-uk-energy-statistics-dukes#2013
https://www.gov.uk/government/statistics/energy-consumption-in-the-uk
https://www.gov.uk/government/statistics/energy-consumption-in-the-uk
http://webarchive.nationalarchives.gov.uk/20091010004003/http://www.dft.gov.uk/about/strategy/whitepapers/whitepapercm7176/multideliversustainrailway
http://webarchive.nationalarchives.gov.uk/20091010004003/http://www.dft.gov.uk/about/strategy/whitepapers/whitepapercm7176/multideliversustainrailway
http://webarchive.nationalarchives.gov.uk/20091010004003/http://www.dft.gov.uk/about/strategy/whitepapers/whitepapercm7176/multideliversustainrailway

[5] Department for Transport. Rail Technical Strategy. http:

//webarchive.nationalarchives.gov.uk/+/http:/www.dft.

gov.uk/about/strategy/whitepapers/whitepapercm7176/

railwhitepapertechnicalstrategy/pdfrailtechstrategyrts1,

2007. Accessed: October 2016.

[6] The Commission for Integrated Transport (CfIT). A comparative study

of the environmental effects of rail and short-haul air travel. http:

//webarchive.nationalarchives.gov.uk/20110304132839/http:

//cfit.independent.gov.uk/pubs/2001/racomp/racomp/03.htm#31,

2001. Accessed: April 2017.

[7] http://www.nationalrail.co.uk/. Accessed: April 2017.

[8] Ning Zhao. Railway traffic flow optimisation with differing control

systems. PhD Thesis (The University of Birmingham), 2013. URL

http://etheses.bham.ac.uk/4725/1/Zhao13PhD.pdf.

[9] M. McClanachan and C. Cole. Current train control optimization meth-

ods with a view for application in heavy haul railways. Proceedings of the

Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid

Transit, 226(1):36–47, 2012.

[10] Yihui Wang, Bing Ning, Fang Cao, Bart De Schutter, and Ton J. J.

van ven Boom. A survey on optimal trajectory planning for train oper-

ations. Proceedings of 2011 IEEE International Conference on Service

Operations, Logistics and Informatics, 19:589–594, 2011.

[11] Kunihiko Ichikawa. Application of Optimization Theory for Bounded

State Variable Problems to the Operation of Train. Bulletin of JSME, 11

(47):857–865, 1968.

196

http://webarchive.nationalarchives.gov.uk/+/http:/www.dft.gov.uk/about/strategy/whitepapers/whitepapercm7176/railwhitepapertechnicalstrategy/pdfrailtechstrategyrts1
http://webarchive.nationalarchives.gov.uk/+/http:/www.dft.gov.uk/about/strategy/whitepapers/whitepapercm7176/railwhitepapertechnicalstrategy/pdfrailtechstrategyrts1
http://webarchive.nationalarchives.gov.uk/+/http:/www.dft.gov.uk/about/strategy/whitepapers/whitepapercm7176/railwhitepapertechnicalstrategy/pdfrailtechstrategyrts1
http://webarchive.nationalarchives.gov.uk/+/http:/www.dft.gov.uk/about/strategy/whitepapers/whitepapercm7176/railwhitepapertechnicalstrategy/pdfrailtechstrategyrts1
http://webarchive.nationalarchives.gov.uk/20110304132839/http://cfit.independent.gov.uk/pubs/2001/racomp/racomp/03.htm#31
http://webarchive.nationalarchives.gov.uk/20110304132839/http://cfit.independent.gov.uk/pubs/2001/racomp/racomp/03.htm#31
http://webarchive.nationalarchives.gov.uk/20110304132839/http://cfit.independent.gov.uk/pubs/2001/racomp/racomp/03.htm#31
http://www.nationalrail.co.uk/
http://etheses.bham.ac.uk/4725/1/Zhao13PhD.pdf

[12] I. A. Asnis, A. V. Dmitruk, and N. P. Osmolovskii. Solution of the prob-

lem of the energetically optimal control of the motion of a train by the

maximum principle. USSR Computational Mathematics and Mathemati-

cal Physics, 25(6):37–44, 1985.

[13] P. Howlett. An optimal strategy for the control of a train. The Journal

of the Australian Mathematical Society., 31(4):454–471, 1990.

[14] E. Khmelnitsky. On an optimal control problem of train operation. IEEE

Transactions on Automatic Control, 45(7):1257–1266, jul 2000.

[15] R. Liu and Iakov M. Golovitcher. Energy-efficient operation of rail vehi-

cles. Transportation Research Part A: Policy and Practice, 37(10):917–

932, dec 2003.

[16] Qi Wen. Energy-efficient Driving Strategies for Rail Vehicles. PhD Thesis

(Imperial CollegeLondon), 2010.

[17] Phil Howlett. The optimal control of a train. Annals of Operations Re-

search, pages 65–87, 2000. URL http://www.springerlink.com/index/

mg6l744k2073570q.pdf.

[18] Xuan Vu. Analysis of necessary conditions for the optimal control of a

train. PhD Thesis (University of South Australia), 2006.

[19] P. G. Howlett and P. J. Pudney. Energy-Efficient Train Control. Advances

in Industrial Control. Springer-Verlag, London, UK, 1995.

[20] B. R. Benjamin, A. M. Long, I. P. Milroy, R. L. Payne, and P. J. Pudney.

Control of railway vehicles for energy conservation and improved time-

keeping. Proceedings of the Conference on Railway Engineering, Perth,

Institution of Engineers Australia, pages 41–47, 1987.

197

http://www.springerlink.com/index/mg6l744k2073570q.pdf
http://www.springerlink.com/index/mg6l744k2073570q.pdf

[21] Wei Song Lin and Jih Wen Sheu. Optimization of train regulation and

energy usage of metro lines using an adaptive-optimal-control algorithm.

IEEE Transactions on Automation Science and Engineering, 8(4):855–

864, 2011.

[22] B.-R. Ke, C.-L. Lin, and C.-C. Yang. Optimisation of train energy-

efficient operation for mass rapid transit systems. IET Intelligent Trans-

port Systems, 6(1):58–66, 2012.

[23] Shaofeng Lu, Stuart Hillmansen, Tin Kin Ho, and Clive Roberts. Single-

train trajectory optimization. IEEE Transactions on Intelligent Trans-

portation Systems, 14(2):743–750, 2013.

[24] H. Ko, T. Koseki, and M. Miyatake. Application of dynamic programming

to optimization of running profile of a train. Computers in Railways IX,

pages 301–312.

[25] C. S. Chang and S. S. Sim. Optimising train movements through coast

control using genetic algorithms. IEE Proceedings - Electric Power Ap-

plications, 144(1):65–73, 1997.

[26] S. H. Han, Y. S. Byen, J. H. Baek, Tae Ki An, Su-Gil Lee, and Hyun Jun

Park. An optimal automatic train operation (ATO) control using ge-

netic algorithms (GA). Proceedings of the IEEE Region 10 Conference,

TENCON ’99, 1:360–362, 1999.

[27] J. X. Cheng, J. S. Cheng, J. Song, and P. Zhao. Algorithms on opti-

mal driving strategies for train control problem. Proceedings of the 3rd

World Congress on Intelligent Control and Automation, 2000., 5:3523–

3527, 2000.

198

[28] T. McLeod Colin Cole. Optimising train operation using simulation, fuzzy

logic cruise control and evolutionary algorithms. Fifth Asia-Pacific Indus-

trial Engineering and Mangement Systems Conference 2004. Brisbane.,

pages 1–16, 2004.

[29] K. K. Wong and T. K. Ho. Dynamic coast control of train movement with

genetic algorithm. International Journal of Systems Science, 35(13-14):

835–846, 2004.

[30] Y. V. Bocharnikov, A. M. Tobias, C. Roberts, S. Hillmansen, and C. J.

Goodman. Optimal driving strategy for traction energy saving on DC

suburban railways. IET Electric Power Applications, 1(5):675–682, 2007.

[31] Carmine Landi, Mario Luiso, and Nicola Pasquino. A remotely controlled

onboard measurement system for optimization of energy consumption of

electrical trains. IEEE Transactions on Instrumentation and Measure-

ment, 57(10):2250–2256, 2008.

[32] Liu Wei, Li Qunzhan, and Tang Bing. Energy saving train control for ur-

ban railway train with multi-population genetic algorithm. IEEE Proceed-

ings - International Forum on Information Technology and Applications,

IFITA 2009, 2(1):58–62, 2009.

[33] S. Acikbas and M. T. Soylemez. Coasting point optimisation for mass

rail transit lines using artificial neural networks and genetic algorithms.

IET Electric Power Applications, (December 2007):172–183, 2008.

[34] Yong Ding, Yun Bai, Fang Ming Liu, and Bao Hua Mao. Simulation

algorithm for energy-efficient train control under moving block system.

2009 WRI World Congress on Computer Science and Information Engi-

neering, CSIE 2009, 5:498–502, 2009.

199

[35] Qing Gu, Xiao-Yun Lu, and Tao Tang. Energy saving for automatic

train control in moving block signaling system. Proceedings: 14th Inter-

national IEEE Conference on Intelligent Transportation Systems, pages

1305–1310, 2011.

[36] Qiheng Lu and Xiaoyun Feng. Optimal control strategy for energy saving

in trains under the four-aspect fixed autoblock system. Journal of Modern

Transportation, 19(2):82–87, 2011.

[37] Yihui Wang, Bart De Schutter, Ton Van Den Boom, and Bin Ning. Opti-

mal trajectory planning for trains under a moving block signaling system.

2013 European Control Conference, ECC 2013, pages 4556–4561, 2013.

[38] Yihui Wang, Bart De Schutter, J. van den Boom, Ton J, and Bin Ning.

Optimal trajectory planning for trains under fixed and moving signaling

systems using mixed integer linear programming. Control Engineering

Practice, 22(1):44–56, 2014.

[39] N. Zhao, C. Roberts, and S. Hillmansen. The application of an enhanced

Brute Force algorithm to minimise energy costs and train delays for dif-

fering railway train control systems. Proceedings of the Institution of

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228

(2):158–168, 2014.

[40] Ning Zhao, Clive Roberts, Stuart Hillmansen, and Gemma Nicholson. A

Multiple Train Trajectory Optimization to Minimize Energy Consump-

tion and Delay. IEEE Transactions on Intelligent Transportation Systems,

16(5):2363–2372, 2015.

[41] T. Albrecht. Reducing power peaks and energy consumption in rail tran-

200

sit systems by simultaneous train running time control. Computers in

railways IX, pages 885–894, 2004.

[42] Masafumi Miyatake and Hideyoshi Ko. Numerical analyses of minimum

energy operation of multiple trains under DC power feeding circuit. EPE,

2007 European Conference on Power Electronics and Applications, pages

1–10, 2007.

[43] Masafumi Miyatake and Hideyoshi Ko. Optimization of train speed profile

for minimum energy consumption. IEEJ Transactions on Electrical and

Electronic Engineering, 5(3):263–269, 2010. ISSN 19314973.

[44] Lixing Yang, Keping Li, Ziyou Gao, and Xiang Li. Optimizing Trains

Movement on a Railway Network. Omega, 40(5):619–633, 2012.

[45] Hans-Georg Beyer and Bernhard Sendhoff. Robust Optimization - A

Comprehensive Survey. Computer Methods in Applied Mechanics and

Engineering, 196(33-34):3190–3218, 2007.

[46] Wei Chen, J. K. Allen, Kwok-Leung Tsui, and F. Mistree. A Procedure

for Robust Design: Minimizing Variations Caused by Noise Factors and

Control Factors. Journal of Mechanical Design, 118(1):478–485, 1996.

[47] Yaochu Jin and Jürgen Branke. Evolutionary Optimization in Uncertain

Environments - A Survey. IEEE Transactions on Evolutionary Compu-

tation, 9(3):303–317, 2005.

[48] Dirk V. Arnold and Hans-Georg Beyer. A Comparison of Evolution

Strategies with Other Direct Search Methods in the Presence of Noise.

Computational Optimization and Applications, 24(1):135–159, 2003.

201

[49] Shigeyoshi Tsutsui and Ashish Ghosh. Genetic Algorithms with a Robust

Solution Searching Scheme. IEEE Transactions on Evolutionary Compu-

tation, 1(3):201–208, 1997.

[50] Xiang Li, Lei Li, Ziyou Gao, Tao Tang, and Shuai Su. Train Energy-

efficient Operation with Stochastic Resistance Coefficient. International

Journal of Innovative Computing, Information and Control, 9(8):3471–

3483, 2013.

[51] Xiang Li, Ziyou Gao, and Wenzhe Sun. Existence of an Optimal Strategy

for Stochastic Train Energy-efficient Operation Problem. Soft Computing,

17(4):651–657, 2013.

[52] David H. Wolpert and William G. Macready. No free lunch theorems

for optimization. IEEE Transactions on Evolutionary Computation, 1

(1):67–82, 1997.

[53] Jonathan C. J. Goodwin, David I. Fletcher, and Robert F. Harrison.

Multi-train Trajectory Optimisation to Maximise Rail Network Energy

Efficiency Under Travel-time Constraints. Proceedings of the Institution

of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230

(4):1318–1335, 2016.

[54] Lixing Yang. Personal communication (22-June), 2013.

[55] Pengling Wang, Xuan Lin, and Yuezong Li. Optimization Analysis on

the Energy Saving Control for Trains with Adaptive Genetic Algorithm.

IEEE Proceedings - International Conference on Systems and Informatics

(ICSAI), (1):439–443, 2012.

202

[56] R Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2013. URL

http://www.R-project.org/.

[57] C. Sicre, P. Cucala, A. Fernández, J. A. Jiménez, I. Ribera, and A. Ser-

rano. A method to optimise train energy consumption combining manual

energy efficient driving and scheduling. WIT Transactions on the Built

Environment, 114(1):549–560, 2010.

[58] Lixing Yang, Shukai Li, Yuan Gao, and Ziyou Gao. A Coordinated Rout-

ing Model with Optimized Velocity for Train Scheduling on a Single-Track

Railway Line. International Journal of Intelligent Systems, 30(1):3–22,

2015.

[59] I. Mart́ınez, B. Vitoriano, A. Fernández, and A. P. Cucala. Statistical

Dwell Time Model for Metro Lines. Urban Transport XIII: Urban Trans-

port and the Environment in the 21st Century, I:223–232, 2007.

[60] William H. K. Lam, C. Y. Cheung, and Y. F. Poon. A Study of Train

Dwelling Time at the Hong Kong Mass Transit Railway System. Journal

of Advanced Transportation, 32(3):285–295, 1998.

[61] Jiaxin Yuan. Stochastic Modelling of Train Delays and Delay

Propagation in Stations. PhD Thesis (Delft University of Technol-

ogy), 2006. URL http://repository.tudelft.nl/assets/uuid:

caa72522-26b1-4088-afc0-59c6e5c346f6/trail_yuan_20061018.

pdf.

[62] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz.

Parameter Control in Evolutionary Algorithms. IEEE Transactions on

Evolutionary Computation, 3(2):124–141, 1999.

203

http://www.R-project.org/
http://repository.tudelft.nl/assets/uuid:caa72522-26b1-4088-afc0-59c6e5c346f6/trail_yuan_20061018.pdf
http://repository.tudelft.nl/assets/uuid:caa72522-26b1-4088-afc0-59c6e5c346f6/trail_yuan_20061018.pdf
http://repository.tudelft.nl/assets/uuid:caa72522-26b1-4088-afc0-59c6e5c346f6/trail_yuan_20061018.pdf

[63] RSSB. Engineering Driver advisory information for energy management

and regulation. T724 Stage 1 Report, 2009.

[64] Hans-Georg Beyer. Evolutionary Algorithms in Noisy Environments:

Theoretical Issues and Guidelines for Practice. Computer Methods in

Applied Mechanics and Engineering, 186(2-4):239–267, 2000.

[65] RSSB. Eco-driving: understanding the approaches, benefits and risks.

T839 Report, 2011.

[66] L. Chen, F. Schmid, M. Dasigi, B. Ning, C. Roberts, and T. Tang. Real-

time train rescheduling in junction areas. Proceedings of the Institution

of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 224

(6):547–557, 2010.

[67] H. Sutter. The free lunch is over: A fundamental turn to-

ward concurrency in software. Dr. Dobb’s Journal, 30(3),

2005. URL http://www.drdobbs.com/web-development/

a-fundamental-turn-toward-concurrency-in/184405990.

[68] CPU Frequency Record. http://hwbot.org/benchmark/cpu_

frequency/. Accessed: May 2016.

[69] Intel Product Specifications. http://ark.intel.com/. Accessed: May

2016.

[70] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach, Fourth Edition. Elsevier, 2007.

[71] John Nickolls and William J. Dally. The GPU Computing Era. IEEE

Micro, 30(2):56–69, 2010.

204

http://www.drdobbs.com/web-development/a-fundamental-turn-toward-concurrency-in/184405990
http://www.drdobbs.com/web-development/a-fundamental-turn-toward-concurrency-in/184405990
http://hwbot.org/benchmark/cpu_frequency/
http://hwbot.org/benchmark/cpu_frequency/
http://ark.intel.com/

[72] NVIDIA. Cuda C Programming Guide. http://ark.intel.com/. Ac-

cessed: May 2016.

[73] Henry Wong, Misel Myrto Papadopoulou, Maryam Sadooghi-Alvandi,

and Andreas Moshovos. Demystifying GPU microarchitecture through

microbenchmarking. IEEE International Symposium on Performance

Analysis of Systems and Software, pages 235–246, 2010.

[74] Erik Ruf Ray Bittner. Direct gpu/fpga communication via pci express.

September 2012. URL https://www.microsoft.com/en-us/research/

publication/direct-gpufpga-communication-via-pci-express/.

[75] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone,

David B. Kirk, and Wen-mei W. Hwu. Optimization principles and ap-

plication performance evaluation of a multithreaded GPU using CUDA.

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

practice of parallel programming - PPoPP ’08, pages 73–82, 2008.

[76] R. Smith and T. S. Ganesh. The NVIDIA GeForce

GTX 750 Ti and GTX 750 Review: Maxwell Makes

Its Move. http://www.anandtech.com/show/7764/

the-nvidia-geforce-gtx-750-ti-and-gtx-750-review-maxwell/4,

2014. Accessed: October 2016.

[77] ERTMS Factsheet 3: ERTMS levels. http://www.ertms.net/

wp-content/uploads/2014/09/ERTMS_Factsheet_3_ERTMS_levels.

pdf, 2014. Accessed: August 2016.

[78] Swedes unveil first ETCS Level 3 application. http://

www.railwaygazette.com/news/business/single-view/view/

205

http://ark.intel.com/
https://www.microsoft.com/en-us/research/publication/direct-gpufpga-communication-via-pci-express/
https://www.microsoft.com/en-us/research/publication/direct-gpufpga-communication-via-pci-express/
http://www.anandtech.com/show/7764/the-nvidia-geforce-gtx-750-ti-and-gtx-750-review-maxwell/4
http://www.anandtech.com/show/7764/the-nvidia-geforce-gtx-750-ti-and-gtx-750-review-maxwell/4
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_3_ERTMS_levels.pdf
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_3_ERTMS_levels.pdf
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_3_ERTMS_levels.pdf
http://www.railwaygazette.com/news/business/single-view/view/swedes-unveil-first-etcs-level-3-application.html
http://www.railwaygazette.com/news/business/single-view/view/swedes-unveil-first-etcs-level-3-application.html
http://www.railwaygazette.com/news/business/single-view/view/swedes-unveil-first-etcs-level-3-application.html

swedes-unveil-first-etcs-level-3-application.html, 2012.

Accessed: October 2016.

[79] Microprocessor Standards Committee. IEEE standard for floating-point

arithmetic. http://ieeexplore.ieee.org/servlet/opac?punumber=

4610933, 2008. Accessed: July 2016.

[80] Rob Farber. CUDA Application Design and Development. Elsevier, 2011.

[81] Qizhi Yu, Chongcheng Chen, and Zhigeng Pan. Parallel Genetic Algo-

rithms on Programmable Graphics Hardware. Advances in Natural Com-

putation - First International Conference, 3612:1051–1059, 2005.

[82] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-

hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy,

Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep

Dubey. Debunking the 100X GPU vs. CPU Myth: An Evaluation of

Throughput Computing on CPU and GPU. ACM SIGARCH Computer

Architecture News, 38(3):451–460, 2010.

[83] railML. https://www.railml.org/en/. Accessed: September 2016.

[84] Birmingham Railway Virtual Environment. http://bravesim.org/. Ac-

cessed: September 2016.

[85] Network Rail. Operations Expenditure Summary . http://www.

networkrail.co.uk/browse%20documents/strategicbusinessplan/

cp5/supporting%20documents/our%20activity%20and%

20expenditure%20plans/operations%20expenditure%20summary.

pdf?cd=5, . Accessed: September 2016.

206

http://www.railwaygazette.com/news/business/single-view/view/swedes-unveil-first-etcs-level-3-application.html
http://www.railwaygazette.com/news/business/single-view/view/swedes-unveil-first-etcs-level-3-application.html
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
https://www.railml.org/en/
http://bravesim.org/
http://www.networkrail.co.uk/browse%20documents/strategicbusinessplan/cp5/supporting%20documents/our%20activity%20and%20expenditure%20plans/operations%20expenditure%20summary.pdf?cd=5
http://www.networkrail.co.uk/browse%20documents/strategicbusinessplan/cp5/supporting%20documents/our%20activity%20and%20expenditure%20plans/operations%20expenditure%20summary.pdf?cd=5
http://www.networkrail.co.uk/browse%20documents/strategicbusinessplan/cp5/supporting%20documents/our%20activity%20and%20expenditure%20plans/operations%20expenditure%20summary.pdf?cd=5
http://www.networkrail.co.uk/browse%20documents/strategicbusinessplan/cp5/supporting%20documents/our%20activity%20and%20expenditure%20plans/operations%20expenditure%20summary.pdf?cd=5
http://www.networkrail.co.uk/browse%20documents/strategicbusinessplan/cp5/supporting%20documents/our%20activity%20and%20expenditure%20plans/operations%20expenditure%20summary.pdf?cd=5

[86] Network Rail. Rail operating centre officially opened in Manch-

ester. http://www.networkrailmediacentre.co.uk/news/

rail-operating-centre-officially-opened-in-manchester, .

Accessed: September 2016.

[87] D. A. Stone, D. I. Fletcher, S. C. L. Koh, M. P. Foster, R. F. Harrison,

A. Cruden, D. Gladwin, A. S. J. Smith, and J. Goodwin. TransEn-

ergy - Road to Rail Energy Exchange (R2REE). http://gow.epsrc.ac.

uk/NGBOViewGrant.aspx?GrantRef=EP/N022289/1. Accessed: October

2016.

[88] T. T. Nguyena, S. Yang, and J. Branke. Evolutionary dynamic opti-

mization: A survey of the state of the art. Swarm and Evolutionary

Computation, 6(1):1–24, 2012.

[89] J H Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, 1975.

[90] G Rawlins. Foundations of Genetic Algorithms. Morgan Kaufmann Pub-

lishers, 1991.

[91] J Koza. A Hierarchical Approach to Learning the Boolean Multiplexer

Function. In G Rawlins, editor, Foundations of Genetic Algorithms, pages

171–192. Morgan Kaufmann Publishers, 1991.

[92] C Janikow and Z Michalewicz. An Experimental Comparison of Binary

and Floating Point Representations in Genetic Algorithms. 1991.

[93] A H Wright. Genetic Algorithms for Real Parameter Optimisation. In

G Rawlins, editor, Foundations of Genetic Algorithms, pages 205–218.

Morgan Kaufmann Publishers, 1991.

207

http://www.networkrailmediacentre.co.uk/news/rail-operating-centre-officially-opened-in-manchester
http://www.networkrailmediacentre.co.uk/news/rail-operating-centre-officially-opened-in-manchester
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N022289/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N022289/1

[94] D Goldberg. Genetic Algorithms in Search, Optimisation, and Machine

Learning. Addison-Wesley, 1989.

[95] M Srinivas. Genetic algorithms: a survey. Computer, 27(6):17–26, 1994.

[96] F Herrera and M Lozan. Fuzzy adaptive genetic algorithms: design,

taxonomy, and future directions. Soft Computing, 7(8):545–562, 2003.

[97] J J Grefenstette. Optimization of Control Parameters for Genetic Algo-

rithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1):

122–128, 1986.

[98] R Caponetto, L Fortuna, S Graziani, and M Xibilia. Genetic algorithms

and applications in system engineering: a survey. Transactions of the

Institute of Measurement and Control, 15(3):143–156, 1993.

208

Appendix I

Introduction to Genetic

Algorithms

General principle

Genetic algorithms (GAs) are a type of heuristic optimisation strategy, pio-

neered by Holland [89], which mimic evolution by natural selection. In natural

selection, variation in a population results in some individuals being more fit

for their environment than others. These individuals are therefore more likely

survive, reproduce, and pass their chromosomes onto the next generation; the

expected outcome being that, successive generations will inherit characteris-

tics which make them more suited to the environment than their ancestors.

The analogy can be made that: evolution (the algorithm) seeks to finds the

fittest (optimal) chromosome (solution) for the environment (objective func-

tion). Figure I.1 shows the main stages in a genetic algorithm.

An important decision when applying a GA to a problem is how to suitably

codify the candidate solutions (here after referred to as chromosomes). Tra-

ditionally, chromosomes have been represented as fixed length binary strings.

209

Figure I.1: General description of a genetic algorithm[90].

However, this may limit the accessible solution space when the solution size

or shape is not known in advance[91] so many other representations, such as

floating points [92] and vectors of real numbers [93] have also be considered

for particular systems.

Worked example

The following worked example is instructive for illustrating the different op-

erations used during the GA, and also is used to introduce the important

concepts of schema and the building block hypothesis.[89, 94]

Figure I.2: Example system to be optimised.

210

• Problem: Maximise output from a black box with four toggle switches

(figure I.2).

• Representation: Each chromosome can be represented as a binary

string of length four, where 1 = switch on, and 0 = switch off. The

switch combination shown in figure I.2 would be encoded as 0101.

• Initiation: Create a (pseudo)random population of chromosomes.

Chromosomes = 1010, 0011, 1100, 0101

• Evaluation: Evaluate each chromosome (using the black box).

Output = 10, 3, 12, 5 (respectively)

Schemata describe subsets of strings which have similarities at certain

positions. Using * as a wild card (0 or 1), the schema 1**0 represents all 4 (22)

different 4 bit binary strings with a 1 in the first position and a 0 in the fourth

position. The order of a schema is the number of fixed position it contains;

we can see, that in the example, that the two highest scoring strings are both

instances of the 2 nd order schema 1**0. However, it would be equally true to

say that 1100 is an instance of 1*** or ***0 or 11*0 etc. In-fact, any n digit

binary string will be an instance of 2n different schemata simultaneously. For

each set of set of k fixed positions there are 2k different competing schemata,

so a GA can be seen as “simultaneously, though not independently, attempting

to solve all the 2n schema competitions and locating the best schema for each

set of fixed positions.”[95]

• Selection: Probabilistically choose the chromosomes to undergo repro-

duction operations and enter the next generation. A simple selection

procedure is roulette-wheel selection, where the probability (P) of choos-

211

Figure I.3: An example of a roulette-wheel which must be ‘spun’ during
selection. Fitter chromosomes are more likely to be selected to undergo
reproduction.

ing a chromosome (i) is related to its fitness (F). e.g. P (i) = Fi/Ftotal.

This idea is illustrated in figure I.3.

• Reproduction: There are three main types of reproductive operation:

reproduction, crossover, and mutation (see figure I.4).

– Reproduction is the direct duplication of a chromosome - it con-

serves the exact genetic material of the parent chromosome.

– Crossover takes two chromosomes and swaps parts of them creating

two new chromosomes - it reorganises genetic material from two

parent chromosomes, exploiting the knowledge already obtained.

– Mutation makes random changes to a chromosome (bit-inversion

in this representation) - it creates new genetic material, which may

have been lost from the population, exploring new areas of the

search space.

There is a balance, between exploring and exploiting the knowledge en-

coded in the genetic material, which must be maintained to avoid premature

212

convergence[96]. Optimisation of the control parameters must be performed,

and may be turned during the GA process[97].

Figure I.4: Illustration of GA reproduction operations.

Selection increases the likelihood that high fitness schemata will become

more prevalent in each consecutive generation. However, the longer the schemata

the higher the chance it will be disrupted by crossover or mutation, so it is

high fitness schemata with short defining lengths that actually grow in preva-

lence. These known as building blocks, and the building block hypothesis as-

sumed that the juxtaposition of good building blocks leads to a good overall

string.[95]

• Replacement: There are two main procedures for introducing chro-

mosomes into the next generation. A generational procedure will create

an entirely new population using the chromosomes produced by apply-

ing genetic operators, whereas a steady-state method keeps the same

population, but replaces a few chromosomes at a time.

Finally, it has been noted that, since GAs optimise for high-performance

schemata within the whole population, individual chromosomes are of little

importance so some sort of local search should be applied to the entire popu-

lation to find the best solution.[98]

213

Appendix II

Input data for base case in

Chapter 3

This appendix contains the input data from Yang et al. [44], first used in

Chapter 3 and then built on in subsiquent chapters. The network topology is

shown in Figure II.1. All three lines are single track (meaning trains can not

pass each other) and 30 km long.

4

1

23

Figure II.1: Illustration of network N1 showing its topology and the
routes of the train journeys. Nodes represent stations and edges single
track lines.

The movement of three trains was modelled on the network, with each

train making two journeys separated by a stop for operations (e.g. boarding

215

and alighting of passengers) at the centeral station 4. These routes are shown

in Table II.1 along with other train specific parameters.

Table II.1: Information unique to each train

Train Index Route Operation Weight (t) Target E per Target T per
time (s) journey (kWh) jouney (s)

1 1 → 4 → 2 30 665 800 650
2 2 → 4 → 3 20 600 800 650
3 3 → 4 → 1 25 565 800 620

The maximum speed limit for all the lines was 300 km/h. However, on

each of the three lines a section of reduced speed limit was defined. Route 1→

4 traverses the same track as route 4 → 1 but in the opposite direction. This

means that the same section of reduced speed limit is encounted at a different

position when traversing the line in differnt directions. For clarity Table II.2

gives the position of reduced speed limit as they are encounterd on each line

in each direction.

Table II.2: Speed limits on each line

Line Speed limit (km/h) Start of limit (km) End of limit (km)

(1, 4) 200 15 20
(4, 1) 200 10 15
(2, 4) 150 10 13
(4, 2) 150 17 20
(3, 4) 230 20 23
(4, 3) 230 7 10

The traction, resistance and braking force (in kN) of all three trains were

identicle. The traction force was given by:

tractionforce =

 360 if0 ≤ v ≤ 180km/h

360− 6
7(v − 180) if180 ≤ v ≤ 300km/h

(II.1)

where v is the velocity of the train in km/h. Although Equation II.1 was

216

stated in [44] section 3.1.2 of this thesis discussed the fact that it appears that

the actual traction force implemented was given by:

tractionforce = 360, if0 ≤ v ≤ 300km/h (II.2)

The resistance force was given by:

resistanceforce = 11.4 + 0.101v + 0.001269v2 (II.3)

The braking force was given by:

brakingforce =


300− 0.2v if0 ≤ v ≤ 100km/h

280− 1.2v(v − 100) if100 ≤ v ≤ 200km/h

160− 0.5v(v − 200) if200 ≤ v ≤ 300km/h

(II.4)

217

Appendix III

Roulette wheel selection on a

GPU

The optimisations described in chapters 3 and 4 biased-random selection of

individuals has used the roulette wheel selection scheme described by Yang

et al. [44]. After ranking the population by their fitness scores (from best to

worst), each individual, Xi was assigned a ‘rank-based evaluation value’ given

by:

Eval(Xi) = α(1− α)(i−1) (III.1)

where α ∈ (0, 1) is a pre-determined parameter (implemented as 0.05). These

values were then accumulated over a vector W such that W0 = 0,Wi =∑i
j=1Eval(Xi), where i = 1, 2..., pop size. For each individual selected, a

random number t ∈ [0,Wpop size) was generated and a linear search performed

on vector W until the rank i was found, i.e., t ∈ [Wi−1,Wi).

There are several reasons why Yang’s implementation of roulette wheel

selection is expected to be inefficient on a GPU. These reasons mostly result

219

from its use of a look-up table, which will lead to increased memory trans-

actions (scaling proportional to pop size) as well as thread divergence. One

obvious solution to this would be to use the inverse cumulative probability

function for rank-based selection. For the rank-based evaluation value used

(Equation (III.1)), this turns out have a relatively simple form.

The cumulative probability of solution with rank i (in the sorted popula-

tion) is given by:

cumProb(i) =

∑i
j=1 α(1− α)(j−1)∑pop size

j=1 α(1− α)(j−1)
(III.2)

which simplifies to

cumProb(i) =

∑i−1
j=0(1− α)j∑pop size−1

j=0 (1− α)j
(III.3)

In general, for x 6= 1 it is true that

n∑
j=0

xj = 1 + x+ ...+ xn =
xn+1 − 1

x− 1
(III.4)

So, Equation (III.3) can be re-writen as:

cumProb(i) =
(1− α)i − 1

(1− α)pop size − 1
(III.5)

To find the inverse of the probability distribution function we must solve for

i which gives:

i =
log(cumProb(i) · ((1− α)pop size − 1) + 1)

log((1− α))
(III.6)

220

so the rank, i, of a selected individual can be found using the equation:

i = ceil
(log(t · c1 + 1)

c2

)
(III.7)

where, c1 = (1−α)pop size− 1, c2 = log(1−α), t ∈ [0, 1) is a (pseudo)random

number, and ceil is an operator which rounds up to the nearest integer.

Using the relation in Equation (III.7) to select individuals should be faster

than the look-up table method as only two constants, c1 and c2, need to be

loaded from memory (rather than an array of pop size + 1 elements). Also,

the process of looking up the values from this array is replaced by a single

calculation which avoids many memory accesses as well as thread divergence

within each warp.

221

Appendix IV

Basic kinematics of trains

IV.0.5 Physics of train motion

In order the investigate optimisation techniques it is necessary to model the

movement of trains. At the most fundamental level, the motion of a train

depends on Newton’s second law:

F = ma (IV.1)

where F is the resultant force acting on the train, m is the mass of the train,

and a is the acceleration of the train. In this thesis the components of the

result force are approximated as:

F = Fcontrol − Fresistance − Fgradient (IV.2)

Consistent with most train train trajectory optimisation literature, the resis-

tance force on the train is given by the ‘Davis Equation’:

Fresistance = a+ b|v|+ cv2 (IV.3)

223

where v is the velocity of the train and a, b and c are empirically derived

coefficients which vary between different rail vehicles. The component of the

force due to the gradient of the track is given by:

Fgradient = mgsinθ (IV.4)

where g is the gravity of Earth and θ is the gradient of the slope above hori-

zontal.

The component of force due to train control can be used to calculate the

traction energy consumption of the train. The work done by a force is given

by:

E = Fx (IV.5)

However, neither the traction nor the regeneration systems of trains are 100%

efficient so the total energy consumed is given by:

E =
Ftraction
γtraction

+ γregenFbraking (IV.6)

where γtraction and γregen are the efficiencies of traction and regenerative brak-

ing respectively and are in the ranges [0,1).

IV.0.6 Solving the equations of motion

The movement of trains can be modeled using the differential equations:

a =
δv

δt
(IV.7)

v =
δx

δt
(IV.8)

where a is acceleration, v is velocity and x is position.

224

Assuming constant acceleration over each time step (∆t) Equation (IV.7)

can be solved by integration to give Equation (IV.11). This avoids the need

to solve the equations of motion directly, which would be infeasible given the

number of distance based variables (e.g. gradient, driving style).

∫ t+∆t

t
adt =

∫ t+∆t

t
dv (IV.9)

a∆t = vt+∆t − vt (IV.10)

vt+∆t = vt + a∆t (IV.11)

Similarly, substituting Equation (IV.8) into Equation (IV.11) and solving by

integration gives:

xt+∆t = xt + vt∆t+
1

2
a∆t2 (IV.12)

Equations (IV.11) and (IV.12) allow the velocity profiles of trains to be found

by accumulating calculations over many small time steps. This is the method

underlying simulation in models G1 to G5. Traction energy consumption of the

trains in these models was calculated in a similar way by combining Equation

(IV.20) and (IV.12) to give:

Et+∆t = Et + F (vt∆t+
1

2
a∆t2) (IV.13)

Alternatively, train motion can be given in terms of small distance steps

(∆x). Equation (IV.7) and (IV.8) can be combined to give the differential

equation:

v

a
=
δx

δv
(IV.14)

Assuming constant acceleration over ∆x Equation (IV.14) can be solved by

225

integration to give Equation (IV.17).

∫ x+∆x

x

v

a
dv =

∫ x+∆x

x
dx (IV.15)

v2
x+∆x − v2

x

2a
= ∆x (IV.16)

vx+∆x =
√
v2
x + 2a∆x (IV.17)

Similarly, over the small distance step (∆x) Equation (IV.8) can be solved by

integration to give:

a(tx+∆x − tx) = vx+∆x − vx (IV.18)

Substituting a from Equation (IV.16) and solving for tx+∆x gives:

tx+∆x = tx +
2∆x

vx + vx+∆x
(IV.19)

Equation (IV.17) and (IV.19) are used to simulate the velocity profiles of trains

in model G6. Traction energy consumption of the trains in this models were

calculated using:

Ex+∆x = Ex + F∆x (IV.20)

226

	Acknowledgements
	Table of contents
	Terminology, abbreviations and symbols
	Introduction
	Background
	Scope of work
	Thesis structure

	Literature review
	Single-train trajectory planning
	Analytical results
	Heuristic search methods

	Multi-train trajectory planning
	Headway constraints on a single line
	Electrical interactions between trains
	Other network interactions

	Optimisation in uncertain systems
	Techniques used in `noisy' genetic algorithms
	Robust train trajectory planning

	Evaluation and research direction

	Multi-train trajectory optimisation to maximise rail network energy efficiency under travel-time constraints
	Implementation and validation of G1
	Overview of Yang's formulation
	Validating traction trajectories
	Implementing braking
	Validating simulation
	Validating optimisation performance
	Method of traction energy calculation

	G2: Link-wise mutation operation
	G3: Insertion and deletion operations
	Comparing optimisation performance of G1 to G4
	Investigating system properties
	Trade-off between energy consumption and traverse time
	Effect of varying
	Effect of train schedule

	Chapter conclusions

	Robust multi-train trajectory planning for real world conditions using a `noisy' genetic algorithm
	Introduction
	A robust multi-train optimisation (G5)
	Uncertain control point application
	Uncertainty in dwell times at stations
	Model parameters

	Investigating performance of the robust optimisation
	No training noise
	Control point application training noise
	Station dwell time training noise
	Both control point application and station dwell time training noise

	Comparison with closed-loop performance
	Evaluation of G5
	Chapter conclusion

	A massively parallel multi-train simulator for accelerating population based heuristic optimisations
	The need for a new model
	Advantages of the model used in G1 to G5
	Limitations of model used in G1 to G5
	Conclusion

	Introduction to GPUs and CUDA
	Background on CPU architecture
	GPU architecture and the CUDA abstraction
	Principles for efficient GPU algorithms

	Design choices for the GPU accelerated model
	Soft headway constraints
	Parallelisation strategy
	Pre-calculating journey information
	Fixed block signalling
	Control sequence

	Description of the GPU accelerated simulation
	Overall structure
	Data structures
	Journey simulation
	Timing synchronisation
	Compatibility check
	Scoring

	Optimisation algorithms
	Fine-grained selection
	Breeding

	Validation and sensitivity analysis
	Measuring performance

	Conclusions and further work
	Conclusions
	Further work
	Sensitivity analyses
	Potential applications
	Extension of the model
	Improvements to optimisation algorithm

	References
	Appendices
	Introduction to Genetic Algorithms
	Input data for base case in Chapter 3
	Roulette wheel selection on a GPU
	Basic kinematics of trains
	Physics of train motion
	Solving the equations of motion

