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Abstract
In this thesis we contribute to the understanding of online social networks, temporal

networks, and non-equilibrium dynamics. As the title of this work suggests, this thesis

is split into two parts,monitoring andmodelling social networks. In the first half we look

at current methods for understanding the behaviour and influence of individual users

within a social network, and assess their robustness and effectiveness. In particular,

we look at the role that the temporal dimension plays on these methods and the various

representations that temporal networks can take. We introduce a new temporal network

representation which describes a temporal network in terms of node behaviour which

we use to characterise individuals and collectives. The new representation is illustrated

with examples from the online social network Twitter. We model two particular aspects

of social networks in the second half of this thesis. The first model, a generalisation

of the popular Voter model, considers the dynamics of two opposite opinions in a

heterogeneous society which differ by the resolve of their opinion. The second model

investigates how the presence of ‘anti-bandwagon’ agents can prevent the spread of

ideas and innovations on a social network, particularly on networks with restrictive

topologies.

This contribution offers newways to analyse temporal networks and online social media,

and also provokes new and interesting questions for future research in the field.
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1
Introduction

Networks are ubiquitous in nature and society; from the complex interactions of proteins

that make up the human body to the roads and rails that form our transport network

across the globe, and from the many neurons making up our nervous system to the

people we interact with on a daily basis or call our friends. Regardless of the context,

networks can be modelled abstractly as a collection of nodes (proteins, junctions, people)

which are connected by a collection of edges (interactions, roads, relationships). The

study of these objects is commonly known as complex network analysis [7, 8] which has

its foundations in the more abstract graph theory [9]. As a result, the word network is

often used interchangeably with graph.

The interaction of human beings and the resulting collective behaviour is particularly

fascinating. This kind of interaction drives many systems that we see today, such as

the stock market, war, politics, and the behaviour of large crowds. Understanding the



2 CHAPTER 1. INTRODUCTION

way humans behave collectively and the relationships they form is commonly known

as social network analysis [10]. Although the first use of graph theory is thought to be

that of Leonhard Euler’s study on the seven bridges of Königsberg [11, 12], the graphical

study of social networks only appeared relatively recently in the early 20th century [13].

As the bridges inspired Euler to develop the notion of paths on networks, advancements

in the field of network analysis came through the study of empirically observed data.

Perhaps the most famous example of a social network is that of the Zachary Karate Club

[4], seen in Figure 1.1. The network features 34 members of a karate club. Two members

are connected by an edge if they were friends outside of the club. Due to an ongoing

disagreement between the club president (node 33) and the karate instructor (node 0),

the club ultimately split into two separate clubs, denoted by the red and green nodes.

The unique nature of this network, being a social systemwhich fragmented into two, has

Figure 1.1: The Zachary Karate Club network [4].

made it an ideal testing ground for community detection algorithms1. In this network

the question is ‘can we predict how the club would split from the observed friendships

alone?’

Another early example of a social network from the 15th century (although the analysis

was conducted over 500 years later), is the marriage relationships between oligarch
1 The network has been so widely used has that there now exists the ‘Karate Club Club’, a club for

those first to include the Karate club network in their talk at conferences in network science.
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Florentine families in Italy [5, 6]. Here the nodes represent the families, and an edge

connects two nodes if the families are connected through marriage. The network was

Figure 1.2: The Florentine Families network [5, 6].

created to understand the relative importance, influence (or centrality) of these families

over the time period - which family is the most powerful? This type of question can

be probed by considering the particular properties of the nodes in the network, often

referred to as centrality measures, of which there are many [7, 14–20]. Also collected

was a network of business and financial transactions between the families. These two

networks can be studied in combination as a multilayer network [21].

Another notable example of social network analysis is Milgram’s (subsequently named)

‘six degrees of separation’ experiment [22]. Milgram’s experiment was simple; ask

participants to deliver a letter to another named person in the United States, without

knowledge of their address. If they did not know the named person, they were to pass

the letter on to another person who they thought may be better suited to deliver the

letter successfully. The average path length of letters which made it to their destination

was roughly six. This strikingly small number (given that the population of the US was

200 million at the time) was one of the first observations of what is now known as

the small world effect which more formally states that the average path length grows

logarithmically with the network size.

In these examples, the collection of empirical data sparked pertinent questions, which
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led to new breakthroughs and understanding of complex networks. The process of

collecting this data was laborious however; information on the Florentine families was

only available due to strict record keeping in Florence at the time, the friendships of

the karate club were gathered over three years, and in Milgram’s experiment of the 296

letters sent out, 232 never reached their destination.

As the strict record keeping in Florence helped generate social networks of Florentine

families, modern social network analysis now benefits from the proliferation of the

internet, digital record keeping, and excesses of data which allow us to study social

networks in brand new ways.

1.1 Social Networks in Modern Society

Since the turn of the millennium, the meaning of a ‘social network’ has changed. Social

networks now more commonly refer to online social networks such as Twitter2 and

Facebook3.

What exactly is an online social network? Although platforms vary, on a basic level users

create an account and can declare other users as their ‘friend’ (often bidirectional) or

choose to ‘follow’ the activity of another user (unidirectional). Beyond this declaration,

users can interact with each other through messaging or by sharing content such as

images, videos, and URLs. As these social networks are online, every interaction a user

has with the network is recorded which provides invaluable opportunities for research

(if the data is publicly available).

Social networks are now an influential part of modern society. Facebook has 1.87 billion

monthly active users (users who have logged in at least once in a monthly period) as of

31 December 2016 [23] which is nearly a quarter of the current world population and a

larger fraction of the population who are able to access the network. Twitter has 313

million monthly active users as of June 30 2016 [24] but boasts over a billion monthly

unique views of pages which contain embedded messages from the Twitter network.
2www.twitter.com
3www.facebook.com
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Online social networks have taken on a myriad of roles within society including

reconnecting and chatting with friends, organising social groups and activities, and

sharing pictures or ideologies [25]. Beyond their original uses, they are now places to

find breaking news stories, buy and sell items, and discuss politics [26, 27] (as showcased

by the recent UK EU referendum [28] and the 2017 US presidential election [29]).

The wealth of available data on online social networks has instigated many studies from

a mathematical and social perspective. With metadata available on the users themselves

two studies were able to investigate the prevalence of homophily (the preference of

individuals to associate with other individuals of similar traits) in a sample of the

Facebook social network [30, 31], finding that age was the main factor for connections to

be formed between users. Also, in an online experiment paralleling that of Milgram’s in

the 1970s, Facebook’s own research team estimated that the average shortest path length

on their social network was approximately 3.5 [32], suggesting that the small-world

effect is even more profound online than offline. One of the first studies into the Twitter

social network [33] obtained 41.7million user profiles, and 1.47 billion social relations in

order to investigate the spread of information on the network, and the relative influence

of the users on the network (much like the Florentine families, only with a network over

a million times larger).

There have since been many studies using data from Facebook and Twitter, as well as

other popular online social networks such as LinkedIn, Sina Weibo, and Reddit [34–50].

Some studies of note aim to understand the social network as an entity, characterising

the distribution of number of connections [33], the degree of homophily [51], and the

features of nodes which make them influential on the network [37]. Others use social

networks as a proxy to make forecasts on things outside the network such as detecting

earthquakes [47], or attempting to predict the stock market [35] or political elections

[42]. Care needs to be exercised with these latter studies as the users of social media

are not necessarily a representative sample of the whole of society, and their online

behaviour may not be reflective of their behaviour off the social network [52]. In this

thesis we will primarily be interested in social networks as a social and mathematical

entity, aiming to characterise their properties and features.
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Advertising

An important aspect which has helped drive the popularity of online social networks

is that they are predominantly free to use. Platform providers generate their revenue

through data collection and licensing, and the inclusion of advertisements. The creation

of online social networks has driven a change in the way advertisements are presented,

as highlighted in a report by the Academy of Marketing [53]:

“Today’s consumers are technologically smart, visually orientated, and

information overloaded; and they lead an ‘on-the go’ life style, which can make

them hard to reach (Leek & Christodoulides, 2009) …

…It [mobile and internet advertising] allows individual personalization (Yanis,

2008; Jayawardhena et al., 2009), individual targeting and at the same time,

the collection of customer data.”

Whereas advertising in the past has relied on a scatter gun approach of reaching far

and wide, online social networks offer advertisers the opportunity to understand their

target audience through data collection and, furthermore, allow companies to engage

with consumers on a social level [54].

By 2020, internet advertising is forecast to make up to 40% of all UK advertising revenue

[53] which is a significant part of a sector which currently contributes approximately

£13 billion to the UK economy [55]. To succeed in this sector companies and advertisers

need to be able to fully utilise social networks by understanding how individuals and

collectives behave whilst using these networks and be able to use social network data to

efficiently spend advertising resources to achieve the greatest impact.

Bloom Agency

This body of work is funded by an EPSRC CASE studentship, part sponsored by the data

led, full service integrated marketing agency, Bloom Agency (subsequently referred to

as Bloom). Bloom are at the forefront of studying company and brand engagement with

social media and are actively engaged in ongoing research in this area [56–60].
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Using their in-house analytics suite Whisper (based upon temporal centrality measures

[61]), Bloom are able to monitor online conversations in real-time, identify the

key influencers in conversations, and uncover opportunities to drive and shape the

conversation around brands. Bloom has worked with many high profile clients to help

engage their current and potential customers, details of which can be found in [62]. In

particular their work with Sky Sports and ITV has shown that engaging users during

television programmes with a ‘second screen’ social experience can help characterise

audiences, assess the impact of televised marketing campaigns, and provide a richer

experiences for these audiences.

Working closely with Bloom over the course of this project has highlighted some of the

many challenges they face on a daily basis. The main observations drawn from time

working alongside Bloom are:

• Real-time analysis is crucial. The attention of social media users is quickly lost

and so action needs to be taken quickly in order to be effective. Furthermore new

content is adopted rapidly by users and often acted upon within minutes. This

means that information can be spread quickly, or controversial content can soon

be met with outrage.

• Client needs and demands can vary wildly. The clients of Bloom are all

different and each has their own motivations to interact with social media. Some

however want to interact with social media but have no fixed objectives. It is

therefore important that any analysis of social networks should be able to describe

them in generality, but also be adaptable to answer specific, focused questions.

• Identifying key conversation drivers (or influencers) is important. While

potentially many thousands of users will participate in an online discussion

around a particular topic, the conversation is often centred around a small number

of users who attract a significant share of other users messages.

• Tracking the spread of opinion and sentiment is difficult. With content on

social media being limited to short messages it can be difficult to decipher the

opinions of users. Some attempts have been made to measure the sentiment of
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individual messages, however due to the short message length and the difficulty

to detect sarcasm this is often inconclusive. One should therefore look to study

the mechanisms of idea transmission to help inform what data is collected.

• Social media is noisy. Despite the best efforts of social media providers, a

significant percentage of content produced on these networks is autonomous, or

spam4. It is therefore important to be able to identify this content so as to avoid

any incorrect conclusions.

• Conversation networks can potentially be classified. Bloom’s network

visualisation tools show that, at least visually, similar network structures and

components occur across different case studies. This suggests that these patterns

can potentially be classified and used to understand new networks when they

appear.

1.1.1 Challenges

There are a number of challenges when studying online social networks.

Mathematical

Social networks have often been described using the mathematical language of graph

theory. Static graphs (or networks) are well studied, but their analysis is often

limited to approximations of the network such as assuming homogeneity or ignoring

degree-degree correlations (whether hub nodes are likely to be connected to other hubs,

or to nodes of low degree) [63, 7, 64, 65]. The static network model is useful for studies

of social networks where the connections are assumed to be fixed or to change slowly

over time. By contrast, the networks studied by Bloom are generated over the space of

hours and, as we will see in Chapter 5, change rapidly over time. We therefore look to

use temporal networks to model the networks generated by social media. Temporal

networks however are less understood and less tractable than their static network
4 Estimated between 8− 15%, with disagreement between official and academic sources.
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counterparts. The challenge is therefore to devise new mathematical methods to aid

our understanding of temporal networks, and specifically to find ways to quantify the

behaviour of individuals within the network.

Complexity

Much like the financial markets, social networks are constantly evolving. They both

evolve over time as the habits of the users change and technological features improve.

For example, social networks are now well equipped to facilitate the sharing of images

and videos where they were once limited to text only [66]. They also react strongly to

external stimuli such as world news or live events, driving conversations and provoking

content creation. Social networks are perhaps even more complex than the financial

markets despite both being driven by the interaction of many users. For example, there

is no equivalent for the infamous Black-Scholes-Merton model [67] for social networks.

Any approach to model social networks must be able to capture the inherent complexity

of these systems, but must also be adaptable to changes in the way they behave.

Data

Online social networks produce large amounts of data at a high rate. This is due to the

large number of users and interactions between them, but also due to the recording of

every detail of these interactions; the time at which the interaction occurred, any media

attached to the interaction, and full details of each interacting user. As a consequence

there are a number of logistical issues with the handling of such data. Data needs to

collected, filtered, and stored. This raises questions about what information is needed to

answer the research question at hand and how easily it can be stored.

In addition to being able to process the large amount of data produced by online

social networks, there is the issue of being able to process the data in real-time or

near-real-time. This was recognised by Innovate UK in their 2016 ‘Creative Industries

Strategy Report’ [68] which states:

“Across the economy, data has become recognised as crucial to business success.
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With increased connectivity has come an increase in available data, and

more opportunities to manage and capture value from it. When this data is

embedded in instant or near real-time decision making, it becomes even more

powerful, with commentators forecasting a shift towards embedding data in

decision-making and strategic processes.”

Therefore the challenge is not simply being able to process the large volume of data,

but having the ability to process it quickly and efficiently so that it can be utilised in

real-time decision making.

A flavour of the complexity of online social networks is captured in Figure 1.3 which

shows the interactions between users of the Twitter social network who mention the

word ‘Leeds’ over the period of an hour on a typical Saturday afternoon. This relatively

small sample of the Twitter network already has a large number of nodes and has

non-trivial structure. Other keywords, especially those surrounding popular and current

topics (politics, sports, etc.), can generate much larger networks in a similar time frame.

At the centre of this network is what is often referred to as the ‘hairball’. The term

has its origins in our inability to visualise these networks (which is a research area in

itself) however it has become a metaphor for the complexity of these networks and the

difficulty of studying them.

The subject of this thesis is therefore to develop tools (both mathematical and

computational) to untangle the hairball of online social networks, and use them to study

the behaviour of individuals and collectives.

1.1.2 Methodology

Our approach to studying social networks takes two contrasting but complementary

perspectives.

The first addresses the challenges faced by Bloom and the wider community by

developingmethods to understand influence and behaviour on social networks, and tools

to be able to conduct this analysis in real-time and at scale. This approach is primarily

data-driven and aims to utilise the plethora of data available from online social networks.
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Figure 1.3: An example network generated from Twitter. The nodes are the users of the

network and an edge is present between two nodes if one node has sent a message to

the other. Green edges are messages, blue edges are replies to previous messages, and

red edges are retweets (copies) of previous tweets.
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We frame this approach in the context of temporal networks and study the evolution

of the interaction patterns of the nodes. While static networks are well understood

(although difficult to model), the study of temporal networks is still in its infancy and

we lack the tools to analyse them without resorting to some form of approximation or

aggregation. We therefore assess the current methods used to understand influence on

temporal networks and, in particular, how the partitioning of the network in time can

have consequences on the conclusions of the analysis. We also explore ways to capture

the behaviour of individuals and collectives in a temporal network and subsequently

develop a new behaviour-centric representation of a temporal network.

The second approach considers simple models of spreading behaviour on social

networks. Considering simplistic mechanisms of interaction between individuals we

study themacroscopic behaviour of the system as a whole which, if representative of real

world systems, may clarify the mechanisms that drive interactions on social networks.

By controlling the model parameters we look to find regimes of distinct behaviour, and

by considering different network structures we aim to understand how the network

topology affects the dynamics. In order to analyse these models formally we need to

apply theory from statistical mechanics and dynamical systems.

1.2 Thesis Outline

This thesis is organised in two parts. Due to the diversity of topics in this thesis formal

literature review is deferred to the relevant sections.

Part One

The first part of this thesis concerns the study of temporal networks, what tools are used

to analyse them, and how we can apply them to online social networks. In Chapter 2

we summarise the current literature on temporal networks. In Chapter 3 we review

the communicability centrality and analyse its performance from both an analytical

and computational viewpoint before providing a novel and efficient algorithm for its

calculation. In Chapter 4 we present a new representation of a temporal network, the
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temporal event graph, and study its properties. Finally, in Chapter 5 we use the temporal

event graph to study data collected from the Twitter social network.

Part Two

The second part of the thesis concerns models of human behaviour. In Chapter 6 we

outline some of the methods used to analyse stochastic processes and dynamics on

networks that are used in the subsequent chapters. In Chapter 7 we introduce the

2q-voter model with zealotry, an extension to the classical voter model which exhibits

non-trivial non-equilibrium behaviour. In Chapter 8 we introduce the LISA model of

innovation diffusion. This model aims to understand how ‘anti-bandwagon’ behaviour

can affect the spread of an innovation on a network.

Finally in Chapter 9 we present a summary of the thesis, discuss the impact of this

research, and highlight future research directions.

1.3 Contributions

This thesis contributes to both the understanding of temporal networks and to the study

of non-equilibrium social systems. The key contributions are summarised as follows:

• Analysis of the communicability centrality measure. We explore the

behaviour of the dynamic communicability measure [61] when different temporal

network aggregations are used, showing that the interpretation of the metric

changes depending on the aggregation level. We provide an algorithm for the

exact and efficient calculation of the measure which operates on an unaggregated

temporal network, and can easily be parallelised.

• Introduction of a new temporal network representation. Building upon

previous work on edge-based network representations [69, 70] and temporal

motifs [71], we introduce a new representation for temporal networks, the

temporal event graph. Through examples we show how this representation is
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able to decompose the temporal network and provide a means of understanding

the generating process of the network through temporal motif and inter-event

time distributions. Furthermore we outline a method to sample from temporal

networks by sampling entire components (of the temporal event graph) instead of

individual events. This representation is not restricted solely to social networks

and can in fact be generalised to any series of connected temporal events

(purchases/trades, academic collaborations etc.).

• Introduction of a non-equilibriummodel of opinion dynamics. We present

a heterogeneous out-of-equilibrium non-linear voter model of opinion dynamics.

Through numerics, simulations and analysis we characterise the behaviour of the

model under various parameter regimes. The model is one of the first properly

studied models of this class which exhibits non-vanishing stationary probability

currents which are investigated by considering a linear Gaussian approximation

(LGA) of the Fokker-Planck equation. We find that the model can be accurately

described using a LGA for large systems and that the non-equilibrium currents

give hints to the existence of ‘leaders’ and ‘followers’ within a society.

• Study of the spread of innovation in a network context. We study a simple

model of the spread of innovation on a network, extending the widely used Bass

model [72]. In this model we introduce a new class of agents called ‘Luddites’

who oppose the rapid spread of innovation. The novel mechanism for the creation

of Luddites incorporates the rate of change of the states of neighbouring agents,

rather than just their states. We find that the rapid spread of innovation can

polarise a population and, on constrained topologies, the presence of innovation

opposing agents can block pathways to innovation spread.
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2
Temporal Networks

The study of static networks has been fruitful in helping understand the complicated

relationships that exist in nature. Historical studies of networks have been in the static

framework due to both the availability of data and the relative ease of analysis. Previous

studies of social networks have looked at the networks of Facebook friendships [30, 31],

the Twitter follower network [37], and self-reported networks of friendship [73, 74].

These networks capture relationships at a given time or over some time period. The

networks studied are however constantly evolving [75–77], forming new edges as well as

destroying others in response to node activity as well as external stimulae. For example,

unkept friendships on social media may result in ‘defriending’, or ‘unfollowing’ of nodes,

or the outbreak of a contagious virus may temporally cause a node to disconnect itself

from the network entirely as a means of quarantine.

Does this temporal information really make a difference? In Figure 2.1 we consider the
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possibility of information transfer between two nodes, that is, the existence of a temporal

walk between them (formally defined in Section 2.1.1). Considering the network as an

A B

C D

E F

A B

C D

E F

A B

C D

E F

A B

C D

E F

t = 1 t = 2 t = 3 Aggregate

Figure 2.1: A simple temporal network expressed as a sequence of three static networks.

Ignoring the temporal nature of the network and considering only an aggregated

network suggests a temporal path exists between A and B.This path does not exist when

the temporal nature of the network is taken into account.

aggregated static network, we see that there exists a path from A to B. However, with

the addition of temporal information we know that that path D→ B occurs prior to that

of A→ C.Therefore a temporal path does not exist from A to B over the time period. As

this example shows, the temporal structure of the network plays an important role in

the dynamics of systems acting on the work, in the same way that the network topology

is influential.

Chapter Outline

This chapter is intended to be a review of temporal network literature: terminology,

concepts and recent studies. It contains no original material and serves to introduce the

notation and terminology needed for subsequent chapters. In Section 2.1 we define a

temporal network in its most granular terms and define a number of notions useful to

the study of temporal networks. We also show a number of popular representations of

temporal networks which capture the temporal dynamics of the network to varying

extent. In Section 2.2 we summarise the types of analysis conducted on temporal
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networks, illustrated with examples, before concluding in Section 2.3.

2.1 Temporal Networks

We consider temporal networks described by an event sequence (or contact sequence).

Definition 2.1.1 (Temporal network). Let V ⊂ N be a set of interacting nodes, T ⊂ R+
0 ,

a non-empty ordered set of interaction times, andD ⊂ R+
0 a set of event durations. The

temporal network is then defined as the quadruple

G = (V, T,D,E)

where E ⊂ V 2 × T ×D is the set of temporal events.

A temporal event e ∈ E takes the form e = (u, v, t, δ), corresponding to a contact from

u to v (and from v to u in the undirected case), initialised at time t, and lasting for a

duration δ. Unless explicitly stated, we will consider temporal events to be directed.

This representation can fully describe the temporal nature of most networks. Some

authors [78, 79] prefer to make the distinction between event sequences of zero duration

and interval graphswhere activity between two vertices is not instantaneous but persists

over a set of time intervals. The difference between these modes of thinking is that often

the restriction is placed on vertices such that they can be involved in only one event at

any given time, whereas in the interval graph this is allowed. A clear example of this

would be to model telephone calls by an event sequence as a traditional phone call only

supports two people. By contrast a temporal network of physical proximity may allow

multiple people to be connected to each other over some time interval. This dichotomy

can confuse what is in fact the same object. For this reason we will consider all temporal

networks as event sequences and relax any conditions on the number of events a vertex

can be involved with, and state explicitly when this is not the case.

For the purposes of visualisation, a temporal network is often displayed as a static

network where edges are labelled with the times and durations of events occurring along

those edges, as in Figure 2.2.
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Figure 2.2: A temporal network. Events (edges) are labelled with times when that event

occurs.

2.1.1 Temporal Network Notions

Temporal Walks

The edges of a static network constrain the dynamics of processes acting on the network.

A sequence of edges where the end node of one edge is the start node of the subsequent

edge is called a path, provided each node is visited at most once. Extending this notion

to temporal networks one naturally requires a constraint on the traversal times between

nodes.

Definition 2.1.2 (Temporal walk). A temporal walk between nodes i and j is a sequence

of temporal events ((u0, u1, t1), (u1, u2, t2), . . . , (un−1, un, tn)) such that u0 = i, un = j,

and the sequence of event times is non-decreasing, i.e. t1 < t2 < · · · < tn.

Alternatively, it is often useful to define a temporal walk as the sequence of nodes along

the walk and times visited rather than the sequence of events. It is easy to see however

that these two definitions are equivalent and will be used interchangeably.

Furthermore we define a temporal path to be a temporal walk such that each node is

visited at most once.
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Remark 2.1.3. There exists a temporal walk from i to j if and only if there exists a

temporal path from i to j.

This is evident as the set of temporal paths is strictly a subset of the set of temporal

walks, and a temporal walk can become a temporal path by the removal of events which

cause a loop back to revisit a node. If we impose restrictions on the time spent at each

node however, there may be instances where the restricted temporal walk exists, but the

restricted path does not.

In the literature a temporal path has also been referred to as a time-respecting path [80],

a journey [81], or a non-decreasing path [82]. It is also worth noting that the existence

of a temporal walk is not transitive, that is, the existence of a temporal walk from i→ j

and from j → k does not imply the existence of a temporal walk from i→ k.

Inter-event Times (IETs)

In typical temporal networks nodes can participate in a number of different temporal

events, and an event between two nodes can occur multiple times over the duration of

the network. In telecommunication networks, two users may make regular phone calls

on a daily or weekly basis, for example. The correlations in the timings of such events

can have a significant impact on the temporal structure of the network and hence play

a role in determining the number of temporal paths through the network. The notion of

inter-event time characterises this behaviour.

Definition 2.1.4 (Inter-event time). The inter-event time between any two temporal

events ei, ej is given by

τij = tj − ti

assuming that event ej occurs after ei1.

From this, there are a number of inter-event time distributions one can consider. First is

the inter-event time distribution across the entire temporal network

ϕ = {τi,i+1|ei ∈ E}

1 For events with duration, the inter-event time is given by τij = tj− (ti+ δi) provided tj > (ti+ δi).
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This is a global measure of activity patterns within the network. Two other useful

distributions are the inter-event times of nodes being the source of an event, or the

node being the target of an event. Let

Eout
i = {e ∈ E|e = (i, k, t) for any k ∈ V /{i}, t ∈ T},

E in
i = {e ∈ E|e = (k, i, t) for any k ∈ V /{i}, t ∈ T}

be the sets of events involving node i as a source and target respectively. Then the

corresponding inter-event times are given by

ϕout
i = {τjk|ej, ek ∈ Eout

i and @el ∈ Eout
i s.t. tj < tl < tk},

ϕin
i = {τjk|ej, ek ∈ E in

i and @el ∈ E in
i s.t. tj < tl < tk}.

This gives the behaviour of an individual in the network and also the behaviour of other

nodes behaviour towards it. These two distributions can be combined to give a measure

of the general participation of a node in the network

ϕi = {τjk|ej, ek ∈ Ei and @el ∈ Ei s.t. tj < tl < tk}

where Ei = Eout
i ∪ E in

i is the set of all events for which i is either a source or target. In

this case it is not possible to distinguish between the behaviour of the node itself and

of others. Finally one can consider the inter-event times of contact between two nodes.

The distribution

ϕij = {τkl|ek = (i, j, tk), el = (i, j, tl)

and @em ∈ E s.t. em = (i, j, tm) where tk < tm < tl}

captures times between particular interactions occurring in the network.

In networks of human communication such inter-event times have been found to be

bursty in nature - large gaps in activity are followed by periods of high activity [83, 84]

(see Figure 2.3). Recognising human temporal behaviour plays an important role in

identifying and detecting ‘bots’ in online conversations on Twitter (see Chapter 5). As

a word of caution, it is not possible to fully determine the inter-event time distribution

empirically from a finite time window as longer inter-event times are less likely to be

sampled during the observationwindow. One study [85] investigates the bias introduced

by finite time windows and corrects for this problem by modelling the event sequence

by using stationary renewal processes.
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Figure 2.3: An example of bursty temporal behaviour. Below, events are represented by a

vertical line at the time they occur. The closer two lines are, the closer in time they occur,

and the shorter the inter-event time. Above, a moving-window count of the number of

events occuring.

2.1.2 Representations

Temporal networks do not have a unique representation. There is in fact a spectrum

of representations of temporal networks from the fully aggregated static network, to

the atomic event sequence. Each representation of a temporal network aggregates the

temporal data to a different extent and each has its own advantages and disadvantages.

The temporal representation is usually chosen tomatch the detail of the data under study

and such that the analysis is tractable.

Network Snapshots

By far the most common representation of a temporal network is in the form of a

sequence of static networks, representing the temporal network over a prescribed time

interval. Let P = {tmin = t(0), t(1), . . . , t(n) = tmax} with t(0) < t(1) < · · · < t(n) be a set

of points which partition the interval [tmin, tmax]. Note that these intervals do not need to

be of fixed width, however a uniform partition over the time frame is usually adopted.

The adjacency matrix for the network in the interval Ik = (t(k−1), t(k)] is defined such
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that

(Ak)ij =

1 if ∃(i, j, t) ∈ E s.t t ∈ Ik

0 otherwise
.

For events with duration the condition for a non-zero entry becomes ∃(i, j, t, δ) ∈

E s.t. [t, t+δ]∩Ik ̸= ∅, that is, the event occurs at some point during the interval but may

start before and/or finish after. The adjacency matrix can also be weighted according to

the number of events between nodes in each interval (activity). The weighted adjacency

matrix for the interval Ik is given by

(Wk)ij = |{(i, j, t) ∈ E|t ∈ Ik}| .

Adding weights to each interaction is especially useful if there are expected to be large

numbers of interactions between pairs of nodes within each interval.

Representing the temporal network in this fashion has a number of advantages. As each

snapshot of the network is static, then static analysis of each snapshot can be conducted

and compared across the time frames. For instance, this could be used to track the

clustering coefficient or average degree of the network over time. More importantly,

temporal walks across the network can be realised by the multiplication of subsequent

adjacency matrices. For example, (AkAk+1)ij = 1 if there exists a single temporal

path from i to j via a third node in the interval (t(k−1), t(k+1)]. The notion of temporal

walks is important for calculating a number of centrality measures as well as in the

study of dynamical processes acting on the network (in particular spreading dynamics).

Aggregation of the temporal network causes some information to be lost but provides a

reasonably proxy to the temporal network for most purposes.

Adjacency tensor (multiplex network)

The adjacency tensor (also know as the time-varying graph [86]) encodes the temporal

network into a 4D tensor. The adjacency tensor A is defined such that

Ai,ki,j,kj =

1 if ∃(i, j, t, δ) ∈ E s.t t ∈ Iki and t+ δ ∈ Ikj

0 otherwise.
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In this representation the temporal network can be considered as a multilayer network

[21] where each layer represents an interval of time. Nodes in one time interval can

communicate with other nodes (and itself) in other time intervals. A typical example

of this representation involves phone calls. A telephone call may be initialised in

interval Iki but any possible information transfer (or at least action based on information

transfer) may not occur until the call ends in the interval Ikj . This is an improvement

on considering information transfer to be instantaneous which is often unphysical. It is

worth noting that this representation fully captures all information in an event sequence

if the time frame is partitioned such that each event start and end time falls into its own

interval.

Examples of these representations are given in Figure 2.4.
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Figure 2.4: Temporal network representations. (a) Network snapshots, or a series of

adjacency matrices. (b) Adjacency tensor. Similar to the network snapshots however

nodes can interact with other nodes (and themselves) between intervals. (c) Contact

sequence. Events are labelled by the time they occur and are not binned or aggregated.

Static networks

At the other end of the spectrum, there are a number of static representations which aim

to capture a particular aspect of the temporal network. The reachability graph [87, 88]
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is defined as

Areach
ij =

1 if ∃ a temporal path from i→ j

0 otherwise.

By explicitly incorporating temporal paths through the network the reachability graph

does not falsely imply the existence of paths through the network where they do not

exist, as is the case with the aggregate network (Figure 2.1). Information is lost in the

length and route of temporal paths which can be vital for the analysis of spreading

dynamics; a virus is more likely to spread making as few ‘hops’ between agents as

possible, assuming a fixed probability of transmission on contact.

More simple approximations come in the form of activity-weighted and time-weighted

graphs Let Eij ⊂ E be the set of temporal events which take the form (i, j, t, δ) for any

t, δ. The activity-weighted graph is defined by the weighted adjacency matrix

Aaw
ij = |Eij|

which gives a measure of how active each edge of the network is over the time frame.

Similarly, the time-weighted graph captures the total duration two nodes are in contact

and is defined by

Atw
ij =

∑
(u,v,t,δ)∈Eij

δ.

The use of static representations is not to be discounted. While the analysis of static

graphs simplifies the true network by aggregating (or even ignoring) the temporal

dimension, it is often useful in cases where the network evolves on timescales

significantly slower than a process acting on the network. For example, the road network

can be safely assumed to be static over a daily or weekly time frame. However, if the

traffic flows of transport were modelled then the incorporation of temporal data would

potentially be more enlightening due to it being able to capture the large fluctuation in

traffic volumes along edges (streets) across the day.
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2.2 Temporal Network Analysis

Static networks have been studied since Euler first considered the problem of the

Königsberg bridges in 1736 and since then many methods have been devised to

characterise the topological structure of these networks. The addition of a temporal

degree of freedom to these networks requires these measures to be altered to utilise the

extra information presented.

In this section, we highlight a number of different measures used to describe temporal

networks and their inter-event time distributions.

2.2.1 Centrality Measures

Centrality measures capture the importance of nodes or edges with respect to a

particular property of the network. For static networks, centrality measures have been

employed to great effect in assessing node vulnerability to epidemic spread [19], ranking

stations in train transport infrastructures [89] or identifying influential users of a social

network [90], as well as in many other areas. Perhaps one of the most influential

centrality measures is that of Google’s PageRank [91], used as part of their search engine

technology to rank websites by their importance and relevance to search terms.

For temporal networks similar notions of centrality can be constructed [92–94, 80].

Some temporal centrality measures are defined on a series of static networks, whereas

others fully utilise the unaggregated temporal information available. The simplest

generalisation is to replace the notion of paths in static networks with time-respecting

paths. Here we outline some of the more common centralities used in the literature.

Degree

The degree of a node is the most fundamental centrality, capturing the number of edges

from that node to any other node. For a sequence of temporal events, the degree of a

node u at a time t is given by the number of events (u, ·, ti, δi) such that ti < t < ti + δi.
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When events become instantaneous (δi → 0) it is useful to consider the degree of a node

within a time interval,

Cd(u, k) =
∑
j

(Ak)uj ,

i.e. the degree of the node in each temporal snapshot.

Temporal betweenness

Betweenness centrality on static networks is based on shortest paths, in particular,

measuring the number of shortest paths which pass through a focal node. Generalising

to temporal networks, the temporal betweenness centrality [92] is based on either

the shortest or fastest temporal paths through the temporal network. The temporal

betweenness is explicitly given by

Cb(u) =

∑
u̸=v ̸=w ηu(v, w)∑
u̸=v ̸=w η(v, w)

where ηu(v, w) is the number of shortest (fastest) paths between v andw passing through

u and η(v, w) is the total number of shortest (fastest) paths between v and w. Here η is

calculated over the complete window of observation of the temporal network. One can

also allow Cb to evolve over time by only counting temporal paths that occur before a

time t, or in an interval around t.

The temporal betweenness centrality suffers from the same issues as its static

predecessor, namely that the focus on strictly shortest (fastest) paths is unrealistic for

many real world systems; the shortest paths may only be fractionally shorter than

alternatives and often full information of the network required to take the shortest path

is not present.

Temporal closeness

On static networks the closeness centrality measures the inverse total distance to all

other vertices in the network. Swapping shortest paths for shortest temporal paths the
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temporal closeness centrality [93] is given by

Cc(u) =
N − 1∑

u̸=v dt(u, v)

where dt(u, v) is the path or temporal distance between u and v. The temporal distance,

more commonly known as the latency, captures the time taken for a path from u to

reach v, provided it reaches v before time t. As with static networks, the closeness of

a disconnected network is undefined. With temporal networks it is even more unlikely

that a temporal path between two nodes exists for the entire time period, and latencies

may be infinite. An alternate temporal closeness based on reciprocal latencies is given

by

Ce(u) =
1

N − 1

∑
u̸=v

1

dt(u, v)
(2.1)

where 1
dt(u,v)

is defined to be zero if there does not exist a time respecting path from u

to v arriving before time t [95]. This can be seen as a measure of temporal efficiency -

smaller latencies lead to a larger value.

Communicability

Temporal betweenness and closeness are based upon the shortest paths through the

network. A contrasting assumption is that traversal across the network is random, and

any quantity that resides on the network diffuses across it. In this setting it makes sense

to consider all time-respecting paths of all lengths. However, a quantity moving along

longer paths may be more susceptible to loss, or is less likely to use a longer path to

begin with. Therefore longer walks should carry less weight than shorter walks. This

idea is the basis of the communicability centrality. First defined for static networks to

understand a physical system of coupled springs [96], the communicability centrality

has found many uses in applications such as understanding brain function [97, 98] and

assessing infection vulnerability [99, 100].

A full discussion of communicability is deferred to Chapter 3 where it is examined in

more detail.
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2.2.2 Reachability and Connectivity

We are often concerned with how a process evolves on a temporal network, how quickly

and widely can a disease or information spread across the population. These properties

are dependent not only on the activity of particular nodes or contact events but also the

time ordering of these events [80, 70].

Revisiting Figure 2.1 we see that while a path exists between A and B in the aggregated

network, a temporal path does not. In this instance B is not reachable from A during the

observed time window, however A is reachable from B. So, if A carried an infection at

the start of the time period then the infection would not be able to reach B.

The reachability of a pair of nodes can be characterised by the latency between them [87].

One can subsequently calculate the average latency τ across all pairs of nodes which are

connected by a temporal path. Averaging in this fashion can be misleading as a node

that can reach the entire network may have the same average latency as one which

can reach only a small fraction. This can be captured by the reachability ratio f ; the

fraction of nodes in the network reachable from a node at a point in time. The pair (τ, f)

then characterises both aspects of reachability. A single measure of reachability is given

by the harmonic mean of the latencies between all node pairs [101]. This is simply the

average temporal efficiency of the network (2.1) seen previously. The temporal efficiency

of the network suffers the same issue as when considering τ alone in that it is impossible

to distinguish between nodes with low f and those with high τ .

Beyond reachability, the static notions of connectedness provide another view on the

connectivity of networks. These too have been generalised to the temporal network

setting [102].

Definition 2.2.1 (Strong connectedness). Two nodes u, v of a temporal network are

strongly connected if there exists a temporal path from u to v and also a temporal path

from v to u.

Definition 2.2.2 (Weak connectedness). Two nodes u, v of a temporal network are

weakly connected if there exists a temporal path from u to v and from v to u on the

underlying undirected temporal network where event directions are ignored.
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Connectedness can also be thought of as reciprocated reachability. Note that

connectedness is a reflexive and symmetric relation but it is not transitive as information

on the temporal paths from u to v and v to w is not informative of paths from u to

w. As strong/weak connectedness is not an equivalence relation the strongly/weakly

connected components can not be defined in terms of the connectedness of node pairs

but is instead given by:

Definition 2.2.3 (Strongly/Weakly connected component). A set of nodes of a temporal

network is a temporal strongly/weakly connected component of the network if each

node of the set is strongly/weakly connected to all other nodes in the set.

Studying the temporal components of 100k Facebook users over the course of six

months revealed that while the static aggregate network has a largest strongly connected

component of 32% of all nodes, the temporal strongly connected component was less

than 0.15% of all nodes [102]. This represents a drastic disparity between what is often

assumed to be a network of mutual reachability (the static aggregation) and the true level

of mutual connectivity. This same study found that nodes which belonged to multiple

strongly connected components played a pivotal role within the temporal network.

Despite the promise of temporal components, finding them is proven to be an

NP-complete problem. This unfortunately limits this type of study to smaller networks.

2.2.3 Inter-event Times

The timings between events have been of interest to researchers across many fields.

In particular the IETs of human behaviour have garnered a number of studies in recent

years [103, 104, 83, 105, 106]. Previously it was difficult to analyse the IETs of interaction

due to a lack of recording. The careful documentation of the correspondence of Charles

Darwin and Albert Einstein allowed researchers to study the response times to letters

[107]. Surprisingly the response times of these authors were found to share the same

scaling law as with modern email, albeit with a different scaling exponent. Now, all

activity on the internet or over cellular phone networks can potentially be tracked and
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monitored. Examples include, but are not limited to, phone calls [104], emails [105], and

website clicks [106].

The IET distributions are of interest because they give clues to the behaviour of

the agents interactions between themselves and with the environment. The IETs of

telephone calls exhibit a circadian pattern [104, 83, 105] along with weekly activity

patterns. The IETs are also bursty in nature. The burstiness of human interaction is

seen as an important characteristic and can be quantified by a burstiness parameter [84]

given by

B =
στ −mτ

στ +mτ

where mτ and στ are the mean and standard deviation of the IET distribution

respectively. For finite temporal networks the variance is always finite B ∈ (−1, 1).

A completely bursty distribution gives B = 1, exponentially distributed IETs lead to

B = 0 and for completely periodic IETs B = −1. This parameter is not robust to

finite time window sampling, namely the value B = 1 can only be achieved when the

time window to sample IETs is infinite. In [108] the parameter has subsequently been

improved upon to be independent of finite sample effects. This bursty behaviour can be

replicated by a simple model of task scheduling [83] although this may not be the only

mechanism at play.

The IETs are not only interesting from a behavioural viewpoint. The timings of events

can have major effects on any process which occurs on the temporal network [109, 110].

For susceptible-infected (SI) models of epidemic spread, the burstiness of human contact

sequences have been shown to hinder the spread of infection [110, 63]. This behaviour is

confirmedwith numerical [111, 112] and analytical results [110, 113]. The slow spreading

on temporal networks with heavy tails can be explained by the waiting time of the

process on each node, that is, the time between receiving an incoming event to sending

an event outwards afterwards. The expected waiting time for power-law distributed

IETs is greater than for less heavy tailed distributions. This means that any spreading

process potentially has long periods of inactivity before it can move around the network.

However, long waiting times are not the only factor in the speed of spreading on the

network. The temporal ordering of events has also been shown to have a significant
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effect on the proliferation of a process [114]. This effect occurs in the bulk of the

distribution where there are more events in contrast to the tail.

The effect of bursty IETs is not so clear cut. There are different data sets and process

spreading mechanisms where the bursty nature of the IETs have been shown to instead

accelerate the spread of the processes [115, 116]. It is therefore not possible to generalise

the effect that temporal networks have on network dynamics and instead each process

must be considered on its own.

Finally, care needs to be exercised when inferring IET distributions from data. Sampling

IETs over a finite time window leads to a linear cut-off to the observed IET distribution

at the end of the time window [85], assuming that the IET distribution is generated from

a stationary renewal process. This can lead to qualitatively different inferences of the

IET distribution (a power-law being confused for an exponential, for example) andmajor

quantitative differences in the distribution moments, particularly those sensitive to the

tail of the distribution. One possible way to account for this sampling bias is to use the

non-parametric Kaplan-Meier estimator [117].

2.3 Discussion

In this chapter we have described a temporal network and the various representations

it can take. Incorporating temporal information into network problems highlights the

shortcomings of static aggregated networks; there can be static paths between nodes

that exist where temporal paths do not. This has major consequences for the study of

dynamical processes on these networks.

Along with the notions of walks and paths, centrality measures have been generalised

from static to temporal networks. Centrality measures continue to play an important

part in assessing node roles within the network structure. The properties of these

centralities are not fully understood (owing to a lack of suitable null model for temporal

networks) and some measures are dependent on the level of temporal aggregation

of the network. In the next chapter we further explore one particular measure, the

communicability centrality.
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As with static networks, the reachability and connectivity of nodes plays an important

role in how processes evolve on the network. Furthermore, the temporal ordering of

events and the inter-event times are equally crucial aspects to consider for spreading

dynamics. This motivates the work of Chapter 4 where we use inter-event times as the

basis of a novel event-centric temporal network representation.

The work outlined in this chapter is a small survey of recent research into temporally

evolving networks. There are many different aspects that are not covered such as

temporal communities [118], models of network evolution [119–121], and adaptive

networks [122], all of which form part of a rich and rapidly growing field.
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3
Communicability Centrality

Centrality measures are widely used to identify the key nodes and edges in social

networks, internet structure, biological networks, and transport infrastructure [18, 123,

124, 91]. Historically this type of analysis has been restricted to static networks, however

as seen in Chapter 2 efforts have been made towards extending these measures to

temporal networks. In this chapter we focus on the communicability centrality, a

generalisation of the Katz centrality [17]. While many network properties concern

shortest paths (or geodesics) through the network, information spreading in a network

does not necessarily follow these paths [125], neither does it need to explore the full

network before arriving at its destination. Communicability centrality incorporates

information on all possible walks through the network through a weighted count of

all walks from one node to another.

Communicability has seen a number of uses across different fields. By modelling the
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activity of the brain as a temporal network, using fMRI scans the communicability

centrality highlighted a primary network of nodes which, under a targeted iterative

attack (node removal) reduced brain function quicker than random attack [98].

Modelling the brain instead as anatomically distinct regions, another study [97] was

able to use a reduced communicability matrix (by singular value decomposition) to

distinguish between patients who had previously suffered a stroke and those who had

not. As a walk counting measure, communicability centrality is well suited to studying

spreading processes which are path-dependent, such as the susceptible-infected (SI)

model. Communicability centrality has been measured in digital networks such as email

[99], as well as proximity networks of patients and staff at an emergency department of a

hospital [100]. In both cases it identified a set of top spreaders of infection, but it did not

always outperform other, less complex, measures. Other novel uses of communicability

centrality have been to identify critical edges in opinion spreading dynamics [126, 127],

and to devise a ranking system for competitive sport [128].

Communicability Centrality in Social Media

Modern day social networks evolve rapidly and typically involvemillions of nodes. With

an estimated seven thousand new pieces of content (tweets) posted every second on the

Twitter social network [129] it can be difficult to fully quantify the network structure and

node behaviour. In this sense it is useful to focus on a select number of individuals who

are influential or important. This view is also taken by businesses, who with limited

resources, look to find agents who can proliferate a brand message or who may be

susceptible to a viral campaign. Communicability provides a means to measure the

influence of users in a social network, taking into account both activity levels and the

network structure. Furthermore the communicability measure is in fact two distinct

measures which, as shown in Section 3.1, describe the ability of a user to broadcast and

receive information. Due to its relative infancy it is important to fully understand the

measure and how it should be used for further study of social networks.

The utility of communicability has been proved on applying the measure to temporal

networks extracted from the micro-blogging service Twitter. The communicability
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measure has been able to identify key influencers in these networks [57]. The extraction

of these influencers in these cases are insensitive to small parameter changes, and the

set and ranking of influences generated from the communicability metric were highly

correlated to the rankings of a panel of professional social media analysts [58]. The

success of the measure is such that it has been implemented commercially at scale,

allowing the analysis of thousands of messages in near real-time [56].

Chapter Outline

In Section 3.1 we review the literature surrounding communicability and give definitions

for the different flavours of the metric for both static and temporal graphs. In Section 3.2

we analyse how the aggregation of the temporal network changes the interpretation of

the communicability metric and introduces errors. We propose various partitions of the

temporal network to remove these errors while maintaining computational efficiency.

We present a series and parallel algorithm to calculate the communicability metric

efficiently and free from aggregation error in Section 3.3, before finally concluding in

Section 3.4.

3.1 Communicability Centrality

The key idea of communicability centrality is to consider all walks through the

network and downweigh longer walks such that their contribution is less than shorter

walks. For now, consider only a static network described by the adjacency matrix A.

Communicability makes use of the fact that walks can be counted via powers of the

adjacency matrix. For example, the entries of the adjacency matrixA1 gives the possible

walks of length one between any two nodes. The square of the adjacency matrix, A2,

counts the number of walks of length two, which is seen clearly as
(
A2
)
ij
=
∑

k AikAkj .

This counts the number of walks from i to j via an intermediate node k. Following the

same logic we can generalise to see that Ak captures all walks of length k.

One possible way to downweigh longer walks is to scale by the factorial of the walk
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length. This leads us to define the exponential communicability matrix

Qexp =
∞∑
k=0

Ak

k!
= eA, (3.1)

where we have used the fact that the infinite sum is the Taylor expansion of the matrix

exponential and that A0 = I.

Another possible weighting is by a constant factor α < 1. With this weighting the

resolvent communicability matrix can be written neatly as the matrix resolvent

Qres =
∞∑
k=0

αkAk = (I− αA)−1 . (3.2)

With this scheme careful consideration needs to be given to the parameter α to ensure

the convergence of the infinite sum. To ensure convergence we require that α < 1/ρ(A)

where ρ(A) is the spectral radius of A, i.e., the largest eigenvalue by absolute size. Both

weighting schemes are useful for different applications, however for reasons that will

become clear in the next section we will focus on the resolvent communicability for the

remainder of the chapter.

Choosing α

How should one choose the walk weighting parameter α? In the limit of α → 0, terms

of O(α2) become negligible meaning that the communicability centrality reduces to

counting node degree over time. Due to this consideration α is chosen to be suitably

large so that the communicability centrality has minimal correlation with node degree.

For the closely related Katz centrality [17] it is suggested that α should lie within the

interval
[

1
2ρ(A)

, 1
ρ(A)

)
. Choices in the literature range fromα = 1/(2ρ(A)), or inspired by

the damping factor of Google’s PageRank algorithm [91], α = 0.85/ρ(A). One approach,

aims to chose α to match as closely as possible the resolvent and exponential schemes of

communicability [130]. By minimising the norm of difference between the vectors eA1

and (I− αA)−1 1 where 1 = (1, 1, . . . , 1)T one arrives at the expression

α =
1− e−ρ(A)

ρ(A)
.
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Using this value for α means that there is minimal difference between the exponential

and resolvant based communicability centrality however there is no reason for these to

be closely aligned other than for consistency.

3.1.1 Dynamic Communicability

Many systems such as communication networks or the spread of disease in a population

are not well captured by static networks but are instead well represented by a temporal

(or dynamic) network, as discussed in Chapter 2. The notion of communicability is easily

extended to the temporal setting and takes the form of the dynamic communicability

matrix [61].

We describe the temporal network as a series of adjacency matrices Ak (see Chapter 2)

capturing the aggregated connections in ordered intervals Ik (which are not necessarily

of equal length). As with static networks, the products of adjacency matrices describe

the number of dynamic or temporal walks through the network, provided that adjacency

matrices are multiplied in time order such that Ak1Ak2 =⇒ k2 > k1. This condition

preserves and encodes the arrow of time in the system as matrix multiplication is

non-commutative in general. As an example, the matrix

Ak1Ak2 . . .Akn , k1 ≤ k2 ≤ · · · ≤ kn, (3.3)

has an i, j element which counts the number of dynamic walks of length n from i to j

where the mth step takes place in the interval Ikm . This product also allows the walk

to make multiple steps within one interval. As an example, take the temporal network

given in Figure 3.1. There are only four possible temporal walks of length greater than

one. These are given by the matrix products(
A2

1

)
ij
=δi1δj3,

(A1A2)ij =δi2δj4,

(A1A3)ij =δi1δj3,(
A2

1A3

)
ij
=δi1δj4,
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A B

C D

A B

C D

A B

C D

A1 A2 A3

Figure 3.1: A simple temporal network.

where δij is the Kronecker delta. All other (order preserving) combinations of these

matrices are identically zero.

By a simple expansion, it is clear to see that all possible permutations of (3.3) are

included in the product of matrix resolvents (I− αAk)
−1 with the correct weighting

of α corresponding to the walk length. This motivates the definition of the dynamic

communicability matrix

Qn =
n∏

k=1

[I− αAk]
−1 , (3.4)

(where multiplication is on the right) or defined recursively,

Qk+1 = Qk [I− αAk+1]
−1 (3.5)

with Q0 = I so all nodes are weighted equally initially. With this definition walks can

make infinitely many steps in each interval or may “wait” at a node across multiple

intervals before making the next step. Again, care needs to be taken to ensure that the

communicabilitymatrix converges. This amounts to requiring that eachmatrix resolvent

converges, i.e., α < 1/maxk ρ(Ak). The multiplication of the weighting factors show

why resolvent communicability is preferred to the factorial weighting. The function

f(x) = ax uniquely satisfies f(x)f(y) = f(x+y) so that (αmAm)(αnAn) = αn+mAn+m.

This means that walks of length m combined with walks of length n carry the correct

weighting of a lengthm+ n walk. However this is not true for the factorial function as(Am

m!

) (An

n!

)
̸=
(

Am+n

(m+n)!

)
.

The dynamic communicability matrix captures all products of the form (3.3) and so the

entries Qij capture how well information can be passed from node i to node j. In many
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contexts we are not concerned with two individuals in particular, and instead want to

understand howwell a node can transmit and receive information to the entire network.

This leads to the definition of the broadcast and receive vectors

b(k) := Qk1 and r(k) := QT
k 1 (3.6)

respectively, where 1 = (1, 1, . . . , 1)T . These correspond to the row and column sums

of the matrix Qk. Under the assumption that information is not passed from node to

node with absolute certainty then the number of ways for information to be passed from

one node to another becomes important. The broadcast vector counts the total number

of temporal walks starting (or broadcast) from each node. Similarly the receive vector

counts the total number of temporal walks ending (or received) at each node. We can

therefore use b(k) and r(k) as a proxy to measure how well information can travel from

or to a node respectively.

3.1.2 Running Dynamic Communicability

A further generalisation of communicability [131] argues that messages that were sent a

long time ago may be less important than those sent more recently. Indeed, as temporal

networks grow, the entries of the communicability matrix increase dramatically as the

number of possible walks increases with each iteration, i.e.,
∥∥Qk+1

∥∥ > ∥Qk∥ where

∥Q∥ = 1TQ1. This can become problematic when the number of intervals in the

temporal network is large. Examples of where this can be an issue include hourly email

or telephone over a period of months or years, or second-by-second social network

messages over the course of a week. Firstly, this causes potential overflow errors

when calculating the communicability matrix numerically if it is not normalised at each

iteration. Secondly, nodes that have a high broadcast component early on in the time

period will continue to be ranked highly. This is due to them having more potential

future events to extend the current walks starting at that node than a node that has a

similar broadcast score at a later time.

Combining the downweighing in both time and walk length, the running dynamic
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communicability matrix Sk [131] is defined iteratively by

Sk = (I+ e−β∆tkSk−1)(I− αAk)
−1 − I, (3.7)

where S−1 = 0. This is indeed a generalisation of Q; if β = 0, Sk + I ≡ Qk. Moreover,

in the limit β → ∞ the process is memoryless and the communicability matrix at any

point in time is given by the matrix resolvent for that interval. Furthermore it fixes

the issues faced in longer temporal networks as information transmission is allowed to

decay as the age of the walk and nodes can have large broadcast and receive components

at particular times and smaller components afterwards.

Finding a Null Model For Communicability

For static communicability we saw that there have been numerous suggestions for the

parameter α. Similarly concerns around parameter choices are present for the running

dynamic communicability, however there are now two parameters, α and β to consider

and tune appropriately.

One study [132] investigates how the running communicability measure on a null model

of a temporal network depends on the parameters α and β. By considering a null model

where contacts are random between any two nodes and the contact times obey a Poisson

process with uniform rate, they concluded that for the measure to remain finite, that

“old” walks need to decay as quickly as new ones are added. By normalising the expected

receive score of any node in the system, the resulting expression

β ≈ 2αµ

N

is obtained where N is the number of nodes and the average time between events is

given by µ−1. This gives a useful relation between the two parameters, however it relies

on knowing the system size and event rate in advance which is not always the case.

A further issue lies in the null model of the temporal network; observed real world

networks are very far from random which means that this relation cannot be put into

practice.
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3.1.3 Communicability in the Continuum Limit

Taking a limit of smaller time steps in (3.7) results in a continuous time version of the

metric. The continuous time dynamic communicability matrix S(t) is introduced in [94]

and evolves in time according to

S′(t) = −βS(t)− [I+ S(t)] log(I− αA(t))

where S(0) = 0. The log denotes the matrix logarithm which is defined as the inverse

of the matrix exponential.

The motivation for a continuous time metric is to remove any issues that arise

due to the selection of a time frame duration and to capture more realistically any

non-instantaneous types of communication. A continuously evolving network can be

defined by an adjacency matrix where each entry Aij is itself a function of time. As an

illustrative example imagine a phone call between two nodes i and j. If the phone call

starts at t0 and ends at tk then the corresponding adjacency matrix entry will be

Aij(t) = Aji(t) =

1 for t ∈ [t0, tk]

0 otherwise

provided there is no further activity between the two nodes. This is not a smooth

function, although one could equally define an adjacency matrix whose entries are

smooth functions of time.

3.2 Aggregation Errors in Communicability

Calculation

Despite its widespread use there have been few studies to understand the effect of

partitioning time on communicability scores and how this influences the choice of

parameters. In this section we describe and quantify the errors involved in the

aggregation of temporal events into discrete time intervals and introduce the associated

hierarchical partition of time which removes these errors.
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3.2.1 Error Types

There are three distinct types of error introduced by the aggregation of temporal events

into discrete time windows. The errors introduced vary in magnitude depending on

the network topology. More fundamentally, the interpretability of communicability as a

weighted count of walks changes, depending on the presence of cycles in each adjacency

matrix.

u v

t1

t2

u v

(a)

u v w

t2 t1

u v w

(b)

u v w

t1 t2

u v w

(c)

Figure 3.2: The scenarios in which the temporal aggregation of events introduces error

into the communicability calculation. Here we assume t2 > t1. In each case, the network

above represents the true, most granular behaviour while the network below gives all

information available if the two events are aggregated. (a) Cycle error: when events

are aggregated, an infinite walk cycling between the two nodes becomes possible. (b)

Causality error: when events are aggregated, a walk from u tow becomes possible where

it does not exist. (c) Time decay error: When events are aggregated, the age of the walk

is unknown.

Cycle Error

The presence of cycles in a network results in the existence of walks of infinite length

through the network. The simplest example of cycle formation is a reciprocated edge

between two nodes (Fig. 3.2(a)). Suppose we have two subsequent events e1 = (u, v, t1)

and e2 = (v, u, t2), where t2 > t1 which may form part of a larger temporal network.

Suppose a time partition is chosen such that t1, t2 ∈ Ik for some k, that is they contained
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in the same interval. The two events are represented in a single adjacency matrix

Ak =

 0 1

1 0

 .

Assuming α < 1 and that neither node has participated in an event previously, the

broadcast score of node u is

bu(k) =
∞∑
s=1

αs =
α

1− α
. (3.8)

This can be calculated readily as the row sum of Q =
∑∞

s αsAs.

Now instead, suppose that a time partition is chosen such that these two events occur

in separate but subsequent time intervals Ik, Ik+1, forming two subsequent adjacency

matrices

Ak =

 0 1

0 0

 and Ak+1 =

 0 0

1 0

 .

The broadcast score of node u is then given by

b′
u(k + 1) = α + α2 = α(1 + α). (3.9)

This is a factor 1− α2 of the aggregated broadcast score. For modest α = 0.5, equating

to a 50% transfer rate of information, the aggregated broadcast score overestimates the

true broadcast score by 33%. For complicated network structures this overestimation

can in fact be made arbitrarily large by including more cycles in the network.

While the inclusion of infinite cycles introduces numerical error it also raises the issue

of the interpretation of the metric. When no cycles are present within any time interval

the metric counts only walks along edges whose events have been physically observed

in that interval. By contrast if a cycle is present, the metric counts an infinite number of

walks along cycles in the same time interval. For example, the calculation of broadcast

in (3.8) assumes that a message has been passed infinitely many times between the two

nodes in the interval Ik, regardless of the interval length. The calculation (3.9) however

only counts the two observed message passing events from the temporal network. This

can lead to inconsistency in calculating the communicabilitymetric as cyclesmay appear

in some intervals but not others.
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Causal Error

The second type of error, illustrated in Figure 3.2(b) occurs when temporal ordering is

not preserved, leading to walks that are not feasible being counted. We refer to this

as a causal error. Consider the case where there are two events e1 = (v, w, t1) and

e2 = (u, v, t2). When both events are aggregated into one interval Ik the adjacency

matrix becomes

Ak =


0 1 0

0 0 1

0 0 0

 ,

which has a non-zero entry in A2
k, i.e., there is a path of length two. The broadcast score

of node u is then

bu(k) = α + α2.

Separating the two events into two intervals Ik, Ik+1 preserves the relative temporal

ordering of the two events, resulting in only paths of length one and the broadcast score

of node u being

b′
u(k + 1) = α.

Time Decay Error

The final and most minor error introduced by aggregation concerns only the dynamic

communicability metric and the suppression of temporal walks by their age. In

Figure 3.2(c) there are two events e1 = (u, v, t1) and e2 = (v, w, t2). If the events are

aggregated into one interval, the broadcast score of node u is

bu(k) = α + α2.

compared to

b′
u(k + 1) = (α + α2)e−β∆tk+1



Aggregation Errors in Communicability Calculation 47

if the events appear in their own interval. This error will only become significant if β and

the interval length is large. Consider a temporal network which is aggregated by day.

An event occurring at 11.59PM could be considered a day older than an event occurring

at 00.01AM the following day although there is relatively little time between the two.

3.2.2 Temporal Network Partitions

The examples above highlight the potential errors which can be introduced when

applying the communicability metric to aggregated temporal networks. We now outline

four particular partitions of time, their effect on the errors in communicability metric,

and simple algorithms to calculate these partitions. For simplicity we assume the full

temporal network is known in advance, however in most cases these partitions are easily

extended to instances where it is not, such as in a real-time implementation.

Fixed-Length Interval Partition

The fixed-length interval partition divides the temporal network into intervals of equal

length.

This partition is the most commonly used in the literature [58, 132, 99]. Partitioning

the network in this manner has a number of advantages that make it attractive for

study. One advantage is that the number of intervals can be calculated in advance

and so the run-time of the algorithm can be estimated easily. The fixed-length interval

partition is also the most simple as the partition requires no knowledge of the temporal

network beyond the times at which events occur. However, to ensure convergence of

the communicability matrix one needs to calculate the spectral radius of each adjacency

matrix which is an O(N2) operation. For convergence we require α < 1/maxk(ρ(Ak))

where ρ(·) is the spectral radius. The maximum spectral radius possible for a network

involving N nodes is N − 1, meaning for large systems the parameter α is potentially

extremely small and the communicability metric will correlate strongly with the degree

of each node.

The restrictions on α by the network topology make it difficult to assign a physical
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meaning to the parameter and impossible to compare values across different temporal

networks. For Google’s PageRank centrality [91], the corresponding model parameter

is the perceived (and to some extent measured) probability of following a hyperlink on a

web page, rather than typing in a new internet address. No such meaning can be given

here.

For real-time implementation there is an added caveat; if the latest interval has an

adjacency matrix with a larger spectral radius than those previously calculated then

α needs to be reduced to conform to the new restriction. As a result, all previous

communicability scores need to be recalculated with the new parameter which can

become a computationally intensive task.

The fixed-length interval partition has the potential to carry all three types of calculation

error.

Acyclic Partition

An acyclic partition of the temporal network consists of a set of intervals covering the

time frame such that each adjacency matrix which encodes the interactions over each

interval is acyclic. This is equivalent to requiring that each adjacency matrix is nilpotent,

i.e., there exists an m such that Am = 0. Following previous notation the partition is

formally given as the set {I0, I1, . . . , In} such that for all k = 0, . . . , n there exists anm

such that Am
k = 0.

The eigenvalues of a nilpotent matrix are special in that they are all zero [133].

Consequently the spectral radius of each matrix is trivially zero. The restriction placed

on α in the calculation of the communicability matrix reduces to α being a positive finite

constant. With free reign to choose α this allows a physical meaning to be attached to

the parameter as well as allowing the use of a constant parameter across data sets. In

the information transfer setting α can be seen as a probability of successfully passing

information across an edge provided 0 ≤ α ≤ 1.

The average length interval in an acyclic partition depends wholly on the underlying

system being studied. For electronic instantaneous communication (Twitter, email, etc.)
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the most likely cause of cycle creation is through reciprocated messages. This can

happen in the order of tens of seconds for short messages, to hours for longer messages

[134, 135].

The acyclic partition removes the error of counting infinitely many paths within a time

frame, however it does not guarantee that causality is preserved. As the partition

produces variable length intervals the decay of paths is also uneven.

There are many ways to detect cycle formation in growing networks. Bender et al. [136]

and Haeupler et al. [137] use a two way search to maintain a topological ordering of

events as well as to detect cycles. The best of these algorithms work at O(M3/2
k ) where

Mk ≪ M is the number of events in a given time step. This calculation is insignificant

compared to the matrix inversion and multiplication involved in the calculation of

communicability at each time frame.

Causality-Preserving Partition

A causality-preserving partition ensures that within each interval the causal relationship

of any two adjacent events, i.e. events that share at least one node, is preserved. This

equates to enforcing that all events for which a node is a source occur after events where

the same node is a target. This condition also prevents the formation of cycles and

hence is a stricter partition than the acyclic partition. As we have explicitly removed

the causality error described earlier and there are no cycles in each adjacency matrix the

only error realised with this partition is the incorrect time decay of temporal walks.

True Partition

The true partition of the temporal network is where each event occurs exclusively in its

own interval. This assumes that no two events can occur at the same time. However, in

real life data temporal events are recorded at discrete times, such as every second. This

makes it impossible to always guarantee a true partition is possible, however we will

make the assumption that events occur at unique times or that the chance of two events
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occuring at the same time is negligible1.

We will consider this partition of the network as the ‘ground-truth’ when calculating

the communicability centrality.

3.2.3 Quantifying Errors

To quantify the errors introduced with the time aggregation of temporal networks

(summarised in Table 3.1), we calculate the dynamic communicability matrix Q for the

fixed-time and true partitions across three types of synthetically generated temporal

networks.

To build a temporal network from a static network G = (V,E) (where V is the set of

vertices and E the set of edges), at each iteration we randomly pick an edge (i, j) ∈ E

and assign it a time corresponding to the iteration number k. This results in a temporal

event (i, j, k) which forms part of the temporal network. The iteration can be repeated

until the desired number of temporal events have been created. Allowing time to evolve

discretely has the advantage that we knowhowmany events occurwithin a timewindow

and also that no two events can co-occur. In this assessment we will consider three

network structures: a complete graph (all-to-all), an ensemble of Erdős-Rényi (ER)

graphs, and an ensemble of ER-like acyclic graphs, examples of which are shown in

Figure 3.3. The inclusion of the acyclic graph leads to an acyclic temporal network,

allowing us to understand the effects of loops in the fixed partition scheme without

creating an acyclic partition.

For each temporal network generated in this fashion we calculate the dynamic

communicability matrix Q, and the broadcast vector b at the end of the temporal

network2, using the true partition and fixed intervals of varying width. We could

similarly repeat the analysis for the receive vector, however the results would be

identical.
1 If two events occur at the same time but do not share any nodes then they can be ordered arbitrarily,

as far as the calculation of communicability centrality is concerned.
2 Since we do not calculate the running communicability, i.e., β = 0, the final broadcast score gives us

the most information.
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(a) Complete Graph (b) Erdős-Rényi Graph (c) Acyclic Graph

Figure 3.3: Static network choices which are used to generate temporal networks by

repeated sampling of edges (with replacement).

The restrictions on the parameter α for the fixed-width partition require it to be chosen

carefully so that the fixed-width and true partitions can be compared. The restriction

on α is dependent on the window size ∆t, and so to use a constant value we need to

choose the smallest α across all values of ∆t. This leads to a small value of α such that

the broadcast vector is strongly correlated with the aggregated node degree. In order

to address this we pick a fixed value for α and truncate the matrix resolvent to ensure

convergence. For a fixed-width partition of width∆t ∈ Zwe use the truncated resolvent

(I− αA)−1 ≃
∆t∑
k=0

αkAk.

This ensures that if a dynamic walk of length ∆t occurs over the ∆t events in the

partition then it will be captured. This means that the set of walks counted using the

true partition is a subset of walks counted in the fixed-width partition communicability

and so we can assess how many extra walks are being counted using the fixed-width

partition.

To measure the differences between the different partitions we compare the broadcast

vectors using the Pearson correlation coefficient, and Spearman’s rank correlation

coefficient. The Pearson correlation between two variables X and Y is given by

ρp(X,Y ) =
Cov(X,Y )

σXσY

where Cov(X,Y ) is the covariance Cov(X,Y ) = E [(X − µX)(Y − µY )], and µi

and σi are the mean and standard deviation of i. This gives the linear dependence
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between the variables X and Y . Here, X and Y are the broadcast vectors calculated

using the different methods. The correlation ρp ∈ [−1, 1] takes values ±1 for total

positive/negative correlation and zero if there is no linear correlation3. Quite often we

are interested only in the relative rankings of nodes. For this purpose the Spearman’s

rank correlation, given by

ρs(X,Y ) = ρp(rg(X), rg(Y ))

where rg(X)i is the rank of the raw value Xi in the vector, is the most suitable.

For this study we consider static graphs with 200 vertices, and the number of edges

is variable between graph types. We generate temporal networks by drawing 1000

samples from the static network, with replacement. The results, averaged over 1000

graphs per graph type, are given in Figure 3.4. Naturally we see good agreement across

Figure 3.4: Average correlation coefficients ρp (blue), ρs (green) between the broadcast

vectors of the fixed-width partition of width ∆t and true partition over an ensemble of

1000 synthetic networks. a) The complete graph, b) ER graphs with parameter p = 0.3,

c) acyclic graphs. Here the downweighing parameter α = 0.5. Data points are plotted

with circles, and the 5th and 95th percentiles are given by the error bars.

all graphs for ∆t sufficiently small as the two methods converge. For the complete

graph and the ER graphs we see a similar drop off in correlation as ∆t increases, both

in the Pearson and Spearman correlations. For the acyclic graph however we see very
3 Note that the two variables can have very strong non-linear dependence (e.g. Y 2 + X2 = 1) and

have a Pearson coefficient of zero.
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little drop in the correlation between the partitions, and in particular the Spearman’s

rank correlation remains above 0.95 even when the temporal network is partitioned

into three (∆t = 300). This makes it apparent that the inclusion of infinite walks

in the communicability calculation for fixed-width partitions is the primary difference

between the two partitions. This echoes the earlier notion that the two are measuring

fundamentally different quantities, observed and imaginary walks through the network.

For a more robust analysis we could also consider other correlation measures such as

Kendall’s tau coefficient, or studying the correlation between only the top 10% highest

ranked nodes. In applying the communicability metric to real examples of thousands

of nodes often only the highest rank nodes are analysed. Therefore, repeating this

analysis on only a subset of the broadcast vector should inform whether the errors in

communicability appear uniformly across the nodes, or that higher or lower rank nodes

are most affected.

3.2.4 Summary

In summary, the choice of time partition has a major effect on both the nature of the

metric (Table 3.1) and the relative rankings that it assigns to nodes (Fig. 3.4).

The partition should be considered and chosen before the other parameters α

and β are fixed. In practice one also needs to take into consideration the

computational intensity of using each partition. However, as we show in Section 3.3,

calculating the communicability from an unaggregated temporal network can be just as

computationally simple as using an aggregated network.

3.3 Efficient Calculation

As we have seen in the previous section, the aggregation of temporal networks into

discrete time intervals distorts the interpretation of the communicability measure

and introduces quantitative errors. Ideally, the communicability matrix should be

calculated on the full, unaggregated temporal network, however this raises a number of
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Partition α # Time intervals Errors

Fixed Time α < 1/maxk(ρ(Ak)) T/∆t Cycle

Time decay

Causal

Acyclic Unrestricted T/λa Time decay

Causal

Causality-Preserving Unrestricted T/λc Time decay

True Unrestricted T (or M) No error

Table 3.1: A summary of the temporal network partitions, the restrictions on α, the

average number of time intervals, and the errors associated with each. T is the total

duration of the study, ∆t is the specified time interval, λa is the average time for a cycle

to form, λc is the average time for a node to be the target of an event after being the

source of an event, and M is the total number of events.

computational challenges which, without a suitable algorithm, could drastically increase

the computational time required. For example, the iterative step in the communicability

calculation requires a matrix inverse (O(N3)) and matrix multiplication (also O(N3)).

In a temporal network with |E| events (and therefore |E| iterations required), the

total complexity is O(|E|N3), where the number of the events is usually at least of

the same order as N . By contrast choosing a fixed interval the total complexity is

O(|P |N3), where P is the partition of the temporal space, which can be chosen at will

and |P | ≪ |E|.

Online social networks are extremely fast-paced and reactive, and often the aim is to

analyse and respond to events in near-real-time. Due to this constraint the speed of

calculation is paramount, and is a key determinant in the effectiveness of any algorithm.

Thankfully when each event belongs solely to one interval there are efficient ways to

calculate the resolvent and the subsequent update of the communicability matrix. We

introduce a novel implementation below.
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For an event (uk, vk, tk) ∈ Ik, the adjacency matrix Ak is given by

(Ak)ij =

1 if (i, j) = (uk, vk)

0 otherwise.

or more compactly, (Ak)ij = δi,uk
δj,vk . As Am

k = 0 for m ≥ 2, on expansion the

matrix resolvent (I−αAk)
−1 becomes I+αAk. Considering the columns of the dynamic

communicability matrix

Qk = [(q0)k (q1)k . . . (qN)k] ,

the effect of right multiplication by I + αAk (from the iteration (3.5)) surmounts to a

single column operation

(qi)k+1 =

(qi)k + α(quk
)k if i = vk

(qi)k otherwise.

This can seen from the individual entries,
(
Qk+1

)
ij

=
∑

s (Qk)ij (δs,j + αδs,uk
δj,vk),

where the right most term is only non-zero when j = vk.

For the dynamic communicability matrix, this row operation is all that is required.

However for the running dynamic communicability matrix (where time decay is

introduced) more work is needed. This consideration, found in [132], is derived below.

The running dynamic communicability iteration is given by

Sk =
[
I+ e−β∆tkSk−1

]
[I− αAk]

−1 − I, k = 0, 1, 2, . . .

where S−1 = 0 and ∆tk = tk − tk−1. Again, we consider the update of the matrix by a

single event (uk, vk, tk). The adjacency matrix, as before is (Ak)ij = δi,uk
δj,vk .

By reducing the matrix resolvent the iteration becomes

Sk =
[
I+ e−β∆tkSk−1

]
[I+ αAk]− I, k = 0, 1, 2, . . . ,

or equivalently the entries are described by

(Sk)ij =
∑
k

[
(δi,k + e−β∆tk (Sk−1)ij)(δk,j + αδk,uk

δj,vk)
]
− δi,j.
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We then consider each case separately:

uk ̸= i ̸= j ̸= vk : (Sk)ij = e−β∆tk (Sk−1)ij

uk ̸= i = j ̸= vk : (Sk)ii = e−β∆tk (Sk−1)ii

i = uk and j ̸= vk : (Sk)ukj
= e−β∆tk (Sk−1)ukj

i ̸= uk and j = vk : (Sk)ivk = e−β∆tk (Sk−1)ivk

+ αe−β∆tk (Sk−1)iuk

i = uk and j = vk : (Sk)ukvk
= e−β∆tk (Sk−1)ukvk

+ αe−β∆tk (Sk−1)ukuk
+ α

which can be combined to give,

(Sk)ij = e−β∆t(Sk−1)ij + αe−β∆t(Sk−1)iuxδj,vk + αδi,uk
δj,vk .

Letting Sk = [(s0)k (s1)k . . . (sN)k], this iteration corresponds to:

1. Downweighing each entry of S by e−β∆t.

2. Adding α(suk
)k to column (svk)k.

3. Adding α to (Sk−1)ukvk .

Steps 2 and 3 are O(N) and O(1) respectively, however step 1 is O(N2). From a

computational perspective this is not ideal. For M ∝ N events (each node must

‘introduce themselves’ to the network by creating an event), the overall complexity of

the algorithm is O(N3). To remedy this we note that at upon the addition of an event,

steps 2 and 3 only require that the two columns involved are correctly downweighed.

This means that the exponential downweighing can be applied as and when needed,

rather than updating the entire matrix on the addition of a new event. This reduces the

overall complexity of each iteration to O(N), however, we require that the times each

column was last updated, t∗i for i = 1, . . . N , be recorded.

Using this method we are able to recover the receive vector at each iteration as it is a

column sum and all entries in a column are updated at the same time. However, as the
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broadcast vector is a row sum of the communicability matrix we need to ensure each

column is correctly downweighed. This requires a full update of the communicability

matrix. To record the broadcast vector at time t then each column i needs to bemultiplied

by et−t∗i which is an unavoidable O(N2) operation. The severity of this operation can

be controlled by increasing or reducing the recording rate of the broadcast and receive

vectors.

Algorithm 1 provides a method to calculate the running communicability matrix, based

on the above. The algorithm takes as input a set of temporal events, a set of times to

record the broadcast and receive vectors, and the parameters α and β. The complexity

of the algorithm is O(MN +KN2) whereM is the number of events to be processed,

and K is the number of measurements of the broadcast and receive vectors taken. This

algorithm assumes that the total number of nodes is known in advance, however it can be

easily extended to deal with an increasingN (simply by adding extra rows and columns

onto S).

We can compare this to the standard fixed-time partition algorithm. The full

multiplication of matrices, and calculation of the resolvent are both O(N3) operations.

The calculation of the spectral radius and matrix downweighing are both O(N2).

Assuming that the number of partitions are chosen to correspond to the number

of measurements required, the full algorithm is O(KN3). Provided M is o(N2), a

reasonable assumption given that social networks tend to be sparse, the event-based

algorithm should be quicker for sufficiently large N . In truth the complexity of matrix

operations here are unoptimised and matrix multiplication and inversion can be reduced

to O(N2.373) using specialised algorithms, bringing the two algorithms closer together.

Further consideration needs to be taken when performing real-time analysis. If the

parameter α changes upon an update for the fixed-time partition then all previous

iterations need to be recalculated, a problem avoided using the event-based algorithm.

This new algorithm requires that the full communicability matrix is stored at all times

which can be memory intensive for large temporal networks, however there is not

currently an algorithm to calculate the running dynamic communicability without this

requirement. This algorithm however is easily parallelised, allowing the storage in
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memory to be distributed over multiple machines.

3.3.1 Parallelisation

The event-based algorithm lends itself easily to parallelisation. There are three basic

approaches, one involving shared memory and a further two using distributed memory.

In brief, the shared memory approach queues the edges and assigns the addition of

events (the AddEvent function from Algorithm 1) to each processor, maintaining that

the temporal ordering with respect to each node is preserved. The broadcast and receive

vectors can be periodically read from the shared matrix.

By contrast the distributed memory methods parallelises the communicability matrix

rather than the event set by distributing the rows or columns over each processor. As

Algorithm 1 uses column operations the distributed rows approach (Algorithm 2) is

preferable as it minimises data transfer between processors. For example, if the columns

were distributed then the addition of one column to another requires an entire column

to be passed from one processor to another. With distributed rows column operations

can be performed independently between the processors, see Figure 3.5.

Reading the broadcast and receive vectors requires a small amount of effort. The

broadcast scores for each node can be calculated on the corresponding processor and

then combined to give the full broadcast vector. For the complete receive vector, each

processor produces a receive vector which are then summed.

3.4 Discussion

The communicability metric offers an intuitive and simple way to assess the influence

of nodes in a temporal network. This metric has been useful in identifying nodes of

importance both in terms of their ability to spread information as well as receive it.

In particular, it seems a suitable metric to study online social networks formed from

high frequency events taking place between a large number of nodes, and where the

underlying structure of node connections is poorly understood.
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Algorithm 1 Series calculation of communicability.
Require: E = Event sequence
Require: I = Recording times
Require: N = Number of nodes
1: Initialize:

S← 0 ◃ an N ×N matrix
t∗ = (t∗0 t∗1 . . . t∗N)← 0 ∈M1×N(R) ◃ Column update times
t← 0 ◃ System time

2: function Communicability(E, I , α, β)
3: for (uk, vk, tk) ∈ E do
4: if ∃i0 ∈ I s.t t < i0 < tk then ◃ Event occurs after a recording point
5: t← i0

6: UpdateMatrixAndRecordVectors(S, t∗, t)

7: AddEvent(S, (uk, vk, tk), t)
return S

8: function UpdateMatrixAndRecordVectors(S, t∗)
9: S← S− I

10: [S]is ← [S]is × e−β(t−t∗s), ∀s ∈ {1, . . . , N}
11: ts ← t, ∀s ∈ {1, . . . , N}
12: b(t)← S1
13: r(t)← ST1
14: S← S+ I

15: function AddEvent(S, (uk, vk, tk), t)
16: t← tk

17: [S]ukuk
← [S]ukuk

− 1

18: [S]vkvk ← [S]vkvk − 1

19: [S]iuk
← [S]iuk

× e−β(t−t∗uk
)

20: [S]ivk ← [S]ivk × e
−β(t−t∗vk

)

21: t∗uk
← t

22: t∗vk ← t

23: [S]ivk ← [S]ivk + α[S]iuk
, ∀i

24: [S]ukvk ← [S]ukvk + α

25: [S]ukuk
← [S]ukuk

+ 1

26: [S]vkvk ← [S]vkvk + 1
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S1,1 S1,2 . . . S1,u . . . S1,v . . . S1,N

S2,1 S2,2 . . . S2,u . . . S2,v . . . S2,N

S3,1 S3,2 . . . S3,u . . . S3,v . . . S3,N

S4,1 S4,2 . . . S4,u . . . S4,v . . . S4,N

. . .

SN−1,1 SN−1,2 . . . SN−1,u . . . SN−1,v . . . SN−1,N

SN,1 SN,2 . . . SN,u . . . SN,v . . . SN,N

1SLAVE

SLAVE 

SLAVE    / N 2

2

Figure 3.5: Pictorial representation of the main loop of the parallel algorithm

(Algorithm 2). The rows of the communicability matrix S are split between the number

of processors (here there are N/2 processors with 2 rows each). For each event (u, v, t)

to be processed, each slave processor independently performs the column operations on

columns u and v as in Algorithm 1.

We assessed the interpretation of the metric when applying it to different levels of

temporal aggregation of the network and found that errors can be introduced as

aggregation is increased. We showed that these errors can lead to significant differences

in both the values and relative rankings of the broadcast vectors. In order to remedy

this issue we proposed an efficient, parallelisable algorithm which calculates the ground

truth communicability matrix with no temporal aggregation and exploits the properties

of the matrix resolvent when the adjacency matrix has only one entry. This also had the

added effect that the once restricted parameter α was no longer restricted and could be

assigned a physical meaning and be consistent between studies.

An important point to realise is that the communicability centrality tells us that a node

may be important in the temporal network, however it reveals little information about

the behaviour of that node which resulted in a high broadcast or receive score. This

thought leads us onto the next chapter where we classify the behaviour of nodes and

communities of nodes in a temporal network.
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Algorithm 2 Pseudocode for the parallel calculation of the communicability iteration
with. Note that execution is not necessarily by line order.
Require: E = Event sequence
Require: T = Set of times to record broadcast and receive vectors

MASTER NODE
Assign each slave node a fraction of the total rows.
For each event, (u, v, t) ∈ E:

Broadcast the edge, (u, v, t) to all slave nodes.
Broadcast the times at which those columns were last updated, (t∗u, t∗v),
to all slave nodes.

For each recording time, t ∈ T :
Inform all slave nodes that an update is required.
Broadcast the times at which all columns were last updated.
Gather the broadcast scores of each node and record them.
Gather the receive score fragments, piece them together, then record them.

SLAVE NODES
For each event and update times, (u, v, t), (t∗u, t

∗
v) received:

Perform the required column operations (Algorithm 1).
For each set of recording times received:

Update all columns by the relevant factor, et−t∗i .
Sum each row and column and offer results to the master node.
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4
The Temporal Event Graph

In Chapter 2 we saw many different descriptions of temporal networks, the most

common being a series of static adjacency matrices representing the connections of

the network within a specific time interval. These representations are node-centric, in

that they capture the connections between the nodes. In this chapter we provide an

alternative representation which describes the connections between events, also known

as the dual.

Perhaps the most basic kind of this representation is the line graph [138]. The vertices

of the line graph are the edges of the underlying network, see Figure 4.1(a). An edge is

present between vertices of the line graph when they both share a node. This type of

graph has been used in static networks of sexual contact, and the study of disease spread

on these networks [69]. In Figure 4.1(a) we see two networks of relationships (top) and

the corresponding line graph representations (bottom). Despite both contact networks
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Figure 4.1: Contact networks and two possible dual network representations.

having the same edge density of d = 0.41, from the line graph it is evident that it is

much easier for a disease to spread on the left network than the right. What the line

graph captures is the concurrency of the contact network, which can be defined as the

edge density of the line graph [138].

The equivalent edge-centric graph for temporal networks is the transmission graph [70],

constructed to “represent epidemiologically meaningful paths through a network of

contacts through time.” As with the line graph, edges in the temporal contact network

are vertices in the transmission graph (see Figure 4.1(b)). A vertex i is connected to a

vertex j if the contacts i and j share a node, and j occurs after i starts but no later than

a time δ after i occurs2. For example, in Figure 4.1(b) there is a connection between

vertices AB and BC as they share a node and those edges are active less than a time

δ apart. Similarly, there is a connection from BC to AB but not from either to AC as

that edge appears over a time δ later. This construction creates a growing network of

N(N−1) vertices, corresponding to all possible node pairs in the contact network. One

may also define an interval transmission graph where links are removed after a period of

inactivity. These graphs draw inspiration from the line graph as links capture possible

paths of transmission. The transmission graphs however are able to incorporate the

1 The edge density is defined as d = 2E
N(N−1) where N and E are the number of nodes and edges

respectively.
2 This is the definition of ∆t-adjacency, given in the next section.
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dynamic nature of the contact sequence in contrast to the line graph which considers

only static aggregations of contact. However, for both the transmission graph and

interval transmission graph the temporal aspect of the network has been aggregated,

so the original temporal network cannot be recovered. In other words, a transmission

graph representation does not uniquely define a temporal network. For example, in

Figure 4.1(b) the event occurring between A and C can occur at any time greater than 7

and the transmission graph would be identical.

In Chapter 3 we used the communicability centrality to capture the importance of nodes

with respect to their ability to broadcast and receive information. By switching from a

node-centric perspective to an event-centric perspective we can assess the behaviour

of nodes with respect to the events they participate in. In particular we want to

quantify the types of interactions they havewith other nodes and the frequency inwhich

they occur. To this end we introduce the temporal event graph (TEG), a static graph

representation of a temporal network which encodes these behaviours and, unlike the

line and transmission graphs, uniquely describes the temporal network.

The TEG can be seen as a descendent of the transmission graph, however, a derivative

of the TEG is also used in the calculation of temporal motifs [71] from which we draw

the basic concepts and notation.

Chapter Outline

In Section 4.1 we define the TEG and its preliminaries, as well as showing that it uniquely

defines a temporal network. In Section 4.2 we give some further theoretical properties

of the TEG and in Section 4.3 describe the statistical properties of the TEG which we can

use to assess the structure and connectivity of the temporal network. Finally we discuss

the merits of the TEG and possible avenues for future research in Section 4.4.



66 CHAPTER 4. THE TEMPORAL EVENT GRAPH

4.1 The Temporal Event Graph

As in Chapter 2 we consider temporal networks as a sequence of temporal events E

where an individual event ei = (ui, vi, ti) ∈ E corresponds to an interaction of node ui
with node vi at time ti (here assuming interaction is instantaneous).

The systems most suited to this representation are communication networks (letter and

email correspondence, phone calls, social media etc.) and proximity networks (human

contact networks) [139]. Examples of temporal networks from online social networks

will be given in the next chapter. To define the TEG we first need to be able to relate two

events in a meaningful way, capturing the relationship of the nodes and the temporal

proximity of the events. One such relation is that of ∆t-adjacency [71].

Definition 4.1.1. Two time-ordered events ei, ej are said to be ∆t-adjacent if they

share at least one node ({ui, vi} ∩ {uj, vj} ̸= ∅) and the time between the two events

(inter-event time) is no greater than ∆t, i.e. tj − ti < ∆t.

With this definition we can formally define the TEG.

Definition 4.1.2. For a temporal network G = G(V,E, T ), the ∆t-Temporal Event

Graph, hereby known as the ∆t-TEG, is a directed graph G = G(V , E) with V = E

and E ⊂ V ×V . The graph is defined such that there is a vertex for each event in E and

each vertex is connected to the subsequent ∆t-adjacent event of each node in that event.

Let

S(ui) = {k| ({ui} ∩ {uk, vk} ̸= ∅)︸ ︷︷ ︸
Share a node

and (0 < tk − ti < ∆t)︸ ︷︷ ︸
Occur within ∆t of each other

},

be the set of subsequent ∆t-adjacent events for the node ui with the equivalent set

defined for vi. Then the set of edges in the TEG is then given by

E = {(ei, ej)|(j = min{S(ui)}) or (j = min{S(vi)})}.

This construction means that each vertex has an out-degree and in-degree of at most

two (see Lemma 4.2.1).



The Temporal Event Graph 67

The ∆t-TEG consists of one or more connected temporal components (or maximal

temporal subgraphs [71]), that is, for each pair of vertices in a component there

exists a sequence of events between them such that all pairs of consecutive events are

∆t-adjacent. Of particular interest is the ∆t-TEG in the limit ∆t→∞, hereby referred

to as the TEG. The examples in Figure 4.2 show how the TEG is constructed from an

event sequence. To avoid ambiguity we use the terms nodes and events for the temporal

network, and event vertices and edges for the TEG.

There are two important functions of the edge set to consider. Firstly the function

τ : E → R+
0 , given by τ ((ei, ej)) = tj − ti describes the inter-event time

(IET) between the two events. Since there is an edge for each node in an event

the distribution of IETs describes the times between individual node activity, either

interacting or being the target of an interaction. The function µ : E → M where

M = {ABAB, ABBA, ABAC, ABCA, ABBC, ABCB} is the set of two-event motifs (Table

4.1) which describes the relative positions of the nodes between events. These motifs

are given a descriptive name which is indicative of the behaviour associated with each

pattern. This behaviour is associated with the motif in its entirety and not a particular

node within the motif. For example, the ABAC motif is described as the broadcast motif

as node A is sending messages to multiple other nodes. The ABBAmotif is the reciprocal

motif, as messages from A to B are then reciprocated. Let fij be an enumeration of

the ordered sequence of nodes (ui, vi, uj, vj) (not necessarily distinct) mapped to the

corresponding alphabetic character3, then µ ((ei, ej)) = fij(ui)fij(vi)fij(uj)fij(vj). For

example, the edge ((5, 10, t0), (10, 12, t1)) becomes ABBC under the action of µ. It is

also possible for the motif function µ to incorporate other event data, as we will see in

Chapter 5.

There are three properties of the motif set, (ξout, ξin, ξswitch), which are required in

Section 4.1.1. For event pairs involving three distinct nodes we define ξout to be the

label and position of the node which appears in both events, ξin to be the label and

position of the shared node in the later event, and ξswitch = 1 if ξout = ξin and −1

otherwise. For example, in the motif ABBC the node labelled B is carried forward from

3 e.g. fij(ui) = A, fij(vi) = B, . . . .
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(a) Event Sequence (b) Temporal Network (c) TEG (d) Edge-labelled TEG
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Figure 4.2: Illustration of the duality of temporal networks and the temporal event graph.

(a) Four simple temporal networks (event sequences) involving four events. (b) Pictorial

representations of the temporal networks. Event labels represent the instantaneous time

when that event occurred between two nodes. (c) The TEG for each temporal network.

(d) The corresponding edge-labelled TEGs (Def. 4.1.3). Edges are labelled with the tuple

(τ, µ), the inter-event time and motif respectively. Note in the bottom example the next

two events for node A are connected to the first event. This is consistent as the ABBA

edge occurred after that of the ABAC, i.e., node A’s subsequent event was A → C and

node B’s subsequent event was B→ A (coincidently A’s next event).
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Motif Name Shorthand ξout ξin ξswitch

A→ B, B → A Reciprocal ABBA AB BA −1

A→ B, A→ B Repeated ABAB AB AB 1

A→ B, A→ C Broadcast ABAC A• A• 1

A→ B, C → A Non-sequential ABCA A• •A −1

A→ B, B → C Message Passing ABBC •B B• −1

A→ B, C → B Receiving ABCB •B •B 1

Table 4.1: The set of all possible two-event motifs M, given by their contact sequence,

description, label, and label properties ξin, ξout, and ξswitch.

the first event so ξout(ABBC) = •B and takes the first position in the second event so

that ξin(ABBC) = B•. Subsequently as ξout ̸= ξin, then ξswitch(ABBC) = −1, the node

labelled B has switched between being the target of an event to a source. For consistency

we define ξout(ABAB) = AB = ξout(ABBA) and ξin(ABAB) = AB and ξin(ABBA) = BA.

4.1.1 Duality

The TEG contains both event information and the connectivity of events in terms of

adjacency. We can consider a TEG without the event information, defined purely by the

connectivity information and edge functions.

Definition 4.1.3. The edge-labelled TEG is the static graph defined by the adjacency pair

(Aτ , Aµ) where

Aτ
ij =

τ(ei, ej) if (ei, ej) ∈ E

0 otherwise
,

is the weighted adjacency matrix consisting of IETs and

Aµ
ij =

µ(ei, ej) if (ei, ej) ∈ E

0 otherwise
.

is the matrix containing edge motif labels.
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Not all permutations of the vertices and edges of an edge-labelled TEG describe a

temporal network. There are four conditions required for an edge-labelled TEG to

represent a temporal network. We call graphs which satisfy the following conditions

consistent graphs.

C1 Event times must be consistent across all paths: Let Pij be the set of all

directed paths between vertices i and j. A path pα ∈ Pij is the sequence of edges

in the path. The sum of inter-event times along all paths must be equal, that is

∑
(k,l)∈pα

Aτ
kl =

∑
(k,l)∈pβ

Aτ
kl for all pα, pβ ∈ Pij.

C2 Nodes in each event have only one subsequent event: For each pair of

out-edges (i, k), (i, l) of a vertex we require ξout(Aµ
ik) ̸= ξout(A

µ
il).

C3 Nodes in each event cannot be overprescribed: For each pair of in-edges

(k, i), (l, i) of a vertex we require ξin(Aµ
ki) ̸= ξin(A

µ
li).

C4 Edge types and nodes must be consistent across multiple paths: If there

exists an edge (i, j) such that there exists a secondary path p ∈ Pij via at least one

other vertex then

Aµ
ij =


ABAB if

∏
(k,l)∈p

ξswitch(A
µ
kl) = 1

ABBA if
∏

(k,l)∈p

ξswitch(A
µ
kl) = −1

.

Conversely if there is a vertex with two in edges, (i, j), (k, j), with Aµ
ij ∈

{ABAB, ABBA} then there exists a path p ∈ Pij with (k, j) ∈ p and∏
(m,n)∈p ξswitch(A

µ
mn) = ξswitch(A

µ
ij). Similarly for a vertex with two out edges

(i, j), (i, k) with Aµ
ij ∈ {ABAB, ABBA} then there exists a path p ∈ Pij with

(i, k) ∈ p and
∏

(m,n)∈p ξswitch(A
µ
mn) = ξswitch(A

µ
ij).

Those graphs which do not satisfy these conditions are inconsistent in that they do not

uniquely describe a temporal network, and attempting to recover the temporal network

will lead to contradiction. Examples of inconsistent TEGs are given in Figure 4.3.
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Figure 4.3: Inconsistent edge-labelled temporal event graphs. Edges are labelled with the

tuple (τ, µ). (a) The subsequent two events for node A are included as edges, breaking

condition [C2]. (b) Both incoming edge types dictate the first node of the event which

is contradictory (condition [C3]). (c) The inter-event times across multiple paths are not

equal (condition [C1]). (d) The edge between events e1 and e3 is incorrectly labelled. By

reconstructing the temporal network or using condition [C4] we see that Aµ
13 = ABAB.

For each connected component of an edge-labelled TEG we are able to reconstruct the

temporal network using the following algorithm:

(a) Find the maximal path from a root vertex (no incoming edges) to a leaf vertex (no

outgoing edges) in the edge-labelled TEG using network of IETs, Aτ , allowing for

backwards traversal along edges with opposite weight. (Fig. 4.4(a)). This can be

achieved by finding the shortest path in the network (Aτ )T − Aτ . One possible
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algorithm is the Floyd-Warshall algorithm [140].

(b) Label the first vertex in the path with t = 0 and subsequently propagate the event

times through the edge-labelled TEG along the edges. For a vertex i, the time at

which that event occurs is given by

ti =
∑

(m,n)∈P0i

(
(Aτ )T − Aτ

)
mn

To be able to do this we require the condition [C1] otherwise the existence of

multiple paths between vertices leads to a contradiction in event times.

(c) For events in time order, resolve the nodes in each event from the incoming edges

(Fig. 4.4(b,c)). We require condition [C3] here otherwise there can be a conflict on

resolving a node position. If a node in an event is unprescribed (the event has zero

or one incoming edge) then the unprescribed nodes are given a new label.

Condition [C2] is required by definition of the edge-labelled TEG to enforce that the

subsequent event of each node is connected by an edge. Without it, the subsequent two

edges for one node could be given. Finally condition [C4] ensures that the edge-labelled

TEG is uniquely labelled (Fig. 4.3(d)).

Lemma 4.1.4. The maximal path (allowing for backwards traversal along edges with

negative weight) through the edge-labelled TEG includes the earliest and latest event in

the temporal network.

Proof. Let pmax = (e0, . . . , ek) be the sequence of vertices in the maximal path. Suppose

there exists an event e∗ /∈ pmax such that t∗ < ti for i = 0, . . . , k. Then, as the TEG is

connected, there exists a path p∗i (ignoring edge directions) from e∗ → ei, ∀ei ∈ pmax.

Then l(p∗i) > l(p0i)where l(·) is the length of the path, and hence the path e∗ → ei → ek

is longer than pmax. This is a contradiction and hence the maximal path through the

TEG must contain the earliest event in the temporal network. A similar but opposite

argument shows that the latest event is also contained in the maximal path.

The existence of an inverse algorithm highlights a duality between the edge-labelled

TEG and the temporal network.
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Figure 4.4: The inverse algorithm for the TEG. (a) The maximal path between root and

leaf vertices (red) through the TEGwith edges labelledwith IETs. Once themaximal path

has been found, the root vertex is assigned time t = 0 and the remainder of times are

found by propagation along edges. (b) The resolution of an event from two incoming

edges. Each incoming edge determines one of the nodes in the later event. (c) The

resolution of an event with one incoming edge. In this case only one node is prescribed

and so the other is given a new label.

Theorem 4.1.5. Let X be the set of all temporal networks translated in time such that

the first event occurs at t = 0, nodes are labelled in order of appearance, and such that

the time-aggregated graph of connections is connected. Let Y be the set of all consistent

connected temporal event graphs. Then there exists a bijection f : X → Y , that is, an

edge-labelled TEG uniquely describes a temporal network in X .

Proof. Trivially for each temporal network there exists only one edge-labelled TEG as

the nodes in each event have at most one subsequent event4 and the functions τ and µ

are deterministic. The proof rests on the existence of the inverse algorithm f−1, outlined

above. We consider a general event ei = (ui, vi, ti) in the temporal network, and its

representative vertex x in the edge-labelled TEG. By the translation of the temporal

network, this event occurs ti time units after the first event. By finding the maximal

path through the edge-labelled TEG we find the first event in the temporal network

(Lemma 4.1.4), and can hence find the time which x occurs relative to this first event,
4 Here we assume that no two events occur at the time same.
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that is, ti. The event is now is correctly placed in time. To recover the nodes of the event

ui and vi, assume the nodes in all previous events have been correctly determined in

order of appearance. There are three possible cases:

1. Event ei has no incoming edges. In this case neither of these nodes have previously

interacted and can be enumerated.

2. Event ei has one incoming edge prescribing one node. In this case a new node is

involved and is enumerated accordingly (Fig. 4.4(c)).

3. Event ei has one or two incoming edges prescribing both nodes. In this case the

nodes are completely determined by previous events (Fig. 4.4(b)).

For the base case, the earliest event vertices have no incoming edges and are labelled

freely. Subsequent event vertices must then have all incoming edges prescribed as they

occur strictly earlier in time. Hence the nodes in ei are correctly labelled, relative to the

labelling of the previous events. As both nodes are labelled relative to previous events,

and the time of the event is positioned relative to the first event, the event is recovered

from the TEG. Since this argument holds for an arbitrary event in the temporal network,

it holds for all. Therefore f−1(f(X)) = X , and f is a bijection.

Corollary 4.1.6. A temporal event graph G, consisting of multiple connected components

defines a temporal network up to a translation of time between components. If the events

of G are time stamped then G uniquely defines a temporal network.

Proof. By Theorem 4.1.5 for each connected component there exists a unique temporal

network such that the earliest event occurs at t = 0. Trivially there exists an ensemble

of temporal networks with the same TEG, dependent on the choice of earliest event time

for each component. If the time of this event is given then the choice is removed and

hence the TEG uniquely defines the temporal network.

Time translation between components may seem disconcerting, however these

components are truly disconnected and do not share any nodes. This means that,

assuming the network is not visible to those within it, any dynamics on the network
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are completely independent across components5. Most digital communication channels

that we will consider are hidden from an observer, e.g. email, SMS, telephone calls.

Other sources of communication such as Twitter are in the public domain and so all

messages are observable (although require active searching). Furthermore, adding event

timestamps to the vertices fixes the temporal components in time, and so the graph then

uniquely defines a temporal network.

This means that the temporal network can be uniquely defined within the time

translation of components by the network of subsequent adjacent events, their IETs, and

the motifs formed between them. As a result, considering the network in this formalism

is equivalent to studying the temporal network as the same information is contained in

both.

4.2 Theoretical Properties of the TEG

Lemma 4.2.1. Each vertex in the TEG has at most in-degree two and out-degree two.

Proof. Consider an event vertex representing the event ei = (ui, vi, ti). From our

definition we let

A+
u (i) = {k|({ui} ∩ {uk, vk} ̸= ∅) and (0 < tk − ti < ∆t)},

A+
v (i) = {k|({vi} ∩ {uk, vk} ̸= ∅) and (0 < tk − ti < ∆t)}

be the subsequent ∆t-adjacent events for the nodes ui and vi respectively. The set of

edges in the TEG is given by

E = {(ei, ej)|j = min(A+
u (i)) or j = min(A+

v (i))}.

5 In the case where the network is visible, observing the network usually prompts a response that is

directed towards the observed agents, subsequently connecting the two components. There may be cases

where nodes in one component observe nodes in another and act upon that information without any

interaction with the component. In these cases it is important to include the time stamp of each event in

the TEG.
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Therefore, for each ei there exists up to two events whose indices are the minima of each

set. These two minima do not need be unique, nor exist, and so there are at most two

out edges.

For the edge in-degree, the previous ∆t-adjacent events for the nodes ui and vi are

A−
u (i) = {k|({ui} ∩ {uk, vk} ̸= ∅) and (0 < ti − tk < ∆t)},

A−
v (i) = {k|({vi} ∩ {uk, vk} ̸= ∅) and (0 < ti − tk < ∆t)}

We can analogously define the edge set as

E = {(ej, ei)|j = max(A−
u (i)) or j = max(A−

v (i))}.

By the same reasoning as with forward definition, nodes can have a maximum in-degree

of at most two.

Lemma 4.2.2. The TEG is a directed acyclic graph (DAG).

Proof. For a graph G to be a DAG, each node in G must not have a directed path from

that node back to itself. The edge set is given by

E = {(ei, ej)|j = min(A+
u (i)) or j = min(A+

v (i))}

where the set A+
u (i) contains only events ek such that tk > ti by definition. Suppose

there exists a direct path from event i back to itself via a sequence of ordered events

ek1 , ek2 , . . . ekn . Then by transitivity this implies ti < tk1 < tk2 < · · · < tkn < ti, which

is a contradiction. Hence no such path exists and the TEG is a DAG. Simply put, as edges

travel strictly forward in time there can be no cycles in the graph.

Lemma 4.2.3. The set of nodes in each component of the TEG are distinct, i.e., if there exist

two components of the TEG C1, C2 with node sets V1, V2,⊂ V then V1 ∩ V2 = ∅.

Proof. Suppose V1 ∩ V2 ̸= ∅ and there exists a node u ∈ V1 ∩ V2. Then there exists a

set of events in C1 which contain u with times t(1)1 , t
(1)
2 , . . . , t

(1)
n1 . Similarly there exists

a set of events in C2 which contain u with times t(2)1 , t
(2)
2 , . . . , t

(2)
n2 . Assuming that event

times are distinct then there exists an ordering of these times. Regardless of the relative
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ordering of these times there must exist a time t(1)i followed by a time t(2)j (or vice versa).

These events share a node and the timing of the events are consecutive meaning the

two events are adjacent. This implies there exists an edge between the two events by

definition of the TEG, and C1 and C2 are one component. This contradicts the original

statement and hence C1 and C2 must contain distinct nodes.

Note that this is not true in the ∆t-TEG, even if the components completely overlap in

time.

4.3 Statistical Properties of the TEG

In this Section we outline some of the statistical properties of the TEG, illustrated with

examples from synthetic networks. These properties will be examined on real social

networks in the next chapter.

The∆t-TEG provides a means of assessing the temporal structure of the network. In this

section we consider the∆t-TEG as the weighted static network where edge weights are

the IETs between events. This allows us to prune the network, based on edge weights

(IETs). We consider the weakly connected components of the TEG where two vertices

are in the same component if they are connected on the undirected graph induced

by ignoring edge direction. Note that these components are maximal ∆t-connected

subgraphs [71] and describe the connectivity of the events themselves but cannot

describe the connectivity of the nodes in general6. In fact, finding strongly connected

components of nodes in temporal networks has been shown to be an NP-complete

problem [102].

The ∆t-TEG contains edges (i, j) where Aτ
ij < ∆t, using the notation of the

edge-labelled TEG from the previous section. Let C∆t
i be the ith component of the

∆t-TEG, where components are partially ordered by the number of events they contain
6 One can make a number of statements on the connectivity of the nodes, following edges with certain

motif types. For example, a chain of ABBC edges implies a path from the source node of the first event to

the target node of the final event. However this is difficult to do in fully generality.
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such that |C0| ≥ |C1| ≥ . . . . These components are a natural decomposition of the

temporal network and will be the focus of this section and subsequent study.

4.3.1 Component Sizes, Distribution, and Growth

The number and size of components in the ∆t-TEG is dependent on ∆t. A natural

question is to ask how many components there are in a temporal network and how the

events are distributed between them.

In the limit ∆t → 0 the TEG will be completely disconnected (assuming no two

events occur at once), however it is not guaranteed that as ∆t → ∞ that a single

component will form. In fact in the limit ∆t → ∞ the components of the TEG contain

distinct sets of nodes (Lemma 4.2.3) and correspond to the connected components of the

time-aggregated temporal network. For intermediate ∆t the structure of the TEG has a

complex dependency on both the connectivity of the nodes (who connects to who) and

the times between subsequent connections.

To characterise the network structure we look at the component size distribution of the

∆t-TEG. We are also interested in the size of the largest component |C∆t
0 |. In particular

understanding the growth of |C∆t
0 | as a function of ∆t gives clues to the temporal

structure of the network; what fraction of the whole network does it contain and for

what value of ∆t does it reach 95% of its total size?

As an example, we look at a randomly generated temporal network. To generate a

temporal network of N nodes with M events with a prescribed IET distribution X we

perform the iteration:

1. Increment t to t+ τ where τ is drawn from X

2. Draw u, v from {1, . . . , N} without replacement

3. Add event (u, v, t) to the temporal network

for each event, after initialising t = 0.
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(a) (b)

Figure 4.5: Temporal component dependence on∆t. (a) The size of the largest temporal

component in the∆t-TEG as a fraction of the graph size for a random temporal network

of 200 nodes and 5000 events. The largest component size has a sigmoidal dependence

on ∆t, with a sharp transitional period from being only a small fraction of all events

(< 10%), to containing almost all events (> 90%). (b) The corresponding distribution of

temporal component sizes for ∆t = 5, 10, 15 constructed using an ensemble of random

temporal networks. For ∆t = 5 there are a range of component sizes however none

which make up more than 10% of the network. For ∆t = 10 components can take any

size. For ∆t = 15 components either make up the majority of the network, or are small

isolated components.

In Figure 4.5 we see the results for a random graph where N = 200,M = 5000, and X

is power-law distributed with probability density P (x; a) = axa−1, where 0 ≤ x ≤ 1

and a = 0.2. Results are averaged over an ensemble of 100 temporal networks. The size

of the largest component has a sigmoidal dependence on ∆t, with only a small fraction

of the TEG connected below a characteristic time, and the majority of events connected

above (Fig. 4.5(a)). The average duration of the temporal network is 1000 meaning that

when∆t is only 2% of the network duration, the majority of events are connected. Also,

due to the random selection of nodes the largest component ultimately contains every

event as ∆t → ∞. The distribution of temporal components (Fig. 4.5(b)) also display

this transition. For ∆t = 5 there is a continuous spectrum of component sizes although

the maximum observed size is less than 10% of events. The probability of observing

components any larger grows exponentially small. For ∆t = 10 almost all possible
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component sizes are observed. However, above the characteristic time at ∆t = 15, the

distribution is not continuous. Components either are a small fraction of the TEG, or

are the majority fraction. There are no components of intermediate size.

Another aspect of a component size is its growth over time. As events are added to the

temporal network, they may be added to one of the existing temporal components if

they are ∆t-connected to an event in those components. There may however be events

introduced which are∆t-connected to two existing temporal components. These events

cause the coalescence of the two components. By studying the growth of components

over time we can observe the events which bring different parts of the network together

understand how the network grows over time.

One way to visualise the temporal components is through a temporal barcode, as seen in

Figure 4.6. This displays the components of the ∆t-TEG, ordered by their size with the

largest components at the bottom. Within each component, the individual events are

plotted by a single vertical line. This visualisation allows us to see the duration of each

component, its temporal position relative to other components, and the distribution of

IETs within the component. While not enlightening for a random temporal network we

will make use of the temporal barcode in the next chapter.

4.3.2 Motif and Inter-event Time Distributions

Beyond the structure of the temporal network, the TEG also prescribes the two-event

motif types and IETs between any two adjacent events7. This allows us to aggregate

both quantities and assess the distribution of the motifs and IETs not only as a whole,

but within each component.

The simple temporal networks in Figure 4.7 have trivial motif distributions. In

Figure 4.7(a) the only motif present is that of ABAC, reflective of the broadcasting type

behaviour of node ϵ in this instant. If we were to consider the distribution of motifs in

Figure 4.7(b) wewould see an equal split between the ABAB andABBAmotifs. However,

7 For consistency with the work of [71] we will consider only valid motifs and their corresponding

IETs.
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Figure 4.6: Illustration of the temporal barcode associated with a∆t-TEG. (a) A temporal

network involving six nodes and nine events. Event labels represent the instantaneous

time when that event occurred. (b) The temporal components of (a) when ∆t = 4.

(c) The temporal barcode of (b). There are three different components. Events in each

component appear as black lines. Components 1 and 2 are distinct from 3 as they involve

a distinct set of nodes. Components 1 and 2 are distinct as there is a gap greater than∆t

between activity on the nodes.

considering the motif distribution of each component we see that there are in fact two

distinct components containing either the ABAB or ABBAmotif only. Without a suitable

null model for the temporal network, analysing the motif distributions alone cannot give

the significance of any observations [141, 142], and choosing a null model is non-trivial

beyond time-shuffling and time-reversal [143, 144]. Comparing the temporal network

with itself however allows us to gain information about the relative motif counts. Motif
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counts can be compared across different node or event types, or even different intervals

in the network, however, given the use of temporal components in the calculation of

motif counts, comparing the motif distributions across temporal components is a natural

way to proceed.

γ δ

α β

ϵ

14
11

3 9

(6, ABAC) (2, ABAC) (3, ABAC)

(a) (Left) a temporal network consisting of a central node messaging four other nodes in turn.

(Right) the corresponding TEG.

γ δ

α β

1, 3, 7, . . .

2, 4, 6, . . .

1, 2, 3, . . .
. . .

. . .

(1, ABBA) (1, ABBA) (1, ABBA)

(1, ABAB) (1, ABAB) (1, ABAB)

(b) (Left) a temporal network consisting of two pairs of nodes. The bottom pair periodically

reciprocate messages in turn, whereas in the top pair all messages are sent in one direction.

(Right) The corresponding TEG.

Figure 4.7: Examples of temporal networks and their temporal event graphs.

Returning to the random temporal network example, and by considering the number of

ways a particular motif can form, the motif distribution is given by

Pr(x) =


1

4N−6
for x ∈ {ABAB,ABBA}

N−2
4N−6

for x ∈ {ABBC,ABCB,ABAC,ABCA}.
(4.1)

So, as N →∞, the ABAB and ABBA motifs are less likely to be observed and all other

motifs are observed with equal probability. This illustrates why the random temporal

networkmodel is an unsuitable null model for social systemswhere one expects a degree

of reciprocity.

Coupled to each motif, each edge in the TEG carries the IET between the two connected
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events. This is the time between events which an individual node participates (described

in Chapter 2). For the random temporal network, the time between consecutive events

in the network is prescribed as part of the generating algorithm. In this case, the IETs are

power-law distributed which is confirmed in Figure 4.8(a). In Figure 4.8(b) we plot the

CCDF of the IETs of the TEG which instead are the times between consecutive events

for each node. For real data, this distribution is a complex function of node interactivity

and activity patterns. For the random temporal network however the distribution is

geometric. This is due to each node having a constant probability of being in an event

at each iteration.

(a) (b)

Figure 4.8: The IET distributions for the random temporal network. (Left) the CDF for

the IET across the entire network. (Right) the CCDF for the IET distribution of the TEG,

i.e., the time between consecutive events for each node.

Entropic Measures

For simple temporal events there are six possible motifs. However with generalisations

of temporal networks such as allowing coloured edges or nodes there can be many more

possible motifs. The full distribution of motifs can therefore be difficult to analyse and

it is instead useful to use a single measure to capture the diversity (or predictability) of

the motifs within a component. For this purpose we use Shannon’s information entropy,
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which for a distribution {p} is given by

S ({p}) = −
∑
i

pi log2 pi. (4.2)

This takes a minimal value of zero when pk = 1 and pi = 0 for all i ̸= k,

corresponding to a fully predictable system, and a maximal value of − log2 p when all

pi = p, corresponding to complete randomness. When there are six possible motifs the

maximum entropy is − log2
(
1
6

)
≈ 2.58. In both the examples in Figure 4.7 the entropy

of each component is identically zero as each component consists of a single motif. In

this sense, all these components are completely predictable. For the random temporal

network there are four possible motifs occurring with equal probability in the large N

limit. The entropy is therefore− log2
(
1
4

)
= 2. Therefore, from amotif based standpoint,

the random temporal network is not as random as possible.

Likewise, although less trivially, we can compute the entropy of the IET distribution. As

the IET is a continuous variable we instead use the cumulative residual entropy (CRE)

[145, 146] defined as

SCRE (X) = −
∫
P (X > x) log2 P (X > x) dx, (4.3)

where X is the IET distribution. The CRE shares many features with Shannon entropy

(the CRE of a delta function is 0, for example), and for the purpose of this study provides

a sufficient and consistent means to characterise the diversity in the IET distribution8.

4.3.3 Induced Aggregate Networks

In Chapter 2 we saw how a temporal network can be aggregated to form a single

static network (or a series of static networks). The ∆t-TEG provides a convenient

way to decompose a larger temporal network, however being event-centric it can be

difficult to assess the connectivity of the nodes within each component. This information

can be extracted easily however by considering the static aggregation of the temporal

component. The static network can then be analysed using standard methods to find
8 The variance can also be considered, however this performs poorly as a measure of diversity on

distributions not well described by their mean, e.g. a bimodal distribution.
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quantities of interest. In particular, we will be interested in the number of nodes, edge

density, the fraction of reciprocated edges, and network diameter.

Studying the components of the decomposed network offers the advantage of

understanding the role of nodes within a particular context, as opposed to consideration

of the static graph of the full temporal network, which may be dense or noisy, or

of fixed intervals which may dissect patterns of behaviour. Partitioning the random

temporal network into intervals of fixed width results in a series of Erdős-Rényi (ER)

static networks with edge forming parameter p dependent on the number of events

in each partition. This gives the ‘Temporal ER Network’ as described in [147]. The

aggregated networks of the TEG components by contrast are not in the class of ER graphs

and their properties are yet to be determined.

4.4 Discussion

In this chapter we introduced the temporal event graph, a natural extension to the

transmission graph [70], and an important precursor to the calculation of temporal

motifs [71]. Furthermore, we showed that up to a translation in temporal components

the TEG fully describes the temporal network. In this sense we can describe a temporal

network by the behaviours of the nodes in the network; the motifs they participate in,

and the times between their interaction. This combined approach offers a richer analysis

of the temporal network than the study of the motif and IET distributions in isolation.

We also showed in Section 4.3 various statistical properties of the TEG that we can use

to classify temporal networks and the constituent components.

There are other, yet to be studied, uses of TEG. When calculating the motif distribution,

∆t is often chosen heuristically and then results are checked for stability with respect to

∆t. A fuller understanding of the TEG structure as a function of ∆t should help inform

the choice of∆t. Information from the component-wise motif and IET distributions may

also better inform the choice of∆t as distinctive patterns of behaviour may appear as∆t

is varied. We also neglected the motif conditional IET distributions, such as Pr(t|ABBA),

the probability the IET was t given that the event formed an ABBA motif. We’ll explore
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these further in Chapter 9 where we study them in the context of dynamical processes

on networks.

In the next chapter we will use the TEG to model real world networks from the online

social network, Twitter.
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5
Temporal Events on Twitter

In the previous chapter we introduced the temporal event graph (TEG) which allowed

us to dissect a temporal network, study the IET distributions, and characterise the

behaviour through the motif distribution. Creating a meaningful null model for

temporal networks is a difficult task (illustrated by the number of different approaches

[132, 148, 149, 79]), and so we turn our attention to applying the TEG to real world

networks and suitable randomised reference networks.

As we saw in Chapter 1 one of the major difficulties is ‘untangling the hairball’ of

temporal events to be able to understand how the network formed and to identify nodes

and components of interest. In this chapter we show that one way to do this is using the

TEG and draw examples from the online social network, Twitter.

In order to capture the full amount of information provided by the social network we

need to distinguish between different types of interaction between users. For example
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Figure 5.1: The four possible colourings of the ABBC motif.

in telecommunication networks one could differentiate phone calls or SMS messages,

or as we see later, between messages and retweets. We therefore generalise motifs to

incorporate coloured events which expands the space of possible motifs. In the absence

of coloured edges there were six possible two-event motifs. When there are two possible

event colourings there are 24 possible two-event motifs (Fig. 5.1), and in general with c

distinct colourings there are a possible 6× c2 motifs.

Chapter Outline

In Section 5.1 we give an overview of the Twitter1 social network and its relevance in

modern society to everything from politics, news, advertising, and even early warning

systems for earthquakes. We also show the various temporal networks we can extract

from Twitter using their freely available API (application programming interface).

Section 5.2 is devoted to case studies of samples from Twitter. In this section we

show how we can use the temporal event graph (Chapter 4) to decompose the temporal

network and find conversations (or lack of conversation) in the network. Finally, in

Section 5.3 we discuss the possible impact of these studies and avenues for future

research.

5.1 Twitter

Theexamples in this chapter are taken from the online social network andmicroblogging

service, Twitter. All information and statistics presented in this section are valid as of

March 2017 and will be subject to change.
1 www.twitter.com

www.twitter.com
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5.1.1 What is Twitter?

Twitter is a social network andmicroblogging service first introduced in 2006 [33]. Users

can post short messages of up to 140 characters (known as a tweet) to the network

(examples of which are given in Figure 5.2). These messages can contain URLs, images,

and videos. All tweets are public to the entire social network and can be found by

(a)

(b)

(c)

(d)

Figure 5.2: Examples of tweets. a) A singleton tweet which uses hashtags. b) A message

from one user to another which shares a website link. c) A retweet of a previously seen

tweet. d) A singleton tweet which shares a photo.

searching for keywords. In particular, words preceded by the hash symbol, # (also known

as a hashtag), can be used to tag content as being relevant to a topic. Twitter allows

users to search for all tweets containing a particular tag and provides a list of the most

commonly used hashtags.

Users can choose to follow any other users, up to a maximum of 5, 000 at any given time.

This subscribes them to read any tweets that are produced by those that are followed.

This relationship is not symmetric, i.e. you can followwithout being followed by another
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user. Because of this there can exist users who follow very few other users but are

themselves followed by many. These are potentially influential users in the network as

their messages can be reached by a relatively large fraction of other users. Furthermore,

other users of the network can be mentioned by using the syntax @username in a tweet.

Any number of users can be included (within the 140 character limit). This allows users

to direct messages towards other users even if they are not followed by them.

Tweets can be categorised into four different types:

Singleton A tweet containing no mentions i.e., no use of @username.

Message A tweet containing mentions to one or more other users which is

created independently of any other tweet.

Reply A tweet containing one or more mentions as a direct response to

another tweet. This is not encoded in the tweet text but is available

as metadata.

Retweet A direct copy of another tweet, preceded by the term ‘RT @username’

followed by the original tweet text. This is used as ameans of extending

amessage to a new set of userswhile also being seen as an endorsement

of the original tweet.

These distinctions are important for understanding the behaviour of users and the

construction of temporal networks fromTwitter data as will be discussed in Section 5.1.2.

Statistics

Over the course of its lifetime Twitter has become one of the leading online social

networks with over 317 million monthly active users [129] (Fig. 5.3). By comparison

the largest social network, Facebook, has 1.87 billion monthly active users [23]. There

is a high level of activity on the network, with an estimated 500 million tweets per day

[129]. This makes the platform both interesting to study but also difficult to manage

computationally. The platform is globally relevant with 79% of all activity outside the

US [24], although a notable omission is from China where access is restricted. This

means that users are able to spread their messages widely across the globe.

82% of active users interact with the social network through a mobile device [24].
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Figure 5.3: Growth of monthly active users from 2010 to 2016. Over this time period

the social network has seen strong linear growth, however has grown slower since 2014.

Monthly active users are defined as persons who have logged onto the social network at

least once in a month (they do not need to post).

This is reflective of a shift in the way we interact with the internet in a move from

desktop computers to mobile devices such as phones and tablets. This has occurred

not only with social media, but can be seen across a number of sectors from banking

to shopping. The mobility of internet access has introduced a number of phenomena

including interaction with social media during live events occurring around the world.

This ranges from tweeting about live events while on location (as has been the draw for

Twitter as a news medium) to tweeting while watching a concert, sporting event, or the

latest television show. In 2015, approximately 87% of people reported using a second

digital device while watching television [150]. Because of this, the social media ‘buzz’

generated online before, during, and after a television show has become an important

tool for assessing user engagement. This phenomenon is very apparent in the millennial

generation (roughly those born between 1983 and 2001). 71% of them say tweeting

during an event makes it more fun, 70% enjoy reading tweets while watching an event

on TV, and 69%will use a hashtag to follow all the tweets related to an event [151]. Given

the appetite for discussion of events on social media, there are many opportunities for

advertisers to generate content with the ‘second screen’ in mind through event-specific
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content and discussion.

Despite widespread use across the globe, Twitter has struggled to monetise its platform,

making a loss of $521 million in 2015 [152]. Approximately 90% of Twitter revenue is

through advertising ($1.99 billion of $2.22 billion in 2015). For this advertising to be

successful it requires a large and targetable user base. In their annual report [152], they

list a number of risk factors to the platform that need to be addressed:

The platform must remain relevant: The platform needs to attract usage from

celebrities, organisations, and subsequently users to increase the number of active

users, all the while adapting to new trends and the movements of competitors.

An estimated 5% of active users are bots: As Twitter allows a degree of automation

through its platform an industry of ‘fake’ accounts has appeared. These fake

accounts are used to artificially boost follower numbers, generate higher activity

levels for particular topics, and push an agenda or content piece. This is

problematic for Twitter (and researchers) as it can be difficult to differentiate

between human accounts and robotic (bot) accounts. If the latter come to

dominate the social network then this will drive away users and advertisers.

Advertisers must be able to optimise campaigns: While Twitter has a large user

base, not all content is suitable for everyone. Twitter needs to be able to better

understand its users in order to give opportunities to companies to offer tailored

advertisements. This includes targeting users, using particular advertising styles

and content, and timing advertisements so that they have the greatest effect and

largest potential audience.

The first risk is dependent on the executive choices and innovations that Twitter and

other competitive platforms make, as well as the continued usage by high profile

organisations and people. The latter two points pose two interesting questions that can

be addressed using the framework of the TEG:

Can we systematically detect automated behaviour?

How can we understand user behaviour better and monitor it over time?

We address these questions in part in Section 5.2.



Twitter 93

5.1.2 Data Structures and APIs

Twitter is an open platform and allows for access to samples of their data for public use.

APIs (Application Programming Interfaces)

There are two major APIs available to access Twitter data which are the streaming and

search APIs [153].

The search API deals with individual requests for information about the platform or

its users and to post data and updates. Functionality includes getting/posting a tweet,

getting the followers of a user, or getting a list of the current trending topics.

The streaming API allows for the live streaming of all tweets which contain a set of

keywords, involve a particular user, are geographically located within a bounding box,

or a combination of all three. Use of this API is limited to collecting less than 1% of all

tweets which occur. Sampling tweets at 1% is often referred to as the garden hose as

opposed to the firehose, which is 100% of all tweets.

Regardless of which API is used, the data returned for an individual tweet has the same

structure and is in JSON2 format. In Table 5.1 we outline the main fields that we will

consider that are contained within a tweet.

Each tweet also contains other metadata about the user, such as their follower counts

and profile settings. In this chapter we will primarily be concerned with the interactions

between users rather than the users themselves and so we ignore this information.

Networks

How is this data structured and how can we construct networks from it?

The easiest conceptual network is that of the follower network. This is a directed graph

where a node is connected to another if they follow that other user. One can also define

the ‘reverse’ network where the direction of the edge reads “is followed by”, which is
2 Javascript Object Notation, a commonly used data format for data transfer over the internet.
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Field Description

tweet_id A numeric identifier for the tweet.

user_name The @username of the tweeter (also know as a handle).

user_id A numeric identifier for the tweeter (persistent across

username changes).

text The main body of the text, up to 140 characters.

created_at The time stamp of when the tweet was posted.

geolocation The lat/lon coordinates of where the tweet originated

(optional).

in_reply_to_tweet_id The tweet_id of the tweet that this tweet was a reply to

(optional).

retweeted_status_id The tweet_id of the tweet that this tweet is a retweet of

(optional).

Table 5.1: Information contained within a tweet.

more representative of information flow. The follower network does vary in time - users

can follow other users or unfollow users at their own discretion. In many studies it is

assumed to be static [37, 154, 155], or modelled by an adaptive network which evolves

slowly over time [156, 34]. Due to restrictions of the Twitter API it is difficult to obtain

the follower network through a method such as snowball sampling. The most followed

user on the network has 85 million followers, which under current restrictions of one

per minute would take approximately three years to collect, and due to having many

followers, is more likely to appear in a sample.

The primary network that we will focus on is what is described as thementions network.

In this network the nodes are users and a directed temporal connection between nodes

occurs when one node includes one or more @username mentions in their tweet. More

specifically, when user A mentions user B (either as a message or reply) then an event

A→ B is created. If userA retweets a previous tweet of userB then an eventB → A is

created. The direction of edges here represents the flow of information in the network, as

user A has actively pulled information to itself from B. Examples of how the mentions
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network is created are given in Figure 5.4 where we have used the temporal network

diagrams introduced in Chapter 2.

(a) (b)

Figure 5.4: Example tweets and the corresponding temporal network. Tweets are

ordered from top to bottom with times t1, t2, t3. a) A conversation between three users.

b) Multiple retweets of a single tweet. Here the arrow direction represents the flow of

information from original tweeter to retweeter.

This network captures the activity present in the network and, being activity-driven,

captures the relationships between nodes within a particular time window.

Consequentially the mentions network is a more ‘current’ network than the follower

network, where connections may have been inactive for a long period of time.

5.2 Case Studies

The remainder of this chapter is devoted to analysing data collected from Twitter using

the methods described in Chapter 4. We study three different datasets (described in

Table 5.2) which span different timescales and topics. In each study we highlight a

particular aspect of the TEG.

The data was collected by filtering tweets which contained the corresponding keywords

listed in Table 5.2.
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Name N M Duration Keywords Comments

X Factor† 78k* 150k* 2h xfactor Reality TV show in the UK.
10 weeks of shows.

Triathlon† 53k 126k 1 week leeds, triathlon Build up to the ITU World
Triathlon Leeds 2016

Oxford 246k 528k 1 month oxford Tweets mentioning Oxford in
March 2017

* Average values per week.
† Data provided by Bloom Agency.

Table 5.2: Datasets considered in this section. HereN is the number of users in the data,
andM is the number of tweets (events).

5.2.1 The X Factor

The X Factor is a reality television show which originated in the United Kingdom. The

premise of the show is a singing contest where acts perform and are subsequently judged

by a panel and the public. The show airs weekly (over 10 weeks) with one act being voted

off each week. The show is spread across both Saturday and Sunday, however for the

purposes of this study we will consider only the Saturday show which contains the live

performances.

The show is of interest to advertisers: it drew in an average of 8.61 million viewers

every week in 2014 [157]. Furthermore, as the show encourages audience participation

through voting, the audience are engaged rather than being passive. The temporal

networks generated by viewers mentioning the X Factor are driven by the events which

occur during the show and as a result show sudden spikes in activity. Conversations are

primarily about the performances however other topics include the judging panel, the

adverts, and the viewers’ rituals when sitting down to watch the show.

In Figure 5.5 we give the 5s-TEG barcodes (i.e. ∆t = 5 seconds) for three of the shows

(weeks 1, 6 and 9) which show the largest temporal components by number of events.

From these we can see that the temporal networks are highly connected; in weeks 1 (a)

and 9 (c) the duration of the temporal network is spanned by three or fewer components.

By contrast the 5s-TEG for week 6 (b) consists of many overlapping components. This

can be explained by considering the behaviour of the audience and the structure of the

show. In week 1 the acts are unfamiliar leading to conversations centred around the X
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Factor account itself, or about all acts. In week 6 there the audience are likely to have

developed an affinity to one or more act and will be therefore more likely to discuss them

individually. Finally in week 9 there are sufficiently few acts left in the show that the

conversations return to being centralised.

Figure 5.6: Solid (markered) The growth of the largest component of the TEG with ∆t

for the X Factor dataset, as a fraction of all events. (Dashed) largest component growth

averaged over an ensemble of 30 time-shuffled networks with two standard deviation

intervals. Notably, week 9 shows a rapid growth of the largest component in comparison

to the other two weeks, and furthermore has the largest size for any value of ∆t.

To investigate the structure of the ∆t-TEG in more detail we assess its dependence on

∆t (shown in Figure 5.6). This reaffirms our observations from the temporal barcodes;

the temporal networks are highly connected, and as ∆t → ∞, the largest component

makes up the majority of the network3. All three weeks show a sigmoidal dependence

on∆t, which is also observed across the remaining weeks. This suggests a characteristic

timescale on which the pivotal edges in the TEG (in terms of connectivity) form. Perhaps

surprising is that for week 9 evenwhen∆t is as small as 5 seconds the largest component

contains over half the temporal events4. This was due to tweets during this show

3 Although the shows vary in the number of events, the number of events and largest component

fraction are only weakly correlated.
4 The fraction of users in the component is roughly the same also.
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predominantly being directed towards one or two users who were the target of a tweet

every 5 seconds or less. We also observe that the growth of the largest component on

time-shuffled networks occurs slower as a function of ∆t for weeks 1 and 6, but not

for week 9. This can be easily explained as the time shuffling destroys all temporal

correlations between events and hence adjacent events are less likely to be∆t-adjacent.

This explanation breaks down in week 9 however as there are enough events in the

component (94k) which spans 5400 seconds, such that many events occur within a 5

second window.

(a) (b)

Figure 5.7: a) (Solid) The IET distribution of the TEG for three shows. (Dashed) the IETs

averaged over an ensemble of 30 time-shuffled versions of the network. b)The two-event

motif distribution for each show, reduced to two dimensions using principal component

analysis. In green are the shows themselves (labelled with week number) and in yellow

are the motif distributions averaged over an ensemble of 30 time-shuffled versions of the

network (labelled with an asterisk).

In Figure 5.7 we characterise each show by the IET and motif distributions individually.

Figure 5.7(a) shows that week 9 has a significant number of IETs which are of only

1 second, and weeks 1 and 6 have a similar distribution. Despite the average week

6 IET (230s) being less than week 1 (350), the largest component of the ∆t-TEG for

week 1 is larger than that of week 6 for any value of ∆t (Fig. 5.6). This suggests that

nodes in week 1 are more interconnected and centred around a small number of users

and topics than in week 6. We can also look at the motif distribution of each show
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(shown in Figure 5.7(b)). Here we calculate the two-event motif distribution for the

TEG (∆t → ∞) and use principal component analysis to reduce the distribution to

two dimensions. The shows have notable differences in their motif distribution which

again reaffirms that the TEGs have different structures. The motif distributions for the

time-shuffled data (yellow) show little variation from the true data. This is due to the

prevalence of symmetric motifs (such as ABAC) and the fact that time-shuffling changes

only the temporal ordering.

5.2.2 Triathlon

This dataset focuses on the ITU World Triathlon hosted Leeds in 2016. In addition to

the event itself, which occurred on Sunday 12th June, the dataset covers the entire week

building up to the main event and consists of any tweet which contains at least one of

the words ‘triathlon’ or ‘leeds’ during this period.

In Figure 5.8 we examine the structure of the∆t-TEG across different timescales. Despite

filtering using a relatively broad keyword covering a city, the largest component of the

TEG makes up a significant portion of the TEG (64710 of 79680 events) across the entire

week (Fig. 5.8). The largest component sees near constant activity with periods of lesser

activity naturally occurring between midnight and 6AM.

In order to investigate the largest component of the TEG we consider its structure

when we reduce ∆t to 30 minutes. This breaks the giant component into multiple

components, the largest of which represent conversations which span the days of the

week (Fig. 5.8(b)). In addition to the daily conversations there are other components

which span the night time hours. These components represent distinct conversations

which discuss topics unrelated to the triathlon. The largest component of the 30min-TEG

is that of Sunday, the day of the triathlon.

Reducing ∆t further to 5 minutes (Fig. 5.8(c)), we can decompose the ‘Sunday’

component even further. The largest component spans the daylight hours, although

the activity level of the component varies throughout the day, peaking during the late

afternoon when the elite race occurred. Further reduction of ∆t sees this component
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split into a morning component focused on the amateur triathlon which preceded the

main elite event, and the elite event itself. Alongside the largest component there are

other components which co-occur. At this resolution the IET patterns of these smaller

components become clear. From Figure 5.8 we can see that component C0-0-6 appears

to show some periodic behaviour, which may be generated by an automated account.

We want to be able to systematically detect this kind of behaviour, which we do next.
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Figure 5.9: The motif and IET distributions across the largest (by number of events)

components of the 5min-TEG of the Triathlon dataset. a) A reduction of the motif

distribution to two dimensions using principal component analysis (PCA) with the

explained variance percentage on the axes. The components differ predominantly by

the presence of the ABAC motif where both events are retweets. Components aligned

to this behaviour are towards the right. Variation in the second component is caused

by a mixture of motifs. b) The IET distribution for each component. Components

qualitatively share the same distribution, although with differing scaling. The notable

exception is component 6 which has IETs of 1 or 2 only. All IETs are less than 300s (5

minutes) by construction of the 5min-TEG.

As we did with the X Factor shows, we can characterise the temporal components of the

5min-TEG using the motif and IET distributions, seen in Figure 5.9. The distinguishing

feature of the motif distributions (Fig. 5.9(a)) is the presence of the ABAC retweeting

motif. Conversations expressing only that motif are on the right, whereas the more

diverse components are on the left. Components 0, 3, 1 and 9 are therefore less likely to
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show retweeting behaviour and are hence more likely to contain original messages (and

therefore original content). The IETs for the components (Fig. 5.9(b)) follow roughly

the same distribution although with different scalings. The outlier in this instance is

component 6 which has all IETs less than 5s. This means that this component would

persist as ∆t is decreased, whereas the others would decompose.

Figure 5.10: Component motif and IET entropy, calculated from the corresponding

distributions with components scaled by the number of events they contain.

Components with low motif and IET entropy are predictable and are most likely

generated by automated accounts. Components with low motif entropy engage in

predominately one behaviour, in this case message and retweet broadcasting (ABAC).

Components with high motif entropy contain a diverse mix of behaviour.

The motif and IET distributions are useful to characterise the different temporal

components, however as high dimensional objects they can be difficult to study,

especially if they can not be significantly reduced in dimension. One way to measure the

predictability of a component is through entropy (detailed in the previous chapter). This

can be used to identify components which behave in a particular way, or are periodically

active. This is extremely useful in identifying ‘spam’ accounts in the network. In

particular this method can identify entire clusters of spam accounts which individually

behave normally but operate on a global timer.
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In Figure 5.10 we plot the motif and IET entropy for the top ten components of the

30min-TEG. The band of components with IET entropy between 0.3 and 0.4 represent

conversations with a diverse array of IETs, and are therefore likely human generated.

Components with low (or zero) motif entropy contain predominantly one behaviour.

The component in the bottom left (having low motif and IET entropy) is formed of

multiple spam accounts. The components in the top left consist of only retweeting

behaviour of a single piece of content, i.e. there is no real conversation generated.

On the right-hand-side are components which are diverse in behaviour and IETs,

representingmore natural conversations in the network5. These observations can inform

a generalised method for the detection of spam accounts or clusters of spam accounts.

If both the motif and IET entropies for a temporal component fall below a critical value

(to be determined from larger scale studies) then these components can be flagged as

possible automated accounts. They can be subsequently checked manually to confirm

their authenticity, or checked algorithmically using auxiliary data such as text and user

profiles.

Finally, we qualitatively assess the structure of the time-aggregated temporal

components, seen in Figure 5.11. In Figure 5.11(a) there is a complex array of retweet

stars with interconnected messages. This suggests that the component may be able

to be decomposed further by reducing ∆t. The behaviour of the nodes in component

2 (Fig. 5.11(b)) is evident from the aggregated graph; there are many retweets of a

single central node and little other behaviour. This is reflected in the motif entropy

which is approximately zero. The behaviour of component 5 (Fig. 5.11(c)) is similar

to that of component 2 however there are multiple nodes being retweeted, and a

selection of ‘bridging’ nodes which retweet two or more different users, effectively

bringing these communities together. Looking at a component on the periphery, such

as component 149 (Fig. 5.11(d)), we see almost a complete clique of four nodes with very

little retweeting. This is more representative of a conversation in the network, and can

be characterised by the high degree of reciprocity.

5 The theoretical maximum motif entropy for two-event motifs with three event colourings is

− log2
(

1
6×23

)
≈ 5.58, which occurs when all motifs appear equally.
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(a) Component 3 (b) Component 2

(c) Component 5 (d) Component 149

Figure 5.11: Aggregate graphs of temporal components from the 5min-TEG of the

Triathlon dataset. Here red events are retweets, green are messages, and blue are replies.

a) A complex mix of retweeting and messaging behaviour. Individual behaviours may

become transparent with a reduction in ∆t. b) Retweeting behaviour. A single user has

been retweeted multiple times in the component duration which makes up the majority

of the component. c) Retweeting behaviourwith bridge nodes. Similar to the structure of

(b) however there are multiple users retweeted and a select few ‘bridge’ users who have

retweeted more than one user. d) Conversational behaviour between a small number

of nodes, indicated by reciprocated links, a clique-like structure, and the abundance of

reply tweets.
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5.2.3 Oxford

The final dataset we study is a month long sample of all tweets containing the word

‘oxford’ during the month of March 2017. This data is different from the previous two

studies which focused on a particular event (TV show or race), and our aim is instead to

monitor the temporal network to pick out topics of conversation where and when they

occur. As before, we can construct the ∆t-TEG and vary ∆t to assess the timescales of

the temporal network. Here we focus on the 1h-TEG which decomposed the temporal

network giving approximately 400 components with over 50 events in them6.

By studying the content of each event, the topic of each component can be discerned.

This can be done systematically by analysing word and bigram frequencies (a widely

studied problem itself under the name of topic modelling). In Table 5.3 we describe

# N M % Retweets Topic Duration

0 8794 9667 88 Lawsuit where court decided based
on use of Oxford comma

70h

1 4239 4517 98 The conditional offer for Malala
Yousafzai at Oxford University

40h

2 3267 3341 98 US television host Rachel Maddow
and her Oxford credentials

61h

3 3070 3290 100 Unknown (Thai) 44h
4 2999 3099 99 Young Malaysian politician

debating Oxford offer
38h

5 2265 2381 77 The death of Inspector Morse
creator, Colin Dexter

15h

Table 5.3: Descriptions of the largest components of the 1h-TEG for the Oxford dataset.
Here N is the number of nodes (users) andM the number of events.

the top six components across the month by number of events. The topics include the

offers for study for a prominent Malaysian politician and Nobel prize laureate Malala

Yousafzai, the death of the creator of Inspector Morse (set in Oxford), and a lawsuit

which was decided by the lack of an Oxford comma in legislation. Other components

outside the top ten included news stories from across Oxford (fires, robberies, etc.) and

the results of local sports teams.

While there are many methods of topic detection by means of natural language

processing, what we highlight here is that the temporal components are often centred
6 A method for choosing ∆t systematically has yet to be devised.
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around one particular topic. This means that in calculating the components of the

∆t-TEG we also can retrieve the topics discussed in the temporal network. Intuitively

this makes sense, events which occur close together between the same nodes are likely

to share some of the same information. One way to fully understand how temporal

components and topics are related is to use the latest state of the art method in topic

detection to decompose the temporal network into topical components and compare

and contrast these with the temporal components of the ∆t-TEG.

For this dataset the top components are primarily composed of retweets (all over 75%).

Some topics however sparked more original conversation such as the emotive death of

the InspectorMorse creator, or the absurdity of the use of the Oxford comma in a lawsuit.

Are the top conversations on Twitter purely driven by retweets? Most likely not and in

fact the high proportion of retweets in this case and the retweet motifs in the previous

two cases highlights an issue with the method of sampling - retweets are more likely to

be sampled. Sampling by keyword means that for any tweet containing the keyword,

all retweets of that tweet will necessarily also contain the keyword. This is not true of

replies or messages where the topic of conversation may only be mentioned once before

being omitted or referred to using a pronoun. We look to address this issue by suggesting

a new sampling method in Chapter 9.

5.3 Discussion

In this chapter we have looked at the social media platform and microblogging service,

Twitter, and how it is used as a place to share content, discuss the latest events, and report

news. In particular we have modelled the Twitter mentions network as a temporal event

graph, and shown that it provides a natural way to decompose the temporal network.

In the case studies presented in this chapter we have used the TEG to quantify how

centralised the temporal networks are in terms of the largest component size of the

TEG. Here we saw how the conversation surrounding the X Factor was very centralised

and very well connected even on a five second timescale. By contrast the Triathlon

conversation exhibited multiple communities and timescales over which conversations
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occurred. This new information offers the opportunity for advertisers and brands to

decide where to push content, either centrally within the conversation or to attempt to

bridge temporal components and communities to possibly drive further conversation.

We also showed that the IET and motif times can characterise different temporal

networks and the temporal components within them. This means that behaviours can

be quantified and isolated in a way not previously possible. In our case studies we also

highlighted a number of interesting statistical properties of these networks, from motif

and IET entropy to the properties of the aggregate graph. We also used event metadata

such as text and tweet type to augment our understanding of the temporal networks

and temporal components. This type of analysis can easily be extended to include more

advanced descriptors andmethods such as topic modelling, natural language processing,

and image recognition for attached media. Using these newmeasures advertisers will be

able to better classify individual user and collective behaviour, opening up new avenues

for targeted marketing campaigns and strategies, all the while ensuring that resources

are not wasted on autonomous accounts.

By collecting and understanding these new statistical features of networks we open

up the possibility of applying statistical, predictive models to user behaviour and the

generation of temporal networks. To this end, it may be possible to generate synthetic

temporal networks with prescribed motif and IET distributions or predict the probability

of an event occurring at some time in the future. On thing that has become clear

by taking a behavioural view of the temporal network is that there is a bias towards

sampling retweets from Twitter while potentially many other conversations are missed.

Any analysis of data collected from Twitter in this fashion must therefore account for

this bias, or better yet, avoid it to begin with.

These preliminary studies raise many questions about the structure of Twitter and the

TEG in general: What is the temporal component size distribution for the entirety of

Twitter? How long do we need to observe Twitter before the TEG consists of a single

one giant component? What timescales do we see and how do we effectively pick ∆t?

These questions can hopefully be addressed by studying the structure of the TEG on

other well studied temporal networks and reference models.
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Part II

Modelling
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6
Model Methods

This chapter is intended to support the subsequent two chapters by introducing the

methods required to study stochastic processes and probabilistic models. There are no

new results in this chapter and so those familiarwith the concepts of themaster equation,

Fokker-Planck equation, and dynamical processes on networks may wish to skip this

chapter. Details on these methods can be found in [158–163] for stochastic processes,

and in [64, 7, 65, 164, 165] for network dynamics.

Chapter Outline

In Section 6.1 we describe a general system using a state vector and see how the evolution

of the system can be described exactly through a master equation. We then provide

derivations of the most commonly used approximations of the system dynamics, namely

the Fokker-Planck equation and the mean-field equations. This formulation will provide
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the framework for Chapter 7.

In Section 6.2 we show how the methods of Section 6.1 are often unsuitable for systems

evolving on network structures and provide a brief overview of the methods used to

study these systems (some of which are used in Chapter 8). Finally, in Section 6.3

we discuss the approaches outlined in the chapter and provide references to additional

reading material.

6.1 From the Master Equation to Mean-field

To begin modelling a system, we need to be able to fully describe the state of the system

at any given time. The system can be described using a state vector

X(t) =


x1(t)

x2(t)
...

xN(t)

 ,

which describes N different properties of the system. For chemical reactions involving

multiple chemical species, the elements of X may describe the number of molecules of

each species (or their concentration), assuming that the chemicals are well-mixed. For

more complicated systems, such as epidemic spread on a network, the state vector may

describe the state of each individual in the system, whether they are infected or not.

Since our system evolves stochastically, we consider the probability that the system is

in a state X at time t, denoted P (X, t), and make the assumption that the set of joint

probabilities

P (X1, t1;X2, t2; . . . )

exist. Furthermore we can also define the conditional probability densities

P (X1, t1,X2, t2; . . . |Y1, τ1;Y2, τ2; . . . ),

where it is implicitly assumed that

t1 > t2 > · · · > τ1 > τ2 > . . . .
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An important class of stochastic processes is those with the Markov property, that is,

the conditional probability is determined entirely by the knowledge of the most recent

state, i.e.,

P (X1, t1,X2, t2; . . . |Y1, τ1;Y2, τ2; . . . ) = P (X1, t1,X2, t2; . . . |Y1, τ1).

A process satisfying the Markov property is commonly called a memoryless process, as

the behaviour of the system at any particular point in time is dependent only on the

state vector at that time. For the remainder of this thesis we will consider only systems

which satisfy the Markov property.

6.1.1 Master Equation

Once able to describe the system in terms of the state vector and the probability densities

we look to understand how these densities evolve over time (here treating time as a

continuum). Let Tτ (X,X′) be the probability of a transition from state X′ to X in a time

interval of length τ . In the limit τ → 0, we enforce that only one state transition can

occur and see that Tτ has the form

Tτ (X,X′) = (1− a(0)(X)τ)1X=X′ +W (X,X′)τ +O(τ 2) (6.1)

whereW (X,X′) is the transition probability per unit time from state X′ to X. The first

term is the probability that no other state transition takes place in the interval, with

a(0)(X)1 given by

a(0)(X) =
∫
W (X′,X) dX′.

The Chapman-Kolmogorov equation (CKE) is an identity that must be obeyed by the

conditional probabilities of any Markov process and is given by

P (X3, t3|X1, t1) =

∫
P (X3, t3|X2, t2)P (X2, t2|X1, t1) dX2. (6.2)

The CKE states simply that the probability of being in a state at a later time, given

an initial state, is given by the integral of the probability over all intermediate jumps
1 The use of the notation a(0) becomes apparent in Section 6.1.2



114 CHAPTER 6. MODEL METHODS

between the two states2. In terms of the transition probabilities the CKE becomes

Tτ+τ ′(X3,X1) =

∫
Tτ (X3,X2)Tτ ′(X2,X1) dX2

assuming τ, τ ′ > 0 and that rates are time independent.

Now, using the small τ expansion for Tτ (6.1), the CKE becomes

Tτ+τ ′(X3,X1) =
[
1− a(0)(X3)τ

′]Tτ (X3,X1) + τ ′
∫
W (X3,X2)Tτ (X2,X1) dX2

+O((τ ′)2).

Dividing through by τ ′ and taking the limit τ ′ → 0, this becomes the differential form

of the CKE

∂

∂τ
Tτ (X3,X1) =

∫
[W (X3,X2)Tτ (X2,X1)−W (X2,X3)Tτ (X3,X1)] dX2

which is often written as the master equation (ME)

∂

∂t
P (X, t|X0, t0) =

∫
[W (X′,X)P (X′, t|X0, t0)−W (X,X′)P (X, t|X0, t0)] dX′ (6.3)

where we have changed notation X3 → X, and X1 → X0. This highlights that the ME

is defined for a transition probability P (X, t|X0, t0) from an initial condition and not

for P (X, t). However, in most cases reference to the initial condition of the system is

omitted and the later notation is used (which we will use for the rest of the chapter).

If the state space is discrete and given by n = (n1, . . . , nN) then the ME can be written

as a sum,

∂

∂t
P (n, t) =

∑
n′

[W (n′,n)P (n′, t)−W (n,n′)P (n, t)] . (6.4)

Here the meaning of the ME is very clear; the change in probability of being in any given

state is the sum of all probability flows into and out of that state. This can be seen by

the gain term (first term) and the loss term (second term) in Equation 6.4. In Chapter 7

we describe the evolution of two populations of ‘voters’ using a ME where the rates are

dependent on the proportion of voters of a certain opinion.
2 Here times are ordered by index in ascending order such that t1 < t2 < t3.



From the Master Equation to Mean-field 115

Example - A Decay Process

Perhaps the most simple example of a master equation comes from chemistry. Consider

the decay of a single chemical species A which occurs at a constant rate k, given by

A
k−→ ∅

where ∅ are chemical species which we are not tracking and do not participate in the

reaction. The rate constant is defined such that k dt gives the probability that a randomly

chosen molecule of A reacts in the time interval [t, t+ dt) where dt is an infinitesimally

small time step. In any time interval, there are multiple things that may happen:

no reactions occur with probability 1− A(t)k dt+O(dt2)

exactly one reaction occurs with probability A(t)k dt+O(dt2)

two or more reactions occur with probability O(dt2)

Now, letting P (n, t) be the probability that A(t) = n and using the possibilities above

(omitting probabilities of O(dt2)) we can write the master equation as

d
dtP (n, t) = k(n+ 1)P (n+ 1, t)− knP (n, t).

Here the right hand side consists of a gain and loss term. We can transition to state n if

we were previously in state n+1 and a molecule reacts. Similarly, we can transition out

of state n if we were previously in that state and a molecule reacts. We cannot however

transition from state n− 1 to state n.

This appears to be an infinite system of ordinary differential equations (ODEs), however

with an initial conditionA(0) = n0, and due to molecules being removed only, there are

only n0 + 1 ODEs to solve. To incorporate the initial condition we set P (n, t) = 0 for

all n > n0.

For systems with a large state space or non-trivial transition probabilties the ME is

generally too difficult to work with analytically3, however this case it is sufficiently

simple that we can solve it with the initial condition P (n0, 0) = 1, and P (n, 0) = 0 for
3 The ME is linear and the solution can easily be expressed in terms of a matrix exponential, however

calculating moments or other macroscopic quantities requires a great deal of effort.
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n < n0 to give

P (n, t) = exp(−knt)
(
n0

n

)
[1− exp(−kt)]n0−n .

6.1.2 Fokker-Planck Equation

The ME is an integro-differential equation and is therefore difficult to work with.

Fortunately we can simplify the ME to a second order differential equation, called

the Fokker-Planck equation (FPE), with relative ease. To understand the derivation the

Fokker-Planck equation we first consider a one-dimensional system and show that it can

be generalised easily (in understanding, not notationally) to multiple dimensions. The

one-dimensional ME is given by
∂

∂t
P (x, t) =

∫
[W (x, x′)P (x′, t)−W (x′, x)P (x, t)] dx′. (6.5)

To simplify the ME we consider small changes in state and so it is useful to express

the transition probability as a function of the jump size r from one configuration x′ to

another one x giving

W (x, x′) = W (x′; r), r = x− x′.

Rewriting the ME (6.5) in this notation leads to
∂

∂t
P (x, t) =

∫
[W (x− r; r)P (x− r, t)−W (x;−r)P (x, t)] dr. (6.6)

Naturally the change of variables introduces a change of sign, although this is absorbed

into the boundary conditions if we assume a symmetric domain from −∞ to∞.

We suppose that on the timescales considered the jumps in x are small, that is,W (x′, r)

is a sharply peaked function of r but also varies slowly with respect to x′. Secondly

we assume that P (x, t) is continuous and a slowly varying function of x. Under these

assumptions, we can Taylor expand the left term in (6.6) about x, giving

∂

∂t
P (x, t) = P (x, t)

∫
W (x; r) dr +

∞∑
m=1

(−1)m

m!

∫
rm

∂m

∂xm
[W (x; r)P (x, t)] dr

− P (x, t)
∫
W (x;−r) dr

=
∞∑

m=1

(−1)m

m!

∂m

∂xm

{[∫
rmW (x; r)dr

]
P (x, t)

}
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where the first and last term cancel as the the sign of r is insignificant when integrating

over the entire domain. It is useful to to define the jump moments

a(m)(x, t) =

∫
rmW (x; r) dr, (6.7)

which lead to the Kramers-Moyal expansion (KME) of the ME

∂

∂t
P (x, t) =

∞∑
m=1

(−1)m

m!

∂m

∂xm
[
a(m)(x, t)P (x, t)

]
which, as a differential equation of infinite order, is identical to the ME. This means in

principle that despite converting an integro-differential equation to a purely differential

equation, the KME is equally as intractable as the ME. Typically, the KME is truncated,

assuming that the terms a(m)(x, t) are zero or are negligible form > 2. This leads to the

Fokker-Planck equation

∂

∂t
P (x, t) =− ∂

∂x

[
a(1)(x, t)P (x, t)

]
+

1

2

∂2

∂x2
[
a(2)(x, t)P (x, t)

]
. (6.8)

The first and second jump moments are often referred to as the drift and diffusion terms

respectively, more commonly denoted by,

f(x, t) := a(1)(x, t) and d(x, t) := a(2)(x, t). (6.9)

Following the logic above, the derivation of the FPE can be extended to a

multidimensional Markov process. The difficulty lies in utilising the multivariate Taylor

expansion of the ME, which gives

∂

∂t
P (X, t) =

∞∑
m=1

(−1)m

m!

∑
j1...jm

∂m

∂xj1 . . . ∂xjm

[
a
(m)
j1...jm

(X, t)P (X, t)
]
.

where the jump moments are now given by

a
(m)
j1...jm

(X, t) =
∫

(x′j1 − xj1) . . . (x
′
jm − xjm)W (X,X′) dX′.

Truncating at second order we arrive at the multidimensional FPE,

∂

∂t
P (X, t) =−

∑
i

∂

∂xi

[
a
(1)
i (X, t)P (X, t)

]
+

1

2

∑
ij

∂2

∂xi∂xj

[
a
(2)
ij (X, t)P (X, t)

]
.

Provided the moments a(1)i and a(2)ij are linear, the FPE admits a Gaussian solution at

stationarity (i.e., ∂
∂t
P (X, t) = 0) [158, 160]. If the moments are non-linear (as we see in
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Chapter 7) then we can linearise about a fixed point of the system. This gives a linear

Gaussian approximation (LGA) of the stationary state probability density about the fixed

point.

Chemical Fokker-Planck Equation

When working with a discrete state space further work is required to arrive at a

Fokker-Planck approximation. We restrict ourselves to cases where the system can only

transition between adjacent states, and again consider a one-dimensional system for

clarity. This derivation was first considered for systems of chemicals where the number

of molecules of a chemical species could either increase or decrease incrementally.

In these systems, the number of molecules were typically large and so a continuum

approximation is suitable.

The discrete ME for this system is given by

∂

∂t
P (n, t) = H−(n+ 1, t)−H−(n, t) +H+(n− 1, t)−H+(n, t) (6.10)

where H±(n, t) = W (n ± 1, n)P (n, t) give the probability flow from the above and

below state respectively. To move to a continuum perspective by introducing a large

number N and measure the state of the system in terms of a new variable x = n/N ,

which we treat as a continuous variable. Rewriting (6.10) in terms of the continuous

variable x we get

∂

∂t
P (n, t) = H−(x+ 1/N, t)−H−(x, t) +H+(x− 1/N, t)−H+(x, t).

As we assume that N is large, we can approximate the first and third terms of the right

hand side by a Taylor series about the point (x, t),

H i

(
x± 1

N

)
= H i(x, t)± 1

N

∂H i

∂x
(x, t) +

1

2N2

∂2H i

∂x2
(x, t) +O

(
1

N3

)
.

Substituting this into the ME, and truncating terms of O(N−3) gives

∂

∂t
P (x, t) = − 1

N

∂

∂x

[
H− −H+

]
+

1

2N2

∂2

∂x2
[
H+ +H−] .
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This is instantly recognisable as the FPE (6.8) where the drift and diffusion terms are

given by the sum and difference of the transition rates respectively, i.e.,

f(x, t) = (H− −H+)/[NP (x, t)]

d(x, t) = (H+ +H−)/[N2P (x, t)].

Quite often, when N is the size of the system being considered, a natural rescaling of

time t = τN leads to the FPE

∂

∂τ
P (x, τ) = − ∂

∂x

[
H− −H+

]
+

1

2N

∂2

∂x2
[
H+ +H−] ,

which explicitly highlights the scaling of the diffusive term with N .

The chemical Fokker-Planck equation can similarly be generalised to higher dimensional

systems with relative ease (an example of which is used in Chapter 7).

6.1.3 First Passage Processes

In some instances we want to know the likelihood of ending up in a given state

depending on the initial state. In this case the end position is known but the initial

position is undetermined.

Backwards Fokker-Planck Equation

We can write the CKE (6.2) in one dimension as

P (x, t|z, τ − dτ) =
∫
P (x, t|y, τ)P (y, τ |z, τ − dτ) dy.

This equation is valid for any dτ , however as before we will consider the small time limit

dτ → 0. Assuming that the jumps are small we can Taylor expand P (x, t|y, τ) about

the point y = z to give

P (x, t|y, τ) = P (x, t|z, τ) + (y − z) ∂
∂z
P (x, t|z, τ)

+
(y − z)2

2

∂2

∂z2
P (x, t|z, τ) +O((y − z)3).
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Substituting this into the right hand side of the CKE yields

P (x, t|z, τ − dτ) = P (x, t|z, τ)×
∫
P (y, τ |z, τ − dτ) dy

+
∂

∂z
P (x, t|z, τ)×

∫
(y − z)P (y, τ |z, τ − dτ) dy

+
∂2

∂z2
P (x, t|z, τ)×

∫
(y − z)2

2
P (y, τ |z, τ − dτ) dy +O(dτ 2).

Using the fact that P (z, τ |y, τ − dτ) = dτW (z, y), we recognise the integrals as the

jump moments (6.7) and (6.9). Dividng by dτ and rearranging the terms gives

P (x, t|z, τ − dτ)− P (x, t|z, τ)
dτ = f(z, τ)

∂

∂z
P (x, t|z, τ)

+ d(z, τ)
∂2

∂z2
P (x, t|z, τ) +O(dτ).

In the limit dτ → 0, we obtain the backward Kolmogorov equation,

− ∂

∂τ
P (x, t|z, τ) = f(z, τ)

∂

∂z
P (x, t|z, τ) + d(z, τ)

∂2

∂z2
P (x, t|z, τ) (6.11)

often referred to as the backwards Fokker-Planck equation (bFPE). The corresponding

forwards FPE reads as

∂

∂t
P (x, t) =− ∂

∂x
[f(x, t)P (x, t)] +

∂2

∂x2
[d(x, t)P (x, t)]

which for time independent coefficients, f(x, t) ≡ f(x) and d(x, t) ≡ d(x), has a

stationary solution

P ∗(x) ∝ 1

d(x)
exp

[∫ x

0

f(s)

d(s)
ds
]

(6.12)

which we use next to describe the first passage times.

First Passage Times

For a number of systems we are not concerned with whether it is in a particular state

at a given time, but instead when the system first reaches that state. Examples span

from reaching critical concentrations in chemistry, to activation of stock options or

countermeasures when a stock price reaches a given target. In this section we introduce

the tools to study the first passage problem in one dimension. This allows us to ask
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questions such as “when will the system reach this state, given this initial condition?”

and “how long does the system stay in this state on average?” Wewill see such a question

in Chapter 7 where we calculate the time for the system to switch between two fixed

points.

Let h(y, t) be the probability that x ∈ (−∞, xu) for all 0 < t′ < t, given that it started

at y, i.e.,

h(y, t) =

∫ xu

−∞
P (x, t|y, 0) dx. (6.13)

Assuming drift and diffusion are time-independent, i.e. f(x, t) ≡ f(x), d(x, t) ≡ d(x),

we can shift time backwards giving

h(x, t) =

∫ xu

−∞
P (y, 0|x,−t)dy.

Using the transformation s to−t in the backwards Kolmogorov equation (6.11) we obtain

∂

∂t
P (x, 0|y,−t) = f(y)

∂

∂y
P (x, 0|y,−t) + d(y)

∂2

∂y2
P (x, 0|y,−t).

By integrating over x, and using (6.13) the equation becomes

∂

∂t
h(y, t) = f(y)

∂

∂y
h(y, t) + d(y)

∂2

∂y2
h(y, t). (6.14)

Let τ(y) be the average time to first leave the interval given that P (y, 0) = 1. The

probability that x first leaves the interval in during [t, t+ dt) is given by

h(y, t)− h(y, t+ dt) ≈ − ∂

∂t
h(y, t) dt,

using the Taylor series expansion for h(y, t + dt). Therefore, to compute the average

time we integrate over all possible escape times giving

τ(y) = −
∫ ∞

0

t
∂

∂t
h(y, t) dt =

∫ ∞

0

h(y, t) dt,

using integration by parts for the later equality4.

Integrating (6.14) with respect to t yields

−1 = f(y)
d
dy τ(y) + d(y)

d2
dy2 τ(y) = Gb(y)τ(y)

4 [th(y, t)]
∞
0 = 0 as the process necessarily escapes (−∞, xu) eventually, i.e., h(y,∞) = 0.
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where Gb is the infinitesimal generator of the bFPE.

We now have an ODE for the average escape time which we can readily solve with

suitable boundary conditions. The boundary conditions are domain specific, but usually

incorporate a reflective boundary condition on the domainwalls (e.g. particles contained

in a box) with a second condition that the first passage time to an interval is exactly zero

on the boundary (the process has already escaped the interval). These are prescribed by

d
dy τ(−∞) = 0 (6.15)

for the reflective boundary condition, and

τ(xu) = 0 (6.16)

on the interval boundary.

Using an integrating factor to integrate we get

d
dy τ(y) = − exp

[
−
∫ y

0

f(z)

d(z)
dz
] ∫ y

−∞

1

d(x)
exp

[∫ x

0

f(z)

d(z)
dz
]
dx

= − 1

d(y)P ∗(y)

∫ y

−∞
P ∗(x) dx,

where we have used the stationary distribution (6.12). Finally, integrating over y and

using (6.16) we arrive at the integral equation for the average first passage time,

τ(y) =

∫ xu

y

1

d(z)P ∗(z)

∫ z

−∞
P ∗(x) dx dz.

Unfortunately this method cannot be easily extended to multiple dimensions, especially

in non-equilibrium systems, however methods do exist for particular systems and

domains [159].

6.1.4 Mean-field Equations

The ME describes the evolution of the state probability densities. With suitable

manipulation of the ME one can derive equations for the moments of the distribution.

In particular, the first moment describes the mean and from the second moment we can

calculate the variance of the probability densities. For large discrete systems we have



From the Master Equation to Mean-field 123

seen that the second order terms scale as 1/N . This means that for sufficiently large

N we can provide a quantitatively accurate description of the system using the first

moment alone5.

The average over a particular quantity ϕ(X) of the system at a time t is given by

⟨ϕ(X)⟩(t) =
∫
ϕ(X)P (X, t) dX.

The standard way to find ⟨ϕ(X)⟩ is to multiply the ME (6.3) by ϕ(X) and integrate over

all possible statesX. This results in an ODE for the evolution of ϕ(X)which allows us to

easily identify any fixed points of the dynamics and their stability. However, in ignoring

the fluctuations some dynamics of the model may be missed, such as fluctuation-driven

switching between quasi-stable fixed points (as in the case in Chapter 7).

Example - A Decay Process

Revisiting the example of chemical decay in the previous section, we can derive an

equation for the mean number of a chemical species we would expect to see over

infinitely many realisations. The master equation was given by

d
dtP (n, t) = k(n+ 1)P (n+ 1, t)− knP (n, t). (6.17)

In the discrete case, the mean number of the chemical species is given by

⟨n⟩(t) =
∞∑
n=0

nP (n, t)

which is the expectation of n. By multiplying (6.17) by n and summing over all n we

arrive at

d⟨n⟩
dt (t) =

∞∑
n=0

kn(n+ 1)P (n+ 1, t)−
∞∑
n=0

kn2P (n, t)

=
∞∑
n=0

k(n− 1)nP (n, t)− kn2P (n, t)

where we have shifted the index n → n − 1 in the first summation. We can do this as

P (n, t) > 0 for 0 < n < n0, and is zero elsewhere. Upon cancelling terms we are left
5 This description becomes exact in the limit N →∞.
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with a differential equation for the mean

d⟨n⟩
dt (t) = −k⟨n⟩

which, with initial condition ⟨n⟩(0) = n0, has solution

⟨n⟩(t) = n0 exp(−kt). (6.18)

Similarly, we can generate ODEs for the ath moment by multiplying by na and summing

over n. In this case calculating the ath momentwill require the calculation of all moments

less than a6. From the above equation it is clear that the chemical decays exponentially

(which was not necessarily clear from the ME), however it is not possible to discern any

information on the fluctuations using the macroscopic description (6.18) alone.

6.2 Models on Static Networks

In this section we consider systems which can be represented as a network. We consider

a static network consisting of a set of nodes V ⊂ N and set of edges E ⊂ V 2, which can

be represented by an adjacency matrix A. We typically consider systems of variables

xi, yi, . . . on each node in the network which are coupled to the variables of adjacent

nodes. We assume that any coupling is restricted to pairs of adjacent nodes only,

meaning no three or more body interactions can occur.

Perhaps the most widely recognised of this class of model is the susceptible-infected (SI)

model where each node can be in either the susceptible (prone to infection) or infected

state. Infection can spread from an infected node to an adjacent susceptible node with

a fixed probability (or at a fixed rate). For this model, each node has a single variable xi
which is zero for a susceptible node, and one if infected.

6 In many cases calculating the ath moment requires the (a+ 1)th moment. This means the system is

not closed and the (a+ 1)th moment needs to be approximated through moment closure [166].
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6.2.1 Intractability of the Master Equation

When we consider systems that are homogeneous and well mixed (as is often assumed

for chemical reactions and large populations) we can fully describe the system by a

simple count of nodes of each type. This means that the state space of the system is of the

order of the number of nodes, or system size. By contrast, for a system on a network with

m possible node states the state space is of sizemN whereN is the system size. Therefore

the number of possible states grows exponentially with the system size. This makes it

incredibly difficult to enumerate all possible states, write down the corresponding ME,

and subsequently solve it. Realistically this can only be done exactly for small systems

and so it is therefore simpler to consider the evolution of the macroscopic variables

(averages) instead of the full probability distribution.

6.2.2 Standard Formulations

One approach to modelling dynamics on networks is to start with the ME and make

approximations and aggregations to reduce the problem. If such an approach is

‘bottom-up’, then the contrasting ‘top-down’ approach is to describe the macroscopic

quantities of the system using an ODE and introduce network effects incrementally. As

the network analysis of Chapter 8 uses only a naïve network approximation, we take

this latter approach in this section.

A simple example of a dynamical system described by a single variable x(t) evolves

according to the first order ODE

dx
dt = f(x).

Here there are no network effects and the right hand side is independent of time (such

a system is called autonomous).

Returning to the SI model example and letting x be the probability a node is infected, a

well mixed system (i.e, complete graph) evolves according to

dx
dt = βx(1− x),
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where β is the rate of infection.

We now look to extend this description to incorporate the network topology. There are

many ways to do this, each involving assumptions on the network topology and the

correlations between node states.

Individual-based

The most general description is where each node is modelled individually. The state of

each node is governed by a differential equation of the form

dxi
dt = fi(xi) +

∑
j

Aijgij(xi, xj). (6.19)

Here fi specifies the intrinsic dynamics of the node, i.e. how the node state would

evolve independently of the network. The network interaction is governed through the

adjacency matrix A, and the coupling relation gij which gives the contribution from

adjacent nodes.

As there are N coupled differential equations to solve which can be problematic,

the system is often simplified by considering universal function of f and g, and if

appropriate, reducing g to a function of the adjacent node only.

One particular example of this description is where xi is the probability of node i being

in a particular state [167]. In the SI model, the system evolves according to

dxi
dt = β

∑
j

Aij(1− xi)xj.

This is an example where g(xi, xj) is not a symmetric function as infection can only pass

in one direction.

Degree Grouping

As with the ME formulation, the individual-based approach is often intractable for all

but the simplest of models. One approximation that maintains the degree heterogeneity

of the network is to aggregate node states by degree. Letting xk be the average state of
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a degree k node (or density of degree k nodes in a particular state) the system can be

described by the coupled equations
dxk
dt = f(xk) + k

∑
k′

P (k′|k)g(xk′ , xk)

where P (k′|k) is the probability that an edge originating at a degree-k node has a degree

k′ node at its other end. This approach has the benefit that degree-degree correlations

are captured (also know as network assortativity). If no such correlations exist, or they

are ignored, thenP (k′|k) = k′P (k′)/⟨k⟩where ⟨k⟩ is the average degree of the network.

Mean-field Approximation

Finally we introduce the most assumptive description of a process on a network which

will be used in Chapter 8. The mean-field approximation considers that each node is

equal (a homogeneous system) both in respect to state and degree in the network. For

a network with average degree ⟨k⟩ we can approximate the adjacency matrix by Aij ≈

kikj/N⟨k⟩ ≈ ⟨k⟩/N . This states that each node is connected to every other node in the

network but with a weighting ⟨k⟩/N < 1. Substituting this approximation into (6.19)

we get
dx
dt = f(x) + kg(x).

Themean-field approximation provides a reasonable first approximation when k/N and

N are sufficiently large, and for networks with degree distribution well represented

by the mean. Erdős-Rényi networks [168] have binomial distribution which in the

large N limit is approximated by a normal distribution which is unimodal. In contrast,

Barabási-Albert networks [169] have power-law (or scale free) distribution where the

mean is much greater than the median and therefore dynamics on these networks are

not well captured by a mean-field approach.

6.3 Discussion

In this chapter we introduced ways to describe stochastic processes through the

master equation, and how to make approximations to arrive at analytically tractable
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equations. These approximations cumulate in either a partial differential equation

(for the Fokker-Planck equation) or an ordinary differential equation (for mean-field

approaches) which can be solved or analysed using standard procedures. These

procedures are not given here but can be found in any textbook on the subject.

When dealing with stochastic processes, the master equation provides an exact

description of the system, but it is difficult to work with analytically. We can however

make successively better approximations to the exact dynamics by using more terms of

the Kramers-Moyal expansion, at the cost of complexity. Usually only two terms are

sufficient to capture the system dynamics including fluctuation driven phenomena. This

truncated expansion is the well known Fokker-Planck equation.

We also saw how the exponential scaling of the state space with system size rendered the

master equation approach infeasible when describing dynamical processes on networks.

To make progress with these systems we model the evolution of macroscopic quantities

of instead state space probabilities. There has however been progress in more advanced

methods such as pair approximation [170] and moment closure [171]. The macroscopic

descriptions provide reasonable results when assumptions on the network hold true as

we see in Chapter 8.
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7
The 2q-Voter Model with Zealotry

Individual-based (or more commonly used agent-based) models have been used to

describe collective behaviour in the past half century [172, 173]. These models have been

particularly useful in explaining many social phenomena without the need for complex,

high-dimensional models and modern computational simulation methods. One of the

most famous of these models is the voter model (VM) [174], popular due to it being one

of the rare exactly solvable models in statistical physics. Although originally described

in continuous time, for clarity we will describe the VM which evolves in discrete time

on a network structure, and take the appropriate limits in order to recover the equations

most commonly used to describe the dynamics.

The classical voter model considers a network of nodes holding opinion (or spins)

±1. At each discrete time step a node chosen randomly adopts the opinion of one

of its neighbouring nodes, also chosen at random1. Finite systems evolve until the
1 Note that on heterogeneous networks the ‘direction’ of opinion transfer has a major effect on the
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nodes necessarily reach a consensus (all holding either the +1 or −1 opinion), and the

dynamics cease.

The VM is in fact a particular case of the classical Ising model [175, 176], used as a model

of ferromagnetism in physics. The widely studied Ising model describes a collection of

atomic spins and their associated magnetic moments under the effect of temperature and

an external magnetic field2. Naturally, an important macroscopic quantity to measure

in the Ising model is the magnetisation, the average spin direction, which is conserved

on regular structures [177–179]. From a social perspective the magnetisation can be

thought of as an ‘average opinion’.

There are two basic properties of the VM that have been widely studied. The exit

probability E+(ρ0) describes the probability of the system reaching a consensus of +1

given that the initial density of +1 voters is ρ0. For regular lattices this is given simply

by E+(ρ0) = ρ0 [180], however it is non-trivial on more complex structures. Another

property of interest is the mean time to reach consensus, TN . On lattice structures TN
scales as N2 in one dimension, N lnN in two dimensions, and as N for all dimensions

greater than two. For heterogeneous networks TN ∼ Nµ2
1/µ2 where µk is the kth

moment of the degree distribution [181, 182]. This scaling includes the assumption

that the network is free from degree-degree correlations, and while this is often far

from realistic, however it still provides a reasonable estimate when such correlations

are present.

There are many variants of the voter model, motivated from both physical and social

problems. A natural extension to the VM is to consider an opinion switching rate

dependent on two or more neighbours [183, 184]. This extension brings the VM closer

to reality as social scientists have established that conformity by imitation, an important

mechanism for collective actions, is observed only when the group (neighbourhood) size

is sufficiently large [185, 186]. For one such model, the non-linear q-voter model (qVM)

[184], the dynamical update is given by:

1. Choose a (focus) node at random.

model dynamics due to the presence of high degree (hub) nodes.
2 The VM is exactly an Ising model at zero temperature and in the absence of an external field.
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2. Choose q neighbours of the focus node at random (here repetition of neighbours

is allowed).

3. If all q share the same opinion (are in consensus) then the focus node adopts the

opinion of the q neighbours. Otherwise, the focus node changes opinion with

probability ϵ.

The qVM exhibits much of the same behaviour as the original VM, and eventual

consensus of opinion is guaranteed. The difference however is in the time to consensus

which varies with the value of q.

Another popular extension to the VM is the inclusion of voters who do not change their

opinion, coined inflexible zealots3. The inclusion of such voters has a number of effects

on the dynamics of the VM. The most prominent effect arises when there exist zealots

of both opinion. In this regime consensus of opinion is never achieved in the whole

population as by definition there will always be voters of each type. It is therefore no

longer suitable to calculate quantities such as the the consensus time. Instead one can

consider the evolution and long time distribution of the magnetisation [187, 188].

There are of course many other variations of voter-like dynamics which aim to replicate

more realistic assumptions into the model as well as exploring how small changes in the

microscopic dynamics of the model can lead to different types of collective phenomena.

These include, but are not limited to employing the model on an adaptive network [189],

and the inclusionmultiple opinions for each node [190]. For the purposes of this chapter,

we will require only the notion of zealots and the adoption mechanism of the qVM.

These two mechanisms have been recently combined in the q-voter model with zealotry

(qVMZ) [191]. This model offers the first major behavioural change from previous voter

models. For later comparison the main features of the qVMZ are:

• The model satisfies detailed balance and is therefore time reversible. This also

means that a stationary distribution is readily attainable.

• The model has a critical value of zealotry density, zc, above which the model

behaves like the qVM with fluctuations about a central fixed point, and above
3 Earlier work terms zealots as voters who only favoured one opinion over the other [187, 188].
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which the long time distribution of opinion is bimodal. In this case the average

opinion switches between two fixed points on a characteristic timescale.

• The model is extremely sensitive to small biases in zealotry densities.

Opinion Dynamics In Social Media

Social media is not purely used for developing friendships but has seen many opinions

voiced, particularly political [192–194]. Opinion can represent a number of things: it

can be the positive or negative opinion of a product, brand, or person; the preference of

one thing over another such as Pepsi or Coca Cola, Manchester United or Liverpool; or

the political party an individual chooses to vote for.

There have been a number of attempts to measure opinion on social media,

predominantly through word usage [195] or sentiment analysis [196]. These studies

however have many caveats. Data collected from social media are not necessarily

representative of a general population it can be particularly noisy, and the quality of

tools such of sentiment analysis is questionable on typically short social mediamessages.

We therefore look to suitable mathematical models to understand the possible drivers of

opinion formation in social networks.

One aspect of opinion spreading we want to capture is that the population is

heterogeneous in the resolution of their opinion. Earlier studies [185, 186] have shown

that individuals respond differently to social pressure from groups of varying size. In

the context of social media, this can take the form of how many friends an individual

may have (and the distribution of their opinions), or the number of opinionated content

pieces shared on the network that an individual may view before changing their own

opinion.

Chapter Outline

In Section 7.1 we introduce the 2q-voter model of opinion dynamics. We give a

full description of the model through the master equation and show that detailed

balance is not satisfied for all but the most trivial parameters. Following this, in
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Section 7.2 we consider continuum descriptions of the model and compare analytical

results with simulations. Furthermore in Section 7.3 we show that the linear Gaussian

approximation is well suited to the analysis of the non-equilibrium steady state of the

model for moderate system sizes. In Section 7.4 we attempt to understand the switching

behaviour exhibited by themodel by considering themean switching time. In Section 7.5

we consider the model under asymmetric parameter schemes before concluding in

Section 7.6.

7.1 The 2q-Voter Model with Zealotry

The 2q-voter model with zealotry (2qVZ) [2, 1] provides the simplest generalisation to

the qVMZ [191] which considers a heterogeneous population of voters. By making this

extension we can capture the differing resolves of voters in the population, with some

voters requiring more convincing than others to change their opinion than others.

7.1.1 Model Outline

The 2qVZ consists of a population of N voters who hold one of two opinions, denoted

±1. A fraction of the population are inflexible in their opinion and, once initialised,

never changes. These are labelled zealots [187, 188], and the corresponding size of their

populations are denoted by Z±. The remaining population consists of S swing voters,

split further into two types: q1- and q2-susceptibles, who have population sizes S1 and

S2 respectively (with S1 + S2 = S). In this model the behaviour of each voter is fixed,

so that Z± and S1,2 are conserved. Also, no voters leave or enter the system, conserving

the total population size S1 + S2 + Z+ + Z− = N .

Illustrated in Figure 7.1, the model updates discretely in time according to the following

mechanism:

(a) A (focal) voter is chosen at random from the population.
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q2 q1

q2q1

Z
−

Z+

(a)

q2 q1

q2q1

Z
−

Z+

(b)

q2 q1

q2q1

Z
−

Z+

(c)

Figure 7.1: An illustration of the 2qVZ dynamics. (a) The system consists of q1- and q2-

susceptibles as well as zealots, each holding one of two opinions (blue/green). (b) At each

time step a node is randomly selected. If a zealot is selected, then nothing happens. If the

node is a qi-susceptible it chooses qi neighbours at random and records their opinions.

Here, q2 = 2. (c) If those neighbours are in consensus then the original node adopts that

state, otherwise no change occurs.

(b) If the chosen voter is a zealot then no further action is taken and step (a) is

repeated. If the voter is a qi-susceptible then the opinions of a random sample

of qi neighbours are collected (note that repetition is allowed).

(c) If the qi neighbours all have the same opinion but opposite to that of the focal

voter then the latter adopts the opinion of the neighbours. If there is no consensus

between the neighbours then no opinion change occurs.

For the sake of simplicity and tractability we consider a well-mixed population where

each voter can be considered as a node of a complete graph of size N .

7.1.2 Master Equation Formulation

Without explicit spatial structure the configuration space is reduced to a discrete set of

S1×S2 points with the state of the system completely specified by the pairn = (n1, n2)

where ni is the number of susceptible voters of type iwho hold the+1 opinion. At each

update attempt there are four possible state changes as only one susceptible can change

their opinion. The allowed changes at each update are therefore in the set {±e1,±e2}
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with e1 := (1, 0) and e2 := (0, 1). The system may also stay in the same state if a

zealot is chosen or there is not a consensus within the sampled neighbours. In this sense

we can consider the evolution of the 2qVZ to be a two-dimensional random walk with

inhomogeneous and biased transition rates. The full description of such a stochastic

process is best described by a master equation (ME) for the evolution of P (n, T ), the

probability of finding the system in state n after T discrete updates from an initial

condition n0. The main interest of the model is in the stationary distribution which

is independent of the initial configuration, hence we suppress and reference to n0 in

further analysis.

For any discrete Markov process such as this, the ME can be written as

P (n′, T + 1) =
∑
n

G(n′,n)P (n, T ) (7.1)

where G is the evolution operator, or transition matrix, describing the transition

probabilities between states. For a system with S1×S2 possible states, G can take up to

[(S1 + 1) × (S2 + 1)]2 different values making it difficult to prescribe. However in this

case, as n′ is restricted to the set {n,n± e1,n± e2}, G can be written explicitly as

G(n′,n) = δ (n′
1, n1) δ (n

′
2, n2)W

0(n) (7.2)

+
∑

i=1,2,j≠i

δ (n′
i, ni + 1) δ

(
n′
j, nj

)
W+

i (n)

+
∑

i=1,2,j≠i

δ (n′
i, ni − 1) δ

(
n′
j, nj

)
W−

i (n).

Here W 0(n) represents the probability for the system to remain unchanged while

W±
1 (n) andW±

2 (n) are the probabilities associated with the transitionsn→ n±e1 and

n → n± e2 respectively. These probabilities can be formulated by simply considering

the probability of picking a voter of type qi and subsequently picking qi other voters from

the populationwho hold the opposite opinion (allowing for replacement). Explicitly they

are given by

W+
i (n) =

Si − ni

N

(
M

N − 1

)qi

,

W−
i (n) =

ni

N

(
N −M
N − 1

)qi

, (7.3)

W 0(n) = 1−W+
1 (n)−W−

1 (n)−W+
2 (n)−W−

2 (n),
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whereM = Z+ + n1 + n2 is the total number of +1 voters.

From the ME we can derive other quantities of interest. The joint probability

P(n′, T ′|n, T ) = GT ′−T (n′,n)P (n, T ), (7.4)

describes the probability of observing the system in state n′ at time T , given that it was

in state n at an earlier time T (T ′ > T ). Using P and P we can compute physical

observables such as the average number of qi voters holding the +1 opinion at time T

and the two-point correlation functions at general times:

⟨ni⟩T =
∑
n

niP (n, T ) (7.5)

⟨n′
inj⟩T ′,T =

∑
n,n′

n′
injP(n′, T ′|n, T ). (7.6)

As will become apparent in the next section, of particular interest in the 2qVZ is the net

probability current K(n, T ) = (K1, K2) with

Ki(n, T ) = W+
i (n)P (n, T )−W−

i (n)P (n′, T ) (7.7)

describing the net flow of probability from n to n′ = n+ ei for i = 1, 2.

Violation of Detailed Balance

An important principle of Markov processes (and kinetic systems) is that of detailed

balance. Satisfaction of the detailed balance condition requires that there exists a

(time-independent) stationary distribution P ∗(n) such that

G(n,n′)P ∗(n) = G(n′,n)P ∗(n′)

for all possible n,n′. Alternatively we can apply the Kolmogorov criterion [197] for

detailed balance which states that for any closed loop of states, the product of transition

rates in both directions must be equal. To establish whether detailed balance is satisfied

in the 2qVZ we apply the Kolmogorov criterion to the closed loop consisting of the four

states around a square: n ↔ n + e1 ↔ n + e1 + e2 ↔ n + e2 ↔ n, illustrated in

Figure 7.2. The product of transition probabilities around this loop is

W+
1 (n)W+

2 (n+ e1)W
−
1 (n+ e1 + e2)W

−
2 (n+ e2) .
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Meanwhile, the product for the reverse loop is

W+
2 (n)W+

1 (n+ e2)W
−
2 (n+ e1 + e2)W

−
1 (n+ e1)

so using the explicit expressions (7.3) the ratio of the two probabilities is(
M + 1

M

N −M − 1

N −M − 2

)q1−q2

≥ 1.

The quantity in the bracket is greater than or equal to unity, achieving equality only

when q1 ̸= q2. Thus, the dynamics of our 2qVZ violates the detailed balance. When

q1 = q2 the model is reduced to the single population qVMZ [191] which does satisfy

detailed balance.

n

n+ e1 + e2n+ e2

n+ e1

Figure 7.2: An illustration of the violation of detailed balance. The system can be

represented as a two-dimensional lattice of size (S1 + 1) × (S2 + 1). The probability

of traversing this loop clockwise (green) does not equal the probability of traversal in

the opposite direction (blue). By Kolmogorov’s criterion, the detailed balance is violated.

The violation of detailed balance has a number of consequences on the behaviour of

the system. Firstly this means that the Markov process is irreversible, that is, the

system behaves differently going forwards in time to the system with time reversed.

The second consequence is that the system settles into a non-equilibrium steady state

(NESS), characterised by the presence of non-vanishing probability currents [198]. These

consequences will be explored in more detail in later sections.
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7.1.3 Characterisation of the NESS

As a consequence of detailed balance violation the system relaxes into a non-equilibrium

steady state. Due to the system being out of equilibrium the associated stationary state

probability distribution P ∗ is difficult to calculate [199]. However, given we have P ∗, or

a suitable approximation, there are a number of characteristics of the NESS that we are

able to quantify.

Perhaps the most fundamental observables are the stationary state averages and

two-point lagged correlations. Analogously to (7.6) we define them to be

⟨ni⟩∗ =
∑
n

niP
∗(n) (7.8)

⟨n′
inj⟩∗T =

∑
n,n′

n′
injP∗(n′, T |n, 0). (7.9)

Furthermore we can define the stationary probability current K∗(n) = (K∗
1 , k

∗
2) with

K∗
i (n) = W+

i (n)P ∗(n)−W−
i (n+ ei)P

∗(n+ ei) (7.10)

which gives the net flow from n to n + ei. In the NESS, the current K∗ is divergence

free, which on a lattice this condition reads

0 = K∗
1(n)−K∗

1(n− e1) +K∗
2(n)−K∗

2(n− e2). (7.11)

What this means is that the currents must form closed loops around the system. In

particular, analogously with fluid dynamics, the probability flow satisfies a continuity

equation (∇ ·K = 0) which ensures that probability is not created or destroyed. This

also means that K∗ can be represented as the curl of another quantity.

Following the literature for the incompressible fluids we can introduce the concepts of

vorticity (ω = ∇×K), the stream function (K = ∇× ψ), and total angular momentum

(L =
∫
r
r ×K(n)). Explicitly for our discrete system we can define the vorticity as

ω∗ (n) = K∗
1(n) +K∗

2(n+ e1)−K∗
1(n+ e2)−K∗

2(n). (7.12)

Here the vorticity is associated with a plaquette (square) centred on the half integers

(n1+1/2, n2+1/2) [200] however we will continue to denote this asn for convenience.
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The stream function satisfies

K∗
i (n) = εij [ψ

∗ (n)− ψ∗ (n− ej)] (7.13)

where ε is the two-dimensional Levi-Civita symbol4 and again we associate the quantity

with a plaquette. Setting the arbitrary constant in ψ∗ to be zero outside the S1 × S2

rectangle then we find

ψ∗ (n) =

n2∑
ℓ=0

K∗
1(n1, ℓ) = −

n1∑
ℓ=0

K∗
2(ℓ, n2). (7.14)

Finally, the sum

⟨L⟩∗ ≡
∑
n

εijniK
∗
j (n). (7.15)

plays the role of the discrete probability angular momentum in the NESS. SinceK ∝ P ∗

the above sum can be thought of as a form of statistical average. In particular we label

it as the average total probability angular momentum, written as

⟨L⟩∗ = ⟨εijniVj⟩∗ , (7.16)

where Vj = W+
j −W−

j .

In subsequent sections we will calculate these quantities numerically and find analytical

approximations for them in the large system limit.

7.2 Continuum Descriptions and Exact Results

The master equation formulation of the 2qVZ provides an exact description. However,

as is often the case, it is analytically intractable for all but the smallest of system sizes.
4 The Levi-Civita symbol is explicitly given by

εij =


1 if (i, j) = (1, 2)

−1 if (i, j) = (2, 1)

0 otherwise.
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Typically, Monte Carlo simulations are required to explore the model behaviour and

parameter dependence. Fortunately, insight can be gained by considering the model in

the large system size continuum limit where demographic fluctuations are accountable

and assumed small. In this limit (also known as the thermodynamic limit in statistical

physics), Z±, Si, N →∞while maintaining fixed densities z± = Z±/N and si = Si/N .

For large but finite systems the correlations and fluctuations can be modelled using the

Fokker-Planck equation (FPE) [158, 160, 201] (see Chapter 6).

Conversely we can solve the ME for small systems exactly by numerical methods. This

allows us to study the NESS exactly and allows us to compare continuum descriptions

to the ‘ground truth’.

7.2.1 Fokker-Planck Equation

In this limit of large but finite systems (N ≫ 1) the configuration space of densities

xi = ni/N approaches a continuum within a rectangle (x1, x2) ∈ [0, s1]× [0, s2]. In this

limit we also rescale time such that τ = T/N is a continuous variable. This equates one

Monte Carlo step (MCS) in continuous time to N iterations of the microscopic model,

i.e. on average each voter is picked once per MCS.

Following the standard and general procedures [161] (Chp. 6) to obtain the continuum

limit of the ME (7.1) we arrive at the FPE for the probability density P (x, τ) :

∂

∂τ
P (x, τ) =

∑
i=1,2

∂

∂xi

[
∂

∂xi
ui(x)P (x, τ)− vi(x)P (x, τ)

]
(7.17)

where in this case ui ≡
(
w+

i + w−
i

)
/2N and vi ≡ w+

i − w−
i , and where w+

i = (si −

xi)(z++x1+x2)
qi and w−

i = xi(z++x1+x2)
qi are the continuum counterparts ofW±

i .

From the definition (7.7), the right hand side can be identified as the divergence of the

probability current density, i.e.,

∂

∂τ
P (x, τ) = ∇ ·K(x, τ).

In the NESS the system loses the dependence on time and hence all time derivatives are
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also zero. The stationary FPE then becomes

∑
i=1,2

∂

∂xi

[
∂

∂xi
ui(x)P

∗ (x)− vi(x)P ∗ (x)

]
= 0 (7.18)

Therefore to find an analytical expression for the stationary state P ∗(x) we must solve

(7.18) with non-trivial boundary conditions.

7.2.2 Mean-Field Analysis

The next level of approximation to the FPE is to consider the evolution of the averages

of key quantities rather than the full probability distributions of each. The averages

of interest are of the density of +1 voters in each population given by ⟨xi⟩(τ) =∫
xiP (x, τ) dx. The evolution of these quantities is readily computed by multiplying

the FPE (7.17) by xi and integrating over x. This gives

d
dτ ⟨xi⟩ =

∫
xi
∂

∂τ
P (x, τ) dx (IBP)

=

∫
Ki (x, τ) dx

since the surface contributions from the integration by parts involve the normal

components of K and vanish. Noting that
∫
∂i[uiP ] dx is a surface term, we know

that it is not necessarily zero but vanishes at the highest order for large N . Hence as

N →∞, the only contributions from the right hand side of (7.17) are:

d
dτ ⟨xi⟩ = ⟨vi (x)⟩ (7.19)

= ⟨(si − xi)(z+ + x1 + x2)
qi⟩ − ⟨xi(z+ + x1 + x2)

qi⟩.

Tomake further progresswe invoke themean-field approximation (MFA)which assumes

that higher moments can be factored in terms of averages (e.g. ⟨xixj⟩ = ⟨xi⟩⟨xj⟩). Using

this approach all fluctuations and correlations between variables are ignored. Applying

the MFA to (7.19) we arrive at the mean-field rate equations (REs):

d
dτ xi = (si − xi)µqi − xi(1− µ)qi (7.20)

where µ = M/N = z+ + x1 + x2 is the total density of voters holding the +1 opinion,

and angled brackets have been dropped.
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Reduction of the system to the mean-field equations yields an autonomous system of

coupled non-linear ordinary differential equations (ODEs) which are amenable to the

typical analysis of finding fixed points and checking their stability. Setting d
dτ xi = 0, the

system admits fixed points of the implicit form

x∗i =
si

1 + ρqi
, (7.21)

where ρ = (1− µ∗) /µ∗, with µ∗ = z+ + x∗1 + x∗2 (dependent on x∗i ). The ratio ρ has

meaning in being the ratio of voters holding the −1 opinion to those holding the +1

opinion in the steady state. It satisfies

1

1 + ρ
= z+ +

∑
i=1,2

si
1 + ρqi

(7.22)

since the left hand side is µ∗ = z+ + x∗1 + x∗2, which equals the right hand side (using

(7.21)). At this point it is useful to introduce the variables

θi =
1

qi
ln
(
si
xi
− 1

)
(7.23)

with xi = si/(1 + eqiθi) and the fixed points are instead given by θi = ln ρ. It is worth

noting that while the natural variables (x1, x2) were restricted to the rectangle [0, s1]×

[0, s2], the θi variables occupy the entire plane, i.e., θi ∈ (−∞,∞).

7.2.3 Linear Stability and Phases

For the remainder of this chapter, aside from Section 7.5, wewill focus on the particularly

interesting case of symmetric zealotry (z+ = z− = z) for which the 2qVZ exhibits a

continuous phase transition. For any value of z the Equation (7.20) always admits one

solution, ρ = 1 (µ∗ = 1/2). This corresponds to a central FP x∗ = x(0) ≡ (s1/2, s2/2)

where the opinion within each population is split equally. As z is decreased below a

critical value zc, Equation (7.20) admits two further solutions, x(±) with x−i < x
(0)
i < x+i .

For the specific case of (q1, q2) = (1, 2) and s1 = s2 = s these are given explicitly by

x(±) =

(
s

2(1− s)

[
1− s±

√
s(4− 3s)− 1

]
,
s±

√
s(4− 3s)− 1

2

)
.
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To check the stability of a FP we linearise the rate Equations (7.20) about the FP and find

the linear stability matrix, −∂ẋi/∂xj|x=x∗ . This takes the form

F(x∗) =

 Y1µ −X1µ −X1µ

−X2µ Y2µ −X2µ

 , (7.24)

where

Yiµ = µ∗qi(1 + ρqi),

Xiµ = qix
∗
i (1− µ∗)qi−1 (1 + ρ) .

Evaluating detF at x∗ = x(0) gives the simple result

detF
(
x(0)

)
= 22−q1−q2 [1− q2s2 − q1s1] . (7.25)

Stable FPs require that detF(x∗) > 0, so this implies the central FP is stable whenever

1 > s1q1 + s2q2. (7.26)

When (7.26) is not satisfied x(0) becomes unstable, which also coincides with the

emergence of the two other FPs x(±) which can be shown to be stable. This means the

system exhibits a pitchfork bifurcation at zc. In Figure 7.3 we show the phase diagram

with the two regimes separated by the critical line s1q1 + s2q2 = 1.

Since 1 = 2z + s1 + s2, we can express the critical zc line as a function of the qs and the

asymmetry in population densities ∆s ≡ s1 − s2. This is given by

zc =
q̄ − 1

2q̄
+
q1 − q2
q1 + q2

∆s

2
, (7.27)

where q̄ is the average (q1 + q2) /2
5.

In Figure 7.4 we show typical steady state time series of the 2qVZ in both regimes. In

this example, ∆s = 0 and (q1, q2) = (1, 2), leading to a critical zealotry of zc = 1/6.

In the low zealotry regime (z < zc) the system fluctuates between the two FPs x(±),

whereas in the high zealotry regime (z > zc) the system fluctuates around the central

FP, x(0). The mean-field approximation accurately predicts the location of the FPs in
5 The method applied here is powerful enough for us to generalise to a population of any number of

groups of qi-susceptibles, in which case the critical line is given by 1 =
∑

i siqi.
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Figure 7.3: Criticality in the symmetric 2qVZ (z± = z). Criticality at zc occurs on the

interface between the blue and green regimes, prescribed by s1q1 + s2q2 = 1 where the

corresponding critical zealotry is zc = (1−s1−s2)/2. In the blue regime the mean-field

Equations (7.20) have a single central fixed point, whereas in the green regime they admit

three fixed points. Here (q1, q2) = (1, 2).

both regimes, however it can not tell us anything about the demographic fluctuations

around (or between) the FPs.

Finally, setting q1 = q2 we are reduced to a homogeneous population as of the qVMZ

[191] with zc = (q − 1)/(2q). In this spirit, we may introduce an effective qeff for our

heterogeneous 2qVZ:

qeff =
s1q1 + s2q2
s1 + s2

(7.28)

in the sense that the number of FPs in the 2qVZ are the same as those in the homogeneous

qVMZ with this qeff6.

6 As with the critical line, this can be generalised to qeff =
∑

i siqi/
∑

i si for populations of any

composition.
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Figure 7.4: Typical time series of the 2qVZ. (Top) time series of the fraction of +1

voters within each population (xi/s) in the low zealotry regime (z = 1/7). The

process switches between two fixed points, indicated by dashed coloured lines, on a

characteristic timescale. The distribution of opinion levels (right) show that little time

is spent in between the two fixed points. (Bottom) the 2qVZ in the high zealotry regime

(z = 2/9). Both populations oscillate around xi/s = 0.5. The other parameters of the

model are (S, q1, q2) = (250, 1, 2). One MCS equates to N iterations of the model.

7.2.4 Numerically Exact Results for Small Systems

As we have seen for systems which do not reach equilibrium but instead settle into a

NESS it is difficult to attain exact analytical expressions for the stationary state P ∗(n).

For small systems however we are able to attain a numerically exact solution for P ∗(n)

(to within a prescribed accuracy). This can be achieved by numerically iterating the ME

(7.1) in matrix form, i.e.,

P (T + 1) = GP (T )

where G is the (S1 + 1)(S2 + 1) × (S1 + 1)(S2 + 1) transition matrix and P (T ) is a

suitably ordered probability vector whose elements are P (n, T ).

To find P ∗ we exploit the matrix relation GP (0) = P (∞) = P ∗, independently of the

initial condition P (0). In practice we compute P ∗ = GP (0) by iterating G2k = GkGk

until the desired accuracy is reached. In particular for a system with S1 = S2 = 100,

we find P ∗(n) accurate up to 10−15 with 64 iterations (i.e. G264). In this case G has
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108 elements, however only 5 × 104 are non-zero due to there being only five possible

transitions from each state. The transitionmatrix is therefore sparse. Subsequent powers

of G quickly become dense which in turn becomes problematic for the storage of the

matrix in memory. The calculation of the stationary distribution for larger systems

requires a trade-off between the storage of higher powers of G and the computational

cost of repeated multiplication of P by some power of G to reach the desired level of

accuracy as quickly as possible. For systems up to S = 100 this can be done on a modern

computer without issue. For systems larger than S = 100 it is possible to attain accurate

values forP ∗(n) by utilising amethodwhich uses expandedP ∗(n)’s for smaller systems

and interpolating to get an initial condition close to the stationary distribution for the

larger system.

With the stationary state known, we are able to compute all the other quantities of

interest such as the stationary probability current K∗(n), vorticity ω∗(n), and stream

function ψ∗(n). In Figure 7.5 we show the stationary state P ∗ and probability currents

K∗ for the model in the high and low zealotry regimes, described in the previous

section. The stationary states (a) and (b) display two peaks and a single peak respectively

(in agreement with the mean-field predictions). The probability current fields (c)

and (d) both show counter-clockwise “whirls” around each peak. These whirls imply

correlation of the dynamic properties of the two populations, indicating the tendency of

q2-susceptibles to “follow” q1-susceptibles. This is confirmed by our calculation of the

correlation functions in Section 7.3.

In Figure 7.6 we fully characterise the NESS in the low zealotry regime with the

stationary distribution (a), probability currents (b), vorticity (c), and stream function (d).

These are plotted in θ-space (7.23) where all three FPs lie on the line θ1 = θ2. Although

P ∗(n) looks symmetrical under this transformation it is in fact not, and the “ridge”

that runs from one peak to the other through the saddle lies close to, but not on, the line

θ1 = θ2. Panel (c) shows the vorticity field, which as expected, is positive near the peaks,

corresponding to the counter-clockwise whirls of K∗. Less obvious is the presence of

counter rotations (ω∗ < 0) away from the peaks. Lastly, the stream function ψ∗ (panel

(d)) has appearance similar to P ∗; they are in fact proportional to each other.
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Figure 7.5: Numerically exact stationary distributions (top) and probability currents

(bottom) in both the low zealotry regime, z < zc (left), and high zealotry regime, z > zc

(right). Parameter values are (S, q1, q2) = (100, 1, 2) and Z = 40 and 80 in the low and

high zealotry regimes respectively.

7.3 The Linear Gaussian Approximation (LGA)

To describe the fluctuations in the NESS we examine the FPE beyond the lowest order

in 1/N . This procedure provides a scaling analysis of typical non-critical fluctuations in

systems of large, but finite N . As with our consideration of linear stability, we consider

small deviations around a stable fixed point x∗: ξ = x − x∗. The LGA consists of

linearising the drift term and evaluating the diffusion term at the fixed point, resulting
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Figure 7.6: Numerically exactly properties of the 2qVZ NESS with (N,S, Z, q1, q2) =

(280, 100, 40, 1, 2) (low zealotry regime). (a) Heat maps of the stationary distribution P ∗

in θ-space (7.23). The peaks of P ∗ fall on the dotted line θ1 = θ2 however the distribution

is not symmetric about this line. Areas of higher probability are more darkly shaded. (b)

Stationary probability currents K∗. (c) Stationary vorticity ω∗. (d) Stationary stream

function ψ∗.

in the LGA FPE for the stationary distribution:

∇ · [Fξ + D∇]P ∗(ξ) = 0. (7.29)

Here D = D(x∗) is the diffusion matrix given by

D(x∗) =
1

N

 x∗1(1− µ∗)q1 0

0 x∗2(1− µ∗)q2

 (7.30)
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and F is the drift matrix defined by (7.24). By means of taking a Fourier transform

of (7.29) and using a Gaussian ansatz we see that the LGA FPE has solution

P ∗(ξ) =
1

2π
√
C
exp

[
−1

2
ξTC−1ξ

]
, (7.31)

where C is the covariance matrix, with elements

Cij = ⟨ξiξj⟩∗. (7.32)

The covariance matrix can be obtained as a function of F andD by solving the Lyapunov

equation FC+CFT = 2D which arises as a necessary condition for the solution given.

From this equation we can also see that, as F isO(1) and D isO(1/N) then Cmust also

be O(1/N).

7.3.1 Correlations and Probability Flows

Having established an approximation ofP ∗ within the LGAwe can find LGA expressions

for the observables of interest. The probability currents K∗ = − [D∇+ Fξ]P ∗ can be

expressed in two ways. By noting ∇P ∗ ∝ −C−1ξP ∗ (using (7.31)), the first expression

K∗(ξ) =
{
DC−1 − F

}
ξP ∗(ξ) (7.33)

confirms the linear relationship between K∗ and P ∗. The other, using D =[
FC+ CFT

]
/2 is

K∗(ξ) =
FC− CFT

2
∇P ∗(ξ), (7.34)

which explicitly shows that K∗ is divergence free.

The key observation here is that the matrix FC−CFT is antisymmetric which leads us

to define

L ≡

 0 L12

−L12 0

 = FC− CFT . (7.35)

Then, rewriting (7.34) is terms of L, we see that K∗
i = εij∂j (L12P

∗/2). This takes the

form of (7.14) so we can identify the stream function ψ∗ = L12P
∗/2. Furthermore, from
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the continuum version of (7.15) we see that, ignoring surface terms in the integration

by parts,

⟨L⟩∗ =
∫
εijξiK

∗
j dξ = L12 (7.36)

Finally we look to find the continuum version of the two-point correlation function of

(7.9), namely

⟨ξ′iξj⟩
∗
τ =

∫
ξ′iξjP∗(ξ′, τ |ξ, 0) dξ′ dξ.

Within the realms of the LGA it is easier to use the corresponding solution to the

Langevin equation: ξ(τ) = e−Fτξ(0) (+ noise). As the noise is uncorrelated in time,

⟨ξi (0) ξj (τ)⟩∗ =
∑
k

e−Fjkτ ⟨ξi (0) ξk (0)⟩∗ =
∑
k

Cike
−Fjkτ

The antisymmetric part of this correlation is necessarily odd in τ and is non-vanishing

for systems in a NESS.

We can also define the time-independent quantity

C̃(τ) ≡ ⟨ξ1ξ2⟩∗τ − ⟨ξ2ξ1⟩
∗
τ (7.37)

which is the 1-2 element of the antisymmetric matrix

C̃(τ) = Ce−FT τ−e−FτC. (7.38)

Furthermore we can exploit Sylvester’s formula [202] to write

e−Fτ =

(
λ+e

−λ−τ − λ−e−λ+τ

λ+ − λ−

)
I+

(
e−λ+τ − e−λ−τ

λ+ − λ−

)
F,

where I is the identity matrix and λ± =
(
TrF±

√
(TrF)2 − 4detF

)
/2 are the

eigenvalues of F. Hence we can rewrite (7.38) as

C̃(τ) =
(
e−λ−τ − e−λ+τ

λ+ − λ−

)
[FC− CFT ]︸ ︷︷ ︸

=L

. (7.39)

Or, in terms of its only independent quantity,

C̃(τ) ≡ ⟨L⟩∗
(
e−λ−τ − e−λ+τ

λ+ − λ−

)
.

Due to the form of C̃(τ) we can see that C̃(τ) > 0 for all τ , and we expect C̃(τ) to find

its maximum value at τ ∗ = ln(λ+/λ−)/(λ+ − λ−).
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7.3.2 Simulation Results and Assessment of Fit

The equations (7.33)-(7.39) derived previously offer significant information on the

behaviour of the 2qVZ in the realms of linear approximation about the fixed points.

While this analysis holds for any values of s1,2 and q1,2, in this section we compare

the LGA results with simulation in the specific case of s1,2 = s, z± = 1/2 − s, and

q2 = 2q1 = 2. In doing so we assess the validity of the LGA and quantify the level of fit

for a specific case.

Our Monte Carlo simulations cover a range of system sizes up to N = 14400 and are

run for 105 MCS. By compiling histograms from the model trajectories we find a Monte

Carlo estimate of P ∗(n). We find that in the high zealotry regime the LGA prediction

(7.31) is an excellent approximation, i.e. P ∗(ξ) ≃ NP ∗(n), and captures the Gaussian

peak around the fixed point x(0). In the low zealotry regime the stationary distribution

is bimodal as expected with two peaks around x(±). However the distribution is

not fully Gaussian but is in fact skewed and more sharply peaked than the Gaussian

approximation. For systems smaller than N ∼ 103 there are clear visible deviations

between the simulations and LGA approximation yet for larger systems the agreement

is reasonable in both regimes.

To quantify this we calculate the excess kurtosis and skewness of the one-dimensional

projections of P ∗(ξ) onto each axis, given by

P ∗(ξ1) =

∫ 1

0

P ∗(ξ1, ξ2) dξ2

and with a corresponding expression for P ∗(ξ2). For the smallest system with S = 250

in the low zealotry regime the kurtosis was (−0.242, 0.750) for the ξ1 and ξ2 projections

respectively, while the skewness was (0.321, 0.969). By contrast, in the high zealotry

regime the kurtosis was (−0.030,−0.130) and skewness (0.004,−0.007). This confirms

that the LGA provides a better approximation in the high zealotry regime.

As the system size increases the kurtosis and skewness approach zero in both regimes.

In Figure 7.7 we see the improvement of the LGA with N , this time in terms of the

correlations ⟨ξ1ξ2⟩∗ in the NESS. This confirms that Cij ∝ 1/N , i.e. the fluctuations

scale as N−1/2 far from criticality. As with the skew and kurtosis, the LGA provides a
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Figure 7.7: Cij = ⟨ξiξj⟩ as a function of system size N . Comparison of the LGA

predictions (7.32) (solid) against results of stochastic simulation (markered), averaged

over at least 105 MCS. The scaling Cij ∝ 1/N is confirmed and the quantitative

agreement improves asN increases. Here in the low zealotry regime (left) (s, z, q1, q2) =

(5/14, 1/7, 1, 2). By comparision the parameters in the high zealotry regime are

(s, z, q1, q2) = (5/18, 2/9, 1, 2), and the critical value of z being zc = 1/6.

good quantitative fit in the high zealotry regime for N ≫ 103, however much larger

system sizes are required to achieve similar levels of quantitative agreement in the low

zealotry regime. This is more likely due to the skewness in the peaks of P ∗ which is

present for smaller systems.

We now turn to study the genuine non-equilibrium observables. Using (7.10), we can

compute the probability current exactly and compare the results to the current obtained

from (7.33), as shown in Figure 7.8. In this comparison there are two things of note.

Firstly the mean field fixed point and the peaks of the distribution (right) are not fully

aligned. This is a finite size effect (as the MF fixed point is derived for an infinite

population system) and is less pronounced as the system becomes larger. Secondly the

probability currents in the LGA are qualitatively similar to the exact solution; they are

in agreement with the counter-clockwise whirls seen in Figure 7.8 (left) and Figure 7.5

also.

Finally we look at the antisymmetric two-point correlation function C̃(τ). This is
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Figure 7.8: Stationary probability currents. Comparison of the LGA predictions

(7.33) (left) with the numerically exact counterpart (7.7) (right) near the fixed point

x(−) (red dot) in the low zealotry phase. Parameters here are (N,S, Z, q1, q2) =

(280, 100, 40, 1, 2).

calculated from simulation by considering the lagged correlation

1

R− τ

R−τ∑
τ=0

x1(τ)x2(τ + τ)− x2(τ)x1(τ + τ)

where R is the length of the run (typically 105 MCS). Figure 7.9 shows that the 2qVZ is

characterised by C̃ > 0 with a single peak expected from Equation (7.39). This means

that the qi-susceptibles are correlated in such a way that ⟨x′1x2⟩
∗
τ > ⟨x′2x1⟩

∗
τ , indicative

of the q2-susceptibles ‘following’ the q1-susceptibles on a finite timescale (τ ≈ 40) with

a peak at around 3 MCS. This peak is accurately captured by the LGA.

7.4 Fluctuation-driven Switching Dynamics

As with previous work on the qVMZ, and for stochastic processes with two favourable

states in general, it is interesting to study the time taken to switch from one fixed point to

another. In Figure 7.10 (left) we see that the long time behaviour of the 2qVZ in the low

zealotry regime is characterised by so-called “swing-state dynamics”. This behaviour

is encapsulated by long periods of oscillation about one of x(±) followed by sudden
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Figure 7.9: The LGA prediction of the two-point correlation function C̃(τ) (dashed)

compared to simulations of varying susceptible population size in the high (left) and

low (right) zealotry regimes with s1,2 = s, z± = z and (q1, q2) = (1, 2). In the high

zealotry regime (z = 2/9) the LGA captures the behaviour of C̃(τ) for all values of

system size considered. However, in the low zealotry regime (z = 1/7) the LGA is only

qualitatively accurate for S ≥ 2000. Fluctuations for MCS greater than 20 are due to a

low sampling rate. The LGA values for the peak τ ∗ are 2.80 and 3.05 for the high and low

zealotry regimes respectively, accurately predicting the peak in the data which occurs

at 3 in both cases.

switches or jumps to the opposite state on a much shorter timescale. Figure 7.10 (right)

shows a typical jump from x(+) to x(−). As shown in the previous section, the

q2-susceptibles “follow” the q1-susceptibles across the switch, however this behaviour

is subtle and the lag between the switching of both populations is negligible to first

order.

As the mean-field equations average out the fluctuations which drive this switching

behaviour we rely on the FPE to study this phenomenon. In particular we look to

measure themean switching time τs, whichmeasures the average time to switch from one

fixed point to another7. Finding τs can be formulated as a first-passage problem [159].

This problem is readily solved in the one-dimensional case [191] (see Chapter 6), however

7 As this process is symmetric we can average over both x(+) → x(−) and x(−) → x(+) as they are

equal.
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Figure 7.10: Switching behaviour of the 2qVZ (z < zc). Time series of the total fraction of

+1 susceptibles within each populations (xi/s). (Left) a sample of 5000 MCS and (right)

a closer examination of a typical switching event over 100 MCS. 1 MCS equates to N

iterations of the model. Here the parameters are (N, s, z, q1, q2) = (200, 0.38, 0.12, 1, 2)

in two or more dimensions and with the violation of detailed balance the current theory

breaks down. To make progress with estimating the mean switching time we exploit

the mapping of the 2qVZ onto the equivalent qVMZ such that they share the same value

of zc. For z . zc we expect that switching dynamics of the 2qVZ with (q1, q2) to be

well approximated by the qVMZ with a population of qeff-susceptibles, with qeff given by

(7.28).

Within the qeff approximation we can utilise the methodology used in Chapter 6 to yield

an expression for τs. In particular we use the framework of the backward Fokker-Planck

equation (bFPE) [159, 160, 158]. The infinitesimal generator of the bFPE is given by

Geff
b (x) =

[
w̃+(x)− w̃−(x)

]
∂x +

1

2N

[
w̃+(x) + w̃−(x)

]
∂2x (7.40)

where w̃+(x) = (s1 + s2 − x)(x + z)qeff and w̃−(x) = x(s1 + s2 + z − x)qeff . The mean

switching time can be computed by solving Geff
b (x)τs(x) = −1 with the reflective and

absorbing boundary conditions

dτs
dx (x

(−)) = 0 = τs(x
(+)).
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Figure 7.11: The mean switching time τs between the two stable fixed points for systems

of size N = 100 with (q1, q2) = (1, 2). Results obtained from stochastic simulations

(blue �) are compared with approximations (7.41). Simulation data are averaged over

106 MCS.

where x(±) are the fixed points of the qVMZ. This yields

τs = 2N

∫ x(+)

x(−)

dye−Nϕ(y)

∫ y

x(−)

eNϕ(v) dv
w̃+(v) + w̃−(v)

, (7.41)

where ϕ(v) = 2
∫ v

x(−)

{
w̃+(v)−w̃−(v)
w̃+(v)+w̃−(v)

}
. Using Kramers’ formula [203–205, 191], we then

have

ln τs ≃ 2N

∫ x(+)

x(−)

w̃−(y)− w̃+(y)

w̃−(x(−)) + w̃+(x(−))
dy (7.42)

This predicts that the mean switching time grows exponentially with N , which is

confirmed by simulation.

Figure 7.11 shows that this approximation is accurate just below zc (zc = 1/6 in this case)

and overestimates by nearly an order of magnitude far below zc. This overestimation

is interesting in itself and suggests that the presence of probability currents, absent

from consideration in the approximation, are likely candidates for the speed up of the

switching dynamics.
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7.5 Asymmetric Zealotry

So far in this chapter we have considered the case of symmetric zealotry z+ = z− = z.

The 2qVZ with asymmetric zealotry z+ > z− shares many of the same features as its

qVMZ counterpart [191]. There are high and low zealotry regimes characterised by a

unimodal and bimodal stationary probability distribution respectively. However now

both distributions are highly asymmetric, even for small asymmetries in zealotry. Let

z± = (1± δ)z where δ ∈ [−1, 1] is a measure of the asymmetry.

In Figure 7.12 (bottom left) we see that even for an asymmetry of δ ≈ 0.034 the peak

at x(+) is much more pronounced than the peak at x(−) in the low zealotry regime.

For high zealotry the “central” fixed point x(0) is now skewed towards states with a +1

majority of voters (not shown). As in the symmetric case, detailed balance is violated and

hence there exists non-zero probability currents in the NESS (Fig. 7.12 (bottom right)).

Similar to before the probability current flows in an anti-clockwise fashion around the

fixed points, although the currents aroundx(+) are now significantly stronger than those

around x(−).

The model in the asymmetric regime is analysed readily using the techniques in sections

7.2 and 7.3, and more specifically we can use the FPE and LGA provided that N ≫ 1. In

particular, using the LGA we can find the stationary probability density P ∗(ξ) around

each fixed point as well as LGA expressions for the probability currentsK∗(ξ), vorticity

ω∗(ξ) and correlation functions Cij = ⟨ξiξj⟩∗. For low zealotry the bimodal probability

distribution is dominated by the peak at x(+) which suggests that the LGA will be more

accurate than the symmetric case provided that the fixed point x(+) is sufficiently far

from the boundary. This is due to a reduction in the skewness of the peak about x(+)

which is caused by the presence of the peak at x(−).

We may also consider the switching behaviour of the process. Figure 7.12 (top)

highlights that the system is characterised by themetastability ofx(−): while in principle

the continuous switching between states can be observed, the switch from x(+) →

x(−) occurs with extreme rarity, and the system spends a significant amount of time

fluctuating about x(+). Using the effective q mapping (Sec. 7.4) we can study the mean
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Figure 7.12: A summary of the low zealotry regime with asymmetric zealotry with

parameters (N,S, Z+, Z−, q1, q2) = (258, 100, 30, 28, 1, 2) and consequently δ = 0.01.

(Top) a typical time series for the first 104 MCS. Systems initialised with few+1 opinions

soon reach the upper steady state where they stay for long times. (Bottom left) the

stationary distributionP ∗ in the NESS. Darker regions aremore probable. (Bottom right)

the stationary probability current K∗.

switching times τ−→+
s and τ+→−

s and, following the same analytic steps, we see that the

mean switching times also grow exponentially with N .

7.6 Discussion

In this chapter we introduced the 2qVZ, a heterogeneous out-of-equilibrium non-linear

voter model for a finite and well-mixed population. The 2qVZ is a direct but non-trivial

generalisation of the qVMZ. Both models aim to replicate the concepts of group-size
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dependence on conformity and the interplay between independence and conformity

in opinion formation. The 2qVZ extends this notion by allowing individuals to

require differing levels of group consensus for them to change their opinion, creating

subpopulations of voters with varying degrees of conformity.

From a mathematical viewpoint the 2qVZ is radically different from its predecessor in

that it violates detailed balance and is hence a genuine non-equilibrium system. Ignoring

fluctuations and considering the mean-field behaviour, both systems display a high and

low zealotry phase, separated by a critical value of z, zc, where the system undergoes

a pitchfork bifurcation. However, the 2qVZ settles to a non-equilibrium steady state

which we have analysed in detail. In particular we have characterised the NESS in

terms of the stationary probability distribution P ∗, the stationary probability currents

K∗ and other derivative features. These features have been studied for small systems by

exact numerical calculation and also for larger systems by employing a linear Gaussian

approximation to systems far from criticality. This has allowed us to understand the

probability flows around the fixed points but has also cemented the LGA as a useful tool

in the analysis of non-equilibrium social systems.

Furthermore we have investigated the asymmetric zealotry regime as well as the

switching dynamics for systems with low zealotry. In particular, by mapping the model

onto the one-dimensional qVMZ which satisfies detailed balance we can see that the

favourable flow of probability current dramatically reduces the mean switching time

between states for systems far from criticality.

This work has allowed us to study in depth a genuine non-equilibrium system and has

raised questions about the role and interpretation of closed loops of probability current

in the NESS: are these related to the presence of “leaders” and “followers” in society?

Finally it is important to place this study into context. There aremany instances of binary

opinions which are shared and communicated. Twitter and Facebook have been quoted

as being incredibly influential in the recent US presidential election, particularly as fake,

robotic accounts have been used to swell the sizes of the respective populations of voters

[206]. There are also many instances where public opinion has switched back and forth

over time, such as in fashion, and attitudes to facial hair [207]. Applying the model to
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complex and/or temporal networks would be an interesting extension which would be

relevant from a social dynamics perspective and would help bring the model closer to

real observable systems. Furthermore, we might question the Markovian assumptions

of the model. Do the agents in real systems base their opinions solely on the current

state of the system? While incorporating non-Markovian features into the model would

drastically decrease the degree of analysis possible an empircal study of whether or not

this assumption holds true would be enlightening for the 2qVZ and for voter models in

general.



161

8
The LISA Model of Innovation Diffusion

The study of innovation diffusion aims to understand how new, previously unseen ideas,

products, or behaviours spread throughout a society [208]. The spread of innovation

can occur through various media, be that word-of-mouth, advertisement, or by direct

observation. In fact the term “innovation diffusion” refers to a number of different social

models and mechanisms such as contagion, imitation, and social learning1 [210–212].

Traditionally, models of innovation diffusion have been based on a well-mixed

population, that is, an infinitely-sized population where all possible agent-agent

interactions are allowed [213]. This class of model are referred to as aggregate models,

or mean-field models (see Chapter 6). Perhaps the most influential model of this class

is that introduced by Bass in 1969 [214, 215, 72, 216]. In this model innovation can

spread when a previous adopter of an innovation interacts with an agent susceptible to
1 Somewhat confusingly, innovation diffusion rarely refers to the physical interpretation of diffusion

described by a diffusion equation [209].
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adopting (contagion), or by spontaneous adoption of the innovation through an external

force (advertisement and mass media). The Bass model shares its primary mechanism

with that of the susceptible-infected (SI) model of epidemic spreading [217]. This has

led to many extensions of the model being studied in parallel in both fields, albeit with a

different focus, and the shared use of terminology in society such as the notion of ‘viral

advertising’.

The characteristic behaviour of the Bass model is exhibited by the sigmoidal shape of

the fraction of adopters in the population over time. Adoption is initially slow to start

however after a latency period complete adoption is quickly achieved. Themain draws of

the Bass model are its simplicity (having only two parameters) and that it readily yields

an analytic solution. Due to this the Bass model has been successful in fitting historical

data [218], in particular in economics where parameter values have been calculated for

various classes of new products and innovations such as televisions, mobile phones, etc.

The conclusions derived from such studies should of course be met with scepticism. The

fitting of historical data does not validate the model, and examples are often chosen

which agree with the model (confirmation bias).

The Bass model, as a model for real life application also has the following limitations:

(a) The model is based on an infinitely large, homogeneous population [219, 160]

and does not account for fluctuation-driven phenomena or heterogeneities in the

population.

(b) The model accounts only for contagion, omitting other possible mechanisms of

innovation spread that result from social reinforcement and social pressure [220–

222].

(c) The model assumes that the entire population will eventually adopt, a so-called

“pro-innovation bias”, however complete adoption is rarely (if ever) observed in

real data [223–225, 208].

The last of these limitations is perhaps the most interesting. For incomplete adoption to

occur in this setting either the innovation must not reach the entire population and/or
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individuals must reject or oppose the innovation. This behaviour has been observed in

society, for example 90% of Americans own a mobile phone as of 2014, and 68% had

a smartphone in 2015 [226] however their use is accompanied by health and safety

concerns [227]. Likewise the coverage for the measles, mumps, and rubella (MMR)

vaccine in the United Kingdom reached only 92.7% in 2013-2014, below the government

target of 95% required for herd immunity. This incomplete adoption may be attributed

to scepticism surrounding the safety of the vaccination following bad press coverage

which was promoted heavily by anti-vaccination movements [228].

The mechanisms for incomplete adoption will be the focus of this chapter, and will

be introduced by means of incorporating a network structure to the dynamics and

furthermore introducing individuals who may chose not to adopt the innovation. We

predict that the network structure plays a significant role in the spread of innovation

as non-adopters may block potential pathways of innovation spread if the network

topology is restrictive.

Innovation Spreading In Social Media

The total spending on social media advertising in 2015 was $23.68 billion globally [229],

an increase of 33% on the previous year, with similar growth expected in subsequent

years. This is indicative of the (perceived) power that social contacts and contagion has

on influencing users to adopt new ideas and products. The precisemechanisms that drive

social adoption are poorly understood which is reflected in the diversity of advertising

campaigns; from targeted high-volume adverts, to attempts to personify the brand and

converse with the user base.

There have been a number of studies aiming to model and understand the spread of

innovation on social media, with 39% drawing from ideas of the diffusion of innovation

[49]. There is however no universal model, and predictive power is limited. Another

issue faced is the inference of adoption from social media data alone. While researchers

are able to access a wealth of data from social media there have been few controlled

studies. Instead, the sentiment [230] towards innovations is often calculated and used

as a proxy.
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Another closely related fact is that social media is increasingly being used as a medium

for users to share news stories. This draws resemblance to the spread of ideas and

innovation and is often easier to measure due to the unique identifier of a URL for a

news article. One major difference is that innovations are beneficial to society, however

news may be detrimental if the news is incorrect or strongly biased as has been seen in

the recent US presidential election [29].

Chapter Outline

In Section 8.1 we introduce the LISA model of innovation spread which is based upon

the Bass model of innovation diffusion and more generally on the compartment-based

models used in epidemiology. We subsequently study the basic properties of the model

in the mean-field limit and on complete graphs in Section 8.2, finding two regimes

of behaviour dependent parameter values. In particular we look to understand how

negative opinion affects the final level of adoption in the steady state and the speed of

adoption up to that point. In Section 8.3 we study the model on random networks and

one-dimensional lattices. In each case we compare the analysis with simulation results

and highlight instances where the analytical approximations used break down and the

results differ significantly. Finally we conclude with a brief discussion on how the model

can inform strategies for the proliferation of potentially divisive innovations.

8.1 The LISA Model

To better understand the LISA model it is first helpful to further review the two-state

Bass Model and its output. The Bass model consists of two types of agent: susceptibles

S (yet to adopt), and adopters A. The model allows susceptibles to become adopters by

one of two mechanisms:

(a) Contagion-driven Spread: a susceptible may become an adopter after

interaction with another adopter, represented by the two-body interaction S +

A → A+A.
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(b) Spontaneous Adoption: a single susceptible becomes an adopter S → A, with

a typically small rate.

The key feature of the Bass model is that the density of adopters over time is sigmoidal in

shape, that is, the time derivative of this density has a single sharp peak (corresponding

to an inflection point in the density itself). For all parameter values the model always

reaches complete adoption eventually [208, 72, 215, 231, 232].

8.1.1 Model Outline

The LISA model [3] is a four-state model, consisting of a population of N agents that

can be in one of the states of Luddite (L), ignorant (I), susceptible (S), or adopter (A).

The mechanisms of the model (Figure 8.1) show how ignorant agents may either be

persuaded to become susceptible and then subsequently reach the adopter state, or may

convert to the Luddite state and permanently oppose the innovation. Specifically, the

Figure 8.1: Schematic depiction of the LISA model. An ignorant I can become a Luddite

L with rate rȦ (in a mean-field setting); an ignorant can also become a susceptible S by

contagion with rate proportional to the susceptible density. A susceptible spontaneously

becomes an adopter at rate γ.

mechanisms which drive the LISA model are:

(a) Contagion-driven Spread: an ignorant agent becomes susceptible upon

interaction with another susceptible agent, i.e., I + S → S + S with rate 1.

(b) Spontaneous Adoption: a single susceptible spontaneously becomes and

adopter, S → A, with rate γ2.
2 Adoption could also occur by contagion according to the rule S +A → A+A. Investigations into
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(c) Luddism: ignorant agents may spontaneously and permanently reject the

innovation by becoming a Luddite, I → L, with a rate proportional to the change

in density of adopters in their neighbourhood.

The novel Luddism mechanism above incorporates two aspects of negative behaviour

towards innovation. Firstly, agents have no predisposition towards the innovation and

may choose to oppose the innovation simply due to its sudden increase in popularity.

This ingrains a level of non-conformity [233, 234] in the population. The second

represents a fear of the innovation or concern of its consequences on society as was

apparent in the model’s namesake, the 18th century Luddism movement, where the

introduction of labour-saving machinery caused fear and anger over job security.

Such themes are reoccurring in the modern era with the advent of sophisticated

artificial intelligence and automation threatening the security of low-skilled labour. To

encapsulate this behaviour in the model we define the rate at which the Luddite density

increases to be proportional to the adoption rate, with constant of proportionality

denoted by r (the Luddism parameter). Where agent interactions are structured (on a

network, for example) this interaction is localised such that any agent can only measure

the rate of adoption in its neighbourhood. We consider the scheme r > 0 such that

the rapid introduction and adoption of an innovation will prompt a strong Luddism

response.

The LISA model also incorporates a type of social reinforcement mechanism whereby

in the multi-stage progression I → S → A a successful adoption follows a number

of prompts from neighbouring agents [220, 222, 235, 232]. It is worth noting that this

multi-stage progression is required to produce non-trivial results. With only three

states the model produces a polarised community of Luddites and adopters where

the proportion of Luddites to adopters is dependent only on r. The need for such a

progression is confirmed in other relevant models [236] which find that the negative

response to innovation, due to high levels of advertising, cannot be replicated with fewer

than four states. In this sense the LISA model represents the most simple generalisation

the two-body mechanisms yielded similar features to the LISA model, however it was more technically

difficult to analyse and was hence abandoned in favour of simplicity.
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of the Bass model that gives a non-trivial final state where the adoption of the innovation

is incomplete.

8.2 Mean-field Analysis

We first consider the LISA model in the mean-field limit, where agents are

perfectly mixed. The densities of each type of agent are given by (L, I, S, A) =

(NL, NI , NS , NA)/N , where NX is the number of agents of type X ∈ {L, I,S,A},

andN is the total number of agents. We consider the limitN →∞, so that all densities

are continuous variables and all fluctuations are negligible. In this setting, the evolution

of the agent densities is described by the rate equations:

L̇ = rȦI ≡ (α− 1)SI,

İ = −(1 + γr)SI ≡ −αSI,

Ṡ = S(I − γ),

Ȧ = γS,

(8.1)

where the dot denotes the time derivative and we define α ≡ 1 + γr. Since the total

density is conserved, i.e. L+I+S+A = 1, the sum of these rate equations equals zero.

A natural initial condition is a population that consists of a small density of susceptible

agents that initiate the dynamics, while all other agents are ignorant; that is, I(0) =

1− S(0) = I0 and L(0) = A(0) = 0.

To solve these rate equations, it is useful to introduce the modified time variable dτ =

S(t) dt, which linearise the rate equations to

L′ = (α− 1)I,

I ′ = −αI,

S ′ = I − γ,

A′ = γ,

(8.2)
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with solution

L =
α− 1

α
I0(1− e−ατ ),

I = I0e
−ατ ,

S =
I0
α
(1− e−ατ ) + 1− I0 − γτ,

A = γτ.

(8.3)

There are two basic regimes of behaviour that are controlled by the adoption rate γ, as

illustrated in Figure 8.2:

(a) Gradual but extensive adoption. When γ < I0, the density of susceptibles

S varies non-monotonically in time and reaches a maximum value Sinc at an

“inception time” tinc, after which S decays to 0. This non-monotonicity leads to

sigmoidal curve for the adopter density, withA increasing rapidly for t & tinc. The

rescaled inception time τinc is determined by the criterion S ′ = 0, or equivalently,

I(τinc) = γ. This gives

τinc =
1

α
ln(I0/γ) . (8.4)

(b) Rapid but sparse adoption. When γ > I0, the susceptibles quickly become

adopters, leaving behind a substantial static population of ignorants and a small

fraction of adopters, as well as Luddites.

Numerical simulations of the LISA model on a large complete graph and numerical

integration of the rate equations (8.1), illustrated in Figure 8.2, give results that are

virtually indistinguishable.

We can express the densities in terms of the physical time t by inverting dτ = S(t) dt

to give t =
∫ τ

0
dτ ′/S(τ ′). Substituting S(τ) from the third of Equations (8.3) and taking

the limits of low adoption, γ ≪ 1 and α ≈ 1, we have3

t =

∫ τ

0

dτ ′
1− I0e−τ ′

≈ τ + ln
[
1− I0e−τ

]
. (8.5)

3 Here the term −γτ ′ has been neglected. This approximation is legitimate since τ ′ is integrated from

0 to τ ≪ τ∞ ≈ 1/γ and therefore γτ ′ ≪ 1 in the regime being considered. A similar reasoning, with

γτ ≤ γ ln(I0/γ)≪ 1, leads to (8.6) when γ ≪ 1.
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(a) (b)

Figure 8.2: Evolution of a realisation of the LISA model on a complete graph of 106

nodes with I0 = 0.8 and Luddism parameter r = 0.9. (a) γ = 0.3 (extensive adoption)

(b) γ = 1 (sparse adoption). Evenly distributed samples of the stochastic simulation

(2) are indistinguishable from the solution of Equation (8.1) (solid line). The completion

times for (a) and (b) are 60 and 17 respectively.

In particular, the physical inception time tinc is,

tinc ≈
∫ ln(I0/γ)

0

dτ ′
1− I0e−τ ′

≈ ln
[

I0
(1− I0)γ

]
(8.6)

and therefore grows as ln(1/γ).

The stationary state is reached when all susceptibles disappear, so that no further

reactions can occur. This state occurs at the time τ∞ for which S(τ∞) = 0. This requires

solving

I0
α
(1− e−ατ∞) + 1− I0 − γτ∞ = 0

or equivalently

e−ατ∞ = −αλ
I0
τ∞ +

α(1− I0) + I0
I0

.

This equation is of the form

pax+b = cx+ d (8.7)

which, using the transformation −t = ax+ ad/c to give tpt = R := −apb−ad/c/c, gives

t = W (R log(p))/ log(p) where W(z) is the principal branch of the Lambert function,
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defined as the solution of z = W (z)eW (z). The solution of (8.7) is therefore

x =
−W

(
−a log(p)pb−ad

c /c
)

a log(p) − d

c

and upon the substitutions a = −α, b = 0, c = −αγ/I0, and d = [α(1− I0)− I0]/I0 we

obtain

τ∞ =
1

γ
− I0r
α

+
1

α
W0

(
−I0
γ
eI0r−α/γ

)
. (8.8)

Here τ∞ is a decreasing function of the adoption rate γ, with τ∞ ∼ 1/γ in the high and

low adoption rate regimes.

We now determine the final densities by substituting τ∞ into Equations (8.3). For a small

adoption rate (γ ≪ 1) this gives

A∞ = 1−O(γ),

I∞ → 0,

L∞ ≈ (α− 1)I0 = O(γ).

Similarly, the densities at the inception time are obtained by substituting τinc into

Equations (8.3). This yields A(τinc) + S(τinc) = 1 − [(α − 1)I0 + γ]/α. Since

(α − 1)I0 ∼ O(γ), when γ ≪ 1 and r is finite, here the stationary density of adopters

approximately equals the sum of the adopter and susceptible densities at the inception

time, A∞ ≈ A(τinc) + S(τinc). Hence, in the low adoption rate regime (when r is finite),

we can infer the final level of adoption from the adopter and susceptible densities at the

inception time, i.e. well before the stationary state.

The dependence of the final densities for different parameter ranges is shown in

Figure 8.3. Again simulation results for the complete graph are indistinguishable from

numerical integration of the rate equations.

Interestingly, L∞ varies non-monotonically on γ when the initial state consists mostly

of ignorants and the fixed rate of Luddism r is not too high, as in Figure 8.3 (top).

Another observation is that the final fraction of Luddites is non-monotonic in γ. To see

this we need to show that

dL∞

dγ =
I0
α2

[
r
(
1− e−ατ∞

)
+ α(α− 1)

(
rτ∞ + α

dτ∞
dγ e−ατ∞

)]
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Figure 8.3: Dependences of the final-state densitiesL∞, I∞ andA∞ for a complete graph

of 104 nodes and I0 = 0.9. In the top panel r = 0.9 while γ varies, whereas in the

bottom panel γ = 0.3 while r varies. Simulations (2) in complete agreement with (8.3)

with substitution (8.8) (solid line).

takes both positive and negative values for γ > 0. The derivative dτ∞/dγ is given by

dτ∞
dγ = − 1

γ2
− r

α2
W (z) +

W (z)

αz(1 +W (z))
+
I0r

2

α2

where z = − I0
γ
e−(α/γ)+I0r. For r = 0, γ = 1 and I0 = 1, z achieves its minimum of

−1/e where W (z) is not differentiable. However since we enforce S0 > 0 then I0 < 1

for all time and soW (z) is differentiable in the regime of interest. Clearly z ≤ 0 which

bounds the Lambert function, −1 < W (z) < 0. By considering the individual terms it

is apparent that

dτ∞
dγ = − 1

γ2
+

1

α2

[
1

z(1 +W (z))

] [
α− rz(1 +W (z)) +

I0r
2z(1 +W (z))

W (z)

]
< 0,

which shows that the stationary time τ∞ is a decreasing function of γ. For both γ ≪ 1

and γ ≫ 1, τ∞ ∼ 1/γ provided that r ≪ 1/γ. Similarly, dτ∞/dγ ∼ −1/γ2 in the

same regimes. Consequently, τ∞ is large when γ is small, and is small when γ is large,

remaining finite for intermediate values. This gives

dL∞

dγ ∼

r(1− e
−1/γ) for γ ≪ 1

− e−1/γ

γ2 for γ ≫ 1

and hence there exists a γ∗ which satisfies

r
(
1− e−ατ∞

)
+ α(α− 1)

(
rτ∞ + α

dτ∞
dγ e−ατ∞

)
= 0
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such that L∞(γ∗) is a global maximum.

It is also worth noting that in the absence of Luddites, complete adoption is almost, but

not completely, achieved since the final densities of adopters and ignorants are A∞ ≈

1− I∞ and I∞ ≈ e−1/γ , see Figure 8.3 (bottom).

To assess the role of finite-N fluctuations on the dynamics, we simulate the LISA model

on complete graphs of N nodes using the Gillespie algorithm [237]. At long times we

find that the densities of each species, NX/N , fluctuates around the corresponding

mean-field density with a root-mean-square fluctuation of amplitude ∼ N−1/2, as

expected from general properties of this class of reaction processes [158, 160]. We also

find that the probability distribution of NX/N is a Gaussian of width of order N−1/2

that is centred on the mean-field density. We also estimate the completion time TC
for the system to reach its final state by the physical criterion that S(t= TC) = 1/N .

That is, completion is defined by the presence of a single susceptible remaining in the

population [222, 235, 232]. Linearising the rate equations (8.1) with S = 0 + ϵŜ and

I = I∞ + ϵÎ gives

ϵ
˙̂
S = ϵ(I∞ − γ)Ŝ +O(ϵ2).

Hence the density of susceptibles vanishes as S(t) ∼ e−(γ−I∞). For t > tinc we know that

γ > I(t). The mean completion time can then be estimated as TC ≈ ln(N)/(γ − I∞).

This approximation highlights two features of the model; the time for the adoption to

spread scales like ln(N), and the time for the system to reach its stationary state is fast

when γ is large, and slow when γ is small. This gives a trade-off between an adoption

which is slow and widespread, or an adoption which penetrates the system quickly but

results in a much smaller uptake.

8.3 Random Graphs and Lattices

Themean-field analysis of the model is insightful, however real social systems are rarely

well-mixed. We now consider how the LISA model behaves on different topologies

including Erdős-Rényi random graphs [168] and one-dimensional lattices. In particular

we look to uncover, quantify, and explain genuine non mean-field effects.
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A graph with N nodes is best represented by the N × N adjacency matrix A = [Aij],

where Aij = 1 if nodes are connected and 0 otherwise. The graphs that we consider in

this section are undirected meaning edges are reciprocal, i.e. Aij = 1 ⇐⇒ Aji = 1.

To implement the LISA model on a graph we use a modified version of the Gillespie

algorithm [237]. This approach considers the propensity for each node to participate in

any of the transformations I → L, I → S , S → A, resulting in 3N possible updates to

the system at any given point.

The propensity for a susceptible to adopt is γ, independent of the state of the local

environment. The propensity for an ignorant node i to become a susceptible is si/N

where si is the number of susceptible neighbours of i. Finally the propensity for an

ignorant node i to become a Luddite is rγsi/ki where ki =
∑

j Aij is the degree of node

i. The propensity of i to become a Luddite is thus proportional to the total propensity of

its neighbours propensities to adopt at any given time. In this sense we encode node i’s

knowledge of the local adoption rate. Trivially the propensity for any other state change

is zero.

8.3.1 Erdős-Rényi Random Graphs

We first study the dynamics of the LISA model on the class of Erdős-Rényi (ER) graphs.

For an ER graph an edge is formed between any two nodes with probability p, resulting

in a binomial degree distribution in which each node has on average k = p(N − 1)

neighbours [7, 238]. We make the assumption that there are no correlations between

the degrees of neighbouring nodes4. Under this assumption the adjacency matrix can be

written as Aij ≈ kikj/Nk ≈ k/N . This means that the dynamics of the LISA model on

ER graphs can be approximately described by a suitable generalisation of the mean-field

theory, namely that connections are still all-to-all but are weighted by a factor k/N < 1.

In particular if we consider the model from an individual-based perspective and let Si

be the probability that a node i is susceptible and let Ij be the probability that a node j

4 For any graphwith heterogeneous degree distribution nodes of any degree are, on average, connected

to nodes of higher degree.
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is ignorant, then the density of susceptibles S evolves as

Ṡi = Si

[∑
j

(Aij/N)Ij − γ
]
≈ S

[
(k/N)I − γ

]
,

since in this approximation all nodes are homogeneous (Si = S) and interact with k/N

neighbours on average.

As the only mechanism which involves two nodes, the two-body contagion I + S →

S + S has an effective rate of k/N (which was previously 1 in the mean-field model).

The rates for the Luddism and adoption mechanisms remain unchanged. Intuitively the

effective rate equations become

L̇ = γrSI ≡
(
β − k

N

)
SI,

İ = −
(
γr +

k

N

)
SI ≡ −βSI,

Ṡ = S

(
k

N
I − γ

)
,

Ȧ = γS,

(8.9)

where we define β = γr + (k/N) for convenience.

(a) (b)

Figure 8.4: The evolution, averaged over 100 realisations, of the LISA model on an ER

graph withN = 103 nodes, k = 10, and I0 = 0.8. (a) γ = 0.002, such that γ < (k/N)I0

and (b) γ = 0.1 such that γ > (k/N)I0. Shown are the evenly distributed samples of

the stochastic simulation (2) and the solution of Equation (8.9) (solid line). The Luddism

parameter r = 0.9.
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As with the mean-field model, the rate equations predict two regimes of behaviour

(shown in Figure 8.4):

(a) Slow but extensive adoption (γ < kI0/N ). Here the density of Ss peaks at

an inception time tinc ∼ ln(1/γ) before vanishing. The densities of adopters and

Luddites also display the characteristic sigmodial dependence on time.

(b) Rapid but sparse adoption (γ > kI0/N ). The density of Ss vanishes quickly so

that the density of adopters and Luddites quickly reach their steady-state values.

However, the critical value of γ between the two regimes, γ∗, is now kI0/N < I0.

This suggests a lower tolerance for adoption as the local neighbourhood of a node gets

smaller.

The simulation results presented in Figure 8.4 show that for k/N = 0.1 the mean-field

approximation of (8.9) captures the main qualitative features of the model, and correctly

predicts the final state of the system with reasonable accuracy. The scale of the t−axis

indicates that extensive adoption (a) happens multiple orders of time slower than the

rapid adoption (b), and in both cases the adoption rate is slower than in the mean-field

model (Fig. 8.2).

The stationary state can be determined in the same fashion as in Section 8.2, noting that

(8.9) becomes linear under the change of variable τ =
∫ t

0
S(t′) dt′. Explicitly the steady

state is given by

I∞ = I0e
−βτ∞

L∞ =
β − k/N

β
(I0 − I∞)

A∞ = γτ∞,

(8.10)

where now

τ∞ =
k

Nγβ
+ (1− I0)

r

β
+

1

β
W0

(
−kI0
Nγ

e−(1−I0)r−k/(Nγ)

)
. (8.11)

Figure 8.5 shows the simulation results for the stationary densities as a function of

the mean degree, compared to the approximate predictions of (8.10). The mean-field
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predictions correctly capture the qualitative behaviour of the functional dependence of

the station densities on k. The predictions are only quantitatively accurate when k/N

is sufficiently large. When k/N ≪ 1 the neighbourhood of a node is small and only

represents a fraction of the entire graph, resulting in large demographic fluctuations

which invalidate the underlying assumptions of (8.10). The average degree has aminimal

effect on the stationary density of Luddites although this relationship is not monotonic.

By contrast the adopter density is an increasing function of k, suggesting that a well

connected population helps spread innovation and reduce the level of negative response.

Themodel dependence on γ and r are qualitatively similar to that on the complete graph.

Figure 8.5: Dependence of the final densities L∞, I∞ and A∞ on the average degree for

ER graphs withN = 103 nodes. The simulation (2) represents an average over 40model

realisations for 30 randomly generated networks. Parameters are γ = 0.005, r = 0.9,

and I0 = 0.9. The mean-field predictions (8.10) (solid line) match the simulation for

k & 20 (see main text).

One heuristic to assess the demographic fluctuations of the system is to view the ER

graph of mean degree k as a meta-population ofN/k patches of well-mixed populations

of size k. Under this heuristic, when N ≫ k ≫ 1 the number of agents in each

component fluctuates like k1/2 about the average value. Assuming these components
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are independent (and hence the fluctuations are also independent) the total noise in the

full population should have amplitude ∼ (N/k)1/2k1/2 = N1/2, leading to fluctuations

in the densities to the order of N−1/2. This prediction is confirmed by our simulations

(see Figure 8.6) which find that NA(∞)/N has a Gaussian probability distribution over

an ensemble of simulations, with mean A∞ and a width that scales as N−1/2. Similar

distributions are found for L∞ and I∞ however not for S∞ given that S∞ = 0 is the

condition required for the dynamics to cease.

102 103

N

10 3

10 2

10 1

va
r(N

A
(

)/N
)

Figure 8.6: Variance in the stationary state of the density of adopters, NA(∞)/N ,

obtained over an ensemble of 40 realisations of the model on 75 randomly generated

networks for N = 100 − 1000. The figure shows the standard deviation around the

mean value A∞ for k/N = 0.01/0.1 (left/right filled ▽), k/N = 0.02/0.2 (left/right

filled △), k/N = 0.03/0.3 (left/right filled 3), and k/N = 0.04/0.4 (left/right filled

2). As guides for the eyes, the dashed lines are ∝ N−0.5. The parameters used are

γ = 0.005, r = 0.9, and I0 = 0.9.

Finally it is useful to understand the model outcomes (particularly the steady state

predictions (8.10)) from a marketing perspective, in particular determining whether

the spread of the innovation was deemed successful. There are six possible outcomes

labelled with Roman numerals in Figure 8.7, partitioning the (γ, r) parameter space,
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with the boundaries defined by the level sets satisfying A∞ = I∞, L∞ = I∞, and

L∞ = A∞. In this context, the most desirable outcome is in region (I) where the adopter

population forms the largest group in the stationary state, and the Luddite population

is the smallest. This leaves a significant proportion of ignorants in the population who

could potentially be targeted for subsequent marketing strategies or the spread of a new

similar innovation. Region (II) can be deemed as a ‘controversial success’. The largest

population is still the adopters, however the second largest group are the Luddites -

the innovation has spread to a majority but has been divisive and polarised the entire

population. The remaining scenarios correspond to failures of varying degree; from not

reaching a majority of the population (V, VI), or by having a significant negative reaction

which eclipses the adoption of the innovation (III, IV).

In summary, we have shown that the dynamics and stationary state of the LISA model

can be approximated accurately using mean-field assumptions provided that the size of

a neighbourhood around a node is a sufficiently large fraction of the graph.

Figure 8.7: The mean-field steady state predictions (8.10) over the parameter space (γ, r)

for k/N = 0.025 and I0 = 0.9. The contours L∞ = I∞, L∞ = A∞, and I∞ = A∞ split

the domain into six regions which characterise the innovation (see main text).
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8.3.2 One-dimensional Lattices

Recent controlled experiments have shown that innovation may spread more efficiently

on clustered graphs and lattices than on random networks [225]. To understand the

effect of regular and restrictive topology on the spread of an innovation, and where

the mean-field approximation breaks down, we investigate the LISA dynamics on

one-dimensional lattices. In particular we are interested in the ‘barriers to innovation’

that Luddites pose and the ability of Luddites to block crucial paths through the graph

which allow the innovation to spread.

We consider a one-dimensional lattice of N nodes with periodic boundary conditions.

In this setup, nodes are homogeneous with each node having two neighbours. Applying

Figure 8.8: Time dependence of the densities in each state for a one-dimensional lattice of

size N = 105 averaged over 100 realisations. The corresponding mean-field predictions

from Equation (8.9) with k = 2 (solid line) deviate dramatically from the simulation

samples (2). The parameters are γ = 0.005, r = 0.9, and I0 = 0.8.

the mean-field theory used in Section 8.3.1 to the LISA model on one-dimensional

lattices provides a poor approximation to the results of simulations (Figure 8.8). The

mean-field approximation systematically deviates from the simulation in that it will

always overestimate the density of adopters and Luddites at any point in time, and

conversely always underestimate the ignorant density. We expect the mean-field
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predictions to perform poorly as our underlying assumption of a locally well-mixed

population is incorrect but also because of the constraints on paths through the graph

due to the restrictive topology of the lattice.

Despite quantitative inaccuracy we still observe two regimes of behaviour in the

mean-field approximation. Specifically for k = 2 we observe slow and complete

adoption for γ < (2/N)I0 and rapid but restricted adoption for γ < (2/N)I0. From

simulations, illustrated in Figure 8.9, we observe the following three regimes:

(A) When γ ≪ 2I0/N , there is slow adoption as well as a time-scale separation. First,

almost all Is are converted to S’s [239, 159, 240] in a time of the order of N2.

When the lattice consists almost entirely of S’s, these become adopters after a

mean time of the order of γ−1. As a consequence, when γ ≪ N−1 the size of

the adopter domains grows abruptly after a time of order ∼ N2 + γ−1, when all

ignorants have disappeared and the entire lattice is covered with adopters.

(B) When γ ∼ 2I0/N , the domains of adopters grow initially almost linearly in time,

whereas the average size of I clusters remains approximately constant and of a

comparable size to A domains.

(C) When γ ≫ (2/N)I0, adoption occurs quickly and the final state is reached in

a time of order O(1/γ). The final adopter density is limited by the formation of

Luddites at the ends of ignorant domains which prevent further conversion within

each domain.

To study the densities of each population in the stationary state we require a different

approach to model the evolution of the system.

Analysis of ignorant domains

Initially, the nodes on the one-dimensional lattice are either ignorant, with probability

I0, or susceptible, with probability S0 = 1 − I0. Thus the initial configuration

consists of connected domains of ignorant nodes bordered by susceptibles. Moreover,

since ignorants can only become susceptible if a neighbour is susceptible, domains of
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Figure 8.9: Final simulated average proportions of adopters (red/gray 2), ignorants

(green/dark gray 2) and Luddites (blue/black 2) for varying values of γ, averaged over

100 simulations. Theoretical predictions using ignorant domain length are overlaid (solid

line). Parameters are N = 1000, r = 0.5. Initially ignorants and susceptibles are

randomly distributed, with densities I0 = 0.8 and S0 = 0.2. The three regimes discussed

in the text are separated by dashed lines corresponding to regions where (2/N)I0 ≪ γ

and (2/N)I0 ≫ γ. Typical realisations of the model for N = 100 in each of the three

regimes are given (right). On the vertical axis the iteration corresponds to a single step

of the Gillespie algorithm, with one reaction taking place per iteration.

ignorants only evolve at their ignorant-susceptible interfaces. We will refer to these as

“active interfaces”. At an active interface one of three events can occur:

• The ignorant node becomes susceptible, thus reducing the domain length by one,

with probability

pS =
1/N

1/N + rγ/2 + γ
.

• The ignorant node becomes a Luddite, thus reducing the length of the domain by

one and causing the interface to become inactive, with probability

pL =
rγ/2

1/N + rγ/2 + γ
.

• The susceptible node becomes an adopter, thereby terminating the interface
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evolution, with probability

pA =
γ

1/N + rγ/2 + γ
.

For an isolated ignorant node with two susceptible neighbours, these probabilities

respectively become

p̂S =
2/N

2/N + rγ + γ
,

p̂L =
rγ

2/N + rγ + γ
,

p̂A =
γ

2/N + rγ + γ
.

Let Qn(m) be the probability that a domain of ignorants of initial length n with a single

ignorant-susceptible interface has a final length n − m, with 0 ≤ m ≤ n. We can

determine Qn(m) as follows: if the final length of ignorants is n−m, with 0 < m < n,

then eitherm ignorant nodes must become susceptible before a susceptible node at the

interface adopts, or m − 1 ignorant nodes must become susceptible before an ignorant

node at the interface becomes a Luddite. These events occur with probabilities pApmS and

pLp
m−1
S respectively. Using similar reasoning for the cases m = 0 and m = n, we thus

find

Qn(m) =


pA if m = 0

pAp
m
S + pLp

m−1
S if 0 < m < n

pnS + pLp
n−1
S if m = n

. (8.12)

By summing overm, it can be shown that Qn(m) is normalised.

We now consider the case where a connected region of n ignorant nodes initially has

two ignorant-susceptible interfaces. The probability Pn(m) that a region of ignorants of

initial length nwith two active interfaces has final length n−m is given by the recursion

relation

Pn(m) = Qn(m)pA +Qn−1(m− 1)pL

+ Pn−1(m− 1)pS, (8.13)

where the terms Qn(m) are given by (8.12). Equation (8.13) captures the three possible

events that can occur at the interface. If a susceptible node at the interface adopts, which
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occurs with probability pA, then the region of ignorants only has one remaining active

interface left and there will be n −m remaining ignorants with probability Qn(m), as

given in (8.12). If an ignorant node at the interface becomes a Luddite, which occurs with

probability pL, then again the region of ignorants will only have one active interface.

Since there will be one ignorant less the probability there will be n − m remaining

ignorants is Qn−1(m − 1). Finally, if an ignorant node at the boundary becomes

susceptible, which occurs with probability pS , then the probability that there are n−m

ignorants remaining is the same as if we had started with n − 1 ignorant nodes, i.e.

Pn−1(m− 1).

To solve the recursion relation (8.13) we need Pn(0) and P1(1). The probability that a

region of ignorants of initial length n remains of length n is given by

Pn(0) =

 pAp̂A if n = 1

p2A if n > 1
.

Also, the probability that a single ignorant node that initially has two susceptible

neighbours becomes a susceptible or Luddite is given by

P1(1) = p̂A(pL + pS) + p̂L + p̂S.

Thus the solution to the recursion relation (8.13) for 0 < m < n− 1 is given by

Pn(m) = (m+ 1)p2Ap
m
S + 2mpApLp

m−1
S

+ (m− 1)p2Lp
m−2
S .

Form = n− 1 we have

Pn(n− 1) = pA [p̂A + (n− 1)pA] p
n−1
S

+ 2(n− 1)pApLp
n−2
S + (n− 2)p2Lp

n−3
S ,

and form = n we have

Pn(n) = [p̂A(pL + pS) + p̂L + p̂S] p
n−1
S

+ (n− 1)
(
pAp

n
S + 2pLp

n−1
S + p2Lp

n−2
S

)
.

Again it is possible to check, by summing (8.13) over m and solving the resulting

recursion relation, that Pn(m) is normalised.
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We can use Pn(m) to calculate the expected final length of ignorant domains ⟨x⟩. First

note that since I0 is the initial probability of being ignorant, the probability that a domain

of ignorants initially has length n > 0 is given by p0(n) = In−1
0 S0 for large N . Thus we

find that

⟨x⟩ =
N∑

n=0

np0(n)−
N∑

n=0

p0(n)
n∑

l=0

lPn(l).

In principle, we may use the above to obtain an explicit expression for ⟨x⟩. In practice,

however, we use the solutions to (8.13) to calculate ⟨x⟩ numerically.

Calculation of population densities

Initially, the mean number of ignorants is given by I0N and so dividing by the mean

length of ignorant domains, 1/(1−I0), yields the expected number of ignorant domains,

(1− I0)I0N . Thus the final density of ignorants is

I∞ = (1− I0)I0⟨x⟩.

The probability that an ignorant domain survives is

q = 1−
∞∑
n=0

p0(n)Pn(n).

Surviving ignorant domains have two interfaces, which are either ignorant-adopter or

ignorant-Luddite, with probabilities pA/(pL + pA) and pL/(pL + pA), respectively. Thus

the expected number of Luddites at the interfaces of non-vanishing ignorant domains is

given by

η+ =
2pL

pL + pA
q(1− I0)I0N. (8.14)

It is also possible for Luddites to arise when a domain vanishes. By identifying the terms

in Pn(n) that result in Luddites, it is possible to determine that the expected number of

Luddites that arise when a domain of initial size n > 1 vanishes is given by

ln = (p̂ApL + p̂L) p
n−1
S + (n− 1)

(
2pLp

n−1
S + p2Lp

n−2
S

)
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and l1 = p̂ApL + p̂L. Thus the expected number of Luddites that arise from domains of

ignorants that vanish is

η0 = (1− I0)I0N
∞∑
n=0

p0(n)ln. (8.15)

Summing equations (8.14) and (8.15) and dividing by N we arrive at the final density of

Luddites

L∞ = I0(1− I0)

(
2pL

pL + pA
q +

∞∑
n=0

p0(n)ln

)
.

Since the dynamics cease when S = 0, the number of adopters can be found using the

conservation law A∞ = 1− L∞ − I∞. These results are plotted as a solid line in Figure

8.9 and show excellent agreement with the simulation results when N is large enough

that fluctuations are negligible.

By conducting a one-dimensional analysis of the ignorant domains we successfully

recovered the stationary state densities of the LISA model on the lattice, where the

mean-field approximation broke down. As Figure 8.9 shows, the Luddites act as

blockades to innovation when the topology is restricted preventing the possibility of

ignorant nodes becoming susceptible to the innovation. A similar effect was observed

in two-dimensional lattice structures however the effect was not as pronounced as in

one dimension.

8.4 Discussion

In this chapter we introduced the LISA model of innovation diffusion. This model

is among the simplest non-trivial extensions to the Bass model which does not lead

to complete adoption of the innovation. The main addition to the model is the

presence of Luddites who permanently oppose the innovation in response to the

rapid proliferation of the innovation within their neighbourhood. This novel Luddism

mechanism incorporates the rate of change of neighbouring states rather than the states

themselves. The dynamics has two regimes; quick and partial adoption of innovation

and slow, broader adoption. The two regimes are dependent on the initial density of
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ignorant agents, the size of each agent’s local neighbourhood, and the rate of adoption

(or marketing pressure).

We also conducted a detailed analysis of the model on complete graphs, Erdős-Rényi

random graphs, and on one-dimensional lattices. For complete graphs and ER

random graphs we showed that simple mean-field approximations help significantly

illuminate the model’s features and predict the stationary state densities well for suitable

parameters. For one-dimensional lattices, careful considerations of the populations

of ignorant agents allowed us to successfully predict the stationary state densities

of each agent type. We saw that on restrictive network topologies (in particular

the one-dimensional lattice), that Luddites can act as barriers to innovation and can

potentially block the innovation from spreading to parts of the network.

The model aims to replicate the fact that innovations are often met with controversy

or fear, regardless of their benefit to society as a whole, such as the invention of

labour-saving machinery or new vaccinations. Consequently full adoption of an

innovation is rarely observed. The inclusion of this effect, and the application of the

model on different topologies help explain how innovationmay spread through a society

that is resistant to change.

This type of model, and in particular, diagrams such as Figure 8.7 may help marketeers

in informing their strategy for a possible product launch. A large advertising campaign

and rapid adoption may disgruntle potential adopters and potentially polarise the

population, whereas a targeted and less forceful campaign may lead to a higher adopting

percentage over time. The level of marketing also comes with some cost and so the

problem could also be phrased as an optimisation problem. The model needs to be

calibrated and validated using real data, which first involves being able to classify agents

into one of L, I , S , orA before observing these agents over the course of an innovation

launch. Ultimately this model may be used to forecast adoption levels based on early

telemetry, or by using calibrated parameters for similar innovations.

One extension to the model would be to include an evolving or temporal graph structure

which may help or hinder the spread of innovation. Another application would be to use

content posted to social media and analyse the sentiment surrounding new innovations
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to infer which states (L, I,S,A) users belong to, and track the rates of change between

the states over time.
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9
Summary and Outlook

9.1 Summary

Modelling social networks as temporal networks is a difficult task. However, as we

have seen in this thesis the inclusion of temporal information can lead to differences

in our conclusions compared to considering static networks alone. Returning our

original thesis, we have shown that by considering the temporal network as a sequence

of events (without any temporal aggregation) we are able to develop algorithms and

representations which allow us to identify key nodes and decompose the network into

natural components. Consequently this means that researchers and advertisers alike are

able to analyse the ‘importance’ nodes and components of the network effectively.

In Chapter 3 we analysed a state-of-the-art centrality measure, communicability, which

is currently used in industry to find influential users. We found that by aggregating
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the temporal network into a sequence of static networks we are unable to freely

choose the weighting parameter of the centrality and, depending on the level of

temporal aggregation, the measure had different interpretations. This meant that it was

difficult to attach a meaning to the centrality and maintain consistency across studies.

Our introduction of a new efficient algorithm to calculate communicability centrality

removes any restriction on parameter selection, avoids ambiguity in what the algorithm

calculates while also being less computationally complex than current algorithms.

Continuing to model social networks as a sequence of temporal events we introduced

a new network representation in Chapter 4 called the temporal event graph (TEG).

The TEG builds upon previous event-based network representations and the concept

of temporal motifs. Unlike other representations, the TEG uniquely defines a temporal

network, meaning that no information is lost when considering temporal networks in

this way. The TEG provides a unique perspective on temporal networks as they are

described in terms of the behaviour of nodes (inter-event times and motifs), rather

than the events themselves. Using the TEG we are able to naturally decompose the

temporal network into smaller components and assess the structure and composition

of the network through the temporal barcode and the statistical properties of each

component.

In Chapter 5 we saw the impact of the TEG when applied to data collected from the

social network, Twitter. Here we were able to highlight the differences in structure

across different temporal networks, assess the temporal dependence of each network,

and classify the behaviour within conversations, as well as identifying the conversation

topic. This meant we were easily able to identify spam accounts and find users more

likely to get involved in discussion.

The latter part of this thesis was devoted to mathematical models of social systems.

In Chapter 7 we introduced the 2q-voter model with zealotry (2qVZ) [2, 1]. The model

added to the work on the the popular voter model (and variants) by introducing a

heterogeneous population of voters with varying resolution in their opinion. The 2qVZ

is one of the first non-equilibrium models of social systems for which we were able

to characterise the non-equilibrium steady state (NESS) by using a linear Gaussian
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approximation. In general, there is no simple way to calculate the NESS, however in this

case the linear Gaussian approximation provided a suitable method and we were able

to quantify the probability currents present at stationarity. From a social perspective

these currents suggest the presence of ‘leaders’ and ‘followers’ in the population where

changes in the average population opinion are driven by shifts in the opinion of the

leader population.

In an attempt to understand the spread of innovation on social networks, and the

influence of nodes opposed to innovationwe introduced the LISAmodel [3] in Chapter 8.

Extending the popular Bass model, we introduced a novel network mechanism where

node states could change depending on the rate of change of the states of neighbouring

nodes. The mechanism was used to model anti-bandwagon behaviour where nodes may

oppose an innovation if the local rate of adoption is too quick. The model showed that

rapid forcing of adoption can lead to incomplete adoption and a polarised population,

especially on restrictive network topologies.

9.2 Outlook

In this section we look at the wider impact of this research and further research avenues.

The TEG provides a general framework to study temporal networks. While in this thesis

we have focused on social networks, the TEG can also be used to study a sequence of

temporal events where the relationships between events can be characterised. Possible

other use cases include other digital communication, user interaction patterns with

websites, mobility data gathered from mobile phones, and trades or transactions from

financial institutions or online marketplaces.

There is also much that can be done to refine the statistical analysis of the TEG, for

example, identifying the features of temporal components which provide the largest

variance for classification problems. There are a number of interesting mathematical

questions we can ask about the TEG.Whenwe considered the random temporal network

in Chapter 4, the induced aggregate graphs of the temporal components were random

in nature but due to the complexity of the ∆t-connected condition, are not Erdős-Rényi



192 CHAPTER 9. SUMMARY AND OUTLOOK

random graphs. A suitable question is how can we characterise these graphs and what

is their dependence on the parameter ∆t? Similarly we can ask what the structure of

the TEG looks like with a temporal network null model. Unlike static networks where

a number of random reference models have been proposed there is not a temporal

network model that has been universally adopted, with studies instead using shuffled

and time-reversed versions of the original network. The TEG potentially offers a way to

generate temporal networks with a prescribed distribution of motifs. Generating these

networks is challenging however; two-event motifs can be generated with a single chain

of events. The difficultly lies with generating these networks with the correct number

of nodes and node activity levels.

The TEG may also provide efficiency savings for algorithms where the time between

events is critical, in the running dynamic communicability centrality, for example. As the

communicability matrix decays exponentially with time, one may impose a hard cut-off

after some time. This would allow the communicability centrality to be calculated on a

component-by-component basis using the ∆t-TEG, where ∆t is appropriately chosen.

Similarly the dynamics of a process on the temporal network (like an epidemic model)

may be restricted to the components of the ∆t-TEG which allow the original problem

to be decomposed into smaller and simpler problems.

For the remainder of this section, we discuss in more depth two more potential uses of

the TEG.

9.2.1 Using the Temporal Event Graph to Study Dynamical

Processes on Networks

An aspect of the TEG not studied in this thesis is the inter-event time (IET) distribution

conditional on the motif type, i.e. given that the relationship between two events is of a

particular motif (say ABBC), what is the distribution of times between such events? One

can hypothesise that the timescales for passing on or broadcasting a message (ABBC

and ABAC respectively) may be different from replying to a message (ABBA) which

would require time to compose a response. This concept can also be generalised to
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larger motifs where one could consider the IETs of multiple event pairs in the motif.

For example, we can study successive IET times between two nodes sending messages

in turn (the ABBAAB motif using previous notation) and ask whether successive IETs

are independent, and if not, find their dependence.

A novel source of temporal network data is from the recording of dynamical processes

on networks. To help illustrate this we use the susceptible-infected (SI) model on a

static network. During the evolution of the model we record the events “A has infected

B at time t”. This results in a sequence of temporal events which follow the spread of

infection. Now we have captured the process evolution as a temporal network, we can

apply a range of temporal network methods including the TEG. The motif distribution

of the TEG will be characterised by containing a mixture of only the ABAC and ABBC

motif as once a node is infected it can not be reinfected. Furthermore, the TEG will

consist of as many components as there are initially infected nodes.

If we instead consider a model where nodes can recover from infection after some

time like the susceptible-infected-susceptible (SIS) model, then there is the possibility

of all motifs occurring. What characterises this process is the motif-conditional IETs.

The ABBC and ABAC motifs will still have exponentially distributed IETs however

the remaining four motifs will have an IET distribution that is dependent on both the

infection rate and recovery mechanism, as seen in Figure 9.1. Combining the motif and

IET information it may be possible to recover both the mechanisms and parameters of

the model, or at the very least distinguish the dynamics from other processes.

In this thesis we have considered both ways to monitor and model temporal networks.

The extraction of temporal networks from dynamical processes can unite these two

aspects and offer new tools to analyse and classify dynamical processes.

9.2.2 Network Filtering with the Temporal Event Graph

In the case studies of Chapter 5 we saw how the selection of messages by keyword

presented a bias towards a certain behaviour (retweeting). As data is collected by

sampling tweets which contain a particular keyword (or keywords) if a tweet contains
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Figure 9.1: The CCDFs of the IET distributions for the SIS temporal network with

constant probability of infection from each neighbour and constant recovery rate (once

infected). The IET distributions are conditioned on the motif type formed between the

two events. Here the ABCA and ABCB motif IETs are on average longer than those of

the ABAC and ABBC motif due to the former motifs requiring a node to recover before

they can appear.

that keyword then by necessity, all retweets of that tweet will also contain that keyword.

By contrast a discussion around a topic may not contain the keyword in every tweet and

instead be referred to by a pronoun or not mentioned at all. This leads to the sample

potentially missing many conversations which are of genuine discussion around a topic.

We propose that this issue can be addressed using the TEG. The Twitter firehose is a

stream of all tweets that occur on the network, currently in the order of 500 million

tweets per day. While this is a manageable quantity with modern computing power

there still remains the issue of sampling relevant tweets to address a research or business

question.

The premise of this method is to sample components of the TEG (or ∆t-TEG) instead of

individual tweets. The steps of the method are as follows (illustrated in Figure 9.2):

1. Build the TEG. The TEG for Twitter can be constructed iteratively in real-time.
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By storing the last event that each node has participated in events can be added

to the TEG in an O(1) operation.

2. Sample components. Components of the TEG (or ∆t-TEG) can be sampled

according to a number of criteria. Possibilities include the presence of a keyword,

a critical density of keyword usage within the component, or a vocabulary similar

to vector of keywords. Further sampling can be used to find components of a

certain size, word diversity, or with a particular motif or IET distribution.

Using this method tweets are sampled not only if they fulfil the keyword criteria but

also if they are connected to events that do. Therefore these samples of the Twitter

network are larger than by keyword search alone but should ultimately capture the

entire conversation surrounding a particular topic. One drawback of this method is that

‘unrelated’ tweets may be included if the users participate in multiple conversations on

differing topics within a short period of time, however this can be controlled by varying

the parameter ∆t and the component sampling criteria.

Event Sequence
Stream

Temporal
Event Graph

Filter
Components

Figure 9.2: Using the TEG to filter the Twitter firehose.

9.3 Final Remarks

In summary this thesis has used a variety of techniques to examine social networks from

different perspectives and at different scales. The new methods to filter and analyse

temporal social network data could potentially have significant impact in industry, and
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the new temporal network representation offers a new complementary approach for

the temporal network community. Further exploration of the TEG and its properties

should help develop our understanding of temporal networks and provide new ways to

decompose and process temporal data (from social networks or elsewhere). The models

introduced in the later sections of this thesis also provide insight into the behaviour of

social systems and highlight new ways to analyse non-equilibrium processes, which are

not amenable to standard methods.

Our ultimate goal is to develop methods to analyse social network data in real-time and

build up a picture of individual behaviour in order to be able to predict user interactions,

drive conversations, and effectively spread ideas through the network. This thesis takes

one step towards that goal, however there are many more avenues of research and

sources of data to explore.
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