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Abstract

Distant speech recognition (DSR) has gained wide interest recently. While deep networks
keep improving ASR overall, the performance gap remains between using close-talking
recordings and distant recordings. Therefore the work in this thesis aims at providing some
insights for further improvement of DSR performance.

The investigation starts with collecting the first multi-microphone and multi-media
corpus of natural spontaneous multi-party conversations in native English with the speaker
location tracked, i.e. the Sheffield Wargame Corpus (SWC). The state-of-the-art recognition
systems with the acoustic models trained standalone and adapted both show word error
rates (WERs) above 40% on headset recordings and above 70% on distant recordings. A
comparison between SWC and AMI corpus suggests a few unique properties in the real
natural spontaneous conversations, e.g. the very short utterances and the emotional speech.
Further experimental analysis based on simulated data and real data quantifies the impact
of such influence factors on DSR performance, and illustrates the complex interaction
among multiple factors which makes the treatment of each influence factor much more
difficult.

The reverberation factor is studied further. It is shown that the reverberation effect
on speech features could be accurately modelled with a temporal convolution in the
complex spectrogram domain. Based on that a polynomial reverberation score is proposed
to measure the distortion level of short utterances. Compared to existing reverberation
metrics like C50, it avoids a rigid early-late-reverberation partition without compromising
the performance on ranking the reverberation level of recording environments and channels.
Furthermore, the existing reverberation measurement is signal independent thus unable to
accurately estimate the reverberation distortion level in short recordings. Inspired by the
phonetic analysis on the reverberation distortion via self-masking and overlap-masking, a
novel partition of reverberation distortion into the intra-phone smearing and the inter-phone
smearing is proposed, so that the reverberation distortion level is first estimated on each
part and then combined.
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Lα The number of examples for the phoneme indexed with α; The number of DNN
layers.

M Number of samples in room impulse response.

Mβ Number of samples in the RIR indexed as β .

N Number of samples for discrete Fourier transform.

n Discrete time index.

n(I)α The number of summation components in reverberation modelling that corresponds
to intra-phone smearing considering the duration of the phoneme indexed with α .

Nf Number of samples where the local linear phase assumption and local stationary
magnitude assumption hold with sufficiently low error.

Ni The number of neurons in the i-th layer of DNN.

P(α) The percentage of the phoneme indexed with α over all phonemes by duration.
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Q Number of phonemes in total.

rα Average magnitude spectrogram variance and spectrogram energy ratio for the
phoneme indexed with α .

r(I)α Ratio of intra-phone smearing on the phoneme indexed with α .

r(I)α The ratio of intra-phone smearing for the whole phoneme α .

p(I)α (τ) The chance of intra-phone smearing in the τ-th STFT of the spectrogram of
phoneme α .

r(II)α Ratio of inter-phone smearing on the phoneme indexed with α .

r(II)α The ratio of inter-phone smearing for the whole phoneme α .

r(I)α (τ) Ratio of intra-phone smearing on the τ-th STFT of phoneme α .

r(I)α (τ) Ratio of inter-phone smearing on the τ-th STFT of phoneme α .

r(I) Ratio of intra-phone smearing.

r(II) Ratio of inter-phone smearing.

T Number of samples in the speech recording.

T60 Reverberation Time

t j The binary reference for the output of the j-th neuron in DNN output layer.

vα(k) The within-class variance based on the power spectrum of the phoneme indexed
with α in the k-th frequency bin.

vmag(m,k,Nf) Variance of STFT magnitude on the k-th frequency bin over a short period
of time, with STFT updated every Nf samples.

vα,β ,b(k) The between-class variance in the Fisher discriminative analysis on phoneme α

and phoneme β based on features corresponding to the k-th frequency bin.

vb(k) The between-class variance based on features from the k-th frequency bin.

vα,β ,w(k) The within-class variance in the Fisher discriminatve analysis on phoneme α

and phoneme β based on features corresponding to the k-th frequency bin.

vw(k) The within-class variance based on features from the k-th frequency bin.
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wi,k, j The weight applied on the k-th input when calculating the output of the j-th neuron
from the i-th layer.

w(n) Window function used in short time Fourier transform.

xi, j The output to the j-th neuron in the i-th layer of deep neural network, which is also
the j-th input element to the (i+1)-th layer. Particularly, x0, j is the j-th input of
the first layer.

X(τ,k) The short time Fourier transform of clean headset recordings at time τ and the
k-th frequency bin.

x(n) Clean headset recording of speech signal.

Y (τ,k) The short time Fourier transform of distant microphone recordings at time τ and
the k-th frequency bin.

yi The i-th dimension of DNN output vector.

y(n) Distant microphone recording of speech signal.

zi, j The hidden linear output of the j-th neuron in the i-th layer of DNN.

Greek Symbols

α The momentum in DNN optmization.

δ Sample shift or the difference between two discrete time indices.

η The learning rate in DNN optimization.

λ The weighting parameter to tune when combining two elements additively together.

µα,l(k) Average STFT magnitude on the k-th frequency bin for the l-th example recording
of the phoneme indexed with α .

µmag(m,k,Nf) Average STFT magnitude on the k-th frequency bin over a short period of
time, with STFT updated every Nf samples.

ρp(k,Nf) Local Pearson correlation between time index and STFT phase unwrapped over
time.

ρ̄p(k,Nf) Average Pearson correlation between time index and STFT phase unwrapped
over time.
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ρ ′
p(m,k,Nf) Local Pearson correlation between time index and STFT phase unwrapped

over time at a strict standard.

σ2
α,l(k) Variance of the STFT magnitude on the k-th frequency bin for the l-th example

recording of the phoneme indexed with α .

τ Discrete time index.

θ(τ,k) Unwrapped phase of clean speech STFT X(τ,k).

Superscripts

(I) Intra-phone smearing.

(II) Inter-phone smearing.

∗ Conjungate transpose.

Subscripts

α , γ The index of phoneme class.

β The index of RIR, or the index of reverberation condition, or the index of reverbera-
tion channel.

Other Symbols

∠ The phase of a complex value.

⌈ ⌉ The smallest integer larger than the quoted value.

∗ Convolution operation

⌊ ⌋ The largest integer smaller than the quoted value.

△ The difference in the value of the variable following it.

Acronyms / Abbreviations

3D Three Dimensional

AIR Acoustic Impulse Response

ANN Artificial Neural Network

ASR Automatic Speech Recognition
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BLST M Bidirectional Long Short Term Memory

BPT T Back Propagation Through Time

CART Classification and Regression Tree

CI Cochlear Implant

CNN Convolutional Neural Network

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNN Deep Neural Network

DRR Direct-to-Reverberation Ratio

DSB Delay and Sum Beamforming

DSR Distant Speech Recognition

ELR Early-to-Late Reverberation Ratio

EM Expectation Maximization

FIR Finite Impulse Response

GMM Gaussian Mixture Model

GPU Graphic Processing Unit

GSC Generalized Sidelobe Canceler

GWPE Generalized Weighted Prediction Error

HF Hadamard-Fischer

HLDA Heteroscedastic Linear Discriminant Analysis

HMM Hidden Markov Model

IHM Individual Headset Microphone

JUD Joint Uncertainty Decoding

LCMV Linearly Constrained Minimum Variance
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LDA Linear Discriminant Analysis

LM Language Model

LST M Long Short Term Memory

LT I Linear Time Invariant

LVCSR Large Vocabulary Continuous Speech Recognition

MAP Maximum-a-posterior

MBR Minimum Bayes Risk

MDM Multiple Distant Microphone

MFCC Mel Frequency Cepstral Coefficient

MIMO Multiple-Input Multiple-Output

MINT Multiple-Input/output Inverse Theorem

MLLT Maximum Likelihood Linear Transform

MLP Multi-layer Perceptrons

MMI Maximum Mutual Information

MMSE Minimum Mean Square Error

MPE Minimum Phone Error

MV DR Minimum Variance Distortionless Response

NT T Nippon Telegraph and Telephone

PER Phoneme Error Rate

PESQ Perceptual Evaluation of Speech Quality

PLP Perceptual Linear Prediction

PPL Perplexity

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit
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PESQ Perceptual Evaluation of Speech Quality

RIR Room Impulse Response

RNN Recurrent Neural Network

ROV ER Recognizer Output Voting Error Reduction

SAT Speaker Adaptive Training

SDBF Super Directive Beamforming

SDM Single Distant Microphone

sMBR state-level Minimum Bayesian Risk

SNR Signal to Noise Ratio

SNR Signal-to-noise Ratio

SPLICE stereo based piecewise linear compensation for environment

ST FT Short Time Fourier Transform

SWC Sheffield Wargame Corpora

T DOA Time Difference of Arrival

T F Time Frequency

V DCNN Very Deep Convolutional Neural Network

V T LN Vocal Tract Length Normalisation

V T S Vector Taylor Series

wDSB Weighted Delay and Sum Beamforming

WER Word Error Rate

WPE Weighted Prediction Error
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1.1 Motivation

In recent years, automatic speech recognition (ASR) systems have embraced ground-
breaking performance improvement brought by the deep neural network (DNN) and other
types of deep networks applied for the front-end, acoustic modelling and language mod-
elling. The improvement DNN brings is widely observed in various tasks and applications,
reducing WER by 20% relatively on average (Liu et al., 2014). The recognition perfor-
mance on close-talking recordings has reached a record high level (Sercu and Goel, 2016).
However when comparing the recognition on close-talking recordings and on distant
recordings, a large performance gap still remains.

Compared to the speech recognition based on the close-talking recordings, DSR is
challenged by the diverse reverberant environments and background noises. The per-
formance improvement in DSR so far mainly comes from the research progress in the
front-end, particularly in the speech enhancement of distant recordings. There are en-
hancement techniques making use of the distant recordings from multiple microphones,
e.g. beamforiming, multichannel dereverberation. There are also enhancement techniques
employing the multi-media recordings which provide rich information besides the speech
audio, e.g. speech enhancement based on the audio-visual speaker tracking (Wölfel and



2 Introduction

McDonough, 2009). These enhancement techniques rely on the quantity and the quality of
distant speech recordings from multiple microphones or multiple media. Unfortunately
such research corpora is of much smaller amount compared to those based on headset
recordings. When it comes to real recordings of natural spontaneous multi-party speech,
even less data are available. On the other hand, DNN demands more training data than
classical models. In addition, compared to GMM-HMMs based acoustic models, DNN
based acoustic models can have larger relative performance degradation from the acoustic
mismatch between training data and test data especially when the training data is clean
while the test data is very reverberant or noisy. The data mismatch widely exists in DSR
tasks and it is frequently caused by the different acoustic environments and background
noises. The lack of research data, particularly the lack of distant recordings of real natural
spontaneous multi-party conversations, has been one important factor limiting the progress
in DSR.

Due to the lack of research data, there is limited understanding of the challenges in
the state-of-the-art DSR systems when they are applied in the real natural spontaneous
conversations. In distant speech recordings there are influence factors which might behave
very differently in real recordings compared to in simulated recordings, and in real natural
conversations compared to in conversations with controlled topic or content, i.e. the
controlled recordings. As a result the assumptions of some research algorithms developed
based on the simulated recordings and the controlled recordings may not hold for the
real recordings of natural conversations. Without real recordings of natural spontaneous
conversations, it is very difficult to justify and quantity the influence of such gap in data, or
to prioritise the research focus on the real challenges for the state-of-the-art DSR systems,
when they are applied in the wild. Therefore, it is of high demand to collect more distant
recordings of real natural spontaneous conversations.

Among the influence factors in the real recordings for DSR, reverberation is particularly
important because it widely exists in distant recordings and it varies by the acoustic change
in the environment. Besides, the convolutional nature of the reverberation distortion makes
it one of the main contributors to the speech recognition performance gap between using
the distant recordings and using the close-talking recordings. In the state-of-the-art DSR
systems based on DNNs, there is very limited progress regarding novel algorithms or
structures that improves the robustness of DNN against reverberation. So far, the multi-
condition training has been found effective to improve the overall robustness of DNN by
using training data with diverse distortions (Kinoshita et al., 2016). In addition, research
has been conducted on the model combination and the model selection for a balance
between the overall performance robustness among diverse testing environment conditions
and the best performance in each environment condition.
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The multi-condition training, model combination and model selection have been three
main practical strategies to improve the robustness of the state-of-the-art DSR systems
against diverse reverberat environments. For these methods, reverberation measurement,
i.e. the estimation of the reverberation level of distant recordings, is critical for both
the training data selection and the model selection. Existing reverberation measurement
is based on acoustic reverberation metrics that estimate the reverberation level of the
recording environment. However there are a few issues with such reverberation metrics.
For example for the early-to-late reverberation ratio, the optimal boundary between early
and late reverberation is not fully addressed analytically and the configuration in existing
systems are completely based on experimental experience. In addition, the existing
reverberation measurement is signal independent, thus it does not take the reverberation
sensitivity of different speech sounds into account, while in fact the same reverberation
could cause different levels of distortion on different speech feature patterns, as pointed by
(Kokkinakis and Loizou, 2011). Therefore, further research is required on the reverberation
measurement strategies that are optimal to the speech recognition tasks.

1.2 Research Questions and Objectives

The work covered by this thesis tries to provide some insights from two aspects that are of
critical importance in improving the state-of-the-art DSR systems.

The first aspect is about the performance of the state-of-the-art DSR systems on real
distant recordings of natural spontaneous multi-party conversations. The objective of this
research is to understand the challenging influence factors in the real natural spontaneous
multi-party conversations for the state-of-the-art DSR systems. In particular, the impact
each factor has on WER and the interaction among multiple influence factors. To achieve
this objective the recording of the Sheffield Wargame Corpora is collected as the recordings
of real natural spontaneous multi-party conversations.

The second aspect is about the reverberation modelling and the measurement of the
reverberation distortion level in the context of DSR. The objective of this research is to
understand how reverberation distorts the speech feature patterns, and how to measure the
reverberation distortion level in speech features for DSR when the speech sound properties
are taken into consideration.

1.3 Contributions

There are three major contributions from the work covered in this thesis.



4 Introduction

The first contribution is the release of the Sheffield Wargame Corpora (SWC), a
database of multi-microphone and multi-media real recordings of natural spontaneous
spontaneous multi-party conversations (Chapter §4). This work has led to two conference
publications in Interspeech 2013 and Interspeech 2016 respectively (Fox et al., 2013; Liu
et al., 2016).

The second contribution is that the experimental analysis of the DSR on the natural
spontaneous multi-party conversational speech reveals a few unique properties in the real
natural spontaneous conversations, as well as the challenging influence factors for the
state-of-the-art DSR. The impact of the influence factors on DSR in such real recordings
on DSR performance is quantified by WERs (Chapter §5).

The third contribution is the study on reverberation in DSR (Chapter §6, Chapter §7).
An accurate reverberation modelling based on complex spectrogram is studied. Based on
that, a novel polynomial format reverberation score is proposed and it is shown to provide
a high rank correlation with WER regarding the channel difference. In addition, for the
first time the difference between the reverberation level on the recording environment and
channel and the reverberation distortion level in the speech feature pattern is emphasised.
The research effort is devoted to improving the estimation of the reverberation distortion
level in short speech audio recordings, from a novel angle of estimating the reverberation
distortion by phonetic smearing.

It is worth mentioning that the author has also worked on other aspects of speech
recognition during the PhD which are not detailed in this thesis due to limited space. The
research focus of these works is slightly mismatched with the theme of this thesis, however
they have benefited a lot the work to be presented in this thesis, and they have led to a few
publications. Therefore these work will be briefly mentioned when related research point
is presented. A full list of publications from the author’s PhD research is listed below:

1. Y. Liu, C. Fox, M. Hasan, T. Hain, “The Sheffield Wargame Corpus - Day Two and
Day Three”. In Interspeech, San Francisco, USA, 2016.

2. T. Hain, J. Christian, O. Saz, S. Deena, M. Hasan, W. M. Ng, R. Milner, M. Doulaty,
Y. Liu, “WebASR 2 - Improved Cloud Based Speech Technology”. In Interspeech,
San Francisco, USA, 2016.

3. O. Saz, M. Doulaty, S. Deena, R. Milner, W. M. Ng, M. Hasan, Y. Liu, T. Hain,
“The 2015 Sheffield System for Transcription of Multi-Genre Broadcast Media”. In
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Arizona,
USA, 2015.
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4. Y. Liu, P. Karanasou and T. Hain, “An Investigation into Speaker Informed DNN
Front-end for LVCSR”. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Brisbane, Australia, 2015.

5. P. Zhang, Y. Liu and T. Hain, “Semi-Supervised DNN Training in Meeting Recogni-
tion”. In Spoken Language Technology Workshop (SLT), Nevado, USA, 2014.

6. Y. Liu, P. Zhang and T. Hain, “Using Neural Network Front-ends on Far Field Mul-
tiple Microphones Based Speech Recognition”. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014.

7. C. Fox, Y. Liu, E. Zwyssig and T. Hain, “The Sheffield Wargame Corpus”. In
Interspeech, Lyon, France, 2013.

1.4 Structure of Thesis

The thesis is structured in the following way. Chapter §2 reviews the existing work that
are either related to or employed in the research work to present in this thesis. Based on
the review, Chapter §3 highlights the unaddressed issues in the existing research and how
these issues motivated the work in this thesis. Chapter §4 to Chapter §7 cover the original
work by the author. Chapter §8 summarizes the major findings from the work presented in
this thesis and proposes potential future extensions of current work.

Among the chapters that present the original work by the author, Chapter §4 details the
collection of the Sheffield Wargame Corpora, a real multi-microphone and multi-media
recording database of natural spontaneous multi-party conversations. This database is used
in Chapter §5 for a case study to understand the challenges in DSR and to quantify the
impact of the influence factors in the distant recordings in a comparison with the headset
recordings. Chapter §6 and Chapter §7 focus on the reverberation. In particular, Chapter §6
performs analytic and experimental study on how reverberation effect could be accurately
modelled by a convolution operation in the complex spectrogram domain. Based on the
analytic analysis, Chapter §7 explores novel methods to measure the distortion level in the
speech features caused by reverberation. It adopts a different mathematical strategy from
existing reverberation measurement, in an effort to improving the estimation accuracy of
the reverberation corruption level in speech feature pattern in DSR tasks.
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Background

Contents
2.1 Deep Neural Networks as Classifier . . . . . . . . . . . . . . . . . . 8

2.2 Speech Recognition and DNN . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Acoustic Model in Speech Recognition . . . . . . . . . . . . . 13
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This chapter reviews the existing work that are either related to or employed in the
research work to present in later chapters. The review covers four aspects with four
sections. Section 2.1 covers the fundamentals of deep neural network (DNN) and its
implementation. Section 2.2 explains how DNN is used in a speech recognition system
either as the front-end or as the acoustic model. Section 2.3 discusses the dereverberation
and noise robustness algorithms for distant speech recognition (DSR). Section 2.4 focuses
on the reverberation measurement and how it could benefit DSR.
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Fig. 2.1 Illustration of a 3-layer DNN. Circle: perceptron or neuron or unit; dashed
lines: connections among neurons; arrow: direction of the information flow due to the
mathematical dependence.

2.1 Deep Neural Networks as Classifier

The term “Deep neural network” (DNN) usually refers to the deep feedforward neural
network. It is comprised of multiple-layer perceptrons (MLP) with connections among
perceptrons in two consequent layers, as shown in Fig. 2.1. The information flows from
the input layer to the last layer in one direction, thus being “feedforward”. There is no
connection among perceptrons in the same layer. The perceptron is also referred to as
“neuron” or “unit” in the existing literature for historic reasons. To be consistent with the
majority of the literature, the perceptron is referred to as “neuron” from now on in this
thesis.

Denote the input to the j-th neuron in the input layer or the first layer of DNN as x0, j.
Denote the output of the j-th neuron in the i-th layer as xi, j . When the i-th layer is not the
last layer or the output layer of the DNN, xi, j is also the j-th input element to the (i+1)-th
layer. The time index is dropped here to simplify the notation without causing confusions,
while it is worth emphasizing that in many tasks the input and the output of each neuron in
DNN are naturally time dependent. The connections among neurons in two consequent
layers can be formulated as

xi, j = f (zi, j) ( j = 0,1, ...,Ni −1; i = 1,2, ...,L) (2.1)

zi, j =
Ni−1−1

∑
k=0

Ni−1

∑
j=0

xi−1,kwi,k, j +bi, j (k = 0,1, ...,Ni−1 −1; j = 0,1, ...,Ni −1;

i = 1,2, ...,L) (2.2)
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where Ni is the number of neurons in the i-th layer and L is the number of layers in the
DNN. The neuron weight wi,k, j and the layer bias bi are the DNN parameters to optimise.
The function f (·) is a non-linear function to avoid magnitude explosion in a deep structure.
An activation function processes each neuron independently, and a few frequent options
for an activation function include the sigmoid function shown in Eq. (2.3), the hyperbolic
tangent function shown in Eq. (2.4) and the rectified linear unit (ReLU) function shown in
Eq. (2.5).

fs(z) =
1

1+ e−z (2.3)

ft(z) = tanh(z) (2.4)

fr(z) =

z (z ≥ 0)

0 (z < 0)
(2.5)

For the neurons in the output layer of DNN, the activation function should normalize the
output magnitude of multiple perceptrons in the same layer, thus the softmax function is a
good option (Eq. (2.6)).

g(zi, j) =
ezi, j

∑
Ni−1
j=0 ezi, j

(2.6)

The implementation of DNN is completed in two steps. First, the DNN configuration
is determined, namely the number of layers, the number of neurons in each layer and the
activation function for each layer. Second, the DNN parameters are optimised, namely the
neuron weights and the layer biases are optimised with training data. In some literature the
layer biases are omitted because they can be equivalently implemented with the weights
on an extra neuron in each layer whose input is a constant value “1”.

The DNN configuration is usually adjusted empirically. The configuration of output
layer is closely associated with the application task. In classification tasks, the softmax
function is usually employed as the activation function in the DNN ouput layer. In
comparison, in regression tasks, to achieve a wide target value range, the activation
function can be skipped in the output layer. The number of layers and the number of
neurons in hidden layers are empirically adjusted, and they are usually proportional to the
amount of available training data and computation resource. The topology of DNN, i.e.

how to distribute the neurons in multiple hidden layers, is determined purely empirically.
The hidden layers here refer to all layers except for the input layer and the output layer.
For the input layer, the number of neurons are determined by the dimension of input
features. For the output layer, the number of neurons is associated with the number of
target classes in a classification task or the dimension of target in a regression task. In
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Fig. 2.2 Illustration of different DNN topology.

some structure the amount of neurons can be the same for all hidden layers, as illustrated
in the left column of Fig. 2.2. Alternatively, one or a few layers can have significantly
smaller amount of neurons compared to the other layers, thus shaping a bottleneck layer as
illustrated in the right column of Fig. 2.2. The bottleneck layer structure forces DNN to
reduce the effective dimension of the input feature and the intermediate presentations. A
bottleneck layer is frequently adopted when the DNN is employed to produce a map from
the high-dimensional input feature to a compressed representation which is also referred to
as the “bottleneck feature” (Grezl et al., 2007).

The optimisation of DNN parameters could be performed with the gradient decent
algorithm. Denote the final output of DNN as y j, thus for DNN of L layers,

y j = xL, j ( j = 0,1, ...,NL −1). (2.7)

The gradient descent based optimisation iteratively adjusts the DNN parameters in the
direction of reducing the cost function. Denote the cost function as F , thus

wi,k, j = α · ŵi,k, j −η · ∂F
∂wi,k, j

∣∣∣
wi,k, j=ŵi,k, j

(2.8)

bi, j = α · b̂i, j −η · ∂F
∂bi, j

∣∣∣
bi, j=b̂i, j

(2.9)

where “ ˆ ” indicates one parameter is of the value from previous optimisation iteration.
α is the “momentum” with a value between 0 and 1 to adjust the forgetting speed of the
parameter value during optimisation, and η is the “learning rate” to adjust the updating
speed of the parameter value. The partial derivative could be calculated in a backward
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propagation manner from the (i+1)-th layer to the i-th layer recursively

∂F
∂xi, j

=
Ni+1

∑
l=0

∂F
∂xi+1,l

·
∂xi+1,l

∂xi, j
(2.10)

so that

∂F
∂wi,k, j

=
∂F

∂xi, j
·

∂xi, j

∂wi,k, j
(2.11)

∂F
∂bi, j

=
∂F

∂xi, j
·

∂xi, j

∂bi, j
(2.12)

The partial derivatives ∂xi, j
∂wi,k, j

and ∂xi, j
∂bi, j

are dependent on the activation function used, e.g.

sigmoid function (Eq. (2.3)), hyperbolic tangent function (Eq. (2.4)), rectified linear unit
function (Eq. (2.5)) or softmax function (Eq. (2.6)). The detailed derivation for each
activation function is skipped here.

The selection of cost function is dependent on the task. For a regression task, the DNN
output is directly used to approximate the reference vector. In this case the cost function
can be an Euclidean distance function that measures the error, between the DNN output
and the ground-truth reference. For a classification task, the DNN serves directly as a
multi-class classifier. Each neuron in the output layer corresponds to one candidate class.
The output of that neuron approximates the posterior of corresponding class given the input
features. In this case the cost function can be a cross entropy function of the ground-truth
labels and the classification results based on the maximal posteriors. Denote the reference
for the j-th neuron in the output layer as t j, whose value is either 0 or 1 in a classification
task. Then the cost function is

F =−
NL−1

∑
j=0

t j logy j (2.13)

Minimizing such a cross-entropy based cost function is equivalent to maximizing the
probability of getting all input samples correctly labelled, i.e. maximizing the overall
posterior of correct labelling. The details about such an equivalence have been discussed
by Bishop (1995).

When using the softmax function as the activation function for DNN output layer along
with the cross-entropy function as the cost function, with some derivation it could be found
that for the output layer (L-th layer)

∂F
∂wL,k, j

= e j · xL−1,k (2.14)



12 Background

∂F
∂bL, j

= e j (2.15)

where e j is the error in the j-th class, i.e. the difference between the classification
hypothesis based on the DNN output posteriors and the reference labelling,

e j = y j − t j (2.16)

More details about the derivation details can be found in the work by Bishop (1995) and
are thus skipped here.

In practice, to achieve a balance between the computation cost and the robustness of
optimised DNN, the implementation is usually based on the batch mode stochastic gradient
decent, i.e. the parameters are updated once per data batch by the sum of gradients over all
samples within this data batch.

The mathematical concept of DNN has been existing for a long time since 1960s
(Bishop, 1995). It has been proved by Hornik et al. (1989) that a DNN with no less than
two layers could potentially approximate any arbitrary functions given a sufficient number
of perceptrons in each layer. However for a long time the application of DNN is very
limited mainly for two reasons. First, unlike many other machine learning methods, the
structure of DNN is highly independent from application. Such a structure on one hand
ensures high flexibility of DNN in fitting into various applications from regression to
classification, while on the other hand creates much more parameters to optimise compared
to an alternative application dependent structure. Second, the large amount of parameters
and the highly symmetric parameter space create a high level of analytic difficulty in
optimisation. As a result the performance of the iterative optimisation in the practical
implementation is highly dependent on the amount and diversity of available training data,
as well as the computation resource. In addition, it is very difficult to interpret the role and
the value of each parameter. As a result, for a very long time the DNN is unfavourable by
many researchers. Fortunately, with the recent leap in the parallel computation based on the
graphic processing unit (GPU) and the availability of big data, the parameter optimisation
can be performed at a scale of millions of samples. With such recent advancement, the
problems with DNN have been alleviated.
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HMM state transition between states GMM

Fig. 2.3 Illustration of HMM-GMM.

2.2 Speech Recognition and DNN

2.2.1 Acoustic Model in Speech Recognition

In the speech recognition systems based on statistic models, a sequence of hypothesis
words w is determined by maximizing the probability of hypothesis given the model
parameters θ and the input observations X.

w̄ = arg max
w

P(w|X,θ) (2.17)

with Bayesian rule,

w̄ = arg max
w

p(X|w,θ)P(w|θ)
p(X,θ)

(2.18)

= arg max
w

(log p(X|w,θ)+ logP(w|θ)− log p(X,θ)) (2.19)

where p(X|w,θ) is acquired from the acoustic modelling and P(w|θ) from the language
modelling. The item log p(X,θ) can be ignored because its value is independent from
parameters w,

w̄ = arg max
w

(log p(X|w,θ)+ logP(w|θ)) (2.20)

Therefore, the name “acoustic modelling” corresponds to the fact that the optimization is
based on the acoustic features X.

In the large vocabulary continuous speech recognition (LVCSR), modelling word
sequences directly is impractical due to the data sparsity issue, and modelling smaller units
is usually preferred. The small unit could be phonetic such as monophone and triphone, or
statistic such as the automatically clustered states. The conversion between the sequence
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of small units to a word is achieved with the pronunciation model or the lexicon model
(Lu et al., 2013). The most likely word sequence is acquired from the candidate words
with highest overall probability given the acoustic observation, with the probability of
each candidate word acquired from the probability of its component units. As shown
in Fig. 2.3, the probability of each unit with given the acoustic observation could be
modelled with a Gaussian mixture model (GMM). Therefore the acoustic modelling could
be modified to estimate the likelihood of a hypothesis state sequence q = [q0,q1,q2, ...],
namely estimating p(X|q,θ).

One side effect of such hierarchical splitting is the complexity in finding the global
maxima considering all possible sequences. Therefore the hidden Markov model (HMM) is
introduced to simplify the sequence structure with the context modelling among hypothesis
units. The simplification is made possible with a conditional independence assumption that
the current state is only dependent on the previous state, and that the current observation is
only dependent on the current state, as shown in Fig. 2.3. Denote the time sequence of
observation feature vectors as X= [x0,x1, ...,xN ], where xn is the observation feature vector
at a discrete index n corresponding to the state qn. Then the conditional independence
assumption is

p(X|q,θ) = p
(
[x0,x1, ...,xN ]

∣∣∣[q0,q1, ...,qN ],θ
)

≈ p(x0|q0,θ)
N

∏
i=1

p(qi|qi−1,θ)p(xi|qi,θ) (2.21)

where p(qi|qi−1,θ) is the transition probability from the state qi−1 to the state qi given
HMM parameters θ and p(xi|qi,θ) is the observation probability which can be modelled
with GMM, as illustrated in Fig. 2.3

p(xi|qi = m) =
K

∑
k=0

cmkN (xi; µmk,Σmk) (2.22)

where cmk is the weight for the k-th Gaussian mixture when the state qi = m.

The optimisation of HMM-GMM parameters is performed iteratively based on the
expectation-maximization algorithm, namely the EM algorithm. At the expectation step,
the GMM parameters are fixed and the state sequence is optimised in a backward order:

q̂i = arg max
qi

P(qi|X,θ) (2.23)

Therefore the expectation step only estimates the expected state sequence. At the max-
imization step, the state sequence is fixed and the GMM parameters are updated with
corresponding observations based on the expected state sequence. Therefore the maximisa-
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tion step only maximises the probability of the acoustic features given corresponding state.
More details about the EM algorithm are skipped here, as they can be found in a variety of
tutorials (Gales and Young, 2008; Renals and Hain, 2010; Young, 1996).

2.2.2 DNN in ASR

The work on using DNN to improve the acoustic modelling in the speech recognition
system could be roughly categorized in two groups: those employ DNN in the front-end to
produce improved acoustic features for HMM-GMM (Grezl et al., 2007; Hermansky et al.,
2000; Liu et al., 2014; Rath et al., 2014), and those employ DNN as a part of acoustic
model in place of GMM (Bengio et al., 1992; Hermansky et al., 2000; Seide et al., 2011).
The first category is further referred to as the “DNN-HMM-GMM” system, and the second
category is further referred to as the “DNN-HMM” hybrid system. In both categories the
DNN is usually optimised as a multi-class classifier using labelled training data, with each
neuron in DNN output layer corresponding to one class defined phonetically or statistically.

In the DNN-HMM-GMM system, DNN is employed in the front-end to generate
improved representations or features, and there is no change in the HMM-GMM based
acoustic modelling (Section 2.2.1). Therefore the DNN optimisation could be performed
independently from the optimisation of the HMM-GMM based acoustic model. The
representations produced by DNN can be combined with the traditional features such as
the perceptual linear prediction (PLP) and Mel-frequency cepstral coefficient (MFCC)
to build HMM-GMM (Bell et al., 2013; Liu et al., 2014; Rath et al., 2014), or they can
completely replace the traditional features in training acoustic model (Grezl et al., 2007;
Liu et al., 2014).

The representations could be generated from the final output of DNN, as well as the
output of some hidden layer in DNN. As mentioned in Section 2.1, the final output of
DNN approximates posteriors, thus the representations using the DNN final output are
also referred to as the “probabilistic features” (Grezl et al., 2007). Grezl et al. (2007) has
employed the probabilistic features independently in the acoustic modelling (Fig. 2.4 (a)),
while Bell et al. (2013) concatenated the probabilistic features with the PLP features (Fig.
2.4 (b)). When the output of DNN hidden layer is used as representations (Hermansky
et al., 2000), the number of neurons in that layer is usually constrained to control the
feature dimension. As a consequence such a hidden layer looks like a “bottleneck layer” of
the DNN in shape, and the corresponding representations are referred to as the “bottleneck
features” (Grezl et al., 2007). Similar with the probabilistic features, the bottleneck features
have been used both independently (Fig. 2.4 (c)) and in combination with the traditional
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Fig. 2.4 A variety of strategies in generating representations with DNN.

features for acoustic modelling (Fig. 2.4 (d)) (Grezl et al., 2007; Hermansky et al., 2000;
Liu et al., 2014; Rath et al., 2014).

In the DNN-HMM hybrid system, as shown in Fig. 2.5 the output of the m-th neuron
in the DNN output layer approximates the posterior of corresponding class given the
observation, namely P(qi = m|xi,θ). With Bayesian rule the likelihood could be estimated
from the posterior via

P(xi|qi = m,θ) =
P(xi)P(qi = m|xi,θ)

P(qi = m)
(2.24)

Therefore, DNN could replace GMM in estimating the likelihood in acoustic modelling.
Since the probability of each class P(qi = m) is independent from both the current ob-
servation and the model parameters, it is a statistic prior that could be approximated by
counting the occurrence frequency of each state class in a sufficiently large dataset. The
probability P(xi) could be neglected during the optimisation as it is independent from the
model parameter value.
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Fig. 2.5 Illustration of DNN-HMM hybrid system.

An early work by Hennebert et al. (1997) suggested that in the DNN-HMM hybrid
system, DNN parameters can be optimised jointly with HMM parameters using a gen-
eralized EM algorithm, i.e. an unsupervised iterative optimisation similar to the case of
HMM-GMM training. However in most of the state-of-the-art implementations, the HMM
in hybrid system is directly inherited from a primary HMM-GMM system which also
provides the alignment for the supervised training of DNN. Therefore, the DNN-HMM
hybrid acoustic model in a state-of-the-art recognition system is actually trained in four
steps:

• The HMM-GMM based acoustic model is trained with traditional features.

• The trained acoustic model is used to align the ground truth transcript on the training
data to produce frame level labelling.

• The frame level labelling is used to train a DNN, and the DNN parameters are
optimised to minimise a cost function, e.g. the cross-entropy.

• The HMM from the HMM-GMM system trained in the first step is combined with
the DNN trained in the third step by converting the posteriors from the DNN output
into the likelihood for HMM.

Recently, the dramatic increase in available computation resource and data resource has
boosted various research on alternative deep networks and deep structures. In particular,
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two types of network are attracting more and more interest. They are the convolutional
neural network (CNN) and the long short term memory (LSTM) recurrent neural network
(RNN). CNN was first found effective for image recognition by Krizhevsky et al. (2012).
Later it is proved to outperform the DNN in the speech recognition systems of a hybrid
CNN-HMM structure (Abdel-Hamid et al., 2012). Research work has been conducted to
confirm the advantage of the convolution-based filtering along both the time axis (Lee et al.,
2009) and the frequency axis (Abdel-Hamid et al., 2012). Compared with DNN, CNN
is found to be more robust against the background noise, particularly when the CNN is
implemented in a very deep structure (Qian et al., 2016; Sercu and Goel, 2016). The LSTM
is an improved implementation of the original RNN and it alleviated the famous gradient
vanish problem for RNN in the back-propagation through time (BPTT) (Hochreiter and
Schmidhuber, 1997). For acoustic modelling, the LSTM has been reported to achieve
better performance than the DNN and similar or better performance than the CNN (Graves
et al., 2013; Qian et al., 2016; Sak et al., 2014).

There is also progress achieved in the optimisation of network parameters when the
training data is very limited. A generative pretraining of network parameters based on
the restricted Boltzmann machine (RBM) is found to outperform a random initialisation
(Dahl et al., 2010), and the data augmentation is found helpful to improve the robustness
of network by adding simulated training data (Cui et al., 2015; Ko et al., 2015; Tüske et al.,
2014).

Similarly, progress has been made regarding the cost function for DNN training. The
frequently adopted DNN optimisation objective, namely the cross-entropy minimization,
is based on either the phonetic units or the statistic units rather than the words. As a result
the DNN optimisation objective is not necessarily consistent with the overall objective
of the speech recognition. Kingsbury (2009) proposed to optimise the DNN parameters
based on the sequence classification criteria which weights the objective function of each
sequence by the percentage of correct phonemes or correct words in given hypothesis
utterance (Povey and Woodland, 2002). In addition, Kingsbury (2009) highlighted that
the sequence training could be implemented using a similar computation structure to the
cross-entropy based DNN training. Since the sequence training is in nature much easier
to overfit to training data compared to the cross-entropy based training, in practice it is
only used to finetune the parameters at the last stage. For example, the implementation by
Veselý et al. (2013) finetunes DNN parameters based on the state-level minimum Bayesian
risk (sMBR) objective or the minimum phone error (MPE) objective for a few iterations
after the cross-entropy based DNN training has converged. It is observed that such a
strategy well combines the merits of both methods and improves the speech recognition
performance significantly (Veselý et al., 2013).
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Regarding the DNN input, it is found that using different types of features can produce
similar performance, e.g. PLP features, MFCC features and logarithmic Mel-frequency
filter bank coefficients (FBANK) (Liu et al., 2014; Swietojanski et al., 2013). In compari-
son, using a concatenation of features from a few neighbouring frames generally improves
the recognition performance with some context information (Grezl et al., 2007; Seide
et al., 2011). It is also found that the DNN has a very high flexibility in modelling. With
different types of features combined at input, DNN could learn multiple properties of data
altogether. For example combining the normal DNN input of standard features such as PLP,
MFCC and FBANK with the speaker code (Abdel-Hamid and Jiang, 2013) or the speaker
i-vector (Liu et al., 2015; Saon et al., 2013) creates an effect of speaker adaptation of the
DNN. Similar adaptation effect is observed when the standard input features are combined
with noise information (Seltzer et al., 2013) or the room information (Giri et al., 2015).
Furthermore, Liu et al. (2014) has proved that such feature combination strategy could be
potentially extended to any auxiliary features that provides complimentary information to
standard features for DNN to perform the acoustic modelling and the condition adaptation
at the same time. This study corresponds to an earlier finding by Seide et al. (2011) that
some traditional input transform which used to improve the performance of HMM-GMM
system is not effective for DNN based system, particularly when a large amount of training
data is available. One such example pointed by Seide et al. (2011) is the speaker adaptation
algorithm vocal tract length normalisation (VTLN).

2.3 Robustness in Distant Speech Recognition

The speech recognition performance is partly determined by the recognition model used,
and partly by the recordings from which the features are generated. Recording config-
uration such as the microphone installation can significant impact the quality of audio
recordings and the extracted features. One current interest in speech recognition research
and application is the occasion where the microphone is installed at a fixed location, in
a scenario frequently referred to as the far-field recording or the distant recording. This
is in contrast with a more advantageous setup to ASR system where the microphone is
equipped on the interested speaker, and the headset microphone or the lapel microphone
help to reduce the distance between the microphone and the speaker as well as the adverse
environment effects in the speech recordings.

From the signal processing point of view, the environment effects distort clean speech
signal in two aspects: the additive distortion and the convolutional distortion. Denote the
clean speech signal as x(n) where n is the discrete sampling index, and denote the distant
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speech recording signal as y(n), then

y(n) = x(n)∗h(n)+ v(n) (2.25)

where h(n) refers to the convolutional distortion and v(n) refers to the additive distortion.
The additive distortion is represented by the background noise and the competing

speech from other speakers if there is any. The electronic noise in the recording equipments
is usually neglectable in the additive distortion. The convolutional distortion comes from
the acoustic and electroacoustic components in the recording system. It is a joint outcome
of the electroacoustic property of the microphone used for recording, and the acoustic
property of the physical environment where the recording takes place. The overall effect
of the convolutional distortion is usually approximated with a finite infinite response (FIR)
filter h(n), which is frequently referred as the acoustic impulse response (AIR). When the
electroacoustic distortion caused by recording equipments is neglectable, the convolutional
distortion is mainly determined by the room acoustics. Therefore the convolutional
distortion is frequently referred to as the reverberation which could be approximated by
another FIR filter. Such an FIR filter is usually referred to as the room impulse response
(RIR), though it is not only dependent on the room acoustic properties but also on the
installation of microphone, the speaker location in the room and the talking direction of
the speaker.

There is one intrinsic difference between the distortion caused by additive distortion and
convolutional distortion. In many cases the background noise and the competing speech can
be assumed statistically uncorrelated with the targeted speech, thus the additive distortion
could be modelled independently based on the statistic properties of the distortion source
signal. On the contrary, the convolutional distortion is dependent on both the environment
effect and the targeted clean signal itself. Due to this fundamental difference, different
strategies have been used to treat the additive distortion and the convolutional distortion.

2.3.1 Room impulse response measurement

Before going into the details about the robustness algorithms for distant speech recognition,
the estimation of RIR is briefly reviewed. RIR can be estimated with a synchronised
recording of the signal produced by the sound source and the signal received by the sound
receiver. Research has been conducted on the proper signal for such recording. It is found
that for an occupied room the pseudo-random white noise is the most suitable signal for
RIR estimation (Stan et al., 2002). However the pseudo-random white noise based RIR
estimation is a non-linear method with limited SNR and the measurement requires tedious
calibration. In comparison the swept sine signal, or the chirp signal, could avoid the non-
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linear behaviour in electro-acoustic equipments (Stan et al., 2002). Thus it is frequently
used as the RIR measurement signal for a high SNR in the estimation results when the
room is unoccupied and quiet. The swept sine signal based method is very sensitive to
the background noise during measurement recording, thus multiple recordings are usually
conducted to increase the SNR against the potential background noise. These two types
of signal are the most frequently used for RIR estimation. There are also other options
such as the time-stretched pulses (Stan et al., 2002) and the maximum length sequence
(Guidorzi et al., 2015), but they are not used as frequently in applications. One reason is
that such methods usually rely on the assumption of a linear time-invariant (LTI) system
and it causes distortion artefacts in the derived RIR when this assumption is not met.

For the RIR measurement based on the swept sine signal, the signal played by the
loudspeaker is the sine wave with its frequency increasing linearly over time up to Nyquist
frequency, i.e.

x(t) = Asin(ω(t) · t) (2.26)

ω(t) = αt (2.27)

where A is a fixed amplitude to scale the sound volume, α is the increasing speed of
instantaneous angular frequency of the swept sine signal. In discrete signal, equivalently

x(n) = Asin(ω(n) ·n) (2.28)

ω(n) = α · n
fs

(2.29)

where fs is the sampling rate. The room impulse response could be estimated from the
measurement recordings with an inverse filter or a matching filter of the swept sine signal,
and the matching filter is a simple time reverse flip of the swept sine signal itself (Kuttruff,
2000). Assuming that the transfer function of the loudspeaker to play the swept sine
signal is flat enough to be ignored and that the recording environment is quiet, denote the
corresponding microphone recording of the swept sine signal as y(n), i.e.

y(n) ≈ x(n)∗h(n) (2.30)

and the RIR can be estimated with

h(n) ≈ y(n)∗ x(N −n) (2.31)

where N is the length of measurement signals x(n) and y(n).
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2.3.2 Noise Suppression and Robustness

Before the recent revival of DNN and the increasing popularity of other deep networks,
research work on noise robustness in DSR has been mainly conducted in two aspects: the
speech enhancement, i.e. directly enhancing the speech signal or the speech feature with
noise suppression, and the noise robust acoustic modelling.

Among the speech enhancement techniques, some algorithms directly estimate the
desired speech signal or feature, and some other algorithms perform the noise modelling
first. The direct enhancement of speech signal is based on a reliable knowledge of the
noise signal statistics, assuming that speech signal is not correlated with the noise signal.
Examples are the spectral subtraction (Berouti et al., 1979; Boll, 1979; Lim and Oppenheim,
1979) and the Wiener filtering or minimum mean square error (MMSE) estimator (Chen
et al., 2006; Lim and Oppenheim, 1979). The performance of such algorithms is however
largely dependent on the availability of an accurate knowledge of the noise spectrum. In
addition, the direct spectral subtraction creates the residual musical noise, and the Wiener
filtering causes speech distortion which is proportional to the amoutn of noise suppressed
(Chen et al., 2006). An alternative speech enhancement method is the mean and variance
normalisation to remove the stationary component in the background noise (Furui, 1981).
The normalisation is widely adopted for its simplicity and robustness. The segmental
feature vector normalisation is even found by Viikki and Laurila (1998) to outperform
some more advanced algorithm such as the parallel model combination. One typical noise
modelling based speech feature enhancement algorithm is the stereo based piecewise linear
compensation for environment (SPLICE) (Deng et al., 2001, 2004, 2005, May 2002).
SPLICE assumes that the relation between the noisy speech and clean speech is piecewise
linear, thus the speech component could be restored with an additive correction vector. As
its name suggests, to estimate the correction vector, SPLICE requires both the clean data
and the noisy data to be available in parallel.

To apply the noise suppression and compensation on the acoustic model directly, the
vector Taylor series (VTS) can be used to approximate the function between the clean
speech based acoustic model parameters and the noisy recording based acoustic model
parameters (Moreno et al., 1996). This VTS function is also referred to as an environment
function by Moreno et al. (1996), and it is based on the assumption that both the speech
component and the noise component could be modelled with GMM. The training of VTS is
performed iteratively with the EM algorithm to maximize the likelihood of acoustic model.
In each iteration, the environment function is renewed with an VTS expansion around
the updated mean vectors of GMMs for the clean speech component, followed by a re-
estimation of the mean vectors and variance matrics for the additive noise component and
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the mean vectors for the convolutional distortion. A simplified variant of VTS algorithm
is the Jacobian adaptation which compensates at the first order for the additive noise that
causes a mismatch between clean training data and noisy test data (Sagayama et al., 1997).
Another algorithm based on the training-test mismatch compensation is the uncertainty
decoding, as well as its variant joint uncertainty decoding (JUD) (Liao and Gales, 2008).
There are many more noise robust techniques, such as the missing feature method (Cooke
et al., 1997), and their details are skipped here.

2.3.3 Dereverberation

A lot of research effort has also been devoted to improving the reverberation robustness
of the DSR performance. Based on the fact that reverberation is in nature a convolutional
distortion which could be approximated with FIR filters, the earliest work on dereverber-
ation was based on inverse filtering using recordings from one or multiple microphone
channels (Miyoshi and Kaneda, 1988). It was proved theoretically possible to achieve an
exact inverse of the room acoustics using multi-channel reverberant recordings when the
RIRs corresponding to the multiple recording channels do not share any common zeros
in the z-plane. The work by Miyoshi and Kaneda (1988) laid the theoretic foundation for
one popular catetory of dereverberation: multiple-input/output inverse theorem (MINT).
This is the first turning point in the dereverberation research, and since then using multiple
channel recordings is widely observed to outperform the counterparts using single channel
recordings only (Eneman and Moonen, 2007; Furuya et al., 2006; Gaubitch et al., 2008;
Kodrasi and Doclo, 2014; Otsuka et al., 2014; Yoshioka and Nakatani, 2012).

The second turning point in the dereverberation research comes from the findings
about different roles of the early reflections and the late reflections in reverberation. The
early reflections, typically of 50-80 ms after the arrival of the direct sound, are strongly
dependent on the speaker and microphone location (Yoshioka et al., 2012). The difference
in speaker-microphone distance is found to cause a significant variation in early reflections
(Bradley, 2011). In comparison, the late reflections have an exponentially decaying
energy independent from the speaker location and the microphone location (Habets, 2005;
Yoshioka et al., 2012). The early reflections introduce a perceptual colouration on the
speech signal (Assmann and Summerfield, 2004; Gaubitch et al., 2008). The human
speech perception research observes that the late reflections are much more harmful
than the early reflections in reducing the speech intelligibility for both the impaired and
the non-impaired listeners (Bradley et al., 2003; Hu and Kokkinakis, 2014). Therefore
some dereverberation algorithms relax the treatment of the early reverberation so that the
dereverberation parameters are optimised to suppress the late reverberation (Habets, 2005;
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Hikichi et al., 2007; Kodrasi and Doclo, 2012; Yoshioka and Nakatani, 2012; Zhang et al.,
2009). This strategy increases the overall performance of dereverberation as it focuses
on the most harmful part of the reverberation, namely the late reverberation, which is
also relatively insensitive to the location change of the talking speaker and the recording
microphone.

Other research work also found that the robustness of dereverberation can be increased
by introducing regularization (Hikichi et al., 2007), channel shortening (Zhang et al., 2010,
2009), spatial-temporal and spectral processing (Gaubitch et al., 2008), etc. In addition,
research efforts have been devoted to modelling RIRs to cope with diverse environment
conditions in test data via the acoustic model selection based on the reverberation level
(Liu and Yang, 2015).

In an extensive experimental validation performed by Eneman and Moonen (2007)
on multi-microphone based dereverberation algorithms in speech recognition tasks, some
of the classical solutions obtained moderate benefit, e.g. beamforming, cepstral dere-
verberation and unnormalised matched filtering. In comparison, the more advanced
subspace-based dereverberation techniques failed to enhance signals in the context of
speech recognition task despite their high-computational load. Eneman and Moonen
(2007) pointed out three main reasons for the poor performance of the more advanced
techniques: the sensitivity to model order mismatch, the additive noise and the time varying
acoustics in real life.

A multi-channel based dereverberation algorithm, the generalized weighted prediction
error (GWPE) (Yoshioka and Nakatani, 2012), attracted much recent attention for its appli-
cation in the best speech recognition system in ReverbChallenge 2014. ReverbChallenge
2014 is a research competition that provides a shared framework for the comparison of
dereverbertion performance in the speech enhancement task and in the speech recognition
task (Kinoshita et al., 2016). As an extension of the weighted prediction error (WPE)
method Yoshioka and Nakatani (2012), the GWPE algorithm is a blind multiple-input
multiple-output (MIMO) dereverberation algorithm based on a linear prediction of the
late reverberation only. The philosophy of both WPE and GWPE is to predict the late
reverberation in current speech recording samples based on previous speech recording
samples with a linear autoregressive filter. Based on the prediction, the late reverbera-
tion could be suppressed or removed via a simple subtraction. In WPE the optimisation
target of the autoregressive filter parameters is to minimised the reverberation prediction
error assuming that the clean speech recordings are available in parallel with reverberant
recordings. The GWPE improved the cost function to remove the dependence on the clean
speech recordings available in parallel with reverberant recordings. The details of GWPE
algorithm is quickly gone through below.
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GWPE performs dereverberation in the spectrum domain as it is more computationally
efficient than in the time domain. To further reduce the computation cost, the subband-
counterparts are preferred to the raw spectrum. Denote the subband based spectrum vectors
for the reverberant speech recordings as y(τ), for the clean speech signal as s(τ) and for
the background noise as v(τ), where τ is the frame index, i.e.

y(τ) = [y0(τ),y1(τ), ...,yL−1(τ)]
T (2.32)

s(τ) = [s0(τ),s1(τ), ...,sL−1(τ)]
T (2.33)

v(τ) = [v0(τ),v1(τ), ...,vL−1(τ)]
T (2.34)

where L is the number of subbands. Assume that the background noise is statistically
independent from the clean speech signals and that the following linear relationship holds

yl(τ) =
Jl−1

∑
n=0

H∗
l (n)sl(τ −n)+vl(τ) (2.35)

where “∗” refers to conjugate transpose, Hl(n) is a matrix including a list of complex
valued filters associated with the MIMO RIRs, and Jl is the order of the filter in the l-th
subband. The auto-regressive filters used to estimate late reverberation from preceding
samples is denoted as Gl(n), and the restored speech signal is denoted as x̂l(τ), thus

rl(τ) =
△+Kl−1

∑
n=△

G∗
l (n)yl(τ −n) (2.36)

x̂l(τ) = yl(τ)− rl(τ) (2.37)

where Kl is the order of the late reverberation estimation filter in the l-th subband and △
indicates the number of taps relaxed for early reflections. One consequence of reverberation
as implied in Eq. (2.35) is the increase of auto-correlation in reverberant speech recordings.
Therefore the cost function in GWPE to optimise the linear predictor Gl is chosen as a
measurement of the auto-correlation level in the restored speech, namely the Hadamard-
Fischer (HF) mutual correlation:

F =
1

|T | ∑
τ∈T

log(detE(X̂l(τ)X̂∗
l (τ)))− log(detE(X̂lX̂∗

l )) (2.38)

where X̂l = [X̂∗
l (T ), ..., X̂

∗
l (1)]

∗ and X̂l(τ) is a vector of x̂l(τ) from the recordings of
multiple microphones.

Since speech is quasi-stationary within a short time span, there is a risk in minimizing
the auto-correlation of the restored speech as it could potentially distort the temporal
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structure in the speech spectrum as well. This problem is prevented in GWPE by the
employment of channel shortening. This strategy ensures that the speech spectrum within
the time span up to △ preceding taps will be protected from distortion caused by dere-
verberation, as the auto-regressive filters for dereverberation are optimised to minimise
the auto-correlation of signal. More details about the HF cost function and the analytic
derivation for the dereverberation parameter optimisation are skipped here, and they could
be found in the work by Yoshioka and Nakatani (2012).

GWPE has inherited a few general properties in existing blind MIMO algorithms, and
such properties provide high flexibility for application no matter whether the dereverber-
ation algorithm is used alone or jointly with other algorithms. First, the dereverberation
operation produces the same number of channels in the output compared to the input.
Second, it does not require any knowledge about the number of sound sources. Third, the
dereverberation is a linear operation with channel shortening on the implicit RIRs. This
prevents the non-linear distortion by a large degree. Fourth, the process conserves the
time differences of arrival (TDOAs) in raw recordings from the multiple microphones.
This allows an effective application of successive beamformers. In the best system of
ReverbChallenge 2014 developed by researchers in Nippon Telegraph and Telephone
(NTT), the GWPE achieved 30% relative WER reduction, and the minimum variance
distortionless response (MVDR) beamforming on top achieved 30% further relative WER
reduction (Kinoshita et al., 2016). The combination of GWPE and MVDR is later proved
effective in the third CHiME challenge as well (Barker et al., 2016).

2.3.4 Beamforming

Beamforming is especially popular among the multi-channel based signal processing
techniques. It has been found effective to improve the robustness of DSR against the
background noise and reverberation. There are two shared points among all beamforming
algorithms. First, they all perform spatial filtering, either explicitly or implicitly. With
different spatial filtering, the beamformer response differs. Beamformer response refers to
the amplitude and phase presented to a complex plane wave as a function of location and
frequency. Second, most beamformers benefit from pre-steering in the implementation,
i.e. aligning the time of recordings from multiple microphones beforehand. An accurate
pre-steering could improve the efficiency and stability when optimising the beamforming
parameters. To simplify the notation, the output of pre-steering, i.e. the time-delayed
recording from the i-th microphone channel is denoted as

yd
i (n) = yi(n−△i) (2.39)
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where n is the sample index in the recording and △i is the number of samples shifted
during pre-steering.

The simplest while robustest beamforming algorithm is the delay and sum beamforming
(DSB). Denote the i-th channel recording as yi(n), then the output of DSB is

x̂(n) =
1
N

N

∑
i=1

yd
i (n−δi) (2.40)

where δi is the delay in the i-th channel, and the time delays are the only parameters for
DSB. DSB is effective on additive noise when the time alignment in pre-steering is accurate
enough and the spatial average of the background noise approaches zero statistically. One
example scenario suitable for DSB is the diffuse noise field (Jacobsen, 1979).

The weighted delay and sum beamforming (wDSB) makes one simple improvement
over DSB, by introducing channel weights wi(n) to dynamically boost the advantageous
microphone channels:

x̂(n) =
N

∑
i=1

wi(n)yd
i (n−δi). (2.41)

In application, the advantageous channels can be those geometrically close to the targeted
speaker, those with largest speech magnitude in recordings, or those with the highest
overall spatial correlation with any other channels (Anguera et al., 2007).

Both DSB and wDSB assume the background noise to be diffusive, as a result their
effectiveness is limited when the background noise varies by location, frequency or sound
arriving angle. This could be alleviated with spatial filtering implemented in the complex
spectrogram domain. Denote the spectrum of the pre-steered recordings at the angular
frequency ω as y(ω). The time index is dropped here for notation simplicity without
any causing any confusion. y(ω) = [y1(ω),y2(ω), ...,yN(ω)]T is a vector of complex
spectrum values from all N microphone channels at the same angular frequency ω . Thus
beamforming could be performed independently at each frequency bin as a simple matrix
multiplication:

x̂(ω) = w∗(ω)y(ω) (2.42)

where “∗” refers to a conjugate transpose. Different beamformers optimise the spatial
filtering parameters w(ω) differently, and a few typical beamformers are detailed below.

The minimum variance distortionless response (MVDR) beamforming optimises the
beamforming parameters w(ω) by minimizing the overall variance of beamforming output.
The signal distortion caused by this process is alleviated with a distortionless constraint
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that

w∗(ω)v(ω) = 1 (2.43)

where v(ω) is the array manifold vector in the arriving direction of the targeted speech
sound. In this case, the targeted speech is assumed to be a plane wave. The elements in
vector v(ω) indicate the phase shift in the recordings from different microphones, i.e.

v(ω)≜ [e− j△θ1(ω),e− j△θ1(ω), ...,e− j△θN(ω)]T (2.44)

As detailed by Wölfel and McDonough (2009) that the optimal solution to the beamfomring
parameters for MVDR is

w∗
mvdr(ω) = Λ(ω)v∗(ω)Σ−1

N (ω) (2.45)

Λ(ω) ≜
[
v∗(ω)Σ−1

N (ω)v(ω)
]−1

(2.46)

where ΣN(ω) is the spatial covariance of the background noise. Similar with the speech
component, denote the spectrum of noise component recordings from multiple microphones
as n(ω), then the spatial covariance of the background noise is

ΣN(ω) = E
[
n(ω)n∗(ω)

]
(2.47)

where E[·] refers to expectation operation.

One variant MVDR beamformings is the super-directive beamforming (SDBF) which
improves the directivity of MVDR at low-frequency. This is achieved by replacing the
spatial spectral matrix ΣN(ω) with the coherence matrix ΓN,m,n(ω) corresponding to a
diffuse noise field:

ΓN,m,n(ω) = sinc
(

ωdm,n

c

)
(2.48)

where dm,n is the distance between the m-th microphone and n-th microphone in the
microphone array and c is the sound speed.

The performance of MVDR could also be improved with postfiltering, i.e. a frequency
dependent weighting to MVDR beamforming output. This has been shown by Wölfel
and McDonough (2009) to lead to another beamforming algorithm, namely the minimum
mean square error (MMSE) beamforming, which optimises the beamforming parameters
by minimizing the overall energy of beamforming output. Details about the derivation
is skipped here and it could be found in the work by Wölfel and McDonough (2009).
Assuming that the noise component and speech component are statistically uncorrelated in
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the distant recordings, the solution to MMSE is

w∗
mmse(ω) = ΣF(ω)v∗(ω)Σ−1

X (ω) (2.49)

where ΣF(ω) is the power spectral density of the distant recordings (Wölfel and Mc-
Donough, 2009).

There are many more classical beamforming algorithms than those mentioned above.
They are skipped here and more details could be found in the work by Wölfel and Mc-
Donough (2009).

2.3.5 Environment Robustness with DNN

Recent progress in deep networks has brought new possibilities in improving the environ-
ment robustness of ASR system. One straightforward strategy is to combine the traditional
noise and reverberation robust algorithms with the DNN based system in a pipeline struc-
ture, e.g. the DNN input features are based on the speech enhancement output in the
front-end. The research work by Liu et al. (2014) and Swietojanski et al. (2013) proved
that the wDSB is effective for both the DNN-HMM-GMM system and the DNN-HMM
hybrid system in such a pipeline combination. In the summary of ReverbChallenge 2014
(Kinoshita et al., 2016), it is pointed out that the top recognition performance is achieved
with a combination of speech enhancement, the DNN based acoustic model and advanced
language model. In particular, the combination of GWPE based multi-channel dereverber-
ation and the MVDR beamforming has played an important role in the NTT DSR system
which achieved the best performance in both the ReverbChallenge 2014 (Kinoshita et al.,
2016) and the third CHiME challenge (Barker et al., 2016).

An early research by Zuo et al. (2003) constructed a robust telephone speech recognition
system with simulated data. When the system was evaluated on real data, it achieved
the same performance with the system trained on real data using the same algorithms.
However after that for a long time there is very limited report on similar applications
in robust speech recognition. One breaking finding in ReverbChallenge 2014 is that
an average DNN based system could achieve similar or much better performance than
DNN free system equipped with multiple speech enhancement algorithms and with model
combination (Kinoshita et al., 2016). In addition, compared to traditional front-end and
GMM, DNN is found capable of adapting to a variety of training data properties, potentially
due to its mathematical nature of being a universal function approximator (Hornik et al.,
1989). These advantages of DNN brought back the research interest in using simulated data
to enhance acoustic model in a way of multi-condition training, or multi-style training. To
perform multi-condition training, the original training data is extended with a large amount
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of extra training data simulated by distorting the original training data with different types
and levels of noise and reverberation. The augmented training data and the original training
data are mixed and randomized before optimising the DNN parameters in a standard way.
The multi-condition training of DNN with the augmented simulated data is proved to be
very effective in increasing the robustness of DNN against both the background noise and
the environment reverberation in the third CHiME challenge (Barker et al., 2015).

One particular challenge in the application of DSR is the unpredictable diversity of
user environment in terms of both the background noise and the environment reverberation.
It is hardly possible to cover all test conditions even with the simulated data and with
an unlimited computation resource. Compared to most traditional reverberation robust
algorithms whose benefit is yet to be confirmed in the state-of-the-art DSR systems with
deep networks, the multi-condition training is gaining more and more popularity due
to its simplicity in implementation and its effectiveness widely observed in application.
However this effectiveness in improving overall recognition performance is at a price of
compromising the best performance in the conditions with little or no background noise
or environment reverberation (Brutti and Matassoni, 2016). Therefore, a few research
works propose to use an environment classifier, based on which the most proper acoustic
model is selected for decoding (Brutti and Matassoni, 2014, 2016). In this way it is
possible to maintain the best performance in each condition without losing the overall
performance robustness. In such a system, a list of acoustic models are needed to cover a
wide range of test environment conditions. In addition, the accuracy of the environment
classification plays a key role in the whole system. Therefore, research effort has been
devoted in the reverberation metrics and non-intrusive reverberation estimators which have
a high correlation with speech recognition performance (Brutti and Matassoni, 2014, 2016;
Parada et al., 2016; Parada, Sharma and Naylor, 2014).

In a few research work, it is found that feeding meta information at DNN input
as auxiliary features concatenated with the standard features could also improve the
robustness against particular types of noise and room reverberation. The noise aware
training proposed by Seltzer et al. (2013) augmented the standard features with the noise
modelling parameters in the DNN input to achieve better noise robustness, and the room
aware training proposed by Giri et al. (2015) found that within limited test conditions even
room ID could serve as a beneficial auxiliary feature.

Deep networks also make it possible to directly combine the multi-microphone record-
ings at feature level or signal level. It was first proved in the DNN-HMM hybrid system by
Swietojanski et al. (2013) and in the DNN-HMM-GMM system by Liu et al. (2014) that
simply concatenating features from multiple microphone channels at the DNN input could
achieve a similar or better performance compared to wDSB, when the number of micro-
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phone channel is not large. Since then, more research effort has been devoted to utilizing
deep networks to perform beamforming-like function with multi-channel recordings. The
advantage of such a structure is its potential in joint optimisation of the beamforming-like
front-end and the acoustic model DNN, i.e. merging the optimisation of front-end with
acoustic model which has been traditionally separated in two parts for engineering reasons.
This philosophy leads to a variety of recent research work on the deep-beamforming (Xiao
et al., 2016) and the end-to-end system (Sainath et al., 2015) for DSR.

Recent research progress also suggests the potential of further robustness improvement
with novel deep networks and novel combination of deep networks. The convolutional neu-
ral network (CNN) is found effective for multi-channel based DSR. In the implementation
by Swietojanski et al. (2014), the CNN filter weights are shared among multiple channels,
and within each channel different filter weights and biases are allowed for convolutional
bands. Yoshioka et al. (2015) examined the convolution in time and found that CNN could
model the short time correlations in feature vectors with fewer parameters compared to
DNN, thus achieving better generalization to unseen test environments. In addition, it is
found by Yoshioka et al. (2015) that the performance improvement from CNN over DNN
is complementary to the improvement from the traditional multi-channel dereverberation
algorithm GWPE.

Both the system by Swietojanski et al. (2014) and Yoshioka et al. (2015) coupled CNN
with follow-up DNN where all elements are fully connected. Recent research suggests that
using multiple layers of CNN to make a very deep convolutional neural network structure
(VDCNN) further improves the noise robustness compared to using shallow CNNs (Qian
et al., 2016). Besides the increase in the overall number of CNN layers, two or more
convolutional layers are adopted between every two pooling layers. Such a VDCNN-HMM
hybrid acoustic model is found to provide similar performance with the LSTM-RNN based
acoustic model in DSR of meeting data.

2.4 Reverberation Metric and Reverberation Measurement

Reverberation measurement was first used in the acoustic and physical research and
applications. With recent progress in speech recognition, more and more interest is drawn
to improving DSR performance in domestic applications which are typical for having
reverberant environments. Since DNN is more sensitive to the mismatch between training
data and test data compared to the traditional front-end and the GMM based acoustic model,
research effort has been devoted to increasing the robustness of DNN with multi-condition
training that covers a wide range of environment conditions (Barker et al., 2015). However



32 Background

this is at a price of the best performance in data with little or no environment distortion.
Therefore some researchers turn to model combination and model selection to maintain
the best performance in each environment condition without compromising the overall
robustness. For model selection to be effective on recordings from diverse reverberant
environments, a reliable estimation of the reverberation level in given recordings is critical.

The early reverberation metrics used in speech recognition are from acoustics. The
most popular example is the reverberation time, or T60. It is the time it takes for the acoustic
energy in the room to decay for 60 dB since an abrupt stop of the sound source from a
steady acoustic status. A steady acoustic status refers to the status where the acoustic
energy steadily produced by the sound source equals the acoustic energy absorbed or
consumed in the concerned environment. Therefore T60 is an indication of the average
room acoustic property (Bradley, 2011). Sabine’s reverberation equation provides an
engineering method to estimate the reverberation time of a room given the room geometry
and the acoustic absorption coefficients of acoustic boundaries such as walls, ceiling, floor,
window, etc. When using an RIR to approximate the reverberation effect of a room, T60

could also be estimated from the energy decay curve of RIR. With a higher level of room
reverberation, it takes longer for the acoustic sound to vanish, resulting in a smaller tilt in
the energy decay curve thus a larger T60.

Later research on reverberation metrics paid more attention to the impact of sound
reflections on speech perception in reverberant environment. Some research work pointed
out that early reflections and late reflections play different roles in the reverberation
perception by human as well as in the reverberation distortion on speech recognition.
According to Haas (1972); Shankland (1977), the early reflections play an important role
in human perception of room acoustic quality, as it introduces a colouration effect which is
suggested to have a positive impact on the human intelligibility of speech with an effect
similar to increasing the strength of direct-path sound, therefore increasing the effective
signal-to-noise ratio (SNR) for both the impaired and non-impaired listeners (Bradley
et al., 2003; Hu and Kokkinakis, 2014). This is particularly helpful in the scenarios where
the direct sound is weak, for example when the talker’s head is turned away from the
listener or when the talker speaks at a position torwards the rear of the room (Bradley
et al., 2003; Kuttruff, 2009). While the early sound reflections can be integrated with the
direct sound, the late reflections cannot be integrated with the direct sound thus causing
reverberation smearing (Hu and Kokkinakis, 2014). In addition, the early reverberation is
strongly dependent on the talker and microphone positions as well as speaker-microphone
distance (Bradley, 2011). In comparison, the magnitude of late reverberation decays
approximately exponentially and the decaying rate is independent of talker or microphone
positions (Yoshioka et al., 2012).
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Reverberation time is a statistic metric which does not reflect the difference in the
early reflections among multiple microphone channels placed at different locations in the
room or at different distances to the talker, nor does it reflect the difference between early
reflections and late reflections. Therefore a few reverberation metrics are proposed to
highlight the different roles of early reflections and late reflections. Thiele (1953) proposed
to use Deutlichkeit, the early to total sound energy ratio, to measure the clarity of speech.
It is calculated as the energy ratio between the early reflections and all the reflections when
the early reflections are defined to be the sound reflected within 50 ms after the arrival of
direct sound, i.e.

D50 =
∑

N50
n=1 h(n)2

∑
N
n=1 h(n)2

(2.50)

where h = [h(0),h(1), ...,h(n), ...,h(N)]T is the RIR and N50 refers to the discrete time
index corresponding to 50 ms after the arrival of direct sound. In many literature the direct
sound is included in the calculation of the early reflection energy, as in the RIRs measured
from real rooms it is usually difficult to accurately separate the direct sound from the early
reflections. Due to similar reasons, such energy ratio based speech clarity is also referred
to as the direct-to-reverberation ratio (DRR).

Later C80 is proposed as a measure of clarity for musical sound and its variant C50 is
preferred to measure the clarity for speech sound (Bradley, 2011):

C80 = 10log
(

∑
N80
n=1 h(n)2

∑
N
n=N80+1 h(n)2

)
(2.51)

C50 = 10log
(

∑
N50
n=1 h(n)2

∑
N
n=N50+1 h(n)2

)
(2.52)

where N80 refers to the discrete time index corresponding to 80 ms after the arrival of
direct sound. In some literature, speech clarity C50 is also extended into a category of
reverberation metric early-to-late reverberation ratio (ELR) (Brutti and Matassoni, 2014):

ELRT =
∑

NT
n=1 h(n)2

∑
N
n=NT+1 h(n)2

(2.53)

where T indicates the boundary between early reverberation and late reverberation. Thus
C50 and C80 can also be extended into

CT = 10logELRT . (2.54)
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Both C50 and D50 have been listed as the recommended metrics for speech clarity by
ISO 3382-1 (Bradley, 2011). Existing research observes that the speech clarity is sensitive
to the location of both the sound source and the recording microphone. As the distance
between the sound source and the recording microphone increases, both C50 and D50

decrease. In the measurement performed in real rooms by Harvie-Clark and Dobinson
(2013), it is observed that C50 is slightly larger when the sound source is located at the
corner of the room compared to being located next to the middle of one wall, and in both
cases the sound source faces the center of the room.

A few recent research work has investigated the correlation between the reverberation
metrics and the speech intelligence. Sehr et al. (2010) analysed the correlation between the
attenuation in RIR coefficients and the recognition accuracy using simulated data. Their
work provided an experimental support for using reverberation metric D50 to predict the
speech recognition performance on data of various reverberation levels. Parada, Sharma
and Naylor (2014) compared T60, DRR, D50 and C50 regarding their correlation with human
speech perception via the speech quality score “perceptual evaluation of speech quality”
(PESQ), and the C50 is found to provide the highest correlation among all. In addition, a
further investigation on the boundary between early reflections and late reflections in ELR
confirmed that using 50 ms as the boundary provides the highest correlation between ELR
and PESQ score.

The ELR based reverberation measurement results over a large amount of data have
also been observed to provide a high correlation with the speech recognition performance,
and are thus employed for acoustic model selection in DSR (Brutti and Matassoni, 2016;
Parada et al., 2015). However there are different opinions regarding the optimal boundary
between early and late reverberation in ELR that provides the highest correlation with
speech recognition performance. The 50 ms has been confirmed a good boundary between
early and late reflections for human speech perception (Bradley, 2011; Parada, Sharma
and Naylor, 2014), however Brutti and Matassoni (2014) found that using 110 ms in ELR
calculation, namely the C110, provides a higher correlation with the word recognition
accuracy than the C50, independent of the recognizer complexity. In further research by
Brutti and Matassoni (2016) on the state-of-the-art speech recognition system based on the
DNN-HMM hybrid acoustic models, the C110 is observed to provide a high correlation with
the performance of large vocabulary continuous speech recognition on different evaluation
data from Aurora 4 (Parihar et al., 2004), the third CHiME challenge (Barker et al., 2015),
and ReverbChallenge 2014 (Kinoshita et al., 2016).

The high correlation between reverberation the metric ELR and the speech recognition
performance boosted further research on using estimated reverberation level to improve
DSR performance. Parada et al. (2015) explored several methods that use C50 to improve
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the speech recognition performance on the ReverbChallenge data. The C50 value has
been appended directly to ASR features, with an optional feature dimension reduction via
heteroscedastic linear discriminant analysis (HLDA). It is found that appending C50 slightly
improves the speech recognition performance when HLDA is used, and the improvement
is relatively robust against the C50 estimator. In addition, multiple acoustic models can be
prepared with the simulated data corresponding to different C50 value ranges, so that at
test stage acoustic model could be selected based on the C50 of test data. According to
Brutti and Matassoni (2016), C110 is also effective for such acoustic models selection in
large vocabulary continuous speech recognition systems with either HMM-GMM based
acoustic models or DNN-HMM hybrid acoustic models. Compared to the multi-condition
training, model selection achieves a better balance between the overall robustness and the
best performance at each reverberation level.

Since the calculation of ELR is dependent on RIR, research has been conducted on
blind reverberation level estimation without RIR. Parada, Sharma and Naylor (2014)
applied a classification and regression tree (CART) on features concatenating utterance-
level short term features and long term features for a non-intrusive estimation of C50. The
short term features include the mean, variance, skewness, and kurtosis of spectrum per
utterance, as well as the zero crossing rate, speech variance, pitch period, the importance-
weithed SNR (iSNR), variance and dynamic range of Hilbert envelope, etc. (Sharma et al.,
2010). The long term features include 16 frequency bins of the long term average speech
spectrum deviation and unwrapped Hilbert phase (Sharma et al., 2010). Later Parada,
Sharma, Lainez, Barreda, Naylor and Waterschoot (2014) used a deep belief network
(DBN) initialised with the sparse autoencoder as a regression function to learn the C50

from training data, and the DBN based estimator was found to outperform the CART and
linear regression based estimators. Parada et al. (2016) further employed bidirectional long
short-term memory (BLSTM) recurrent neural network (RNN) to provide a frame level
blind estimation of C50, and the performance is found to be better than the DBN based
estimator on both the simulated data and real data. Since the estimation result per frame
can be quite noisy, an average over the output from multiple frames helps to reduce the
estimation error, and an average over 200 frames is found to achieve the same estimation
accuracy with using all the data from the same test reverberant condition (Parada et al.,
2016).
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This chapter explains the motivation of the research work to present in the rest chapters.
It starts with Section 3.1 which highlights the lack of natural spontaneous speech recorded
with multi-microphones and multi-media to provide rich information for research. Section
3.2 revisits the importance of analysing the ASR performance degradation from using the
headset recordings to using the distant recordings of human-to-human natural spontaneous
speech. As reverberation is a very challenging factor in DSR, Section 3.3 emphasizes
that the negative impact of reverberation on ASR should be quantified with a method that
focuses more on the feature pattern distortion than the signal quality degradation. Section
3.4 further suggests an exploration work on estimating the negative impact of reverberation
on ASR by taking into account both the room properties and the speech sound properties.

3.1 Natural Spontaneous Speech Recordings with Rich
Information

With the progress in speech recognition in recent years, there are more and more commer-
cial applications exploring the potential of ASR as an artificial-intelligent personal assistant,
such as Apple Siri, Microsoft Cortana, Google voice, etc. Though the commercial products



38 Motivation

such as Amazon Echo have proved users’ interest in using the distant speech recognition
(DSR) to facilitate daily life, for a long time the majority of commercial exploration has
been limited to using close-talking recordings due to the limited research progress in DSR.
Recently, the recognition performance based on close-talking recording has reached a
record high level, as competitive as human performance (Saon et al., 2016). In comparison,
the performance gap remains between using close-talking recordings and using distant
recordings.

Compared to the speech recognition based on close-talking recordings, the challenges
in DSR mainly come from three aspects: reverberation, background noise and overlapped
speech. Recent improvement in DSR performance mainly comes from the overall per-
formance boost by the various deep networks and deep structures, while the three main
challenges in DSR are still not fully addressed. Therefore there are two major targets for
DSR research. The first target is to improve the robustness of speech recognition models
on distant recordings, thus shortening the gap of recognition performance between using
close-talking recordings and using distant recordings. The second target is to improve the
DSR performance on real natural data. The first target has always been the research focus
of DSR in the past and current research. In comparison, the second target is only realistic
very recently with the record low word error rate (WER) in the close-talking recording
based speech recognition. For both targets, research progress has so far benefited and will
carry on benefiting from the multi-microphone speech recordings with rich information.

As reviewed in Chapter 2, it has been observed that the multiple distant microphone
(MDM) based recordings provide better performance than the single distant microphone
(SDM) based recordings in various DSR research areas. For dereverberation, MDM
recording has been proved by Miyoshi and Kaneda (1988); Nagata et al. (2004) to have
a theoretic advantage than the SDM recording when there is no common zeros among
the room impulse responses (RIRs) measured with the recording microphones. One
typical multi-channel dereverberation algorithm, the generalized weighted prediction error
(GWPE), utilizes an autoregressive model to predict and to remove the late reverberation
based on truncated history complex spectrogram in the MDM recordings (Yoshioka and
Nakatani, 2012). The dereverberation algorithm can be combined with beamforming
algorithms which further improve the DSR robustness with the MDM recordings from
three aspects: suppressing the background noise, suppressing part of the reverberation
smearing distortion, and enhancing speech signal arriving from the specific direction.
When the competing talkers have different geometric locations, e.g. in different angles to
the microphones, the MDM recordings make it possible to realise the speaker tracking
based on source localization (Marković and Petrović, 2010; Sturim et al., 1997; Valin
et al., 2004, 2006; Vermaak and Blake, 2001), which has been shown to be more effective
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than speaker tracking using the SDM recordings only. This is because the frequently
adopted speaker tracking strategies on the SDM recordings are based on speaker dependent
features such as pitch and speaker dependent time-frequency (TF) mask. Such features
can also be implemented on the MDM recordings (Pavlidi et al., 2013) jointly with source
localization for speaker tracking. With the MDM recordings, speaker tracking could be
further combined with beamforming to improve the robustness against speaker movement
(Maganti et al., 2007).

Besides the MDM recordings, the rich information collected with multiple microphone
arrays and multiple recording media has also been proved beneficial in improving the DSR
performance. For example, it has been proved that the speaker tracking performance could
be improved with simultaneous recordings from multiple microphone arrays (Ma et al.,
2006; Potamitis et al., 2004) and synchronised audio-video recordings (Checka et al., 2004;
Gatica-Perez et al., 2007; Maganti et al., 2007; Nakadai et al., 2002; Strobel et al., 2001),
particularly when the speakers are moving while talking.

Recent progress in the feed-forward DNN and other novel deep networks suggests that
the performance of deep networks in DSR can also benefit from the MDM recordings. In
one piece of the author’s early PhD work, it is observed that concatenating the log-Mel
filter bank features from the multiple channels of MDM recordings as the input to the
feed-forward DNN front-end provides similar or even better recognition performance than
the wDSB (Liu et al., 2014). Similar observation was reported by Swietojanski et al. (2013)
in a hybrid structured DSR system where the DNN serves as the acoustic model and the
likelihood is estimated from the DNN output posterior. In a follow-up work by Xiao et al.
(2016), it is found that further improvement could be achieved by jointly optimising the
beamforming coefficients and the DNN parameters. Furthermore in the research by Sainath
et al. (2015), the beamforming and the standard feature pipeline are completely replaced
with various deep networks combined to extract the speech pattern information directly
from the raw signals. From the early work on multi-channel feature concatenation to the
recent work on beamforming with deep networks, there is a large increase in the demand of
data, from the scale of 100 hours to 2000 hours, which also brings an increased demand of
computation resource. As deep networks are by nature data-driven, it can be expected that
further research progress in DSR with deep networks will rely on more MDM recordings.

However there are very limited MDM recordings currently available in the corpora for
research, and they are rarely based on the real natural spontaneous speech but mostly based
on the artificial scenarios, read speech or re-recorded speech. Among the few available
large MDM databases, the AMI corpus (McCowan et al., 2005) and the ICSI corpus (Janin
et al., 2003) are mainly based on planned speech. Existing research corpora rarely allow
natural speaker movement during recording either. The high cost of accurately annotating
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the speaker location with natural speaker movement is one reason for that. In the AMI
corpus and the ICSI corpus, the movement of speakers is largely limited due to the planned
meeting scenario.

In some research, the speaker moving effect is simulated by convolving the clean
headset recordings with the RIRs measured or simulated with different combinations of
microphone locations and loudspeaker locations. The popular RIR corpora that can be
used for such simulation include the multichannel acoustic reverberation databases at York
(MARDY) (Wen et al., 2006), the Aachen impulse response (AIR) (Jeub et al., 2009), the
database of the omnidirectional and B-format room impulse response (Stewart and Sandler,
2010) and the ACE Challenge corpus (Eaton et al., 2015).

Some MDM recording databases promote the speaker location change in the room
by requesting the speaker to read the prompts at a few given locations or by requesting
the speaker to move in a few planned trajectories. One example of such re-read speech
corpus is the MC-WSJ-AV corpus (Lincoln et al., 2005) which has been used in the
ReverbChallenge 2014 (Delcroix et al., 2014). Examples of such corpora include the
DIRHA-GRID (Matassoni et al., 2014) and DIRHA-ENGLISH corpus (Ravanelli et al.,
2015), both of which simulate various sound source locations in multiple rooms with
RIRs measured at corresponding location. The additional background noise is also added
optionally to the simulated data.

To further improve DSR, more research data, especially more MDM recordings of
the real natural spontaneous speech, is of an urgent need. As previously mentioned, the
MDM recordings have been found beneficial for solving all the three aspects of DSR
challenges, namely the reverberation, the background noise, and the overlapped speech.
In addition it is crucial to have the MDM recordings accompanied with the individual
headset microphone (IHM) recordings. As shown by existing research, to provide rich
information it would be even better if the MDM recordings are also accompanied with
the video recordings, multiple microphone array audio recordings and the ground-truth
speaker location tracking. However, there are very limited research corpora that provide the
real natural speech recordings with all these information. In a natural set-up of human to
human conversation, the speakers could move around in the room which causes significant
change in room impulse response (RIR) and reverberation, which dramatically increases
the difficulty in speaker tracking, dereverberation and beamforming.

Recently, the research effort has been devoted to preparing data for a shared platform
to validate and to compare different algorithms, not only on simulated data but also on the
real multi-channel recordings with daily life environment noise. Two examples are the
ReverbChallenge 2014 (Kinoshita et al., 2016) and the third CHiME challenge (Barker
et al., 2015). In the ReverbChallenge 2014, algorithms and systems are validated on both
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the simulated data and the real recordings, in an effort to bridge the DSR performance
gap between using the simulated data and using the real data. The third CHiME challenge
provided the real recordings in a few typical noisy environments in daily life, and the
recording is performed with both the headset microphone and the multiple distant micro-
phones, in an effort to shorten the DSR performance gap on the research data and on the
distant recordings acquired in a real application.

Such databases still fall short in two aspects to represent the real natural human-to-
human spontaneous conversations well. First, it rarely includes a natural speaker movement
even in a domestic environment, because the post-recording annotation of speaker location
is very costly. Second, the existing data is rarely composed of the real natural spontaneous
conversations. This is partly because of the privacy concern in the data collection and partly
because for a long time the average DSR performance is not good enough to polish any
research algorithms on the over-challenging data such as the recordings of real human-to-
human conversations. Recently, with the recognition performance improvements brought
by deep networks, more research interest has been shifted to improving DSR performance
on real and natural data (Barker et al., 2015).

Therefore, the first major contribution of the work to be presented in this thesis is about
collecting the multi-microphone and multi-media real recordings of natural spontaneous
multi-party conversations among native English speakers. The recording of the Sheffield
Wargame Corpora (Chapter 4) is performed in three days in total. The research work is
conducted with the help from Dr. Charles Fox and Dr. Madina Hasan. Relevant research
work has been previously published in Interspeech 2013 (Fox et al., 2013) and Interspeech
2016 (Liu et al., 2016). Dr. Fox has a major contribution in both the hardware and software
design of the recording system. Dr. Hasan prepared the language model for the second
data release in Interspeech 2016.

3.2 Real Natural Spontaneous Speech Recognition: from
Headset Recordings to Distant Recordings

One obvious consequence caused by the lack of the real natural spontaneous speech
recordings is a limited understanding of the weaknesses in the existing DSR systems
on the real natural spontaneous conversations, as well as a good strategy to treat the
multiple weaknesses in practice. With the fast progress in ASR performance on close-
talking recordings thanks to various deep networks and deep structures, it is now of crucial
importance and current interest to gain a better understanding of the weaknesses in the
state-of-the-art DSR systems when they are applied to the real natural spontaneous speech
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recordings. In the long term, this knowledge is very important for reducing the gap between
the human performance and machine learning performance in DSR.

Therefore the second major contribution of the research work to be presented in this
thesis is a thorough analysis of the weaknesses in the DSR of real natural spontaneous multi-
party conversation. This is only made possible with the collected real recordings of natural
spontaneous multi-party native English speech, namely the SWC data. The analysis covers
the techniques based on both the single microphone recordings and multiple microphone
recordings. In addition, the analysis is not only performed on DSR, but also on speech
recognition of headset recordings in the context of real natural spontaneous multi-party
conversation, to bridge the gap between recognition performance using distant recordings
and headset recordings. In addition, the distributed microphones and microphone arrays
at different locations in the room are compared and analysed in terms of recognition
performance with and without multi-channel based enhancement. Details will be covered
in Chapter 5.

3.3 Reverberation Modelling for Distant Speech Recog-
nition

Reverberation is one key factor in the distant speech recordings that impacts the recognition
performance. Therefore research has been conducted on modelling the distortions caused
by reverberation. Different from the background noise which is additive to speech in
the time domain, the reverberation effect is convolutional to the speech signal. Thus
the reverberation effect is frequently approximated with a linear FIR filter in time which
is usually referred to the room impulse response (RIR). This RIR based reverberation
approximation at signal level is a widely adopted reverberation model for its high accuracy
in reconstructing the reverberant signal.

The RIR is very sensitive to any changes in the room arrangement, microphone location
and speaker movement. Therefore further research effort has been devoted to the RIR
modelling. The early work on RIR modelling is conducted based on room acoustics. The
image source method (Kuttruff, 2009) is such an example. It simulates the RIRs in an
empty room by replicating the sound reflection process in a simplified way, given the room
geometry information and the average acoustic absorption coefficients of the acoustic
boundaries. The image source method is good for approximating the reverberation effect of
shoe-box shaped rooms, however it cannot simulate any spatial asymmetric effects caused
by the furniture arrangement, nor is it a good option for rooms of irregular shapes. This is
because the increase in the number and the geometric complexity of acoustic reflection
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surfaces will dramatically increase the complexity and the computation cost of the image
source model. Therefore the RIRs simulated with the image source method are very
different from those measured in the real occupied rooms. Due to the simplification in the
room configuration, the simulated RIRs tend to be over-simplified compared to measured
RIRs, particularly regarding the colouration of the early reflections, the impact of the
talking direction and the microphone directivity. Later Polack (1988) proposed to model
RIRs by its statistic properties. This method is further extended by Doire et al. (2015) using
an exponentially decaying statistic process to approximate the early reflections, or early
reverberation, along with a smooth transition between the modelling of early reflections
and late reflections in RIR. In this way the statistic methods reflect the reverberation level
and the actual RIR coefficients are generated by a stochastic process. As a consequence
the RIRs modelled statistically can only reflect some properties of the target reverberant
environment while it cannot accurately reconstruct the signal or the feature patterns of
reverberant recordings. The RIRs constructed with RIR modelling methods can hardly be
used directly for reverberation treatment, mostly because of their difference to the RIRs
measured in real environments. Instead, the RIRs can be used to simulate diverse data for
the multi-condition training of the DNN acoustic model or the DNN front-end to increase
the reverberation robustness.

The RIR parameters are usually optimised to reconstruct the reverberant speech signal
rather than the patterns in reverberant speech features. Compared to the patterns in the
speech features, the speech signal is more sensitive to the acoustic change in the reverberant
environment and in the recording channel. Therefore the RIRs are also more sensitive
to any acoustic change than the patterns in speech features. This is because some signal
level variation will be normalised during feature generation. Therefore further research on
reverberation modelling has been devoted to directly model the impact of reverberation on
speech recognition features. Sehr and Kellermann (2008, 2009) modelled reverberation as
a linear distortion on Melspec features. In that work, the Melspec features of reverberant
signal are approximated with a convolution of an FIR filter and the Melspec features from
the corresponding headset recordings, and the convolution is performed independently in
each Mel frequency band. This reverberation modelling is not accurate analytically. As
shown in Fig. 1 from Sehr and Kellermann (2008) and Fig. 1 from Sehr and Kellermann
(2009), such a reverberation model leads to an over-simplified feature pattern structure.

Theoretically there are three advantages in the feature level reverberation modelling
compared to the signal level reverberation modelling. First, the parameter dimension is
reduced. Second, the parameter value can be less sensitive to the acoustic variation. Third,
the modelling performed on speech features can be more aligned with the recognition
tasks. However the existing feature level reverberation modelling could not accurately
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construct the feature patterns of reverberant recordings. In addition, there is very limited
research on the temporal variation of reverberation caused by the acoustic environment
change which is one important source of reverberation modelling errors in real applications.
As a result, there is very limited advantages of the existing feature level reverberation
modelling compared to the signal level reverberation modelling, in terms of improving
DSR performance.

The research work to be presented in Chapter 6 will focus on improving the rever-
beration modelling accuracy for speech recognition tasks. To achieve that, the impact
of reverberation on the speech complex spectrogram is first investigated for a better un-
derstanding of the reverberation distortions in spectrogram which further leads to the
feature smearing. Based on the analysis, the reverberation modelling is proposed in the
complex spectrogram domain and it is evaluated in speech recognition tasks. In addition,
the reverberation modelling parameters are analysed regarding the reverberation variation
caused by speaker movements and the change in microphone installation.

3.4 Signal Aware Reverberation Measurement

The DNNs and the relevant variants of neural networks are widely employed in state-of-
the-art speech recognition systems. They share a common property that the topological
structure of neurons inside the deep networks is highly symmetric and replicative. This
provides a lot of flexibility to the overall deep networks in adapting to different tasks and
input features. However one drawback of such data-driven models is that its dependence
on training data leads to an increased sensitivity to the training-test mismatch, particularly
when the test data has some properties not well covered by the training data. In DSR
applications it is very likely that the test data has some environment properties different
from training data in terms of both reverberation and background noise. As reviewed in
Section 2.3, progress has been made in improving DNN robustness against the background
noise via noise aware training (Seltzer et al., 2013). In comparison there is very limited
progress in improving the robustness of DNN against reverberation and reverberation
variation in real data. Instead, there is increased interest in using diverse data to improve
the robustness of DNNs via multi-condition training (Barker et al., 2015). However the
multi-condition training is not perfect and it improves the overall robustness at a price
of degrading the performance on relatively clean data and the performance in conditions
with little training data. To address this problem in multi-condition training, research
has been conducted on the data selection at training stage and the model selection at test
stage according to the reverberation level of the speech recordings (Brutti and Matassoni,
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2014, 2016). For this purpose, reverberation measurement becomes critical in avoiding the
training test mismatch for DNNs.

Brutti and Matassoni (2014, 2016) have shown that the model selection and the model
combination based on an estimated reverberation level improve the recognition perfor-
mance in the adverse conditions without compromising the recognition performance in
the other conditions. However Parada et al. (2016) pointed out that there is large variation
in reverberation level estimation results for short recordings, particularly those with less
than 0.5 seconds of speech. Parada et al. (2016) proposed to improve the reliability of
reverberation level estimation by averaging the results over more data. However this
strategy will inevitably increase system latency in applications.

“Reverberation measurement”, in this work, refers to estimating the level of reverbera-
tion distortion in the speech patterns. In contrast, in most of the literature the reverberation
measurement refers to estimating the reverberation level of the reverberant environment
and the distant recording channel. Existing methods for the reverberation measurement are
rarely designed for pattern recognition task in the first place. Instead, most existing meth-
ods have been developed directly or indirectly from the reverberation metrics that reflect
the behaviour of sound energy decay from an acoustic point of view. The reverberation
time T60 and the speech clarity C50 are two such reverberation metrics that are frequently
used.

In addition, the existing reverberation measurement targets on the reverberation level
of the environment and the distant recording channel. While T60 and C50 can be estimated
from the RIR, research has also been conducted on the non-intrusive reverberation level
estimation. In comparison with the intrusive reverberation level estimation, the non-
intrusive methods do not rely on RIR. Since the human perception of the reverberation
level in a small piece of speech recording is quite inaccurate, the human annotation on the
reverberation level varies a lot by individual difference and recording content. Therefore
the non-intrusive methods usually employ the RIR based objective reverberation metrics
as a reference during the parameter optimisation using the simulated reverberant speech
data. As a consequence, the non-intrusive methods inherit one property from the acoustics
based reverberation metrics, i.e. the measurement results tend to reflect the reverberation
level of the environment. Therefore, the existing reverberation measurement hardly aims
at estimating the reverberation distortion level in the speech feature pattern.

As mentioned, existing methods have been focusing on estimating the reverberation
level rather than the reverberation distortion level, as the reverberation level is only environ-
ment dependent while the reverberation distortion level is both environment dependent and
signal dependent (Kokkinakis and Loizou, 2011). The difference between the reverberation
level and the reverberation distortion level is not obvious when the measurement is con-
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ducted on a large amount of data. However there are some applications that favour short
utterances for low latency reverberation measurement based model selection at utterance
level. In such applications the difference between reverberation level and reverberation
distortion level can be amplified by the limited types of sound patterns in the very short
speech recordings. Such short recordings can be one phrase of less than 2 seconds or one
speech utterance of less than 4 seconds. As pointed out by Assmann and Summerfield
(2004), different speech sounds have different levels of robustness against the reverberation
distortion and the background noise, mainly due to the phonetic pattern structure. Such
signal dependent differences could cause a mismatch between the reverberation level and
the reverberation distortion level, which is not considered in any all signal independent
reverberation metrics.

For example, Assmann and Summerfield (2004) pointed out that the stop consonants
are brief in duration and low in intensity, making them particularly susceptible to masking
by noise and temporal smearing via reverberation compared to vowels. From the pattern
recognition point of view, when the speech signal is distorted by reverberation during
recording, the stop consonants have a higher level of reverberation distortion than the
vowels. Such slight difference between reverberation level and reverberation distortion
level can be amplified by the limited sound pattern types in very short speech recordings.
However given the same RIR, signal independent reverberation metrics would suggest
that the same reverberation level regardless of signal properties. As a result, the signal
independent reverberation metrics and the non-intrusive reverberation level estimators
could not provide a reliable estimation of the reverberation distortion level in the speech
sound patterns. In speech recognition tasks, compared to the training data selection and
the acoustic model selection based on reverberation level, a better selection strategy is
based on the distortion level of speech sound patterns. Therefore the existing methods
estimating the reverberation level could be suboptimal for the data and model selection,
particularly when the selection is performed based on the reverberation level estimated
over short utterances.

There is a further issue in the existing reverberation level estimators, as most of
them are based on the early-to-late reverberation ratio (ELR): the dispute of the optimal
boundary between early and late reverberation. So far the partition boundary has been
empirically determined via experiments, and different optimal partition boundaries have
been concluded from the experimental research work conducted on different data and in
different tasks. Parada, Sharma and Naylor (2014) achieved the best correlation between
the ELR and the phoneme recognition accuracy, as well as the best correlation between
the the ELR and speech quality score in perceptual evaluation of speech quality (PESQ),
using 50 ms as the boundary in ELR calculation, or C50. This finding led to further work
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on non-intrinsive estimation of reverberation score based on C50 by Parada et al. (2016). In
comparison, Brutti and Matassoni (2016) later observed that using 110 ms as the boundary
provides a higher correlation between the ELR and the word recognition accuracy, namely
C110. The potential difference in data and algorithms is not discussed by the mentioned
work, and there is not theoretical support for the optimal boundary in partitioning the early
and late reverberation in the context of speech recognition. In many applications, 50 ms is
still widely adopted as the boundary between the early and late reverberation mostly out of
empirical reasons (Bradley, 2011; Xiong et al., 2014; Yoshioka et al., 2012).

The research work to be presented in Chapter 7 covers the very first research effort
on taking the signal properties into account when estimating the level of reverberation
distortion on speech sound patterns in DSR tasks. Based on the analytic work of reverber-
ation modelling in Chapter 6, the proposed novel method adopts a polynomial structure
which is free from the early-late reverberation partition issue. In addition, inspired by
the phonetic analysis on reverberation distortion by Assmann and Summerfield (2004), a
novel reverberation partition based on the distortions is explored regarding its potential in
improving the estimation accuracy of reverberation distortion level.
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Distant speech recognition (DSR) has gained a wide research interest and industrial
demand for its essential role in providing a natural interface for the advanced technology
in the artificial intelligence and machine learning. Powered by big data and the compu-
tation speed-up from the graphic processing unit (GPU) in recent years, the DNNs have
contributed significantly to the performance improvement of automatic speech recogni-
tion (ASR) in various configurations and tasks. While the overall ASR performance is
still improving, the WER gap between using close-talking recordings and using distant
recordings still remains. One important reason that hinders the research progress in DSR
is the amount of available research data, namely the distant speech recordings, particularly
the multiple distant microphone (MDM) based speech recordings accompanied with close-
talking recordings. Existing research has widely observed that using the MDM recordings
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in DSR outperforms using the single distant microphone (SDM) recordings. However the
available real MDM recordings of natural speech for research is of a much smaller amount
compared to the SDM recordings.

This chapter covers one major contribution of the author’s work on the Sheffield
Wargame Corpora (SWC), a database of real natural spontaneous conversational speech
recorded with multiple distant microphones from multiple microphone arrays, accompanied
with the headset speech recordings, the video recording and the speaker location tracking.
The work on SWC recording is presented from four aspects: data collection design and
recording configuration (Section 4.1), the statistic analysis of the data and data transcription
(Section 4.2), the specially prepared text data for language model (LM) training (Section
4.3) and the baseline speech recognition performance using the state-of-the-art ASR
architectures (Section 4.4).

4.1 Data Collection Design and Recording Setup

The ASR performance on real natural human-to-human conversational speech is always of
wide interest. While the research progress with the deep network based acoustic model is
highly dependent on the amount of available data, the existing recordings of real natural
human-to-human conversational speech are very limited for open research. A major issue
with collecting naturally occurring spontaneous conversational speech data is the concern
on privacy. The cost of transcribing and annotation can be high, but the privacy involved
inevitably in the natural conversational discussions is even more difficult to address. As
a result, most speech data collection is based on the rehearsal speech or the read speech
(Barker et al., 2015; Lincoln et al., 2005). In the SWC recording, the privacy infringement
is minimised by setting the recording in a table-top strategic game: the Warhammer 40K
(Fig. 4.1).

Even though table-top game is a rare topic for speech corpus collection, it has a few
advantages besides the privacy protection. First, it involves a heated discussion among
the members of one team about the strategies to beat the other team. Second, the game
is played by participants moving figurines around on the table based on the rules and the
dice-throwing results. As a consequence, there is a continuous body movement while the
players are speaking naturally and spontaneously. This can represent a typical scenario of
the domestic multi-party social conversation. Third, it is a topic sufficiently interesting to
the recording participants and they could keep playing and producing the speech data for as
long as 10 hours non-stop. With this topic, it is possible to collect a large amount of speech
data very quickly. Fourth, this game has both the online version and the table-top version,
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Fig. 4.1 SWC1 recording.

and the recording participants are used to both of them. The online version requires players
to wear headsets. Therefore the participants are very used to speaking naturally with
the headsets during recording. Unlike the rehearsal speech or the read speech where the
speakers are subject to nervousness thus producing un-natural speech, this game ensures
speech naturalness in recording. Therefore, the table-top game Warhammer 40K is chosen
as the recording topic after comparing with other topics and evaluating many aspects.

The recording is conducted in three days in total. The first day recording (SWC1)
was performed in 2012, the second day recording was in 2014 (SWC2) and the third day
recording was in 2015 (SWC3). The recordings of the first two days contain native English
speech from male speakers only, mainly due to the fact that most Warhamer 40K players
are male. To address the gender bias issue, the third day recording is set up to be a tutorial
scenario, where female players are trained to play the game under the guidance from one
experienced player who is the tutor of each team. Therefore, each game of the first two day
recordings, i.e. SWC1 and SWC2, has four male participants from two teams. In SWC3,
there are six participants for each game in two teams, each team having one male tutor and
two female players. Each game lasts for 1-2 hours. For long games, the recording pauses
in the middle of the game to avoid overloading the recording hardware and software. Such
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Fig. 4.2 SWC - 20 shared distant microphones among three recording days (top-down
view).

a continuous recording is further referred to as a “session”, and one game has one or two
recording sessions.

At the beginning of each recording session, a clap board is used to provide a manual
synchronisation for the audio recordings from multiple microphone arrays and the video
recordings from multiple cameras. The participants are requested to stand at four corners
of the table and provide one brief description in turn about their headset number, their
dress and their roles in the game (Fig. 4.1). This helps to correct the unexpected problems
in synchronising multi-channel and multi-media recordings in the post-recording data
processing. Most sessions in SWC1 and SWC2 only have the four players in the recording
area and each of them wears a headset microphone for close-talking speech recording. A
few sessions have some invited viewers in the recording area, to watch the game and to
interact with the players (Fig. 4.1). There is no close-talking speech recordings of such
viewers. In SWC3, besides four female players all sessions also have two male tutors in the
recording area. There is no close-talking speech recordings of the two extra male speakers
either, thus their speech is not annotated or transcribed.

The recording system is composed of three parts: the audio recording, the video
recording and the speaker location tracking. For audio recording, there are 24 microphones
shared among the recordings of all three days - 4 headset microphones and 20 distant
microphones. The geometry of the 20 distant microphones is shown in Fig. 4.2. There are
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Fig. 4.3 SWC2 recording.

8 microphones placed on the table forming a circular array (“TBL1-*”), 8 microphones
hanging from the grid forming a group of distributed microphones (“GRID-*”), and 4
microphones distributed in the room and adhered to the wall (“WALL-*”). All the 20
distant microphones are hyper-cardioid AKG C417/III vocal condenser microphones, and
the headset microphones are all wireless with Sennheiser EW100 microphones of cardioid
directivity. Overall the 24 microphone channels are sample synchronised using an all-Linux
setup. The audio recording sampling rate is 48 kHz, and the 16 bit A/D conversion is
realised by the MOTO 8 Pre’s, linked by firewire 400 and FFADO drivers to the JACK
middleware on a Ubuntu Studio desktop PC, streaming audio data direct to hard disc. Full
details of the sample-synchronous recording setup can be found in the publication by Fox
et al. (2012).

In SWC1 and SWC2, there are other distant microphone arrays but they are not
equipped in SWC3. In SWC1 and SWC2, the audio recordings from such microphones are
manually synchronised with above 24 shared microphone channels in the post-recording
data processing. In SWC1, there is an omnidirectional 32-channel Eigenmike sphere array
(diameter: 8.4cm), five 8-channel microphone circular arrays using analogue and digital
MEMs microphones, all placed on the table along the central line. Among the five MEMs
microphone arrays, there are two arrays of analogue MEMs microphones with a diameter
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of 20 cm and 4 cm respectively, and three arrays of digital MEMs microphones, two of
which have a diameter of 4 cm and the third has a diameter of 20 cm. In SWC2, extra
audio recordings are available from an Eigenmike array and a Microcone array which is a
circular digital MEMs microphone array with a diameter of 4 cm. The MEMs microphone
array and the Eigenmike array are shared between SWC1 and SWC2. Only part of Session
1 in SWC2 has Eigenmike recordings available due to a software failure. The Microcone
array has 6 microphones in a circular array (diameter: 8 cm), with the seventh microphone
pointing right up to the ceiling. The MEMs microphone array is situated on the table while
Microcone array is located next to a boundary panel at recording area, as shown in Fig.
4.3.

For video recordings, four cameras have been used in total. In SWC1, there are two
cameras hanging overhead (C1 and C2 in Fig. 4.2) and a 360 degree panoramic PointGrey
Ladybug2 camera on the table. In SWC2, the 360 degree panoramic camera is replaced
with another CCTV camera hanging overhead (C3 in Fig. 4.2). Unfortunately there is no
video recordings usable for SWC3 due to an unexpected technical problem that corrupted
the recording data.

The speaker location tracking is realised with the Ubisense system. The system is
composed of three parts: the tags, the sensors and the server. Four tags are adhered to the
moving objects, i.e. the four headsets mounted on the head of the four players in SWC
recording (Fig. 4.3). Four sensors are installed at the four corners of the recording area
ceiling. The sensors communicate with the tags via radio signal. The radio signal is first
sent by the sensor to the tag, and then the tag sent a unique feedback radio signal to the
sensor. Both the sequences of the original radio signal and the feedback radio signal are
recorded and processed by a computer server. A supervised calibration is conducted before
recording where the Ubisense tags are placed at a few locations with known coordinates
in the room. With a proper calibration, it is possible for the server to accurately estimate
the 3D coordinates of each tag via the time difference of arrival (TDOA) of the feedback
radio signal. This method is more robust than the speaker localization via multi-channel
audio recordings, as there are fewer reflecting sources of radio signal in the recording area
compared to the reflecting objects and surfaces for sound signal. In this way the Ubisense
system could track the real time speaker location in an independent system simultaneously
with the audio and video recording.

Table 4.1 summarizes the recording set-up. As discussed above, the SWC configuration
provides a unique platform to collect the natural native English speech which features
multiple aspects of challenges in DSR: the room reverberation, the naturally occurring
background noise, the overlapped speech, the speaker movement while talking and the
natural spontaneous speech with emotional speech and whisper speech.
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Table 4.1 SWC statistics of transcribed recordings.

SWC1 SWC2 SWC3 overall
#session 10 8 6 24
#game 4 4 3 11

#unique speaker 9 11 8 22
gender M M F&M F&M

#unique mic 96 71 24 103
#shared mic - - - 24

video
√ √

-
√

location
√ √ √ √

Fig. 4.4 Transcribing SWC recordings with multi-channel audio using XTrans.

4.2 Data Statistics, Annotation and Transcribing

The recordings are manually annotated and transcribed with the multi-channel transcribing
tool XTrans1. This tool ensures the transcription quality with its easy access to the
conversation context in the recordings of multiple synchronised headset microphones. A
screen shot of using XTrans to transcribe the SWC recordings is shown in Fig. 4.4. The
utterances are segmented to minimize the within utterance silence, without breaking the
semantic completeness of an utterance based on human perception. The beginning and
ending silence of an utterance are also minimized. The XTrans interface provides a nice
visual and sound combination, so that the transcribers can accurately determine the time
boundary of a speech sound.

1https://www.ldc.upenn.edu/language-resources/tools/xtrans

https://www.ldc.upenn.edu/language-resources/tools/xtrans
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Table 4.2 SWC statistics.

SWC1 SWC2 SWC3 overall
transcribed speech 8.0h 10.5h 6.1h 24.6h

#speech utt. 14.0k 15.4k 10.2k 39.6k
average duration per utt. 2.1s 2.5s 2.2s 2.2s

#word per utt. 6.6 7.9 5.5 6.8
vocabulary 4.4k 5.7k 2.9k 8.5k

As mentioned in the previous section, the game topic used in SWC recording highly
encourages discussions. After cleaning up, in total there are 24.6 hours transcribed speech
from the raw recordings conducted in three days. Fig. 4.5c shows the amount of data per
speaker. Due to the set-up, there is more male speech data than female speech data. For the
same gender, there is a variation in the amount of data per speaker because some speakers
participated in more recording sessions than others. For example this is the case with the
female speaker “fn0017” who participated in all the recoding sessions in SWC3 due to a
lack of further volunteers. More statistics are illustrated in Table 4.2 and Fig. 4.5 in details.

As shown in Table 4.2, on average the speech utterances are as short as 2.2 seconds,
and the average number of words per utterance is 6.8. According to the histogram of the
utterance duration and the number of words in each utterance shown in Fig. 4.5a and
Fig. 4.5b respectively, the majority of the speech utterances last less than 5 seconds and
have less than 15 words. In addition, Table 4.2 suggests that the vocabulary of SWC2 is
much larger than the vocabulary of SWC3. This is because the players in SWC2 are more
experienced in the game than the players in SWC3, thus providing more diverse terms in
discussion.

The game topic used in SWC recording also encourages natural spontaneous speech
where a large amount of overlapped speech takes place naturally. This is illustrated in Fig.
4.5d, Fig. 4.5e and Fig. 4.5f. As shown in Fig. 4.5f, around 50% of speech utterances have
overlapped with competing speech utterances from a different speaker. Fig. 4.5f suggests
that among the utterances with overlapped speech, the percentage of overlap within one
utterance distributes approximately uniformly, with a slightly higher probability of one
utterance having less than 50% being overlapped than of one utterance having more than
50% being overlapped. As shown in Fig. 4.5d, most of the utterances that are overlapped
with other utterances have no more than 3 competing utterances. There are very few long
utterances overlapped with more than 4 competing utterances.

With the Ubisense system, the three dimensional (3D) coordinates of speakers’ head
location are recorded as well. The definition of the 3D coordinate system is shown in Fig.
4.6a. The corner to the back of the door is used as the origin in the 3D coordinate system.
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(a) The duration of speech utterances.
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(b) The number of words in each utterance.
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(c) The speech duration per speaker, “m*” for
male, “f*” for female.
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(d) The number of competing utterances.
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(e) The duration of overlapped speech in each
utterance.
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(f) The percentage of overlapped speech in each
utterance by duration.

Fig. 4.5 SWC statistic analysis on the histogram of the speech utterance duration, the num-
ber of words in each utterance, the speech duration per speaker, the number of competing
utterances, the duration of overlapped speech and the percentage of the overlapped speech
in each utterance.
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(b) SWC2 Session 1, XY view.
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(c) SWC2 Session 1, XZ view.
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(d) SWC2 Session 1, YZ view.

Fig. 4.6 Speaker head location tracking based on the Ubisense system: the coordinate
system and the tracked speaker head locations in the first recording session of SWC2.

Fig. 4.6b, Fig. 4.6c and Fig. 4.6d illustrates the speaker location distribution in the first
recording session in SWC2. Each circle represents one speech utterance. The size of the
circle is proportional to the number of words spoken in that utterance, and the center of
the circle is the average speaker head location throughout that utterance. Compare Fig.
4.6b with Fig. 4.2, it can be observed that the players mostly move around the table. This
session is special because it is the beginning of a day’s gaming recording, hence the players
need to take out the figurines from the bag on the ground and organize the figurines on
the table. Since each player has one home battle field being one corner of the table, this
recording session involves active speaker movement more vertically than horizontally. Fig.
4.6c and Fig. 4.6d illustrates the vertical head movement up to 1 meter. In comparison,
Fig. 4.6b shows that there are three speakers having limited horizontal movement, while
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the fourth speaker, “mn0013”, frequently moves between one wall and one corner of the
table. This is because his bag is placed farthest to the table.

Another property of the SWC data due to its high level of naturalness is emotional
speech. This is reflected by the proportion of utterances with laugher. In the raw manual
annotation for SWC2 where emotion tags are kept along with the speech words, there are
8.1% of utterances with laugh. In SWC3 there are 25.1% of utterances with laugh. There
is no emotion annotation for SWC1 unfortunately due to limited time and budget.

In summary, three recordings of SWC data collected 24.6 hours natural spontaneous
English speech data from 14 males and 8 females, all being native English speakers.
Having multi-microphone and multi-media simultaneous recordings, the SWC data has a
few special properties that are representative in the natural spontaneous conversations but
are uncommon in the rehearsal or read speech, such as very short utterances with a small
number of words per utterance, a high proportion of overlapped speech, the natural and
frequent body movement while speaking, the emotional speech and the vocal sound.

4.3 Blog Data and Language Model

The SWC recording is based on a special game topic for reasons discussed previously
in Section 4.1. The acoustic challenges in SWC data are of the key research interest, as
the unique properties help to push forward the ASR research, particularly DSR research,
for the applications in the natural human-machine communication in a non-intrusive
configuration using distant microphones. However since it is based on a topic rarely
adopted by any existing speech research corpora, there is some concern about the language
modelling (LM). Applying any LMs trained with other research data directly on the SWC
data would introduce a large negative bias on the recognition performance due to the
mismatch in vocabulary, topic and the text style. Therefore the SWC data requires an
in-domain LM that better matches the properties of the SWC transcripts. Such a LM needs
to be representative of both the spontaneous conversation and the game Warhammer 40K.
Regarding the conversational speech aspect, Hain et al. (2007) have collected the text data
for conversational speech in the work on meeting recognition system. However there is no
existing text data that features the Warhammer 40K. To alleviate this problem, blog data is
prepared to train an in-domain LM for the SWC data.

The blog data refers to a collection of the text from blogs of the Warhammer 40K
players. Such blogs cover the reports of games the author participated in, the introduction
to the figurines of Warhammer 40K characters the author created and the legend stories
about the characters in the game. Though a forum discussion is better than a blog in terms
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Table 4.3 Special words better covered by blog data - an investigation on the word
occurrence percentage (%) in different text data components.

Word & phrase SWC overall Blog data over-
all

Warhammer
wikipedia

Conversational
web data

shoot 0.30 0.02 0.00 0.00
cover 0.23 0.07 0.04 0.01
roll 0.15 0.04 0.03 0.01
turn 0.15 0.14 0.03 0.02

squad 0.11 0.32 0.02 0.00
plasma 0.08 0.05 0.00 0.00
A. P. 0.07 0.05 0.00 0.00

points 0.07 0.23 0.10 0.01

of interactive conversational discussion, a forum discussion contains a lot of characters
which will not appear in spoken speech, such as the emoji, some special characters and
special abbreviations. In comparison, blogs provide a much larger amount of text data
in a standard written format, with the downside that blogs can be written in a style that
significantly differs from the speaking style in spontaneous speech. In particular, blogs
tend to have much longer sentences, more accurate grammar and clearer logic without
conversational interruption. Therefore the blog data is combined with the conversational
web data (Hain et al., 2007) to train the LM. In this way the conversational web data
provides a good compensation for the conversational speech style with a large vocabulary
in diverse topics of spontaneous speech conversations.

In total, the text data of 260,000 words are collected from four blog websites which are
further referred to as “cast”, “atomic”, “cadia” and “addict”. The text from Warhammer
40K wikipedia is also harvested which provides 26,000 additional words. Together with
the conversational web data, in total there are six text data resources. Table 4.3 shows a
few examples of the words that have significant more occurrences in the blog data than
in the wikipedia data or in the conversational web data. It indicates that the blog data is
complementary to both the Warhammer Wikipedia data and the conversational web data in
providing some special words used frequently in Warhammer 40K games. Furthermore,
Table 4.4 shows a comparison of the cross-entropy between the text data components and
the SWC manual transcription.

Each of the six N-gram LMs is first trained based on the text from one data resource.
Then the six LMs are interpolated with the weights optimised based on the manual
transcripts of SWC1. The LM produced in this way incorporates the complimentary
statistic properties from all six text data resources, and Table 4.5 shows the statistics of
text data from each resource as well as the corresponding LM interpolation weights.
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Table 4.4 The SWC manual transcription and the text data components (log2 used).

SWC overall Blog data over-
all

Warhammer
wikipedia

Conversational
web data

Vocabulary 7.0k 13.3k 4.1k 457.8k
Cross-entropy
with SWC

197.9 288.4 257.6 302.6

Vocabulary in
cross-entropy
calculation

7.0k 4.4k 1.9k 6.3k

Table 4.5 LM components and text data statistics.

LM component Number of words Vocabulary Interpolation weight
blog cast 71.2k 7.0k 0.06

blog atomic 126.8k 7.9k 0.05
blog cadia 40.4k 3.9k 0.19
blog addict 21.1k 3.3k 0.05

Warhammer wikipedia 26.2k 4.1k 0.003
conversational web data 165.9M 457.8k 0.65

The quality of interpolated LM could be evaluated by the number of out-of-vocabulary
words (OOV) and the perplexity (PPL). Table 4.6 compares the 4-gram 30k vocabulary
interpolated LM with the 4-gram 30k vocabulary LM component which is trained on
conversational web data only. Compared to using the LM based on the conversational web
data only, the interpolated LM improves the overall PPL by 34.5% relative, from 264.5 to
173.3.

Overall the PPLs shown in Table 4.6 are high compared to many other large scale
conversational speech recognition tasks. For example, the meeting recognition system has
a PPL below 100 on the AMI corpus (Hain et al., 2007; McCowan et al., 2005). The high
PPL of LM on SWC data could be potentially improved by collecting more in-domain text
data, for example more blog data. It is worth mentioning that SWC3 has higher OOV than
SWC2 potentially because the conversations in SWC2 is more similar to the conversations
due to repeated players and a similar game setup. As the LM interpolation is optimized
with data from SWC1 only, it is potentially biased to the conversation style and vocabulary
of SWC1 and SWC2.

In summary, this section has discussed the necessity of collecting blog data to train an
in-domain LM, as well as how the LM is constructed by interpolating the LM components
trained on the text data from a mixture of resources, namely the blog data, the Warhammer
wikipedia data and the conversational web data. This interpolated 30k vocabulary 4-gram
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Table 4.6 Perplexity of interpolated LM and conversational web data only based LM on
SWC manual transcripts.

SWC1 SWC2 SWC3 Overall
Number of word 88.5k 116.3k 56.3k 261.1k

Vocabulary 4.0k 4.6k 2.5k 7.0k

Interpolated LM
OOV 1.4k (1.6%) 2.8k (2.4%) 3.9k (6.9%) 8.1k (3.1%)
PPL 173.4 195.9 135.0 173.3

Conversational web OOV 1.3k (1.5%) 2.8k (2.4%) 3.9k (6.9%) 8.1k (3.1%)
data based LM PPL 271.1 327.8 164.9 264.5

LM will be used in all experiments on SWC data in the following sections and the following
chapters if there is no special explanation on exceptions.

4.4 Baseline Systems

Section 4.4.1 will first introduce the datasets for two strategies of preparing acoustic
models: adapting an existing acoustic model and training a standalone acoustic model.
A baseline system for each task is then introduced along with their performances in the
following sections: Section 4.4.2 will focus on the baseline acoustic model adaptation
system, and Section 4.4.3 will present the baseline standalone training system. Section
4.4.4 further illustrates the performance of the advanced algorithms in DSR based on the
standalone system, such as multi-channel dereverberation and beamforming.

4.4.1 Task and dataset

Since SWC has in total 24.6 hours annotated speech, it is possible to train a small acoustic
model with part of the SWC data so that the training-test mismatch is minimised. It is also
possible to adapt an existing acoustic model trained on a much larger corpus to the SWC
data. Therefore, multiple datasets are defined for different needs.

For the standalone training, three datasets are required: a training set (“train”), a
development set (“dev”) and an evaluation set (“eval”). For the acoustic model adaptation,
only two datasets are required: an adaptation set (“dev”) and an evaluation set (“eval”).
This is because the acoustic model has been previously trained on corpora other than
SWC. Since there is a limited number of volunteer participants in the recording, some
players participated in multiple recording sessions. As a result it is impossible to have a
complete separation in speaker among different sets with a balance on both the amount
of data and speaker gender. Therefore, a compromise is made by defining two types of
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Table 4.7 Datasets for SWC.

Dataset Strip Duration (h) #Utterance #Speaker
adapt-1 dev 1.AB, 2.AB, 3.AB 16.3 26.2k 22
(AD1) eval 1.C, 2.C, 3.C 8.2 13.3k 22

adapt-2 dev 1 8.0 14.0k 9
(AD2) eval 2, 3 16.6 25.6k 18

standalone-1 train 1, 2.A, 3.A 13.5 22.6k 22
(SA1) dev 2.B, 3.B 5.5 8.5k 18

eval 2.C, 3.C 5.6 8.4k 18
standalone-2 train 1 8.0 14.0k 9

(SA2) dev 2.A, 3.A 5.5 8.7k 18
eval 2.BC, 3.BC 11.1 16.9k 18

datasets for each acoustic model strategy: one has the best speaker separation between
training and test, and the other has the least speaker separation between training and test.
This is to investigate the best and worst performance with each strategy of acoustic model
preparation.

To achieve that, each recording session, or recording file, is split into three consequent
parts with equal amount of annotated speech. These are referred to as the three strips in one
session: strip A, strip B and strip C. For simplicity, the first strip of all recording sessions
in SWC1 is notated as “1.A”. Similarly, the second and third strips of all recording sessions
in SWC2 combined together are notated as “2.BC”. This notation is used in Table 4.7.

For the acoustic model adaptation, the first and second strips of every session in all
three day recordings are used as the development data (“dev”), and the third strip of every
session in all three day recordings is used as the evaluation data (“eval”). In this way there
is the least separation between dev and eval datasets in gender, speaker and speaking style.
This is referred to as the “adapt-1” or “AD1” dataset definition in Table 4.7. Alternatively,
SWC1 can be used as development data (“dev”) while SWC2 and SWC3 can be used
as evaluation data (“eval”). In this way, the speakers are best separated between two
datasets, and the female speakers only appear in the evaluation set. This is referred to as
the “adapt-2” or “AD2” dataset definition, as shown in Table 4.7.

For the standalone training of the acoustic model, the whole SWC1 plus the first strip
of every recording session in SWC2 and SWC3 are used as the training data (“train”).
The second strip of every recording session in SWC2 and SWC3 is used as development
data (“dev”), and the third strip of every recording session in SWC2 and SWC3 is used as
evaluation data (“eval”). This dataset partition strategy has the least speaker separation,
and it is referred to as the “standalone-1” or “SA1” in Table 4.7. In an alternative strategy,
the whole SWC1 is used as training data (“train”). The first strip of every session in SWC2
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Fig. 4.7 SWC baseline system: acoustic model adaptation in a DNN-HMM-GMM structure.

and SWC3 are used as development data (“dev”). The second and the third strips of every
session in SWC2 and SWC3 are used as evaluation data (“eval”). This data partition
strategy has the best speaker separation between training set and evaluation set, and it is
referred to as “standalone-2” or “SA2” in Table 4.7.

4.4.2 Baseline adaptation system

In the baseline system with acoustic model adaptation, the acoustic model to be adapted is
first trained on the meeting corpus AMI (McCowan et al., 2005) in a DNN-HMM-GMM
structure. A DNN is employed at the front-end which produces bottleneck features, and
the HMM-GMMs are trained on these bottleneck features. The seed DNN trained from
the AMI corpus is optimised layer by layer with around 80 hours audio from the AMI
corpus with manual transcripts and the headset recording based alignment. The DNN
parameter optimisation is performed to minimise the cross-entropy on the development
dataset. This DNN training follows the configuration in an early work published by the
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Table 4.8 SWC adaptation baseline performance with “AD2” dataset definition using
source acoustic models trained on the AMI corpus.

dev eval
SWC1 SWC2 SWC3 overall
WER WER WER Sub. Del. Ins. WER

IHM 24.9 46.4 50.5 33.4 9.3 5.0 47.7
SDM 55.2 75.0 85.2 53.2 19.1 6.0 78.2
MDM 53.5 71.6 82.4 52.4 15.4 7.3 75.0

author (Liu et al., 2014). It is worth explaining that the AMI corpus is used to construct the
seed acoustic model because it is a larger corpus with a similar recording setup to the SWC.
In the AMI corpus, meeting style conversational speech is recorded with both individual
headset microphones and an eight-channel distant circular microphone array. In addition,
both the AMI corpus and the SWC are recorded in meeting rooms.

To adapt the source acoustic model to the SWC data, the DNN front-end is first fine-
tuned for a few more iterations using the development data from SWC in the “AD2” dataset
definition as shown in Table 4.7. The DNN fine-tuning is based on the alignment acquired
with the SWC headset recordings and the DNN-HMM-GMMs previously trained on the
AMI headset recordings (Liu et al., 2014). With the adapted DNN, bottleneck features are
generated on the SWC development data to update the HMM and GMMs with maximum-
a-posterior (MAP) adaptation for 8 iterations. The software employed for DNN training
and bottleneck feature extraction is TNet2, and the software employed for HMM-GMMs
training, adaptation and decoding is HTK3. Neither speaker adaptation or normalisation is
involved, but only the utterance level mean normalisation over the bottleneck features. The
whole adaptation process is illustrated in Fig. 4.7.

As for the detailed configuration of DNN, the input to DNN are the 368 dimensional
features compressed with the discrete cosine transform (DCT) from the 31 continuous
frames (+/-15) of 23 dimensional log-Mel filter bank features. In primary experiments, it
is found that using a smaller context window would degrade the recognition performance.
The DNN topology is 368:2048×3:26:1993. The 1993 output nodes of DNN correspond
to the 1993 tied context dependent phoneme states. In primary experiments, it is found that
using a wider output layer significantly increases the computation cost without a significant
improvement in performance.

Results of the baseline adaptation system are reported on IHM, SDM and MDM in
Table 4.8. For MDM, the weighted delay and sum beamforming (wDSB) is performed

2http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet
3http://htk.eng.cam.ac.uk

http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet
http://htk.eng.cam.ac.uk
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using BeamformIt (Anguera et al., 2007), based on the audio recordings from the 8
channels circular microphone array placed at the center of table (“TBL1”). The scoring
for IHM is performed with NIST tool “sclite”, while the scoring for SDM and MDM is
performed with another NIST tool “asclite” to allow the reference from up to 4 speakers
when scoring the overlapped speech.

As shown in Table 4.8, even with the supervised adaptation using manual transcription
and the headset recording based alignment on the SWC development data, the baseline
adaptation system yields high WERs on the development dataset: 24.9% for IHM, 55.2%
for SDM and 53.5% for MDM with 8 channel wDSB. The WER on the evaluation data is
higher than on the development data, with 47.7% for IHM, 78.2% for SDM and 75.0% for
MDM overall. The WER on SWC3 is higher than SWC2 due to the mismatch between
development data and the SWC3 data in speaker gender and speaking style. Beamforming
reduced the WER compared to the SDM baseline by 3.1% relative on SWC1, 4.5% relative
on SWC2 and 3.3% relative on SWC3. The relative WER reduction by the wDSB is
smaller compared to similar experiments on other corpora like the AMI corpus. On the
AMI corpus, the wDSB introduced 7-9% relative WER reduction in a DNN-HMM-GMM
ASR system (Liu et al., 2014) and around 8.5% relative WER reduction in a DNN-HMM
hybrid ASR system (Swietojanski et al., 2013) using log Mel filter bank features. More
investigation on the high WERs will be detailed in Chapter 5.

4.4.3 Baseline standalone system

As mentioned previously, the acoustic model can also be trained in a standalone manner
using training data from SWC in the “SA1” dataset definition shown in Table 4.7. It is
worth emphasizing that this “SA1” dataset has overlapped speakers between training and
test, and the recognition performance is expected to degrade if a better speaker separation is
used. The toolkit Kaldi4 is used to construct a state-of-the-art acoustic model in the hybrid
DNN-HMM structure. With the open and active community support to Kaldi development,
one direct benefit from using Kaldi is that a Kaldi recipe for SWC data is shared in the
research community, which ensures to replicate the original work.

The Kaldi recipe for SWC follows the existing Kaldi recipe for the AMI corpus5

regarding the algorithms and configuration. The 13 dimensional MFCC features from
7 contextual frames (+/-3) are extracted and compressed with the linear discriminant
analysis (LDA) to 40 dimensions. The output features from the compression will be further
referred to as the “LDA features”. The LDA features are used to train HMM-GMMs. The

4http://kaldi-asr.org
5https://github.com/kaldi-asr/kaldi/tree/master/egs/ami

http://kaldi-asr.org
https://github.com/kaldi-asr/kaldi/tree/master/egs/ami
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Table 4.9 SWC standalone training system performance with “SA1” dataset definition.

dev eval
overall

Sub. Del. Ins. WER

IHM

LDA+MLLT 50.9 51.8 35.9 8.9 6.4 51.3
+SAT 48.7 48.8 34.4 8.1 6.3 48.7

+MMI 48.8 49.1 34.4 8.8 5.7 48.9
DNN 44.4 44.3 30.5 9.7 4.1 44.4

+sMBR 42.0 42.0 29.5 7.6 5.0 42.0
+fMLLR 48.1 48.1 32.9 11.4 3.8 48.1

+sMBR 44.9 44.8 31.2 9.8 3.8 44.9

SDM
DNN 78.9 80.5 53.9 21.4 4.4 79.7

+sMBR 76.4 77.3 39.1 35.5 2.2 76.8

MDM
DNN 76.0 77.9 53.3 18.2 5.5 76.9

+sMBR 73.8 74.9 36.0 36.0 2.4 74.3

initial model training uses hypothesis timing where utterances are split into equal chunks.
The alignment is updated each time the acoustic model significantly improves during the
training process.

The HMM-GMMs based on monophones are first trained, followed by the HMM-
GMMs trained on the clustered states. This is then followed by the LDA training and
the maximum likelihood linear transform (MLLT), the speaker adaptive training (SAT),
and the maximum mutual information (MMI) training. Alignments from the system with
LDA+MLLT is used for DNN training. The input of the DNN are 520 dimensional feature
vectors, comprised of 13 (+/-6) contextual 40 dimensional LDA features that were used
for HMM-GMM training. DNN parameters are initialised with the restricted Boltzmann
machines (RBMs), in a topology of 520:2048×6:3804, and then fine-tuned to minimise the
cross-entropy on the development dataset. This is further followed by 4 iterations of further
fine-tuning for minimum phone error (MPE) or the state level variant of the minimum
Bayes risk (sMBR), with the updated alignment. The configuration of the DNN topology
and DNN training follows the existing Kaldi recipe for the AMI corpus. The configuration
is not the optimized for the SWC data but it is a sound enough baseline setup.

For IHM, the speaker adaptation is also performed. The HMM-GMMs with LDA+MLLT+SAT
provide the alignment and feature level maximum likelihood linear regression (fMLLR)
per speaker for DNN training. In the speaker adaptation experiments on IHM, the DNN
parameters are initialised with RBMs in a topology of 143:2048×6:3710, because the
DNN input features are comprised of 11 (+/-5) contextual 13 dimensional MFCC features
with fMLLR applied.
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To reduce the memory cost, the 30k 4-gram LM introduced in Section 4.3 is pruned.
Table 4.9 shows the performance using different acoustic models and microphone channels.
Compared to the LDA+MLLT based system on IHM recordings, the SAT reduces the
overall WER of HMM-GMMs based system from 51.3% to 48.7% (5.1% relative), while
MMI did not reduce WER further. For DNN-HMM hybrid system however, speaker adap-
tation via fMLLR degraded WER from 44.4% to 48.1%. Among the baseline experiments,
the best overall WER of 42.0% on IHM is achieved with sMBR fine-tuning on DNN
parameters without speaker adaptation. Therefore, fMLLR is not used in SDM or MDM
experiments. However, fine-tuning DNN with sMBR is found to be effective for both SDM
and MDM, achieving the best overall WER of 76.8% on SDM and 74.3% on MDM. The
weighted delay and sum beamforming reduced the WER from SDM baseline by 3.3%
relative.

4.4.4 More beamforming and dereverberation

With the multi-channel and multi-media recordings, it is possible to apply the multi-
microphone based beamforming and dereverberation techniques to improve the perfor-
mance of DSR on the SWC data. In addition, it is possible to use the speaker localization
data to replace the blindly estimated TDOA which can have limited the beamforming
performance with the potential TDOA estimation errors, considering the considerable
amount of body movement and overlapped speech in the SWC recordings. Therefore, three
more beamforming algorithms have been tried on SWC data: the simple delay and sum
beamforming (DSB) using the speaker location from Ubisense system, the super-directive
beamforming (SDBF) and minimum variance distortionless beamforming (MVDR). These
beamforming algorithms are realized with BTK6 with the support from Dr. Kenichi
Kumatani (Wölfel and McDonough, 2009). The generalized weighted prediction error
(GWPE) is used for the multi-microphone based dereverberation, and it is combined with
beamforming by using the dereverberation output as the input for beamforming. The
GWPE algorithm is realized with the codes provided by NTT7. Table 4.10 compares
the performance of different multi-channel techniques when they are used alone or in
combination in a standalone system based on the DNN-HMM hybrid acoustic model as
described in Section 4.4.3. All the multi-channel algorithms employs the audio recordings
from the 8 microphones in the circular array placed at the center of table (“TBL1”).

The speaker head location tracked by the Ubisense system helps to improve the
beamforming performance slightly over a blind estimation of TDOA, reducing the overall

6http://distantspeechrecognition.sourceforge.net
7http://www.kecl.ntt.co.jp/icl/signal/wpe/

http://distantspeechrecognition.sourceforge.net
http://www.kecl.ntt.co.jp/icl/signal/wpe/
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Table 4.10 WER for different beamforming and multi-microphone based dereverberation
algorithms.

Use Ubisense based
dev eval

Overall
speaker location? Sub. Del. Ins. WER

SDM - 76.4 77.3 39.1 35.5 2.2 76.8
wDSB - 73.8 74.9 36.0 36.0 2.4 74.3

GWPE+wDSB - 72.5 74.6 50.1 17.7 5.8 73.5
DSB Y 72.7 74.5 50.1 19.0 4.4 73.6

SDBF Y 73.2 74.7 50.5 18.7 4.7 73.9
MVDR Y 72.4 74.2 50.0 18.6 4.7 73.3

GWPE+DSB Y 71.9 73.8 49.0 18.9 4.7 72.7
GWPE+MVDR Y 70.5 72.1 43.5 24.4 3.4 71.3

WER from 74.3% to 73.6%. When the TDOA is estimated from the tracked speaker head
location, the MVDR provides the best performance among all tried beamformers, with an
overall WER of 73.3%. The SDBF does not perform better than DSB potentially because
the noise in SWC data is not stationary or diffusive. Combining beamforming with multi-
microphone dereverberation algorithm GWPE brings down the WER further, from 73.6%
to 72.7% when the DSB is used and from 73.3% to 71.3% when the MVDR beamforming
is used. The combination of GWPE and MVDR provides the best performance on MDM
with an overall WER of 71.3%, this is 5.5% absolutely lower or 7.2% relatively lower
compared to SDM overall WER of 76.8%.

It is worth emphasizing that in the MVDR implementation, the noise spatial covariance
matrix is estimated with a randomly selected piece of the background noise from SWC1.
The noise covariance matrix is is not updated based on the background noise in a local
context of the concerned speech utterance. As a result, such implementation has potentially
limited the performance of the MVDR beamformers. As for other beamformers, primary
experiments have been conducted to tune the setup based on the default configuration in
BTK. In the tuning, some default configurations by BTK which are useful for other tasks
have to be disabled for SWC. For example, it is found that the Kalman filter based speaker
location tracking has to be disabled because of the fast change in the location of active
speaker due to the high speaker switch rate, the large proportion of overlapped speech, and
the existing of four speakers in four directions in the SWC data.

4.5 Summary

This chapter has covered the details about SWC from four aspects: the data collection
design and recording configuration in Section 4.1, the post-recording data processing and
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analysis in Section 4.2, the language model preparation in Section 4.3 and the baseline
ASR systems as well as their performance in Section 4.4.

As mentioned in Section 3.1, the SWC recording was conducted to collect more data
of natural native and spontaneous English speech with multi-microphone and multi-media
recordings. With an unusual topic of a desk-top game Warhammer 40K, the SWC data
collection minimises the privacy infringement in real recordings of natural spontaneous
conversations while encouraging the natural speaker movement and frequent overlapped
speech in heated discussion. The recording was performed over three days and the
recording system is comprised of three parts: the audio recording, the video recording
and the Ubisense based speaker location tracking. The audio recording system involves
synchronised audio recordings from both the individual headset microphones and the
multiple distant microphone arrays, and the video recordings using multiple cameras.
The video recording is conducted from different angles with multiple cameras. With the
Ubisense system8 providing three dimensional speaker location tracking using the radio
signal, SWC is the first speech database with natural speaker movement along with speaker
location tracking.

The post-recording analysis on SWC data reveals some unique properties of the SWC
data compared to existing corpora, namely very short utterances with an average duration
of 2.2 seconds, a high proportion (around 50%) of utterances with part being overlapped
with competing speech, the emotional speech with a big gender difference and the speaker
movement while talking. The audio recording is annotated and transcribed manually,
leading to 24.6 hours annotated speech from 14 male speakers and 8 female speakers.

Considering the unusual topic of desktop-game in SWC compared to existing speech
corpora, the text from four Warhammer 40K blog websites are collected. It is combined
with the text from the Warhammer wikipedia and the conversational web data for language
model training. The Warhammer wikipedia provides a larger game related vocabulary,
and the conversational web data provides much larger text data of a conversational speech
style with a wider range of topics. The LM components are first trained on the text data
from each resource and then interpolated by minimising the perplexity on SWC1 manual
transcripts. The examples words, cross-entropy and perplexity have been compared in
Section 4.3 to show the complementary properties of the multiple components in the text
data recourse as well as the trained LM components. The LM based on the combination of
all components is used in all following experiments on SWC data.

Two configurations of the baseline ASR systems for SWC data have been chosen,
namely the adaptation configuration and the stand-alone training configuration. The

8http://ubisense.net/en

http://ubisense.net/en
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adaptation configuration takes the DNN-HMM-GMMs based acoustic model from AMI
corpus and fine-tunes it with the SWC development dataset. The stand-alone training
configuration trains a DNN-HMM hybrid acoustic model based on the SWC training
dataset. The recognition is performed on individual headset recordings, single distant
microphone recordings and multiple distant microphone recordings. The overall WERs
are very high compared to existing speech corpora. The WERs on close-talking recordings
are above 40% and the WERs on far-field recordings are above 70%. Using multiple
distant microphone recordings achieved better performance than using only single distant
microphone. The 8 channel wDSB which has been reported to bring effective WER
reduction only improves the WER on SWC data by a very small proportion. The best
performance on distant recordings is 71.3% in the overall WER. It is achieved with a
combination of 8 channel dereverberation GWPE and MVDR beamforming with TDOA
from the speaker location tracked by Ubisense system.

This chapter has focused on reporting SWC data recording and baseline systems. More
analysis on the reasons for high WERs on SWC data compared to existing speech corpora
will be covered in the next Chapter 5, where the SWC data is used as a case study to
highlight the remaining challenges for DSR in the daily application when the machine
learning encounters natural human-to-human multi-party spontaneous and conversational
speech.

The work on SWC is accomplished jointly with Dr. Charles Fox who organised the
recording events and set up the recording hardware and software (Fox et al., 2012), and
with Dr. Madina Hasan who trained the in-domain LM using the blog text data and
conversational web data. The first day recordings of SWC1 is released in Interspeech 2013
(Fox et al., 2013). The three day full recordings are released in Interspeech 2016 along
with the LM, the baseline speech recognition results and a Kaldi recipe to replicate the
standalone training system (Liu et al., 2016). A website has been constructed for a wide
access of relevant information about the SWC data: http://mini-vm20.dcs.shef.ac.uk/swc/
SWC-home.html.

http://mini-vm20.dcs.shef.ac.uk/swc/SWC-home.html
http://mini-vm20.dcs.shef.ac.uk/swc/SWC-home.html




Chapter 5

Challenges in Real Natural
Spontaneous Speech

Contents
5.1 Speech Recognition of Headset Recordings . . . . . . . . . . . . . . 74

5.1.1 Utterance duration, number of word and speaking rate . . . . . 75

5.1.2 Emotional speech . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.3 Speaker and session difference . . . . . . . . . . . . . . . . . . 81

5.1.4 Competing speech . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 DSR: Factor Analysis with Simulated Data . . . . . . . . . . . . . . 84

5.2.1 Overlapping Speech . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Reverberation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 DSR: Factor Analysis with Real Data . . . . . . . . . . . . . . . . . 92

5.3.1 Speaker attributes . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Microphone attributes and speaker movement . . . . . . . . . . 96

5.3.3 Environment attributes and distributed microphone . . . . . . . 99

5.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 103

The previous Chapter 4 introduced the Sheffield Wargame Corpora (SWC), a multi-
channel and multi-media database of recordings of the natural spontaneous multi-party
speech conversations in native English. The recording configuration emphasises the
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challenges for DSR in real applications such as the competing speech, the room reverberant,
the background noise and the speaker movement. The experiments showed that the state-
of-the-art acoustic models based on deep neural network (DNN) could not cope with all
the challenges in SWC data, resulting with the WERs above 70% on distant recordings and
above 40% on close-talking recordings. This chapter breaks down the influence factors
on ASR performance in distant speech recordings and analyses the impact of each factor.
Using the SWC data as a case study, Section 5.1 discusses the challenges for ASR with the
close-talking recordings when the speech to be recognized is highly natural, spontaneous
and emotional. Then Section 5.2 analyses the influence factors by examining the change
in recognition performance when these factors are added one by one into the simulated
distant speech recordings. Section 5.3 moves to the real distant recordings where it is
more difficult to quantify the impact of each factor. Section 5.4 summarises this chapter by
highlighting the major findings and conclusions.

This chapter involves a lot of experimental analysis. Most experiments follow the
configuration used in previous chapter. For such experiments the configuration details are
skipped and the reference will be provided to the corresponding sections where the details
can be found. For the experiments with a different configuration, the difference will be
highlighted and the configuration will be explained.

5.1 Speech Recognition of Headset Recordings

As mentioned in Section 4.4, on SWC data the WERs are above 40% even with headset
recordings. In an earlier work published by the author (Liu et al., 2014), the acoustic model
based on DNN-HMM-GMMs trained on 15.8 hours headset recordings in the AMI corpus
(McCowan et al., 2005) leads to a WER of around 27%. In comparison with a DNN-HMM
hybrid acoustic model trained with 13.5 hours headset recordings from SWC data based
on the Kaldi recipe, the WER is more than 10% higher in absolute value (Section 4.4.3).
The large performance difference is caused by the different properties of these two corpora.
This comparison is of particular research interest because the AMI corpus is a typical
representation for the large vocabulary meeting corpora with relatively controlled recording
set-up in terms of the speaking style and the conversation topic. In comparison, the SWC is
a typical representation for the real natural spontaneous multi-party conversational speech
without a limit on the speaking style or the speech topic, even though the table-top game
has naturally centralized the topic on Warhammer 40K. Since there is very limited data of
the latter, most existing speech techniques have been developed on audio recordings of
planned speech or read speech. As a consequence there is limited knowledge about their
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Fig. 5.1 The average utterance duration histogram in the AMI corpus.

weaknesses when these techniques are applied on real natural spontaneous multi-party
conversational speech. In addition, the challenging factors that exist in headset recordings
are very likely to exist in distant recordings as well. Therefore, this section uses the SWC
as a study case to investigate the influence factors in the headset recordings of natural
spontaneous multi-party conversations. The investigation is conducted from the following
aspects: utterance duration, speaking rate, emotional speech, individual speaker difference
and competing speech.

5.1.1 Utterance duration, number of word and speaking rate

In the general analysis provided in Section 4.2, the average utterance duration in SWC data
is 2.2 seconds, while in AMI data it is above 4 seconds. In addition, Fig. 4.5a showed that
in SWC the number of utterances decreases approximately exponentially as the utterance
duration increases. Similar trend is observed with the AMI corpus, as illustrated in Fig. 5.1.
The utterance duration is associated with the number of words spoken in one utterance and
the talking speed, namely the number of words spoken per second. In this work the talking
speed is also referred to as the speaking rate. These two factors are more interesting than
the utterance duration, because the number of words is directly associated with the WER
calculation, and the speaking rate could impact the recognition difficulty particularly in
adverse conditions such as reverberant and noisy environment.
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Fig. 5.2 The average utterance level WER given different number of words in one utterance.
“AMI acftest-1”: the 6.1 hours evaluation data from AMI corpus with dataset defined by
(Liu et al., 2014); “SWC eval”: the 5.6 hours evaluation data from the “SA1” dataset
definition of SWC data shown in Table. 4.7.

The relationship between the average number of words in one utterance and the WER
of that utterance is illustrated in Fig. 5.2. The pink and red lines correspond to the WERs
on the 5.6 hours SWC evaluation data, with the DNN-HMM hybrid acoustic model trained
on the 13.5 hours SWC headset recordings in a standalone manner as described in Section
4.4.3. The WERs for the pink line are based on the 4-gram LM described in Section 4.4.3,
and the WERs for the red line is based on a 4-gram LM trained with the SWC manual
transcripts directly, i.e. the “oracle LM”. The blue line corresponds to the WERs on 6.1
hours evaluation data in the AMI corpus, using DNN front-end and HMM-GMMs based
acoustic model trained on 15.8 hours AMI headset recordings in a standalone manner (Liu
et al., 2014). The green line corresponds to WERs on the same 6.1 hours AMI corpus
evaluation data, using DNN front-end and HMM-GMMs acoustic model trained with 87.7
hours AMI headset recordings (Liu et al., 2014). Fig. 5.2 compares the statistics between
the SWC data and the AMI corpus given similar amount of training data and evaluation
data (blue line and pink line), the impact of adding more data for acoustic training on the
AMI corpus (blue line and green line), and the impact of language model on SWC data
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due to its unique topic (pink line and red line). Note that Fig. 5.2 only takes into account
the number-of-word conditions with at least 10 utterances.

In all cases the average utterance level WER decreases as the number of words in a
single utterance increases as shown in Fig. 5.2. This may be caused by two reasons. First,
the utterances with small number of words tend to have a WER value that is more sensitive
to any kind of recognition errors, due to a small denominator in the WER calculation.
Second, short utterances with small number of words benefit less from the language model
compared to long utterances. When comparing the AMI corpus (blue line) and the SWC
data (pink line), the average WER decreasing gradient as the number of words in one
utterance increases is larger in the AMI corpus than the SWC data. This may suggest that
the LM for SWC needs further improvement. To quickly verify that, one 4-gram LM is
trained with the manual transcripts of all SWC data. Such an “oracle LM” is combined
with the same acoustic model used as before, and it helps to decrease the overall WER
on the dev set from 42.0% to 33.0%, and the overall WER on the eval set from 42.0% to
33.2%. The red line in Fig. 5.2 shows an analysis of how the WER varies on the SWC
evaluation data by the number of words in one utterance based on the decoding results
with the oracle LM. The average WER per utterance is reduced significantly for utterances
of any lengths except for those utterances with one word only. However even with the
oracle LM, on long utterances iwth more than 20 words the overall gradient of the WER
curves for the SWC data is not as steep as the AMI corpus. This difference implies that
there is some other difference between the long utterances in the SWC data and the long
utterances in the AMI corpus.

In the AMI corpus, increasing the amount of training data from 15.8 hours (blue line in
Fig. 5.2) to 87.7 hours (blue line in Fig. 5.2) significantly improves the acoustic model
performance, hence decreases the WERs on utterances of all lengths, particularly on short
utterances with less than 10 words. While SWC has limited amount of data, it can be
expected that a similar WER improvement can be observed with more training data. In
addition, as shown on AMI data, increasing the audio data for the training of acoustic
model and DNN front-end training decreases the WERs of utterances in all lengths. This
suggests that the SWC recognition performance can be largely improved if more data is
available for the training of acoustic model and DNN front-end.

In practice, speaker adaptation is often beneficial for WER reduction. This is the case
with the AMI corpus as shown by Liu et al. (2015, 2014). In the baseline experiments
explored in previous chapter, the speaker adaptation based on the fMLLR is unfortunately
not beneficial at all (Table 4.9). The suspect is that the poor performance of the fMLLR
based speaker adaptation is related to the vivid and temporally diverse speaking style in
the SWC data. It is possible that dedicated speaker adaptive training may bring some
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Fig. 5.3 Relationship between speaking rate and the number of words in one utterance.

WER improvement. Further research is still needed to thoroughly investigate the effective
speaker adaptation methods for the SWC data.

The average WER of utterances with different number of words may reveal some
weaknesses in the ASR system. In Fig. 5.2, SWC data has a smaller descending gradient
in WER curves compared to the AMI corpus, and this suggests a weak LM. The current
LM for SWC still needs further improvement because only limited text data is available
for LM training. The blog data combined with conversational web data helps to alleviate
this problem, but the analysis suggests that more in-domain data is needed.

The speaking rate varies from utterance to utterance. An analysis is carried out to
investigate how much the speaking rate impacts the performance of speech recognition on
headset recordings. Fig. 5.3 illustrates the relationship between the average speaking rate
and the number of words per utterance, and the results are compared between the SWC
data and the AMI corpus. Fig. 5.3a shows the average speaking rate (y axis) among the
utterances with given number of words (x axis), and Fig. 5.3b shows the average number
of words per utterance (y axis) among the utterances with given speaking rate (x axis). Fig.
5.3a suggests that the average speaking rate in the SWC data is higher than the AMI corpus
due to the speech spontaneity and the natural speaking style in the SWC recordings. This
potentially implies a bigger challenge to acoustic models from the SWC data than from
the AMI corpus. Fig. 5.3a shows that the SWC data has a slower speaking rate in short
utterances and a faster speaking rate in long utterances. The speaking rate in the SWC data
increases from below 1.5 words per second to above 4.0 words per second as the utterance
length increases. In comparison in the AMI corpus the speaking rate mostly stays between
2.5-3.0 words per second. Furthermore, Fig. 5.3b suggests that in SWC data high speaking
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Fig. 5.4 Average WER per utterance at a given speaking rate per utterance.

rate has a larger chance to appear in long utterances while low speaking rate has a larger
chance to appear in short utterances.

Fig. 5.4 further shows the average WER (y axis) among utterances of given speaking
rate (x axis). It shows that counter-intuitively, WER decreases as speaking rate increases.
This could be explained from the joint effect of the speaking rate and the number of words
per utterance. From Fig. 5.3b, utterances with high average speaking rate tends to be long
utterances, and according to the analysis on Fig. 5.2 long utterances tends to benefit more
from LM thus having lower WERs. Therefore overall the utterances with high average
speaking rate tend to have low WERs, as utterances with high speaking rate are very likely
to be long utterances. Previously, Fig. 5.2 has shown that the AMI corpus has a steeper
gradient in the descending WER curves than the SWC data, indicating a continuously
increasing benefit from LM as the utterance length increases in the AMI corpus. That could
explain the observation in Fig. 5.4 that the WER descending in the SWC data settles at a
lower speaking rate with a higher WER value compared to the AMI corpus. The speaking
rate where the average WER settles is around 2.5 words per second in the AMI corpus,
and is slightly above 1.5 words per second in the SWC data. In both the AMI corpus and
the SWC data, when the speaking rate increases to above 5 words per second, the WER
increases slightly.

In summary, the recognition performance at utterance level is related to the number
of words and the average speaking rate per utterance. Compared to short utterances, long
utterances tend to have lower WERs due to a bigger benefit from the LM, even though
long utterances also tend to have a faster speaking rate. A comparison between Fig. 5.2
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Table 5.1 Emotional speech analysis: number of laughs, average number of word per
utterance and average WER per utterance.

Dataset #Laugh in one
utterance

#Utterance Average WER per
utterance (%)

Average #word
per utterance

dev
0 7793 (91.5%) 42.4 7.0
1 609 (7.2%) 47.9 8.6
2 111 (1.3%) 56.1 10.4

eval

0 7668 (91.3%) 42.3 6.9
1 603 (7.2%) 50.7 7.9
2 105 (1.3%) 53.3 9.2
3 19 (0.2%) 52.0 15.9

Fig. 5.4 implies that the number of words per utterance seems to have a higher impact than
the speaking rate on recognition performance in both the AMI corpus and the SWC data,
particularly when the speaking rate is below 5 words per second. When the speaking rate
is above 5 words per second, there is a slight increase in WER for both the AMI corpus
and the SWC data.

5.1.2 Emotional speech

Another important difference between the SWC data and most existing speech corpora is
that SWC recording involves natural emotional speech. In SWC2 and SWC3 transcripts,
the emotional vocal sounds such as laugh is annotated along with the speech utterances.
Therefore, it is possible to investigate the potential impact of emotional speech on the
recognition performance. The investigation is performed by first grouping all speech
utterances in the dev set and the eval set according to the number of laugh tags in that
utterance, and then calculating the average WER in that speech utterance group. Table
5.1 shows the analysis results based on the recognition results from the standalone ASR
system described in Section 4.4.3.

Table 5.1 shows that the average number of words per utterance increases as the number
of laugh tags increases. This suggests that long utterances have a higher chance to include
laughs. Among all transcribed speech utterances, around 9% of utterances have one or
more laugh tags, and the average WER per utterance is 5-10% higher in absolute value
compared to the remaining 91% speech utterances without laughs. Section 5.1.1 has shown
that the average WER per utterance tends to decrease as the number of words per utterance
increases. That is the case with the majority speech utterances which do not have emotional
sounds. Table 5.1 suggests that 9% of utterances have emotional sounds such as laughs,
and among such utterances the longer ones tend to have more laughs than the shorter ones.
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Fig. 5.5 WER per speaker (male speaker IDs start with “m” and female speaker IDs start
with “f”).

Compared to the speech utterances without laughs, the average WER of utterances with
laughs is 8.4-11.0% higher in absolute value.

5.1.3 Speaker and session difference

Since there is a limited number of speakers in the SWC data, particularly the female
speakers, it is worth investigating whether the recognition performance is imbalanced by
the speaker individual difference or the gender difference. Therefore, the average WER
per speaker is calculated based on the headset recording recognition results of the SWC
headset recordings using the standalone system detailed in Section 4.4.3. In addition, the
WER per speaker is compared with the WER per speaker in the AMI system published by
Liu et al. (2014) based on a similar amount of training data and test data from the AMI
corpus. As shown in Fig. 5.5a, in general the lack of female speech in the training data
leads to a slightly higher WER for female speakers than male speakers. The variation of
WER per speaker on SWC data is of similar range when compared on the AMI corpus.

Section 4.1 has mentioned that there is some slight difference in the recording configura-
tion from session to session in the SWC data. To quantify the impact of such configuration
difference, the average WER per session is calculated based on the recognition results of
the SWC headset recordings using the standalone system introduced in Section 4.4.3. A
similar analysis is performed on the recognition results based on single distant microphone
recordings as a comparison. As shown in Fig. 5.6a, for headset recordings, most sessions
have overall WERs within a normal variation range, except for Session “SWC2-00006”,
though there is no special recording arrangement for that session. For single distant micro-
phones, as shown in Fig. 5.6b, the WERs on eval set in all sessions of SWC3 are higher
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Fig. 5.6 Overall WER per session in SWC using different microphones channels.

than SWC2, potentially because of the two extra male speakers in the recording area whose
voice is only recorded with distant microphones but not headset microphones.

5.1.4 Competing speech

It is common to have competing utterances with overlapped speech in spontaneous conver-
sations. As indicated by the statistical analysis in Fig. 4.5d, around 50% of the transcribed
utterances in SWC have at least one competing utterance. For headset recordings, the
headset microphone is designed to reduce the volume of sound from sources beyond a
certain distant to the microphone or a certain range of arrival angle, thus the effectiveness of
suppressing competing speech is largely dependent on the headset microphone design and
the distance between the target speaker and the loudest competing speaker. Theoretically
the headset recordings are not completely free from the competing speech, though in
practice this point is often neglected. In comparison, the distant recordings has more severe
distortions from competing speech due to a lack of directivity and acoustic attenuation
over distance in the microphone design.

To quantify the distortion of competing speech, WERs from the standalone system
(Section 4.4.3) based on the headset recordings is analysed against the amount of speech
overlap, i.e. the absolute amount of overlapped duration each utterance (Fig. 5.7a) and
the percentage of the overlapped duration in each utterance (Fig. 5.7b). As shown in Fig.
5.7, the average utterance level WER on the headset recordings of the SWC evaluation
dataset is not correlated with either the duration of overlapped speech or the percentage
of overlapped speech in one utterance. This suggests that overlapped speech could be
neglected in SWC headset recordings.
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Fig. 5.7 Average WER per utterance of given level of speech overlapped.

5.1.5 Conclusion

The SWC data is a representation of natural spontaneous multi-party conversational speech,
and the AMI corpus is a representation of multi-party conversational speech in a business
meeting style. To highlight the challenges in the real natural spontaneous multi-party
conversational speech, this section has compared the recognition performance of two ASR
systems trained and tested on the headset recordings from the SWC data and the AMI
corpus respectively, using similar amount of data.

First, the analysis on average WER and utterance length in Section 5.1.1 suggests that
in both SWC data and AMI corpus short utterances tend to have higher WERs compared
to long utterances, and SWC has higher overall WERs than AMI corpus. One reason is
that the performance on middle and long utterances are much poorer than AMI corpus.
This potentially suggests that the current LM in SWC is yet to improve. In addition, as
found in Section 5.1.1, the SWC utterances are much shorter than the AMI utterances on
average, which leads to a big challenge to acoustic models. Second, among all annotated
speech utterances in SWC recordings, around 9% utterances are of emotional speech with
emotional vocal sound such as laughs. Such speech utterances have WERs on average
8-10% absolutely higher than the speech utterances without laughs (Section 5.1.2). It is
also found that long utterances have a higher chance to contain emotional speech than
short utterances. In terms of speaker and gender issues in SWC data, due to less female
speech data compared to male speech data, the average WER on female speakers is higher
than the average WER on male speakers in SWC. For SWC headset recordings, there is no
particular impact spotted from recording session configuration or overlapped speech thanks
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to the high quality of headset microphones. In comparison, such factors could introduce
some challenges to DSR, which will be covered in details in the following sections.

5.2 DSR: Factor Analysis with Simulated Data

In Section 5.1, investigation is performed on factors that could contribute to the high WERs
on SWC headset recordings compared to other speech corpora such as the AMI corpus. It
was found that real natural spontaneous speech is more challenging due to the very short
utterances and the emotional speech. Besides, the quality of LM and the limited amount of
training data, particularly the female speech data, are also two important factors causing the
high WERs in all SWC based recognition experiments. Some of the analysis conclusions
in Section 5.1 also apply to the distant recordings. For example, the findings regarding the
utterance duration, the number of words per utterance, the gender bias and the emotional
speech. There are also some factors that have different impacts on speech recognition
performance using distant microphone recordings compared to using headset recordings.
This section investigates the influence factors of the SWC DSR performance based on the
recordings from one or multiple distant microphones. The experiments in this section are
mainly based on simulated data, so that when one factor is analysed, the other factors are
fixed. The investigation will be conducted from different aspects: the overlapped speech
(Section 5.2.1), the reverberation and a combination of both the overlapped speech and
reverberation (Section 5.2.2). The analysis of background noise is omitted in this work
though the background noise is also a very important factor in DSR.

5.2.1 Overlapping Speech

As pointed in Section 4.2 and illustrated in Fig. 4.5d, 50% of the transcribed utterances in
SWC have at least one competing utterance that causes overlapped speech. In addition,
it has been shown in Section 5.1.4 that there is no significant influence from overlapped
speech on headset recordings in terms of speech recognition performance, thanks to the
high quality headset microphones. In comparison, distant microphones cannot prevent
overlapped speech in the distant recordings.

To quantify the impact of overlapped speech alone without reverberation or background
noise, the recordings with overlapped speech is simulated by adding up the signals from
four headset microphones. This is possible because they are synchronised at sample level
during recording. Then acoustic models are trained and tested on the simulated data with
overlapped speech in the same way with the standalone system described in Section 4.4.3.
The scoring is performed with a NIST tool “asclite” which allows multiple reference
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Table 5.2 WERs with and without overlapped speech (%). “IHM”: the original individual
headset microphone recordings; “IHM.OL”: simulated data with overlapped speech.

Training data Test data dev eval
Overall

Sub. Del. Ins. WER

IHM
IHM 41.3 41.2 29.9 6.9 4.4 41.3

IHM.OL 68.4 70.7 43.4 13.7 12.4 69.5

IHM.OL
IHM.OL 65.1 66.4 44.5 14.4 6.8 65.7

IHM 50.9 51.2 32.7 15.1 3.1 51.0

utterances for one hypothesis utterance. When there is overlapped speech, the “asclite”
scoring tool identifies a hypothesis word as correct if it matches any candidate reference
words among the overlapped utterances. Before such word level comparison the “asclite”
tool performs the word alignment in a way so that the WER is minimised in each utterance.
Another NIST scoring tool frequently used is “sclite” for ASR based on headset recordings.
The difference between “asclite” and “sclite” is that the “sclite” only allows one reference
utterance for one hypothesis utterance.

Table 5.2 shows the WERs on clean headset recordings and simulated data with
overlapped speech. For a fair comparison, all the recognition results are scored with
“asclite”. As shown in Table 5.2, overlapped speech degrades the recognition performance
at both training stage and testing stage. At the training stage, the existence of overlapped
speech introduces some confusion to the acoustic model and degrades the overall WER on
clean headset recordings, from 41.3% to 51.0%, namely by approximately 10% absolute.
At testing stage, overlapped speech makes the recognition task more challenging. When
the acoustic model is trained with clean headset recordings, the existence of overlapped
speech in test data degrades the overall WER, from 41.3% to 69.5%, namely by more
than 20% absolute. When the acoustic model is trained on simulated data with overlapped
speech, the existence of overlapped speech in test data degrades the overall WER, from
51.0% to 65.7%.

When comparing the recognition performance on simulated data with overlapped
speech, the acoustic model trained with simulated data outperforms the acoustic model
trained with clean headset recordings, by 3.8% absolute in WER. However, such improve-
ment in robustness against overlapped speech is at the cost of a 9.7% absolute WER
increase on clean headset recordings. This suggests that multi-condition training based
on the artificially overlapped speech data is a suboptimal strategy, particularly in the
applications where the proportion of overlapped speech is relatively small.

When the acoustic model is trained and tested with matched data condition, the
existence of overlapped speech degrades WER from 41.3% to 65.7%, i.e. more than
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Fig. 5.8 Average utterance level WER with different amount of overlapped speech on SWC
dev and eval dataset.

20% absolute or 50% relative. Fig. 5.8 illustrates the average utterance level WER given
different amounts of overlapped speech. It shows that the average utterance level WER
increases as the percentage of overlapped speech in one utterance increases (Fig. 5.8b).
This is different from an earlier observation in Fig. 5.7b on headset recordings where no
significant correlation was found between the amount of overlapped speech and WER.

5.2.2 Reverberation

Reverberation is an important factor in DSR as it introduces convolutional distortion to
the speech signal. As reviewed in Section 2.3.1, the convolutional distortion from room
reverberation can be approximated with the room impulse response (RIRs), and reverberant
speech can be simulated by convolving the RIRs with clean headset recordings. This
section investigates the impact of reverberation on speech recognition performance with
and without overlapped speech. The analysis is conducted in four stages with simulated
reverberant speech, to better understand the impact of reverberation and its interaction
with overlapped speech. The first stage focuses on the static reverberation effect without
overlapped speech, i.e. the recordings from each headset microphone convolved with the
same room impulse response. The second stage investigates the static reverberation effect
in the presence of overlapped speech. The signals simulated in the first stage based on
the headset recordings from multiple synchronised channels are mixed together additively.
The third stage investigates the effect of changing reverberation. The RIRs measured in the
same room but at different locations are used to simulate the speech signal with frequent
speaker movement. The fourth stage compares the performance of dereverberation using
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Table 5.3 Analysis of the impact of overlapped speech and reverberation speech on WER
with simulated data based on RIR from microphone “TBL1-01” at the center of table.

Data dev eval
Overall

Sub. Del. Ins. WER
IHM 41.3 41.2 29.9 6.9 4.4 41.3

static reverberation 51.5 51.7 36.0 10.1 5.5 51.6
static reverberation & overlap 72.1 73.7 49.1 18.5 5.3 72.9

SDM 76.4 77.3 39.1 35.5 2.2 76.8

the reverberant signals simulated with the RIRs corresponding to different microphone
arrays.

As noted in Section 2.3.1, RIRs are measured with the swept sine wave signal to avoid
the non-linear effects in the measurement system. Multiple RIRs are measured with a
loudspeaker placed at different locations in the room. The loudspeaker is mounted on a
portable support so that the height of loudspeaker can be adjust to the head height of an
adult. The microphones for RIRs estimation are the same microphones used for distant
speech recordings in SWC, and the microphone installation has been described previously
in Section 4.1. Multiple recordings are taken and averaged for the same loudspeaker
location to reduce the RIR measurement errors caused by background noise and occasional
device artefacts. The recording of the swept sine signal for RIR estimation is designed and
conducted by Dr. Charles Fox.

For the first stage, all the headset recordings are convolved with the same RIR indepen-
dently. The same dataset and algorithms used for building the standalone system in Section
4.4.3 are employed here for training and decoding. For the second stage, the simulated
reverberant signal for the first stage from multiple headset channels are added together
to simulate a combination of overlapped speech and reverberation. The corresponding
experiment results are shown in Table 5.3.

Table 5.3 shows that the reverberation alone (“static reverberation”) increased the
overall WER by 10.3% absolute or 24.9% relative compared to the clean headset recordings
(“IHM”). Compared to the recognition performance with overlapped speech alone in
both training and test as shown in Table 5.2 in previous section, reverberation on top of
overlapped speech increased the overall WER from 65.7% to 72.9%, i.e. by 7.2% absolute
or 11.1% relative. Therefore, reverberation leads to significant WER increase no matter
whether there is overlapped speech or not. In particular, on SWC data the reverberation
introduces more relative WER increase when there is no overlapped speech. In contrast,
the overlapped speech introduces 19.3% absolute WER increase when it is added on top
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Table 5.4 WER improvement from multi-microphone based dereverberation and beamform-
ing on simulated reverberant speech based on RIRs from “TBL1” array.

Simulation Treating
dev eval

Overall
configuration algorithm Sub. Del. Ins. WER

static reverb.
GWPE 48.9 48.8 34.0 9.9 4.9 48.9

GWPE+wDSB 50.6 50.5 35.4 9.9 5.1 50.6
static reverb. GWPE 72.1 73.0 29.7 41.1 1.8 72.5

& overlapped speech GWPE+wDSB 72.1 73.2 48.9 18.4 5.3 72.6

of reverberation. This indicates that overlapped speech has a big contribution to the poor
DSR performance on the SWC data.

In the baseline standalone system reported in Section 4.4.4, beamforming and derever-
beration only brought very limited improvement to recognition performance. Thus it is
worth investigating the performance of dereverberation and beamforming algorithms on
simulated data. For that purpose, the RIRs from the 8 distant microphone in the circular
array at the center of the table (“TBL1”) given the same loudspeaker location are used to
simulate the multi-channel reverberant speech recordings without background noise. The
generalized weighted prediction error (GPWE) algorithm (Yoshioka and Nakatani, 2012)
is applied on the simulated multi-channel reverberant speech signal. Since the simulated
data does not have background noise and noise suppressing algorithms can potentially
introduce speech distortion, it is anticipated that some beamforming algorithms might not
improve the recognition performance on simulated reverberant speech without background
noise.

Table 5.4 shows the results based on the multi-channel simulated reverberant speech. If
one compares the results in Table 5.4 with Table 5.3 on simulated data without overlapped
speech, dereverberation using GWPE decreased WER by 2.7% absolute or 5.2% relative.
The effectiveness of GWPE became marginal when there is overlapped speech reducing
overall WER from 72.9% to 72.5%, even though all speakers and all channels were
simulated with the same single RIR. As expected, applying wDSB on top of GWPE
degraded the recognition performance slightly no matter whether there is overlapped
speech or not. This is caused by the speech distortion caused by the TDOA estimation
error when applying wDSB. Therefore the comparison between Table 5.3 and Table 5.4
explains that overlapped speech is one key reason for the observation in Section 4.4.4
that the derverberation algorithm GWPE only introduced marginal improvement to the
recognition performance on the SWC data.

In addition, a comparison between Table 5.3 and Table 5.4 indicates the best possible
performance of the multi-channel dereverberation algorithm GWPE, when there is no
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Fig. 5.9 Loudspeaker location configuration to measure RIRs for simulating the speaker
movement in the room.

overlapped speech. For the simulated static reverberation without overlapped speech, the
multi-channel dereverberation algorithm GWPE only recovered the WER degradation
caused by static reverberation from 51.6% (“static reverberation” in Table 5.3) to 48.9%
(“static reverberation” in Table 5.4 ), and there is still a big gap compared to the WER based
on headset recordings, namely 41.3% (“IHM” in Table 5.3). GWPE reduced the WER by
2.7% absolute or 26.2% relative while there is still 7.6% absolute WER difference between
using headset recording and using dereverberated simulated data. The situation is even
more adverse to GWPE when there is overlapped speech, as previously discussed. This
could explain the small improvement from GWPE on real multi-channel distant recordings
as shown in Table 4.10 in Section 4.4.4.

For the third stage, the impact of changing reverberation due to speaker movement
is investigated. For that purpose, the RIRs are measured with loudspeakers situated at
different locations in the room. As shown in Fig. 5.9, the loudspeaker is placed at three
different distances in 10 directions from the center of the table. The three different distances
are approximately 0.15 m, 0.45 m and 0.75 m to the margin of the table horizontally. The
10 directions are labelled from “D1” to “D10” in Fig. 5.9. At all locations, the loudspeaker
is mounted in a portable stand of adjustable height. Three heights, namely 1.4 m, 1.5 m
and 1.6 m, are chosen so that the center of loudspeaker is approximately at the same height
with the head of a standing adult human. Multiple measurements are performed with a
swept sine wave signal at each location to reduce the measurement errors.
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Table 5.5 WER comparison between static reverberation and changing reverberation due
to speaker movement.

With overlapped
dev eval

Overall
speech? Sub. Del. Ins. WER

static reverberation No 82.3 81.8 51.4 27.7 2.9 82.1
reverberation No 79.0 78.8 53.9 20.8 4.2 78.9

changes every 10s Yes 86.1 86.3 55.6 28.3 2.3 86.2

Due to an unexpected technical problem, the RIRs measured for different sound
location sources only cover up to 4 kHz in frequency. For speech recognition, an RIR with
a bandwidth up to 8 kHz would be capable of describing the reverberation behaviour in the
room. However an RIR covering only 4 kHz bandwidth will cut off the speech spectrum
above 4 kHz and this will degrade the performance of speech recognition. Therefore, when
examining the impact of changing reverberation due to speaker movement, the baseline for
static reverberation is updated.

Table 5.5 shows the WERs for systems on the simulated reverberant speech with
changing reverberation and the WERs for the new comparable static reverberation baseline.
The RIR used for the “static reverberation” in Table 5.5 is measured when the loudspeaker
is 0.75 m from the table in “D3” direction at a height of 1.5 m. To simulate the change in
the reverberation caused by speaker movement, the RIRs are changed randomly every 10
seconds and convolved with the headset recordings. It is worth noting that the amount of
training data and test data is the same as before in all cases with the same dataset definition.
As shown in Table 5.5, the changing reverberation actually made the acoustic model
slightly more robust to reverberation, improving the overall WER from 82.1% to 78.9%.
Adding overlapped speech into simulated data with changing reverberation degrades the
WER from 78.9% to 86.2% . Since the WER for the new static reverberation baseline in
Table 5.5 is much higher than the correspondent in Table 5.2, it is not sufficient to conclude
whether the overlapped speech is more harmful with changing reverberation or with static
reverberation.

For the fourth stage, an investigation is conducted regarding the array difference in
terms of the dereverberation effectiveness. Dereverberation experiments are performed on
the simulated reverberant data using the RIRs estimated from the 8 microphones hanging
from the ceiling grid (“GRID”). The performance is compared with the dereverberaiton
experiments using the 8 microphones from the “TBL1” circular array. The microphones
in the “TBL1” array and the “GRID” group are of the same hardware design. There are
only two major differences between the “GRID” group and “TBL1” array that could lead
to different RIRs. The first difference is the location of the microphones. As shown in
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Table 5.6 Dereverberation performance comparison using RIRs from different microphone
arrays for simulated data.

Microphone
Dereverberation dev eval

Overall
for RIR Sub. Del. Ins. WER

TBL1-01 - 51.5 51.7 36.0 10.1 5.5 51.6
TBL1, 8 channels GWPE 48.9 48.8 34.0 9.9 4.9 48.9

GRID-01 - 53.4 53.8 37.8 9.7 6.0 53.6
GRID-02 - 53.6 54.1 37.9 9.8 6.1 53.8
GRID-03 - 54.0 54.1 37.8 10.8 5.4 54.0
GRID-04 - 53.0 52.9 37.2 10.0 5.7 53.0
GRID-05 - 52.3 52.7 36.4 10.5 5.5 52.5
GRID-06 - 54.6 54.9 38.2 10.9 5.6 54.7
GRID-07 - 56.1 56.4 39.1 11.7 5.4 56.2
GRID-08 - 55.1 55.0 38.4 11.0 5.6 55.1

GRID, 8 channels GWPE 47.5 47.5 33.0 9.6 4.9 47.5

Fig. 4.2, the microphones in “TBL1” array are placed in the center of the table to form a
circular array with a diameter of 20 cm, while the microphones in “GRID” are hanging
from the ceiling grid with a much larger average distance between any two neighbouring
microphones. Since the microphones in “TBL1” array are mounted on a cylinder stand
pointing up, the microphones record sound mostly from the upper sphere of the space
above the table. In contrast, the microphones in the “GRID” group are fully exposed in
space and they record sound from all directions.

Table 5.6 compares the recognition performance using the RIRs from different micro-
phones for the simulated reverberant data, with and without multi-channel dereverberation
based on GWPE. There is no overlapped speech in the simulated data, and beamforming is
avoided as it has been found to cause performance degradation on the simulated reverberant
data without background noise. Since the microphones in the circular array (“TBL1”)
are very close to each other, the recognition performance on the simulated reverberant
data using the RIRs from these 8 are very similar, thus only the WER from microphone
“TBL1-01” is reported in Table 5.6. Because the microphones in the ceiling grid group
(“GRID”) have larger distance to each other, the recognition performance on the simulated
reverberant data using RIR from each microphone is detailed in Table 5.6.

When there is no dereverberation, the recognition performance on simulated data
based on the RIRs from any microphone in “TBL1” array outperforms the microphones in
the “GRID” microphone group by 0.9-4.6% WER absolute. However, the multi-channel
dereverberation performance is better with the “GRID” group, with WER 1.5% lower
in absolute value compared to the “TBL1” array. This suggests that the effectiveness
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of dereverberation is dependent on the microphone array arrangement more than the
recognition performance of each microphone in the array. Therefore, in practice with
real recordings, there might be a compromise between the best performance from each
microphone or the best performance from the whole microphone array when installing
microphones. This case will be further investigated in Chapter 6.

5.3 DSR: Factor Analysis with Real Data

In the previous section analyses the factors that could potentially impact the DSR perfor-
mance. The analysis was conducted on the simulated data as it allows a factor-by-factor
investigation. However, in real recordings there are usually multiple factors interacting
with each other, and they determine the recognition performance together in a more com-
plex pattern than any single factor alone. The previous section has shown that overlapped
speech makes it much more difficult to treat reverberation due to the interaction between
the two factors. In the case with real data, such interaction will be more complicated
among multiple factors. This will lead to the confusion in understanding the impact from
each influence factor on the final WER, as well as the increased difficulty in treating any
single factor. Therefore, this section uses SWC data as a case study and tries to list all
possible factors in distant speech recordings. The impact of each factor on recognition
performance as well as the interaction among multiple factors will be examined on real
distant microphone recordings. In addition, the conclusions obtained in previous sections
based on headset recordings and simulated data will be verified on real recordings in this
section.

Fig. 5.10 lists all potential influence factors in the SWC distant microphone recordings.
The many factors originate from the three categories of objects in the recording space: the
speakers, the recording microphones and the environment. In this context, the environ-
ment refers to all the objects in the recording space which are not speaker or recording
microphone. For example, the room and the furniture in the room are both parts of the
environment. Each of the three “major factors” have some “attributes” that consistently
impact the DSR performance. For example, the accent and gender of the speaker, the
location and installation of the microphone and the average reverberation level of the room.
In addition, the major factors interact with each other and trigger more complex attributes
that also consistently impact the DSR performance. For example, one natural interaction
between the speaker and the environment is the speaker movement in the room, which
could have an impact on some speech enhancement algorithms such as beamforming. The



5.3 DSR: Factor Analysis with Real Data 93

SD
M

 W
ER

Sp
ea

ke
r

ge
n

d
er

ac
ce

n
t

sp
ea

ki
n

g
st

yl
e

u
tt

er
an

ce
d

u
ra

ti
on

em
ot

io
n

la
u

gh
ta

g

sp
ea

ki
n

g 
sp

ee
d

D
is

ta
n

t 
m

ic
ro

ph
on

e
lo

ca
ti

on

in
st

al
la

ti
on

E
n

vi
ro

n
m

en
t

ro
om

 a
rr

an
ge

m
en

t

re
ve

rb
er

at
io

n
 le

ve
l

b
ac

kg
ro

u
n

d
 n

oi
se

lo
ca

ti
on

 d
ep

en
d

en
t 

n
oi

se

lo
ca

ti
on

 in
d

ep
en

d
en

t 
n

oi
se

o
th

er
 s

p
ea

k
er

s
lo

ca
ti

o
n

 o
f 

o
th

er
 s

p
ea

k
er

s

m
ov

em
en

t 
of

 o
th

er
 s

p
ea

k
er

s

In
te
ra
ct
io
n

In
te
ra
ct
io
n

sp
ea

k
er

 l
o

ca
ti

o
n

sp
ea

ke
r 

m
ov

em
en

t

m
ov

in
g 

sp
ee

d

m
ov

in
g 

ra
n

ge

m
ov

in
g 

d
ir

ec
ti

on
p

h
i c

h
an

ge

th
et

a 
ch

an
ge

m
ov

in
g 

fr
eq

u
en

cy

T
im

e 
ch

an
gi

n
g 

n
on

-s
p

ee
ch

n
oi

se
 m

ad
e 

b
y 

sp
ea

k
er

s

In
te
ra
ct
io
n

sp
ea

ki
n

g 
d

ir
ec

ti
on

sp
ea

k
er

-m
ic

 d
is

ta
n

ce

ov
er

la
p

p
in

g 
sp

ee
ch

In
te
ra
ct
io
n

E
ar

ly
-t

o
-l

at
e 

re
v

er
b

er
at

io
n

 
ra

ti
o

 /
 C

50

R
oo

m
 im

p
u

ls
e 

re
sp

on
se

Fi
g.

5.
10

A
ll

ph
ys

ic
al

fa
ct

or
s

in
re

al
di

st
an

ts
pe

ec
h

re
co

rd
in

gs
th

at
im

pa
ct

sp
ee

ch
re

co
gn

iti
on

pe
rf

or
m

an
ce

di
re

ct
ly

or
in

di
re

ct
ly

(b
lu

e
sq

ua
re

bo
x:

th
e

fa
ct

or
or

at
tr

ib
ut

e
ca

n
be

qu
an

tifi
ed

;r
ed

bo
x

w
ith

ro
un

d
co

rn
er

:
th

e
fa

ct
or

or
at

tr
ib

ut
e

ca
nn

ot
be

qu
an

tifi
ed

;o
ra

ng
e

bo
x

ro
un

d
co

rn
er

:
an

in
te

ra
ct

io
n,

it
is

a
sp

ec
ia

lc
at

eg
or

y
as

it
is

no
ta

si
ng

le
co

nc
re

te
fa

ct
or

;b
ox

w
ith

gr
ey

ba
ck

gr
ou

nd
:

th
e

fa
ct

or
or

at
tr

ib
ut

e
is

om
itt

ed
in

th
is

w
or

k;
bo

x
w

ith
w

hi
te

ba
ck

gr
ou

nd
:

th
e

fa
ct

or
or

at
tr

ib
ut

e
w

ill
be

in
ve

st
ig

at
ed

in
th

is
w

or
k;

or
an

ge
da

sh
lin

e:
th

e
tw

o
fa

ct
or

s
or

at
tr

ib
ut

es
ar

e
re

la
te

d;
bl

ue
ar

ro
w

:
th

e
fa

ct
or

is
in

vo
lv

ed
in

an
in

te
ra

ct
io

n)
.



94 Challenges in Real Natural Spontaneous Speech

following sections will cover the attributes of each major factor regarding their impact on
speech recognition performance.

5.3.1 Speaker attributes

As discussed in Section 5.1, the recognition performance on SWC close-talking recordings
is correlated with the speaker attributes such as gender, utterance duration and emotional
speech. For example, the limited data female speech data contributes to a higher WER on
female speech compared to male speech. In addition, long utterances with a large number
of words tend to have lower WERs. The previously investigated speaker attributes on
headset recordings also exist in disant recordings. In addition, there are other speaker
related attributes that influence the recognition performance of distant recordings. As
shown on simulated data in Section 5.2.1, overlapped speech from multiple speakers is
an important factor that significantly degrades DSR performance. Besides, the interaction
between speaker and distant microphone introduces attributes such as the speaking direction
and speaker-microphone distance that potentially impact the reverberation level of the
recordings as well as the recognition performance. Furthermore, the interaction between
speaker and environment introduces factors such as speaker location, speaker movement in
the room and changing background noise caused by speakers such as the foot step noise
and the dice noise in the SWC data.

Fig. 5.11a shows the average WER per speaker based on the SDM recordings from one
microphone in the circular array located at the center of the table (“TBL1-01”). Similar
with headset recordings, the recognition performance is on average much higher with
female speakers than male speakers mainly due to the insufficient female speech in the
training data. Fig. 5.11b shows the average utterance level WER based on SDM recordings
against the average number of words per utterance and average percentage of overlapped
speech in one utterance. Similar to the case with headset recordings, short utterances
with small number of words tend to have higher WER compared to long utterances with
larger number of words, except for those utterances with only one or two words. As for
overlapped speech, previous analysis based on simulated data has shown that the average
WER per utterance increases significantly as the percentage of overlap in each utterance
increases (Fig. 5.7b). In contrast, as shown in Fig. 5.11c, such correlation is not as strong
for the real SDM recordings, potentially because the overall WERs are above 70% even
without overlapped speech.

With regard to the speaking rate, in headset recordings based analysis in Section 5.1
the speaking rate is found to correlate with the number of words in one utterance and
WER per utterance (Fig. 5.4). Similar correlation is observed in SDM recordings between
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(d) Speaking rate.

Fig. 5.11 DSR WER and speaker dependent attributes analysis based on SDM recordings.

speaking rate and WER per utterance. As shown in Fig. 5.11d, the highest WERs on the
SDM recordings appear in utterances with very low speaking rate, and these utterances are
often short with a small amount of words per utterance (Fig. 5.3). However, different from
headset recordings, the SDM recordings are more sensitive to fast speaking rate. When
the speaking rate is above 2 words per second in SDM recordings, the average WER per
utterance also increases as speaking rate increases. In comparison, the average WER per
utterance based on headset recordings does not increase much when the speaking rate is
above 1.5 words per second (see Fig. 5.4).

For emotional speech, Table 5.7 shows how the average utterance level WER changes
with the amount of laugh tags in that utterance. Similar with headset recording (see Table
5.1), the WER increases as the amount of laugh tags increases.
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Table 5.7 WER on SDM with emotional speech: laugh.

Dataset #Laugh tag in
one utterance

#Utterance Average WER per
utterance (%)

Average #word
per utterance

dev
0 7612 (91.5%) 74.3 7.0
1 600 (7.2%) 84.0 8.6
2 109 (1.3%) 88.4 10.4

eval

0 7440 (91.2%) 76.7 6.9
1 596 (7.3%) 84.5 7.9
2 102 (1.3%) 91.8 9.2
3 19 (0.2%) 84.4 15.9

In SWC data, there is no annotation about speaker talking direction and there is very
limited variation in speaker accent. Therefore, the impact of speaker accent and speaking
direction are not investigated on SWC data.

5.3.2 Microphone attributes and speaker movement

There are many distant microphones recording speech simultaneously in the SWC configu-
ration. In particular, the 20 distant microphones shared among three recording days have
exactly the same microphone hardware. Their only difference is the installation, namely
the way of mounting and the installation location. Therefore, it is possible to investigate
the advantageous and disadvantageous set-up in microphone installation for DSR with
these 20 distant microphones. Such investigation is performed from two aspects.

The first aspect is about the difference in reverberation level of 20 microphone channels.
As reviewed in Section 2.4, the reverberation level of microphone channel is compared
with average C50 and T60 from the RIRs measured using corresponding microphone given
different sound source locations in the room. Details about the RIR measurement have
been presented in Section 5.2.2, and the geometry configuration for the microphones and
loudspeaker can be found in Fig. 5.9. The reverberation time T60 is estimated based on
energy decay curve of the octave band with its center at 1kHz. The overall energy decay
curve is not used. Because of the technical problem mentioned in Section 5.2.2 that the
spectrum of RIRs measured at different locations only covers 4 kHz, the reverberation time
estimated from the full energy curve will be higher than the actual value.

The histogram of C50 from all microphones given different sound source locations is
shown in Fig. 5.12a. There is a large variation in C50. Further analysis on the distribution
of C50 per microphone channel and per sound source location is demonstrated in Fig. 5.12b
and Fig. 5.12c respectively. Together with Fig. 5.12d, they suggest that the variation in
C50 comes from the sound source location, the microphone location and the microphone
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Fig. 5.12 C50 statistics: reverberation level variation with speaker location and microphone
location.

installation. In addition, the C50 variation caused by speaker movement (see Fig. 5.12c)
is larger than the microphone difference (see Fig. 5.12b). In comparison, there is much
smaller variation in reverberation time T60 caused by microphone configuration and speaker
movement, as shown in Fig. 5.13. This is because reverberation is by definition a statistic
metric of the overall sound energy decaying speed in a given room, and it is less sensitive
to the location of microphone and sound source than the early-to-late reverberation ratio
such as C50.

The second aspect is about the average WERs on the recordings from each microphone.
To avoid channel mismatch, the acoustic model is trained with the data from all microphone
channels, i.e. multi-condition training with real recordings from all 20 distant microphones.
Because multi-condition training increases training data by 20 times compared to SDM
recording based acoustic model training, to avoid over-fit caused by 20 times replication
of the same utterances, the adaptation system described in Section 4.4.2 is adopted. The
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Fig. 5.13 T60 statistics: reverberation level variation with speaker location and microphone
location.

DNN front-end from the AMI corpus is adapted with the SWC1 recordings from all 20
microphones. The evaluation is conducted on the SWC2 recordings only because there
is no gender mismatch between SWC1 and SWC2, while the gender mismatch between
SWC1 and SWC3 could hide the impact of the microphone channel.

Fig. 5.14a illustrates the average WER on each microphone over all utterances in
SWC2. The microphones in the circular array located at the center of the table (“TBL1-*”)
have the lowest average WERs, followed by the inner four microphones hanging from the
grid (“GRID-01”∼“GRID-04”). There is a significant increase in WER from the inner
4 microphones hanging from ceiling grid to the outside 4 microphones hanging from
the same ceiling grid (“GRID-05”∼“GRID-08”). The microphones located on the wall
provides the highest average WER. Fig. 5.14b illustrates the average WER of utterances
from all microphones given the speaker location. Since the utterance level WER gets very
noisy in short utterances, only utterances with no less than 5 words are considered in the
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Fig. 5.14 WER variation caused by microphone difference and speaker movement.

calculation of the average WER per location area. Fig. 5.14b shows that the utterance level
WER tends to increase when speakers move to the corner of the room.

In addition, as shown in Fig. 5.14b most utterances are spoken when the speaker is
around the table. Therefore, the RIRs measurement configurations shown in Fig. 5.9
in Section 5.2.2 do not reflect the real movement of speaker. This explains the different
ranks in the average microphone reverberation level by the average C50 as illustrated in
Fig. 5.12b and average microphone quality by speech recognition performance in Fig.
5.14a. Fig. 5.12b indicates that on average the outer 4 microphones hanging from the
ceiling grid (“GRID-05”∼“GRID-08”) are the most advantageous. This is because the
speaker location in RIR measurement covers a wide range of location far from the table.
In comparison, the average WER per microphone shown in Fig. 5.14a suggests that the
8 microphones placed on the table are the most advantageous, closely followed by the 4
inner microphones hanging from ceiling grid. This is because the speakers stay mostly
around the table and they often look downward at the table while talking.

Therefore, the optimal microphone installation for distant speech recognition is not
only dependent on the room environment, but more importantly on the speaker behaviour,
particularly the speaker location, the speaker movement and the speaking direction in the
real recordings.

5.3.3 Environment attributes and distributed microphone

As illustrated in Section 5.3.2, DSR performance is largely affected by speaker movement
and microphone installation, and the optimal microphone installation is highly dependent
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on the speaker movement. There are a few potential implicit environment attributes behind
this observation, such as the asymmetric room arrangement which causes variation in local
background noise and reverberation level. There are also attributes from the interaction
among speakers, microphones and environment, such as the early-to-late reverberation
ratio which varies by microphone location and speaker location. Fig. 5.12c confirms
that the reverberation variation at different locations of the room, by the variation in the
early-to-late reverberation ratio C50 when speakers move around. Furthermore, Fig. 5.14b
has confirmed the variation in speech recognition performance when speaker moves around
in the room. Therefore, an obvious question is whether DSR could benefit from distributed
microphones by always picking the most advantageous microphone for recognition task
given the current speaker movement.

Ideally the optimal microphone is the microphone that provides recordings of the
lowest WER for given speech utterance. This is a post-recognition selection that requires
the reference transcript and the recognition scoring results, therefore it is not practical. But
it provides a ceiling performance for any microphone selection strategies, thus it is further
referred to as the “oracle selection”. The second selection strategy is based on the average
distance between the speaker and microphone in the given utterance, i.e. “minimum
distance selection”. This strategy employs the speaker location tracking results from the
Ubisense system. The third selection strategy is the “maximum posterior selection”. This
strategy takes the idea of confidence score based on DNN posteriors in an early publication
by the author in a joint work with Zhang et al. (2014). That published work suggests that a
low posterior from the DNN front-end implies a high level of confusion in DNN against the
hypothesis labels with provided acoustic features. Therefore, the microphone channel with
lowest overall posterior in one utterance often indicates a high level of confusion. Based
on this idea the microphone with highest overall posterior from the DNN front-end at given
utterance is selected as the optimal microphone, thus it is referred to as the “maximum
posterior selection”. For a comparison purpose, the performance based on the recogniser
output voting error reduction (ROVER) proposed by Fiscus (1997) is also explored, because
it is a typical and frequently used system combination strategy for speech recognition. The
confidence score used in ROVER is from the word level posterior calculated in a similar
way with the utterance level posterior used in the “maximum posterior selection”.

To avoid the training-test mismatch in terms of microphone channel, utterance level
selection is conducted on 20 channel parallel decoding results from the adaptation sys-
tem based on the multi-condition training which has been used in Section 5.3.2. The
performance of different channel selection methods is compared on SWC2 in Table 5.8.
Ideally with the oracle selection, the channel combination could bring down the WER by
more than 10% absolute. However that can rarely be achieved. The minimum distance
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Table 5.8 WER based on distributed microphone selection using different strategies.

Microphone channels Sub. Del. Ins. WER
Best channel TBL1-08 45.8 26.2 3.2 75.1

Worst channel WALL-04 33.2 47.5 0.8 81.5

ROVER
TBL1 36.4 35.0 1.8 73.2
TBL1+GRID 32.1 39.2 1.3 72.7
TBL1+GRID+WALL 28.9 43.3 1.0 73.2

oracle selection
TBL1 40.7 24.7 2.3 67.6
TBL1+GRID 38.3 24.3 2.1 64.7
TBL1+GRID+WALL 37.5 24.6 2.0 64.1

minimum distance selection
TBL1 45.6 26.4 3.2 75.2
TBL1+GRID 45.3 26.0 3.2 74.5
TBL1+GRID+WALL 45.1 26.2 3.1 74.5

maximum posterior selection
TBL1 42.8 29.4 2.5 74.8
TBL1+GRID 40.9 32.2 2.1 75.3
TBL1+GRID+WALL 37.0 38.2 1.4 76.7

based channel selection outperforms the maximum posterior selection when there is a
large number of microphones, for example 16 microphones (TBL1+GRID) or 20 micro-
phones (TBL1+GRID+WALL). However when there is limited number of microphones,
particularly when these microphones are located close to each other thus geometrically
confusing (TBL1), the maximum posterior selection slightly outperforms the minimum
distance based selection. ROVER gives the best performance among the blind channel
combination methods tried. It is worth emphasising that ROVER is strictly word level
channel selection. Thus it is not completely comparable with other strategies which select
microphone channel at utterance level. The better performance in ROVER seems to imply
that utterance level microphone selection in practice is suboptimal, and running multiple
systems in parallel for channel combination might be better than channel selection if there
is sufficient computation resource.

It is worth mentioning that when the results in Table. 5.8 are compared with the results
from the adaptation baseline in Table. 4.8, the WERs on SWC2 did not improve with
multi-condition training compared to the SDM recording based acoustic model training. In
addition, the weighted delay and sum beamforming on 8 channel circular array (TBL1)
achieved an overall WER of 71.6% on SWC2, and this is better than any channel selection
methods tried above and the ROVER channel combination.

A further analysis is conducted on the impact of speaker-microphone distance in DSR
performance on single microphone recordings. Fig. 5.15, Fig. 5.16 and Fig. 5.17 illustrate
the utterance level WER of the utterances spoken at given ranges of speaker-microphone
distance in SWC2 recordings. Each circle in Fig. 5.15, Fig. 5.16 and Fig. 5.17 represents
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one speech utterance. The x-axis of the circle center corresponds to the distance between
speaker and corresponding microphone averaged over the whole utterance. The y-axis
of the circle center corresponds to the WER of that utterance. The size of the circle is
proportional to the number of words in that utterance. For most microphones, as the
distance between speaker and microphone increases, the minimum utterance level WER
increases. This trend is particularly clear with the microphones from the circular array on
the table (“TBL1”) and the inner 4 microphones in the “GRID” group, all of which have
relatively lower overall WERs than the other microphones (shown in Fig. 5.14a). However,
there is a very large variation in the utterance level WER at any given distance for any
microphone. This may be the reason why there is only marginal benefit from the utterance
level microphone selection based on the minimum speaker-microphone distance (see Table
5.8).

Furthermore, Fig. 5.18, Fig. 5.19 and Fig. 5.20 illustrate the median of utterance
level WERs among utterances in each speaker-microphone distance range on each mi-
crophone. The circle in each plot represents one distance range. The x-axis coordinate
of the circle center corresponds to the distance range, the y-axis coordinate of the circle
center corresponds to the median value of utterance level WERs, and the size of the circle
is proportional to the number of utterances in corresponding distance range. The median
WER increases as the speaker-microphone distance increases for all 8 microphones from
“TBL1” array located at the center of the table and the inner 4 microphones from the
“GRID” group hanging from the ceiling grid. In comparison, the outer 4 microphones
in the “GRID” array and the 4 microphones distributed on the wall (“WALL”) does not
provide nice correlation between WER and speaker-microphone distance, and the average
distance between speaker and microphone is larger than the case with microphones in
“TBL1” array and the inner 4 microphones in “GRID” array.

Compared to the inner 4 microphones in the “GRID” array, the outer 4 microphones
overall have slightly larger distance to speakers and usually they are not in the talking
direction. The microphones distributed on the wall have the farthest average distance to any
speaker and these microphones are rarely in the talking direction. Such differences suggest
that the correlation between speaker-microphone distance and average speech recognition
performance is only significant when the speaker-microphone distance is within 1.5 meters
and when room reflections and background noise are not dominant in the recorded signal.
This explains why the distance based channel selection could not benefit much from many
microphones distributed in the room, when speakers often just move around the table and
look downward to the center of the table when talking.



5.4 Summary and Discussion 103

5.4 Summary and Discussion

With SWC data as a study case, this chapter has performed a factor-by-factor experimental
analysis regarding the challenges in DSR. The investigation is conducted step by step
from the recognition performance on the headset recordings, followed by the recognition
performance on the simulated distant speech recordings, to recognition performance on
the real distant recordings from one or multiple microphones. The investigation uses the
AMI corpus as a comparison to highlight the unique challenges in the real recordings of
natural spontaneous conversational speech.

The analysis on the SWC headset recordings in Section 5.1 highlights a few challenges
in the real recordings of natural spontaneous conversational speech: the very short utterance
duration of 2.2 seconds on average and the emotional speech that have WER 5-10% higher
in absolute value compared to normal speech. In addition, a comparison is conducted
between the SWC data and the AMI corpus in terms of the average WER on utterances of
different lengths. The results suggest that the current LM for SWC is suboptimal, and that
the acoustic model of SWC would improve with more training data, particularly with more
female speech data.

Following that, the analysis on simulated data in Section 5.2 investigates the impact
of reverberation and overlapped speech, each factor alone and two factors in combina-
tion. While both reverberation and overlapped speech increases the WER, the impact of
overlapped speech is larger than reverberation. It distorts both the acoustic model and
the acoustic features. The WER in one utterance tends to increase as the percentage of
overlapped speech in that utterance increases. When investigating the effectiveness of
multi-channel based dereverberation algorithm GWPE, it is found that GWPE could only
reduce 2.7% absolute WER while the reverberation distortion alone has increased the
WER by 7.6% absolute. When there is overlapped speech, the improvement from GWPE
shrinks further. A further experimental investigation on using different microphone arrays
for dereverberation suggests that the optimal microphone combination for dereverberation
might not be comprised of the microphones with the best performance as individual. In
most applications the array with microphones close to each other are preferred over the
group of distributed microphones. This can be attributed to the fact that the performance
improvement from dereverberation tends to be less robust compared to the beamforming
algorithms, and the beamforming algorithms prefer a small distance between microphones
within an array.

In the further analysis in Section 5.3, the findings from analysis based on headset
recordings and simulated data are verified on real recordings. Similar to the headset
recordings, a WER descending trend as utterance length increases is observed in the SDM
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recording based recognition results. In addition, the WER increases when the percentage
of overlapped speech in one utterance increases, and when the speech is emotional with
vocal sound such as laughs. Compared to the headset recordings, the distant recordings
are more sensitive to the speaking rate, as the recognition results illustrate a more obvious
growth in WER when the speaker rate increases above 2 words per second. With the
speaker location tracking from the Ubisense system, it is found that most utterances are
spoken when speakers are around the table and when they are likely to be facing downward.
Such speaker behaviour makes the 8 microphones in the circular array located at the
center of the table particularly advantageous, compared to any other microphones installed
in the room. The pre-recording RIR measurement suggests that the most advantageous
microphones are the four inner microphones hanging from the ceiling grid when speaker
moves evenly in the room. However, such assumption on speaker location and movement
is very different from the reality in the SWC recordings, suggesting that the optimal
microphone installation is highly dependent on the targeted speaker activities. Because the
speakers in the SWC recordings move around the table most of the time, there is no benefit
found from combining recordings from microphones distributed around the room. Instead,
the best overall performance on real distant recordings are achieved with multi-channel
dereverberation and beamforming using the 8 channel circular microphone array located at
the center of the table.

This chapter has covered a lot of factors in both headset recordings and distant record-
ings of real natural spontaneous conversational speech. However, one very important factor
is skipped in the work of this chapter, i.e. the background noise. The background noise in
SWC distant recordings includes the stationary noise such as the computer fan noise, as
well as the non-stationary noise such as the cracking sound of the wood floor under the
carpet caused by foot steps when speakers move around, dice noise in the game, occasional
traffic noise from outside of the window and babble noise in a few recording sessions with
invited viewers. The diversity in noise type and the complexity in noise statistics make a
thorough analysis on background noise alone a significant amount of work. Therefore, the
investigation on background noise is not covered by this work, and it can be considered for
future work.
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Fig. 5.15 Utterance level WER as speaker-microphone distance changes - TBL1 micro-
phones.
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Fig. 5.16 Utterance level WER as speaker-microphone distance changes - GRID micro-
phones.
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Fig. 5.17 Utterance level WER as speaker-microphone distance changes - WALL micro-
phones.
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Fig. 5.18 Average WER as speaker-microphone distance changes - TBL1 microphones.
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Fig. 5.19 Average WER as speaker-microphone distance changes - GRID microphones.
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Fig. 5.20 Average WER as speaker-microphone distance changes - WALL microphones.
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Besides the background noise and overlapped speech, reverberation is one major factor
in the distant recordings which limits the recognition performance. As discussed in Section
3.3, existing reverberation modelling at signal level via room impulse response (RIR) is
very sensitive to any acoustic changes in the reverberant environment and the recording
channel. The acoustic change that changes RIR however does not necessarily change the
distant speech recognition (DSR) performance. For DSR it is the change in the feature
pattern that directly impacts the recognition performance, as some variations at signal level
can be normalised in the DSR front-end. Therefore the reverberation modelling based
on the speech recognition feature is more important for understanding and estimating the
impact of reverberation distortion to the DSR performance, as well as the treatment of the
feature pattern distortion caused by reverberation.
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Existing reverberation modelling based on speech features could not bring significant
improvement to the reverberation robustness of DSR systems, because the feature pattern
constructed with reverberation modelling tends to be oversimplified (Sehr and Kellermann,
2008, 2009). The work in this chapter investigates the impact of reverberation on the
complex spectrogram of speech signal. The complex spectrogram based on the short
time Fourier transform (STFT) is the building block of several popular features used in
the state-of-the-art DSR systems, such as the Mel frequency cepstral coefficient (MFCC)
and the logarithmic Mel filter bank coefficient. In addition recent research starts to use
the spectrogram directly as the input to the deep network based front-end and acoustic
models (Xiao et al., 2016). Therefore the reverberation modelling based on complex
spectrogram will be of wide interest for many advanced DSR configurations. The goal of
the investigation in this chapter is to provide an insight to the root of the feature distortion
problem caused by reverberation, and to propose an accurate reverberation modelling
based on the complex spectrogram.

This chapter is organized in the following order. Section 6.1 investigates the rever-
beration distortion on the complex spectrogram and further proposes the reverberation
modelling for the frame level complex spectrogram. Section 6.2 discusses the two as-
sumptions introduced by the proposed reverberation modelling and proposes the analytic
formula to evaluate the errors introduced by the two assumptions. Section 6.3 reports
the results of the experiments that evaluate the two assumptions and the reverberation
modelling in speech recognition tasks. In the end, Section 6.4 summarizes the major
findings in this chapter and discusses some influence factors not covered by this chapter.

6.1 Complex Spectrogram Based Reverberation Modelling

The STFT based spectrogram is used in the front-end during the feature generation by
many state-of-the-art speech recognition systems. Two examples of the widely used speech
recognition features are the MFCC and logarithmic Mel filter bank coefficient. This section
performs an analytic investigation on how reverberation changes the speech spectrogram.
The investigation does not further specialize on any specific features on top of spectrogram,
so that the findings could generalize in many different feature configurations.

To minimise the confusion, the mathematical notations are introduced first. Denote the
clean headset recording as x(n), and the distant microphone recording of the same speech
signal as y(n), where n is the discrete time index or the sample index. The STFT of the
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headset recording at time τ is thus

X(τ,k) =
τ

∑
n=τ−N+1

w(n− τ)x(n)e−
j2πk(n−(τ−N+1))

N , (6.1)

where w(n) is a window with N non-zero coefficients. The window slides over time thus
truncates the recordings into frames on which the STFT for each frame is calculated
independently. Thanks to the window function, the frequency leakage caused by the
truncation is neglectable. N is also the number of frequency bins in the discrete Fourier
transform (DFT) output with k as the frequency index. Similarly, the STFT of distant
microphone recording is

Y (τ,k) =
τ

∑
n=τ−N+1

w(n− τ)y(n)e−
j2πk(n−(τ−N+1))

N . (6.2)

It is worth emphasising that τ is a discrete time index similar to n. Its value reflects the
updating rate of the STFT calculation when the recording is longer than the STFT analysis
window. If the STFT is updated at every new sample in an extreme case, the time index τ

increases by the same step size with n, e.g. 1. If the STFT is updated every l samples, the
time index τ increases by a step size l times larger than n does. In most implementations
of the ASR front-end, the frame size is 25-30 ms and the frame shift is 10 ms, i.e. the
frame rate is 100 Hz and the STFT is updated every 10 ms.

Assume that there is no background noise or any other sound source, the only difference
between the distant recording y(n) and the headset recording x(n) of the same signal is the
presence of reverberation in the distant recording y(n). Assume that reverberation could
be approximated with a finite impulse response (FIR) filter in the time domain, namely the
room impulse response (RIR):

h = [h0,h1, ...,hM−1]
T (6.3)

where M is the effective length of the RIR that provides sufficient approximation accuracy.
Therefore the distant recording y(n) could be reconstructed with the clean headset recording
x(n) and the RIR h via

y(n) =
M−1

∑
m=0

hmx(n−m). (6.4)

Substitute Eq. (6.4) into Eq. (6.2),

Y (τ,k) =
τ

∑
n=τ−N+1

w(n− τ)

(M−1

∑
m=0

hmx(n−m)

)
e−

j2πk(n−(τ−N+1))
N
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=
M−1

∑
m=0

hm

(
τ

∑
n=τ−N+1

w(n− τ)x(n−m)e−
j2πk(n−(τ−N+1))

N

)
=

M−1

∑
m=0

hm

(
τ−m

∑
n−m=(τ−m)−N+1

w((n−m)− (τ −m))x(n−m) ·

e−
j2πk((n−m)−(τ−m−N+1))

N

)
.

Replacing index with l = n−m, with Eq. (6.1), it yields

Y (τ,k) =
M−1

∑
m=0

hm

(
τ−m

∑
l=(τ−m)−N+1

w(l − (τ −m))x(l)e−
j2πk(l−(τ−m−N+1))

N

)

=
M−1

∑
m=0

hmX(τ −m,k). (6.5)

This suggests that reverberant recording complex spectrogram Y (τ,k) is a convolution
of the RIR h and the headset recording complex spectrogram X(τ,k). In addition the
convolution is carried out independently in each frequency bin. It is worth emphasising
that such frequency-independent convolution is based on the complex spectrograms with
the STFT calculation updated at every recording sample.

In many speech recognition front-end implementations, the pre-emphasis is performed
on a windowed piece of signal before performing STFT. Since the pre-emphasis does not
affect the convolutional assumption with the RIR as shown in Eq. (6.4), the pre-emphasis
can not change the conclusion in Eq. (6.5) either. This can be easily proved. Denote the
pre-emphasis coefficient as a and the pre-emphasised signal with “ ˆ ”. For the headset
recording and the distant recording respectively,

x̂(n) = x(n)−ax(n−1)

ŷ(n) = y(n)−ay(n−1).

Then

ŷ(n) =
M−1

∑
m=0

hmx(n−m)−a
M−1

∑
m=0

hmx(n−1−m)

=
M−1

∑
m=0

hm

(
x(n−m)−ax(n−1−m)

)
=

M−1

∑
m=0

hmx̂(n−m). (6.6)
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Similarly, any operation or signal internal structure that could be approximated with
autoregressive models will not change the conclusion in Eq. (6.5).

Eq. (6.5) provides a way to model reverberation accurately with complex spectrogram.
However Eq. (6.5) also suggests that the high modelling accuracy requires the STFT to be
calculated at the signal sampling rate, which is impractical considering the computation
cost. In addition, the new way of modelling reverberation based on complex spectrogram
will be completely equivalent with the RIR based reverberation modelling in the time
domain, thus having the same level of sensitivity to any acoustic changes occurring in
signal. To address that, two assumptions are introduced below, so that some summation
items in Eq. (6.5) could be merged and the STFT updating rate could be reduced:

• The locally linear phase assumption: the STFT phase of the clean speech signal
changes linearly within a very small temporal window, at a constant speed indepen-
dent from speech content but dependent on frequency.

• The locally stationary magnitude assumption: the STFT magnitude of the clean
speech signal does not change within a very small temporal window.

The justification of these two assumptions will be detailed in Section 6.2. Here it is first
illustrated how the two assumptions simplify the reverberation modelling with the STFT
updated at a reduced rate.

Assume that the locally linear phase assumption and the locally stationary magnitude
assumption hold for any continuous Nf samples with sufficiently low errors. It is of
particular interest when Nf equals the number of samples corresponding to 10 ms, i.e.

the frequently adopted frame shift size in the speech recognition front-end. Denote the
unwrapped phase of the clean speech STFT as:

θ(τ,k) = ∠X(τ,k), (6.7)

the linear phase assumption could be formulated as

△θ(δ ,k) = θ(τ +δ ,k)−θ(τ,k)

≈ 2π · k
N
·δ

=
2πk
N

·δ (6.8)

or

∂∠X(τ,k)
∂τ

= limit
δ→0

(
θ(τ +δ ,k)−θ(τ,k)

δ

)
= limit

δ→0

(
△θ(δ ,k)

δ

)
≈ 2πk

N
. (6.9)
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Introduce Mf = ⌈M/Nf⌉ to simplify the notation where ⌈·⌉ refers to the ceiling function.
If Nf equals the number of samples in one frame shift, Mf equals the number of frames
corresponding to the duration of RIR. Therefore Eq. (6.5) can be simplified:

Y (τ,k) ≈
Mf−1

∑
m=0

∣∣X(τ −mNf,k)
∣∣Nf−1

∑
δ=0

hmNf+δ · e jθ(τ−mNf−δ ,k)

=
Mf−1

∑
m=0

X(τ −mNf,k)
Nf−1

∑
δ=0

hmNf+δ · e j△θ(−δ ,k)

=
Mf−1

∑
m=0

X(τ −mNf,k)
Nf−1

∑
δ=0

hmNf+δ · e−
j2πkδ

N

=
Mf−1

∑
m=0

X(τ −mNf,k)H(m,Nf,k), (6.10)

where

H(m,Nf,k) =
Nf−1

∑
δ=0

hmNf+δ · e−
j2πkδ

N (6.11)

is actually the STFT of the RIR calculated every Nf samples, using a square window with
an effective size of Nf without frame overlap between two sequential calculations. Eq.
(6.10) indicates that the frame level complex spectrogram of the reverberant signal can
be approximated with the convolution between the frame level complex spectrogram of
the clean speech signal and the special complex spectrogram of the RIR. Therefore Eq.
(6.10) is further referred to as the reverberation modelling based on frame-level complex
spectrogram.

There are two important insights from this derivation. First, while existing literature
suggests that reverberation causes distortion because the analysis window for STFT is
shorter than the RIR (Raut et al., 2006; Sehr and Kellermann, 2008, 2009; Sehr et al., 2006),
the above derivation shows that the reverberation distortion is mainly a consequence of
the temporal change in the speech magnitude spectrum. Even though the analysis window
is not shorter than the RIR, if the speech magnitude spectrum changes at such a fast rate
that within the RIR duration the STFT for speech spectrogram has to be updated multiple
times, the reverberation smearing will still exist. Here is one example: assume a scenario
where the RIR is effectively 25 ms long and a 25 ms window is used for the STFT. Since
the speech magnitude spectrum changes so fast, the STFT has to be updated every 10 ms,
which means within 25 ms there will be multiple STFT calculations. In this example case
there will still be reverberation distortion in the STFT spectrogram as well as in the features
based on the STFT spectrogram. The actual degree of reverberation distortion is dependent
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on the parameter value of RIR. More discussion about the reverberation distortion level
will be covered in Chapter 7.

The second insight is about the time resolution in reverberation modelling controlled by
Nf, which has been omitted by existing research (Raut et al., 2006; Sehr and Kellermann,
2008, 2009; Sehr et al., 2006). The Nf in Eq. (6.10) emphasises the reverberation modelling
error introduced by the two assumptions made, i.e. the locally linear phase assumption and
the locally stationary amplitude assumption. Details about the two assumptions will be
covered in Section 6.2.

In a special case where the sound signal has its magnitude spectrum unchanged over a
duration that equals the RIR length, the Nf can be increased to be of the same length with
the RIR length. Then Eq. (6.10) reduces to a multiplication between the STFT complex
spectrum of the clean speech and the complex spectrum of the RIR. In this case the
distortion caused by reverberation could be easily factorized as an additive component in
the logarithmic magnitude spectrum, and the reverberation distortion can be compensated
with a mean normalisation or an additive bias.

6.2 The Local Phase and Magnitude Assumptions

The derivation in previous section has introduced two assumptions regarding the phase and
magnitude properties of the clean speech complex spectrogram over a very short period
of time. This section proposes the methods to evaluate the errors introduced by the two
assumptions and the experimental results will be reported later in Section 6.3.1 and Section
6.3.2.

In the locally stationary magnitude assumption, it is assumed that the speech spectrum
magnitude does not change within a small range of time corresponding to Nf samples. To
quantify the error introduced by this assumption, a metric is proposed based on the local
variance of the STFT magnitude in each frequency bin:

µmag(m,k,Nf) =
1
Nf

(m+1)Nf−1

∑
n=mNf

∣∣X(n,k)
∣∣ (6.12)

vmag(m,k,Nf) =
1
Nf

(m+1)Nf−1

∑
n=mNf

(∣∣X(n,k)
∣∣−µmag(m,k,Nf)

)2
. (6.13)
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The variance is then normalised by the average STFT energy in corresponding frequency
bin as a metric for the error introduced by the locally stationary magnitude assumption:

emag(k,Nf) = 10log10

(
∑
⌊T/Nf−1⌋
m=0 vmag(m,k,Nf)

∑
⌊T/Nf−1⌋
m=0 µmag(m,k,Nf)2

)
(6.14)

where T is the overall number of samples in the speech recording.

In the locally linear phase assumption, it is assumed that the speech spectrum phase
changes linearly within a small range of time corresponding to Nf samples, and the change
speed is only dependent on frequency. The accuracy of the linear phase assumption is
estimated indirectly with the Pearson product-moment correlation coefficient (Pearson,
1895). The Pearson linear correlation is estimated between the discrete time index τ

and the unwrapped phase of STFT ∠X(τ,k) within a short time span of Nf samples, i.e.

τ ∈ [mNf,(m+1)Nf) for the m-th frame shift. Denoting such local Pearson correlation as
ρp(m,k,Nf), it can be averaged over a large amount of data:

ρ̄p(k,Nf) =
1

⌊ T
Nf
⌋

⌊T/Nf−1⌋

∑
m=0

ρp(m,k,Nf). (6.15)

In particular, to penalize the insignificant correlation, the linear correlation coefficient is
set to 0 when the p-value is larger than 0.05, i.e.

ρ
′
p(m,k,Nf) =

ρp(m,k,Nf), if p ≤ 0.05

0, if p > 0.05
(6.16)

ρ̄
′
p(k,Nf) =

1
⌊ T

Nf
⌋

⌊T/Nf−1⌋

∑
m=0

ρ
′
p(m,k,Nf). (6.17)

As shown in Eq. (6.14), Eq. (6.15) and Eq. (6.17), the error in the locally linear
phase assumption and the locally stationary magnitude assumption is a function of the
time resolution in reverberation modelling represented by Nf. When Nf = 1, there is no
modelling error because Eq. (6.10) degenerates back to Eq. (6.5).

Within the context of speech recognition, a better method to indirectly evaluate the
errors introduced by the two local assumptions is to compare the speech recognition perfor-
mance using mismatched features for training and test. The features include those derived
from reverberant signals directly, and those derived from constructed complex spectro-
gram via reverberation modelling using Eq. (6.10) given different temporal resolution Nf.
Results and examples will be covered in Section 6.3.
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6.3 Experimental Evaluation

In this section, experiments are conducted to validate the locally linear phase assumption
and the locally stationary magnitude assumption made in reverberation modelling. Section
6.3.1 and Section 6.3.2 employ the metrics proposed in Section 6.2 to evaluate the errors
introduced by two assumptions, and Section 6.3.3 evaluates the reverberation modelling
accuracy by speech recognition performance.

6.3.1 The Local linear phase assumption

As discussed in Section 6.3.1, the local linearity in the phase spectrogram of the clean
speech signal is evaluated with the Pearson product-moment correlation. The experiments
are conducted on 200 speech utterances randomly selected from the evaluation dataset of
SWC headset recordings in the “SA1” configuration (detailed in Section 4.4.1). The linear
correlation coefficient is first averaged per utterance as shown in Eq. (6.15) and Eq. (6.17),
and then averaged over all 200 utterances weighted by the utterance duration. The results
are illustrated in Fig. 6.1.

As shown in Fig. 6.1a and Fig. 6.1c, the unwrapped phase of the clean speech
STFT spectrum is approximately linear for most frequencies except the extremely low
frequencies close to 0 Hz and the high frequencies close to the Nyquist frequency. The
original Pearson coefficient (Eq. (6.15)) almost overlaps completely with the strict linear
correlation coefficient (Eq. (6.17)). A comparison between Fig. 6.1a and Fig. 6.1c suggests
that the local linear phase assumption holds better when Nf corresponds to 10 ms than 2.5
ms. This is because a larger value for Nf leads to more samples in each frame shift span
where one linear correlation coefficient is calculated. Fig. 6.1b and Fig. 6.1d compares
the gradient of the unwrapped phase estimated from linear regression (black line) with the
gradient assumed in Eq. (6.9) (pink dash line), along with the linear regression error (green
line). As shown, the assumption on phase gradient is sufficiently accurate for low and
middle frequencies. The regression error (green line) increases as the frequency increases
due to the fast phase change speed at high frequencies.

For a better understanding where the locally linear phase assumption breaks, Fig. 6.2
illustrates the magnitude and phase spectrogram from a small piece of headset recordings
from the SWC data. As shown, the fluctuation in the gradient of the STFT unwrapped phase
is associated with the fluctuation in the STFT magnitude. When there is an abrupt change
in magnitude, there is also a fluctuation in the gradient of the unwrapped phase. In the
complex spectrogram region with slow and smooth change in magnitude, the unwrapped
STFT phase increases linearly with an approximately constant gradient.



120 Reverberation Modelling for Distant Speech Recognition

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
a
rs

o
n
 l
in

e
a
r 

co
rr

e
la

ti
o
n

Linear correlation Strict linear correlation

(a) Pearson linear correlation between un-
wrapped STFT spectrum phase and the time in-
dex across different frequencies (Nf corresponds
to 10 ms).

0 1000 2000 3000 4000 5000 6000 7000 8000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G
ra

d
ie

n
t 

o
f 

u
n
w

ra
p
p
e
d
 p

h
a
se

0

2000

4000

6000

8000

10000

12000

14000

P
h
a
se

 s
q
u
a
re

 e
rr

o
r

(b) Gradient from linear regression (black line)
in comparison to assumed gradient 2πk

N (pink
dash line), along with the regression error (Nf

corresponds to 10 ms).

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
a
rs

o
n
 l
in

e
a
r 

co
rr

e
la

ti
o
n

Linear correlation Strict linear correlation

(c) Pearson linear correlation between un-
wrapped STFT spectrum phase and the time in-
dex across different frequencies (Nf corresponds
to 2.5 ms).

0 1000 2000 3000 4000 5000 6000 7000 8000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G
ra

d
ie

n
t 

o
f 

u
n
w

ra
p
p
e
d
 p

h
a
se

0

50

100

150

200

250

300

350

400

450

P
h
a
se

 s
q
u
a
re

 e
rr

o
r

(d) Gradient from linear regression (black line)
in comparison to assumed gradient 2πk

N (pink
dash line), along with the regression error (Nf

corresponds to 2.5 ms).

Fig. 6.1 Validation of local linear phase assumption with 200 utterances randomly selected
from “SA1” evaluation dataset of SWC headset recordings.

6.3.2 Local stationary magnitude assumption

The locally stationary magnitude assumption is validated based on the variance-energy
ratio in Eq. (6.14) using 200 utterances randomly selected from the evaluation dataset
from the SWC headset recordings in the “SA1” configuration (detailed in Section 4.4.1).
The variance-energy ratio is first calculated on each speech utterances and then averaged
over all 200 utterances, weighted by the utterance duration.

Fig. 6.3 illustrates the average variance-energy ratio in each frequency bin for different
Nf values. Overall for most frequencies the local temporal magnitude change in STFT
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Fig. 6.2 Magnitude (dB) and unwrapped phase of the complex spectrogram from a small
proportion of speech sound (sampling rate: 16 kHz).
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(b) Nf corresponds to 2.5 ms.

Fig. 6.3 STFT magnitude change measurement via overall emag.

complex spectrogram is very small compared to the spectrogram energy, thus the magnitude
of clean speech could be assumed stationary within a small time span. In addition, the
magnitude variation reduces as the frequency decreases and as the analysis time span
shortens, namely Nf reduces. For a better understanding of the occasions where the
assumption breaks badly, Fig. 6.4 illustrates the STFT magnitude spectrogram of two



122 Reverberation Modelling for Distant Speech Recognition

0 50 100 150
Frame index (frame width:25.00ms, frame rate:16000Hz)

0

50

100

150

200

250

In
d
e
x
 o

f 
FF

T
 b

in

SWC1-00001_mn0001 (729.37-729.40s)

8

7

6

5

4

3

2

1

0

(a) Beginning 10 ms of a phoneme by a male
speaker;

0 50 100 150
Frame index (frame width:25.00ms, frame rate:16000Hz)

0

50

100

150

200

250

In
d
e
x
 o

f 
FF

T
 b

in

SWC3-00003_fn0019 (454.00-454.04s)

7.2

6.4

5.6

4.8

4.0

3.2

2.4

1.6

0.8

0.0

(b) Middle 10 ms of a phoneme by a female
speaker.

Fig. 6.4 STFT amplitude change of speech signal (sampling rate: 16kHz) over 10 ms time
span, with frame width being 25 ms (value in dB).

pieces of audio. As shown, there is a larger magnitude change at the transition status from
one phoneme to another phoneme (Fig. 6.4a), and at high frequency than at low frequency.

6.3.3 Reverberation modelling for speech recognition

The justification of the locally linear phase assumption (Section 6.3.1) and the locally
stationary magnitude assumption (Section 6.3.2) has shown that the assumptions are
reasonable for most regions in the complex spectrogram of the clean speech signal, except
for the regions where the frequency is close to 0 Hz or to the Nyquist frequency and the
regions at a transition stage from one phoneme to another.

Fig. 6.5a shows the log magnitude spectrogram for one utterance taken from the
SWC headset recordings. Fig. 6.5b illustrates the log magnitude spectrogram for the
simulated reverberant signal of the same utterance. The reverberant signal is simulated
by convolving the headset recording with the RIR measured in the SWC recording room.
A comparison between Fig. 6.5a and Fig. 6.5b shows that reverberation decreases the
temporal resolution of the pattern structure in the magnitude spectrogram in all frequencies,
resulting in reverberation smearing. Fig. 6.5c illustrates the log magnitude of the complex
spectrogram reconstructed with reverberation modelling (Eq. (6.5)), and Fig. 6.5d shows
in dB the reconstruction error in the magnitude spectrogram when comparing Fig. 6.5c
with Fig. 6.5b. In Fig. 6.5c, the x-axis corresponds to frame index τ in Eq. (6.5), the
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Fig. 6.5 The magnitude spectrogram with STFT updated at the signal sampling rate,
corresponding to speech sentence: “Are you just having one warlord, what’s that?" (dB)
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y-axis corresponds to frequency bin index k in Eq. (6.5), and the pixel value corresponds
to 20log10 |Y (τ,k)|.

The very small errors in all regions of the magnitude spectrogram confirms Eq. (6.5) -
the reverberant speech complex spectrogram could be accurately modelled with a convolu-
tion between the RIR and the clean speech complex spectrogram, and the convolution is
conducted along the time index independently each frequency bin.

Fig. 6.6b, Fig. 6.6c and Fig. 6.6d illustrate the log magnitude spectrogram recon-
structed with Eq. (6.10) with Nf corresponds to 10 ms, 5 ms and 1 ms. As shown, overall
the reconstructed magnitude spectrogram preserves the patterns well in the magnitude
spectrogram. The pattern approximation accuracy increases as Nf decreases because the
temporal resolution of reverberation modelling increases.

Fig. 6.7 further illustrates the residual error in reconstruction. It is worth noting that
the energy distribution of the residual error magnitude spectrum shown in Fig. 6.7 has
a clear correlation with the target magnitude spectrum shown in Fig. 6.6. During the
calculation of the residual error, care has been taken to minimize potential alignment
error and inconsistent magnitude normalization. Since the speech pattern in significant
in the residual error, it can lead to misleading conclusions by using the plot in Fig. 6.7 to
judge the reconstruction pattern accuracy. Unlike the accurate reconstruction shown in
Fig. 6.6 where an accurate signal match sufficiently proves an accurate reconstruction of
speech patten, an inaccurate signal match in Fig. 6.7 with informative speech pattern in
the residual error is insufficient to judge whether the reconstruction is accurate or not.

To better evaluate the reverberation modelling accuracy in terms of speech recognition,
a set of experiments is conducted on the SWC data using the DNN-HMM hybrid acoustic
model structure described in Section 4.4.3. In the experiments, the acoustic model is
trained with the features from the headset recordings. The acoustic model is then tested
with the features generated from the spectrogram of the simulated reverberant signal, and
the features from the spectrogram reconstructed using reverberation modelling by Eq.
(6.10). The impact of the temporal resolution is investigated by comparing the WERs for
different values of Nf. The language model and decoding configuration are the same as
those used in the experiments in Section 4.4.3. The RIR used to simulate the reverberant
signal is taken from a distant microphone in the circular table array (“TBL1-01”), and the
details about the microphone geometry can be found in Section 4.1.

The reverberation modelling error could be observed in Table 6.1 by comparing the
WERs based on the simulated reverberant speech and the WERs based on the reconstructed
spectrogram using different Nf values. A high WER difference indicates a large rever-
beration modelling error in terms of the speech feature pattern. When Nf corresponds
to 10 ms, namely the frequently adopted frame shift size, there is a 0.5% absolute WER
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(b) The magnitude spectrogram reconstructed
directly from the complex spectrogram of the
headset recording and the special complex spec-
trogram of the RIR with STFT updated per 10
ms (Nf corresponds to 10 ms);
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(c) The magnitude spectrogram reconstructed
directly from the complex spectrogram of the
headset recording and the special complex spec-
trogram of the RIR with STFT updated per 5 ms
(Nf corresponds to 5 ms);

0 50 100 150 200
Index of frame

0

50

100

150

200

250

In
d
e
x
 o

f 
FF

T
 b

in

Reconstructed STFT from a smaller frame shift (1ms)

120

105

90

75

60

45

30

15

0
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Table 6.1 WER and pattern approximation accuracy with different Nf value.

The STFT for features of test data
dev set eval set

Sub. Del. Ins. WER Sub. Del. Ins. WER
headset baseline 29.9 7.0 4.3 41.3 29.8 6.7 4.6 41.2

reverberant speech signal (simulated) 35.9 10.6 5.2 51.7 36.3 10.2 5.3 51.9
reconstruct spectrogram with Nf∼10ms 35.5 10.5 5.1 51.2 36.1 10.0 5.3 51.4
reconstruct spectrogram with Nf∼5.0ms 35.8 10.3 5.4 51.5 36.2 10.0 5.5 51.8
reconstruct spectrogram with Nf∼2.5ms 35.9 10.3 5.5 51.6 36.3 9.9 5.6 51.8

difference. The WER difference is further reduced when a smaller value is used for Nf.
When Nf corresponds to 2.5 ms, the WER difference becomes marginal (0.1%). This
indicates that the patterns in the reconstructed magnitude spectrogram are very close to the
patterns in the magnitude spectrogram calculated directly from the simulated reverberant
signal. Compared to the WER degradation caused by reverberation (>10% absolute), the
WER difference caused by reverberation modelling error is so small that the error from the
reverberation modelling based on Eq. (6.10) could be neglected in DSR applications.

A further experiment is conducted where the acoustic model is both trained and tested
with features based on the reconstructed complex spectrogram using Nf corresponding to
10 ms. The WER is 50.6% for dev set and 51.0% for eval set, lower than the WERs from
the acoustic model trained with the original reverberant spectrogram based features - 51.2%
for dev set and 51.4% for eval set as shown in Table 6.1. The WERs based on the features
generated on the reconstructed complex spectrogram are lower compared to the WERs
based on the features generated from the reverberant speech signal directly, suggesting
that the reverberation modelling with Eq. (6.10) simplifies the speech pattern from the
complex spectrogram onwards. The pattern simplification is caused by the smoothing
effects from the locally linear phase assumption and the locally stationary magnitude
assumption, and the degree of simplification increases as the frame rate decreases. Similar
pattern simplification has been observed by Sehr and Kellermann (2008, 2009) in the
reverberation modelling based on Mel spectral features (Fig. 1 in their work). Compared
to their work, the example plot in Fig. 6.6 and the WERs in Table 6.1 both suggest that the
reverberation modelling based on complex spectrogram in this work (Eq. (6.10)) better
maintains the speech pattern for speech recognition task.

6.3.4 Reverberation variation analysis with the RIR spectrogram

Section 5.2.2 has conducted speech recognition experiments with the simulated reverber-
ant data based on the RIRs measured in the SWC recording room using microphones
installed at different locations. The experiment results illustrated in Fig. 5.12 have shown
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that both the speaker location and the microphone installation could impact the channel
reverberation level estimated with C50. With the reverberation modelling based on com-
plex spectrogram (Eq. (6.10)), similar investigation could be conducted regarding the
variation in reverberation modelling parameters due to speaker movement and microphone
configuration difference. The investigation aims at providing some insights into how the
variation in reverberation impacts the performance of dereverberation algorithms based on
spectrogram.
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Fig. 6.8 Magnitude spectrogram of RIRs measured with the same speaker location in SWC
recording room.

One particularly important question regarding the treatment of reverberation distortion
is what kind of configuration in microphone and microphone array is advantageous to
the dereverberation algorithms. Take the multi-channel dereverberation algorithm GWPE
(Yoshioka and Nakatani, 2012) as an example, which conducts dereverberation on complex
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spectrogram. Since the reverberation modelling in Eq. (6.10) suggests that reverberation
causes convolutional distortion on complex spectrogram, the RIR complex spectrogram
is analysed for some insights into how the dereverberation algorithm is influenced by
the microphone installation. The RIR magnitude spectrogram is calculated based on Eq.
(6.11).
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Fig. 6.9 Zeros of equivalent complex valued filter based on reverberation modelling in Eq.
(6.10) for the TBL1 microphones and the GRID microphones at different frequencies.

Fig. 6.8 shows the RIR magnitude spectrogram at 500 Hz and 2000 Hz when the
microphones are installed at different locations. As shown, the 8 microphones in the
circular array placed on the table (“TBL1”) have almost identical magnitude, indicating
a very similar reverberation effect. In comparison, the 8 microphones hanging from the
ceiling grid (“GRID”) has a much larger variation in the magnitude spectrogram.

In an early work on the inverse filtering based multi-microphone dereverberation,
Miyoshi and Kaneda (1988) pointed out that the mutli-microphone based dereverberation
could outperform the single microphone based dereverberation if the multiple channels
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do not share common zeros in RIRs. Fig. 6.9 illustrates the zeros of the RIR complex
spectrogram corresponding to the microphone channels and frequencies shown in Fig. 6.8.
The zeros are estimated by treating the RIR complex spectrogram as a complex valued
FIR filter in each frequency bin. As shown, there are a lot of shared zeros in the RIR
complex spectrogram from the microphones in the “TBL1” array, i.e. the no-shared-zero
assumption does not hold for the microphones in the “TBL1” array. In comparison for
the 8 microphones in the “GRID” group, the RIR complex spectrogram has very different
zeros across microphone channels. This suggests that the 8 microphones hanging from
ceiling grid (“GRID”) are more suitable for multi-microphone based dereverberation than
the 8 microphones from the circular table placed on the table (“TBL”). Actually the better
performance of “GRID” microphones in GWPE based multi-microphone dereverberation
was already observed in the experiment results in Table 5.4 in Section 5.2.2. Even though
the microphones in the “TBL1” circular array are less reverberant than the microphones in
the “GRID” group and the “TBL1” microphones have lower WERs, the “GRID” group
outperforms the “TBL1” array with multi-microphone dereverberation.

In applications where the microphone location is fixed once the recording starts, the
RIR variation or reverberation variation comes mainly from speaker movements and
the change in acoustic environment. In the SWC recording configuration, the acoustic
environment change is much less compared to speaker movement. In addition, it is very
difficult to quantify the acoustic environment change in a natural conversation scenario.
Therefore the acoustic environment change is dropped out from the discussion here. In
the SWC recordings, the RIRs have been measured by placing loudspeakers at different
locations in the room (Fig. 5.9) and at three different heights (1.4 m, 1.5 m and 1.6 m).
Details about the speaker location configuration can be found in Section 5.2.2. Fig. 6.10
shows a few examples of the RIR magnitude spectrogram with up to 20 cm difference
in the speaker height, when the speaker location, the microphone configuration and the
acoustic environment all stay the same. As shown, variations could be observed in the
magnitude spectrogram at different frequencies even though there is only 10 cm change
in the physical height of speaker. Similarly, Fig. 6.11 illustrates the RIR magnitude
spectrogram variation when speaker is 0.15 m, 0.45 m and 0.75 m away from the table,
and the RIRs are measured from the microphone “TBL1-01” located at the center of table.
As shown, speaker movements also introduce variation in magnitude spectrogram.



6.4 Summary and Discussion 131

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

70

60

50

40

30

20

10

0

10

20
A

m
p
lit

u
d
e
 (

d
B

)

FFT bin index: 16 out of 256

140cm

150cm

160cm

(a) 500 Hz, 0.15 m from the table in D1 direction
as shown in Fig. 5.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

100

80

60

40

20

0

A
m

p
lit

u
d
e
 (

d
B

)

FFT bin index: 64 out of 256

140cm

150cm

160cm

(b) 2000 Hz, 0.15 m from the table in D1 direc-
tion as shown in Fig. 5.9.
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Fig. 6.10 Magnitude spectrogram of RIRs measured with slight variation in speaker height
at the same location using the same microphone (TBL1-01).

6.4 Summary and Discussion

This chapter has investigated the impact of reverberation on the speech complex spec-
trogram which is the building-block for the features used in many state-of-the-art ASR
systems. The analytic analysis illustrates that the complex spectrogram of the reverberant
speech is a convolution between the complex spectrogram of the clean speech signal
and the RIR. This convolutional relationship suggests that the fast change in the speech
magnitude spectrum is the fundamental reason for the pattern distortion in the reverberant
speech spectrogram and the spectrogram based features. With two assumptions introduced,
the reverberation modelling could be conducted with the frame level complex spectrogram.
The two assumptions are the locally stationary magnitude assumption that the clean speech
spectrogram magnitude does not change in a short time span, and the locally linear phase
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Fig. 6.11 Magnitude spectrogram of RIRs measured with the same microphone (TBL1-01)
with speaker of different distances to the table in the same direction, i.e. D3 shown in Fig.
5.9. “r1”: 0.15 m to the table; “r2”: 0.45 m to the table; “r3”: 0.75 m to the table.

assumption that the clean speech spectrogram phase changes linearly in a short time span
with a constant and frequency dependent gradient. Experimental evaluation based on the
headset recordings from the SWC data suggests that the two assumptions are reasonable,
and that the reverberation modelling based on frame-level complex spectrogram is suf-
ficiently accurate for ASR applications. Compared to previous work, the reverberation
modelling proposed in this work better preserves the patterns in speech features.

There are a few findings and contributions from the work in this chapter. First, the
reverberation modelling based on a convolution between the RIR complex spectrogram
and the clean speech complex spectrogram is sufficiently accurate for ASR tasks. This
provides a solid support for the dereverberation algorithms based on frame level complex
spectrogram. In particular, the recent progress in various deep network structures makes it
possible to construct an acoustic model directly with low level features.

Second, the parameter analysis on the RIRs from different microphone configuration
explains the performance limit in the multi-channel dereverberation based on microphones
installed too close to each other - such microphone installation can result in many shared
zeros in the RIR complex spectrogram factorization. This is consistent with the experimen-
tal observation in Table 5.4 in Section 5.2.2. Therefore the best microphone combination
for multi-channel derevrberation is not necessarily the same with a combination of the
microphones that provide the best recognition performance individually. The RIRs of the
microphones to combine for multi-channel dereverberation should have different zeros in
the complex spectrogram factorization. This could be achieved by increasing the distance
among microphones.
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Third, the variation in reverberation caused by speaker movements is briefly covered.
With the reverberation modelling based on the frame-level complex spectrogram, it is
shown that a speaker movement of 10 cm could cause a wide range of fluctuation in the RIR
complex spectrogram across all frequencies. This suggests that the inverse filtering and
the inverse processing based dereverberation will be generally challenged by the speaker
movement in real applications.

The work in this chapter contributes to a better understanding of reverberation regarding
how it distorts the features for speech recognition. To make this knowledge really useful in
improving the DSR performance, the influence from background noise and overlapping
speech should not be ignored. Chapter 5 has shown that the overlapping speech degrades
the performance of dereverberation. The analysis on background noise is not covered
by this work, but the background noise has also been widely observed to degrade the
dereverberation performance. The background noise is additive to the speech component
in the spectrogram while the reverberation distortion is convolutional. The treating filter
for dereverberation could transform and amplify the noise component, resulting in the
speech pattern distortion and as well as the WER increase. Therefore the dereverberation
algorithms are usually combined with the de-noising algorithms in the DSR applications.
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The multi-condition training has gained much popularity recently due to its simplicity
in implementation and its effectiveness in improving the overall robustness of DNN front-
end and DNN acoustic model against reverberation. For multi-condition training to achieve
a balanced selection of data that covers diverse reverberation conditions, the reverberation
measurement becomes critical. Since the multi-condition training has the side-effect that
the recognition performance degrades on relatively less reverberant data, recent research
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has proposed to use model selection based on the reverberation measurement for a better
balance between overall robustness against diverse reverberation conditions and the optimal
performance in each reverberant condition. Therefore the reverberation measurement plays
a key role in improving the reverberation robustness of current DNN based DSR systems.
As discussed in Section 3.4, existing methods for reverberation measurement have been
focusing on estimating the reverberation level of the acoustic environment and the recording
channel rather than the reverberation distortion level in the speech feature pattern in a
recognition task. This could cause a suboptimal decision in the data selection and the
model selection when the reverberation level is evaluated on short recordings, because the
difference between the reverberation level and the reverberation distortion level can be
amplified by sound pattern sparsity in short recordings.

This chapter covers the novel research work aimed at improving existing methods to
better estimate the reverberation distortion level. Section 7.1 illustrates the problems in
existing methods, based on which Section 7.2 proposes a polynomial style reverberation
measurement strategy for short recordings. The proposed method is the first research work
according to the author’s knowledge that takes the signal properties into consideration when
evaluating the reverberation distortion level in a given environment. The following Section
7.3 explores the idea of phonetic pattern based reverberation analysis by Assmann and
Summerfield (2004) in the context of measuring reverberation distortion level. The idea of
self-masking and overlap-masking caused by reverberation as introduced by Kokkinakis
and Loizou (2011) is borrowed to partition the reverberation distortion into the intra-phone
smearing and the inter-phone smearing. Based on that partition, the overall distortion level
is estimated by combining the reverberation distortion index of each part. Section 7.4
further discusses one implicit assumption made by the proposed strategy when estimating
the feature pattern distortion level caused by inter-phone smearing. The experimental
analysis of existing methods will be first illustrated in Section 7.1 regarding the issues in
existing methods, and the experiment results of the proposed methods will be discussed in
Section 7.5.

7.1 Motivation

7.1.1 Reverberation distortion from the early reflections

As reviewed in Section 2.4, existing research on reverberation measurement and dere-
verberation usually groups the reflected sound in the reverberant environment into early
reflections and late reflections, or early reverberation and late reverberation (Valimaki et al.,
2012). Such a partition originates from the research on human perception of reverbera-
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tion which suggests that early reflections and late reflections bring different perceptual
experience in speech intelligence. The early reverberation contributes to sound coloura-
tion (Habets et al., 2006; Naylor and Gaubitch, 2005) which provides a positive impact
on human intelligibility of speech, with an effect similar to increasing the strength of
direct-path sound and the effective SNR (Bradley et al., 2003; Hu and Kokkinakis, 2014).
In comparison, the late reflections cannot be integrated with direct sound and it causes
a smearing effect of temporal blurring in the spectrogram, thus decreasing the speech
intelligibility (Hu and Kokkinakis, 2014). Inspired by such findings on human perception
of reverberation, existing reverberation metrics such as the early-to-late reverberation ratio
(ELR) tend to integrate early reverberation with direct sound, and the dereverberation
research tends to focus on the treatment of late reverberation.

However, some experiments on speech recognition using simulated reverberant record-
ings show that the early reflections can also degrade the quality of recorded speech, though
the late reverberation might cause a higher level of speech feature distortion (Hu and
Kokkinakis, 2014; Naylor and Gaubitch, 2005). The analytic investigation in Chapter 6
on how reverberation affects ASR features has shown that the fundamental reason for
the negative impact from reverberation lies in the fast temporal change of the speech
spectrogram, particularly the magnitude spectrogram. This suggests that theoretically the
distortion can be caused by not only the late sound reflections but also the early sound
reflections if the signal has a magnitude spectrogram changing fast enough. So far there
has been very limited research conducted on the negative impact the early reverberation
to speech recognition. Instead, recent research trend on reverberation measurement and
dereverberation tends to ignore the impact of early reverberation. The structure of the
widely adopted ELR based reverberation metric (Brutti and Matassoni, 2014, 2016; Parada,
Sharma and Naylor, 2014) has an intrinsic blind spot regarding the distortion from the
early reverberation, and the dereverberation algorithms also tend to relax the treatment on
early reverberation (Yoshioka and Nakatani, 2012).

To validate the impact of early reverberation on the speech recognition performance,
experiments are first conducted on simulated reverberant data by convolving the headset
recordings in SWC data with RIRs truncated to different lengths. The acoustic modelling,
the language modelling, the decoding configuration and the dataset definition all follow
the setup in the DNN-HMM hybrid system in Section 4.4.3. To avoid the mismatch in
channel, the system trained on the simulated data using one truncated RIR is tested on the
simulated data using the same truncated RIR. The three RIRs involved in the experiments
are estimated based on recordings of swept sine signal in the SWC recording room given
the same speaker location using three different microphones: one located at the center of
table (“TBL1-01”), one hanging from ceiling grid (“GRID-01”) and one installed to the
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Table 7.1 Speech recognition performance comparison of simulated reverberant speech
with full or truncated RIRs.

C50 dev eval
(dB) Sub. Del. Ins. WER Sub. Del. Ins. WER

headset baseline - 29.9 7.0 4.3 41.3 29.8 6.7 4.6 41.2
Full RIR TBL1-01 17.46 35.7 10.4 5.4 51.5 36.3 9.7 5.7 51.7
(290 ms) GRID-01 13.54 37.6 9.9 5.9 53.4 38.0 9.5 6.2 53.8

WALL-03 9.93 38.8 10.8 5.6 55.2 38.9 10.3 6.0 55.2
Truncated TBL1-01 - 32.5 8.7 5.0 46.2 32.7 8.2 5.4 46.3

RIR GRID-01 - 31.9 8.7 5.1 45.7 32.3 8.2 5.4 46.0
(50 ms) WALL-03 - 33.7 8.8 5.1 47.6 33.9 8.4 5.3 47.6
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Fig. 7.1 Early reverberation distortion via RIR truncation experiments.

surface of the wall (“WALL-03”). The coefficients of the three RIRs are illustrated in Fig.
7.1b before any truncations. More details regarding RIR measurement could be found in
Section 5.2.2. The speech recognition results are illustrated in Table 7.1 and Fig. 7.1a. To
better interpret Fig. 7.1a, it is worth emphasising the meaning of x-axis in the plot. The
increase in the length of RIRs after truncation equivalently unfolds the process of sound
reflections adding up with the direct sound and the earlier arrival sound as time goes on.

Table 7.1 highlights the WERs when RIRs are truncated to 50 ms and when RIRs are
not truncated at all (290 ms). As shown the WERs on reverberant data simulated with 50
ms long RIRs are 4.4-6.4% higher in absolute value compared to the WERs on headset
recordings, and the reverberation after 50 ms increases WERs further by 5.3-7.7% absolute.
Fig. 7.1a illustrates the incremental increase of WER as the length of truncated RIRs
increases. The experiment corresponding to each dot in Fig. 7.1a is trained and tested with
the same truncated RIR to avoid the RIR mismatch between training and test. As shown,
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there is significant degradation in the recognition performance for all three microphone
channels even when the RIR is truncated to 25 ms, i.e. RIR length being the same with
signal processing window size in the ASR front-end. This suggests that the argument made
by existing research (Yoshioka et al., 2012) that reverberation causes temporal feature
smearing because the RIR is longer than the signal processing window in ASR front-end
is problematic. Instead, the WER curves in Fig. 7.1a support the conclusions from the
analytic investigation in Section 6.1 that the smearing effect caused by reverberation exists
as long as there is a fast enough temporal change in the speech magnitude spectrogram.
One more intuitive explanation is that even when the RIR is shorter than the frame width,
the spectrogram in one frame of reverberant signal still contains the smearing components
from the spectrogram in previous frames where the magnitude spectrogram might be very
different.

There are four important messages that can be observed in Fig. 7.1a. First, the overall
WER degrades accumulatively as the length of the RIR after truncation increases, and the
increase of the RIR length refers to the arrival of more delayed sound reflections. Second,
the early reverberation, typically defined as the sound reflections within 50 ms after the
arrival of direct sound, can also cause significant WER degradation. Third, overall the
WER increasing gradient decreases as the length of the RIR after truncation increases, and
the WER increasing speed is generally larger when RIR is truncated to be shorter than 75
ms. This is reflected by the declining gradient of each WER curve in Fig. 7.1a, which may
be caused by the declining RIR energy over time. Fourth, the multiple RIRs of different
reverberation levels start to show significant channel difference in WER degradation when
the RIR after truncation is larger than 75 ms, and overall the channel difference increases
as the length of RIR after truncation increases. Since the increase in the length of the
RIR after truncation equivalently unfolds the temporal process in which the late sound
reflections add up to the earlier arrival sound in distant recordings, the four messages depict
how early sound reflections and late sound reflections incrementally degrades WER and
increases channel difference.

As mentioned in Section 3.4, one problem not fully addressed with the ELR based
reverberation measurement is the optimal boundary between the early reverberation and the
late reverberation. So far the partition boundary is determined empirically via experiments,
and there have been different opinions on the optimal boundary between the early rever-
beration and the late reverberation in human speech perception, phoneme recognition and
word recognition (Bradley, 2011; Brutti and Matassoni, 2014; Parada, Sharma and Naylor,
2014; Sehr et al., 2010). The ambiguity in the early and late reverberation boundary could
be observed in the WER curves in Fig. 7.1a. The WER curves illustrate an incremental
WER increase with all channels. In addition, the microphone channel difference is not
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significant with the starting part of RIR, and it accumulates to a significant degree only
with both the early and late reverberation. Therefore there is not a singular point with a
dramatic change in the reverberation distortion behaviour.

As a consequence, the idea of partitioning reverberation into early reverberation and
late reverberation for speech recognition is fundamentally arguable. In different tasks
with different data, particularly with different RIRs, the experimental observations might
vary regarding the optimal early-to-late reverberation partition boundary. For example
according to Fig. 7.1a, 25 ms could be similarly effective to 50 ms as the early-late
reverberation boundary in measuring the channel difference in reverberation. In fact, the
C25 for “TBL1-01” is 12.82 dB, for “GRID-01” is 8.09 dB, and for “WALL-03” is 5.13
dB, providing the same rank order with C50 as shown in Table 7.1. In this case the only
drawback of using a small value as boundary is an increase in the sensitivity to the direct
sound alignment when RIRs are measured at different speaker-microphone distances, as
shown in Fig. 7.1b.

7.1.2 Reverberation level and reverberation distortion level

As reviewed in Section 2.4, reverberation metrics such as the ELR based C50 and re-
verberation time T60 have been adopted by DSR applications to improve the robustness
of recognition performance against reverberation (Brutti and Matassoni, 2016; Parada,
Sharma and Naylor, 2014; Parada et al., 2015; Sehr et al., 2010). As further pointed out in
Section 3.4, such reverberation metrics are however designed to measure the reverberation
level of the environment and channel rather than the reverberation distortion level of the
speech feature patterns. Therefore they can be suboptimal due to the difference between
the reverberation level and the reverberation distortion level. Inspired by Assmann and
Summerfield (2004), Section 3.4 has briefly analysed such difference via the reverberation
impact on different phonetic pattern structures. The analysis suggests that the difference
between the reverberation level in channel and the reverberation distortion level in speech
feature pattern could be amplified by the very limited types of speech feature patterns in
short recordings. This argument can be experimentally verified by examining the corre-
lation between the reverberation measurement results and the pattern recognition results
such as the phoneme error rate (PER) and WER when the reverberation measurement is
performed on recordings of different lengths.

The experiments verifying the correlation between C50 and PER are performed with the
WSJCAM0 (Robinson et al., 1995) headset recordings and the 13 RIRs measured in the
SWC recording room. The RIRs are measured given the same sound source location using
13 microphones installed at different locations in the room: eight microphones hanging
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from a ceiling grid (“GRID-0*”), four microphones distributed on the wall (“WALL-0*”)
and one microphone placed at the center of the table (“TBL1-01”). The WSJCAM0
headset recordings are used because the WSJCAM0 database has provided high quality
reference phonetic alignment. To avoid the confusion in the results caused by the mismatch
in speaker and speaking style between training and test, new datasets are defined by using
60% of the speech utterances from each speaker for training, 20% speech utterances for
development and validation, and the remaining 20% speech utterances for evaluation. A
DNN is trained on headset recordings with TNet layer-by-layer using cross-entropy cost
function. The trained DNN is used to perform phoneme classification on reverberant data
simulated by convolving the WSJCAM0 headset recordings with the 13 RIRs from SWC
recording room. For phoneme classification, the phonetic boundary is taken directly from
the WSJCAM0 reference, so that the trained DNN only performs classification over given
frames of features based on the maximum overall posterior. The reference alignment
is used because in preliminary experiments it is found that the DNN based phoneme
classification without provided phonetic boundary produces very noisy results, and the
PER calculated in this way does not well correlate with WER.

Fig. 7.2 illustrates the Spearman rank correlation between PER and C50 regarding the
microphone channel difference when PER is calculated with different amount of data. As
shown in Fig. 7.2a, overall there is a very high negative rank correlation between C50 and
PER per speaker regarding the microphone channel difference. When comparing across
speakers, the Spearman rank correlation varies from around -0.75 to -0.95. When the PER
is evaluated per phoneme, as shown in Fig. 7.2b, the variation in Spearman rank correlation
is much larger, from -0.3 to above -0.9. In particular, phoneme /ea/ and phoneme /z/ do not
have significant rank correlation between PER and C50 regarding the channel difference in
reverberation. For other phonemes, the Spearman rank correlation varies from below -0.6
to above -0.9.

Furthermore, Fig. 7.2c illustrates the Spearman rank correlation between PER per
speaker and the overall PER regarding the channel difference to provide an idea of the
optimal performance of signal independent reverberation measurement. Fig. 7.2d illustrates
similar analysis on the Spearman rank correlation between PER per phoneme and overall
PER. The high rank correlation over all speakers in Fig. 7.2c suggests that there may exist
a signal independent reverberation measuring method that could provide a high correlation
between the reverberation score and the PER, when both the reverberation score and the
PER are calculated per speaker. A comparison between Fig. 7.2a and Fig. 7.2c suggests
that potentially C50 is not the optimal reverberation metric yet. Similarly, Fig. 7.2d suggests
that there are some phonemes with the behaviour in phoneme level PER different from
other phonemes when encountering diverse reverberation conditions, e.g. /ea/, /g/, /jh/ and
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(a) Spearman rank correlation between PER per
speaker and C50.
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(b) Spearman rank correlation between PER
per phoneme and C50.
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(c) Spearman rank correlation between PER
per speaker and overall PER regarding the mi-
crophone difference on simulated reverberant
data.
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per phoneme and the overall PER regarding the
microphone difference on simulated reverberant
data.

Fig. 7.2 The Spearman rank correlation between the PER and the C50 at different data
scales, and the Spearman rank correlation among PERs calculated at different scale,
regarding the microphone difference on simulated reverberant data.

/z/. A comparison between Fig. 7.2b and Fig. 7.2d suggests that C50 is not the optimal
reverberation metric and it has some severe problem with phoneme /ea/.

It is worth emphasising that all the PERs in Fig. 7.2 are based on the phoneme
classification using reference alignment provided in WSJCAM0 corpus where the starting
time and the ending time of each phoneme are labelled out in the audio recordings.
Therefore the Spearman rank correlations shown in Fig. 7.2 are already of the best
performance possible. In reality such high quality alignment is not available in a general
set-up for phoneme classification, as a result the alignment errors could completely disrupt
the correlation between PER and C50 and the correlation between PER and WER.
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Overall rank correlation: -0.94 (p-value: 1.483375e-06)

(a) Spearman rank correlation between the over-
all WER per speaker and the C50 regarding the
microphone difference with simulated reverber-
ant speech (SWC hybrid system eval dataset).

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

Rank correlation

0

50

100

150

200

250

300

350

400

450

N
u
m

b
e
r 

o
f 

u
tt

e
ra

n
ce

s

0

2

4

6

8

10

P
e
rc

e
n
ta

g
e
 (

%
)

Overall rank correlation: -0.94 (p-value: 1.483375e-06)

(b) Histogram of the Spearman rank correlation
between the utterance level WER and the C50
regarding the microphone difference with sim-
ulated reverberant speech (SWC hybrid system
eval dataset).
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(c) Spearman rank correlation between utter-
ance level WER and C50 regarding the WER
standard deviation (SWC hybrid system evalua-
tion dataset).
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(d) P-value scatter plot for the Spearman rank
correlation shown in Fig. 7.3c.

Fig. 7.3 Spearman rank correlation between the WER and the reverberation score based
on C50 at different scale: overall, per speaker and per utterance, based on simulated
reverberant speech (SWC hybrid system evaluation dataset).

Further experiments are conducted on SWC data regarding the correlation between
the WER and the reverberation score from C50. The same 13 RIRs are used to simulate
reverberant data by convolving the RIRs with the headset recordings in SWC. One acoustic
model is trained for each reverberant condition using data simulated with corresponding
RIR, and tested on data of the same reverberant condition. Therefore unlike the experiments
previously conducted for phoneme classification, there is no channel mismatch between
training and test for word recognition here. The acoustic model training follows the DNN-
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HMM hybrid system as detailed in Section 4.4.3. The dataset definition follows the “SA1”
configuration shown in Table 4.7, so that there is no speaker mismatch between training
and test. The same LM used in Section 4.4.3 is employed for decoding. The WER scoring
is based on NIST tool “sclite”, as there is no overlapped speech in the simulated data.

On evaluation dataset there is a high negative Spearman rank correlation of -0.94
between the C50 based reverberation score and the overall WER regarding the channel
difference in diverse simulated reverberant conditions. The negative Pearson linear correla-
tion is similarly high, being -0.94. On development dataset, the negative Spearman rank
correlation between the C50 based reverberation score and the overall WER is also high,
being -0.93, and the negative Pearson linear correlation is -0.94.

Fig. 7.3 shows the Spearman rank correlation between C50 and WER when WER is
calculated at different scales, in a way similar to the PER analysis before. As shown in Fig.
7.3a, when the WER is calculated per speaker, some speakers have very low correlation
between C50 and the WER over that speaker. This is particularly the case with female
speaker “fn0016”, “fn0020”, “fn0023” and male speaker “mn0014”.

Fig. 7.3b shows the histogram of the Spearman rank correlation between the utterance
level WER and the C50 on evaluation dataset. Fig. 7.3c and Fig. 7.3d illustrate the
corresponding scatter plot of the Spearman rank correlation and the p-value respectively.
Only utterances with no less than 4 words are considered in the utterance level WER
analysis. In Fig. 7.3c and Fig. 7.3d, each circle represents one utterance and the size of
circle is proportional to the number of words in that utterance. As shown in Fig. 7.3b and
Fig. 7.3c, when WER is calculated per utterance, there is a much larger variation in its
correlation with C50 compared to the case where WER is calculated with more data, e.g.
per speaker or over all data. This suggests that the utterance level model selection will be
very noisy and will be far from the optimal if the selection is based on reverberation score
from C50 or C50 based non-intrusive estimator.

In these experiments simulated reverberant data ensures that the channel difference
in reverberation is the only factor causing the WER difference. Given the high rank
correlation between the overall WER and the C50, the poor correlation between utterance
level WER and C50 (Fig. 7.3c and Fig. 7.3d) suggests that signal independent reverberation
measurement such as the C50 based reverberation score fails to capture the reverberation
effect on speech pattern in short recordings. As mentioned before, this is because existing
methods estimate reverberation level independently from speech signal thus it could not
accurately estimate the reverberation distortion level of the speech pattern in recognition
tasks.
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7.2 Polynomial Reverberation Measurement

As discussed in Section 7.1.1, existing reverberation measurement based on ELR could
not reflect the distortion effect from early reverberation, and the optimal boundary be-
tween early reverberation and late reverberation is also yet to be fully addressed. Based
on the analytic investigation in Section 6.1, this section proposes a polynomial format
reverberation distortion level measuring method based on RIR which better estimates the
pattern distortion from early reverberation without the necessity of early-late reverberation
partition. In addition, it also takes into account the speech magnitude spectrum change
when estimating the distortion level.

With Eq. (6.10) it was shown that the complex spectrogram of reverberant speech could
be approximated with sufficient accuracy by a convolution of the complex spectrogram
of clean speech and the complex spectrogram of the RIR. As pointed in Section 6.1, with
faster and frequenter change of speech magnitude spectrogram, there is more distortion
caused by reverberation. Therefore the reverberation distortion level could be assumed
to be proportional to the temporal change in the magnitude spectrogram of speech signal
given that the speech signal magnitude is normalized globally. Such change in magnitude
spectrogram can be quantified with the average speech magnitude difference given a
time shift (△τ) in each frequency bin (k), which will be further referred to as “speech
dynamic index” denoted as D(△τ,k). Following the notation used in Section 6.1, the
speech dynamic index could be approximated with
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1
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where △τ represents the time shift and G represents the number of samples in the piece
of clean speech signal to analysis. The dynamic index is calculated with two levels of
averaging. The sum over j is for the first average over one instance of a phoneme, and
the summer over i is for the second average across multiple instances of that phoneme.
The dynamic index is calculated per frequency bin (k). As shown in Section 6.2 the
magnitude of clean speech could be assumed to be stationary over a short period of
time, the summation could be simplified with a reduced time resolution in magnitude
spectrogram.
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Since the complex spectrogram of the reverberant speech is approximately a convolu-
tion which involves the complex spectrogram of the RIR, the magnitude spectrogram of
the RIR could be used to represents the contribution of the corresponding clean speech
magnitude spectrogram change in reverberation distortion. Therefore the reverberation dis-
tortion in each frequency bin is assumed to be proportional to the magnitude spectrogram
of the RIR as well even that the magnitude of all RIRs to compare have been normalized
properly, i.e.

Iβ (Nf,△τ,k) ∝
∣∣D(△τ,k)

∣∣∣∣∣Hβ (△τ,N f ,k)
∣∣∣ (7.2)

where β is the index of the RIR and the reverberation condition, and Iβ (Nf,△τ,k) refers
to an estimation of the reverberation distortion level caused by the average magnitude
spectrogram change in clean speech over a time shift of △τ in the frequency bin k,
given a time resolution of Nf when calculating the spectrogram. To estimate the overall
reverberation distortion level, the energy of Iβ (Nf,△τ,k) is summed over all frequency
bins except for k = 0 and over all possible time shifts, leading to a polynomial formula for
estimating overall reverberation distortion level:
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where Mβ is the length of the RIR and Iβ (Nf) is the polynomial reverberation score
to estimate the reverberation distortion level. In Eq. (7.3) the normalisation over the
signal energy EX(k) is performed to reduce the sensitivity of distortion level estimation
against the duration and the volume of speech recordings. Similarly the normalisation
over the direction sound energy in the RIR E(d)

β
is to reduce the sensitivity against the

RIR magnitude. The normalisation over direct sound energy could be realised in advance
on RIRs, so that all RIRs have the same maximum coefficient magnitude or the same
maximum magnitude spectrogram.

As shown in Eq. (7.3), the reverberation distortion level is estimated with a polynomial
of RIR magnitude spectrogram, namely the polynomial reverberation score. Compared to
the ELR based reverberation metrics, it avoids the partition of early and late reverberation,
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and it could estimate the reverberation distortion level when the RIR is of any length.
Since the polynomial reverberation score analytically relies on the signal spectrogram, it is
more suitable as an estimation of the reverberation distortion level in given speech signal
caused by given reverberant environment depicted by RIR. As discussed in Section 3.4,
the proposed method can be extended to potentially replace the C50 based reverberation
reference on simulated data to train non-intrusive reverberation estimator. In addition, the
proposed method could potentially benefit the speech synthesis research in predicting the
speech clarity degradation in diverse reverberant conditions.

7.3 Phonetic Analysis Inspired Reverberation Measure-
ment

In the work by Parada, Sharma, Naylor and Waterschoot (2014), the degradation in
phoneme recognition under reverberation is analyzed using different toolkits and ASR
model structures. It is shown that phonemes vary in their robustness to reverberation, and
that the confusion of phonemes due to reverberation lead to the increased deletions and
substitutions for ASR. In that same work, a metric, the confusability factor, is presented to
characterize the confusion of recognizing a phoneme in a Bayesian framework.

According to Kokkinakis and Loizou (2011), the reverberation distortion is a combi-
nation of self-masking and overlap-masking on phonetic structure for human perception.
However in the work by Parada, Sharma, Naylor and Waterschoot (2014), the cross-
phoneme effects due to “over-masking” is not investigated. Inspired by Kokkinakis and
Loizou (2011), this section explores the idea of dividing reverberation distortion into
two parts: the distortion from intra-phone smearing and the distortion from inter-phone
smearing. Their distortion levels are respectively estimated with the intra-phone smearing
index and the inter-phone smearing index calculated per phoneme, so that an overall
reverberation distortion level per phoneme is estimated by combining the two indices.

The phonetic analysis inspired reverberation measurement will be detailed in two
sections. Section 7.3.1 describes the intra-phone smearing index and inter-phone smearing
index and Section 7.3.2 discusses the ratio between intra-phone smearing and inter-phone
smearing when combining them together. The experiment verification will be covered in
Section 7.5.
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7.3.1 Intra-phone smearing and inter-phone smearing

Intra-phone smearing refers to the distortion in phonetic pattern caused by components
from the same phoneme at an earlier time due to reverberation. In comparison, inter-phone
smearing refers to the distortion in phonetic pattern caused by components from preceding
phonemes due to reverberation. Therefore the difference between intra-phone smearing
and inter-phone smearing lies in the distorting components. The intra-phone smearing is
closely related to early reverberation and inter-phone smearing is closely related to late
reverberation.

Since each phoneme has a characteristic pattern structure in the magnitude spectrogram,
the distortion level of intra-phone smearing could be estimated with the polynomial
reverberation score implemented at phoneme scale, i.e. based on the speech dynamic index
averaged per phoneme using the observation examples of that phoneme:
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where Lα is the number of examples for phoneme α and Gα,l is the number of spectrogram
frames for the l-th example of phoneme α . Therefore a similar smearing index could be

Iα,β (Nf) =
∑

N−1
k=1 ∑

⌊M′
Nf

⌋−1

△τ=0

∣∣∣Dα(Nf △ τ,k)Hβ (△τ,Nf,k)
∣∣∣2

∑
N−1
k=0 Eα(k)E

(d)
β

(7.7)

Eα(k) =
1

Lα

Lα−1

∑
l=0

Gα,l−1

∑
τ=0

∣∣Xα(τ,k)
∣∣2 (7.8)

where

M′ =
⌊min

{
maxl∈[0,Lα ){Gα,l},Mβ

}
2△ τ

⌋
(7.9)

In addition, the variance of magnitude spectrogram in each phoneme could be used
to emphasise the phonetic difference in temporal magnitude spectrogram change, and it
is again normalised by phoneme energy, leading to an average variance-energy ratio per
phoneme:

rα =
1

Lα

Lα−1

∑
l=0

∑
N−1
k=1 σ2

α,l(k)

∑
N−1
k=1 eα,l(k)

(7.10)
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where

eα,l(k) =
1

Gl

Gl

∑
τ=0

∣∣Xα(τ,k)
∣∣2 (7.11)

µα,l(k) =
1

Gl

Gl

∑
τ=0

∣∣Xα(τ,k)
∣∣ (7.12)

σ
2
α,l(k) =

1
Gl

Gl

∑
τ=0

∣∣∣∣∣Xα(τ,k)
∣∣−µα,l(k)

∣∣∣2 (7.13)

By adding rα to Eq. (7.7), the overall intra-phone smearing index for phoneme α is

I(I)
α,β (Nf) = λ Iα,β (Nf)+ rα (7.14)

where λ is a tuning parameter applied on polynomial reverberation score to balance the
value range of the polynomial reverberation score and the variance-energy ratio. The overall
intra-phone smearing index for the β -th RIR over all phonemes could be approximated
with

I(I)
β
(Nf) = ∑

α

P(α)I(I)
α,β (Nf) (7.15)

where P(α) is the probability of phoneme α , and it could be estimated by the ratio between
the total duration of phoneme α and the overall speech duration given sufficient audio size.

The intra-phone smearing level is estimated based on the temporal change in the
magnitude spectrogram of each phoneme. The same strategy can not be adopted for inter-
phone smearing estimation, because there is a large variation in the magnitude spectrogram
change as the smearing takes place in different phoneme contexts. In addition, due to the
different energy distribution among phonemes, the inter-phone smearing could cause a
change of energy distribution over frequencies. In the intra-phone smearing estimation,
each frequency bin is treated independently and equally, thus the overall smearing index is
an average of the smearing indices overall all frequencies. This strategy is not suitable for
the inter-phone smearing level estimation, because the change in the energy distribution
across frequencies caused by inter-phone smearing could not be well depicted. Therefore
a different strategy is proposed to estimate the distortion level caused by inter-phone
smearing.

In inter-phone smearing, the phonetic pattern in the frequency axis could be represented
by a power spectrum vector which is realized by averaging the power spectrogram over
time for each phoneme. In this way each phoneme could be represented with a vector in a
high dimensional space. The inter-phone smearing introduces move, scaling and rotation
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Fig. 7.4 An illustration on how phonetic power spectrum pattern changes in a hyper space
due to the linear effect of inter-phone smearing.

to the power spectrum vector, as shown in Fig. 7.4. Since phonemes differ in energy, the
cosine distance or the angle between the original power spectrum vector and the distorted
power spectrum vector is adopted to describe the level of inter-phone smearing distortion.
Thus the inter-phone smearing level is estimated by the amount of rotation in the power
spectrum vector caused by the linear distortion from preceding phonemes as a consequence
of the convolution with RIR spectrogram (Eq. (6.10)). Following this philosophy, the
mathematical notation and calculation are covered below.

The power spectrum vector representing the phonetic pattern over frequency for
phoneme α is denoted as eα , and

eα = [ēα(1), ēα(2), ..., ēα(N −1)]T (7.16)

ēα(k) =
1

Lα

Lα−1

∑
l=0

eα,l(k) (7.17)

where Lα is the number of examples to get sufficiently accurate average power spectrum
for phoneme α and eα,l(k) is the phonetic average energy in the k-th frequency bin of the
l-th example for phoneme α . Similarly, a vector eᾱ is used to represent the statistic average
power spectrum of phonemes preceding α that cause inter-phone smearing distortion:

eᾱ = ∑
γ , γ ̸=α

P(γ|α)eγ (7.18)
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eᾱ(k) = ∑
γ , γ ̸=α

P(γ|α)ēγ(k) (7.19)

where P(γ|α) is the probability of phoneme α being distorted by phoneme γ . The con-
volution in Eq. (6.10) shows that in inter-phone smearing the complex spectrogram of
preceding phonemes are weighted by the complex spectrogram of the RIR before adding
onto the clean speech complex spectrogram. To approximate this effect, the power spec-
trum of the RIR corresponding to the inter-phone smearing (ē(II)

β ,α(Nf,k)) is multiplied with
the average speech phonetic power spectrum (eᾱ(k)) in each frequency, i.e.

êᾱ,β (k) ≈ eᾱ(k)ē
(II)
β ,α(Nf,k) (7.20)

êᾱ,β = [êᾱ,β (1), êᾱ,β (2), ..., êᾱ,β (N −1)]T (7.21)

and for the power spectrum of the RIR

ē(II)
β ,α(Nf,k) =

1

⌊Mβ

Nf
⌋−⌊ d̄α

Nf
⌋

⌊
M

β

Nf
⌋−1

∑
τ=⌊ d̄α

Nf
⌋−1

∣∣∣Hβ (τ,Nf,k)
∣∣∣2 . (7.22)

where d̄α corresponds to the average duration of phoneme α . The phoneme duration is
involved in the average RIR power spectrum estimation above so that the RIR power spec-
trogram elements in the summation are only those contributing to the inter-phone smearing
only. As the inter-phone smearing components are added to the original phoneme in
spectrogram, the distorted power spectrum of phoneme α by the β -th RIR is approximated
with

eα,β ≈ eα + êᾱ,β (7.23)

and the distortion level by the inter-phone smearing could be estimated with the cosine
distance

I(II, c)
α,β = 1− cos(∠eα −∠eα,β ) (7.24)

= 1−
eα · eα,β

∥eα∥∥eα,β∥
(7.25)

or with the angle rotated

I(II, a)
α,β =

1
π

∣∣∣∣∣cos−1
( eα · eα,β

∥eα∥∥eα,β∥

)∣∣∣∣∣ . (7.26)
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Therefore the overall inter-phone smearing level by the β -th RIR over all phonemes is
estimated with the overall cosine distance

I(II, c)
β

= ∑
α

P(α)I(II, c)
α,β (7.27)

or the overall rotated angle

I(II, a)
β

= ∑
α

P(α)I(II, a)
α,β . (7.28)

7.3.2 Combination of smearing indices

Section 7.3.1 has detailed the estimation of reverberation distortion level with the intra-
phone smearing and the inter-phone smearing per phoneme. The overall reverberation
distortion level could be approximated by combining the two parts additively. When the
inter-phone smearing level is estimated with the angular distance,

I(a)
β

(Nf) = r(I)I(I)
β
(Nf)+λ r(II)I(II, a)

β
(7.29)

and when the inter-phone smearing level is estimated with the cosine distance,

I(c)
β

(Nf) = r(I)I(I)
β
(Nf)+λ r(II)I(II, c)

β
. (7.30)

The λ is a tuning parameter to balance the value range of the two parts. The r(I) and r(II)

are the ratios of intra-phone smearing distortion and inter-phone smearing distortion in the
overall reverberation distortion respectively. For each phoneme, similarly

I(a)
α,β (Nf) = r(I)α I(I)

α,β (Nf)+λ r(II)α I(II, a)
α,β (7.31)

I(c)
α,β (Nf) = r(I)α I(I)

α,β (Nf)+λ r(II)α I(II, c)
α,β (7.32)

where r(I)α and r(II)α are the ratio of intra-phone smearing and inter-phone smearing over
phoneme α respectively.

The estimation of the intra-phone smearing ratio and the inter-phone smearing ratio is
detailed below. Denote the average duration of phoneme α as d̄α . For the τ-th STFT in
the complex spectrogram of the reverberant recordings for phoneme α , namely Y (τ,k),
according to Eq. (6.10) the chance of intra-phone smearing could be approximated by the
ratio between the number of summation components in Eq. (6.10) from the same phoneme
and the number of all summation components, i.e.

r(I)α (τ) =
n(I)α (τ)

M
(7.33)



7.3 Phonetic Analysis Inspired Reverberation Measurement 153

where M is the length of the RIR spectrogram and n(I)α the number of summation compo-
nents in Eq. (6.10) from the same phoneme, thus

n(I)α (τ) = min{τ,M}. (7.34)

For the whole phoneme α , the ratio of intra-phone smearing is thus

r(I)α =
∑

d̄α−1
τ=0 r(I)α (τ)

∑
d̄α−1
τ=0 1

=
1

d̄α

d̄α−1

∑
τ=0

r(I)α (τ) (7.35)

when d̄α ≤ M,

r(I)α =
1

d̄α

d̄α−1

∑
τ=0

τ

M

=
1

d̄α

· d̄2
α

2M

=
d̄α

2M
(7.36)

and when d̄α > M,

r(I)α =
1

d̄α

(M−1

∑
τ=0

τ

M
+

d̄α−1

∑
τ=M

M
M

)
=

1
d̄α

(M2

2M
+(d̄α −M)

)
= 1− M

2d̄α

(7.37)

therefore

r(I)α =


d̄α

2M , if d̄α≤M

1− M
2d̄α

, if d̄α > M
(7.38)

thus the intra-phone smearing ratio for all phonemes is

r(I) = ∑
α

P(α)r(I)α . (7.39)
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If the starting silence or pause before each phoneme is neglected, the ratio of inter-
phone smearing can be approximated with

r(II)α = 1− r(I)α (7.40)

and the overall inter-phone smearing ratio is

r(II) = 1− r(I). (7.41)

7.4 Fisher Ratio Based Discrimative Analysis

There is one implicit assumption made by the phonetic analysis inspired reverberation
measurement in Section 7.3.1, i.e. the reverberation distortion level over one phoneme is
independent from the reverberation distortion level over other phonemes. This implicit
assumption can be problematic in the context of pattern recognition.

For example in a phoneme classification task, there are some phonemes easily confused
with each other and they have small distances in feature space. For such phonemes
even a small degree of feature distortion could cause a big degradation in the phoneme
classification performance. In comparison there are also some phonemes being very
different to other phonemes with a large distance in feature space. Such phonemes could
be less sensitive to a small amount of feature distortion. The reverberation distortion
measurement proposed in Section 7.2 and Section 7.3.1 does not take into account that
such phonetic difference in classification difficulty is determined by the statistic properties
of all phonemes jointly. Therefore this section suggests a Fisher Ratio based first order
discriminative analysis on how the feature discriminability of different phonemes changes
under reverberation distortion. The analysis is to reveal how much error the implicit
assumption have introduced to the estimation of reverberation distortion level.

The Fisher Ratio based discriminative analysis is conducted on the phonetic average
power spectrum which has been used in Section 7.3.1 to represent each phoneme in a
hyper space for inter-phone smearing estimation. The discriminative analysis is performed
among all phoneme classes in each frequency bin first and then the Fisher Ratio is averaged
across frequencies. The results calculated this way will be referred to as the “discriminative
score”. Therefore the overall discriminative score for all phonemes are calculated with

JF =
1

N −1

N−1

∑
k=1

JF(k) (7.42)

JF(k) =
vb(k)
vw(k)

(7.43)
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where vb(k) is the between-class variance and vw(k) is the within-class variance.

vb(k) = ∑
α

P(α)(ēα(k)− ē(k))2 (7.44)

where the average power spectrum overall phonemes is

ē(k) = ∑
α

P(α)ēα(k). (7.45)

Similarly, the within-class variance is

vw(k) = ∑
α

P(α)vα(k) (7.46)

and the variance for phoneme α is

vα(k) =
1

Lα

Lα−1

∑
l=0

(eα,l(k)− ēα(k))2. (7.47)

For each phoneme, the discriminative score is calculated by averaging the discrim-
inative scores from the Fisher discriminative analysis conducted in pair with all other
phonemes one by one.

Jα,F(k) =
1

Q−1 ∑
β

Jα,β ,F(k) (7.48)

Jα,β ,F(k) =
vα,β ,b(k)
vα,β ,w(k)

(7.49)

where Q is the number of phonemes in total. The between-class variance and within-class
variance are respectively

vα,β ,b(k) =
(

ēα(k)−
P(α)ēα(k)+P(β )ēβ (k)

P(α)+P(β )

)2
(7.50)

vα,β ,w(k) =
P(α)vα(k)+P(β )vβ (k)

P(α)+P(β )
. (7.51)

Thus

Jα,F =
1

N −1

N−1

∑
k=1

Jα,F(k) (7.52)

Therefore, the discriminative score overall all phonemes JF and the overall discrim-
inative score per phoneme Jα,F could be calculated on the power spectrum of headset
recordings and and on the power spectrum of reverberant recordings. If the change in
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discriminative score caused by reverberation distortion is correlated with the change in
phoneme classification or word recognition performance, the implicit assumption men-
tioned before could have introduced significant errors in reverberation measurement. If the
change in discriminative score is not correlated with the change in phoneme classification
or word recognition performance, the errors introduced by the implicit assumption might
be neglected.

7.5 Experiment Results

The reverberation scores are evaluated by their correlation with the PER in the phoneme
classification task or its correlation with the WER in the speech recognition task. The
Spearman rank correlation is preferred over the Pearson linear correlation in most scenarios
because the work in this chapter has targeted the application of reverberation measurement
on the model selection for DSR implemented at utterance level. When the rank correlation
is very low or the rank correlations are similar when comparing multiple scenarios, the
linear correlation will be highlighted.

The work in this section evaluates the performance of reverberation score in a more
extensive way than existing literature. A good reverberation score should be capable of
depicting both the reverberation level in different environment and microphone channels
and the signal dependent reverberation sensitivity. Therefore the evaluation will involve
the correlation based on the statistics estimated at multiple different scales. To avoid the
confusion caused by multiple factors in the correlation calculation, the following phrase
patterns will be used when referring to a correlation:

The correlation between A and B regarding the C difference.

The correlation between A and B regarding C.

They both mean that “A”s and “B”s are first grouped and averaged by the value of the
influence factor “C”, before calculating the correlation between the averaged “A”s and the
averaged “B”s. For example,

The correlation between the reverberation score and the PER regarding the speaker

difference.

actually means that the reverberation score and PER in each environment condition are
first averaged per speaker before calculating their correlation, given multiple environment
conditions.

The estimation of signal dependent reverberation sensitivity is conducted at three scales:
speaker, utterance and phoneme. When the reverberation score is evaluated regarding its
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capability of depicting the speaker individual difference in the reverberation sensitivity,
the reverberation score is averaged per speaker and the WER is averaged per speaker as
well, i.e.

The correlation between reverberation score and WER regarding the speaker difference.

When the reverberation score is evaluated regarding its capability of depicting the signal
dependent difference in the reverberation sensitivity at utterance level, the reverberation
score is averaged per utterance and the WER is calculated per utterance as well, i.e.

The correlation between reverberation score and WER regarding the utterance difference.

When the reverberation score is evaluated regarding its capability of depicting the phoneme
difference in the reverberation sensitivity, the reverberation score is averaged per phoneme
and the PER is averaged per phoneme as well, i.e.

The correlation between reverberation score and PER regarding the phoneme difference.

When the reverberation score is evaluated regarding its capability of depicting the environ-
ment and channel reverberation level, the reverberation score is averaged per channel and
the WER is averaged per channel as well, i.e.

The correlation between reverberation score and WER regarding the channel difference.

7.5.1 Polynomial reverberation measurement

Section 7.2 proposed a polynomial method to estimate the reverberation distortion level
based on the signal spectrogram and the RIR spectrogram, and the produced polynomial
reverberation score is an alternative to the C50 based reverberation score as the reference for
training non-intrusive reverberation estimators. As mentioned in Section 7.1.1 and Section
7.1.2, there are two major motivations for the work on polynomial reverberation score,
i.e. increasing the distortion estimation accuracy of early reverberation and improving
the correlation between the estimated reverberation score and the performance of pattern
recognition task on short recordings. Therefore the experiments in this section evaluate the
polynomial reverberation score in comparison with the popular C50 based reverberation
score from these two aspects.

The reverberation measurement experiments are conducted on reverberant data simu-
lated by convolving SWC headset recordings with RIRs measured in SWC recording room.
The RIRs are measured with the same speaker location from 13 different microphones, i.e.

8 microphones hanging from the ceiling grid (“GRID-0*”), 4 microphones installed on the
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Fig. 7.5 Overall polynomial reverberation score as the length of truncated RIRs increases.

wall (“WALL-0*”) and one microphone located at the center of the table (“TBL1-01”).
One reverberation score is calculated per utterance. The reverberation scores for the same
speech utterance in different reverberant conditions are compared with the WERs on the
same utterance based on simulated data of corresponding reverberant conditions. To avoid
the mismatch in reverberant condition between training and test, WERs are calculated
from the decoding results of DNN-HMM hybrid systems which are trained and tested
independently over the simulated data of each reverberation condition. The remaining
setup in ASR system follows the standalone training system detailed in Section 4.4.3.

In the experiments evaluating the performance of polynomial reverberation score on
early reverberation distortion estimation, the RIRs are truncated in a similar way with
Section 7.1.1 to create the reverberant data with different levels of early reverberation
distortion. Fig. 7.5 shows the overall polynomial reverberation score as the length of
truncated RIRs increases. The overall reverberation score is an average of reverberation
score on all utterances. The plot should be compared with the line plot in Fig. 7.1a
regarding WERs on eval dataset.

As shown in Fig. 7.5, the overall polynomial reverberation score increases incremen-
tally as the RIR length increases. The increase in reverberation score is consistent with the
WER increase shown in Fig. 7.1a as the length of the truncated RIR increases. Therefore
the different levels of distortion by early reverberation is reflected by the proposed rever-
beration score. In terms of microphone channel, there is a very clear difference among
the reverberation scores corresponding to different microphone channels regardless of
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Fig. 7.6 Correlation between the polynomial reverberation score and the WER regarding
the channel difference.

the RIR truncation length. In comparison, as shown in Fig. 7.1a the difference among
WERs corresponding to different channels is very small when the RIRs are truncated to
be less than 50 ms. In addition, the vertical distance among the reverberation curves is
not proportional to the vertical distance among the WER curves in Fig. 7.1a. These two
observations imply some potential normalisation difficulty in the polynomial reverberation
score, which will be discussed further in Section 7.6.

To evaluate the performance of the polynomial reverberation score on limited recording
data at speaker level and on short recordings at utterance level, an experiment is conducted
with the previously mentioned 13 RIRs. The experiment configuration is the same as
before except that the RIRs are not truncated. Fig. 7.6a illustrates the Spearman rank
correlation between the polynomial reverberation score and WER regarding the speaker
difference. Fig. 7.6b shows the histogram of the Spearman rank correlation between the
polynomial reverberation score on each utterance and the WER of corresponding utterance
regarding reverberation condition.

As shown, the Spearman rank correlation between the overall WER and the polynomial
reverberation score over all utterances in eval dataset is 0.92, which is slightly worse
compared to C50 which is -0.94 (Fig. 7.3). Comparing Fig. 7.6a with Fig. 7.3a which
evaluates the Spearman rank correlation speaker by speaker, the polynomial reverberation
measurement did not improve the correlation on the speakers who had low rank correlation
between C50 and speaker level WER. Comparing Fig. 7.6b with Fig. 7.3b, both C50 and
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polynomial reverberation score have a wide distribution of the Spearman rank correlation
between the reverberation score and the WER regarding the utterance difference.

In summary, similar to C50 the polynomial reverberation score provides a high rank
correlation with WER over a large amount of data, and it well reflects the different
reverberation distortion levels in different environments and channels. When the amount
of data is reduced and the rank correlation between the reverberation score and the WER
is calculated regarding the speaker difference or the utterance difference, the polynomial
reverberation score does not improve over C50.

7.5.2 Phoneme duration and smearing ratio

As shown in Eq. (7.38) in Section 7.5.2, the ratio of intra-phone smearing is dependent on
the phoneme duration and the effective length of the RIR. Therefore a survey of average
phoneme duration is first conducted using TIMIT data (Garofolo et al., 1993) which has
accurate manual annotation of phonemes and phonetic boundary. As shown in Fig. 7.7,
there is a large variation in the average phoneme duration across different phonemes, from
below 20 ms (/b/) to above 150 ms (/aw/, /oy/). In terms of phoneme categories, as shown
in Table 7.2, 51.1% of speech duration is occupied by vowels whose average duration per
phoneme is 96 ms, followed by fricatives (18.1%) whose average duration per phoneme is
91 ms.

Table 7.2 Phoneme category definition in the TIMIT corpus (“DPP”: average duration
per phoneme; “Per.”: percentage in overall duration without silence).

Phoneme category Phonemes in TIMIT corpus Per. (%) DPP (ms)
stop b, d, g, p, t, k, dx, q, pcl 9.8 41

affricate jh, ch 1.3 70
fricative s, sh, z, zh, f, th, v, dh 18.1 91

nasals m, n, ng, em, en, eng, nx 7.4 57
semivowel and glide l, r, w, y, hh, hv, el 12.3 64

vowel iy, ih, eh, ey, ae, aa, aw, ay, ah, oy, ow,
uh, uw, ux, er, ax, ix, axr, ax-h

51.1 96

overall all above without silence 100.0 82.5

Since TIMIT is a corpus of read speech recordings with clear pronounciation, more
surveys are conducted on conversational speech using the headset recordings from the
WSJCAM0 corpus (Robinson et al., 1995), the AMI corpus (McCowan et al., 2005) and
the SWC Day One (SWC1) (Fox et al., 2013). As AMI and SWC1 do not have the
reference annotation for phonetic boundary, the force alignment is performed with manual
transcription and with the in-domain state-of-the-art speech recognition systems based
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Fig. 7.7 Average phoneme duration in the TIMIT corpus (/pau/ refers to silence and pause).

Table 7.3 Duration and duration percentage of different sounds in conversational English
speech. “Dur.”: overall duration (hours); “DPP”: the average duration per phoneme
(ms); “Pct.”: percentage in overall duration without silence (%).

Phoneme
Phonemes

AMI Corpus SWC1 WSJCAM0
category Dur. Pct. DPP Dur. Pct. DPP Dur. Pct. DPP

stop b, d, g, k, p, t 10.04 16.1 67 0.91 16.5 70 6.27 21.4 80
affricate ch, jh 0.71 1.1 91 0.06 1.0 85 0.50 1.7 118
fricative dh, f, hh, s, sh,

th, v, z, zh
10.27 16.4 84 0.92 16.7 81 6.76 23.0 98

nasal em, en, m, n,
ng

6.83 10.9 86 0.61 11.0 83 3.13 10.7 69

liquid el, l, r 4.10 6.6 75 0.36 6.6 77 1.99 6.8 65
semivowel w, y 2.84 4.5 75 0.26 4.7 82 0.82 2.8 84

vowel aa, ae, ah, ao,
aw, ax, axr, ay,
eh, er, ey, ih, iy,
ow, oy, uh, uw

27.69 44.3 90 2.39 43.4 90 9.90 33.7 72

overall all above with-
out silence

62.5 100.0 83 5.5 100.0 82 30.3 100.0 80

on headset recordings. The acoustic models are based on the bottleneck features from
the DNN front-end whose configuration follows the setup published by Liu et al. (2016,
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Fig. 7.8 Based on the average phoneme duration for each phoneme in TIMIT.

2014). The average phoneme duration in these three corpora are shown in Table 7.3.
As shown, the duration proportion and average duration of each phoneme category are
very similar between AMI corpus and SWC recordings, considering potential alignment
errors. As shown in Table 7.3, more than half of the duration in the conversational English
speech are phonemes with an average duration from 80 ms to 90 ms, which is similar to
the read speech in the TIMIT corpus (Table 7.2). Compared to TIMIT, AMI and SWC1,
the WSJCAM0 corpus is slightly different in the duration percentage of each phoneme
category and the average duration per phoneme category. This could be potentially caused
by a different speaking style or the alignment errors.

Taking the average phoneme durations in TIMIT as examples because of the accurate
manual phonetic annotation, Fig. 7.8 shows the ratio of intra-phone smearing calculated
with Eq. (7.38) as the length of RIR increases. As shown when the RIR is shorter than 100
ms, there is a large variation in the ratio of intra-phone smearing. As the length of RIR
increases, there is a higher ratio of inter-phone smearing than intra-phone smearing, and a
smaller variation among phonemes in terms of intra-phone smearing ratio. In particular,
when the RIR length is 50 ms, the intra-phone smearing probability is 67.4% in TIMIT.
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Therefore, when using 50 ms as the early-late reverberation boundary, there is up to 30%
of inter-phone smearing, i.e. reverberation smearing from preceding phonemes, and the
ratio of inter-phone smearing can be particularly large for short phonemes such as /b/, /n/,
/dx/, /g/, /ax-h/, /epi/ and /p/.

Since the phoneme duration statistics is similar across multiple corpora of different
speaking styles and different speech topics (Table 7.2 and Table 7.3), it can be expected
that the conclusions about the ratio of intra-phone smearing based on the phoneme duration
of the TIMIT corpus are also transferable to other corpora.

7.5.3 Phonetic analysis inspired reverberation measurement

For the phonetic analysis inspired reverberation measurement, besides the polynomial rever-
beration score which will be applied at a phonetic level to estimate the intra-phone smearing
index, there are two other components introduced. First, the normalised magnitude-
spectrum variance as shown in Eq. (7.10) was introduced to emphasise the phonetic
difference in energy distribution over frequency. Second, the inter-phone smearing index
as shown in Eq. (7.27) or Eq. (7.28) is introduced to emphasise the impact of power
spectrum difference between neighbouring phonemes in reverberation distortion. Since the
phonetic analysis inspired reverberation measurement employs three components, for a
better understanding of each component the experiments are organized in the following
way. First each of the three components is investigated independently, in terms of its
capability in depicting the reverberation distortion level in different channels, as well as its
capability in depicting the signal dependent sensitivity to the reverberation distortion from
the same channel. Then the components are combined and any complementary benefit
from the combination will be investigated. The three components are combined in two
stages. First the normalised magnitude-spectrum variance is combined with the polynomial
reverberation score as intra-phone smearing index, with the combination weighting param-
eter to be tuned to explore the maximal complementary benefit in the combination. Then
the intra-phone index is combined with inter-phone smearing index, and the combination
weighting parameter is again tuned.

As shown in Section 7.3.1, phonetic analysis inspired reverberation measurement
combining the intra-phone smearing index and the inter-phone smearing index requires
phonetic spectrogram statistics. Therefore a reliable phonetic annotation is needed for
calculating spectrogram statistics for each phoneme. For this reason the WSJCAM0 corpus
is chosen for the experiments in this section since it has a reference annotation for the
phonetic boundaries and its data size is sufficient to construct advanced phoneme classifier
based on DNNs. The performance of the reverberation measurement are evaluated by the
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correlation between the reverberation score and the PER in a phoneme classification task.
There are two reasons why the PER is preferred to the WER at this stage. First, it allows a
direct comparison between the phonetic analysis inspired reverberation score and PER on
the same phoneme. Second, the PERs are the results from the system described in Section
7.1.2 which has already implied a high correlation between PERs and WERs when PERs
are calculated with the reference phonetic boundary. In the experiments in Section 7.1.2,
C50 has shown high Spearman rank correlations with both the overall WER and the overall
PER regarding the channel difference, indicating that overall there is a high correlation
between PER and WER and a good reverberation score should provide high correlations
with both PER and WER at the same time. Therefore this section evaluates the performance
of reverberation measurement based on the PER first, using reverberant data simulated by
convolving WSJCAM0 headset recordings with 13 RIRs from the SWC recording room
(same with Section 7.1.2). If good performance is observed, further experiments could be
conducted to evaluate the reverberation measurement performance against WER.

Experiments are first conducted to evaluate the performance of the intra-phone smearing
index based on polynomial reverberation score applied at phonetic level alone. Fig. 7.9
illustrates the speech dynamic indices for phoneme /ch/ and phoneme /oy/, acquired with
100 examples of each phoneme. The pattern in speech dynamic index along the frequency
axis (Fig. 7.9a and Fig. 7.9b) matches the average power spectrum of the corresponding
phoneme (Fig. 7.9c and Fig. 7.9d). The analytic formula in Eq. (7.7) suggests that the
polynomial reverberation score is based on the element-wise multiplication between the
speech dynamic index and the RIR magnitude spectrogram. Therefore the speech dynamic
index examples shown in Fig. 7.9 suggest a fundamental difference between the phonetic
polynomial reverberation score and the existing reverberation score: the final polynomial
reverberation score is mainly determined by the spectrogram elements of the RIR in the
frequency bins where the phoneme has high energy.

Fig. 7.10a shows the overall intra-phone smearing index based on the polynomial
reverberation score in various reverberation conditions (black line) and the corresponding
overall WER (green line). The Spearman rank correlation between the two lines is 0.88,
indicating that the intra-phone smearing index based on polynomial reverberation score
applied on phonetic level alone can depict the channel difference in reverberation to a large
degree. This correlation is slightly lower compared to the Spearman rank correlation of
-0.94 between C50 and PER (Section 7.1.2), as well as the previously reported Spearman
rank correlation of 0.92 between the polynomial reverberation score implemented at
utterance level and the overall WER on SWC data regarding the channel difference (Section
7.5.1). Such degradation is expected because by applying the polynomial reverberation
score on a smaller time scale, i.e. from utterance level to phoneme level, the information
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(d) Average power spectrum for phoneme /oy/.

Fig. 7.9 Examples of speech dynamic index and average power spectrum.

about reverberation smearing across phonemes is cut off, leading to inevitable performance
degradation.

Fig. 7.10b examines the capability of the polynomial reverberation score based intra-
phone smearing index in depicting the phonetic reverberation sensitivity across multiple
reverberant conditions. The black line shows the reverberation score and the green line
shows the relative change in the PER from headset recordings to simulated reverberant data,
both averaged over data of all 13 reverberant conditions on the corresponding phoneme. Fig.
7.10b suggests that the intra-phone smearing index based on the polynomial reverberation
score could not reflect the phonetic difference in reverberation sensitivity, as the Spearman
rank correlation between the reverberation score and the PER regarding the phoneme
difference is -0.09. This is expected because in Section 7.5.1 it has been shown that the
polynomial reverberation score alone could not track the signal difference in reverberation
sensitivity in short recordings well (Fig. 7.6b).
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(b) Polynomial reverberation score per
phoneme and average PER increase per
phoneme in 13 reverberant conditions.

Fig. 7.10 Polynomial reverberation score for intra-phone smearing and PER change due to
channel difference and phonetic difference, on the WSJCAM0 evaluation set of simulated
reverberant data.

Further experiments are conducted to examine the properties of the first component
introduced in phonetic analysis inspired reverberation measurement, i.e. the normalised
magnitude spectrum variance. Since the normalised magnitude spectrum variance is inde-
pendent from RIRs, it is only evaluated regarding its capability of depicting the phonetic
difference in reverberation distortion sensitivity given the same reverberant environment
and channel. Fig. 7.11 compares the normalised magnitude spectrum variance (black
lines) with the absolute PER increase from headset recordings to simulated reverberant
data (green line in Fig. 7.11a) and the relative PER increase from headset recordings
to simulated reverberant data (green line in Fig. 7.11b), when both the absolute PER
increase and absolute PER increase are the average over all 13 reverberant conditions over
corresponding phoneme. The average magnitude spectrum variance per phoneme and the
average power spectrum per phoneme are both calculated with 100 examples of corre-
sponding phoneme in WSJCAM0 headset recordings. As shown, overall the normalised
magnitude variance is not well correlated with the phonetic difference in terms of average
PER degradation in reverberant environments, though it does highlight a few phonemes
that are particularly sensitive, such as /b/ and /p/. Further experiments will be conducted
later to investigate whether it introduces any complementary effect when combined with
the polynomial reverberation score for intra-phone smearing index.

The proposed inter-phone smearing index, i.e. the third component in the phonetic
analysis inspired reverberation measurement, is designed to be dependent on both signal
and RIRs to depict both the phonetic difference in sensitivity to the same reverberant
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(b) Average relative increase in PER.

Fig. 7.11 Average PER increase in comparison with magnitude spectrum variance in terms
of phoneme difference.

channel and the channel difference in reverberation distortion level over all phonemes.
Therefore its performance is evaluated in both aspects. In the experiments below the
inter-phone smearing is implemented with the angle rotated in the high dimensional
power spectrum space due to reverberation. Three preceding phones are considered for
inter-phone smearing in the experiments. Similar to Fig. 7.11, Fig. 7.12 compares the inter-
phone smearing index (black line) with the absolute PER increase from headset recordings
to simulated reverberant data (green line in Fig. 7.12a) and the relative PER increase from
headset recordings to simulated reverberant data (green line in Fig. 7.12b), all averaged
over 13 reverberant conditions per phoneme. As shown, inter-phone smearing index has
very limited correlation with the PER degradation regarding the phoneme difference.

Furthermore, Fig. 7.13 compares the overall inter-phone smearing in various rever-
berant channels (black line) and the overall PER in corresponding channel (green line).
As shown, the Spearman rank correlation between the overall inter-phone smearing index
and overall PER regarding the channel difference in reverberation is -0.42, indicating
very limited capability of the implemented inter-phone smearing index in depicting the
reverberation level in different channels. In addition, while the analytic derivation in
Section 7.3.1 expects a positive correlation, the results shown in Fig. 7.13 suggest the
opposite trend. This point will be discussed further in Section 7.6.

Therefore, experiments conducted so far investigating the three components indepen-
dently suggest that only the polynomial reverberation score applied at phoneme level for
intra-phone smearing could well depict the channel difference in reverberation, while
none of the three components alone could well reflect the phonetic properties in terms of
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(b) Average relative increase in PER.

Fig. 7.12 Average PER increase in comparison with average power spectrum vector
rotation caused by reverberation (3 preceding phones taken into consideration).
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Fig. 7.13 Average PER increase in comparison with average power spectrum vector
rotation caused by reverberation (3 preceding phonemes taken into consideration).

different reverberation sensitivity. The following experiments in this section investigate
the performance of the reverberation score when multiple components are combined.

First the polynomial reverberation score and the phonetic normalised magnitude spec-
trum variance are combined as the intra-phone smearing index. Since the normalised
magnitude spectrum variance is independent from the environment and microphone chan-
nel, tuning the combination weighting parameter will not change the performance on
measuring the reverberation level of different reverberant channels (black line in Fig.
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Fig. 7.14 Correlation change when tuning the combination weight in intra-phone smearing
index (black line: Spearman rank correlation; green line: p-value).

7.14a). The tuning does change the Spearman rank correlation between the intra-phone
smearing index and the relative PER increase regarding the phoneme difference, however
no significant rank correlation is observed no matter how the combination weighting
parameter is tuned, as illustrated by the black line in Fig. 7.14b. This is possibly caused
by the results previously observed that neither the polynomial reverberation score nor the
normalised magnitude spectrum variance could well depict the phonetic difference in rever-
beration sensitivity. In addition, there seems no complementary benefit when combining
the two components additively together. Therefore in further experiments the normalised
magnitude spectrum variance component is dropped from intra-phone smearing index,
and the polynomial reverberation score applied at phoneme level is used as intra-phone
smearing index to directly combine with inter-phone smearing index.

The reverberation score combining the intra-phone smearing index and the inter-phone
smearing index is first evaluated by its correlation with the overall PER on simulated
data regarding the channel difference. Fig. 7.15a and Fig. 7.15b respectively show the
Spearman rank correlation and Pearson linear correlation between the overall reverberation
score and PER regarding the microphone channel difference when tuning the combining
weight parameter λ (Section 7.3.2). Overall the highest correlation between PER and
reverberation score regarding the channel difference is achieved when the combination
weight λ has a value close to 0. That suggests adding the inter-phone smearing index to the
intra-phone smearing index based on polynomial reverberation score is not beneficial. This
may be related to the earlier observation that the rotation angle based inter-phone smearing
index does not provide a good indication of the reverberation level in environment and
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(a) Spearman rank correlation between the re-
verberation score and the overall PER regard-
ing the channel difference.
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(b) Pearson linear correlation between the rever-
beration score and the overall PER regarding
the channel difference.
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(c) Spearman rank correlation between the re-
verberation score and the average relative PER
increase in 13 simulated reverberant environ-
ments, regarding the phoneme difference.
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(d) Pearson linear correlation between the re-
verberation score and the average relative PER
increase in 13 simulated reverberant environ-
ments regarding the phoneme difference.

Fig. 7.15 Experimental examination of the correlation between reverberation score and
the overall PER on WSJCAM0 based simulated data.

microphone channel. In addition the inter-phone smearing index does not introduce any
complementary benefit when combined with the polynomial reverberation score based
intra-phone smearing index.

Furthermore, the combined reverberation score is evaluated by its correlation with the
relative PER increase from headset recordings to simulated reverberant data regarding
the phoneme difference in reverberation sensitivity. Fig. 7.15c and Fig. 7.15d show that
inter-phone smearing does not help to improve the correlation with the average relative
PER increase caused by reverberation, i.e. it does not help to improve the accuracy of
reverberation score in depicting the phonetic difference in reverberation sensitivity. This is
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(b) Relative change in Fisher ratio.

Fig. 7.16 The change of Fisher ratio due to reverberation.

potentially because there is no complementary benefit when combining the intra-phone
smearing index based on polynomial reverberation score and the inter-phone smearing
index based on the rotation angle, and the earlier analysis in Fig. 7.10b and Fig. 7.12b has
shown that each factor alone is good at depicting the phonetic difference in reverberation
sensitivity.

7.5.4 Fisher ratio based discriminative analysis

As discussed in Section 7.4, the inter-phone smearing index based on the phonetic power
spectrum vector has one implicit assumption: the reverberation distortion level of one
phoneme is independent from the reverberation distortion level of other phonemes in
the same classification task. The experiments on phoneme classification in Section 7.5.3
showed that the proposed inter-phone smearing index could not well depict either the
phonetic difference or the microphone channel effect in reverberation distortion. Such
experiment results can be caused by the errors from the implicit assumption. Therefore this
section investigates the impact of the implicit assumption on the inter-phone smearing index.
The investigation is based on the Fisher linear discriminative analysis of the phonetic power
spectrum vector, and it is achieved in two steps. The Fisher ratio is first calculated following
the algorithm detailed in Section 7.4, separately on WSJCAM0 headset recordings and
on the reverberant data simulated with WSJCAM0 headset recordings and the 13 RIRs
from SWC recording room. Then the correlation between the change in Fisher ratio
and the change in PER regarding the channel difference and the phoneme difference in
reverberation distortion is analysed.
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It is found that the overall Fisher ratio JF has a high Pearson linear correlation with
PER regarding the microphone channel difference in reverberation distortion, being -0.82
with p-value of 3.7e-4. In comparison the Spearman rank correlation is as low as -0.047,
i.e. there is no rank correlation. Fig. 7.16 shows the change in the Fisher ratio per phoneme
Jα,F due to reverberation. When comparing the average absolute change in Fisher ratio
per phone due to reverberation with the average absolute change in PER per phoneme on
the same eval dataset due to reverberation, the Spearman rank correlation is 0.22 and the
Pearson linear correlation is 0.19. Similarly, when comparing the average relative change
in Fisher ratio per phoneme with the average relative change in PER per phoneme on eval
dataset due to reverberation, the Spearman rank correlation is -0.17 and the Pearson linear
correlation is -0.24. Therefore, the Fisher ratio could only reflect the channel difference
but not the phonetic difference regarding the sensitivity to pattern distortion caused by the
reverberation.

As the Fisher ratio represents the first order discriminative analysis on the distance
among multiple classes in the same classification task, the results implies that the idea of
adding components that better depicts the between-class difference is unlikely to improve
the capability of reverberation score in estimating signal dependent distortion sensitivity to
the same environment reverberation. Or the power spectrum is not a good feature space for
that purpose.

7.6 Summary and Discussion

This chapter has detailed the research work on improving the existing reverberation
measurement regarding the capability of depicting early reverberation distortion and signal
dependent reverberation distortion level in short recordings. Based on the analytic study
of reverberation in previous chapter, a polynomial format reverberation score is first
proposed in Section 7.2. In the experiments with simulated reverberant data by convolving
the SWC headset recordings with RIRs truncated to different length, it is shown that
such polynomial reverberation score could well represents the accumulated increase in
WER with distortion accumulated from early reverberation and late reverberation. In
addition, the polynomial reverberation score shows a high rank correlation with WER
regarding the channel difference in reverberation. Therefore the polynomial reverberation
score improves the estimation of the early reverberation distortion level compared to
the currently popular reverberation score based on ELR. A further investigation of the
correlation between the reverberation score using the polynomial method and the WER
regarding the utterance difference suggests no improvement over C50 based reverberation
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score. Thus the polynomial method is yet to improve in its capability of depicting signal
dependent reverberation sensitivity in short utterances.

Taking the idea of “self-masking” and ”overlap-masking” in the phonetic analysis
on the human perception of reverberation by Kokkinakis and Loizou (2011), a new re-
verberation measurement structure is proposed by partitioning reverberation distortion
into intra-phone smearing and inter-phone smearing and by combining the reverberation
indices from each part. The polynomial reverberation score is applied at phoneme level to
measure intra-phone smearing. In the experiments on simulated data based on the WSJ-
CAM0 headset recordings and SWC RIRs, the polynomial reverberation score used as the
intra-phone smearing index showed high correlation with PER regarding the microphone
channel difference. However it does not well correlate to the phonetic difference in the
sensitivity to the same reverberant environment. Therefore a phonetic magnitude spectrum
variance normalised by corresponding power spectrum is explored to improve the phonetic
sensitivity of intra-phone smearing index. However the experiments suggests that the
added component does not introduce any benefit.

To measure the distortion level by inter-phone smearing, the average power spectrum
per phoneme is employed as a phonetic vector representation in a hyper space. The inter-
phone reverberation distortion could change the phonetic vector in both its magnitude and
angle. Since in speech recognition the feature magnitude is usually normalised, the rotation
angle by reverberation distortion is adopted to represent the level of inter-phone smearing
distortion. Experiments on WSJCAM0 data shows that such a inter-phone smearing index
does not provide a high correlation with PER regarding the channel difference or the
utterance difference. As a result combining it with the intra-phone smearing index based
on the polynomial reverberation score does not introduce any benefit.

Further analysis is performed regarding one crucial implicit assumption made by the
inter-phone smearing index, i.e. the reverberation distortion level of one phoneme is
independent from the reverberation distortion level of other phonemes. The Fisher ratio
is employed to explore the importance of global information in accurately estimating
the distortion level of each individual classification class. The Fisher ratio was shown
to have a high linear correlation with overall PER regarding the channel difference in
reverberation. However it does not show a high correlation with PER regarding the
phoneme difference in the sensitivity to reverberation distortion. This implies that other
methods based on discriminative analysis on power spectrum will have similar problems
in improving the correlation with PER regarding the signal dependent difference to the
reverberation distortion.

Throughout the exploration research work in this chapter, it was noticed that there
is some hidden problems regarding normalisation. The first problem is the RIR energy
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normalisation. In all experiments the RIRs have been normalised by the maximum absolute
value in the RIR coefficients beforehand. This might not be optimal while the energy
based normalisation could introduce negative disruption to polynomial reverberation score
when RIRs are not of the same length. Later when multiple components are combined
for an overall reverberation score, a few weighting parameters are introduced to balance
the different value ranges caused by completely different strategies adopted in calculating
each component. In addition, when phonetic information is introduced to reverberation
measurement, the normalisation over different phonetic energy is another issue.

The normalisation problem can be also observed from the experiment results. The
polynomial format reverberation score provides a high rank correlation with PER and
WER regarding the channel difference, but the linear correlation is much lower. This is
particularly obvious when examining the early reverberation distortion where the RIRs
are truncated to different lengths. The change in the reverberation scores based on the
polynomial method is not proportional to the change in WER regarding different levels of
reverberation. Another example is the performance evaluation of the rotation angle based
inter-phone smearing index in Fig. 7.13 where each RIR is normalised by its maximum
value in the spectrum. If the RIRs are not normalised, both the rank correlation and linear
correlation will drop to below 0.2, and if the RIRs are normalised by overall energy, the
linear correlation will increase to -0.66. In addition, the correlation value is negative,
which opposes to the positive correlation expected by the analytic work in Section 7.3.1.
This is potentially caused by the magnitude normalisation of the average phonetic power
spectrum.

The work presented in this chapter achieved one primary goal out of two. The poly-
nomial based reverberation score achieved the primary goal of measuring both early
reverberation distortion and late reverberation distortion without the necessity of an op-
timal boundary for early reverberation and late reverberation. This chapter has explored
multiple strategies and their combination to improve the capability of reverberation mea-
surement in tracking the signal dependent sensitivity to the reverberation distortion. The
partition of reverberation distortion into intra-phone smearing and inter-phone smearing is
for the first time explored in estimating the reverberation distortion level. The experiment
results suggest that future work is needed to improve the reverberation distortion estimation
in short recordings which suffers the most from the signal variation.

The work in this chapter has avoided directly training a DNN with the utterance level
WER change as reference to non-intrusively predict the recognition performance given
different reverberation conditions. It is because this blind DNN strategy will inevitably
lead to a reverberation measurement system highly dependent on the recognition systems
involved. In addition such a strategy has gone beyond the category of reverberation
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measurement because the DNN estimator will also react to any mismatch caused by
speaker, gender, accent, background noise, etc. Instead the work in this chapter set its
foundation on the analytic study about how reverberation distorts feature pattern in the
front-end. Based on the analytic study a series of methods are hand-crafted to estimate
the reverberation distortion level. Future work could consider a combination of machine
learning based method and reverberation modelling based method. The intra-phone
smearing and inter-phone smearing based reverberation measurement explored in this work
highly relies on phonetic annotation of high quality. Future work should try to avoid such
high dependence.





Chapter 8

Summary, Discussion and Future Work
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8.1 Distant Speech Recognition of Real Natural Sponta-
neous Conversations

The work presented in this thesis has aimed to improve the DSR performance on the real
natural spontaneous multi-party conversations. For this purpose the Sheffield Wargame
Corpora (SWC) was collected with simultaneous multi-microphone audio recording, multi-
camera video recording and Ubisense based speaker location tracking. The SWC is
manually annotated and transcribed, leading to 24.6 hours speech from 22 native English
speakers, 14 being male and 8 being female. SWC is a unique database for three reasons.
First, it is the first free native English speech corpus for research that is based on the real
natural spontaneous multi-party conversations. Second, it is the first speech corpus with
free and natural speaker movement accompanied with speaker location tracking. Third, it
is a speech corpus including both the headset recordings and the multi-microphone distant
recordings, released with a Kaldi recipe for the other researchers to replicate or to improve
the work using the state-of-the-art ASR systems.

Recognition systems in two state-of-the-art structures involving DNNs are evaluated on
SWC data. The DNN-HMM-GMM structure employs DNNs as the front-end to generate
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bottleneck features for HMM-GMM training, and the parameters in the DNN-HMM-
GMM are adapted from another system of the same structure but trained on a much larger
corpus, i.e. the AMI corpus. The other DNN-HMM hybrid structure employs DNNs
in acoustic modelling, and the parameters in DNN-HMM are trained in a standalone
fashion using the recordings from SWC only. The training and evaluation of two structures
are performed on the headset recordings, the single distant microphone recordings and
the signal enhanced from multiple distant microphone recordings using beamforming.
Overall the WERs are above 40% on the headset recordings and above 70% on the distant
recordings, suggesting a high level of challenge for speech recognition on SWC data.
The implementation of beamforming and dereverberation algorithms only brings small
performance improvement. The lowest overall WER on distant recordings is 71.3%, and it
is achieved with a combination of the multi-channel dereverberation algorithm GWPE and
the MVDR beamforming employing TDOAs estimated from the speaker location tracked
by the Ubisense system.

Using the SWC data as a study case, further analysis is conducted to understand
the influence factors and the main challenges for the speech recognition of real natural
spontaneous multi-party conversations. It is found that the real natural spontaneous multi-
party conversational speech has a few unique properties that differentiate the SWC data
from existing corpora. There are the very short utterances with an average duration of 2.2
seconds, the high proportion (around 50%) of utterances partly or completely overlapped
with their competing speech utterances, the emotional speech with a big gender difference
and speaker movement while talking. It is found that the short utterances and the emotional
speech are two important reasons for the high WERs on both the headset recordings and
the distant recordings. Further investigation employs the simulated data for a factor-by-
factor analysis to quantify the impact of reverberation and overlapped speech on DSR
performance. This is followed by a comparable investigation on real recordings regarding
the interaction among multiple factors in application. The overlapped speech is found to be
a key influence factor for the high WERs in DSR. Besides, reverberation and background
noise are also two major factors that contribute to high WERs in DSR. Multi-channel based
dereverberation and beamforming algorithms have been applied on both the simulated
data and the real recordings, and it is found that the interaction among multiple factors
can dramatically decrease the effectiveness of the enhancement algorithms. One typical
example is that overlapped speech decreases the dereverberation performance significantly.
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8.2 Reverberation Modelling and Measurement

An investigation has been performed both analytically and experimentally on how re-
verberation distorts the spectrogram for speech recognition features. It is found that
the reverberation distortion in the speech complex spectrogram could be accurately ap-
proximated with a convolution between the clean speech complex spectrogram and the
RIR complex spectrogram, i.e. the reverberation modelling. Based on the reverberation
modelling, a polynomial reverberation score is proposed to estimate the reverberation
distortion level on short speech utterances. The proposed polynomial reverberation score is
found to provide a high rank correlation with the overall WER in terms of the microphone
channel difference in reverberation. In addition, the polynomial reverberation score avoids
a strict partition between early reverberation and late reverberation, as well as the disputed
selection of the optimal boundary for the early-late-reverberation partition. When the rank
correlation between the WER and the reverberation score is evaluated on a very small
amount of data, e.g. one speech utterance, the polynomial reverberation score performs
similar to the existing C50, and both fail to well depict the different reverberation sensitivity
due to the signal properties, particularly the phonetic properties.

Therefore further effort has been devoted to improving the polynomial reverberation
score so that a higher rank correlation with WER could be achieved when both the reverber-
ation score and WER are calculated on short recordings. Inspired by the phonetic analysis
by Kokkinakis and Loizou (2011) on how reverberation causes the self-masking and the
overlap-masking across phonemes, the reverberation distortion level is estimated from two
aspects: the intra-phone smearing and the inter-phone smearing. Since the temporal pattern
in the spectrogram for the same phoneme is relatively stable, the polynomial reverberation
score is used for the intra-phone smearing index. In addition, the temporal variance in
magnitude spectrogram normalised by energy per phoneme is used to emphasise the overall
level of phonetic magnitude spectrogram change over time. For the inter-phone smearing
index, the level of reverberation distortion is estimated with the change in the average
power spectrum in each phoneme caused by the inter-phone smearing, particularly the
rotation of the average power spectrum in the hyper space. The intra-phone smearing index
and inter-phone smearing index are further combined additively. The experiments suggest
that the phonetic difference in reverberation sensitivity is too challenging to measure with
any of the proposed strategies in the intra-phone smearing index or inter-phone smearing
index, alone or in combination.

To investigate the reasons for the poor performance of the phonetic analysis based
reverberation measurement, one implicit assumption made in the inter-phone smearing
level estimation is validated. The implicit assumption is that the smearing level of one



180 Summary, Discussion and Future Work

phoneme is independent from the smearing level of other phonemes. This assumption
could be problematic because both the phoneme recognition and the word recognition
are multi-class classification tasks where the discriminability of one class is dependent
on the other classes. Therefore Fisher discriminative analysis is conducted to examine
the change in the discriminability of the phonetic average power spectrum due to the
reverberation distortion. The experiment results suggest that there is not a significant
correlation between the change in the Fisher score per phoneme and the average change in
the PER on corresponding phoneme in terms of phonetic difference, though there is indeed
a high negative linear correlation between the overall Fisher score change and the overall
PER change regarding the environment and microphone channel difference. Therefore the
concern on the overall discriminability omitted by the inter-phone smearing seems not to
be the reason for the poor performance of the reverberation measusrement based on the
intra-phone smearing and inter-phone smearing.

Further discussion points out other potential reasons for the poor performance of the
reverberation measurement in depicting the phonetic difference of reverberation sensitivity.
The value normalisation has been highlighted as one likely issue, including the normal-
isation of different phonetic energies in different frequencies and the normalisation of
different RIRs.

8.3 Future Work

The analysis on DSR using the SWC data for a case study covered a variety of influence
factors in the real distant recordings except for the background noise. The background
noise in SWC data is very diverse, including both the stationary background noise such
as the computer fan noise and the changing background noise such as the wood floor
cracking sound when the players walk around in the room. The background noise does
play an important role in the high WERs in the DSR of SWC data, and it represents
the large range of background noise in the real domestic applications. Therefore for a
complete understanding of all the environment factors in DSR, future analysis should be
conducted to quantify the impact of the real background noise on DSR performance. The
effectiveness of the de-noising algorithms could be conducted on both the simulated data
and the real distant recordings in a similar way with the analysis work conducted in this
thesis regarding the effectiveness of dereverberation algorithms.

In the work on reverberation measurement, the polynomial reverberation score is
found to provide a high rank correlation with the WER and the PER, while further work
is still needed to address the value normalisation issue so that a high linear correlation
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with the speech recognition performance could be achieved as well. In addition, more
research is needed to improve the reverberation distortion level estimation accuracy on
short recordings where the signal dependent reverberation sensitivity needs to be taken
into consideration. The progress in the reverberation measurement on short recordings will
be critical for both the data selection and the model selection used by the state-of-the-art
ASRs system to achieve a balance between the overall robustness against diverse levels of
reverberation and a good performance in each reverberant condition.
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Marković, I. and Petrović, I. (2010), ‘Speaker localization and tracking with a microphone
array on a mobile robot using von mises distribution and particle filtering’, Robotics and
Autonomous Systems 58(11), 1185–1196.

Matassoni, M., Astudillo, R. F., Katsamanis, A. and Ravanelli, M. (2014), The DIRHA-
GRID corpus: baseline and tools for multi-room distant speech recognition using
distributed microphones, in ‘The 15th Annual Conference of the International Speech
Communication Association (Interspeech)’, pp. 1613–1617.

McCowan, I., Carletta, J., Kraaij, W., Ashby, S., Bourban, S., Flynn, M., Guillemot, M.,
Hain, T., Kadlec, J., Karaiskos, V. et al. (2005), The AMI meeting corpus, in ‘The 5th
International Conference on Methods and Techniques in Behavioral Research’, Vol. 88.

Miyoshi, M. and Kaneda, Y. (1988), ‘Inverse filtering of room acoustics’, IEEE Transac-
tions on Acoustics, Speech, and Signal Processing 36(2), 145–152.



References 189

Moreno, P. J., Raj, B. and Stern, R. M. (1996), A vector taylor series approach for
environment-independent speech recognition, in ‘IEEE International Conference on
Acoustics, Speech, and Signal Processing’, Vol. 2, pp. 733–736.

Nagata, Y., Tatekura, Y., Saruwatari, H. and Shikano, K. (2004), ‘Iterative inverse filter
relaxation algorithm for adaptation to acoustic fluctuation in sound reproduction system’,
Electronics and Communications in Japan (Part III: Fundamental Electronic Science)
87(7), 15–26.

Nakadai, K., Okuno, H. G., Kitano, H., Okuno, H. G. and Kitano, H. (2002), Real-time
sound source localization and separation for robot audition, in ‘IEEE International
Conference on Spoken Language Processing’, pp. 193–196.

Naylor, P. A. and Gaubitch, N. D. (2005), Speech dereverberation.

Otsuka, T., Ishiguro, K., Yoshioka, T., Sawada, H. and Okuno, H. G. (2014), ‘Multichannel
sound source dereverberation and separation for arbitrary number of sources based on
bayesian nonparametrics’, IEEE/ACM Transactions on Audio, Speech, and Language
Processing 22(12), 2218–2232.

Parada, P. P., Sharma, D., Lainez, J., Barreda, D., Naylor, P. A. and Waterschoot, T. v.
(2014), A quantitative comparison of blind C50 estimators, in ‘The 14th International
Workshop on Acoustic Signal Enhancement (IWAENC)’, pp. 298–302.

Parada, P. P., Sharma, D., Lainez, J., Barreda, D., van Waterschoot, T. and Naylor, P.
(2016), ‘A single-channel non-intrusive C50 estimator correlated with speech recognition
performance’, IEEE/ACM Transactions on Audio, Speech, and Language Processing
(99).

Parada, P. P., Sharma, D. and Naylor, P. A. (2014), Non-intrusive estimation of the level of
reverberation in speech, in ‘IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP)’, pp. 4718–4722.

Parada, P. P., Sharma, D., Naylor, P. A. and Waterschoot, T. v. (2014), Reverberant
speech recognition: A phoneme analysis, in ‘IEEE Global Conference on Signal and
Information Processing (GlobalSIP)’, pp. 567–571.

Parada, P. P., Sharma, D., Naylor, P. A. and Waterschoot, T. v. (2015), ‘Reverberant speech
recognition exploiting clarity index estimation’, EURASIP Journal on Advances in
Signal Processing 2015(1), 1–12.

Parihar, N., Picone, J., Pearce, D. and Hirsch, H. G. (2004), Performance analysis of
the aurora large vocabulary baseline system, in ‘12th European Signal Processing
Conference’, pp. 553–556.

Pavlidi, D., Griffin, A., Puigt, M. and Mouchtaris, A. (2013), ‘Real-time multiple sound
source localization and counting using a circular microphone array’, IEEE Transactions
on Audio, Speech, and Language Processing 21(10), 2193–2206.

Pearson, K. (1895), ‘Note on regression and inheritance in the case of two parents’,
Proceedings of the Royal Society of London 58, 240–242.

Polack, J.-D. (1988), La transmission de l’é nergie dans les salles, PhD thesis, Université
du Maine, Le Mans, France.



190 References

Potamitis, I., Chen, H. and Tremoulis, G. (2004), ‘Tracking of multiple moving speakers
with multiple microphone arrays’, IEEE Transactions on Speech and Audio Processing
12(5), 520–529.

Povey, D. and Woodland, P. C. (2002), Minimum phone error and I-smoothing for improved
discriminative training, in ‘IEEE International Conference on Acoustics, Speech, and
Signal Processing’.

Qian, Y., Bi, M., Tan, T. and Yu, K. (2016), ‘Very deep convolutional neural networks
for noise robust speech recognition’, IEEE/ACM Transactions on Audio, Speech, and
Language Processing 24(12), 2263–2276.

Rath, S. P., Knill, K., Ragni, A. and Gales, M. J. F. (2014), Combining tandem and
hybrid systems for improved speech recognition and keyword spotting on low resource
languages, in ‘The 15th Annual Conference of the International Speech Communication
Association (Interspeech)’.

Raut, C. K., Nishimoto, T. and Sagayama, S. (2006), Model adaptation for long con-
volutional distortion by maximum likelihood based state filtering approach, in ‘IEEE
International Conference on Acoustics Speech and Signal Processing Proceedings’,
Vol. 1.

Ravanelli, M., Cristoforetti, L., Gretter, R., Pellin, M., Sosi, A. and Omologo, M. (2015),
The DIRHA-ENGLISH corpus and related tasks for distant-speech recognition in do-
mestic environments, in ‘IEEE Workshop on Automatic Speech Recognition and Under-
standing (ASRU)’, pp. 275–282.

Renals, S. and Hain, T. (2010), Speech Recognition, Wiley-Blackwell, pp. 297–332.

Robinson, T., Fransen, J., Pye, D., Foote, J. and Renals, S. (1995), WSJCAM0: A british
english speech corpus for large vocabulary continuous speech recognition, in ‘In Proc.
ICASSP 95’, IEEE, pp. 81–84.

Sagayama, S., Yamaguchi, Y., Takahashi, S. and Takahashi, J. (1997), Jacobian approach to
fast acoustic model adaptation, in ‘IEEE International Conference on Acoustics, Speech,
and Signal Processing’, Vol. 2, pp. 835–838.

Sainath, T. N., Weiss, R. J., Wilson, K. W., Narayanan, A., Bacchiani, M. and Senior, A.
(2015), Speaker location and microphone spacing invariant acoustic modeling from raw
multichannel waveforms, in ‘IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU)’, IEEE.

Sak, H., Senior, A. W. and Beaufays, F. (2014), ‘Long short-term memory based recurrent
neural network architectures for large vocabulary speech recognition’, CoRR .

Saon, G., Sercu, T., Rennie, S. J. and Kuo, H.-K. J. (2016), ‘The IBM 2016 english
conversational telephone speech recognition system’, CoRR .

Saon, G., Soltau, H., Nahamoo, D. and Picheny, M. (2013), Speaker adaptation of neural
network acoustic models using i-vectors, in ‘IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU)’, pp. 55–59.



References 191

Sehr, A., Habets, E. A. P., Maas, R. and Kellermann, W. (2010), Towards a better un-
derstanding of the effect of reverberation on speech recognition performance, in ‘Proc.
International Workshop on Acoustic Echo and Noise Control (IWAENC)’, Tel Aviv,
Israel.

Sehr, A. and Kellermann, W. (2008), New results for feature-domain reverberation mod-
eling, in ‘Hands-Free Speech Communication and Microphone Arrays (HSCMA)’,
pp. 168–171.

Sehr, A. and Kellermann, W. (2009), Strategies for modeling reverberant speech in the
feature domain, in ‘IEEE International Conference on Acoustics, Speech and Signal
Processing’, pp. 3725–3728.

Sehr, A., Zeller, M. and Kellermann, W. (2006), Distant-talking continuous speech recog-
nition based on a novel reverberation model in the feature domain, in ‘The 7th Annual
Conference of the International Speech Communication Association (Interspeech 2006)’,
pp. 769–772.

Seide, F., Li, G., Chen, X. and Yu, D. (2011), Feature engineering in context-dependent
deep neural networks for conversational speech transcription, in ‘IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU)’, IEEE.

Seltzer, M., Yu, D. and Wang, Y. (2013), An investigation of deep neural networks for noise
robust speech recognition, in ‘IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP)’, IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP).

Sercu, T. and Goel, V. (2016), ‘Advances in very deep convolutional neural networks for
LVCSR’, CoRR .

Shankland, R. S. (1977), ‘Architectural acoustics in america to 1930’, The Journal of the
Acoustical Society of America 61(2).

Sharma, D., Hilkhuysen, G., Gaubitch, N. D., Naylor, P. A., Brookes, M. and Huckvale, M.
(2010), Data driven method for non-intrusive speech intelligibility estimation, in ‘The
18th European Signal Processing Conference’, pp. 1899–1903.

Stan, G.-B., Embrechts, J.-J. and Archambeau, D. (2002), ‘Comparison of different
impulse response measurement techniques’, Journal of the Audio Engineering Society
50(4), 249–262.

Stewart, R. and Sandler, M. (2010), Database of omnidirectional and B-format room
impulse responses, in ‘IEEE International Conference on Acoustics Speech and Signal
Processing (ICASSP)’, pp. 165–168.

Strobel, N., Spors, S. and Rabenstein, R. (2001), ‘Joint audio-video object localization and
tracking’, IEEE Signal Processing Magazine 18(1), 22–31.

Sturim, D. E., Brandstein, M. S. and Silverman, H. F. (1997), Tracking multiple talkers
using microphone-array measurements, in ‘IEEE International Conference on Acoustics,
Speech, and Signal Processing’, Vol. 1, pp. 371–374.



192 References

Swietojanski, P., Ghoshal, A. and Renals, S. (2013), Hybrid acoustic models for distant and
multichannel large vocabulary speech recognition, in ‘IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU)’, pp. 285–290.

Swietojanski, P., Ghoshal, A. and Renals, S. (2014), ‘Convolutional neural networks for
distant speech recognition’, IEEE Signal Processing Letters 21(9), 1120–1124.

Thiele, R. (1953), ‘Richtungsverteilung und zeitfolge der schallrückwürfe in räumen’, Acta
Acustica United with Acustica 3(Supplement 2), 291–302.

Tüske, Z., Golik, P., Nolden, D., Schlüter, R. and Ney, H. (2014), Data augmentation,
feature combination, and multilingual neural networks to improve ASR and KWS perfor-
mance for low-resource languages, in ‘The 15th Annual Conference of the International
Speech Communication Association (Interspeech)’.

Valimaki, V., Parker, J. D., Savioja, L., Smith, J. O. and Abel, J. S. (2012), ‘Fifty years of
artificial reverberation’, IEEE Transactions on Audio, Speech, and Language Processing
20(5), 1421–1448.

Valin, J. M., Michaud, F., Hadjou, B. and Rouat, J. (2004), Localization of simultaneous
moving sound sources for mobile robot using a frequency- domain steered beamformer
approach, in ‘IEEE International Conference on Robotics and Automation’, Vol. 1,
pp. 1033–1038.

Valin, J. M., Michaud, F. and Rouat, J. (2006), Robust 3D localization and tracking of sound
sources using beamforming and particle filtering, in ‘IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings’, Vol. 4.

Vermaak, J. and Blake, A. (2001), Nonlinear filtering for speaker tracking in noisy and
reverberant environments, in ‘IEEE International Conference on Acoustics, Speech, and
Signal Processing’, Vol. 5, pp. 3021–3024.

Veselý, K., Ghoshal, A., Lukáš, B. and Povey, D. (2013), Sequence-discriminative train-
ing of deep neural networks, in ‘The 14th Annual Conference of the International
Speech Communication Association (Interspeech)’, number 8, International Speech
Communication Association, pp. 2345–2349.

Viikki, O. and Laurila, K. (1998), ‘Cepstral domain segmental feature vector normalization
for noise robust speech recognition’, Speech Communication 25(1-3), 133–147.

Wen, J., Gaubitch, N. D., Habets, E., Myatt, T. and Naylor, P. A. (2006), Evaluation of
speech dereverberation algorithms using the MARDY database, in ‘Proc. Intl. Workshop
Acoust. Echo Noise Control (IWAENC)’, Paris, France.

Wölfel, M. and McDonough, J. (2009), Distant Speech Recognition, Wiley.

Xiao, X., Watanabe, S., Erdogan, H., Lu, L., Hershey, J., Seltzer, M. L., Chen, G., Zhang,
Y., Mandel, M. and Yu, D. (2016), Deep beamforming networks for multi-channel
speech recognition, in ‘IEEE International Conference on Acoustics Speech and Signal
Processing (ICASSP)’.

Xiong, F., Goetze, S. and Meyer, B. T. (2014), Estimating room acoustic parameters
for speech recognizer adaptation and combination in reverberant environments, in
‘IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)’,
pp. 5522–5526.



References 193

Yoshioka, T., Karita, S. and Nakatani, T. (2015), Far-field speech recognition using CNN-
DNN-HMM with convolution in time, in ‘IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP)’.

Yoshioka, T. and Nakatani, T. (2012), ‘Generalization of multi-channel linear prediction
methods for blind MIMO impulse response shortening’, IEEE Transactions on Audio,
Speech, and Language Processing 20(10), 2707–2720.

Yoshioka, T., Sehr, A., Delcroix, M., Kinoshita, K., Maas, R., Nakatani, T. and Kellermann,
W. (2012), ‘Making machines understand us in reverberant rooms: Robustness against
reverberation for automatic speech recognition’, IEEE Signal Processing Magazine
29(6), 114–126.

Young, S. (1996), ‘A review of large-vocabulary continuous-speech’, IEEE Signal Process-
ing Magazine 13(5), 45.

Zhang, P., Liu, Y. and Hain, T. (2014), Semi-supervised DNN training in meeting recog-
nition, in ‘IEEE Spoken Language Technology Workshop (SLT)’, South Lake Tahoe,
USA.

Zhang, W., Habets, E. and Naylor, P. A. (2010), On the use of channel shortening in
multichannel acoustic system equalization.

Zhang, W., Khong, A. W. H. and Naylor, P. A. (2009), Acoustic system equalization using
channel shortening techniques for speech dereverberation, in ‘The 17th European Signal
Processing Conference’, pp. 1427–1431.

Zuo, G., Liu, W. and Ruan, X. (2003), Telephone speech recognition using simulated data
from clean database, in ‘IEEE International Conference on Robotics, Intelligent Systems
and Signal Processing’, Vol. 1, pp. 49–53.




	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Research Questions and Objectives
	1.3 Contributions
	1.4 Structure of Thesis

	2 Background
	2.1 Deep Neural Networks as Classifier
	2.2 Speech Recognition and DNN
	2.3 Robustness in Distant Speech Recognition
	2.4 Reverberation Metric and Reverberation Measurement

	3 Motivation
	3.1 Natural Spontaneous Speech Recordings with Rich Information
	3.2 Real Natural Spontaneous Speech Recognition: from Headset Recordings to Distant Recordings
	3.3 Reverberation Modelling for Distant Speech Recognition
	3.4 Signal Aware Reverberation Measurement

	4 The Sheffield Wargame Corpora
	4.1 Data Collection Design and Recording Setup
	4.2 Data Statistics, Annotation and Transcribing
	4.3 Blog Data and Language Model
	4.4 Baseline Systems
	4.5 Summary

	5 Challenges in Real Natural Spontaneous Speech
	5.1 Speech Recognition of Headset Recordings
	5.2 DSR: Factor Analysis with Simulated Data
	5.3 DSR: Factor Analysis with Real Data
	5.4 Summary and Discussion

	6 Reverberation Modelling for Distant Speech Recognition
	6.1 Complex Spectrogram Based Reverberation Modelling
	6.2 The Local Phase and Magnitude Assumptions
	6.3 Experimental Evaluation
	6.4 Summary and Discussion

	7 Reverberation Measurement
	7.1 Motivation
	7.2 Polynomial Reverberation Measurement
	7.3 Phonetic Analysis Inspired Reverberation Measurement
	7.4 Fisher Ratio Based Discrimative Analysis
	7.5 Experiment Results
	7.6 Summary and Discussion

	8 Summary, Discussion and Future Work
	8.1 Distant Speech Recognition of Real Natural Spontaneous Conversations
	8.2 Reverberation Modelling and Measurement
	8.3 Future Work

	References

