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Abstract

This thesis presents a new hybrid active and semi-active control method for vibration

suppression in flexible structures. The method uses a combination of a semi-active

device and an active control actuator situated elsewhere in the structure to suppress

vibrations. The key novelty is to use the hybrid controller to enable the semi-active

device to achieve a performance as close to a fully active device as possible. This is

accomplished by ensuring that the active actuator can assist the semi-active device in the

regions where energy is required. Also, the hybrid active and semi-active controller is

designed to minimise the switching of the semi-active controller. The control framework

used is the immersion and invariance control technique in combination with a sliding

mode control. A two degree-of-freedom system with lightly damped resonances is used

as an example system. Both numerical and experimental results are generated for this

system and then compared as part of a validation study.

The experimental system uses hardware-in-the-loop simulation to simulate the

effect of both the degrees-of-freedom. The results show that the concept is viable both

numerically and experimentally, and improved vibration suppression results can be

obtained for the semi-active device that approaches the performance of an active device.

To illustrate the effectiveness of the proposed hybrid controller, it is implemented to

keep the contact force constant in the pantograph-catenary system of high-speed trains.

A detailed derivation is given after which the simulation results are presented.

Then a method to design a reduced order observer using an invariant manifold

approach is proposed. The main advantage of this approach is that it enables a systematic

design approach, and (unlike most nonlinear observer design methods), it can be

generalised over a larger class of nonlinear systems. The method uses specific mapping



x

functions in a way that minimises the error dynamics close to zero. Another important

aspect is the robustness property which is due to the manifold attractivity: an important

feature when an observer is used in a closed loop control system. The observer design

is validated using both numerical simulations and hardware-in-the-loop testing. The

proposed observer is then compared with a very well known nonlinear observer based on

the off-line solution of the Riccati equation for systems with Lipschitz type nonlinearity.

In all cases, the performance of the proposed observer is shown to be excellent.
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Chapter 1

Introduction

Vibrations in mechanical systems are normally undesirable, because they can cause

wear and tear, can affect the controller performance and in a worst case scenario they

can destroy the complete system. In many applications it is imperative to observe these

vibrations including environmental disturbances and keep them under control all the

time. Much research has been done on vibrations attenuation [1–5]. In the literature

different control techniques, both linear and nonlinear have been developed for this

purpose. Oscillation in any system is considered as vibration. There are two main types

of oscillations; free and forced. There is also a third type called self-excited oscillations

e.g flutter. In the free oscillations there is no external forced involved and eventually,

they die out because of the system damping. In the forced oscillations, the external

force keeps the system oscillating all the time.

In the past, vibrations caused some of the devastating incidents and one of the

most famous is the Tacoma Narrows suspension bridge shown in Figure 1.1. This

bridge was constructed in 1940 and was the longest suspension bridge at that time. A

phenomenon called flutter (or aeroelastic instability) completely destroyed the bridge.

In this phenomenon, the structure starts simple harmonic motion, and the net damping

goes to zero either suddenly or gradually. If the net damping goes to zero suddenly,

then it is called hard flutter otherwise it is soft flutter. The damping caused by the

aerodynamic forces cancels the structure’s positive damping, which makes the net

damping zero, so any further decrease in the damping can lead to structural damage.



2 Introduction

Fig. 1.1 Tacoma narrows suspension bridge 1

1.1 Vibration in Civil Structures

Civil structures include bridges, buildings, dams and towers. The main sources of

vibrations for these structures are earthquakes, wind, ground vibration coming from

machines, humans and vehicles. It is unavoidable to keep the structure isolated com-

pletely from these vibrations. However, for the safety of the structures and the people

working in or around them, the vibrations need to be limited within a certain range to

avoid permanent damage. As buildings have become taller over the years, the vibrations

induced by the wind have become more of a problem.

For bridges, wind also becomes the most important effect as the bridges become

longer. Another issue is the ground vibration caused by the humans and the vehicles and

for that very reason when a troop is crossing a bridge they have to break the rhythm of

their steps, otherwise it can excite the structure at its resonant frequency which can lead

to significant vibrations. Similarly, if there is a gym on the ground floor of a building,

when in heavy use, these activities can also lead to noticeable vibration in the structure.

In the early days, researchers have focused mainly on using passive damping

techniques to deal with vibration in civil structures. They are still used, but provide less

vibration reduction than either active or semi-active devices. An advantage of passive

dampers is that they do not require external power to operate. Different passive dampers
1http://seattletimes.com/html/localnews/2003787138_narrowstimeline13m.html

http://seattletimes.com/html/localnews/2003787138_narrowstimeline13m.html
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are utilised in the construction of earthquake resistant structures in U.S, Japan, New

Zealand, Italy, China, Canada and Colombia. The University of Southern California

teaching hospital is one of the buildings that survived in 1994 earthquake out of 10

other hospitals because of base isolation is shown in Figure 1.2.

Fig. 1.2 Base isolation in USC teaching hospital 2

There are numerous other examples of passive damping application like the use of

metallic yield dampers in the Ski-Dome in Chiba, Japan, viscoelastic dampers in the

building of Columbia Seafirst, train stations in Taipei Chien-Tan Taiwan, the Amolanas

Bridge, Chile [6]. Figure 1.3 shows the base isolation implementation in the San Diego

County Emergency Communications Center.

There was a hesitation in using the active control techniques with active actuators

because there is a possibility that system can go to unstable regions with the active

actuator. So instead of moving to the active actuators, the trend shifted to the semi-

active devices, the reason being that both passive and semi-active devices are fail-safe.

However, with the advancement in the active control techniques and especially in the

area of nonlinear control, active actuators are now used in the civil structures. In some

cases, the active actuators have been combined with the passive device and in other

2http://pubs.usgs.gov/fs/2003/fs068-03/fs068-03.pdf

http://pubs.usgs.gov/fs/2003/fs068-03/fs068-03.pdf
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situations, the semi-active devices are combined with the passive devices for better

performance.

Fig. 1.3 Base isolation in San Diego County Emergency Communications Center 3

The problem with passive damping devices is that they cannot adapt to circum-

stances. In order to tackle this issue semi-active devices have replaced the passive

devices in many applications. The main advantage of the semi-active device is the

ability to vary the damping. There are mainly two types of semi-active dampers,

electro-rheological (ER) and magneto-rheological (MR). In MR dampers the damping

is modified by varying the magnetic field around the magneto-rheological fluid, whereas

in ER dampers the damping changes by varying the electric field. MR dampers can

provide more damping as compared to ER dampers but the response time of ER dampers

is faster than MR dampers. Another advantage of the semi-active devices is that they

need low actuation power, but the disadvantage is that they cannot inject energy into the

system, they can only dissipate energy from the system. The output power generated

by semi-active devices is also limited as compared to active actuators. Some of the

examples of the MR dampers used in civil engineering structures are the National

3http://www.sdsheriff.net/ccweb/building.htm

http://www.sdsheriff.net/ccweb/building.htm
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Museum of Emerging Science and Innovation, Tokyo, Dongting Lake Bridge, Hunan,

China and Binzhou Yellow River Bridge, China.

The third type of device used recently in many structures for vibration damping is

that of active actuators. Some examples of this include the Kyobashi Center, and the

Research Institute No. 21 Sendagaya INTES in Tokyo, Japan, the Applause Tower in

Osaka, Japan, Porte Kanazawa, Kanazawa, Japan and Nanjing Tower, Nanjing, China.

Active actuators can inject energy into the system and can also dissipate energy out of

the system. The main issue that needs addressing while using active actuators is the

stability of the closed loop system because energy is also going into the system. The

other problems usually faced are the actuator size and the actuation power required by

the actuators.

1.2 Vibration in Aerospace Industry

Vibrations are caused by various sources in an aeroplane. Some of them originate from

the structure itself, and some are due to the external forces on the structure. Again these

vibrations need to be controlled because of the risk of structural damage and also to

avoid discomfort to the aircrew and passengers. One of the primary sources of vibration

in aeroplanes is the engine. Due to unbalanced forces in the engine, the vibrations can

be transmitted to the whole structure through the mounting mechanism. Hence much

work has been done on the mounting mechanism to isolate the engine from the rest of

the structure, to minimise the vibrations.

To reduce the amplitude of the transmitted vibration from the engine, the natural

frequency of mounting mechanism should be lower than the fundamental frequency

of the disturbance force that is causing the vibrations in the engine. The problem

is that the frequency of the disturbance force is usually very low. It means that the

mounting mechanism should have further lower natural frequency and for that purpose,

the mounting mechanism needs to be flexible, which is practically not possible in

aeroplanes [7]. So these vibrations are inevitable and cannot be eliminated. Hence

advanced control techniques are required to control these vibrations.
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There are also other sources of vibration in an aeroplane. One of them is the regular

air flow, however, these vibrations are considered as normal vibrations or background

noise. Vibrations resulting from turbulent flow are more prominent but again regarded as

normal vibrations. There is another phenomenon called flutter or aeroelastic instability,

which as explained earlier can cause very damaging vibrations in the structure. During

the design phase, extensive testing is done to make the structure flutter free within the

aeroelastic stability region. Another phenomenon very close to flutter is limit cycle

oscillation (LCO), but the difference is the LCO is self-excited and self-sustaining

oscillation with limited amplitude. Mainly LCO is caused by the free play within the

flight control surfaces. The first ever plane crashed due to flutter was the Handley Page

O/400 bomber in 1916 in the UK.

(a) AS350 helicopter 4 (b) Alouette III helicopter 5

Fig. 1.4 Vibration effects in helicopters

Vibrations in a helicopter are more crucial as compared to the aeroplane. The current

level of vibrations in helicopters is between 0.05-0.1 g, which is much higher than the

vibration levels in aeroplanes i.e. 0.01 g. These vibrations have adverse effects on

the structure, control panel, instruments, etc. and more importantly the aircrew and

passengers’ health and safety. They have long lasting effects on the aircrew health both

physically and mentally. The helicopter has rotating parts which are the main sources

of vibration. The vibrations that come from the main rotor transmit to the structure

components and the aircrew through seats. The tail rotor has the same effect on the

4https://www.youtube.com/watch?v=0FeXjhUEXlc
5http://www.aviafora.com/forums/forum/helicopter-fora/gazelles

https://www.youtube.com/watch?v=0FeXjhUEXlc
http://www.aviafora.com/forums/forum/helicopter-fora/gazelles
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structure. The unbalance, flexibility and misalignment in the rotating parts generate the

vibrations.

Aerodynamics can also make one blade work harder than the other or uneven mass

distribution in the blades can also lead to vibration. The vibration coming from the

gears can also have severe effects on the structure. The AS350 helicopter suffered

from excessive vibrations in the air and those vibrations developed into destructive

ground resonance after the aircraft touched the ground. The Alouette-III helicopter also

suffered from ground resonance. Both the incidents are shown in Figure 1.4, which

depicts that it is critical to control all these vibrations.

Vibrations in spaceships or rockets are serious concern as well. They can make

the avionics, instruments, etc. malfunction and again can have a severe effect on the

human body. The level of vibrations in a spaceship are much higher than both in the

helicopter and aeroplane. In the first stage, the vibrations that are produced by the

thrust force causing rhythmic oscillations in the form of waves. In addition to effect the

performance of the avionics, they can shut down the main engine too.

1.3 Vibration in Automobiles

In the automobile industry vibration control has always been an important topic and

lots of literature is available regarding the effects and control of vibrations. Vibrations

coming from any source in the automobile affect the whole structure as well as on

the passengers. The main sources of vibrations are the engine, or electric motors in

case of hybrid electric vehicles, drive-train and road roughness/bumps. Regarding the

vehicle, these vibrations can affect the performance of the engine or electric motor,

fuel consumption and wear and tear in the drive train. Another vital impact of these

vibrations is on the ride comfort for the driver and passengers.

In a vehicle, vibrations are transmitted to the human body through the seat. Vi-

brations have very adverse effects on the human body both physically and mentally

depending on the nature and duration of the vibrations. A human body exposed to

vibrations can lead to neck and back pain, drowsiness, fatigue, heart rate variability,
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an effect on vision, and tension in muscles. Mental alertness is a very crucial factor

for the drivers, especially during long drives. Generally, in automobiles, the vibrations

transmitted to the human body through seat are below 60 Hz. The human body resonates

at a frequency below 15 Hz. Exposure to vibrations between 4-10 Hz can cause pain in

the chest, vibrations between 8-12 Hz can cause pain in the back, vibrations between

10-20 Hz can cause a headache, effect on vision, discomfort in the bladder and intestines

[8].

1.4 Vibration in Robotics

With the advancement in the field of robotics, vibration is the key concern. In some

applications like surgery, car manufacturing and PCB soldering, precision is crucial.

A small vibration can lead to a huge disaster and can cost lives. To achieve high

performance and in breaking new ground, structures are becoming more lightweight

and flexible, but at the cost of vibration. So again vibration control techniques play a

paramount role in achieving these goals. In the field of robotics mostly active actuators

are used for the control purpose in contrast to the civil or automobile industry. Vibration

in industrial machines like pumps, motors, gears, robotics arms, rolling mills etc. are

also of great concern. Some application may have less concern about vibration than

others, but the concern is always there. Figure 1.5 shows the damage done by the

vibration in industrial machines.

(a) Damaged motor shaft (b) Destroyed coupling

Fig. 1.5 Torsional vibration effects 6

6http://nisee.berkeley.edu/lessons/kelly.html

http://nisee.berkeley.edu/lessons/kelly.html
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1.5 Motivation

In today’s world structures in the fields of civil, aeronautical and mechanical engineer-

ing are becoming more flexible because of the design constraints and also in order to

achieve better performance, but flexibility correlates with vibrations, which can have

catastrophic effects on a structure. Active control devices (actuators) provide the best so-

lutions, and depending on the context; there is a broad range of both linear and nonlinear

design approaches that can be applied [9–14]. However, there are often restrictions on

using active actuators, such as size or weight, power consumption, mechanical design

constraints, robustness issues, and lack of passive fail-safety. An alternative is to use a

semi-active device that is smaller in size with less power consumption, and often has

a passive fail-safety. However, it is not possible to get the same performance from a

semi-active device because they can only operate by dissipating energy.

Hybrid control has frequently been used in the literature to describe the combination

of two control techniques or devices. For example, active and passive control [15, 16],

or semi-active and passive control [17, 18]. However, to the authors’ knowledge, a

hybrid combination of active and semi-active control has not been previously studied

in detail in this context. The novelty presented in this thesis is to show how an active

actuator, placed at a different location in the structure (e.g., at the base of the structure)

can assist the semi-active device at the remote position to achieve the performance as

close to that of a fully active actuator as possible. The clipping phenomenon, typical

of semi-active control, is reduced to a large extent by the proposed hybrid controller.

The immersion and invariance methodology along with sliding mode control is used to

create the hybrid controller. The result is that as the semi-active controller switches off

in the hybrid controller, the active actuator injects the required energy into the system.

A two degree of freedom system with cubic stiffness is used as an example system.

Both simulation and experiment data are presented to demonstrate the usefulness of the

proposed idea.

After the controller design and validation, there is another very active research

area that has been explored in this thesis namely nonlinear observers. One of the
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major issues with nonlinear observers is that most of them do not possess a structured

design methodology and if they do then some of the conditions are very hard to meet.

Secondly, most of them are designed for a specific class of systems. A method to design

a reduced order observer using an invariant manifold approach is explored. The main

advantages of this method are that it enables a systematic design approach, and (unlike

most nonlinear observer design methods), it can be generalized over a larger class of

nonlinear systems.

The theory for observers developed by Astolfi et al. [19] has been implemented

on many systems, such as ball and beam system, range estimation in a vision system

and magnetic levitation system. The present contribution builds upon these previous

studies by demonstrating application of the observer to a real mechanical system both

in open loop and closed loop, so that the robustness to parameter variation, external

disturbance and measurement noise can be explored for the first time. Therefore, the

idea presented by Astolfi et al. [19] is further extended to systems with nonlinear

stiffness The method uses specific mapping functions in a way that minimises the error

dynamics close to zero. Another important aspect is the robustness property which is

due to the manifold attractivity: an important feature when an observer is used in a

closed loop control system. The observer design is validated using numerical simulation.

Then experimental validation is carried out using hardware-in-the-loop testing.

1.6 Aims and Objectives

The overall objective of the thesis is

• To achieve fully active type control performance using hybrid active and semi-

active control.

The additional objectives are

• To understand how an active actuator can assist the semi-active device to achieve

the desired performance.
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• To design a nonlinear robust controller for both active actuator and semi-active

device.

• To implement the proposed hybrid active and semi-active controller on a test rig

using hardware-in-the-loop (HIL) configuration.

• To design a nonlinear observer for the system under consideration.

• To implement the proposed observer on a test rig using hardware-in-the-loop

(HIL) configuration both in the open and closed-loop.

• To consider practical application of the proposed controller in different real-time

applications.

1.7 Thesis Outline

• In Chapter 2, a detailed literature review is presented. First the passive damping

devices used for the vibration suppression and vibration isolation are discussed.

Then the semi-active devices are discussed and MR damper is described in detail.

A comparison between MR and ER dampers is presented. Active control devices

are then discussed briefly. After that the control techniques that has been used

in the literature for the MR damper and for the active actuators are discussed

in detail. Finally the two control techniques i.e. the sliding mode control and

immersion & invariance control are explained in detail.

• In Chapter 3, the hybrid active and semi-active controller design methodology is

discussed in detail. An Immersion and Invariance (I & I) methodology is used

to design the controller for the active actuator and sliding mode control (SMC)

is used to design the controller for the semi-active device. A 2-DOF nonlinear

spring damper system is used to validate the designed controller.

• In Chapter 4, the test rig is introduced for the hardware-in-the-loop testing. The

hybrid active & semi-active controller that has been presented in Chapter 3,
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is validated using HIL testing. The results from HIL testing has shown good

results in achieving the control objectives. The switching time of the semi-active

controller has been reduced to a large extent by the hybrid active & semi-active

controller because the active actuator injects the desired energy as the semi-

active controller switches off, following which the semi-active device returns to

the dissipative region. The proposed control technique is then compared with

semi-active and hybrid active & passive controllers.

• In Chapter 5, the hybrid active and semi-active controller applicability is discussed.

In this Chapter, an application of the hybrid controller is demonstrated. The hybrid

control methodology, is implemented on pantograph-catenary system of high

speed trains. The control objective is to keep a constant contact force between the

pantograph and catenary. The proposed controller has shown promising results

both under normal conditions and in the presence of the band-limited white noise,

which demonstrates the robustness of the controller. Then the robustness was also

checked against variable train speed with different slope variations and the results

are satisfactory.

• In Chapter 6, a nonlinear reduced order observer is designed for the same system

using the notion of invariant manifold theory. The designed observer is tested in

simulation. After satisfactory results, it is tested on the rig both in the open and

closed loop with the proposed hybrid active and semi-active controller. Finally,

the proposed observer is compared with a benchmark observer based on Lipschitz

type nonlinearity.

• In Chapter 7, a summary of the thesis, conclusion, overview of the original

contribution and future work is presented.



Chapter 2

Literature Review

In Chapter 1 the effects of vibrations in different fields were discussed and some of

the methods to damp the vibration were introduced. In this chapter, a literature review

is presented, related to the passive damping devices, semi-active devices and active

actuators used for the vibration suppression. After that the control techniques that have

been used in the literature both for the MR damper and the active actuators are discussed

in detail.

In general, systems for which mathematical modelling is possible, are modelled as

linear or nonlinear systems. The primary difference between linear and nonlinear system

is that the linear systems follow the superposition and homogeneity principles whereas

that is not the case in nonlinear systems. Linear systems are easier to control, and the

control laws are well established in linear theory [20, 21]. Mathematical modelling is

performed to check the behaviour of the system and to verify the control algorithms

designed for it in the simulation. To get the same results in practice, the mathematical

model should be close enough to the actual system.

All real systems are nonlinear, or in other words, it will be fair to say that in reality,

nothing is linear. So the question arises that why the systems are modelled as linear?

The answer to this issue is for some systems the linear approximation of the nonlinear

system works well, or the domain of work is restricted in such a way that nonlinear

system in that field behaves as linear. Another question that arises from here is why

all the systems are not modelled as nonlinear? The answer to this question is because
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the nonlinear systems are not easy to model and control. Nonlinear control is an open

research area [22–25] and a lot of investigation is going on in this field. In both linear

and nonlinear systems, there are mainly two types of uncertainties, i.e., structural and

unstructural uncertainties. The structural uncertainties come from errors in the system

parameter estimations or perturbation, and the unstructural uncertainties come from the

un-modeled system dynamics [26]. To deal with these uncertainties systems require a

robust controller design.

In nonlinear systems, the nonlinearity comes from the plant or the controller. In

either case, it is critical to deal with the nonlinearity. Most of linear control theory

focuses on a small range of operation, where linear control techniques can be imple-

mented. However, if the range of operation is increased then the linear control technique

performance starts deteriorating [27]. In these cases, a need for a nonlinear controller

comes in.

Mainly there are two types of nonlinearities; smooth and non-smooth. Smooth

nonlinearities are easy to deal with; however, that is not the case in non-smooth nonlin-

earities. Some of the smooth nonlinear problems can be modified to linear problems

using feedback control. Smooth nonlinearities include continuous nonlinear functions,

products, power law functions, etc. Non-smooth nonlinearities are difficult to handle

because they do not have globally definable inverse. Non-smooth nonlinearities include

backlash, friction, actuator saturation limits or slew rate limit [27].

2.1 Vibration Suppression Using Passive Devices

One of the earliest solutions for vibration suppression was passive damping. Passive

dampers were used both for vibration suppression and base isolation. It is vital to

distinguish between the vibration suppression and vibration isolation. In vibration

suppression, the response of the system near the resonance is damped whereas in

vibration isolation the vibrating part of the system is isolated from the rest of the

system.
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Some of the advantages of passive damping are; it is fail-safe, no external power is

required, and there is no need to design a control algorithm. However, the downside is

that it is not adaptable to the variations either in the system parameters or the external

circumstances. One of the examples of passive damping is the linear Tuned Mass

Damper (TMD) as shown in Figure 2.1.

TMD

structure

M
TMD

C
TMD

K
TMD

M

C K

Fig. 2.1 Tuned Mass Damper, where M, K, C represents the mass, stiffness, damping coefficient
of the structure respectively, MT MD, KT MD, CT MD represents the mass, stiffness, damping
coefficient of the TMD respectively

A linear TMD consist of a damper, a linear spring and a mass. It is attached to a

primary structure, in which the vibrations need to be suppressed near resonant frequency.

A TMD can be tuned to a single frequency i.e. the resonant frequency of the structure,

to dissipate the energy. In a TMD the majority of the amplitude reduction is caused by

splitting the resonant peak.

The TMD was introduced in 1883 by Watts [28]. In 1909, Frahm patented the idea

of TMD [29]. Frahm implmented this idea to reduce the rolling motion of ships. In 1928

Ormondroyd and Den Hartog made the first analytical contribution on TMD [30]. For

harmonic loading Den Hartog presented an optimal design for TMD [31]. TMDs work

well for regular excitation or when the structure fundamental frequency is dominant

during vibration, but the performance under irregular vibration or during high ground

motion when the other modes are significant in vibration is not satisfactory. Figure 2.2

shows the application of a nested pendulum TMD design for Park Tower located in
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Chicago, USA. The nested design has been adapted to overcome the insufficient height

available for simple pendulum TMDs [32].

Fig. 2.2 Nested pendulum Tuned Mass Damper design for Park Tower [32]

The Tuned Liquid Column Damper (TLCD) is another passive damping device used

in civil structures to damp the vibrations caused by wind and earthquake. Its working

principle is same as of TMD. In TLCD instead of using a large mass, water in a storage

container is used as a mass. TLCDs are more economical, easily implementable and

need less maintenance as compared to TMDs. Figure 2.3 shows the cross sectional view

of Wall Center located in Vancouver, BC, with TLCD [32].

Figure 2.4 shows another example of passive damping as vibration isolation [33], in

which the main frame is isolated from the base foundation through passive damping

device. These isolators are optimized to reduce the level of vibration in the main

structure up to certain acceptable level [34].

Passive damping devices have also been used in low speed trains or trams where

the maximum speed reaches to 60-70 km/h, to keep the contact force constant between

the pantograph and catenary. The current from the catenary system flows to the train
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Fig. 2.3 Cross-sectional view of Wall Center with TLCD in Vancouver [32]

Frame

Isolators

Foundation

Fig. 2.4 Base isolation, where the isolators are used to isolate foundation from the frame

transformer through pantograph. It is very important to keep the contact force constant

between pantograph and catenary. Vibrations can cause loss of contact, arcing, abrasion
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and deterioration of quality of current collection. For high speed trains it is not possible

for the passive dampers to keep the contact force constant, so active pantograph-catenary

systems are proposed to deal with this issue [35–37]. In this thesis to overcome some of

the problems with the active pantograph-catenary system, a hybrid method is proposed

to keep the contact force constant between pantograph and catenary system. Figure 2.5

shows the pantograph-catenary system of a tram.

Fig. 2.5 Pantograph-catenary system showing the pantograph arm, overhead line, contact strips
and horns 7

Another very important passive device is an inerter. The idea of an inerter came from

the concept of the force-voltage analogies between mechanical and electrical systems.

The analogues of the inductor, resistor and capacitor of electrical systems are the spring,

damper and mass of mechanical systems. Mass is a one terminal element for which

the displacement, velocity and acceleration are measured relative to the ground, unlike

others. The electrical systems with ungrounded capacitors do not have a direct analogy

to mechanical systems. The inerter was proposed as an ideal mechanical two-terminal

element to substitute or replace the mass. Malcolm Smith proposed the idea of inerter

in 2002 [38]. The inerter was introduced with the property that the applied force at the
7http://www.railway-technical.com/etracp.shtml

http://www.railway-technical.com/etracp.shtml
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terminals is directly proportional to the relative acceleration between them. The idea

was illustrated with a rack and pinion as shown in Figure 2.6.

terminal 2  terminal 1gear  flywheel

 pinions
 rack

Fig. 2.6 Schematics of a mechanical model of an inerter [38]

The idea was to store the kinetic energy using the flywheel. A large amount of

energy could be captured and released with a very small mass. In Figure 2.6 one

terminal of the inerter is connected to the housing and the second terminal is on the

end of the rack that rotates the flywheel through the gear. The gear is used to rotate the

flywheel at higher speed. Figure 2.7 shows the ballscrew inerter made at the Cambridge

University by Smith in 2003 with a mass of 1 kg and adjustable inertance between

60-180 kg.

(a) (b)

Fig. 2.7 Ballscrew inerter made at Cambridge University 8, (a) with flywheel, (b) without
flywheel

8http://www.icms.org.uk/downloads/Function/Smith.pdf

http://www.icms.org.uk/downloads/Function/Smith.pdf
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Actually this idea of the inerter by Smith was underlined in 1997 and was used with

a secret name of the J-Damper by Mclaren as a suspension device in Formula 1 race

for the first time in 2005 [39]. Its an active research area and some of the work done

on different inerter designs and their applications in car suspension system, vibration

control of civil structures, train suspensions are presented in [40–45]. In the next section,

different semi-active devices used for vibration suppression are discussed in detail.

2.2 Vibration Suppression Using Semi-active Devices

Semi-active devices have the ability to dynamically vary their properties with a small

amount of external power. A semi-active device like the passive device is fail-safe, but

needs a small amount of external power to change properties, via a control algorithm.

Semi-active devices without any doubt perform much better than passive devices, but

the downside of semi-active devices is the passivity constraint. The passivity constraint

means that they can only dissipate energy from the system. The idea of semi-active

damping was first introduced by Karnopp and Crosby in 1974 [46], to use it for vibration

isolation in the automobile industry. The method proposed was to change the damping

force by controlling the valve of a fluid damper. Unlike passive damping, semi-active

devices also require a control law as the damping force is adaptable. In this section,

different types of semi-active devices that have been used for vibration control are

presented.

Semi-active stiffness dampers (SASD) have a cylinder filled with viscous fluid (oil),

a piston and a controlled valve. The valve is controlled by a small motor to change the

damping coefficient by changing the rate of fluid flow [47]. Another version of such

dampers is resetting semi-active stiffness dampers (RSASD), in which the position of

the piston is periodically reset to add stiffness (valve closed) or to dissipate the absorbed

energy (valve open) [48]. One more version is the switched semi-active stiffness damper

(SSASD). The SSASD has the same way of operation as RSASD, but in this case, an

open valve means there is no damping, and it behaves like SASD when the valve is

closed [49].
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The working principle of a semi-active tuned mass damper is similar to a passive

tuned mass damper as discussed in section 2.1 with one modification i.e. the passive

damper is replaced with a variable damping device as shown in Figure 2.8.

SATMD

structure

M
TMD

C
TMD

K
TMD

M

C K

Fig. 2.8 Semi-active Tuned Mass Damper, where M, K, C represents the mass, stiffness,
damping coefficient of the structure respectively, MT MD, KT MD, CT MD represents the mass,
stiffness, damping coefficient of the semi-active TMD respectively

The semi-active tuned liquid column damper is another semi-active device in which

the damping force is controlled by the flow of liquid through an orifice. The tuning

frequency, can be easily controlled by changing the length of the liquid column [50] as

shown in Figure 2.9.

TLCD

structure

M

C K

Fig. 2.9 Semi-active Tuned Liquid Column Damper, where M, K, C represents the mass,
stiffness, damping coefficient of the structure respectively
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Piezoelectric dampers are also used as semi-active devices. As evident by the name

they use piezoelectric materials which create stress or strain based on the applied current.

When the piezoelectric material is strained, mechanical energy is converted to electrical

energy. Then the electrical energy can be dissipated as a heat energy by shunting an

appropriate circuit to the piezoelectric material [51] as shown in Figure 2.10.

      Vibration

(Mechanical energy)

Voltage and current

 (Electrical energy)

  Piezoelectric material

  (Piezoelectric effect)

Circuit

Fig. 2.10 Schematic of a piezoelectric material [51]

The variable orifice damper comprises of a viscous fluid damper with a by-pass

pipe that has a variable orifice and a controlled valve, which controls the damping. The

by-pass tube controls the flow of the fluid between the chambers of the piston through

the valve. The damping is at its lowest value when the valve is completely open and is

at its highest value when the valve is completely closed. The idea of variable orifice

damper was first proposed in 1990 by Feng and Shinozuka [52]. Figure 2.11 shows the

schematic representation of a variable orifice damper.

load

control valve

Fig. 2.11 Variable orifice damper with a controlled valve
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Among all these semi-active devices, the two most popular and widely used semi-

active devices are rheological dampers. There are two types of rheological dampers

based on the types of the fluid, i.e., magneto-rheological (MR) dampers and electro-

rheological (ER) dampers. MR fluids have iron particles suspended in a carrier fluid

like mineral/synthetic oil, water, etc. ER fluids, on the other hand, have non-conducting

particles in an electrically insulating fluid. The damping is varied by changing the

viscosity of the fluid, while the viscosity of the fluid is modified by applying either the

magnetic or electric fields.

Among the two, MR dampers are widely used in different fields for vibration

suppression. The reasons are that [53, 54]

• The MR damper is easy to control because the rheological equilibrium can be

achieved in milliseconds.

• The MR fluids are more robust to changes in the temperature.

• The MR fluids have a higher yielding stress as compared to ER fluids.

• The power requirement of MR damper is also less than ER dampers.

• The cost of production of MR damper is lower because MR fluid in not sensitive

to contaminants.

The history of MR and ER fluids can be traced back to 1940. The first discovery

and initial development of MR fluid was proposed by Jacob Rabinow in 1940 [55, 56].

Rabinow patented his MR fluid discovery in 1947 [57]. The fluid used in clutches today

is similar to that of MR fluid made by Rabinow. From 1950 to early 1960 the MR fluid

was considered to be the most focused research interest.

In late 1960’s, the concentration of research moved from MR fluids to ER fluids.

Most of the universities and companies were seeking to accomplish research on ER

fluids by 1980’s. Finally, it was concluded that ER fluids cannot meet the required

yield strength [58]. It was considered quite low for the practical implementations. The

revival of MR fluid and its applications began in the early 1990’s [59], which offered the

required yield strength along with the ability to function in low and high temperatures.
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It did not require high voltages for the magnetic field. The electromagnets in the MR

fluid devices could be directly powered by low voltages power supplies or batteries.

Lord Corporation did a lot of research on the MR fluid and brought it to the

commercial market. Figure 2.12 shows the demonstration of the operation of MR

fluid. Lord Corporation developed large MR dampers for civil structures, after the MR

dampers had produced incredible results in the auto industry.

Fig. 2.12 Demonstration of the operation of MR fluid. On the right, the magnetic field is off. On
the left, the magnetic field is generated between the two steel prongs of MR probe by energizing
the electromagnet [58]

The MR damper is a nonlinear device. Its force-velocity curve shows a hysteresis

behaviour, which leads to difficulty in the mathematical modelling of the device and

can also cause problems in the control. Figure 2.13 shows the force-velocity behaviour

of the Lord Corporation damper.

Both MR and ER fluids can operate in three different modes i.e. flow mode, shear

mode and squeeze mode as shown in Figure 2.14. The flow mode is the first most

fundamental configuration of small fluid devices. In the flow mode, the magnetic poles

or the electrode plates are fixed. The fluid is compelled to flow between two fixes

poles/electrodes. The implementation of the device can be accommodated through

control of an electric/magnetic field, which is vertical to the flow direction. The applied

field acts as a flow control valve. Many applications for instance damping devices,

actuators and prosthesis devices use this type of configuration extensively [10,25]. In

the shear mode, the magnetic poles or the electrode plates move in parallel to one
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Fig. 2.13 Lord Corporation MR damper force-velocity curve 9

another. The fluid is placed between these moving poles. The shear mode is used when

the required damping force is small like in clutches and brakes. In the squeeze mode,

the magnetic poles or the electrode plates move towards each other. This mode is not

used very often.

The MR dampers are classified into two categories in terms of modelling; parametric

models and non-parametric models. Parametric modelling uses the analytical tools

such as the mathematical relation of friction and viscosity to describe the dynamic

behaviour of MR damper. In non-parametric modelling instead of mathematical tools,

soft computing methodologies such as fuzzy logic or neural networks are used. The

model is trained on the experimental data. In the next section, the active devices used

for vibration control are discussed briefly.

2.3 Vibration Suppression Using Active Devices

Active actuators have been used extensively in different fields for vibration suppression.

In the civil engineering field, active control was first implemented in 1993 in Tokyo on

Kyobashi Seiwa Building [60]. Both the actuators were placed on the top of 10 storey

building. One actuator that was put at the centre of gravity was used to control the

fundamental mode and the second one was placed at the edge of the building to control

9http://www.lordmrstore.com/lord-mr-products/rd-8040-1-mr-damper-short-stroke

http://www.lordmrstore.com/lord-mr-products/rd-8040-1-mr-damper-short-stroke
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Fig. 2.14 MR/ER damper modes, (a) flow mode, (b) shear mode, (c) squeeze mode

the torsional vibration. Later on, active actuators were used in a lot of structures for

vibration suppression.

Active tendon control is one of the most widely used active vibration suppression

technique for large civil structures. A tendon connects the two corners of the ground

floor to the two corners of the first floor. The tendon is already part of the structure, and

there is no need of any modification in the structure. The actuator in the ground floor

can pull the tendon to oppose the motion in the case of earthquake [61]. The actuators

used in this type of control are hydraulic actuators as they can provide a very significant

amount of force. The disadvantages are; the size of actuator, power consumption,

power cutoff during the seismic vibration and instability. The active tendon control

configuration is shown in Figure 2.15.
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actuator

displacement
     sensor

tendons

Fig. 2.15 Active tendon control configuration showing the actuator with a feedback loop at the
base with tendons

Another commonly used technique in active vibration suppression of civil structures

is active mass damper (AMD). In this method, an active actuator is placed on the top of

the structure. During the vibration, it opposes the vibration to maintain the centre of

mass of the structures at the equilibrium. This type of control is useful against wind

disturbance but for high seismic waves, this method is not that effective as compared to

active tendon control because the vibrations originate from the ground, and the actuator

is located on the top of the building. The actuators used in AMD are usually hydraulic,

or servo motors. The active control implemented on Kyobashi Seiwa Building in Tokyo

for vibration suppression is based on AMD technique. In the next section, the control

techniques used in the literature for the semi-active devices and the active actuators for

vibration control are discussed.



28 Literature Review

2.4 Control Methodologies

Skyhook control is mostly used to design the controller for semi-active dampers. In

1974 Karnopp et al. proposed a skyhook controller for the MR damper to be used in the

vehicle suspension system [46]. The skyhook configuration is shown in Figure 2.16.

In skyhook control, the damper is considered to be connected to a imaginary inertial

reference point. Now this configuration is not possible in practice and is fictional. It

was shown by Karnopp et al. that the performance of the vehicle suspension has been

improved as compared to the passive system for a single DOF system.

m

b

xo

k

x

Inertial Reference

Fig. 2.16 Skyhook control configuration presented by Karnopp et al. in [46]

The interpretation of the skyhook control for the quarter car is explained in [62]

and is shown in Figure 2.17. It requires two measurement signals; first one is the

acceleration of the sprung mass ÿ1 and second one is the relative displacement between

sprung and unsprung masses y12. The skyhook control signal is then given by

Fsa =


Gẏ1 ẏ1ẏ12 > 0

0 otherwise
(2.1)
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where ẏ1 is the velocity of the sprung mass, ẏ12 is the relative velocity between sprung

and unsprung masses and G is the gain. Later on, much research has been done to

improve the performance of the skyhook control [63–68].

M

m

y1

y2

Integration

Derivative

Skyhook

tire

road

spring

damper

sprung mass

    velocity

relative velocityy12

y1

Fig. 2.17 Two sensor based skyhook control configuration [62]

Clipped optimal control has also been proposed for the MR damper with acceleration

feedback [69]. The idea behind proposing this control technique was that acceleration

feedback can easily be attained from structures during seismic vibration as compared

to other techniques that require full state feedback i.e displacement or velocity, which

is difficult to achieve especially when the foundation of the structure is moving with

the ground. Accelerometers can easily obtain acceleration at arbitrary locations in the

structure. In this technique, an optimal linear controller is designed to calculate the

desired forces vector based on the feedback from the structure.

It is not always possible to generate the desired force because of the passivity

constraint. When the optimal desired force and the actual force generated by the MR
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damper are the same, then the controlled signal to the MR damper, i.e., either current

or voltage remains constant at the same level. If the two forces have the same sign but

the actual MR damper force is less than the desired optimal force than the controlled

signal is increased to match the desired and the actual force. In all other scenarios, the

controlled signal is set to zero.

In [70], a comparison is made between different control techniques which include

a Lyapunov controller, a decentralised bang-bang controller, a homogenous friction

controller, a clipped optimal controller for an MR damper. A six-story building model

with four MR dampers is used to make a comparison. All the results are shown in

the simulation. Two MR dampers are placed rigidly between the ground and the first

floor, and two MR dampers are positioned rigidly between first and second floor. The

Lyapunov controller, homogenous friction controller and clipped optimal controller

have shown a better performance in different scenarios.

A bang-bang controller has also been designed for a MR damper [69]. A bang-bang

controller is also called an on-off controller because it switched between two states.

When the relative displacement and relative velocity of the semi-active device have the

same sign, then the bang-bang controller provides a maximum value of control force

and acts as a brake to dissipate energy. When the relative displacement and relative

velocity are in opposite direction, then the controller provides a minimum value of the

control signal, so that the device can move quickly with minimum friction. The control

algorithm can be defined as

ut =


umax sign(x) = sign(ẋ)

umin sign(x) =−sign(ẋ)
(2.2)

where umax and umin are the maximum and minimum control signals, x and ẋ represents

the relative displacement and relative velocity across the semi-active device.

Fuzzy logic control comes under the umbrella of computationally oriented control

techniques. It does not require an accurate model of the system, unlike other analytically
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oriented control methods. The controller design is divided into three main steps, which

includes fuzzification of the control inputs, implementing the rule of the controller and

lastly defuzzification of the output [71].

In the first phase, a member function is defined for each input. There are different

shapes of the membership functions and they are chosen depending upon the problem

under consideration. In the second step, before establishing the rules, first the member-

ship functions for the outputs need to defines as well. Later, a table can be computed

based on the combination of inputs to define an output. In the last step, the fuzzy output

generated in the second phase is de-fuzzified into a crisp output. There are different

methods available for defuzzification, and some of them include the weighted average

method, mean-max membership method, etc.

In 1960, Kalman presented the linear quadratic feedback control, which later con-

tributed to the foundation of the Linear Quadratic Regulator (LQR) control [72]. This

idea of the feedback control to minimise the integral of the tracking error square dates

back to 1943 by Hall [73] and 1949 by Wiener [74]. In LQR control technique a

quadratic objective function is defined based on the weighted energy of all the state

variables and control signals. The aim is to minimize the objective function given as

Jlqr = lim
t→∞

∫ t

0

(
xᵀQx+uᵀRu

)
dt (2.3)

The matrices Q and R are design parameters and can be tuned to shift the emphasis

between different objectives in the cost function. The optimal controller to minimize

the objective function is given as

u(t) =−Klqrx(t) (2.4)

where Klqr is the feedback gain matrix and is given as

Klqr = R−1BᵀPlqr (2.5)
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where Plqr is solution of the Algebraic Riccati Equation (ARE) given as

AᵀPlqr +PlqrA−PlqrBR−1BᵀPlqr +Q = 0. (2.6)

where A and B are system matrices.

One of the issues with LQR is that it requires all the states to be available, which is

not feasible in most of the practical problems because of various constraints. In 1961

Kalman proposed an optimal state observer in the sense of least squares [75], which

lead to the development of Linear Quadratic Gaussian (LQG) control. In LQG, the

control task is divided into two parts. One part is the optimal estimation of the states

that are not available and the second part of optimal regulation remains unaffected. A

Kalman filter is used as an optimal estimator. Stability margins are guaranteed in the

LQR, but that is not the case in LQG because of the Kalman filter [76, 77]. Different

techniques have been proposed in the literature to deal with this issue of robustness.

LQG control that was briefly explained earlier is similar to H2 control. In H2 control

algorithm, the aim is to find an optimal controller gains that will minimise the H2 norm

of the transfer function matrix between the disturbances and the regulated signals. The

formulation of the problem is different, but the basic idea is the same.

Unlike LQG control techniques the H∞ controller takes into account the robustness

in the optimal design framework. Bounds are imposed on the amplitude of uncertainty

and optimisation is done for the uncertainty with maximum amplitude within the

imposed limits i.e. the worst case scenario.

2.4.1 Sliding Mode Control

Sliding mode control (SMC) is a class of variable structural control (VSC) [78], that

can be accommodated within the I & I framework and is, therefore, ideal for a hybrid

scheme. The theory of VSC was started in the late 60’s by SV Emelyanov. Early studies

were undertaken by [79, 80], and more recent surveys are given in [81–83]. VSC has a

switching logic that changes the structure dynamics. A survey [79] was presented by

Vadim I. Utkin in 1977 about variable structure systems with the sliding mode. Later on,
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more work on variable structure systems has been carried out by Utkin [80]. Another

survey on variable structure control and sliding mode in 1993 was presented in [81]. In

[82] a brief overview of the work done on sliding mode control up to 1999 is discussed

in the context of practical implementation. Sliding mode control has previously been

used to design controllers for both active [84–86] and semi-active devices [87–89].

The control design explained in Appendix B is called first order sliding mode control

because the sliding surface is defined in such a way that it has a relative degree of one

[90]. It means that after first differentiation, the input should appear in Ṡ, where S

is the sliding surface. There is also second order sliding mode control, in which the

relative degree of the sliding surface is two [91–94]. The second order sliding surfaces

have been used mainly to avoid the chattering effect [95–97]. The robustness property

in SMC is because of the discontinuous part in the control. The discontinuous part

switches the control action as the system crosses the sliding surface and pushes the

system back towards the sliding surface.

In the early stages, SMC has been used to design the controller for active actuators

but later on it has also been used for semi-active devices with a passivity constraint. In

[98], SMC is used to design a controller for an active suspension system for a quarter

car model. A reference system has been defined with a skyhook configuration, and

the reference system does not require the road input from the actual system. SMC has

been designed to control the vibrations in the sprung mass. In both the actual and the

reference system, the un-sprung mass dynamics are considered to be same, and the error

is defined in terms of the dynamics of the sprung mass. The sliding surface is defined in

terms of the error dynamics, and the SMC is forcing the actual system to behave as a

reference system. In simulations, the SMC is compared with the self-tuning control,

and it is shown that SMC shows better results to discrete road inputs.

In [84], an SMC is used to damp the vibration in a flexible beam with an active

actuator. Its simulation and experimental results are shown. A comparison of an SMC

is made with a PD controller, and the SMC has shown better performance. A low

pass filter has been used in the controller output and the feedback signal. In [99], a
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nonlinear model is designed for hydropneumatic spring, then the model is linearized

using feedback linearization. SMC is used to create the controller for the linear model.

The SMC combined with the feedback linearization has shown better performance in

terms of robustness and accuracy.

In [85], an SMC is designed for a n-DOF robot arm. It is mentioned that an SMC

with a saturation function and a fuzzy SMC have difficulty with unstructured model

uncertainties. To deal with this issue, a mathematical error based tuning method with

a fuzzy SMC is proposed. The sliding surface gain is adapted online by updating a

factor defined as the sliding surface slope. At the end, a comparison is made between an

SMC, a fuzzy SMC and the proposed method. All results are shown in simulations. The

proposed method has shown better performance in terms of disturbance rejection and

steady state error. In [100], an SMC is used to design a controller for active suspension

system. The sliding surface is defined as proportional-integral rather than conventional

proportional-derivative. The proposed controller is compared with the passive and LQR

controller in simulations and has shown better results for vibration damping. The system

is a 2-DOF quarter car model, and the controller is designed for an active actuator to

damp the vibrations in a sprung mass.

In [101], an SMC is designed for a single degree of freedom system to control the

vibration in the sprung mass. The controller design methodology is the same as the

one used in [98]; the difference is that in [98] the actuator is active but in [101] the

actuator is semi-active. The SMC is compared with the on-off controller, and the SMC

has shown better performance. All the results are shown in the simulation.

In [89], the 2-DOF actual system and the reference skyhook based system are

defined in the same way as discussed before. The actuator is an MR damper, and a

passivity constraint is imposed on it after designing the controller using an SMC. The

SMC is compared with passive and skyhook control. Both simulation and experimental

results are shown. Figure 2.18 shows how the reference model concept has been used

in designing the SMC. In [102] the SMC is used to create the controller for a sprung

mass. The 2-DOF quarter car system and the reference system defined in this paper
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Fig. 2.18 Reference model based sliding mode control [89]

are the same as [98], the difference here again is the semi-active device, but the design

methodology is the same. Then a comparison is made with passive, fully active and

ideal semi-active systems. All the results are shown in simulations.

One of the shortcomings of SMC is the chattering effect, which is caused by the

discontinuous nature of the control during the sliding phase across the sliding surface.

To make SMC efficient for practical implementation, different techniques have been

proposed to minimise or eliminate the chattering effect. One of the most widely used

solutions to avoid chattering is to use a saturation function. In this proposed solution

a boundary layer is defined across the sliding surface with some thickness. When the

system trajectories enter into this region, the switching control law is replaced with a

linear approximation. The problem with this approach is that the tracking error will still

be there and if the trajectories come out of that region because of some disturbance,

then the switching control will again be activated.

Other techniques, used to deal with the chattering are observer design [103], fre-

quency shaping [104], second order sliding surface [105–115]. Different books have
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been written on sliding mode control to discuss each aspect in detail. The first book

about sliding mode control was written by Utkin and Vadim in 1992 [116]. Another

book by the same authors was published in 1999 [117]. Another interesting book about

SMC was published in 2002 [118].

2.4.2 Immersion and Invariance Control Methodology

Immersion and Invariance (I & I) control methodology was first introduced in [119], and

the work was further extended by the same authors in [120, 121]. A detailed explanation

of I & I controller can be found in [122], and further examples are given in [123–127].

The first step in I & I is the definition of the target system, which should be

reduced order and should be asymptotically stable. Then the next step is to derive

the nonlinear mapping functions for off-the-manifold dynamics. There can exist more

than one mapping function, but they should follow certain conditions. Then the third

step is defining a manifold regarding the error dynamics between the off-the-manifold

dynamics and the nonlinear mapping functions. The final step is to design a controller

that will bring the error dynamics to zero and then the actual system will start behaving

as the target/reference system.

The aim is to make the actual system emulate the target system, and meanwhile to be

certain that the actual system (as modelled) will be asymptotically stable. The concept

of immersion is to transform a system into another system with pre-specified properties.

Meanwhile, a manifold is a topological space that locally resembles Euclidean space. If

a manifold is invariant under the action of a dynamical system, then it is an invariant

manifold.

The concept of invariant manifolds, and of mapping, can be related to the mathe-

matical topic of algebraic topology. This involves the study of shapes, their properties,

and (in particular) the way in which these properties are modified when a form is

transformed. Algebraic topology is the study of shapes and their properties, which

are not dependent on continuous deformation, and the primary interest is that what is

maintained when the shapes are continuously deformed. One of the famous examples
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in topology is that a doughnut or torus is same as the coffee cup topologically because

they can be continuously transformed into each other. They are geometrically different

but homomorphically or topologically they are same. In the same way, a higher order

system can be transformed into a lower order through appropriate nonlinear mapping.

2.5 Hybrid Control

The term hybrid control used for vibration suppression mainly in the civil structure is

the combination of either passive and semi-active devices or passive device and active

actuators. One of the examples is hybrid mass damper (HMD) used for vibration control

in a building. It combines the AMD with TMD. Both have been explained before in

the literature separately. It has shown almost similar results like pure AMD, but the

energy consumption in the hybrid case is less. The first HMD was installed in a 14

story building Ando Nishickiki in Japan. Another example of hybrid control is hybrid

base isolation. Here the active tendon control or AMD is combined with passive base

isolation.

In [128], a review of the control techniques implemented in civil structures like

buildings, bridges and towers from 1989 to 2002 has been covered. A list of 40

buildings and ten bridges that have implemented active or hybrid (active+passive)

control is provided with all the details, and then the semi-active devices used in civil

structures including variable orifice dampers, smart TMD, variable friction dampers,

controllable fluid dampers have been discussed in detail. In [129], the passive energy

dissipation devices used in the civil structures that include metallic yield dampers,

friction dampers, viscoelastic dampers, viscous fluid dampers, TMD and then active

control devices like active mass dampers (AMD), hybrid mass dampers (HMD) and in

the end semi-active devices are discussed. These are presented with the civil structure

examples in which they are used all over the world.

In July 2015, Demetriou and Nikitas proposed a hybrid semi-active TMD [130], in

which semi-active TMD is used in conjunction with an active element. The groudhook

control technique is used for the semi-active device and LQR is used for the active
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element. Only simulation results are presented in the paper without considering the

seim-acticve device and active actuator models and constraints. It is claimed in the

paper that the proposed hybrid device performs better than TMD and STMD. Later on,

the same idea is explained in detail by Demetriou and Nikitas in a journal paper [131]

published on 30 November 2016. Again, only the simulation results are presented.

2.6 Summary

Firstly, in the literature, the passive damping devices used for the vibration suppression

and vibration isolation have been discussed. The Tuned mass damper, tuned liquid

column damper, piezoelectric dampers, inerter were reviewed in detail with their

applications in different fields for vibration control. At the end of this section, the

limitations of the passive devices were explained.

In the next section, semi-active devices including semi-active TMD, variable orifice

damper, MR/ER dampers have been explored. The MR damper has been examined in

detail as the semi-active device that has been used in the current work is an MR damper.

A comparison between MR and ER dampers was presented and how the research has

shifted from ER to MR dampers has also been mentioned. Different application of the

MR dampers in different fields have been elaborated.

In the next section, active control devices have been explained briefly. After that the

control techniques that has been used in the literature both for the MR damper and the

active actuators have been discussed in detail. First, a very well known skyhook control

that has been used a lot in the literature to design controller for the MR damper has been

reviewed along with the clipped optimal control and bang bang control that has also

been used in the literature for the MR dampers and other semi-active devices. After that

fuzzy logic, LQR, LQG, H2 and H∞ control techniques have been discussed very briefly.

These controller techniques have been used in the literature to design the controller for

both semi-active and active devices. Towards the end the two control techniques i.e.

the sliding mode control and immersion and invariance control have been explored in

detail.
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2.7 Thesis Contribution in the Literature

The term hybrid control is either used for the combination of semi-active and passive or

active and passive in the literature. In this thesis, the hybrid control in the sense of active

and semi-active will be explored and how an active actuator can assist the semi-active

actuator so that the whole system can achieve the performance, very close to a fully

active system. Now this combination of active and semi-active can be beneficial in

different scenarios. A hybrid combination of active and semi-active control has not

been previously studied in detail in this context.

The semi-active devices need small actuation power and are smaller in size, so they

can be incorporated anywhere in the structure to control the vibration, but the drawback

of such devices is that they can only dissipate energy from the system, which limits their

performance. On the other hand, the active actuator can do both the energy injection and

energy dissipation, however; the size of the actuator and actuation power requirement

limits their capability to position them anywhere in the structure. So the idea behind the

work done in this thesis is that how an active actuator that is located somewhere else in

the structure can assist the semi-active device to achieve the performance close to an

active actuator.

Most of the time, it is not possible or it is difficult to measure all the states of the

system. So the observer or estimator design is vital. The theory of observer design

was started in 1958 by Kalman and Bertram and then in 1964 by Luenberger. The

observer for linear systems has been developed using the linear theory approach but

when the same observer was implemented on the nonlinear systems, the results were not

satisfactory, which has opened the door for a new research area, i.e., nonlinear observer

design. A lot of research has been done, and different techniques have been developed

in the last two decades for nonlinear observers, but this area is still not fully explored.

One of the major issues with nonlinear observers is that most of them did not give a

structural design methodology and if they do, then some of the conditions are very hard

to meet. Secondly, most of them are designed for a particular class of systems. In this

work a reduced order observer using the notion of an invariant manifold is designed.
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The proposed observer is not restricted to any class of system as long as an invariant

manifold exists and it also provides a structured design methodology.

2.7.1 Publications Outcome

The following articles [132–135] have been published from the current work.

From Chapters 3 and 4

• I. U. Khan, D. Wagg, and N. D. Sims, “Improving the vibration suppression capabilities

of a magneto-rheological damper using hybrid active and semi-active control,” Smart

Materials and Structures, vol. 25, no. 8, p. 085045, 2016.

• I. U. Khan, D. Wagg and N. D. Sims “Hybrid active and semi-active control for vibration

suppression in flexible structures,” Dynamic Systems and Control Conference, ASME,

Oct 2016.

From Chapter 5

• I. U. Khan, D. Wagg and N. D. Sims “Hybrid active and semi-active control for

pantograph-catenary system of high-speed train,” 27th International Conference on

Noise and Vibration, ISMA, Sept 2016.

From Chapter 6

• I. U. Khan, D.Wagg, and N. D. Sims, “Nonlinear robust observer design using an invariant

manifold approach,” Control Engineering Practice, vol. 55, pp. 69–79, 2016.



Chapter 3

Hybrid Controller – Design

Methodology

3.1 Introduction

In this Chapter, results from an example hybrid system that contains an active actuator

and semi-active damping device are presented. The context for such a combination of

control devices is the need to suppress unwanted vibrations in lightweight structures in

application areas such as aeronautical and mechanical engineering.

The unwanted vibrations are a by-product of the increasingly lightweight and

therefore flexible nature of these structures. The increased flexibility is often driven by

pressure to improve performance and efficiency, for example, by reducing weight or

improving dynamic performance. As a result, the associated unwanted vibrations in

flexible structures are increasingly difficult to suppress, and this has led to an increasing

reliance on control devices. Different controllers, both linear and nonlinear have been

designed for vibration control.

In this Chapter, I & I is used in designing the controller for the active actuator

and an SMC is used to create the controller for the semi-active device using the same

target/reference system. The reason behind combining these two control techniques

is that they share the same design approach, and a common target system can be
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defined for both the controllers. In an I & I design, first step is to define a target

system, which should be reduced order and should be asymptotically stable. Then the

nonlinear mapping functions are derived for off-the-manifold dynamics. In the third

step a manifold is defined with respect to the error dynamics between off-the-manifold

dynamics and the nonlinear mapping functions. Finally, the control law is derived that

will bring off-the-manifold dynamics onto the manifold.

In SMC, a sliding surface is defined based on the error dynamics between the actual

and the reference system states that need to be controlled. In this work, a first order

sliding mode controller [90] is used for control of the semi-active device because the

sliding surface is defined in such a way that it has a relative degree of one. This means

that the input should appear at the first derivative of the sliding surface.

There is also a second order sliding mode control, in which the relative degree of

the sliding surface is two. Second order sliding surfaces have been used mainly to

avoid the chattering effect [95–97]. The robustness property in the SMC is because

of the discontinuous part in the control. The discontinuous part switches the control

action as the system crosses the sliding surface and pushes the system back towards the

sliding surface. The underlying phenomenon of the manifold/sliding surface and the

target/reference system is the same in both the design methodologies.

In Section 3.2 the example system is introduced. The details of I & I and SMC

methodologies and controller design for the example system is given in Section 3.3.

The results are presented in Section 3.4 and Section 3.5, and further discussion and

summary are given in Section 3.6 and Section 3.7.

3.2 System Under Consideration

The example system under consideration is the multi-input-multi-output (MIMO) two-

degree-of-freedom (2-DOF) nonlinear spring damper system shown in Figure 3.1. The

nonlinearity in the system is a weak cubic stiffness that comes in from the spring

between mass m1 and the fixed support. As mentioned above, the weak non-linearity is

introduced in the system to represent the behaviour associated with large deflections
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in a flexible structure. The system is subjected to an excitation signal, Ud , that creates

unwanted vibrations of the two masses.

m2

m1

fsa

fa C1

Ud

K2

K1,K3

X1

X2

Fig. 3.1 2-DOF mass-spring-damper system, where fa represents the force of an active actuator
and fsa represents the force of a magneto-rheological damper. m1, m2 represent the masses,
K1, K2 are the liner spring stiffness, K3 is the nonlinear spring stiffness, C1 is the damping
coefficient and Ud is an excitation signal

The control objective is to minimise the motion of the masses using the combined

action of the active and semi-active control devices. An MR damper is used as a semi-

active device because it is both reliable and widely available. To simulate the situation

in flexible structures that suffer from unwanted vibrations, the damping constants are

chosen such that the two-degree-of-freedom system is under-damped. As a result, the

open-loop system has two lightly damped resonances.

 m1 0

0 m2


 Ẍ1

Ẍ2

+
 C1 0

0 0


 Ẋ1

Ẋ2

+
 K1 +K2 −K2

−K2 K2


 X1

X2


=

 −K3

0

X3
1 +

 fa − fsa

fsa −Ud

 (3.1)

The equation of motion for the two degree-of-freedom system is given by (3.1), where

X1 and X2 represent the displacement of masses m1 and m2, respectively, fa represents
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the force of the active actuator, fsa represents the force of the semi-active device (MR

damper), m1, m2 represent the masses, K1, K2 are the linear spring stiffness, K3 is the

nonlinear spring stiffness, C1 is the damping coefficient and Ud is an excitation signal.

The system can be represented in state space form as

ẋ1 = x2,

ẋ2 =
1

m1

(
fa − fsa −K1x1 −C1x2 −K2(x1 − x3)−K3x3

1

)
,

ẋ3 = x4,

ẋ4 =
1

m2

(
fsa −K2(x3 − x1)−Ud

)
, (3.2)

where x1 and x2 are the position and velocity of mass m1 respectively, and x3 and x4 are

the position and velocity of mass m2 respectively.

m2

m1

fsa

fa
C1

Ud

K2

K1,K3

Brushless DC motor

Belt drive

Unbalanced mass

Spring & MR damper

Instron load cell

Instron hyraulic actuator

Servo valve

Excitation signal

Fig. 3.2 Hardware-in-the-loop (HIL) test set-up, where fa represents the force of the active
actuator and fsa represents the force of the magneto-rheological damper. m1, m2 represent the
masses, K1, K2 are the linear spring stiffness, K3 is the nonlinear spring stiffness, and C1 is the
damping coefficient

Figure 3.2 shows that how each of the term in Figure 3.1 is realised practically. The

practical tests are performed as hardware-in-the-loop (HIL) tests. The physical part

of the HIL test is the degree-of-freedom that includes mass m2, the MR damper and



3.3 Hybrid Active and Semi-active Controller Design 45

the linear spring. The other degree-of-freedom that includes the mass m1, the active

actuator, linear damper C1 and nonlinear spring is the non-physical part of the HIL test.

This is simulated numerically and applied to the physical system via a force applied

by the Instron hydraulic actuator. The displacement of mass m1 from Simulink goes

into the Instron 8400 controller via a National Instruments data acquisition card. The

control signal from the Instron 8400 controller goes to the Instron hydraulic actuator

via servo valves, and the LVDT gives the displacement feedback signal.

3.3 Hybrid Active and Semi-active Controller Design

In this Chapter the standard, I & I approach is used [122]. The objective in the I & I

theorem is to find a manifold M = {x ∈ Rn |x = π(ξ ), ξ ∈ Rp} based on the actual

system, target system and the mapping functions. The manifold will be defined in

terms of z coordinates, where z represents the error between the mapping functions and

off-the-manifold dynamics. The order of target system is lower than the order of the

actual system, and the mapping functions are defined as virtual dynamics, to represent

the actual system dynamics (off-the-manifold) that are not present in the target system.

The philosophy behind a sliding mode control (SMC) resembles that of an I & I

methodology. In SMC, instead of the manifold, a sliding surface is defined. The sliding

surface can be linear or nonlinear. The system trajectories are forced towards the sliding

surface during the reaching mode and once on the sliding surface, the system trajectories

are pushed towards an asymptotically stable equilibrium point during the sliding mode.

One of the differences mentioned in the literature between an SMC and an I & I is that

in the SMC the sliding surface needs to be reached by the trajectories whereas in an I &

I this is not necessary [122]. The reason behind combining these two control techniques

is that they share the same design approach, and we can define a common target system

for both the controllers. In the next subsection, the I & I conditions are explained.
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3.3.1 I & I Conditions

Consider a nonlinear system

ẋ = f (x)+g(x)u (3.3)

where x ∈Rn is the system state, u ∈Rm is the input signal, f (x) and g(x) are nonlinear

functions of x and an over-dot represents the differentiation with respect to time. The

equilibrium point to be stabilized is denoted x⋆ ∈ Rn.

The following properties should hold.

(H1) The system

ξ̇ = α(ξ ) (3.4)

with transformed state vector ξ ∈ Rp has an asymptotically stable equilibrium at

ξ
⋆ ∈ Rp, and

x⋆ ∈ π(ξ ⋆).

where α : Rp → Rp and π : Rp → Rn are smooth mapping functions with p < n.

(H2) For all ξ ∈ Rp, substituting a smooth mapping x = π(ξ ) in (3.3) leads to

f (π(ξ ))+g(π (ξ ))c(π (ξ )) =
∂π

∂ξ
α(ξ ). (3.5)

where c : Rp → Rm is the control signal that renders the manifold invariant.

(H3) The set identity holds

{x ∈ Rn | φm (x) = 0}= {x ∈ Rn | x = π (ξ ) , ξ ∈ Rp } . (3.6)

where φm : Rn → Rn−p represents the manifold. From (3.6), the manifold φm(x) = 0,

when x = π(ξ ), and z = x−π(ξ ), where z represents the distance between off-the-

manifold coordinates and the manifold.
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(H4) All trajectories of the system

ż =
∂φm

∂x
[ f (x)+g(x)ψ(x,z)], (3.7)

ẋ = f (x)+g(x)ψ(x,z), (3.8)

are bounded and satisfy

lim
t→∞

z(t) = 0. (3.9)

where ψ : Rn×(n−p) → Rm is the equivalent control signal and right hand side of (3.7)

is φ̇m.

Then x∗ is an asymptotically stable equilibrium of the closed loop system

ẋ = f (x)+g(x)ψ(x,φm(x)). (3.10)

Once the closed loop system (3.10), trajectories converge to the manifold such that

z = 0 then ψ(π(ξ ),0) = c(π(ξ )). The I & I methodology defines a set of conditions,

for the existence of three features: an invariant manifold, a mapping function, and a

target system. In the next two subsections, the controller design and detailed derivation

is explained.

3.3.2 I & I Controller Design

The first step in the control design is to define a target/reference system. The target

system should be realisable and should also consider the physical constraints of the

actual system [122]. In this example, the objective to control the vibrations in the

mass m2. Therefore the target system is defined to reduce the flexible dynamics to a

single degree-of-freedom (SDOF) such that, in effect, the other degrees-of-freedom will

behave as a rigid body motion. This means that the flexibility in the structure is reduced.

It also aligns with the I & I methodology where the target system should be at least one

degree less than the actual system.
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m1 + m2

f
C1

Ud

K1,K3

ξ1

Fig. 3.3 Target system, where ξ1 and ξ2 represents the position and velocity of the mass
(m1 +m2), f̄ will be computed after defining the mapping functions, K1 is the linear spring
stiffness, K3 is the nonlinear spring stiffness, C1 is the damping coefficient and Ud is an excitation
signal

As a result the nonlinear SDOF system shown in Figure 3.3 is defined as the target

system. The aim of the controller design is to damp out the vibrations introduced by Ud

at m2. The dynamics of the target system are given as

ξ̇1 = ξ2,

ξ̇2 =
1

(m1 +m2)

(
f̄ −K1ξ1 −C1ξ2 −K3ξ

3
1 −Ud

)
, (3.11)

where ξ1 and ξ2 represent the position and velocity of the mass (m1 +m2) respectively,

and f̄ = W +u, u represents the controller signal and W is the function that will be

computed after defining the mapping functions. The next step is to design a controller

for the target system. Any controller can be designed for the target system as long as it

can achieve the desired performance for the defined mapping functions. A proportional

plus integral (PI) controller is designed in the same way as in [136]. The implementation

of the PI controller in the target system is given by

u = Ki

∫
evdt +Kvev

where ev = Kpep −ξ 2, and the PI control signal is given as

u = Kaep +Kb

∫
epdt −Kcξ 2 −Kdξ 1 (3.12)
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where, Ki, Kv & Kp are control gains, ev is the velocity error, ep is the position error,

and Ka = KvKp, Kb = KiKp, Kc = Kv, Kd = Ki.

It is difficult to solve the partial differential equation (3.5). Since the target system

dynamics (3.11) resembles the part of actual system dynamics (3.2), so the solution of

(3.5) can be obtained by setting π3(ξ 1,ξ 2) = ξ 1. As ẋ1 = x2, hence π4(ξ 1,ξ 2) = ξ 2.

Therefore, the mapping functions π1(ξ 1,ξ 2), π2(ξ 1,ξ 2) are derived from

ξ̇ 2 = π̇4. (3.13)

and

1
m1 +m2

(
f̄ −K1ξ1 −C1ξ2 −K3ξ

3
1

)
=

1
m2

(
−C2(ξ2 −π2)−K2(ξ1 −π1)

)
(3.14)

The selection of the mapping functions is a non trivial task and it is possible for more

then one mapping function to exist. However, they should always satisfy (3.14) and by

using these mapping functions, the target system should have an asymptotically stable

equilibrium at the origin. Therefore the mapping functions selected are

π1 =−α1
m2K3ξ 3

1
K2(m1 +m2)

− m2K1ξ1

K2(m1 +m2)
+ξ1 +α2ep +α3

∫
epdt +α4ξ 2 +α5ξ 1,

(3.15)

π2 =
(
−α1

3m2K3ξ 2
1

K2(m1 +m2)
− m2K1

K2(m1 +m2)
+1
)

ξ2 −α2ξ2 +α3ep +α4ξ̇2 +α5ξ 2.

(3.16)

f̄ is defined as

f̄ =−
C2(3K3ξ 2

1 +K1)ξ2

K2
+C1ξ2 +u (3.17)
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where C2 is taken to be a linear approximation of the MR damping constant. Substituting

π1, π2 and f̄ in (3.14) gives

1
m1 +m2

[
−

C2(3K3ξ 2
1 +K1)ξ2

K2
+C1ξ2 +Kaep +Kb

∫
epdt −Kcξ 2 −Kdξ 1 −K1ξ1

−C1ξ2 −K3ξ
3
1

]
=

1
m2

[
−C2

(
ξ2 −

((
−α1

3m2K3ξ 2
1

K2(m1 +m2)
− m2K1

K2(m1 +m2)
+1
)
ξ2

−α2ξ2 +α3ep +α4ξ̇2 +α5ξ 2

))
−K2

(
ξ1 −

(
−α1

m2K3ξ 3
1

K2(m1 +m2)

− m2K1ξ1

K2(m1 +m2)
+ξ1 +α2ep +α3

∫
epdt +α4ξ 2 +α5ξ 1

))]
(3.18)

Using (3.18), we now compare coefficients to find out the five unknowns α1, α2, α3,

α4, α5.



0 0 0
C2(Kd −K1)

m2(m1 +m2)

K2

m2

0
K2

m2

C2

m2

KaC2

m2(m1 +m2)
0

0 0
K2

m2

KbC2

m2(m1 +m2)
0

1 0 0
C2

m2
0

0
C2

m2
0 − C2

m2(m1 +m2)

−K1C2 −KcK2

K2
− K2

m2
−C2

m2





α1

α2

α3

α4

α5



=



Kd

m1 +m2

Ka

m1 +m2

Kb

m1 +m2

1

Kc

m1 +m2



(3.19)
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To check the asymptotic stability of the target system, the target system dynamics are

compared with a single mass system dynamics (3.20). From the Lagrangian formulation

the dynamics of a single mass are

ξ̇ 1 = ξ 2

ξ̇ 2 =−E
′
−ξ 2R (3.20)

where E is the potential energy function and R is the damping function and a dash

represents differentiation with respect to the state vector.

Comparing (3.11) and (3.20) gives

E
′
=

K1ξ1 +K3ξ 3
1

(m1 +m2)
(3.21)

R =
C2(3K3ξ 2

1 +K1)

K2(m1 +m2)
(3.22)

and

E =
K1ξ 2

1
2(m1 +m2)

+
K3ξ 4

1
4(m1 +m2)

. (3.23)

A Lyapunov function is defined as a generalized energy function

Vi&i =
1
2

ξ 2
2 +E. (3.24)

The target system dynamics will have an asymptotically stable equilibrium at the origin

if the following conditions are satisfied by the Lyapunov function defined in (3.24)

V (0,0) = 0 (3.25a)

V (ξ 1,ξ 2)> 0, in D−{0} . D → Rp (3.25b)

V̇ (ξ 1,ξ 2)< 0, in D−{0} . (3.25c)
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where V (ξ 1,ξ 2) is the energy function, and D is the subset of Rp in which the Lyapunov

function is defined.

As a result

V̇i&i (ξ 1,ξ 2) = ξ 2ξ̇ 2 +E
′
ξ 2,

V̇i&i (ξ 1,ξ 2) = ξ 2

(
ξ̇ 2 +E

′
)
,

and

V̇i&i (ξ 1,ξ 2) =−Rξ 2
2. (3.26)

The first two conditions (3.25a) and (3.25b) are satisfied by the Lyapunov function

defined in (3.24). The third condition (3.25c), where V̇i&i (ξ 1,ξ 2) should be negative

definite, is satisfied when R is positive. As it can be seen from (3.22), R is always

positive. Therefore, the selected target system has an asymptotically stable equilibrium

at the origin. The error between the off-the-manifold dynamics and the mapping

functions is defined as

z = x1 −π1 (3.27)

and the manifold is defined as

M =−k1z− k2ż (3.28)

where ż = x2 −π2. The gains k1 and k2 are chosen in such a way that (s2 + k2s+ k1) is

Hurwitz.

The last step in the I & I methodology is to compute the control law, which is done

using

z̈ = ẋ2 − π̇2 (3.29)
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and

z̈ =
1

m1

(
fa − fsa −K1x1 −C1x2 −K2(x1 − x3)−K3x3

1

)
− ∂π2

∂x3
ẋ3 −

∂π2

∂x4
ẋ4. (3.30)

The control signal fa is given by

fa =

[
− k1z− k2ż+

∂π2

∂x3
ẋ3 +

∂π2

∂x4
ẋ4

]
m1 +K1x1 +C1x2 +K2(x1 − x3)

+C2(x2 − x4)+K3x3
1 (3.31)

where

∂π2

∂x3
=−6α1K3m2x3x4

K2(m1 +m2)
−α3 −

α4K2

m2
, (3.32)

∂π2

∂x4
=

(−3α1K3x2
3 −K1)m2

K2(m1 +m2)
+1−α2 −

α4C2

m2
+α5 (3.33)

The expressions in (3.32) and (3.33) gives the partial derivative of the mapping

function π2, with respect to x3 and x4. In the next subsection, SMC controller design is

derived.

3.3.3 SMC Controller Design

The controller for MR damper is designed using the SMC. A sliding surface is defined

on which the system will be forced to slide. In order to make sure that the sliding

surface has an asymptotic stable equilibrium point, a Lyapunov candidate function is

defined. To add robustness, a discontinuous control is added to the equivalent control

and finally to avoid the chattering phenomenon the signum function is replaced with

a hyperbolic tangent function. The sliding mode control is designed to control the

semi-active device. The error dynamics are defined as

e = x3 −ξ1. (3.34)
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The sliding surface is defined in terms of the error dynamics as

S = λ1e+λ2ė (3.35)

where λ1, λ2, are the design parameters, which will determine how fast the error

dynamics will go to zero and ė = x4 −ξ2. In the next step the control signal is derived

using (3.35) to give

fsa = fn −
m2

λ2

(
Ksmcsgn(S)

)
(3.36)

where Ksmc is a design parameter and strictly positive and fn is given as

fn =
m2

λ2

(
−λ1(x4 −ξ2)

)
+m2ξ̇2 +K2(x3 − x1). (3.37)

The SMC control signal has two parts. One part represents the normalized control fn

and the second part represents the discontinuous (signum function) control, which is

responsible for robustness. To make sure that the sliding surface has an asymptotically

stable equilibrium at the origin towards which the system will slide, a Lyapunov function

is defined as

Vsmc =
1
2

S2. (3.38)

The sliding surface will have an asymptotically stable equilibrium if (3.38) satisfies the

conditions in (3.25). The first two conditions (3.25a) and (3.25b) are satisfied by the

Lyapunov function defined in (3.38), for the third condition (3.25c) to be satisfied, V̇smc

needs to be analyzed, where

V̇smc = SṠ

and

SṠ < 0
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To make sure that the system will reach the sliding surface in finite time, a more strict

condition is imposed on SṠ

SṠ ≤−ηsmc|S| (3.39)

where ηsmc is strictly positive. Then

SṠ ≤−ηsmcSsgn(S)

and

Ṡ ≤−ηsmcsgn(S)

such that

Ksmc ≥ ηsmc. (3.40)

For the third condition to be satisfied for an asymptotically stable equilibrium, Ksmc

should be greater than ηsmc. The MR damper can only dissipate energy from the system.

The controller will be switched-on, when the relative velocity vr across the MR damper

and the control signal fsa have opposite signs and will be switched-off otherwise. This

condition is imposed on fsa in (3.41) and is called the passivity constraint:

fsa =


fn −

m2

λ2

(
Ksmcsgn(S)

)
fsavr < 0

0 fsavr > 0
(3.41)

where vr = x4 − x2.

To avoid chattering, we have used the approximation that the signum function can be

replaced with the tangent hyperbolic function

sgn(x)≈ tanh(kx) (3.42)
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where k >> 1 for smooth approximation. In order to validate the designed controller,

simulation results are shown in the next section.

3.4 Simulation Results without Actuator Dynamics

Figure 3.4 shows the block diagram implementation of the hybrid control without

including the actuator dynamics. In this block diagram fsmc is the control signal of

the SMC controller, fi&i is the control signal of the I & I controller, and fsmc = fsa,

fi&i = fa, as there are no actuator dynamics involved. All the other state variables and

system parameters that are shown in the block diagram have already been defined.

Figure 3.5 shows the I & I controller block diagram. First the mapping functions

are defined for off-the-manifold dynamics and then the manifold is defined as the error

between the mapping functions and off-the-manifold dynamics. The output of Mapping

and Manifold block is z1 and z2, which have already been defined in the controller

design. The output of the PI controller block is u. This is the same PI controller that

was designed for the target system. Then the Immersion & Invariance control law block,

which has the input z1, z2, and u, generates the final control signal fi&i.

Figure 3.6 shows the SMC controller block diagram. In the SMC block diagram the

Sliding surface block inputs are the states of the target system and the actual system.

The sliding surface is defined in this block. Sliding mode control law block inputs

are the sliding surface and the state variables from the actual and the target system.

The control law is defined in this block, which gives the final control signal fsmc. The

Target system block input is u, which is the output of the PI controller block. Both the

equivalent and the discontinuous part of fsmc are defined here. To validate the analytical

results via simulation, Matlab/Simulink is used. The resonant frequencies of the 2-DOF

system are 2.76 Hz and 6.8 Hz. To check the controller performance, initially in the

simulations an excitation signal at 3 Hz with an amplitude of 100 N is given to the

2-DOF system at mass m2. In the first two seconds the system is vibrating in open-loop

after which the controller is switched on.
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Immersion & Invariance

           control

fsmc

fi&i

  Sliding mode control

x=[x1,x2,x3,x4]

m2

fsa

Ud

K2

K1,K3

C1

fa

m1

Target system

      with 

PI controller

ξ=[ξ1,ξ2]

Fig. 3.4 Block diagram implementation of hybrid active & semi-active control without actuators dynamics, where x1 and x2 are the position and velocity of mass
m1 respectively, x3 and x4 are the position and velocity of mass m2 respectively, fi&i is the I & I control signal, fsmc is the control signal of SMC controller
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Table 3.1 shows the parameters of the 2-DOF system and Table 3.2 shows the gains

designed for the PI, I & I and SMC controllers. Figure 3.7 shows the displacement

and velocity of mass m2 being controlled to follow the reference system in which a

single mass, m1 +m2, is assumed. It can be seen that the simulated system is following

the reference system and when the proposed hybrid active & semi-active controller is

turned on at 2 seconds, the error between x3 and ξ1 is reduced by 98.6%. Figure 3.8

shows the displacement and velocity of mass m1, and it is also following the reference

system and the error between x1 and ξ1 is reduced by 95%.

Immersion & Invariance

           control law

Mapping

   and

Manifold

      PI

controller

+
_

Reference

   signal fi&i

z1

z2

ue

x3

x=[x1,x2,x3,x4]

Fig. 3.5 Block diagram implementation of the I & I controller, where x1 and x2 are the position
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Table 3.1 System parameters

mass (kg) stiffness (Nm−1) damping (Nsm−1)

m1 = 100 K1 = 100000 C1 = 1000

m2 = 112 K2 = 63000 C2 = 1000

Table 3.2 Controller gains

PI controller I&I controller SMC controller

Kp = 5.43 k1 = 1000 Ksmc = 1

Kv = 7420 k2 = 15.00 λ1 = 1

Ki = 67722 λ2 = 1

The active control signal is shown in Figure 3.9a. The controller is in the off state

for the first two seconds and after that as the controller is switched-on, the active control

signal goes to -1500 N to bring off-the-manifold dynamics to the manifold. After the

transient response, the active control signal goes to steady state. The same phenomenon

is followed by the semi-active control signal as shown in Figure 3.9b, the semi-active

control signal goes to a maximum value of 300 N, and after the transient response the

control signal goes to a steady state phase.

In the next step of validation process, a sinusoidal chirp signal with a frequency

range of 0.1-10 Hz and an amplitude of 100 N is given to the system at mass m2. The

open-loop frequency response of the system is shown in Figure 3.10. The system

resonates at 2.76 Hz and 6.8 Hz. The closed loop frequency response of the system is

shown in Figure 3.11. The performance of the hybrid controller is evident. In the next

section, the simulations will be repeated after adding the actuator dynamics.



60 Hybrid Controller – Design Methodology

0 1 2 3 4 5 6 7
time (sec)

-5

0

5

di
sp

la
ce

m
en

t 
(m

m
)

target system - ξ
1

2-DOF system - x
3

(a)

0 1 2 3 4 5 6 7
time (sec)

-150

-100

-50

0

50

100

150

ve
lo

ci
ty

 (
m

m
/s

)

target system - ξ
2

2-DOF system - x
4

(b)

Fig. 3.7 Displacement and velocity of mass m2 controlled to follow the reference system with
the hybrid active & semi-active controller without actuators dynamics. The hybrid controller is
switched-on at time 2 seconds, (a) displacement, (b) velocity
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Fig. 3.8 Displacement and velocity of mass m1 controlled to follow the reference system with
the hybrid active & semi-active controller without actuators dynamics. The hybrid controller is
switched on at time 2 seconds, (a) displacement, (b) velocity
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Fig. 3.10 Open-loop frequency response of the actual system showing resonance peaks at 2.7
and 6.8 Hz, (a) displacement of mass m2, (b) displacement of mass m1
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Fig. 3.11 Closed loop frequency response of the actual system, (a) displacement of mass m2, (b)
displacement of mass m1
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3.5 Simulation Results with Actuator Dynamics

So far the controller has been analytically designed and tested in simulation without

the actuator dynamics. The performance of the controller is satisfactory, however; to

implement it in practice the actuator dynamics need to be incorporated in the simulations.

The test rig that will be used for hardware-in-the-loop testing has a hydraulic actuator

and an MR damper. As a part of hardware-in-the-loop testing, the hydraulic actuator

will be used to replicate one degree of freedom in a 2-DOF system. The MR damper

will be utilised as a semi-active device and to introduce the active actuator dynamics

in the simulation; a second order low-pass filter with the cutoff frequency of 50 Hz is

incorporated in the simulation with saturation limits of ± 250 N. The actuators need to

be modelled and tested in the simulation with the controller, before the HIL testing.

The MR damper is a nonlinear device, with hysteresis behaviour. This means

that the current output not only depends on the current input and states but also on

the history. Different models have been developed for the MR damper with different

complexity levels. MR damper models are categorised in two distinct ways. The first

categorization is based on the modelling techniques. i.e parametric or non-parametric.

In parametric modelling the design is accomplished mathematically whereas is non-

parametric modelling, experimental data is used for designing the model. The second

categorization is based on the model estimation i.e. Quasi-steady state models or

dynamical models. Quasi-steady state model estimates the behaviour only in the steady

state whereas the dynamical model estimates the behaviour in both the transient and

steady states.

Dynamical models are well suited for control applications. One of the simple

models is the Bingham plastic model, which estimates the behaviour in the steady state.

Bingham plastic model assumes that the fluid is in post yield phase and does not take

into account the pre yield behaviour [137], which is important for dynamical models.

Later, the Bouc-Wen model was proposed [53]. In this model, a non-parametric element

is added to account for the hysteresis. The visco-elastic plastic model was also proposed

for the MR damper, in which nonlinear shape functions determine the pre-yield and
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post-yield behaviour. Some models from non-parametric design methodology include

Chebyshev polynomials and sixth order polynomials, fitted to the experimental data.

In [138] a general MR model has been presented with a quasi-steady state model

in series with two masses and a linear spring. The design approach is general rather

than for a particular MR damper. The behaviour of the damper has been thoroughly

studied in previous literature; in the present work, the MR damper model presented in

[138] is used. Figure 3.12 shows a schematic representation of a unified MR damper

model [138] that has been used in our simulations. The corresponding equations for the

unified MR damper are given as

Ka(xb − xa)−χa(ẋa, I) = m1ẍa (3.43)

fsa −Ka(xb − xa) = m2ẍa (3.44)

Here ma is fluid mass, mb is piston head mass, Ka is fluid compressibility, χa is a

quasi-steady damping function, xa is displacement of ma, xb is displacement of mb, and

fsa is the output force. The quasi-steady damping function is defined as

χa(ẋa, I) =


Cpreẋa ẋa ≤

Fy

Cpre

Cpost ẋa +Fysgn(ẋa) ẋa >
Fy

Cpre

(3.45)

where

Cpre = 4.1357+99.4736tanh(1.0697I)

Cpost =−0.6167+3.7383tanh(1.3629I)

Fy =−0.0115+1.3063tanh(1.1946I) (3.46)

All the values in (3.46) are calculated by curve fitting in [138].

The input to this MR damper model is a current signal. For that, the control signal

from SMC first needs to be converted to a current signal and then the MR damper
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Fig. 3.12 Schematic representation of the unified MR damper model [138], where ma is fluid
mass, mb is piston head mass, Ka is fluid compressibility, χa is quasi-steady damping function,
xa is displacement of ma, xb is displacement of mb, fsa is the output force

model will generate the desired control signal. To do that, an inner loop controller

design is required that will convert the control signal from SMC to a current signal. A

feed-forward controller has been designed to convert the control signal to the current

signal. Figure 3.13 shows the current controller. The input of current controller is the

relative velocity and the desired force/control signal from the SMC controller.

Fig. 3.13 Feed-forward controller to convert the control signal from SMC to a current signal

An Instron PLL25K servo-hydraulic actuator used in the HIL testing system is

controlled by Instron 8400 controller. The Instron actuator is driven by two Moog servo

values and it converts the hydraulic energy to mechanical energy. A built-in inductive

displacement transducer gives the position of the piston as a feedback signal to the

controller. The Instron actuator is hysteresis free in cyclic and quasi-static operations

up to a nominal value. These type of actuators are used for vibration testing and fatigue

testing.

The Simulink models employed in the simulations for the Instron PLL25K servo-

hydraulic actuator and Instron 8400 controller are provided by the manufacturer. Figure

3.14 shows the block diagram implementation of the hybrid controller with the actuator

dynamics. In this block diagram, the SMC control signal fsmc is converted to current
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signal IMR by the current controller. The current signal IMR goes into the MR damper

model, which eventually generates the control signal fsa. The input to simulated DOF

is fi&i, which eventually gives the displacement x1 as an output. This displacement

signal x1 is the desired or reference signal for Instron controller. The Instron controller

generates a control signal based on the error between the desired signal and feedback

from the LVDT, which measures the displacement of the hydraulic actuator. This control

signal forces the Instron actuator to achieve the desired displacement.
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The same simulations are repeated with a sinusoidal excitation signal at 3 Hz and an

amplitude of 100 N at mass m2. The results are shown in Figures 3.15 and 3.16, which

are very close to the simulation results without the actuator dynamics that were shown

in the previous section. The error between x3 and ξ1 is reduced by 95.8%, as shown in

Figure 3.15a. The error between x1 and ξ1 with the actuator dynamics is reduced by

98% as shown in Figure 3.16a. There are two active control signals shown in Figure

3.17a. One is the output of the I & I controller, which goes into the second order low

pass filter and the second one is the output of the low pass filter. The filter is adding

a delay and saturation limits to the signal. The semi-active control signals shown in

Figure 3.17b, are the output of the SMC controller and the MR damper. In the first two

seconds when the controller is in the off state, the MR damper is acting as a passive

damper and the output can be seen in Figure 3.17b.

The convergence of off-the manifold dynamics to the manifold when the controller

is switched-on is shown in Figure 3.18a during the transient phase and the steady state

phase is shown in Figure 3.18b. The error dynamics convergence is shown in Figure

3.19, both in the transient and steady state phase.

So far it was assumed that the excitation signal is known and the same excitation

signal is given to the target system. Now to take it one step further, the same excitation

is considered as unknown, so in this case the target system is not given any excitation as

it is unknown. The simulation results are shown in Figure 3.20. It can be seen that the

performance is satisfactory, hence the controller is robust against unknown excitation

signal or disturbance. Figure 3.21 shows the active and semi-active control signals for

unknown excitation case.

Finally, the last test was conducted, where the excitation signal is again considered

unknown but random instead of sinusoidal. The results are shown in Figures 3.22 and

the performance of the controller is impressive. This demonstrated that whether the

excitation is sinusoidal or random, known or unknown, in all the cases the controller is

performing very well, which is desirable in practice.
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Fig. 3.15 Displacement and velocity of mass m2 controlled to follow the reference system with
the hybrid active & semi-active controller with actuators dynamics. The hybrid controller is
switched on at time 2 seconds, (a) displacement, (b) velocity
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Fig. 3.16 Displacement and velocity of mass m1 controlled to follow the reference system with
the hybrid active & semi-active controller with actuators dynamics. The hybrid controller is
switched on at time 2 seconds, (a) displacement, (b) velocity



3.5 Simulation Results with Actuator Dynamics 73

0 2 4 6
time (sec)

-400

-200

0

200
f a (

N
)

I&I output
actuator output

(a)

0 2 4 6
time (sec)

-200

-100

0

100

200

300

f sa
 (

N
)

SMC output
MR damper output

(b)

Fig. 3.17 Control signals in hybrid active & semi-active controllers with actuators dynamics.
The hybrid controller is switched on at time 2 seconds, (a) active control signal, (b) semi-active
control signal
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Fig. 3.20 Displacement of mass m1 & m2, controlled to follow the reference system with the
hybrid active & semi-active controller with actuators dynamics and unknown excitation signal.
The hybrid controller is switched on at time 2 seconds, (a) displacement of mass m2, (b)
displacement of mass m1
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Fig. 3.21 Control signals in hybrid active & semi-active controllers with actuators dynamics.
The hybrid controller is switched on at time 2 seconds, (a) active control signal, (b) semi-active
control signal
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Fig. 3.22 Displacement of mass m1 & m2, controlled to follow the reference system with the
hybrid active & semi-active controller with actuators dynamics and random excitation signal.
The hybrid controller is switched on at time 2 seconds, (a) displacement of mass m2, (b)
displacement of mass m1
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3.6 Discussion

Semi-active devices have been used for the past few decades for vibration control in

different applications. There are a lot of advantages to semi-active devices, and some of

them are; they have smaller size, have less power consumption and are passive fail-safe,

etc. The only disadvantage of this device is that it can only dissipate energy, and that is

because of the passivity constraint. So the technique proposed in this Chapter is focused

on the question of how can the capabilities of a semi-active device be further enhanced

with the help of another active actuator. The hybrid active and semi-active controller is

designed in a way that an active actuator, placed somewhere else in the structure, can

assist the semi-active device when the energy is required to be injected into the system.

Then the whole system behaves as close to the fully active system as possible.

After the analytical design of the controller, in which the I & I is used for designing

the controller for the active actuator and the SMC is used to create the controller for the

semi-active device, the simulations are performed without actuator dynamics to check

the controller performance. The simulation results have shown promising results. It can

be seen in Figure 3.7a, that when the proposed hybrid active & semi-active controller

is turned on at 2 seconds, the error between x3 and ξ1 is reduced by 98.6%. The error

between x1 and ξ1 is reduced by 95% as shown in Figure 3.8a . After that, the next step

was to do HIL testing and check that whether the controller will perform the same way.

To do this, some further simulations are required that will include the actuator dynamics

as well, which is a significant step because this will bring different constraints in the

simulation, to replicate the actual system as closely as possible. Again It can be seen

in Figure 3.15a, the error with the actuator dynamics between x3 and ξ1 is reduced by

95.8%. The error between x1 and ξ1 with the actuator dynamics is reduced by 98% as

shown in Figure 3.16a.

Details of the MR damper and hydraulic actuator models used for the simulation

have not been provided because that work has been done previously and has already

been explained in greater detail in the references provided. The focus of this work

is in controller design and its performance. Now one thing that needs to be kept in
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mind is that the same goals i.e. an active actuator assisting a semi-active device can

be achieved with different control strategies. The reason why these particular control

design techniques are chosen is because a robust controller was required to damp the

vibrations and they share the same design approach, and we can define a common target

system for both the controllers.

3.7 Summary

A new robust hybrid active & semi-active control technique has been introduced in

which an active actuator is assisting the semi-active device to achieve the performance

close to a fully active system. The I & I and SMC methodologies have been used for

controller design, as both the design methods share the same design approach. The

I & I has been used to design the controller for active actuator and the SMC is used

to design the controller for the semi-active device. After the analytical design of the

controller, it has been validated in the simulation without the actuator dynamics. To

implement the controller in practice, the actuator dynamics need to be first incorporated

into the simulation. For that purpose, the unified MR damper model [138] has been

used along with the current controller which converts the SMC control signal to current

control signal.

The ultimate goal is to perform the HIL testing, in which one DOF will be simulated

and represented by the hydraulic actuator. The hydraulic actuator model provided by the

manufacturer has been used in the simulation and is controlled by an Instron controller.

The model of the Instron controller utilised in the simulation is also provided by the

manufacturer. After making all these changes, the simulations were run again, and the

results were very close to the one without the actuator dynamics. Now the controller is

ready for HIL testing. In the next Chapter, the experimental setup is described in detail.

Later the HIL implementation of the controller is validated.



Chapter 4

Hybrid Controller – Validation Using

Experimental Analysis

4.1 Experimental Setup

In this Chapter, the experimental setup is explained in detail. The overview of the

complete experimental setup is shown in Figure 4.1. The Simulink file is transferred

from host PC to xPC target through LAN. The data are sent in and out in real time from

xPC target through an N.I. DAC card. The current control signal IMR, first goes to the

Kepco amplifier and then to the MR damper. The displacement of mass m1 goes from

interface board to the Instron 8400 controller. This displacement signal x1 is the desired

or reference signal for Instron controller. The Instron controller then generates a control

signal based on the error between the desired signal and feedback from the LVDT,

which measures the displacement of the hydraulic actuator. This control signal forces

the Instron actuator to achieve the desired displacement. The accelerometer feedback

signal goes to the xPC target through an amplifier.

The load cell gives the combined force of spring and damper that is sent to the xPC

target. The laser displacement sensor is used to measure the displacement of the mass

m2. The excitation signal is generated by rotating unbalanced masses with a brushless

DC motor, whose speed is controlled through a separate motor speed controller.
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Fig. 4.1 Experimental setup, where the Simulink file is transferred from host PC to xPC target through LAN. The data is sent in and out in real time from the xPC
target through an N.I. DAC card, IMR is the current control signal that first goes to the Kepco amplifier and then to the MR damper, x1 is the displacement of mass
m1 which goes to the Instron 8400 controller. The accelerometer feedback signal goes to the xPC target through an amplifier. The load cell that gives the combined
force of spring and damper that is sent to the xPC target. Laser displacement sensor is used to measure the displacement of the mass m2. The excitation signal is
generated by rotating unbalanced masses with a brush-less DC motor, whose speed is controlled through a separate motor speed controller
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The semi-active device is an MR damper, manufactured by Lord Corporation. Lord

Corporation manufactures two types of MR dampers, LORD RD-8040-1 and LORD

RD-8041-1. LORD RD-8040-1 is the short stroke damper, and the LORD RD-8041-1

is the long stroke damper. The MR damper used in the experimental setup is LORD

RD-8040-1 shown in Figure 4.2 along with the linear spring. The damping can be

continuously changed by changing the yield strength of the MR fluid via the magnetic

field. The response time of both the dampers is less than 15 ms. The LORD dampers

are monotube shocks with high-pressure nitrogen gas at 300 psi. The maximum input

current for continuous 30 sec is 1 A. At irregular intervals it can also sustain a maximum

of 2 A. The input voltage is 12 V DC. Other specifications of LORD RD-8040-1 are

given in Table 4.1 10. The maximum nominal damper stroke is set to 27.5 mm. The

spring nominal compression, because of 112 kg mass, is 15 mm.

Fig. 4.2 LORD RD-8040-1 MR damper along with the linear spring

An Instron PLL25K servo-hydraulic actuator, shown in Figure 4.3 is used in the

HIL testing system and is controlled by Instron 8400 controller. The actuator is driven

by an electrical pump along with two Moog servo valves, and it converts the hydraulic

10http://www.lordmrstore.com/_literature_192929/Data_Sheet_DS_RD-8040-1_
and_RD-8041-1

http://www.lordmrstore.com/_literature_192929/Data_Sheet_DS_RD-8040-1_and_RD-8041-1
http://www.lordmrstore.com/_literature_192929/Data_Sheet_DS_RD-8040-1_and_RD-8041-1
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Table 4.1 LORD RD-8040-1 specifications

Properties LORD RD-8040-1 MR damper

Stroke (mm) 55

Extended Length (mm) 208

Body Diameter (mm) 42.1

Shaft Diameter (mm) 10

Tensile Strength (N) 8896

Damper Forces (N)
peak to peak

5 cm / sec @ 1 A 2447
20 cm / sec @ 0 A 667

Operating Temperature (C) 71

energy to mechanical energy. A built-in inductive displacement transducer gives the

position of the piston as a feedback signal to the controller. The actuator is hysteresis

free in cyclic and quasi-static operations up to a nominal value. These type of actuators

are typically used for vibration testing and fatigue testing. The specifications of Instron

PLL25K servo-hydraulic actuator are given in Table 4.2 11.

Fig. 4.3 Instron PLL25K servo-hydraulic actuator

11http://www.instron.com

http://www.instron.com
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Table 4.2 Instron PLL25K servo-hydraulic actuator specifications

Properties Instron PLL25K servo-hydraulic actuator

Force (kN) ± 25

Displacement (mm) ± 50

Velocity (m/s) ± 01

The Labtronics Instron 8400 is a digital servo-hydraulic controller shown in Figure

4.4, which is used in the experimental setup to control the servo-hydraulic actuator. It

is a standalone single axis controller with its display. It has an alpha numeric keypad

and special function keys for user-friendly operations. It has two DSP processors, one

for loop closure and the other for signal conditioning. There are two control modes;

one is with position feedback and the other with load feedback. The control loop is a

digital PID (Proportional, Integral, Differential) with a feed forward gain (PIDF). A

programmable lag term is also available to deal with the resonance.

It can also be used as a function generator to generate signals like sine, triangle,

square, ramp, etc. as a reference signal and can also accept external signals such

as a reference or command signal. It has four digital inputs and four digital output

to communicate with other devices. Programmable peak detectors are used to read

maximum and minimum peaks, programmable limit detectors are used to check the

limits on each transducer signals, two cycle counter are used to count cycles and five

programmable event detectors to detect different conditions.

Fig. 4.4 Instron 8400 controller

The reference current generated from the Matlab/Simulink does not have enough

power to drive the MR damper. A Kepco BOP 20-5M amplifier shown in Figure 4.5, is
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used to amplify the current signal which is then given to the MR damper. The Kepco

BOP 20-5M operates in all four quadrants of the voltage-current axes and because of

that its output as current or voltage can be controlled smoothly and linearly over the

entire range. The BOP 20-5M can function both as a source and a sink. It has high

power bipolar operational amplifiers, so its frequency bandwidth is much higher than

the standard power supply. To check the full potential of BOP 20-5M, the load should

be resistive. In the case of inductive load, it must be slowed down to avoid oscillations.

The Matlab/Simulink is installed in host PC. The controller is designed in Simulink,

and real-time implementation is done through xPC target. The host PC is connected to

the target PC through LAN. The target PC has a National Instrument PCI-MIO-16XE-10

data acquisition card and a RAM of 128 Mb. A C compiler is used to download the

Simulink model as a C programme in the target PC. The interface board is connected to

the target PC and has 8 A/D channels and 2 D/A channels for the real-time interface.

The data is stored on the target PC RAM and is then transferred to a host PC after the

test for further analysis.

Fig. 4.5 Kepco BOP 20-5M amplifier

4.2 Experimental Results

For the experimental results, in the first five seconds the system is vibrating in open-loop

after which the controller is switched-on. Before showing the results of the hybrid

controller, Figure 4.6, is comparing the displacement of the simulated DOF with the

LVDT feedback from the hydraulic actuator. It is clearly evident that the simulated

DOF is represented in the HIL testing by the hydraulic actuator. Figure 4.7 shows the

displacement and velocity of mass m2 being controlled to follow the reference system
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in which a single mass, m1 +m2, is assumed. It can be seen that the simulated system

followed the reference system more closely than the experimental results.

The reason is that in simulation, the excitation signal was a perfect sine wave at 2.8

Hz with a known phase. In the experimental test, the excitation signal was generated by

a rotating unbalanced masses with a brush-less DC motor, whose speed is controlled

through a separate motor speed controller. The speed controller keeps the speed of the

motor close to the desired speed but there is a small variation in the speed, so its not a

perfect single frequency sine wave, and the phase is also unknown. Despite these issues,

the results are very good which suggests that the behavior is sufficiently robust to the

uncertainties in the experimental excitation signal. Figure 4.8 shows the displacement

and velocity of mass m1. Again, the results are satisfactory. Then the control signals

are shown in Figure 4.9. As the controller is switched-on at 5 seconds, both active

and semi-active control signals go to their maximum value to bring off-the-manifold

dynamics and error dynamics to the manifold and sliding surface respectively. The

same phenomenon was observed in the simulation results.
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Fig. 4.6 Comparing the simulated DOF displacement with the hydraulic actuator displacement
from LVDT. The hybrid controller is switched on at time 5 seconds
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Fig. 4.7 Displacement and velocity of mass m2 controlled to follow the reference system with the
hybrid active & semi-active controller. The hybrid controller is switched on at time 5 seconds,
(a) displacement, (b) velocity
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Fig. 4.8 Displacement and velocity of mass m1 controlled to follow the reference system with the
hybrid active & semi-active controller. The hybrid controller is switched on at time 5 seconds,
(a) displacement, (b) velocity
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Fig. 4.9 Control signals in hybrid active & semi-active controller. The hybrid controller is
switched on at time 5 seconds, (a) active control signal, (b) semi-active control signal



4.3 Comparison With Other Controllers 91

4.3 Comparison With Other Controllers

To illustrate the effectiveness of proposed hybrid active & semi-active controller, the

proposed hybrid controller is compared to two straightforward scenarios with reference

to Table 4.3. The hybrid active & passive controller involves using the MR damper as a

purely passive device. For the semi-active controller, the active actuator is completely

absent from the system. Figure 4.10 shows the active and semi-active control signal in

the hybrid active & semi-active controller. Here, the MR damper can only work in the

dissipative region and when energy is required to be injected into the system then the

active actuator is assisting the semi-active device.

One of the biggest problems with the semi-active controller is "clipping" [139],

which occurs when the semi-active device is unable to inject energy into the system

and so the control is switched off. Figures 4.11a and 4.11b show the semi-active

control signals with respect to the relative velocity, time in hybrid active & semi-active

and semi-active controllers respectively. The clipping is reduced to a large extent in

the hybrid active & semi-active controller as compared to the semi-active controller,

because as the controller switches off in the hybrid active & semi-active controller,

the active actuator injects the desired energy and the semi-active device returns to the

dissipative region.

Figure 4.12a shows the experimental displacement of mass m2 with the semi-active

controller. After 5 seconds the controller is turned on, and the actual system cannot

achieve the target system. Figure 4.12b also shows the displacement of mass m2 with

a hybrid active & passive controller, its performance is better than the semi-active

Table 4.3 Simplified controller architecture used for comparison

Hybrid Hybrid Semi-Active
(active & semi-active) (active & passive)

Hydraulic
Actuator I & I I & I Absent

MR
Damper SMC Off (Passive) SMC
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controller, but still it cannot achieve the target system. However, the proposed hybrid

active & semi-active controller can achieve the target system as shown in Figure 4.7a.

Figures 4.13a and 4.13b show the error dynamics in the simulation and experiment

respectively. It can be seen that the hybrid active & semi-active controller performance

is significantly better than the other two controllers. If the amplitude of the excitation

signal is increased from 70 N to 1000 N, then the difference in the performance of the

controller can be seen more clearly in Figure 4.13c.

Figures 4.14 and 4.15 show the manifold with the off-the-manifold dynamics and

sliding surface with error dynamics respectively in three different cases. In the first case

both the controllers are in the off state. In the second case, the semi-active controller

is turned on, and the distance between the manifold and off-the-manifold dynamics is

decreased. In the third case, the hybrid controller is turned on, and off-the manifold

dynamics comes very close to the manifold. The same pattern is followed by the error

dynamics in Figure 4.15.
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Fig. 4.10 Active & semi-active control signals in hybrid active & semi-active controller. Active
control signal is in the energy injection region and semi-active control signal is in the energy
dissipation region without clipping
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Fig. 4.11 Semi-active control signal in hybrid active & semi-active and semi-active controllers,
(a) with respect to the relative velocity, (b) with respect to the time
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Fig. 4.12 Displacement of mass m2 controlled to follow the reference system, (a) with a semi-
active controller, (b) with hybrid active & passive controller
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One of the advantages of an MR damper is its low energy consumption, which

comes with the cost of passivity constraint. Figure 4.16a shows the energy consumption

of the MR damper in passive, semi-active and hybrid control regions. The energy

consumption of the MR damper is taken to be:

EC = RMR

∫ t

0
i2dt (4.1)

where i is the input current to the MR damper, RMR is the MR damper internal resistance,

and EC is the energy consumption of MR damper over the time t. In the passive mode,

the current input to the MR damper is zero. One of the important observations to note is

that the energy consumption in the semi-active region is greater than that in the hybrid

region whereas the performance is better in the hybrid region. Hence the proposed

hybrid controller has further reduced the energy consumption of the MR damper in

addition to the performance enhancement.
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Fig. 4.13 Error dynamics (a) error dynamics with Ud=70 N (simulation), (b) error dynamics
with Ud=70 N (experiment), (c) error dynamics with Ud=1000 N (simulation)



4.3 Comparison With Other Controllers 97

x
3
 (mm)

z 
(m

m
)

x
4
 (mm/s)

10
0

-10

-10

0

-0.6 -0.4

10

-0.2 0 0.2 0.4

Manifold

15.41 mm

(a)

x
3
 (mm) x

4
 (mm/s)

z 
(m

m
)

10
0

-10

-10

0

-0.5

10

0 0.5

Manifold

8.06 mm

(b)



98 Hybrid Controller – Validation Using Experimental Analysis

z 
(m

m
)

x
3
 (mm) x

4
 (mm/s)

10
0

-10

-10

0

-0.5

10

0 0.5

Manifold

1.67 mm

(c)

Fig. 4.14 Manifold with off-the-manifold dynamics (a) in open-loop , (b) with semi-active
controller, (c) with hybrid controller

ξ2(mm/s)

e
(m

m
)

ξ1(mm)

0.5

0-5
10 5 0

0

-0.5-5 -10

5

Sliding surface

4.67 mm

(a)



4.3 Comparison With Other Controllers 99

ξ1(mm)

e
(m

m
)

ξ2(mm/s)

0.5

0-5
10 5 0

0

-0.5-5 -10

5

2.45 mm

Sliding surface

(b)

ξ1(mm)

ξ2(mm/s)

e
(m

m
)

0.5

0-5
10 5 0

0

-0.5-5 -10

5

Sliding surface

(c)
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Fig. 4.17 Frequency response, (a) simulation, (b) experimental
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Figure 4.16b shows the energy dissipation of the MR damper which is given as:

ED =
∫ t

0
fsavrdt (4.2)

where fsa is the MR damper output force, vr is relative velocity across the MR damper

and ED is MR damper dissipated energy. The dissipated energy keeps on decreasing

as we move from passive to semi-active and finally to the hybrid region. On the other

hand, the performance keeps on showing significant improvement. Figure 4.17 show

the frequency response in simulation and experiment. It can be seen that the hybrid

controller shows significant attenuation in the vibration.

4.4 Discussion

This research concluded that the performance of a semi-active device could be improved

with the assistance of an active actuator located somewhere else in the system via the

proposed hybrid active & semi-active control methodology. The results obtained both

in the simulation and experiment have reinforced the proposed idea. As previously

mentioned, it should be noted that the simulation and experimental results are not

exactly the same because the excitation signal in the experiment is generated through

an unbalanced rotating mass. There is a small variation in the speed of the rotating

motor, and the phase is also unknown. In spite of these issues, the results are very good,

which demonstrates the robustness of the hybrid active & semi-active controller for the

example system.

For a quantitative analysis of the three controllers as compared in Figure 4.13, a

performance index is defined as an absolute value of the radius of phase plane shown

in Figure 4.13. It can be seen that when the proposed hybrid active & semi-active

controller is turned on, the error is reduced by 88%. In comparison, the other two

controllers i.e. hybrid active & passive and semi-active, the error is reduced by 73%

and 41% respectively. In Figure 4.13, the amplitude of the excitation signal has been



4.5 Summary 103

increased from 70 N to 1000 N. The proposed hybrid active & semi-active controller

has reduced the error by 92%, and the other two controllers have reduced the error by

68%. Therefore the performance of the proposed hybrid active & semi-active controller

is better than the other two controllers in both the cases of low and high amplitude

excitation signals. In the case of the high amplitude excitation signal, the performance

index of the proposed hybrid active & semi-active controller has been further increased

by 4%.

This idea is general and is not restricted to either the controller methodologies

or the example presented in this Chapter. The same results might be achieved by

combining different control techniques; however, this is beyond the scope of the current

proof-of-concept study. HIL testing is used because there is a freedom to change the

system parameters in the simulated part of the model which in this study included the

non-linearity.

4.5 Summary

It is always vital to implement the analytical design on a practical system because at

the end of the day it needs to deal with real world problems. The experimental setup

that is used for HIL testing is described in detail. The hybrid active & semi-active

control technique that has been introduced in Chapter 3, is validated using HIL testing

in which an active actuator is assisting the semi-active device to achieve performance

close to that of a fully active system. The switching time of the semi-active controller

has been reduced to a large extent by the hybrid active & semi-active controller because

the active actuator injects the desired energy as the semi-active controller switches off,

following which the semi-active device returns to the dissipative region.

The proposed control technique has been compared with semi-active and hybrid

active & passive controllers. Based on the performance index defined in Section 4.4, the

proposed controller performance is better than the other two controllers. The idea has

been implemented on a 2-DOF mass-spring-damper example system that also includes
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a cubic stiffness nonlinearity. The results from HIL testing has shown good results in

achieving the control objectives.



Chapter 5

Hybrid Controller Application

5.1 Introduction

In this Chapter the practical applicability of the hybrid controller designed in Chapter

3 is illustrated by considering its application to a pantograph-catenary system. The

use of high-speed trains not only improves the efficiency of transportation but also

has a very positive impact on the environment in terms of controlling air pollution.

High-speed trains can achieve a speed around 350-450 km/h. Hence it is crucial to

have a permanent contact between pantograph and catenary. The electric current from

catenary to train transformer flows through the pantograph. In an ideal scenario, the

contact between pantograph and catenary should be permanent, but due to the flexibility

in the structure of catenary and pantograph, as the train speed increases the oscillations

keeps on rising and the contact is not guaranteed, which results in electric arcs and

eventually deteriorating the current collection from catenary.

One solution to avoid loss of contact is to increase the contact force, but this will

result in wear and tear due to the excessive contact force. It is vital to keep the contact

force constant without causing any damage to the pantograph-catenary system. Another

solution is to increase the tension in the contact wire which means increasing the

equivalent stiffness. This solution is very expensive. The catenary presents a time

varying stiffness, which is dependent on the train speed. To solve this problem different

control strategies have been proposed using active actuators.
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There are mainly three types of pantograph-catenary models used in the literature for

control purposes. In [35–37, 140] the pantograph is modelled as a 2-DOF mass spring

damper system and the catenary is designed as a time varying spring. In [141–145]

the pantograph is modelled as a 2-DOF mass spring damper system and catenary is

modeled as spring with fixed stiffness. In addition to that, a spring with fixed stiffness

is added to represent the pantograph shoe. In [146–148] the pantograph is modelled

as a 3-DOF mass spring damper system, and the catenary is designed an SDOF mass

spring damper system with time varying mass, time varying stiffness and time varying

damping.

To evaluate the performance of the proposed controller, the first two pantograph-

catenary models are used. The hybrid controller is designed in a way that an active

actuator is assisting a semi-active device in achieving a performance close to a fully

active system. The semi-active device can only work in the dissipative energy region.

In the energy injection region, the semi-active controller has to be switched off, and the

semi-active device behaves as a passive device. In the proposed control methodology,

when the semi-active controller is about to switch off before going into the energy

injection region, the active actuator injects the required energy into the system and

pushes the semi-active device back into the dissipative region.

In Section 5.2 the pantograph-catenary models are introduced. The hybrid controller

design is presented with detail in Section 5.3. The simulation results are presented in

Section 5.4 with detailed discussion, and conclusions are given in Section 5.5.

5.2 Pantograph-Catenary System

Two models of the pantograph-catenary system are used in this study. In the first model

shown in Figure 5.1b, the pantograph is represented as a 2-DOF mass spring damper

system with a time varying stiffness representing the catenary behaviour. In the second

model shown in Figure 5.1c, the pantograph design is the same, and the catenary is

modelled as a spring with constant stiffness. Additionally, the pantograph shoe is

represented with a linear spring.
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Fig. 5.1 Pantograph-catenary system, where fa represents the force of an active actuator and
fsa represents the force of a semi-active device. m1 & m2 represent the masses, K1 and K2
are the linear spring stiffness, K(t) is the time varying catenary stiffness, C1 and C2 are the
damping coefficients,Ks is the pantograph shoe stiffness, Kcat is the constant catenary stiffness.
(a) pantograph-catenary system, (b) 2-DOF pantograph-catenary model with time varying
catenary stiffness, (c) 2-DOF pantograph-catenary model with constant catenary stiffness

The system can be represented in state space form as

ẋ1 = x2,

ẋ2 =
1

m1

(
fa − fsa −K1x1 −C1x2 −K2(x1 − x3)−C2(x2 − x4)

)
,

ẋ3 = x4,

ẋ4 =
1

m2

(
fsa −K2(x3 − x1)−C2(x4 − x2)−K(t)x3

)
, (5.1)

where x1 and x2 are the position and velocity of mass m1 respectively, x3 and x4 are

the position and velocity of mass m2 respectively, fa represents the force of the active

actuator, fsa represents the force of the semi-active device, m1, m2 represent the masses,

K1, K2 are the linear spring stiffness, K(t) is the nonlinear spring stiffness, C1 and C2

are the damping coefficients. K(t) is defined as

K(t) = K0

(
1+αscos(

2πV
L

t)
)

(5.2)



108 Hybrid Controller Application

where V is the train speed, L is the span length, K0 is average equivalent stiffness, αs is

stiffness variation coefficient in a span. K0 and αs has been identified using (5.3).

K0 =
Kmax +Kmin

2
, αs =

Kmax −Kmin

Kmax +Kmin
(5.3)

5.3 Hybrid Controller Design

As two models of the pantograph-catenary system are defined, hence two target systems

are shown in Figure 5.2. First the controller is designed for the system shown in Figure

5.1b, with the corresponding target system shown in Figure 5.2a. The order of the target

system is lower than the order of the actual system, and the mapping functions are

defined as virtual dynamics, to represent the actual system dynamics (off-the-manifold)

that are not present in the target system.
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(a)

mt

Kt

Ct

1

Ks

Xcat
Kcat

f

(b)

Fig. 5.2 Target system, where ξ1 and ξ2 represents the position and velocity of the mass mt , f̄
will be computed after defining the mapping functions, Kt is the linear spring stiffness, Ct is the
damping coefficient. (a) target system for 2-DOF system with time varying catenary stiffness,
(b) target system for 2-DOF system with constant catenary stiffness

The dynamics of the target system are given by

ξ̇1 = ξ2,

ξ̇2 =
1

mt

(
f̄ −Ktξ1 −Ctξ2 −K(t)ξ1

)
, (5.4)
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where ξ1 and ξ2 represent the position and velocity of the mass mt respectively, and

f̄ =W +u, u represents the controller signal and W is the function that will be computed

after defining the mapping functions.

The next step is to design a controller for the target system. The same PI controller

is used here, as defined in Chapter 3. The PI controller is given as

u = Kaep +Kb

∫
epdt −Kc ḟc −Kd fc (5.5)

where Ka = KvKp, Kb = KiKp, Kc = Kv, Kd = Ki, Ki, Kv & Kp are control gains, and ep

is the error.

The mapping functions that need to be defined are given by

π (ξ ) =



π1(ξ 1,ξ 2)

π2(ξ 1,ξ 2)

π3(ξ 1,ξ 2)

π4(ξ 1,ξ 2)


(5.6)

where π1(ξ 1,ξ 2), π2(ξ 1,ξ 2) need to be defined for off-the-manifold coordinates and

π3(ξ 1,ξ 2) = x3(π1,π2), π4(ξ 1,ξ 2) = x4(π1,π2).

As the target system dynamics (5.4) resembles the dynamics of the actual system

(5.1), in which the vibration needs to be controlled, hence π3(ξ 1,ξ 2) = ξ 1. As ẋ1 = x2,

so we can write π4(ξ 1,ξ 2) = ξ 2. Based on (5.7), the mapping functions π1(ξ 1,ξ 2),

π2(ξ 1,ξ 2) are derived from

ξ̇ 2 = π̇4. (5.7)

and

1
mt

(
f̄ −Ktξ1 −Ctξ2 −K(t)ξ1

)
=

1
m2

(
−K2(ξ1 −π1)−C2(ξ2 −π2)−K(t)ξ1

)
(5.8)
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The mapping functions selected are

π1 =
(
−m2

(
K(t)+Kt

)
K2mt

+1
)

ξ1 +α1ep +α2

∫
epdt +α3K(t)ξ2 +α4K(t)ξ1, (5.9)

π2 =
(
−m2

(
K(t)+Kt

)
K2mt

+1
)

ξ2 −α1K(t)ξ2 +α2ep +α3K(t)ξ̇2 +α4K(t)ξ2. (5.10)

and f̄ is defined as

f̄ =
(
− C2

K2

(
K(t)+Kt

)
+Ct

)
ξ2 +u (5.11)

The four unknowns α1, α2, α3, α4 are found out by substituting π1, π2, f̄ in (5.8).

To check the asymptotic stability of the target system, the target system dynamics

are compared with a single mass system dynamics (5.12) in the same way as shown in

Chapter 3. From the Lagrangian formulation the dynamics of a single mass are

ξ̇ 1 = ξ 2

ξ̇ 2 =−E
′
−ξ 2R (5.12)

where E is the potential energy function and R is the damping function and a dash

represents differentiation with respect to the state vector.

Comparing (5.4) and (5.12) gives

E
′
=

1
mt

(
mtK(t)

m2
+Kt +K(t)

)
ξ1, (5.13)

R =
C2

K2

(
K(t)+Kt

)
, (5.14)

and

E =
1

2mt

(
mtK(t)

m2
+Kt +K(t)

)
ξ1

2. (5.15)
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A Lyapunov function is defined as a generalized energy function

Vi&i =
1
2

ξ 2
2 +E. (5.16)

The target system dynamics will have an asymptotically stable equilibrium at the origin

if the following conditions are satisfied by the Lyapunov function defined in (5.16)

V (0,0) = 0 (5.17a)

V (ξ 1,ξ 2)> 0, in D−{0} . D → Rp (5.17b)

V̇ (ξ 1,ξ 2)< 0, in D−{0} . (5.17c)

where V (ξ 1,ξ 2) is the energy function, and D is the subset of Rp in which the Lyapunov

function is defined.

As a result

V̇i&i (ξ 1,ξ 2) =−Rξ 2
2. (5.18)

The first two conditions (5.17a) and (5.17b) are satisfied by the Lyapunov function

defined in (5.16). The third condition (5.17c) where V̇i&i (ξ 1,ξ 2) should be negative

definite, is satisfied when R is positive. As can be seen from (5.14), R is always positive.

Therefore, the selected target system has an asymptotically stable equilibrium at the

origin.

The error between the off-the-manifold dynamics and the mapping functions is

defined as

z = x1 −π1 (5.19)
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and the manifold is defined as

M =−k1z− k2ż (5.20)

where ż = x2 −π2. The gains k1 and k2 are chosen in such a way that (s2 + k2s+ k1) is

Hurwitz. The last step in the I & I methodology is to compute the control law, which is

done using

z̈ = ẋ2 − π̇2 (5.21)

and

z̈ =
1

m1

(
fa − fsa −K1x1 −C1x2 −K2(x1 − x3)−C2(x2 − x4)

)
− ∂π2

∂x3
ẋ3 −

∂π2

∂x4
ẋ4.

(5.22)

The control signal fa is given by

fa =

(
− k1z− k2ż+

∂π2

∂x3
ẋ3 +

∂π2

∂x4
ẋ4

)
m1 +K1x1 +C1x2 +K2(x1 − x3)

+C2(x2 − x4) (5.23)

where

∂π2

∂x3
=−α2K(t)−α3

1
m2

(
K2 +K(t)

)
, (5.24)

and

∂π2

∂x4
=− m2

K2mt

(
K(t)+Kt

)
+1+(α4 −α1)K(t)−α3

C2

m2
(5.25)

The next step is to design a controller for the semi-active device, and here the sliding

mode controller is used in the same way as in Chapter 3, so instead of showing the

complete controller design, only the final results are presented.
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The control signal is given as

fsa = fn −
m2

λ2

(
Ksmcsgn(S)

)
(5.26)

where Ksmc is a design parameter and strictly positive and fn is given as

fn =
m2

λ2

(
−λ1(x4 −ξ2)

)
+m2ξ̇2 +K2(x3 − x1)+C2(x4 − x2)+K(t)x3. (5.27)

So, the controller will be switched-on, when the relative velocity vr across the MR

damper and the control signal fsa have opposite signs and will be switched-off otherwise.

This condition is imposed on fsa in (5.28) and is called the passivity constraint.

fsa =


fn −

m2

λ2

(
Ksmcsgn(S)

)
fsavr < 0

0 fsavr > 0
(5.28)

where vr = x4 − x2.

For the second pantograph-catenary model shown in Figure 5.1c, the state space

equations given in (5.1) are the same with only one change. The term K(t)x3 is replaced

with Ks(x3 − xcat). An additional equation

Kcatxcat +Ks(xcat − x3) = 0 (5.29)

is introduced because of the pantograph shoe.

As xcat is considered to be unknown, in order to replace xcat , (5.29) is used. From

(5.29)

xcat =
Ks

Kcat +Ks
x3 (5.30)

Eventually in (5.1) the time varying stiffness term K(t) is replaced with Ks −
Ks

2

Kcat +Ks
.

After designing the hybrid controller for both the pantograph-catenary models, the

simulation results are shown in the next section.
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5.4 Simulation Results

Figure 5.3 shows the contact force in an open-loop with an uplift force of 100 N. At

100 km/h, the contact force is around 100 N as shown in Figure 5.3a. The open-loop

performance can be further improved, with tuning of passive damper. When the train

speed in increased from 100 km/h to 300 km/h, it can be seen in Figure 5.3b, that the it

is not possible to keep the contact force around 100 N and there is also loss of contact

between 1.5 and 2.5 second. It can be concluded from the open-loop results that the

passive devices can give satisfactory results in low speed rails/trams where the top speed

is around 70-80 km/h, but for high speed trains the passive devices are not sufficient

enough.

Table 5.1 shows the pantograph-catenary system parameters. The gains designed

for the controllers are shown in Table 5.2. To introduce the actuator dynamics in

the simulation; a second order low-pass filter with the cutoff frequency of 50 Hz is

incorporated in the simulation with saturation limits of ± 250 N for both the active

actuator and the semi-active device.
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Fig. 5.3 Contact force in open-loop with an uplift force of 100 N (a) with train speed of 100
km/h, (b) with train speed of 300 km/h

Table 5.1 Pantograph-catenary system parameters

Parameters Notations Values

K0 3.6 kNm−1

Catenary αs 0.5

L 65 m

Kcat 1535 kNm−1

Pantograph shoe Ks 82.3 kNm−1

m2 8 kg

Pantograph head C2 120 Nsm−1

K2 10 kNm−1

m1 12 kg

Pantograph frame C1 30 Nsm−1

K1 100 Nm−1
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Table 5.2 Controller gains

PI controller I&I controller SMC controller

Kp = 10 ka = 5000 Ksmc = 10

Kv = 1.1 kb = 450 λ1 = 1

Ki = 70 λ2 = 1

Figure 5.4 shows the contact force in the actual and target systems under normal

conditions with a constant train speed of 300 km/h. The reference contact force is 100

N. It can be seen that the actual system is following the target system. The oscillations

in the steady state shows a very small variation of ± 1 N in the contact force. These

oscillations are influenced by the speed of the train because the catenary is modeled as

a time varying stiffness, where one of the factor affecting the stiffness is the train speed.

To check the performance of the controller against variable train speed, a speed

profile is generated as shown in Figure 5.5a. Figure 5.5b shows the contact force in

the actual and target system for the variable train speed. Again the performance of the

controller is satisfactory.
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Fig. 5.4 Contact force in actual and target systems under normal conditions, where the solid
red line represents target system data, the dashed blue line represents the actual system data
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The manifold with off-the-manifold dynamics is shown in Figure 5.6. The sliding

surface with error dynamics is shown in Figure 5.7. It can be seen that both off-the-

manifold dynamics and error dynamics are converging onto the manifold and the sliding

surface respectively. Figures 5.8 shows the active and semi-active control signals in the

hybrid controller. To check the robustness of the controller, band-limited white noise is

added to mass m2 at time 5 second, and the results are shown in Figure 5.9a. In the first

case the amplitude of the band-limited white noise is 10% of the saturation limits of

the active actuator. Then it is increase to 30% and finally to 50%. In all the three cases

shown in Figure 5.9a, performance of the controller against band-limited white noise is

good.

Figure 5.9b shows the saturation effects and bandwidth consideration of the active

actuator and semi-active device. A step disturbance signal with an amplitude of 50 N is

added to mass m2 at time 5 second. In this case, the hybrid controller performed well.

Then the amplitude of the step disturbance signal is increased to 150 N and now it is not

possible for the hybrid controller to keep the contact for constant between pantograph

and catenary. In the last case the amplitude of the step disturbance signal is increased

to 250 N, which is equal to the saturation limits of the active actuator and semi-active

device. It can be seen in Figure 5.9b, that the contact between pantograph and catenary

is lost.

Figure 5.10 shows the contact force in the actual and target systems for the second

case where the catenary is modelled as a constant stiffness. It can be seen that there are

no oscillations in the steady state at 100 N because the catenary is modelled as a constant

stiffness. The hybrid control methodology using active actuator and semi-active device

has minimized the oscillations between the pantograph and catenary by keeping the

contact force between them constant. One of the advantages of using the proposed

hybrid controller is that a semi-active device can easily be mounted on the pantograph

upper arm without compromising the weight and the size. To assist the semi-active

device and to achieve the desired performance, an active actuator is placed at the base

of the pantograph.
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line represents target system data, the dashed blue line represents the actual system data (a)
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5.5 Summary

In this Chapter, an application of the hybrid controller is demonstrated. The hy-

brid control methodology, presented in Chapter 3, is implemented on a high-speed

pantograph-catenary system. The control objective is to keep a constant contact force

between the pantograph and catenary. The proposed controller has shown promising

results both under normal conditions and in the presence of band-limited white noise,

which demonstrates the robustness of the controller. Then the robustness was also

checked against variable train speed with different slope variations and the results are

satisfactory.

Two models of the pantograph-catenary system, one with time varying stiffness

representing the catenary behaviour and other with a constant stiffness are used for the

validation of the controller.





Chapter 6

Reduced Order Observer – Design

Methodology and Validation

6.1 Introduction

Sensors are often the most expensive elements of a system, so to reduce the overall cost,

the number of sensors ideally needs to be reduced. In some situations, it is difficult

to place a sensor at a specific location, because of the environmental conditions or

the structural design. It is often not possible to measure all the states of a dynamical

system. The states are mostly required for control or monitoring purposes. Low-quality

sensors can also add feedback noise to the system and degrade the overall performance

of the controller. Some actuators available in the market have pre-installed sensors to

measure the displacement or speed, but the cost of such actuators tends to be very high.

Furthermore, to obtain the velocity, the displacement signal needs to be differentiated.

Filtering needs to be done before differentiating which adds phase delay and ultimately

affects the controller performance.

The solution to all these problems is to use an observer [149–151]. In this Chapter

a reduced order observer using the notion of an invariant manifold will be presented

and the system under consideration is the same as described in Chapter 3, so rather

than assuming perfect measurements the states of the system will be observed. The
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concept of an observer design was started in 1958 by Kalman and Bertram [152]. In

1960 further work was done by Kalman and then later in 1961 by Kalman and Bucy. In

1964 Luenberger introduced a new design methodology for an observer design [153].

The approach was deterministic rather than stochastic, and the observer had a reduced

order as compared to the original system.

For nonlinear systems, the theory of linear observer design has been extended e.g.

extended Luenburger observer [154, 155] or extended Kalman filter [156, 157]. As a

result, the estimation is limited to a small domain and requires high computation power.

In 1973 Thau [158] and then in 1975 Kou [159] were the first to attempt nonlinear

techniques for the observer design. Since then a lot of work has been done on the

observer design using nonlinear theory but mostly limited to certain classes of system

that cannot typically be generalised to broader classes of systems.

The observers based on Lyapunov theory give sufficient conditions for the existence

of the observer for nonlinear systems [160–162]. It may be possible for the low-

order nonlinear systems to satisfy the conditions presented in the theorems based on

Lyapunov theory but it is hard to find higher order nonlinear systems that can meet those

conditions [163]. The observers based on extended linearization techniques linearize

the error dynamics through a nonlinear output injection function [164–166]. This type

of observer works locally at a fixed point but for multi-input-multi-output systems, the

design methodology can be very complicated.

For nonlinear observers, models based on Lie-algebraic theory have also been used

as described in the literature [167, 168]. In these techniques, the problems linked with

nonlinear observer design have been dealt with by using linear techniques that exploit

linear observer theory. One of the advantages of using Lie algebraic theory over the

extended linearization techniques is that in the former case the observer is valid in

any region where the transformation exists, whereas in the latter case the observer

is designed at a fixed point. This method can also be used to create an observer for

multi-input-multi-output systems. The down side of this technique is that the nonlinear
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system must satisfy both a non-generic condition along with the finding of a necessary

state transformation, which is not an easy task.

Generally, there are two ways to deal with observer design in nonlinear systems

[19]. If the system nonlinearities are a linear function of unmeasured states or are

monotonic, then observers based on linear theory can be used, or passivity can be

exploited. Alternatively, the observer requires an existence of an attractive and invariant

manifold. These types of observers are comprised of a linear filter and nonlinear output

mapping functions. The theory of sliding mode has also been used to design observers

for both linear and nonlinear systems [169, 170].

The observer design in the sliding mode methodology resembles the one proposed

in this Chapter up to the extent of defining an asymptotically stable surface, which

is called the sliding surface in the former and a manifold in the latter. In the sliding

mode observer, the sliding surface is defined in terms of the error between the estimated

and known states. A discontinuous/switching function is defined to bring the error

dynamics to the sliding surface [171, 172]. Whereas in the proposed approach the

observer design is reduced to make the error dynamics asymptotically stable, which

depends on the definition of the mapping functions. The sliding mode observer is known

for its insensitivity to parameter variation and disturbance rejection but the observer

matching condition restricts the applicability of the sliding mode observer, and the

system has to be minimum phase [173, 174]. This means that all the zeros of the system

should be in the left half plane, or in other words the internal dynamics of the system

need to be stable for the design of the first order sliding mode observer. To overcome

this issue higher order sliding mode observers are proposed [175, 176]. However, the

technique proposed in the present contribution could be extended, in a similar fashion

for non-minimum phase systems [19].

There are mainly two types of sliding mode observer. The models based on equiva-

lent control methods are the Utkin observers and the type based on Lyapunov methods

are the Walcott and Zak observers [177]. The Utkin sliding mode observers [178]

do not have a static observer gain. The disadvantage of not having a static observer
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gain is that the state estimation can be performed only with the bounded error and not

asymptotically. The Walcott and Zak observers have a static observer gain and the error

is reduced based on system uncertainty. Another disadvantage of traditional sliding

mode observers is the high-frequency switching action.

The theory for the observer developed by Astolfi et al. [19], has been implemented

on many systems, such as the ball and beam system, the range estimation in a vision

system and the magnetic levitation system. The present contribution builds upon these

previous studies by demonstrating an application of the observer to a real mechanical

system both in an open loop and closed loop, so that the robustness to parameter

variation, external disturbance and measurement noise, can be explored for the first

time. Therefore, the idea presented by Astolfi et al. is further extended to systems

with nonlinear stiffness. In this work a reduced order observer using the notion of

an invariant manifold has been designed for a 2-DOF mass-spring-damper system to

estimate the displacement and velocity of one of the masses. In addition, a comparative

study is presented with an observer based on the off-line solution of the Riccati equation

for systems with Lipschitz type nonlinearity.

In [179–182] the observer designs based on the solution of the Riccati equation are

proposed for systems with Lipchitz type nonlinearity. In the above mentioned literature,

the only test performed to check the validity of the observer is that of different initial

conditions given to the actual system, and it is shown that the observer is converging. In

addition to that, the robustness of the observer against parameter variation, measurement

noise or external disturbance is also not being discussed. In this Chapter in addition

to the initial condition test, both the proposed observer and the observer based on the

off-line solution of the Riccati equation are tested for robustness against parameter

variation, measurement noise and external disturbance.

The approach presented in this Chapter requires the existence of a manifold that

should be invariant and attractive [183–187]. The manifold is made invariant by a

nonlinear filter and attractive by the proper selection of mapping functions. To prove

the validity of the proposed observer, it is compared with a very well known nonlinear



6.2 Proposed Observer Design Methodology 129

observer based on Lipschitz type non-linearity presented in [188], which relies on the

off-line solution of the Riccati equation. The reason for this comparison is that the

system under consideration has a Lipschitz type nonlinearity.

In Section 6.2 the proposed observer design methodology is presented. The proposed

observer design is applied to the example system in Section 6.3. The example system is

the same as described in Chapter 3, so the states of the system will be observed instead

of assuming perfect measurements. In Section 6.4 an observer based on Lipschitz type

non-linearity is designed for the same example system. Simulation and experimental

results with discussion are presented in Section 6.5 and Section 6.6 respectively. Finally,

the summary is presented in Section 6.7.

6.2 Proposed Observer Design Methodology

Consider a nonlinear, time-varying system described as

η̇ = f (η ,y, t), (6.1)

ẏ = h(η ,y, t), (6.2)

where η ∈ Rq is the unmeasured state, y ∈ Rz is the measurable output, an over-dot

represents differentiation with respect to time, f (η ,y, t) and h(η ,y, t) are nonlinear

functions. It is assumed that f (η ,y, t) and h(η ,y, t) are forward complete, i.e. trajecto-

ries starting at time t0 are defined for all times t ≥ t0.

Let η̂ ∈ Rs represent the observer state. Then the dynamical system

˙̂η = αo(η̂ ,y, t), (6.3)

is called an observer for the system (6.1)-(6.2), if there exist mappings

β : Rs ×Rz ×R→ Rs,
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φ : Rq → Rs,

with φ left invertible, such that the manifold

Mt = {(η ,y, η̂) ∈ Rq ×Rz ×Rs : β (η̂ ,y, t) = φ (η)} , (6.4)

has the following properties [19]:

1. All trajectories of the extended system (6.1)-(6.3) that start on the manifold Mt

at time t remain there for all future times, τ > t i.e. Mt is positively invariant.

2. All trajectories of the extended system (6.1)-(6.3) that start in a neighborhood of

Mt asymptotically converge to Mt .

A mapping function Ψ(x,y, t) : Rl ×Rz ×R→ Rs is left invertible with respect to x, if

there exists another mapping ΨL : Rs ×Rz ×R→ Rl such that ΨL(Ψ(x,y, t),y, t) = x

for all x ∈ Rl and for all y, t.

So from the above definition of left invertibility, the estimate of η is given by φ L(φ(η))

and the estimate on the manifold is given by φ L(β (η̂ ,y, t)), as the estimation error

η̂ −η is zero on the manifold.

Proposition :

Consider the system (6.1)-(6.3), and suppose that there exist mappings, β : Rs ×Rz ×

R→Rs and φ : Rq →Rs, with φ left invertible, such that the following conditions hold.

(A1) The mapping function β should be chosen such that det

(
∂β

∂ η̂

)
̸= 0.

(A2) Because the off-the-manifold trajectories are given as

z = β (η̂ ,y, t)−φ (η) , (6.5)

the z dynamics are then given as
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ż =
∂β

∂ η̂
αo(η̂ ,y, t)+

∂β

∂y
h(η ,y, t)+

∂β

∂ t
− ∂φ

∂η
f (η ,y, t). (6.6)

On the manifold, z and ż will converge to zero and then the function αo(η̂ ,y, t) will

be an observer for the system (6.1)-(6.2), given by

αo(η̂ ,y, t) =

(
∂β

∂ η̂

)−1(
− ∂β

∂y
h(φ L(β (η̂ ,y, t)),y, t)− ∂β

∂ t
+

∂φ

∂η

∣∣∣∣
η=φ L(β (η̂ ,y,t))

f (φ L(β (η̂ ,y, t)),y, t)

)
.

(6.7)

For dynamics that are not on the manifold (i.e. z ̸= 0), then substituting the function

αo(η̂ ,y, t) from (6.7) in (6.6) and making sure that (A1) holds, gives

ż =
∂β

∂y

(
h(η ,y, t)−h(φ L (φ (η)+ z) ,y, t)

)
− ∂φ

∂η
f (η ,y, t)+

∂φ

∂η

∣∣∣∣
η=φ

L(φ(η)+z)

f
(
φ

L (φ (η)+ z) ,y, t
)
.

(6.8)

The mapping functions should be selected in such a way that (6.8) has a (locally)

asymptotically stable equilibrium at z = 0, uniformly in η ,y, t , where φ L is the left

inverse of φ and z is the distance between system trajectories and the manifold.

It can be seen from (6.7) that (A1) should hold for the existence of function

αo(η̂ ,y, t). (A2) should hold for the asymptotic convergence of off-the-manifold tra-

jectories towards the manifold and making sure that the distance z is going to zero.

The function αo(η̂ ,y, t) renders the manifold invariant and (A2) makes the manifold

attractive. So the problem of observer design has been reduced into making the ż

dynamics asymptotically stable.
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6.3 Proposed Observer Design for the Example System

The purpose is to design an observer that will operate efficiently for this closed loop

system. More specifically, an observer that can estimate the displacement and velocity

for one of the two degrees-of-freedom is a suitable solution in this case. The equation

of motion for the two degree-of-freedom system presented in Chapter 3 is given by

(6.9), where X1 and X2 represent the displacement of mass m1 and m2 respectively, fa

represents the force of the active actuator, fsa represents the force of the semi-active

device (MR damper), m1, m2 represent the masses, K1, K2 are the linear spring stiffness,

K3 is the nonlinear spring stiffness, C1 is the damping coefficient and Ud is an excitation

signal.

 m1 0

0 m2


 Ẍ1

Ẍ2

+
 C1 0

0 0


 Ẋ1

Ẋ2

+
 K1 +K2 −K2

−K2 K2


 X1

X2


=

 −K3

0

X3
1 +

 fa − fsa

fsa −Ud

 (6.9)

The system can be represented in state space form as

ẋ1 = x2,

ẋ2 =
1

m1

(
fa − fsa −K1x1 −C1x2 −K2(x1 − x3)−K3x3

1

)
,

ẋ3 = x4,

ẋ4 =
1

m2

(
fsa −K2(x3 − x1)−Ud

)
, (6.10)

where x1 and x2 are the unknown states representing the displacement and velocity of

mass m1 respectively; x3 and x4 are the known states representing the displacement and

velocity of mass m2, respectively.

Following the observer design methodology presented in Section 6.2, the mapping

functions φ(x1,x2) and β (η̂ ,x3,x4) can be defined as
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φ(x1,x2) =


x1

x2

K3x3
1

 ; β (η̂ ,x3,x4) =


β 1 (η̂ ,x3,x4)

β 2 (η̂ ,x3,x4)

β 3 (η̂ ,x3,x4)

 (6.11)

where η̂ represents the observer states. The mapping φ(x1,x2) is defined in terms of

the unknown states, in such a way that the rank of the matrix is equal to the number of

rows; hence the condition of left invertibility is satisfied. The mapping β (η̂ ,x3,x4) is

defined in terms of the known states and the observer states.

Here z represents the distance between system trajectories and the manifold, such

that

z = β (η̂ ,x3,x4)−φ(x1,x2). (6.12)

The error dynamics are then given as

ż =
∂β

∂ η̂

˙̂η +
∂β

∂x3
ẋ3 +

∂β

∂x4
ẋ4 − φ̇(x1,x2), (6.13)

which becomes

ż =
∂β

∂ η̂

˙̂η +
∂β

∂x3
x4 +

∂β

∂x4

1
m2

(
fsa −K2(x3 − x1)

)
−


x2

ẋ2

3K3x2
1x2

 , (6.14)

leading to
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ż =
∂β

∂ η̂

˙̂η +
∂β

∂x3
x4 +

∂β

∂x4

1
m2

(
fsa −K2(x3 − (β1 − z1))

)
−

β2 − z2

1
m1

(
fa − fsa −K1(β1 − z1)−C1(β2 − z2)−K2(β1 − z1 − x3)−

(β3 − z3)
)

3K3(β1 − z1)
2(β2 − z2)


(6.15)

Selection of the mapping functions is a non-trivial task. If the β (η̂ ,x3,x4) mapping

function is selected in such a way that (A1) holds then the observer dynamics can be

selected as in (6.7) to give

˙̂η =

(
∂β

∂ η̂

)−1(
− ∂β

∂x3
x4 −

∂β

∂x4

1
m2

(
fsa −K2(x3 −β1)

))
+

(
∂β

∂ η̂

)−1



β2

1
m1

(
fa − fsa −K1β1 −C1β2 −K2(β1 − x3)−β3

)
3K3β 2

1 β2


(6.16)

Then the error dynamics become

ż =
∂β

∂x4

1
m2

(
−K2z1 −C2z2

)
−



−z2

1
m1

(
(K1 +K2)z1 +C1z2 +C2z2 + z3

)
−3K3x2

1z2


(6.17)
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Now the mapping function β (η̂ ,x3,x4) needs to be selected in such a way that (A1)

and (A2) are satisfied. The β (η̂ ,x3,x4) mapping function is selected as

β (η̂ ,x4) =

[
η̂1 η̂2 η̂3 +

3K3m2υx4

C2

]ᵀ
, (6.18)

where υ is a constant.

1. The first condition that needs to be satisfied by the β (η̂ ,x3,x4) mapping function

is det
(

∂β

∂ η̂

)
̸= 0. For the function given in (6.18) we have

det
(

∂β

∂ η̂

)
= 1

Therefore the first condition is satisfied.

2. The second condition is that the error dynamics

ż =



z2

− 1
m1

(
(K1 +K2)z1 +(C1 +C2)z2 + z3

)
−3K2K3υz1

C2
−3K3υz2 +3K3x2

1z2


(6.19)

should have an asymptotically stable equilibrium at z = 0. As the error dynamics

are nonlinear, to analyze the stability, Lyapunov function is used. Let

V (z) =
1
2

(
z2

1 + z2
2 + z2

3

)
(6.20)

as a Lyapunov function, which is positive definite.

Then

V̇ (z) =−

(
C1 +C2

m1

)
z2

2 −

(
K1 +K2

m1
−1

)
|z1||z2|−

(
3K2K3υ

C2

)
|z1||z3|

−

(
3K3υ +

1
m1

)
|z2||z3|< 0

(6.21)
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As

V (0) = 0 (6.22a)

V (z)> 0, in D−{0} (6.22b)

V (z) is radially unbounded (6.22c)

V̇ (z)< 0, in D−{0} . (6.22d)

Hence the equilibrium point z = 0 is global asymptotic stability, where D is the

subset of Rp in which the Lyapunov function is defined.

In the next section the proposed observer is compared with an observer based on

Lipschitz type nonlinearity.

6.4 Observer Design Based on Lipschitz Type Nonlin-

earity

For comparison purposes a nonlinear observer based on the off-line solution of the

Riccati equation is designed for the system under consideration. This method is very

well known for the class of systems that have Lipschitz type nonlinearity. The example

system in this Chapter has a cubic stiffness, which is locally Lipschitz. As there is a

limit on its growth due to the mechanical constraint, which makes it globally Lipschitz.

Consider a system of the form

ẋ = Ax+g(t,u,y)+ f (t,u,x) (6.23)

y =Cx

where x ∈ Rn is the system state, y ∈ Rz is the system measurable output, u ∈ Rm is the

input, A and C are constant matrices, g : R×Rm×Rz →Rv, f : R×Rm×Rv →Rv, and

an over-dot represents the differentiation with respect to time. The nonlinear function
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f (t,u,x) is assumed to be globally Lipschitz in x with a Lipschitz constant γ . A and C

are assumed to be observable.

For the system in (6.23) the observer is defined as

˙̂x = Ax̂+g(t,u,y)+ f (t,u, x̂)+L(y−Cx̂) (6.24)

where x̂ represents the observer state, L ∈ Rn×z is the observer gain matrix. The error

dynamics are represented as

˙̃x = (A−LC)x̃+ f (t,u,x)+ f (t,u, x̂) (6.25)

where x̃ = x− x̂.

Now the algorithm below presents a method to choose L which will make the error

dynamics stable

1. Set ε to a positive value.

2. Solve the following Algebraic Riccati Equation (ARE)

AP+PAᵀ+P
(

γ
2I − 1

ε
CᵀC

)
P+ I + εI = 0. (6.26)

3. If P is symmetric and positive definite, then setting

L = (
1

2ε
)PCᵀ (6.27)

in (6.24) gives stable error dynamics (6.25).

4. If not, set ε =
ε

2
and go to step 2. If ε is below some precision value, abandon

method.

The 2-DOF mass-spring-damper system (5.1) can be represented as

ẋ = Ax+ f (x)+g(y)u (6.28)



138 Reduced Order Observer – Design Methodology and Validation

where

A =



0 1 0 0

−(K1 +K2)

m1
−(C1 +C2)

m1

K2

m1

C2

m1

0 0 0 1

K2

m2
0 −K2

m2
0


; g =



0 0

1
m1

− 1
m1

0 0

0
1

m2



f =



0

0

0

−K3x3
1


; C =



0 0

0 0

1 0

0 1



ᵀ

A function f (x) is said to be globally Lipschitz if there exists a constant γ such that for

all xa,xb ∈ Rn, the following holds,

| f (xa)− f (xb)| ≤ γ|xa − xb| (6.29)

To find the Lipschitz constant for the system under consideration, (6.29) is used as

| f (x1a)− f (x1b)| ≤ |K3x3
1a −K3x3

1b|

| f (x1a)− f (x1b)| ≤ γ|x1a − x1b| (6.30)

where γ = |K3||x2
1a + x1ax1a + x2

1b|. As there is a constraint on x1 ≤ 27.5 mm because

of the mechanical design, this puts a saturation limit on the amplitude of nonlinearity

and makes the system globally Lipschitz. The Lipschitz constant γ = 7.56 is computed

using (6.30).
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To compute the observer gain matrix L, the algorithm described above is used, ε is

set to 1, and P is computed by solving the Riccati equation given in (6.26) using Matlab

resulting in

P =



2.6699 −0.1297 −0.7979 0.0098

−0.1297 0.0189 −0.0039 0.0101

−0.7979 −0.0039 2.0582 −0.1985

0.0098 0.0101 −0.1985 0.0477


(6.31)

P is symmetric and positive definite, hence L is computed using (6.27), and the result is

that

L =

−0.3990 −0.0020 1.0291 −0.0993

0.0049 0.0051 −0.0993 0.0238


ᵀ

(6.32)

After designing the observers using both the proposed approach and the observer

based on Lipschitz type nonlinearity, the simulation results are shown in the next section.

6.5 Simulation Results and Discussion

After designing observers for the 2-DOF mass-spring-damper system using the proposed

technique and the method based on Lipschitz type nonlinearity, simulations were carried

out using Matlab/Simulink to check the performance of both the observers under

different conditions. Figures 6.1 shows the actual and estimated displacement and

velocity of mass m1 respectively under different conditions. Under normal conditions

i.e. without any parameter variation or any phase change in the excitation signal, the

performance of both the observers is satisfactory as shown in Figure 6.1a. In Figure

6.1b delay has been added to the phase of the excitation signal and the performance of

the proposed observer is better than the observer based on Lipschitz type nonlinearity.

Figure 6.1c shows the same signals but with the varied system parameters. Both the
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masses m1 and m2 are increased by 25% and again the proposed observer is performing

better.

To check the performance of both the observers against measurement noise, band-

limited white noise is added to the acceleration of mass m2. Both the observers are

estimating well, but at some points, the proposed observer performance is better, as

shown in Figure 6.2a. Now the band-limited white noise is added to the displacement

of mass m2. In this case, again the performance of the proposed observer is impressive,

whereas, on the other hand, the observer based on Lipschitz type nonlinearity is not

performing well as shown in Figure 6.2b. To further check the robustness of both the

observers against different disturbances; a ramp, step, sinusoidal and random signals

are used. Figure 6.3a and Figure 6.3b show the performance of both observers against

step and ramp disturbance signals respectively introduced at mass m2 for a period of

one second and starting at one second. Both the disturbance signals start at one second

and ending at two second. Again the proposed observer out-performed the other.
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Fig. 6.1 Simulated actual and estimated displacement and velocity of mass m1. The solid red line
represents actual measurements, the dashed blue line represents the estimated measurements
using the proposed observer, the dash-dot black line represents the estimated measurements
using the observer based on Lipschitz type nonlinearity, (a) under normal conditions, (b) with
phase delay in the excitation signal, (c) with 25% increase in both the masses.
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(a)
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Fig. 6.2 Simulated actual and estimated displacement and velocity of mass m1 with measurement
noise (band-limited white noise). The solid red line represents actual measurements, the dashed
blue line represents the estimated measurements using the proposed observer, the dash-dot
black line represents the estimated measurements using the observer based on Lipschitz type
nonlinearity, (a) Band-limited white noise is added to the acceleration of mass m2, (b) Band-
limited white noise is added to the displacement of mass m2.
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(a)

(b)

Fig. 6.3 Simulated actual and estimated displacement and velocity of mass m1 with step and
ramp disturbance signals introduced at mass m2 for a period of one second and starting at one
second. The solid red line represents actual measurements, the dashed blue line represents the
estimated measurements using the proposed observer, the dash-dot black line represents the
estimated measurements using the observer based on Lipschitz type nonlinearity, (a) with step
disturbance signal, (b) with ramp disturbance signal.
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(a)

(b)

Fig. 6.4 Simulated actual and estimated displacement and velocity of mass m1 with sinusoidal
disturbance signal at mass m2 for a period of one second and starting at one second. The
solid red line represents actual measurements, the dashed blue line represents the estimated
measurements using the proposed observer, the dash-dot black line represents the estimated
measurements using the observer based on Lipschitz type nonlinearity, (a) with sinusoidal
disturbance of 1 Hz, (b) with sinusoidal disturbance of 100 Hz.



6.5 Simulation Results and Discussion 145

0 1 2 3 4 5
time (sec)

-2

-1

0

1

2

x 1 (
m

m
)

(a)

0 1 2 3 4 5
time (sec)

-60

-40

-20

0

20

40

60

x 2 (
m

m
/s

)

(b)

Fig. 6.5 Simulated actual and estimated displacement and velocity of mass m1 with random
disturbance signal at mass m2. The solid red line represents actual measurements, the dashed
blue line represents the estimated measurements using the proposed observer, the dash-dot
black line represents the estimated measurements using the observer based on Lipschitz type
nonlinearity, (a) actual and estimated displacement of mass m1, (b) actual and estimated velocity
of mass m1.
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Fig. 6.6 Simulated actual and estimated displacement and velocity of mass m1 with different
initial conditions. The solid red line represents actual measurements, the dashed blue line
represents the estimated measurements using the proposed observer, the dash-dot black line
represents the estimated measurements using the observer based on Lipschitz type nonlinearity,
(a) actual and estimated displacement of mass m1, (b) actual and estimated velocity of mass m1.
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In Figure 6.4a and Figure 6.4b, a sinusoidal disturbance of 1 Hz and 100 Hz is

introduced at mass m2 respectively for a period of one second and starting at one second.

At low-frequency sinusoidal disturbance, the proposed observer is performing better

whereas at high-frequency sinusoidal disturbance both the observers are performing

well. In Figure 6.5 a random disturbance is introduced at mass m2, and again the

proposed observer estimation is quite good as compared to the observer based on

Lipschitz type nonlinearity.

In Figure 6.6 different initial conditions are given to the actual system. The con-

verging rate of the proposed observer is faster than the observer based on Lipschitz

type nonlinearity. Robustness of the observer is an important aspect, especially when it

needs to be used in the closed-loop control system. The results shown here demonstrate

the potential of the proposed observer in terms of robustness to both parameter variation

and phase change in the excitation signal.

6.6 Experimental Results and Discussion

In the experimental test, the excitation signal is generated by rotating unbalanced masses

driven by a brushless DC motor, whose speed is controlled by a separate motor speed

controller. The speed controller keeps the speed of the motor close to the desired speed

but there is a small amount of variation, so it is not a perfect single frequency sine wave,

and the phase is also unknown. Figure 6.7 shows the actual and estimated displacement

and velocity of mass m2 respectively under three different conditions.

As mentioned earlier, the phase of the excitation signal is not known, so after doing

several trials, results are selected such that the phase of the excitation signal generated

experimentally best matched the phase applied to the simulation results. In this case,

both the observers are estimating quite well as shown in Figure 6.7a. In Figure 6.7b

the excitation signal has deliberately introduced phase delay and then in Figure 6.7c

both the masses m1 and m2 are increased by 25% in addition to the phase delay. In both

cases, the proposed observer continues to perform well, which experimentally validates

the simulation results.
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Fig. 6.7 Experimental actual and estimated displacement and velocity of mass m1. The solid
red line represents actual measurements from the LVDT, the dashed blue line represents the
estimated measurements using the proposed observer, the dash-dot black line represents the
estimated measurements using the observer based on Lipschitz type nonlinearity, (a) under
normal conditions, (b) with phase delay in the excitation signal, (c) with 25% increase in both
the masses.

For quantitative analysis, a performance index is defined in terms of the absolute

value of the radius of the phase planes shown in Figure 6.8. This demonstrates the

deterioration in performance for both the observers, with the parameter variation and

phase change in the excitation signal. The phase planes in Figure 6.8 are plotted using

experimental data. The error is increased from 0.5 mm to 3 mm for the observer based

on Lipschitz type nonlinearity in both the scenarios as shown in Figures 6.8b and 6.8c,

but for the proposed observer, the error remains almost the same in all the cases.

To further check the robustness of both the observers to parameter variation, a

comparison is summarised in Table 6.1. Simulation results are used to investigate a

broader range of parameter variations. It can be concluded that the proposed observer is

robust to the parameter variation, measurement noise, different type of external distur-
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Table 6.1 Comparison of observers based on parameter variation

System parameters Proposed Lipschitz based
(25% increase) observer error (mm) observer error (mm)

m1 & m2 0.13 0.96

K1 & K2 0.18 1.04

C1 & C2 0.05 0.5

bances and phase change in the excitation signal for the range and type of parameters

considered in this study.
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Fig. 6.8 Error dynamics in experiment, where the solid red line represents the error dynamics in
the proposed observer and the dashed black line represents the error dynamics in the observer
based on Lipschitz type nonlinearity, (a) under normal conditions, (b) with 25% increase in
both the masses, (c) with phase delay in the excitation signal
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Fig. 6.9 Experimental actual and estimated displacement and velocity of mass m1 with hybrid
active & semi-active controller, where the solid red line represents actual measurement from
LVDT, the dashed blue line represents the estimated measurement using the proposed observer.
The hybrid controller is switched on at time 3 seconds. (a) actual and estimated displacement of
mass m1, (b) actual and estimated velocity of mass m1.
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The final step is to check the performance of the proposed observer as part of a

closed loop control system in the experimental setup. The controller used a hybrid

combination of a semi-active device and an active control actuator to suppress vibrations.

Figure 6.9 shows the actual and estimated displacement and velocity of mass m1 in the

closed loop system. The results show excellent agreement.

6.7 Summary

One of the major issues with nonlinear observers is that most of them did not give a

structural design methodology and if they do, then some of the conditions are very

hard to meet. Secondly, most of them are designed for a particular class of systems,

like the one that is used for comparison purposes, it is only applicable to the systems

that have Lipschitz type nonlinearity and satisfies the globally Lipschitz conditions.

The proposed observer is not restricted to any class of system as long as an invariant

manifold exists and it also provides a structured design methodology. Robustness is a

fundamental property, especially when the observer needs to be used in a closed loop

control system because the performance of the controller depends on the estimated

signals. A qualitative analysis has been performed based on the performance index

defined in Section 6.6. It is shown that the proposed observer is robust to the parameter

variation, measurement noise, different type of external disturbances and phase change

in the excitation signal, whereas there is an increase in the error in all the scenarios for

the observer based on Lipschitz type nonlinearity.

To conclude a method to design a reduced order observer for a nonlinear system

has been presented. A systematic design method for the observer has been explained

in detail. Then the performance of the proposed observer was tested using a 2-DOF

example system. As part of this process, the proposed observer was compared with a

well-known observer based on Lipschitz type non-linearity. Based on this comparison,

the conclusion is that the new observer has a clear performance benefit, with significant

potential to be extended to a wider range of nonlinear systems beyond the one considered

here.
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The proposed observer was shown to have a better performance for the parameters

and inputs selected in the example 2-DOF system. In particular, the robustness of the

proposed observer against parameter variation and excitation signal for the example

2-DOF system is shown to be better in both simulation and experiment. Finally, the

proposed observer was found to perform well when tested in a closed loop with a hybrid

active and semi-active controller system.



Chapter 7

Conclusions and Future Work

7.1 Summary of Thesis

The summary of the thesis is as follows:

• The motivation, background, effects of vibration in different fields and thesis

outline have been presented in Chapter 1.

• In Chapter 2 the literature review was presented in detail with linear and nonlinear

systems being discussed. Then the passive damping devices used for the vibration

suppression and vibration isolation were discussed. The semi-active devices were

discussed and MR damper was described in detail. A comparison between MR

and ER dampers was presented. Active control devices were then discussed briefly.

After that, the control strategies used alongside these actuators for vibration

suppression were presented. In the end the I & I and SMC control methodologies

were introduced and the literature related to both I & I, and SMC were described

in detail.

• The hybrid control methodology was illustrated in Chapter 3. The I & I control

method has been used to design the controller for the active actuator and SMC has

been used to design the controller for the semi-active device. After the analytical

design, the performance of the controller was tested in simulation, and the results
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were presented. Then the dynamics of both the active actuator and the semi-active

device was introduced, and the simulations were repeated.

• In Chapter 4 the experimental setup was presented. For practical implementation,

HIL testing was performed for the hybrid controller validation. The results from

HIL testing has shown good results in achieving the control objectives. The

switching time of the semi-active controller has been reduced to a large extent

by the hybrid active & semi-active controller because the active actuator injects

the desired energy as the semi-active controller switches off, following which the

semi-active device returns to the dissipative region. In the end, a comparison was

made with some benchmark controllers and the proposed controller performance

was better than the other controllers.

• To illustrate the effectiveness of the proposed hybrid controller, the possible

application was discussed in Chapter 5. The hybrid controller was implemented

to keep the contact force constant in the pantograph-catenary system of high-

speed trains. A detailed derivation was given after which the simulation results

were presented.

• A reduced order observer using a notion of the invariant manifold was designed for

the same 2-DOF system in Chapter 6. The analytical design of the observer was

described in detail. All the derivations were presented along with the simulation

results. After validation and satisfactory results, the observer was implemented in

practice using HIL both in open loop and closed loop with the hybrid controller. A

comparison has also been made with a benchmark observer based on the Lipschitz

type nonlinearity.
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7.2 Key Conclusions

The conclusions of the thesis is as follows:

• Semi-active devices have a lot of advantages; however, the downside of such

devices is the passivity constraint, i.e., they can only operate in the dissipative

energy regions. To deal with this problem, an idea has been presented in which an

active actuator can assist the semi-active device to achieve the performance close

to a fully active system. The fully active system is the reference/target system.

The results obtained both in the simulation and experiment have reinforced the

proposed idea.

• In order to achieve the goal of an active actuator assisting the semi-active device,

the control techniques selection is done accordingly. The selected control method

needs to be robust and cater for the nonlinearities. The I & I methodology fits well

in these circumstances. In this control technique a reduced order target system

needs to be defined, and then the higher order system dynamics are immersed

into the lower order target system. The semi-active device is located at the point

where the vibration needs to be controlled, the SMC control methodology has

been chosen for the controller design of the semi-active device. The SMC control

method comes under the umbrella of the I & I methodology. The two controllers

complement each other as they are trying to achieve the same target system.

• After the analytical design of the controller, it has been validated in the simulation

without the actuator dynamics. To implement the controller in practice, the

actuator dynamics need to be first incorporated into the simulation. For that

purpose, the unified MR damper model has been used along with the current

controller which converts the SMC control signal to current control signal. The

ultimate goal is to perform the HIL testing, in which one DOF will be simulated

and represented by the hydraulic actuator. The hydraulic actuator model provided

by the manufacturer has been used in the simulation and is controlled by an Instron

controller. The model of the Instron controller utilised in the simulation is also
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provided by the manufacturer. After making all these changes, the simulations

were run again, and the results were very close to the one without the actuator

dynamics.

• After the satisfactory simulation results, the hybrid active & semi-active controller

has been validated using HIL testing in which an active actuator is assisting the

semi-active device to achieve performance close to that of a fully active system.

HIL testing has shown promising results. The switching time of the semi-active

controller has been reduced to a large extent by the hybrid active & semi-active

controller because the active actuator injects the desired energy as the semi-active

controller switches off, following which the semi-active device returns to the

dissipative region.

• The proposed control technique has been compared with semi-active and hybrid

active & passive controllers. For a quantitative analysis of the three controllers, a

performance index is defined as an absolute value of the radius of error dynamics

phase plane. It was shown that when the proposed hybrid active & semi-active

controller is turned on, the error is reduced by 88%. In comparison, for the

other two controllers i.e. hybrid active & passive and semi-active, the error is

reduced by 73% and 41% respectively. The proposed hybrid active & semi-active

controller has reduced the error by 92%, and the other two controllers have

reduced the error by 68%, when the amplitude of the excitation signal has been

increased from 70 N to 1000 N. Therefore the performance of the proposed hybrid

active & semi-active controller is better than the other two controllers in both

the cases of low and high amplitude excitation signals. In the case of the high

amplitude excitation signal, the performance index of the proposed hybrid active

& semi-active controller has been further increased by 4%.

• In high-speed trains, the contact force between pantograph and catenary ideally

needs to be constant. The proposed hybrid controller was implemented to keep

the contact force constant. It has shown promising results both under normal
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conditions and in the presence of the band-limited white noise, which demon-

strates the robustness of the controller. Then the robustness was also checked

against variable train speed with different slope variations and the results were

satisfactory.

• A method to design a reduced order observer for a nonlinear system has been

presented. One of the major issues with nonlinear observers is that most of them

did not give a structural design methodology and if they do, then some of the

conditions are very hard to meet. Secondly, most of them are designed for a

particular class of systems. The proposed observer is not restricted to any class of

system as long as an invariant manifold exists and it also provides a structured

design methodology. Both simulations and experiments have shown promising

results. A comparison has also been made with a benchmark observer based on

Lipschitz type nonlinearity. Based on this comparison, the proposed observer has

a clear performance benefit, with significant potential to be extended to a wider

range of nonlinear systems beyond the one considered here. In particular, the

robustness of the proposed observer against parameter variation and excitation

signal for the example 2-DOF system is shown to be better in both simulation

and experiment. Finally, the proposed observer was found to perform well when

tested in a closed-loop with a hybrid active and semi-active controller.

7.3 Summary of Original Contribution

The summary of the contribution is as follows:

• A novel hybrid active and semi-active controller has been presented where an

active actuator is assisting a semi-active device.

• I & I and SMC control strategies were combined to achieved the desired perfor-

mance.
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• The proposed hybrid controller was validated both in simulation and practice

using HIL testing.

• A comparison of the controller has been made with some benchmark controllers

and based on the performance index, the proposed controller performance was

better than the other two controllers.

• To further illustrate the effectiveness of the proposed hybrid controller, it has

been used to keep the contact force constant between the pantograph and catenary

in high-speed trains.

• A reduced order observer based on the notion of an invariant manifold has

been designed and to illustrate the performance, first the observer was tested

in simulation. After satisfactory results from simulations, the observer was

tested in practice using HIL testing. The proposed observer has shown robust

performance to the parameter variation, measurement noise, different type of

external disturbances and phase change in the excitation signal for the range and

type of parameters considered in this study.

• A comparison of the proposed observer was made with a benchmark observer

based on Lipschitz type nonlinearity. The proposed observer has shown promising

results in comparison to the observer based on Lipschitz type nonlinearity.

7.4 Recommendations for Future Work

Following are the suggestions for future work:

• In this work it is shown using hybrid control that an active actuator can assist the

semi-active device using an example 2-DOF system. This work can be further

extended by implementing it on n-DOF system. Further work can be done to

optimize the location of the semi-active device in case of n-DOF system. In the

same context, more than one semi-active device can be deployed in n-DOF system,

and the hybrid controller can be exploited to consider how many semi-active
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devices can be assisted by a single active actuator and that how the performance

is effected by increasing the degree of freedom in the system.

• In Chapter 4, HIL testing is performed using the test rig, in which one DOF is

simulated. The test rig can be build as a complete 2-DOF system and the same

tests can be repeated along with new tests to further validate the hybrid controller.

In Chapter 5, practical application for the hybrid controller is presented and the

results are shown in the simulation. A test rig emulating the pantograph-catenary

system can be manufactured to test the hybrid controller.

• In the present work, I & I along with the SMC is used to design the controller for

active actuator and semi-active device respectively. A common target system is

defined for both the controllers. One possible extension of the current work is

that other control techniques can also be explored to achieve a similar or better

performance, in which an active actuator can assist the semi-active device.

• The focus of current work is on vibration suppression using hybrid active and

semi-active control. Although in Chapter 5, the controller is also used to keep the

contact force constant between pantograph and catenary of a high speed train. The

work can be further extended to position control in flexible structures, robotics

and elastic drive systems.

• The goal of the hybrid controller is to make the actual system behave as close

to the target system as possible. One possible extension of the work can be to

define different target system in order to analyze the behavior and limitations of

the hybrid controller. A comparison can be made that which target systems are

possible to achieve and which are not.

• The MR damper can potentially be replaced with a semi-active inerter or varying

stiffness device and using the proposed hybrid controller a comparison can be

made that which of the semi-active device is more appropriate for vibration

suppression in different situations.
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A final area for future work is that of helicopter vibrations. The author has begun a

preliminary study in this area, which is briefly summarised below.

7.4.1 Helicopter Vibrations

The helicopter has its importance in the aerospace industry because of its unique abilities

of take-off, landing, hover, etc. The flight experience of a helicopter for both the crew

and the passengers is not pleasant as compared to aeroplanes because of the vibrations in

the cabin. The primary sources of cabin vibrations are the rotor blade vibrations induced

by the aerodynamics loads and the inertial loads at harmonics frequencies. These cabin

vibrations are passed on to the crew members and the passengers through seats. The

passengers have short-term exposure to these vibrations, but the crew members have

long-term exposure. It has adverse effects both in short and long term.

In the short term, it can cause fatigue, discomfort, headache, operational safety,

etc. In the long term, it can affect the spinal cord and the neck, which can lead to

long-lasting damages. Hence it is vital to control this vibration. In the literature lot of

work has been done to control these vibrations. Passive devices are used to damp the

vibrations, and they are also used as vibration isolation devices, but the problem with

the passive devices is that they can only be tuned to a particular frequency, however in a

helicopter the vibrating frequency spectrum is broad, so the passive devices are not that

efficient, and another issue is that they add lot of weight to the structure, which is very

crucial to the aerospace industry. There are two main approaches to vibration control in

a helicopter. The first is the overall vibration control or in other words, global vibration

control. The second is local vibration control, in which the vibration is controlled

locally in any part of the structure.

In this application, the local vibration control is demonstrated, which is the aircrew

seat vibration control. In [189] the adaptive control has been proposed for vibration

suppression in the helicopter aircrew seat. Further details are presented in [190], where

the seat is modelled as a 2-DOF system and the human upper body is modelled as

a 4-DOF system. The system with a bio-dynamics model is shown in Figure 7.1.
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where m f , k f , c f , are the mass, stiffness coefficient and damping coefficient of the seat

frame respectively, fa is the active actuator force, mc, kc, are the mass and stiffness

coefficient of the seat cushion respectively, fsa is the semi-active device force, mp1, kp1,

cp1, are the mass, stiffness coefficient and damping coefficient of lower torso of the

bio-dynamics model respectively, mp2, kp2, cp2, are the mass, stiffness coefficient and

damping coefficient of the viscera of the bio-dynamics model respectively, mp3, kp3,

cp3, are the mass, stiffness coefficient and damping coefficient of the upper torso of the

bio-dynamics model respectively, mp4, kp4, cp4, are the mass, stiffness coefficient and

damping coefficient of the head and neck of the bio-dynamics model respectively, z0,

z f , zc, zp1, zp2, zp3, zp4 represent the displacements of the helicopter floor, seat frame,

seat cushion, lower torso, viscera, upper torso, head and neck respectively.
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Fig. 7.1 Helicopter crew seat model including the bio-dynamics model
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The proposed hybrid active and semi-active controller can be used in this application

to suppress the aircrew seat vibration. An active actuator is connected between the seat

and the helicopter floor, and the seat cushion is considered to be made of a semi-active

device so that its damping properties can be changed. In this case, the vibrations are

coming from the ground or helicopter floor in contrast to the system used in Chapter 3

where the vibrations were introduced from the top. The ultimate goal is to control the

vibrations that are transmitted to the aircrew helmet. A comparison of the simulation

and test fight results in an open-loop presented in [190], is shown in Figure 7.2, where a

sine sweep excitation signal is given as an input.

Fig. 7.2 Open-loop helicopter aircrew helmet frequency response in simulation and flight test
[190]
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Fig. 7.3 Frequency response of the aircrew helmet, where the solid red line represents the
open-loop response, the dashed blue line represents the closed-loop response
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The hybrid active and semi-active controller is implemented to control the vibrations

transmitted to the bio-dynamics model. A sinusoidal chirp signal with a frequency

ranging from 0.1-50 Hz is given as a helicopter floor disturbance. Figure 7.3, shows the

frequency response of the aircrew helmet in an open and closed-loop. It can be seen that

the system resonates at 2.68 Hz and 17.3 Hz in an open-loop. With the hybrid controller,

the amplitude has been decreased from 0.73 mm to 0.12 mm at first resonant frequency.

At the second resonant frequency the amplitude has been decreased from 0.17 mm to

0.009 mm. These are just preliminary result. In the future work all the tests presented

in [190] can be performed with the proposed hybrid controller and a comparison can be

made with the adaptive controller presented in [190].
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Improving the vibration suppression capabilities of a mag-

netorheological damper using hybrid active and semi-

active control

Smart Materials and Structures Journal

vol. 25, no. 8, p. 085045, 2016

I.U. Khan, D.Wagg, N.D. Sims

University of Sheffield, Department of Mechanical Engineering,

S1 3JD, Sheffield, United Kingdom

Abstract

This paper presents a new hybrid active & semi-active control method for vibration

suppression in flexible structures. The method uses a combination of a semi-active

device and an active control actuator situated elsewhere in the structure to suppress

vibrations. The key novelty is to use the hybrid controller to enable the magneto-

rheological damper to achieve a performance as close to a fully active device as possible.

This is achieved by ensuring that the active actuator can assist the magneto-rheological

damper in the regions where energy is required. In addition, the hybrid active & semi-

active controller is designed to minimize the switching of the semi-active controller.

The control framework used is the immersion and invariance control technique in

combination with sliding mode control. A two degree-of-freedom system with lightly

damped resonances is used as an example system. Both numerical and experimental

results are generated for this system, and then compared as part of a validation study.

The experimental system uses hardware-in-the-loop to simulate the effect of both the

degrees-of-freedom. The results show that the concept is viable both numerically and

experimentally, and improved vibration suppression results can be obtained for the

magneto-rheological damper that approach the performance of an active device.
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Nonlinear robust observer design using an invariant man-

ifold approach

Control Engineering Practice Journal

vol. 55, pp. 69–79, 2016

I.U. Khan, D.Wagg, N.D. Sims

University of Sheffield, Department of Mechanical Engineering,

S1 3JD, Sheffield, United Kingdom

Abstract

This paper presents a method to design a reduced order observer using an invariant

manifold approach. The main advantages of this method are that it enables a systematic

design approach, and (unlike most nonlinear observer design methods), it can be

generalized over a larger class of nonlinear systems. The method uses specific mapping

functions in a way that minimises the error dynamics close to zero. Another important

aspect is the robustness property which is due to the manifold attractivity: an important

feature when an observer is used in a closed loop control system. A two degree-of-

freedom system is used as an example. The observer design is validated using numerical

simulation. Then experimental validation is carried out using hardware-in-loop testing.

The proposed observer is then compared with a very well known nonlinear observer

based on the off-line solution of the Riccati equation for systems with Lipschitz type

nonlinearity. In all cases, the performance of the proposed observer is shown to be very

high.
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Hybrid active and semi-active control for pantograph

catenary system of high-speed train

International Conference on Noise and Control, ISMA 2016

Leuven, Belgium, 19-21 September, 2016.

I.U. Khan, D.Wagg, N.D. Sims

University of Sheffield, Department of Mechanical Engineering,

S1 3JD, Sheffield, United Kingdom

Abstract

In this paper a new hybrid control methodology using active actuator and semi-

active device is proposed to minimize the oscillations between the pantograph and

catenary by keeping the contact force between them constant. One of the advantage of

using the proposed hybrid controller is that a semi-active device can easily be mounted

on the pantograph upper arm without compromising the weight and the size. As the

performance of a semi-active device is restricted because of the passivity constraint. To

assist the semi-active device and to achieve the desired performance an active actuator

is placed at the base of the pantograph. Immersion and invariance (I & I) methodology

is used to design the controller for the active actuator and sliding mode control (SMC)

is used to design the controller for the semi-active device. Simulations show promising

results.
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Hybrid active and semi-active control for vibration sup-

pression in flexible structures

Dynamic Systems and Control Conference, DSCC 2016

Minneapolis, Minnesota, USA, 12-14 October, 2016.

I.U. Khan, D.Wagg, N.D. Sims

University of Sheffield, Department of Mechanical Engineering,

S1 3JD, Sheffield, United Kingdom

Abstract

A new hybrid control methodology is presented for vibration suppression in flexible

structures, where an active actuator is used to assist a nearby semi-active device to

achieve a control performance close to that of a fully active system. The clipping

phenomenon, typical of semi-active control, is reduced to a large extent by the proposed

hybrid controller. The immersion and invariance methodology along with sliding mode

control is used to create the hybrid controller. The result is that as the semi-active

controller switches off in the hybrid controller, the active actuator injects the required

energy into the system. A two degree of freedom system with cubic stiffness is used as

an example system. Both simulation and experiment data are presented to demonstrate

the usefulness of the proposed idea. The proposed hybrid controller shows robust results

as compared to just using a semi-active controller.





Appendix B

Sliding Mode Control

In order to explain the SMC, consider a nonlinear system of the form

ẋ (n) = f (x, t)+g(x, t)u(t) (B.1)

Where x represents the states of the system up to n−1 derivative, n represents the order

of differentiation, u is the control input, f (x, t) and g(x, t) are nonlinear function of x

and t. It is assumed that these nonlinear functions are not exactly known, but the upper

bound on both the functions are known. The estimation error in f (x, t) and g(x, t) can

be expressed as

| f̂ (x, t)− f (x, t)| ≤ F(x, t) (B.2)

|ĝ(x, t)−g(x, t)| ≤ G(x, t) (B.3)

Where f̂ (x, t) and ĝ(x, t) represent the estimation of f (x, t) and g(x, t) respectively. The

error signal e(t), is defined in terms of the actual signal, x and the reference signal, xr.

e(t) = x− xr (B.4)
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The sliding surface S(x, t), is defined as

S(x, t) =

(
d
dt

+λ

)(n−1)

e(t) (B.5)

Where λ > 0 determines that how fast the error dynamics will decay. On the sliding

surface the error dynamics are given by the equation.

(
d
dt

+λ

)(n−1)

e(t) = 0 (B.6)

In order to derive the control law, (B.5) will be used and Ṡ will be computed. As the

error will go towards zero on the sliding surface, Ṡ will also go to zero.

Defining S in terms of error dynamics as S = e (n−1)+ ...+λ (n−1)e

Differentiating S gives

Ṡ = e (n)+ ...+λ
(n−1)ė

Ṡ = x (n)− xr
(n)+ ...+λ

(n−1)ė

Ṡ = f (x, t)+g(x, t)u− xr
(n)+ ...+λ

(n−1)ė (B.7)

Computing û from (B.7) gives

û =
1

ĝ(x, t)

(
− f̂ (x, t)+ xr

(n)− ...−λ
(n−1)ė

)
(B.8)

When Ṡ = 0, then the control signal is given by (B.8). To add the robustness property

to the controller a second part is added to it.

urb = û− K
ĝ(x, t)

sgn(x) (B.9)
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where

sgn(x) =


+1 x > 0

−1 x < 0
(B.10)

and the Lyapunov stability theorem has been used to make sure that the sliding surface

has asymptotic stable origin, towards which the system dynamics will slide. The

Lyapunov function is defined as

V =
1
2

S2 (B.11)

To make sure that the system dynamics will reach in finite time on the sliding surface

another condition is imposed, which is given as

V ≤−ηsmc|S| (B.12)





Appendix C

Controller Gain Design

SMC Controller Gain Design

To find the reaching phase time for the sliding surface, the relationship between S and

Vsmc is used as

V̇smc =−ηsmc|S| (C.1)

Substituting S in the above equation using the relation Vsmc =
1
2S2 gives

V̇smc =−ηsmc
√

2Vsmc (C.2)

dVsmc√
Vsmc

=−ηsmc
√

2dt

Integrating the above equation gives

∫ Vsmc(T )

Vsmc(0)

1√
Vsmc

dVsmc =−ηsmc
√

2
∫ T

0
dt

2
√

Vsmc(T )−2
√

Vsmc(0) =−ηsmc
√

2(T −0) (C.3)
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At time T the sliding surface will be reached and S(T ) = 0 which leads to Vsmc(T ) = 0

2
√

Vsmc(0) = ηsmc
√

2T

T =

√
2Vsmc(0)
ηsmc

(C.4)

where

Vsmc(0) =
1
2

S(0)2

and

S(0) = λ1e1(0)+λ2ė1(0)

λ1, λ2 for the sliding surface S, should be chosen in such a way that x2 +λ2x+λ1 is

Hurtwiz polynomial.

PI Controller Gain Design

In order to find the equations for the controller gains, the closed loop transfer function

of the PI controller with the target system shown in Figure C.1, is given as

Gcl =

KpKi

mts3

1+
KpKi

mts3 +
Ki

mts2 +
Kv

mts

(C.5)

Rearranging (C.5), gives

Gcl =

KpKi

mt

s3 +
Kv

mt
s2 +

Ki

mt
s+

KpKi

mt

(C.6)

The denominator of (C.6) can be written in factor form as

δ = (s2 +2ζ ωns+ω
2
n )(s+a) (C.7)
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Fig. C.1 PI controller block diagram

leads to

δ = s3 +(a+2ζ ωn)s2 +(2ζ ωna+ω
2
n )s+aω

2
n (C.8)

Comparing (C.8) and denominator of (C.6) gives

a+2ζ ωn =
Kv

mt

2ζ ωna+ω
2
n =

Ki

mt

aω
2
n =

KpKi

mt

Finally the controller gains are given as

Kp =
aωn

2ζ a+ωn
(C.9)

Ki = mt(2ζ ωna+ω
2
n ) (C.10)

Kv = mt(a+2ζ ωn) (C.11)
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Clipped optimal control, 29
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magneto-rheological (MR) dampers, 23
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MR fluids, 23

Nonlinear control, 14
nonlinear observers, 153

pantograph, 105
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Piezoelectric dampers, 22

Quasi-steady state models, 65

reduced order observer, 128
relative degree, 33
Riccati equation, 128, 136
robustness, 42, 53

semi-active devices, 4
Semi-active stiffness dampers, 20
semi-active tuned liquid column damper,

21
shear mode, 24
Skyhook control, 28
Sliding mode control, 32
sliding mode observer, 127
squeeze mode, 25

target system, 45, 48, 91
time varying stiffness, 105
topological, 36

unified MR damper model, 66
Utkin sliding mode observers, 127

variable friction dampers, 37
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