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Abstract

This thesis addresses the problem of detection of an unknown binary event. In

particular, we consider centralized detection, distributed detection, and network

security in wireless sensor networks (WSNs). The communication links among SNs

are subject to limited SN transmit power, limited bandwidth (BW), and are modeled

as orthogonal channels with path loss, flat fading and additive white Gaussian noise

(AWGN). We propose algorithms for resource allocations, fusion rules, and network

security.

In the first part of this thesis, we consider the centralized detection and calculate

the optimal transmit power allocation and the optimal number of quantization bits

for each SN. The resource allocation is performed at the fusion center (FC) and

it is referred as a centralized approach. We also propose a novel fully distributed

algorithm to address this resource allocation problem. What makes this scheme

attractive is that the SNs share with their neighbors just their individual transmit

power at the current states. Finally, the optimal soft fusion rule at the FC is derived.

But as this rule requires a− priori knowledge that is difficult to attain in practice,

suboptimal fusion rules are proposed that are realizable in practice.

The second part considers a fully distributed detection framework and we propose

a two-step distributed quantized fusion rule algorithm where in the first step the SNs

collaborate with their neighbors through error-free, orthogonal channels. In the sec-

ond step, local 1-bit decisions generated in the first step are shared among neighbors

to yield a consensus. A binary hypothesis testing is performed at any arbitrary SN

to optimally declare the global decision. Simulations show that our proposed quan-

tized two-step distributed detection algorithm approaches the performance of the

unquantized centralized (with a FC) detector and its power consumption is shown

iv



to be 50% less than the existing (unquantized) conventional algorithm.

Finally, we analyze the detection performance of under−attack WSNs and derive

attacking and defense strategies from both the Attacker and the FC perspective.

We re-cast the problem as a minimax game between the FC and Attacker and show

that the Nash Equilibrium (NE) exists. We also propose a new non-complex and

efficient reputation-based scheme to identify these compromised SNs. Based on this

reputation metric, we propose a novel FC weight computation strategy ensuring

that the weights for the identified compromised SNs are likely to be decreased. In

this way, the FC decides how much a SN should contribute to its final decision. We

show that this strategy outperforms the existing schemes.
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Chapter 1

Introduction

The overview of the motivation behind the work presented in this thesis is de-

scribed. The design challenges of a bandwidth-constrained/energy-constrained

wireless sensor networks are stated. The consensus algorithm and the related-

work literature are reviewed. Finally, the thesis outline and the contributions

are presented.

IN THIS CHAPTER

♣

1.1 Motivation

Wireless sensor networks (WSNs) spatially deployed over a field (see Fig. 1.1) can

be designed to collect information and monitor many phenomena of interest. Be-

cause of their relatively low cost and robustness to sensor node (SN) failures they

are receiving significant attention. WSNs are defined as one of the most important

emerging technologies that together with Internet of Things (IoT) [1] will revolution-

ize the world. In fact, one of the most important component of the IoT paradigm

is the WSN. They are playing an important role in several daily application scenar-

ios such as health-care monitoring, home applications, smart farming, environment

monitoring, and military [2–4]. Generally, the sensing process is orientated towards

estimating various parameters of interest which can be employed to arrive at a cer-
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tain decision. This decision can then be relayed in a pre-specified manner or can be

employed for on-field actuation. We note that the reliable and continued operation

of a WSN over many years is often desirable.

There are different WSNs architectures depending on how the SNs take decision

and exchange information with other SNs in the network or with the fusion center

(FC) (see Fig. 1.1). We briefly mention here three of the different architectures

that we will be using in this thesis; 1) The Centralized Architecture (we consider

this in Chapter 3, Chapter 4, and Chapter 6), where there are mainly spatially

distributed SNs that report to the FC. There is no inter-sensors collaboration. 2)

The Distributed Architecture (we consider this in Chapter 5), where there is no

FC and the SNs collaborate with each other in achieving the common goal. 3) The

Hybrid Architecture (we consider this in Chapter 3), where there is a FC and there

is also inter-sensor nodes collaboration.

The SNs, depending on how are deployed and used, can vary from being ex-

tremely tiny devices [5] to relatively large embedded platforms [6]. In general, a

SN consists of limited signal processing capabilities, sensing device(s), a transceiver,

limited memory capacity, and on-board power [2]. These devices have wireless com-

munications capability that makes them suitable in a variety of applications as

described above. However, there are a numerous challenging problems in designing

WSNs that we describe next in Section 1.2.

1.2 Design Challenges in WSNs

While there are several design issues and challenges in WSNs, here we briefly discuss

the three most important issues that are related to bandwidth/energy-constrained

WSNs.

1. Low Power Hardware: Clearly, the biggest design constraint in WSNs still

remains the power consumption. Even-though the SNs are being designed

using low-power micro controllers, their power dissipation is still orders of

magnitude too high. For a survey on hardware systems for WSNs, we refer

the reader to [7] and see references therein.
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Figure 1.1: Schematic for a distributed communication architecture among periph-

eral SNs. Each SN generates a test statistic (Ti) by observing the target (thick lines).

The SNs have partial connectivity (thin lines) among themselves (i.e., not a complete

graph), but only over an energy-constrained/bandwidth-constrained network.

3



1.3. Distributed Consensus Algorithm

2. Resource Constraints: Because the SNs are battery operated devices with

limited on-board energy, both the system lifetime and communication band-

width (BW) are restricted. While designing the algorithms to be used by

the SNs, both the signal processing and communication should be carefully

designed to consume minimal energy in order to extend the lifetime and im-

prove the overall reliability of the WSN. In this thesis, we consider several

distributed detection and estimation problems with SNs reporting their local

quantized observations to the FC or/and to their neighbors.

3. Network Security: Being geographically dispersed to cover large areas, the

SNs are usually unattended and this makes them vulnerable to different types

of attacks. The overall detection and estimation performance strongly depends

on the reliability of these SNs in the network. While fusing the data received

by the spatially deployed SNs allows the FC to make a reliable decision, it

is possible that one or more SNs (compromised by an attacker) deliberately

falsify their local observations to degrade the overall FC detection performance.

While there are many types of security threats, in this thesis we focus on a

single type of attack, which is the test statistic falsification (TSF) attack part

of the Byzantine attacks family originally proposed by [8] and later widely

used in the context of distributed detection (e.g., [9–11]). For further details

on network security we refer the reader to [12] and references therein.

For other design issues such as SN localization, medium access control (MAC) pro-

tocols, time synchronization, hardware design and routing protocols in an energy

constrained WSN, we refer the reader to [2].

1.3 Distributed Consensus Algorithm

In Chapter 3, we propose a fully distributed consensus-based algorithm that opti-

mally allocates the SN to FC transmit power by using only local observations. Then,

in Chapter 5, we develop and propose fully distributed quantized fusion rules (i.e.,

without a FC) via a consensus algorithm for distributed detection. Hence, herein

we introduce the consensus algorithm.
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Consensus algorithms are iterative low-complexity algorithms where multiple

spatially distributed SNs across a network communicate with each other to agree

on some relevant parameters. Upon an agreed consensus value, each SN in the

network can use this global information to perform useful actions such as detecting

or performing in-field actuation without necessary reporting their local observations

to the FC. The simplest form of consensus algorithm is the average linear consensus

algorithm [13] that converges to the average of initial states.

Investigated earlier by Tsitsiklis [14,15] in the context of team decision problem

with a group of agents, consensus algorithm under infinite energy-bandwidth WSNs

has received a tremendous attention (see [16–19] and reference therein). But as the

SNs are battery operated devices, these assumptions are not feasible in the con-

texts of WSNs. Recently, several publication considered practical WSNs that are

restricted under limited power and bandwidth [20–23]. Consensus in the context

of data fusion problems is also considered in [24–27]. However, in most of these

papers, the proposed approaches either perform poorly at low bit rate and/or have

high computational complexity. Therefore, the low complexity consensus-based al-

gorithms designed under strict resource constraints of power and bandwidth are

highly desirable.

1.4 Literature Overview

The centralized solution where noisy observations collected from spatially dis-

tributed local SNs are sent (inter-sensor collaboration is not considered) to a global

FC for a final decision is considered in [28–37]. In the context of SN transmit power

estimation, the effect of inter−sensor collaboration was investigated in [38]. There

are some recent publications [39, 40] (in the context of estimation) that considered

the effect of inter− sensor collaboration on the estimation performance. After the

collaboration stage, the SNs (which in general can be a subset of all SNs) report

to a FC where the final decision is made. Reference [39] proposes an efficient

collaboration strategy in a distributed fashion (as opposed to [41] where this opti-

mal collaboration strategy is computed at a FC) by means of using only local SNs
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observations.

These two hybrid approaches [36, 38] (a SN collaboration stage followed by re-

porting to a FC) and like the first approach (no collaboration stage and every SN

reports directly to a FC), rely on the integrity of the FC. Now the limitation of the

centralized approach is both the requirement of the FC to process a large amount

of data (i.e., possible bottleneck) and the possible failure of the FC. Furthermore,

collecting information at the FC lacks scalability, and may require large amounts of

energy and communication resources [42].

Thefully distributed strategy (i.e., without a FC) has been considered (e.g.,

in [43–56]) where the SNs exchange local information iteratively among their neigh-

bors and are capable of reaching a global optimum decision. The authors of [43,44]

adopt the diffusion-based protocol and propose a new diffusion LMS algorithm while

the authors of [45] design a bio-inspired algorithm for monitoring human activity in

living conditions. References [18, 46] employ the iterative distributed consensus al-

gorithm [19] for distributed inference. But these approaches consider ideal exchange

of information among the SNs, and this assumption is unrealistic in the context of

WSNs as discussed previously. Furthermore, practical WSN scenarios suffer from

channel impairments such as fading and attenuation. Recently, to address the prob-

lem of consensus algorithms with quantized communications, a number of different

approaches have been proposed, see [20–22,52].

The framework of centralized detection under attack− free WSNs has been ex-

tensively studied in [30, 34–36, 52, 57–65] to name but just a few references. While

[32, 52, 58–60] consider centralized detection by assuming WSNs with unlimited

bandwidth/resources, the latter assumption was relaxed in [30,31,34–36] by consid-

ering centralized detection over bandwidth-constrained/energy-constrained WSNs.

But these approaches are vulnerable to some security attacks as some of the SNs

reporting to the FC may be compromised. As a result, the FC is not robust against

such attacks and its detection performance may be degraded.

Security problems in centralized detection using WSNs remain an open issue,

see [9, 12, 66–74] and references therein. While there are many types of security

threats, in this thesis we focus on a single type of attack, which is the test statistic
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falsification (TSF) attack part of the Byzantine attacks family originally proposed

in [8] and later widely used in the context of distributed detection (e.g., [9–11]).

In this thesis, we address the second design challenge discussed in Section 1.2

by proposing distributed detection and estimation schemes in WSNs that operates

under limited SN transmit power and finite bandwidth. These schemes are shown

to have low computational complexity and do not rely on doubly stochastic weight

matrix assumption. The proposed schemes will be shown to outperform the existing

schemes even at low bit rate. Then, we address the third design challenges discussed

in Section 1.2 by examining under − attack WSNs in the presence of falsified SNs,

limited bandwidth fading channels, and quantization of test statistics. We also

propose solutions and algorithms to cope with such scenarios and show that our

proposed schemes outperform the existing approaches.

1.5 Thesis Outline and Contributions

This PhD thesis describes the research carried out on centralized and distributed

detection (estimation) in practical WSN systems and, in particular, on the resource

allocation, fusion rules, and network security.

Next, we describe the thesis organization, main contributions together with the

publications list for each particular chapter. Throughout this thesis, we extensively

use the detection theory, graph theory, and game theory concepts. Hence, for that

reason, the next chapter is devoted to the theory preamble to introduce these con-

cepts. The majority of the third chapter is devoted to resource allocations and in

particular to quantization and power allocation for centralized detection (i.e., with

a FC WSN). Chapter 4, considers also the centralized detection framework and is

devoted to fusion rules design. The fifth chapter is devoted to fully distributed detec-

tion algorithms design (i.e., without any FC). Finally, Chapter 6 is devoted to WSN

security and we propose algorithms to cope when compromised SNs are involved

and Chapter 7 concludes the thesis and gives further future research directions.
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Thesis

Organization

Chapter 3:

Optimal Quan-

tization and

Power Allocation

Chapter 4:

Centralized Quan-

tized Fusion Rules

Chapter 5:

Distributed Two-

Step Quantized

Fusion Rules

Chapter 6:

Sensor Detection in

the Presence of Fal-

sified Observations

Chapter 7:

Conclusions and

Future Work

Chapter 1:

Introduction

Chapter 2:

Theory Preamble

Figure 1.2: Thesis organization.

Chapter 2: Theory Preamble

This chapter introduces the reader to the review of the fundamental concepts of

detection theory, algebraic graph theory, and game theory as used in subsequent

chapters. Notations and criteria used in detection theory, definitions and the ter-

minology of connectivity for undirected and for directed graphs, and an overview of

a zero-sum game are also presented. Some important graph related matrices with

a special focus on the properties of the Laplacian matrix along with its spectral

properties are described in some detail. Definitions of the strategic form zero-sum

8
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game, the finite game, and the Nash Equilibrium are also provided.

Chapter 3: Optimal Quantization and Power Allocation

This chapter considers the centralized detection scheme, where the local SNs send

quantized information to the FC. A simple linear fusion rule at the FC is adopted

and we first propose a centralized optimal SN transmit power and quantization bits

allocation scheme for each SN and investigate the detection performance over flat

fading transmission links. Then, a fully distributed SN transmit power allocation

algorithm is proposed. The algorithm is characterized in terms of convergence and

data exchange rate and is shown to be efficient and simple to implement.

The work of this chapter has led to the publication of two articles in international

conferences.

[1] E. Nurellari, D. McLernon, M. Ghogho and S. Aldalahmeh, “Optimal quanti-

zation and power allocation for energy-based distributed sensor detection,” Proc.

IEEE EUSIPCO, Lisbon, Portugal, 1-5 Sept. 2014.

[2] E. Nurellari, D. McLernon, M. Ghogho and S. A. R. Zaidi, “Distributed Optimal

Quantization and Power Allocation for Sensor Detection Via Consensus,” Proc.

IEEE VTC Spring, Glasgow, United Kingdom, 11-14 May 2015.

Chapter 4: Centralized Quantized Fusion Rules

This chapter (similar to Chapter 3), also considers the centralized detection, but

investigates the problem of quantized soft decision fusion. Using the likelihood ratio

test (LRT), the optimal fusion rule at the FC has been derived. Then, we derive and

analyze suboptimal fusion rules that require little or no a− priori knowledge about

the WSN system. Finally, we show how the effect of test statistics quantization can

be mitigated by increasing the number of samples (i.e., bandwidth can be traded off

against increased latency).

The work of this chapter has led to the publication of one article in an interna-

tional conference.
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[1] E. Nurellari, S. Aldalahmeh, M. Ghogho, and D. McLernon, “Quantized Fu-

sion Rules for Energy-Based Distributed Detection in Wireless Sensor Networks,”

Proc. IEEE SSPD, Edinburgh, Scotland, 8-9 Sep. 2014.

A contribution [77] partially using the results of this chapter and included in

Appendix D of this PhD thesis, is published in the proceedings of a journal.

[2] S. Aldalahmeh, M. Ghogho, D. McLernon, and E. Nurellari, “Optimal fusion

rule for distributed detection in clustered wireless sensor networks”, EURASIP

Journal on Advances in Signal Process., 2016:5, Jan. 2016.

Chapter 5: Distributed Two-Step Quantized Fusion Rules

The focus of this chapter is on a fully distributed detection framework via a consensus

algorithm with quantized information exchange. We give a review of the related

existing work and contributions and clearly provide the reasons behind the needs of

developing new approaches. Based on the (unquantized) consensus algorithm, we

provide a distributed consensus-based detection framework with (weight combining)

quantized test statistics exchange. Each SN implements a low complexity uniform

quantizer and the number of quantization bits is constrained to match the channel

capacity of each link. Using the probability of detection and the probability of

false alarm as metrics, we show that this approach does not converge across the

network and does not approach the quantized centralized detector (i.e., with a FC)

performance.

Because of this, we propose a novel two-step quantized distributed weighted

fusion algorithm. The proposed two-step quantized fusion algorithm takes the ad-

vantage of the spatially distributed information across the WSN while combating

fading. The proposed algorithm is analyzed in terms of detection performance as

well as characterized in terms of convergence and data exchange rate. It converges

to a global decision, approaches the centralized detector performance, and achieves

the global decision in a finite number of iterations.

The technical contributions of this chapter have been published in the proceed-

ings of one international conference and in one journal paper.
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[1] E. Nurellari, D. McLernon, and M. Ghogho, “Distributed detection in practical

wireless sensor networks via a two step consensus algorithm,” in Proc. IET Int.

conf. on Intelligent Signal Process. (ISP), London, United Kingdom, 1-2 Dec.

2015.

[2] E. Nurellari, D. McLernon, and M. Ghogho, “Distributed Two-Step Quantized

Fusion Rules via Consensus Algorithm for Distributed Detection in Wireless Sen-

sor Networks,” in IEEE Transactions on Signal and Information Processing over

Networks (TSIPN), vol. 2, no. 3, pp. 321-335, Sept. 2016.

Chapter 6: Sensor Detection in the Presence of Falsified Ob-

servations

This chapter considers again centralized detection, but now by an under − attack

WSN that operates over limited bandwidth fading channels and analyzes the network

security.

In the first part, we consider that the attacker falsifies the local test statistics

and it is assumed that it knows the true hypothesis. From the FC’s perspective, we

derive analytically the optimal weight combining, the optimal SN to FC transmit

power and the number of quantization bits for each SN. It is shown that these

expressions require the attacker parameters which cannot be estimated in practice.

We also derive the attacker strategy that degrades the FC detection performance

most and is shown to depend on the FC weight combining and SNs transmit power.

We characterize the performance of sub-optimum strategies that do not require

knowledge of the FC mechanism and attacker parameters. Finally, to identify the

optimum behavior of both the FC and the attacker, we re-cast the problem as a

minimax game between the FC and the attacker and show that the Nash Equilibrium

exists.

In the second part, we relax the assumption of the true hypothesis knowledge by

the attacker and introduce a different attacking model. Now, the SNs report to the

FC their 1-bit local decisions instead of their quantized test statistics (like in the first

part). The attacker manipulates this 1-bit local decision with a flipping probability.
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We derive and characterize this optimum flipping probability and the minimum

fraction of the compromised SNs that makes the FC incapable of detecting. Then,

we propose a new non-complex and efficient reputation-based FC detection scheme

to identify these compromised SNs. Based on this new approach, we also calculate

the optimal weight combining at the FC and ensure that for the compromised SNs,

their contribution toward the FC final decision is reduced proportionally. Numerical

results show that this approach outperforms the existing schemes.

The technical contributions of this chapter have been published in two journal

papers.

[1] E. Nurellari, D. McLernon, and M. Ghogho, “Distributed Binary Event De-

tection Under Data-Falsification and Energy-Bandwidth Limitation”, in IEEE

Sensors Journal, vol. 16, no. 16, pp. 6298-6309, Aug. 15, 2016.

[2] E. Nurellari, D. McLernon, and M. Ghogho “A Secure Optimum Distributed

Detection Scheme in Under-Attack Wireless Sensor Networks”, in IEEE Trans-

actions on Signal and Information Processing over Networks (TSIPN), vol. PP,

no. , pp. , May 2017.
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Chapter 2

Theory Preamble

Within this chapter, we illustrate the theoretical arrangement that is necessary

for the comprehension of successive chapters. Additionally, this should serve as

reference for notions subsequently mentioned. The subjects developed within

this chapter are Detection Theory, Graph Theory, and Game Theory. Readers

aquinted with these subjects may advance to Chapter 3 and refer here as

needed. We assume the reader to be knowledgeable in linear algebra and

dynamical systems theory.

IN THIS CHAPTER

♣

2.1 Elements of Detection Theory

In this section, we introduce some detection theory concepts based on statistical

signal detection theory that we will be using throughout this PhD thesis. In fact,

the signal detection theory is used in many applications such as signal processing

for communications, biomedicine, radar and sonar, and binary event detections. For

instance, in statistical signal processing for communications, characterization and

design of spatially distributed systems extensively involves detection and estimation

in order to effectively provide a reliable and efficient system. For example, deter-

mining if the current bit received in the presence of channel disturbances was a zero

or a one is clearly a detection problem.
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Source

Probabilistic

transition

mechanism

Observation space

Decision

Decision rule

H1H0

Figure 2.1: Components of a decision theory problem.

To this end, in Fig. 2.1 we capture some of the most fundamentals components

of detection theory that includes:

1. The source (target)- Typically, it is a binary event that generates an output

that is frequently assigned to one of the hypotheses, either H0 (absent) or H1

(present).

2. The probabilistic transition mechanism- It generates a point in the observation

space based on the true hypotheses knowledge.

3. The decision rule- By observing the outcome in the observation space, we

shall decide which hypothesis was true. To do that, we need to design an

effective and reliable decision (fusion) rule based on some criteria that we

define and elaborate in the coming chapters. General speaking, in one or an-

other way, this PhD thesis will demonstrate a great deal of how these decision

theory components fit together such that a binary hypothesis testing problem

is effectively established.
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2.2. Binary Hypothesis Testing

2.2 Binary Hypothesis Testing

The main objective of this PhD thesis is to develop detection mechanisms and al-

gorithms by means of multiple distributed sensor nodes (SNs) across the interested

field. The ith SN, based on its own observation, generates a local test statistics Ti.

The statistical models of these SNs observations (test statistics), in a large number

of detection problems, can accurately be modeled as Gaussian measurements. Fur-

thermore, as we will see later in the following chapters, the assumption of a Gaussian

model yields closed form solutions and gives insight into the system design parame-

ters. Hence, throughout this work, we will focus particularly on Gaussian statistical

observation models.

Binary detection is one of the simplest hypothesis tests that frequently finds

applications in the real world scenarios. In this work, we assume that the statistical

observations under H0 and H1 are completely known. The objective is to use this

information (which is always buried in noise) to establish a suitable fusion (decision)

rule by exploring different techniques for making a reliable decision. Essentially, we

are to decide if the data generated by the source in Fig. 2.1 comes according to the

(known) probability density functions (PDFs) under H0 or H1. While the complete

knowledge of the PDFs yields a theoretically optimal solution (decision rule), often

this solution is not mathematically tractable (as we will show in the later chapters).

Hence, in this PhD thesis, while designing the decision rules we focus on those

detectors that are particularly convenient from both theoretical and practical point

of view.

Next, we discuss the Bayesan and the Neyman-Pearson’s approach.

2.2.1 Bayes Criterion

There are mainly two approaches to hypothesis testing, the Bayesian and the Neyman-

Pearson approach. The Bayesian approach depends on a−priori known information

about the source outputs and on the cost assigned to each possible action taken. In

this case, the objective function to be optimized can be the Bayes risk R thats is
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2.2. Binary Hypothesis Testing

defined as follow [78]:

R = E(C) =
1∑
i=0

1∑
j=0

Cijpr {say Hi|Hj is true} pr {Hj} (2.2.1)

where pr(.) denotes probability of an event and Cij for i = 0, 1, j = 0, 1 are the

costs associated to each of the possible action taken and are defined as follow:

H0 true|H0 chosen → associated cost C00 (2.2.2)

H0 true|H1 chosen → associated cost C01 (2.2.3)

H1 true|H0 chosen → associated cost C10 (2.2.4)

H1 true|H1 chosen → associated cost C11. (2.2.5)

Suppose we are to design a security system to monitor a specific environment and

detect any enemy/attacker in a region of interest. The result of the decision is for

e.g., to raise an alarm and deploy/adapt other protection mechanisms if the enemy

is declared to be present or do nothing (i.e., stay in the current mode) if no alarm

is raised. Now, if we decide the enemy/attacker is not present but it proves to be

present, the whole security system will fail (i.e., the enemy/attacker would be able

to cause a greater system degradation) and we incur a larger cost (C10). If, however,

we decide that the enemy/attacker is present but it proves the contrary, the false

alarm will be raised and we incur a smaller cost (C01) associated only with the false

alarm activation and precaution measurements to be taken in such a case.

Assuming that the cost of a wrong decision is higher than the cost of a correct

decision (i.e., C10 > C00 and C01 > C11), the Bayes test that minimizes the risk R

can be shown to be the likelihood ratio test (LRT):

Λ (T ) , LRT (T ) =
p {T1, T2, ..., TM |H1}
p {T1, T2, ..., TM |H0}

H0

Q
H1

(C10 − C00)pr {H0}
(C01 − C11)pr {H1}

= γ
B

(2.2.6)

where p {T1, T2, ..., TM |Hj} for j = 0, 1 is the joint probability density of the local

soft decisions (Ti of the ith SN for i = 1, 2, · · · ,M) under the jth hypothesis. In

general, Ti may represent the local SN’s observation or processed SN’s observation

(i.e., can be the matched filter detector (MFD), the energy detector (ED) or other).

Throughout the thesis, Ti represents the test statistic of the ith SN defined later (see
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for e.g., (3.2.3)). Now, the quantity on the left is the ratio of the two PDFs and

that is why called the likelihood ratio while the right hand side is the threshold

of the test denoted by γ
B

. Clearly, the optimum test using the Bayes criterion is

the likelihood ratio test (LRT) given in (2.2.6). In the cases where the costs and

the a− priori probabilities can be estimated (for example from past history of the

data), the optimum test in (2.2.6) can be implementable. However, in practice,

situations where assigning realistic a−priori probabilities and/or costs is not possi-

ble, frequently arises. For example, if detecting the presence of an enemy/intruder,

the a− priori belief in the likelihood of the hypothesis (i.e., the enemy/intruder is

present or absent) is usually not possible. In such cases, the detection problem is

tackled by means of Neyman-Pearson’s approach. Throughout this PhD thesis, we

assume that the a− priori belief and the cost of course of actions cannot be deter-

mined and we use the Neyman-Pearson criterion to tackle the detection problems

considered.

Next, we describe the Neyman-Pearson approach.

2.2.2 Neyman-Pearson Criterion

As we previously discussed, in real scenarios, situations where a − priori belief in

the likelihood of the hypothesis and assigning costs to each of the decision taken is

not possible and/or practical. The Neyman-Pearson approach, which is based on

the Neyman-Pearson Theorem, offers an alternative solution. That is, design an

optimum detection rule that maximizes the probability of detection (Pd) for a given

probability of false alarm (Pfa). We next state the Neyman-Pearson Theorem that

can be defined as [78]:

Theorem 2.2.1 (Neyman− Pearson). To maximize probability of detection

(Pd) for a fixed probability of false alarm (Pfa) (i.e., Pfa = β′), the optimum test is

the likelihood ratio test:

Λ (T ) , LRT (T ) =
p {T1, T2, ..., TM |H1}
p {T1, T2, ..., TM |H0}

H0

Q
H1

γ
NP (2.2.7)

where p {T1, T2, ..., TM |Hj} is the joint probability density of local soft decisions under

the jth hypothesis, and γ
NP

is the threshold and can be found by defining a required
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Pfa and solving for this threshold in:

Pfa = Pr (Λ (T ) > γNP |H0) =

∞∫
γ
NP

p (Λ (T ) |H0) dΛ = β′. (2.2.8)

Usually, a transformation is required to further simplify the final expression Λ (T ).

However, as can be seen from (2.2.8), it is not easy task to implement the integration

as Λ (T ) might not posses a closed form distribution and does not allow mathemat-

ical tractability of the system design. So, the partial focus of this PhD thesis is to

find and/or approximate a closed form distribution for Λ (T ) that gives insight into

the system designed parameters.

2.3 Performance Analysis Techniques

To evaluate the performance of the decision rules, different techniques are used in the

literature. Typically, the probability of detection (Pd) and probability of false alarm

(Pfa) metrics are evaluated. In this PhD thesis, we use the following performance

analysis such as probability of detection (Pd) vs. probability of false alarm (Pfa)

(i.e., receiver operating characteristic (ROC) curve), probability of mis-detection

(1− Pd) vs. SN transmit power budget, probability of detection vs. signal to noise

ratio (SNR), and probability of detection vs. number of SNs. Because the above

metrics can be evaluated from the receiver operating characteristic plot, we next

introduce the ROC curve.

2.3.1 Receiver Operating Characteristic (ROC)

The two-dimensional plot Pd versus Pfa, gives the ROC curve which essentially

describes each point (Pfa, Pd) for a given detection threshold γ
NP

. Clearly, as γ
NP

decreases, Pd increases. However, this also forces the Pfa to increase. By adjusting

the detection threshold (i.e., for −∞ < γ
NP

< ∞), any point on the curve is

achievable. The ROC performance is frequently used and chosen as a metric for

performance analysis in order to select the appropriate and most suitable detector.

In Fig. 2.2, we show some typical ROC curves. We can observe that the ROC

curve of the blind detector (i.e., the detector that ignores all the SNs observations
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Figure 2.2: Typical family of Receiver Operating Characteristic curves and behav-

ior.

and bases its decision on flipping a coin), is of no any use as Pd = Pfa, ∀γNP .

What we require, is a detector with a (ROC) performance above the blind detector

(ROC) curve. The (ROC) performance upper bound is the performance of the ideal

detector (i.e., the detector which always makes the right decision ∀Pfa and ∀γ
NP

values). In general, the achievable ROC performance of a good detector is between

the ROC performance of these two (i.e., between blind and ideal detectors).

2.4 Graph Theory Preliminaries

In a Wireless Sensor Network (WSN), sensor nodes (SNs) are spatially deployed

over a field to observe and collect relevant information about the nature of inter-

est. Some of the features that these SNs possess are the sensing capability, limited

communication capability, and some processing capability. The configuration of the

WSN depends on different factors such as physical constraints (dictated by the avail-

able resources such as the power consumption to maintain reliable communication
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links), applications (for instance, if deployed for detection purposes, maximizing the

detection probability with respect to the communication topology and local SNs

processing is of a great interest), and network security (for example if one or more

SNs in the network are compromised or a SN failure occurs, is the network capa-

ble of performing a reliable decision?). There are mainly two network architectures

used in the literature: the centralized architecture, where spatially deployed SNs

report their local information to the fusion center (FC); and the distributed ap-

proach, where there is no FC and each of the SNs collaborate with each other in

order to come up with a global decision. There are also hybrid architectures (i.e.,

there is a SNs collaboration and a FC). We elaborate more on the advantages and

disadvantages of each architecture in the coming chapters but now we will focus on

describing the interactions among these SNs and the FC.

The proper way to describe the information flow among these SNs in the network

is to introduce a graph model of the network and the most useful approach to get

insight into the properties of a graph is through algebraic graph theory [79]. Next,

we review some important concepts of graph theory and recall important definitions

(that we will be using later) to describe these concepts.

2.4.1 Basic Definitions and Terminology

The interaction among SNs is according to the communication topology which is

given by a graph G = (V , E), where V ={1, 2, . . . ,M} represents the set of M SNs

and E ⊆ V × V is the set of edges {i, j}. The graph properties can be represented

by an adjacency matrix E ∈ RM×M whose entries eij = 1 if the pair of SNs (i, j) is

connected, otherwise eij = 0. If the graph is undirected (see Fig. 2.3), then eij = eji

and clearly E ∈ RM×M is symmetric. If the graph is directed (see Fig. 2.4), then

for the communication link (i, j), we say SN i transmits to SN j (i.e., j is called the

head and i is called the tail of the edge {i, j}). In this case, the adjacency matrix

E ∈ RM×M is asymmetric. This property (i.e., E ∈ RM×M being symmetric or

asymmetric) will have practical consequences when we design distributed detection

algorithms. To this end we give some more definitions.

We denote the ith SN neighbor set as ∆i and |∆i| is the number of neighbors.
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Figure 2.3: Undirected graph with M = 6 sensor nodes (SNs)/vertices and seven

(communication) links/edges.
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Figure 2.4: Directed graph with M = 7 sensor nodes (SNs)/vertices and eight

(communication) links/edges.

The definition of the graph Laplacian matrix (L ∈ RM×M) is L = D − E with

D=diag(|∆1|, . . . , |∆M |). Next we recall some properties of the Laplacian matrix.

The Laplacian matrix

The connectivity of a WSN, usually is described by the Laplacian matrix of its

underlying graph model. The spectral properties of the Laplacian matrix play an

important role on the design and the convergence analysis of distributed detection

algorithms. For an (undirected) graph G, its corresponding Laplacian matrix L

with eigenvalues λM ≤ λM−1 ≤ · · · < λ1 = 1, possesses the following properties:

Property 1 The Laplacian L has a null eigenvalue (i.e., λM = 0) corresponding

to the eigenvector vr = [1, 1, . . . , 1]T .
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By construction, we have that every row sum and column sum of L is zero.

Hence, clearly λM = 0 because vr satisfies Lvr = 0.

Property 2 The number of times that this null eigenvalue appears corresponds to

the number of connected components in the graph G.

Clearly, for a connected graph G, the null eigenvalue has multiplicity one (i.e.,

appears only once).

Property 3 The second smallest eigenvalue (λM−1) of L is defined as the algebraic

connectivity [80].

The second smallest eigenvalue has many interesting properties and was named

by Fiedler (1973), the algebraic connectivity of a graph [80]. The algebraic

connectivity and the Fielder vector (i.e., the eigenvector associated with this

eigenvalue) is one of the most powerful concepts in graph theory. One of the

most important properties (that we will be focusing on here) is the capability

of yielding important information about the communication topology of the

network. For instance, the algebraic connectivity is monotonically increasing

when more communication links are established among the SNs. However, es-

tablishing more communication links means more resources (such as the power

budget) should be allocated. This trade-off will be discussed later when we

develop the distributed detection algorithm and effectively allocating these

available (limited) resources while maintaining the overall objectives aims sat-

isfied, will constitute a significant part of this PhD thesis.

2.4.2 Connectivity in Undirected Communication Topolo-

gies

The relations among SNs are described by edges (communication links) between

pairs of SNs (vertices). This section provides some important definitions and termi-

nologies regarding the connectivity in a graph that we will be using in the coming

chapters.

Definition 2.4.1 (Path) A sequence of distinct vertices (SNs) starting with vertex
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Figure 2.5: Graph examples. a) Describing a path with two communication links;

b) Describing a connected graph with 4 SNs; c) Describing a fully connected (com-

plete) graph with 4 SNs; d) Describing a cycle involving 4 SNs.

(SN) i and ending with vertex (SN) j such that consecutive vertices (SNs) are

adjacent is defined as a path from vertex (SN) i to a vertex (SN) j. For unity

link weight, the shortest path is the path with fewest links.

Definition 2.4.2 (A connected graph) When there is a path between every pair of

vertices (SNs), the graph G is called connected. In a connected graph, each

vertex (SN) is reachable from any other vertex (SN) via a path. A graph that

is not connected is called a disconnected one.

Definition 2.4.3 (A fully connected graph) When there is an (edge) link between

every pair of vertices (SNs), the graph is called fully connected. For a given

number of vertices (SNs), there is a unique fully connected graph, which is

often written as GM , where M is the number of vertices (SNs).

Definition 2.4.4 (Diameter of a graph). The geodesic distance between two SNs

in a (connected) graph is the number of the edges (i.e., links) in the shortest

path connecting these two SNs. The diameter of a graph is the maximum

geodesic distance taken over all possible pairs of SNs in the graph.

Definition 2.4.5 (Cycle) A closed path that starts and ends at the same vertex

(SN), and visits each other vertex (SN) only once is called a cycle.

The above definitions are illustratively described in Fig. 2.5. The path with two

links and three SNs is shown in part a). For example, part b) shows a connected SN
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network with four SNs and four communication links. For example, SN 2 communi-

cates with SN 1 via two different paths. The first path is the sequence involving SNs

{2, 3, 4, 1} and the second path is the sequence involving SNs {2, 4, 1}. This second

path is the shortest path connecting these two SNs and the number of communica-

tion links is two. This path (i.e., the sequence involving SNs {2, 4, 1}) happens to

be the diameter of the graph at the same time which in this case is three. Part c)

shows a fully connected graph (complete graph) with M = 4 SNs. For this case,

the diameter of the graph is one and the number of links is M(M−1)
2

= 6. Finally,

part d) describes a cycle that involves SNs {1, 2, 3, 4}.

2.5 Game Theory Preliminaries

Game theory (GT ) is a mathematical tool that helps to describe the phenomenon of

conflict and interaction between intelligent decision-makers. Games are optimization

problems that involve more than one decision maker and in general having conflicting

goals. In general, the theory of games is complicated, but some games are closely

related to convex optimization and posses nice theory and properties.

The fundamental volume Theory of Games and Economic Behavior by von

Neumann and Oskar Morgenstern established GT in 1944. The basic terminology

and the problem setup that are still in use today were provided in this monumental

book. The theory of Neumann and Morgenstern is most complete for the two-players

zero-sum games (i.e. games with only two players in which one player wins what

the other player loses). In this PhD thesis (more specifically in Chapter 6), we

make use of GT tools to describe, optimize, and characterize the behavior of a non-

cooperative two-players zero-sum game while aiming to maximize their respective

outcomes from the game.

2.5.1 A Zero-Sum Game

Games with two players with conflicting objectives (i.e., two-players zero-sum games)

that are independently acting (i.e., no collaboration or communication among play-

ers is established) are with a particular focus of this PhD thesis. Let (X×Y , K(x, y))
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2.5. Game Theory Preliminaries

denote a game played by 2 players where K(x, y) is a pay-off function defined on the

product space of X by Y , and X and Y are the sets of strategies for the first and the

second player respectively. The first player is the fusion center (FC) which tries to

maximize the performance metric (K(x, y)) (see Chapter 6 for an exact definition).

The second player is the Attacker which tries to minimize this performance met-

ric (pay-off function) (i.e., maximize its negative). Next, we introduce some basic

definitions and theorems in game theory that we will be using in Chapter 6.

Definition 2.5.1 The strategic form, or normal form, of a two-person zero-sum

game is given by a triplet (X , Y, K), where

1. X is a nonempty set, the set of strategies of Player I

2. Y is a nonempty set, the set of strategies of Player II

3. K is a real-valued function defined on X by Y. In other words, K(x, y)

is a real number for every x ∈ X and every y ∈ Y.

Definition 2.5.2 (Finite Game) A two-person zero-sum game (X × Y ,K(x, y)) is

said to be finite if both strategy sets X and Y are finite set.

Definition 2.5.3 (Nash Equilibrium) A Nash equilibrium, is a set of strategies, one

for each player, such that no player has the incentive to unilaterally change its

action. Players are in equilibrium if a change in strategies by any one of them

would lead that player to earn less than if it remained with its current strategy.

Definition 2.5.4 (Pure and Mixed Strategies) The elements of X or Y are defined

as pure strategies. Randomly choosing among the pure strategies x ∈ X and

y ∈ Y in various proportions is called a mixed strategy. Every pure strategy,

x ∈ X , can be considered as the mixed strategy that chooses always the pure

strategy x.

Theorem 2.5.1 (Nash [81]). Every finite game in a strategic (normal) form has

a Nash Equilibrium (NE) in either pure or mixed strategies.
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Chapter 3

Optimal Quantization and Power

Allocation

Within this chapter, we address the optimal transmit power allocation prob-

lem (from the sensor nodes (SNs) to the fusion center (FC)) for the central-

ized detection of an unknown deterministic spatially uncorrelated signal. The

overview of the motivation behind this work is presented. The assumptions

made and the problem formulation by describing the target sensing and the

WSN architecture are stated. The same problem formulation is used in Chap-

ter 4. Part of the theory stated and the derivations developed will be used in

the next Chapter. The core sections are mainly those two that describe the

centralized and the distributed SNs power allocation schemes proposed.

IN THIS CHAPTER

♣

3.1 Introduction

3.1.1 Motivation

Wireless sensor networks (WSNs) spatially deployed over a field can monitor many

phenomena. Because of their relatively low cost and robustness to node failures

they are receiving significant attention. Generally, the sensing process is orientated

towards estimating various parameters of interest which can be employed to arrive
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[T5]Q
[T4]Q

[T1]Q

Figure 3.1: Schematic communication architecture between peripheral SNs and

the fusion center (FC). Each SN generates a test statistic (Ti) by observing the

target and can communicate (using [Ti]Q) with the FC only over an energy-

constrained/bandwidth-constrained link.

at a certain decision. This decision can then be relayed in a pre-specified manner or

can be employed for on-field actuation. We note that the reliable and continued op-

eration of a WSN over many years is often desirable. This is due to the operational

environment in which post-deployment access to a sensor node (SN) is at best very

limited. Unfortunately, SNs suffer from constrained bandwidth and limited available

on-board power. Moreover, due to the locality of the observed process, cooperation

amongst SNs is often required to derive an inference. However, such a cooperation

comes at the expense of high bandwidth requirements and signalizing overhead. For

instance, a WSN (with decentralized architecture) formed by M sensor nodes would

require transmission of O(M2) message exchanges to attain full cooperation. Conse-

quently, designing distributed detection algorithms that efficiently utilize the scarce

bandwidth and cope with the impairments in a wireless channel is very important.

A typical wireless sensor network consists of a fusion center (FC) and a number of
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3.1. Introduction

geographically distributed SNs (see Fig. 3.1). Each individual SN makes an esti-

mate of a particular quantity (in our case, the energy of the received signal, Ti),

and then sends a quantized version to the (FC) [Ti]Q, where all the SNs outputs are

optimally combined to arrive at a global detection decision.

WSNs have been considered for different applications such as localizing and

tracking acoustic targets, voice activity detection, and spectrum sensing for cognitive

radios (e.g., see [16], [49], [82–84] and references therein). In such applications,

accurate distributed observations are fundamental to reduce detection errors.

In the first part of this chapter (see Section 3.3 and Section 3.4), we show how by

maximizing the modified deflection coefficient we can calculate the optimal transmit

power allocation for each SN and the optimal number of quantization bits to match

the channel capacity. The resource allocation is performed at the FC and is called a

centralized resource allocations and detection approach. The FC then informs back

to each SN their allocated SN transmit power and number of quantization bits that

maximizes the detection probability.

In the second part (see Section 3.5), we propose a novel fully distributed algo-

rithm, in order to calculate the optimal transmit power allocation for each sensor

node (SN) and the optimal number of quantization bits for the test statistic in or-

der to match the channel capacity. What makes this scheme attractive is that the

SNs share with their neighbours just their individual transmit powers at the current

states. As a result, the SN processing complexity is further reduced. The final de-

tection decision is again taken at the FC. This is called a hybrid architecture where

there is a collaboration among SNs and there does exists a FC.

3.1.2 Related Work

The problem of decentralized detection (and estimation) in a WSN assuming error-

free communication has been extensively tackled in [31], [85,86] to name but just a

few. For a target MSE performance, the authors in [85] proposed the minimization

of the summation of sensor transmit powers, while [86] suggested minimization of

the Euclidean norm of the transmit powers. In both [85] and [86] the number of bits

used for quantization to transmit data from each sensor to the FC is constrained to
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3.1. Introduction

be less than channel capacity. In [30] asymptotic results are provided for distributed

detection on a joint power constraint in wireless sensor networks while in [34] a finite

number of sensors with both individual and joint power constraints is considered for

distributed detection over MIMO channels. A decentralized strategy for optimizing

the estimation MSE subject to a network rate constraint is presented in [33]. A

more recent work in [87] proposed optimum training and data power allocation with

inhomogeneous sensors using binary phase shift keying modulated decisions at the

FC for distributed detection.

Recent publications [50, 51] propose a distributed algorithm for in-network es-

timation of algebraic connectivity. Interestingly, [51] uses an estimation strategy

to adapt the SN transmit power in order to maximize the connectivity of the net-

work, while in this chapter we take advantage of the objective function structure

and develop a novel distributed algorithm to allocate the SN to FC transmit power.

3.1.3 Chapter Contributions

In this chapter, we consider the centralized detection of an unknown deterministic

signal in a spatially uncorrelated distributed WSN. For a finite number of SNs, we

derive analytically the optimal transmit power and number of quantization bits for

each SN, and investigate the detection performance of the sensor network over flat

fading transmission links. Our work differs from [85] in that instead of sending the

quantized version of the SN observations, we propose to send the quantized local test

statistics (i.e., the sample energy) to the FC. We employ a simple linear fusion rule

at the FC and adopt the modified deflection coefficient (MDC) [32] as the detection

performance criterion, while [85] uses a matched filter. When minimum a priori

information about the useful signal is available at the FC, our proposed scheme is

superior to that in [85], as just the local SNR at each individual SN is used (no need

to know the entire signal at the FC) in order to be able to detect the target. We

also propose a fully distributed algorithm where we allocate the SN transmit power

for each individual SN using only local information. The algorithm is very efficient

in terms of convergence and data exchange, also accurate and simple to implement.
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3.2. Problem Formulation

3.1.4 Chapter Outline

This chapter is organized as follows. Section 3.2 describes the system model and the

WSN communication architecture. In Section 3.3, we derive an approach that uti-

lizes the SN to FC channel capacity. An optimum linear combining rule is adopted

at the FC with the combining weights optimized in Section 3.4. Section 3.5 presents

the derivation of the decentralized optimum SN transmit power allocation and our

proposed algorithm. Finally, simulation results are given in Section 3.6 and conclu-

sions in Section 3.7.

3.2 Problem Formulation

In this section, we formulate the problem by first introducing and modeling the tar-

get as well as the WSN architecture adopted in this chapter. Then, the centralized

detection set up is described.

3.2.1 System Model

Here we describe the target sensing, communication channel, and the WSN archi-

tecture.

Target Sensing

Consider the problem of detecting the presence of an unknown single target, which

emits a deterministic signal s(n), by a sensor network consisting of M spatially

distributed SNs. N samples of the observed signal are gathered and the energy

estimation is performed by each SN. The measurement at each sensor si(n) is further

corrupted by AWGN wi(n) ∼ N (0, σi
2). the received signal takes one of the following

forms, depending upon the underlying hypothesis:

H0 : yi (n) = wi (n) (3.2.1)

H1 : yi (n) = si (n) + wi (n) (3.2.2)

for i = 1, 2, . . . ,M and n = 1, 2, . . . , N . The ith sensor evaluates

Ti =
N∑
n=1

(yi (n))2, i = 1, 2, . . . ,M (3.2.3)
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3.2. Problem Formulation

which for large N can be approximated by a Gaussian distribution [88]. It is not

difficult to show that

E {Ti|H0} = Nσ2
i ,Var {Ti|H0} = 2Nσ4

i (3.2.4)

E {Ti|H1} = Nσ2
i (1 + ξi) ,Var {Ti|H1} = 2Nσ4

i (1 + 2ξi) (3.2.5)

where ξi =
N∑
n=1

s2
i (n) /Nσ2

i .

Communication Channel

The communication between the local SNs and the FC are modeled as error-free1 (the

SNs exchange quantized information matched to the channel capacity of each link)

orthogonal flat fading channels and additive white Gaussian noise (AWGN) with a

known variance ζi. The assumption of flat fading (see for e.g., [52]) is reasonable

and valid in many WSN applications operating at both short distances and low bit

rate (hence large symbol interval) due to resource limitations. Furthermore, the fact

that they are (densely) spatially deployed across an open field result in a small delay

spread. Each SN then sends (through single-hop) its information (quantized to Li

bits (defined later)) to the FC for soft decision combining.

The communication among SNs is modeled by using the graph theory tools and

we assume that the communication topology is not fully connected. Furthermore,

in this chapter, ideal exchange of information between SNs that are connected is

also assumed and there are no “overhearing SNs” across the WSN.

WSN Architecture

In this chapter we use two different WSN architectures. The first one is called the

centralized architecture where there is a FC that communicates (through single-hop)

with spatially distributed SNs. The FC broadcasts a periodic pilot signal that is used

for channel state information (CSI) estimation and this is used for synchronization by

the local SNs. Based on this CSI and on the limited available SNs’ resources, the FC

1We match the information rate among SNs to the corresponding channel capacity of each

communication link. Hence, from Shanon’s theorem, there exists a coding technique such that

information can be transmitted over the channel with arbitrarily small error probability.
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3.3. Quantized Soft Decision Combining

should allocate the optimum SNs transmit power and the test statistics quantization

bits. For example, if at any particular instant, the communication link between a SN

and the FC is deeply faded, the contribution from this SN received at the FC may

be irrelevant and degrade the overall FC performance. The communication link can

be reactivated when the fading conditions improve. Now, the communication links

between the SNs and the FC are time-varying and may require multiple handshaking

throughout the WSN operation depending on the variation periodicity. Dealing with

the handshaking minimisation is out of this thesis scope. To deal with handshaking

burden, we propose a distributed power allocation scheme (see Section 3.5). Finally,

upon receiving the contributions from all the SNs and assuming a delay-constrained2

network, the FC should fuse all these local test statistics to yield a reliable global

detection decision. In the case when a particular SN’s observation is not available

to the FC upon a maximum delay period (which is application dependent), the FC

takes the final decision based on the available test statistic at that time.

The second architecture used is called the hybrid architecture. Similar to the first

architecture, there is a FC that communicates to the geographically dispersed SNs

across the field. However, in this case, the SNs can establish communication among

each other and we don’t make any assumption on the communication topology (e.g.,

mesh topology) but only require to be “connected” (see later Chapter 5). In this

way, using knowledge of the CSI (estimated by the FC), each SN collaborates with its

neighbors (single-hop and no “overhearing” is assumed) and will be able to allocate

its own SN to FC transmit power using only local information (see Section 3.5). As

before, the FC is tasked to perform a reliable global detection decision based on the

SNs’ reported test statistics.

3.3 Quantized Soft Decision Combining

Here we will investigate linear soft decision combining at the FC. This has superior

performance to the hard decision approach (e.g., [89] and see references therein),

2In delay-constrained networks, all the test statistics collected during the sensing phase must

be communicated to the FC in the transmission phase of that particular time-slot
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3.3. Quantized Soft Decision Combining

but it entails additional complexity at the FC. Soft decision combining also puts

additional demands on both the limited power resources of the sensors and effective

utilization of the SN to FC channel capacity. So here we propose a scheme, where

each individual SN has to quantize its observed test statistic (Ti) to Li bits. To

satisfy the capacity constraint on each SN to FC channel, we require:

Li ≤
1

2
log2

(
1 +

pih
2
i

ζi

)
bits/sample (3.3.1)

where pi denotes the transmit power of sensor i, hi is the flat fading gain between

sensor node i and the FC, and ζi is the variance of the AWGN at the FC. The

quantized test statistic (T̂i) at the ith sensor can be modeled as

T̂i = Ti + vi (3.3.2)

where vi is quantization noise independent of wi (n) in (3.2.1) and (3.2.2). Assuming

uniform quantization with Ti ∈ [0, 2U ], then

σ2
vi

=
U2

3× 22Li
. (3.3.3)

Linearly combining
{
T̂i

}M
i=1

at the FC gives

Tf =
M∑
i=1

αiT̂i (3.3.4)

where the weights
{
αi
}M
i=1

will be optimized in Section 3.4.1. Again, for large M ,

Tf will be approximately Gaussian and we can show that:

E {Tf |H0} =
M∑
i=1

αi
(
Nσ2

i + U
)

(3.3.5)

E {Tf |H1} =
M∑
i=1

αi
(
Nσ2

i (1 + ξi) + U
)

(3.3.6)

Var {Tf |H0} =
M∑
i=1

α2
i

(
2Nσ4

i + σ2
vi

)
(3.3.7)

Var {Tf |H1} =
M∑
i=1

α2
i

[
2Nσ4

i (1 + 2ξi) + σ2
vi

]
. (3.3.8)

The FC makes the following decisions:

if Tf < Λf , decide H0

if Tf ≥ Λf , decide H1

 (3.3.9)
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where Λf is the FC detection threshold. The probabilities of false alarm and detec-

tion at the FC are respectively:

Pfa = Pr (Tf ≥ Λf |H0) = Q

(
Λf − E {Tf |H0}√

Var {Tf |H0}

)
(3.3.10)

Pd = Pr (Tf ≥ Λf |H1) = Q

(
Λf − E {Tf |H1}√

Var {Tf |H1}

)
(3.3.11)

where Q(.) is the Q-function. And from (3.3.10) and (3.3.11) we can write [78]

Pd = Q

(
Q−1 (Pfa)

√
Var {Tf |H0} −Ψ√

Var {Tf |H1}

)
(3.3.12)

where

Ψ = E {Tf |H1} − E {Tf |H0} = N
M∑
i=1

αi
(
σ2
i ξi
)
. (3.3.13)

So using (3.3.1), (3.3.3) and (3.3.5) in (3.3.12) we get

Pd = Q


Q−1 (Pfa)

√√√√M∑
i=1

α2
i

(
2Nσ4

i + U2

3

(
1+

pih
2
i

ζi

)
)
−Ψ

√√√√M∑
i=1

α2
i

[
2Nσ4

i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζi

)
]

 . (3.3.14)

The formula in (3.3.14) imposes a relationship between the probability of detection,

the power allocated to each transmission (SN to the FC) link and the weight (αi in

(3.3.4)) for each individual link.

3.4 Centralized Optimum Weight Combining and

Power Allocation

In this section, we would like to find the optimum weighting vector (αopt) and

the optimum power allocation vector (popt) that maximize (3.3.12) (see definiton

later), under the constraint of a maximum transmit power budget (Pt). However,

maximizing (3.3.12) w.r.t. α and p is difficult and no closed form solution can

be found. So we will approximate the optimal solution by adopting the modified
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deflection coefficient [32] as an alternative function to be maximized. This is given

as:

d̃2 (α,p) =

(
E {Tf |H1} − E {Tf |H0}√

Var {Tf |H1}

)2

=

(
rTα

)2

αTGα
(3.4.1)

where

r = [Nσ2
1ξ1, Nσ

2
2ξ2, ......, Nσ

2
MξM ]T

α = [α1, α2, . . . , αM ]T , p = [p1, p2, . . . , pM ]T

G= 2Ndiag
(
σ4

1 (1+2ξ1)+
σ2
v1

2N
, ..., σ4

M (1+2ξM)+
σ2
vM

2N

)
.

Note that the dependence of d̃2 (α,p) on the transmit power vector p enters (3.4.1)

through the
{
σ2
vi

}M
i=1

terms via (3.3.1) and (3.3.3). Now, our optimization problem

is: (
αopt,popt

)
= arg max

α,p

(
d̃2 (α,p)

)
subject to

M∑
i=1

pi ≤ Pt for pi ≥ 0, i = 1, 2, . . . ,M.

(3.4.2)

We assume that the fusion center (FC) has full knowledge of quantities such as the

channel gains (hi) from sensors to FC, sensing noise variances (σ2
i ) at the different

sensors, and prior information about the signal’s energy. In the case where the

conditions affecting the network do not change fast, the above assumptions are

realistic. Furthermore, in the cases where we know the position of the target (i.e.,

we know where the phenomenon to be detected happens), the assumption for the

knowledge of the ξi is a valid assumption. Our proposed scheme can be used to

detect a spatial resonance in a bridge, to detect a fire event in a factory to name

just a few.

3.4.1 Weight Combining Optimisation

Further, via the transformation β = G1/2α, the deflection coefficient (3.4.1) be-

comes:

d̃2 (β,p) =
βTMβ

||β||2
, M = G−T/2rrTG−1/2. (3.4.3)
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So αopt = G−1/2βopt = kG−1r, where βopt = kG−1/2r is the normalized eigenvector

corresponding to the maximum eigenvalue of M. Also, we can easily show that:

αopt = k



Nσ2
1ξ1

2Nσ4
1(1+2ξ1)+σ2

v1

Nσ2
2ξ1

2Nσ4
2(1+2ξ1)+σ2

v2
...

Nσ2
M ξM

2Nσ4
M (1+2ξM )+σ2

vM


. (3.4.4)

So now (3.4.4) establishes a relationship between the optimum weighting vector

(αopt) and the sensor transmit power (p) through the σ2
vi

quantity (see definition

(3.3.1) and (3.3.3)).

3.4.2 Centralized Optimum Power Allocation

We now substitute αopt (k = 1) back into (3.4.1) and we then have the following

optimization problem to obtain popt:

popt = arg max
p

(
d̃2 (αopt,p)

)
subject to

M∑
i=1

pi ≤ Pt for pi ≥ 0, i = 1, 2, . . . ,M

(3.4.5)

which is easily shown to be equivalent to (3.4.6):

maximize
p

M∑
i=1

N2σ4
i ξ

2
i

2Nσ4
i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζ0

)


subject to

M∑
i=1

pi ≤ Pt, pi ≥ 0, i = 1, 2, . . . ,M.

(3.4.6)

The aim of solving the above optimization problem is to distribute in an optimum

way the total SN transmit power3 budget among M distributed SNs such that the

probability of detection is maximized. We consider the total transmit power budget

constraint in order to investigate the following: given a constant total transmit

3Here we only consider the power dissipation due to the test statistics transmission from the

SNs to FC.
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power budget (fixed transmission cost of our network) how we can maximize the

probability of detection at the fusion center by controlling the SN transmit power

(i.e., the number of active SNs)? As it will be shown later in the simulations results

by controlling the transmit power in an optimum way we can select a number of

active SNs while keeping those that have very poor SN to FC channels in sleeping

mode. In this way, the SNs that require very high power will not transmit and

so provide longer battery life. After justifying our constrain choice, (3.4.6) can be

solved analytically using the Lagrangian function:

f(p, λ0, µ) =
M∑
i=1

N2σ4
i ξ

2
i

2Nσ4
i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζi

) − λ0

(
M∑
i=1

pi − Pt

)
+

M∑
i=1

µipi

(3.4.7)

and imposing the Karush-Kuhn-Tucker (K.K.T) conditions [90]:

0 ∈ N2σ4
i ξ

2
i(

2Nσ4
i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζi

)
)2× U2 × h2i

ζi

3
(

1 +
pih2i
ζi

)2 − λ0 + µi (3.4.8)

λ0

(
M∑
i=1

pi − Pt

)
= 0 (3.4.9)

M∑
i=1

pi − Pt ≤ 0 (3.4.10)

λ0 ≥ 0, µipi = 0, i = 1, 2, . . . ,M (3.4.11)

µi ≥ 0, pi ≥ 0, i = 1, 2, . . . ,M. (3.4.12)

Solving the K.K.T conditions in (3.4.8)-(3.4.12) gives:

pi,opt =

[
1√
λ0

(
ξiU
√

3

6σ2
i (1 + 2ξi)

√
h2i
ζ0

)
− U2

6Nσ4
i (1+2ξi)

h2i
ζ0

− ζ0

h2
i

]+

(3.4.13)
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where [x]+ equals 0 if x < 0, otherwise it equals x, and λ0 can be evaluated in

similar way as in [86] by imposing equality in the constraint
M∑
i=1

pi = Pt in (3.4.6).

3.5 Distributed Optimal Quantization and Power

Allocation via Consensus for Centralized De-

tection

The straightforward solution to (3.4.6) is to obtain it in a centralized manner (i.e.,

at a FC), where the FC has full knowledge of the channel gains (hi) which might

change over time and need to be updated. In this section, we propose a distributed

solution, where the SNs are limited to use local information to be able to decide if

they should transmit any information to the FC or stay in sleeping mode.

3.5.1 Decentralized Optimum Power Allocation

We now propose a novel algorithm aimed at allocating the SN transmit power to

the FC in a fully decentralized fashion. The Lagrangian function in (3.4.7) can be

rewritten as follows:

f(p, λ0, µ) =
M∑
i=1

fi(pi, λ0) =
M∑
i=1

(
N2σ4

i ξ
2
i

2Nσ4
i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζi

)− λ0pi +
λ0

M
Pt).

(3.5.1)

Now, (3.5.1) is converted into M separable problems that can be solved in parallel

using the dual ascent algorithm:

pi [k + 1] = arg min
pi

fi(pi, λ0 [k]) (3.5.2)

λ0 [k + 1] = λ0 [k] + ε [k]

(
M∑
i=1

pi [k + 1]− Pt

)
. (3.5.3)

For this formulation, we can see that step (3.5.2) can be evaluated in a closed form

for SN i at iteration k by using only its own local information and shown to be:

pi[k + 1] =

[
1√
λ0[k]

(
ξiU
√

3

6σ2
i (1 + 2ξi)

√
h2i
ζi

)
− U2

6Nσ4
i (1+2ξi)

h2i
ζi

− ζi
h2
i

]+

. (3.5.4)
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The only step that requires an exchange of values among the SNs is the (3.5.3)

step which requires the computation of the
M∑
i=1

pi [k + 1] quantity at each SN. Because

of the communication topology for the M SNs (i.e., not fully connected), we will use

the average consensus algorithm [19] to ensure the availability of this term at each

SN. In this chapter, we assume ideal exchange of information between the SNs that

are connected and we assume there are no “overhearing” SNs.

As mentioned before, the centralized solution at the FC requires full knowledge

of the channel gains (hi) which might be time-varying and need to be always up-

dated. It also requires the variance of AWGN (ζi) and each of the local SNRs (ξi).

Moreover, the FC has to broadcast back to each SN the allocated SN transmit

power which might be decoded with error due to fading. Furthermore, when the

FC is battery operated, the centralized solution (at the FC) becomes inefficient and

not scalable as the number of SNs increases. On the other hand, the proposed dis-

tributed algorithm (Algorithm 3.6.1) is fully scalable in terms of data exchange

and SN processing complexity. We now define ε[k] to be the positive user defined

step size and pi [k + 1] = 1
M

M∑
i=1

pi [k + 1]. The proposed algorithm is described in

the next page.

3.6 Simulation Results

In this section, the proposed algorithm is evaluated numerically and compared

to its centralized counterpart. Also, we choose λ0[0] = 10−8, ∀i, κ = 10−7 and

ε [k] = λ0[k]/k. We let all the σ2
i terms at each SN be different, such that ξa =

10 log10

(
1
M

M∑
i=1

ξi

)
= -3 dB, unless otherwise stated. In addition we let ζi = 0.1 ∀i.

We compare the results with the matched filter detector4 (MFD) and use this as

a benchmark. The derivation of the optimum fusion rule and the optimum weights

in (3.3.4) when the MFD local test statistics are used is given in Appendix A. We

4The test statistic is taken as: Ti =
N∑
n=1

xi(n)si(n), ∀i = 1, 2, . . . ,M . The global test statistic

(Tf ) at the FC has the same structure as (3.3.4) with αi =

N∑
n=1

s2i (n)

σ2
i

N∑
n=1

s2i (n)+σ
2
vi

, ∀i = 1, 2, . . . ,M. The

optimum weights have been derived through the Likelihood Ratio Test (LRT) in Appendix A.
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Algorithm 3.6.1: Optimizing the sensor nodes to fusion center transmit powers

STEP 1: Set k = 0, κ equal to a small positive value

and initialize λ0 [0], ∀i;

STEP 2: Compute pi [1], ∀i using (3.5.2);

STEP 3: Run consensus over pi [1] to get pi [1];

STEP 4: Compute λ0 [1] using (3.5.3);

STEP 5: Set k = 1;

STEP 6: Repeat until convergence

pi[k+1]=

[
1√
λ0[k]

(
ξiU
√

3

6σ2
i (1+2ξi)

√
h2
i
ζi

)
− U2

6Nσ4
i (1+2ξi)

h2
i
ζi

− ζi
h2i

]+

Run consensus over pi [k + 1] until convergence

λ0 [k + 1] = λ0 [k] + ε [k]
(
Mpi [k + 1]− Pt

)
Set k = k + 1, if convergence criterion is satisfied stop, otherwise go to step 6.

will also refer to “equal linear combining” in (3.3.4) (i.e., αi = 1√
M
,∀i) and “equal

power allocation” in (3.3.1) (i.e., pi = Pt
M
,∀i). Finally, we choose Li with equality in

(3.3.1).

In Fig. 3.2, the two lower plots show the sensor transmit power pi and the number

of bits allocated to quantize Ti for the ith sensor to the FC channel respectively.

The actual channel coefficients (randomly chosen for M = 10) are in the upper plot.

Clearly with optimum linear weighting in (3.3.4) we allocate more power and bits

to the best channels unlike the non-optimum equal weighting. In the case of the

optimum combining, SNs that have very bad channels (i.e., SNs that require very

high power to transmit) will be censored (i.e., will not transmit even one bit).

In Fig. 3.3, as expected, increasing either the number of received samples (N) or

the maximum power budget (Pt), improves the detection probability Pd. Further-

more, for large N , we can observe that detection probability improvement against

Pt is negligible.

In Fig. 3.4, we illustrate how the detection probability Pd improves with increas-

ing the number of SNs (M). And in Fig. 3.5, we re-examine Fig. 3.4 for M = 10

and compare optimal and non-optimal weighting, showing the advantage of optimal

weighting over equal weighting in (3.3.4).
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Figure 3.2: Equal weight (αi = 1√
M
,∀i) and optimal weight combining (α = αopt

in (3.4.4)) transmit power and channel quantization bits allocation for Pfa = 0.1,

Pt = 10, U = 0.1, and M = 10.
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Figure 3.3: Probability of detection (Pd) for Pfa = 0.1, M = 15, U = 0.2 and

optimum weight combining.
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Figure 3.4: Probability of detection (Pd) for Pfa = 0.1, Pt = 10, U = 0.1 and

optimum weight combining.
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Pfa = 0.1, U = 0.1 and Pt = 10.
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Figure 3.6: Receiver operating characteristic with Pt = 10, U = 0.1 and M = 10 for

two different weighting schemes.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

sensor i

hk
2

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

sensor i

p i

 

 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

sensor i

L i

 

 

Distributed
Centralized

Distributed
Centralized
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43



3.6. Simulation Results

1 2 3 4 5 6 7 8 9 10
0

1

2

3

sensor i
h k2

1 2 3 4 5 6 7 8 9 10
0

0.5

1

sensor i

p i

 

 

1 2 3 4 5 6 7 8 9 10
0

1

2

sensor i

L i

 

 

Decn
Cen

Decn
Cen

Figure 3.8: Centralized and decentralized sensor transmit power and channel bit

allocation for Pfa = 0.1, Pt = 5, U = 3, ξa = −1 dB, N = 50 and si(n) = 0.3 ∀i.

Fig. 3.6 shows the receiver operating characteristic (ROC) parametrized against

the number of samples (N) for both optimal and equal weighting.

In Fig. 3.7, the middle plot shows the SN transmit power pi for the ith SN to

the FC channel using two different approaches (i.e., distributed and centralized).

The actual channel coefficients (randomly chosen) are in the upper plot in Fig. 3.7.

Clearly, the performance of our proposed distributed method is very close to the

centralized one. As expected, both centralized and decentralized methods allocate

more power to the best channels. In this way, the nodes that have very bad channels

(i.e., sensor nodes that require very high power to transmit) will be censored (i.e.,

will not transmit even a single bit).

In Fig. 3.8, we show that for a large number of samples (N) and equal SNs ob-

servation quality (more specifically for si(n) = 0.3 ∀i) the optimum power allocation

scheme tends to a uniform power allocation as expected (see the definition of G in

Section 3.4). Clearly, when N is large, G will depend more on local ξi (which in

this case are taken to be the same across the SNs) rather than σ2
vi

quantity. How-

ever, even in this case, still more quantization bits (i.e., larger information rate) are

allocated to the best communication channels (for e.g., SN1, SN3, SN7).
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with Pfa = 0.1, U = 3, ξa = −4 dB, N = 5 and M = 100.
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Figure 3.10: Probability of detection (Pd) versus probability of false alarm (Pfa),

with U = 3, ξa = −4 dB, Pt = 1 and M = 10.
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Figure 3.11: Probability of detection (Pd) versus total power budget (Pt), with

U = 3, ξa = −4 dB, Pfa = 0.1 and M = 20.

Fig. 3.9 shows the total power budget (Pt) against the mis-detection (1-Pd)

performance for 6 different schemes. The energy detector (ED) performance tends

to converge to the matched filter detector for a low power budget (Pt).

Fig. 3.10 shows the receiver operating characteristic against the sample number

(N). As expected, the matched filter detector outperforms the energy detector but

it requires full knowledge of the useful signal.

And in Fig. 3.11, we examine the probability of detection (Pd) performance

against the total power budget (Pt). As Pt increases, then Pd improves.

3.7 Chapter Summary and Conclusions

In this chapter, we have shown how to perform distributed detection, via SNs trans-

mitting a quantized version of the received energy test statistic to the FC. In ad-

dition we have calculated the optimal linear combining coefficients at the FC and

the optimal transmit power for each sensor in order to maximize Pd. Although we

maximized the modified deflection coefficient (as an approximation to maximizing
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3.7. Chapter Summary and Conclusions

Pd), the simulations have shown that this approach still allocates sensor transmit

powers and quantization bits in a intuitively optimal way.

Then, we propose a novel distributed algorithm to calculate the optimal SN

transmit power for each SN in order to maximize Pd. In this way, each SN can allo-

cate its own transmit power by exchanging the information with its own neighbors.

What makes this scheme very useful and attractive is that the only value that they

should exchange among neighbors is their own transmit power at the current state.

The algorithm is robust and easy implementable.
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Chapter 4

Centralized Quantized Fusion

Rules

Within this chapter, we address the problem of finding the optimal fusion rule

that should be adopted by the FC for the centralized detection of an unknown

deterministic spatially uncorrelated signal. The overview of the motivation

behind this work is presented. The assumptions made and the problem for-

mulation are similar to Chapter 3. The optimal fusion rule implementation

requires a−priori information that cannot usually be attained in practice. Mo-

tivated by this, majority of this chapter is dedicated to deriving sub-optimum

but easy implementable fusion rules.

IN THIS CHAPTER

♣

4.1 Introduction

4.1.1 Motivation

Distributed detection has been attracting significant interest in the context of WSNs

[52] and [91]. This is due to the flexibility of WSNs, which can be seamlessly deployed

over a wide geographic area for military monitoring and surveillance purpose [83].

However, WSNs suffer from constrained bandwidth and limited on-board power.

This poses challenges in the design of distributed detection algorithms, especially
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4.1. Introduction

when the intruder’s signature is unknown to the WSN. The main issue is to improve

the detection by fusing the measurements provided by various SNs in a manner that

efficiently utilizes the scarce bandwidth and overcomes the limitations of a fading

wireless channel.

4.1.2 Related Work

There is a large literature reporting on the problem of decision over ideal parallel

access channels (PACs) (e.g., [32, 61, 62] and references therein). Some optimum

decision rules have been derived in the context of WSNs (e.g., [64], [65]) and in the

context of spectrum sensing in cognitive radio networks (e.g., [32]). However, as

the SNs are all battery operated (i.e., with limited energy available on-board) this

assumption is unrealistic.

The problem of decentralized detection in bandwidth constrained sensor net-

works has been addressed in [92], where the authors investigated the design of sen-

sor messages sent to the FC that minimize the error probability. The problem of

detecting a known deterministic parameter is investigated in [93] under restricted

channel capacity. The channel fading effect on distributed detection was tackled

in [94]. In [85], the authors addressed both issues of limited bandwidth and channel

imperfections. They optimized the transmission power, which consequently dictated

the number of allocated bits, for the detection of a known signal. Decision fusion

over Rayleigh fading channels is addressed in [29, 94]. Fusion of censored decisions

is another approach to save power on limited bandwidth WSNs and is considered in

a numerous research works (e.g., see [54,95,96] and references therein).

4.1.3 Chapter Contributions

In this chapter, we consider the problem of soft decision fusion in a bandwidth-

constrained wireless sensor network (WSN). The WSN is tasked with the detection

of an intruder transmitting an unknown signal over a fading channel. A binary

hypothesis testing is performed using the soft decision of the sensor nodes (SNs).

Using the likelihood ratio test, the optimal soft fusion rule at the fusion center (FC)
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has been shown to be the weighted distance from the soft decision mean under the

null hypothesis.

But as the optimal rule requires a − priori knowledge that is difficult to attain

in practice, suboptimal fusion rules are proposed that are realizable in practice. We

show how the effect of quantizing the test statistic can be mitigated by increasing

the number of SN samples size, i.e., bandwidth can be traded off against increased

latency. Similarly, a simpler fusion rule is proposed based on the linear rule de-

rived in Chapter 3. Then, the previous algorithms are revisited under noisy, flat

fading channels with limited bandwidth. Finally, the SN’s transmitted powers are

optimized to achieve the best probability of detection.

4.1.4 Chapter Outline

This chapter is organized as follows. Section 4.2 presents the system model and

the WSN communication architecture. Soft decision fusion rules are proposed in

Section 4.3. The quantization effect is discussed in Section 4.4 and the optimal

power allocation is derived in Section 4.5. Simulation results are given in Section

4.6 and conclusions are presented in Section 4.7.

4.2 Problem Formulation

In this section, we formulate the problem by first introducing and modeling the tar-

get as well as the WSN architecture adopted in this chapter. Then, the centralized

detection set up is described.

4.2.1 System Model

Here we describe the target sensing, communication channel, and the WSN archi-

tecture.

Target Sensing

Identical to Chapter 3, in this chapter we consider a WSN with M sensor nodes

reporting to a FC tasked with the detection of any intruders. The intruder leaves a
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signature signal that is unknown to the WSN but it is assumed to be deterministic.

The assumptions made regarding the target sensing are also identical to those stated

in Chapter 3.

Communication Channel

Identical to Chapter 3, the communication between the local SNs and the FC are

modeled as error-free (the SNs exchange quantized information matched to the chan-

nel capacity of each link) orthogonal flat fading channels and additive white Gaus-

sian noise (AWGN) with a known variance ζi. Also, the assumptions considered

regarding the communication channels are identical to those state in Chapter 3.

WSN Architecture

In this chapter we will use the same WSN architectures as in Chapter 3 shown in

Fig. 3.1. As stated before, this is called a centralized architecture where there is

a FC that communicates with spatially distributed SNs. In this chapter, different

from Chapter 3, we do not program the SNs to communicate with each other (i.e.,

there are only SNs to FC communications).

4.3 Soft Decision Fusion Rules

In this section, the optimal soft decision fusion rule is investigated assuming infinite

bandwidth for each WSN, i.e., no quantization is required. However, it turns out that

the optimal rule requires prior information about the signal’s energy, which cannot

be known in practice. Hence, suboptimal rules are proposed as an implementable

alternative.

4.3.1 Optimal Fusion Rule

For optimal detection, the SNs should send their measurements to the FC, where the

ultimate detection decision about the intruder’s presence will be made. However,

this approach is not always feasible in the context of WSNs due to the limited

bandwidth available. Thus, the WSN adopts a distributed detection algorithm in
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which the SNs send their quantized soft decisions (i.e., the quantized local test

statistics) to the FC, which combines them to arrive at the global decision. Since

the intruder’s signal is unknown at the SNs, the optimal detector in this case would

be the energy detector, which is implemented at the ith SN as follows:

Ti =
N∑
n=1

(yi (n))2 . (4.3.1)

Given the local soft test statistic defined in (4.3.1), the optimal fusion rule follows

from the likelihood ratio test (LRT):

LRT (T ) =
p {T1, T2, ..., TM |H1}
p {T1, T2, ..., TM |H0}

≥ γ (4.3.2)

where p {T1, T2, ..., TM |Hj} is the joint probability distribution of local soft decisions

under the jth hypothesis. However, Ti has a χ2 distribution under H0 and a non-

central χ2 under H1, which means evaluation of the LRT in (4.3.2) is complicated.

Consequently, we invoke the central limit theorem to simplify the distribution of

Ti when N is sufficiently large. So the distribution of any Ti can be adequately

approximated by a Gaussian distribution with mean and variance given in (3.2.4)

and (3.2.5). Since the noise at different SNs is independent, it can easily be shown

(similar to the Proof given in Appendix A) that the log-likelihood ratio test (LLRT)

takes the form

Tf =
M∑
i=1

(
(Ti −Nσ2

i )
2

2Nσ4
i

− (Ti −Nσ2
i (1 + ξi))

2

2Nσ4
i (1 + 2ξi)

)
≥ γ′ (4.3.3)

where γ′ = 2 ln

(
M∏
i=1

γ

( √
2Nσ4

i√
2Nσ4

i (1+2ξi)

))
. The LLRT can be further simplified by

completing the square in (4.3.3) to yield

Tf =
M∑
i=1

ai (Ti − bi)2 (4.3.4)

ai =
ξi

Nσ4
i (1 + 2ξi)

(4.3.5)

bi =
Nσ2

i

2
. (4.3.6)

The fusion rule in (4.3.4) has an interesting interpretation. It is, in fact, the weighted

distance in the M -dimensional space between the local soft test statistic and half of
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its mean under the null hypothesis (see (3.2.4) and (3.2.5)). It is also clear that SNs

with lower noise get more weight in the fusion process. Another interesting note

here is that at high SNR (ξi) the weight ai depends only on the noise power at the

SN and not on the measured signal energy.

4.3.2 Suboptimal Fusion Rules

Now, the performance evaluation and threshold computation of the optimal fusion

rule in (4.3.4) are mathematically intractable, since the probabilities of detection

(Pd) and the false alarm (Pfa) does not posses closed-form solutions. Hence, one

has to use Monte Carlo simulations for evaluation. Furthermore, the computational

complexity of (4.3.4) increases significantly as the number of SNs gets larger. To

make the matter worst, the optimal fusion rule in (4.3.4) requires the exact knowl-

edge of the SNR (ξi), which is difficult to be obtained in practice. However, its

structure can be used to formulate low complexity suboptimal rules. So now we

propose three suboptimal rules: weighted fusion, equal fusion and optimum linear

fusion.

Weighted and Equal Fusion Rules

The weighted fusion rule takes the same structure as (4.3.4). However (for large ξi)

ai in (4.3.5) is replaced by awi = 1/2Nσ4
i and we let bwi = bi. This rule approaches

the optimal one when the SNR is large, as discussed earlier.

As for the equal fusion rule, equal weight is given for all the SNs, i.e., aei = 1 for

all i = 1, 2, · · · ,M . Also, bei = bi.

Optimum Linear Fusion Rule

The main motivation behind the linear combining rule consideration is that the

probability of detection and the probability of false alarm metrics are obtained in

closed-form. This gives insight into the design of the system’s parameters, whereas

for the LRT-based detector (4.3.4), analytically analyzing the detection performance
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is not tractable. Now we examine the (sub-optimal) linear fusion rule:

T lf =
M∑
i=1

αiTi (4.3.7)

and the optimal weights to maximize the probability of detection are

αi =
ξi

Nσ2
i (1 + 2ξi)

. (4.3.8)

The derivation and a detailed discussion can be found in Chapter 3. However, the

above optimum linear combining fusion rule may not be implementable in practice

or may have limited application as it requires a − priori knowledge of ξi. In such

situations, derivation of sub-optimum fusion rules are highly motivated.

4.4 Quantized Soft Decision Fusion Rule

The previous fusion rules assume the availability of an infinite bandwidth to send

the exact Ti to the FC. Now (due to limited bandwidth and transmit power), we

assume that the local soft test statistic Ti is quantized with Li bits and transmitted

to the FC with power pi over a wireless channel (similar to Chapter 3). We will

assume that the maximum channel capacity is utilized by the SNs. So our objective

is to find the best soft fusion rule first, and then optimize the allocated power to

maximize the detection probability. As in Chapter 3, we let the quantized test

statistic (T̂i) at the ith sensor be modeled (with Li bits) as

T̂i = Ti + vi (4.4.1)

where vi
1 is the quantization noise with uniform distribution in the interval [−B,B]

and variance

σ2
vi

=
B2

3× 22Li
. (4.4.2)

However, the distribution of T̂i can be approximated [88] by a Gaussian distri-

bution with mean and variance:

E
{
T̂i|H0

}
= Nσ2

i , Var
{
T̂i|H1

}
= 2Nσ4

i (1 + 2ξi) + σ2
vi

E
{
T̂i|H1

}
= Nσ2

i (1 + ξi) , Var
{
T̂i|H0

}
= 2Nσ4

i + σ2
vi
.

(4.4.3)

1vi is the quantization noise independent of wi (n) (in (3.2.1) and (3.2.2)) for all n and i.
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4.4.1 Quantized Optimal/Suboptimal Fusion Rules

As stated before, the distribution of T̂i’s can be approximated by a Gaussian dis-

tribution with mean and variance given in (4.4.3). Then, in a similar manner to

Section 4.3, the log-likelihood ratio test with quantization can be shown (similar to

the Proof given in Appendix A) to be

T qf =
M∑
i=1


(
T̂i −Nσ2

i

)2

2Nσ4
i + σ2

vi

−

(
T̂i −Nσ2

i (1 + ξi)
)2

2Nσ4
i (1 + 2ξi) + σ2

vi

 ≥ γ′′ (4.4.4)

where γ′′ = 2 ln

(
M∏
i=1

γ

( √
2Nσ4

i+σ2
vi√

2Nσ4
i (1+2ξi)+σ2

vi

))
. As before, (4.4.4) can be now written

in the following form

T qf =
M∑
i=1

aqi

(
T̂i − bqi

)2

(4.4.5)

aqi =
ξi

Nσ4
i

(
1 + 2ξi +

σ2
vi

2Nσ4
i

)(
1 +

σ2
vi

2Nσ4
i

) (4.4.6)

bqi =
Nσ2

i

2
−
σ2
vi

4σ2
i

. (4.4.7)

Note that T qf → Tf as σ2
vi
→ 0 for all i. Consequently, aqi → ai and bqi → bi

under the previous condition as well. More interestingly however, is that T qf → Tf

as N → ∞, regardless of σ2
vi

. This implies that bandwidth can be saved but at

the expense of increasing both the number of collected measurements and also the

detection delay.

As for the suboptimal (quantized) fusion rule, it can be easily shown that

awqi =
1

Nσ4
i

(
1 +

σ2
vi

2Nσ4
i

)2 (4.4.8)

aeq = 1 and beq = bwq = bqi .

4.4.2 Quantized Optimal Linear Fusion Rule

The quantized version of the linear fusion weights in (4.3.8) can be shown to be [35]

αqi =
ξi

2σ2
i

[
1 + 2ξi +

σ2
vi

Nσ2
i

] . (4.4.9)

If the SNR is large, i.e., when either σ2
vi
→ 0 or N → ∞ then it follows that

αqi → αi.
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4.5 Optimum Sensor Transmit Power Allocation

The performance of the proposed quantized fusion rules approach the performance

of their unquantized counterparts if the number of (test statistic) bits is sufficiently

large. However, this entails a large transmission power as predicted by (3.3.1). So,

we desire to strike a trade-off between the fusion rule’s performance and the transmit

power. To this end, we first need to adopt an optimization criterion. A natural one

is the probability of detection, which depends on the distribution of the fusion rule.

So letting 0i =
(
T̂i − bqi

)2

, then the optimum fusion rule (4.4.5) can be written as

T qf =
M∑
i=1

aqi0i. (4.5.1)

The mean and variance of 0i under H0 and H1 are now given in (4.5.2) and (4.5.3)

respectively:

E {0i|H0} = 2Nσ4
i +N2σ4

i + σ2
vi
− 2bqiNσ

2
i + (bqi )

2

E {0i|H1} = E
{
T̂i|H1

}2

+ Var
{
T̂i|H1

}
− 2bqi

(
Nσ2

i +Nσ2
i ξi
)

+ (bqi )
2

(4.5.2)

Var {0i|H0} = Var
{
T̂i|H0

}[
4N2σ4

i + 2Var
{
T̂i|H0

}
+ 4 (bqi )

2 − 8Nbqiσ
2
i

]
Var {0i|H1} = 4E

{
T̂i|H1

}2

Var
{
T̂i|H1

}
+ 2Var

{
T̂i|H1

}2

+ 4 (bqi )
2 Var

{
T̂i|H1

}
− 8bqiE

{
T̂i|H1

}
Var

{
T̂i|H1

}
.

(4.5.3)

Using the central limit theorem, T qf can be approximated by a Gaussian distri-

bution

T qf ∼

N
(
E
{
T qf |H0

}
,Var

{
T qf |H0

})
under H0

N
(
E
{
T qf |H1

}
,Var

{
T qf |H1

})
under H1

(4.5.4)

where

E
{
T qf |H0

}
=

M∑
i=1

aqiE {0i|H0}

E
{
T qf |H1

}
=

M∑
i=1

aqiE {0i|H1}

Var
{
T qf |H0

}
=

M∑
i=1

(aqi )
2 Var {0i|H0}

Var
{
T qf |H1

}
=

M∑
i=1

(aqi )
2 Var {0i|H1} .

(4.5.5)

56



4.5. Optimum Sensor Transmit Power Allocation

It can be readily shown that the detection probability as a function of the false

alarm probability has the form

Pd = Q

Q−1 (Pfa)
√

Var
{
T qf |H0

}
−Ψ√

Var
{
T qf |H1

}
 (4.5.6)

where Q(·) is the Q-function and Ψ = E
{
T qf |H1

}
− E

{
T qf |H0

}
. The probability

of detection implicitly depends on the transmission power through the relationships

(4.5.2), (4.5.3) and (4.5.5). Based on this, we can optimize the transmission powers

(pi) to maximize Pd under the constraint of a maximum aggregate transmit power

budget (Pt):

popt = arg max
p

Pd (p)

subject to
M∑
i=1

pi ≤ Pt for pi ≥ 0, i = 1, . . . ,M

(4.5.7)

where p = [p1, p2, . . . , pM ]. Now (4.5.7) is difficult to solve and there is no closed

form solution. Hence, we propose a numerical solution by adopting the spatial

branch-and-bound strategy [97] using the YALMIP optimization tools [98].

In the first step of the algorithm, we start by applying a standard nonlinear

solver to obtain a locally optimal solution and then set it as an upper bound on the

achievable objective. Secondly, in each node, a convex relaxation of the model is

derived, and the resulting convex optimization problem is solved. We then assign

this as a lower bound. Bound tightening using [98] is applied iteratively to detect

and eliminate redundant constraints and variables, and tighten the bounds where

possible. The algorithm outline is summarized in Algorithm 4.5.1.

The aim of the algorithm is to obtain the global minimum of the function β (p) =
Q−1(Pfa)

√
Var{T qf |H0}−Ψ√

Var{T qf |H1}
over the solution space ℘start where p ∈ ℘start. For any

℘ ⊆ ℘start we define Flb (the lower bound) and Fub (the upper bound) as functions

that satisfy: Flb (℘) ≤ Fmin (℘) ≤ Fub (℘). Then, the global optimum solution

β∗ = Fmin (℘start) = infp∈℘startβ (p).

We now define ε to be a small positive constant and pinit is the random initial-

ization of the vector p. We assume that the fusion center (FC) has full knowledge of

the channel gains (hi) quantity from sensors to FC. In the case where the conditions

affecting the network do not change fast, the above assumption is realistic.
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Algorithm 4.5.1: Optimum sensor node transmit power allocation

STEP1: Decide the upper bound and the lower bound of the

global optimum solution β∗ :

• set the upper bound: Uo = Fub (℘start)

Fub is implemented using fmincon function in

the optimization toolbox of Matlab by inputing a

feasible solution pinit at the starting point.

• set the lower bound: Lo = Flb (℘start)

Flb is implemented by deriving a convex relaxation

of the problem by using Yalmip [98] and then using the

linprog function in the optimization toolbox.

• if Uo-Lo ≤ ε stop, the global optimum solution is

within the acceptable range. Otherwise go to STEP2;

STEP2: Split ℘start into two nodes: ℘start = ℘1 ∪ ℘2;

STEP3: Evaluate Fub (℘i) and Flb (℘i) for i = 1, 2;

STEP4: Update the bounds:

• U1 = min {Fub (℘1) , Fub (℘2)} ;

• L1 = min {Flb (℘1) , Flb (℘2)} ;

• if U1-L1 ≤ ε stop, the global optimum solution is

within the acceptable range. Otherwise go to STEP5;

STEP5: Perform bound propagation using Yalmip and update

the lower bound

• if U1-L1 ≤ ε stop, the global optimum solution is

within the acceptable range. Otherwise go to STEP6;

STEP6: Estimate ℘∗ = arg min {Flb (℘1) , Flb (℘2)}

• split ℘∗ into two nodes: ℘∗ = ℘1 ∪ ℘2 and go to STEP3;
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4.6 Simulation Results

We simulate a WSN of M SNs detecting an intruder with si(n) = A, where

A = 0.1. The communication noise variances are arbitrarily set to ζi = 0.1 for

all i = 1, 2, · · · ,M (for simplicity). The measurement noise variances are generated

randomly and used throughout all the simulations. The average measurement SNR

for the network is defined as ξa = 10 log10

(
1
M

M∑
i=1

ξi

)
. In all simulations we assume

perfect knowledge of ξi.
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Figure 4.1: Receiver operating characteristics of six different fusion rules for N =

10, M = 10, ξa = −8.5 dB and B = 0.5.

Fig. 4.1 shows the receiver operating characteristic (ROC) curve for six different

fusion rules. It is clear that the optimal fusion rule attains the best performance

for (ξa = −8.5 dB) whereas the worst performance is that of the equal weight linear

combining rule. However, all the rules converge when the parameter Pfa increases.

In Fig. 4.2 the effect of the number of measurement samples (N) on Pd is

shown at a fixed Pfa. Obviously, as N increases Pd improves for all algorithms.

Interestingly, the optimal linear fusion rule outperforms the suboptimal LRT-based

one. This is explained by the structure of (4.4.8) where for large (but finite) N the

effect of σ2
vi

(quantization noise variance) is still noticeable.
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Figure 4.2: Probability of detection (Pd) versus the number of samples (N) with

M = 20, Pfa = 0.1, B = 0.5 and ξa = −8.5 dB.
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Figure 4.3: Probability of detection (Pd) versus number of sensors (M) for N = 10,

Pfa = 0.1, ξa = −8.5 dB and B = 0.5.
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Figure 4.6: Optimum sensor transmit power and channel quantization bits alloca-

tion for N = 10, Pfa = 0.1, ξa = −8.5 dB and Pt = 20.

A similar trend is noticed in Fig. 4.3, in which Pd is plotted against the number

of SNs, (M), for a fixed N . The Pd performance of both LRT-based and linear

combining schemes as a function of the average SNR (ξa) is shown in Fig. 4.4.

Fig. 4.5 on the other hand, exhibits the effect of the transmission power pi on

Pd. Increasing pi leads to a larger number of allocated bits, through (3.3.1), and

consequently less quantization variance, which ultimately improves the detection

performance. Interestingly, the dependence of Pd on pi is alleviated when N is

increased, since the effect of the quantization noise is mitigated as predicted by

(4.4.6) and (4.4.9).

In Fig. 4.6, we report the optimized sensor transmit power and the corresponding

number of bits allocated to quantize Ti by applying the branch and bound algorithm

[97]. Clearly we allocate more power and bits to the best channels. However, note

that the power and bit allocation are also affected by the weights aqi in (4.4.6) which

are a function of the signal to noise ratio ξi. For instance, consider SN 12 which

has a relatively good channel gain, but the corresponding local ξi is bad. Hence,

it will allocate a relatively small amount of the transmit power. Those SNs with

62



4.7. Chapter Summary and Conclusions

bad channels are allocated zero bits, i.e., they will be censored or prevented from

transmission.

4.7 Chapter Summary and Conclusions

In this chapter we have derived and shown that the optimal fusion (see (4.3.4)) for

energy-based soft decisions is actually the weighted distance of the decisions from

their mean under the null hypothesis. As this optimal fusion rule is not mathe-

matically tractable and requires a− priori knowledge that might be difficult to be

estimated in practice, we have proposed some realizable simple and efficient sub-

optimal fusion rules that are derived and inspired from the optimal one. These

sub-optimum fusion rules intuitively are shown to give more weight in the actual

fusion to the SN decisions with better local sensing quality.

We have also shown that the effect of test statistics quantization on the FC

detection performance can be mitigated by increasing the number of sample mea-

surements (N), or equivalently incurring more delay in the system. Finally, the SN’s

transmission power has been optimally allocated. Intuitively, more power is given to

SNs having better channel gains and consequently increased number of quantization

bits.
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Chapter 5

Distributed Two-Step Quantized

Fusion Rules

Within this chapter, we consider the problem of distributed soft decision fu-

sion in a bandwidth-constrained spatially uncorrelated wireless sensor network

(WSN). Existing distributed consensus-based fusion rule algorithms only en-

sure equal combining of local data. In the case of bandwidth-constrained

WSNs, we show that their performance is poor and does not converge across

the sensor nodes (SNs). Motivated by this, we propose a quantized two-step

distributed detection algorithm that approaches the performance of the un-

quantized centralized (with a FC) detector and its power consumption is shown

to be 50% less than the existing (unquantized) conventional algorithm.

IN THIS CHAPTER

♣

5.1 Introduction

5.1.1 Motivation

Wireless sensor networks (WSNs), consisting of a large number of cheap SNs (with

limited capabilities), are deployed over a geographical area for a wide range of appli-

cations such as personal health monitoring, traffic regulating, smart building infras-

tructure and so on. Particularly, reaching a consensus on a certain global decision
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among these multi-sensors network is of great interest. Proper interaction among

the SNs may help to improve their local reliability, reduce vulnerability and con-

gestion events, and make a better usage of the limited radio resource capabilities.

However, there are a number of different strategies as to how the test statistics from

each SN will be used in order to arrive at a final decision. We will first give a brief

review before introducing our proposed approach.

In the previous chapters (i.e., Chapter 3 and Chapter 4), we have considered

the centralized solution where the local SNs communicate their noisy test statistics

(inter-sensor collaboration is not considered) to a fusion center (FC) for a final deci-

sion [28]-[37]. In Chapter 3, we investigated the effect of inter−sensor collaboration

[99] in the context of SN transmit power allocation scheme. There are some recent

publications [39]-[40] that consider the effect of inter− sensor collaboration in the

context of estimation. Here, in the first stage, the local SNs collaborate through

error-free, low cost transmission links (defined by the symmetric adjacency matrix).

After the first stage, the SNs (which in general can be a subset of all SNs) report

to a FC where the final decision is made. Reference [39] proposes an “efficient”

collaboration strategy in a distributed fashion (as opposed to [41] where this optimal

interaction strategy is computed at a FC) by means of using only local SNs obser-

vations. While the authors in [39] claim to reduce the FC control overhead, [40]

derives the optimum power allocation scheme such that the estimation quality back

at the FC is further improved.

These two hybrid approaches [36,99] (a SN interaction stage followed by report-

ing to a FC), like the first approach (no interaction stage and every SN communicate

directly to a FC), rely greatly on the integrity of the FC. Clearly, the limitation of the

centralized approach is both the requirement of the FC to process a large amount

of information (i.e., possible bottleneck) and the possible total failure of the FC.

Furthermore, collecting information at the FC lacks scalability, and may drain the

energy and communication resources [42]. Hence, decentralized solutions are very

attractive as both the computational load splits across the network and the final

decision can be taken at any arbitrary SN. Compared to the centralized approach,

the system is more reliable and offers a greater robustness against FC failure.
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5.1.2 Related Work

While the related work on centralized and hybrid approach was reviewed in Chap-

ter 3 and Chapter 4 in a great deal of detail, some key related research has been

restated in Section 5.1.1 in order to motivate and make clear the purpose and the

contributions of this chapter.

Within this section, we review the literature of the fully distributed strategy

(i.e., without a FC) [23–26,43–48], where the SNs exchange local information itera-

tively among their neighbors and are capable of reaching a global optimum decision.

The authors of [43] and [44] adopts the diffusion-based protocol and propose a new

diffusion LMS algorithm while [26] develop a fully distributed consensus-based LMS

algorithm that outperforms the existing (relying on information diffusion) alterna-

tives. The authors of [45] design a bio-inspired algorithm that can achieve globally

optimal distributed decisions while in [46] they investigate the consensus problem in

the presence of propagation delays. References [18,46–48,53,54] employ the iterative

distributed consensus algorithm [19] for distributed inference.

But these approaches consider ideal exchange of information among all the SNs,

and as the SNs are battery operated (i.e., with limited energy available on-board)

this assumption is unrealistic. Furthermore, practical WSN scenarios suffer from

channel impairments such as fading and attenuation. Recently, to address the prob-

lem of consensus algorithms with quantized communications, a number of different

approaches have been proposed. The authors in [20] propose a probabilistic quan-

tization scheme that is shown to reach a consensus (almost surely) to a random

variable whose expected value is equal to the desired average. Unfortunately, it

is shown that this scheme performs poorly at low bit rate. Another approach to

mitigate the quantization error in the consensus algorithm is to use an iteration de-

pendent step size as in [21] and [52]. Adapting the weight link sequence in order to

guarantee convergence is shown to decrease the convergence rate and so introduces a

delay to the detection algorithm. Even employing such decaying link weights satisfy-

ing a persistence condition (i.e., their sum over time diverges, while their square sum

is finite) cannot guarantee the convergence to the target average [21]. Recently [22]

introduced a progressive quantization scheme that is shown to achieve the true av-
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erage solution even at a low communication rate. However, this scheme has a high

computational complexity and relies on a doubly stochastic weight matrix.

Now, most of the existing works on quantized consensus assume that the com-

munication topology is symmetric (not the case here). Furthermore, all the above-

mentioned algorithms either maintain the average value in the network but cannot

reach a consensus effectively, or converge to a random variable that is not always

the target average value.

So, the purpose of this chapter is to develop a fully distributed detection frame-

work [23, 24] for realistic WSN scenarios. The communication links among SNs are

modeled as channels with path loss, flat fading and additive white Gaussian noise

(AWGN). The assumption of flat fading (see for e.g., [52]) is reasonable and valid in

many WSN applications operating at both short distances and low bit rate (hence

large symbol interval) due to resource limitations. Furthermore, the fact that they

are (densely) spatially deployed across an open field result in a small delay spread.

We will show that this new distributed framework can approach the performance of

a centralized optimum detector (i.e., with a FC).

5.1.3 Chapter Contributions

So, the main contributions of this chapter are as follows:

(i) First, the (unquantized) consensus algorithm [19] is modified in such a way

that the SNRs of the local SNs are taken into account in order to further improve

the global detection performance. We re-state the necessary conditions for con-

vergence to the (unquantized) optimum linear combining solution [35]. Based on

this, we provide a distributed consensus-based detection framework with (weight

combining) quantized test statistic exchange (SNs implement a low complexity uni-

form quantizer and the number of quantization bits is constrained to match the

channel capacity of each link). Using the probability of detection and the proba-

bility of false alarm as metrics, we show that this approach: (a) does not converge

to a global decision across the network, and (b) does not approach the optimum

quantized centralized detector (i.e., with a FC) performance [35].

(ii) Second, motivated by the above, we propose a novel two-step quantized
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distributed weighted fusion algorithm that now: (a) converges to a global decision

across the network, (b) approaches the optimum centralized detector performance,

and (c) achieves the global decision in a finite number of iterations. The main idea

of this proposed two-step distributed (quantized) fusion algorithm is to arrive at an

optimum global decision at every SN by taking advantage of the spatially distributed

information across the WSN while combating flat fading.

5.1.4 Chapter Outline

Now, a summary of this chapter is as follows. In Section 5.2 we formulate the de-

tection problem and recall some basic definitions from graph theory that we will be

using. Section 5.3 describes two different approaches (i.e., the centralized approach

(with a FC) and the fully distributed approach (without a FC)). In Section 5.4 we de-

scribe a consensus-based distributed detection framework and analyze the detection

performance by proving that the quantized distributed detector performance does

not converge across the SNs. Motivated by this, we then propose a two-step quan-

tized weighted fusion algorithm with performance comparable to the centralized

(unquantized) optimum detector. Finally, Section 5.5 presents simulation results

that confirm our analytical findings and in Section 5.6 we give conclusions.

5.2 Problem Formulation

In this chapter, we consider two different schemes: a) the centralized approach (see

Fig. 5.1), where each SN sends its test statistic (quantized to Li bits) to the FC

(see section 5.3.1) where the FC combines them and makes the final decision; and

b) is the decentralized approach (see Fig. 5.2 and section 5.3.2), where SN i shares

iteratively its current test statistic (quantized to qi bits) across the set (∆i) of its

neighbors (see ∆i definition in section 5.2.2). Next, we explain in more detail the

local sensing model and some graph theory definitions.

5.2.1 System Model

Next, we describe the target sensing, communication channel, and the WSN archi-

tecture.
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Target Sensing

Similarly to Chapter 3 and Chapter 4, in this chapter we consider a WSN with M

SNs that are tasked with the detection of any intruders. Again, we assume that the

intruder leaves a signature signal that is unknown to the WSN but it is assumed to

be deterministic. The other assumptions made regarding the target sensing are also

identical to those stated in Chapter 3 and Chapter 4.

Communication Channel

Identical to Chapter 3, the communication links among SNs are modeled as chan-

nels with path loss, flat fading and additive white Gaussian noise (AWGN). The

assumption of flat fading (see for e.g., [52]) is reasonable and valid in many WSN

applications operating at both short distances and low bit rate (hence large symbol

interval) due to resource limitations.

WSN Architecture

In this chapter (different from Chapter 3 and Chapter 4), we consider the distributed

SNs detection architecture where there is no any FC. The SNs collaborate with their

neighbors (through single-hop) iteratively based on the communication topology

(no “overhearing” SNs assumed) that we describe next in the Section 5.2.2. This

architecture is called the distributed WSN architecture and it is illustrated in Fig.

5.2. Each of the local spatially distributed SN is tasked with the detection problem.

5.2.2 Sensor Nodes Interaction Model

The interaction among SNs is according to the communication topology which is

given by an undirected graph G = (V , E), where V ={1, 2, . . . ,M} represents the

set of M SNs and E ⊆ V ×V is the set of edges {i, j}. The graph properties can be

represented by an adjacency matrix E ∈ RM×M whose entries are defined as

eij = eji =

 1, if j ∈ ∆i

0, otherwise.
(5.2.1)
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Figure 5.1: Schematic communication architecture between peripheral SNs and

the fusion center (FC). Each SN generates a test statistic (Ti) by observing the

target and can communicate (using [Ti]Q) with the FC only over an energy-

constrained/bandwidth-constrained link.

We denote the ith SN neighbor set as ∆i and |∆i| is the number of neighbors.

The definition of the graph Laplacian matrix (L ∈ RM×M) is L = D − E with

D = diag(|∆1|, . . . , |∆M |). Next, we discuss the centralized and distributed detec-

tion approaches and provide an optimum distributed (i.e., without a FC) weight

combining fusion rule framework.

5.3 Centralized vs. Distributed

The first scheme1 (see Fig. 5.1) is a WSN consisting of M spatially distributed SNs

that report to a FC. Upon receiving the contributions from each individual local

SN, the FC linearly combines them and then declares a global decision. We refer

to this approach as a centralized scheme. In the other approach (see Fig. 5.2)

the SNs collaborate among each other iteratively to come up to a global decision

1Now, [Ti]Q is the ith SN quantized test statistic (see (5.3.2)),
{
αi
}M
i=1

are the optimum weights

(see (5.3.9)) and the superscript “q” refers to “quantized”.
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in a fully distributed fashion (i.e., without a FC). In this case, each SN i is able to

perform a (global) decision. We refer to this approach as a decentralized scheme.

Note that the results derived in this section will serve as the basis for developing the

new optimum two-step quantized (weighted) fusion rule algorithm in section 5.4.

5.3.1 Centralized Approach

In order to better understand the fully distributed algorithm that we propose later,

in this chapter we first describe two different centralized approaches: quantized and

unquantized.

Quantized Centralized Approach [35]-[36]

Here, quantized linear2 soft decision combining at the FC is proposed, where each

individual SN has to quantize its observed test statistic (Ti) (prior to transmission

to a FC) to Li bits. So, to satisfy the capacity constraint on each SN to FC channel,

we require:

Li ≤
1

2
log2

(
1 +

pih
2
i

ζi

)
bits/sample (5.3.1)

where pi denotes the transmit power of SN i, hi is the flat fading coefficient between

SN i and the FC, and ζi is the variance of the AWGN at the FC. The quantized test

statistic ([Ti]Q) at the ith SN can be modeled as

[Ti]Q = Ti + vi (5.3.2)

where vi is the quantization noise independent of wi (n) in (3.2.1) and (3.2.2). As-

suming uniform quantization with Ti ∈ [0, 2U ], then

σ2
vi

=
U2

3× 22Li
. (5.3.3)

Linearly combining
{

[Ti]Q
}M
i=1

at the FC gives1

T qf =
M∑
i=1

αi[Ti]Q. (5.3.4)

2The main motivation behind the linear combining rule consideration is that the probability

of detection and the probability of false alarm metrics are obtained in a closed-form. This gives

insight into the design of the system’s parameters, whereas for the LRT-based detector, analytically

analyzing the detection performance is not tractable.
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For large M , T qf will be approximately Gaussian and we can show (5.3.5) and (5.3.8).

E
{
T qf |H0

}
=

M∑
i=1

αiNσ
2
i (5.3.5)

E
{
T qf |H1

}
=

M∑
i=1

αi

(
Nσ2

i (1 + ξi)
)

(5.3.6)

Var
{
T qf |H0

}
=

M∑
i=1

α2
i

(
2Nσ4

i + σ2
vi

)
(5.3.7)

Var
{
T qf |H1

}
=

M∑
i=1

α2
i

(
2Nσ4

i (1 + 2ξi) + σ2
vi

)
. (5.3.8)

Now, the optimum weights {αi}Mi=1 are given as [35]:

α =

[
Nσ2

1ξ1
2Nσ4

1(1+2ξ1)+σ2
v1

,
Nσ2

2ξ2
2Nσ4

2(1+2ξ2)+σ2
v2

, . . . ,
Nσ2

M ξM
2Nσ4

M (1+2ξM )+σ2
vM

]
. (5.3.9)

So (5.3.9) establishes a relationship between the optimum weighting vector (α) and

the SN transmit power (pi) through the σ2
vi

quantity (see definition (5.3.1) and

(5.3.3)). The FC then makes the following decisions:

if T qf < Λf , decide H0

if T qf ≥ Λf , decide H1

 (5.3.10)

where Λf is the FC detection threshold. The probability of detection (Pd) for a fixed

probability of false alarm (Pfa) is given as [78]:

Pd = Q

Q−1 (Pfa)
√

Var
{
T qf |H0

}
− E

{
T qf |H1

}
+ E

{
T qf |H0

}√
Var

{
T qf |H1

}
 (5.3.11)

with appropriate quantities given in (5.3.5)-(5.3.8) (see [35]) and where Q(.) is the

Q-function.

Unquantized Centralized Approach

Given the local test statistic Ti (see (3.2.3)) at the ith SN, the optimum (unquantized)

linear fusion rule3 has the structure [35]:

T uqf =
M∑
i=1

αiTi (5.3.12)

3This is a special case assuming that the FC receives all the local test statistics
{
Ti
}M
i=1

without

errors and in practice it is a strong assumption.
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where the superscript “uq” refers to “unquantized” and {αi}Mi=1 are the optimum

weights given in (5.3.9) but now with {σ2
vi
}Mi=1 = 0. The probability of detection (Pd)

for a fixed probability of false alarm (Pfa) is given again as in (5.3.11) (replacing

T qf by T uqf ) by substituting the appropriate quantities given in (5.3.5)-(5.3.8) with

{σ2
vi
}Mi=1 = 0. This gives an upper bound on the receiver operating characteristic

performance and we will refer later to this in the simulation results.

Now the limitation of the centralized approach is both the requirement of the FC

to process a large amount of data (i.e., possible bottleneck) and the possible failure

of the FC. Hence, distributed solutions are very attractive as the computational load

splits across the network. The final decision can be taken at any arbitrary SN. As

a result, the system is more robust against FC failure than in a centralized system.

5.3.2 Distributed Approach

Now we are after the fully distributed approach (see Fig. 5.2) and we propose

a distributed quantized linear fusion rule. Even though there are different dis-

tributed algorithms in the literature (i.e., average consensus, diffusion, gossip-type

algorithms, etc), we will use the consensus algorithm [19] as a basic tool to develop

the distributed quantized linear fusion rule.

Unquantized Distributed Equal Combining

Now consider the conventional consensus-based [19] distributed equal combining

scheme that fuses the contributions received among SNs (i.e., it does not accom-

modate properly the more informative and the less informative neighbors). At

iteration k + 1, each SN i updates its test statistic (T eqi [k + 1]) as follows [19]:

T eqi [k + 1]=T eqi [k]− ε
M∑
j=1

eij
(
T eqi [k]−T eqj [k]

)
, k ≥ 0, for i = 1, 2, · · · ,M (5.3.13)

where the superscript “eq” refers to “equal combining”, 0 < ε < 1/∆max with

∆max = max(|∆1|, . . . , |∆M |), eij is defined in (5.2.1) and T eqi [0] = Ti in (3.2.3). The

time evolution of (5.3.13) can be written as

Teq[k] = WkTeq[0], k ≥ 1 (5.3.14)
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SN1

SN2

SN3

SN5

SN4

SN6

Target

T1

T2

T3

T4

T6

T5

Figure 5.2: Schematic for a distributed communication architecture among periph-

eral SNs. Each SN generates a test statistic (Ti) by observing the target (thick lines).

The SNs have partial connectivity (thin lines) among themselves (i.e., not a complete

graph), but only over an energy-constrained/bandwidth-constrained network.

where W = I − εL and Teq[k] = [T eq1 [k], T eq2 [k], . . . , T eqM [k]]T . The decision can be

taken locally at the ith SN at the kth iteration as follows:

if T eqi [k] < Λi[k], decide H0

if T eqi [k] ≥ Λi[k], decide H1

 (5.3.15)

where Λi[k] is the threshold for the ith SN at the kth iteration. We can write:

E {T eqi [k]|Hp}p={0,1} = (WkE {Teq[0]|Hp})i (5.3.16)

Var {T eqi [k]|Hp}p={0,1} = (Cov {Teq[k]|Hp})ii = (WkCov(Teq[0]|Hp)Wk)ii (5.3.17)
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where4 (a)i denotes the ith element of vector a and (A)ij denotes the (i, j) element

of matrix A.

P i
fa[k] = Pr (T eqi [k]≥ Λi[k]|H0) = Q

(
Λi[k]− E {T eqi [k]|H0}√

Var {T eqi [k]|H0}

)
(5.3.18)

P i
d[k] = Pr (T eqi [k] ≥ Λi[k]|H1) = Q

(
Λi[k]− E {T eqi [k]|H1}√

Var {T eqi [k]|H1}

)
. (5.3.19)

(5.3.20)

For a fixed probability of false alarm (i.e., P i
fa[k] = Pfa,∀i and ∀k), the detection

probability for the ith SN at the kth iteration can be written as

P i
d[k] = Q

(
Q−1 (Pfa)

√
Var {T eqi [k]|H0}+ Ψ√

Var {T eqi [k]|H1}

)
(5.3.21)

where Ψ = E {T eqi [k]|H0} − E {T eqi [k]|H1}. Now, (5.3.21) establishes a relationship

between the probability of detection (P i
d[k]) and the iteration number k at the ith

SN. It can be shown [19] that as k gets larger, the performance of the distributed

detector (5.3.15) for a connected network5 approaches that of the (unquantized)

equal combining centralized detector (6.3.11) (i.e., limk→∞ P
i
d[k] = Pd,∀i with αi = 1

and σ2
vi

= 0, ∀i in (5.3.12)). However, this distributed fusion rule realizable via

(5.3.13) (and also its centralized counterpart) is not optimum.

What we require now is a distributed approach that will converge to the equiv-

alent of the optimum weighted linear combining FC solution in (5.3.12).

Unquantized Distributed Weight Combining

In our previous work [35] we have optimized the weights (αi) such that the proba-

bility of detection is maximized. As can be seen from (5.3.9), the optimum weights

are a function of local sensing quality (σ2
i ), received signal strength (ξi) and the SN

transmit power (pi) through the quantization noise (σ2
vi

) (see (5.3.1) and (5.3.3)). So

4For a random vector x, E {x} denotes expectation and Cov {x}=E[(x− E {x})(x− E {x})T ]

is the covariance matrix.
5A connected network is any network where there is a path (i.e., over one or more links) between

every pair of SNs in the network.
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now using these optimal weights we derive a weighted exchange of information ver-

sion of (5.3.13). Because the ith SN does not know its neighbors’ weights
{
αj
}
j∈∆i

,

we propose to weight the contributions received from the |∆i| neighbors by f(αi),

where f is the function that we elaborate later on. More specifically, the ith SN

updates its test statistic as follows:

Twi [k + 1] = Twi [k] − εf(αi)
M∑
j=1

eij
(
Twi [k]− Twj [k]

)
, k ≥ 0, for i = 1, 2, ...,M

(5.3.22)

where the superscript “w” refers to “weighted”, αi are the centralized weighting

coefficients in (5.3.9) with σ2
vi

= 0, f(αi) ≥ 0, ε is defined for (5.3.13) and Twi [0] = Ti

in (3.2.3). The time evolution of (5.3.22) can be written as

Tw[k] = WkTw[0], k ≥ 1 (5.3.23)

with W defined as

W = I− εΓL (5.3.24)

and Γ = diag(f(α1), f(α2), . . . , f(αM)). We will now show that there exist a function

f such that (5.3.23) (unquantized, distributed) converges to (5.3.12) (unquantized,

centralized). First we prove two propositions.

Proposition 5.3.1 Let W be a matrix defined in (5.3.24) with 0 < ε < 1/∆max.

Then W is a non-negative matrix (i.e., W ≥ 0) if Γ ≤ 1 (i.e., a matrix in which

all the elements are equal to or less than one).

Proof : Note that from the definition of the Laplacian matrix (L) defined in Section

6.3.2, (5.3.24) can be expressed as W = I − εΓD + εΓE. Now, by definition Γ ≥

0, and so εΓE is also a non-negative matrix. The entries of the diagonal matrix

(I − εΓD) have to be non-negative, ∀i (i.e., 1 − εf(αi)∆i ≥ 0,∀i). This can be

achieved with 1− f(αi)∆i

∆max
≥ 0 and since f(αi) ≤ 1,∀i (i.e., Γ ≤ 1) =⇒ 1− f(αi)∆i

∆max
≥ 0.

Then Γ ≤ 1 =⇒ W ≥ 0. �

Proposition 5.3.2 Let W be a matrix defined in (5.3.24) with 0 < ε < 1/∆max,
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Γ ≤ 1 and assuming a connected graph G, then

lim
k→∞

WkTw[0] =
M∑
i=1

1

f(αi)



M∑
i=1

1
f(αi)

Twi [0]

M∑
i=1

1
f(αi)

Twi [0]

...
M∑
i=1

1
f(αi)

Twi [0]


M×1

. (5.3.25)

Proof : The proof is given in Appendix B.1. �

Now, the convergence of (5.3.25) (with Twi [0] = Ti) to (5.3.12) up to a positive

scaling can be only achieved if f(αi) = 1
αi

. It is worth mentioning that the condition

(f(αi) ≤ 1,∀i) does not affect the optimality of the fusion rule defined in (5.3.12) for

the structure considered in (5.3.11) and the condition can be satisfied by scaling the

centralized weighting vector (α) by a positive constant c. Clearly, the distributed

system (5.3.22) achieves the performance of the unquantized centralized approach

in section 5.3.1.

We have now stated the necessary and sufficient conditions for the time evolution

(5.3.22) to converge to the weighted centralized optimum linear fusion rule (5.3.12).

The exchange of information between SNs is assumed error free and the bandwidth

between two connected SNs is considered unlimited. In the next section, we relax

these assumptions and provide a quantized distributed weighted linear fusion rule

framework that operates over limited bandwidth fading channels.

5.4 Distributed Detection via Two-Step Quantized

Distributed Weighted Fusion Rule over Fad-

ing Communication Links

Now, in section 5.4.1 we develop a consensus-based quantized distributed weighted

linear fusion framework. Next, in Section 5.4.2, using the probability of detection

and the probability of false alarm as metrics, we analyze performance and give a

proof that the quantized distributed weighted linear fusion rule algorithm does

not converge across the SNs. Finally, in Section 5.4.3, based on the framework
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provided in Section 5.4.1, we propose a new two-step quantized distributed weighted

fusion algorithm.

5.4.1 Quantized Distributed Weighted Fusion Rule

Here we propose a scheme, where each SN encodes the data (using a simple uniform

quantizer with qi bits) prior to information exchange with its neighbors. We also

propose to establish a link between any two SNs i and j based on the (known) link

SNR at node j, i.e.

if SNRij < Υ, eij = eji = 0

if SNRij ≥ Υ, eij = eji = 1.

 (5.4.1)

Now eij is defined in (5.2.1), Υ is a (link) SNR threshold parameter (see later) and

SNRij is the received signal-to-noise ratio (at SN j) defined as:

SNRij =
ptijh

2
ij

ζid
γ
ij

. (5.4.2)

Here ptij denotes the ith to jth SN transmit power, hij is the flat-fading coefficient6

between the ith and jth SN, ζi is the variance of the AWGN at each receiving SN

(assumed to be the same for simplicity), γ is the path loss coefficient and dij is the

physical distance between SN i and j (assumed to be known).

The thresholding operation (5.4.1) defines the communication topology. There

are different approaches taken in the literature in order to define the topology of the

network. In [100] a simplified relaxed (centralized) solution was presented, where

the energy minimization problem was formulated as a convex-concave fractional pro-

gramming. Another approach was followed in [55], where a distributed algorithm to

decide which subset of communication links provides the optimum power consump-

tion and the best network lifetime (i.e., minimizing simultaneously both the total

power consumption and the maximum power consumption per SN) was developed.

While both ([100] and [55]) improve the total power consumption and/or the whole

6We assume that the channel coefficients are varying slowly enough to be considered constant

over the time interval necessary for the network to converge within a prescribed accuracy. This

assumption is reasonable as our proposed algorithm converges rapidly.

78



5.4. Distributed Detection via Two-Step Quantized Distributed
Weighted Fusion Rule over Fading Communication Links

network lifetime, they also assume that the exchange of information among SNs is

ideal. But here we propose to quantize with qi bits at SN i before transmitting to

SN j and to satisfy the capacity constraint between SNs i and j we require:

qi ≤
1

2
log2 (1 + Υ) bits/sample (5.4.3)

where we let qi = q,∀i. Now, Υ establishes a relationship between the number of

bits that each SN has to transmit to its neighbors and also the topology of the net-

work that defines the connections between the SNs (see (5.4.1)-(5.4.3)). A large Υ

means fewer communication links (see (5.4.1)) resulting in slower information diffu-

sion across the network. However, this will be counterbalanced by an increase in the

number of bits that each SN can transmit to its neighbors (see (5.4.3)). As a con-

sequence, the quantization noise variance (5.4.5) becomes negligible. Alternatively,

a small Υ establishes a more connected graph and dictates a faster information dif-

fusion across the network. However, this allows less transmission bits per iteration

resulting in an increase in the quantization noise variance. It is now clear that Υ es-

tablishes a relationship between transmission bits and the graph connectivity. With

quantization, the time evolution of (5.3.22) (by taking f(αi) = 1
αi

) now becomes:

T̄wi [k + 1] = T̄wi [k]− ε

αi

M∑
j=1

eij
(
T̄wi [k]− [T̄wj [k]]Q

)
= T̄wi [k]− ε

αi

M∑
j=1

eij
(
T̄wi [k]− T̄wj [k]− bj[k]

)
, k ≥ 0, for i = 1, 2, · · · ,M

(5.4.4)

with T̄wi [0] = Ti in (3.2.3). (Note that the bar “−” differentiates from (5.3.22) where

no quantization is used). Now [T̄wj [k]]Q = T̄wj [k] + bj[k] represents quantization and

bj[k] is the quantization noise independent of wi (n) in (1) and (2), j = 1, 2, · · · M ,

∀i and ∀n. Assuming T̄wj [k] ∈ [0, 2U ] and uniform quantization then:

Var {bj[k]} = σ2
bj

=
U2

3× 22q
(5.4.5)

and we assume E {bj[k]} = 0 since the quantization noise is bipolar (i.e., it may

take positive or negative values). We also assume that the ith SN is capable to

store its own soft information at the kth iteration and communicate a quantized

version to its neighbors. In the next (k + 1)th iteration, every SN can update
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the test statistic (i.e., T̄wi [k + 1])) by using its own soft information and the

quantized information received from other neighbors (i.e., it does not have access

to their soft information).

Now, the power consumed by the whole network at a single iteration can be

given as:

Pthroughout =
M∑
i=1

M∑
j=1

eijp
t
ij. (5.4.6)

It is clear that establishing fewer communication links through (5.4.1) reduces

Pthroughout and simultaneously imposes a slower information diffusion across the

WSN. The number of bits that each SN can transmit to its neighbors will in-

crease (see (5.4.3)). As a consequence, the quantization noise becomes negligible

(see (5.4.5)). Alternatively, a smaller Υ (smaller quantization bits) dictates a more

connected WSN and an increase in Pthroughout value. This results in an increase of

quantization noise level that will lead to poor detection performance. It is now

clear that Υ also establishes a trade-off between the quantization noise effect and

the WSN total power7 consumption (PT ). In the simulation results section we will

investigate the effect of the thresholding operation (5.4.1) on the PT value as well

as on the system detection performance. Therefore, the goal is to find an Υopt such

that PT and the detection performance are both improved. Next, we analyze the

time evolution of (5.4.4) by using the probability of detection and the probability

of false alarm as metrics.

5.4.2 Performance Analysis

Now we analyze the detection performance of the proposed distributed quantized

(weighted) fusion rule (via the time evolution of (5.4.4)). Defining ψ[k] = [ψ1[k],

ψ2[k], . . . , ψM [k]]T with ψi[k] = 1
αi

M∑
j=1

eijbj[k] and so (5.4.4) can be written as:

T̄
w

[k] = WkT̄
w

[0] + ε

k∑
z=1

Wz−1ψ[k − z], k ≥ 1 (5.4.7)

7The total power consumption is defined as PT = PthroughoutKT , where KT is the total number

of iterations to run the time evolution (5.4.4) and (5.4.14) (i.e., KT = K1 +K2) (see later section

5.4.3 for details).
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where T̄
w

[k] is defined similarly to Teq[k] in (5.3.14). The decision strategy for the

ith SN at the kth iteration is again given in (5.3.15) (replacing T eqi [k] by T̄wi [k]), and

the following also hold:

E
{
T̄wi [k]|Hp

}
p={0,1} =

(
WkE

{
T̄
w

[0]|Hp

})
i

(5.4.8)

Var
{
T̄wi [k]|Hp

}
p={0,1} =

(
WkCov

{
T̄

w
[0]|Hp

}
(Wk)T︸ ︷︷ ︸

(A)

)
ii

+ ε2

(
k∑
z=1

Wz−1Cov {ψ[k − z]} (Wz−1)T︸ ︷︷ ︸
(B)

)
ii

(5.4.9)

where Cov{ψ[k−z]} = U2

3
diag

(
|∆1|
22q
, |∆2|

22q
, · · · , |∆M |

22q

)
. Now, the detection perfor-

mance for the ith SN at the kth iteration can be evaluated using (5.3.21) (replacing

T eqi [k] by T̄wi [k]) by substituting the expressions from (5.4.8) and (5.4.9). Note that

as the dynamic system (5.4.7) evolves, the term (B) in (5.4.9) accumulates. Next

we show how the detection performance for the ith SN at the kth iteration evolves

by analyzing the variance term (Var
{
T̄wi [k]

}
) in (5.4.9).

Proposition 5.4.1 Assume that λmax (Γ) ≤ 1
ελmax(L)(M−1)

, where λmax (Γ) and λmax (L)

are the maximum eigenvalues associated to Γ and L respectively. From (5.4.9), the

“scaled total variance” 1
M−1

M∑
i=1

Var
{
T̄wi [k]

}
≤ Varmax

k

(
1

M − 1
+ λk2(W)

)
+ ε2σ2

max

(
k

M − 1
+

1− λk2(W)

1− λ2(W)

)
(5.4.10)

where Varmax
k = max

(
Var

{
T̄w1 [k]

}
,Var

{
T̄w2 [k]

}
, · · · ,Var

{
T̄wM [k]

})
, σ2

max =

max (Var {ψ1[k]} ,Var {ψ2[k]} , · · · ,Var {ψM [k]}) and λi(W), i = 1, · · · ,M are the

eigenvalues of W satisfying λM ≤ λM−1 ≤ · · · < λ1 = 1.

Proof : The proof can be found in Appendix B.2. �

As k becomes large, it is clear that the second term of (5.4.10) grows and the

performance of the distributed algorithm using quantized distributed weighted linear

fusion does not approach the performance of the centralized quantized detector [35]

(i.e., limk→∞ P
i
d[k] 6= Pd in (13) of [35], ∀i).
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Now, it is also clear that k establishes a trade-off between the local SNs test

statistic improvement and the quantization error degradation. There is a finite op-

timum k = K1 to stop the SNs collaboration (see later), but after that the quantiza-

tion error overcomes the improvement gained from this collaboration. So, using this

framework (i.e., the consensus algorithm with quantization matched to the channel

capacity) we will now propose a two-step approach (still using quantized test statis-

tics shared among SNs) that will perform comparable to the optimum unquantized

centralized detector in section 5.3.1 (i.e., when using a FC and no quantization).

And what is more important, it converges across the network in a finite number of

iterations.

5.4.3 Proposed Two-Step Quantized Distributed Weighted

Fusion Rule Algorithm

(i) FIRST STEP: Run the quantized consensus algorithm in (5.4.7) to improve the

local version of the test statistic at each SN. But then terminate the algorithm at

k = K1 (where the optimum value of K1 is found later from simulation results and

a sub-optimum solution to it is also proposed). We now have
{
T̄wi [K1]

}M
i=1

from

(5.4.7) and we will use this to generate a binary indicator random variable Ii[0] as

follows

if T̄wi [K1] < Λ1, Ii[0] = 0

if T̄wi [K1] ≥ Λ1, Ii[0] = 1

 (5.4.11)

where Λ1 is a local (first step) detection threshold that is the same for all M SNs. We

will now propose (for performance comparison purposes) two alternative second step

decision rules:

1)

if T̄wf [K1] 6= M, decide H0

if T̄wf [K1] = M, decide H1

 (5.4.12)

2)

if T̄wf [K1] = 0, decide H0

if T̄wf [K1] 6= 0, decide H1

 (5.4.13)
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where T̄wf [K1] =
M∑
i=1

Ii[0] both in 1) and 2). But the problem is now how to evaluate

T̄wf [K1] in a distributed manner across SNs. This will be explained in the second

step.

(ii) SECOND STEP:

1) Second step defined in (5.4.12): When the local individual SNs unanimously

decide on the intruder presence, so also decides this (global) decision second step

(i.e., intruder is present). Otherwise, it decides that the intruder is not present.

Here we will use [56] to show how to effectively evaluate (5.4.12) by first sharing{
Ii[0]

}M
i=1

and then iteratively updating across the SNs as follows:

Ii[k + 1] = Ii[k]
∧( ∧

j∈∆i

Ij[k]

)
, k = 0, 1, 2, · · · , K2 − 1, for i = 1, 2, · · · ,M

(5.4.14)

where K2 is the diameter of network8,“
∧

” denotes the logical “and” operation and

∆i is defined for (5.2.1). Note that no quantization is needed and all Ii[K2] converge

to either 1 or 0. So now we can easily show:

If Ii[K2] = 0, ∀i⇒ T̄wf [K1] 6= M, decide H0

If Ii[K2] = 1, ∀i⇒ T̄wf [K1] = M, decide H1

 (5.4.15)

and so Ii[K2] (at any arbitrary ith SN) can be used to implement the decision rule

(5.4.12).

2) Alternative second step defined in (5.4.13): Now, this alternative second step

(global) decision fusion rule decides on the presence of the intruder if at least any

arbitrary local SNs (at iteration k = K1) has decided so. Again, T̄wf [K1] can be

evaluated in a distributer manner by first sharing
{
Ii[0]

}M
i=1

and then iteratively

updating across the SNs using (5.4.14) (but now the “and” logical operation “
∧

”

is replaced with the “or” logical operation “
∨

”). Like before, all Ii[K2] converge to

8The geodesic distance between two nodes in a (connected) graph is the number of the edges

(i.e., links) in the shortest path connecting these two nodes. The diameter of a graph is the

maximum geodesic distance taken over all possible pairs of nodes in the graph.
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either 1 or 0 and we can easily show:

If Ii[K2] = 0, ∀i⇒ T̄wf [K1] = 0, decide H0

If Ii[K2] = 1, ∀i⇒ T̄wf [K1] 6= 0, decide H1

 (5.4.16)

and so Ii[K2] (at any arbitrary SN) can be used to implement the decision rule

(5.4.13). Overall, the proposed two-step fully distributed algorithm requires (KT =

K1 +K2) iterations in total. Now, the two-step algorithm (with second step decision

rule (5.4.13) can be summarized in Algorithm 5.4.1.

Algorithm 5.4.1: Distributed Detection via Two-Step

Consensus Algorithm

STEP 1: Choose Υ and evaluate T̄wi [0] = Ti, ∀i in (3.2.3);

STEP 2: Choose an approximation model ((5.5.17) or (5.5.18)) to estimate

K1 and compute T̄wi [k], ∀i using (5.4.7) with k = K1;

STEP 3: Generate the binary indicator random variable at each SN:

if T̄wi [K1] < Λ1, Ii[0] = 0

if T̄wi [K1] ≥ Λ1, Ii[0] = 1.

STEP 4: Run (5.4.14) with Ii[0] generated in step 3 for K2 iterations

to effectively perform the final test:

if T̄wf [K1] = 0, decide H0

if T̄wf [K1] 6= 0, decide H1

where T̄wf [K1] =
M∑
i=1

Ii[0].

Next, in the simulation results, we will show that the first step spatial collabo-

ration among SNs is crucial for the system detection performance and also for the

network total power consumption. We will also show via simulations that there is

an optimum K1 (for both decision fusion (5.4.12) and (5.4.13)) such that the system
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detection performance is maximized. Then, we propose a sub-optimum but simple

solution to find this optimum K1.

5.5 Simulations Results

Here we will analyze the performance of our proposed two-step quantized (weighted)

fusion rule algorithm for distributed detection deployment. First we have a WSN

with M SNs with an arbitrary SN geometry, where the distances dij in (5.4.2)

between SNs i and j are assumed to be known. The other parameters in (5.4.2) are

ptij = 300, γ = 2, ζi = 0.1,∀i and h2
ij is an exponential random variable (r.v.) with

mean µh2ij = 30. Using the r.v. SNRij in (5.4.2) in (5.4.1), we then construct two

example topologies for different values of Υ (see Fig. 5.5). These topologies will be

used later for Fig. 5.15 and Fig. 5.16. To provide results of more general validity,

we also report the average performance where the average is carried out over 500

channel realizations unless otherwise stated. We now generate the test statistics

T̄wi [K1] in (5.4.11), via (5.4.7) for k = K1. As previously explained, any Ii[K2] in

(5.4.15) or (5.4.16) can be used to decide either H0 or H1, and this will define the

new global detection and false alarm probabilities (i.e., P g
d and P g

fa respectively).

Here we use 105 Monte-Carlo simulations. Finally, ξa = 10 log10

(
1
M

M∑
i=1

ξi

)
= -9.5

dB unless otherwise stated, where ξi=
N∑
n=1

s2
i (n)/Nσ2

i . We will also refer to “equal

weight” combining in (5.3.12) (i.e., αi = 1,∀i) and use this as a benchmark. Finally,

we choose Li with equality in (5.3.1). The detection performance of the proposed

two-step algorithm is also compared with the centralized soft Likelihod Ratio Test

(LRT) based fusion rule in [36].

5.5.1 Validity of Quantization Noise Assumption for Low

Bit Rate

Before we investigate the performance of the proposed two-step detection algorithm,

we evaluate via simulations the mismatch between the assumed uniform quantization

and the actual quantization for low bit rate. In Fig. 5.3, we show the probability
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distribution function (PDF) of the quantization error for q = 2 bits and q = 3 bits.

The quantization error variance (σ2
e) versus the number of quantization bits (q) is

also plotted. In the case of q = 2 bits, the uniform (quantization error) PDF is
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Figure 5.3: Quantization error mismatch: (left/middle) probability distribution

function (PDF) Pe(λ) for q = 2 bits/ q = 3 bits; (right) quantization error variance

(σ2
e) mismatch versus number of quantization bits.

an approximation. However, in the case of q = 3 bits, this approximation is quite

accurate. As a result, we conclude that the assumption of a uniform (quantization

error) PDF is a valid assumption (or at least for the simulation set-up considered in

this paper).

5.5.2 Impact of Channel Estimation on the Network Den-

sity

Now, we investigate the channel estimation error effect on the network density (ρ)

versus the SNR threshold (Υ). We model the channel estimation error as a Gaussian

random variable (i.e., ĥij = hij + eh) where eh ∼ N (0, σ2
eh

) and ĥij is the estimated

flat fading channel coefficient.

In Fig. 5.4, we plot the network density10 (ρ) versus the SNR threshold (Υ) for

different values of the estimation error variance (σ2
eh

). For small σ2
eh

, the network

density is shown to be robust against the channel estimation error. That is not the

case for relatively large σ2
eh

where a performance mismatch is observed.
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Figure 5.4: Averaged (over 10000 ĥ2
ij realizations) network density (ρ) versus Υ in

(5.4.1), with U = 3, N = 20, and M = 17.
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Figure 5.5: Two different communication topologies (generated via ((5.4.1) and

(5.4.2)), with σ2
eh

= 0 and the quantization bits following (5.4.3): (left) M = 17,

Υ = 20, q = 2 bits; (right) M = 13, Υ = 72, q = 3 bits.

87



5.5. Simulations Results

5.5.3 Impact of Thresholding Operation on the System De-

tection Performance and Total Power Consumption

In section 5.4, we have shown that the link SNR threshold (Υ) parameter establishes

a relation between the number of bits that each SN has to transmit to its neighbors

and the topology of the network that defines the connections among them (see

definitions (5.4.1)-(5.4.3)). It is then very important to investigate the impact of

the Υ parameter on the system (global) detection performance (P g
d ) and on the total

power consumption (PT ).
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Figure 5.6: Averaged (over 500 h2
ij realizations) global probability of detection (P g

d )

(using two-step approach) versus Υ in (5.4.1), σ2
eh

= 0, with decision fusion in

(5.4.15), P g
fa = 0.2, U = 2, N = 20, K1 = 10 and αi = 1,∀i in (5.4.4).

In Fig. 5.6 we plot the global probability of detection (P g
d ) versus Υ for different

numbers of SNs (M) and for a fixed global probability of false alarm (P g
fa) and K1.

We observe that there is an optimum Υ that maximizes P g
d for any arbitrary M .

Now, to give a more general validity to the results, in Fig. 5.7 we show the con-

ventional (unquantized) consensus-based algorithm (5.3.22) (with the decision rule

(5.3.15) by substituting T eqi [k] with Twi [k]) and the proposed two-step (quantized)
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Figure 5.7: Normalized average power consumption (E
[
PT
]
), achievable8 probability

of detection (P ∗d ) and the average communication link density (ρ) versus Υ in (5.4.1),

with σ2
eh

= 0, decision fusion in (5.4.16), P g
fa = 0.1, U = 3, N = 20, M = 17 and

with αi (scaled by M) in (5.3.9).

weighted fusion rule (summarized in Algorithm 5.4.1): (upper plot) the average

total power consumption E
[
PT
]

(refer for its definition to (5.4.6) and below) ver-

sus the link SNR threshold (Υ); (middle plot) the global achievable9 probability

of detection (P ∗d ) versus link SNR threshold (Υ); (lower plot) the average network

density10 (ρ) versus the link SNR threshold (Υ). Even-though the comparison made

9The global achievable probability of detection (P ∗d ) (for a fixed Υ) is defined as the best global

probability of detection (P gd ) with respect to K1.

10The average network density ρ is defined as: ρ = E
[ M∑

i=1

M∑
j=1

eij

M(M−1)

]
.

89



5.5. Simulations Results

is not fair (i.e., for the proposed (quantized) two-step weighted fusion rule versus

the (unquantized) conventional consensus-based fusion rule), clearly our proposed

two-step fusion rule algorithm posses the following: a) it requires much less power

budget for all Υ compared to the (unquantized) conventional consensus-based al-

gorithm, and b) converges across the WSN much faster and in a finite number of

iterations (KT = K1 +K2), whereas for the conventional consensus-based, the con-

vergence holds in limit. Finally, in the lower plot we verify (as expected) that a

smaller/larger Υ dictates a more/less connected WSN respectively. In the case of

the conventional consensus-based algorithm, the convergence criteria we use here is

the relative absolute difference: ||T
w[k+1]−Tw[k]||
||Tw[k]|| ≤ κ, where κ = 10−7. The averages

are performed over 500 (h2
ij) realizations.

5.5.4 Impact of the K1 Parameter on the System Detection

Performance

The first step quantized collaboration establishes a linear spatial collaboration

among M SNs up to K1 iterations for improving the overall detection performance.

We have shown analytically (see proposition 3 and below) that the RHS of (5.4.10)

diverges for k = K1 (when K1 is large) and the detection performance eventually

declines. Next, we investigate (through simulations) the effect that (K1) has on the

global detection performance (P g
d ) and propose a sub-optimum (but simple) solution

to evaluate K1.

Optimal numerical solution to K1

Now, in Fig. 5.8 we report the (averaged) receiver operating characteristic (ROC)

against the first step number of iterations (K1) for the proposed distributed two-

step (weighted) algorithm with decision fusion in (5.4.15). As K1 increases then P g
d

improves. In Fig. 5.9 we report the same for the proposed two-step (weighted)

algorithm but now with the decision fusion in (5.4.16). As expected, the detection

performance improves up to K1 = 150 and after that it degrades. Then, in Fig. 5.10

we plot the (averaged) global detection performance (P g
d ) (for a fixed global prob-
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Figure 5.8: Averaged (over 500 h2
ij realizations) ROC for the proposed two-step

weighted algorithm with decision fusion in (5.4.15), U = 3, N = 20, M = 17,

K2 = 3, Υ = 30, σ2
eh

= 0 and with αi (scaled by M) in (5.3.9).
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ij realizations) ROC against first step iterations

number (K1), with decision fusion in (5.4.16), K2 = 2, U = 3, N = 20, M = 17,

Υ = 10, σ2
eh

= 0 and with αi (scaled by M) in (5.3.9).
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Figure 5.10: Averaged (over 500 h2
ij realizations) global probability of detection (P g

d )

versus first step iterations number (K1), with decision fusion in (5.4.16), P g
fa = 0.1,

U = 3, N = 20, M = 17, σ2
eh

= 0 and with αi (scaled by M) in (5.3.9).

ability of false alarm (P g
fa)) versus first step number of iterations (K1) for different

link SNR thresholds (Υ). We observe that there exists an optimum K1 to run the

first step time evolution (5.4.4) such that P g
d is maximized for any arbitrary Υ. We

also note that the best performance is attained for Υ = 20.

Now, selecting the pair (Υ = 20, K1 = 320) (i.e., the Υ and K1 that attain the

best performance in Fig. 5.10 with the decision fusion in (5.4.16)), in Fig. 5.11

we examine the P g
d performance against ξa for the proposed distributed two-step

(weighted) algorithm assuming: (left) ideal channel estimation; (right) non-ideal

channel estimation. Interestingly, (for the ideal channel case) the proposed two-

step (weighted) algorithm performance (with decision fusion in (5.4.16)) attains its

centralized counterpart’s upper bound performance for all ξa. So, it is now clear that

the optimum values of parameters Υ and K1 are independent of ξa (i.e., the local

ξi). This independence is important as it shows that the algorithm is robust against

the local ξi and allows evaluating these parameters once at the beginning. We

also observe that the proposed two-step performance with decision fusion (5.4.16)
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is the same (at low SNR) as that of decision fusion (5.4.15), but at high SNR

it outperforms the latter. Now (for the non-ideal case), we can observe a slight

detection performance degradation for the proposed two-step algorithm. Next, we

propose (for the two-step algorithm with the second step decision rule (5.4.16)) a

sub-optimum (but simple) solution to the optimum K1. Note that the extension

with the second step decision fusion rule (5.4.15) is straight forward.
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Figure 5.11: Averaged (over 500 h2
ij realizations) probability of detection (P g

d )

against the signal to noise ratio (ξa) with P g
fa = 0.1, U = 3, N = 20, M = 17,

K1 = 320, Υ = 20, ξi = ξ, ∀i in (4) and with αi (scaled by M) in (5.3.9): (left)

ideal, σ2
eh

= 0; (right) non-ideal, σ2
eh
6= 0.

Suboptimal Solution to K1

Now, through simulation results shown in Fig. 5.10, we get an insight on how the

optimum K1 is related to the link SNR threshold (Υ). We also notice that an

increase in Υ is translated into a corresponding increase in the optimum K1 value

(i.e., K1 that corresponds to the maximum P d
g ). This result is not surprising and

can be explained by the fact that a smaller Υ dictates a more connected graph (see

(5.4.1)) and an increase in Υ dictates a sparse graph (hence more iterations are

needed to diffuse the information across the SNs). Motivated by this fact, we now

relate the first step iterations number (K1) to the link SNR threshold parameter

93



5.5. Simulations Results

(Υ) with two fitting models:

(i) Exponential model :

K1 ≈ g(Υ) =

 A exp (bΥ) type 1

A exp (bΥ) +B exp (cΥ) type 2
(5.5.17)

(ii) Power model :

K1 ≈ g(Υ) =

 AΥb type 1

AΥb + C type 2
(5.5.18)

where A, B, C, b and c are the coefficients given in Table 5.1 obtained using Matlab

(Nonlinear Least Squares method and Trust-Region algorithm).

Table 5.1: Parameters for different fitting models

Model Type A B C b c RMSE

Exponential Exp 1 173.6 x x 0.03319 x 49.82

Exp 2 188.1 1.561e-014 x 0.03166 0.4584 53.09

Power Pow 1 0.5976 x x 1.89 x 136.27

Pow 2 0.0079 x 2.853 338.9 x 63.65

Now, in Fig. 5.12 we plot the first step number of iterations (K1) versus

the link SNR threshold (Υ) for two different fitting models (i.e., exponential and

power model) and then compare these to the simulations. Clearly, the exponential

of type 1 is the best candidate as it attains the minimum RMSE (see Table 5.1).

5.5.5 Detection Performance Comparison

We now compare the (averaged) global detection performance among/with: (a) the

two-step (quantized) distributed weighted fusion rule algorithm with second step

in (5.4.15) and (5.4.16), (b) the two-step (quantized) distributed equal combining

fusion rule with second step in (5.4.15) and (5.4.16), (c) the optimum centralized

(quantized) weighted fusion rule proposed in [35], and (d) the centralized (quantized)

equal combining in [35].
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Figure 5.12: First step iterations number (K1) versus Υ in (5.4.1), with U = 3,

N = 20, M = 17 and with αi (scaled by M) in (5.3.9): (left) exponential fitting

model; (right) power fitting model.
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ij realizations) ROC for the proposed (quantized)

two-step weighted fusion rule with U = 3, N = 20, Υ = 20, M = 17 and with αi

(scaled by M) in (5.3.9).
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Figure 5.14: ROC for the proposed (quantized) two-step distributed scheme with

Υ = 20 in (5.4.1), U = 2, N = 20, K1 = 10 and αi = 1,∀i in (5.4.4).
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5.5 and αi = 1,∀i in (5.4.4).

In Fig. 5.13 we report the ROC for the two different schemes (i.e., centralized

and distributed two-step). As can be seen, the distributed two-step algorithm ap-

proaches the upper bound (i.e., the centralized unquantized scheme performance in

(5.3.12)). Now, we examine in Fig. 5.14 the ROC parametrized against M for the

distributed (equal combining) two-step algorithm, illustrating how P g
d improves as

M increases. The ROC performance11 among different (equal combining) schemes

is illustrated in Fig. 5.15 and Fig. 5.16. In Fig. 5.15 we show the advantage of

our proposed distributed two-step (equal combining) scheme over only the first step

part (at SN 6). Also, if Υ is carefully chosen the distributed two-step (equal com-

bining) scheme performance approaches that of the (equal combining) centralized

detector (i.e., with FC and no quantization) in (5.3.15). Fig. 5.16 shows the ROC

for the proposed quantized (3 bits) distributed (equal combining) two-step algorithm

11SN 6 in Fig. 5.15 and SN 3 in Fig. 5.17 were chosen for comparison purposes as they possess

the best performances among M SNs for each case.
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against K1 compared to the quantized (2 bits) centralized (equal combining) scheme

in [35]. As expected (similar to the weighted two-step), there is an optimum K1 that

maximizes P g
d and after that P g

d decreases.
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Figure 5.17: Probability of detection (P g
d ) versus the signal to noise ratio (ξa) for

M = 13, Υ = 72, U = 2, N = 20, P g
fa = 0.1, ξi = ξ, ∀i in (3.2.4) and αi = 1, ∀i in

(5.4.4). The topology used is given in right of Fig. 5.5.

Finally, Fig. 5.17 plots the P g
d performance characterization against the aver-

age SNR (ξa) for 4 different (equal combining) schemes showing the performance

improvement of our proposed distributed two-step algorithm.

5.6 Chapter Summary and Conclusions

In this chapter, we propose a fully distributed two-step consensus-based detection

algorithm via SNs sharing with their neighbors a quantized version of the received

energy test statistic. We relate the communication topology with the number of bits

to be shared among SNs and through numerical results we show that there is an

optimum topology (for a fixed first step number of iterations (K1)) such that P g
d (the
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global probability of detection) is maximized. In addition, we show that there is an

optimum K1 to terminate the first step SN collaboration (for any arbitrary topol-

ogy) and after that the P g
d performance declines. When parameters K1 and Υ (the

link SNR threshold in (5.4.1)) are appropriately chosen, the detection performance

of the proposed quantized distributed two-step algorithm approaches the unquan-

tized centralized optimum combining scheme performance of (5.3.12). Overall, the

algorithm requires a finite number of iterations (K1 + K2). For example, targeting

the optimum P g
d (see Fig. 6.16 (middle plot) at Υ = 20), our proposed two-step

algorithm requires roughly 50% less power consumption (PT ) than the conventional

consensus-based algorithm. Future work will investigate the analysis of the problem

for time-varying SNs interaction topologies.
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Chapter 6

Sensor Detection in the Presence

of Falsified Observations

Within this chapter, we address the problem of centralized detection in the

presence of β fraction falsifiable sensor nodes (SNs) (i.e., controlled by an at-

tacker). The overview of the motivation behind this work is presented. The

assumptions made and the problem formulation by describing the target sens-

ing and the WSN architecture are stated. The core sections are mainly a)

Section 6.2 that consider the detection problem under local soft-data falsifica-

tion and analysis of the system performance; b) Section 6.3 that now consider

the detection problem when the SNs send their one-bit test statistics to the

FC instead of quantized soft decisions. This section also presents the derived

expressions for the attacker parameters that makes the FC incapable of de-

tecting, and the proposed novel and non-complex reliability-based strategy

to possibly identify these compromised SNs. Simulation results illustrate our

analytical findings performance gain of the proposed strategies.

IN THIS CHAPTER

♣
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6.1 Introduction

6.1.1 Motivation

Multiple low-cost sensor nodes (SNs) are often spatially deployed over a specific

field to observe binary events. The SNs process the observed data and report back

to a fusion center (FC) that optimally combines to reach a global decision. Be-

ing geographically dispersed to cover large areas, the SNs are constrained in both

bandwidth and power. Moreover, SNs are usually unattended and this makes them

vulnerable to different types of attacks. The overall detection performance strongly

depends on the reliability of these SNs in the network. While fusing the data re-

ceived by the spatially deployed SNs allows the FC to make a reliable decision, it

is possible that one or more SNs (compromised by an attacker) deliberately falsify

their local observations to degrade the overall FC detection performance. However,

there are a number of different approaches as to how the test statistics received from

each SN can be efficiently used in order to achieve a reliable FC decision. Before

introducing our proposed strategies, we will first give a brief review of related work.

6.1.2 Related Work

The framework of distributed detection under attack − free WSNs has been con-

sidered in previous chapters of this thesis and extensively studied in [30–32, 34–

36, 52, 58–60], to name but just a few references. While [32, 52, 58–60] consider

centralized detection by assuming WSNs with unlimited bandwidth/resources, the

latter assumption was relaxed in [30,31,34–36] by considering centralized detection

over bandwidth-constrained/energy-constrained WSNs. But these approaches are

vulnerable to some security attacks as some of the SNs reporting to the FC may

be compromised. As a result, the FC is not robust against such attacks and its

detection performance may be degraded.

However, security issues in centralized detection using WSNs remain an open

issue, see [9,12,66–69] and references therein. While there are many types of security

threats, in this chapter we focus on a single type of attack, which is the test statistic

falsification (TSF) attack part of the Byzantine attacks family originally proposed
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by [8] and later widely used in the context of distributed detection (e.g., [9–11]).

Reference [11] characterizes the power of the attack analytically and a closed-

form expression for the worst “detection error” is provided. Also, the minimum

fraction of the compromised SNs that makes the FC incapable is derived. Reference

[70] presents a technique to identify such compromised SNs and then to exclude them

from contributing to the FC fusion process. In [71], a probabilistic TSF attack is

proposed and the theoretical performance evaluation (in terms of destructiveness and

stealthiness) is obtained. The authors of [72], in the context of smart grids, propose

heuristic centralized algorithms to derive various strategies (attacker versus defender

(i.e., FC) dynamics). Then, a distributed algorithm is proposed that guarantees

convergence to the centralized solution taken at the FC.

Detection in the presence of binary falsification1 (Byzantine) attacks is considered

in [73]. Here, a reputation-based scheme is proposed for identifying the compromised

SNs by accumulating the deviations between each SN and the FC decision over a

time window duration. The authors in [74] also consider binary Byzantine attacks,

in the context of target localization, where the SNs transmit their binary decisions to

the FC. These authors also propose two techniques to mitigate the negative input of

the compromised SNs on the FC decision. However, identifying and then excluding

the contributions of the compromised SNs from the FC decision process may not be

the best strategy. Furthermore, performing detection by means of one-bit SNs report

combining at the FC is also not optimum. Recently, the authors in [75, 76] both

consider a decentralized network in the presence of compromised SNs while in this

paper we consider a centralized scheme. The authors in [75] propose a synchronous

distributed weighted average consensus algorithm that is claimed to be robust to

Byzantine attacks while reference [76] considers the detection and mitigation of data

injection attacks in a randomized average consensus.

Now, the publication closest to the work presented in Section 6.2 is [9], where an

under−attack WSN framework over unlimited bandwidth is considered (i.e., infinite

channel capacity) and the detection performance is investigated. But as the SNs

1The compromised SNs falsify their hard decisions instead of their actual test statistics prior

to transmission to the FC.
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are battery operated devices (i.e., limited power) and the bandwidth is finite, the

assumption of infinite capacity is unrealistic. Furthermore, practical WSN scenarios

suffer from fading and attenuation. The authors of [9] also do not propose any tech-

nique to mitigate the degradation caused by these compromised SNs. So, the work

in Section 6.2 investigates the detection performance of the under− attack energy-

constrained/bandwidth-constrained WSNs. The compromised SNs (controlled by

the attacker), are assumed to know the true hypothesis2(e.g., [9, 11]) and they use

this a−priori knowledge to construct the most effective strategy to make the FC’s

decision unreliable. For the FC, we assume that it is not compromised and receives

the test statistic from both types of SNs (i.e., compromised and honest). The trans-

mission (SNs to FC) links are modeled as flat fading, additive white Gaussian noise

(AWGN) channels. The assumption of flat fading is reasonable as most of the WSNs

operate at both short distances and low bit-rate due to resource limitations.

The work in Section 6.2 investigates again the detection performance of an

under−attack WSN. However, to reduce the transmission and processing burden

of the SNs, each SN generates the 1-bit local test statistic by performing energy

detection [88] and reports this test statistic to the FC. As in [73], we relax the as-

sumption of perfect knowledge of the true hypothesis [11] and we assume that the

compromised SNs (controlled by the attacker) do not know the true state of the

target. For the FC, we assume that it is not compromised and receives the test

statistic from both types of SNs (i.e., compromised and honest). The transmission

(SNs to FC) links are assumed error free (see eg., [11], [73]).

6.1.3 Chapter Contributions

While previous publications (as outlined above) have also examined sensor networks

in the presence of falsified SNs, this chapter deals with more realistic scenarios that

include limited bandwidth fading channels, quantization of test statistics, etc. So

our main contributions are developed within Section 6.2 and Section 6.3 and are

briefly stated in here for each section for clarity purposes.

2This leads to a conservative assessment but allows analytical tractability of the security risk.
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Chapter Contributions- Section 6.2

The main contributions of Section 6.2 can be summarized as:

(i) We develop an efficient FC linear weight combining framework for an under−

attack WSN that operates over limited bandwidth fading channels. The probability

of detection (Pd) and the probability of false alarm (Pfa) based on this framework

are derived in a closed-form. To maximize Pd for a fixed Pfa and to further reduce

the optimisation complexity, we adopt the modified deflection coefficient (MDC) [32]

as an alternative function to be optimized and provide an optimisation problem to

be solved from both the FC’s and the attacker’s perspective. Based on this opti-

misation problem (from the FC’s perspective), we derive analytically the optimal

weight combining, the optimal SN to FC transmit power and the number of quanti-

zation bits for each SN. Unfortunately, these expressions require a−priori knowledge

about the attacker parameters which cannot be attained in practice. Then (from

the attacker’s perspective), we derive analytically (for a fixed number of compro-

mised SNs) the optimum attacker strategy which also depends upon the FC weight

combining and the SNs transmit power.

(ii) So, motivated by the above, we next analyze the problem under different

attacking and defending scenarios and characterize analytically the performance of

sub-optimum strategies (from both the FC’s and the attacker’s perspective) that

do not require knowledge of the FC mechanism and the attacker parameters. Also,

based on the willingness of collaboration among the SNs (from the attacker’s per-

spective), we distinguish between two setups: a) all the SNs (compromised and

honest) share their data with their neighbors, and b) just the compromised SNs are

willing to collaborate among themselves to improve their attack strength.

(iii) Finally, we re-cast the problem as a minimax game between the FC and

attacker and show that the NE (Nash Equilibrium) exists. Having defined the game,

we use numerical simulations to find this NE point, thus identifying the optimum

behavior of both the FC and the attacker in a game-theoretical sense.

Chapter Contributions- Section 6.3

Now, the main contributions of Section 6.3 are as follows:
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(i) First, as before, we adopt the MDC as an alternative function to be optimized

and derive analytically in a closed form the optimal weight combiner for each SN

(note that the attacker model considered in this section is different to that considered

in Section 6.2). We now show that these weights are a function of the local SNs

probability of false alarm and probability of detection metrics as well as the SNs

local test statistics flipping probability. Unfortunately, for the compromised SNs

this a priori knowledge cannot be attained in practice (we propose a solution to

this (see later (ii))). Then (from the attacker’s perspective), we derive analytically

(for a fixed number of compromised SNs) the optimum attacker local test statistics

flipping probability and the minimum fraction of the compromised SNs that makes

the FC incapable of detecting.

(ii) Next, based on this framework (i.e., FC linear weight combing strategy), we

also propose a new non-complex and efficient reputation-based FC detection scheme

to identify the compromised SNs [104]. Our approach [104] is different from the

existing approaches [11], [73], [101] mainly in two important aspects: 1) We introduce

a new reputation-based metric at the FC to identify the compromised SNs. First, we

count the inconsistency between the FC’s decision (where all the SNs contributions

are considered) and the ith local SN’s decision over a time window. Similarly, next

we count the inconsistency between the FC’s decision (where the ith SN contribution

is not considered) and the ith local SN’s decision. Finally, the proposed reputation

metric is evaluated as the difference between these two; 2) Then, based on this

reputation metric, we propose a novel FC weight computation strategy that ensures

the following: a) for the identified compromised SNs, their weights are likely to be

decreased proportionally to this metric (where the existing schemes assign a zero-

weight). b) In this way (based on this new reputation metric), the FC decides how

much a SN should contribute to its final decision. We will show that this strategy

outperforms the existing schemes where the identified compromised SNs are totally

excluded toward the FC final decision contribution (i.e., a zero-weight is assigned).
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6.1.4 Chapter Outline

Now, the summary of the chapter is as follows. In the first part (more specifically

for Section 6.2), in Subsection 6.2.1 we describe the system model and provide a

data transmission scheme. Subsection 6.2.4 describes the optimisation problem from

both the FC’s and the attacker’s perspective. In Subsection 6.2.5 we present our

proposed attacker and FC strategies and in Subsection 6.2.6 we re-cast the problem

and analyze the equilibrium. Then, in Subsection 6.2.7 we present some simulation

results.

In the second part (more specifically for Section 6.3), in Subsection 6.3.1 we

describe the system model (SN sensing and local decision) and describe the compro-

mised SNs attack model. Subsection 6.3.3 introduces the simplified linear weighted

fusion rule and analyzes the optimization problem from both the FC’s and the at-

tacker’s perspective. In Subsection 6.3.7 we present our proposed compromised SNs

identification metric and weight combining computation strategy. Then, in Subsec-

tion 6.3.8 we present simulation results. Finally, in Section 6.4 we give conclusions

and chapter summary.

6.2 Centralized Detection: Under Soft-Data Fal-

sification and Energy-Bandwidth Limitation

6.2.1 System Model

In this section, we describe the target sensing, communication channel, and the

WSN architecture.

Target Sensing

In this chapter, we consider an under-attack WSN with M SNs (where a fraction

(β) of these SNs are compromised) reporting to a FC tasked with the detection of a

binary event. The event leaves a signature signal that is unknown to the WSN but

it is assumed to be deterministic. The other assumptions made regarding the target

sensing are also identical to those stated in the previous Chapters (e.g., Chapter
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3) and each of the local SN estimates the test statistic as in (3.2.3). While the

honest SNs transmit the actual test statistics (i.e., the true energies) to the FC,

the compromised SNs falsify them before transmitting to the FC (see later the

compromised SNs attack model subsection for more details).

Communication Channel

Identical to previous chapters (e.g., Chapter 3), the communication between the

local SNs and the FC are modeled as error-free (the SNs transmit a quantized

information matched to the channel capacity of each link) orthogonal flat fading

channels and additive white Gaussian noise (AWGN) with a known variance ζi. Also,

the assumptions considered regarding the communication channels are identical to

those stated in the previous chapters (e.g., Chapter 3).

WSN Architecture

In this chapter, we adopt a similar WSN architecture as in Chapter 3 (i.e., the

centralized architecture) where there is a FC that communicates with spatially

distributed SNs. In this chapter, different from Chapter 3, we consider an under-

attack WSN where a fraction (β) of these spatially distributed SNs are compromised

and do not act in the normal “honest” way (see Fig. 6.1). The honest SNs are

represented with a black color and the compromised SNs (i.e., the ones controlled

by the attacker) with a red color. The attacker’s aim is to successfully manipulate

the FC global decision making process while the FC would like to detect reliably

(i.e., with very high probability). Each SN collects N samples of the observed signal

and performs energy estimation (see (3.2.3)). Next we introduce the attacker model.

6.2.2 Compromised SNs Attack Model

In this work, the same attack model used in [9] is considered. The attacker (which

has under its control a fraction (β) of the SNs) is assumed to know the true

hypothesis2 in (6.2.1) (e.g., [9, 11]). The remaining SNs are honest and completely

unaware of the presence of falsified SNs. The ith compromised SN falsifies its test
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Figure 6.1: Under attack schematic communication architecture between pe-

ripheral SNs and the fusion center (FC). Each SN generates a test statistic (Ti)

by observing the target and can communicate with the FC only over an energy-

constrained/bandwidth-constrained link. While the honest SNs (represented by

black color) test statistics remain unchanged, the compromised SNs (represented

by red color) falsify their test statistics to T falj with j = {3, 5} (where j is the

compromised SN index) before transmitting to the FC.

statistic (Ti) before transmitting to the FC as follows:

T fali =

 Ti + Ci, under H0

Ti − Ci, under H1

(6.2.1)

where Ci > 0 is the parameter under the attacker’s control. As we show later,

there is an optimum Ci such that the detection performance back at the FC will be

degraded the most. So, the test statistic (assuming compromised SNs) at the ith SN

can be represented as

T̂i =

 T fali , with probability β

Ti, with probability (1− β)
(6.2.2)

where β is the fraction of the compromised SNs controlled by the attacker.
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6.2.3 Data transmission

Now, because the SNs are battery operated devices (i.e., with limited on-board en-

ergy) then each SN i (i = 1, 2, · · · ,M) has to quantize its test statistic (T̂i) to Li bits

prior to transmission to the FC. We assume that the FC is able to collect data from

all the SNs via bandwidth constrained communication channels and furthermore, it

is not itself compromised. As in [35,36], we restrict the number of quantization bits

at the ith SN to satisfy the channel capacity constraint:

Li ≤
1

2
log2

(
1 +

pih
2
i

ζi

)
bits/sample (6.2.3)

where pi denotes the transmit power of sensor i, hi is the flat fading coefficient

between SN i and the FC, and ζi is the variance of the AWGN at the FC. The

quantized test statistic (T qi ) at the ith SN can be modeled (with Li bits ) as

T qi = T̂i + vi (6.2.4)

where vi is quantization noise independent of wi (n) in (3.2.1) and (3.2.2). Assuming

Ti ∈ [0, 2U ], then
T̂i ∈ [Ci, 2U + Ci], under H0 with probability β

T̂i ∈ [−Ci, 2U − Ci], under H1 with probability β

T̂i ∈ [0, 2U ], under {Hp}p={0,1} with probability 1− β.

(6.2.5)

Now, assuming a uniform quantizer with Li bits (i.e., with a total of 2Li quantization

levels), the quantizer step-size is always ε = 2U
2Li

and now vi (see (6.2.4)) can be

modeled as a r.v. uniformly distributed3 with vi ∈ [− ε
2
, ε

2
], where it is well-known

that

σ2
vi

=
U2

3× 22Li
. (6.2.6)

Note that the above analysis shows that the attacker (i.e., through the compromised

SNs), does not introduce a larger quantization error noise (i.e., σ2
vi

in (6.2.6) remains

3This model that leads to (6.2.6) is only accurate for a relatively high number of bits (e.g.,

Li ≥ 3 in practice). For a smaller number of bits, the expression in (6.2.6) may not be very

accurate but it is the only statistical measure available for such errors.
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the same as in the case of attack−free [35]). Now, linearly combining
{
T qi

}M
i=1

at

the FC gives

Tf =
M∑
i=1

αiT
q
i (6.2.7)

where the weights
{
αi
}M
i=1

will be optimized in Section 6.2.4. For large M , the prob-

ability of detection (Pd) and the probability of false alarm (Pfa) can be approximated

and shown to be respectively [9]:

Pd = Pr (Tf ≥ Λf |H1) = 1T

(
DQ

 Λf − µ̄|H1√
M∑
i=1

α2
i

(
Var {Ti|H1}+ σ2

vi

)

)

(6.2.8)

Pfa = Pr (Tf ≥ Λf |H0) = 1T

(
DQ

 Λf − µ̄|H0√
M∑
i=1

α2
i

(
Var {Ti|H0}+ σ2

vi

)

)

(6.2.9)

with Λf = Λf [1, 1, · · · , 12M ]T (Λf is the FC detection threshold); 12M is a col-

umn vector of all ones; D = diag ([b1

⊙
b2

⊙
· · ·
⊙
bM ]) (bi is the ith column

vector of B (where B =
(
1 − β

)
P + βPc) and

⊙
represents element-wise mul-

tiplication); the matrix P is a binary matrix holding the 2M possible combinations

of M (compromised and honest) SNs on its rows with (P)ij = {0, 1} represent-

ing the compromised and honest SNs respectively (note that (P)ij represents the

(i, j) element of P); and Pc is the element-wise (i.e., bitwise) logical complement

of P. Now, {µ̄|Hp}p={0,1} = P {µ|Hp}p={0,1} + Pc
{
µfal|Hp

}
p={0,1} with {µ|Hp}=

[α1E {T1|Hp}, · · · , αME {TM |Hp}]T and
{
µfal|Hp

}
=[α1E

{
T fal1 |Hp

}
, α2E

{
T fal2 |Hp

}
,

· · · , αME
{
T falM |Hp

}
]T where E {Ti|Hp} and E

{
T fali |Hp

}
are respectively:

E
{
T fali |H0

}
= Nσ2

i + Ci,Var
{
T fali |H0

}
= 2Nσ4

i (6.2.10)

E
{
T fali |H1

}
= Nσ2

i (1 + ξi)− Ci,Var
{
T fali |H1

}
= 2Nσ4

i (1 + 2ξi) . (6.2.11)

Finally, Q(.) represents the element-wise Q function operation. Next, we describe

the optimisation problem under a power-constrained WSN.

110



6.2. Centralized Detection: Under Soft-Data Falsification and
Energy-Bandwidth Limitation

6.2.4 FC and Attacker Performance Optimisation Under a

Power-Constrained WSN

Now, if the attacker (which has under its control a fraction (β) of the M SNs) can

successfully manipulate the FC global decision making process, the detection rate

will be significantly low, the error rate in decision making will be high and the FC

performance will be degraded. From the attacker’s point of view, the more error

it causes in the FC decision making, the more successful it is. The attacker has

two available strategies: a) direct the compromised SNs to actually report their

observation to the FC truthfully or b) direct the compromised SNs to falsify their

observations prior to transmission to the FC. In the cases where the attacker decides

to direct the compromised SNs to falsify their test statistics, what should be their

optimum attacking parameter (Ci)? We will answer this question in Section 6.2.4.

From the FC’s point of view, its data fusion mechanism should be robust and

capable of defending against any attacking strategy adopted by any compromised

SNs and directed by the attacker. The FC is aware that the attacker has an objective

in conflict with its own (i.e., the FC tries to maximize the detection probability

while the attacker tries to minimize it). However, the FC does not have any exact

information about the attacking strategies. The only information available to the

FC is: a) the quantized test statistics
{
T qi
}M
i=1

reported by M spatially distributed

SNs, and b) the fraction4 (β) of these test statistics that are falsified. But it cannot

recognize where these SNs are and estimate their “falsification parameter”, Ci. So,

the fusion data mechanism (based on this limited a− priori information) should be

able to neutralize (or at least reduce) the impact of these compromised SNs.

So, in this Section, we would like to analyze the performance optimisation from

the perspective of the FC and the attacker under a constraint of a maximum transmit

power budget (Pt). Since the FC has under its control only the weight combiners

(αi,∀i) in (6.2.7) and the SN to FC transmit power (pi,∀i) in (6.2.3), its strategy is

to maximize Pd with respect to the respective vectors containing these parameters

(i.e., α and p). However, this is difficult and no closed-form solution can be obtained.

Here, we introduce the MDC (which we will use later as an alternative function to
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be optimized). The MDC provides a good measure of the detection performance

since it characterizes the variance-normalized distance between the centers of two

conditional PDFs. This is given as:

d̃2 (α,p)=

(
E {Tf |H1}−E {Tf |H0}√

Var {Tf |H1}

)2

=

(
bTα

)2

αTRα
(6.2.12)

with the appropriate quantities given in (6.2.17)-(6.2.19) and where

E {Tf |H0} =
M∑
i=1

αi
(
Nσ2

i

)
+

M∑
i=1

αi (βCi) (6.2.13)

E {Tf |H1} =
M∑
i=1

αi
(
Nσ2

i (1 + ξi)
)
−

M∑
i=1

αi (βCi) (6.2.14)

Var {Tf |H0} =
M∑
i=1

α2
i

(
2Nσ4

i + β(1− β)C2
i + σ2

vi

)
(6.2.15)

Var {Tf |H1} =
M∑
i=1

α2
i

(
2Nσ4

i (1 + 2ξi) + β(1− β)C2
i + σ2

vi

)
(6.2.16)

b = [Nσ2
1ξ1 − 2βC1, . . . , Nσ

2
MξM − 2βCM ]T (6.2.17)

α = [α1, α2, . . . , αM ]T ,p = [p1, p2, . . . , pM ]T (6.2.18)

R = diag


2Nσ4

1(1 + 2ξ1) + β(1− β)C2
1 + σ2

v1

2Nσ4
2(1 + 2ξ2) + β(1− β)C2

2 + σ2
v2

...

2Nσ4
M(1 + 2ξM) + β(1− β)C2

M + σ2
vM

 . (6.2.19)

FC Performance Optimisation

Now, the FC task (which knows that the WSN is under−attack) is to maximize the

Pd (i.e., to detect with very high probability). We would like to make it clear that the

FC knows4 β (i.e., knows the average percentage of compromised SNs (e.g., [9,11]))

4In practice, the fraction representing the (on average) compromised SNs can be learned by

observing the data sent by the SNs to the FC over a time window. But such an approach is

beyond the scope of this work.
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but it cannot identify exactly who they are. Given the data fusion (6.2.7), the FC

performs the following test:

if Tf < Λf , decide H0

if Tf ≥ Λf , decide H1

 (6.2.20)

where Λf is the FC detection threshold. As we said earlier, the optimum weight-

ing vector (αo) and the optimum power allocation vector (po) that maximize Pd

under the constraint of a maximum transmit power budget (Pt) are desired. More

specifically (adopting the MDC), we require:

(αo,po) = arg max
α,p

(
d̃2 (α,p)

)
subject to

M∑
i=1

pi ≤ Pt, pi ≥ 0, i = 1, 2, . . . ,M.

(6.2.21)

It is easily shown [35] that αo = R−1b with

αoi =
(σ2

i ξi −
2βCi
N

)

2σ4
i (1 + 2ξi) +

β(1−β)C2
i

N
+

σ2
vi

N

, ∀i = 1, 2, · · · ,M. (6.2.22)

Note that the optimum weights
{
αoi
}M
i=1

are a function of the SN transmit power

(pi) through the σ2
vi

terms (see (6.2.3) and (6.2.6)) and pi is still to be optimized. We

now substitute αo back into (6.2.12) and solve the following optimisation problem

po = arg max
p

(
d̃2 (αo,p)

)
subject to

M∑
i=1

pi ≤ Pt for pi ≥ 0, i = 1, 2, . . . ,M.

(6.2.23)

It can also be shown [35], that the above optimisation problem can be solved an-

alytically by using the Lagrangian function and solving the appropriate K.K.T.

conditions. The optimum SN to FC transmit power in this case (i.e., where the

WSN is under−attack) can be shown to be

poi =

[
U√
λ0

√
ζi

12h2
i

(
σ2
i ξi −

2βCi
N

σ4
i (1 + 2ξi) + β(1− β)

C2
i

2N
)

)

−
U2ζi
h2i

6Nσ4
i (1 + 2ξi) + 3β(1− β)C2

i

− ζi
h2
i

]+

(6.2.24)
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where [y]+ equals 0 if y < 0, otherwise it equals y, and λ0 is the Lagrangian multiplier

that can be evaluated in a similar way as in [35] by imposing the equality constraint

(i.e.,
M∑
i=1

pi = Pt) in (6.2.21). Now, (6.2.24) assumes that the FC knows the channel

coefficients (hi) for all SNs (honest and compromised). While the FC can obtain

this information via a feedback from the honest SNs, the compromised SNs may

transmit to the FC wrong information regarding the channel. Nevertheless, here we

assume that the compromised SNs only falsify their test statistics as in (6.2.1) and

report true channel5 information to the FC. However, the channel information, for

the compromised SNs, could be obtained by blind channel estimation techniques,

etc., [102], [103]. Next, we analyze the performance optimisation from the attacker

perspective.

Attacker Performance Optimisation

Now, the attacker would like to degrade as much as possible the FC detection

performance. For a constant β (i.e., fraction of compromised SNs) the attacker

plans the optimum Ci in (6.2.1) such that the FC becomes inefficient (i.e., useless).

Adopting again the MDC (6.2.12), the optimisation problem can be expressed as:

Co
i = arg min

Ci

(
d̃2 (αi, pi, Ci)

)
. (6.2.25)

Note that (6.2.12) reaches its minimum value (i.e., zero) when bTα =
M∑
i=1

αi

(
Nσ2

i ξi−

2βCi

)
= 0. Assuming that Ci = C, ∀i (i.e., the same attack strength for all the

compromised SNs) for simplicity, clearly the minimum of (6.2.12) can be achieved

with

Co =
M∑
i=1

αiNσ
2
i ξi

2β
M∑
i=1

αi

. (6.2.26)

Now, this yields the maximum possible degradation that the attacker can cause

to the FC. As can be seen, the optimum attacker strategy (Co) is a function of

5The channel estimation error (for both the honest and compromised SNs) can be modeled as

a Gaussian random variable (i.e., ĥij = hij + eh) where eh ∼ N (0, σ2
eh

) and ĥij is the estimated

flat fading channel coefficient.
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the FC strategy (i.e., αi in (6.2.7) which itself is a function of pi through the σ2
vi

quantity (see (6.2.3), (6.2.6) and (6.2.22)). So, in order to adopt this strategy, the

attacker needs to know αi and pi, ∀i. Since the FC is not compromised (i.e., still

acts accordingly), these quantities cannot normally be obtained by the attacker.

As can be seen from the optimum FC weight protection strategy (6.2.22) and

the attacker optimum strategy (6.2.26), there does not exist a dominant6 approach.

Clearly the FC weights (αi in (6.2.7)) depend on the attacker parameter Ci and vice

versa. Next, we discuss in more detail the attacker versus the FC strategies and

provide performance analysis in cases where limited a−priori knowledge about the

attacker is available (i.e., without the need of exact knowledge of Ci).

6.2.5 Performance Analysis

In this Section, starting with the optimum attacker strategy (6.2.26) and depending

on the collaboration willingness among SNs and the available a−priori information

that the attacker has about the FC combining strategy, we distinguish between

two simulation setups in Section 6.2.5. Next, in Section 6.2.5 we distinguish again

between two different simulation setups but now from the perspective of the FC

mechanisms.

Sub-optimum Attacker’s Strategies

Here, we assume that the attacker knows that the FC uses a linear combining strat-

egy but it is not aware of the combining weights used in (6.2.7). We also assume

that the FC does not act strategically and uses weight combining, without trying

to optimize against the behavior of compromised SNs. We now distinguish between

the two following setups, “HCSC” and “CSC”.

1. Honest and Compromised SNs Collaboration − HCSC: Now, the op-

timum strategy (6.2.26) to be adopted by each compromised SN requires

knowledge that cannot be obtained in practice as previously discussed. As

6A dominant FC (attacker) strategy is said to be strictly dominant if it is the best strategy for

the FC (attacker), no matter how the attacker (FC) decides to act.
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Figure 6.2: Under attack schematic communication architecture among peripheral

SNs and the FC. Similarly to Fig. 6.1, each SN generates a test statistic (Ti) by

observing the target (not shown here for clearance purposes)). While the honest SNs

(black color) keep their test statistics unchanged, the compromised SNs (red color)

directed by the attacker, will falsify their test statistics to T falj with j = {3, 4, 5}

(where j is the compromised SN index). The SNs have partial connectivity among

themselves (i.e., not a complete graph) (thin lines) and can communicate with the

FC (thick lines) but only over an energy-constrained/bandwidth-constrained links.

a result, the attacker (not aware of αi and pi, ∀i) reasonably assumes equal

combining at the FC (i.e., αi = 1
M
,∀i) and directs the compromised SNs to

attack with

CHCSC =
N

M

M∑
i=1

σ2
i ξi
2β

(6.2.27)

where the superscript “HCSC” refers to “Honest and Compromised SNs

Collaborate”. However, the compromised SNs still require knowledge of σ2
i

and ξi,∀i (to evaluate
M∑
i=1

σ2
i ξi) in order to implement the attacking strategy

(6.2.27). When all the M SNs (honest and compromised) form a connected

network7 and are willing to collaborate with each other (see Fig. 6.2), the

quantity
M∑
i=1

σ2
i ξi in (6.2.27) can be estimated using the average consensus al-

gorithm [19]. Because of the communication topology for the M SNs (i.e.,

not fully connected), the average consensus algorithm ensures the availability

7A connected network is any network where there is a path (i.e., over one or more links) between

every pair of SNs in the network.
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of this term at each SN. The compromised SNs will still be camouflaged (i.e.,

unidentified) as they share with their neighbors just the true quantity σ2
i ξi and

the SNs cannot identify if their neighbors are honest or compromised.

2. Compromised SNs (only) Collaboration − CSC: Now, in the cases where

not all of the M SNs (compromised and honest) are willing to collaborate with

each other, the quantity
M∑
i=1

σ2
i ξi in (6.2.26) cannot be obtained in practice.

Note that the attacker has under its control just a fraction (β) (β = F
M
≤ 1,

where F is the number of falsified SNs) of M SNs (see Fig. 6.2) and the

other remaining honest SNs (M − F ) do not share their observations with

their neighbors. In this situation, the F compromised SNs collaborate with

each other in order to estimate in a distributed fashion the
∑
i∈J

σ2
i ξi quantity,

where J represents the compromised SNs set with cardinality F . Assuming

that the F falsified SNs form a connected7 network, the average consensus

algorithm [19] (like before) ensures the availability of this term at each falsi-

fied SN. After this stage, the compromised SNs attack (i.e., falsify their test

statistics (3.2.3) as in (6.2.1)) with Ci = CCSC ,∀i with

CCSC =
N(M − F )

M

∑
i∈J

σ2
i ξi
2β

(6.2.28)

where the superscript “CSC” refers to “Compromised SNs (only) Collaborate”.

Sub-optimum FC’s Strategies

Now, the optimum weights (αoi ,∀i) in (6.2.22) are a function of the attacker parame-

ter Ci which is difficult in practice (if not impossible) to obtain by the FC. In such a

case, the FC adopts a sub-optimum but simple solution to minimize the degradation

caused by the attacker. Assuming that the attacker does not act strategically (i.e.,

does not try to optimize against the FC approach) we now distinguish between the

two following simulation setups, WAFBB and the OAFBB.

1. Weak Attack FC Based Belief − WAFBB: Now, when the number of

observed samples (N) is large and the FC believes that the attacker is di-

recting the ith compromised SN to attack with relatively small Ci, the FC
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weight combining can be approximated with

αWAFBB
i =

σ2
i ξi

2σ4
i (1 + 2ξi) +

σ2
vi

N

, ∀i = 1, 2, · · · ,M (6.2.29)

where the superscript “WAFBB” refers to “Weak Attack FC Based Belief”

and the optimum SN to FC transmit power can be also approximated with

pWAFBB
i =

[
U√
λ0

√
ζi

12h2
i

(
σ2
i ξi

σ4
i (1 + 2ξi)

)
−

U2ζi
h2i

6Nσ4
i (1 + 2ξi)

− ζi
h2
i

]+

. (6.2.30)

Now, (6.2.29) and (6.2.30) coincide with the optimum weights and with the

optimal SN transmit power allocation scheme respectively derived for the case

of attack−free WSN in [35].

2. Optimum Attack FC Based Belief − OAFBB: Here, we consider the case

when the FC believes that the attacker, with a fraction (β) of SNs under

its control, attacks with the optimum parameter Co (see (6.2.26)) (i.e., with

Ci = Co in (6.2.1) but with αi = 1
M
, ∀i).

First of all, note that the FC knows that the compromised SNs (i.e., the at-

tacker) have an alternative objective (i.e., the attacker would like to minimize,

while the FC would like to maximize, the MDC in (6.2.12)) (i.e., the FC can

work out the optimisation problem from the attacker perspective and eval-

uate (6.2.26)). Secondly, the FC concludes that the attacker cannot adopt

this strategy in practice (since this optimum strategy requires αi,∀i and this

parameter is controlled by the FC itself). In such a situation, it is reasonable

that the FC believes that the attacker guides the compromised SNs to attack

with Co (see (6.2.26) but with αi = 1
M
,∀i). Now, the FC protection weights

(αOAFBBi ) can be shown to be (by substituting Ci = N
2βM

M∑
i=1

σ2
i ξi in (6.2.22)

and rearranging the terms):

αOAFBBi =

σ2
i ξi − 1

M

M∑
i=1

σ2
i ξi

2σ4
i (1 + 2ξi) +N(1− β)

(
1

2
√
βM

M∑
i=1

σ2
i ξi

)2

+
σ2
vi

N

. (6.2.31)

The SN to FC transmit power (pOAFBBi ) can be obtained in a similar way

(by substituting Ci = N
2βM

M∑
i=1

σ2
i ξi into (6.2.24)). Lastly, the superscript

“OAFBB” refers to “Optimum Attack FC Based Belief”.
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6.2.6 Equilibrium Analysis

In this section, we consider the case where both the attacker and the FC act strate-

gically and formulate the problem as a minimax game between two players, i.e.,

the attacker and the FC. The attacker has under its control one parameter (i.e.,

Ci ∀i ∈ J , with J defined in Section 6.2.5, bottom of page 115) while the FC has

control of the weight combining vector (i.e., α). As before, assuming C = Ci (i.e.,

the same attack strength for each compromised SN) for simplicity, we first of all

prove the existence of the Nash Equilibrium (NE)8 by showing that there exists a

unique saddle-point in the minimax game between the attacker and the FC. Then,

we find the optimum solution numerically by maximizing the deflection coefficient

with respect to the FC weight combining parameter and then by minimizing it with

respect to the attacker parameter (i.e., w.r.t. C). Next, we present a theorem, by

help of which in Section 6.2.6 (top of page 120) we prove the existence of NE.

Theorem 6.2.1 (Nikaido, [105]). Let K(x, y) be a pay-off function defined on the

product space of X by Y, where X and Y are convex compact sets and continuous in

each variable for any fixed value of the other. If K(x, y) is quasi-concave in x and

quasi-convex in y, then:

max
x∈X

min
y∈Y
K(x, y) = min

x∈X
max
y∈Y

K(x, y). (6.2.32)

Next, we present the behavior of the MDC w.r.t. attacker strength C.

Modified Deflection Coefficient Behavior with Respect to C

In the next Lemma we prove the quasi-convexity behavior of the MDC w.r.t. C.

Lemma 6.2.2 For a given α and p, d̃2 in (6.2.12) is a quasi-convex function of C.

Proof : The MDC can be written as:

d̃2 =
(x− 2βCb)2

y + dC2
(6.2.33)

8A Nash equilibrium, is a set of strategies, one for each player, such that no player has the

incentive to unilaterally change its action. Players are in equilibrium if a change in strategies by

any one of them would lead that player to earn less than if it remained with its current strategy.
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where x =
M∑
i=1

αi (Nσ
2
i ξi), b =

M∑
i=1

αi, d =
M∑
i=1

α2
i

(
β(1 − β)

)
, y =

M∑
i=1

α2
i

(
2Nσ4

i (1 +

2ξi) + σ2
vi

)
.

Now considering α as a constant, differentiate d̃2 w.r.t. C and by further sim-

plification, we obtain:

∂d̃2

∂C
=

(
2βbC − x

)(
4βby + 2xdC

)
(
y + dC2

)2 = 0. (6.2.34)

So solving the above yields two critical points:

C∗1 =
x

2βb
, C∗2 = −2βby

xd
. (6.2.35)

Now, for a feasible attacker strength (i.e., for C > 0), the critical point C∗1 is feasible

if x, b > 0 or x, b < 0. So, we have the following:

if x, b > 0 and for C > C∗1 , f
′(C) > 0

if x, b < 0 and for C > C∗1 , f
′(C) > 0

if x, b > 0 and for C < C∗1 , f
′(C) < 0

if x, b < 0 and for C < C∗1 , f
′(C) < 0


=⇒ C∗1 is a global minimum.

(6.2.36)

We also conclude that the other critical point C∗2 is not even a feasible point (i.e.,

C∗2 < 0) for x, b > 0 and x, b < 0. Hence, there is only one value of C = C∗1 at which

d̃2 = 0. As a result, C∗1 being the unique global minimum =⇒ d̃2 is a quasi-convex

function of C.

This concludes the proof. �

Modified Deflection Coefficient Behavior with Respect to α and p

Now, in Lemma 6.2.3, we show the behavior of d̃2 in (6.2.12) from the perspective

of the FC.

Lemma 6.2.3 For a given C and p, d̃2 is a concave function of α
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Proof : Consider (6.2.12), then the Hessian of d̃2 w.r.t. α (i.e., Hd̃2) can be easily

shown to be:

Hd̃2 = 2
bbT

αRα
− 4

bTα(
αRα

)2

(
bαTR + RαbT

)
+ 8

(
αTb

)2(
αRα

)3

(
RααTR

)
− 2

(
αTb

)2(
αRα

)2

(
R
)
. (6.2.37)

Now, to prove that d̃2 is a concave function of α, we need to show [90]: αTHd̃2α ≤

0,∀α. This is given in Appendix C. From (C.1.2), αTHd̃2α = 0,∀α =⇒ d̃2 is a

concave function of α where the αoi ,∀i in (6.2.22) is the optimum solution.

This concludes the proof. �

Similarly, treating C (i.e., the attacker strength) fixed and for a given α (i.e.,

the weight combiner vector) it can be easily shown that d̃2 is also a concave function

of p and poi in (6.2.24) is the optimum solution. The proof is straightforward and

we omit it here due to lack of space.

Now, since any concave function is quasi-concave, then by Theorem 6.2.1, a

unique saddle-point exists in the minimax game which is the NE. We numerically

evaluate this NE in the simulation results section.

6.2.7 Simulation Results

Simulation Setup

In this Section, the performances of the proposed strategies are evaluated numer-

ically and compared to the attack−free scheme [35]. A WSN with a total of

M = 12 SNs is considered (where a fraction of these SNs are compromised by the

attacker with the same attacking strength (i.e., Ci = C, ∀i) for simplicity). We

let σ2
i = 0.1, such that ξa = 10 log10

(
1
M

M∑
i=1

ξi

)
=−10.5 dB with arbitrarily chosen

s(n) = [s1(n), s2(n), · · · , sM(n)] = [0.022, 0.0011, 0.18, 0.02, 0.0143, 0.0011, 0.0024,

0.2, 0.06, 0.09, 0.0143, 0.15] unless otherwise stated. The corresponding SN to FC

channel gains are assumed to be ideally estimated (i.e., σ2
eh

= 0) for simplicity and

are shown in Fig. 6.3. In addition we let ζi = 0.1, ∀i. Finally, we choose Li with

equality in (6.2.3).

121



6.2. Centralized Detection: Under Soft-Data Falsification and
Energy-Bandwidth Limitation

SN to FC Optimal Transmit Power Allocation and FC Weight Combining

Strategy

Now, we investigate the SN to FC transmit power for the optimum allocation

scheme9 and the FC optimal weight combining strategy derived in Section 6.2.4.
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Figure 6.3: SN optimal transmit power (poi ) and channel bit allocation (Li) with

Pt = 60, U = 3, ξa = −10.5 dB, N = 20, β = 0.1 and σ2
eh

= 0.

Fig. 6.3 (the middle plot) shows the optimal SN transmit power poi for the ith

SN to the FC channel versus the attacker strength C and the lower plot shows the

corresponding quantization bits. The actual channel coefficients (randomly chosen)

are in the upper plot. Clearly, for the case of C = 0 (i.e., the attack − free scheme

in [35]), more power is allocated to the SNs (i.e., SN3, SN8, SN9, SN10, and SN12)

having both the best channels and high enough SNRs (ξi). Interestingly, those

9The optimum SN power allocation scheme requires knowledge of the attacker strength Ci (see

(6.2.24)). This is a strong assumption in practice and the exact knowledge of Ci cannot be attained

in general. Nevertheless, here we consider this situation for performance comparison purposes and

to create an idea about how the SN to FC transmit power allocation is affected.
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remaining SNs having very low SNRs (i.e., having useless local information) but

having good (or bad) corresponding channels, are censored (i.e., do not transmit

even a single bit). In this way, the SNs that have very bad channels (i.e., SNs that

require very high power to transmit) or the SNs that have low SNRs (i.e., SNs that

do not contain useful information) will be censored (i.e., will not transmit even one

bit). This is not the case when C = 0.5 or C = 5 (we give an explanation later)

In Fig. 6.4 we investigate the FC combining response (with weight in (6.2.22))

versus attacker strength C. Clearly, when C = 0, the weights for the SNs permitted

to transmit to the FC (i.e., SN3, SN8, SN9, SN10, and SN12) are greater than 0.

As expected, the weights for the other remaining SNs are set to 0 (as these SNs

are censored). Now, when C starts to increase, the FC response is to decrease the

weights for all the SNs up to around C = 5 and to allow all the SNs to transmit to

the FC (see Fig. 6.3 (middle plot)). However, for around C > 5, the FC response

is by first increasing the weights for the SNs having low SNRs and as C gets larger,

the FC combining strategy tends towards equal combining.

Similar to Fig. 6.4, in Fig. 6.5 (for C = 0.1) and in Fig. 6.6 (for C = 0.6)
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we plot the FC combining response (with weights in (6.2.22)) but now versus the

fraction of compromised SNs (β). Interestingly, the optimal FC weight response for

the less informative SNs (i.e., SN1, SN2, SN4, SN5, SN6, SN7, and SN11 classified

by the power allocation scheme in the case of attack − free (i.e., C = 0)) remains

almost constant with respect to β both in Fig. 6.5 and Fig. 6.6. However, that is not

the case for the more informative SNs (i.e., SN3, SN8, SN9, SN10, and SN12). In

Fig. 6.5, we observe that for the SNs 3, 8, and 12 (corresponding to the best SNRs)

this relationship is convex while for the SNs 9 and 10 it is monotonically decreasing.

Interestingly, in Fig. 6.6 (for a larger C) this relationship becomes monotonically

decreasing for all the more informative SNs mentioned above.

The results provided in this Section cannot be attained in practice as the exact

knowledge of C is required. However, they provide an insight as to how the FC power

allocation and the weight combining strategy is influenced by both the attacker

strength (C) and the compromised SNs fraction (β).

Detection Performance of the Proposed Strategies for Fixed β

Now, we investigate the detection performance of the proposed strategies described

in Section 6.2.5 for a fixed β.

In Fig. 6.7, we show the receiver operating characteristic (ROC) parametrized

on the attacker strength (C) for the proposed WAFBB and OAFBB strategies

compared to the attack free (AF ) case [35] (i.e., when there is no attack). We can

observe that for C = 0.3 (as expected), the WAFBB strategy performs similar to

the optimum strategy in (6.2.21) and better than OAFBB (up to C = 0.6) whereas

after that, the OAFBB strategy dramatically outperforms the latter. We also note

that for relatively very large C, it is possible to totally blind the FC when the

WAFBB is used (i.e., to make it incapable of detecting) but only when the WSN

operates at low probability of false alarm (Pfa).

Now, we would like to emphasize that the WAFBB strategy has particular

importance when the FC does not have any a−priori knowledge about the β and C

parameters. But the OAFBB strategy requires just knowledge of the compromised

SNs fraction4 (β) which is possible to be obtained by the FC in practice.
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Detection Performance of the Proposed Strategies for Fixed C

Now, we investigate the detection performance of the proposed strategies described

in Section 6.2.5 for a fixed C.

In Fig. 6.8, we show the ROC performance for the two different proposed strate-

gies (parametrized on β) compared to the optimum strategy in (6.2.21) and AF

in [35]. We can observe that for small β (more specifically β = 0.1), both the

optimum and OAFBB strategies outperform the WAFBB strategy and their per-

formances are worst than the AF performance. Interesting, when β increases (more

specifically, β = 0.5 and β = 1), both the optimum and OAFBB strategies out-

perform the AF detection performance for all the values of Pfa and their detection

performances improve proportionally with β. However, this is not the case when

WAFBB is used (its performance degrades and when β = 1 it is sufficient to blind

the FC even when the WSN operates at a relatively high Pfa).

In Fig. 6.9, we investigate the same situation as for Fig. 6.8 but now for

C = 0.6. In this case (when β = 0.1), the optimum strategy slightly outperforms the
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OAFBB and WAFBB strategies. However, similar to Fig. 6.8, when more than

50% of the SNs are compromised, theOAFBB strategy significantly outperforms the

WAFBB strategy. Furthermore, its detection performance improves proportionally

as β increases.

In Fig. 6.10, we again show the ROC versus β but now for a lower C (more

specifically for C = 0.2). As expected, the WAFBB performs similar to the opti-

mum strategy and outperforms the OAFBB at low β and low C, as the WAFBB

is derived under these assumptions. Interestingly, when 50% of the SNs are com-

promised, both the optimum and OAFBB strategies perform in a similar manner.

Again, the OAFBB strategy detection performance improves with β wheres for the

WAFBB strategy its performance degrades as β increases. It is now clear that

(from the attacker perspective) there is an optimum number of compromised SNs

(fraction β) that causes the maximum FC detection performance degradation when

the optimum FC strategy in (6.2.21) is used.
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Equilibrium Analysis of Minimax Game

In this section we analyze the equilibrium point of the minimax game and find the

Nash Equilibrium (NE). The NE is the maximum probability of detection consid-

ering the FC’s best linear weight combining strategy (joint optimization of α,p)

against attacker’s strategy (i.e., C for a given fraction of compromised SNs β).
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= 0 and with

optimum weights in (6.2.22).

In Fig. 6.11 the ROC behavior against the attacker’s strength and the FC’s

combining weights is shown. As expected, there does exist a NE and it is shown to

occur for the pair C = 0.4 and αo (with αoi in (6.2.22)). Clearly, from the attacker

perspective, this strategy causes the maximum detection performance degradation

∀Pfa and deviating from this strategy will not benefit the attacker.

Now, in Fig. 6.12, the modified deflection coefficient against the attacker strength

is shown for two examples (i.e., with optimum FC weights combining in (6.2.22)

and non-optimum weight combining drawn from the uniform distribution (i.e., αi ∼

U(0, 1) in (6.2.7)). We can observe that the NE is shown to occur at C = 1 and

deviating from this point (i.e., this strategy) the attacker will not benefit (i.e., it
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will not gain in terms of the FC’s performance degradation). It is also clear that if

the FC deviates from the optimum combining strategy (i.e., from the weights αoi in

(6.2.22)), its detection performance will be worst or at least will not improve ∀C.

6.3 A Secure Sub-optimum Centralized Detection

Scheme in Under-Attack WSNs

6.3.1 System Model

In this section, we describe the target sensing, communication channel, and the

WSN architecture.

Target Sensing

In this section, we use the same system model used for Section 6.2. Identically, we

consider an under-attack WSN with M SNs (where a fraction (β) of these SNs are

compromised) reporting to a FC.
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Communication Channel

Identical to the previous chapters (e.g., Chapter 3), the communication between the

local SNs and the FC are modeled as error-free (the SNs transmit the 1-bit local

decision) parallel access channels (PACs).

WSN Architecture

In this section, we adopt the identical WSN architecture as in Section 6.2 (i.e.,

the centralized under-attack WSN architecture) such that there is a FC that com-

municates with spatially distributed SNs. However, in this section we introduce a

different attacking model and we refer the reader to the compromised SNs attack

subsection within this section. Again, the honest SNs are represented with a black

color and the compromised SNs (i.e., the ones controlled by the attacker) with a red

color (see Fig. 6.13). Next, we explain in more detail the local decision.

Local Decision

Based on its local energy estimation (3.2.3), the ith SN generates a binary indicator

random variable Ii as follows:

if Ti < Λ, Ii = 0 =⇒ decide H0

if Ti ≥ Λ, Ii = 1 =⇒ decide H1

 (6.3.1)

where Λ is a local detection threshold that is the same for all the M SNs. The ith

SN local probability of false alarm (pifa) and the local probability of detection (pid)

can be expressed as:

pifa = Pr (Ti ≥ Λ|H0) =Q

(
Λ− E {Ti|H0}√

Var {Ti|H0}

)
(6.3.2)

pid = Pr (Ti ≥ Λ|H1) = Q

(
Λ− E {Ti|H1}√

Var {Ti|H1}

)
(6.3.3)

where Q(.) is the Q-function. While the ith honest SN transmit its actual one-bit

test statistic (i.e., Ii in (6.3.1)) to the FC, the compromised SNs falsify them before

transmitting to the FC. Next we introduce the attacker model.
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αiĨi

IC3

I2

IC5

I4

I6

I1

Ĩ3
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Figure 6.13: Under attack schematic communication architecture between periph-

eral SNs and the fusion center (FC). Each of the ith honest/compromised SN repre-

sented with black/red color generates a local (binary) indicator variable (Ii/I
C
i ) by

observing the target and performing the test in (6.3.1) with local detection threshold

Λ/ΛC . While the ith (i = {1, 2, 4, 6}) honest SN indicator (test statistic) remains

unchanged (i.e., Ĩi = Ii), the jth (j = {3, 5}) compromised SN falsify its indica-

tor (test statistic) as in (6.3.7) before transmitting to the FC. Here i/j are the

honest/compromised SN index.

6.3.2 Compromised SNs Attack

Different attack strategies could be adopted by the compromised SNs. In this work,

the data falsification attack model widely used in [10,11,73] is considered. There is

a β fraction of SNs controlled and compromised by the attacker. As before, (i.e., in

the case of attack − free) each of the ith compromised SNs perform the local test

in (6.3.1) but now with a local detection threshold (ΛC) controlled by the attacker

and assumed to be the same for all the β fraction of compromised SNs. That is:

if Ti < ΛC , I
C
i = 0 =⇒ decide H0

if Ti ≥ ΛC , I
C
i = 1 =⇒ decideH1.

 (6.3.4)
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Now, the probability of false alarm10 (pi,Cfa ) and the probability of detection (pi,Cd )

at the ith compromised SN are respectively given as:

pi,Cfa = Pr (Ti ≥ ΛC |H0) =Q

(
ΛC − E {Ti|H0}√

Var {Ti|H0}

)
(6.3.5)

pi,Cd = Pr (Ti ≥ ΛC |H1) = Q

(
ΛC − E {Ti|H1}√

Var {Ti|H1}

)
(6.3.6)

while for the honest SNs it remains as (6.3.2). After performing the test in (6.3.4),

the compromised SNs further manipulate their binary indicator variables prior to

FC transmission so as to yield the maximum possible FC degradation. Let P flip
C

be the probability that each compromised SN intentionally reports the opposite

information to its actual local decision (i.e., flips the indicator random variable in

(6.3.4) prior to FC transmission with probability P flip
C ). It is assumed that all the

compromised SNs have the same probability of attack in a particular sensing period

(see later Section 6.3.7 for details). The remaining (1-β) fraction SNs are honest

and report to the FC accordingly. Now, the ith local binary indicator test statistic

for the compromised SN can be expressed as:

Ĩi =

 1− ICi , with probability P flip
C

ICi , with probability (1− P flip
C )

(6.3.7)

while for the honest SNs this relation is simply Ĩi = Ii. Next, we state a Lemma

that will help us to derive (6.3.15)-(6.3.18) in the next page.

Lemma 6.3.1 For the ith compromised SN, the local probability of false alarm and

probability of detection can be shown to be respectively:

p̃ifa = P flip
C

(
1− pi,Cfa

)
+
(

1− P flip
C

)
pi,Cfa (6.3.8)

p̃id = P flip
C

(
1− pi,Cd

)
+
(

1− P flip
C

)
pi,Cd . (6.3.9)

while for the honest SNs clearly we have p̃ifa = pifa and p̃id = pid.

Proof : The proof can be found in Appendix C.2. �

Next, we introduce a simplified (optimum) linear fusion rule at the FC.

10Here the superscript i, C refers to the ith compromised SN.
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6.3.3 Simplified Fusion Rule-The Linear Approach

Now, the ith SN transmits to the FC the one-bit local test statistic (Ĩi). The com-

munication channels between SNs and the FC are assumed to be error-free in this

paper. Upon receiving all the contributions (which are assumed to be independent,

identically distributed (i.i.d.)) from all the SNs (i.e., compromised and honest), the

FC linearly combines them:

Tf =
M∑
i=1

αiĨi (6.3.10)

where {αi}Mi=1 are the optimum weights that we will derive later in section 6.3.4.

The FC then makes the final decisions:

if Tf < Λf , decide H0

if Tf ≥ Λf , decide H1

 (6.3.11)

where Λf is the FC detection threshold. Let

Pd = Pr
(
Tf ≥ Λf |H1

)
(6.3.12)

Pfa = Pr
(
Tf ≥ Λf |H0

)
(6.3.13)

where Pd and Pfa are the system probability of detection and probability of false

alarm respectively. For large M , Tf can be approximated by a Gaussian distribution

and the Pd for a fixed Pfa is given as [78]:

Pd = Q

(
Q−1 (Pfa)

√
Var {Tf |H0} − E {Tf |H1}+ E {Tf |H0}√

Var {Tf |H1}

)
(6.3.14)

with appropriate quantities given in (6.3.15)-(6.3.18):

E {Tf |H1} = (1− β)
M∑
i=1

αip
i
d + β

[
P flip
C

( M∑
i=1

αi
(
1− pi,Cd

))
+
(
1− P flip

C

)( M∑
i=1

αip
i,C
d

)]
(6.3.15)

E {Tf |H0} = (1− β)
M∑
i=1

αip
i
fa + β

[
P flip
C

( M∑
i=1

αi
(
1− pi,Cfa

))
+
(
1− P flip

C

)( M∑
i=1

αip
i,C
fa

)]
.

(6.3.16)
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Var {Tf |H1} = (1− β)
M∑
i=1

α2
i p
i
d

(
1− pid

)
+ β

[(
P flip
C

( M∑
i=1

α2
i

(
1− pi,Cd

))
+
(
1− P flip

C

)( M∑
i=1

α2
i p
i,C
d

))
(

1− P flip
C

( M∑
i=1

α2
i

(
1− pi,Cd

))
−
(
1− P flip

C

)( M∑
i=1

α2
i p
i,C
d

))]
(6.3.17)

Var {Tf |H0} = (1− β)
M∑
i=1

α2
i p
i
fa

(
1− pifa

)
+ β

[(
P flip
C

( M∑
i=1

α2
i

(
1− pi,Cfa

))
+
(
1− P flip

C

)( M∑
i=1

α2
i p
i,C
fa

))
(

1− P flip
C

( M∑
i=1

α2
i

(
1− pi,Cfa

))
−
(
1− P flip

C

)( M∑
i=1

α2
i p
i,C
fa

))]
.

(6.3.18)

6.3.4 Weight Combining Optimisation

In this section, we would like to find the optimum weighting vector (αopt) that

maximize (6.3.14). However, maximizing (6.3.14)) w.r.t. α is difficult and no closed

form solution can be found. So we will approximate the optimal solution by adopting

the MDC [32] (as in previous section) as an alternative function to be maximized:

d̃2 (α) =

(
E {Tf |H1} − E {Tf |H0}√

Var {Tf |H1}

)2

=

(
bTα

)2

αTRα
(6.3.19)

where

b=



(
1− β

)(
p1
d − p1

fa

)
− β

(
p1,C
d − p1,C

fa

)(
2P fal

C − 1
)(

1− β
)(
p2
d − p2

fa

)
− β

(
p2,C
d − p2,C

fa

)(
2P fal

C − 1
)

...(
1− β

)(
pMd −pMfa

)
−β
(
pM,C
d − pM,C

fa

)(
2P fal

C − 1
)

 ,α =


α1

α2

...

αM

 (6.3.20)
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R =
(
1− β

)
diag

p1
d

(
1−p1

d

)
+ β

1−β

(
P flip
C +p1,C

d

(
1−2P flip

C

))(
1−P flip

C +p1,C
d

(
2P flip

C −1
))

p2
d

(
1−p2

d

)
+ β

1−β

(
P flip
C +p2,C

d

(
1−2P flip

C

))(
1−P flip

C +p2,C
d

(
2P flip

C −1
))

...

pMd
(
1−pMd

)
+ β

1−β

(
P flip
C +pM,C

d

(
1−2P flip

C

))(
1−P flip

C +pM,C
d

(
2P flip

C −1
))


.

(6.3.21)

Now, our optimization problem is:

αopt = arg max
α

(
d̃2 (α)

)
. (6.3.22)

Further, via the transformation ψ = R1/2α, the deflection coefficient (6.3.19) be-

comes:

d̃2 (ψ) =
ψTDψ

||ψ||2
, D = R−T/2bbTR−1/2. (6.3.23)

So αopt = R−1/2ψopt = kR−1b, where ψopt = kR−1/2b is the normalized eigen-

vector corresponding to the maximum eigenvalue of D. Now, the optimum weight

combining in (6.3.10) can be easily shown to be (6.3.24).

αiopt =

(
1− β

)(
pid − pifa

)
+ β

(
pi,Cfa − p

i,C
d

)(
2P fal

C − 1
)(

1−β
)(
pid
(
1−pid

))
+β
(
P flip
C + pi,Cd

(
1−2P flip

C

))(
1−P flip

C + pi,Cd
(
2P flip

C −1
)) .

(6.3.24)

Clearly, the optimum weights depend upon the local probability of false alarm

and the probability of detection metrics as well as on the β (fraction of compromised

SNs) and the probability of flipping the local decisions by the attacker. For the SNs

that are honest (i.e., controlled by the FC) these local probabilities are known (since

the FC can settle the local detection threshold itself). However, for the compromised

SNs these local probabilities are not available at the FC (since the attacker takes

control of the local detection threshold). To make the matter worst, the FC knows

just the fraction of compromised SNs (i.e., β) but it cannot identify who they are.

As a result, the FC cannot implement the optimum weight combining fusion rule

(6.3.10) (i.e., with αi = αiopt in (6.3.24)).
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Later, in section 6.3.7, we propose a simple but yet effective approach to possi-

bly identify these compromised SNs and compute the optimum weights at the FC

based on their assigned reliability. Next, we derive the optimum attacker flipping

probability which makes the FC incapable of detecting.

6.3.5 Attacker Flipping Probability Optimisation

In this section, we derive the optimum flipping probability that the attacker needs to

adopt to the compromised SNs in order to cause the maximum possible degradation

to the FC (i.e., to possibly make the FC incapable of detecting). Again, we adopt

the modified deflection coefficient as an alternative function to be optimized and

assume that the FC does not act strategically against the attacker strategy.

Lemma 6.3.2 The optimum flipping probability
(
P flip
C,opt

)
which minimizes the mod-

ified deflection coefficient is:

P flip
C,opt =

β − 1

2β

( M∑
i=1

αi
(
pid − pifa

)
M∑
i=1

αi
(
pi,Cfa − p

i,C
d

)
)

+
1

2
(6.3.25)

Proof : Since the modified deflection coefficient is always non-negative, then its

minimum is always greater than or equal to zero. So, the condition to make the

minimum of the modified deflection coefficient zero is:

bTα =
(
1− β

) M∑
i=1

αi
(
pid − pifa

)
+ βP fal

C

M∑
i=1

αi
(
pi,Cfa − p

i,C
d

)
+ β

(
1− P fal

C

) M∑
i=1

αi
(
pi,Cd − p

i,C
fa

)
= 0 (6.3.26)

Further simplification of the above and re-arrangement of the terms yields:

β
( M∑
i=1

αi
(
pi,Cfa − p

i,C
d

))(
2P fal

C − 1
)

=
(
β − 1

) M∑
i=1

αi
(
pid − pifa

)

=⇒ P flip
C,opt =

β − 1

2β

( M∑
i=1

αi
(
pid − pifa

)
M∑
i=1

αi
(
pi,Cfa − p

i,C
d

)
)

+
1

2
. (6.3.27)
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This concludes the proof. �

The special case when the attacker does not change the local detection threshold

in (6.3.4) (i.e., pid = pi,Cd and pifa = pi,Cfa ), the optimum probability of flipping the

local decisions can be shown to be:

P flip
C,opt =



1

2
− β − 1

2β
=

1

2β
, for 0.5 ≤ β ≤ 1

not applicable, for β = 0

not defined, otherwise.

(6.3.28)

Interestingly, in this case the optimum probability of flipping the local SNs decision

is inversely proportional to the fraction of the compromised SNs (β). As expected,

when β increases, the optimum probability of flipping the local decision in order to

make the modified deflection coefficient zero decreases and vice-versa. Furthermore,

when the half of the network is compromised (i.e., β = 0.5), the attacker can make

the modified deflection coefficient zero with P flip
C,opt = 1 (i.e., the local SNs should

always flip their local decisions). This is as expected because always flipping the

local decisions of a 50% SNs manipulated network can totally make the FC incapable

of detecting.

6.3.6 Minimum Fraction of Compromised SNs

Now, we are interesting in the minimum fraction of the compromised SNs that is

needed to cause the maximum possible degradation to the FC. We state the result

in the next Lemma.

Lemma 6.3.3 The minimum fraction of the compromised SNs needed to make the

FC incapable of detecting or to make the modified deflection coefficient zero is βmin ≥
1
2
.

Proof : As we previously stated, the modified deflection coefficient is always non-

negative and the minimum occurs at zero. From (6.3.26), the condition to make the
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modified deflection coefficient zero is:

bTα =
(
1− β

) M∑
i=1

αi
(
pid − pifa

)
+ βP fal

C

M∑
i=1

αi
(
pi,Cfa − p

i,C
d

)
+β
(
1− P fal

C

) M∑
i=1

αi
(
pi,Cd − p

i,C
fa

)
= 0.

(6.3.29)

After simplifying the above equation, the condition on β needed to make the FC

incapable of detecting becomes:

β =


1−

( ( M∑
i=1

αi
(
pi,Cd − p

i,C
fa

))(
1− 2P fal

C

)
M∑
i=1

αi
(
pid − pifa

)
︸ ︷︷ ︸

(A)

)


−1

. (6.3.30)

Now, the minimum of β (βmin) can be achieved when term (A) of (6.3.30) is mini-

mum. We also know that for any real scalar a and b the following holds:

min
(a
b

)
≥

min
(
a
)

max
(
b
) (6.3.31)

Using (6.3.30) and (6.3.31), we now derive a lower bound on the minimum β. Clearly,

we require that both the numerator and the denominator of the term (A) takes

the minimum and the maximum values respectively. Now, the minimum of the

numerator (i.e., min

(( M∑
i=1

αi
(
pi,Cd − pi,Cfa

))(
1 − 2P fal

C

))
) can be achieved if both

pi,Cd = P fal
C = 0 and pi,Cfa = 1 or alternatively when both pi,Cd = P fal

C = 1 and pi,Cfa = 0.

Similarly, the maximum of the denominator of term (A) (i.e., max

(
M∑
i=1

αi
(
pid−pifa

))
)

can be achieved when both pid = 1 and pifa = 0. Finally, using the above analysis

we can easily show that:

βmin ≥

(
1− −M

M

)−1

=
1

2
. (6.3.32)

This concludes the proof. �

In the special case when the attacker does not change the local detection thresh-

old in (6.3.4) (i.e., pid = pi,Cd and pifa = pi,Cfa ), the minimum fraction of compromised

SNs required to make the modified deflection coefficient zero (i.e., make the FC

incapable of detecting) can be shown to be: βmin = 1
2

and this can be achieved with

P fal
C = 1 (see (6.3.28)).
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6.3.7 Compromised SNs Identification and Weight Combin-

ing Computation

In this section, we propose a scheme to identify the compromised SNs and compute

the weight combining in (6.3.10) based on each SN assigned reliability. As in [73],

[101], we divide the local sensing process into time windows consisting of K sensing

periods11.

Compromised SNs Identification

At the fusion center, the received observations corresponding to the ith SNs can

be expressed as Ĩ i = [Ĩi(1), Ĩi(2), · · · , Ĩi(K)], ∀i = 1, 2, · · · ,M . At the lth sensing

period, upon receiving the contributions from all the SNs (i.e., compromised and

honest) the FC linearly combines them to yield:

Tf (l) =
M∑
j=1

αAFj Ĩj(l), l = 1, 2, · · · , K (6.3.33)

T if (l) =
M∑

j=1,i 6=j

αAFj Ĩj(l), l = 1, 2, · · · , K, i = 1, 2, · · · ,M (6.3.34)

where T if (l) is the final test statistic at the lth sensing period without the contribution

of the ith SN, {αAFj }Mj=1 are the optimum weights under attack-free scenario and can

be easily derived from (6.3.24) by substituting (β = 0, P fal
C = 0, pi,Cfa = pifa and

pi,Cd = pid, ∀i). These can be shown to be:

αAFj =
pjd − p

j
fa

pjd
(
1− pjd

) . (6.3.35)

Based on the test statistics (6.3.33), the FC then generates at the lth sensing period

two different indicator random variables as follows:

If (l) =

 0 if Tf (l) < Λf

1 if Tf (l) ≥ Λf

I if (l) =

 0 if T if (l) < Λf

1 if T if (l) ≥ Λf .
(6.3.36)

11Each SN samples N times (see (3.2.3)) in each sensing interval to then perform the energy

detection as in (6.3.1).
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Now that the FC has evaluated these two indicator random variables (i.e., If (l) and

I if (l)), it then compares them to each of the ith SN local indicator variable Ĩi(l) to

yield:

di(l) =

 1 if If (l) 6= Ĩi(l)

0 otherwise
d̂i(l) =

 1 if I if (l) 6= Ĩi(l)

0 otherwise
(6.3.37)

where di(l) represents the inconsistency between the FC decision (where all the SNs

contribution is counted) and the ith SN local decision. Similarly, d̂i(l) represents the

same but now the ith SN is not considered at the FC decision. Note that all of the

above steps are performed during the same time window K. After observing the

reports up to K sensing periods, the FC evaluates a reliability metric for the ith SN

as follows:

ri =
1

K

∣∣∣∣∣
K∑
l=1

(
di(l)− d̂i(l)

)∣∣∣∣∣ , i = 1, 2, · · · ,M. (6.3.38)

It is worth mentioning that ri’s for the compromised SNs are expected to be larger

than those for the honest ones (see simulations results section later). Finally, the

FC performs the reliability test:

if ri < δ, decide reliable

if ri ≥ δ, decide not reliable

 (6.3.39)

where δ is the reliability detection threshold. Now, the probability that a compro-

mised SNs has been truly detected and the probability that a honest SNs has been

falsely detected at the ith SN are respectively:

P i,true
d = Pr

(
ri ≥ δ|Compromised

)
(6.3.40)

P i,false
d = Pr

(
ri ≥ δ|Honest

)
(6.3.41)

where the superscript “i, true” and “i, false” represents the true and false detection

at the ith SN respectively. Obviously, the compromised SNs detection performance

depends on the choice of the reliability detection threshold (δ). If we choose a large

δ, P i,false
d is expected to be low. However, this will also make P i,true

d be small. On

the other hand, choosing a smaller δ is expected to increase the P i,true
d value but

also an increase on P i,false
d value will be noticed. Clearly, the reliability detection
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threshold imposes a trade-off between these two metrics. Note that in practice we

wish to keep P i,false
d close to zero and P i,true

d close to one. Based on this reliability

test (i.e., the test in (6.3.39)), next we will evaluate the weight combining in (6.3.10)

such that the probability of detection in (6.3.14) is further improved.

Proposed Weight Combining Computation

In this section, we propose a weight combining computation based on the reliability

test (6.3.39). Existing schemes use reputation-based metrics to possibly identify

the compromised SNs and then totally exclude them from contributing to the FC

process and decision. However, identifying and then excluding them from detection

process is not the optimum solution. For instance, we might end up removing

from contributing towards the global decision compromised SNs that hold useful

information in general (for example those SNs with high local SNRs). Different

from the existing approaches, here we propose to update the weight combining (i.e.,

(6.3.35)) of each SN based on the correctness of information reported to the FC.

That is:

αAFi =

 αAFi if ri < δ

αAFi − µri if ri ≥ δ
(6.3.42)

where µ ∈ [0,∞] is the weight penalty that is the same for all the M SNs. For those

SNs that are identified as being compromised by the attacker, the FC is likely to

decrease their weights. For example, those SNs that are identified as influential and

unreliable (i.e., where ri turn out to be relatively large) the FC decreases the current

weights most. However, for those SNs that are identified as compromised but not so

influential to the FC decision process (i.e., ri is relatively small) the FC decreases

the weights proportional to ri. With regard to the SNs identified as honest, the

FC keeps their weights unchanged. In this way, the FC decides through the weight

combiner how much a local report should contribute to the FC final decision. This

is a reasonable approach as if the report from a SN tends to be incorrect, it should

be counted less in the final decision.

Next, in the simulation results, we will show that the reliability detection thresh-

old (δ) and the weight penalty (µ) are crucial for the system detection performance.
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We will also show via simulations that there is an optimum δ and µ such that the

system detection performance is maximized.

6.3.8 Simulation Results

Simulation Setup

Here we will evaluate numerically the performance of our proposed strategy and

compare to the attack − free scheme [35] and the strategy in [73]. A WSN with a

total of M = 40 SNs is considered (where β fraction of these SNs are compromised

by the attacker). We let all the σ2
i = 0.1, such that ξa = 10 log10

(
1
M

M∑
i=1

ξi

)
=

-10.5 dB with arbitrary chosen s(n) = [s1(n), s2(n), · · · , sM(n)] =[0.1, 0.175, 0.065,

0.027, 0.024, 0.026, 0.06, 0.09, 0.153, 0.11, 0.22, 0.12, 0.1, 0.024, 0.019, 0.05, 0.12,

0.1, 0.023, 0.021, 0.1, 0.175, 0.18, 0.027, 0.024, 0.026, 0.06, 0.09, 0.1, 0.065, 0.1,

0.175, 0.027, 0.024, 0.18, 0.026, 0.2, 0.09, 0.1, 0.18]T , where ξi=
N∑
n=1

s2
i (n)/Nσ2

i . We

will also refer to “equal weight” combining in (6.3.10) ( i.e., αi = 1, ∀i) and use this

as a benchmark. Finally, we use 105 Monte-Carlo simulations and choose a fixed

(equal) local SNs threshold (Λ) in (6.3.1) and local SNs threshold (ΛC) in (6.3.4)

(i.e., more specifically, Λ = ΛC = 2.6) such that P̄ false
d ≤ 0.6 (see Fig. 6.17-Fig.

6.19).

Impact of the Time Window Length K on the Malicious SN Detection

Accuracy and on the System Detection Performance

In this section, we investigate the impact that the time window length (K) has

on the compromised SNs identification accuracy of the proposed scheme. More

precisely, we are interested in examining the two metrics, P i,true
d and P i,false

d (see

(6.3.40)). Next, we are interested in the impact that this time window length (K)

has on the system detection performance. More precisely, we will examine the two

metrics Pd and Pfa (see (6.3.12)). Note that K affects these two metrics through

the reliability metric ri (see Fig. 6.14) in (6.3.38) which consequently affects the FC

weight combining (6.3.42) that finally decides on the FC final test statistic (Tf ) (see

(6.3.10)).

In Fig. 6.14 we show the reliability metric (ri) against the FC detection threshold
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Figure 6.14: The reliability metric (ri) versus the FC detection threshold (Λf )

against the SNs with M = 40, N = 20, β = 0.5, P flip
C = 1 and K = 150.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FC detection threshold, 
f

P
ro

b
.

o
f

d
e
t.

th
e

co
m

p
ro

m
is

e
d

S
N

3
7
,

P
3

7
,
tr

u
e

d

K=5

K=10

K=15

K=20

K=30

K=100

K=200

Figure 6.15: Probability that the (compromised) SN 37 has been truly detected

(P 37,true
d ) versus the FC detection threshold (Λf ) with M = 40, N = 20, β = 0.5,

P flip
C = 1 and δ = 0.009.
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(Λf ) for the compromised and the honest SNs. As expected, for the compromised

but influential SNs (i.e., SNs with the high local SNRs), the corresponding relia-

bility metrics will be higher. In contrary, the compromised or honest SNs but less

influential, the corresponding reliability metrics with be lower.
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Figure 6.16: Probability that the (honest) SN 11 has been falsely detected (P 11,false
d )

versus the FC detection threshold (Λf ) with M = 40, N = 20, β = 0.5, P flip
C = 1

and δ = 0.009.

In Fig. 6.15 we plot the probability of compromised SN’s detection12 (i.e.,

truly detecting probability) (P i,true
d ) versus Λf for different time window length

(K). Clearly, as K increases, the detection accuracy (of the (compromised) SN 37)

P 37,true
d improves.

In Fig. 6.16, we now plot the probability of honest SN’s mis− detection12 (i.e.,

falsely detecting probability) (P i,false
d ) (see (6.3.40)) versus (like before) Λf for

different time window length (K). Similarly (as in Fig. 6.15), we observe that the

mis−detection performance (of the (honest) SN 11) P 11,false
d increases with K. Now,

from Fig. 6.15 and Fig. 6.16 we conclude that increasing the time window length K

12SN 37 (Fig. 6.15) and SN 11 (Fig. 6.16) were chosen for comparison purposes as they possess

the best and the worst performances among F and (M − F ) SNs for each case respectively. Here

F and (M − F ) represents the compromised and the honest SNs’ cardinality.
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not only improves the detection accuracy of the compromised SNs but at the same

time increases (the undesired) mis− detection probability of the honest SNs. This

leads to a trade-off (while selecting the K parameter) between the compromised SNs

detection accuracy and the honest SNs mis− detection performance. Note that in

practice we wish to keep P i,true
d high and P i,false

d low.
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Figure 6.17: Average probabilities: (left) of compromised SNs detection; (right)

of honest SNs mis-detection versus the FC detection threshold (Λf ) with M = 40,

N = 20, β = 0.5, P flip
C = 1 and δ = 0.009.

To give more generality to the results, in Fig. 6.17 we plot the average13 per-

formances (where the average is taken over the compromised/honest SNs cardinal-

ity). (left) We observe that while increasing K (more specifically from K = 40 to

K = 150) we see an improvement in the average detection accuracy of compromised

SNs. For larger K (e.g., K = 300) this improvement is negligible; (right) The same

trend is observed for the average mis− detection performance of the honest SNs.

In Fig. 6.18 we plot the P̄ i,true
d and P̄ false

d versus the time window length (K) for

13The average performances are defined respectively as: P̄ trued = 1
F

∑
i∈J

P i,trued and P̄ falsed =

1
M−F

∑
i∈Ĵ

P i,falsed , where J (Ĵ) represents the compromised (honest) SNs set with cardinality F

([M − F ]) respectively.
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Figure 6.18: Average compromised SNs detection probability against honest SNs

mis-detection probability versus the time window length (K) with M = 40, N = 20,

β = 0.5, P flip
C = 1 and δ = 0.009.

a fixed FC detection threshold (Λf ). We can observe that the average compromised

SNs detection performance (P̄ i,true
d ) improves with the time window length (K) for

both schemes (i.e., the proposed one in this paper and the scheme proposed in [73]).

Similar behavior can be observed for the honest SNs mis − detection probability.

We also can observe that our proposed detection scheme outperforms the scheme

proposed in [73] (or at least for the simulation setup considered in this paper), ∀K

in terms of P̄ i,true
d − P̄ false

d quantity (e.g., for Λf = 7, P i,true
d − P̄ false

d ≤ 0,∀K for

the scheme proposed in [73]). We note that in practice we would like to have P i,true
d

close to 1 and P̄ false
d close to 0 (i.e., P i,true

d − P̄ false
d close to 1).

In Fig. 6.19 we plot the same (i.e., P i,true
d and P̄ false

d performances) but now

against the fraction of compromised SNs (β). Clearly, the quantity P i,true
d − P̄ false

d

improves when the fraction of compromised SNs (β) decreases. This behavior is as

expected resulting in a robust compromised SNs detection scheme.

Now, to give a more validity on the results, in Fig. 6.20 we show the difference

between the system detection performance and the system false alarm probability
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Figure 6.19: Average compromised SNs detection probability and honest SNs mis-

detection probability versus the time window length (K) and against β with M = 40,

N = 20, P flip
C = 1 and δ = 0.009.

(Pd − Pfa) versus the time window length (K) against the FC detection threshold

(Λf ). Clearly, as K increases, the performance of Pd − Pfa metric improves for all

the presented cases. Also, we can observe that our proposed scheme outperforms

the one proposed in [73]. For example, targeting a rate of 0.16, the proposed scheme

requires roughly a time window of length 5 while the scheme in [73] requires a time

window of length 11. Then, to better understand how these two important metrics

(i.e., Pd and Pfa) evolve with K, in Fig. 6.21 we show both the system detection

probability (Pd) and the system false alarm probability (Pfa) versus the time window

length (K) against the FC detection threshold (Λf ). As expected, the larger the

time window length K is, the better detection performance. However, increasing

K, results in an increase to the Pfa metric. Hence, while selecting K, ones have to

consider the allowable system false alarm probability.

In Fig. 6.22 and in Fig. 6.23, we show the same (as in Fig. 6.20 and in Fig. 6.21

respectively) but now for (the attacker flipping probability) P flip
C = 0.2 (see (6.3.7)).

As expected, the Pd − Pfa metric improves up to K = 4 whereas after that (i.e.,
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Figure 6.20: The Pd − Pfa metric versus the time window length (K) against the

FC detection threshold (Λf ) with M = 40, N = 20, β = 0.25, P flip
C = 1, δ = 0.95

and µ = 0.5.

for K ≥ 4) a performance saturation gain is observed. We also note that the time

window length (K∗) where this performance saturation gain is observed increases

with the attacker flipping probability (P flip
C ) (see Fig. 6.20-Fig. 6.23). This is as

expected, because increasing the (attacking) flipping probability in one hand would

require a larger time window length (K) in the other hand for the FC in order to

reduce as much as possible the attacker influence. However, increasing the value

of K may introduce a delay to the FC detection algorithm. As a result, a careful

choice on K value should be selected in practice. Nevertheless, clearly our proposed

algorithm requires a short time window span to converge.

Impact of Reliability Detection Threshold and Weight Penalty Parameter

on the System Detection Performance

As previously mentioned, the reliability detection threshold and the weight penalty

(i.e., δ and µ) (see (6.3.42)) are the two important parameters that will seriously
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C = 1, δ = 0.95 and µ = 0.5.

affect the system detection performance at the FC.

Then, in Fig. 6.24 we plot the ROC performance for different choices of the

reliability detection threshold (δ) and for a fixed µ in (6.3.42). Obviously, there is

an optimum value of δ such that Pd is maximized (for all the Pfa values). Also,

the detection performance using the weights derived under the attack − free sce-

nario (i.e., αi = αAFi , see (6.3.35)) in (6.3.10) is also plotted. This corresponds to

the case when not any SNs identification scheme is used (i.e., µi = 0 in (6.3.42)).

Clearly, by appropriately choosing the reliability detection threshold (δ), the pro-

posed identification scheme performance gain is significant compared to that when

no identification scheme is used.

Now, in Fig. 6.25 we show the same but now for a fixed reliability detection

threshold (δ) and by varying the weight penalty parameter (µ). Clearly, there does

exist an optimum value of µ that maximizes the ROC performance. Furthermore,

the performance improvement against µ is shown to be significant for Pfa ≥ 0.1.
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and µ = 10.

Detection Performance Comparison

We now compare the system detection performance of the proposed strategy with

the existing schemes.

In Fig. 6.26, selecting some optimum value for δ and µ (more precisely, δ =

0.009 and varying µ), we now compare our proposed strategy with the existing ones

such as equal combining scheme, the proposed scheme in [73] and the proposed

scheme in [35] (i.e., with αi = αAFi in (6.3.10)) derived under attack free scenario.

We can observe that the proposed approach performance improves up to µ = 10

whereas after that a performance degradation is noticed. Also, we can observe that

by further increasing the time window length K, it is possible to further improve

the detection performance. However, a careful selection of K should be made in

practice as increasing the value of K introduces a delay to the FC decision making

process. Clearly, the proposed scheme attributes a significant detection performance

improvement compared to the case where no identification scheme is applied and
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also outperforms the existing strategy [35] and [73] .

In Fig. 6.27, we report the ROC for the two different schemes (i.e., the one

derived under attack free scenario and the proposed one in this paper) against the

fraction of compromised SNs (β) and flipping probability (P flip
C ) parameters. As

expected (refer to (6.3.28)), the worst detection performance is observed for the

case when β = 0.5 and P flip
C = 1 as this is the case where the attacker causes

the maximum possible FC degradation. Clearly, for a fixed β (i.e., β = 0.5), the

detection performance improves as the flipping probability decreases. A significant

improvement is observed specially for high probability of false alarm (Pfa) values.

Now, for low probability of false alarm (Pfa) and for e.g., choosing β = 0.25 and

P flip
C = 0.2, the proposed scheme significantly outperforms the case when no identi-

fication scheme is applied (i.e., αi = αAFi in (6.3.10)) while for high Pfa its perfor-

mance approaches the effective upper bound (i.e., when optimum weights in (6.3.24)

are used and perfect SNs identification is assumed). Similarly, for e.g., β = 0.25
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Figure 6.26: Probability of detection (Pd) versus probability of false alarm (Pfa)

against δ and µ with M = 40, N = 20, β = 0.25, and P flip
C = 1.

and β = 0.5 (for (fixed) P flip
C = 0.8), the proposed approach possesses a remarkable

detection performance gain compared to that of where no identification scheme is

applied.

6.4 Chapter Summary and Conclusions

In this chapter, we have addressed the problem of distributed detection by an under−

attack WSN that operates over limited bandwidth communication fading channels.

In section 6.2, based on a simple linear weight combining rule at the FC and adopting

the modified deflection coefficient (as an alternative function to be optimized), we

give closed-form expressions for the optimal FC combining weights, the SN to FC

transmit power allocation, and the test statistics quantization bits. The attacker
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against P flip
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optimal strategy is also derived and shown to be dependent on the FC combining

weights. Furthermore, sub-optimum FC strategies (based on weight combining and

the SN transmit power) that do not require the exact knowledge of the attacker

strength C are also derived and analyzed. We have also analyzed the equilibrium to

the minimax problem and have proved that the Nash Equilibrium (NE) exists and

found this optimal solution numerically in the simulation results. We compare our

proposed FC strategies with the one derived under an attack − free scenario and

show significant detection performance improvement.

In section 6.3, we studied attackers that (unlike in section 6.3) do not know the

true state of the target (i.e., they are less dangerous attackers). We have consid-

ered some of the key issues related to the under-attack WSNs. We have extended

the results presented in our previous work [99] by considering a more realistic sce-

nario where the perfect knowledge of the true hypothesis is not required by the
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Attacker. Optimal strategies from the FC’s and the Attacker’s perspective have

also been characterized and some bounds have been derived. We also proposed a

novel reputation-based scheme to possibly identify the compromised SNs in the net-

work and control their contributions toward FC’s final decision. This new reputation

metric is evaluated as the difference between the inconsistency (counted over a time

window K) of the ith local SN’s decision and a) the FC’s decision (where all the

SNs contributions are considered [73]) and b) the FC’s decision (where the ith SN’s

contribution is not considered). The proposed approach decreases the weights of the

compromised SNs proportionally to this new reputation metric whereas the existing

schemes totally exclude the compromised SNs (i.e., a zero-weight is assigned) from

the fusion process. Simulation results have shown that the proposed approach sig-

nificantly outperforms, in terms of detection performance improvement, the existing

FC rules and compromised SNs identification schemes.

While this work and the other related publications assume that during the SNs

identification stage, the Attacker’s parameters (i.e., β and P flip
C ) are fixed (i.e.,

not dynamic), there are interesting questions as to how the dynamic Attacker’s

parameters will affect the network and how well the existing schemes can isolate

the compromised SNs in the network. In this case, the dynamic optimum FC rules

and the dynamic Attacker strategies will be of particular useful interest and will be

considered and investigated in our future work in order to cope with such dynamic

scenarios. Future work will also consider a general (non-linear) optimal combining

strategy (unlike in this chapter) at the FC.
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Chapter 7

Overview, Conclusions, and

Future Work

The work presented in this thesis is summarized. The most important conclu-

sions are presented. Possible extension and future work directions are given

in the context of resource allocations and fusion rules, the fully distributed

detection approach, and network security.

IN THIS CHAPTER

♣

7.1 Summary

In this thesis, we have considered the problem of detection and estimation in bandwidth-

constrained/energy-constrained WSNs. Both, the centralized and the fully decen-

tralized approaches have been considered and network security is also analyzed.

For the centralized approach, we propose a SN transmit power allocation algo-

rithm, SN test statistic quantization bits, and derive various fusion rules. We first

start by deriving the optimum fusion rule and then analyze sub-optimum fusion rules

that are realizable and easily implemented in practical WSN deployment scenarios.

These (sub-optimum) but simple fusion rules do not require a − priori knowledge
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about the target or any system’s parameter estimation. Clearly, this significantly

simplifies the distributed (SNs) detection algorithm and offers an advantage from

the perspective of signal processing as the SNs are battery-operated devices. The

effect of fading channels on detection performance is minimized by solving the re-

source allocation problem. There is an optimal SN transmit power and test statistic

quantization bits that maximizes the fusion center (FC) detection probability. Fur-

thermore, SNs that have high local SNRs and good channels, transmit more bits. In

contrary, the SNs with low SNRs or bad channels are censored (i.e., put in sleeping

mode) which further preserves the limited available SNs resources.

For the fully decentralized approach, we develop a fully distributed detection

framework that operates over flat fading communication links. We propose a two-

step consensus-based approach with weight combining quantized test statistics ex-

change. We relate the communication topology with the number of bits to be shared

among SNs. It turns out that there is an optimum topology that maximizes the

detection performance. Furthermore, there is an optimum first step number of iter-

ations (K1). Choosing carefully the K1 and Υ parameters, it can be shown that the

proposed algorithm converges to the global decision across the network, approaches

the centralized detector performance, and requires a finite number of iterations to

converge to a global decision. The proposed two-step algorithm requires about 50%

less power consumption than the conventional consensus-based existing algorithms.

The problem of centralized detection in the presence of compromised SNs is also

investigated. Attacker-based and FC-based parameter optimization are considered

and some expressions have been derived. A reputation based scheme to identify

the compromised SNs in the network and control their influence to the global FC

decision is also proposed. Through simulation results, we have shown that the

proposed approach offers a great deal of detection performance improvement and

outperforms the existing schemes.
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7.2 Conclusions

It has been shown that spatially distributed SNs across the field can offer a reliable

operation for event detection applications. The system detection performance and

the WSN’s operating lifetime can be further improved by means of resource allo-

cations, optimisation and signal processing algorithms. In practical WSN systems,

it is important to keep the SNs signal processing complexity as simple as possible.

Thus, part of the focus in this thesis was based on deriving and proposing simple

but efficient signal processing algorithms.

Another important issue in WSN systems that was addressed in this thesis is the

data fusion problem. We have started by deriving the optimal fusion rules (i.e., for

attack−free and under−attack WSN scenarios) and have shown that these fusion

rules are not implementable in practice and require complex local signal processing.

Based on this, we then derive sub-optimum but simple fusion rules (requiring sim-

ple hardware) that offer reliable and good detection performance. While the local

spatially distributed SNs allow the FC to make a reliable decision, it is possible that

one or more SNs deliberately falsify their local observations. The overall detection

performance strongly depends on the reliability of these SNs in the network. We

have proposed new low-complexity fusion rules to deal with such scenarios that do

not require the Attacker’s parameters. These blind fusion rules are sub-optimum but

are highly desirable from the perspective of complexity and practical deployment.

A better but more complex approach is to possibly identify these compromised SNs

and control their influence on the FC decision. This approach offers an improved

detection performance but requires observing the SN’s local reports for a period of

time. A larger observation time period (K) may lead to a large detection delay that

is critical for most of the event detection applications. Also, the performance of

the proposed identification scheme depends strongly on parameters (µ, δ, and Λf )

, which are the the weight penalty, the reliability detection threshold, and the FC

detection threshold respectively. Hence, a careful choice of these parameters should

be made in practice.

We have also addressed the fully distributed detection problem and proposed

signal processing algorithms for such an approach. In practice, these fully distributed
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solutions (i.e., without the FC) are very attractive from both the signal processing

perspective as well as from the communication point of view. We have proposed

fully distributed two-step quantized fusion rules for energy-constrained/ bandwidth-

constrained WSNs and have shown that by carefully choosing the Υ and K1 (SNR

threshold and first step iterations number) parameters, it is possible to achieve the

centralized detector performance.

7.3 Future Work

While we have tackled some of the most important issues and challenges in the

WSNs, there are still many remaining questions and problems to be solved. We

next discuss the future work for the resource allocation and fusion rules, the fully

distributed detection approach, and network security.

7.3.1 Resource Allocations and Fusion Rules

While in this work we have considered a simplified but yet very useful sensing model

that captures most of the practical issues in a WSN system, future work can consider

a more complex sensing model by incorporating say, the target sensing distance into

the model. Here, we have implicitly assumed that the target location is known and

focused more on the post-sensing signal processing algorithms. The future work can

consider the target location estimation error and incorporate this into the system

model and fusion rules design.

The power and quantization bits allocation rely on channel state information

that was assumed to have been perfectly estimated by the FC. Future work can

extend the results provided in this thesis by considering the channel estimation

error and investigate the effect on detection performance. Similarly, the Generalized

Likelihood Ratio Test (GLRT) based fusion rules can be derived and so compare

the results with the fusion rules derived here.
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Fully Distributed Detection

In the case of a fully distributed detection approach, there are lot of questions that

remain to be answered, such as investigating the current problem in the context of

time-varying SNs interaction topologies and the the network security in the presence

of compromised SNs.

Network Security

In the network security research domain, there remain a lot of issues and challenges

to be considered in future work. While this work has captured and analyzed some

very interesting issues, it will be both interesting and important to extend this

work to the scenarios where both the FC and the Attacker act strategically. Also,

other attacking and defending strategies should be considered and developed such as

those where the Attackers collaborate to further degrade the detection performance.

It is important to examine the analysis and consideration of the cases where the

Attacker does not only flip the local SNs decisions but also controls the local SNs

thresholds used to make these decisions. As mentioned above, the security issues

in the context of fully distributed algorithms is another direction of future work

research that requires long term investigation and research.
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Appendix A

Proofs in Chapter 3

A.1 Derivation of MFD-Optimum Fusion Rule Used

in Section 3.6

In the case of MFD, the ith sensor node evaluates

Ti =
N∑
n=1

xi (n) si (n) , i = 1, 2, . . . ,M (A.1.1)

Quantizing Ti wit Li bits satisfying (3.3.1) with σ2
vi

in (3.3.3), then, it is not difficult

to show that

E
{
T̂i|H0

}
=

N∑
n=1

E {wi(n)si(n)} = 0, (A.1.2)

E
{
T̂i|H1

}
=

N∑
n=1

E {(si(n) + wi(n)) si(n)} =
N∑
n=1

s2
i (n), (A.1.3)

Var
{
T̂i|H0

}
=

N∑
n=1

Var {wi(n)si(n)}+ σ2
vi

= σ2
i

N∑
n=1

s2
i (n) + σ2

vi
(A.1.4)

Var
{
T̂i|H1

}
=

N∑
n=1

Var {(si(n) + wi(n)) si(n)}+ σ2
vi

= σ2
i

N∑
n=1

s2
i (n) + σ2

vi
. (A.1.5)

The log-likelihood ratio test (LLRT)

LLRT
(
T̂
)

= ln
p
{
T̂1, T̂2, · · · , T̂M |H1

}
p
{
T̂1, T̂2, · · · , T̂M |H0

} H0

Q
H1

γ
NP

(A.1.6)

where γ
NP

is the detection threshold, p
{
T̂1, T̂2, ..., T̂M |Hj

}
is the joint probability

distribution of quantized local decisions under the jth hypothesis. However, T̂i has
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A.1. Derivation of MFD-Optimum Fusion Rule Used in Section 3.6

a χ2 distribution under H0 and a non-central χ2 under H1, which means evaluation

of the LRT in (A.1.6) is complicated. Hence, we evoke the central limit theorem

to simplify the distribution of T̂i when N is sufficiently large and σ2
vi

is relatively

small. Since the noise at different SNs is independent, each quantized test statistic

(T̂i) can be adequately modeled as independent and normally distributed. Then,

the following holds:

LLRT
(
T̂
)

= ln

M∏
i=1

p
{
T̂i|H1

}
M∏
i=1

p
{
T̂i|H0

}

= ln

M∏
i=1

1√
Var{T̂i|H1}√2π

exp−(T̂i−E{T̂i|H1})2

2Var{T̂i|H1}
M∏
i=1

1√
Var{T̂i|H0}√2π

exp−(T̂i−E{T̂i|H0})2

2Var{T̂i|H0}

.

(A.1.7)

Substituting the quantities in (A.1.2)-(A.1.5) and further rearrangement, we get:

LLRT
(
T̂
)

= ln

 M∏
i=1

√
Var

{
T̂i|H0

}
√

Var
{
T̂i|H1

}


−1

2

M∑
i=1


(
T̂i − E

{
T̂i|H1

})2

Var
{
T̂i|H1

} −

(
T̂i − E

{
T̂i|H0

})2

Var
{
T̂i|H0

}


= −1

2

M∑
i=1


−2T̂i

N∑
n=1

s2
i (n) +

(
N∑
n=1

s2
i (n)

)2

σ2
i

N∑
n=1

s2
i (n) + σ2

vi

.

(A.1.8)

By rearranging the terms and further simplification of (A.1.8), it can be shown that

(A.1.6) can be expressed as

LLRT
(
T̂
)

=
M∑
i=1

 T̂i
N∑
n=1

s2
i (n)

σ2
i

N∑
n=1

s2
i (n) + σ2

vi

 Q γ′
NP

(A.1.9)

where γ′
NP

is the detection threshold given as

γ′
NP

= lnγ
NP

+
1

2

M∑
i=1


(

N∑
n=1

s2
i (n)

)2

σ2
i

N∑
n=1

s2
i (n) + σ2

vi

. (A.1.10)
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Now, let αMFD
i =

 N∑
n=1

s2i (n)

σ2
i

N∑
n=1

s2i (n)+σ2
vi

, then (A.1.9) can be expressed as

Tf , LLRT
(
T̂
)

=
M∑
i=1

αMFD
i T̂i (A.1.11)

which is in the form of (3.3.4) but with αi = αMFD
i .

This concludes the proof. �
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Appendix B

Proofs in Chapter 5

B.1 Proof of Proposition 5.3.2

Let W ≥ 0 (i.e., a non-negative matrix in which all the elements are equal to or

greater than zero) be defined as in (5.3.24) with 0 < ε < 1/∆max and Γ ≤ 1 (i.e., a

matrix in which all the elements are equal to or less than one). Since we have as-

sumed that the WSN forms a connected graph, then W is irreducible and also primi-

tive (i.e., the maximum eigenvalue has multiplicity one). So by the Perron Frobenius

theorem [106], W has unique left and right eigenvectors corresponding to the max-

imum eigenvalue1 and also limk→∞Wk = vr(vl)T , where vl =
[
vl1, v

l
2, · · · , vlM

]T
is the left and vr = [vr1, v

r
2, · · · , vrM ]T is the right eigenvector corresponding to the

maximum eigenvalue of W. The problem is now finding these eigenvectors. Consider

Wvr = vr − εΓLvr = vr. (B.1.1)

Now, the above relation is equivalent to εΓLvr = 0. It can be easily shown that

if vr is in the right null space of L (i.e., Lvr = 0), it is also true that vr is in the

right null space of (ΓL). Using this fact and the definition of L (i.e., symmetric

real matrix with rows and columns summing to zero), we can easily show that

vr = cr[1, 1, . . . , 1]T (where cr is a positive constant (see later)). Similarly, we can

1For a connected graph the maximum eigenvalue of W is unity (i.e., the zero eigenvalue asso-

ciated to L has multiplicity one).
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B.2. Proof of Proposition 5.4.1

find the left eigenvector (vl) by using the following:

(vl)TW = (vl)T − ε(vl)TΓL = (vl)T . (B.1.2)

Again, the above relation can be equivalently expressed as ε(vl)TΓL = 0. Using the

same analogy (like in the case of right eigenvector) we can also show that (vl)T is in

the left null space of ΓL if (vl)TΓ = cl[1, 1, . . . , 1]T (i.e., if vli = cl
f(αi)

,∀i). Choosing

cr = 1 and cl = 1
M∑
i=1

1
f(αi)

such that (vr)Tvl = 1, we can now easily show that:

lim
k→∞

(
WkTw[0]

)
i

=

(
vr(vl)TTw[0]

)
i

=

M∑
i=1

1
f(αi)

Twi [0]

M∑
i=1

1
f(αi)

,∀i. (B.1.3)

This concludes the proof. �

B.2 Proof of Proposition 5.4.1

Let W be defined as in (5.3.24) with 0 < ε < 1/∆max, Γ ≤ 1 and f(αi) = 1
αi
, ∀i. We

complete the main proof as follows: 1) prove that the (ΓL) has both real and positive

eigenvalues, and then 2) prove that the W is a positive semi-definite matrix if

λmax (Γ) ≤ 1
ελmax(L)(M−1)

, where λmax (Γ) and λmax (L) are the maximum eigenvalues

associated to Γ and L respectively, and finally 3) derive the upper bound on the

“scaled total variance” at each SN.

Sub−proof 1: Consider the matrix multiplication ΓL (which gives a non-symmetric

matrix) with Γ defined below (5.3.24) and L defined in section 6.3.2. Note that Γ

and L are real diagonal and real symmetric matrices respectively by definition. It

is not difficult to show that the eigenvalues of ΓL are the same as the eigenvalues

of K = Γ−
1
2

(
ΓL
)
Γ

1
2 . Now, K can be simplified to

(
Γ

1
2 LΓ

1
2

)
(a real symmetric

positive semi-definite matrix) which implies that the eigenvalues of
(
ΓL
)

are real

and positive. This concludes the sub-proof 1. �

Sub−proof 2: Now, to ensure that W is positive semi-definite we require zTWz ≥ 0

for z 6= 0. Decomposing W as:

2W =
(
W + WT

)︸ ︷︷ ︸
(symmetric)

+
(
W −WT

)︸ ︷︷ ︸
(skew-symmetric)

(B.2.1)
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B.2. Proof of Proposition 5.4.1

then, it can be shown that zTWz ≥ 0 iff
zT (W+WT )z

2
≥ 0 (since

zT (W−WT )z

2
= 0).

Now, 0 ≤ zT (W+WT )z
2

= zTWz
2

+
(zTWz)

T

2
= zTWz =⇒ W is positive semi-

definite iff
(

W+WT

2

)
is so. Now from [107], λi

(
W + WT

)
≥ 0,∀i =⇒ zTWz ≥ 0

and from (5.3.24) we can easily show that: λi(W + WT ) = 2 − ελi
(
ΓL + (ΓL)T

)
.

Now, it is clear that:

λi
(
ΓL + (ΓL)T

)
≤ 2

ε
=⇒ λi

(
W + WT

)
≥ 0

=⇒ λmax
(
ΓL + (ΓL)T

)
≤ 2

ε
=⇒ λi

(
W + WT

)
≥ 0. (B.2.2)

Using the result in sub-proof 1 and (B.2.2), then:

λmax
(
ΓL+ (ΓL)T

)
≤ 2

M∑
i=1

λi (ΓL) ≤ 2 (M − 1)λmax (ΓL)

So, λmax (ΓL) ≤ 1

ε (M − 1)
=⇒ λi

(
W + WT

)
≥ 0. (B.2.3)

Because of the structure of Γ and L, then from [106]:

λmax (ΓL) ≤ λmax (Γ)λmax (L) (B.2.4)

and from (B.2.3) and (B.2.4) we can show:

λmax (Γ) ≤ 1

ελmax (L) (M − 1)
=⇒ λi(W + WT ) ≥ 0 (B.2.5)

and so W is proved to be positive semi-definite.

Sub− proof 3: In [108], for any two M ×M positive semi-definite matrices G and

H, it was shown that:

λM(G)tr(H) ≤ tr(GH) ≤ λ1(G)tr(H) (B.2.6)

where λi(G) is the ith largest eigenvalue of G. Using the condition on λmax (Γ) in

(B.2.5) and the bound in (B.2.6) we get:

1

M − 1

M∑
i=1

Var
{
T̄wi [k]

}
=

1

M − 1
tr

(
(WkCov(T̄

w
[k]|Hp)(Wk)T

)

≤ 1

M − 1

(
Varmaxtr

(
Wk(Wk)T

)
+ ε2σ2

maxtr
( k∑
z=1

Wz−1(Wz−1)T
))

≤ 1

M − 1

(
λ1(W)Varmaxtr

(
Wk

)
+ ε2σ2

maxλ1(W)tr
( k∑
z=1

Wz−1
))

(B.2.7)
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where tr(.) denotes the trace operator, Varmax = max(Var
{
T̄wi [k]

}
, · · · ,Var

{
T̄wM [k]

}
)

and σ2
max = max(Var {ψ1[k]} , · · · ,Var {ψM [k]}). Now we can show that:

1

M − 1

(
λ1(W)Varmaxtr

(
Wk

)
+ ε2σ2

maxλ1(W)tr
( k∑
z=1

Wz−1
))

≤ Varmax

(
1

M − 1
+ λk2(W)

)
+ ε2σ2

max

(
k

M − 1
+

1− λk2(W)

1− λ2(W)

)
(B.2.8)

where λi(W), for i = 1, 2, · · · ,M are the eigenvalues of W satisfying λM ≤ λM−1 ≤

· · · < λ1 = 1 and we have used tr(W) =
M∑
i=1

λi(W) and

k∑
z=1

λzi (W) =


λi(W)− λk+1

i (W)

1− λi(W)
, for i = 2, 3, · · · ,M

k, for i = 1.

(B.2.9)

This concludes the proof. �
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Appendix C

Proofs in Chapter 6

C.1 Proof of αTH
d̃2α ≤ 0,∀α in (6.2.37)

Multiplying (6.2.37) from the left by αT and from the right by α, we get:

αTHd̃2α = 2
αTbbTα

αTRα
− 4

αTbTα(
αTRα

)2

(
bαTR + RαbT

)
α

+ 8
αT
(
αTb

)2(
αTRα

)3

(
RααTR

)
α− 2

(
αTαTb

)2(
αTRα

)2

(
R
)
α. (C.1.1)

Rearranging the terms and by further simplification, we obtain:

αTHd̃2α = 2
αTbbTα

αTRα
− 8

bTααTb

αTRα
+ 8

bTααTb

αTRα
− 2

αTbbTα

αTRα
= 0. (C.1.2)

This concludes the proof. �

C.2 Proof of Lemma 6.3.1

Clearly, for the ith honest SN, the Ĩi in (6.3.7) is a Bernoulli random variable char-

acterized by the detection probability (pid) in (6.3.3) if the target is present and false

alarm probability (pifa) in (6.3.2) if the target is absent.

Similarly, for the ith compromised SN, the Ĩi in (6.3.7) is a Bernoulli random

variable characterized by the detection probability (pi,Cd ) in (6.3.6) if the target is

present and false alarm probability (pi,Cfa ) in (6.3.5) if the target is absent.
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C.2. Proof of Lemma 6.3.1

The probability mass function (pmf) f of this distribution (for the ith compro-

mised SN), over possible outcomes
{
Ĩi = 1|H0

}
and

{
Ĩi = 0|H0

}
, is given as

f
(
Ĩi|H0; pi,Cfa

)
=

 pi,Cfa , if Ĩi = 1|H0

1− pi,Cfa , if Ĩi = 0|H0

if P flip
C = 0 (C.2.3)

Now, if the ith compromised SN flips its local decision with probability P flip
C > 0,

then:

for Ĩi = 1|H0 =⇒


Ĩi = 1|H0, with probability

(
1− P flip

C

)
Ĩi = 0|H0, with probability P flip

C

(C.2.4)

for Ĩi = 0|H0 =⇒


Ĩi = 0|H0, with probability

(
1− P flip

C

)
Ĩi = 1|H0, with probability P flip

C

(C.2.5)

Now, from (C.2.3), (C.2.4), and (C.2.5) we can easily show that p̃ifa = P flip
C

(
1− pi,Cfa

)
+(

1− P flip
C

)
pi,Cfa and the pmf can be written as

f
(
Ĩi|H0; p̃ifa

)
=

 p̃ifa, if Ĩi = 1|H0

1− p̃ifa, if Ĩi = 0|H0

(C.2.6)

In similar manner, we can show that p̃id = P flip
C

(
1− pi,Cd

)
+
(

1− P flip
C

)
pi,Cd and

the pmf over possible outcomes
{
Ĩi = 1|H1

}
and

{
Ĩi = 0|H1

}
, is given as

f
(
Ĩi|H1; p̃id

)
=

 p̃id, if Ĩi = 1|H1

1− p̃id, if Ĩi = 0|H1

(C.2.7)

This concludes the proof. �
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Appendix D

Distributed Detection in Clustered

Wireless Sensor Networks

D.1 Introduction

We consider distributed detection1 in a clustered WSN deployed randomly in a large

field for the purpose of intrusion detection. The WSN is modeled by a homogeneous

Poisson point process. The sensor nodes (SNs) compute local decisions about the

intruder’s presence and send them to the cluster heads (CHs). A stochastic geom-

etry framework is employed to derive the optimal cluster-based fusion rule (OCR),

which is a weighted average of the local decisions sum of each cluster. Interestingly,

this structure reduces the effect of false alarm on the detection performance. More-

over, a generalized likelihood ratio test (GLRT) for cluster-based fusion (GCR) is

developed to handle the case of unknown intruder’s parameters. Simulation results

show that the OCR performance is close to the Chair-Varshney rule. In fact, the

latter benchmark can be reached by forming more clusters in the network without

increasing the SNs deployment intensity. Simulation results also show that the GCR

performs very closely to the OCR when the number of clusters is large enough. The

performance is further improved when the SN deployment intensity is increased.

1The Acronyms and mathematical symbols used throughout this Appendix are different from

previous Chapters and hence are defined here and only valid for this Section.
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D.2 Related Work

WSN consists of a large number of geographically distributed low-cost sensor nodes

(SNs) forming a network via wireless links. This structure enabled the instrumen-

tation of WSNs in many applications [109]. Detecting an intruder in a monitored

region of interest (ROI) is one of the most important applications of WSNs [110,111].

The SNs monitor the ROI to detect abnormal phenomena, which might take the form

of temperature, electromagnetic or acoustic disturbances. Such physical signals are

usually localized in space, i.e., the signal’s power attenuates with the distance be-

tween the source and the sensor. The SNs sample the physical signal and then

wirelessly communicate their data to a remote fusion center (FC), where the final

decision about any intrusion is made. Due to bandwidth and power constraints, the

data is often compressed to a single bit representing the local decision of the SN.

When the ROI is very large, the WSN is divided into clusters to manage the large

number of SNs needed to provide adequate coverage. In each cluster, the SNs send

data to a cluster head (CH), which subsequently reports to the FC.

There is a large body of literature studying the problem of distributed detection

and decision fusion for a single fusion center network configuration [57,58,62]. Chair

and Varshney derived the optimum fusion rule in [64], which requires knowledge of

local detection and false alarm probabilities for each SN. Niu and Varshney relaxed

the latter requirement leading to the suboptimal counting rule (CR) [112]. The

performance of the CR was investigated in [89]. However, the CR suffers from the

problem of spurious detection in large WSN. This problem was tackled by using the

scan statistic (SS) detector in [113] and [114]. In SS, a moving FC travels across

the ROI and scans the SNs. This can be interpreted as sliding a window across

the ROI, summing the number of positive local decisions, and continuously testing

against a threshold. However, the SS rule is sequential in nature and hence incurs

communication and delay penalties. A survey on the context of energy-efficient

systems in wearable sensors that allow monitoring a user and its environment is

given in [115].

For a cluster-based WSN on the other hand, clustering algorithms for WSN [116]

have been extensively studied in various contexts such as energy management [117]
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and routing [118]. Clustering and data aggregation in WSNs have been surveyed

in [119]. Power-constrained distributed estimation in WSNs was addressed in [120]

where network communication was based on the amplify-and-forward scheme. A

sequential measurement fusion method is presented to design local estimators for

clustered asynchronous sensor networks in [121]. Quantized sensor observations were

used in [122,123] for distributed estimation in a clustered multi-hop WSN.

Decentralized detection in multi-level clustered WSNs has been considered in

[124]. Each level of CHs uses a majority-like fusion rule to fuse the data from the

level beneath it. The results in [124] (surprisingly) show that clustering decreases

the detection performance. The effect of uniform and nonuniform clustering work

was studied in [125]. In [126], the authors studied the performance of data fusion

in a clustered Zigbee WSN implementation of [124]. The effect of communication

errors on distributed detection in multi-hop clustered WSN was considered in [127]

where it was shown that the optimal fusion rule is a weighted order statistic filter.

In this Appendix we adopt the network configuration in [112] in which a vast

WSN is divided into geographical regions managed by CHs. However, we assume

that within each CH, the SNs send a single bit, representing their local decision, to

the CH due to bandwidth and power constraints. The CHs then send the sums of

the local decisions to the FC where the ultimate detection decision is made. Using a

stochastic geometry framework [128,129], we derive the optimal cluster-based fusion

rule (OCR). In contrast to [124], we show that clustering significantly improves the

detection performance. In fact, the OCR is shown to have a performance very

close to that of the optimal Chair-Varshney fusion rule (CVR) while it does not

require the knowledge of the exact SNs locations unlike the CVR. Moreover, using

stochastic geometry, we develop a Generalized Likelihood Ratio Test (GLRT) for

the clustered-based fusion rule to handle the case of unknown intruder’s parameters.

This Appendix is organized as follows. Section D.3 presents models for the

intruder, sensing, and communication. In Section D.4, fusion rules for a single

fusion point network are reviewed. The optimal fusion rule is presented in Section

D.5, which also contains the GLRT development. In Section D.6 the simulation

results are presented. Finally, conclusions are given in Section D.7.
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D.3 System Model

In this section we present the models for sensing, the sensor network, and commu-

nication in the WSN. In addition, a stochastic geometry model is presented for the

WSN.

D.3.1 Sensing and Sensor Network Model

Consider a WSN deployed in a certain area, A ⊂ R2 where A is assumed to be

significantly large. The SNs are randomly dispersed in A according to a uniform

distribution, i.e. the coordinate of the ith SN, xi = (xi, yi)
T , is a uniform random

variable (RV) in A. Also, the number of the SNs, N , is assumed to be a RV. The

random characteristic of N can be justified by SN failure or battery exhaustion.

The WSN is tasked with the detection of any intruder entering the ROI. An

intruder at location x0 ∈ A leaves a signature signal sensed by the SNs. Similar

to [112, 114] this signature is assumed to decay with distance according to a power

law. Thus the intruder’s parameters are given in the vector θ = [P0,x0]T , where P0

is the intruder’s signal power. The noise-free signal received at the ith SN has the

following form:

a(xi) =

√
P0

max (d0, di)
(D.3.1)

where d0 is the reference distance to the node’s sensor and di = ‖x0 − xi‖ is the

Euclidean distance between the intruder and the ith SN. Note that the measured

signal is saturated if the distance to the target is smaller than d0. The above model

can adequately describe acoustic or electromagnetic signals.

Each SN samples the environment to decide whether an intruder is present. The

collected data at the ith SN under the null and alternative hypotheses, H0 and H1

respectively, takes the following form:

H1 : s(xi) = a(xi) + n(xi) (D.3.2)

H0 : s(xi) = n(xi) (D.3.3)

where n(xi) is a white Gaussian noise at the SN located at xi with zero mean and

variance σ2
s . The noise is assumed to be identically and independently distributed
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over all the SNs. The sensing SNR is defined as

SNRs =
P0

σ2
s

. (D.3.4)

Each SN computes its binary local decision, I(xi) = {0, 1}, by comparing the col-

lected data with a local decision threshold τ , i.e.,

I(xi) =

1, s(xi) ≥ τ

0, s(xi) < τ

. (D.3.5)

Here, τ is the same for all SNs. Therefore, the local probabilities of detection and

false alarm are given by

Pd(xi) = Q

(
τ − a(xi)

σs

)
(D.3.6)

Pfa = Q

(
τ

σs

)
(D.3.7)

where Q(·) is the Gaussian Q-function given by

Q(x) =

∫ ∞
x

1√
2π
e−

t2

2 dt. (D.3.8)

Note, however, that the probability of detection in (D.3.6) depends on the target

parameters, P0 and x0 through eq. (D.3.1).

D.3.2 Stochastic Geometry Model

The WSN defined above can be elegantly modeled using stochastic geometry [128],

which has recently attracted interest in the modeling of wireless networks [130,131]

and cognitive radios [132].

We model the spatial distribution of the SNs as a Poisson Point Process (PPP)

Φ = {x1,x2, · · · ,xN} in A. This implies that the xi’s ∈ Φ are uniform RVs and

their number N = |Φ| is a Poisson RV, i.e., N ∼ Pois(λ|A|), where λ is the average

number of points (SNs) in a unit area (deployment intensity) and |A| is the area

of A. Φ is assumed to be simple (no two points occupy the same location) and

stationary in space, i.e., its statistical properties do not change if Φ is shifted. A

PPP is called homogeneous if the intensity, λ, is independent of the location x.

Otherwise it is called inhomogeneous.
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Figure D.1: Poisson field of sensor nodes. Pentagram: intruder, green circle: SN;

red circle: detecting SN; blue triangle: CH. The system parameters are λ = 0.3,

P0 = 50, d0 = 1, σ2
s = 1, Pfa = 10−2, and x0 = (15, 15)T .

The thinning of a PPP is the process of removing points from the original PPP

that do not adhere to some rule, and hence a point is removed from the PPP

with some probability. Thinning can be independent (p-thinning), i.e., the thinning

probability does not depend on the location of the point under consideration, or it

can be dependent, i.e., the thinning probability depends on the point’s location.

Thinning is used here to model the local detection operation. If Φ is thinned to

produce Φd, the PPP of detecting SNs:

Φd = {xi ∈ Φ : I(xi) = 1} (D.3.9)

The properties of Φd are used to derive the optimal fusion rule as given in Section

D.5.

D.3.3 Communication Model

Due to vastness of the ROI the WSN is geographically divided into M disjoint zones;

C1, C2, · · · , CM , where Cm ∈ A for m = 1, · · · ,M . Each zone is managed by a CH

located at xm /∈ Φ. The number of clusters is fixed and their locations are also fixed
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and known to the WSN. SNs located at xi ∈ Cm send their decisions to the mth

CH. The CHs in turn report back to the FC.

Due to cost and bandwidth constraints, SNs use on-off keying (OOK) to transmit

their binary local decisions to the CH. Only the SNs making positive local decisions

report to the CHs. These SNs are assumed to be synchronized to the same time

slot. Furthermore, a power control strategy is assumed to be used at the SNs in

order to ensure that the powers of the signals received from the SNs at the CH are

all equal to the same desired value. This power level is chosen such that the effect

of the channel noise is negligible.

Each CH then communicates with the FC over wireless channel that is less

restricted in bandwidth. Moreover, the CH encodes its data for protection against

errors. This is justified by the argument that the network has only M � N CHs,

and so it can afford having more sophistication in the CHs.

D.4 Fusion Rules for Single Cluster WSNs

In this section we review fusion rules for distributed detection in a cluster WSN.

In this configuration, all SNs in the network report to a single CH that acts as

the FC. The optimal hard decision fusion rule in this case is CVR, which is given

by [64]

ΛCVR =
N∑
i=1

I(xi) log

(
Pd(xi)

Pfa

)
+ (1− I(xi)) log

(
1− Pd(xi)

1− Pfa

)
. (D.4.10)

This rule requires the complete knowledge of the intruder’s parameters in addition

to both the number of SNs and their locations. Such conditions are difficult to attain

in large WSNs.

Relaxing the above conditions, Niu and Varshney proposed the following subop-

timal Counting Rule [112]:

ΛCR =
N∑
i=1

I(xi). (D.4.11)
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As can be seen in (D.4.11), the CR does not require any information about the

target or the SNs locations.

However, for a large ROI the problem of spurious detection becomes more preva-

lent as shown in Figure D.1. The intruder is located in the north-east cluster, in

which the number of detecting SNs is relatively large. Whereas the number of de-

tecting SNs in the south-west cluster is small. These positive decisions are mainly

due to the sensing noise. This problem was tackled by using the scan statistic (SS)

detector proposed in [113]. The SS test statistic is given by

ΛSS = max
i

(
λSS1

λSS0

)Zi
, i = 1, · · · , L (D.4.12)

where L is the number of sliding window iterations, Zi is the number of positive

decisions in the ith window slide iteration, and λSS0 and λSS1 are the mean number

of detecting SNs in a typical window under the H0 and H1 hypotheses respectively.

The Bayesian form of the SS is given by [114]

ΛB-SS =
L∑
i=1

(
λSS1

λSS0

)Zi
. (D.4.13)

The SS was shown to outperform the CR for the case where the WSN has a high

node intensity [114].

D.5 Fusion Rules in Clustered WSNs

In this section we present the fusions rules for clustered WSNs in the CH and FC

levels. For the purpose of motivation, the majority-like fusion rule [124] is presented

first. Then we propose the optimal clustered-based fusion rule followed by the GLRT

development.

D.5.1 Decision Fusion in the Cluster Heads

SNs with positive decisions send their local decision to the related CH, which acts as

a fusion point for SNs in the cluster as shown in Figure D.2. The fusion rule adopted

in each cluster is the CR. In addition to its simplicity, this handles the situation in

which information on the SNs is lacking, which is the case in random networks.
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Accordingly, the fused data from the mth cluster, Λm, takes the following form;

Λm =
∑

xi∈Cm

I(xi). (D.5.14)

D.5.2 Majority-like Fusion Rule

We consider the majority-like fusion rule (MFR) with a two-level network, i.e., one

level of CHs reporting to a FC, which is the second level. The mth CH uses a

majority-like rule to produce the CH’s decisions Ĩm as follows;

Ĩm =

1, Λm ≥ k1

0, Λm < k1

(D.5.15)

where k1 = d|Φm|/2e + 1 is the first level majority rule threshold and |Φm| is the

number of SNs in the mth cluster. The Ĩm’s can be thought of as the one-bit

compression of the Λm.

However, in random networks the number of SNs in each cluster is not known.

Moreover, the source signal is spatially localized leading to a different number of

detecting SNs in each cluster. So choosing k1 as defined previously negatively affects

the performance. The Ĩm’s are then sent to the FC for another level of majority rule

fusion as described next

Γ =
M∑
m=1

Ĩm (D.5.16)

Ig =

1, Γ ≥ k2

0, Γ < k2

(D.5.17)

where k2 = dM/2e+1 is the second level majority rule threshold and Ig is the global

decision about the intruder’s presence. Note that the MFR virtually uses the CR in

the CH and FC levels.

D.5.3 Optimal Cluster-based Fusion Rule

In contrast to MFR, we investigate the optimal scheme to fuse the CHs data,

{Λm}Mm=1. Employing the Neaman-Pearson criterion [78, Chapter 3], the log-likelihood
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ratio (LLR) test is expressed as:

ΛOCR =
M∑
m=1

log

(
p (Λm;H1)

p (Λm;H0)

)
. (D.5.18)

where p(Λm;Hj) is the likelihood of Λm under hypothesis Hj for j = 0, 1.

To evaluate the LLR test, we investigate the properties of the detecting point

process Φd in (D.3.9). The statistics of Φd under H0 are given by the following

lemma.

Lemma D.5.1 The detecting SN point process Φd defined in (D.3.9) under H0 is

a homogeneous PPP with intensity of λPfa.

Proof : Define the following marked PPP (MPPP):

Φm = {(xi, s(xi)) : xi ∈ Φ, s ∈ S} (D.5.19)

where the marks are chosen to be the collected data s(xi) with the mark space S.

Construct the detecting PP Φd by thinning Φm. Under H0, however, the probability

of xi ∈ Φd is

P (xi ∈ Φd) =P (I(xi) = 1;H0)

=P (s(xi) > τ ;H0) = Pfa (D.5.20)

which is constant across A, and hence the thinning probability is also constant.

Therefore, the thinned Φd is a homogeneous PPP with intensity given by λPfa.

This concludes the proof. �

Remark: It can be noted that if A is large the number of detecting SNs is also

large. Thus the performance of simple rules such as the CR will suffer degrada-

tion and sophisticated rules such as the CVR will burden the network with large

communication load. This motivates the use of clusters to divide the ROI into man-

ageable areas with relatively low number of false alarms and communication burden.

Similarly, the statistics of Φd under H1 are given in the following lemma.

Lemma D.5.2 The detecting SN point process Φd defined in (D.3.9) under H1 is

an inhomogeneous PPP with intensity λPd(x).
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Figure D.2: Functional diagram for the clustered WSN. Pentagram: intruder; xi:

location of ith SN; a(xi): intruder’s signal at ith SN; n(xi): sensing AWGN at ith

SN; SN: sensor node, CH: cluster head; FC: fusion center, and Cm: mth cluster.

Proof : Define the detecting PP Φd = {xi ∈ Φm : s(xi) > τ}. The former is obtained

by thinning the MPPP Φm defined in (D.5.19) according to the probability

P (xi ∈ Φd) =P (I(xi) = 1;H1)

=P (s(xi) > τ ;H1) = Pd(xi). (D.5.21)

Note that the thinning probability depends on the intruder’s parameters as men-

tioned earlier. Also, the thinning probability depends on xi and so results in depen-

dent thinning. Dependent thinning in turn produces an inhomogeneous PPP. Under

H1 the mean of the total number of detecting SNs is given by

λ1 =E

[∑
xi∈Φd

1 (xi)

]

=E

 ∑
xi∈Φ′m

1 (s(xi) > τ)

 (D.5.22)

where 1(A) is the indicator function for event A. Applying Campbell’s theorem to
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find the above mean yields

λ1 =λ

∫
A

∫ ∞
0

1 (s(x) > τ ;H1) dP (s)dx

=λ

∫
A
P (s(x) > τ ;H1) dx

=λ

∫
A
Pd(x)dx (D.5.23)

where P(A) is the probability of event A and P (s) is the cumulative distribution

function of the mark variable s.

This concludes the proof. �

The above lemma implies that as the distance from the intruder increases the mean

number of detecting SNs decreases due to the nature of the detection probability Pd

defined in (D.3.6).

Remark: The detecting intensity of SNs decreases gradually as we move away

from the intruder until it reaches the value of λPfa, implying that the intruder’s

signal has no effect at this point. This fact also motivates the use of clusters since

the detecting SNs are much more likely to be close to the intruder. From the above

lemmas the distribution of the total number of detecting SNs in the network can be

directly inferred as stated in the following corollary.

Corollary D.5.3 Let the total number of detecting SNs be

Λ =
∑

xi∈Φd

1(xi). (D.5.24)

Then Λ is Poisson distribution with:

Λ ∼

Pois (λ0) , H0

Pois (λ1) , H1

(D.5.25)

where λ0 are λ1 are the means number of detecting SNs under H0 and H1 respectively

and are given by

λ0 = λPfa|A| (D.5.26)

λ1 = λ

∫
A
Pd(x)dx. (D.5.27)
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Proof : See Lemma D.5.2. �

Consequently, the distribution of the CR test statistic is directly given by (D.5.25)

as it was shown in [133]. Furthermore, the distribution of Λm follows directly from

the Poisson property of Φd as stated by the following corollary.

Corollary D.5.4 The distribution of Λm is

Λm ∼

Pois (λ0,m) , H0

Pois (λ1,m) , H1

(D.5.28)

where λ0,m are the λ1,m are mean numbers of detecting SNs in the mth cluster under

H0 and H1 respectively and are given by

λ0,m = λPfa|Cm| (D.5.29)

λ1,m = λ

∫
Cm
Pd(x)dx. (D.5.30)

Proof : Since Λ is a Poisson RV over A and the Λm’s are defined in (D.5.14) over

the Cm s that are disjoint areas in A, then Λm is a Poisson RV over Cm.

This concludes the proof. �

Note that if all the Cm’s have the same area, say |C|, then λ0,m = λPfa|C| for all

m = 1, · · · ,M . Hence, under H0 all the Λm’s have the same distribution under H0.

With this information at hand, the OCR defined earlier in (D.5.18) can be written

as

ΛOCR =
M∑
m=1

log

(
e−λ1,m

(
λΛm

1,m/Λm!
)

e−λ0,m
(
λΛm

0,m/Λm!
))

=
M∑
m=1

Λm log

(
λ1,m

λ0,m

)
. (D.5.31)

where the constant term above is ignored in the second line of the equation.

Remark: Note, however, that λ1,m is a scaled spatial average of the detection

probability in (D.3.6), which is the direct result of applying Campbell’s theorem [129,

Chapter 2] in (D.5.23). This relieves the OCR from knowing the SNs’ positions, in

contrast to the CVR. Nonetheless, finding the λ1,m’s requires knowing the intruder’s

parameters, P0 and x0, a topic that will be discussed later in Subsection D.5.4.

Thus, the OCR is a weighted sum of the number of positive decisions in each cluster.
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Clusters with larger detecting SNs means, λ1,m, are given more weight since it is

expected that the intruder is in their vicinity. On the other hand, clusters with

smaller detecting SNs means are given less weight since the intruder is expected to

be far away and hence the detecting SNs in such clusters are due to false alarms. In

this sense, the problem of spurious detection is adequately handled.

D.5.4 Generalized Likelihood Ratio Test for Clustered-based

Fusion

As mentioned earlier, the OCR requires the knowledge of the λ1,m’s, which are im-

plicitly dependent on the intruder’s parameters, i.e., θ = (P0,x0)T . Unfortunately,

such information is not available in realistic scenarios since the intruder is not co-

operative with the network. In this case we resort to the GLRT [78, Chapter 7]

method, which consists of replacing the unknown parameters in the LLR by their

maximum likelihood estimates.

The data used to estimate θ is the set {Λm}Mm=1 available at the FC. The GLRT

for the clustered-based fusion, termed here (GCR), is given by

ΛGCR = max
θ∈Θ

M∑
m=1

Λm log

(
λ1,m(θ)

λ0,m

)
(D.5.32)

where Θ ⊂ R3 is the space of all θ values.

Note that the dependence of λ1,m on θ is via the detection probability defined

in (D.3.6). The GLRT in (D.5.32) can be interpreted as finding the optimal set of

weights that maximize the weighted average of Λm’s.

However, problem (D.5.32) is a nonlinear three dimensional optimization prob-

lem, which is usually solved via numerical techniques. To reduce the complexity, the

search space is restricted version of the original, Θ. In particular, the search space

for the target’s position is restricted to the clusters centroids, xc,m, given by

xc,m =
1

|Cm|

∫
Cm

x dx. (D.5.33)

for m = 1, · · · ,M . Although, the restricted search space is significantly smaller

than the original, the corresponding results as shown is Section D.6 are very close

to the optimal CVR.
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Table D.1: Fusion rules list.

Abbreviation Equation Fusion Rule

CVR (D.4.10) Chair-Varshney Rule

CR (D.4.11) Counting Rule

SS (D.4.12) Scan Statistic

B-SS (D.4.13) Bayesian SS

MFR (D.5.17) Majority-like Fusion Rule

OCR (D.5.31) Optimal Clustered-based Fusion Rule

GCR (D.5.32) GLRT Clustered-based Fusion Rule

D.6 Simulation Results

We simulate a WSN deployed in a 50 × 50 ROI. The intruder’s power is P0 = 1.

The sensing SNR is set to 0 dB. The SNs have a reference distance of d0 = 1

units with a local probability of false alarm of 10−2. We simulate the fusion rules

listed in Table D.1 and compare them in using the above setting. The proposed

GCR is implemented via a grid search, as stated earlier, on a restricted search

space as described next. The values considered for the power P0 are obtained by

linearly the discretizing the interval [0.1, 1]; ten values used for the simulations. The

discretization of x0 is done by dividing the ROI into adjacent squares girds with

side length of A/N each, where A is the ROI side length (A = 50 in our simulation

setup) and N is the number of clusters. The centers of those squares in addition to

the discretized power values are used to form the restricted search space.

First we validate corollaries D.5.3 and D.5.4 by simulation. Figure D.3 shows

the results of a Monte Carlo simulation with 105 runs to produce the simulated and
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Figure D.3: Distribution of Λ. The system parameters are λ = 5, d0 = 1, SNRs =

0dB, Pfa = 10−2, and x0 = (20, 20)T . ’x’ for simulation distribution and solid line

for Poisson distribution in Corollary D.5.3.

theoretical distribution of Λ defined in (D.5.24), or that of ΛCR in (D.4.11). The

exact Poisson distribution given in Corollary D.5.3 fits the simulation perfectly for

both H0 and H1. For the same setup, the WSN is divided into four squared-shaped

clusters and the distributions of the Λm’s in the four clusters are shown in Figures

D.4 and D.5. Again the theoretical Poisson distributions given in Corollary D.5.4

fit the simulation accurately. Note however, that under H0 all Λm’s have the same

distribution. Under H1 on the other hand, Λ3 differs since the intruder is located in

the region monitored by the third cluster. Λ1, Λ2 and Λ4 have a distribution similar

to the H0 case since the intruder is not sensed by SNs in the those clusters.

Figure D.6 show the ROC diagrams for the fusion rules mentioned in Table D.1

for different values of λ, obtained by 104 Monte Carlo runs. The OCR uses 25

square-shaped clusters to cover the ROI. The same number of clusters is used for

the MFR. The decision threshold for all the CHs in the MFR are the same and

are set according to Corollary D.5.4 to provide a cluster level false alarm rate of 0.1

approximately. To make the comparison fair, the SS and the B-SS use a window with
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Figure D.4: Distribution of CH data, Λm, under H0 for λ = 5 and number of clusters

M = 4. The system parameters are λ = 5, d0 = 1, SNRs = 0dB, Pfa = 10−2, and

x0 = (20, 20)T . ’x’ for simulated distribution and solid line for Poisson distribution

in Corollary D.5.4.

the same size as the clusters used in the OCR. The OCR shows superior performance

compared to the rest of the rules. In fact, as λ increases the OCR approaches the

optimal performance of the benchmark CVR. The GCR follows a similar trend as
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Figure D.5: Distribution of CH data, Λm, under H1 for λ = 5 and number of clusters

M = 4. The system parameters are λ = 5, d0 = 1, SNRs = 0dB, Pfa = 10−2, and

x0 = (20, 20)T . ’x’ for simulated distribution and solid line for Poisson distribution

in Corollary D.5.4.

the OCR, in which it can be observed that the GCR rapidly approaches the OCR

as λ increases and consequently it performs better than the SS, B-SS, CR, and

the MFR. The SS algorithms show better performance when compared to the CR,
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Figure D.6: ROC diagrams for a network with 25 clusters. The system parameters

are d0 = 1, SNRs = 0dB, Pfa = 10−2, and x0 = (0, 0)T . CVR: Solid line, CR:

dashed line, OCR: ‘4’, GCR: ‘�’, MFR: ‘�’, SS: ‘∗’, and B-SS: ‘◦’.

which shows a relatively slow improvement as λ increases. The MFR performs the

worst among all rules, this is due to utilizing the least amount of information when

compared to the other rules.

Figure D.7 illustrates the effect of increasing M , the number of clusters, on the

performance of the fusion rules2. It is noted that when the number of clusters is

small, the OCR resembles the CR in performance. This result is intuitive since the

2The B-SS is not shown in the case of M = 4 due to a severely bad performance.
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Figure D.7: ROC diagrams for a network with λ = 5. The system parameters are

d0 = 1, SNRs = 0dB, Pfa = 10−2, and x0 = (0, 0)T . CVR: Solid line, CR: dashed

line, OCR: ‘4’, GCR: ‘�’, MFR: ‘�’, SS: ‘∗’, and B-SS: ‘◦’.

limit case of a single cluster is equivalent to the CR. The SS algorithms perform

better because they use more information for fusion. However, as M increases the

OCR and GCR outperform the rest of the rules and ultimately reach the bench-

mark performance of the CVR. This behavior can be explained by the fact that as

the number of clusters increases the detecting SNs due to the intruder’s presence

are contained in clusters that are given large weights. On the other hand, clus-

ters containing the spurious detection are given small weights, hence improving the

detection performance.
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D.7. Conclusions

D.7 Conclusions

We have studied fusion rules for distributed detection in random clustered WSNs.

In each cluster the CH collects the local decisions of the SNs and sends the sum to

the FC. Using stochastic geometry, we derived the optimal cluster-based fusion rule

(OCR), which is the weighted average of the sums of local decisions at each cluster.

The weights are shown to depend on the mean number of detecting SNs under the

null and alternative hypotheses. In contrast to the optimal Chair-Varshney rule, the

OCR does not require the locations of the SNs to be known. Furthermore, a reduced-

complexity GLRT for cluster-based fusion (GCR) is developed to handle the case of

unknown intruder’s parameters. Simulation results have shown that the performance

of the OCR approaches that of the Chair-Varshney rule. Results also showed that as

the number of clusters increases the performance rapidly reaches the Chair-Varshney

benchmark for fixed SNs deployment intensity. In other words, optimal detection

can be achieved by forming more clusters in the network, in contrast to adding more

sensor nodes to it. Finally, the performance of the GCR was shown to approach

that of the OCR when the number of clusters is large enough.
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