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Abstract

The modernisation of the pharmaceutical industry together with the sophistication of
drug screening protocols have lead to a dramatic increase in the number of therapeutic
agents developed annually. As per 2017, there are almost 1500 FDA approved anticancer
drugs. Treatments with many of those are impaired by their toxicity, pharmokinetic
profile, reduced bioavailability or poor water solubility. In an effort to improve patient
experience whilst offering the most effective anticancer treatment, numerous drug delivery
vehicles have been developed in recent years. These systems often encapsulate the drug
to prevent its degradation and help reduce the required doses by increasing the specificity
of the treatments. Drug hydrophobicity presents an added challenge for the design of
drug delivery systems, as they must be capable of transporting the therapeutic agents
whilst preventing their agglomeration. This project has been concerned with the design
of a delivery system for hydrophobic drugs. The microbubble-nanodroplets (MB-LONDs)
architecture consists of an echogenic MB decorated with LONDs, which attach to the
shell of the MB via biotin-NeutrAvidin chemistry. The LONDs are able to encapsulate
hydrophobic drugs in their oil core, keeping them away from the aqueous solution and
thus preventing drug agglomeration and degradation. The MB acts as a vehicle for the
LONDs, and its ultrasound properties can be used for both imaging and controlling the
release of the LONDs.

A number of biocompatible oils were chosen and characterised in terms of their light ab-
sorption and emission properties, as well as their ability to solvate a number of hydrophobic
drugs and drug mimics. Informed by the results obtained in this study squalane, triacetin
and tripropionin were chosen as model oils for subsequent experiments on LOND forma-
tion. LONDs were produced in a two-step process, and generally exhibited sizes between
80− 300 nm with good stability for at least 6 weeks when stored at 4 ◦C. Encapsulation
of the hydrophobic drug CA4 in triacetin and tripropionin LONDs was shown to be pos-
sible, with an encapsulation efficiency of at least 76% in the case of tripropionin LONDs.
To better understand the attachment of LONDs onto the MB shells, the attachment of
LONDs to model membranes was investigated. This study explored three different at-
tachment chemistries, namely the biotin-NeutrAvidin, maleimide-thiol and pyridyl-thiol.
The results revealed the viability of the LONDs attachment using the different linkers,
but also pointed to the existence of a high number of non-specific interactions between the
LONDs and the membranes. The assembly of MB-LONDs was performed by a number
of methods and with different LOND types. MB-LONDs prepared in a two-step process
on-chip exhibited average sizes around 2 µm, good stability over 2 h at 37 ◦C and were
found to be US responsive.
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Chapter 1

Introduction

Cancer causes the death of more than 8 million people every year worldwide, and

has a high incidence in modern society, affecting 1 in 5 people during their lives. In

the last 20 years or so the improvement of anticancer chemotherapies has dramatically

increased survival rates of cancer patients. [2] Recent research in the area has been prolific,

with major advances reported periodically. Treatment efficiency and patient experience

have been paramount to the latest developments. Among the challenges faced by the

pharmaceutical community is the fact that many current anticancer drugs present a high

number of non-ideal characteristics. For example, anticancer agents often exhibit high

levels of toxicity, rapid metabolism and low adsorption, which impair cancer treatments.

[3] To overcome these limitations, a multitude of drug delivery systems for the directed

administration of therapeutic agents have been proposed. [4, 5] These systems rely on

the idea of facilitating the transport of drugs in vivo, for example encapsulated in a

nanocarrier, thus preventing undesired side effects for the patient, improving the specificity

of the treatments and enhancing drug efficacy. Many of these drug delivery systems have

proven useful for the delivery of water-soluble drugs, showing promising results both in

vitro and in vivo.

Drug loaded liposomes are an excellent example of the drug delivery systems. [6–

9] Liposomes consist of a spherical, self-assembling lipid bilayer enclosing an aqueous

volume that serves as a drug compartment. Liposomes are generally formed with naturally

occurring phospholipids, which enhances their biocompatibility and biodegradability. The

modification of the liposome shell to include polyethylene glycol (PEG) constituted an

important advancement towards effective treatments with liposomal formulations. [10]

Many studies have shown that PEG chains grafted onto the surface of the liposomes,
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usually attached covalently attached onto a DSPE lipid, have the ability to hide the

liposomes from the immune system, which contributes to extending their blood-circulation

time thus improving therapeutic treatments. [11–15] These PEG-containing liposomes are

so called stealth liposomes. Since they were first formulated for the encapsulation of the

anticancer drug doxorubicin, stealth liposomes have been assessed for the encapsulation of

a vast majority of existent anticancer drugs. [3] A number of these liposomal formulations

have shown promise in Phase III trials for the treatment of breast cancer, [16–18] ovarian

cancer, [19, 20] and myeloma [21].

Notably, there is a high percentage of new pharmaceuticals that show poor water

solubility or are hydrophobic. Some authors have estimated that these could account for

up to 60% of the newly developed drugs. [22] In vivo treatments with these agents present

numerous problems, such as reduced bioavailability due to agglomeration, [23] decreased

efficacy and even toxicity. [24,25] The lipophilicity of therapeutic compounds, or its ability

to dissolve in a solvent other than water, is often expressed in terms of the logarithm of

its partition coefficient between n-octanol and water. This is known as the logP value of

the drug and it is defined as logP = log (coctanol/cwater). [26, 27] It is generally accepted

that lipophilic drugs have logP values from −0.4 to +5.6. [28] Several routes have been

proposed for the delivery of hydrophobic drugs. One approach is to structurally modify

the therapeutic compound to improve its water solubility. [29] These prodrugs typically

undergo a chemical change in vivo yielding the active form of the drug. [30] However,

prodrug synthesis is often complex and time consuming, and can lead to toxic breakdown

products. [31,32] Another possibility is to solubilise the hydrophobic compound in a solvent

other than water. Paclitaxel, for example, is one of the most effective anticancer drugs

ever synthesised, and widely used nowadays against a range of cancer types including

lung and ovarian. [33] Its poor water solubility (∼ 6 µg/ml) was partially overcome by

formulating it in a polyoxyethylated castor oil/ethanol mixture for injection, known by

its trademark Taxol. However polyoxyethylated castor oil is not an inert carrier, and it is

known to cause a number of adverse side effects in patients such as anaphylaxis and other

severe hypersensitivity reactions. [34]

Alternatively, several encapsulation methods have been explored for the delivery of

hydrophobic drugs. For example polymer-based micelles and microspheres have been

shown to successfully incorporate hydrophobic drugs. [35–39] Among the existing meth-

ods, nanoemulsions are a cheap and versatile option for improving the delivery of poor
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Figure 1.1: Schematic showing the structure of a Lipid-stabilised Oil NanoDroplet (LOND).
Hydrophobic drugs are contained in the oil core of droplet, which is stabilised by a lipid
monolayer and dispersed in water. PEG chains embedded onto the shell of the nanodroplets
enhance their circulation time in vivo.

water soluble compounds. [40] Nanoemulsions consist of nanometer-sized oil droplets dis-

persed in water, which are stabilised with the presence of a surfactant in the oil-water

interface. [41] One of the advantages of these systems is that the ingredients used for their

formulation can be chosen to be biocompatible. For instance, phospholipids are of particu-

lar relevance for therapeutic nanoemulsions and have been extensively used as surfactants

in such preparations. [42–46] In lipid-stabilised oil nanodroplets (LONDs) hydrophobic

drugs can be encapsulated in their oil core, which prevents the drug from agglomerat-

ing in aqueous solutions. The structure of a LOND is shown schematically in figure 1.1.

As for liposomes, one of the main mechanisms to improve the blood circulation time of

lipid-stabilised nanoemulsions is the inclusion of a pegylated lipid in the shell composition.

Nazzal and co-workers found a 7-fold increase in the mean residence time for tocotrienol

nanoemulsions with grafted PEGs onto their surfaces. [47] Similarly, the study conduc-

ted by Ganta et al. showed that a pegylated nanoemulsion had a 1.3-fold longer half-life

compared to a non-PEG-modified nanoemulsion. [48] Furthermore, the presence of PEG

chains have been observed to influence the biodistribution of the nanoemulsions, and also

to reduce accumulation in the liver. [49] The length of the PEG chains on the shell of the

nanodroplets has also been reported to affect their fate in vivo. Particularly, Hak et al.

noted greater cellular targeting and uptake for nanoemulsions with lower PEG contents

(5mol%−10mol%). [50] This was attributed to the brush configuration of the PEG chains

on the surface at higher molar concentrations.

To date, nanoemulsions have shown promise for the encapsulation and delivery of a

3



number of anticancer agents. Ganta et al. reported increased efficiency of Paclitaxel

against ovarian cancer cells delivered in a flaxseed oil nanoemulsion. [51] They observed

that half the amount of drug was needed to inhibit cellular growth when Paclitaxel was

administered in the nanoemulsion, compared to treatments with free Paclitaxel. This

suggested improved bioavailability of the compound as a result of its encapsulation. Sim-

ilarly, Jing et al. studied the delivery in vivo of Paclitaxel in a nanoemulsion consisted

of a mixture of coconut oil-derived medium chain triglycerides and soybean oil-derived

long chain triglycerides (known as MCT/LCT injectable lipid emulsion) stabilised with

PEG400. [52] They reported reduced off-site toxicity and more potent antitumour efficacy

in mice for their formulation, compared to conventional preparations. Another example is

the delivery of the drug Dacarbazine encapsulated in soybean oil nanodroplets, found to

have an increased efficacy when administered in vivo. [53]

1.1 A step further: theranostic agents

It is possible to extend the application of drug delivery systems to diagnostic purposes.

In this way, they could be used for sequential assessment of the state of the disease and

treatment, for example to determine the volume of a tumour prior to the treatment. The

term theranostics refers to systems designed to combine diagnostic and therapeutic cap-

abilities into a single agent. Theranostic agents hold great potential towards personalised

medicine, which asses the individual needs of patients to adequate treatments to each

particular case. [54] There are numerous examples of theranostic agents developed in the

last few years. In those, different imaging probes such as MRI contrast and fluorescence

agents have been combined with various therapeutic agents. [55, 56] For example, Wang

and co-workers developed a theranostic agent for monitoring the stability of polymer-DNA

complexes in cells by taking advantage of a Qdot-FRET1. [57] This architecture combined

plasmid DNA conjugated to QDots, and cyanine conjugated to chitosan, all assembled

together via the biotin-StreptAvidin chemistry. Proximity of the cyanine and the Qdots

resulted in FRET-mediated emission, whereas degradation of the complex derived in emis-

sion from only the Qdots. Ke et al. designed a poly(lactic acid) polymeric particle shelled

with gold nanoshells. [58] These composites could be used for enhanced ultrasound (US)

imaging, whilst the gold nanoshells provided them with the ability to be used for light-

1fluorescence resonance energy transfer (FRET)
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induced thermotherapy. More recently, Chen et al. [59] developed polymeric microcapsules

composed of several tannic acid and poly(N-cinyl-pyrrolidone) layers assembled together

through hydrogen bonding. The capsules were shown to have excellent US contrast prop-

erties controlled by varying the number of layers in the capsule shell. These US properties

were used to deliver the drug doxorubicin to breast cancer cells in vitro.

1.1.1 Microbubbles as theranostic agents

Microbubbles are among the agents that can be developed for theranostic applications.

Gas-filled lipid-stabilised microbubbles (MBs) have been extensively used as US contrast

agents over the last 20 years. [60–62] Perfluorocarbon gases are typically used as the core

of the MBs due to their low water solubility, which delays MB dissolution. [63] In addi-

tion, it is a requirement for clinical MBs to have sizes under 8 µm to avoid embolisms.

The excellent ultrasonic capabilities exhibited by MBs arise from the acoustic impedance

mismatch between the MB gas core and its surroundings, and also from the high com-

pressible nature of the encapsulated gas. When exposed to an US pulse, the MB core

expands and contracts with the applied pressure. This results in strong scattering of US,

which enhances the signal received and therefore the contrast in clinical imaging. [64]

US has the notable ability to sensitise cell membranes and enhance the cytotoxic effect

of drugs, when used in combination. Remarkably, US can cause pores to open in cell

membranes which improves the transport of therapeutic compounds across them. [65]

This phenomenon is called sonoporation. Several studies demonstrated in the late 90s

the enhancement of cellular sonoporation in presence of MBs. [66, 67] Studies carried out

since then have provided insights of the mechanism underlying this phenomenon. [68–70]

Cavitating MBs create flow streams that cause high levels of mechanical stress in nearby

membranes. This can result in the formation of small pores in the cell membranes. [71,72]

The dynamics of MB cavitation strongly depend on the intensity of the applied US, and

thus the sonoporative effects. An overview of the process under the different conditions

has been recently published. [73] Sonoporation holds a great potential to enhance drug

delivery, and this characteristic is an asset in the use of therapeutic MBs over other

theranostic agents.

Two different types of therapeutic MBs may be differentiated: those in which the
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MBs and the therapeutic agent are co-administered, and those in which a drug payload

is physically associated to the structure of the MBs. Both methods have been recently

compared elsewhere. [79] This literature review focuses in delivery methods that involve

structures combining MB and drug payloads, and these will be discussed below. One of the

main advantages of MBs over other theranostic agents is their versatility as a result of their

lipid coating. The properties of the shell can be easily tuned by simply modifying its lipid

composition. This for example allows for varying the charge of the MBs, incorporating a

positively or negatively charged lipid, or to incorporate ligands for functionalisation, such

as biotin. This versatility has allowed for different ways of incorporating drug payloads

onto MBs. [80] Figure 1.2 shows an schematic of the different approaches reported to date.

One of the first routes was proposed by Yellowhair and co-workers in the late 90s. [75]

They successfully incorporated a prodrug of dexamethasone into the structure of the MB,

presumably embed in its lipid membrane. The same group reported the construction of

a MB with an inner oil layer, in which Paclitaxel was successfully incorporated. [77] A

Figure 1.2: Schematic showing the structure different therapeutic MBs. a) Attachment of
DNA to the MB shell for gene therapy [74] b) Lipophilic drug embedded in the MB shell. [75] c)
Ibsen et al. proposed the encapsulation of a MB within a large vesicle. [76] d) Thickened shell
with the addition of an oil layer. [77] e) MB-liposome complex proposed by Kheirolomoom et al.
[78] Liposomes attach to the MB lipid shell via the biotin-Avidin (NeutrAvidin, StreptAvidin)
interaction.
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few years later Lentacker et al. prepared MBs with a plasmid DNA adhered to their

shell via electrostatic interaction. [74] The charge in the MB shell not only allowed for

the incorporation of the plasmid DNA, but also protected the cargo from degradation by

nucleases. Another example is the work carried out by Ibsen et al., that focused in the

development of a liposomal architecture that encapsulated a MB. These architectures were

found to be US responsive, and showed success in encapsulating doxorubicin. [76]

The MB-liposome complex (figure 1.2e) has undoubtedly been the focus of a great deal

of attention in recent years. This architecture consists of a MB decorated with liposomes,

bound to the MB shell using the affinity of the biotin-Avidin (or NeutrAvidin/StreptAvidin).

Compared to the other therapeutic MBs architectures, the liposomes allow for encapsu-

lation of larger amounts of drugs in their inner volume. Furthermore the encapsulation

of the drug is not subjected to the charge or lipophilic characteristics of the drugs, thus

widening the usability of these complexes. Since the architecture was first reported by

Ferrara and co-workers, [78] many researches have worked towards the application of the

complexes. Lentacker et al. used MB-liposome complexes to deliver doxorubicin to melan-

oma cells in vitro. [81] They reported a dramatic enhancement of the treatment when the

cells were exposed to the MB-liposome complexes and US, which was attributed to the

release of the liposomes as a result of the US application and the sonoporation of the cell

membrane, which contributed to liposome uptake. The use of the MB-liposome complexes

has not been limited to the delivery of chemotherapeutic drugs. Sanders and co-workers

took advantage of the architecture for gene delivery. [82]. They conjugated liposomes con-

taining plasmid DNA to MBs, and tested the transfection efficiency to melanoma cells.

The study concluded that gene transfer using liposomes containing plasmid DNA could be

greatly enhanced by attaching them to MBs and exposing the complexes to US. Alternat-

ive chemistries for the binding of liposomes to MBs have been proposed. This is because

the injection of exogenous proteins is known to cause an immune response in the organism,

which limit the clinical application of MB-liposome complexes. [83] For instance, Lozano

et. al explored DNA hybridization to tether liposomes onto the the MB shell. [84] In an-

other study, Geers et al. used the thiol chemistry to bind liposomes containing doxorubicin

and MBs. [85]
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1.2 Scope of the project and thesis layout

The aim of this project was to develop a novel architecture for enhancing the delivery of

therapeutic hydrophobic drugs. The MB-LONDs composite consists of an echogenic MB

that acts as a vehicle for LONDs, attached to the MB shell, which are able to encapsulate

poorly water soluble therapeutic agents. This architecture is shown conceptually in figure

1.3. The US properties of the MB would provide spatial and temporal control over the

release of the LONDs, improving the specificity of the treatments. This architecture

aimed to be used as a theranostic agent, allowing for simultaneous US imaging and drug

delivery. There was an interest in performing the assembly of the architectures on-chip to

have a grater control over the size distribution of the architectures and over MB surface

functionalisation. Furthermore microfluidics could allow for automation of the fabrication,

which would be desirable for the architectures to find a clinical application.

Figure 1.3: Schematic showing the structure of a the MB-LONDs architecture. LONDs with
sizes around 200 nm are attached to the shell of the MBs (∼ 2 µm) via the biotin-NeutrAvidin
link chemistry2. This composite is a theranostic agent in which the US properties of the MBs
can be used for imaging purposes and also to spatially control the release of the LONDs.
Building this architecture was the main goal of this project.

This project consisted of several steps that aimed to provide the basis towards building

the MB-LONDs architectures. These steps were: i) identification and characterisation

of a number of biocompatible oils for LOND formation; ii) formation of LONDs; iii)

encapsulation of drug mimics and hydrophobic drugs in LONDs; iv) attachment of LONDs

to model membranes; and finally v) assembly of MB-LONDs. Thus, based on these steps,

2other linkers, such as maleimide-thiol and PDP-thiol, are also explored in this thesis
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this thesis is structured as follows:

• Chapter 2 describes the theoretical background underlying the production of MBs

and LONDs. LONDs were understood as single nanodroplets within an oil-in-water

nanoemulsions stabilised with a surfactant i.e. phospholipids.

• Chapter 3 presents the experimental techniques and methods used throughout

this project; it includes descriptions of the devices operation and also the protocols

followed for measurements.

• Chapter 4 describes the choice of the candidate oils for LOND formation and their

characterisation, in terms of their optical absorption and emission, and also their

ability to dissolve hydrophobic drug mimics and the hydrophobic drug CA4.

• Chapter 5 provides the results of studies on LOND production with the different

biocompatible oils. The formation of LONDs is a two-step process that includes

homogenisation of the samples under high pressure. LOND formation was studied

in the context of the production pressure, the encapsulated oil and the lipid used for

stabilisation. The chapter also contains the findings on the stability of the LONDs

under different conditions.

• Chapter 6 presents the results from a series of experiments aimed at assessing

the encapsulation of hydrophobic drug mimics and the hydrophobic drug CA4 in

LONDs.

• Chapter 7 presents the results from a study on the attachment of LONDs to model

membranes via three different linking chemistries: biotin-NeutrAvidin, maleimide-

thiol and PDP-thiol.

• Chapter 8 is concerned with the assembly of the MB-LOND architectures. The

results on the formation of the composites with different methods are presented.

• Chapter 9 summarises the main findings presented in this thesis and provides an

outlook to future studies in this field.
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Chapter 2

Theoretical background

This chapter contains the theory details on formation and stability of microbubbles

(MBs) and lipid-stabilised oil nanodroplets (LONDs) as the components of nanoemulsions.

2.1 MB formation and stability

This section is concerned with the formation and stability of lipid-stabilised MBs.

Microfluidic formation of MBs is emphasised, and a short introduction to the microfluidics

relevant to this process is included.

2.1.1 Concept and formation

Microbubbles (MBs) are small gas pockets with sizes in the micrometer range, typically

between 0.5−100 µm, that are dispersed in liquid (figure 2.1). Due to the air-liquid surface

tension, MBs are thermodynamically unstable and require of the presence of a surfactant

to be stable. The surface tension causes the MB to be spherical, as the pressure pi inside

the bubble is greater than the pressure p0 outside it. [86] The relationship between these

pressures is given by the Young-Laplace equation

pi − p0 =
2γ

R
(2.1)

where γ is the surface tension and R is the radius of the MB.
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Figure 2.1: Schematic of the structure of a MB. The radius of curvature and surface tension
create a pressure difference between the inside and the outside of the MB, which is a driving
force for the gas to escape the MB volume.

Equation 2.1 shows that the gas inside the MB finds a driving force to diffuse from the

inside to the outside of the MB. Smaller MBs will experience larger interfacial pressure

and thus they would dissolve more rapidly. For example, the pressure difference between

the inside and the outside for a MB with a radius R = 2 µm is ∆p = 72 kPa in absence

of a surfactant (γ ∼ 72 mN/m), whereas in presence of a surfactant this pressure would

be reduced to ∆p = 45 kPa (γ ∼ 45 mN/m). [87–90] Thus the presence of a surfactant

reduces the surface tension and therefore the Laplace pressure and the driving force for

dissolution, enhancing gas retention in the MB. The rate at which gas dissolves in the

surrounding media, when it is not coated with a lipid shell, does depend on temperature

and pressure, as well as its diffusivity in the liquid. This diffusivity rate is given by [91]

dR

dt
=

D(ci − cs)RgT

Mw

(
p0 + 4γ

3R0

) ( 1

R0
+

1√
πDt

)
(2.2)

where D is the diffusivity constant of the interface at temperature T and pressure p0, ci

is the initial dissolved gas concentration in the solution, cs is the gas concentration at

the MB surface, Rg is the gas constant, Mw is the molecular mass of the gas, R0 is the

initial radius of the MB, γ is the surface tension and t is the time. [90] There are two

direct consequences of this equation. First, that the presence of a surfactant layer affects

the gas dissolution rate, as the interfacial tension decreases resulting in a reduction of the

diffusivity constant. [92] [93] Second, that an increase of the molecular mass of the gas

encapsulated in the MBs will translate into enhanced stability. [89, 94]
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2.1.1.1 Echogenic MBs

MBs are highly echogenic due to the compressible nature of their gas core together

with their ability to scatter acoustic waves. [90] The dynamics of the core compression are

governed by the Rayleigh-Plesset equation [95]

d2R

dt2
dR

dt
R+

3

2

(
d2R

dt2

)2

+
4ν

R

dR

dt
+

2γ

ρR
=
pi − p0
ρ

(2.3)

with ρ the density of the liquid, R the radius of the MB, ν is the viscosity of the surrounding

medium, γ is the interfacial tension and pi and po the pressures inside and outside of the

MB respectively. [96] If the effects of both the stiffness and the viscous damping of the shell

are considered, the resonant frequency ωr of a MB undergoing small-amplitude oscillation

is given by [97]

ω2
r =

1

ρR2
0

[
3χ

(
P0 +

2γ

R0
+
Eshell
R0

)
− 2γ

R0
− 6Eshell

R0

]
− 2

ρ2R4
0

[
2µ+

6µshellε

R0

]2
(2.4)

where R0 is the equilibrium radius of the MB, χ is the polytropic gas index (1.07), P0 is

the hydrostatic pressure (101 × 103 Pa) and µ is the viscosity of the surrounding liquid

(0.001 Pa·s). Eshell is the elasticity modulus of the lipid shell and µshellε is the viscosity of

the MB shell multiplied by the thickness of the shell. [97,98] Morgan et al. found that the

elasticity parameter Eshell had a smaller effect on the resonant frequency of a MB than

the viscosity parameter µshell, thus allowing Eshell to be set to 0 without effect. [97] The

resonant frequency of MBs coated with lipids changes with the radius of the MB. This

dependence is shown in figure 2.2 . For example, for a MB with a radius R0 = 1 µm,

ωr = 23 MHz, whereas ωr = 3 MHz for a R0 = 6 µm MB.

Typically, MBs are made to resonate using an acoustic source operating in the MHz regime.

If the excitation frequency is equal to the natural resonant frequency of the MB it will be

excited on resonance and provide optimum scattering. [90]
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Figure 2.2: Calculated resonant frequency of lipid coated MBs. The parameters used to
produce this plot are γ = 0.051 N/m, Eshell = 0 N/m and µshellε = 2× 10−10 m, taken from
reference [97].

2.1.2 Microfluidic formation of MBs

In this project, MBs and MB-LONDs were formed in microfluidic devices. However,

MB production has been shown possible with a number of different techniques that have

been reviewed elsewhere. [99, 100] Within this report, ‘microfluidic production’ of MBs

and MB-LONDs will be referred to simply as ‘on-chip’. This section gives an overview of

microfluidics from the point of view of the production of MBs. Reynolds number and its

importance are introduced, and the concept of chip-integrated micromixers and their use

in the production of MB-LONDs are discussed.

2.1.2.1 A brief introduction to microfluidics

A lab-on-a-chip (LOC) is a miniaturized device in which small liquid volumes can

be precisely manipulated. [101] LOC devices typically consist of small channels etched

on glass or a polymer. These channels have sub-millimeter dimensions, in which fluid

dynamic phenomena such as laminar flow become more important (figure 2.3). [102] The

low volumes utilised in microfluidic devices leads to a decrease of the amount of reagents

used, and therefore a reduction in the production cost. Similarly, the small area over which

process take place in a microfluidic device enables automation and speeds up production

times.
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Figure 2.3: LOC devices consist of micrometer-sized channels etched on a glass or polymer,
where chemical reactions or other processes take place. The image shows a microfluidic device
used in this project to prepare MBs.

Microfluidics have been demonstrated to be a powerful tool for the production of

a range of micrometer and nanometer-sized particles. [103–108] The production of nano-

particles using LOC devices is rapid, reproducible and well controlled, which is particularly

desirable if the product is to find clinical applications. [109]

The channels in LOC devices are typically of the order of tens of micrometers. In these

small structures laminar flow dominates, and therefore the movement of the fluid is highly

predictable. [102, 110, 111] The nature of the flow in the channels of a LOC device can

be predicted using the Reynolds number, defined as the ratio between inertial to viscous

forces:

Re =
ρvD

η
(2.5)

where ρ is the density of the fluid, v is the fluid velocity, D is the hydrodynamic diameter

of the channel and η is the viscosity of the fluid. D is calculated using:

D =
4 ·A
P

(2.6)

with A the area of the channel and P its perimeter. Turbulent flow occurs at large

Reynolds numbers (Re >> 1), whereas small Reynolds numbers result in linear flows

(Re << 1). The Reynolds number is much less than 1 in most microfluidic devices, such

that the viscous effects are dominant.

Low Reynolds numbers make the rapid mixing of two or more liquids in microfluidic

devices difficult, as turbulent mixing does not commonly occur under laminar flow. [110]

There are numerous examples in the literature of mixing schemes integrated in microfluidic

devices, and designed to enhance the mixing efficiency. [112–117] These micromixer com-

ponents are broadly known as passive mixers, and in them mixing occurs by a combination

of diffusion and advection. [118] One specific design that easily allows for passive mixing is

a curved channel periodically repeated. [119,120] In curved channels, fluid near the center
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of the channel posses a higher velocity that the fluid surrounding the walls. This velocity

mismatch gives rise to a secondary re-circulating flow of the liquid from the periphery

of the channel. [121, 122] These serpentines typically operate at low Reynolds numbers

between 0.5 ≤ Re ≤ 100, [118] and promote mixing up to 97% in some cases. [119]

2.1.2.2 The flow-focused geometry

Microfluidically produced MBs are formed in two different types of LOC device, namely

T-juctions [92,123] and flow-focused geometries. [124–126]. This section centers its atten-

tion in the latter, as it was the geometry used for MB production within this project.

In flow-focused geometries a continuous gas stream and two side liquid phases contain-

ing a surfactant (commonly lipid) are brought together near a small orifice called a nozzle.

The gas flow feeds the gas meniscus that eventually forms a micro-jet through the nozzle.

Inertia and surface tension split the gas stream in small gas volumes that are stabilised

by the surfactant. [127–131] The addition of a step with a depth of 25 µm in the outlet,

beyond the nozzle, results in a pressure drop that creates an atomisation process. [132]

This MB production regime, known as micro-spray, decreases MB size and enhances their

concentration significantly, up to clinically relevant concentrations 108−109 MBs/ml. [133]

Figure 2.4: a) Schematic showing a flow-focused geometry, typically used for microfluidic
formation of MBs. The arrows indicate the direction of the flow inside the device. A continuous
gas phase is pinched by two side liquid phases at a small orifice called nozzle. This gas split
results in the formation of the MBs. The cross section of a typical device is shown below the
illustration. b) The addition of a 25 µm depth step beyond the nozzle reportedly increases
the number of MBs produced in flow-focusing devices. [133] The cross section of this device is
shown below the schematic.

15



2.2 Emulsions: formation and stability

This section is concerned with the technical aspects of emulsions. The section first re-

vises the concept of emulsion and the concepts of nanoemulsion and microemulsion. It then

contains mathematical details of the thermodynamics conditions required for nanoemul-

sions to form and stabilise. The different techniques for emulsion formation are discussed,

focusing in the ultra-high pressure homogenisation.

2.2.1 Definitions

Dickinson [134] defined emulsions as a “heterogeneous system of two or more immiscible

liquid phases, with one of the phases dispersed in the other as droplets of macroscopic or

colloidal size”. Although not exclusively, the term emulsion often refers to oil-in-water

mixtures, in which oil droplets, with sizes in the range of a few nanometers to a few

micrometers, are dispersed in the water phase. The existence of emulsions is subjected

to the stability of the droplets of the disperse phase against coalescence. Emulsifiers

are, by definition, molecules driven to the interface between the two phases, lowering the

surface tension and thus facilitating stabilisation of the droplets. [134–136] Surfactants are

a widely used type of emulsifier due to the ability of these molecules to arrange on the

oil-water interface so that its hydrophilic group is in contact with the water phase, whilst

keeping its hydrophobic tails in the typically non-polar oil.

Figure 2.5: Emulsions are dispersions of one liquid into another liquid in which it is immis-
cible. A surfactant stabilises the interface between the liquids and makes the system ther-
modynamically stable. Oil-in-water and water-in-oil emulsions are the most common types of
emulsions. In this project, the individual oil droplets dispersed in water are called LONDs.
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Over the last 20 years or so there has been considerable confusion between the terms

microemulsions and nanoemulsions. [137] The term nanoemulsion was only coined in 1996,

[138] whereas emulsions with characteristics typical of those included in the “nanoemul-

sion” category were well-established before then, and were referred to as microemulsions,

miniemulsions or ultrafine emulsions. [139–141] There has been controversy about the size

limit that should be used to distinguish between “micro” and “nano” emulsions. Differ-

ent authors have defined a variety of limits such as 500 nm, [142] 200 nm, [143] or 100

nm [144] to classify emulsions as “nano”. The size of the droplets of an emulsion are

indeed a factor determining the properties of the mixture. For example, the reduction

of the droplet size translates into reduced sedimentation (or creaming) [137] of the emul-

sion, which can increase the stability of the system. Also the appearance of the emulsions

changes as the size of the droplets changes. Nanoemulsions formed of smaller droplets

(< 200 nm) often appear clear or transparent, as the size of the droplets is smaller than

visible wavelengths, [141] whilst larger droplet sizes lead to milky appearance of the emul-

sion.

In this report, “nanoemulsion” will be used to refer to emulsions with droplets in the

nanometer range, typically between 90 − 300 nm. These droplets will be referred to as

nanodroplets, or LONDs (Lipid-stabilised Oil Nano-Droplets). All emulsion prepared in

this report fall within this category.

2.2.2 Theory of emulsification

The state of the phases α and β of an emulsion can be described in terms of their

temperature T , volume V and number of moles of each species present in the system n.

At constant pressure P , the Gibbs energy of each phase is given by [145,146]

dGα = −SαdTα − VαdPα +
∑

µi,αdni,α

dGβ = −SβdTβ − VβdPβ +
∑

µi,βdni,β

(2.7)

with S the entropy of the system, and µi the chemical potential of each component of the

system. In systems including two different phases, an interfacial term must be considered.

In many cases in which the the relative interfacial region is small compared to the bulk

phases, this contribution is often ignored. However, in cases such as colloidal dispersions,
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the term is an an important factor determining the behaviour of the system. [146]. In a

similar fashion to the α and β phases, the Gibbs energy for the interfacial phase, defined

as a plane, can be expressed as

dGσ = −SσdTσ + γdAσ +
∑

µi,σdni,σ (2.8)

Here γ is the interfacial tension. The planar definition of the interface allows for neglecting

the term term −VσdPσ, and instead, the term γdAσ accounts for the area change in the

system.

In bulk thermodynamics, and during the emulsification process, large oil volumes are

broken down into smaller oil droplets (figure 2.6). The Gibbs energy G in state I is given

by the bulk Gibbs energy of the oil and the water, and also the free energy on the interface

between the liquids

GI = GI
water +GI

oil +GI
interface (2.9)

with

GI
interface = γAI (2.10)

Upon emulsification, the Gibbs energy of the system is corrected by the entropic term,

TS, where T is the temperature and S is the entropy of the system, as the creation of a

large number of droplets increases the configurational entropy: [136,147]

GII = GII
water +GII

oil +GII
interface − TSII (2.11)

with

GII
interface = γAII (2.12)

Thus the change in the Gibbs energy ∆G of the system transitioning from I to II is

∆G = γ∆A− TSII (2.13)
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Figure 2.6: Schematic showing the emulsification of an oil-in-water mixture. The transition
of the system from I to II is a non-spontaneous process that depends on the energy on the
water-oil interface.

The interfacial term is in general larger than entropic one, γ∆A� TSII, meaning

∆G ≈ γ∆A (2.14)

Equation 2.14 shows that ∆G > 0. This implies that emulsification is a non-spontaneous

process and thermodynamically unstable. [136,146,147]

The addition of a surfactant to the system plays two important roles in emulsion

formation. First, the interfacial tension is reduced, thus the energy required to transition

the system from I to II is lowered. Second, an energy barrier is created from state II to I,

as the surfactant prevents droplet coalescence, therefore making the system stable in state

II. [134, 147] Equation 2.14 shows the energy required for a system to transition between

states I and II, and it is clear from this equation the crucial role played by the surfactant.

For example, in the formation of an oil-in-water emulsion (volume fraction φ = 0.01) with

droplets of radius r = 100 nm and in absence of a surfactant (γ = 0.05 N/m), the change in

the Gibbs energy is ∆G ≈ 105 J/m3. However, in presence of a surfactant, the interfacial

tension would be lower γ = 0.005 N/m, and therefore the value of the free energy would

also be lower ∆G ≈ 104 J/m3. [134,137,148] In addition to lowering γ and preventing the

droplets from coalescence, the surfactant also allows for the existence of interfacial tension

gradients, which are crucial for droplet deformation and subsequent breakage. [136]

2.2.3 Methods of emulsification

As discussed above, emulsion formation relies on progressive breakage of oil volumes

into smaller oil pockets. This process is non-spontaneous, and requires external energy to
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occur. This energy must be greater than the value of the Gibbs energy of the system. The

first step for a droplet to deform is to be under external stress. The amount of energy

required to disrupt a droplet of radius r has to exceed the Laplace pressure in the droplet

(equation 2.1)

PL =
2γ

r

For a droplet of radius r = 100 nm and interfacial tension γ = 0.005 N/m, the Laplace

pressure is PL = 105 Pa. Disruption of such droplets would occur when external stress is

applied, which could be due to a velocity or pressure gradient. [134,135,141]

The shear stress necessary to form droplets with radius r can be predicted using Taylor

estimate of ruptured droplet into another immiscible liquid

σ =
γ

ηr
(2.15)

where η and σ are the viscosity and the shear rate of the continuous medium. [149] For

a droplet of radius r = 100 nm, with interfacial tension γ = 0.005 N/m created in water

(η = 10−2 Pa·s), the shear stress necessary for this droplet to form would be σ = 5×106 s−1.

Shear rates of this order of magnitude are in general not accessible for most common mixing

devices, including high-speed blenders. [141] High pressure and ultrasonic homogenisers

are two well established techniques for producing emulsions with droplet radius r < 500

nm. [150–152]

High pressure homogenisation was the method used to produce nanoemulsions. It

was used in combination with a rotor-stator system, which did not suffice by itself to

produce optimal nanoemulsions. The following sections revise these two specific methods

for emulsion formation.

2.2.3.1 Rotor-stator homogenisers

Rotor-stator homogenisers consist of a fixed slotted stator which houses a mobile rotor

(figure 2.7). The rotor creates a region of lower pressure to which the crude emulsion

moves, giving rise to a circulating current and roughly dispersing the oil into the water

phase. The proximity between the rotor and the fixed stator, together with the high

acceleration of the fluid due to the rotor gyration, creates high shear forces that reduce
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droplet size. [153] The pressure difference ∆p created by the rotor can be estimated as [154]

∆p ≈ ρΩ2d2

2
(2.16)

where ρ is the fluid density, d is the distance from the axial line of the rotor, with dmax

the distance to the inner wall of the stator, and Ω is the angular speed of the rotor.

This equation shows that the pressure difference increases as the fluid is closer to the

wall. Considering water as the fluid (ρ = 1000 kg/m3) in a rotor-stator system with

dmax = 1 cm and Ω = 1000 s−1, the pressure difference results ∆p = 50 kPa. This

pressure difference is about 3 orders of magnitude lower than the pressure applied in

the high pressure homogenisers, and therefore homogenisation in rotor-stator devices is

reportedly less efficient than that achieved with other high pressure devices. [155–157] The

separation between the rotor and the stator is typically of the order of millimeters, and the

rotor speed can range between 2000− 13000 min−1. [158,159] By varying the speed of the

rotor or the thickness of the rotor-stator gap the intensity of the shear can be altered. [154]

Figure 2.7: Schematic showing the cross-section of a rotor-stator homogeniser. A fixed
slotted cylinder (stator) houses a rotor connected to a motor. Pressure differences created by
the gyration of the rotor creates circulation of the fluid and also emulsification. The crude
emulsion is subjected to high shear stress close to the walls of the stator, which result in
droplet disruption.

2.2.3.2 High-pressure homogenisation

High pressure homogenisers (or ultra-high pressure homogenisers) are one of the most

efficient and widely used techniques for the production of emulsions. High pressure ho-

mogenisers consist of a pump and a homogenising nozzle (figure 2.8a). The pump is used
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Figure 2.8: a) Image of a modern, commercially available high pressure homogeniser. Spe-
cifically, this is an Avestin Emulsiflex C-5, which was the device used to prepare LONDs in this
study. b) Schematic showing the structure of the homogenising nozzle. The crude emulsion is
forced through the small gap between the valve and the valve seat, which results in dispersion
of the oil in the water phase

to move the liquid towards the homogenising nozzle, in where it is forced under pressure

through a small orifice between a valve and the valve seat (figure 2.8b). [134,160–163]

For a short time (10−3 s), the liquid experiences mechanical stress under laminar flow

at the valve entrance and the valve orifice, and also turbulence and cavitation at the

valve outlet. [155,157,163] Modern homogenisers can exert pressures up to 300 MPa, and

are able to achieve emulsions with droplet in the nanometer range. The efficiency of the

homogenisation also depends on the design of the homogenising valve to a high extent,

including its geometry and dimensions. [163] Due to the shear forces and conversion of

mechanical work into heat, the temperature of the sample increases linearly with the

homogenisation pressure. [164, 165] It is therefore not uncommon to assemble a cooling

heat exchanger or similar device to the outlet, in order to control the temperature of

the liquid, as excess heat has the potential of affecting droplet formation. In addition,

overheating of the sample could be particularly concerning for preparations including

temperature sensitive components, such as hydrophobic drugs to be encapsulated. The

temperature rise ∆T of the liquid during high pressure emulsification can be estimated to

be [166]

∆T =
P

C · ρ
(2.17)

where P is the applied pressure, C is the specific heat of the liquid and ρ its density. Figure

2.9 shows the temperature change at the exit of the homogenising nozzle for different

production pressures, for the specific cases of squalane-in-water and triacetin-in-water

emulsions (φ = 0.1). The temperature changes expected for the production pressures used

within this project (35− 175 MPa) were ∼ 10− 45 ◦C. Hence the outlet was kept at 4 ◦C

to avoid overheating of the emulsions.
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Figure 2.9: Calculated temperature increase through the homogenising nozzle with the
homogenisation pressure for squalane-in-water and triacetin-in-water emulsions.

Several authors have studied the dependence of the emulsion droplet size with the

production pressure. [135, 157] The energy density is used to compare the mechanical

energy input per unit volume in the area where droplet disruption occurs. In high pressure

devices, the energy density is simply [167]

Ed = ∆P (2.18)

with ∆P the pressure difference at the homogenising nozzle. Ed has a direct effect on the

size of the droplets after homogenisation. In general, the increase in the homogenising

pressure results in reduced droplet size. [165,168–170] For high pressure homogenisers this

relationship can be written as [134,157]

d = C · Ebd (2.19)

The constant C depends on the efficiency of the droplet disruption, and b depends on

the flow conditions under which the oil volume is dispersed into the continuous phase.

For high-pressure homogenisers, b is between −0.6 (turbulent-inertial flow regime) and

−0.75 (turbulent-viscous flow regime)1. [155] The reduction in droplet size is limited by

the amount of surfactant available in the continuous phase, as there must be enough to

fully coat newly created droplets. Emulsification of the system at this stage has been

reported not to have an effect in the size distribution of the droplets, and occasionally

lead to increased droplet size due to overprocessing. [147] As for droplet size, the number

1The flow regime depends on the dimensions of the homogeniser. [147]
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of droplets in an emulsion is limited by the amount of surfactant. There are however

limited studies concerned with this. At constant Ed, droplet size has been observed to

increase for increasing oil volume, [169] which could be attributed to insufficient surfactant

to completely cover the new droplets. [159]

Together with the homogenisation pressure, the oil volume and the presence of enough

surfactant, there are other factors that affect the size of the droplets. The viscosity of the

continuous phase and the oil, and the interfacial tension between the oil and the water

both play a role in the final droplet size. For the turbulent conditions that occur at the

homogenising valve in high-pressure homogenisers, the maximum size droplet that persists

during homogeniation is [135,147,171,172]

d =
γ

(Ed · ηc)
1
2

(2.20)

with ηc the viscosity of the continuous phase. This expression holds if droplet disrup-

tion occurs mostly under a turbulent-viscous regime. For water as the continuous phase,

the regime under which droplets are formed in high-pressure homogenisers is turbulent-

intertial. [171] In case turbulent-inertial regimes dominate the droplet breakage, the max-

imum diameter that survives is

d =

(
γ3

Ed · ρ

) 1
5

(2.21)

This tendency has been qualitatively explained from the point of view of the turbulence

created at the nozzle. Droplet deformation time is increased for larger oil viscosity and,

at constant energy input, only disruptions that last for longer than droplet deformation

time can cause effective droplet disruption. [134]

2.2.4 Mechanisms for emulsion breakdown

There are several mechanisms associated to the breakdown of emulsions, each of which

arises from specific characteristics of the emulsion. These processes are shown schem-

atically in figure 2.10. Emulsions destabilising processes may occur simultaneously or

consecutively, and the analysis of the forces involved are not simple. [136]
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Figure 2.10: Emulsion destabilisation can occur though different pathways. These break-
down processes can take place simultaneously or consecutively, and can lead to complete
separation of the oil and the water phase.

The size and density of the droplet affects directly the rate of sedimentation (or cream-

ing) of emulsions. These two processes arise from the density mismatch between the

disperse and the continuous phase. For sufficiently small droplets, Brownian motion dom-

inates over gravitational force, thus conferring nanoemulsions (r < 50 nm) with enhanced

stability against these two processes. [173] Nanoemulsions such as the ones prepared within

this project (∼ 100 − 300 nm) are susceptible of both sedimentation (or creaming) and

Brownian motion. The concentration of droplets at a distance h from the top of the

emulsion (φ(h)) is given by [147]

φ(h) = φ0 · e
−4πr3∆ρgh

3kT (2.22)

where φ0 is the concentration of the droplets at the top of the emulsion, ∆ρ is the density

difference between the medium and the disperse phase, g is the gravity, h is the position

from the top of the emulsion, T is the absolutely temperature and k is Boltzmann’s

constant. A reduction in the density difference between the droplets and the medium can

lead to diminishing the sedimentation (or creaming) of nanoemulsions. These processes

lead to concentration of the emulsions in specific regions. It is not surprising then that

additional breakdown processes follow sedimentation and creaming of the nanoeumlsions,

as they are favoured by the proximity between the droplets.
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Ostwald ripening and coalescence are considered the two main mechanisms for nanoemul-

sion breakdown. [147,173] Coalescence is the process by which smaller droplets merge into

larger oil volumes. The susceptibility of two nanodroplets stabilised with a surfactant

to coalesce has been attributed to the dynamics of the stabilising molecules at the in-

terface. [174] Ostwald ripening is the process by which larger oil droplets grow in size in

detriment of smaller droplets, which are reduced in size. This phenomenon arises from the

partial solubility of the disperse phase in the continuous phase, and the increase in solu-

bility of the material inside the droplet as the size of the former decreases. [175] Ostwald

ripening can be assessed as [147,176]

r3 =
8

9

SbγVmD

ρRT
t (2.23)

where Sb is the solubility of the disperse phase in the continuous phase, γ is the interfacial

tension, Vm and D are the molar volume and the diffusion coefficient of the disperse phase,

respectively, ρ is the density of the disperse phase and R is the gas constant. In cases in

which the solubility of the disperse phase in the continuous phase is very small, Ostwald

ripening is negligible.
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Chapter 3

Experimental Techniques

This chapter provides an overview of the experimental techniques used in this project.

These include imaging, sizing and counting techniques, QCM-D, UV-VIS spectroscopy

and fluorescence spectroscopy. The chapter also contains details of the methods followed

to prepare SBLMs, MBs and Qdots, used within the project. A list of all the chemicals

used and their suppliers, as well as the equipment and manufacturers, can be found in

appendix A.

3.1 Lipids preparation and procedures

Upon arrival, lipids were dissolved in 1 : 1 chloroform:methanol for aliquoting, in

order to equally fraction the lipid mass. Chloroform:methanol was removed by placing

the sample under nitrogen for at least 30 min, until a lipid film was formed around the

walls of the vial. The samples were stored dried at −80 ◦C until required. To prepare

the specific lipid combinations, the lipids were newly resuspended in chloroform:methanol.

Following the mixing of the different lipid species, chloroform:methanol was removed under

nitrogen for 30 min. The lipid mixtures were always prepared according to their mole

percentage; lipid percentages in all the preparations that are mentioned within this report

correspond mol% unless otherwise stated. The lipids were then resuspended in PBS for

further preparation via vortexing, unless stated otherwise.
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3.1.1 Preparation of vesicles by tip sonication

Vesicles for bilayer formation were prepared by tip sonicating 1 mg/ml lipid mixtures

in PBS for 30 min at 4 ◦C. For clarity, details on the lipid composition of the different

vesicle preparations are provided in the correspondent sections. After sonication, unwanted

titanium particles from the sonication tip were removed by centrifuging the solution at

14500 rpm for 1 min. After the titanium precipitated to the bottom of the vial, the

supernatant was carefully transferred to a new container. PBS was added to the vesicle

solution when dilution of the sample was required.

3.1.2 Lipid for MB preparation

The lipid shell of the MBs generally consisted of 95% DPPC and 5% biotin-PEG2000-

DSPE or PEG2000-DSPE. [177] 0.1% Atto 488 or Atto 590 DOPE was added to the

lipid mix for fluorescence imaging when required. Dried lipid mixtures were resuspended

in bubble solution (1% glycerol 4 mg/ml NaCl) [133] or PBS to make a 1 mg/ml lipid

solution. The vial was then sonicated in a heated sonication bath (∼ 60 ◦C) for at least

1 h or until the solution appeared cloudy and homogeneous. The solution was allowed to

cool down to room temperature and then vortexed to ensure homogeneity of the sample.

When required, 10 µl of C6F14 was added to the lipid solution, which has the effect of

increasing MB lifetime. [178]

3.2 Qdots

Hydrophobic Qdots were used in preliminary studies as a hydrophobic drug mimic.

This section describes the experimental method followed to synthesise CIS/ZnS Qdots,

and describes the procedure used to determine the concentration of the QDots in the

synthesised sample.
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3.2.1 Synthesis of CIS/ZnS Qdots

CIS/ZnS Qdots were prepared as described in the literature, introducing a few minor

modifications to obtain Qdots with larger sizes. [179] This was expected to translate into

longer emission wavelengths, nearer the infrared, which is desirable for biomedical applic-

ations.

Indium acetate (0.584 g), copper iodide (0.380 g) and 1-dodecanethiol (10 ml) were

mixed in a three-necked flask, kept under a flow of nitrogen reflux with the use of a

bubbler connected to a condenser column. The dodecanethiol provided the hydrophobic

coating required for these Qdots, as they must be able to disperse in oils. The mixture

was then heated to 100 ◦C while stirring. The temperature was kept at 100 ◦C for 10

min, until a transparent solution was formed. The flask was heated up to 210 ◦C. As

the temperature was raised, the color of the mixture changed from yellow to dark orange,

indicating nucleation and growth of the nanocrystals (starting at about 180 ◦C). The heat

was turned off after 15 min. The colour of the solution was dark red. The stability of the

Qdots was improved by adding an inorganic zinc (ZnS) shell. Zinc diethyldithiocarbamate

(Zn DEC) (8 mol) was diluted in 1-octadecene ODE (10 ml). Then this solution was

progressively added to the Qdots synthesis while stirring. The temperature of the reaction

was then set to 100 ◦C and refluxed for 1 h. The incubation was followed by the washing

procedure. Centrifugation of the nanocrystal solution (10 min, 5000 rpm) led to their

precipitation so the solvent could be removed without losing Qdots. A fresh isopropanol-

acetone-chloroform (1 : 10 : 1) was added and the pellet resuspended by brief sonication.

The whole process was repeated two times, followed by another two washes using only

acetone to resuspend the Qdots. The sample was finally resuspended in hexane and stored

in the fridge.

3.2.2 Determining the concentration and size of Qdots

The Qdot concentration can be calculated from the molar extinction coefficient if their

size is known. The size of the Qdots was first determined based on the position of the

maximum of the spectral emission peak using an empirically derived expression [180,181]:

d = 68.952− 0.2136λ+ 1.717× 10−4λ2 (3.1)
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where d is the size of the Qdots and λ is the maximum emission wavelength. The

molar extinction coefficient, ε, of CuInS2 has been shown to be given by

ε(3.1eV ) = 2123d3.8 (3.2)

Once the molar extinction coefficient had been determined the concentration, C, was

calculated using the Beer-Lambert law [182]:

A = εCL (3.3)

were L is the path length of the radiation beam used.

3.3 Light absorption and emission studies

Molecular light absorption and emission are the result of discrete electronic energy

levels, whose separation is defined by Planck’s equation

∆E = hν (3.4)

where h is Planck’s constant and ν is the frequency of the absorbed light. Equation 3.4

implies that photons with specific energy ∆E need to be absorbed by the molecule, in

order for the electrons to overcome the energy gaps between the energy levels. In other

words, the quantization of the electronic levels in a molecule results in the absorption

of light of specific wavelengths. A molecule that becomes excited after the absorption

of light is likely to lose its excess energy by the emission of radiation (figure 3.1). [183]

Electrons promoted to higher electronic energy states relax to the lowest energy level in

around 10−8 s, resulting in the release of a photon. This effect is known as fluorescence.

Certain molecules can undergo an intersystem crossing, which translates into much longer

relaxation times of the order 10 s−1. This phenomenon is called phosphorescence. [184]
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Figure 3.1: Molecular light absorption and emission processes, illustrated schematically. Due
to the quantization of the molecular energy levels, only specific light wavelengths are absorbed
or emitted by electrons moving between different levels. Absorbed light can promote electrons
to higher energy levels, that relax to the lowest energy levels following different paths. [184]

Fluorescence and light absorption in the UV-VIS have been widely used in this project

to investigate the autofluorescence properties of candidate oils, and also to determine

the concentration of compounds in solution via the Beer-Lambert law (equation 3.3).

This section describes the techniques used to study fluorescence and light absorption of

compounds and samples.

3.3.1 Fluorescence Spectroscopy

Fluorescence spectroscopy was used to measured the fluorescence emission of differ-

ent samples. The fluorescence spectrometer used within this project was equipped with a

xenon lamp to produce the excitation light, which can range 250−790 nm. In this spectro-

meter, monochromators are used to select both the excitation and emission wavelengths.

These monochromators contain holographic gratings in order to reduce stray light. The

fluorescence was detected with photomultiplier tubes. Quartz cuvettes with 1 cm light

path length were used in all of the experiments. In all cases, emission spectra were re-

corded for a range of excitation wavelengths, from 250 − 550 nm, and in steps of 25 nm,

unless stated otherwise.
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3.3.2 UV-VIS Spectroscopy

Light absorption of compounds is typically measured using a UV-VIS spectrometer.

This instrument measures the radiant power of light after it has passed through a liquid

sample. By computing the ratio of radiant power through the solution of interest and a

reference, it provides the transmittance and absorption of the compound. The light from

the source is modulated through a monochromator, which only allows one narrow band of

wavelengths to pass through the sample. Quartz cuvettes with a 1 cm path length were

used for all of the measurements. Spectra were recorded between 200−700 nm, performing

a minimum of three measurements per same sample and averaging the results.

3.3.3 In Vivo Imaging System

In Vivo Imaging System (IVIS) is a highly sensitive imaging system which allows for

non-invasive bioluminescence studies in vivo. IVIS finds multiple application in the clinical

research; for example, it is broadly used for localising fluorescent compounds delivered in

vivo using drug delivery system under development. [185, 186] IVIS is equipped with 10

excitation filters with a 30 nm bandwidth, which enable the modulation of the excitation

light in between 430− 730 nm. When imaging in epi-illuminating mode, the specimen is

irradiated with a defined λem, that excites the fluorophore within the specimen. Emission

light modulated through the emission filter is detected with a CCD camera placed over

the specimen. There are 18 emission filters which record emitted light ranging 490− 850

nm. IVIS measures the radiant efficiency, defined as the ratio between the power of the

emission and excitation light:

Radiant Efficiency =
Emitted light

Excitation light

[
photons / s /cm2/ str

µW / cm2

]
(3.5)

3.4 Microscopy techniques

This section describes the microscopy techniques used to image LONDs and MB-

LONDs within this project.
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3.4.1 Epi-fluorescence microscopy

In an epi-fluorescence microscope, a fluorescent specimen is illuminated with a nearly

monochromatic light, which results in fluorescence emission on a narrow spectral band

(figure 3.2). Epi-fluorescence microscopes are generally equipped with a high intensity

mercury-vapour lamp as a light source. An excitation filter (ExF) is placed in the light

path to select the wavelength for illuminating the sample. A dichroic mirror (DM) is used

to direct the light to the sample, and to allow the fluorescence emitted light to reach an

emission filter (EmF) and ultimately a detector.

Two epi-fluorescence microscopes were used for taking fluorescence images. One was

mounted under the fluidic set-up for MB production, and was used to confirm the forma-

tion of MBs and their fluorescence when applicable. This microscope is referred to as Nikon

Eclipse Ti-U in this report. The second one (referred to as Nikon E600) was equipped

with a more sensitive camera, and therefore was used to image MB-LONDs composites

contained in a home-made flow cell. Both microscopes were equipped with a FITC (ExF

465 - 495 nm, DM 505 nm, EmF 515 - 555 nm) and a Texas Red (ExF 540 - 580 nm, DM

595 nm, EmF 600 - 660 nm) filter.

Figure 3.2: Schematic showing the light path in an upright epifluorescence microscope.
An excitation filter is used to select the wavelength with which the fluorescent specimen is
illuminated. A dichroic mirror placed on the light path helps directing the beam. The emitted
fluorescence wavelength is further refined using an emission filter before the detector, usually
a CCD camera.
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3.4.2 Confocal microscopy

A confocal microscope is a fluorescence microscope with an pinhole added on the light

path, which excludes light emitted in regions of the specimen other than the focal point.

The rejection of light from out-of-focus regions results in a small depth of detection, redu-

cing the recorded fluorescence background and also allowing 3D mapping of the samples.

A set of mirrors is used to direct the focused light beam across the sample, usually from

a laser source (laser scanning confocal microscope). The confocal microscope used in this

project was equipped with 488 nm, 552 nm and 638 nm lasers, which allowed for visual-

isation of Atto 488 DOPE, Atto 590 DOPE and Nile Red. The system was also equipped

with 2×, 10× objectives, and also 60×, 100× oil immersion objectives.

Confocal microscopy was used to image MB-LONDs composites using polyethylene

terephthalate spacers with a thickness of 50 µm were to construct a chamber delimited by

the coverslip and a microscope slide. The chamber was sealed using wax, which prevented

the sample from drying off, and also avoided direct contact between the sample and the

microscope objectives.

3.4.3 Transmission Electron Microscopy

Transmission electron microscopy (TEM) uses a beam of electrons focused on a thin

sample to produce an image with a resolution of up to 10−10 m. The contrast of the

imaging depends on the density of the specimen compared to its surroundings. Thus heavy

metal stains such as uranyl acetate are regularly used in TEM imaging for increasing the

contrast of biological samples, as uranyl ions interact with proteins and lipids, increasing

the electron density and therefore the contrast of the images. TEM was used to image

LONDs. Sample preparation is detailed in section 5.6.1 (page 94).

3.5 Size and concentration measurements

This section describes all the techniques used to size and determine the concentration

of LONDs, MBs and MB-LONDs composites.
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3.5.1 Dynamic Light Scattering

DLS is a technique for measuring size distribution of particles in solution. The particles

are irradiated with a monochromatic beam (specifically, a He-Ne laser 633 nm was used

in this project), which is scattered in all directions by the particles undergoing Brownian

motion. Over time, the displacement of the particles produces fluctuations of the intensity

of the scattered light. The dynamic properties of the solute depends on its size, as described

by the Stokes-Einstein equation

D =
kbT

6πηr
(3.6)

where D is the translational diffusion coefficient of the particle, kb is Boltzmann’s

constant, T is the temperature, η is the dynamic viscosity of the solution and r is the

radius of the particle, assumed to be spherical. The analysis of the intensity fluctuations

over time can be analysed using an autocorrelation function. [187] For a monodisperse

sample, cumulants-based analysis uses a single exponential decay,

C = e−2Dq2τ (3.7)

where τ is the decay rate of the function, D is the diffusion coefficient of the particles

in the solution and q is the scattering vector q = 4πn
λ sin θ

2 , with n the refractive index of

the media, λ the wavelength of the laser used for illuminating the sample (633 nm), and

θ the scattering angle. Within this project, the scattered light was always recorded at the

backscatter angle, and therefore θ = 173 ◦ The fitting of autocorrelation function is only

valid for solutions particles homogeneous in size. [188] This analysis also estimates the

width of the size distribution, the polydispersity index (PI), which in the specific setup

used within this project ranges 0− 1.

A ZetaSizer was used to determine the size of LONDs within the project. Plastic

disposable cuvettes were used to analyse the samples. Generally, 10 µl of the LONDs

sample was diluted in 990 µl in PBS. Three measurements were performed on each sample,

each of which provided the average of a number of readings, optimised by the Zetasizer

according to sample characteristics such as polydispersity and concentration (typically

between 11 and 17 runs per measurement). These three measurements were used to
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produce an average result for size distribution. Mode and average sizes of LONDs were

determined from this average result.

3.5.2 Single Particle tracking for size and concentration measurement

In a similar fashion to DLS (section 3.5.1), NanoSight relies on light scattering from

particles in solution and their Browninan motion (equation 3.6). [189] A 532 nm laser

is shone into a chamber containing particles in solution, at a 45◦ angle. Light scattered

from each particle is visualised with a 20× objective, and a camera mounted onto it is

used to record videos of the solution (typically 30 s videos). Single particle tracks are

analysed on the recorded videos, providing individual diffusion coefficients and therefore

sizes individually calculated for each particle (equation 3.6).

A NanoSight instrument was used for determining the concentration of LOND samples,

and also to obtain an alternative size measurement of the LONDs. LONDs 1 : 106 dilutions

were generally used, unless otherwise stated. PBS was always filtered through a 200 nm

pore size membrane. NTA software was used to record the data. Three videos of 30 s each

were recorded per experiment; the volume of the sample inside the observation chamber

was exchanged between different video recordings, so that a different set of particles was

analysed each time. NTA provides a value for the mode size of the particles finding the

maximum intensity in the distribution, and average size integrating the area under the

distribution curve.

3.5.3 Tunable Resistive Pulse Sensing

qNano is based on the tunable resistive pulse sensing technique, and provides a meas-

urement of particles suspended in a solution containing electrolytes. qNano consists of a

conical nanopore etched in a flexible polyurethane membrane, placed between two fluid

chambers that contain an electrode each. A nanoparticle suspension is conventionally

placed in the top chamber, and the particles are driven through the nanopore using a com-

bination of pressure and voltage (electrophoretic mobility and electro-osmosis). Particles

passing through the nanopore cause temporary blockages of the current between the top

of the bottom chamber, known as blockade events. The functioning of a qNano is schemat-
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ically shown in figure 3.3. The blockade signal is measured and analysed by the software,

comparing it to the blockade signal from a sample of known diameter. The number

of blocking events gives a measure of the concentration of the particles in the solution,

whereas the magnitude of the event provides information about the size of that specific

particle. [190]

Figure 3.3: Schematic showing the functioning of qNano. Nanoparticles passing through a
nanopore cause temporary decrease of the current between two electrodes, one at each side
of the nanopore. The magnitude of these blockade events provides information regarding the
size of the particles, whereas the number of events recorded relates to the concentration of the
particles in the solution.

qNano was used to determine the size and concentration of LONDs. In all qNano

measurements shown within this report, the concentration of LONDs was measured using

a 200 nm nanopore. A 1 : 1000 dilution of carboxylated polystyrene calibration particles

were used as reference. In general, 1 : 1000 dilutions (in PBS) of the LOND samples were

used for concentration measurements.

3.5.4 Optical counting

The size and concentration of MBs and MB-LONDs were measured optically. Mi-

croscope images were analysed to account for the number of MBs present in a known

volume, and the size of the MBs were measured whenever their diameters fell within the

optical limit of the microscope. Bright field images were taken using the Nikon Eclipse

Ti-U. Polyethylene terephthalate spacers with a thickness of 50 µm were used to construct

a chamber delimited by the coverslip and the microscope slide. The specific separation

between the two provided a known volume for the imaging chamber. The spacers also pre-

vented the coverslip from coming into close contact with the slide, and therefore prevented
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the MBs from being squeezed. This could distort the shape of the MBs and potentially

compromise the measurement of the radius. After a gentle shake of the vial, around 30 µl

of MB (or MB-LONDs) solution was carefully pipetted near the boundary of the coverslip,

capillary action helping the liquid into the chamber. Figure 3.4 shows an example of a

MB sample imaged in bright field. MBs appear as dark rings on a clearer background,

with a characteristic white spot in their center. Sets of 10 or 15 pictures were taken, from

different regions of the specimen, to increase the statistical significance of the measure-

ment. The images were analysed using imageJ, implementing a in-house made macro that

automatically counts and sizes the MBs. MBs with sizes below the optical resolution of the

microscope (∼ 0.75 µm) are not counted optically, therefore limiting this technique. [191]

Figure 3.4: MBs imaged in bright field, using a 40× objective with 1.5× internal magni-
fication. A macro is implemented in imageJ to count and determine the size of the circular
areas of the MBs on the picture. The histogram shows the size distribution of the MB in this
specific bright field image.

3.6 Quartz Crystal Microbalance with Dissipa-

tion

Quartz Crystal Microbalance with Dissipation (QCM-D) was used to study the bind-

ing affinity of StreptAvidin and biotin, and also the attachment of LONDs to model

membranes via the biotin-NeutrAvidin binding chemistry. Alternative linking chemistries

(PDP/Maleimide-thiol) for the attachment of LONDs to model membranes were also ex-

plored using QCM-D For both studies, solid-supported bilayer lipid membranes (SBLMs)

were chosen as a model surface for the attachment of StreptAvidin and to mimic the

NeutrAvidin-functionalised MB surface to study LOND attachment. QCM-D takes ad-
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vantage of the piezoelectric properties of the quartz and uses it as a mass adhesion sensor,

which is able to resolve down to 0.5 ng/cm2. When a rigid film is adsorbed onto an oscil-

lating quartz crystal, the change in the oscillation frequency of the sensor is proportional

to the change in mass, as described by the Sauerbrey equation, [192]

∆f = − 2nfo
2

A
√
ρqµq

∆m (3.8)

where fo is the resonant frequency of the crystal, A is the area of the crystal, n is the

overtone at which ∆f is being studied and ρq and µq are the density and shear modulus of

quartz, respectively. The Sauerbrey equation assumes that the mass adhered to the crystal

is homogeneously distributed over the crystal, that it does not have any energy dissipation

and that its internal friction is negligible. [193] However, organic layers adsorbed on the

quartz sensor are generally highly viscoelastic and have large energy dissipation during

oscillation. In this case, ∆f is no longer directly proportional to ∆m, but it depends

on the mechanical properties of the film, including shear modulus and viscosity. [194]

Based on the Kelvin-Voigt viscoelastic model, ∆f and ∆D of two thin viscoelastic layers

covering the surface of a quartz crystal oscillating in a Newtonian liquid can be calculated

as [193–199] (figure 3.5)

∆f ≈ − 1

2πρqhq

η3
δ3

+
∑
i=1,2

(
hiρiω − 2hi

(
η3
δ3

)2 ηiω
2

µi2 + ω2ηi2

) (3.9)

∆D ≈ 1

2πfρqhq

η3
δ3

+
∑
i=1,2

(
2hi

(
η3
δ3

)2 µiω

µi2 + ωηi2

) (3.10)

where ρq and hq are the density and thickness of the quartz crystal, respectively, η3 is

the viscosity of the bulk liquid, δ3 is the penetration depth of the shear wave in the liquid,

ω is the angular frequency of the oscillation, and the properties of the viscoelastic layers

are represented by four parameters: density (ρi), viscosity (ηi), shear modulus (µi) and

thickness (hi).
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Figure 3.5: Schematic of the arrangement of viscoelastic layers on a QCM-D sensor. The
system oscillates in bulk liquid with an angular frequency ω.

For fitting the data obtained in the QCMD experiments, the parameters δ3 and η3

were typically fixed to δ3 = 1000 kg/m3 and η3 = 0.001 Pa·s. For the layers, the thickness

hi was normally varied between 10−10− 10−7 m, the shear modulus µi between 104− 1012

Pa and the viscosity ηi between 0.001−0.01 kg·ms. The density of the layers was adjusted

depending on the the specific binder. For LONDs, the density was that of the encapsulated

oil, 850 kg/m3 in the case of squalane, and 1150 kg/m3 for triacetin LONDs.

3.6.1 QCM-D experimental set-up

QCM-D sensors are made of a quartz thin layer placed between two electrodes. Upon

the application of an electrical field, the quartz crystal oscillates at its resonant frequency,

which vary depending on the adsorbed layers onto it. QCM-D crystals are commercially

available with a range of different coatings, such as gold and copper, for experiments with

different binders. Silica-coated quartz crystals were used in all QCM-D experiments in

this report.

Prior to the experiments, the QCM-D sensors were always thoroughly cleaned, in this

order, by 5 min sonication in 1% Decon90, MilliQ and 70% isopropanol. After this, any

liquid remaining on the sensors was dried under a N2 stream. The crystals were then

cleaned in a UV/Ozone oven for 20 min. Once cleaned, the sensors were placed inside

the flow chambers in the QCM-D instrument, and the chambers tightly locked to ensure
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correct crystal hold. A buffer was then flown in the chambers, using a high precision

multichannel dispenser. The specific resonances for each sensor were found, including

a number of harmonics (typically 3th to the 11th). All solutions flowed in the sensors

chambers were always degassed beforehand to prevent the formation of air pockets on

the surface. Degassing was performed immersing the bottles containing the solutions

in an ultrasonication bath while connected to a vacuum pump for at least 15 min. The

measurement in QCM-D was started flowing a buffer into the flow chambers at 0.1 ml/min

and until the baseline for f and D was stable (i.e. no drifting). The buffer used for

obtaining this stable baseline was typically the one in the first sample is prepared (i.e.

PBS). Once the signals reached a steady value, the measurement was re-started, which

effectively calibrated the values for the frequency and dissipation to 0. This means that

the frequency and dissipation signals observed after calibration reflect the changes due to

the adhesion of mass, ∆f and ∆D. All QCM-D results shown in this thesis were obtained

following an identical procedure, and thus any changes in frequency and dissipation in

the different systems are comparable. This calibration step was followed by sequentially

flowing the sample solutions into the modules at 0.1 ml/min.

3.6.2 Formation of SBLMs for QCM-D experiments

Solid-supported bilayer lipid membranes (SBLMs) were used to study the binding of

StreptAvidin and LONDs in QCM-D. The formation of a SBLMs in QCM-D is shown

schematically in figure 3.6. Vesicles flowed into the system accumulate on the QCM-

D sensors and eventually fuse to form a SBLM (figure 3.6, region 1). [200–202] SBLM

formation is typically followed by washes with different buffers, to ensure complete removal

of excess material before performing any further experiments. First, a rinse with the same

buffer (typically PBS) in which the vesicles were contained is performed (figure 3.6, region

2). No changes in frequency or dissipation are detected, as the number of ions coupled to

the detector is constant throughout this washing step. Second, a washing step with MilliQ

is performed (figure 3.6, region 3). The reduction in the number of ions in the SBLMs

environment translates into a reduction in the frequency (as less mass is coupled to the

sensor). Similarly, a reduction in the dissipation is observed, given that the friction of the

SBLMs with its surroundings is reduced. The washing cycle is finished with the original

buffer (figure 3.6, region 4), during which the original frequency and dissipation values are
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Figure 3.6: Semi-schematic showing the formation of a SBLM in QCM-D. Vesicles flowed
into the chambers are accumulated on a silica-coated quartz crystals and eventually break to
form a SBLM (1). The system undergoes a series of rinses, starting with the same buffer that
contained the vesicles (2) and followed by MilliQ (3) to ensure complete removal of excess
material. The washing cycle is always finished with buffer (4).

recovered.

In these experiments, SBLMs were always formed by vesicle adsorption and rupture

on the surface of the QCM-D sensors. Vesicles were prepared as described in section

3.1.1 (page 28). POPC was used as main lipid in all SBLMs formed, to which different

percentages of molecules of interest (such as biotin-PEG2000-DSPE or PEG2000-DSPE)

were added. The vesicle solution was adjusted to a final concentration of 0.2 mg/ml. Prior

to SBLM formation, the QCM-D sensors were prepared as described in section 3.6.1. Once

they were set up, the vesicle solution was flowed into the chambers at a flow rate of 0.1

ml/min. PBS and MilliQ washes followed SBLMs formation. The flowing time varied

between experiments, but was never less than 20 min. As mentioned above, this rinsing

cycle was always finished with a PBS rinse before the addition of StreptAvidin or LONDs.

3.7 Formation of MBs

In this project, MBs were formed both using microfluidics and by mechanical agita-

tion, and MB-LONDs were always formed on-chip. This section describes the two methods

used for preparing MBs, the experimental procedure for preparing MB-LONDs. All micro-

fluidically prepared MBs were formed in the micro-spray regime. Two different geometries

were used, one for the production of MBs only, and one for the production of MB-LONDs

composites. These geometries are described below, and the experimental set-up for using
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them is provided. All chip designs shown in this section were designed by Dr. Sally A.

Peyman.

3.7.1 On-chip preparation of MBs

This section describes the production of MBs and MB-LONDs microfluidically.

3.7.1.1 Fluidics set-up

The microchips were fabricated by Epigem in poly(methyl methacrylate) (PMMA) and

SU-8 via photolithography. Home-built PMMA manifolds, which contained PTFE tubes

for liquid and gas lines were brought into firm contact with the microchips using a lever

clamping arm. The manifold also contained a PTFE tube connected to the outlet, for

sample collection. Manifolds were designed to specifically fit the inlets and the outlet of

each of the microchips. Fluid flow to the microchip was delivered via a pressure P-Pump

and the gas was regulated by a digital gas flow controller. A second fluid flow (for the

addition of LONDs) was controlled using a syringe pump. Both the pressure P-pump

and the syringe pumps, as well as the gas flow were controlled via a PC. This set-up

was mounted onto an inverted Nikon Eclipse Ti-U used to monitor the functioning of the

fluidics as well as MB formation (see 3.4.1).

Figure 3.7: Schematic showing the set-up of the microfluidic device for MB-LONDs form-
ation. Liquid and gas inlets were fitted onto an in-house made manifold, which was later
brought into firm contact with the microchip using a lever clamping arm. The set-up allowed
for live, in situ, microscopic visualisation. Inlets 1, 2 and 3 were used to bring in LONDs
solution, the gas phase and the lipid solution, respectively.
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3.7.1.2 Preparation of MBs

For MB formation a chip with 4 independent MB formation devices (referred to as

4× multiplexed chip, or simply multiplexed) allowed for rapid preparation of MBs (figure

3.8) [133]. This chip had two inlet channels, one for the gas phase and one for the lipid

solution for MB stabilisation. Both the gas and the liquid inlet channels branched into

four separate channels to feed the four flow-focusing modules. The width of the liquid

inlets was 50 µm and the gas inlet 30 µm. The chips had a depth of 25 µm, with an

additional layer of 25 µm beyond the nozzle for a 3D expansion in the MB formation area

to facilitate MB formation in the micro-spray regime.

Figure 3.8: Multiplexed microchip design for MB formation. The chip contains four identical
flow-focusing modules, numbered 1 − 4. MBs are formed in the micro-spray regime. Chip
design is credited to Dr. Sally A. Peyman, and it is detailed in reference [133].

Lipid solution was prepared as described in section 3.1.2. Once the lipid solution had

cooled down, it was introduced into the device using a pressure pump (section 3.7.1.1) at

80 µl/min. This corresponds to 20 µl per flow-focusing module. The Reynolds number

(equation 2.5, page 14) for the lipid inlets at this flow rate was calculated to be Re ≈

9 × 10−3, which is considerably less than one and thus the flow here was expected to be

laminar. C4F10 or C3F8 gas were pumped in the chip at 103 or 140 kPa, depending on

if a spray-like profile appeared at the nozzle. The Reynolds number beyond the nozzle

could only be estimated using the velocity of the liquid, as there velocity of the gas in the

channels, at the given pressure, was unknown. Hence the calculated value, Re ≈ 6× 10−3

would be grater if the contribution of the gas velocity was considered. In fact, the flow

in this region was observed to be turbulent, which indicates that gas plays an important

role in determining the flow regime beyond the nozzle.
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3.7.1.3 Preparation of MB-LONDs

For MB-LONDs formation, the microchip design included a flow-focused region for

MB formation in the micro-spray regime, followed by a serpentine mixing geometry to

allow for attachment of LONDs to MBs (figure 3.9)1. The width of the channels for the

liquid phases the gas were 300 µm. At the nozzle region, the width of the liquid inlets

was 50 µm and the gas inlet was 30 µm. The depth of the channels was 25 µm, with an

additional layer of 25 µm in the outlet. LONDs were added to incorporate to the MB

solution after the nozzle region. These channels narrowed down from 300 µm to 100 µm

to avoid back pressure created by the long, narrow channels, and the LONDs solution

moving backwards in the channel. The depth of the serpentine was 50 µm, and the width

was 270 µm. The total length of the region for MB and LONDs mixing and attachment

was 56.6 mm.

Figure 3.9: Microchip design for MB-LONDs formation. MBs are formed first, in the micro-
spray regime, and LONDs are added further down stream. LONDs and MBs are mixed
together through the mixing serpentine, where the LONDs bind to the MB surface via the
biotin-NeutrAvidin chemistry.

For MB-LONDs formation, the lipids were first prepared as described in section 3.1.2.

The lipid mixture was introduced into the microfluidic device through the aqueous phase

inlet and perfluorobutane C4F10 was flowed through the central inlet. Liquid flow rate was

20 µl/min and the gas pressure was 103 psi. Similarly to the calculation done previously

1design credited to Dr. Sally Peyman.
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for the multiplexed microspray chip, the Reynolds number in the liquid inlets was found to

be Re ≈ 9× 10−3. The estimate for the Reynolds number in the serpentine area resulted

Re ≈ 0.02, which would be enlarged if considering the contribution of the gas velocity.

Prior to MB-LONDs preparation, LONDs were incubated with 3 µM of NeutrAvidin with

gentle agitation to allow mixing. LONDs were incorporated mixed with the MB solution

at a concentration of 1011 LONDs/ml at 20 µl/min flow rate. Preceding imaging, the

sample was washed from unattached LONDs, unless otherwise stated. This was done

with 1 ml PBS in a vial, allowing the MB-LONDs to rise, due to their intrinsic buoyancy,

through the liquid volume up to the top. This top layer was collected and the process

was repeated again through a fresh PBS volume to ensure removal of most of the excess

material. Alternatively, MB-LONDs were cleaned in a flow cell in which PBS flowed at 0.13

ml/min for about 2 h. This was done for MB-LONDs imaging, and both epi-fluorescence

and confocal fluorescence microscopy were used.

3.7.2 Production of MBs by mechanical agitation

Mechanical agitation is a method for MB production in which energetic shaking of

a surfactant-containing solution with a head-space gas results in gas encapsulation by

the surfactant. For preparation of mechanically agitated MBs, lipids were prepared as

described in section 3.1.2. After bath sonication, the lipid solution was gassed with C3F8

or C4F10 for around 10 min, which displaces the other gas molecules dissolved in the liquid

and remaining in the head-space volume. The lipid solution and the head-space gas were

mechanically agitated for 30 s using a mechanical agitator. The MB solution was normally

diluted 1 : 10 before imaging.

3.8 Biosafety cabinet. Functioning and protocols

Preparation of LONDs for in vivo or in vitro experiments required the samples to be

sterile. This work was performed inside a Class II A1 Biosafety Cabinet. The cabinet

(also referred to as biohood) is an enclosed space that allows samples susceptible of con-

tamination to be handled safely. In this case, the cabinet prevented sterile samples from

being infected with bacteria, which is crucial for the preparation of samples towards in
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vitro cell work or in vivo testing, and also impedes air from the inside to leave the cabinet

and reach the operator. This type of cabinet has an internal, vertical and laminar filtered

air stream, which continuously exchanges the air volume inside the cabinet, flushing away

any pathogens in the cabinet’s air volume. There is also an inflow air stream, which flows

at 0.40 m/s into a grille placed near the operator, by the entry of the cabinet, and reaching

the sterile environment inside the cabinet. Biosafety cabinets commonly have a sliding

transparent glass window that allows the operator to see inside and serves as a door to

prevent contaminants form getting in the biohood when not in use.

When switched on, the cabinet has a warm up period of 220 s. During this time, the

air circulation is started and reaches its optimal values, and also the air volume inside the

cabinet starts to be refreshed. Once the warming up process is completed, the cabinet

is suitable for working with samples that require biosafety. At this point, all surfaces

inside the cabinet were sprayed and wiped with TriGene disinfectant and then with 70%

ethanol. Laboratory utensils and consumables required for sample handling inside the

cabinet were sprayed with 70% ethanol before introducing them inside the biohood. This

included the packaging of sealed consumables, such as syringes and serological pipettes,

and the operator’s gloves before any experimental procedures. Avoiding contact of sterile

consumables with other inner surfaces in the biohood is important to avoid bacterial

infections. For the same reason, consumables that got in contact with sensible samples

were never reused.

Once the biosafety work was completed, all objects were removed from the cabinet.

All the surfaces inside biohood were cleaned with TriGene and 70% ethanol and the glass

window was slid down to stop the air flow. An UV light built-in the cabinet was switched

on for exhaustive cleaning of the inner surfaces and to prevent the formation of bacteria

colonies.
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Chapter 4

Topic: characterisation of the

candidate oils

This chapter contains the characterisation of the candidate oil, including their photo-

chemical properties (light absorption and autofluorescence), and their ability to solvate

drug mimics and the hydrophobic drugs Combretastatin A4 (CA4) and decitabine.

4.1 The candidate oils

The first steps in this project focused on the selection and study of a number of

candidate oils for LOND formation. Given the interest in using oils to form nanoemulsions

for drug delivery, biocompatibility was among the desired characteristics of the oils. Table

4.1 contains a list of the oils preliminary chosen, together with their density, viscosity and

water solubility. The molecular structure of the candidate oils are shown in figures 4.1

and 4.2. From the molecular point of view, oils containing a single type of molecule were

prioritised over blends in early stages of the project, as for medical applications having full

knowledge of the components of a delivery system is of major importance. For example,

this is the case of olive oil, which contents of oleic, linoleic and palmitic acids in olive

oil strongly depends on method of production, as well as the olive variety. [203–205], and

therefore oils with unalike origin could exhibit significantly different properties. Inherent

therapeutic properties of the candidate oils was also deemed, such is the case of squalene,

which has been reported to be tumour-inhibiting [206, 207] and eicosapentaenoic acid

(EPA), which evidence shows to have chemopreventative efficacy against colorectal cancer.

[208,209]
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Table 4.1: Some physical properties of the candidate oils*

Oil Solubility in Viscosity Density

H2O (g/l) at 20 ◦C (×10−3 Pa s) (kg/m3)

Squalane - 12 805

Squalene 0.124×10−3 11 858

Olive oil - 85 918

Triacetin 61 23 1160

Tripropionin 0.003 10 1082

Isoamyl acetate 2 7 876

EPA 0.284×10−3 35 923
∗ For reference, H2O has approximately a density 1000 kg/m3 and a viscosity 1 × 10−3 Pa s at 20 ◦C.

Figure 4.1: Molecular structure of the candidate oils, non-blends.
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Figure 4.2: Molecular structure of the main components of olive oil, oleic, linoleic and
palmitic acid. The structure of chlorophyll a is also shown, as this molecule largely contributes
to the autofluorescence of olive oil.

4.2 Light absorption and emission of candidate

oils

The use of oil as a solvent for hydrophobic drugs to facilitate their delivery in vivo re-

quired information about the physical properties of the oil itself, as well as the solubility of

target compounds in the oil. This study focused first in understanding the light absorption

and autofluorescence of the candidate oils (see candidate oils on table 4.1). The under-

standing of the fluorescence properties of the candidate oils was important as fluorescence

probes, such as Qdots or fluorescently tagged phospholipids, were intended to be used as

drug mimics or detection tools in LONDs, and the different fluorescence signals had to

be unambiguously identified. It was also necessary to ensure that no interference between

the different fluorescent signals occurred. Knowledge about the absorptive properties of

the candidate oils was of special relevance for this project, as light absorption was used to
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quantify the amount of drug encapsulated in this LONDs, and therefore ensuring the oils

did not significantly absorb light on the same region as the model therapeutic compounds

was a must.

4.2.1 Light absorption of candidate oils

The absorption of light by candidate oils was studied by recording their absorption

spectrum in the UV/VIS range (section 3.3.2, page 32), 900− 200 nm in a spectrophoto-

meter. Figure 4.3 shows the absorption spectra of the candidate oils. Due to the sensitivity

of the apparatus, only intensities up to 1 a.u. could be recorded. The UV, visible and

infrared regions of the elctromagnetic spectrum are shown in shadowed colours on this

figure. Due to the lack of references to the UV-VIS light absorption of the candidate

oils unrefined oilve oil purchased from a local supermarket was analysed and used as a

control sample, as its absorption in this range has been broadly studied. [210] It is im-

portant to note that any other olive oil, purchase anywhere else would have likely shown

a slightly different absorption profile. For the purpose of this particular study, this was

considered acceptable. This oil was found to absorb light between 400 − 500 nm, which

is characteristic of the olive oils containing chlophyll a molecules, carotenoids, and other

pigments. [203,204,211] Interestingly olive oil purchased form Sigma-Aldrich did not show

this characteristic spectrum. This is likely due to the removal of highly absorbent mo-

lecules during the refinement process. The rest of the candidate oils showed absorption in

the UV range, probably arising from the presence of oxidative products in the samples,

known to absorb strongly in the UV. [212–215] The wavelengths absorbed by the can-

didate oils (not taking unrefined olive oil into consideration) fall far from the range of

wavelengths on which the excitation wavelength of many common fluorophores is found.

For example, the excitation wavelength for Atto 488 DOPE is λex = 488 nm, which is the

shortest excitation wavelength out of those of the fluorophores used within this project.

This suggests that the light absorption of the oils would not interfere with any fluorophores

contained in the oil or used in combination with other phospholipids to stabilise the oil in

LONDs.
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Figure 4.3: Light absorption of the candidate oils, recorded using a spectrophotometer. The
regions of the electromagnetic spectrum are shown in shadowed colours: light violet for UV
(200− 400 nm), white for the visible spectrum (400− 790 nm) and red for the wavelengths in
the near infrared (790− 900 nm).

4.2.2 Autofluorescence of candidate oils

The intrinsic fluorescence properties of the candidate oils were studied recording their

emission spectrum. The oils were excited with a specific excitation wavelength (λex),

ranging 250 − 550 nm, and the maximum of the emission peak was identified as the

emission wavelength (λem). In the case of EPA, the range of excitation wavelengths was

350 − 650 nm. An intensity attenuator was used when recording the emission spectra of

squalane, squalene and olive oil, in order to avoid saturating the detector. As an example

of the recorded data, the emission spectrum of squalane is shown in figure 4.4, for five

different λex and their correspondent emission profiles. In this specific case, λem was

observed to shift for each λex, with values around the maximum λem = 384 nm.
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Figure 4.4: Emission spectrum of squalane, recorded using an intensity attenuator. The
sample was radiated with different excitation wavelengths, λex, and the fluorescence signal
was recorded in each case. The maximum emission intensity for each excitation wavelength,
λem, are showed on the graph.

Table 4.2 summarises the fluorescence emission maxima λem for several excitation

wavelengths, λex, for each of the candidate oils. In each case, the maximum λem is

shown in bold font for clarity. Two other λex, spaced +25 nm and −25 nm from the λex

that produced the highest intensity peak are also shown. It is important to note that

the intensity attenuator was used to record the emission spectra of olive oil, squalane

and squalene. Although no quantitative data can be extracted from this, it shows that

the emission intensity at λex was stronger for these three oils, compared to triacetin,

tripropionin, isoamyl acetate and EPA. Furthermore, the autofluorescence of the candidate

oils arose with λex in the UV range, which is in agreement with the absorption spectra of

the oils shown in figure 4.3. This suggests that oxidative products and impurities give rise

to these fluorescent properties.

IVIS was used to measure the radiant efficiency of squalane and squalene. The exper-

iment was performed to study the autofluorescence of these two candidate oils with an al-

ternative technique, and also to determine whether oil autofluorescence could be produced

and detected in this system. IVIS was expected to be used in the study of fluorophore en-

capsulation in LONDs, and therefore the characterisation of potential fluorescence signal

produced by the oils alone was important. The lowest excitation wavelength producible

at IVIS was λex = 430 nm, which falls far the wavelength window observed to give rise to

the autofluorescence of squalane and squalene (λex = 325 nm for squalane, λex = 350 nm
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Table 4.2: Autofluorescence of the candidate oils. Higher intensity peaks for each oil are
shown below. The maximum intensity peak and the corresponding excitation and emission
wavelengths are in bold font.

Oil Excitation wavelength Emission wavelength Intensity

λex (nm) λem (nm) (a.u.)

Olive oil∗
325 406 47

350 423 81

375 446 58

Squalane∗
300 355 499

325 384 560

350 390 416

Squalene∗
325 451 40

350 463 100

375 461 61

Triacetin

325 422 693

350 430 775

375 435 387

Isoamyl acetate
275 350 967

300 353 780

EPA

525 587 600

550 600 653

575 610 635

Tripropionin
325 375 8.1

350 428 6.4
∗ An intensity attenuator was used to record the spectra of olive oil, squalane and squalene.

for squalene, table 4.2). Hence no fluorescence signal was expected. For imaging, squalane

and squalene were placed in a 6× well plate. Figure 4.5 shows an optical image of the

well plate containing the oils, on which the radiant efficiency is superimposed (coloured

scale) to a gray image. Circular ROI profiles were used to delimit the wells that contained

the two oils under study. The radiant efficiency of the ROIs relate to the epi-fluorescence

signal detected by the system. As expected, no fluorescence signal was detected upon

excitation of the squalane and squalene with λex = 430 nm. Informed by these results,

further IVIS experiments performed with these oils could neglect fluorescence contribution

from the oils.
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Figure 4.5: Radiant efficiency of squalene and squalane measured using IVIS. The sample
was excited with λex = 430 nm. The image shows a superimposition of the radiant efficiency,
in a coloured scale, to the optical image, in gray scale.

4.3 Drug mimics in candidate oils

Drug mimics were used for preliminary oil solubility and detection tests, to avoid

excessive spending of the therapeutic compounds, as the cost of those is normally higher

than that of the mimics. Three different hydrophobic drug mimics were chosen: CIS/ZnS

Qdots (section 3.2, page 28), the fluorophore Nile Red and Calcein AM. This section

describes the study of the solubility of the hydrophobic drug mimics in the candidate oils.

4.3.1 CIS/ZnS Qdots: solubility and fluorescence in oil

CIS/ZnS Qdots were synthesised as described above (section 3.2, page 28). The Qdots

were made hydrophobic by coating them with a layer of dodecanethiol, as they were to

be used encapsulated in the LONDs and serve as mimics of the hydrophobic drugs. The

incubation times for Qdots preparation were increased in order to obtain larger Qdots with

emission spectra shifted towards the near infrared, which find a wide range of applications

in biomedical imaging. [216–219] The characterisation of the light absorption and emission

spectra of the Qdots was essential for them to be used as model drugs in fluorescence

experiments. Figures 4.6a and 4.6b show the emission spectra and absorption spectra of

the Qdots dissolved in hexane, respectively. The emission spectrum revealed a maximum

emission at 790 nm, which is a longer wavelength than what has been previously reported

for CIS/ZnS Qdots. [179, 180, 220] The longer emission wavelength was a result of the
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Figure 4.6: Luminescence characterisation of CIS/ZnS Qdots. a) Emission spectrum; the
sample was excited with λex = 450 nm, producing a maximum intensity at λem = 790 nm.
b) Light absorption of the CIS/ZnS Qdots in the UV/VIS range. c) Excitation spectrum; the
sample was excited in a range of wavelengths (300 − 750 nm) and the fluorescence intensity
of λem = 790 nm recorded within this range. From the maximum intensity on this graph, the
optimal λex for this Qdots samples was found to be λex = 589 nm.

longer incubation times of the precursor solution (section 3.2, page 28), compared to the

literature. Figure 4.6c shows the Qdots excitation spectrum for λem = 790 nm. This

spectrum revealed a broad excitation band, with a peak at λex = 589 nm.

After Qdots synthesis, Qdots concentration and size were determined theoretically as

described earlier (section 3.2.2), and were found to be d = 7.37 nm and C = 1.70 µM.

The concentration results are in agreement with the literature. [180] The estimated size of

these Qdots is larger than that typically reported for QDots prepared within this method.

This suggests that the longer incubation time used in the preparation of this batch of

Qdots had the effect of increasing the size of the Qdots, which was desired. [179]

The Qdots were initially suspended in hexane. Attempts to dissolve them in squalane,

squalene, triacetin and isoamyl acetate were performed. This was done by adding the

Qdots in hexane to the oils, and by removing the hexane placing the solution under a

stream of N2 for at least 30 min. The solutions were visually inspected to confirm the

dispersion of the Qdots in the liquid, which was guided by the absence of large agglomerates
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within the solution. Qdot solution blended with the candidate oils upon gentle shaking in

all cases except for triacetin. In this case, the Qdots agglomerated around the walls of the

vial, on the surface of the oil. Resuspension of the Qdots via vortexing the bath sonicating

the solution was unsuccessful. This effect was likely due to the relative high polarity

of triacetin, and the non-polar nature of the dodecanethiol coating of the Qdots. The

reduction in the number of dipole-dipole interactions in triacetin, by the addition of the

hydrophobic Qdots is energetically unfavorable, resulting in exclusion of the hydrophobic

Qdots from the triacetin volume. [221] The fluorescence properties of the Qdots diluted

in squalane, squalene and isoamyl acetate were studied. All three solutions were excited

with a λex = 589 nm, which corresponds to the λex for these Qdots. Figure 4.7 shows the

emission spectra of Qdots in the three oils tested, as well as the emission spectra of the

Qdots dissolved in hexane, for reference. Qdots diluted in squalane and isoamyl acetate did

not show significant changes in their fluorescent properties. Interestingly, the fluorescence

signal of Qdots was absent when these were dissolved in squalene. This quenching of the

Qdots fluorescence signal could be due to energy transfer or electron transfer between the

Qdots and the oil. Squalene contains a number of double bonds that are not present in the

squalane molecule, which could facilitate energy transference between the Qdots and the

squalene molecules. The concentration of Qdots dispersed in squalane and squalene for

this study are equivalent, and therefore this suggests that the loss of fluorescence signal

in the case of squalene was due to quenching.

Figure 4.7: Fluorescence signal of Qdots diluted in candidate oils. The samples were excited
with λex = 589 nm in all the cases. The fluorescence signal of Qdots diluted in hexane is
shown for comparison.
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IVIS was used to measure the radiant efficiency of Qdots dissolved in squalane and

squalene. Qdots were added to the oils in hexane, and the solvent removed by placing

the solution under a N2 stream for at least 30 min. The radiant efficiency of two different

concentrations of Qdots in the oils were used, 170 nM and 850 nM. Figure 4.8 shows the

radiant efficiency of the sample excited with λ = 640 nm (λem = 800 nm), superimposed

to an optical image of the same area, both taken in IVIS. The ROI profiles delimit the

wells that contained each sample, and provide a measure of the radiant efficiency of the

area. Qdots dissolved in squalane exhibited fluorescence that increased with concentra-

tion. Qdots did not show any fluorescence when dissolved in squalene, supporting the

observation made in figure 4.7. This figure suggests that the quenching of the Qdots fluor-

escence, when dissolved in squalene, is not an effect of the concentration of the Qdots,

as no changes in fluorescence were observed for the two different concentrations of Qdots

used.

Figure 4.8: Radiant efficiency of Qdots dissolved in squalene and squalane measured using
IVIS. The sample was excited with λex = 640 nm. The image shows a superimposition of the
radiant efficiency, in a coloured scale, to the optical image, in gray scale.
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4.3.2 Nile Red: solubility and fluorescence in candidate oils

Nile Red is a lipophilic dye broadly used in cell biology. The molecular structure of Nile

Red is shown in figure 4.9. Nile Red has an amphiphilic character, which makes it a useful

tool for dying lipid rich environments, such as lipid membranes and droplets. [222, 223]

Nile Red has also been used as a fluorescent tag in drug delivery systems. [52,224] When

incorporated in a hydrophobic environment, Nile Red exhibits a strong fluorescence signal

that has been found to vary according to the polarity of the solvent. [225] In contrast,

when Nile Red is contained in water its fluorescence disappears. This feature turns Nile

Red into an interesting hydrophobic drug mimic to be encapsulated in LONDs; the strong

fluorescence of Nile Red dispersed in oil could be used to fluorescently track the LONDs,

and also the switch-off of the fluorescent signal in water could be use as an indicator of

the LONDs content release into an aqueous environment.

Figure 4.9: Molecular structure of the fluorophore Nile Red.

The solubility of Nile Red in the candidate oils was tested visually to determine which

candidate oils were able to dissolve Nile Red whilst maintaining its fluorescence signal.

Approximately 5 µg of Nile Red were added to each candidate oil and the samples were

vortexed to assist the dispersion of the Nile Red. Nile Red was successfully incorpor-

ated into squalane, squalene, triacetin and tripropionin LOND samples. The fluorescence

of Nile Red encapsulated in oils was only used as a method for LONDs tracking, thus

quantitative studies of the Nile Red signal in all of the different candidate oils were not

performed. To serve as an example, the absorptive properties of Nile Red in candidate oils

was studied in tripropionin. The absorption spectrum of different concentrations of Nile

Red in tripropionin were recorded, and are shown in figure 4.10a. As expected, the light

absorption increased with the concentration of Nile Red in the oils, and it was possible

to fit the absorbance intensity of λ = 530 nm to a linear regression, according to Beer’s
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Figure 4.10: a) Absorption of Nile Red dissolved in tripropionin (in µg/ml). The maximum
absorption is λ = 530 nm. b) Calibration curve for Nile Red dissolved in tripropionin. Each
point corresponds to the maximum absorption of each Nile Red concentration at λ = 530 nm,
fitted to a linear regression y = (0.0989 ± 0.0005)x. From the fitting, the molar extinction
coefficient of Nile Red in tripropionin was found to be ε = 3150 m2/mol.

Lambert law (equation 3.3). The molar extinction coefficient of Nile Red in tripropionin

was also determined from the fitting, resulting ε = 3150 m2/mol.

4.3.3 Calcein AM

Calcein AM is a dye used in cell biology as a marker to differentiate viable from dead

cells. The calcein AM molecules have the ability to cross cell membranes and become

fluorescent when hydrolised by cellular sterases in the cytoplasm of a live cell (figure

4.11). [226,227] The hydrophobicity of the acetomethoxy (AM) group makes Calcein AM

difficult to dissolve in water, and therefore it is commonly dissolved in DMSO to perform

cell assays. Calcein AM was chosen as a drug mimic due to its hydrophobicity, and

also due to its fluorescence properties, which are only activated inside cells. Calcein AM

encapsulated in the oil core of LONDs could be used to study the release of the LONDs

contents, as the compound would only be fluorescent upon dispersion in the cytoplasm of

a cell. Understanding the mechanism by which calcein AM is released from the LONDs

could help determine the pathways by which hydrophobic drugs would leave the LONDs

once they are inside the cell or its surroundings.
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Figure 4.11: Calcein AM is a non-fluorescent molecule capable of crossing cell membranes.
Once in the cytoplasm, cellular esterases hydrolise calcein AM, resulting in fluorescent calcein.
Once hydrolysed, calcein has emission/excitation at λex = 495 nm and λem = 516 nm.

Investigating the solubility of calcein AM in all of the candidate oils was difficult due

to the way the compound is supplied by the manufacturer. Calcein AM is provided as

a dried, thin film in a small plastic vial that requires the addition of a suitable solvent.

Calcein AM shows poor water solubility but is a relatively highly polar molecule, thus

triacetin was chosen as the candidate oil to test the solubility of calcein AM. Figure 4.12a

shows the absorption spectra for different concentrations of calcein AM in triacetin. Unlike

other spectra shown previously (such as Nile Red in tripropionin, figure 4.10), calcein AM

showed an absorption profile with two local maxima in the region λ = 280− 290 nm. Due

to the fact that absorption magnitude of the two was almost identical, λ = 284 nm was

arbitrarily chosen as the maximum, and used to produce the calibration curve (figure 4.12),

which fitted, as expected, to a linear regression. The molar extinction coefficient of calcein

AM in triacetin was also determined from the fitting of the graph to the Beer-Lambert

law (equation 3.3, with L = 1 cm), resulting ε = 340 m2/mol.
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Figure 4.12: Calcein AM in triacetin. a) Absorption of calcein AM in triacetin, at different
concentrations. b) Calibration curve for calcein AM dissolved in triacetin. Each point corres-
ponds to the maximum absorption of each calcein AM concentration at λ = 284 nm, fitted to
a linear regression y = (3.4± 0.2)× 10−3x. From the fitting, the molar extinction coefficient
of calcein AM in triaceitn was determined to be ε = 340 m2/mol.

The fluorescence profile shown in figure 4.12 suggests that calcein AM was dissolved

by the triacetin. However it is important to note that the concentrations used to produce

the absorption spectra, and subsequent calibration curve are calculated assuming that all

the compound (1 mg) dissolved in 1 ml of triacetin. To compare to with the solubility

of calcein AM in a different solvent, a series of dilutions of calcein AM in DMSO were

prepared. Figure 4.13 shows the absorption spectra and calibration curve produced fitting

the maximum absorption of the different calcein AM concentrations. Both figures 4.12a

and 4.13a show absorption spectra with two local maxima. As for calcein AM in triacetin,

the absorption at λ = 285 nm was used to produce the calibration curve, and this was

used to estimate the molar extinction coefficient ε = 380 m2/mol. Within experimental

error, this value for ε is in agreement with that obtained for calcein AM in triacetin (see

figure 4.12).

62



Figure 4.13: Calcein AM in DMSO. a) Absorption of calcein AM dissolved in DMSO, at
different concentrations. b) Calibration curve for calcein AM in DMSO. Each point corres-
ponds to the maximum absorption of each CA4 concentration at λ = 285 nm, fitted to a linear
regression y = (3.8±0.5)×10−3x. The molar extinction coefficient for this solution was found
to be ε = 380 m2/mol.

4.4 Drugs in candidate oils

Combretastatin A4 (CA4) and decitabine were the chosen hydrophobic drugs to test

the encapsulation in LONDs. This section describes the study of the solubility and fluor-

escence properties of these drugs in the candidate oils.

4.4.1 Combretastatin A4

Combretastatin A4 (CA4) is a vascular disrupting agent, which selectively cause rapid

shut down of established tumour vasculature. [228, 229] The molecuelar structure of CA4

is shown in figure 4.14. CA4 exhibits low water solubility, which limits its bioavailability

and makes in vivo anticancer treatments difficult. Strategies such as the development of

water-soluble prodrug have been proposed. [230–232] CA4 has also been incorporated into

carriers to improve in vivo delivery. [108,233]
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Figure 4.14: Molecular structure of Combretastatin A4.

The solubility of CA4 in the candidate oils was studied by adding 25 mg of CA4 to

each oil and vortexing the solutions to assist the dispersion of the CA4. Upon visual

inspection, CA4 crystals were seen at the bottom of the vials in all the oil the cadidate oil,

suggesting poor solubility of the drug. Thus the samples were bath sonicated for about

2 min and then vortexed again in an attempt to maximise the dissolution of the drug.

At this stage, CA4 crystals had disappeared in the triacetin and tripropionin samples,

whereas the drug remained insoluble in squalane and olive oil. The polarity of CA4 is the

reason for the solubility differences in the different oils. The CA4 molecule contains polar

regions within its structure, and therefore the number of dipole-dipole interactions created

by the addition of triacetin is energetically favourable. However, squalane is a largely non-

polar molecule (figure 4.1), and therefore no dipole-dipole interactions are formed when

CA4 is contained in the oil. This is likely to make the dispersion of the drug in the oil

energetically unfavourable. [221]

Following solubility tests of CA4 in the candidate oils only two, triacetin and tripro-

pionin, emerged as viable oils for the formation of LONDs encapsulating CA4. For this

reason, the absorption of CA4 in candidate oils was limited to triacetin and tripiopionin.

Figure 4.15 shows the absorption spectra of CA4 in triacetin, and a calibration curve

produced fitting the absorption at λ = 309 nm against the concentration to a linear re-

gression. Figure 4.16a shows the absorption spectrum of CA4 in tripropionin at different

concentrations, and the calibration curve derived from it (figure 4.16b). A change in the

absorption trend was found from 25 µg/ml of CA4 in tripropionin, and therefore only data

points below this concentration were used to produce the calibration curve in this case.

This implies that only concentrations of CA4 in tripropionin in this concentration range

could be accurately determined in further experiments aiming to use light absorption to

measure drug concentration. Both figure 4.16a and b show an absorption profile capped at
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around λ = 250 nm. This is probably due to an instrumental limitation, as the absorption

of CA4 falls close to the detection limit of the instrument (around λ = 250 nm). The

molar extinction coefficient for CA4 dissolved in triacetin and tripropionin were estimated

from the fitting to the Beer-Lambert law, resulting ε = 907 m2/mol and ε = 1190 m2/mol.

Figure 4.15: Combretastatin A4 (CA4) in triacetin. a) Absorption of CA4 dissolved in
triacetin at different concentrations. b) Calibration curve for CA4 in triacetin. Each point
corresponds to the maximum absorption of each CA4 concentration at λ = 309 nm, fitted to
a linear regression y = (0.0287 ± 0.0003)x. The molar extinction coefficient for this solution
was determined from the fitting ε = 907 m2/mol.

Figure 4.16: Combretastatin A4 (CA4) in tripropionin. a) Absorption of CA4 dissolved in
tripropionin at different concentrations. b) Calibration curve for CA4 in tripropionin. Each
point corresponds to the maximum absorption of each CA4 concentration at λ = 312 nm,
fitted to a linear regression y = (0.0377 ± 0.0003)x. Only the experimental points between
0− 25 µg/ml were used for the fitting (shown in black, with the linear fitting superimposed.).
The molar extinction coefficient for this solution was determined from the fitting ε = 1190
m2/mol.
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4.4.2 Decitabine

Decitabine is a drug that reactivates the expression of genes silenced by DNA hy-

permethylation, a process known to contribute to the transformation of cells into cancer

cells. [234,235] The molecular structure of decitabine is shown in figure 4.17. Decitabine is

soluble in water, but its stability is highly dependent on pH and temperature. [236] Patient

treatment with decitabine requires of frequent, periodic administration, as the compound

degrades quickly. [237] A few studies have investigated the effect in animals of low dose

treatments with decitabine delivered using drug delivery systems such as liposomes and

polymeric nanoparticles. [238,239]

Figure 4.17: Molecular structure of decitabine.

In this study, decitabine was considered as a drug to be encapsulated in LONDs due to

its reduced stability when dissolved in water. It was hoped that, by dissolving the decit-

abine in an oil and encapsulation in a LOND, it might be possible to enhance the stability

of the compound compared to when dissolved in water. Drug dispersion in an oil and

subsequent encapsulation in LONDs could prevent its degradation by reducing the condi-

tion changes to which unencapsulated decitabine is exposed to during a treatment. Due

to its high polarity and water solubility, triacetin was chosen as candidate oil to test the

solubility of decitabine. The concentration of the decitabine in triacetin was 5 mg/ml. The

solution was vortexed and bath sonicated for short time periods to increase the dispersion

of decitabine, after which all the macroscopic drug agglomerates disappeared. However,

the solution remained cloudy, suggesting low solubility of the compound in triacetin. As

described in previous sections, absorption spectra of different concentrations of decitabine

in the oil were recorded using a spectrophotometer (section 3.3.2, page 32). The solution
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was kept in ice to prevent the degradation of the drug in triacetin, if this occurs. Figure

4.18a shows the absorption spectra of different concentrations of decitabine dissolved in

triacetin. All the absorption spectra showed a maximum absorption at λ = 267 nm, and

also a large amount of background absorption or light scattering by the solution. This

points at drug agglomerates in the solution, which scatter a large fraction of the light

passing through the cuvette. Light scattering results in a reduction of the radiant power

recorded by the detector, which then translates into a broad-band absorption reading, far

from the absorption wavelength of the drug. From the data shown in figure 4.18a, a calib-

ration curved was produced, plotting the maximum absorption at λ = 267 nm against the

concentration of the decitabine in the solution. This plot was fitted to a linear regression

(figure 4.18b). The value for the molar extinction coefficient in this case was found to be

ε = 52440 m2/mol, suggesting strong light scattering.

Figure 4.18: Decitabine in triacetin. a) Absorption of decitabine dissolved in triacetin at
different concentrations. b) Calibration curve for decitabine in triacetin. Each point corres-
ponds to the maximum absorption of each CA4 concentration at λ = 267 nm, fitted to a
linear regression y = (2.3± 0.1)x. The molar extinction coefficient was found to be ε = 52440
m2/mol.

DMSO was used to obtain an absorption spectra to compare to the absorption spectra

of decitabine in triacetin. Figure 4.19 shows the absorption of different concentrations

of decitabine in DMSO, and the calibration curve produced by plotting the maximum

absorption against the concentration. The maximum absorption in the spectra shown

in figure 4.19 shifted towards smaller wavelengths as the concentration of decitabine was

reduced. The peak for the absorption spectrum of 1000 µg/ml decitabine was found at

λ = 278 nm, whereas the maximum absorption of decitabine at 18 µg/ml was found

at λ = 264 nm. This is likely to be an artifact created by the detection limit of the

instrument, which is at around λ = 250 nm, or a slight change of the refractive index of
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Figure 4.19: Decitabine DMSO. a) Absorption of decitabine dissolved in DMSO at different
concentrations. b) Calibration curve for decitabine in DMSO. Each point corresponds to
the maximum absorption of each CA4 concentration at, fitted to a linear regression y =
(9.1 ± 0.6)x. The molar extinction coefficient of decitabine dissolved in DMSO was found to
be ε = 207500 m2/mol.

the solution due to the high concentration of the CA4. [240]

The data shown in this section suggests that decitabine does not dissolve in triacetin

as desired; the presence of large drug agglomerates could explain the light scattering

detected in the absorption spectrum of the drug in triacetin (figure 4.18a), thus pointing

at poor solubility of decitabine in triacetin. Furthermore, decitabine is reportedly water

soluble, [234] which could lead to problems when trying to encapsulate it in LONDs

dispersed in an aqueous solution (such as PBS). These reasons led to dismissal of decitabine

as a model drug for LOND encapsulation, and no further experiments were performed with

this compound.

4.5 Discussion

One of the objectives of this project was to use LONDs as capsules for hydrophobic

drugs. The drugs would be contained in the oil core of the LONDs, keeping the hy-

drophobic molecules dispersed and retaining their functionality. Unambiguous identifica-

tion of light emission and absorption from added fluorophores and of the candidate oils

was crucial, as the determination of the concentration of a drug encapsulated within the

LONDs rely on the absorptive properties of the encapsulated substances. Furthermore, the

fluorescence tracking of LONDs is subjected to the fluorescent properties of incorporated

fluorophores.

In an effort to characterise the luminescent properties of the candidate oils, their light

68



absorption and emission spectra were studied (section 4.2). The candidate oils were found

to absorb light in the UV range, probably due to the presence of oxidative products

and impurities. Similarly, the candidate oils showed autofluorescence when excited with

λex < 400 nm, except for EPA, that showed a maximum emission intensity when excited

with λex = 550 nm. The fluorescently labelled phospholipids used within this project,

Atto 590 DOPE (λex = 593 nm, λem = 622 nm) and Atto 488 DOPE (λex = 500 nm,

λem = 520 nm), exhibited excitation and emission wavelengths far from those of the oils.

Besides this, the fluorescent signal from these fluorophores was expected to be significantly

stronger than the autofluorescence of the oils.

Qdots and the fluorescent dye Nile Red were chosen as drug mimics. Qdots were

prepared increasing the incubation time in an attempt to shift their emission wavelengths

towards the near infrared, and coated with dodecanethiol to enhance their hydrophobicity.

The emission, absorption and excitation spectra of the Qdots were obtained using an UV-

VIS. The data was used to estimate the size and concentration of the Qdots, as previously

described. [180] Qdots were found to have a diameter d = 7.37 nm and a concentration

C = 1.70 µM. The size estimate for these Qdots is larger than what is typically reported

for CIS/ZNs Qdots prepared following this protocol (∼ 3 − 4 nm), which suggests that

the increased incubation times during the synthesis had the desired effect on the size of

the Qdots. Qdots were found to dissolve in squalane, squalene and IPA, but impossible to

dissolve in triacetin, probably due to the non-polarity of the dodecanethiol coating and the

strong polarity of the triacetin molecules. Qdots absorption and emission fall far from the

absorption and emission wavelengths of the candidate oils. The signals from the QDots

should be unambiguously differentiable from the oil signal (section 4.2).

Combretastatin A4 (CA4) and decitabine were chosen as hydophobic drugs for encap-

sulation in LONDs. CA4 is a lipophilic drug that exhibits poor water solubility, and it is

commonly administered dissolved in DMSO. [241] CA4 was found to dissolved in triacetin

and tripropionin, and calibration curves for different concentrations of the drug in the

two oils were obtained. These were to assist determining the concentration of CA4 in

LONDs. Decitabine is a water soluble epi-genetic drug which is soluble in water, which

reduced stability when in solution. It was hoped that the encapsulation of the compound

in a LOND hydrophobic core would contribute to enhancing its stability. Triacetin was

used to solubilise the compound. The light absorption data for this mixture showed strong

background scattering, suggesting the presence of agglomerates in the solution. This poin-
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ted at poor dispersion of decitabine in triacetin, which eventually led to discarding this

drug as a candidate for LOND encapsulation.

The study of the solubility of the drug mimics and hydrophobic drugs in the candidate

oils showed challenging. Although a priori the hydrophobicity of compounds was assumed

to permit easy solubilisation in an oil-like solvent, the dispersion of the compounds in the

candidate oils was found to depend strongly on the polarity of both the compound and the

oil. Polar oils, such is the case of triacetin and tripropionin, were more efficient at dissolving

polar compounds (such as Calcein AM and CA4). The non-polar oil squalane was found

to be a good solvent for non-polar dodecanethiol-coated Qdots, but the dispersion of the

hydrophobic drugs in this oil was impossible. The ability of triacetin first, and then

tripropionin, to dissolve the model hydrophobic drugs directed the work done in this

project.
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Chapter 5

Topic: Lipid Oil Nanodroplets

This chapter presents the results relating to the production and characterisation of

lipid oil nanodroplets (LONDs). The chapter discusses LOND production in a two-step

process that includes ultra-high pressure homogenisation of oil-in-water mixtures. LONDs

were prepared using different candidate oils, lipid coatings and production pressures. The

LONDs were charactered in terms of their size, concentration and stability over time.

5.1 LONDs production in a two-step homogenisa-

tion process

This section describes the formation of LONDs, in a two-step homogenisation of oil-in

water mixtures containing lipid. This process is shown schematically in figure 5.1.

The LOND preparation procedure was initiated by preparing the lipids, which act as

stabiliser of the oil nanodroplets. All lipid mixtures were prepared as described earlier

(section 3.1, page 27). Fluorescent lipid was added to the lipid mix when fluorescence

tracking of the LOND shell was required. After removal of the methanol:chloroform, the

lipids were re-suspended in 0.7 ml of oil by vortexing and bath-sonication, achieving lipid

resuspension in around 10 min. For samples encapsulating drugs or drug mimics, the

compound was solubilised in the oil to the desired concentration before adding it to the

lipids. Once the lipid was fully resuspended in the oil, PBS was added to the oil-lipid

mixture, to make a 4 ml final volume.
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Figure 5.1: LOND production is a two-step homogenisation process started with blending
of oil-in-water and lipid mixtures using a Polytron (a to b), followed by a high pressure
homogenisation process in an Emulsiflex (b to c). Cross-filtration was used to remove excess
lipid in the solution after preparation (c to d). e) LONDs are oil droplets stabilised with a
lipid shell, dispersed in water.

The homogenisation process was started with an initial blending step using a Polytron

(figure 5.1a to b). Rotor-stator systems (section 2.2.3.1, page 20) have been reported to

be less efficient than high pressure homogenisation in oil-in-water droplet disruption, [155]

and therefore this step in LOND preparation was only used to roughly mix the oil-water

emulsion (see section 2.2.3.1, page 20). This step also aided dissolution of bigger lipid

agglomerates. Polytron blending of the sample was carried out at 12500 rpm for 10 min,

at 40 ◦C under atmospheric pressure. Then 6 ml of PBS were added to the solution to

make 10 ml final volume.

The second step in the LOND formation process consisted of a fine homogenisation

of the oil-in-water mixture using an Emulsiflex (section 2.2.3.2, page 21). This process

reduces the size of the LONDs in the solution and improves size homogenity (figure 5.1b

to c). The outlet of the Emulsiflex was kept at 4 ◦C to avoid emulsion overheating. The

sample was emulsified for 20 min, during which the sample volume passed multiple times
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through the homogenising nozzle.

LONDs preparation was finished with a washing step to remove excess lipid (also

fluorescent dye and/or drug when applicable) from the solution (figure 5.1c to d). The

washing was done by cross-filtration, a technique in which the sample moves tangentially

to the filter (figure 5.2). Particles smaller than the pore size of the filter permeate out

of the moving liquid whereas bigger particles are retained and continue circulating. The

cross-filtration set-up used in these experiments uses columns in which the liquid moves

vertically from bottom to top. Hollow fibers surround the inside of the tube, and act as a

barrier for the bigger particles (> 60 kDa). The LOND solution was flowed at 40 ml/min

through the column for at least 2 h.

Figure 5.2: Schematic showing the functioning of a cross-filtration column. The solution
moves tangentially to the filter, which acts as a barrier for larger particles such as LONDs,
shown in blue, whilst the smaller ones, shown in pink, can permeate (i.e. excess lipid, unen-
capsualted drug).

5.1.1 Sterility of LOND samples

Sterility is a requirement for LOND samples to be used in experiments with cells in

vitro or for in vivo testing. In these cases some of the preparation steps were performed

in a Class II Biosafety Cabinet, including the preparation of the lipid mixtures, addition

of oil and addition of PBS (section 3.8, page 46). As an alternative to the cross-filtration

step, dialysis was used in some cases in which sterility was crucial, as the set-up for

this filtration technique can be fully carried on inside the Biosafety Cabinet. For sample

dialysis, dialysis tubes with 8 kDa cut-off were used. The tubes were filled with 4 ml of
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the LOND solution, firmly closed and turned up-side-down inside a beaker containing 1 l

of PBS. A magnetic stirrer was used to agitate the solution and hence maximise the liquid

exchange between the dialysis tube and the surroundings. LOND samples were dialysed

at 4 ◦C overnight. After dialysis an extra filtration step through a 200 nm syringe filter

was used to remove any bacteria in the solution. [46]

Absence of bacteria was regularly tested by incubating 10 µl of LONDs in 5 ml of

DMEM with 5% fetal bovine serum (FBS) and enriched with L-Glutamine 200 mM at 37

◦C for 48 h. Turbidity of the DMEM after the incubation time indicated bacterial growth.

Alternatively, the sterility of LOND samples was tested by plating 10 µl of LOND sample

on an agar plate containing LB Broth, and incubated at 37 ◦C for 48 h. The presence of

bacteria in the LOND samples translated into growth of bacterial colonies on the plate.

Figure 5.3 shows an example of agar plates incubated with LONDs. Bacterial colonies

appeared as dark yellow circles, visible by eye. In contrast, sterile LOND samples did not

grow any bacterial colonies during incubation time.

Figure 5.3: Two examples of agar LB Broth plates used to test the sterility of LOND
samples. After LOND plating, the samples were incubated at 37 ◦C for 48 h. a) Shows an
infected LOND sample. A bacterial colony, marked with a dotted yellow line, was observed
after the incubation time. b) Sterile LOND sample, in which no bacterial colonies grew, under
the same conditions.

5.2 Preliminary observations

The formation of LONDs was attempted with with all of the candidate oils (figure 4.1,

page 49). Following early results, a number of decisions were made regarding the choice
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of oils:

• EPA and isoamyl acetate were found to form LONDs that destabilised quickly after

preparation. Oil accumulated on the walls of the tube that contained the sample,

which was suspected to be due to droplet coalescence. These two candidate oils were

discarded, and no further experiments were performed with them.

• Squalane, squalene, olive oil, triacetin and tripropionin were found to form stable

LONDs when following the two-step homogenisation process described above. Ex-

cept for triacetin oil, these oils were found to form nanoemulsions with bright white

appearance, which is characteristic of emulsions in which the relative size polydis-

persity of the oil droplets scatters a wide range of wavelengths. [242] Due to the sim-

ilarities between squalane and squalene, squalane was chosen over squalene due to

its better stability and resistance to auto-oxidation. [243] Therefore squalene LONDs

were only used in preliminary experiments. Triacetin LONDs showed in general lar-

ger polydispersity and lower concentration than the other LOND samples, differences

that were attributed to high solubility of triacetin in water. Importantly, triacetin

was found to not to form stable LONDs when only POPC was used to stabilise the

oil. In fact, triacetin (together with other short-chain triglycerides) has been previ-

ously reported to form unstable when a combination of PC lipid and polysorbate 80

was used as stabiliser. [244] Hence, all triacetin LONDs prepared within this report

included 5% PEG2000-DSPE or 5% biotin-PEG2000-DSPE in their shells.

It is important to note that the oil choice for LONDs formation was strongly affected

by the solubility of the model hydrophobic drugs in the oils. CA4 showed very poor

solubility in squalane, and therefore encapsulation of the drug in this type of LONDs

was unsuitable. Hence, triacetin was used to form all the LONDs encapsulating CA4.

Towards the end of the project, tripropionin was also introduced as carrier oil. LONDs

formed with tripropionin showed excellent size and concentration characteristics, that

together with the ability to dissolve CA4, made this oil a promising candidate for the

delivery of CA4. The lipid shell for encapsulating tripropionin was modified, with respect

to the lipid shell regularly used to encapsulate other candidate oils. The reason for this

was a rapid LOND destabilisation (spanning hours) observed when POPC only was used

to form tripropionin LONDs. Hence, POPC was substituted by DSPC, which has higher

gel to liquid phase transition temperature compared to POPC (55 ◦C versus −2 ◦C).
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This implies that DSPC is at its gel phase at room temperature, thus its diffusion in the

LOND shell is slower, which translates into a more rigid coating that could reduce oil

leakage. Also 20% cholesterol was added to the lipid shell composition, as it is known to

reduce permeability and increase the stability of lipid nanocarriers. [245] Unfortunately,

only a small number of experiments have been performed with tripropionin due to its late

inclusion as a candidate oil and time restrictions of the project.

Within this project, squalane and triacetin LONDs were used as model LOND samples.

Some results concerning tripropionin LONDs will also be shown in this chapter, as well as

a smaller dataset for squalene LONDs.

5.3 LOND size measurements

Size is a critical characteristic of the LONDs if they are to find a clinical application.

LONDs with larger diameters may be able to transport larger drug amounts, but they

may be, for example, more difficult to deliver in vivo. [246] The aim of this research was to

combine LONDs with MBs into a novel MB-LOND architecture. The number of LONDs

that a MB would be capable of transporting directly relates to the size of both the MB

and the LONDs. This can be estimated from geometrical factors (i.e the surface area of

the MB, and the cross-section of the LONDs), resulting N = 4
(
d
a

)2
, with N the number of

LONDs per MB, d the diameter of the MB and a the diameter of the LONDs. Figure 5.4a

Figure 5.4: a) The number of LONDs that a single MB can transport depends on the
dimensions of both the MB and the LONDs. From geometrical considerations, and assuming

that LONDs cover 100% of the MB surface, this relationship is given by N = 4
(
d
a

)2
. b) The

volume of the oil that the MB is able to transport is given by the number of LONDs attached
to its shell, as V = 2

3πd
2a.
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shows the number of LONDs that can be transported by a MB according to its diameter,

for three different LOND sizes. This estimation assumes that all LONDs have the same

size, and that they cover 100% of the MB surface area. The volume of oil that a MB can

transport is defined by the number of LONDs attached to its shell, and can be expressed

as V = 2
3πd

2a. Figure 5.4b shows the dependence of the oil volume that a MB can carry

as a function of its size, for three different LOND diameters.

This section presents three short studies that aimed to better understand the role of

different variables in LONDs size, namely: homogenisation pressure, lipid shell compos-

ition and oil core. LOND sizes were measured using three different techniques (section

3.5, page 34): DLS using a ZetaSizer, tunable resistive pulse sensing using a qNano, and

single particle tracking using a NanoSight instrument. These techniques have different

advantages and disadvantages. For example, DLS has an easy, user friendly, interface and

provides quick measurements. However, DLS results are not reliable for samples with high

size polydispersity. In these cases, NanoSight or qNano would provide a much accurate

sizing result1.

5.3.1 LONDs size change throughout preparation

LOND samples were sized at each step of production, to understand size refinement

throughout the homogenisation process (i.e. blending and subsequent ultra-high pressure

homogenisation). Figure 5.5 shows the DLS size distribution of squalane and triacetin

LONDs coated with POPC and 5% biotin-PEG2000-DSPE, shown as the variation of

intensity scattered from the sample. The initial blending using a polytron resulted in

a sample with high size polydispersity (figure 5.5a and d). This figure indicates that,

although the initial blending assists dissolving macroscopic lipid agglomerates, it does not

produce droplets with uniform size and in the nanometer range. It is important to note

that the high polydispersity index of the sample at this stage (PI ∼ 0.9 for squalane

LONDs, PI ∼ 0.6 for triacetin LONDs) made cumulant-based evaluation of the DLS data

impossible. This meant that no quantitative data could be obtained from this graph, and

it was only used for qualitative analysis.

In the case of squalane LONDs, subsequent ultra-high pressure (175 MPa) homo-

genisation using an Emulsiflex (figure 5.5b) led to a LOND sample with improved size

1NanoSight and qNano also provide a measurement of the concentration of the LONDs in the solution.
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Figure 5.5: Size distribution of squalane and triacetin LONDs throughout the two-step
preparation process. The lipid shell of these LONDs was POPC and 5% biotin-PEG2000-
DSPE. The insets show schematically the production stage to which the size distributions
correspond. Size distribution of the squalane LONDs a) after initial blending, b) after ultra-
high pressure homogenisation, and c) after cross-filtration. Size distribution of the triacetin
LONDs d) after initial blending, e) after ultra-high pressure homogenisation, and f) after
cross-filtration.

monodispersity. This figure shows three size measurements of the same sample; all three

show the same size distribution with average size at (142± 9) nm, demonstrating repeat-

ability of the measurements. The mode size increased slightly after filtration, to (165± 4)

nm (figure 5.5c). This apparent size change of about 9% could due to the removal of small

lipid aggregates from the mixture. This size change was accompanied by a spread in the

size distribution, which could indicate that cross-filtration gave rise to mild sample coales-

cence. It was noted from the results shown in figure 5.5 that high-pressure homogenisation

was necessary to obtain a fine nanoemulsion, with oil droplets ranging 100− 300 nm.

For triacetin LONDs, high pressure homogenisation refined the mode size of the

droplets to < 200 nm (figure 5.5e). The mode size of this LOND sample was (166 ± 40)

nm. It is important to note that, unlike squalane LONDs, the three measurement runs

on this sample were significantly different, pointing towards a large size polydispersity
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of the LONDs. Cross-filtration reduced the size distribution of the sample, with mode

at (116 ± 15) nm (figure 5.5f), which was a reduction of about 30%. The average size

of this LOND sample was also significantly reduced compared to the unfiltered sample,

around 43%, from 306 nm to 173 nm. However, it should be noted that the polydispersity

of the sample was reduced through cross-filtration, which is supported by the improved

coincidence of the three measurement runs performed on this sample. The substantial

difference in the LONDs size distribution difference could be due the dissolution of larger

oil droplets during cross-filtration, due to the high solubility of triacetin in water. Given

that the experimental conditions under which these triacetin LONDs were identical to

those under which the squalane LOND sample were prepared, these results suggest that

the oil plays an important role in the characteristics of the LONDs. This effect has been

studied in more detail and the results will be presented later on in this chapter.

5.3.2 The effect of pressure on LONDs size

The pressure applied during the homogenisation process is the most important variable

affecting the size of the LONDs. [134] If the LONDs are to be combined with MBs to

build more complex architectures, they would ideally have diameters ∼ 200 nm or lower.

To study size changes of LONDs produced at different pressures, two LOND samples

were studied: a squalane LOND sample stabilised with POPC, and a tripropionin LOND

sample with a POPC + 20% cholesterol + 5% biotin-PEG2000-DSPE shell. Small sample

aliquots were taken after 10 min homogenisation at pressures between 35, 70, 105, 140

and 175 MPa. Size variation between the LONDs in a given sample could be significant at

low production pressures, thus the samples were sized using both NanoSight and DLS to

compare both techniques; whereas DLS is based on the scattering of light from the whole

sample, NanoSight relies on individual particle tracking and therefore it is more sensitive

to size polydispersity. [187,247]

Figure 5.6a shows the average size of squalane and tripropionin LOND samples pre-

pared under different pressures, as determined by DLS. As expected, the average LOND

size decreased as the production pressure was increased. This is consistent with observa-

tions for different oils (and surfactants). [165, 166, 168, 248] The experimental points for

squalane LONDs were fitted to y = C · xb (equation 2.19), whereas the data for tripro-

pionin LONDs was fitted to a linear regression. For squalane LONDs, the values of the

79



parameters C and b were determined from the fitting, resulting in C = (8 ± 2) × 103

nm/MPa, and b = −0.70 ± 0.06. This is in agreement with previous observations, which

reported values of b between 0.6 and 0.75 for production regimes dominated by inertial or

shear forces, respectively. [135,155] This suggests that LOND production in the Emulsiflex

holds likeness to other high pressure homogenising processes for nanoemulsion manufac-

turing. The average size of the squalane LONDs produced at 175 MPa was (215 ± 34)

nm, and (92±11) nm in the case of tripropionin LONDs. Figure 5.6b shows the PI values

for the samples prepared under different pressures. The graph was fitted as a guide to

the eye. For squalane LONDs, there is a significant drop of the PI between the sample

prepared under 35 MPa and 70 MPa of about 40%. This shows that LONDs prepared

under 35 MPa have broad size distribution, which is quickly refined when the production

pressure is increased. The PI values reached a plateau for production pressures > 35 MPa,

suggesting that there was not a significant improvement of the size distribution between

70 − 175 MPa. The average size of LONDs prepared at 175 MPa, together with the re-

latively low PI = 0.15 of the sample at this stage, support the use of LONDs produced

under these conditions. Thus, and as mentioned above, after optimisation, LONDs pro-

duced within this project were prepared at 175 MPa. The PI for tripropionin LONDs was

reduced by 18% throughout the studied pressure range. This change suggests moderate

improvement of the monodispersity of the sample through the process, and points at high

size monodispersity of the sample even when produced under the lower pressures (35, 70

MPa)

Figure 5.6: DLS sizing of LOND samples prepared under different pressures. Squalane
LONDs were stabilised with POPC, and tripropionin LONDs were stabilised with POPC +
20% cholesterol + 5% biotin-PEG2000-DSPE. a) Average size of LOND samples at different
production pressures. The data points for squalane LONDs were fitted to y = C · xb, and to
a linear regression for tripropionin LONDs. b) Change in the PI with increasing production
pressure. Fitting intends to be a guide to the eye.
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Figure 5.7 shows the size data obtained with the NanoSight instrument. As for DLS,

the size of the LONDs was observed to decrease upon increasing the production pressure.

In a similar fashion as with the DLS results, the data points for squalane LONDs were

fitted to equation 2.19, with C = (7 ± 2) × 103 nm/MPa and b = −0.71 ± 0.05, as

determined from the fitting. The value for b is in agreement with the literature, [155] and

it is also in agreement with the value for b from the fitting of the DLS data points, within

experimental error. The average squalane LOND size produced at 35 MPa was (550± 40)

nm, which is much higher than LONDs produced under any other conditions and supports

the observations made with DLS (figure 5.6). The large average sizes recorded for squalane

LONDs prepared under 35 MPa suggests that this specific pressure does not suffice to

create LONDs with the desired diameter (∼ 200 nm). Besides this, and considering the

PI value provided from DLS for this same sample, this lower production pressure does not

provide LOND samples with monodisperse sizes. Similarly to what was observed for DLS

sizing, the size of the LONDs reached a plateau at production pressures > 35 MPa. In

the case of tripropionin LONDs, the experimental points were fitted to a linear regression.

Increasing pressures between 30−140 MPa produced only a modest decrease of the LOND

size (∼ 3%).

Figure 5.7: Sizing of squalane and tripropionin LOND samples produced under different
pressures, using the NanoSight instrument. The data points for squalane LONDs were fitted
to y = C · xb (equation 2.19), and a to linear regression for tripropionin LONDs.

The size changes observed in figures 5.6 and 5.7 suggest that tripropionin LONDs

reached an optimum state even at lower production pressures, and that further sample
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processing did not have a significant effect on its size distribution. This points at higher

deformability of the tripropionin LONDs, as smaller LOND sizes can be achieved with

relatively low pressures, which could be attributed to the lower viscosity of the tripropionin

compared to squalane. Futhermore the differences in the lipid shell (i.e. the presence of

the cholesterol and the pegylated lipid in the case of tripropionin LONDs) could contribute

to a more rapid stabilisation in the case of tripropionin, thus preventing recoalescence of

the oil at the homogenising nozzle.

5.3.3 The role of the lipid shell on LONDs size

The presence of a surfactant in the solution is crucial for the formation of a stable

emulsion and its properties have a strong influence in this process, as they determine

the interfacial tension of the droplets. [41,249–251] LONDs were aimed at forming a new

vehicle for hydrophobic drug delivery, via their attachment to the shell of MBs. Hence the

lipid shell of the LONDs was expected to include, for example, phospholipids to allow for

specific binding between the LONDs and the MBs, such as biotinylated ones, or pegylated

lipids, to enhance LOND biocompatibility and potentially their stability. [10] To anticipate

the likely variation of LOND shell lipid composition, and to study possible effects of the

lipid shell on the size of LOND samples, four squalane LOND samples with different lipid

shells were prepared. The lipid shells were: 1) POPC, 2) POPC + 5% biotin-DOPE, 3)

POPC + 5% PEG2000-DSPE, and 4) POPC + 5% biotin-PEG2000-DSPE. The ultra-

high pressure homogenisation step was performed at 175 MPa for all of the samples.

The samples were sized with DLS, and the results are shown in figure 5.8. Each size

distribution is the result of three size measurements performed on the same sample. The

standard deviation of is shaded.
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Figure 5.8: Size distribution of squalane LONDs with different lipid coatings. The figures
show the average size distribution of three runs, and its standard deviation (shaded).

The size distribution of the different LOND samples were analysed and the results

are summarised in table 5.1. POPC-coated LONDs were found to have the largest

size, whereas LONDs coated with POPC + 5% biotin-PEG2000-DSPE had the smal-

lest size. When comparing other squalane LOND samples prepared within the project,

POPC LONDs were, on average, 25% bigger than LONDs coated with POPC + 5%

biotin-PEG2000-DSPE or POPC + 5% PEG2000-DSPE (nPOPC = 11, nBPEG = 4,

nbiotinPEG = 12). In average, the size difference between PEG2000-DSPE and biotin-

PEG2000-DSPE containing LONDs was about 4.5%, indicating that PEG biotinylation

does not have a significant effect in the LONDs size. This also suggests that the differ-

ences with respect to POPC coated LONDS were likely due to the presence of the PEG

chains. A reduction in the size of nanodroplets upon the addition, and subsequent in-

crease of the concentration of PEG2000-DSPE in the lipid shell has been reported before,

and attributed to the increase of the curvature of the lipid membrane due to the close

packing of the PEG chains. [50, 252] PEG chains have been widely used in drug delivery

systems due to their ability to shield the surface of the nanocarriers. PEG attached to
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the phospholipids headgroups (i.e. PEG2000-DSPE, biotin-PEG2000-DSPE) undergoes

steric repulsion from the nanocarrier surface, and contributes to its stability, as observed

for other lipid-coated capsules such as liposomes. [253, 254] The size difference observed

between PEG-containing LONDs and the other species (table 5.1) could also be due to

the decrease in the number of aggregated particles in presence of the PEG chains, which

would reduce the average particle size. [255–257]

Table 5.1: Sizes of squalane LONDs prepared at 175 MPa, with different lipid coatings. All
the samples were sized using DLS. The standard deviation (SD) of the size distributions shown
in figure 5.8 are also included. The average mode size of samples prepared under the same
conditions within the project is also included, with nPOPC = 11, nBPEG = 4, nbiotinPEG = 12,
and the uncertainties correspond to the standard error of the

Lipid shell Average Mode SD Project average

size (nm) size (nm) (nm) mode size (nm)

POPC 247± 5 196± 4 79 194± 9

POPC + 5% biotin-DOPE 214± 2 176± 1 66 -

POPC + 5% PEG2000-DSPE 212± 3 178± 1 62 140± 10

POPC + 5% biotin-PEG2000-DSPE 164± 4 140± 1 45 145± 6

5.3.4 The effect of the oil on LOND size

The characteristics of the oil, such as viscosity and density, have previously been

reported to have an effect on the size of the nanodroplets in nanoemulsions. [172,258–262]

Generally, oils used as model systems in the literature to study the size changes due to

the viscosity or density of the oil fall far below the biocompatibility required in clinical

applications. All the oils used within this project have high levels of biocompatibility.

There was an interest in replicating previous studies, which focused in the characterisation

of emulsions of non clinical grade oils. To study the potential size variability of LONDs

prepared with different candidate oils, triacetin, tripropionin and squalane were used to

prepare LONDs. The resulting sample was sized using two different techniques (three in

the case of triacetin LONDs). All the samples were stabilised with a phospholipid shell that

included 5% biotin-PEG2000-DSPE, in order to avoid size differences associated to the

presence/absence of the PEG chains (section 5.3.3). Similarly, all LOND samples were

prepared under 175 MPa in the Emulsiflex. Table 5.2 summarises the findings for this

experiment. Tripropionin LONDs were found to have the smallest diameter, and both size

measurements, with DLS and using the NanoSight instrument, are in agreement. Squalane
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Table 5.2: Average size of LOND samples, as measured using three different techniques.
Each result is the average of at least 2 size measurements, of two different LOND samples.
The uncertainties correspond to the standard error of the mean. Lipid shells are: A) POPC
+ 5% biotin-PEG2000-DSPE, B) DSPC + 5% biotin-PEG2000-DSPE + 20% Cholesterol

Oil Lipid shell LOND average size (nm)

DLS NanoSight qNano

Triacetin A 202± 38 127± 12 280± 9

Tripropionin B 105± 11 102± 9 -

Squalane A 165± 11 133± 10 -

LONDs DLS and NanoSight instrument size measurements show a discrepancy of about

6%, if considering the uncertainties of each measurement. This difference could be purely

due to production variation between the samples sized with each technique (nDLS = 4,

nNanoSight = 5). The limitations of DLS when sizing polydisperse samples could also

introduce some error to the measurement. There are notable differences between the sizes

of triacetin LONDs obtained with the different techniques. Within error, the data obtained

by DLS and qNano are in agreement. However the results provided by the NanoSight

instrument considerably deviate from the other two. It is possible that smaller triacetin

LONDs were not detected in qNano which would therefore provide a larger average size

for these LOND samples. Similarly, their light scattering signal could be hidden by that

scattered by larger LONDs in the solution, thus increasing the average size.

Highly viscous oils have been reported to form droplets considerably larger than those

formed with oils with lower viscosity oils. [258, 263] When comparing the results shown

in table 5.2 with the literature, similar size dependence with the viscosity of the oils is

observed for squalane and tripropionin LONDs. Figure 5.9 shows a plot of the size of

tripropionin, squalane and triacetin LONDs as a function of the oil viscosity. The data

points were fitted to a linear regression. [263] The viscosity of squalane at 20 ◦C is η = 12

mPa·s, whereas the viscosity of tripropionin is η = 10 mPa·s at this temperature (table

4.1, on page 49). [264] Correspondingly, squalane LONDs show a larger average size than

tripropionin LONDs, both formed under the same conditions. Triacetin has the highest

viscosity out of the three candidate oils used in this particular study, with viscosity 23

mPa. For the case of triacetin LONDs, the size increase with increased viscosity of the oil
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Figure 5.9: Size of the LONDs as function of the viscosity of the oil, for tripropionin, squalane
and triacetin LONDs. The data points were fitted to a linear regression.

is only true if considering the sizing results obtained by DLS and qNano.

5.4 Concentration measurements

In the literature, nanoemulsions are often treated as a bulk material, and there have

been not many references concerned with the determination of the number of nanoparticles

forming the nanoemulsion. In general, the oil volume fraction φ is considered to determine

the number of droplets present in a nanoemulsion. This is true in general, unless the

solublity of the oil in water is not negligible. Although there are a few references to the

indirect study of the concentration, [265, 266] there have not been systematic studies on

the factors affecting the concentration of nanodroplets aimed at drug delivery. In this

project, the number of LONDs that attach to the MB surface defines the amount of drug

that it is possible to transport in the MB-LONDs. Therefore knowing the number of oil

nanodroplets present in the nanoemulsions was important.

This section presents the study of the dependence of LOND concentration and two

different factors: 1) the production pressure in the Emulsiflex and 2) the encapsulated oil.

The concentration of LONDs was measured using two different instruments, the qNano

and the NanoSight (section 3.5, page 34). qNano was available throughout the project, and
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it was used to perform measurements at the beginning of the project, whereas NanoSight

was used for later experiments.

LOND concentration was estimated by considering the LONDs to be perfect spheres

with diameter2 d = 200 nm and volume given by V = 4
3π
(
d
2

)3
. Assuming that all the

oil present in the crude emulsion (0.7 ml, φ = 0.07) is encapsulated by the lipid, the

concentration of LONDs would theoretically be ∼ 2× 1013 ml−1. This estimate was used

as a guide when performing experimental measurements on the LOND samples.

5.4.1 The effect of pressure on LONDs concentration

Emulsion production relies on breakage of the oil phase into small oil droplets that

stabilise with the lipid present in the solution (section 2.2, page 16). Higher shear forces

at the homogenising nozzle in the Emulsiflex lead to more efficient dispersion of the oil

phase, leading to increased concentrations. In order to study the dependence of the LOND

concentration and the production pressure during ultra-high pressure homogenisation,

concentration measurements of LONDs prepared under 35, 70, 105, 140 and 175 MPa

were performed. Squalane and tripropionin LONDs were chosen as model LONDs for this

experiment, and were stabilised with POPC and POPC+ 20% + 5% biotin-PEG2000-

DSPE, respectively. In each case, the crude emulsions were processed for 10 min at each

pressure, starting from the lowest one, and small sample volumes were collected before

increasing the pressure. A NanoSight instrument was used to determine the concentration

of the LOND samples, that were diluted 1 : 100000 to perform the measurements.

2early sizing results on different squalane LOND samples provided results between 190− 220 nm, thus
d = 200 nm was considered for this estimate.
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Figure 5.10: Concentration of a) squalane and b) tripropionin LOND samples produced
under different pressures in the Emulsiflex. The concentration measurements were performed
using a NanoSight instrument and the data points were fitted as a guide to the eye.

Figure 5.10 shows the concentration of LOND samples produced under different pres-

sures in the Emulsiflex. The data was fitted as a guide to the eye. As expected, the number

of LONDs in the solution, for both squalane and tripropionin LONDs, was observed to in-

crease with increasing pressures. The concentration of squalane LONDs reached a steady

value at (2.2 ± 0.4) × 1013 ml−1. This could be explained from the point of view of the

surfactant available in the solution, as more droplets are created throughout the homogen-

ising process. Ultra-high pressure emulsification relies on droplet breakage and immediate

stabilisation by the surfactant, and lack of surfactant in the solution would lead to re-

coalescence of the droplets after their disruption in the homogenising nozzle. [147, 166] It

is also interesting to note that the value of the concentration at the plateau is, within

experimental error, the same as that obtained theoretically through size considerations

(∼ 2× 1013 ml−1). This suggests that all the squalane was successfully dispersed and en-

capsulated with the lipid. In the case of tripropionin, LOND concentration was observed

to increase slowly for increasing production pressures between 35−145 MPa. Sample pro-

cessing under 175 MPa resulted in a significant increase of LOND concentration ∼ 53%,

to a final value (1.4± 0.1)× 1014 ml−1. This is in agreement with the theoretical value of

LOND concentration based on the LONDs dimensions3, 1.3× 1014 ml−1. The differences

observed in the dependence of LOND concentration with the production pressure between

squalane and tripropionin LONDs could be attributed to the different viscosity of the oils.

In a similar fashion to affecting the size, the enhancement of the droplet deformability at

the homogenising nozzle due to lower viscosity oils results in more efficient dispersion of

the oil in the water phase.

3for d ∼ 120 nm, and φ = 0.07
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5.4.2 The effect of oil on LOND concentration

The physical characteristics of the oils, such as their viscosity and density, are known to

affect the properties of the nanodroplets in a nanoemulsion. [267,268] To study the effect

of the oil in the concentration of LONDs, samples of triacetin, tripropionin, squalane,

squalene were studied using qNano and/or NanoSight. The pressure applied at production

was 175 MPa. Figure 5.11 shows an example of concentration data obtained using qNano,

for triacetin LONDs coated with POPC + 5% biotin-PEG2000-DSPE. LONDs crossing

the nanopore create a blockade event whose magnitude provides a measurement of its

size, whereas the number of LONDs that obstruct the pore provide a measurement of the

concentration of the sample. In this particular case, there were 1.9 × 109 LONDs/ml−1,

with an average size of (295± 7) nm. The size of the pore used to perform measurements

on each sample defines the accuracy of the technique. Hence, particles too small to create

a significant blockade event might not be detected. An example of this can be seen in

figure 5.11, which does not show any particles smaller than 200 nm. Although some

LONDs below 200 nm may exist in the sample, they were too small to be detected with

this pore size, therefore reducing the total particle count and affecting the concentration

measurement.

Figure 5.11: Concentration measurement of a triacetin LOND sample as determined by qN-
ano. The concentration of the sample was 1.9×109 ml−1. The instrument cut-off (for particles
< 200 nm in this case) is defined by the size of the nanopore used for the measurements.

Table 5.3 summarises concentration data for different types of LONDs. The uncertainty

in the concentration of squalane, triacetin and tripropionin LONDs corresponds to the

standard error of the mean, from averaging the values obtained for different samples

(n > 3 in all cases). Differences between the concentrations measurements performed with
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qNano and NanoSight were observed, and can be, to a certain extent, explained by the

limitations of the sizing techniques. [187,247] For triacetin LONDs, both the concentration

measurements are within experimental error. However, in the case of squalane LONDs,

the two concentration measurements differ by one order of magnitude. The standard error

associated to the measurement in qNano is very high, about 70% (n = 4), which shows that

the concentration differences between all the samples studied were large. It is possible that

the LOND samples measured in qNano were of lower quality that the samples measured

in NanoSight, prepared later on in the project.

Tripropionin LONDs exhibit the highest concentration (1014 ml−1), whereas triacetin

LOND samples appear to have the lowest one (1010 ml−1). Differences in the oil water

solubility (table 4.1, page 49) could explain the differences observed in the concentration

of LONDs samples formed with different oils. For example, the higher solubility of tri-

acetin could make a fraction of the triacetin solubilise in water, before being encapsulated

by the lipid. Similarly, higher solubility could translate into lower retention of the oil in

the LONDs. Squalane and squalene show concentrations in the same order of magnitude,

when measured using NanoSight. This is not surprising, provided that the squalane and

squalene molecules are very similar, non-polar and close physical characteristics, and there-

fore nanoemulsions prepared with either of these oils could be expected to have similar

properties.

Table 5.3: Concentration of LONDs formed with different oils, as measured by the qNano
and/or NanoSight instruments. All the uncertainties correspond to the standard error except
for the concentration of squalane, which is the uncertainty associated to the measurement of
the concentration in a single experiment.

Oil Concentration (LONDs/ml)

qNano NanoSight

Squalane (6.4± 4.5)× 1012 (7.1± 2.4)× 1013

Squalene - (2.6± 0.4)× 1013

Triacetin (3.2± 1.2)× 1010 (3.3± 1.4)× 1010

Tripropionin - (4.5± 1.3)× 1014
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5.5 Stability of LONDs

Drug delivery systems often rely on encapsulation of a therapeutic agent, thus protect-

ing the drug until its administration. It is clear that good stability over time is desirable

for such systems, if they are to retain the drug until it is deposited in the place of interest.

This project aimed to combine LONDs and MBs into a novel architecture for the deliv-

ery of drugs. The techniques used to prepare the MBs (microfluidics) and the LONDs

(high pressure homogenisation) are impossible to combine in a single device, and therefore

the preparation of LONDs must precede the formation of MBs. The need for ensuring

that LONDs remain stable over this time window is evident. Besides this, LONDs would

ideally retain similar physical characteristics (i.e. size and concentration) over a long

enough period of time, so that different LOND batches could be used for different experi-

ments. To study the stability of LONDs over time, the size distribution of LOND samples

was monitored using DLS. Sample agglomeration or degradation was expected to translate

into a size distribution change, such as a broadening of the original size distribution or

appearance of new peaks. Two different studies of the stability of LONDs were performed:

i) an investigation to determine the stability of LONDs upon storage conditions (4 ◦C)

during six weeks, and ii) a study on the stability of LONDs under physiological condi-

tions (37 ◦C) and during a clinically relevant time (2 h). The later experiment intended

to be a better approach to those conditions a LOND would be exposed to when used in

vivo. However it is important to note that these conditions are impossible to completely

replicate in vitro, and therefore any results should be interpreted tentatively.

Figure 5.12 shows the mode size variation of squalane, triacetin and tripropionin

LONDs LONDs over six weeks, stored at 4 ◦C. Both the squalane and the triacetin LOND

samples were produced under identical conditions, and POPC + 5% biotin-PEG2000-

DSPE was used for stabilisation of the oil. Tripropionin LONDs were stabilised with

POPC + 20% cholesterol + 5% biotin-PEG2000-DSPE Each experimental point was pro-

duced averaging three DLS runs, and the data points were fitted to a linear regression with

slope 0. The graphs shows a size variation of around 16% in the case of squalane LONDs,

of 13% for triacetin LONDs and 15% for tripropionin LONDs. There was a relatively

small variation of the LONDs diameter within this time, which suggested good stability

against agglomeration and coalescence.
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Figure 5.12: Size change of squalane, triacetin and tripropionin LONDs over a six week
period, stored at 4 ◦C, measured with DLS. Experimental points were produced averaging
three size measurements on the same sample.

The stability of LONDs stored at 4 ◦C was also studied by determining the concen-

tration of LOND samples within time. Agglomeration of LONDs in solution would likely

lead to not only an increase in the average size of the sample, but could also reduce the

number of LONDs. Furthermore, solubilisation of the oil in the aqueous phase would lead

to a reduction in LOND concentration. The concentration of two LOND samples, at two

different times after production was determined using the NanoSight instrument. The

first sample was squalane LONDs, stabilised with POPC + 5% biotin-PEG2000-DSPE

and was sized after production and 10 weeks later; the second sample was tripropionin

LONDs, stabilised with DSPC + 20% Cholesterol + 5% biotin-PEG2000-DSPE, and was

sized after production and 4 weeks later. Table 5.4 summarises the results obtained for

these two samples. Although the concentration of both samples remained in the same

order of magnitude, the number of LONDs in solution diminished about 27% in the case

of squalane LONDs, and about 71% in the case of tripropionin LONDs. It is important

to note that the technique by which the samples were studied, single particle tracking, is

sensitive to local variations of the LOND concentration. This means that, although the

samples for analysis were prepared with extra care to ensure the greatest homogeneity,

small concentration variations within the sample could translate into an apparent reduc-

tion of the number of LONDs in the solution. From the stability results shown in figure

5.12, it can be argued that the changes in concentration were not large enough to have an

effect in the average size distribution of the sample, as this remained constant during the

studying time.
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Table 5.4: Concentration of LOND samples as measured by the NanoSight instrument. For
both samples, t0 corresponds to the measurements performed shortly after LOND preparation.
For squalane LONDs, t1 = 10 weeks, whereas for triacetin LONDs t1 = 4 weeks.

Oil Lipid shell Concentration Concentration

at t0 (ml−1) at t1 (ml−1)

Squalane POPC + 5% biotin-PEG2000-DSPE (4.8± 0.5)× 1013 (3.5± 0.3)× 1013

Tripropionin
DSPC + 20% Cholesterol

(7.3± 0.7)× 1014 (2.1± 0.5)× 1014
+ 5% biotin-PEG2000-DSPE

Figure 5.13 shows the size variation of triacetin, squalane and tripropionin LONDs at

37 ◦C and over 2 h. As above, both LOND samples were produced under identical condi-

tions, and the lipid shell was POPC + 5% biotin-PEG2000-DSPE. Tripropionin LONDs

were stabilised with DSPC + 20% cholesterol + 5% biotin-PEG2000-DSPE. In this case,

the LOND samples were kept constantly at 37 ◦C for 2 h and measurements of their size

distribution were taken every 15 min. A 2 h period was considered comparable to the time

scales over which LONDs must remain intact during an in vivo experiment. Within ex-

perimental error, the size of the LONDs did not change, suggesting that LONDs remained

stable during this period, and also that the LONDs did not undergo agglomeration.

Figure 5.13: Size change of squalane, triacetin and tripropionin LONDs over at 37 ◦C
over 2 h, as determined with DLS. Experimental points were produced averaging three size
measurements on the same sample.
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5.6 LONDs imaging

This section contains the experimental results relating to the imaging of LONDs. In

this project, imaging of LONDs was performed with epifluorescence microscopy and TEM.

TEM imaging was used confirm the existence of the LONDs, whereas epifluorescence

microscopy was used to confirm the detection of LONDs incorporating a fluorescent probe

in their structure.

5.6.1 TEM

LONDs formed from different candidate oils were imaged using TEM. Specifically,

squalane LONDs (empty and encapsulating Qdots), triacetin LONDs (empty and encap-

sulating CA4) and tripropionin LONDs (empty, two different oil shells) were imaged.

Samples for TEM imaging were prepared by depositing 15 µl of the LOND samples (1011

LONDs/ml, in PBS) on a carbon coated grid. The solution was left on the grid for 30

s, and the excess liquid dried out using blotting paper. The sample was subsequently

stained by dropping 15 µl of uranyl acetate (1%) on the grid and incubating for 15 s, after

which the excess liquid was removed with blotting paper. TEM images were analysed

using imageJ.

Figure 5.14 shows TEM images of squalane LONDs, that appeared as characteristic

globular structures ranging 100−300 nm. Empty squalane LONDs (figure 5.14a and b) and

squalane LONDs encapsulating hydrophobic Qdots (figure 5.14d and e) were imaged. Both

samples were stabilised with POPC + 5% biotin-PEG2000-DSPE and prepared following

the two-step process, with 175 MPa applied in the Emulsiflex. The two LOND samples

did not show significant differences under TEM. Size histograms for the two samples are

shown in figure 5.14c and f. A normal distribution fitted to each histogram was used to

determine average size and standard deviation of the samples. Empty LONDs were found

to have an average size (111±6) nm (LONDs measured n = 187, standard deviation of the

sample σ = 85 nm). Squalane LONDs encapsulating Qdots had an average size (112± 4)

nm (n = 98, σ = 39 nm). These results suggest that the encapsulation of Qdots had no

effect in the size of squalane LONDs. It is important to note that the resolution of the

specific TEM microscope used to take the images shown in figure 5.14 was not enough to
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Figure 5.14: TEM images of squalane LONDs. The lipid shell was made of POPC. a) and
b) show a population of squalane LONDs. c) Size histogram for the same squalane LONDs
sample, with average size (111 ± 6) nm, n = 187, σ = 85 nm d) and e) show a population
of squalane LONDs encapsulating Qdots. f) Size histogram for the same squalane LONDs
sample with Qdots, average size (112± 4) nm with n = 98, σ = 39 nm.

resolve individual Qdots (with sizes around ∼ 7 nm).

Triacetin LONDs were imaged on TEM. Two samples were examined: an empty tri-

acetin LOND sample and triacetin LONDs encapsulating CA4. The concentration of the

drug in the oil, prior to LONDs formation, was 25 mg/ml. Both samples were stabilised

with POPC + 5% biotin-PEG2000-DSPE, and prepared under 175 MPa in the Emulsiflex.

Empty triacetin LONDs (figure 5.15a) were found to have an average size of (140± 4) nm

(LONDs measured n = 91, standard deviation of the sample σ = 40 nm), as determined

from the fitting of the the size histogram (figure 5.15b). The average size of triacetin

LONDs encapsulating CA4 (figure 5.15c) was found to be (166 ± 5) nm (n = 55, σ = 39

nm) form the size histogram shown in figure 5.15d.
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Figure 5.15: TEM images of triacetin LONDs. POPC and 5% biotin-PEG2000-DSPE were
used to stabilise the oil. a) Empty triacetin LONDs and b) size histogram (average size of
(140 ± 4) nm, n = 91, σ = 40 nm). c) Triacetin LONDs encapsulating CA4 and d) size
histogram (average size (166± 5) nm, n = 55, σ = 39 nm).

Tripropionin LONDs were also examined under TEM. Two samples stabilised with

different lipid coatings were imaged. Figure 5.16a shows tripropionin LONDs stabilised

with POPC only. It was difficult to observe any intact LONDs in this sample, in contrast

to squalane and triacetin LOND samples, in which distinctive globular structures could

be seen. In order to improve the stability of tripropionin LONDs, the lipid shell was

modified, as discussed above (section 5.2). The mixture DSPC + 20% Cholesterol + 5%

biotin-PEG2000-DSPE was used to produce tripropionin LONDs, and figure 5.16b and c

show the TEM images of this new sample. LONDs appeared to have lost their structure

under the vacuum conditions in TEM, exhibiting a layered appearance. This could be due

to the increased rigidity of the lipid shell by the addition of DSPC and cholesterol. [269,270]

This type of LONDs was found to have an average size (89±3) nm (n = 71, σ = 23 nm), as

determined from the fitting to the size histogram (figure 5.16d). It is interesting to note

that this sample shows the smallest standard deviation, compared to the other LOND

samples studied using TEM, which suggests enhanced monodispersity. Provided that the

preparation method for this LOND sample was identical to those described previously

(figures 5.14, 5.15), this improved size monodispersity could be related to the increased

rigidity of the lipid shell. However, further experiments would be required to confirm this

hypothesis.
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Figure 5.16: TEM images of tripropionin LONDs. a) Tripropionin LONDs stabilised with
POPC only. b and c) Tripropionin LONDs stabilised with DSPC + 20% Cholesterol + 5%
biotin-PEG2000-DSPE. d) Size histogram used to determine the average size of the tripropi-
onin LOND sample shown in c and d (average size (89± 3) nm, n = 71, σ = 23 nm)

5.6.2 Epifluorescence microscopy

To test the fluorescence tracking of LONDs, LONDs were imaged using the epifluor-

escence microscope. As discussed above, the fluorescently tagged lipids Atto 488 and

Atto 590 DOPE were added to the lipid shell composition when fluorescence tracking of

the LONDs was necessary. Alternatively, the encapsulation of Nile Red in LONDs also

allowed for fluorescent tracking. The resolution limit of a conventional epifluorescence

microscope is around 250 nm, which implies that LONDs would appear simply as fluor-

escent dots under the fluorescence microscope, and no structure could be resolved using

this technique.

Figure 5.17 shows an example of two epifluorescence images of LONDs. For these

experiments, LOND samples were diluted 1 : 1000 in PBS, meaning a final concentration

of LONDs in solution of the order of 109 LONDs/ml. Squalane LONDs stabilised with

POPC, 5% biotin-PEG2000-DSPE and 0.1% Atto 590 were imaged using a 40× objective

(figure 5.17a). Figure 5.17b shows squalane LONDs encapsualting Nile Red, and stabilised

with POPC and 1% biotin-DOPE, imaged using a 100× objective. Triacetin LONDs

encapsulating Nile Red and stabilised with POPC and 5% biotin-PEG2000-DSPE with

were imaged using a 40× objective. LOND samples appeared polydisperse, and a few big

97



fluorescence agglomerates with sizes4 > 1 µm. Individual fluorescence dots were possible

to resolve in both magnifications (40× and 100×), and also when the fluorescence signal

came from a fluorescently tagged phospholipid added to the LOND lipid shell (Atto 590

DOPE)and when the fluorophore was encapsulated in the oil (Nile Red).

Figure 5.17: Epifluorescence images of LONDs. a) Squalane LONDs with 0.1% Atto 590
in the shell. Imaged under the 40× objective. b) Squalane LONDs encapsulating Nile Red.
100× objective. c) Triacetin LONDs encapsulating Nile Red. Taken using the 40× objective.

5.7 Discussion

Over the past decade or more, nanoemulsion formation and stability has been an

important endeavour, as they find application in a wide range of fields, from food [144,271]

to materials science [272, 273]. [274] Remarkably, nanoemulsions have also been used in

the pharmaceutical industry to deliver, or enhance the delivery of hydrophobic drugs. [40]

This project aimed to combine lipid-stabilised, oil-filled nanodroplets (LONDs) and MBs

in a more complex architecture that would retain the potential of the nanoemulsions to

deliver hydrophobic drugs, but that would also incorporate the ultrasound properties of

the MBs. It becomes apparent that a precise characterisation of the LONDs is vastly

important if they are to be combined with MBs and find a medical application.

In this project, LONDs were formed from a oil-in-water and lipid mixture, in a two-

step homogenisation process that included a first blending step that roughly mixes the

components and dissolves larger lipid agglomerates, followed by a ultra-high pressure ho-

mogenisation step in an Emulsiflex (section 5.1). The size of the LONDs was refined at

each step, as shown in section 5.3.1. Also, the size of the LONDs formed following this

method are in agreement with other nanoemulsions prepared in this way. [165,260,274,275]

4Probably a number of LONDs clustered together.
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The formation of LONDs was attempted with all the candidate oils, and early results lead

to the discarding of EPA and isoamyl acetate. The solubility of the model hydrophobic

drug CA4 added further restrictions to the oils used for LONDs preparation, it only dis-

solved in triacetin. Although CA4 only dissolved in triacetin, and showed poor solubility in

squalane, both squalane and triacetin were used as model oils to form LONDs throughout

this project. Overall, triacetin LONDs showed larger sizes and lower concentration than

any other candidate oil, and also higher polydispersity index, which made sizing using

DLS difficult. This was attributed to the high water solubility of triacetin, which could

induce oil leaking from the LONDS and its dissolution in the aqueous phase.

Tripropionin was introduced as a candidate oil later in the project, thus only prelimin-

ary results with this oil have been presented. Tripropionin showed great potential forming

LONDs, producing monodisperse samples with high concentrations (∼ 1014 ml−1), and

also the ability to dissolve the model drug CA4. These LONDs show great potential for

the delivery of CA4, and therefore future, detailed studies of their stability over time

and drug retention will be crucial for understanding drug delivery using this platform.

Tripropionin LONDs were first stabilised using only POPC in the lipid shell, which lead

to rapid LONDs destabilisation, as reflected in the samples as the appearance of white

precipitate (thought to be lipid) and also an increase of the sample polydispersity (as

measured with the NanoSight instrument). Modification of the shell to incorporate cho-

lesterol and biotin-PEG2000-DSPE, as well as substituting POPC with DSPC, with a

higher transition temperature, dramatically increased the stability of this type of LONDs.

This specific shell composition has been previously used in nanoemulsions for drug de-

livery. [45, 50] Indeed, preliminary results demonstrated this LONDs to be stable for at

least four weeks (table 5.4), compared to the few hours that POPC-stabilised tripropionin

LONDs remained stable. It has been hypothesised that the increase in the rigidity of the

shell could have a positive effect in the retention of the oil by the lipid shell, contributing to

LOND stability. [276] It is possible that the use of this lipid shell in encapsulating triacetin

could improve the size distribution of these LONDs, and contribute to the reduction of

the polydispersity index of the samples, which caused a number of problems during this

project.

In an effort to better understand the factors affecting the size and concentration of

LONDs, an extensive study was performed. Applied pressure in the Emulsiflex was found

to be an important variable in LOND production. [165, 260] Squalane LONDs were used
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to study this dependence. The average size of LOND samples was found to decrease with

increasing pressures, which is in correspondence with increased shear forces at the homo-

genising nozzle as the energy input (pressure) is incremented (section 5.3.2). Similarly,

increasing pressures lead to higher concentration of LONDs in the solution, pointing at

more efficient oil breakage under higher pressures (section 5.4.1). Interestingly, both the

size of the LONDs and the concentration were found to quickly reach a plateau for produc-

tion pressures > 35 MPa, suggesting that the physical characteristics of the system (such

as surface tension of the phospholipid, and oil viscosity) do not allow for further splitting

of the oil droplets. The oil encapsulated in the LONDs was also found to have an effect in

LOND size and concentration (section 5.4.2). As mentioned above, tripropionin was found

to form highly concentrated LOND samples (∼ 1014 ml−1), whereas the concentration of

triacetin LOND samples were, in average, four orders of magnitude lower (∼ 1010 ml−1).

The concentration of LOND samples encapsulating squalane or squalene was also found to

be high, about 1013 ml−1. The water solubility of triacetin has been suggested as a reason

behind the reduced concentration of LONDs formed with this oil. Permeation of triacetin

from the LONDs to the aqueous phase could lead to the dissolution of a number of LONDs.

The lipid shell of these shrunken LONDs would potentially rearrange to form micelles, or

stay in the solution as smaller lipid agglomerates such as dimers. The disappearance of

some LONDs could also have the effect of modifying the average size distribution and

concentration of triacetin LOND samples, and could also contribute to increase the PI

of the samples. This effect could be hypothesised to be gradual over time, and until an

equilibrium between the amount of triacetin diluted in the water phase and contained in

the LONDs is reached. More experiments would be however necessary to test this hy-

pothesis. Squalane LONDs were used as model LONDs to study the effect of the lipid

coating in the LONDs size (section 5.3.3). Four different LOND samples, prepared under

the same conditions and with different lipid shells, were sized to study size variations with

the different coatings. POPC-stabilised LONDs were found to have the the largest average

size, and considering other samples prepared and sized within the project, these LONDs

are, in average, 25% bigger than LONDs coated with POPC + 5% biotin-PEG2000-DSPE

or POPC + 5% PEG2000-DSPE. This size difference has been explained from the point

of view of the increased LOND stability in presence of the PEG chains, which have been

well characterised as steric barriers for nanoparticles used in drug delivery. In fact, this

size reduction has been reported before, and attributed to the curvature change in the
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lipid shell in presence of the PEG chains. [50, 252] Besides, and in absence of the PEG

chains, LONDs may have an increased tendency to agglomerate, which could contribute

to enlarging the average size of the samples. The benefits of the presence of PEG chains

in LONDs potentially go beyond the evident improvement of LONDs stability in vitro.

Indeed, the development of effective stealth liposomes is largely due to the incorporation

of PEG in their shell compositions. [10] The presence of the PEG chains substantially

enhances their residence time in vivo, and also allows for further targeting efficiency and

activity. [277–280] It is expected that LONDs would be benefited similarly by the presence

of PEG chains in their composition when administered in vivo. However a detailed study

would be necessary to test this hypothesis.

Imaging of LONDs using TEM and epifluorescence microscopy confirmed the existence

of LONDs. Epifluorescence microscopy showed that fluorescence tracking of LONDs with

Atto 590 DOPE into their lipid shells, as well as LONDs encapsulating Nile Red, was

possible. Although the optical resolution does not allow for observation of the LONDs

structure, this investigation showed that individual LONDs could be detected individu-

ally. TEM images provided valuable sizing data, for squalane, triacetin and tripropionin

LONDs. A summary of the sizing obtained for the three types of LONDs, with three dif-

ferent sizing techniques (namely DLS, the NanoSight instrument and direct measurement

on TEM images) is presented in table 5.5. It is important to note that DLS provides a

measurement of the hydrodynamic radius of the LONDs, by analysing the light scattered

from the bulk sample, whereas the NanoSight instrument is capable of determining the

sizes of the individual particle, and similarly, TEM sizing is a direct measurement of

the LOND size. Therefore, DLS provides slightly larger average size results for all three

types of LONDs. In addition, TEM images are likely to correspond to the relics of the

LONDs, [281] as they could partially lose their shape once the sample is deposited onto the

grid and dried out. This could have an effect in the measured size of the LONDs. Despite

the limitations of the experimental techniques, the sizing for squalane and tripropionin

LONDs is mostly in agreement across the different techniques used. There was a small

discrepancy between the sizes of triacetin LONDs measured by DLS and the NanoSight

instrument, as discussed earlier, and there was also a discrepancy with the average size

that resulted from the analysis of the TEM images. This difference was not noticeable

for either squalane or tripropionin LONDs. This could be due to the higher volatility of

triacetin under the vacuum conditions in TEM, as evaporation of triacetin could translate
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into reduction of LONDs size.

Table 5.5: Average sizes of squalane, triacetin and tripropionin LONDs. The lipid shell of
squalane and triacetin LONDs was POPC + 5% biotin-PEG2000, whereas DSPC + 20%
cholesterol + 5% biotin-PEG2000-DSPE was used to stabilise tripropionin LONDs. The
LONDs sized with three different techniques

Oil Size (nm)

DLS NanoSight TEM

Squalane 165± 11 133± 10 112± 7

Triacetin 202± 38 127± 12 153± 6

Tripropionin 105± 11 102± 9 89± 3

The stability of triacetin and squalane LONDs, prepared under identical conditions and

stabilised using POPC + 5% biotin-PEG2000-DSPE was studied by sizing the samples

over time, with DLS. Two different experiments were performed 1) upon sample storing at

4 ◦C, the stability was studied over six weeks; 2) upon sample incubation at 37 ◦C, their

stability over 2 h was studied. Both experiments showed no size changes of the LONDs

within time, suggesting excellent stability and reinforcing their robustness as capsules for

hydrophobic drugs to find clinical applications. Notably, the stability results for LONDs

over six weeks are found in agreement with some previous reports on similar systems, in

which nanoemulsions were reported stable for two, [258,261,282,283] and four [144] weeks.

There are also a few references to nanoemulsions stable for more than two months. [46,47,

51, 275, 284]. Furthermore, and to complete the investigation on the stability of LONDs,

the concentration of two different LOND samples was monitored over time. As discussed

above, nanoemulsions have been clasically treated as bulk material, and there are only a

few scattered references to the number of particles per unit volume in the nanoemulsions.

[265] In this project, the NanoSight and qNano instruments allowed for the study of the

concentration of LONDs in the samples, which was a crucial paramenter in the experiments

carried on in this project. For this case study, squalane and tripropionin LONDs were

used, both prepared under identical conditions and both including 5% biotin-PEG2000-

DSPE in the lipid shell5. In both cases, the concentration remained in the same order of

magnitude, and although some differences were observed, they were attributed to small

differences within the sample. An extended studied of the variation of the concentration

over time would be required to complete this investigation. As discussed earlier, this would

be especially relevant for tripropionin LONDs, which showed promising initial results.

5tripropionin LONDs were stabilised with DSPC + 20% cholesterol + 5% biotin-PEG2000-DSPE,
following results obtained previously.
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The results shown in this chapter demonstrate that the choice of oil and lipid shell

have an effect on the final LOND product, which could be relevant for LONDs finding

clinical applications and also in the assembly of the complex MB-LONDs architecture.

Importantly, the results point at PEG chains as a key factor affecting LOND size and

stability. These results are relevant for subsequent LOND samples encapsulating model

hydrophobic drugs and for in vitro cell studies, which were always, following these results,

prepared including 5% biotin-PEG2000-DSPE in their lipid shell. Similarly, the production

conditions have a crucial role in the size and concentration of the samples, and informed

by these results, 175 MPa was selected as the pressure for optimal LONDs production.
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Chapter 6

Topic: Encapsulation in LONDs

This chapter contains the results on the encapsulation of drugs and drug mimics in

LONDs. Three hydrophobic drug mimic candidates were studied in this project, namely

Nile Red, hydrophobic Qdots and calcein AM. The encapsulation of the Qdots and calcein

is described in this chapter, and the results concerning encapsulation efficiency and reten-

tion of the mimics are included. The drug CA4 was encapsulated in triacetin LONDs and

tripropionin LONDs. This process is described and the data regarding the encapsulation

and leakage of the drug from the LONDs is also presented.

6.1 Encapsulation of Qdots

Qdots were chosen as hydrophobic drug mimics due to their excellent fluorescent prop-

erties. Qdots synthesis is a relatively versatile process, in that it allows for the modification

of the Qdots with different surface chemistry. For these experiments, in-house prepared

Qdots were coated with a hydrophobic dodecanethiol shell (section 3.2 on page 28). These

Qdots were found impossible to disperse in triacetin, largely due to the polarity of the

oil, and therefore only squalane was used to prepare LONDs encapsulating Qdots (section

4.3.1, on page 55). LONDs were prepared following the protocol described in section 5.1

(page 71), with a minor modification; prior to the addition of the oil to the dried lipid, 2.4

µM Qdots diluted in hexane were added to 0.7 µl of squalane, and the solution was placed

under nitrogen for at least 30 min to remove any traces of hexane. The number of Qdots

was adjusted so that the each of the resulting LONDs would encapsulate ∼ 100 Qdots.

To reduce the complexity of the system, and also to reduce the cost of these preliminary
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experiments, POPC only was used to stabilise the LONDs. Cross-filtration followed the

preparation process to remove unencapsulated material.

Squalane LONDs encapsulating Qdots were sized using DLS, and where found to have

an average size (206 ± 3) nm. The average size of empty squalane LONDs, as shown in

the previous chapter, was (194±9) nm (table 5.1, on page 84), which is in agreement with

the DLS measurement for this specific sample. This suggests that the encapsulation of

Qdots did not affect the LONDs size. To study the efficiency of the Qdots encapsulation,

a fluorescence assay was conducted in the fluorometer (section 3.3.1, page 31). A cross-

filtered and an unfiltered fractions of this squalane LOND samples were excited with

λex = 589 nm and their emission spectra recorded. This excitation wavelength was chosen

following the fluorescence studies performed on this Qdots sample after synthesis (figure

4.6, on page 56). Differences in the fluorescence intensity between these two samples

would evidence lose of fluorescent material (i.e. Qdots) during the filtration process, which

would indicate poor incorporation or retention in the LONDs volume. Figure 6.1a shows

the emission spectra of the unfiltered and filtered samples. The fluorescence difference

between the two spectra are of about 7%, which suggests that the Qdots were encapsulated

in the LONDs, and that the filtration process did not promote their leakage. Provided

the strong hydrophobicity of the dodecanethiol coating on these Qdots, it is not surprising

that most of them remained in the LONDs core. Individual Qdots, or small agglomerates,

coated with phospholipids could be removed during cross-filtration, giving rise to the

small difference observed in the fluorescence. The variation of the fluorescence intensity as

function of the concentration of this LOND sample, cross-filtered, was also studied. Figure

6.1b shows the dependence between fluorescence signal from the encapsulated Qdots and

the concentration of the LONDs. The intensity was found to increase exponentially up to

2.5 × 1012 ml−1, as y = Aex/t + y0. From this point, the intensity decreased as linearly

for increasing concentrations. This is likely due to light scattering by the LONDs. As

will be described later in this chapter, the addition of a solvent to the LONDs solution, in

order to release the LONDs contents reduced large light scattering by intact LONDs, and

improved the recording of fluorescence and absorption spectra.
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Figure 6.1: a) Emission spectrum of Qdots encapsulated in squalane LONDs. An unfiltered
and a cross-filtered fraction of the same LOND samples were excited with λex = 589 nm.
The difference between the two signals is of about 7%. b) Variation of the fluorescence signal
of LONDs encapsulated in LONDs as a function of the LOND concentration. This LOND
sample was filtered prior to the experiment. The intensity was found to grow exponentially up
to 2.5 × 1012 LONDs/ml (in red), when the intensity reduced linearly (in purple). A dotted
line indicates this tendency change.

Figure 6.2: a) Dilutions of LONDs encapsulating Qdots were placed in a well-plate for IVIS
imaging, with concentrations ranging 1010 − 1013 ml−1. The fluorescence signal recorded by
IVIS was superimposed to the optical image of the same region. b) The radiant efficiency

(*with units photons/s/cm2/str
µW/cm2 ) against the LONDs concentration was fitted to a linear regres-

sion.

IVIS was used to study the dependence of the Qdots concentration in LONDs on the

fluorescence signal. Dilutions of LONDs in PBS were placed in a 24-well plate for imaging.

Sequences of excitation/emission wavelength pairs were tested, in order to maximise the
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fluorescence signal recorded; the sample was excited with a λex = 535 nm light, and

the emission filter was set to record λem = 820 nm. Figure 6.2a shows an image of a

section of the well plate containing sequential dilutions of LONDs. In this image. the

epi-fluorescence signal is superimposed to the bright field picture. The concentration of

the LONDs (expressed as the number of particles per ml, ml−1) in each well is indicated

next to the image. This image demonstrates that home-made Qdots were detectable using

the IVIS system, and also that Qdots encapsulated in LONDs could be detected. Circular

ROIs that matched the shape of each well were used to determine the radiant efficiency of

each sample, which were then plotted against the concentration of the LONDs and fitted

to a linear regression, as shown in figure 6.2b. As expected, an increase in the number of

LONDs in the solution, and therefore of the number of Qdots in the well, translated into an

increase of the fluorescence signal detected by IVIS. This suggests successful encapsulation

of Qdots in the LONDs, and also good retention upon sample cross-filtration.

6.2 Encapsulation of Calcein AM

Calcein AM is a molecule that remains non-fluorescent until cleaved by sterases once

in the cytoplasm of a live cell. This property made calcein AM a candidate to study the

release of the LONDs contents (section 4.3.3, on page 60).

For LONDs preparation, calcein AM was dissolved in triacetin at 1.4 mg/ml prior

to the addition of the oil to the dried lipid (section 5.1, page 71). Triacetin LONDs

encapsulating calcein AM were sized using qNano. Blockages arose using a 200 nm pore

for sizing the LONDs in the sample, which could be due to the polydispersity of the sample,

or calcein AM agglomerates not encapsulated in the LONDs. Therefore, a 800 nm pore

was used for the sizing, which could give rise to a miscounting of the smaller LONDs

present in the solution, as their blockade signal would be lost against the background.

Indeed, the average size for the sample was found to be 320 nm, which is larger than any

other triacetin LONDs preparation. To test the encapsulation and retention of calcein

AM in the LONDs, the absorption of the cross-filtered LONDs sample (at a concentration

of about 1010 LONDs/ml), and the fraction of the permeate collected for the first 15 min

of cross-filtration, were measured in a spectrophotometer (section 3.3.2 on page 32). The

goal of the experiment was to determine whether calcein AM was retained in the LONDs
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upon cross-filtration, or if it was removed during the filtration process. Figure 6.3 shows

the absorption of the cross-filtered LOND sample, as well as the absorption of the liquid

permeated during the first 15 min of cross-filtration. The absorption of calcein AM in

triacetin is shown for comparison, with a characteristic double peak absorption around

284 nm (figure 4.12, page 62). The absorption of the permeate suggests that a fraction

of calcein AM was washed from the sample, as it partially retained the the maximum

absorbance at 280 nm. Using the linear regression from the calibration curve of calcein

AM in triacetin, y = (3.4± 0.2)× 10−3x, the concentration of calcein AM in the permeate

was calculated, resulting in 88 ± 5 µg/ml. This indicates that there were ∼ 880 µg of

calcein AM in the volume collected during the first 15 min of the cross-filtration, a 60%

of the total amount used for the preparation of this LOND sample. The absorbance of

the cross-filtered triacetin LOND sample did not show the characteristic peak observed

for calcein AM in triacetin. This could be due to two reasons: 1) light scattering from

the LONDs could prevent encapsulated calcein AM molecules from absorbing light1; 2)

calcein AM could be not encapsulated or retained in the LONDs and quickly washed

out during cross-filtration of the sample. Calcein AM is a highly lipophilic dye, able to

rapidly crosss cellular membranes. [285] Hence it is possible that the lipophilicity of the

compound facilitates its release from the LONDs core into the aqueous solution. Several

studies have investigated the release of the fluorescent analogous of calcein AM (calcein)

from liposomes. These studies found that the compound was able to permeate through the

liposomal bilayer without disrupting it; furthermore around 8% of calcein encapsulated in

POPC liposomes permeated to the surroundings within 15 h. [286, 287] The evidence in

the literature suggests that a similar process could take place for calcein AM encapsulated

in LONDs. This could result in an unwanted dependence of the concentration of calcein

AM with the time since preparation, which is not desirable unless the LOND samples were

to be used immediately after production.

1As it will be discussed in the next section, when determining the concentration of CA4 in LOND
samples, the use of a solvent to such as DMSO to break the LONDs and release their contents helped
reducing light scattering.
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Figure 6.3: Absorption of cross-filtered triacetin LONDs encapsulating calcein AM and of
the fraction of liquid permeated during cross-filtration. The absorption of calcein AM diluted
in triacetin is shown as comparison. The inset shows a zoom in of the region 400− 600 nm.

6.3 Encapsulation of CA4

The hydrophobic drug CA4 was found to be soluble in triacetin and tripropionin (sec-

tion 4.4.1 on page 63). Following these results, CA4-containing LOND samples utilising

triacetin and tripropionin were prepared.

As for LOND preparations encapsulating hydrophobic drug mimics, CA4 was first

dissolved in the oil and then added to the dried lipid. The concentration of CA4 encapsu-

lated in the LONDs was determined by studying the absorption spectra of the drug. To

do this 10 µl of LOND solution was dispersed in 990 µl of DMSO. DMSO is known to

modulate the permeability of lipid membranes and also to be able to dissolve lipid, thus it

was used to release the LONDs contents. [288–290] The addition of DMSO reduced light

scattering seeing previously during the recording of absorption spectra of intact LONDs,

improving the quality of the recorded data. The maximum absorption wavelength was

expected to be around λ = 309 nm. Upon determination of the position of the maximum

absorption peak, the calibration curves produced for the drug in triacetin and tripropionin

(section 4.4.1, page 63) were used to determine the concentration of the drug in the LOND

samples. Dialysed (section 5.1.1, page 73) and unfiltered samples were compared, in order

to determine whether CA4 was retained in the LONDs or leaked to the solution.
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Figure 6.4a shows the absorption recorded for triacetin LONDs containing CA4, diluted

in DMSO. These LONDs were stabilised with POPC + 5% biotin-PEG2000-DSPE + 0.1%

Atto 590 DOPE, and the concentration of CA4 in the precursor oil was 25 mg/ml. This

sample is referred to as sample 1. Figure 6.4b shows the absorption of CA4 in a triacetin

LOND sample prepared with 50 mg/ml of CA4 in the precursor oil. This was done in

order to increase the concentration of the drug in the final LOND sample. This sample will

be referred to as sample 2. The light absorption of dialysed and unfiltered fraction of the

LOND samples 1 and 2 were recorded. A white precipitate was observed in the bottom of

the vials upon leaving the samples upright for a few hours, for both samples. To determine

whether the precipitate contained CA4, absorption measurements of the supernatant, for

both the dialysed and non-filtered samples, were taken. The maximum absorption was at

λ = 309 nm, which is in agreement with the absorption maximum previously found for

CA4 in triacetin (figure 4.15). Both figure 6.4a and b show a reduction in the absorption

between the unfiltered and the dialysed sample, and more significantly, between the whole

sample and the supernatant fraction.

Figure 6.4: Absorption of CA4 encapsulated in triacetin LONDs. The absorption corres-
ponds to 10 µl of LOND sample diluted in 990 µl of DMSO. Dialysed and unfiltered samples,
as well as the supernantant and the mixed samples were studied in each case. a) Sample 1
triacetin LONDs prepared with 25 µg/ml of CA4 in the precursor oil. b) Sample 2 triacetin
LONDs prepared with 50 µg/ml of CA4 in the precursor oil.

Table 6.1 contains the analysis of the results presented in figure 6.4. The table shows

the maximum absorption values for each peak and the concentration of CA4 in each case,

calculated using the linear regression y = 0.0287x. Comparing the concentration of CA4

in the precursor oil used to prepare sample 1 and 2 with the concentration of the drug

in the unfiltered samples, the encapsulation of CA4 appeared to be > 90% in both cases.
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Table 6.1: Light absorption and corresponding concentration of CA4 in triacetin LONDs.
The concentration of the drug was calculated from the absorption of the drug in each case,
and using the calibration curve obtained for different concentrations of CA4 in triacetin,
y = 0.0287x (see figure 4.15 on page 65).

Unfiltered Unfiltered LONDs, Dialysed Dialysed LONDs

LONDs supernatant LONDs supernatant

Sample 1

Absorption 0.454 0.091 0.273 0.028

CA4 (µg/ml) 1580 315 948 97

Sample 2

Absorption 1.071 0.114 0.961 0.059

CA4 (µg/ml) 3720 387 3340 205

In sample 1, a reduction of around 40% in the concentration of CA4 was observed for

between the unfiltered and the dialysed fractions. However, the concentration of CA4

dropped only about 10% in sample 2. This could due to sample precipitation towards

the filtration membrane in the dialysis device, preventing the liquid volume in the sample

2 from being exchanged with the surrounding solution, which would translate into more

CA4 retained in the sample. The results for sample 1 point at CA4 transfer from the

dialysis device to the surrounding solution. This could be due to two reasons. First, the

relatively high solubility of triacetin in water (table 4.1, page 49) could lead to leakage

of the triacetin contents of the LONDs, which could then trigger the leakage of CA4

from the LONDs into the triacetin in the surrounding solution. Second, CA4 is a polar

molecule that contains large non-polar regions (figure 4.14, page 64), whereas triacetin

is a largely polar oil (figure 4.1, page 49). In fact, the dissolution of CA4 in triacetin

required multiple vortexing and bath sonication steps, which indicates that the inclusion

of triacetin in between the CA4 molecules is not a spontaneous process. It is possible

that CA4 molecules or small CA4 agglomerates get coated with excess lipid, as it could be

energetically favourable for the phospholipid tails to be in close contact with the non-polar

regions of CA4. This hypothetical process could enhance the leakage of the CA4 from the

LONDs to the surrounding solution.

There were significant differences in drug concentration between the mixed sample

and the supernatant. For sample 1, the reduction of CA4 concentration between the

supernatant (top solution, after the white precipitate was formed) and the mixed sample

are of 80% and 89% for the unfiltered and dialysed samples, respectively. In the case of
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sample 2, the reductions between the supernatant and the whole sample were 89% and

93%, for the unfiltered and dialysed samples, respectively. These results raise the following

points:

1. Most of the drug (80−93% depending on the case) was contained in the precipitate.

This could be due to the presence of large drug agglomerates, which could be lipid

coated and would sink to the bottom of the vial.

2. A reduction of the CA4 concentration between the mixed sample and its supernatant,

upon precipitation, were observed in all the four cases studied. This suggests that

dialysis did not suffice to remove all non-encapsulated drug, and also points at the

existence of large drug agglomerates that were not able to cross the dialysis mem-

brane.

3. The concentration of CA4 in the supernatant of sample 1 and sample 2, after dialysis,

are 97 µg/ml and 205 µg/ml, respectively. This suggests that the increase in the

amount of CA4 in the precursor oil had an effect on the final, real concentration of

CA4 in LONDs; doubling the amount of CA4, from 25 µg/ml to 50 µg/ml, resulted

in approximately double concentration of CA4 in the LONDs solution.

To further test the hypothesis of CA4 being poorly retained in the LONDs an ex-

periment to study its leakage from LONDs was performed. A dialysis tube containing 1

ml of of unfiltered sample 1 (concentration of the drug was 1440 µg/ml) was placed in a

beaker containing 24 ml of clean PBS, and stirred using a magnetic stirrer (figure 6.5).

The experiment was conducted at room temperature. Sample volumes were taken from

the PBS volume in the beaker at different times; leakage of the CA4 from the dialysis

tube would reflect as an increase in the concentration of CA4 in the volume outside the

dialysis tube. The volume of liquid removed from the beaker was replaced with PBS to

keep the total volume constant and avoid an artificial increase of the drug concentration.

The absorption spectra of all the liquid fractions were obtained, in order to determine the

amount of leaked CA4 from the sample to the surrounding solution. Figure 6.6 shows the

increase in the CA4 concentration in the surrounding solution within time, determined

using the calibration curve obtained for CA4 in triacetin (y = 0.0287x). The data was

normalised to the initial amount of CA4 in the sample (1440 µg/ml), and the data points

were then fitted to y = 100×(1−ek·x), where k is the release rate constant. [291] The value
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for k was determined from the fitting, resulting k = (4.6± 1.3) h−1. Only a small increase

in the concentration of CA4 was detected after 100 min, suggesting that the diffusion had

reached an equilibrium. In fact, the concentration of CA4 at t = 250 min was C = 57.2

µg/ml, which corresponds to 1425 µg/ml of CA4 in the 25 ml total volume. This implies

that all of the CA4 initially in the dialysis tube almost completely diffused out (∼ 99%).

Figure 6.5: Schematic showing the set-up used to study the leakage of CA4 from the triacetin
LONDs. A magnetic stirrer was used to increase the buffer exchange between the solution
and the volume inside the dialysis tube.

Figure 6.6: Diffusion of CA4 through the membrane in a dialysis tube results in an increase of
the drug concentration in the surrounding solution. The concentration of CA4 was determined
from the absorption of the samples, and using the calibration curve y = 0.0287x. The data
points were fitted to y = 100× (1− ek·x). [291]

Following the results on CA4 encapsulation in triacetin LONDs, an alternative oil and

lipid shell combination for the formation of CA4-containing LONDs was tested. A sample

of tripropionin LONDs encapsulating CA4 was prepared. The lipid shell of these LONDs
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was DSPC + 20% cholesterol + 5% biotin-PEG2000-DSPE + 0.1% Atto 590 DOPE.

Dialysed and unfiltered tripropionin LONDs, from the same LONDs batch, were analysed

to determine the concentration of CA4. The results are shown in figure 6.7. The maximum

absorption peak was found at λ = 312 nm, which is in agreement with previous results

(figure 4.16, page 65). The concentration of CA4 was calculated using the calibration

curve obtained for CA4 in tripropionin, y = 0.0377x, and the results are shown in table

6.2.

Figure 6.7: Absorption of CA4 encapsulated in tripropionin LONDs. The absorption shown
in this figure corresponds to 10 µl of LOND sample diluted in 990 µl of DMSO. The absorption
of dialysed and unfiltered LONDs were studied.

Table 6.2: Absorption and concentration of CA4 in tripropionin LONDs. The concentration
of the drug was calculated from the absorption of the drug, and using the calibration curve
obtained for different concentrations of CA4 in tripropionin, y = 0.0377x (see figure 4.16, page
65).

Unfiltered LONDs Dialysed LONDs

Absorption 0.473 0.316

CA4 (µg/ml) 1254 838

Comparing the amount of the drug in the precursor oil (25 mg/ml) and that detected

in the unfiltered sample suggests that the efficiency of the encapsulation was of about 72%.

The reduction of the CA4 concentration upon dialysis of the sample was of about 33%,

suggesting that the retention of CA4 in tripropionin LONDs was better than in triacetin

LONDs. This could be due to the reduced water solubility of tripropionin compared to

that of the triacetin. All the absorption spectra measurements were performed at room
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temperature. The transition temperature of DSPC, which was the main lipid component

of these LONDs shell, is 55 ◦C, and in contrast, the transition temperature of POPC is

−2 ◦C. This implies that the lipid shell of this LOND sample was more rigid than that

of the studied triacetin LONDs. [292] Several studies have investigated the dependence

of compound retention in liposomes with the fluidity of their lipid bilayers. [287, 293]

In general, these references report that higher fluidity of the lipid shell translates into

poorer retention of the compounds in the liposomes. It is likely that the same is true for

compounds encapsulated in the LONDs.

6.4 Discussion

This project aimed to use lipid-stabilised oil nanodroplets (LONDs) as capsules for

hydrophobic drugs. In-house made Qdots, Nile Red and calcein AM were selected as hy-

drophobic drug mimics, to be used as substitutes of more expensive therapeutic compounds

when performing preliminary studies of LONDs encapsulation efficiency and permeability.

Nile Red was found to dissolve easily in all the candidate oils, and LONDs prepared

with oil containing Nile Red looked alike to empty LONDs, in terms of size and concen-

tration. Fluorescence tracking of LONDs encapsulating Nile Red was tested with epi-

fluorescence microscopy, showing that individual dots could be detected (section 5.6.2, on

page 5.6.2). No systematic studies to test possible leakage of Nile Red from the LONDs

have been performed. However, the fluorescence of Nile Red is known to highly quench

when in water, [222, 294] which would itself be a mechanism for detecting permeation of

Nile Red into the solution if occurred.

Hydrophobic Qdots were found to solubilise in squalane and thus encapsulated in

squalane LONDs. The encapsulation efficiency of the Qdots in LONDs was studied by

comparing the absorption spectrum of an unfiltered fraction of the sample and the cross-

filtered one. The spectra showed a light absorption difference of about 7% between the

unwashed LONDs sample and the cross-filtered fraction, which suggested an encapsula-

tion efficiency of about 93%. The loss of fluorescence material could be due to individual

Qdots, or small Qdot agglomerates, coated with lipid, and with masses below 60 kDa,

that may have been able to filter out. The fluorescence signal from Qdots encapsulated

in these LONDs was also tested using a fluorometer. This experiment found increasing
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fluorescence intensities with increasing LONDs concentration up to 2.5×1012 LONDs/ml,

after which point the intensity was found to decrease linearly with further increases in

LOND concentration. This was attributed to light scattering by LONDs as their number

in solution increased, which would translate into an artificial reduction of the photons

reaching the photodetector. IVIS was also used to test the fluorescence of Qdots encap-

sulated in LONDs. In this case, different dilutions of cross-filtered LONDs were placed in

a 24-well plate for imaging. After performing an optimisation of the excitation/emission

wavelengths, the sample was excited with λex = 535 nm, and the emission recorded at

λem = 820 nm. These wavelengths are slightly different to those determined with the

fluorometer, respectively λex = 589 nm and λem = 790 nm (figure 4.6, on page 56), and

are thought to relate to the sensitivity of the IVIS detectors. As expected, the radiant

efficiency was found to increase linearly with the LONDs concentration. In contrast to

the fluorescence study using the fluorometer, no maximum (followed by a decrease) in the

fluorescence signal was observed in the case of IVIS. This is likely due to the fact that in

IVIS the illumination source and the detector are placed on the same side of the sample,

whereas in the fluorometer the emitted light has to travel through the sample, being at-

tenuated by LONDs scattering.

Problems during production were found for LOND samples encapsulating Qdots. Specific-

ally, the Qdots agglomerated at the homogenising nozzle, causing blockages that prevented

the Emulsiflex from correct functioning. Attempts to reduce the agglomeration of Qdots

before the ultra-high pressure homogenisation stage included extended sample blending in

the polytron (> 30 min) and an added bath sonication of the crude emulsion. However

these did not significantly reduce the blockages in the Emulsiflex. Because of these issues

no further experiments were performed with this type of LONDs. Alternative LONDs

production methods, such as sonication, could help overcome this problem and allow for

preparation of Qdots encapsulated in LONDs. [43]

Calcein AM is molecule whose fluorescence is only triggered upon cleavage by cellular

sterases. The polarity of the calcein AM made it impossible to dissolve in the candidate

oils other than in triacetin, and therefore this oil was use to produce LONDs encapsulating

calcein AM. The study to determine its encapsulation efficiency involved the measurement

of the light absorbed by the cross-filtered LONDs sample, as well as that of the permeate

fraction produced during the first 15 min of the cross-filtration process. The results from

this experiment suggest that a large fraction of the calcein AM in the LONDs sample
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washed from the solution upon cross-filtration. This pointed at either low efficiency of

the incorporation of the calcein AM into the LONDs, or poor retention post production.

Although several studies have investigated the permeability of calcein through the lipo-

somal bilayer, [286, 287, 295] there are no references in the literature to essays performed

with calcein AM encapsulated in oil droplets. Instead calcein AM is used for cell stain-

ing, and typically added to the cell environment in DMSO. [108, 296–298] As a result of

these observations, calcein AM was discarded as hydrophobic drug mimic and no further

experiments were performed with this compound.

Two drugs were chosen in this project: decitabine and the hydrophobic drug combreta-

statin A4 (CA4). Decitabine is a water soluble compound that quickly degrades when

dissolved in aqueous solution (section 4.4.2, page 66). It was hoped that encapsulation of

decitabine in LONDs could help enhancing its delivery in vitro by keeping the compound

away from water, thus preventing its degradation. CA4 was chosen due to its hydrophobic

profile, which impairs the delivery of the drug in vivo, yet its high efficacy when tested

in vitro (section 4.4.1, page 63). Initially, both compounds were tested for solubility in

the candidate oils. Decitabine was found difficult to disperse it in the candidate oils, as

discussed on page 66, in chapter 4, which eventually lead to discarding decitabine as a

candidate drug. CA4 was found to dissolve in triacetin and tripropionin, and two samples

of triacetin LONDs encapsulating CA4 were prepared. For each sample, the concentration

of CA4 in the precursor oil was 25 mg/ml and 50 mg/ml. Following sample preparation

a white precipitate was observed in both samples, which was hypothesised to contain a

large amount of non-encapsulated drug. To test this hypothesis, and study the encapsu-

lation efficiency of CA4 in the LONDs, the absorption of CA4 in dialysed and unfiltered

fractions of the samples, as well as of the whole sample and the supernatant obtained after

sample precipitation were obtained. The results shown in figure 6.4 and table 6.1 point

at a large percentage of the CA4 (80− 93%) contained in the precipitate, suggesting poor

drug encapsulation in the LONDs, and/or poor retention. A fraction the the drug was

also lost during dialysis; specifically 40% for sample 1 and 10% for sample 2. To test the

encapsulation/retention of CA4 LONDs, a study was conduced to determine the leakage

of CA4 from a LONDs sample placed in a dialysis tube. Gradual CA4 diffusion from the

inside of the tube would increase the concentration of the drug in the buffer solution. This

hypothesis was tested obtaining the absorption spectra of small liquid fractions collected

at different times, and using the calibration curve for CA4 in triacetin to calculate the
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concentration of the drug in the solution. The results found in this experiment showed

that all the drug initially contained in the dialysis tube (1140 µg/ml) was free to diffuse

through the dialysis membrane and to the surrounding solution. All the drug permeated

in about 1 h.

The results obtained for triacetin LONDs encapsulating CA4 suggested that these

LONDs were not suitable for the delivery of CA4. As discussed previously, the high sol-

ubility of triacetin in water could give rise to problems such as leakage of the LONDs

contents after production, and even complete solubilisation of the oil in the water phase

prior to LONDs formation. Tripropionin was tested as a candidate oil, due to its similar-

ities with triacetin for dissolving drugs and its reduced water solubility. Solubility tests

for CA4 in tripropionin were promising (section 4.4.1, page 63) and a tripropionin LOND

sample containing CA4 was prepared. For LOND formation with this oil, an alternative

lipid shell was used, composed of DSPC + 20% cholesterol + 5% biotin-PEG2000-DSPE

+ 0.1% Atto 590 DOPE. This lipid shell has been used for nanoemulsion stabilisation

before. [45,50] Encapsulation efficiency of CA4 in tripropionin LONDs was found to be of

around 70%, and the reduction in the concentration of CA4 in the sample during dialysis

was of about 33%, which constitutes a significant improvement with respect to CA4 in tri-

acetin LONDs. Both the physical characteristics on tripropionin and the more rigid lipid

shell could play a role in enhanced retention of the CA4. These results are promising, and

more experiments to study drug retention and leakage in detail will be needed.
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Chapter 7

Topic: Attachment of LONDs to

model lipid membranes

This chapter describes the study of the attachment of LONDs to supported lipid mem-

branes as a model for the MB surface. QCM-D was used to determine the binding of

StreptAvidin/NeutrAvidin to a range of solid supported bilayer membranes (SBLMs)

and to study the specific and not specific binding of LONDs to SBLMs. A number of

different SBLMs/LONDs combinations and linking chemistries were explored. Specific-

ally, the biotin-NeutrAvidin, the maleimide-thiol and the pyridyl disulphide-thiol linking

chemistries were examined. Whereas biotin-NeutrAvidin has been widely used in biotech-

nological applications due to its high affinity, injection of exogenous proteins in vivo gives

rise to immune responses that could impair the use of drug delivery systems built with this

chemistry. Thus there was an interest in probing alternative linking chemistries for the

attachment of LONDs to model membranes, towards the attachment onto MBs to form

MB-LONDs.

7.1 A need to asses LOND binding

The aim of this study was to produce a novel complex architecture combining MBs and

LONDs for hydrophobic drug delivery. In these composites, the MBs act as a vehicle for

the LONDs, which contain the drug in their oil core. The attachment of LONDs to the MB

surface is key in the assembly of the architectures. Correct functioning of the attachment

mechanism must be confirmed to ensure the optimal formation of MB-LONDs. However,

directly monitoring the attachment of LONDs to MBs is a complex problem. The sizes
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of the MBs (typically < 8 µm) and the LONDs (∼ 100 − 250 nm) challenges the use

microscopy for studying the assembly of the architectures. Although fluorescently tagged

LONDs were shown to be traceable with fluorescence microscopy (figure 5.17 on page 98),

quantification of the binding to a MB surface would be limited by their sub-resolution size

and by rotations of the MB. In addition, MBs have relatively short lifetimes, preventing

extended observation of LONDs attachment to the MB shells.

To reduce the complexity of the MB-LONDs system the MB shell was replicated with

a SBLM. SBLMs are robust, easy to prepare systems that find a vast number of ap-

plications for the study of lipid membranes in vitro. [196, 299–302] The addition of biot-

inylated lipid in to the SBLMs allows for the binding of LONDs via the biotin-NeutrAvidin

link chemistry, closely resembling the process occurring on the MB surface. The biotin-

NeutrAvidin chemistry was chosen for LOND attachment in analogy to previous studies

which have reported the successful assembly of MB-liposome complexes using this interac-

tion . [78, 133] Alternative linking chemistries such as the pyridyl disulphide (PDP)-thiol

and the maleimide-thiol were also explored by incorporating a lipid modified with the

anchoring molecule of interest into the SBLM. QCM-D was chosen to monitor the LONDs

binding experiments as it allows for precise observation of small mass changes occurring

on the QCM-D sensors (section 3.6, on page 38), and it is therefore not restricted by the

dimensions of the LONDs.

The attachment experiments were initiated by evaluating the binding of StreptAvidin

to SBLMs containing different percentages of biotin-PEG2000-DSPE. Once the attach-

ment of the protein was confirmed, a set of experiments aimed to monitor the attachment

of LONDs to the SBLMs were carried out. Three different assembly chemistry were stud-

ied:

1. Biotin-StreptAvidin(or NeutrAvidin)1, incorporating 5% biotin-PEG2000-DSPE into

the SBLM/LONDs. Control experiments included SBLMs containing 5% PEG2000-

DSPE (non biotinylated), and also absence of PEG chains (POPC only SBLMs).

These experiments were performed with both triacetin and squalane LONDs.

2. PDP-thiol chemistry, incorporating 5% PDP-PEG2000-DSPE to the SBLM/LONDs.

Control experiments included SBLMs with 5% PEG2000-DSPE (no PDP). These

experiments were performed with squalane LONDs.

1no differences between the binding of StreptAvidin or NeutrAvidin to biotin have been reported.
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3. Maleimide-thiol chemistry, adding 5% maleimide-PEG2000-DSPE to the SBLM/LONDs.

Control experiments included SBLMs with 5% PEG2000-DSPE (no maleimide). The

experiments were performed using squalane LONDs.

7.2 Binding affinity of biotin-Streptavidin

As a preliminary study, the binding of StreptAvidin to biotin incorporated into SBLMs

was studied using QCM-D (figure 7.1). The binding of the StreptAvidin to the biotin-

PEG2000-DSPE translates into a frequency change in QCM-D, as the mass on the sensor

changes. For a simple molecular interaction, the StreptAvidin-biotin binding can be de-

scribed with the Hill-Langmuir equation [303]

f = fmax
[StreptAvidin]

[Streptavidin] +Kd
(7.1)

where [StreptAvidin] is the concentration of the protein in the solution, and Kd is

dissociation constant at half-maximal occupation of the binding sites. [304]

Figure 7.1: Schematic showing the binding of StreptAvidin to biotin-PEG2000-DSPE in
a SBLMs. The kinetics of this binding were studied in QCMD. SBLMs containing different
percentages of biotin-PEG2000-DSPE were formed on SiO2-coated QCM-D sensors and then
coated with StreptAvidin.

For these experiments, SBLMs were formed on SiO2-coated QCM-D sensors as de-

scribed in section 3.6.2 (41). Three different cases were studied, and in each of them the

SBLM was prepared including a different concentration of biotin-PEG2000-DSPE. The

composition of the three different SBLMs was: 1% biotin-PEG2000-DSPE + 99% POPC,

5% biotin-PEG2000-DSPE + 95% POPC and 10% biotin-PEG2000-DSPE + 90% POPC
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SBLM. Two control SBLMs were used in these experiments, namely, a 5% PEG2000-DSPE

+ 95% POPC SBLM, and a 100% POPC. These control experiments were performed to

rule out non-specific interactions between the StreptAvidin and the SBLMs, when no

of biotin was added to the SBLMs. Following SBLMs formation and subsequent PBS

and MilliQ rinses, three different protein concentrations were consecutively added to each

SBLM. The concentration of StreptAvidin was adjusted to be 4×, 8× and 16× the number

of available biotin-PEG2000-DSPE in each SBLMs. This meant that the concentration

was higher for experiments with SBLMs containing higher biotin-PEG2000-DSPE, as the

ratio of StreptAvidin to biotin was kept constant (table 7.1). In each experiment protein

solution was flowed into the flow chamber at 0.1 ml/min until the frequency reached a

plateau, which indicated full coverage of SBLMs with StreptAvidin.

Table 7.1: Concentrations of StreptAvidin used for each SBLM.

SBLM composition biotin-StreptAvidin [StreptAvidin]

ratio (nM)

1% biotin-PEG2000-DSPE + 99% POPC

4x 11

8x 23

16x 45

5% biotin-PEG2000-DSPE + 95% POPC

4x 56

8x 113

16x 225

5% biotin-PEG2000-DSPE + 95% POPC

4x 56

8x 113

16x 225

10% biotin-PEG2000-DSPE + 90% POPC

4x 113

8x 225

16x 451

(Control) 100% POPC

4x 56

8x 113

16x 225

(Control) 5% PEG2000-DSPE + 95% POPC

4x 56

8x 113

16x 225

Figure 7.2 contains the QCM-D data obtained for all the cases studied. Frequency

and dissipation changes are shown for each experiment, and the time at which each pro-

tein concentration was flowed in the chamber is indicated on each graph. SBLMs formed

successfully in figure 7.2a-d. The QCM-D response on the formation of the SBLMs is

characterised by an initial drop in the frequency, accompanied by an increase in the dis-

122



sipation signal. Vesicle rupture on the surface results in removal of material adhered to

the sensor, which translates into an abrupt reversal in the frequency and dissipation sig-

nals (section 3.6.2, on page 41). For case e in figure 7.2, which used vesicles containing

10% biotin-PEG2000-DSPE, the pattern observed for the change in frequency and dissip-

ation does not fit with the description associated to SBLM formation. In this case it is

possible that vesicles simply adhered on to the surface of the QCM-D sensor, protected

by the PEG chains, which should adopt the brush configuration at this specific molar

percentage. [305,306]

The control experiments (figure 7.2a,b) showed no changes in frequency and dissipa-

tion upon addition of the StreptAvidin solution, suggesting that non-specific binding of the

protein did not occur, thus confirming the specificity of the binding of StreptAvidin to the

biotin-PEG2000-DSPE. Binding of StreptAvidin was observed in all cases involving biot-

inylated SBLMs (figure 7.2c,d,e). For the SBLMs containing 1% and 5% biotin-PEG2000-

DSPE,2 full surface coverage with StreptAvidin took place within ∼ 10 min of injection.

For the 10% biotin-PEG2000-DSPE case, full coverage of the SBLM occurred within

20 min of the injection. Provided that the ratio of biotin/StreptAvidin was kept con-

stant throughout the experiment, full coverage was expected to take place in similar time

frames. For the reasons explained above, vesicles containing 10% biotin-PEG2000-DSPE

are thought to remain intact on the SiO2 surface. It is therefore possible that the slower

kinetics of the StreptAvidin in this case, as compared to the 1% and 5% cases, could be

due to its difficulty in accessing the binding sites. This possibility is illustrated in figure

7.3.

The frequency changes recorded upon the addition of the StreptAvidin were plotted

against the concentration of the protein solution for cases c, d and e in figure 7.2. The

dissociation constant Kd could be determined from the fitting of the plots to equation

7.1. For SBLMs containing 1%, 5% and 10% biotin-PEG2000-DSPE, the value of Kd was

found to be Kd = (8.3±0.2)×10−10 M, Kd = (7.1±1.4)×10−10 M and Kd = (2.6±1.0)×

10−10 M, respectively. These values fall short from the accepted value Kd ≈ 10−14 M, at

pH = 7 and 25 ◦C. [307] These differences could be due to the level of detection of the

instrument, which could limit the accuracy of the measurement. Another reason behind

this discrepancy could be the existence of inhomogeneities in the SBLMs (as for example

2there are around 4.3×1012 and 8.5×1011 biotin binding sites in the 1% and 5% biotin-PEG2000-DSPE
SBLMs, respectively
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Figure 7.2: Changes in frequency and dissipation of a SiO2-coated quartz crystal as a result of
the binding of StreptAvidin to biotinylated SBLMs, as measured by QCM-D. The graphs were
produced averaging overtones 5th-11th. The gray arrows indicate the times at which different
concentrations of StreptAvidin solution were added to the SBLMs. Frequency changes were
plotted against the concentration of StreptAvidin in cases c, d, e, and fitted to equation 7.1.
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Figure 7.3: Two possible scenarios for the StreptAvidin binding to QCM-D sensors. a)
SBLMs form from rupture of vesicles containing biotin-PEG in the mushroom regime (< 5%),
and biotin binding sites are fully accessible to the StreptAvidin. b) Vesicles with 10% biotin-
PEG2000-DSPE do not rupture to form flat SBLMs, but instead they adsorb onto the surface.
In this case, biotin is not restricted to a 2D surface and thus StreptAvidin binding is potentially
delayed.

regions of absorbed, non-ruptured vesicles instead of a flat lipid bilayer), increasing the

number of biotins available and thus changing the biotin/StreptAvidin ratio.

7.3 LONDs attachment to SBLMs

This section is concerned with the attachment of LONDs to SBLMs mimicking the

MB shell. The final goal of this project was to build MB-LONDs by attaching LONDs

to MBs via the high affinity interaction of biotin-NeutrAvidin. As mentioned above,

the use of biotin-NeutrAvidin for the assembly of drug delivery vehicles is limited by the

immunogenicity of injected proteins and thus there was an interest in exploring alternative

linking chemistries. Hence the attachment of LONDs to SBLMs was studied using three

different linking chemistries: biotin-NeutrAvidin, PDP-thiol and maleimide-thiol.

The following subsections use the notation ‘L’ for LONDs and ‘B’ for SBLMs. A

subindex provides information about the component of interest in the system i.e. the one

responsible for the interaction between LONDs and SBLMs. For example LMAL refers

to a LOND formed with POPC + 5% maleimide-PEG2000-DSPE, whereas B0 denotes a

SBLMs composed of POPC only (blank).

7.3.1 Three-layer systems on QCM-D

The attachment of LONDs onto SBLMs that mimic the shell of a MB is a three-step

process that requires: i) the formation of a SBLM, ii) functionalisation of the SBLMs
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Figure 7.4: Example of a QCM-D experiment of the formation of a three-layer system. In this
case biotin-PEG2000-DSPE-containing SBLM, NeutrAvidin functionalisation and attachment
of biotinylated vesicles. The experimental points for each overtone (5th − 11th) are shown as
open symbols. Fitting to the Kelvin-Voigt viscoelastic model is shown in solid lines. The
different experimental stages are delimited by dotted vertical lines, and they are: 1 SBLMs
formation; 2 PBS rinse; 3 MilliQ rinse; 4 PBS rinse; 5 NeutrAvidin attachment; 6 PBS rinse;
7 biotin-containing vesicles attachment; 8 PBS rinse; 9 MilliQ rinse; 10 PBS rinse.

with a bridging molecule (depending on the chemistry used, NeutrAvidin or DTT), and

iii) attachment of LONDs. This sequence intercalates PBS and MilliQ rinses that help

removing excess material from the sensor chambers (see section 3.6.2, page 41). The

subsequent attachment of layers results in a three-layer system that allows for the study

of the increase of the mass and thickness of the system adhered to the sensor (SBLM-

NeutrAvidin/DTT-LONDs) via fitting to the Kelvin-Voigt viscoelastic model.

As an example of the type of data recorded in the LONDs attachment experiments,

figure 7.4 shows a typical QCM-D experiment for a three-layer system. Specifically, this fig-

ure shows the formation of a SBLM containing biotin-PEG2000-DSPE, followed by Neut-

rAvidin functionalisation and attachment of vesicles containing biotin-PEG2000-DSPE.

The data points for frequency and dissipation for overtones 5th-11th are shown as open

symbols.3 The Kelvin-Voigt viscoelastic model was used to fit both the frequency and

dissipation signals for each overtone (section 3.6, page 38). The different experimental

3only around 1/100 of the experimental points are shown for clarity of the figure.
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Table 7.2: Mass and thickness of the adhered layer onto the SiO2 sensor for the different
experimental stages. These results correspond to the data shown in figure 7.4, and were
obtained form the modeling of the experimental results (overtones 5th−11th) using the Kelvin-
Voigt viscoelastic model.

Experimental Number on Thickness Mass adhered

stage figure 7.4 (nm) (ng/cm2)

SBLM (in PBS) 2 9.05± 0.07 770± 7

SBLM (in MilliQ) 3 6.87± 0.09 580± 9

SBLM-NeutrAvidin (in PBS) 6 12.5± 0.1 1062± 11

SBLM-NeutrAvidin-vesicles (in PBS) 8 28.5± 0.2 2420± 124

SBLM-NeutrAvidin-vesicles (in MilliQ) 9 27.7± 0.3 2354± 25

stages are indicated on the figure as dotted vertical lines. A biotin-containing SBLM was

formed first from the absorption and rupture of vesicles on the SiO2-coated quarts crystal

(1). SBLM formation was followed by PBS (2) and MilliQ rinses (3). The system was

returned to PBS (4) for NeutrAvidin functionalisation (5), which was performed flowing

a 3.8 µM solution of NeutrAvidin into the flow chambers. A PBS rinse (6) removed ex-

cess unattached protein. Biotin-containing vesicles attach to the NeutrAvidin previously

bound to the SBLM (7). PBS (8) and MilliQ (9) rinses helped ensuring the attachment

of the vesicles (or LONDs) was specific. Finally the system was returned to PBS (10). It

is interesting to note that the differences between the different overtones signals are small

when only a SBLMs was attached to the sensor. This holds true for SBLMs functionalisa-

tion with NeutrAvidin. However, vesicle attachment results in wide spread of the signals

for the different overtones (from 6 and onwards) as compared to the previous values. This

is characteristic of soft layers and it is typically associated to solvent uptake in the layer.

In the context of the experiment, intact vesicles attached to a SBLMs encapsulate PBS,

which is coupled to the SBLMs once the attachment takes place. Furthermore, the at-

tached vesicles have some degree of freedom for lateral displacement, which is likely to

contribute to an increase of the viscosity of the layer.

Table 7.2 contains the results from the fitting of the experimental data shown in figure

7.4. Mass and thickness of the adhered layer are provided for the different experimental

stages. Note that only those values corresponding to regions where the frequency and

dissipation signals reached steady values are provided. The uncertainties of the values in

this table correspond to the standard deviation of the average values over the region of

interest. The increase in thickness and mass of the system throughout the experiment was
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consistent with the addition of aditional layers (i.e. NeutrAvidin and vesicles). The buffer

effect4, associated to the removal of ions from the solution when the system was changed

from being in PBS to MilliQ, was noticeable for SBLMs only (difference between regions

2 and 3 on figure 7.4) and also for the system when it was SBLMs-NeutrAvidin-vesicles.

7.3.2 LOND-SBLMs attachment via biotin-NeutrAvidin

Once the binding of NeutrAvidin to SBLMs was confirmed, the attachment of LONDs

to NeutrAvidin functionalised SBLMs was studied in QCM-D. These experiments aimed

to provide evidence of the viability of the biotin-NeutrAvidin linkage for the attachment

of LONDs to a SBLM, and also to rule out possible non-specific interactions between

the LONDs and the SBLMs. All these LOND-SBLM combinations are schematically

summarised in the figure 7.5. Three LOND surface functionalisations were compared:

pure POPC lipid (L0), POPC lipid + 5% PEG2000-DSPE (LPEG) and POPC lipid + 5%

biotin-PEG2000-DSPE (LBIO). Three model MB surfaces were studied: POPC lipid (B0),

POPC + 5% PEG2000-DSPE (BPEG) and POPC + 5% PEG2000-DSPE + NeutrAvidin

(BBIO). All nine possible LONDs-SBLMs combinations were studied, for both squalane

and triacetin LONDs.

Figure 7.5: The interaction of LONDs and SBLMs was studied on model SBLMs in QCM-D.
Nine different combinations of LONDs and SBLMs with different compositions were invest-
igated. L0: POPC LONDs; LPEG: POPC + 5% PEG2000-DSPE LONDs; LBIO: POPC +
5% biotin-PEG2000-DSPE LONDs. B0: POPC SBLM; BPEG: POPC+ 5% PEG2000-DSPE
SBLM; BBIO: POPC + 5% biotin-PEG2000-DSPE SBLM.

4increase of the frequency and reduction of the dissipation signal when the system transitions to being
immersed in different solutions
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As mentioned above, QCM-D was used to monitor the interaction of LONDs and

SBLMs. All of the SBLMs were formed as described in section 3.6.2. SBLM formation was

always followed by PBS and MilliQ rinses, to ensure correct SBLM formation and remove

excess material. For cases involving BBIO SBLMs, NeutrAvidin functionalisation was done

by flowing the protein into the crystal chambers at a concentration of 3.8 µM. The protein

solution was kept flowing until the frequency change reached a plateau, corresponding

to total surface coverage with NeutrAvidin. The NeutrAvidin binding step was always

followed by a PBS rinse, before the addition of LONDs, to ensure complete removal of

unattached protein and avoid agglomeration problems with the LONDs. Following the

rinse, LONDs were introduced to the SBLMs at 0.1 ml/min, and at 1012 LONDs/ml

in the case of squalane LONDs, and 1011 LONDs/ml in the case of triacetin LONDs.

When changes in the frequency and dissipation signals were observed, the flow of LONDs

was kept until the signal reached a plateau. In some cases in where the frequency and

dissipation did not reach a steady value (particularly for the LPEG-BBIO and LBIO-BBIO

cases) the LOND solution flow was kept on for at least 10 min. Compared to the time

that it takes for vesicles to reach the sensor, adhere and form an uniform bilayer (∼ 2

min), or the times required for NeutrAvidin to fully coat a SBLM (< 10min),5 10 min

was considered a long enough time period for LONDs to reach the whole area of the

SBLM and interact with it. The addition of the LONDs to the SBLMs was followed by

an incubation period that lasted at least 30 min, during which the flow remained stopped.

LOND incubation period step was followed by consecutive PBS and MilliQ rinses, to

remove unbound LONDs. Within the experiment, changes in frequency and dissipation

were monitored for overtones 1th-13th, but only 5th-11th were used for the fitting to the

Kelvin-Voigt viscoelastic model.

The results for all squalane LOND/SBLM combinations are shown in figure 7.6. In

this figure, the gray arrows indicate the times at which LONDs were commenced to flow

into the flow chambers, and the time at which the PBS rinse was started, respectively. A

green arrow marks the time at which NeutrAvidin flow was set, in those cases involving

NeutrAvidin. A few conclusions can be drawn from these results.

All cases involving pegylated LONDs and/or SBLMs showed no frequency or dissipa-

tion changes over the course of the experiments, indicating no binding of LONDs to the

SBLMs. In figure 7.6, these cases are: b) LPEG-B0, c) LBIO-B0, d) L0-BPEG, e) LPEG-

5At the same flow rate, 0.1 ml/min
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BPEG, f) LBIO-BPEG and g) L0-BBIO. Unchanged frequency signal over time indicated

no mass or thickness changes in the SBLMs on the sensor, whereas the unchanged dis-

sipation signal showed that the viscoelastic properties of the system remained constant

throughout the experiment. It is important to note that the addition of LONDs reflec-

ted as a small increase in the dissipation signal, and that it reverted to the initial value

upon rinsing with PBS and MilliQ i.e. removing the LONDs from the surroundings of the

SBLM. These results suggest that the presence of PEG chains on the surface of the LONDs

and/or SBLMs protected the system against non-specific binding of LONDs. Indeed, PEG

chains are added to lipid-based drug delivery systems such as liposomes to enhance their

stability and increase their circulation time in vivo, as PEG undergoes steric repulsion

from the surface of the lipid membrane in which it is embedded, isolating the capsules

against agglomeration (see also section 5.3.3 on page 82). [10, 253,254,308]

The addition of LONDs stabilised with only POPC to a POPC SBLM (figure 7.6 case

a, L0-B0), with an initial mass ∼ 630 ng/cm2, produced some changes in the frequency

(∆f = −9 Hz) and dissipation (∆D = 8.25 × 10−6) signals. No changes were observed

during the incubation period, suggesting that the interaction had reached a steady state.

PBS rinsing resulted in removal of a large fraction of material, as reflected by the change in

frequency at this stage, ∆f = +6 Hz, which almost completely restored to initial frequency

values. These results suggests that a small fraction of material from the LONDs solutions

incorporated into the SBLM, hence the differences in frequency and dissipation. Data

fitting to the viscoelastic model (equations 3.9, 3.10) showed that the increase in mass

on the sensor, from a SBLM to a SBLM after interaction with LONDs (and subsequent

PBS and MilliQ rinses) was (22.0 ± 0.6) ng/cm2, whereas the change in thickness of the

system was of 14 nm. This value represents the mass change on the sensor assuming

homogeneous distribution of the adhered material over the area of the sensor. This would

be the case if for example a number of LONDs merged or partially merged with the SBLM,

potentially resulting in oil intercalation in the SBLM. [309–311] Specifically, squalane is

known to incorporate in lipid bilayers and remain in its midplane. [312] This possibility

is illustrated in figure 7.7 Another possible scenario for the LONDs is to remain intact on

the SBLM. The recorded mass change (22 ng/cm2) is equivalent to the mass of ∼ 6× 106

LONDs over the same area (around 6 LONDs per 100 µm2). It is impossible to tell

the configuration that LONDs adopt when they are in contact with the SBLM from the

QCM-D results alone. Combination of QCM-D with another techniques, such as AFM or

131



Figure 7.7: Illustration showing a possible scenario for the interaction L0-B0. In absence
of PEG chains, LONDs could merge with the SBLM, resulting in oil intercalation in the
membrane midplane.

ellipsometry [202,301,313] could provide a more complete view of the processes taking place

in these systems. The differences observed between the L0-B0 study case and those cases

that included PEG chains in the LONDs and/or the SBLM (as discussed above) reinforce

the hypothesis that the PEG effectively isolates the surface of the LONDs, preventing

them from interacting with other lipid barriers.

Funtionalisation of BBIO SBLMs with NeutrAvidin (cases g, h and i in figure 7.6)

reflected as a change in frequency of around ∆f = −10 Hz, which corresponds to a

(2.45 ± 0.02) nm increase in the thickness of the system. This thickness change directly

relates to the dimensions of the protein and the result lies close to the dimensions reported

previously, ∼ 56 × 50 × 40 Å. [314, 315] The differences between he value reported in

the literature and the one obtained in this study is likely to be due to the experimental

techniques used to size the protein (AFM and X-ray in the literature, in contrast to QCM-

D in this study). NeutrAvidin facilitated the binding of LBIO LONDs to the SBLM, as

can be seen in case i in figure 7.6. Frequency and dissipation quickly changed after the

addition of the LONDs (indicated by the first gray arrow), and PBS rinsing did not

produce further changes in the signals, pointing at irreversible binding of the LONDs to

the SBLM. The mass increase was (11.67± 0.02)× 103 ng/cm2, which is equivalent to the

mass of ∼ 3.2×109 LONDs/cm2. The number of LONDs, N , that could accommodate on

the SBLM was estimated from geometrical considerations. LONDs were assumed to be

spheres of radius R = 100 nm, and to cover 100% of the surface of the sensor. The area
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of the sensor was divided by the cross-section of the LONDs (πR2), and then multiplied

by an estimate of the LOND mass6. From this calculation, the number of LONDs able

to bind to the SBLM was found to be N = 3.18 × 109 LONDs/cm2, the mass of which

would be 11.7×103 ng/cm2, which is in excellent agreement with the value obtained from

the fitting of the data to the Kelvin-Voigt viscoelastic model. It is also interesting to note

that the change in thickness of the system, 146.7 ± 0.2 nm, is very similar to the size of

the LONDs used in this experiment (152± 1 nm).7

It was noted that a fraction of LPEG LONDs bound to a NeutrAvidin functionalised

SBLM, as shown by the frequency and dissipation changes in case h, figure 7.6. The

signals reached a plateau following the cessation of the LONDs flow, and PBS rinsing did

not remove any material from SBLM. At this point, the thickness of the layer attached

to the SBLM was ∼ 53 nm, and had a mass of ∼ 3400 ng/cm2. Once the MilliQ rinse

commenced, the frequency was observed to increase, and the dissipation reduced. This

is generally expected when transitioning from an ion-containing buffer to MilliQ. [316]

This tendency can for example be observed at t = 0.5 h on the same graph (figure 7.6h),

when the system was rinsed with MilliQ. However, 10 min later, and while MilliQ was still

flowing into the flow cells, both the frequency and the dissipation changed their behaviour,

and decreased and increased respectively. This is typically observed when mass adheres to

the sensors, and was not expected when the system was immersed in an ion-free solution.

The same behaviour was observed in a repeat of the experiment. It is, however, not clear

the reason behind this unexpected observation. For example, it could be argued that the

exchange of PBS to MilliQ causes LOND swelling or breakage, in a similar fashion as

osmotic stress affects lipid vesicles. [317–319] However, this was not observed for LBIO

LONDs interacting with BBIO bilayers (figure 7.6i) and therefore excludes this possibility.

After resetting the PBS flow both frequency and dissipation signals reached a plateau.

The mass of adhered to the SBLM was ∼ 3030 ng/cm2 and its thickness ∼ 49 nm., which

are a 10% lower than the values for the system before the MilliQ stage.

To summarise the results discussed above, and to facilitate the comparison of mass

attached to the SBLMs in all the cases shown in figure 7.6, the mass change in each

experiment was normalised to the mass in case i, which was considered the maximum

6This was done by considering the oil volume contained in the LOND core, and the mass of the lipid
in the LOND shell. From this calculation, the mass of a LOND results m = 3.7 × 10−6 ng.

7Informed by this result, the number of LONDs able to bind to the SBLM can be recalculated, resulting
N = 5.7 × 109 LONDs/cm2 with a mass 20 × 103 ng/cm2.
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Figure 7.8: Summary of the interactions between squalane LONDs and SBLMs for different
lipid coating combinations. The figure shows the mass percentage attached to a SBLM,
obtained from the fitting of the frequency and dissipation signals of the overtones 5th − 11th

to the Kelvin-Voigt viscoelastic model.

possible LOND surface coverage. The results were plotted in the form of a bar graph,

as shown in figure 7.8. This figure shows the mass incorporated to the system for all

LOND/SBLM combinations. Here, the mass bound to the system in case h (LBIO-BBIO)

represents 100% of the mass bound to the SBLM. For the other interesting cases discussed

above, the mass percentage increases are: case a (L0-B0), ∼ 0.2%; and case h (LPEG-

BBIO), 26%. For all the other cases, the percentage mass increase was < 0.03%.

LONDs/SBLM interaction experiments were repeated for triacetin LONDs. Figure

7.9 contains the results for all the triacetin LOND-SBLM combinations. Triacetin LONDs

were found to not to form when only POPC was used (section 5.2, in page 74), and

therefore no QCM-D experiments involving L0 triacetin LONDs were performed. In this

figure, the gray arrows indicate the times at which LONDs were added to the system, and

the time at which a PBS rinse was set, following incubation of the SBLM with the LONDs.

A green arrow in cases e and f indicates the time at which NeutrAvidin was added to the
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system. In a similar fashion as for squalane LONDs, pegylation of the SBLM (cases a, b,

c and d in figure 7.9) prevented any non-specific interaction of LPEG and LBIO LONDs.

It is interesting to note the slight changes in the frequency and dissipation signal upon the

addition of the LONDs, which recovered to the original values after PBS and MilliQ rinses

in the four cases. These changes were not observed for the equivalent squalane LOND

cases (figure 7.6a-f). One explanation for this difference could be the difference in density

(805 kg/m3 and 1160 kg/m3) and viscosity between squalane and triacetin (11 and 23

mPa·s, respectively. See table 4.1, on page 49).

Binding of NeutrAvidin to BBIO SBLMs (cases e and f) resulted in frequency and

dissipation changes of ∆f = −11 Hz and ∆D = 0.44 × 10−6. Data fitting provided a

value of (2.17 ± 0.01) nm for the thickness of the protein layer, which only differs with

what previously observed in BBIO SBLMs for squalane LONDs experiments by 0.30 nm.

In case f (LBIO-BBIO), NeutrAvidin allowed for triacetin LOND binding to the SBLM.

PBS rinsing (second gray arrow) removed a fraction of the LONDs interacting with the

sensor, as seen by the drop of the dissipation signal (∆D = −3.89× 10−6) and frequency

increase (∆f = 7 Hz). This suggests that the number of LONDs that had reached the

SBLM at this point was larger than that able to bind to it, and therefore excess material

was washed off by the PBS flow. The adhered mass, at this point, and while the system

remained in PBS, was (4170 ± 3) ng/cm2 and the calculated thickness of the attached

layer was ∼ 40 nm. It is important to note that, unlike for squalane LONDs attached to

bilayers (figure 7.6i), this layer thickness does not correspond to the size of the triacetin

LONDs used in this experiment (∼ 250 nm according to DLS). It has been discussed

in chapter 5 that sizing data for triacetin LONDs suggested larger polydispersity of this

type of LOND sample, compared to squalane LONDs. Hence, one possible explanation

is that only LONDs with smaller sizes, or shrunk LONDs (see discussion in chapter 5),

may be reaching and attaching to the SBLM. The sizing of the triacetin LOND samples

was performed a few weeks before the day in which the this QCM-D experiment took

place, and it is possible that the sample had undergone some changes in the interim.

In light of the QCM-D results, it would have been desirable to resize the LOND sample

immediately before carrying out the experiment. Frequency and dissipation were observed

to increase and decrease, respectively, as a result of the MilliQ rinse. As discussed above,

this observation was expected for the change of the solution in the flow chamber, from

an ion-containing solution (i.e. the PBS) to MilliQ. As for squalane LONDs, unexpected
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binding of LPEG triacetin LONDs to a BBIO SBLM occurred. This is shown in figure 7.9e,

with recorded changes in frequency and dissipation (∆f = −17 Hz, ∆D = 8.81 × 10−6).

PBS rinsed resulted in partial removal of material in the surroundings of the SBLM, as

indicated by the drop in the dissipation signal, and increment in the frequency. However,

both signals reached a plateau with similar values to those recorded prior to the PBS

rinsing. The mass attached to the system was (640± 2) ng/cm2. The bound layer had a

thickness of 15 nm, which is in the size range of micelles.

As described for squalane, the mass percentage bound to the SBLMs, normalised to

the value for the attached mass in case LBIO-BBIO (figure 7.9f) were plotted as a bar

graph, for each LOND/SBLM combination. Figure 7.10 shows the mass adhered to each

SBLM as a result of LONDs addition. Here, case f represents 100% of the adhered mass,

whereas case e (LPEG-BBIO) shows a mass binding of around 16%. For cases a-d, the

mass changes were < 0.4%.

Figure 7.10: Summary of the interactions between triacetin LONDs and SBLMs for different
lipid coating combinations. The figure shows the mass percentage attached to a SBLM,
obtained from the fitting of the frequency and dissipation signals of the overtones 5th − 11th

to the Kelvin-Voigt viscoelastic model.
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7.3.3 LOND-SBLMs attachment via PDP-thiol and Maleimide-thiol

The biotin-NeutrAvidin linking chemistry has been widely used as a route for the as-

sembly of nanomaterials, from antibodies onto the surface of liposomes [320] to vesicles

onto the surface of MBs [78, 82, 133]. However, in vivo injection of proteins (such as

Avidin/StreptAvidin/NeutrAvidin) is known to give rise to immune response. [83, 321]

Proteins attached to nanomaterials, or serving as a bridge between them are no excep-

tion. Thus the use of the biotion-NeutrAvidin for in vivo applications is limited by its

immunogenicity. Alternative linking chemistries, such as the maleimide-thiol and pyridyl

disulfide (PDP)-thiol can help overcome this problem. The reaction that these molecules

undergo is illustrated in figure 7.11. Thiol-containing molecules, such as DTT, react with

the maleimide’s double bond to form a stable carbon-sulfur bond. The same reaction can

take place on the other end of the DTT molecule, which results in a bridge between two

maleimide molecules. In the case of the PDP, DTT reacts to form a disulfide bond, which

is practically irreversible due to the release of a very stable pyridine thione. [322] In a

similar fashion as for maleimide, this reaction can occur on the other end of the DTT

molecule, resulting in bridging between two PDP molecules. Provided that both PDP

and maleimide are reactive to thiols, DTT could also act as link between a PDP and a

maleimide molecule.

With the hope to use the alternative maleimide-thiol and PDP-thiol chemistries to bind

Figure 7.11: Maleimide and pyridyl disulfide (PDP) are two common thiol-reactive groups.
Thiol-containing DTT reacts with the maleimide’s double bond to form a stable carbon-sulfur
bond. Pyridyl disulfide reacts with DTT to give a disulfide with release of a pyridine thione
(not shown).
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LONDs to MBs, and to understand all the possible maleimide/PDP/DTT combinations,

an equivalent study to that done for the biotin-NeutrAvidin reaction was performed. Sim-

ilarly to the studies previously described, the aim was to screen the interactions between

LONDs and SBLMs with different lipid combinations. Although the literature on the

use of the PDP and maleimide is extensive, there are no references to PDP/maleimide-

PEG2000-DSPE-containing SBLMs studied in QCM-D. Hence, this study was initiated by

investigating the formation of SBLMs containing different percentages of PDP-PEG2000-

DSPE or maleimide-PEG2000-DSPE (SBLMs BPDP and BMAL, respectively). SBLMs

were prepared as described earlier (section 3.6.2, page 41), from the absorption and rupture

of vesicles onto a SiO2-coated QCM-D sensor. Figure 7.12 shows the changes in frequency

of the QCM-D sensor upon formation of SBLMs containing 1%, 2% or 5% PDP-PEG2000-

DSPE or 1%, 5% maleimide-PEG2000-DSPE. All the trends shown in this figure exhibit

the characteristic fingerprint of the formation of a SBLM: vesicles accumulate onto the

QCM-D sensor (from t = 12 min in this specific case), eventually breaking and forming

a continuous SBLM; this breakage is characterised by an increase in the frequency (see

from t = 15 min in figure 7.12). These results suggest successful formation of a SBLM

in all the attempted lipid combinations. Note the differences in the frequency signal for

the different SBLMs, once stabilised (t = 21 min and onwards in all the cases). The ob-

served increase is consistent with the increase in the percentage of PDP-PEG2000-DSPE

or maleimide-PEG2000-DSPE, an reflects and increase of the overall mass of the system

upon incrementing the percentage of these two lipids. The characteristic frequency shift

observed upon the formation of a plain POPC SBLM (as seen in sections 7.2 and 7.3.2,

and previously reported [198, 201, 202, 301]), ∆f = −26 Hz, coincides with the frequency

shift recorded for the 1% maleimide-PEG2000-DSPE-containing SBLM. This is indicated

as a dotted line in figure 7.12. 1% PDP-PEG2000-DSPE-containing bilayer produced a

slightly larger frequency shift, ∆f = 30 Hz. The frequency shifts recorded for the 5%

PDP/MAL containing bilayers were very similar, ∆f = 42.5 Hz and ∆f = 43 Hz respect-

ively. These shifts correspond to an absorbed mass of (1050± 100) ng/cm2 in the case of

the PDP-containing SBLM, and of (1082 ± 80) ng/cm2 for maleimide-containing SBLM,

compared to ∼ 630 ng/cm2 typically obtained for POPC only SBLMs (see for example

7.6). It is also interesting to note that the speed of the vesicle rupture is higher for lower

percentages of PDP/maleimide-PEG2000-DSPE. This is likely due to the configuration of

the PEG chains on the surface of the vesicles, in the mushroom configuration for percent-
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ages < 5%, and transitioning to the brush regime from percentages ∼ 5%. At percentages

close to the boundary between the two regimes, SBLMs still form, but breakage of the

vesicles onto the QCM-D sensor is slowed down due to the reduction in vesicle adsorption

in presence of the PEG chains.

Figure 7.12: Changes in frequency of a QCM-D SiO2-coated quartz crystal upon formation
of SBLMs containing different percentages of PDP-PEG2000-DSPE (1%, 2%, 5% PDP) or
Maleimide-PEG2000-DSPE (1%, 5% PDP). The dotted lines are included as a guide to the
eye, and they indicate the frequency reached by the Maleimide-PEG2000-DSPE-containing
SBLMs upon formation, f = −26 Hz, which coincides with the frequency change recorded for
a regular POPC bilayer.

Informed by the results on the formation of SBLMs containing PDP/maleimide-PEG2000-

DSPE, 5% PDP/maleimide-PEG2000-DSPE-contining SBLMs were chosen to study the

interaction of LONDs with different lipid coatings in QCM-D. These conditions directly

relate to those used for the study of LONDs/SBLM interaction in the case of biotin-

NeutrAvidin interaction, and should allow easy comparison between the two studies. To

asses the specificity of the new chemistries, the attachment of LONDs to SBLMs was stud-

ied using QCM-D. As done previously, the interactions of different LOND/SBLM combin-

ations were screened in order to determine the level of non-specific binding. All the interac-

tions monitored are shown schematically in figures 7.13 and 7.14. Three types of squalane

LONDS were used for these experiments, namely: LPEG: POPC + 5% PEG2000-DSPE

LONDs; LMAL: POPC + 5% maleimide-PEG2000-DSPE LONDs; LPDP : POPC + 5%

PDP-PEG2000-DSPE LONDs. These were combined with PDP-containing SBLMs (figure

7.13) in absence (BPDP , POPC + 5% PDP-PEG2000-DSPE) or presence of DTT (B*PDP ,

POPC + 5% PDP-PEG2000-DSPE + DTT). These were also let interact with maleimide-
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containing SBLMs (figure 7.14) in absence (BMAL, POPC + 5% PDP-PEG2000-DSPE)

or presence of DTT (B*MAL, POPC + 5% PDP-PEG2000-DSPE + DTT). BPEG (POPC

+ 5% PEG2000-DSPE) were used as control bilayers, as no LOND attachment was ex-

pected to occur onto these SBLMs. Control experiments with POPC only SBLMs (with

and without DTT), and BPEG with DTT were performed, and the results are shown in

appendix B. For cases involving B*PDP and B*MAL SBLMs, DTT at 1 mM was flowed

into the chamber prior to the addition of the LONDs. DTT solution was kept flowing

until the frequency change reached a plateau and was followed by PBS rinsing to remove

unreacted DTT and other residues (i.e. pyridine thiones). LONDs were introduced to the

SBLMs at 0.1 ml/min, at 1012 LONDs/ml. Upon detection of changes in the frequency and

dissipation signal the flow was stopped until the signal reached a plateau. This incubation

period was followed by consecutive PBS and MilliQ rinses to remove unbound LONDs and

those LONDs attached non-specifically to the SBLM. Within the experiment, changes in

frequency and dissipation were monitored for overtones 1th-13th, but only 5th-11th were

used for the fitting to the Kelvin-Voigt viscoelastic model.

Figure 7.13: The binding of LONDs to SBLMs via the PDP-thiol chemistry was studied
on model SBLMs in QCM-D. Nine different combinations of LONDs and SBLMs with dif-
ferent compositions were investigated. LPEG: POPC + 5% PEG2000-DSPE LONDs; LMAL:
POPC + 5% maleimide-PEG2000-DSPE LONDs; LPDP : POPC + 5% PDP-PEG2000-DSPE
LONDs. BPEG: POPC + 5% PEG2000-DSPE SBLM; BPDP : POPC + 5% PDP-PEG2000-
DSPE SBLM; B*PDP : POPC + 5% PDP-PEG2000-DSPE + DTT SBLM.
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Figure 7.14: The binding of LONDs to SBLMs via the maleimide-thiol chemistry was studied
on model SBLMs in QCM-D. Nine different combinations of LONDs and SBLMs with dif-
ferent compositions were investigated. LPEG: POPC + 5% PEG2000-DSPE LONDs; LMAL:
POPC + 5% maleimide-PEG2000-DSPE LONDs; LPDP : POPC + 5% PDP-PEG2000-DSPE
LONDs. BPEG: POPC + 5% PEG2000-DSPE SBLM; BMAL: POPC+ 5% maleimide-
PEG2000-DSPE SBLM; B*MAL: POPC+ 5% maleimide-PEG2000-DSPE + DTT SBLM.

Figure 7.15 shows the results for all squalane LOND interactions with SBLMs con-

taining 5% PDP-PEG2000-DSPE. Three control experiments involving a PEG2000-DSPE

SBLM (BPEG) are included in this figure. Starting from the left, the first gray arrow

indicates the times at which LONDs were commenced to flow into the chambers where the

QCM-D sensors were housed. The second gray arrow points at the time when the PBS

rinse was started. For experiments including DTT a green arrow marks the time at which

flow of DTT was set. Control experiments involving BPEG (specifically, a)LPEG-BPEG,

b)LPDP -BPEG, c)LMAL-BPEG) showed no changes in the frequency and dissipation sig-

nals upon the addition of LONDs to the flow chambers, pointing at no attachment of the

LONDs to the SBLMs. These observations agree with the previous ones for the biotin-

NeutrAvidin interaction (LPEG-BPEG and LBIO-BBIO cases, see figure 7.5 and results in

figures 7.6 and 7.9), and are consistent with the increased stability of SBLMs as a result

of the steric repulsion due to the PEG displayed on their surface. Similar behaviour was

observed for case g) LPEG-B*PDP . In this case, despite the addition of the DTT, LPEG

did not produce changes in the frequency and dissipation signals, suggesting that no at-

tachment took place. In the other cases involving DTT (cases h and i in figure 7.15), a

small frequency shift of around ∆f = −4 Hz, accompanied by a increase in the dissipation
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signal ∆D = 1.65, was observed following the addition of DTT to the SBLMs. The PBS

rinse following the DTT step reverted the system to its original state, suggesting com-

plete removal of the reagent upon washing. Considering the small dimensions of the DTT

(Mw = 154 g/mol), and the reduced number of PDP sites available on the sensor (5×1012

PDP-PEG2000-DSPE per SBLM), the expected mass change upon reaction of DTT with

the PDPs on the SBLM is of around 1.3 ng/cm2, which is close to the theoretical resolution

limit of the QCM-D of 0.5 ng/cm2 and may be undetectable.

The attachment of LONDs to SBLMs was only expected in the cases LMAL-B*PDP and

LPDP -B*PDP , as the presence of the DTT was thought to be crucial for the PDP contained

in the SBLM to exhibit the thiol groups necessary for the LONDs to bind. However,

frequency and dissipation shifts that suggested LOND binding to SBLMs were recorded

also in absence of DTT. LOND attachment was observed for all cases involving PDP/MAL

SBLMs, specifically d) LPEG-BPDP , e) LPDP -BPDP , f) LMAL-BPDP , h) LPDP -B*PDP

and i) LMAL-B*PDP . The PBS rinse following the addition of the LONDs was observed

to increase the frequency signal in cases d) LPEG-BPDP and f) LMAL-BPDP , suggesting

that the attachment of the LONDs in these cases was partially non-specific and that the

PBS rinse was enough to remove some of these LONDs. No frequency changes upon PBS

rinsing were observed for cases e) LPDP -BPDP , h) LPDP -B*PDP and i) LMAL-B*PDP ,

suggesting attachment of LONDs via thiol linking. It is interesting to note that LPEG

LONDs appeared to bind to a BPDP SBLM (case d). This was not observed when LPDP

were added to BPEG, which was expected to be an equivalent scenario. The reasons for this

are unclear. It could be argued that the differences in curvature between the LOND shell

and the surface of the SBLM could affect how the PEG2000 and PGP-PEG2000 chains

arrange in one or the other, and this could for example enhance entanglement of the PEG

chains. However, this would not explain why addition of DTT prior to incorporating the

LONDs (case g) eliminates any binding.

Figure 7.16 shows the results for all squalane LOND interactions with SBLMs con-

taining 5% maleimide-PEG2000-DSPE. As for the PDP bilayers (figure 7.15) three con-

trol experiments involving a PEG2000-DSPE SBLM (BPEG) are included for comparison.

These control experiments have been discussed above. As before, the green arrows point

at the time at which LONDs were started to flow into the sensor chambers and when the

PBS rinse was set, respectively. The green arrow marks the time at which flow of DTT

was set, when applicable. Upon incorporation of the LONDs into the sensor chambers,
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frequency and dissipation changes were observed in all cases involving BMAL and B*MAL

SBLMs (d-i), which suggests LOND attachment to the SBLMs. It is important to re-

member that linking of the maleimide to the DTT is a result of the formation of a stable

thioether bond as a result of the interaction with a thiol. The same process can occur

on the other end of the DTT molecule thereby allowing another maleimide (or PDP) to

bind by the same mechanism. Thus, the presence of DTT for the binding of LONDs to

these SBLMs was thought to be essential. From the graphs in figure 7.16, it can be seen

that frequency changes upon the addition of LONDs for B*MAL SBLMs are larger than

for BMAL; addition of LONDS in cases e) LMAL-BMAL and h) LMAL-B*MAL resulted

in frequency changes ∆f = −15 Hz and ∆f = −42 Hz respectively, which points are

larger mass attachment in presence of DTT, as expected. Similarly, comparing cases f)

LPDP -BMAL and i) LPDP -B*MAL, the recorded frequency changes of ∆f = −22 Hz and

∆f = −33 Hz, respectively, suggest that the attachment of LONDs to the SBLM was

more efficient in presence of the DTT. Furthermore, rinses with PBS (and also MilliQ in

cases e, f, h, i) did not produce changes in the frequency or dissipation signals, suggest-

ing that the LOND binding was specific. Cases d) LPEG-BMAL and g) LPEG-B*MAL, in

which no LOND attachment was expected, are also interesting to note. Unlike for BPDP

SBLMs (figure 7.15), the interaction of LPEG with BMAL was similar in the presence and

in the absence of DTT, with a frequency change of around ∆f = −20 Hz in both cases.

This suggests that the binding of LPEG was non-specific, as it was not affected by the

thiolation of the SBLM. The reason for this attachment is however not well understood,

as pegylation of vesicles and other lipid carriers is known to enhance their stability and

reduce non-specific interactions.
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All the data presented in figures 7.15 and 7.16 was analysed by fitting frequency and

dissipation of the overtones 5th-11th to the Kelvin-Voigt viscoelastic model. The fitting

provided information about system mass and thickness changes throughout the exper-

iment. The results are summarised in figure 7.17. Mass and thickness variation were

obtained subtracting the mass of the SBLMs from the mass of the system in its final state,

after the addition of LONDs and stabilisation of the frequency/dissipation. Figure 7.17

shows that the larger mass (and thickness) increase was recorded for LPEG-BPDP , followed

by LMAL-B*MAL. PEG2000-DSPE-containing LONDs and SBLMs were expected to not

to exhibit attachment, as PEG2000 steric repulsion from the lipid shell, which is known

to reduce non-specific interactions and enhance the stability of lipid carriers. The reasons

for this strong binding are unknown and repeats of this experiment would be necessary to

better understand the conditions that result in this attachment.

The binding of LONDs to the SBLM in the LMAL-B*MAL case was expected, and this

result confirms the viability of the maleimide-thiol chemistry to attach LONDs to SBLM.

The observed thickness increase in this case (around 130 nm) is similar to the average size

of the LMAL LONDs used in the experiment, (168± 5) nm as determined with DLS. It is

important to note that data modeling using the Kelvin-Voigt viscoelastic model provides

values for the thickness (and mass) on the sensor assuming homogeneous distribution of

the adhered material over the area of the sensor. Hence small inhomogeneities, such as

size differences of the attached LONDs, would be simply averaged over the whole surface,

which could then give rise to the differences between the measured thickness and the

average size of the LONDs used in the experiment. It is also possible that the intrinsic

buoyancy of the squalane LONDs could give rise to creaming of the LOND sample during

the experiment (see 2.2.4, page 24). As the LOND solution is kept upright in a falcon tube

during the duration of the experiments, larger LONDs would rise faster than the smaller

ones, and thus more smaller ones, from the bottom of the solution, would be injected into

the sensors chambers. It is interesting to note that PDP-containing SBLMs show, overall,

more non-specific interactions than maleimide-containing SBLMs. Thiolated products

remaining from the synthesis of PDP, or as a result of autoxidation of the PDP, could lead

to thiol groups readily available on the surface of the SBLM/LONDs for binding. This

would explain why attachment onto SBLMs containing 5% PDP-PEG2000-DSPE occurs

both in absence and presence of DTT.

Binding of LONDs to BMAL SBLMs resulted in thickness increases > 25 nm. As
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Figure 7.17: Summary of the interactions between squalane LONDs and SBLMs for different
PDP/Maleimide/PEG2000 lipid coating combinations. Five different SBLMs were used in this
experiment: BMAL, B*MAL, BPDP , B*PDP and BPEG (schematically represented in figures
7.13 and 7.14). This figure shows: a) the mass attached to SBLMs and b) the thickness
increase (over the SBLM), both obtained from the fitting of the frequency and dissipation
signals of the overtones 5th − 11th to the Kelvin-Voigt viscoelastic model.

discussed before, this thickness increase assumes homogeneous distribution of the adhered

material on the sensor. In the likely scenario that LONDs remain intact when adhered to

the SBLMs, this thickness increase (and its mass, ∼ 1000 ng/cm2) would be equivalent to

having ∼ 12 LONDs per 100 µm2. Furthermore, no significant differences across the three

types of LONDs were observed, further suggesting that the attachment in this case was

non-specific.
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7.4 Discussion

The literature on vesicle attachment to other lipid structures such as SBLMs [323–325]

or MBs [78,85,133,326,327] is extensive. In contrast, although lipid-stabilised nanoemul-

sions have been previously functionalised with antibodies for tumour targeting, [50, 328,

329], to date there are no references to the attachment of lipid-stabilised oil-nanodroplets

to other lipid structures (such as SBLMs or MBs). The assembly of MB-LONDs architec-

tures relies on the attachment of LONDs to the surface of the MBs. Verifying this was

important for ensuring the viability of the MB-LONDs. However, monitoring this process

directly on MBs is difficult, due to the size of the both the MB and the LONDs, and also

the limited lifetime of the MBs. Furthermore, the kinetics of this attachment are import-

ant for the assembly of the architectures, as they would assist designing the protocols for

the preparation i.e. deciding incubation times.

Solid-supported bilayers (SBLMs) were chosen as model membranes to mimic the shell

of the MBs and to study the interaction of LONDs with them. SBLMs are robust systems,

easy and quick to prepare, typically by vesicle adsorption and fusion on a surface. The

properties of the SBLMs can be easily tuned by simply modifying the lipid composition

of the vesicles used for their preparation. For example, different chemical ligands, such

as biotin, can be introduced to the SBLMs by adding a percentage of phospholipids to

which biotin has been covalently attached. This versatility allows for the incorporation of

the ligands of interest in this project: biotin, maleimide, and PDP. Not only there was an

interest in studying the successful tethering of LONDs to SBLMs via one of these linking

chemistries, but also the negative controls, in where the entire experimental procedure

was repeated with the omission of a key reagent for test i.e. the NeutrAvidin in the

biotin-NeutrAvidin linking chemistry, or the DTT in the PDP-thiol and maleimide-thiol

reactions. These experiments were to confirm the success of the positive result, supporting

the specificity of the binding in the specific chemistries and ruling out the possibility of

successful attachment due to non-specific interactions.

Specifically, this study focused on the binding of LONDs to SBLMs via: i) the biotin-

NeutrAvidin link chemistry, ii) the maleimide-thiol reaction, and iii) PDP-thiol chemistry.

All the case studies were monitored using QCM-D. [330] When the mass attached to the

sensor has high viscosity, which is typical for organic layers, the Voigt-Kelvin viscoelastic
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model is used for modeling the data, providing information about the mass attached on the

sensor (ng/cm2) and the thickness variation of the system as a result of this process (nm).

SBLMs were formed on SiO2 coated crystals by adsorption and rupture of vesicles. The

formation of SBLM has a characteristic fingerprint when monitored in QCM-D (section

3.6.2, page 41), [200–202, 301, 331], which was used as a guide to asses the successful

formation of a SBLM prior to the LOND attachment experiments.

The initial experiments tested the attachment of StreptAvidin to biotinylated SBLMs.

These were to provide the evidence on the successful formation of SBLMs incorporating

biotin-PEG2000-DSPE, as well as to provide a measurement for the Kd of the biotin-

StreptAvidin reaction. Three different cases were studied, with POPC SBLMs incor-

porating 1% biotin-PEG2000-DSPE, 5% biotin-PEG2000-DSPE or 10% biotin-PEG2000-

DSPE. Two negative controls were performed, including a POPC only SBLM, and a 5%

PEG2000-DSPE SBLM, in which no attachment of the protein was expected to occur.

SBLMs were formed with 1% and 5% biotin-PEG2000-DSPE (figure 7.2). Vesicles con-

taining 10% biotin-PEG2000-DSPE adsorbed onto the surface of the sensor, as indicated

by the reduction in the frequency signal, but remained intact and did not form a SBLM,

as indicated by the absence of a sudden increase in the frequency signal. Previous studies

have reported the formation of SBLMs from PEG-containing vesicles, and the impossibil-

ity of forming SBLMs from vesicles with PEG in the brush regime, which is in agreement

with the observations made in this experiment. [305,306,332] StreptAvidin solutions were

introduced to the SBLMs at increasing concentrations, adjusted to keep the ratio of bi-

otin/StreptAvidin constant across the different experiments. As expected, attachment of

StreptAvidin was only observed on SBLMs containing biotin-PEG2000-DSPE. The SBLMs

were fully covered by the protein in about 10 min for the 1% and 5% cases, and in about 20

min for the 10%. Informed by these results, the incubation times for the formation of MB-

LONDs off-chip were extended to 15 min, to ensure complete binding of the MBs with the

LONDs. These results will be discussed in chapter 8 (page 155). The frequency changes

for the different StreptAvidin solutions were plotted, and the Hill-Langmuir (equation 7.1)

equation was used to fit the results. Kd of the biotin-StreptAvidin reaction was found to

be Kd = (8.3±0.2)×10−10 M, Kd = (7.1±1.4)×10−10 M and Kd = (2.6±1.0)×10−10 M

for the 1%, 5% and 10% biotin-PEG2000-DSPE-containing SBLMs, which fall far from the

expected value. [307] Reasons for this discrepancy include insufficient experimental points

(particularly for concentrations of StreptAvidin in the region 0− 10 nM) and possibly the
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resolution limit of the instrument.

The experiments on the attachment of StreptAvidin to SBLMs provided the basis

for the study of the attachment of LONDs to SBLMs via the biotin-NeutrAvidin link

chemistry. SBLMs containing 5% biotin-PEG2000-DSPE were chosen as model SBLMs

in this study because MBs are typically formed with a lipid mixture that includes 5%

PEG2000-DSPE, and there was a desire to replicate the MB shell as closely as possible.

[133,177,333] These attachment experiments were performed for different LONDs/SBLMs

combinations, to study the attachment via the biotin-NeutrAvidin link chemistry but to

also monitor possible non-specific interactions. The experiment was repeated for squalane

and triacetin LONDs to ensure that the method was valid for both LOND types. The

results, presented in figures 7.6 and 7.9 provide a complete view of the interactions taking

place between the LONDs and the SBLMs used in each case. PEG2000-DSPE incorporated

in either the LONDs or the SBLMs was found to prevent any non-specific interaction, as

reflected by the stable frequency and dissipation signal in those cases. This is in agreement

with the literature and the extensive use of PEG to enhance the stability of drug carriers

such as liposomes. [10] When neither the LONDs or the SBLMs had PEG incorporated

(case 7.6a) low levels of adsorption were observed, which could indicate the incorporation

of some squalane in the middle plane of the SBLM. Attachment of LONDs to SBLMs via

the biotin-NeutrAvidin link chemistry was confirmed for both LONDs types (cases 7.6i and

7.9f). Non-specific interaction appeared to occur between PEG-containing LONDs and

NeutrAvidin functionalised SBLMs (as seen in figure 7.6h and 7.9f). Entanglement of the

PEG chains in presence of the NeutrAvidin could be one explanation for this observation,

but the nature of this interaction remains unclear.

Although the initial aim of this project was to assemble LONDs on to the MB shells via

Table 7.3: Mass attachment percentage of LONDs to maleimide-containing SBLMs, in pres-
ence and absence of DTT. The data was normalised to the LMAL-B*MAL case, considered
100%.

Maleimide SBLM DTT-Maleimide SBLM

BMAL B*MAL

PEG LONDs LPEG 10% 8.4%

PDP LONDs LPDP 12.5% 20%

Maleimide LONDs LMAL 12.5% 100%

151



the biotin-NeutrAvidin link chemistry, alternative chemical linkers (i.e. maleimide-thiol,

PDP-thiol) were also explored, since it is known that the injection of exogenous proteins

(such as StreptAvidin/NeutrAvidin) in vivo gives rise to a number of immune responses

and represents a potential impediment for the use of Avidin-like molecules for drug delivery

applications in humans. [83] Hence the interest in finding alternative linkers for LONDs to

the MB shell if the MB-LOND complexes are to find a medical application. The maleimide-

thiol link is present in FDA antibody-drug conjugates such as Brentuximab vedotin [334],

currently undergoing Phase III clinical trials, which highlights this linking chemistry for

the development of drug vehicles for medical applications. The experiments performed

to study the attachment of LONDs to SBLMs via the maleimide-thiol and PDP-thiol

reaction were analogous to those performed with biotin-NeutrAvidin. DTT was chosen as

the molecule to act as a bridge between the thiol-reactive groups in the LONDs and the

SBLMs. In the experiments, functionalisation of the SBLMs with DTT was done prior to

the addition of the LONDs (see 7.11 for the maleimide/PDP-DTT reactions). Interactions

for LONDs/SBLMs with different lipid compositions were screened, to monitor successful

attachment and also detect possible non-specific binding. In this case, the negative control

consisted of SBLMs containing PDP-PEG2000-DSPE or maleimide-PEG2000-DSPE to

which no DTT was added. No attachment of LONDs containing either PDP or maleimide

was expected, as the absence of thiol groups on the SBLM should prevent the LONDs

from attaching. However, the results for this experiment showed a very different scenario

(figures 7.15 and 7.16). LOND attachment was pinpointed in all cases involving maleimide

or PDP-containing SBLMs (except in case 7.15g), both in presence and absence of DTT.

PBS rinses following the LOND interaction stage resulted in mass removal (as seen by the

increase in the frequency signal) in cases 7.15d,f and figure 7.16d,g, which suggests that the

this non-specific interaction between the LONDs and the SBLM was weak. The analysis

of these results was summarised in figure 7.17. considering only the maleimide-containing

SBLMs, the presence of DTT resulted in an enhancement of the LOND attachment. Table

7.3 contains a comparison of the mass attachment results in this case. The results were

normalised to the LMAL-B*MAL case, which was considered 100% of the attachment. DTT

allowed for a 87.5% increase of the mass attached to the system for the case LMAL and

B*MAL, as compared to the LMAL and BMAL. This suggests successful attachment of

LONDs via the maleimide-thiol linking, and also points at the important role played by

the DTT as a bridging molecule between the LONDs and the SBLM.
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One of the most interesting aspects of the results shown in figure 7.17 is the ap-

parent lack of symmetry in the attachment of LONDs/SBLMs with binding molecules

(PDP/maleimide or control PEG2000) in either the SBLM or the LONDs. For example,

LPDP LONDs did not bind to BPEG SBLMs, but LPEG exhibited attachment onto BPDP

bilayers. One reason for this could be the different handling of the vesicle used for the

formation of the SBLM as compared to that of the LONDs. LONDs (including LPDP )

were always formed first, sometimes a few days prior to the QCM-D experiments8. If

PDP is for example susceptible to autoxidation or hydrolysis when in aqueous solution,

the storage period between LOND production and the experiments could provide a suffi-

ciently long time frame for the PDP-PEG2000-DSPE to undergo these chemical process.

In contrast, vesicles for SBLM formation were always sonicated on the day of the QCM-D

experiment, which therefore could have left not enough time for oxidative processes to

occur. It could also be argued that the radius of curvature in the LONDs, compared to

that in the SBLMS (∼ 0 m), affects the arrangement of the PEG2000 (with or without

DPP/maleimide) chains in such way that they are more likely to entangle. [335–337] The

reasons why this would promote the non-specific attachment of LONDs only in some of the

cases remain unknown and further experiments would be necessary to clarify this point.

Unlike for the biotin-NeutrAvidin binding experiments, the attachment of LONDs via

PDP-thiol and maleimide-thiol chemistry was found to involve a high number of non-

specific interactions between the LONDs and the SBLM. The use of maleimide-thiol and

PDP-thiol has been used extensively for fluorescent labelling proteins [338, 339] and link-

ing of antibodies to drugs and delivery vehicles, [340,341] among other applications. [342]

However, the literature on the use of this linking chemistry for assembling more complex

structures (i.e. comparable to MB-LONDs) is limited. Geers et al. reported the formation

of liposome-loaded MBs using a maleimide-thiol reaction for the attachment. [85,326] They

claimed that the PDP-PEG2000-DSPE in the MBs could interact with the maleimide-

PEG2000-DSPE contained in the liposomes, which resulted in spontaneous formation of

liposome-loaded MBs. They did not provide details on thiol-containing molecules used

to mediate this interaction, which would be required according to the reactions under-

gone by PDP and maleimide presented above (figure 7.11). The experiments reported

in this chapter arise a concern about non-specific interaction between PDP and maleim-

ide groups. As discussed above, many factors may contribute to this unexpected linking,

8as the study of the LOND stability indicated that LOND samples had no changes for at least six
weeks when stored at 4 ◦C (figure 5.12, page 92).
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such as autoxidative processes undergone by the PDP groups. Additionally, it is possible

that impurities present in the lipid samples, as a result of their manufacture, could also

contribute to the observed attachment.

The results presented in this chapter evidence the need for careful evaluation of the

attachment between LONDs and MBs mimicking the MB shell. The results support the

specificity of the biotin-NeutrAvidin binding, as well as the use of NeutrAvidin as a bridge

between a SBLM and a LOND, both exhibiting biotin groups on their shells. Similarly,

the results point at the successful attachment of LONDs and SBLMs via the maleimide-

thiol chemistry, using the DTT molecule as a linker of maleimide groups. The results also

suggest that non-specific binding of LONDs to the shell of the MBs could occur, and that

care should be taken in confirming specific attachment, as non-specific interactions could

result in unwanted detachment of LONDs from the MB shell.
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Chapter 8

Topic: MBs and MB-LONDs

This chapter is concerned with the formation of MBs and MB-LONDs. The attachment

of LONDs onto the MB shell via the biotin-NeutrAvidin link chemistry was performed off-

chip, in a single-step on-chip and in two-step on-chip. The chapter also includes a study

to determine the lifetime of the MB-LONDs architectures. The ultrasound response of

these novel architectures was preliminary studied with help from Dr. James McLaughlan.

8.1 On-chip preparation of MBs

Compared to other production methods, such as mechanical agitation, microfluidics

offer higher control over the size distribution of MBs and surface functionalisation. For

these reasons, this project was concerned with the on-chip production of MB-LOND com-

posites. Initially, the formation of MBs in the spray regime on-chip was tested. The

design of the microfluidic devices used for this experiments are shown in section 3.7.1.2

(page 44). The devices were assembled as described above (section 3.7.1.1, page 43). A

mixture of DPPC + 5% PEG2000-DSPE was used as the lipid shell to stabilise the MBs

(section 3.1.2), and C4F10 was used for their gas cores. The formation of MBs in the

spray regime is characterised by a jet-like stream at the nozzle, where the gas and liquid

phase meet (figure 8.1a). This is a result of the additional depth step into a flow-focusing

device. [133] A video showing the formation of MBs in the spray regime is included in the

supplementary (see appendix C). Figure 8.1b shows an image of a 1 : 10 dilution of the

resulting MB sample. As described above (section 3.5.4, page 37), bright field images of

MB populations were used to count the number of MBs in the sample and to size them.
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Figure 8.1: a) Image of MBs forming in the micro-spray regime. b) Bright field image of a
1:10 dilution of the resulting MB sample. The images was taken using a 40× objective with
1.5× internal magnification c) Histogram of the MB size distribution in the sample, with a
total of 1308 MBs from 10 images sized.

Figure 8.1c shows the histogram for the size of the MBs in this sample, and shows a MB

population with sizes in the range 1 − 6 µm with average size (1.50 ± 0.03) µm (σ = 1.2

µm). The concentration of this MB sample was obtained from the analysis of the bright

field images, and the value was found to be 8.2× 108 MBs/ml. Both the average size and

the concentration values for these MB samples are similar to that previously reported for

MBs prepared with this method. [98,133,178,333]

8.2 Key considerations for preparing MB-LONDs

The number of LONDs that can theoretically bind to a MB depends on the radius

of both the LONDs and the MBs (see figure 5.4, on page 76). Furthermore, the number

of MBs in the solution determines the number of LONDs that can be transported. For

MB samples prepared off-chip, it was possible to know the number and average size of the

MBs prior to LOND incorporation. This allowed for tailoring the amount of StreptAvidin

and LONDs added to the solution to match the number required in the specific samples.

However, this was not possible for samples prepared on-chip, as MB production and LOND

attachment occurred before sample collection. Therefore the number of LONDs required

for the MB sample was estimated for a sample with a concentration of the order of 109

MBs/ml,1 with an average size of 2 µm. With these considerations, and knowing that

the number of LONDs that can bind to a single MB is N = 4
r2
MB

r2
LONDs

, the number of

LONDs necessary to completely cover each MB in this sample was ∼ 8 × 1011. The

amount of protein required to functionalise 1011 LONDs was estimated from geometrical

1This corresponds to the maximum expected MB concentration, produced by mechanical agitation. In
any other case, the MB concentration was expected to be lower, and therefore LONDs should be in excess
in the solution.
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considerations, assuming that the StreptAvidin has a surface area of 25 nm2 [314] and

that it would cover 100% of the LOND surface. 3 µM of StreptAvidin or NeutrAvidin

were added to the LOND solution, and incubated for around 15 min with gentle shaking

throughout. These steps were followed for the functionalisation of all LOND samples

towards MB-LONDs assembly, unless otherwise stated. After functionalisation, LONDs

were added to the already prepared MB solution (for off-chip attachment), or to the

MB lipid precursor, and allowed to bind for 10 min (for single-step). The choice of the

incubation time was a result of the experiments on the binding of LONDs to SBLMs

showed in chapter 7 (page 119).

8.2.1 The lensing effect

MBs formed with a fluorescently tagged lipid in their shell typically show as a fluores-

cent ring (figure 8.2a), when observed in an epifluorescence microscope. This has also been

observed for MB-liposome complexes in which the liposomes were fluorescently tagged (i.e.

with the incorporation of a fluorescently tagged phospholipid into their shell, or the en-

capsulation of a fluorophore in its core). This is generally considered as an indicator

of successful attachment of liposomes onto the MB shell. [78, 133, 326, 327] MB-LONDs

formed with fluorescently tagged LONDs were expected to appear alike.

Within this project, MBs with no added fluorescence either into their lipid shells or

incorporated in their attachments (i.e. liposomes) were observed to have a fluorescent halo

around them when other fluorophores were present in the solution. Figure 8.2b shows an

Figure 8.2: a) MBs stabilised with a lipid mixture containing fluorescently tagged phosphol-
ipids show as a fluorescent ring. In this case, Atto 488 DOPE was incorporated into the MB
shell, and the sample was imaged under the FITC filter block. b) The addition of fluorescein
to the MB solution causes the MBs, with no intrinsic fluorescence, to show as fluorescent rings.
This sample was imaged using the FITC filter block.

157



example of this observation. In this case, the fluorophore fluorescein was added to the MBs

solution. A fluorescent ring can be seen around the MB, characteristic of MB samples with

intrinsic fluorescence, as discussed above. This phenomenon is referred to as lensing effect

within this report. This phenomenon could be attributed to i) non-specific binding of

the fluorophore to the MB shell, resulting in an increased concentration of the fluorescein

around the MB shell; or ii) the refractive index mismatch between the MB gas core and

the surroundings, together with the curvature of the gas-liquid interface. [343, 344] This

observation suggests that fluorescent signals in the surroundings of the MBs, such as from

unattached LONDs, could be easily mistaken as to be produced by the MBs themselves.

This could be a problem for determining successful attachment of liposomes or LONDs

onto the MB shell, unless careful washing is undetaken.

Removal of unattached fluorescent material (i.e. LONDs) from the solution could help

reduce the signal produced by the MBs due to the lensing effect. Hence, within this

project, extra care was put into washing MB-LOND solutions for detailed imaging of the

structures. However, methods for MB sample washing often lead to a significant reduction

in the concentration of MBs. For example, as described above (section 3.7.1.3, page 45),

MB-LOND washing was typically done through flotation of the MB-LONDs due to the

intrinsic buoyancy of the MBs through 1 ml of clean PBS. In this way, MB-LONDs were

able to move towards the top of the solution, leaving behind any unattached LONDs and

excess lipid. However, this method contributed to sample dilution, as only a small fraction

of MB-LOND solution could be added to the PBS (1 ml) for cleaning. Furthermore,

the MBs distributed over the area of the PBS container, making recovery of the whole

Figure 8.3: Schematic showing the cross-section of a flow cell used to wash and image MB-
LOND samples. The MB-LONDs are contained in a chamber delimited by a coverslip, which
allows for microscope imaging. A flow can be set simultaneously, helping removing unbound
fluorescent material (such as excess LONDs) and enhancing the quality of the imaging by
reducing the fluorescence background.
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MB population difficult.2 A flow cell was used for imaging MB-LOND samples and to

confirm LOND attachment to the MB shell. This flow-cell allows for simultaneous sample

washing and imaging (figure 8.3). A flow of buffer at 0.1 ml/min is set in the chamber,

which removes unattached material but leaves the MB-LONDs in the chamber. This was

expected to enhance the quality of the images by reducing the fluorescence background,

and also assist the unambiguous identification of attachment of LONDs onto MBs.

8.3 Off-chip preparation of MB-LONDs

To asses the viability of LONDs assembly onto the surface of MBs, MB-LONDs were

preliminary prepared off-chip. In this case the experimental conditions are simplified with

respect to the formation of MB-LONDs on-chip. The attachment of the LONDs to the

MBs occurs in a static environment, in contrast to the turbulent regimes existent in the

microchips used in this project. Once added to the MB solution, the LONDs should diffuse

due to Brownian motion, whereas the movement of the MBs should be dominated by their

intrinsic buoyancy. Hence, in the absence of more complicated flow patterns, the MB

surface should be fully accessible to the LONDs, and homogeneous coating was expected.

Furthermore, MB stabilisation occurs prior to the addition of LONDs, which could help

ensuring they have a suitably formed lipid shell to which LONDs can bind.

For this specific experiment, C3F8 was used to form the MBs by mechanical agitation

(section 3.7.2, on page 46). The MBs were characterised by optical counting (section 3.5.4,

page 37) prior to the addition of squalane LONDs; these results are shown in table 8.1.

StreptAvidin functionalised squalane LONDs were readily added to the MB solution, and

Table 8.1: Average size and concentration of MBs prepared by mechanical agitation, before
and after the addition of LONDs. A mixture of DPPC + 5% biotin-PEG2000-DSPE was used
to stabilise the MBs. Squalane LONDs were stabilised with POPC + 5% biotin-PEG2000-
DSPE + 0.1% Atto 488 DOPE.

Sample Size (µm) SD (µm) Concentration (×109 ml−1)

MBs only 1.77± 0.07 1.1 2.6± 0.1

MB-LONDs (+StreptAvidin) 1.90± 0.07 1.3 1.9± 0.5

MB + LONDs (control) 1.70± 0.06 1.8 2.0± 0.5

2other cleaning methods previously reported, such as centrifugation of the MB sample, also compromise
the number of MBs in the solution. [345]
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incubated together for about 10 min to ensure full LONDs attachment onto the MBs,

informed by the results on LOND attachment shown previously (chapter 7). The LONDs

contained Atto 488 DOPE in their shell for fluorescence detection. To evidence the crucial

role of the StreptAvidin in the formation of the MB-LONDs, a control sample consisted

of MBs and LONDs mixed together in absence of StreptAvidin was also prepared. In this

case, no binding of LONDs to the MBs was expected.

Figure 8.4: Images of MB-LONDs formed off-chip. All the images were taken using a
40× objective with 1.5× internal magnification and a FITC filter block. Images a) and b)
show the bright field and epifluorescence images of MB-LONDs formed off-chip (in presence
of StreptAvidin), respectively. c) and d) show the bright field and fluorescence images of a
control experiment, where MB and LONDs were mixed together in absence of StreptAvidin.
MBs show a green halo around, corresponding to the Atto 488 DOPE contained in the LONDs
shell. e) Intensity profiles of MB-LONDs and MB from the control experiment. Each profile
was produced averaging five different intensity profiles of the specific MB.
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Figure 8.4 shows images of MB-LONDs formed off-chip, as well as of the control ex-

periment that consisted of MB and LONDs mixed together in absence of StreptAvidin

(control). The analysis of the bright field images (10 images were taken per sample) al-

lowed for determining the average size and concentration of the MBs after the addition

of LONDs; these results are summarised in table 8.1. Within experimental error the size

and concentration of the MBs remained unchanged upon the addition of LONDs. This

suggested good stability of the MB in presence of the LONDs, and points at the viabil-

ity of the MB-LOND complexes. Figure 8.4b and c show the epifluorescence images of

the MB-LOND sample and the control experiment, and in these, the fluorescence signal

came from the Atto 488 DOPE contained in the LONDs shell. In the presence of Strep-

tAvidin (figure 8.4b), MBs showed a fluorescent halo with granular appearance, which

was likely due to the attachment of small agglomerates of LONDs to the MB shell. A

non-homogeneous fluorescent background was observed in the image, which was attrib-

uted to the presence of excess LONDs and StreptAvidin agglomerations in the solution.

The fluorescence background in the control image (figure 8.4d) appeared homogeneous,

which is consistent with a reduced LOND agglomeration in absence of StreptAvidin. The

MBs in the control experiment do also exhibit a fluorescence halo. As discussed above,

this effect could be due to either the existence of non-specific binding between the LONDs

and the MBs, or to the lensing effect (section 8.2.1). Figure 8.4e shows the intensity

profiles for a MB-LONDs complex formed in presence of StreptAvidin, and for a MB of

similar size from the control sample (no StreptAvidin added). The profiles were obtained

averaging five different intensity profiles for each of the MBs analysed. In both cases, the

fluorescence signal around the MB shell can be distinguished over the background intens-

ity. This shows that MB lensing could make difficult the unambiguous identification of

LONDs bound to the MB shell, and emphasises the need for sample washing to remove

unbound material and confirm the attachment.

8.4 On-chip, single-step MB-LONDs preparation

In light of the successful attachment of LONDs to MBs off-chip, on-chip single-step

attachment was attempted. This experiment aimed to replicate what was previously done

for the preparation of MB-liposome complexes. [85,133] Here, the attachment of triacetin
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Figure 8.5: Illustration showing the formation of MB-LONDs on a single-step on-chip. a)
LONDs were incubated with NeutrAvidin for 15 min for functionalisation. b) NeutrAvidin
functionalised LONDs were incubated with the lipid for MB stabilisation for 15 min, to allow
for biotin-PEG2000-DSPE to bind to the NeutrAvidin. c) Biotin-PEG2000-DSPE bound to
NeutrAvidin-functionalised LONDs was incorporated into the MB shell upon formation.

and squalane LONDs to MBs was attempted in a single-step process, which is illustrated

in figure 8.5.

The LONDs were incubated with 3 µM of NeutrAvidin during 15 min for function-

alisation. Both LOND samples were fluorescently tagged with Atto 590 DOPE for ima-

ging.After this the LONDs were added to the lipid for the MBs and incubated for around

15 min to allow for attachment of the biotin-PEG2000-DSPE to the NeutrAvidin on the

LONDs surface. This lipid and LONDs mixture was introduced to a multiplex microspray

chip through the liquid inlet, at 80 µl/min. C4F10 was used for the MB core, and it was in-

jected into the microchip through the gas inlet at 140 kPa. The production of MB-LONDs

following this protocol resulted in the formation of large oil droplets beyond the nozzle area

in the microchip. A video showing this process is included in the supplementary (see ap-

pendix C). This was attributed to destabilisation of the LONDs as a result of shear forces

during their transit through the nozzle and was thought to have the potential to affect

the MBs i.e. hindering their formation. After collection of the MB-LONDs, the samples

were imaged and the bright field images used to determine their concentration and size.

The results for both MB-LOND samples, with squalane or triacetin LONDs attached, are

summarised in table 8.2. The concentration of the MB-LONDs were comparable in both

cases, and both were lower than what was obtained for MBs in the absence of LONDs

(section 8.1). The flow conditions used for MB-LONDs formation in this experiment were

identical to those used previously for the production of MBs only, thus the concentration

of both samples was expected to be comparable. The larger difference observed could be
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Table 8.2: Average size and concentration of MB-LONDs with attached squalane or triacetin
LONDS, prepared in a single-step on-chip. A mixture of DPPC + 5% biotin-PEG2000-DSPE
was used to stabilise the MBs. The LONDs were stabilised with POPC + 5% biotin-PEG2000-
DSPE with 0.1% Atto 590 DOPE for fluorescence detection.

Sample Size (µm) SD (µm) Concentration (×107 ml−1)

Triacetin MB-LONDs 3.0± 0.1 2.5 4.4± 0.2

Squalane MB-LONDs 2.10± 0.06 2.0 4.5± 0.5

arguably due to the LONDs in the solution, which might negatively affect the stability of

the MBs.

The MB-LONDs were placed in a flow cell for washing and subsequent imaging (see

figure 8.3). For the injection, the top layer of the MB-LONDs solution was discarded,

as this layer typically contains larger MBs product of excess gas in the solution and MB

coalescence. Once the sample was set in the flow cell, it was left for ∼ 10 min to allow

for the MBs to rise to the top of the chamber. Then a PBS flow at 0.1 ml/min was set

through the chamber to remove excess lipid and unattached LONDs. Figure 8.6a and d

show epifluorescence images of MB-LONDs formed using squalane or triacetin LONDs,

respectively, after sample washing for 5 min. Both MB-LOND samples appeared as bright

red rings. The concentration of the MB-LONDs in both samples was high,3 which resulted

in overlapping of the fluorescence of the different MBs. The presence of oil droplets was also

noted in the squalane LONDs samples. Roughly, these had diameters between ∼ 2 − 5

µm, and could be a result of LOND destabilisation in the microfluidic device. Despite

sample washing, some background fluorescence and fluorescence agglomerates could be

seen in both images, particularly for the case of squalane MB-LONDs (figure 8.6d). The

buoyancy of squalane in water (ρsqualane = 0.81 kg/m3) could make the squalane LONDs

accumulate on top of the chamber, compared to triacetin LONDs, which would have the

tendency to sink (ρtriacetin = 1.16 kg/m3). This could result in a more efficient washing

in the case of triacetin MB-LONDs. At t = 5 min, larger MBs (> 20 µm) were present in

the solution (figure 8.6a, d). These MBs were partially merged with the coverslip at the

top on the chamber and were likely produced by coalescence of the MBs once they were

set in the flow chamber. The average size of the samples at this point, d = (7.2± 0.6) µm

for triacetin MB-LONDs and d = (12.2 ± 0.6) µm for squalane LONDs, was larger than

3the intrinsic buoyancy of the MBs caused them to accumulate on top of the chamber, concentrating
the sample in this region.

163



Figure 8.6: Epi-fluorescence images of MB-LONDs prepared in a single-step on chip. A flow
cell was used to image the samples, with a 40× objective and the TR filter block. a) Triacetin
LONDs containing 5% Atto 590 DOPE were attached to the MBs, imaged after a 5 min wash.
b) Triacetin LONDs containing 5% Atto 590 DOPE were attached to the MBs, imaged after
a 15 min wash. c) Size histograms for triacetin MB-LONDs at t = 5 min and t = 15 min
(n = 102 and n = 100, respectively). d) Squalane LONDs containing 5% Atto 590 DOPE
were attached to the MBs, imaged after a 5 min wash. e) Squalane LONDs containing 5%
Atto 590 DOPE were attached to the MBs, imaged after a 15 min wash. f) Size histograms
for squalane MB-LONDs at t = 5 min and t = 15 min (n = 72 and n = 70, respectively)

that determined by optical counting (which results were summarised in table 8.2). The

bright field images of the sample were acquired immediately after production, thus this

increase in the average size of the population (around 133% for triacetin MB-LONDs, and

500% for squalane MB-LONDs) could be a result of MB-LOND instability.

The MB-LOND samples in the flow chamber were monitored for a few minutes, in

order to asses changes taking place over time. Figure 8.6b and e show epifluorescence

images of both the squalane and triacetin MB-LOND samples after 15 min wash. In the

case of the triacetin MB-LONDs (8.6c) no significant changes in the sample were observed

i.e. the number of MBs did not change noticeably. In the case of squalane MB-LONDs

(figure 8.6d), large gas bubbles with sizes between ∼ 20 − 50 µm appeared within the

washing time. Figure 8.6c and f show the size histograms for the triacetin and squalane

MB-LONDs, at t = 5 min and t = 15 min. Triacetin MB-LONDs exhibited an average

size d = (7.2 ± 0.6) µm (σ = 6.5 µm) at t = 5, and d = (6.9 ± 0.6) µm (σ = 5.8 µm)

at t = 15. This indicates that, within experimental error, the size of the triacetin MB-

LONDs did not change within this time. The size of the squalane MB-LONDs changed
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from d = (12.2± 0.6) µm (σ = 5.1 µm) to d = (30± 1) µm (σ = 9.3 µm) at t = 15, which

is an increase of around 150%. The formation of large gas pockets was likely a result of

MB coalesce, and Ostwald ripening (equation 2.23, page 26). [130] In this specific case, the

Ostwald ripening rate, ω of the C4F10 was calculated4 to be approximately ω = 8.2×10−20

m3/s. This implies that a MB with an initial diameter of around 10 µm would result in a

MB with a size ∼ 40 µm within 15 min. This value is comparable to the increase in the

average size observed for this MB-LOND sample, thus suggesting that Ostwald ripening

may have played an important role in the instability observed.

However, the reasons why coalescence and Ostwald ripening were only observed in the

case of squalane LONDs are not clear. Although there are no reports on the stability of

MBs in presence of oil nanodroplets, the literature on stability of foams (as compared to

MBs) in presence of oil or oil emulsions is extensive in the food industry field. [346–349]

Most authors have reported that the presence of hydrocarbon droplets in the solution ad-

versely affects the foam’s stability, as a result of the interfacial activity of the hydrocarbon

molecules. In the microfluidic device used to assemble the MB-LONDs architectures, oil

droplets were observed to form beyond the nozzle, which was tentatively attributed to

LOND instability upon passage through the nozzle. It is possible that destabilisation of a

fraction of the LONDs in the solution could result in oil release into the solution, affecting

the stability of the MBs.

8.5 On-chip, two-step MB-LONDs preparation

To overcome the stability problems observed in MB-LOND samples prepared in a

single-step process, a microfluidic device with an added mixing serpentine was used for

assembling the structures. In a mixing serpentine, the fluid velocity mismatch between

the center and the periphery of the channels, at the bends, give rise to turbulent mixing

(section 2.1.2.1, page 13). The design of the chip used for the experiments is shown in

figure 3.9, (page 45). Figure 8.7 shows a section of the CAD design for this chip. In this

device, MBs are formed first under the spray regime (inset a). LONDs are subsequently

added to the MB solution further downstream (inset b); in this example, the LONDs

4the parameters for C4F10 MBs used for these calculations were γ = 45 mN/m, Sb = 1.5×10−3 kg/m3,
Vm = 21 × 10−3 m3/mol, D = 2 × 10−9 taken from reference [93] and ρ = 11.2 kg/m3. T was considered
293 K and R = 8.31 kgm2/s2Kmol.
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were tripropionin LONDs containing 0.1% Atto 590 DOPE, and the area where they were

incorporated to the MB solution was imaged under the TR filter block (10× magnifica-

tion). In inset b the LOND solution can be seen in red, and the MB solution and gas

stream appears black, in the center of the channel. MBs and LONDs are mixed together

throughout the serpentine, which provides the LONDs with extra time to assemble onto

the MB shells, compared to the single-step production. Insets c, d and e on figure 8.7

show the mixing stage at different points throughout the serpentine. After the first turn

(inset c) the MB and LOND solutions remained unmixed, as can be seen from the separ-

ation between the central black region in the channel (the MBs and gas stream) and the

fluorescent LONDs solution. This is illustrated by the intensity profile across the channel,

including in the inset. After the third turn (inset d) LONDs were distributed across the

section of the channel, suggesting mixing with the MB solution. Inset e shows the stage

of the mixing towards the end of the serpentine. The LOND solution can be seen concen-

trated in the center of the channel, also observable from the intensity profile across the

channel including in the inset. The liquid velocity in the center of the channel is higher,

thus the pressure in this region is lower, resulting in concentration increase of the LONDs

towards the center. The time during which MB and LONDs mix together throughout the

serpentine can be estimated from the dimensions of the serpentine and considering the flow

rates used in the device. The cross-section of the mixing serpentine is 270 × 50 µm, and

has a total length of 56.6 mm. The flow rate in the channel was considered to be the sum

of the flow rate used for MB production at which the LONDs are incorporated into the

device, 40 µl/min. With these assumptions, the time that MB and LONDs spend in the

serpentine was found to be 1.14 s. It is important to note that in this device attachment

takes place under a dynamic regime in which the flow turbulences mix the LONDs and

the MBs throughout the serpentine. This is very different to conditions in the QCM-D

experiments and off-chip preparation of MB-LONDs, where LONDs attachment occurs in

a static fluid and it is limited by diffusion of the LONDs in the solution.

The preparation of MB-LONDs in a two-step process was attempted with triacetin,

squalane and tripropionin LONDs. In all the cases, the LONDs were formed with POPC

and 5% biotin-PEG2000-DSPE to facilitate the attachment via the NeutrAvidin-biotin

binding, and 0.1% Atto 590 DOPE was included for fluorescence detection. The MB

shell was composed of DPPC and 5% biotin-PEG2000-DSPE. Figure 8.8 shows images of

MB-LONDs samples prepared with different types of LONDs. These images correspond
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Figure 8.7: Section of the chip design used to prepare MB-LONDs in a two-step process.
The whole design is shown in figure 3.9 (page 45). Insets show: a) bright field image of the
formation of the MBs under the spray regime, b) fluorescence image of the region where the
LONDs are added to the MB solution; in this example, tripropionin LONDs tagged with 5%
Atto 590 DOPE were added at a concentration 1011 LONDs/ml, c-e) different stages of the
LONDs and MBs mixing throughout the serpentine. The mixing allows for binding of the
LONDs to the MB shell. Insets c and e include an the intensity profile across the channel.

to undiluted, unwashed samples that were imaged to asses the success of the experiment.

Pictures of the region of the MB sample were taken both in the bright field and under

the TR filter block for the fluorescence images. Table 8.3 contains the average size and

concentration for all the MB-LOND samples, and also for MBs only prepared in the same

device, under the same conditions5. The data for MBs only, triacetin MB-LONDs and

5clean PBS was incorporated through the LONDs inlet, instead of the LOND solution.
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Figure 8.8: MB-LONDs formed in a two-step process on-chip. The panel contains bright
field and fluorescence images (taken using the TR filter block) of the same areas, under the
40× objective with 1.5× internal magnification. Triacetin, squalane and tripropionin LONDs
have been successfully attached to MBs following this protocol.

Table 8.3: Average size and concentration of MB-LONDs prepared with different LOND
types. MB average size and concentration are included. A mixture of DPPC + 5% biotin-
PEG2000-DSPE was used to stabilise the MBs. Squalane and triacetin LONDs were stabilised
with POPC + 5% biotin-PEG2000-DSPE, whereas tripropionin LONDs were stabilised with
DSPC+ 20% cholesterol + 5% biotin-PEG2000-DSPE. All LONDs contained 0.1% Atto 590
DOPE for fluorescence imaging.

Sample Size (µm) SD (µm) Concentration (×107 ml−1)

MBs only 2.33± 0.08 2.1 4.4± 0.7

Triacetin MB-LONDs 1.9± 0.2 1.6 3.8± 0.6

Squalane MB-LONDs 2.4± 0.1 1.8 1.5± 0.2

Tripropionin MB-LONDs* 2.6± 0.2 2.2 5.3± 0.4

∗ Data for tripropionin MB-LONDs corresponds to only one repeat of the experiment,

squalane MB-LONDs correspond to averaged results of three repeats of the experiment.

Only one data set was available for tripropionin MB-LONDs, due to the late addition of

tripropionin LONDs to the project. Triacetin MB-LONDs were found to have the smallest

size, and to be around 26% smaller than tripropionin MB-LONDs, which exhibited the

largest size. Within experimental error, the sizes of squalane and triacetin MB-LONDs

were comparable, and were also comparable to the size of MBs in the absence of LONDs.

The concentration of the samples was of the order of 107 MBs/ml, which is lower than

what is usually obtained for MBs produced in this microfluidic regime (108−109 MBs/ml,

section 8.1). This was due to the incorporation of the LONDs through a second liquid

inlet, which increases the total liquid volume produced by the chip and contributed to the
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dilution of the final MB-LONDs structures by a factor of 2, in comparison to conventional

microspray device. The concentration of MB-LONDs formed with squalane LONDs was

found to be lower than the concentration of the other MB-LOND samples. Generally, this

was observed observed for all squalane MB-LONDs prepared in a two-step process on-chip.

It is possible that a fraction of squalane from the LONDs could incorporate into the MB

shell, affecting their surface tension and enhancing MB coalescence. This could result in

a reduction of the MB-LONDs concentration, as compared to MB-LONDs formed with

triacetin LONDs.

MB-LONDs were washed and imaged in a flow cell. Figure 8.9 shows epifluorescence

images of squalane and triacetin MB-LONDs in a flow chamber, and after sample washing

for 90 min. Considering the volume of the flow cell (∼ 0.5 ml) and the washing flow

rate (0.1 ml/min), the liquid volume in the flow cell was replenished approximately 18

times during the 90 min washing step. This was considered enough liquid volume for any

unbound LONDs to be removed from the chamber. Informed by previous results (section

8.4), these MB-LOND samples were diluted 1 : 10 prior to the injection in the flow

chamber. This notably reduced the number of MBs in the chamber, improving the quality

of the imaging (if comparing figures 8.6 and 8.9). As discussed above, the MB-LOND

architectures appear as fluorescence rings as a result of the attachment of fluorescent

LONDs (incorporating Atto 590 in this case) onto the shell of the MBs. The MB-LONDs

were videoed, and these are included in the supplementary (see appendix C). Diffusion

of the fluorescent material attached to the MB shells (i.e. LONDs) can be seen in these

videos. These confirmed the successful assembly of the architectures.

Figure 8.9: Epifluorescence images of MB-LONDs prepared in a two-step process on-chip.
The samples were washed and imaged using a flow cell for 90 min. The LONDs were fluores-
cently tagged with 0.1% Atto 590 DOPE, and the TR filter block and a 20x objective were
used to take the images. a) Triacetin MB-LONDs. b) Squalane MB-LONDs.
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MB-LOND architectures formed in the two-step process were also imaged by confocal

microscopy. In this case, the shell of the MBs was fluorescently tagged by adding 0.1%

Atto 488 DOPE into their shell composition. The LONDs incorporated 0.1% Atto 590

DOPE in the shells. After preparation following the protocol described above, the MB-

LONDs were washed via flotation (section 3.7.1.3, page 45). The aim of this experiment

was to image individual MB-LOND composites, thus the reduction of the sample con-

centration due to the washing step was not a concern. Figure 8.10 shows fluorescence

confocal images of triacetin and squalane MB-LONDs. The attachment of LONDs to the

MB shell was confirmed by the presence of a fluorescent red rings around the MB shell,

which corresponds to the signal from the Atto 590 DOPE contained in the LONDs shell.

Composite images were produced by superimposing the fluorescence image in the FITC

channel, corresponding to the Atto 488 in the MB shell, and the TR channel, correspond-

ing to the LONDs. Spatial coincidence of both the red and the green signals can be seen

in the merged imaged, which is supported by the intensity profiles across the MB-LONDs

(also shown in figure 8.10). This further supports the successful attachment of the LONDs

and the MBs. A Z-stack of the squalane MB-LONDs architecture was recorded using the

confocal system, and it is included in appendix C.

Figure 8.10: Confocal images of MB-LONDs formed in a two-step process on-chip. The
images were taken using a 60x oil immersion objective. The samples were washed by flotation of
the MBs prior to imaging. 0.1% Atto 488 DOPE was incorporated to the MB shell (FITC, 488
nm laser), and the shell of both the triacetin and the squalane LONDs was tagged with 0.1%
Atto 590 DOPE (TR, 552 nm laser). The composite images were produced by superimposing
the signals from the red and the green channels. The intensity profiles show the fluorescence
counts across the MB-LONDs, for both colours.
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8.5.1 MB with mixed squalane/triacetin LONDs attachment

The combination of different LOND types onto a single MB-LONDs architecture has

the potential of allowing for combination treatments, in which different drugs with com-

plementary effects are administered simultaneously. [350–352] The reason for this is that

the solubility of different therapeutic agents differs across different oils, as suggested by

the results with drug mimics and CA4 presented above. Thus attachment of different

oil type LONDs could facilitate the incorporation of different therapeutic agents onto the

MB-LOND architectures.

To serve as a proof of concept, MB-LONDs were prepared with a 50/50 combination

of squalane and triacetin LONDs. The architectures were produced by following the two-

step preparation method, described above, and were washed through flotation prior to

imaging. Figure 8.11 shows fluorescence confocal images of MB-LONDs formed from a

mixture of triacetin and squalane LONDs attached. In this case, the shell of the MBs

did not include any fluorescent lipid. Triacetin LONDs were tagged with Atto 488 DOPE

and imaged in the FITC channel, and squalane LONDs included Atto 590 DOPE and

where seen in TR. The images show fluorescence rings (in each colour channel) around

the MB, which is characteristic of the attachment of LONDs onto the MB shell. The

composite image shows coincidence of the red and green fluorescence, which supported

by the intensity profile across the structure. This suggests that both the triacetin and

the squalane LONDs successfully attached to the MB, and reinforces the potential of

MB-LONDs to serve as vehicles for combination therapy drugs.

Figure 8.11: Confocal images of a MB coated with a 50/50 mixture of squalane and triacetin
LONDs. The images were taken using a 60x oil immersion objective. Triacetin LONDs
contained 0.1% Atto 488 DOPE in their shell (FITC, 488 nm laser), whereas the shell of the
squalane LONDs was tagged with 0.1% Atto 590 DOPE (TR, 552 nm laser). The samples
were washed by flotation of the MBs prior to imaging.
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8.6 Stability of MBs and MB-LONDs

The lifetime of the MB-LONDs is an important parameter if the composites are to find

a medical application. Upon injection of the MB-LONDs in vivo, the architectures should

remain stable until reaching the place of interest, which would enhance the specificity of

the treatments and reduce side effects associated to the transported drugs.

To study the lifetime of the MB-LONDs, their concentration was monitored over time,

whilst kept at 37 ◦C. MB dissolution was expected to translate into a reduction in the num-

ber of structures in the solution therefore diminishing their concentration. The temperat-

ure conditions in this experiment aimed to better resemble those to which the MB-LONDs

would be exposed to in vivo. Upon preparation of the MB-LONDs in a two-step process

on-chip, as described above (section 8.5), C6F10 was added to the MB-LOND solution to

enhance the stability of the MBs. [178] The samples were kept at 37 ◦C using a block

heater, and sets of 15 bright field images were taken every 15 min. The duration of the

experiment was 2 h, as there was an interest in monitoring the stability of the MB-LOND

for a time period similar to the time required for the architectures to reach the target

site following injection and accumulate over time in a human patient. Figure 8.12 shows

the reduction on the concentration of triacetin and squalane MB-LOND samples within

2 h and at 37 ◦C. Populations of bare MBs were studied as a comparison. The initial

concentrations were determined by optical imaging and counting, and were found to be

very similar for all of the samples, with squalane MB-LONDs exhibiting the lowest value,

as discussed above (section 8.5). The data points for MBs and triacetin MB-LONDs were

fitted to an exponential decay, and their half-lives τ were determined from the fitting. In

the case of bare MBs, τ = 61 min, whereas τ = 17 min for triacetin MB-LONDs. These

values indicate that the dissolution rate for triacetin MB-LONDs is around 3-fold higher

than for bare MBs. One reason could be oil leakage from the triacetin LONDs, which could

result in oil insertion into the MB shell and thus affect the stability of the MBs. The data

points for squalane MB-LONDs were fitted to a linear regression, and the reduction of the

concentration in this case was of around 39%.

The results shown in figure 8.12 for MBs and MB-LONDs suggest that LONDs at-

tachment had no negative effect in the lifetime of the MBs. The results also suggest that

a coating of squalane LONDs slowed the rate of dissolution of the MBs, as seen by the
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slower reduction of the MB-LONDs concentration over time, compared to bare MBs. This

is similar to what has been observed for MB-liposome complexes before, and has been

hypothesised to be due to the additional lipid coating around the gas core, (i.e. the lipo-

somes) which increases the resistance to gas permeation. [133] Increased MB stability has

been observed for MBs stabilised with nanoparticles, known as armoured MBs [353,354].

Given that the ability of the gas to escape from the MB core depends on the interfacial

area available for the gas molecules to cross the MB shell (equation 2.2, page 11), the

incorporation of solid nanoparticles into the MB shell results in enhanced MB lifetime, as

they reduce the interfacial area. [355, 356] It is possible that the attachment of LONDs

onto the MB shell could have a similar effect in reducing the area available for the gas to

solubilise. However, more experiments would be necessary to prove this hypothesis.

Figure 8.12: Lifetime of MBs and MB-LONDs at 37 ◦C, studied as the changes in their
concentration over time. Data is the result of averaging the results for three different MB
or MB-LONDs preparations, and the error bars represent the standard deviation between
the repeats. C6F10 was added to the solution to improve MB lifetime. MBs and triacetin
MB-LONDs lifetime were fitted to an exponential decay, with τ = 61 min and τ = 17 min,
respectively. Concentration decay of squalane MB-LONDs was fitted to a linear regression.

8.7 Ultrasound response

The US response of the MB-LONDs was tested with help form Dr James McLaughlan.

This was important to ensure that the MB-LOND composites retained the echogenicity of

the MBs, and hence that they could be used for theranostic purposes. Sample preparation
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was performed by the author and data collection was done jointly with Dr McLaughlan.

Data analysis was performed by Dr McLaughlan. All the MB-LOND samples used for these

experiments were produced on-chip in a two-step process as described above (section 8.5).

The acoustic attenuation of US pulses propagating through a test chamber containing

MBs at a concentration6 ∼ 106 MBs/ml was measured. [357] A broadband (1− 20 MHz)

transducer was used to generate the US signal, and a needle hydrophone was used as

a receiver. A pre-distorted chirp signal [358] was used to transmit a 20 ms, 25 kPa

broadband (214 MHz) US pulse. The MB chamber, the transducer and the hydrophone

were submerged in a large water tank containing degassed and filtered water. The US

attenuation was calculated by subtracting the signal in presence of MBs and the reference

value obtained for the chamber filled with filtered water. This process was repeated (n = 3)

for each sample tested. Figure 8.13 shows the frequency dependent acoustic attenuation

for bare MBs and squalane or triacetin MB-LONDs. To serve as a control experiment, the

acoustic attenuation of squalane and triacetin LONDs was also studied. In this case, the

similar acoustic impedance of the oils and the surrounding water was expected to translate

into negligible attenuation of the ultrasound signal by the LONDs. As anticipated, the

results in figure 8.13 show that the LONDs did not attenuate the ultrasound signal, which

is consistent with a negligible interaction with the ultrasound waves. All of the MB and

MB-LOND samples showed a peak attenuation value between 3.5−4.5 MHz, which marks

a resonance frequency for the different populations. The resonance peak shifted to higher

frequencies for both MB-LOND samples, suggesting that these MB types had an increased

shell stiffness when compared with the equivalent MB without attached LONDs. Similar

behaviour has been reported before for MB-liposome complexes, in which the addition of

liposomes resulted in an increase in the shell viscosity. [359] Both MB-LONDs samples were

found to have a lower level of attenuation than the MB population, and the reasons for this

differences are unclear. Comparable attenuation levels have been reported for bare MBs

and MB-liposomes; similarly, liposome loading has been seen to have negligible effect in the

ultrasound response of MBs. [98,360] One reason to explain the differences in attenuation

between bare MBs and MB-LONDs could be concentration differences of the samples.

The concentration of the samples was determined immediately after production, and these

values were used to prepare the dilution used in the US experiment (106 MBs/ml). It is

possible that some MBs dissolved prior to the US experiment, which took place around 30

6sample dilution was based on the concentration values obtained for each sample immediately after
production.
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min after the production, thus reducing the MB-LOND concentration and resulting in a

lower attenuation signal. This would be particularly noticeable for MB-LONDs triacetin

(see figure 8.12).

Figure 8.13: Attenuation of different MB and MB-LOND populations as a function of the
ultrasound excitation frequency (2−14 MHz). All samples had an equivalent concentration of
106 MB/m, and the concentration of the two LOND samples was 109 LONDs/ml. The error
bars represent the standard deviation of three repeat measurements of each population.

To investigate the echogenicity of the MB-LONDs, samples were imaged in a tissue-

mimicking agar-based gel flow phantom. In these, the in vivo blood microcirculation can

be replicated for the assessment of the MB perfusion; compared to an animal model,

wall-less flow phantoms provide a better control over the experiment, as the size of the

vessels and the dimensions of the system are well-defined. [361, 362] A schematic of the

experimental set-up is shown in figure 8.14a. A syringe driver was used to generate a

MB flow through the mimicking vessel, from a reservoir containing a MB population at

a concentration ∼ 108 MBs/ml. An in-house build diagnostic US imaging system was

used for image recording. A transmitted pulse with a frequency of 7.6 MHz was selected

and focused at 40 mm from the transducer surface. This coincided with the location

of the vessel in the tissue-mimicking gel, though which the MBs circulated. Data was

recorded and post processed to generate B-mode images. Imaging was performed on MB

and MB-LOND populations, and water alone was used as a control, as water is known

not to scatter US. Figure 8.14b shows the B-mode images for all of the samples. Lack of

US scattering shows in black (i.e. −50 dB loss), and signal received from echoes shows in

a grey-to-white scale (0 to ∼ −35 dB loss). As expected, water showed no US scattering.

Scattering of the US signal was detected for all the samples containing MBs, as seen from
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the increased brightness inside the vessel (shown in yellow on figure 8.14b). These results

confirm the US properties of the MB-LOND architectures, and suggest that they could

be used as theranostic agents. Furthermore, the US could be used to control spatially

and temporarily the release of the LONDs from the MB shells, hence improving treatment

specificity and potentially reducing adverse side effects in patients. Further experiments

are required in order to fully explore the US properties of the complexes, as well as to

better understand the release of the LONDs from them, in a similar fashion to what has

been previously done for MB-liposome complexes. [98, 359,360,363,364]

Figure 8.14: Echogenicity of MB-LONDs was tested in a wall-less flow phantom. a) Schem-
atic showing the set-up for the experiment. MBs flow though a vessel in a tissue-mimicking
material. A transducer was used to produce a 7.6 MHz ultrasound pulse focused on the vessel.
b) B-mode images showing the US response of water (control), MBs, triacetin and squalane
MB-LONDs. These images are representative frames extracted from the videos included in the
supplementary (see appendix C). The samples were flown through a wall-less vessel, marked
in yellow. The B-mode images were generated by computer processing the received radio
frequency signal.
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8.8 Discussion

The aim of this project was to fabricate a novel MB architecture for the enhanced

delivery of hydrophobic drugs. LONDs assembly onto the shell of the MBs would allow

for the transport of poorly water soluble therapeutic agents encapsulated in their oil

core. Particularly, this work was concerned with the on-chip fabrication of MB-LONDs,

provided that microfluidics are a robust technique for the production of MB, which offers

reproducible size distribution of the samples and also allows for controlled MB surface

functionalisation. This chapter has shown the production of MB-LONDs following three

different routes: i) off-chip, in where LONDs are added to the MBs once these are formed,

ii) on-chip, in a single-step process in where the LONDs are combined with the lipid for

the MB shell, and introduced jointly into the microfluidic device, and iii) on-chip, in a

two-step-process in which MBs are formed first and LONDs are incorporated to the MB

solution further down stream.

The production of MB-LONDs off-chip was attempted first in order to asses the form-

ation of the architectures in a simpler experimental set-up, as compared to the on-chip

production. MBs were prepared by mechanical agitation, and NeutrAvidin functionalised

LONDs were added to the solution afterwards. Sample sizing revealed comparable sizes

for MB-LONDs and bare MBs produced using the same method, suggesting that LONDs

had no negative effect in the stability of the MBs. Similarly, the concentration of the MB-

LONDs did not change compared to the concentration of MBs in samples with no LONDs.

Fluorescence images of the sample revealed the assembly of the LONDs onto the MB-shell.

The negative control exhibited differences with respect to the positive result, such as ho-

mogeneous background appearance. However, MBs from both samples exhibited a bright

ring around their shell, which is characteristic of MBs with intrinsic fluorescence (i.e. with

fluorescently tagged lipid in their shells) or fluorescent attachment. This phenomenon was

observed throughout the project, and has been referred as lensing in this report. The

effect can potentially lead to incorrect interpretation of the results, as for example to in-

terpret fluorescence rings product of lensing as attached LONDs to the MBs. Although

light mirroring by water-air interfaces is a widely studied phenomenon, [343,344,365,366],

there are no references to this in relation to echogenic MBs. During this project, sample

washing prior to imaging was done thoroughly to ensure maximum removal of excess lipid
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and unbound LONDs from the solution, as their presence contributed to the lensing ef-

fect and induced a incorrect interpretation of the results. It is important to note that

sample washing procedures generally led to a reduction in the concentration of the MBs,

thus bright field images for sample quantitation were always recorded preceding sample

washing.

The assembly of MB-LONDs was also performed on a single-step on-chip (design in

figure 3.8, page 44). This approach was used first and it aimed to replicate what was

previously done to produce MB-liposome complexes. [133] Here, MBs are formed in the

spray regime, and LOND attachment occurs simultaneously. The results shown in section

8.4 suggest that although formation of MB-LONDs following this protocol is possible, their

stability is adversely affected by the addition of the LONDs prior to MB stabilisation7.

This is suggested by the quick size increase of the MB-LONDs, particularly for squalane

LONDs (figure 8.6c and f). One possibility is that the passage through the nozzle in the

microfluidic device may promote LONDs coalescence, resulting in larger oil droplets or

release of oil into the solution. The stability of air-in-water foams has been widely studied

in the context of the oil and food industry, [346–349,367,368] and it is reported to decrease

in presence of oil. In a similar way, it is possible that MB formation are affected by the

presence of oil in the solution at the time of MB formation. The differences observed

between triacetin and squalane MB-LONDs could be due to the different buoyancy of the

oils, which could enhance the accumulation of squalane LONDs at the top of the chamber

in the flow cell, whereas the washing of triacetin LONDs could be more efficient in this

set-up (see figure 8.3 for the schematic of the flow cell).

The stability problems observed for MB-LONDs prepared in a single-step on-chip were

overcome by incorporating a mixing serpentine in the microspray devices (design in figure

3.9, page 45). In this device MBs are formed first, and the incorporation of the LONDs

occurs further down stream once the MBs are stabilised. The addition of the serpentine

allows for on-chip mixing of the MB-LONDs for ∼ 1.14 s. MB-LONDs using triacetin,

squalane and tripropionin LONDs were formed in these devices, and all of them exhibited

sizes around ∼ 2 µm. The incorporation of the LOND solution through a different inlet

results in additional liquid volume in the final sample, reducing the final concentration

of the MB-LONDs by a factor of 2. The attachment of LONDs to the MB shell was

confirmed by epifluorescence microscopy, after throughly washing the sample to remove

7as no evident stability issues were observed when LONDs were added to MB samples prepared off-chip.
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unbound LONDs. Images obtained by confocal microscopy (figure 8.10) revealed spatial

coincidence of the fluorescence signal from the MB shell and the LONDs, which pointed at

successful assembly of the architectures. Unlike for the single-step protocol, MB-LONDs

formed in a two-step on-chip did not show stability problems, as reflected by the study

of their lifetime shown in section 8.6. It is interesting to note how the addition of the

LONDs after MB formation (in both off-chip and two-step on-chip MB-LOND production)

contributed to the stability of the MB-LONDs and prevented premature MB coalescence.

Indeed, the results from the experiments suggest increased lifetime of the squalane MB-

LONDs with respect to bare MBs prepared with the same method, with C6F10 in the

solution and upon incubation at 37 ◦C. This was thought to relate to the reduction in the

gas permeation from the MB gas core upon the addition of a layer of LONDs onto the

MB shell. These results suggest viability of the MB-LOND architectures for the in vivo

applications.

MB-LONDs prepared in a two-step process on-chip retained the US properties of the

MBs, as shown by the results in section 8.7. These results are similar to what has been

previously observed for MB-liposome complexes. [78,359] These complexes are echogenic,

and only small differences in their US properties are reported, such as lowered subharmonic

threshold. [98] The preliminary experiments on the US response of MB-LONDs showed

attenuation of the US signal in presence of the MB-LONDs (figure 8.13). The echogenicity

of the architectures was tested using a flow phantom through a tissue-mimicking material.

The B-mode images (figure 8.14) show US scattering by the MB-LONDs. These results

suggest that MB-LONDs could be used as theranostic agents for simultaneous US imaging

and delivery of hydrophobic drugs. Exploring the US capabilities of the MB-LONDs

architectures will be an endeavour for future studies, particularly their resonant frequency

and US response in vivo. Particularly, studying sonoporative effects in presence of MB-

LONDs will be of great interest, as it has the potential to notably enhance treatments

with drugs transported in the architectures.
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Chapter 9

Conclusion and future challenges

The aim of this project was to develop a novel architecture for enhancing the delivery

of hydrophobic drugs, the MB-LONDs. This composite consists of an echogenic MB

with LONDs attached to its surface. The MB acts as a vehicle for the LONDs, which

may encapsulate hydrophobic drug molecules. The work towards the construction of this

architecture included the following: i) a study of a range of biocompatible oils, their

luminescent properties and ability to dissolve hydrophobic drugs and drug mimics; ii) a

study on the production of LONDs, with different oils and under different conditions; iii)

a series of tests to asses the ability of LONDs to encapsulate hydrophobic drugs and drug

mimics; iv) a study on the attachment of LONDs to model membranes mimicking the MB

shell; and v) the production of MB-LONDs.

This chapter summarises the points covered in this thesis and discusses the challenges

that remain after this work.

9.1 Current perspectives

This work has addressed the following questions:

Is LOND formation with biocompatible oils possible?

The literature on oil-in-water emulsion formation is extensive, particularly in the con-

text of the food industry. Although the use of nanoemulsions for the delivery of hydro-

phobic drugs is not new, references that combine optimisation studies and application
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of the nanoemulsions are limited. Chapters 4 (page 48) and 5 (page 71) addressed the

selection, characterisation and implementation of a number of biocompatible oils for the

formation of LONDs. The candidate oils were characterised in terms of their optical ab-

sorption and emission, and their ability to dissolve drugs and drug mimics was tested.

In this project, LONDs were formed in a two-step process that included high pressure

homogenisation of oil-in water mixtures. Preparation of LONDs following this protocol

resulted in samples with average size ranging 80−300 nm, for the different LOND samples.

Squalane, triacetin and tripropionin were profiled as the best candidates for the formation

of LONDs. The formation of LONDs was studied in terms of the production pressure,

lipid coating and encapsulated oil. The size of the LONDs was found to decrease upon

increasing pressures, and the presence of pegylated lipids in the LONDs shell had the

effect of reducing the size of the LONDs. LOND samples typically showed concentrations

of the order of 1010 − 1014 ml−1, with triacetin LONDs exhibiting the lowest and tripro-

pionin LONDs the largest concentration. All LOND types had good stability over time,

with measurements showing no size changes for at least six weeks. Furthermore, LONDs

remained stable when incubated at 37 ◦C for > 2 h. Overall, the results obtained in this

project suggest that LONDs are versatile, suitable capsules for the delivery of hydrophobic

drugs.

Do LONDs encapsulate and facilitate the delivery of hydrophobic com-

pounds?

One of the most challenging aspects encountered by this work was the solubilisation of

hydrophobic drugs and drug mimics in the candidate oils. The polarity of the molecules

of any given compound plays a crucial role in determining the solubility of that compound

in a liquid. Generally speaking, polar molecules are dissolved better by solvents with

high levels of polarity. Chapters 4 (page 48) and 6 (page 104) discussed the solubility of

model hydrophobic compounds (including the hydrophobic drug CA4) in the candidate

oils, and the production of LONDs encapsulating them. Out of the range of hydrophobic

drugs and drug mimics used within this project, only QDots with a dodecanethiol coating

were largely non-polar. Squalane, which is a hydrocarbon and is therefore non-polar,

showed poor solubilisation of the target compounds in this project, CA4 among them.

Hence, and despite the good physical characteristics of LONDs produced with squalane,
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no drug encapsulation was possible in them. In contrast, triacetin molecules are polar and

solubility of CA4 was possible in this oil. Triacetin was used to form LONDs encapsulating

CA4. However, the results from the experiments suggested that retention of CA4 in

triacetin LONDs was poor. This could relate to both the high solubility of triacetin in

water and the lipid shell used to stabilise these LONDs (POPC + 5% biotin-PEG2000-

DSPE). In an effort to alleviate this problem, tripropionin was incorporated as a candidate

oil due to its reduced water solubility and ability to solubilise CA4. LONDs formed

with tripropionin were stabilised with a DSPC + 20% cholesterol + 5% biotin-PEG2000-

DSPE, as this lipid shell composition enhanced the stability. Encapsulation tests showed

promising encapsulation efficiency of CA4 in tripropionin LONDs of around ∼ 76%, which

was retained through sample cross-filtration therefore suggesting improved retention of the

therapeutic compound in this type of LONDs.

To asses the capabilities of tripropionin LONDs for the delivery of CA4, SVR mouse

endothelial cells were treated with escalating doses of CA4 tripropionin LONDs from

2 − 100 nM. This experiment was performed by Miss Antonia Charalambous using a

sample prepared by the author. The cells were incubated with the LONDs for 2 h at

37 ◦C, and washed with PBS after the treatment. Indirect immunostaining of the cells

allowed for visualisation of the β-tubulin (in green). Prolong Gold with DAPI was used

to mount the slides and fluorescently stain the cells nuclei (in blue). Figure 9.1 shows

the results from the experiment on the delivery of CA4 in tripropionin LONDs to SVR

cells. The cells showed disruption of the microtubules, an action characteristic of the CA4.

The drug caused complete microtubule disruption in all SVR cells treated with 40 − 100

nM, with microtubules appearing as uniform florescence surrounding the cells nuclei. At

concentrations lower than 2−20 nM, some short microtubules could be seen. In the control

experiment, untreated SVR cells showed normal microtubule structures, which confirmed

the specific action of the drug and suggested non-inherent toxicity of the LONDs. These

preliminary results suggest that the CA4 was released from the LONDs, and point at

LONDs as a promising route for the delivery of CA4 in vivo.
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Is the attachment of LONDs to model membranes via the biotin-NeutrAvidin

specific?

The goal of this project was to assemble LONDs onto the shell of MBs to form a

hybrid MB-LONDs architecture. Thus, the binding of the LONDs to the lipid shell was

a crucial step in the development of the composites. Chapter 7 (page 119) presented a

detailed study on the attachment of LONDs to model, solid supported lipid membranes in

QCM-D. This study included a range of different LOND/SBLM combinations, in which

the lipid shell composition of both was varied. Preliminary experiments on the attach-

ment of StreptAvidin to biotinylated SBLMs showed the specificity of the binding, and

allowed for studying the kinetics of this reaction. These experiments provided the basis

for the attachment of LONDs to NeutrAvidin functionalised SBLMs. LONDs contain-

ing biotinylated lipids in their shells were found to successfully attach to NeutrAvidin

functionalised SBLMs. A number of non-specific interaction between the LONDs and the

SBLMs were also detected. These could arise from entanglement of PEG chains in the

LONDs and the SBLMs, or from the presence of impurities in the lipid as a result of the

manufacturing process. The positive results obtained in this study provided the basis for

the assembly of MB-LOND composites via the biotin-NeutrAvidin link chemistry.

Are there alternative chemistries to biotin-NeutrAvidin for the attach-

ment of LONDs to model membranes?

The use of exogenous proteins in therapeutic treatments is known to give rise to im-

mune response, which compromise the efficacy of said treatments. NeutrAvidin linking

the LONDs to the MB shell would be no exception. The maleimide-thiol and PPD-thiol

linking chemistries were explored as an alternative to the biotin-NeutrAvidin. Chapter

7 (page 119) included a detailed study on the attachment of LONDs to SBLMs using

these linkers. This study, analogous to that performed for biotin-NeutrAvidin, screened

a number of LOND/SBLMs interactions to evidence the viability of the attachment and

to also detect possible non-specific interactions. Overall, the results showed that the at-

tachment of LONDs to SBLMs via the maleimide-thiol chemistry was possible when using

the thiol-containing DTT molecule as a bridge between the maleimides in a LOND and

the maleimide contained in the SBLM. This suggests that MB-LONDs assembly could be
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performed following this route. The experiments showed that LONDs containing PDP

are subjected to a number of non-specific interactions, which could be a result of autox-

idative processes undergone by the PDP molecule or impurities present in the lipid from

manufacturing. This study, as the one carried on for biotin-NeutrAvidin, highlighted the

existence of non-specific binding when using these chemistries in this model system. The

same phenomenon could take place between the LONDs and the MBs, which, depending

on the strength of the non-specific interaction, could lead to unwanted LOND detachment

form the MB shell. This study thus reinforced the need for MB washing in order to un-

ambiguously identify LOND attachment over lensing effects. The successful binding of

LONDs to model membranes via the maleimide-thiol chemistry suggests that this linkage

could be used for the assembly of MB-LONDs. With this, no protein (i.e. NeutrAvidin)

would be required for the construction of the architectures, which could enhance the per-

formance of the architectures in vivo by reducing the immune response upon injection of

the MB-LONDs.

Is it possible to assemble LONDs onto the MB shells to form MB-LOND

architectures?

Chapter 8 showed that the assembly of LONDs onto the MB shell via the biotin-

NeutrAvidin link chemistry is possible. The results presented in this chapter suggest that

the formation of MB-LONDs is benefited by the later addition of LONDs to the MB

solution. In this way LONDs bind the the shell of already stabilised MBs, and do not

interfere with the coating of the water-gas interface by the phospholipids. Particularly,

this project explored a two-step process on-chip for the formation of MB-LONDs. As

discussed above, on-chip formation was preferred over off-chip preparation of MBs because

the control over the size of the MBs produced by microfluidic means is higher than in

those produced by mechanical agitation. This production method resulted in MB-LOND

samples with average sizes around 2 µm, with slight differences between preparations with

different LOND types. Overall, this method resulted in concentrations of MB-LONDs

(and MBs only) of the order of 107 ml−1, which are lower than those typically achieved in

the spray regime. This is due to the additional liquid inlet through which the LONDs are

introduced to the device, as it contributes to sample dilution by a factor of 2. MB-LONDs

produced in a two-step process were found to have longer lifetimes compared to bare MBs,
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which was attributed to increased shell resistance to gas permeation by the addition of the

LOND layer. This chapter also showed that the combination of different types of LONDs in

MB-LONDs was possible. This widens the spectra of applications that the architectures

could find. Particularly, combination treatments with synergic drugs that exhibit low

water solubility could be greatly enhanced by optimising the use of MB-LONDs for their

administration. Preliminary results on the US properties of the MB-LONDs showed that

the complex is responsive to US, suggesting that they retain the echogenic properties of

the MBs.

9.2 Alternative applications of MB-LONDs

This project was concerned with the development of MB-LONDs for clinical applic-

ation, with particular interest in anticancer treatments. Nonetheless, MB-LONDs could

potentially find applications beyond the therapeutics.

One example of a novel application for MB-LONDs could be to aid treatments against

bacterial biofilms. Nowadays there is no anti-bacterial biofilm treatments in clinical

use [369] and thus there is a growing interest in finding new treatments against them.

Some references have shown promising results when treating bacterial biofilms with US

responsive MBs, [370–372] and also MBs used in combination with antimicrobial agents

such as vancomycin. [373,374] Anti-biofilm treatments with MB-LONDs could benefit not

only from the US properties of the MBs, but also the drug delivery capabilities of the

LONDs. Hence, LONDs could transport a suitable, hydrophobic antimicrobial agent, fa-

cilitating its delivery in vivo and also preventing undesired side effects. Furthermore, the

encapsulation of an antibiotic and its localised release at the biofilm, upon application of

a US destruction pulse, could help reducing newly developed cases of bacterial antibiotic

resistance. [375]

Biofilms are of particular concern in medical devices such as urinary catheters, as

they are relatively common, often result in chronic infections and thus complicate patient

care. [376] One possible approach for early treatment of forming biofilms could be an US

responsive coating on the inner walls of the catheter. This coating could be for example

hydrogel-based, with embedded MB-LONDs. This idea is illustrated in figure 9.2. Upon

bacterial colonization, the US properties of the MBs could be used to treat the growing
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Figure 9.2: Schematic showing the cross-section of a hydrogel/MB catheter. MB-LONDs are
embedded in the hydrogel coating, which sheathes the inner catheter walls. Upon bacterial
biofilm growth, the MB-LONDs could be externally triggered with US, as pictured in the inset.
The cavitation of the MBs would potentially affect the stability of the biofilm, and enhance
intake of antimicrobial compounds encapsulated in the LONDs.

colonies, and also trigger the release of antimicrobial agents encapsulated in the LONDs.

This application would require a redesign of the MB-LONDs as stability over time would

be imperative, and it should be longer than the the MB-LONDs lifetimes reported in this

thesis. This could be done by stabilising the MBs with alternative surfactants such as

polymers, [74] or bovine serum albumin, which has been shown to yield MBs stable for up

to 8 months. [377]

MB-LONDs may also find an application in the food industry. For example, air pockets

are crucial for the production of ice cream, and their presence also increases the ice cream

melt-down resistance. [378] The incorporation of stabilised MBs could assist the formation

of ice cream, and also benefit other aspects such as its texture and fluffiness. Moreover the

presence of the MBs could help reducing the calorie content of the mixtures, which may be

desirable for certain markets. Specific flavouring molecules could be encapsulated in the

LONDs, and used to design foods with controlled flavour release. The resistance of the

LOND shell could be tunned, so that the different LONDs would release their contents at

different times. This could be used to subsequently release of different flavouring agents

and hence enhance the consumer’s experience. [379]

MB-LONDs could be used to simultaneously deliver gases and nutrients. There are a

few references in the literature to the use of MBs and nanobubbles to promote the growth

of plants and certain animal species. [380, 381] In the case of plant growth in presence of

MBs, it is hypothesised that the small surface area of the MBs enhances their adhesion to

the roots thus increasing oxygen supply and possibly assisting nutrient absorption. The
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Figure 9.3: Schematic showing MB-LONDs with a hardened shell to be used as vehicles
for gas, in the MB shell, and nutrients/fertiliser, encapsulated in the LONDs, to the roots of
growing plants.

use of MB-LONDs would not only allow for the delivery of gases encapsulated in the

MB core, but would also facilitate the delivery of salts or fertilisers encapsulated in the

LONDs. [382] This is illustrated in figure 9.3. The MB-LONDs would be kept in solution,

and dosed to the plans via watering. For certain applications, such as for plants in soil,

a redesign of the MB shell would be required, in order to increase the lifetime of the

MB-LONDs and prevent gas leakage prior to reaching the place of interest.

9.3 MB-LONDs: conclusions and the future

This thesis has shown that:

• the formation of LONDs with biocompatible oils, such as squalane, triacetin and

tripropionin is possible via a two-step homogenisation process.

• the LONDs have great stability overtime, with negligible changes over size months

when stored at 4 ◦C.

• tripropionin LONDs stabilised with DSPC + 20% cholesterol + 5% biotin-PEG2000-

DSPE are suitable carriers for CA4.

• the LONDs can attach to model membranes via the biotin-NeutrAvidin chemistry,

and also via alternative linking chemistries such as the maleimide-thiol and the

PDP-thiol.
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• MB-LONDs can be assembled in a two-step process on chip.

• the MB-LONDs have echogenic properties and lifetimes relevant for clinical applic-

ations.

Interesting tasks remain for future studies after the work presented in this thesis.

In this project, the development of LONDs to encapsulate and retain the hydrophobic

drug CA4 led to the use of tripropionin encapsulated with a lipid shell composed of DSPC,

cholesterol and biotin-PEG2000-DSPE. Tripropionin LONDs have shown promising results

in drug encapsulation efficiency and also in preliminary experiments that delivered CA4 to

cells in vitro using this type of LONDs. The dynamics of the CA4 release from the LONDs

is a crucial experiment for better understanding treatments using them. Due to its high

polarity but reduced water solubility, tripropionin holds the potential for being a suitable

oil for the delivery of other highly polar, poorly water soluble compounds. Identifying new

agents could expand the field of application of tripropionin LONDs, for example to the

treatment of other diseases.

Significant improvements could be made in the production of MB-LONDs. These could

include a concentration increase of the MB-LONDs produced in a two-step on-chip. This

could be done by reducing the amount of liquid incorporated to the device through the

LONDs inlet, which would require chip-redesign to avoid back-pressure problems. Another

route for a concentration increase could be to concentrate the MBs after production, and

before LOND mixing. This could be done with US, pushing the MBs towards one region of

the channel, or a hydrodynamic flow. An increase in the concentration would benefit the

use of the architectures as vehicles for hydrophobic drugs, and also their application for

US imaging. A detailed study on the US capabilities of the architectures will be vital to

understand their echogenic properties, and also to profile the release of LONDs from their

surface. It will be interesting to study any sonoporation that these new architectures may

cause to cells, and how this affects the cellular intake of LONDs and in vitro treatments

with poorly water soluble drugs.

The production cost of the MB-LONDs is an important factor if the architectures are to

find a clinical applications. Moreover, the manufacture time will be crucial for producing

MB-LONDs samples adequate for patient treatment. At the present, the production of a

1 ml MB-LONDs samples requires about 30 min, and has a cost of around £3, without

considering the costs associated to the operator nor the microfluidic device. Improving
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the production process could be crucial for large scale usability of the architectures. For

example, the microfluidic device could be multiplexed to reduce the production time of the

samples. Automation of the production could help reducing production costs by reducing

the steps in which an operator is required.

The attachment of LONDs to MBs using maleimide/PDP-thiol is an area that remains

unexplored. The use of these chemistries for the assembly of the composites has the

potential to enhance in vivo treatments, as immunological responses as a result of foreign

protein injection would be avoided. The work presented in this thesis has highlighted the

existence of multiple, unexpected non-specific interactions between the LONDs and model

membranes. Thus studies to implement the maleimide/PDP chemistries into MBs may

focus first in better understanding of the non-specific interactions between these molecules.

Exploring the therapeutic capabilities of the architectures in a in vivo setting will also

be of major importance in future studies. These may study the potential enhancement

of the delivery of hydrophobic drugs using MB-LONDs, which could also benefit from

sonoporative effects as a result of the interaction of MBs with the US. The use of US

to spatially an temporarily control the release of the LONDs from the MB shell, as a

result a US destruction pulse, could help reducing the required drug doses. It will be

also interesting to asses the possible reduction in adverse side effects as a result of these

advances.

Future studies may also be concerned with the optimisation of the MB-LOND archi-

tecture for use in combination treatments. The attachment of different types of LONDs

to MBs could provide the basis for the delivery of synergistic drugs to enhance anticancer

treatments.
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Appendix A

List of chemicals and instruments

Chemicals

This section provides a list of all chemicals used in this project. All buffers were prepared

in 18 MΩ UltraPure water.

Name Supplier

A

Atto 488 DOPE Atto-TEC, Germany

Atto 590 DOPE Atto-TEC Germany

B

Biotin-PEG2000-DSPE Atto-TEC, Germany

C

Calcein AM AnaSpec, USA

Combretastatin A4 Sigma-Aldrich, UK

Copper iodide Sigma-Aldrich, UK

D
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Decon90 Sigma-Aldrich, UK

DMEM, Dulbecco’s Modified Eagle Medium ThermoFisher Scientific, UK

DMSO, dimethyl sulfoxide Sigma-Aldrich, UK

1-dodecanethiol Sigma-Aldrich, UK

DPPC Avanti Lipids, USA

DPBS, Dulbecco’s Phosphate-Buffered Saline

DTT, dithiothreitol Sigma-Aldrich, UK

E

EggPC Avanti Lipids, USA

Eicosapentaenoic acid Sigma-Aldrich, UK

Ethanol Sigma-Aldrich, UK

G

GlutaMAX, L-alanyl-L-glutamine ThermoFisher Scientific, UK

L-Glutamine ThermoFisher Scientific, UK

Glycerol Sigma-Aldrich, UK

I

Indium acetate Sigma-Aldrich, UK

Isoamyl acetate Sigma-Aldrich, UK

Isopropanol Sigma-Aldrich, UK

L

LB Broth agar Sigma-Aldrich, UK
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N

NeutrAvidin ThermoFisher Scientific, UK

Nile Red Sigma-Aldrich, UK

O

ODE, 1-octadecene Sigma-Aldrich, UK

Olive oil Sigma-Aldrich, UK

P

PBS tablets (0.14 M NaCl, 0.003 M KCl, 0.01 M PO4) ThermoFisher Scientific, UK

PEG2000-DSPE Avanti Lipids, USA

Perfluorobutane C4F10 Air Liquide, UK

Perfluorohexane C6F14 Sigma-Aldrich, UK

POPC Avanti Lipids, USA

S

Serum (fetal bovine) Sigma-Aldrich, UK

SDS, sodium dodecyl sulfate Sigma-Aldrich, UK

Sodium Chloride, NaCl Sigma-Aldrich, UK

Squalane Sigma-Aldrich, UK

Squalene Sigma-Aldrich, UK

StreptAvidin ThermoFisher Scientific, UK

T

Triacetin Sigma-Aldrich, UK
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Tripropionin Sigma-Aldrich, UK

Instruments and consumables

This section contains the details of the instruments and consumables used within this

project.

Name Supplier

B

Block heater Grant QBD1 Grant Instruments, UK

C

Calibration carboxylated polystyrene particles Izon Science, UK

Camera Hamamatsu Orca-ER Hamamatsu Photonics, UK

Camera Nikon Digital Sight DS-U3 Nikon Systems, USA

CapMix 3M ESPE 3M ESPE, UK

Confocal Laser Scanning Leica TCS SP8 Leica Microsystems, UK

D

Dialysis tubes, 8 kDa cut-off GE Healthcare, UK

E

Emulsiflex C5 Avestin Europe, Germany

Epi-fluorescent Nikon E600 Nikon Systems, USA

Epi-fluorescent Nikon Eclipse Ti-U Nikon Systems, USA

F
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Flasks, cell culture Greiner Bio-One, UK

Fluorescence Spectrometer LS 55 Perkin Elmer, USA

G

Gas and temperature controlled chamber Ibidi Germany

Gas flow controller Alicat Scientific

H

Needle hydrophone Precision Acoustics, UK

K

KrosFlow Research IIi Tangential Flow Filtrarion

System

SpectrumLAbs, The

Netherlands

M

µ-Slide VI Ibidi chips Ibidi, Germany

Microscope VisiScope IT404 VWR, UK

Mini-Discover 12, 60 kDa filtration column WaterSep, USA

MiniSartorius 200 nm syringe filter VWR, UK

Multichannel dispenser Ismatec, Germany

N

NanoSight Malvern Instruments, UK

P

Polytron PT1300 D Kinematic AG, Switzerland

P-Pump Mitos Dolomite Ltd, UK
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Q

QCM-D Q-Sense E4 Biolin Scientific, Sweden

QCM-D silica-coated quartz crystals Biolin Scientific, Sweden

qNano Izon Science, UK

S

Spacers, polyethylene terephthalate GoodFellow, UK

Syringe Pump Aladdin
World Precision Instruments,

USA

T

Transducer H107, broadband (1− 20 MHz) Sonic Concepts, USA

Transmission Electron Microscope JEM1400 JEOL, USA

Tubes for microfluidics, PTFE Supelco Analytical, USA

U

Ultrasound system Vevo770 Fujifilm Visualsonics, UK

UV/VIC Spectrophotometer Lambda 35 Perkin Elmer, USA

W

Well plates Greiner Bio-One, UK

Z

ZetaSizer Nano ZSP Malvern Instruments, UK

196



Appendix B

Supplementary information for

chapter 7

Figure B.1: Changes in frequency and dissipation of an oscillating SiO2-coated quartz crystal
during a LOND interaction experiments with the biotin-NeutrAvidin link chemistry. These
experiments were performed as part of the study described in section 7.3.2 (page 128). a) 5%
biotin-PEG2000-DSPE SBLM and 5% biotin-PEG2000-DSPE squalane LONDs, in absence
of NeutrAvidin b) 5% biotin-PEG2000-DSPE SBLM and 5% biotin-PEG2000-DSPE triacetin
LONDs, in absence of NeutrAvidin. The gray arrows indicate the addition of the LONDs and
subsequent PBS rinse to remove unbound material, respectively.
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Figure B.2: Changes in frequency and dissipation of an oscillating SiO2-coated quartz crystal
during a LOND interaction experiments. These experiments were performed as part of the
study described in section 7.3.3 (page 138). These negative controls looked at the possible
interaction between a) POPC SBLM, DTT and LPDP LONDs, b) POPC SBLM and LPDP
LONDs (in absence of DTT), c) BPEG SBLM, DTT and LMAL LONDs. The green arrow
indicates the time at which DTT was added incorporated to the crystals chambers. The gray
arrows indicate the addition of the LONDs and subsequent PBS rinse to remove unbound
material, respectively.
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Appendix C

Supplementary information for

chapter 8

1. Video 1: Functioning of a microspray microfluidic device. This video shows the

nozzle region, where the gas and liquid phase meet; MBs are formed as a result of

the gas pinch-off at the nozzle. A jet-like stream can be seen in the recording, which

is characteristic of the microspray devices with an added step depth.

2. Video 2: Microspray device used for MB-LOND formation. In this case, Neut-

rAvidin funtionalised triacetin LONDs were added to the lipid mix prior to its

incorporation into the device. The video shows what appear to be oil droplets

coalescencing beyond the nozzle. This was attributed to LOND destabilisation as a

result of their pass through the nozzle.

3. Video 3: Squalane MB-LONDs imaged in a flow cell, after a 90 min wash. The

architectures appear as fluorescence rings as a result of the attachment of squalane

LONDs fluorescently tagged with Atto 590. The MB-LONDs had sizes around 8

µm. The video were recorded using the TR filter block and under a 40x objective.

The video is on real time.

4. Video 4: Triacetin MB-LONDs imaged in a flow cell, after a 90 min wash. The

architectures appear as fluorescence rings as a result of the attachment of triacetin

LONDs fluorescently tagged with Atto 590. The MB-LONDs had sizes between 2−20

µm The video were recorded using the TR filter block and under a 20x objective.

The video is on real time.
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5. Video 5: Triacetin MB-LONDs imaged in a flow cell, after a 90 min wash. The

architectures appear as fluorescence rings as a result of the attachment of triacetin

LONDs fluorescently tagged with Atto 590. The MB-LONDs in this video have sizes

around 20 µm The video were recorded using the TR filter block and under a 40x

objective. The video is on real time.

6. Video 6: Confocal Z-stack of a squalane MB-LONDs architecture. The shell of

the MB was labelled with Atto 488 DOPE and shows green, whereas the LONDs

contained Atto 590 DOPE in their shells and show red.

7. Videos 7-10: B-mode videos of water, bare MBs, triacetin MB-LONDs and squalane

MB-LONDs in a flow phantom. The brightness of the image shows the magnitude of

the US scattering by the specific substance. No scattering reflects as a colour closer

to black, as in the case of water flow.
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[201] C. A. Keller, K. Glasmästar, V. P. Zhdanov, and B. Kasemo. Formation of supported

membranes from vesicles. Physical review letters, 84(23):5443–6, 2000.

[202] R. Richter, A. Mukhopadhyay, and A. Brisson. Pathways of lipid vesicle depos-

ition on solid surfaces: a combined QCM-D and AFM study. Biophysical journal,

85(5):3035–47, 2003.

[203] B. Gandul-Rojas and M. I. Minguez-Mosquera. Chlorophyll and Carotenoid Com-

position in Virgin Olive Oils from Various Spanish Olive Varieties. Journal of the

Science of Food and Agriculture, 72(1):31–39, 1996.

[204] V. Domenici, D. Ancora, M. Cifelli, C. A. Veracini, M. Zandomeneghi, C. A. Vera-

cini, M. Zandomeneghi, and U. Pisa. Extraction of Pigments Information from near-

UV Vis Absorption Spectra of Extra Virgin Olive Oils Extraction of Pigments In-

formation from near-UV Vis Absorption Spectra of Extra Virgin Olive Oils . Journal

of Agricultural and Food Chemistry, 62:9317–9325, 2014.

221



[205] A. Giuliani, L. Cerretani, and A. Cichelli. Chlorophylls in olive and in olive oil:

chemistry and occurrences. Critical reviews in food science and nutrition, 51(7):678–

690, 2011.

[206] H. L. Newmark. Squalene, Olive Oil, and and Cancer Risk: A Review and Hy-

poyhesis. Annals of the New York Academy of Sciences, 6(December):1101–1103,

1999.

[207] M. Spanova and G. Daum. Squalene - biochemistry, molecular biology, process

biotechnology, and applications. European Journal of Lipid Science and Technology,

113(11):1299–1320, 2011.

[208] A. K. T. Wann, J. Mistry, E. J. Blain, A. T. Michael-Titus, and M. M. Knight. Eicos-

apentaenoic acid and docosahexaenoic acid reduce interleukin-1β-mediated cartilage

degradation. Arthritis research & therapy, 12(6), 2010.

[209] A. J. Cockbain, M. Volpato, A. D. Race, A. Munarini, C. Fazio, A. Belluzzi, P. M.

Loadman, G. J. Toogood, and M. a. Hull. Anticolorectal cancer activity of the

omega-3 polyunsaturated fatty acid eicosapentaenoic acid. Gut, 2014.

[210] M. J. Moyano, F. J. Heredia, and A. J. Meléndez-Mart́ınez. The color of olive oils:

The pigments and their likely health benefits and visual and instrumental methods

of analysis. Comprehensive Reviews in Food Science and Food Safety, 9(3):278–291,

2010.

[211] S. Passaloglou-Emmanouilidou. A comparative study of UV spectrophotomet-

ric methods for detection of olive oil adulteration by refined oils. Lebensmittel-

Untersuchung und -Forschung, 191(2):132–134, 1990.

[212] T. Albi, A. Lanzón, A. Guinda, M. León, and M. C. Pérez-Camino. Microwave and

Conventional Heating Effects on thermoxidative degradation of edible fats. Journal

of Agricultural and Food Chemistry, 45:3795–3798, 1997.

[213] F. Shahidi and Y. Zhong. Lipid oxidation: measurement methods. In Bailey’s

industrial oil and fat products, chapter 8, pages 357–385. Wiley Online Library,

2005.

[214] M. Sauer, J. Hofkens, and J. Enderlein. Handbook of Fluorescence spectroscopy.

WILEY-VCH Verlag, 2011.

222



[215] C. Turek and F. C. Stintzing. Stability of essential oils: A review. Comprehensive

Reviews in Food Science and Food Safety, 12(1):40–53, 2013.

[216] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A.

Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and

J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph

node mapping. Nat.Biotechnol., 22(1):93–97, 2004.

[217] W. Jiang, A. Singhal, B. Kim, J. Zheng, J. Rutka, C. Wang, and W. Chan. As-

sessing Near-Infrared Quantum Dots for Deep Tissue, Organ, and Animal Imaging

Applications. Journal of the Association for Laboratory Automation, 13(1):6–12,

2008.

[218] R. Tang, J. Xue, B. Xu, D. Shen, G. P. Sudlow, and S. Achilefu. Tunable Ul-

trasmall Visible-to- Extended Near-Infrared Emitting Silver Sulfide Quantum Dots

for Integrin-Targeted Cancer Imaging. ACS nano, 9(1):220–230, 2015.

[219] M. Green, S. J. Haigh, E. A. Lewis, L. Sandiford, M. Burkitt-Gray, R. Fleck, G.

Vizcay-Barrena, L. Jensen, H. Mirzai, R. J. Curry, and L. Dailey. The biosynthesis

of infrared-emitting quantum dots in Allium fistulosum. Scientific Reports, 6:20480,

2016.

[220] P. H. Chuang, C. C. Lin, and R. S. Liu. Emission-Tunable CuInS2/ZnS Quantum

Dots: Structure, Optical Properties, and Application in White Light-Emitting

Diodes with High Color Rendering Index. ACS Applied Materials & Interfaces,

6(17):15379–15387, 2014.

[221] D. I. Reingold. Organic Chemistry, Or ”The Happy Carbon”: An Introductory Text

Emphasizing Biological Connections. Indo American Books, 2007.

[222] P. Greenspan, E. P. Mayer, and S. D. Fowler. Nile red: a selective fluorescent stain

for intracellular lipid droplets. The Journal of Cell Biology, 100(3):965–973, 1985.

[223] M. T. Ta, T. S. Kapterian, W. Fei, X. Du, A. J. Brown, I. W. Dawes, and H. Yang.

Accumulation of squalene is associated with the clustering of lipid droplets. FEBS

Journal, 279(22):4231–4244, 2012.

223



[224] F. Gao, Z. Zhang, H. Bu, Y. Huang, Z. Gao, J. Shen, C. Zhao, and Y. Li. Nanoemul-

sion improves the oral absorption of candesartan cilexetil in rats: Performance and

mechanism. Journal of controlled release, 149(2):168–174, 2011.

[225] P. Greenspan and S. D. Fowler. Spectrofluorometric studies of the lipid probe, nile

red. Journal of Lipid Research, 26(7):781–789, 1985.

[226] R. Lichtenfels, W. E. Biddison, H. Schulz, A. B. Vogt, and R. Martin. CARE-

LASS (calcein-release-assay), an improved fluorescence-based test system to measure

cytotoxic T lymphocyte activity. Journal of Immunological Methods, 172(2):227–

239, 1994.

[227] S. Neri, E. Mariani, A. Meneghetti, L. Cattini, and A. Facchini. Calcein-

acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional

analyses on recovered effector cells and supernatants. Clinical and diagnostic labor-

atory immunology, 8(6):1131–1135, 2001.

[228] G. R. Pettit, B. S. Sheo, M. R. Boyd, E. Hamel, R. K. Pettit, J. M. Schmidt, and F.

Hogan. Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4,

A-5, and A-6. Journal of Medicinal Chemistry, 38(15):1666–1672, 1995.

[229] G. M. Tozer, C. Kanthou, and B. C. Baguley. Disrupting tumour blood vessels.

Nature reviews. Cancer, 5(6):423–435, 2005.

[230] R. T. Dorr, K. Dvorakova, K. Snead, D. S. Alberts, S. E. Salmon, and G. R. Pet-

tit. Antitumor activity of combretastatin-A4 phosphate, a natural product tubulin

inhibitor. Investigational new drugs, 14:131–137, 1996.

[231] G. J. S. Rustin, S. M. Galbraith, H. Anderson, M. Stratford, L. K. Folkes, L. Sena,

L. Gumbrell, and P. M. Price. Phase I clinical trial of weekly combretastatin A4

phosphate: Clinical and pharmacokinetic results. Journal of Clinical Oncology,

21(15):2815–2822, 2003.

[232] C. Kanthou, O. Greco, A. Stratford, I. Cook, R. Knight, O. Benzakour, and G.

Tozer. The tubulin-binding agent combretastatin A-4-phosphate arrests endothelial

cells in mitosis and induces mitotic cell death. The American journal of pathology,

165(4):1401–1411, 2004.

224



[233] M. Zhang, R. Guo, Y. Wang, X. Cao, M. Shen, and X. Shi. Multifunctional

dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer

therapy. International journal of nanomedicine, 6:2337–2349, 2011.

[234] Y. Oki, E. Aoki, and J. P. J. Issa. Decitabine-Bedside to bench. Critical Reviews in

Oncology/Hematology, 61(2):140–152, 2007.

[235] J. Nie, L. Liu, X. Li, and W. Han. Decitabine, a new star in epigenetic therapy:

the clinical application and biological mechanism in solid tumors. Cancer letters,

354(1):12–20, 2014.

[236] D. K. Rogstad, J. L. Herring, J. A. Theruvathu, A. Burdzy, C. C. Perry, J. W.

Neidigh, and L. C. Sowers. Chemical Decomposition of 5-Aza-2’ -deoxycytidine

(Decitabine): Kinetic Analyses and Identification of Products by NMR , HPLC ,

and Mass Spectrometry. Chemical Research in Toxicology, 22:1194–1204, 2009.

[237] M. Karahoca and R. L. Momparler. Pharmacokinetic and pharmacodynamic analysis

of 5-aza-2 ’ -deoxycytidine ( decitabine ) in the design of its dose-schedule for cancer

therapy. Clinical Epigenetics, 5(3), 2013.

[238] S. P. Lim, R. Kumar, Y. Akkamsetty, W. Wang, K. Ho, P. M. Neilsen, D. J. Walther,

R. J. Suetani, C. Prestidge, and D. F. Callen. Development of a novel cell-based assay

system EPISSAY for screening epigenetic drugs and liposome formulated decitabine.

BMC cancer, 13(1):113, 2013.

[239] S. Y. Li, R. Sun, H. X. Wang, S. Shen, Y. Liu, X. J. Du, Y. H. Zhu, and W.

Jun. Combination therapy with epigenetic-targeted and chemotherapeutic drugs

delivered by nanoparticles to enhance the chemotherapy response and overcome

resistance by breast cancer stem cells. Journal of controlled release : official journal

of the Controlled Release Society, 2014.

[240] D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch. Fundamentals of Analytical

Chemistry. Brooks/Cole, 9th edition, 2014.

[241] K. Grosios, S. E. Holwell, A. T. McGown, G. R. Pettit, and M. C. Bibby. In vivo

and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug.

British journal of cancer, 81(8):1318–27, 1999.

225
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ization of PEGylated phospholipid micelles for improved drug solubilization: effects

of PEG chain length and PC incorporation. Journal of pharmaceutical sciences,

93(10):2476–87, 2004.

226



[253] O. Tirosh, Y. Barenholz, J. Katzhendler, and A. Priev. Hydration of Polyethylene

Glycol-Grafted Liposomes. Biophysical Journal, 74(3):1371–1379, 1998.

[254] O. Garbuzenko, Y. Barenholz, and A. Priev. Effect of grafted PEG on liposome

size and on compressibility and packing of lipid bilayer. Chemistry and Physics of

Lipids, 135(2):117–129, 2005.

[255] H. Yoshioka. Surface modification of haemoglobin-containing liposomes with poly-

ethylene glycol prevents liposome aggregation in blood plasma. Biomaterials,

12(9):861–864, 1991.

[256] D. Needham, T. J. McIntosh, and D. D. Lasic. Repulsive interactions and mechanical

stability of polymer-grafted lipid membranes. BBA - Biomembranes, 1108(1):40–48,

1992.

[257] C. Allen, N. Dos Santos, R. Gallagher, G. N. C. Chiu, Y. Shu, W. M. Li, S. A.

Johnstone, A. S. Janoff, L. D. Mayer, M. S. Webb, and M. B. Bally. Controlling the

Physical Behavior and Biological Performance of Liposome Formulations through

Use of Surface Grafted Poly(ethylene Glycol). Biosicence Reports, 22(2):225–250,

2002.

[258] T. J. Wooster, M. Golding, and P. Sanguansri. Impact of Oil Type on Nanoemulsion

Fromation and Ostwald Ripening Stability. Langmuir, 24(10):12758–12765, 2008.

[259] J. Wacker, V. K. Parashar, and M. A. M. Gijs. Influence of Oil Type and Viscosity on

Droplet Size in a Flow Focusing Microfluidic Device. Procedia Chemistry, 1(1):1083–

1086, 2009.

[260] C. Qian and D. J. McClements. Formation of nanoemulsions stabilized by model

food-grade emulsifiers using high-pressure homogenization: Factors affecting particle

size. Food Hydrocolloids, 25(5):1000–1008, 2011.
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