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Abstract

Photovoltaics (PV) have seen rapid global penetration into the low voltage (LV) elec-

tricity distribution grid year-on-year. The result of high PV penetration levels is grid

impacts of voltage fluctuations, harmonic distortions and reverse flow among others.

Research that attempts to quantify the maximum allowable PV penetration into the

LV grid before experiencing detrimental impacts is an important. The most com-

monly reported barrier to enabling grid impact analysis is the lacking availability of

high-resolution and geographically flexible solar irradiance data. As an alternative,

synthetically generated solar irradiance data can be used.

There is a distinct lack of synthetic solar irradiance generators that can derive high

resolution and statistically accurate solar irradiance data using only readily available

inputs. This thesis presents the development of two synthetic generators: the Solar

Irradiance Generator (SIG), and the Spatially Decorrelating Solar Irradiance Generator

(SDSIG). The SIG proves the concept that synthetic minutely irradiance time series can

be generated using readily available mean hourly observations of total cloud amount,

atmospheric pressure, wind speed and cloud base height. The SDSIG presents the first

ever methodology to synthetically generate unique and spatially decorrelating minutely

irradiance time series for any number of uniquely orientated and tilted houses inside

a spatial domain using the same inputs as the SIG. The SDSIG employs (1) Markov

chains, to derive stochastic weather variable time series, (2) synthetic representations

of clouds in the sky, using a novel method called cloud fields, (3) globally flexible

irradiance estimation models, and (4) distributions of clear-sky irradiance by total

cloud amount, to create the irradiance time series.

The SDSIG outputs are temporally validated using metrics of ramp rates, variabil-

ity indices and irradiance magnitude frequencies against real world observations at

two UK sites and two USA sites, representing three distinct climates. Daily 2-sample

Kolmogorov-Smirnov tests of each metric passed a minimum of 95.34% of the time

with a 99% confidence limit. The lowest CDF correlation coefficient between modelled

and observed data for all metrics and sites was R = 0.908; the mean was R = 0.987.

The SDSIG outputs are spatially validated at Oahu, HI USA, showing R = 0.955,

RMSE=0.01 and MAPE=0.865% when comparing modelled and observed spatial cor-

relation versus site separation. The SDSIG outputs are applied to a grid impacts power

flow model of an LV grid with increasing PV penetration to test the over voltage met-

ric of daily on-load tap changer (OLTC) operations. Using correlating irradiance time

series at each house in the LV grid overestimates OLTC operations in every instance of

PV penetration when compared to using spatially decorrelating irradiance time series

from the SDSIG.
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Chapter 1

Introduction to solar resource

modelling

1.1 Renewable energy and climate change

Renewable energy technologies and global climate change are two topics that inter-

twine and must be discussed synonymously. Climate change mitigation is one of the

primary drivers to the development of renewable energy alternatives, the other being

fuel and energy crises (Ellis, 2014) that have seen uncertain global fossil fuel costs and

augmentation of political instability in securing combustion fossil fuels (de Vos and

Sawin, 2012).

The Earth’s climate has undergone a rapid and unprecedented global warming trend in

the last few decades (Pittock, 2013); an abundance of scientific publications agree that

this climate irregularity is a direct consequence of the anthropogenic release of green-

house gasses (Houghton, 1996; USA DoE, 2000; O’Hare et al., 2005; Team, 2008). Of

the various significant contributors to global greenhouse gas emissions, fossil fuelled en-

ergy production is the principal contributor (Höök and Tang, 2013). Unfortunately for

the mitigation of climate change, the global economy and particularly the economies of

industrialised countries are largely dependent on fossil fuels for energy generation (Jac-

card, 2006). Such a dependency exacerbates the problem of greenhouse gas induced

climate change. Whilst the impacts related to global climate change are difficult to

predict, the Intergovernmental Panel on Climate Change (IPCC) reports a wide range

of potentially devastating impacts: rising sea levels leading to coastal flooding, severe

disease transmission, an increased occurrence of extreme weather events, loss of ecosys-

tems, among others (IPCC, 2014). For the mitigation of climate change, it is clear that

1
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the immediate transition away from fossil-fuel-dependent energy generation towards a

high efficiency and renewable based system is imperative (Jaccard, 2006).

Growth in the energy industry is particularly prevalent as renewable energy technolo-

gies can meet much of the growth in energy demand if given enough financial sup-

port (Johansson and Burnham, 1993; Solangi et al., 2011; Fokaides and Kylili, 2014).

There are numerous types of renewable technologies accessible from a diverse range of

resources, such as solar, biomass, wind, wave and tidal, all of them effectively inex-

haustible (Tiwari and Mishra, 2011). It is due to this variety that new barriers and

issues are presenting themselves, although there are clear net benefits such as emission

reduction, cost savings, well balanced economic structure, energy security, and remote

electricity access (Jenkins, 2013). There are also indirect benefits, such as improved

air quality. Globally, around 6.5 million premature deaths can be attributed to air

pollution each year, of which energy production is a significant man-made air quality

reduction culprit. This is a larger number of deaths than the combined total attributed

to HIV/AIDS, tuberculosis and road injuries (IEA, 2016).

PV technologies have shown remarkable progress in life cycle environmental perfor-

mances. All PV technologies generate far less life-cycle air emissions per GWh than

conventional fossil fuel electricity generation technologies (Fthenakis et al., 2008). The

efficiency of solar cells is expected to increase with further research and with a higher

emphasis on the use of recycled materials. These changes will bring further envi-

ronmental benefits, making PV a highly desirable electricity generation technology

(Sherwani et al., 2010).

Globally, there has been a rapid increase in solar PV uptake. The International Energy

Agency (IEA) recorded that solar PV was the fastest-growing renewable power tech-

nology worldwide from 2000–2011 (IEA, 2014), with Germany and Italy accounting

for over half the installed capacity at the time, followed by Japan, Spain, USA and

China. By 2016, China held the leading market share. The installed global capac-

ity has shown rapid PV deployment annually, with 50 GW installed in 2015 alone,

predominantly from China, Japan and USA (REN, 2016). In the UK, there was an

87% growth in generation from 2014 to 2015 from 4,040 GWh to 7,561 GWh, with

an installed capacity of 8.915 GWp (start of 2016); this made the UK the 4th largest

installer in 2015 (DECC, 2016).

With such rapid growth and projected increases in PV deployment, issues arise when

integrating solar PV into the electricity distribution grid. These issues depend on the

degree of variability in the power generation and on the flexibility of the power system

(Widen, 2015). Overcoming the effects that resource variability has on PV across every

temporal scale is pivotal for the uninterrupted and most economic development and
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penetration of PV technologies into the grid (Perez and Fthenakis, 2015) so that solar

renewable energy can contribute to the reduction of anthropogenic green house gasses

from the energy sector.

In order to address the potential issues that PV presents to the electricity grid, it is

important to be able to theoretically model and explore them. Copious attempts have

been made to assess and quantify the impacts that face the electricity grid, these are

well explored and discussed in chapter 2. The complexities of modelling are discussed

in chapters 3 and 4. Fundamentally, however, modelling the solar resource comes down

to a simple factor — data availability.

1.2 Solar irradiance data availability

Access to data is the most significant component to understanding the solar resource

and facilitating PV variability and electricity grid interaction studies. The ideal so-

lar irradiance data availability would be a highly geographically dispersed and well

maintained solar observation database.

There are two main types of solar irradiance data: ground based observations and

satellite derived irradiances. Satellite derived solar irradiance temporal and spatial

resolutions are poor. The most state-of-the-art satellites can provide 1 km2 at nadir,

however this is limited to one field of view centred over Asia and Australia and the

spatial resolution decreases with distance from the equator. The highest temporal res-

olution available from satellite imagery with no model assumptions is 10-min from the

same Himawari-8 satellite from the Japanese Meteorological Agency. As will be demon-

strated later, 10-min is an inadequate temporal resolution to capture rapid changes in

solar resource availability. The second type of solar irradiance data is ground based

observations. These are recorded at very high temporal resolutions, from hundredths

of a second to 1-min, and are much more suited to capturing solar radiation fluctua-

tions. The issue, however, is that they are not well geographically dispersed. In order

to observe irradiance fluctuations, ground based irradiance monitoring is the only real

option and so the inherent disadvantages are discussed.

Using real radiation observation data places too much reliance on data availability

(Fernández-Peruchena and Gastón, 2016); these datasets are often plagued with gaps,

inaccurate time-stamps or inconsistent measurement techniques (Kumar et al., 2013).

Whilst methods exist to fill these gaps so as not to over or underestimate the realistic

variability of irradiance (Moreno-Tejera et al., 2016; Polo et al., 2011; Larraneta et al.,

2015), datasets are geographically sparse. The majority of solar irradiance datasets are
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Figure 1.1: Locations that have 1 min solar radiation data as part of the Baseline
Surface Radiation Network as maintained by the World Radiation Monitoring Centre
(WRMC-BSRN, 2014). Red dots indicate an expired monitoring location, green dots

indicate active stations.

Figure 1.2: Distribution of UK Met Office synoptic observation sites (MIDAS, 2015)
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from model derived solar resource assessments. Satellite images are frequently used to

refine results from ground based observations, however, it is common for datasets to

be purely a construct of model derived values (Vignola et al., 2013).

The World Radiation Monitoring Centre (WRMC) maintain the central archive of the

Baseline Surface Radiation Network (BSRN) that offers high resolution, readily avail-

able and quality assured datasets (WRMC-BSRN, 2014). 1-min resolution irradiance

data is available for many locations around the world and are shown in figure 1.1. This

is an example of an excellent source of irradiance data. The problem with them, how-

ever, is geographic density. There are only two existing sites in the UK, Cambourne

and Lerwick (station number 50 and 51 respectively). The intention of the BSRN is

to represent the climatic regions, so whilst it is a useful source of irradiance data, the

variation of irradiance across the UK cannot be represented by these two time series.

Cambourne is located in the south east and Lerwick on the islands off the northern

coast of Scotland. They represents the two extremes of the country. Furthermore,

weather pattern distribution is not uniform for the whole country. Total cloud amount

varies vastly with both longitude and latitude (Smith et al., 2017) implying that these

BSRN datasets cannot be used for other regions around the country.

Other high resolution data sets exist throughout the UK, although as the measurement

technology is not consistent, nor are the maintenance practices and format, compar-

ing multiple irradiance datasets can lead to compounded errors. Furthermore, they

are usually the result of private endeavours by research facilities and industry. The

spatial density of meteorological stations equipped for high resolution solar radiation

monitoring is far less than required (Calinoiu et al., 2014). Where the geographic dis-

tribution is acceptable (figure 1.2), the time resolution is often lower than is desirable,

such as the radiation observations from UK Met Office that are a 1-hour resolution as

standard (MIDAS, 2015) among other meteorological offices around the world. This

limited data availability provides an opportunity for synthetic irradiance time series

modelling that can utilise the good geographic distribution of standard meteorology

measurements.

Vignola et al. (2013) state that irradiance measurement devices such as pyranome-

ters, pyrheliometers and cavity radiometers, have accuracies from ±3 to 7% irradiance

magnitudes at 95% confidence. However, all suffer from errors due to maintenance,

calibration and spectral response degradation. Daily maintenance is a requirement to

keep this equipment in quality assured operation. Therefore, costs are high and so

access to high quality data is possible, yet uncommon. As it stands, datasets are never

ideal and it is the view of the financing industry that the material miscalculation of
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the solar resource is one of the biggest risks of a solar project (Vignola et al., 2013);

reliable irradiance data are vital.

As will be demonstrated throughout this thesis, the access to high spatial and temporal

resolution irradiance data can vastly improve the understanding of spatial correlation

and magnitudes of solar fluctuations, which is useful for a variety of reasons as is

discussed in section 1.4. Ground observation data at such a high spatial and temporal

resolution is extremely scarce. The only known publicly available dataset is used by

Hinkelman (2013) and is maintained by the National Renewable Energy Laboratory

(NREL) (Sengupta and Andreas, 2010). The issue is that this dataset is only relevant

to the island of Oahu, Hawaii USA. The only other way to use this type of data is

through solar resource modelling.

1.3 Solar resource modelling

Solar modelling, solar resource modelling, irradiance modelling and similar terms are

used to describe mathematical methods of determining the power availability from the

sun over a desired time period, in both the past and future.

Solar resource modelling is needed for a multitude of reasons such as forecasting the

power availability for PV farms to compete in generation markets, suitability assess-

ments of a location for a PV farm in the planning phase, estimating the lighting

demand of a property, in agriculture when estimating crop yield, in public health care

research e.g. UV exposure (Calinoiu et al., 2014), and importantly in estimating the

grid impacts from increasing penetrations of PV into the electricity network.

There are three distinct methods of solar resource modelling. The first approach is

forecasting where the future irradiance is estimated using the current conditions as

framework. This is typically achieved using satellites as frame works over time win-

dows of 10 minutes up to typically 7 days (Reikard, 2009; Chow et al., 2011; Inman

et al., 2013; Yang et al., 2014). The second approach is to produce historic, bankable ir-

radiance datasets (Vignola et al., 2013). Historic irradiance modelling, or past-casting,

is a method to determine actual irradiance values that occurred in the past from the

previous minute to as far back as desired. historic measurements. The third type of so-

lar resource modelling is synthetic irradiance modelling, this term covers any attempt

to synthetically generate irradiance time series. The purpose of this field is to generate

statistically accurate time-series for use when real datasets are unavailable, to fill in

gaps in larger datasets, or to increase the temporal resolution of a dataset. Synthetic

modelling is of interest in this thesis and will be discussed in the following section.
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The key benefits of deriving synthetic irradiance time series is similar to that of historic

irradiance modelling: uninterrupted time series data for the entire duration of the syn-

thetic generation, potential for geographic flexibility, time savings offered by modelling

data as opposed to waiting to recording new data, removal of inconsistent measure-

ment technique drawbacks such as spectral response issues, fouling and maintenance;

cost reduction because measuring or purchasing irradiance data can be expensive, and

potential removal of the data availability dependency.

1.4 Overview of the research

This section discusses the overall research aim, which is then discussed in its associated

research problems and the objectives required to meet them. This section closes with

a discussion of the structure of this thesis.

This work strives to offer a real option for generating realistic solar irradiance data for

use in solar related studies. To date, the only real options available to one requiring

an irradiance input is to sacrifice either spatial resolution or temporal resolution. The

methodology presented in this thesis presents a real alternative that can achieve both

very high spatial resolution and sufficient temporal resolution for a multitude of uses.

This type of work synthetic irradiance of particular interest to solar PV systems en-

gineers and power flow engineers. Firstly, for PV systems modelling, the temporal

resolution of study is typically a direct consequence of the input solar data resolution,

should the model wish to consider solar variability. Therefore, the study is limited

to locations from known data sets as discussed in the previous section. This thesis

presents a downscaling methodology whereby readily available low resolution inputs

can be manipulated to offer high resolution solar irradiance outputs. For them, they

can then operate inverter models, storage control strategies etc. at a high temporal

resolution. For power flow engineers considering the electricity distribution network,

to date, there are very few options to obtain individual, correlating irradiance profiles

for a multitude of properties on an electrical distribution grid with which to analyse

different electrical impacts from solar PV. As will be discussed, the most common

solution to this problem is to use a single time series of irradiance and apply it to

all properties on a grid indicating perfectly synchronised ramping events, and there-

fore will overestimate the impact of a ramp event. With the methodology presented

in this thesis, it will be possible for distribution grid modelling to have a high spatial

and temporal resolution data input for their simulations facilitating more accurate and

insightful results.
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The major benefits of the presented methodology to others is the capability of individ-

ually assigning irradiance time series to as many locations within a spatial domain as

required, and they will all correlate appropriately with each other. This is the first of

its kind to offer such capability with the only real alternative solution is to produce an

aggregated or up-scaled power output across the whole spatial domain. Furthermore,

this methodology is produced from readily available mean hourly data and captures

the ramp, magnitude and variability statistics of actual solar irradiance.

The remainder of this section will outline the steps taken to achieve the intended

research.

1.4.1 The research aim

The aim of this research is to develop a novel modelling methodology that produces

synthetic irradiance time series that vary on both a temporal and spatial dimension

suitable for application in multivariate grid impact analysis, and that are also derived

from readily available hourly observation data.

1.4.2 The research problem

The research aim is fundamentally derived from a need for high resolution solar ir-

radiance data that is well geographically dispersed that facilitates multivariate grid

impact analysis. To appropriately address this need, a thorough understanding of grid

impacts is required. This leads to the first research problem:

1) What are the key distribution network impacts associated with increasing penetration

of intermittent solar PV technology into the grid, the identification of which will help

guide the requirement criterion for synthetic irradiance time series?

Upon identifying a target grid impact and the nature of studying it, the type and need

for synthetic irradiance will be identified. This leads to the technical research problem:

2) Can synthetic irradiance time series be generated with significant statistical accu-

racy using readily available, well geographically dispersed, mean hourly meteorological

observations as an input, facilitating access to more appropriate data for temporal grid

and solar systems study?

Upon conceptually proving that synthetic irradiance is producible, it is imperative to

introduce a spatial dimension for larger scale assessments of grid impacts such as those

identified for problem 1. This leads to the final research problem:
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3) Is it possible to produce statistically accurate, synthetic irradiance time series that

vary on both a temporal and spatial dimension, facilitating multi-variate grid impact

analysis?

1.4.3 Research objectives

In order to address the research problems and overall aim, the following research ob-

jectives are devised and are defined as follows:

1. Establish the impacts to the distribution network associated with the distributed

generation of solar PVs. Identify the critical impact, if any, and the methods of

quantifying it.

2. Develop a synthetic and stochastic methodology that produces a temporally rel-

evant irradiance time series from readily available mean hourly weather observa-

tions. Complete with validation against real 1-min irradiance time series obser-

vations.

3. Further development of the methodology to incorporate a spatial dimension,

facilitating the production of multiple, spatially decorrelating irradiance time

series that validate against equivalent observation data.

4. Demonstrate the applicability of the spatially decorrelating and temporally ac-

curate irradiance time series in application to a grid impacts methodology and

explore one of the perceived impacts.

1.4.4 Thesis structure

This thesis is in 5 chapters. Each chapter will be discussed in turn and detail how it

helps address the research problem and where the objectives will be carried out.

1) Introduction and background — this chapter brings the reader from the widest

context of solar energy and climate change and directs them through the overarching

concepts and workings of solar modelling, before presenting the research aim, problems

and objectives.

2) Grid impacts literature review — an in depth review to the different grid impacts and

the current research attempts to analyse them. The lessons learned from the studies

are presented as research opportunities that facilitate the fundamental inclusions for

the development of a synthetic solar irradiance generator model.
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3) Solar Irradiance Generator (SIG) development — an in depth review of the current

state of solar irradiance generation and lessons learned from literature. Development

and validation of a temporal solar irradiance generation methodology.

4) Spatially Decorrelating Solar Irradiance Generator (SDSIG) development — further

advancement of the SIG to include a spatial dimension through study of alternative,

or lack there of, methods and literature. Development and validation of the spatial

methodology before application in a grid impact assessment.

5) Conclusion and future work — lastly, the work will be summarised and the research

aim revisited. Future research opportunities are suggested and discussed with select

ideas outlined in detail.



Chapter 2

Grid impacts literature review

The aim of this chapter is to identify the key distribution network impacts associated

with increasing penetration of solar PV into the electricity grid. This is achieved

through ascertaining the current understanding of potential grid impacts by exploring

each in isolation.

This chapter is separated into three sections. The first section discusses the different

perceptions and identified grid impacts. The second section is separated into each

of the grid impacts in turn. They are introduced, their importance explained and

discussed using state of the art literature that examines each one. Finally, the findings

and identified research opportunities are summarised.

2.1 The electricity network

Built, developed and redeveloped over many years, electricity networks are unique by

country, and often unique within parts of a country (Berry et al., 2013). This means

that grids are incredibly diverse and so there is no consensus example of an electricity

network. Technological advances and deployment are tailored to the geographic region

where the construction occurs, be it a long feeder traversing swathes of countryside to

reach a village, or a short but complex inner-city district feeder that provides electricity

for many times the population of a rural feeder. It is this diversity in society that results

in electricity grids of incredible density with short average distances between nodes, or

quite the opposite in sparse, rural settings (Schneider et al., 2008). By the very nature

of these distinctive grids, the challenge of grid integration of PV becomes equally as

variable. Analysis is required on a case by case basis, or at least using a classification

system.

11
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The electricity network in the UK, and similarly around the world, comprises three

intuitively named sections: generation, transmission and distribution. They are defined

by Richardson (2016) as follows.

1. Generation: The generation section of the grid comprises all the large scale

power stations of the whole country. Electricity generated is fed into the trans-

mission network at entry points across the country so that it can be delivered to

consumers.

2. Transmission: The transmission network is a series of cables (96% overhead,

4% underground in the UK) that traverse the country linking together the gen-

eration networks to distribution networks. The cables in England and Wales

typically operate at 400 kV and 275 kV, respectively. Scotland operates at a

lower transmission; down to 132 kV.

3. Distribution: The distribution network covers all sections of the grid from

exit points on the transmission network to the home, typically from 33 kV for

industries, and 11 kV for towns and lighter industry, and finally down to 230 V

at domestic usage. DG is connected to the distribution network, of which the LV

11 kV grid is considered in this thesis.

2.1.1 Classification of the electricity grid

In order to carry out research on the electricity grid, it is important to be able to

physically define what the grid is. Classification of the electricity grid within a country

is infrequently performed. However, it was a priority for national bodies in both the

USA and Australia. Both governments sanctioned a national feeder taxonomy, which

is a study of electricity network schematics that leads to the classification of the voltage

power line systems found within the electricity grid. These taxonomies considered the

electrical load upon the feeder, physical properties of the cabling, voltage characteristics

and network topology to ascertain distinct classifications across the whole country

(Berry et al., 2013).

The Australian taxonomy identified 15 classifications while the USA identified 24

(Schneider et al., 2008). The different States of the USA were found to have indi-

vidualised classifications for urban and rural feeders. They were summarised by the

density, industrial weight within the system, and whether a feeder location is urban,

suburban or rural. The most important lesson to take from these taxonomies is that

there is no simple approach or consensus that could cover all types of electricity net-

works with a single classification. A taxonomy style approach allows for general testing



Chapter 2. Grid impacts literature review 13

of grid integration by type and by country. As most countries have not undertaken a

national feeder taxonomy, grid impact analysis would have to be considered on a case

by case basis as opposed to testing by classification.

Eichman et al. (2013) state that there is a maximum achievable renewable energy

penetration limit that satisfies both electricity demand and system reliability; the

topology also plays a decisive role (Papaioannou and Purvins, 2014; Nguyen et al.,

2016). This limit will vary depending on the feeder classification studied (Berry et al.,

2013).

2.1.2 The research problem posed by grid impacts

With widespread implementation of PV technologies across the world, there will be

considerable transformation in residential electricity demand. High uptake scenarios

of residential PV can have detrimental impacts on the electricity distribution network

due to newly installed DG. Whilst load is predictable and well-modelled, PV output

is intermittent and its inclusion within impact analysis is far less prevalent in litera-

ture. The issue of PV intermittency is a substantial unknown, such that some DNOs

have halted the deployment of further intermittent renewable technologies until fur-

ther information is available (Engerer and Mills, 2014). It is possible that limiting PV

penetration is unnecessary on account of overly conservative estimates as derived from

the current understanding of PV-DG impacts. This is clear identification of an area for

urgent research to prevent the slowing down of currently rapid renewable generation

technology uptake. It is important to identify and quantify what are the key distribu-

tion network impacts associated with increasing penetration of intermittent solar PV

technology into the grid.

2.2 Perception and identification of grid impacts

To assess the grid impacts, it is important to understand who is affected. The consumer

typically has very little consideration or understanding of the complexities caused by

the adoption of PV-DG within the low voltage (LV) electricity distribution network;

they are more financially driven (Mathiesen et al., 2011). It is assumed that con-

sumers adopt these policies with only monetary and sociological factors in mind. Some

countries, such as Germany, have challenged this passive mindset and introduced new

regulations to ensure that LV-DG customers provide ancillary services. It is already

mandatory in Italy for installations above 6kW (Caldon et al., 2014).
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It is the author’s belief that the most important perception is that of the DNOs.

The reasoning is threefold. Firstly, DNOs hold the power to place hard limits on

PV uptake; this is demonstrated in Australia with Ergon Energy placing a 3.5 kWp

limit per system (Parkinson, 2015), down from a previous limit of 5kWp. Secondly,

the greatest economic impact is to the DNO as it is their infrastructure that must

cope with electrical impacts from PV-DG. Policy makers are also considered to be of

high importance. However, it is assumed that they are largely advised by the DNOs.

Thirdly, the research was found to be heavily in favour of the DNOs perspective.

The DNO’s concern for PV-DG likely stems from experience with wind generation,

where a known issue requiring mitigation is “ramping”, which is defined as the sig-

nificant increase or decrease in electricity generation over a small time frame (Hoff

and Perez, 2010). Almost all justification is targeted directly at the DNO in economic

or technological feasibility (Wagner et al., 2015). The introduction of load changing

technologies to the LV distribution network causes a variety of impacts. The aim of

this section is to address them from the available literature.

Without new methods of coping with increased PV-DG, and because DNOs are not

able to dictate the type, location or size of PV installations (Walbank and Goodhand,

2014), the management method from DNOs is to reactively replace and upgrade equip-

ment such as transformers. In Germany, an additional 380,000km accumulated length

of new cabling (a 24% increase in length from 2012 levels) is expected by 2020 at

a projected cost of 20bn Euros; all of which are in areas where the LV-DG exceeds

the local demand (Nykamp et al., 2012). Favourable incentives are required to allow

for greater uptake in more controllable environments (Goli and Shireen, 2014). Zhao

et al. (2010) summarised the range of issues caused by PV-DG, and Nykamp et al.

(2012) split them into power control considerations and asset stresses. Both can be

managed through demand and generation balancing or asset reinforcement (Mokhtari

et al., 2014), although these strategies are often inconvenient and difficult to implement

and predict. A widely adapted approach to conservative grid impact mitigation is PV

curtailment during periods where the generation is higher than is manageable. This is

detrimental to the overall green effectiveness of the system as well as reducing finan-

cial return (Wong et al., 2014). Poor mitigation management can result in negligible

benefits from LV-DG (Borges, 2012). It is evident that DNOs are currently forced to

adapt reactively to increased penetration of PV-DG.

The grid impacts from PV-DG are at their worst during periods of distinctly large

imbalances of generation and load. Balancing the two is essential to minimising grid

impacts (Nykamp et al., 2012). The provision of ancillary services is a response taken

for mitigating grid impacts from PV-DG in both Germany and Italy. Ancillary services
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are defined as the necessary services to maintain electrical power transmission within

certain limits. They consist of: reactive power and voltage control, loss compensa-

tion, system protection, scheduling and dispatch, load following, and energy imbalance

(FERC, 2013). Technologies, such as inverters, are required to modulate the reactive

power exchanged with the grid and this continues to fuel innovation within inverter

controls (Caldon et al., 2014). The interconnection equipment of PV-DG is the most

significant technical requirement affecting the development of PV-DG projects (Caldon

et al., 2014).

The issues of PV-DG from literature are summarised well by Passey et al. (2011) and

Du et al. (2013) as:

• Voltage fluctuations

• Total harmonic distortion

• Unintentional islanding

• Reverse voltage flow

A further impact was identified through discussion with the DNO that operates locally

to the University of Leeds called Northern Powergrid. Walbank and Goodhand (2014)

stated that they would wish to identify the particular areas most likely to be affected

by PV-DG. This impact has been called:

• Hot-spots

This following section is separated into the above bullet-pointed impacts.

2.3 The grid impacts from a distribution network opera-

tor’s perspective

This section is separated into the six identified grid impacts. Each impact is introduced

and described before a critical review of the current research is made.

2.3.1 Voltage fluctuation

Voltage fluctuations are defined as deviations away from the nominal line voltage. They

are caused by both load and generation variation (Nguyen et al., 2016), such as PV



Chapter 2. Grid impacts literature review 16

ramping caused by solar intermittency. These voltage fluctuations can cause a wide

variety of impacts including premature ageing of infrastructure, equipment failure or

overheating (ElNozahy et al., 2016), and the triggering of automated line equipment

installed on the distribution feeders such as on load tap changers (OLTC) (Yan et al.,

2014; Nguyen et al., 2016). OLTCs will be detailed in section 2.3.4. Voltage fluctuations

are normal and occur at every node in the LV grid. However, their frequency can be

increased to unsustainable levels with the introduction of new load and generation

(Deilami et al., 2011; ElNozahy and Salama, 2014a).

DNOs face the difficult challenge of maintaining power quality to every customer; they

are legally obliged to do so. Typically, voltage deviations are permissible at plus or

minus 10% of the nominal voltage worldwide. For all EU member states, the EN50160

legal standard exists to maintain the delivered voltage to within 10% of its nominal

value for 95% of the time; some EU countries apply stricter limits (Zhao et al., 2010;

Widen et al., 2010; Deilami et al., 2011; Nykamp et al., 2012; Fekete et al., 2012).

Australian administers stricter limits of maintaining nominal voltage within limits of

+10 to −6% for 98% of the time (Vallee et al., 2013). Adhering to these obligations

is an extremely high priority for DNOs as considerable fines are issued if they are not

met (Thomson, 2000; Walbank and Goodhand, 2014). This economic concern must

be minimised before the DNOs will allow for a greater roll-out of PV-DG. Therefore,

transformer and feeder overload from voltage fluctuations must be understood and

avoided (Clement-Nyns et al., 2010).

Research into PV induced voltage fluctuations is extensive. The most recent and

extensive review of methods of voltage fluctuation control is by Shivashankar et al.

(2016). They conclude that PV induced voltage fluctuation can be effectively min-

imised through the use of storage technologies and so increasing PV penetration should

not be limited. Whilst this conclusion is accurate, it assumes the adoption of storage

technologies. They are becoming more popular, particularly with the advancement

of mainstream commercial options such as the Tesla Powerwall (Tesla, 2016). It is

also statistically likely that PV adopters will adopt other renewable based technology

(Balta-Ozkan et al., 2015). However, there is no guarantee to the DNO that residences

with PV will also adopt storage technology. A hypothesis is proposed that understand-

ing the baseline impact of voltage fluctuations is critical in order to appropriately assess

its extent. A baseline scenario is one that does not consider the impact of mitigation

technologies that are not ubiquitous in the industry. This does not mean that research

concerning technological solutions is unnecessary; the development of interconnection

equipment and inverter developments are highly important (Hernandez et al., 2012)

and ultimately contribute to the wider story.
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Figure 2.1: The end-user voltage for a year with increasing installation capacity
sizes at each property connected to the LV network (Widen et al., 2010)

Some methodologies look at the maximum installable capacity of PV into a section of

the grid. Paatero and Lund (2007) present a non-technological management strategy

whereby planning a range of panel orientations can offset the generational peak output

and can extend PV power output duration. They state that there is reportedly no issue

with every property installing a 1kWp system (considered at two latitudes of 60N and

39N), however, a 2 kWp on every property leads to multiple over-voltage situations.

A 1 kWp level is re-confirmed in a later study by Widen et al. (2010), this is because

electricity generated from installations with a capacity greater than 1 kWp is generally

exported, as 1 kWp tends to be within household demand. It was also found that the

smaller the LV network, the greater potential of the installed capacity per household.

This is demonstrated in figure 2.1, which shows how increasing the installed capacity

in the network affects the end-user. However, this methodology is required on a higher

resolution to appropriately capture intermittency impacts. It and many others like it

suffer from using mean hourly input irradiance data.

Voltage impacts caused by solar intermittency are considered in a more recent method-

ology by Wong et al. (2014) that examined the voltage on a grid connected 7.2 kWp

PV system upon a radial LV feeder in Malaysia. Solar intermittency is a particularly

important issue in Malaysia as it receives next-to-no clear sky days, defined as daily
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mean N of 0 okta, due to its climate and geography. The Malaysian government aims

to be one of the largest producers of solar power in the world and so has a great in-

terest in understanding grid impacts associated with PV-DG. Figure 2.2 demonstrates

the output from the study. It demonstrates the direct response of voltage imbalance

with the power output. It was also shown that short term voltage flicker, found by

integrating the voltage fluctuations over a 10 min period, was always outside statutory

limitation. Long term voltage flicker (as short term flicker, except integrated over 2

hours) regularly breached the statutory limit. Perhaps the most advantageous part of

the study by Wong et al. (2014) is that they determined these values empirically on a

physical PV installation without the deployment of additional mitigation technology.

They established the baseline impact from a singular large PV system. It was found

that for an output greater than 4 kW, the voltage at point of connection is highly likely

to violate the Malaysian statutory limit of 252 V from a nominal value of 241–242 V.

The study does not offer insight into more typically sized installations, between 1–5

kWp, or for multiple installations on the same section of grid. It is, however, important

work that uses high resolution data and begins to address the baseline impact.

The current response to prevent voltage fluctuations in many countries is PV curtail-

ment. This includes Malaysia (Salim et al., 2015) and would be applied to the in-

stances of high voltage fluctuations shown in figure 2.2. Solutions under development

to get around voltage fluctuation issues include employment of super-capacitors, static

synchronous compensators with integrated storage, or OLTCs with installed reactive

power compensators (Passey et al., 2011). Australian Standard AS4777.2 requires

that inverters operate at close to unity power factor (i.e. inject only real power into

the grid) unless they have been specifically approved by electricity utilities to control

power factor or voltage at the point of connection (Passey et al., 2011; Salim et al.,

2015). Specific technological solutions to address voltage fluctuation issues include the

use of reactive power modulation. Cowley and Ekwue (2015) found that using the

power factor led to voltage stability when reactive power was used in support of PV

systems. This resulted in benefits for the consumer as more real power is output from

the system.

Using real power to control voltage is more effective than using reactive power as the

distribution network has a greater resistance than it does reactance. Methodologies for

modelling proposed technological solutions are detailed by Paatero and Lund (2007)

and Yan et al. (2014). Custom power devices are modelled to explore their effectiveness

of controlling voltage fluctuation. Dynamic voltage restorers and distribution static

compensators (DSTATCOM) were proven to compensate reactive power, mitigate har-

monics and reduce voltage fluctuations. The DSTATCOM was shown to be the better

methodology and would be positioned at 2/3rd the way from the transformer to the
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Figure 2.2: The relationship between the voltage-imbalanced factor (VUF) and PV
power output (Wong et al., 2014)

end of feeder. The DSTATCOM was also proven to reduce the number of OLTC

operations, thus extending infrastructure lifetime which would aid in balancing cost.

The prevailing conclusion is that technological solutions do exist to mitigate voltage

fluctuations, however, consumers are under no obligation to deploy them.

A Swedish based impact assessment model for PV-DG using three grid topologies

is presented by Widen et al. (2010), and further progressed by Lingfors and Widén

(2016). The three grids are modelled with an increasing number of nodes and cabling

length. A stochastic PV and demand model is used to produce a power flow simulation

with only solar irradiance as an input. This methodology is simple and versatile in

identifying some of the grid impact issues, including reverse flow, voltage fluctuations

and load matching. Widen et al. (2010) claim that they produce “detailed and realistic

data on voltage fluctuations”, however, only an hourly irradiance input was used. The

reason given was due to the computational demand, which is not insignificant when

modelling multiple nodes on a grid. Furthermore, voltage fluctuations are claimed to

be insensitive to time averaging (Widén et al., 2010).

It is the view of the author that the justification by Widén et al. (2010) stating “statisti-

cal investigation of voltage variations in the presence of PV-DG does not require higher

resolution than 1 hour”, is too strong a conclusion and would require the amendment of

a clause stating “in the presence of high penetration of PV-DG”. Whilst it is accepted
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that taking aggregations of demand and voltage has less impact from time averaging,

the effect from a single property is still subject to real-time variability. Their analysis

shows that for each of the 13 nodes analysed, the 10 minute maximum demand was al-

ways greater than the 1 hour time averaged equivalents, and minimum demand always

less than the equivalents. When analysing the irradiance, the 2 min maximum power

was 2.2% greater than the 1 hour average. An assumption of the research by Widén

et al. (2010) is that PV-DG will be installed simultaneously, and that when there is

spatial decorrelation and a well distributed uptake of PV-DG in the grid, there is a

lesser impact from using lower resolution data. Practically, installations are not likely

to happen simultaneously. Therefore, it is not an option to ignore scenarios where a

single or few PV installations exist on the LV grid if the apparent impacts from PV-DG

be quantified. The need for high resolution data is well demonstrated by Yan et al.

(2014) where voltage violations at the end user are observed at 30s intervals.

Yan et al. (2014) detail the analysis of OLTC transformers and voltage regulation

under increasing PV penetration using real, high resolution generation and demand

data. OLTC operations that maintain voltage within permissible limits are shown to

increase with PV penetration. The distance from the OLTC is also shown to signifi-

cantly impact the effectiveness of OLTCs. When the OLTC is far from the PV, OLTC

sensitivity is not enough to detect far away voltage violations and so tap changes do

not occur even though end user violations do. This presents further issues from PV

as the conventional grid set-up may not be adequate to handle voltage fluctuations.

They present a beneficial design of using a small distribution static compensator which

compensates the on-line voltage with reactive power. The analysis approach by Yan

et al. (2014) is considered one of the best for analysing voltage fluctuations. The use

of high resolution real world data for a year of PV power output and residential load

consumption allows the production of informative results.

Not all impacts from PV are considered negative. Mouheb et al. (2012) present a study

on a lengthy, remote, and presumably weak feeder on a LV network in Wilaya de Chlef,

Algeria. The location studied is significantly far from an electricity generation source

and so electricity supply fails during high summer tension. PV generation matches

the demand profiles of Wilaya de Chlef well as demand is proportional to ambient

temperature in Algeria. PV successfully prevented significant voltage drop outside of

permissible limits along the length of the feeder. Intermittency could not be considered

in this study due to insufficient temporal resolution, however, the methodology is rele-

vant when addressing the lengthy rural feeders, such as those found in the Australian

electricity network feeder taxonomy and how PV can be used to support the grid as

opposed to damaging it.
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Most methodologies reviewed are only concerned with their perceived version of ex-

treme scenarios. This is typically the highest solar PV output coinciding with lowest

load. This is quite often in the form of smoothed, summertime clear sky profiles of

irradiance that do not consider diurnal variation, solar intermittency issues and the

frequency of fluctuations. This type of approach is therefore deemed insufficient to

address the issue of voltage fluctuation. High temporal resolution data that can en-

compass solar intermittency is a requirement to truly capture the impacts from voltage

fluctuations for all levels of PV penetration. There was a distinct lack of quantifying

the impact. Many papers identified the occurrence of voltage fluctuations but failed

to statistically summarise or convert to a form of metric that would be useful in com-

parative studies. The majority of research concerning voltage fluctuation focusses on

technological solutions of the issue. Many control systems and inverter strategies are

proposed that can adequately respond to fluctuations, however, their ubiquity in in-

stalled or new inverters is not commented upon. Therefore, it is the author’s belief

that technological solutions, unless uploadable to existing technology, do not satisfy

the concern of DNOs for existing installations. Studies on voltage fluctuation require a

metric in order to characterise and compare it from location to location, perhaps using

overuse of existing grid equipment in the form of OLTC operations would be a useful

metric.

2.3.2 Harmonic distortion

Grid connected power sources act as non-linear loads whereby the impedance changes

with applied voltage drawing distorted current and voltage waveforms that contain

harmonics (Fekete et al., 2012). Harmonics of a waveform are components whose

frequencies are multiples of the fundamental waveform. Harmonics occur when a load

is connected that draws from voltage that differs from the fundamental wavelength

(Wakileh, 2001).

Harmonics have a significant impact upon the operational efficiency and the reliability

of a power system, the loads and the protective relaying (Du et al., 2013). Further-

more, harmonics can have knock on effects that cause disruptions in other electrical

equipment such as telephone transmission interference and cable TV (Dartawan et al.,

2012) as well as degradation of conductor and insulation material (APT, 2011). A

further concern is overheating of equipment on account of altered current, which can

lead to failure or premature ageing (Dartawan et al., 2012; Wakileh, 2001).

The root mean square of all harmonics against the fundamental harmonic is known as

the total harmonic distortion (THD) (APT, 2011). There are no globally established
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Figure 2.3: Total harmonic distortion relative % and PV generation factor over a
winter day in Croatia (Fekete et al., 2012)

limits or regulations for THD control, although EU members use the EN50160 that

stipulates harmonics up to the 40th harmonic must remain within 8% of their nominal

value. However, this can be adapted by country. For example, Croatia set the limit

at 2.5% (Fekete et al., 2012). There exist two industry standards by the IEEE: 519-

1992, specifying the limits on amount of harmonics allowed within the power system;

and 1547-2003, focussing on the interconnection of renewable resource which includes

inverter connected PV (Dartawan et al., 2012). Existing inverter standards in Australia

(AS4777.2) for small PV installations require < 5% THD on the current injected into

LV grids with tighter stipulation on specific harmonics (Passey et al., 2011). With

increasing growth and penetration of PV installations, inherent harmonic distortion

caused by the inverter connection to the grid is becoming a concern (Du et al., 2013).

Unfortunately, harmonics are difficult to model due to the requirement of sub-second

data to truly analyse the impact. It is an important issue to explore (Hernandez et al.,

2011; Zhao et al., 2010).

THD is reportedly at its highest during power outputs that are below 20–25% of

the rated capacity (Du et al., 2013; Fekete et al., 2012), further demonstrating that

using clear sky irradiance profiles is insufficient for impact modelling as the clear sky

profile will always provide the maximum power output, which ignores the lowest rated

power. THD fluctuations with PV rated power is illustrated well in figure 2.3, which

shows an intermittent generation profile and how the harmonics change through the

day. The plot indicates that the THD relative percentage is reasonably insensitive to
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intermittency so long as the rated power stays above 25%. The drop from 80% of

the rated capacity to 30% between 13:00 and 14:00 causes a <10% increase in THD.

Comparing this to a similar drop in output between 16:00 and 17:00 to below the 25% of

the rated power, the relative THD level shows a 50% increase. However, this is thought

to be an issue in calculation. Chicco et al. (2009) showed that the absolute harmonic

changes under low power operations were small while the THD at corresponding times

were high. The implication here is that THD is an inadequate metric for describing

the actual impact of harmonics on the grid. A suggested alternative would be to limit

the absolute harmonics that occur on the system.

A clear distinction between total current harmonic distortion (TcHD) and the to-

tal voltage harmonic distortion (TvHD) exists (Wakileh, 2001). Fekete et al. (2012)

studied these distinctions between voltage and current and found that TvHD was inde-

pendent of the power output remaining at approximately 3% throughout a day despite

solar intermittency. TcHD, on the other hand, was strongly dependent on solar genera-

tion conditions. Less research exists exploring this aspect, although Xavier et al. (2017)

state that currently installed inverters are able to control TcHD to within acceptable

limits. Bhowmik et al. (2003) derived an algorithm to discern the penetration limit of

DG on an LV grid using the TcHD as an indication. They tested three arrangements

of feeder types at increasing length against three loading patterns. The penetration

was defined as the percentage of load that could be generated from PV-DG before en-

countering 3% TvHD. Shorter feeders could handle more load generated from PV-DG,

although larger installed capacity was achievable on longer feeders. The methodology

is an excellent tool for DNOs to preliminarily assess potential penetration with regards

to harmonics. Dartawan et al. (2012) present a simple PV penetration analysis using

grid modelling software. They find that harmonic injection with < 3% TcHD, a pene-

tration level larger than 100% of the LV grids peak load could be achieved suggesting

that management of TcHD can facilitate large penetration. The issue is that the TcHD

depends on the location of the installations. Furthermore, should TcHD become the

limiting factor for increased PV penetration, there are cost effective solutions to reduce

TcHD back to permissible levels.

Models proposed to analyse harmonic issues rarely use high frequency data. Fekete

et al. (2012) uses 10 minute resolution. Methodologies require improved solar and

load data inputs if only to capture solar intermittency. It is suspected by the author

that a sub-second analysis of THD is needed to establish what the suitable temporal

resolution for modelling harmonics is.

Control strategies to manage THD are well detailed in literature (Paatero and Lund,

2007; Monfared and Golestan, 2012; Albert, 2016; Jana et al., 2016; Xavier et al.,
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2017). Most strategies achieve THD regulation control with a quick dynamic response

and many are already installed in new and existing PV-DG inverter technology. Some

methodologies (Paatero and Lund, 2007; Guerrero-Rodŕıguez et al., 2015; Kavali and

Mittal, 2016) manage to mitigate harmonics as well as voltage variations. Therefore,

THD can be considered as controlled at inverter level for future installations of PV-DG.

Looking at TcHD in isolation, the use of high-pass filter and a notch filter in parallel

with the grids capacitors is both a cost effective and successful strategy for the DNO

(Dartawan et al., 2012).

It is the author’s opinion that the increased presence of harmonics on account of PV-

DG should not be a priority concern for DNOs, nor is it the main limiting impact.

Greater penetration was allowed before harmonic standards were breached than is

observed for voltage fluctuations, therefore voltage fluctuations would be the bottle-

neck for penetration increase. Furthermore, should the scenario arise where harmonics

were the bottle-neck issue inhibiting PV-DG penetration, simple cost effective technical

solutions exist to remove it.

2.3.3 Unintentional islanding

Islanding describes the scenario where PV-DG operates independently of the grid, and

is no longer controlled at the transformer. Islanding occurs when the grid is subject

to failure or routine shut-down but connected PV-DG continues generating power

(Pourbabak and Kazemi, 2014).

Islanded operation mode can be beneficial in certain cases, such as back up power

reserve and uninterruptable power supply (ElNozahy and Salama, 2014b). Therefore,

it is important that it is well managed for the most effective use of renewable energy

distributed generation (Palizban et al., 2014). Passey et al. (2011) state that islanding

can cause the following problems: safety concerns to technicians, cause the continua-

tion of a fault trapped within the island, reduced power quality, transient over-voltages,

inverter damage when reconnected to grid, and damage to connected equipment. Is-

landing is unintentionally present in almost all countries that deploy DG (Hernandez

et al., 2012).

Islanding is a very well researched issue with numerous papers detailing control and

detection strategies (Li et al., 2014; Bakhshi and Sadeh, 2016). It is not found to be a

function of solar resource intermittency and is controllable using commonly deployed

technological solutions found in many currently installed inverters. For this reason it is

not considered a high priority grid impact for DNOs, nor is a high temporal resolution

irradiance time series imperative. Islanding is not instigated by solar intermittency or
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demand peaks but instead grid failure or scheduled shut down. There is the chance that

grid impacts associated with PV-DG cause the grid failure, however, this is covered

in analysis of voltage fluctuations and rise, increased demand peaks and harmonic

distortion.

2.3.4 Reverse flow

One issue identified is voltage rise during high PV generation and low-load situations.

Mokhtari et al. (2014) and Widen et al. (2010) state that for conventional operation of

electricity networks to continue, the grid requires updating with modernised strategies

to manage voltage rise.

Reverse flow is the scenario where the voltage across a transformer flows from the LV

grid back to the medium voltage (MV) grid. It is a direct response to voltage rise

within the LV grid from installed DG (Samadi et al., 2014).

The impact of reverse flow within the grid is of concern to DNOs because of uncer-

tainty surrounding potential damage to infrastructure (Gao, 2013). Old electricity

grids are typically designed with intention to flow in one direction, from power plant,

to transmission network, to distribution network, to load (Passey et al., 2011). Older

components consist of protection equipment that may be damaged when subject to

reverse flow (Hernandez et al., 2012). However, modern grids are designed to accept

reverse flow, although this is typically limited through legislation. Reverse flow across

the MV/LV transformer is limited to 60% of the transformer nominal rating in Ontario

but more typically limited to 30% around the world (ElNozahy and Salama, 2014a).

Haque and Wolfs (2016) state that the impact of reverse flow is similar to those of

voltage fluctuations. Voltage rise can cause increased usage of network equipment.

The number of operations performed by OLTCs can be dramatically increased, which

shortens the expected life cycle of these devices. OLTCs are the most widely used

voltage control devices on transformers. They are an automated switch device that

allows the voltage to be increased or decreased according to predefined limits. OLTCs

operate by increasing the length of transformer coil overlap so that a fixed step down

can occur, or in reverse flow instances, step up (Choi and Kim, 2001). As they are

automated, increases such as reverse flow and voltage fluctuations can cause overuse

(Gao, 2013). The number of OLTC operations is a metric occasionally used in literature

to attempt to quantify grid impacts and can be used to generate baseline comparisons in

order to compare the impact of PV-DG (Lave et al., 2015; Nguyen et al., 2016). OLTCs

were shown to respond sub-secondly to voltage fluctuations by Yan et al. (2014). 20%

integration of PV-DG causes a four-fold-increase in number of tap changes, which
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significantly reduces the lifetime of the equipment. This conclusion was modelled with

low resolution data; it is likely that using high resolution data would show further

increases in OLTC activity.

A large increase in uptake of PV-DG brings with it substantial amounts of reverse flow

(Widen et al., 2010) and can lead to degradation of electricity network stability (Vallee

et al., 2013; Vallée et al., 2015). Widen et al. (2010) showed that when all properties

within an LV grid have a 1 kWp PV system, reverse flow across the MV/LV transform

was observed lasting for 0.1 to 3.5 hours a day. When a 3 kWp system is installed at

each property, the daily observed reverse flow was observed lasting for 1.1 to 8.9 hours

(Widen et al., 2010). Despite this reverse power flow, Tonkoski and Lopes (2011) state

that it can be avoided without conservatively limiting the capacity of PV-DG units

through inverter design. This is achieved through smart curtailment whereby power

is generated and released into the electricity grid in accordance to the current voltage.

In the case that the voltage on the grid is too high, the generated power is curtailed.

This is not an ideal solution as it reduces the carbon effectiveness of PV.

There is little research committed to exploring reverse flow in isolation, although some

models do allow its evaluation. Without detailed information about the nature of

reverse flow upon the transformers, it is difficult to evaluate the extent of impact

upon the LV grid. ElNozahy and Salama (2014b) present a methodology that explores

how changing the residential load can cause overloading of distribution equipment,

infrastructure upgrade requirements, overuse of voltage regulation equipment, end-

user power quality degradation, increase in total system power losses, and substation

transformer capacity limit breach. However, there are commercial loads present in this

methodology and this reduces the potential for reverse flow; typical LV grids do not

have commercial loads. Higher resolution data would be required to adopt this model

as no solar intermittency was considered through use of 1 hour input data.

The reverse flow of voltage is found to be managed either at the inverter through

managed curtailment or at the transformer. The main impact is to DNO operated

network equipment such as OLTCs. The frequency of use of OLTCs is identified as a

useful metric to benchmark impact of PV-DG in terms of voltage changes. Analysis

of reverse flow overlaps with analysis of voltage fluctuations. Any steady state model

considering voltage fluctuations could, therefore, also consider reverse flow.

2.3.5 Hot-spots

Hot-spots is not a grid impact as such, it is more the phenomenon whereby PV uptake

clustering results in significantly more PV installations on a particular part of the LV
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grid; a non-uniform uptake pattern. The clustering effect is well studied in literature

and usually attempts to ascertain the driving social, political, environmental and eco-

nomic factors that most significantly impact PV uptake. The purpose of identifying

hot-spots is so that the DNO can know where they should expect to plan upgrades

or reinforcement to local LV grids. Predicting where hotspots will occur was a key

concern for Northern Powergrid (Walbank and Goodhand, 2014).

The DNOs response to PV-DG penetration is currently reactive because the random lo-

cation of initial uptake (Balta-Ozkan et al., 2015) of PV-DG makes predicting potential

target areas for mitigating future voltage balance incredibly difficult. The clustering

effect is best described by Kwan (2012), Snape (2016) and Westacott and Candelise

(2016) as aggregation of a technology to a localised point.

Spatial-temporal PV and/or EV uptake models exist in abundance for a whole host

of uses. The most notable works are the PV uptake models by Higgins et al. (2013),

Snape (2016), Kwan (2012), Cai et al. (2013) and Balta-Ozkan et al. (2015). Eco-

nomics are well represented by Cai et al. (2013) who claim that the most significant

factor for uptake is to consider financial aspects. However, this is in direct contrast

to Balta-Ozkan et al. (2015), who find little or no statistical significance between PV

uptake and household income. Kwan (2012) found some income weighted in the USA.

The suspected cause of the finding by Balta-Ozkan et al. (2015) that income was not

statistically significant stems from the opportunities of roof renting and the increasing

number of house rentals. Factors included in uptake models are resource availability,

government incentives, home value, household income, age, education, ethnicity, area

type, political affiliation, among others.

The use of Light Detection and Ranging (LiDAR) and Geographic Information Systems

(GIS) is a type of uptake modelling that is receiving increased interest in research.

LiDAR data offers a 3D visualisation of an area; some GIS software can calculate

the expected solar irradiance based on this height data. A resource methodology is

presented in Gooding et al. (2013) that overlays building footprint data to estimate the

pitch and aspect of each property. Extending from this methodology, the residential

PV capacity of the target area can be established. A GIS approach is presented by

Karteris et al. (2013) and can be applied to perform a cost analysis of a policy on PV.

Similarly, GIS data and solar radiation maps are used to assess the potential of PV

(Bergamasco and Asinari, 2011; Bergamasco, L. and Asinari, P. , 2011; Karteris et al.,

2013; Jakubiec and Reinhart, 2013; Lukač et al., 2014). These GIS methodologies

are a good way to assess the physical availability, and when combined with uptake

models are seemingly effective. This type of methodology is applied by Sun et al.

(2013) alongside a UK-based socio-economic uptake model, which considers income,
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education, environmental consciousness, building stock and ownership. From this the

likely uptake of PV is estimated, the methodology demonstrated the need for more

regionally focussed policies for true effectiveness.

The most relevant work to future based modelling efforts have so far come from studies

carried out by Higgins et al. (2013) and Paevere et al. (2014). PV uptake modelling

are presented by Higgins et al. (2014), taking into consideration previous experience

from the other reports. Snape (2016) states that diffusion based methodologies are

the most appropriate for uptake modelling. This type of modelling could be used to

identify hot-spots.

Once the locations of hot-spots are identified, methodologies outlined in the other grid

impact sections can be applied should the DNO provide real grid schematics. The

empirical analysis of a real hot-spot feeder would help provide insight on the worst

case scenarios for PV integration within the grid and enable appropriate grid impact

mitigation. It is worth noting, however, that there are few empirical grid impact

studies. The DNO should take a more proactive role in providing empirical analysis

opportunities.

2.4 Review of the response time of power systems

It is intuitive that solar radiation will fluctuate on whatever resolution to which it

is analysed. There are annual, monthly, daily and sub second fluctuations that can

be attributed to the Earth-Sun position, seasons, atmospheric aerosols, weather and

cloud. All the attenuating factors combine to make rapidly responding irradiance

fluctuations. It is, therefore, important to have an understanding of the resolutions of

which to analyse.

As has been demonstrated with this literature review, there is very little that concerns

the high temporal resolution study of solar irradiance. There can be two reasons for

this. The first is that the data is simply not available with which to do a study.

The second is that the power systems analysis being undertaken did not require a

high frequency irradiance input as the system does not respond to such changes. It is

therefore important to observe the response of different power system controls so that

an appropriate temporal resolution can be identified.

Karimi et al. (2004) derive a method to evaluate the rate of response of electrical

frequency from various electrical impacts. They find frequency responses in the order

of 40 to 200 ms, though the speed of response is almost independent of the magnitude

of frequency change. There is a 10 ms delay from a ramping event, and a response time
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Figure 2.4: Power response time of different power equipment (plot produced by
Pai (2016)

of 200 ms. Other response times are suggested as 100 ms (Sánchez et al., 2000; Rao

et al., 2000; Lokhande et al., 2017), up to a few seconds (Patel et al., 2014; Echavarŕıa

et al., 2007; Lokhande et al., 2017) with voltage tolerances of ±15% (Echavarŕıa et al.,

2007). Modern OLTC technologies can response within a single millisecond (Patel

et al., 2014). The dynamic time responses of different power systems is displayed in

figure 2.4. There is no question, therefore, that the electrical components operate at a

significantly higher resolution than any grid impact study has performed. This is not

the only limiting factor, however.

Li et al. (2004) explores the response time of real and reactive power for DG penetrated

microgrids. They find responses in power on the same frequency as the voltage, though

see a disparity in control reaction. Islanding detection occurred 6-sec after the triggered

event, and subsequent reassessment for reconnection of islanding mode atfer 13-sec.

Furthermore, they find that it takes 43-sec for synchronisation algorithms to begin

functioning after a triggered DG power fault. This presents a more realistic target

with which to produce irradiance, when compared to 50 Hz. Therefore, there is a

systematic delay in decision algorithms that are far more detrimental than the near

instantaneous response of OLTCs.

Gao and Redfern (2010) states that DNOs strive for faster OLTCs. However, an
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intentional time delay is always included to avoid tap changes in response to very

short duration voltage changes. This programmed redundancy in the majority of

OLTCs mean that intentional response delay is most often set in the range of 30 to 60

seconds. Furthermore, an additional time is included between tap changes in the order

of 5- to 10-sec (Zhu et al., 2000), though it is demonstrated that a reduced time delay

and and inter-operation delay benefits overall voltage quality. Thus, there is a trade-

off between voltage quality and number of OLTC operations, as increased operations

reduces lifetime of equipment (Zhu et al., 2000).

Irradiance fluctuations have been demonstrated to occur on sub-second temporal scales

(Lave et al., 2012; Omran et al., 2011), and so it would be wise to attempt to achieve

the same resolution, however, as synthetic irradiance (as will be shown) has not yet

been achieved to this degree, there must be a trade-off. The use of OLTCs with their

30 to 60-sec delay response time makes them a suitable candidate to explore the impact

upon them. The irradiance, therefore, should be synthetically derived with at least

1-min resolution as a minimum. Fundamentally, the production of spatially correlating

solar irradiance at 1-min resolution (as will be demonstrated in chapter 4) has not been

achieved before, and therefore serves as a new benchmark tool from which to research

from.

2.5 Future considerations for grid impact analysis

This literature review explored applicable research methodologies that analysed grid

impact of PV on the LV grid as viewed from the DNO. From this study, the following

discrepancies and opportunities present themselves.

There is a distinct lack of real grid network testing. Whilst Mu et al. (2014) and

Widen et al. (2010) analysed real networks available through their respective universi-

ties, there has been surprisingly little collaboration with DNOs to empirically measure

PV within real grids that would help validate work and quantify research models.

Research facilities offered by groups, such as CSIRO’s Renewable Energy Integration

Facility, could be used to validate methodologies. There remains a distinct lack of

industrial collaborations between DNOs and research. Until they can be realised, it

would be worthwhile to acquire real LV grid topology data so that it can be modelled.

Only representative topologies exist that are taken confidentially and typified such as

those available from the Electrical Power Research Institute (EPRI, 2008). Through

cooperation with DNOs it is possible for them to provide schematics (Walbank and

Goodhand, 2014). Data containing transformer details, cable lengths and thicknesses,
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installed protective equipment, scheduled upgrading, and accurate geographic location

would be the ideal variables.

A study of the literature finds that the majority of research offered introduces new

control or detection strategies for future technological improvement. Whilst this is of

clear importance, it does not serve for a base level study of the impacts presented.

Consensus baseline metrics must be established for grid impact analysis.

The grid impact identified as most concerning is voltage fluctuations. The predominant

reason for this is that current inverter technology and cost effective on-line technologies

manage harmonic distortion and unintentional islanding. Furthermore, reverse flow

and demand peaks are demonstrated in literature to be not a significant concern.

Voltage fluctuations, however, require either curtailment or on-line equipment such

as the OLTCs in order for it to be managed. Curtailment is an environmentally

and fiscally poor option although it is successful in mitigating voltage fluctuations.

Overuse of OLTCs is financially detrimental to DNOs as they require replacement

sooner than planned, and so a limitation is applied on PV penetration. The use of

OLTC operations as a metric would, therefore, be a good indicator of the grid impact

of voltage fluctuations caused by PV penetration. In order to establish the baseline

grid impact, the use of ancillary services from batteries should not be considered until

a later phase of study.

The most limiting factor common to the literature is high temporal resolution data

availability. Some work requires significant and extensive data sets, which are usually

unavailable or expensive (Gennaro et al., 2014; Higgins et al., 2014; Mu et al., 2014).

Data gathering or data synthesis is a fundamental step before any impact analysis

can be performed. The literature reviewed found many studies to use an unsuitable

temporal resolution data input to appropriately quantify voltage fluctuations. The

synthesis of input solar irradiance at an appropriate resolution that facilitates grid

impact analysis is, therefore, the basis of this thesis.





Chapter 3

Solar Irradiance Generator (SIG)

development

The research aim and objective addressed in this chapter is to ascertain whether it

is possible to develop a statistically accurate methodology that can produce synthetic

irradiance time series with a 1 minute temporal resolution, using only readily available,

well-geographically dispersed, mean hourly meteorological observation data as an in-

put. The model will be referred to as the solar irradiance generator using the acronym

SIG.

This chapter will first introduce key concepts and definitions fundamental to under-

standing this thesis. Secondly, the concept of temporal solar irradiance generation

through a review of the most recent literature, highlighting alternatives and opportu-

nities for development will be introduced. Thirdly, the SIG will then be described in

overview so that the reader may follow the steps and have a point of reference; each

significant step will feature its own section. The SIG is then subject to a temporal val-

idation before discussing the extents of the research. Furthermore, the SIG is provided

in its raw script, as produced using Matlab (2015) software. It is appended to this

thesis and is separated into sections that correspond well to this chapter, see section

A.

The SIG presented here was condensed and published in the Journal of Solar Energy in

Bright et al. (2015) and further concept developments published in Smith et al. (2017).

Sections of this work were produced in collaboration with Dr Christopher Smith. The

author makes clear where Dr Smith carried out independent work or provided data or

script, otherwise all work is the author’s own.

33
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3.1 Key concepts and definitions

This section will introduce fundamental concepts and definitions required to under-

stand this thesis. There are many more concepts and approaches to be discussed that

are not detailed here as their utilisation requires justification from alternatives that

may exist. The information in this section is consistent throughout the thesis and so

are provided here to enable better understanding of the research.

3.1.1 Types and definitions of solar radiation

The different terminologies for the myriad of ways to describe solar radiation can be

confusing. This section will explain the different types of solar radiation that feature

in this thesis, as well as the different ways irradiance is expressed.

There are three distinct types of radiation to be understood that feature heavily in

this thesis: direct, diffuse and global.

Direct or beam normal irradiance (DNI, GB) is the irradiance received directly from a

5◦ field of view concentric around the sun on a surface that is normal to the sun at its

position in the sky (PVPerformance Modeling Collaborative, 2016).

Diffuse horizontal irradiance (DHI, GD) is the terrestrial irradiance received by a hor-

izontal surface which has been scattered or diffused by the atmosphere. It is the com-

ponent of global horizontal irradiance which comes from the rest of the sky (PVPer-

formance Modeling Collaborative, 2016).

Global Horizontal Irradiance (GHI, G) is defined as the amount of terrestrial irradiance

that falls on a surface horizontal to the surface of the Earth. It is the combination

of all the incident irradiance upon that plane consisting of both the direct and diffuse

components. GHI is the harnessable irradiance by a solar panel (or other) positioned

perpendicular to the Earth’s surface.

Other definitions are required, however, to express these types of irradiance depending

on where they are measured and the nature of incidence.

Extraterrestrial irradiance is the irradiance at the edge of the Earth’s atmosphere, one

component of which is the horizontal value, Go, measured perpendicular to the Sun’s

rays.

The global clear-sky irradiance (CSI, Gcs) is a theoretically calculated expression of

GHI under conditions where the sky is perfectly clear (Bird and Hulstrom, 1981b). It

represents the global irradiance in the absence of visible clouds (Reno et al., 2012) and,
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therefore, describes the attenuation of Go through the atmosphere. The distinction

between CSI and GHI is that GHI considers all attenuation whereas CSI only concerns

atmospheric attenuation and can be considered the maximum available irradiance at

ground level. Importantly, the GHI can exceed CSI from either underestimation of CSI

or irradiance enhancement events such as additional DNI from reflections off clouds

or other surfaces, both of these scenarios are commonplace. CSI has been simply

expressed as a function of the zenith angle, although it can encompass many variables

such as the atmospheric state such as air pressure, relative humidity, temperature,

aerosol content and Rayleigh scattering.

In this thesis, tilted global irradiance, or just tilted irradiance, is defined as the sum

of all irradiance incident upon a tilted plane and is denoted Gt. The methods to

determine the irradiance on a tilted plane will be discussed in chapter 3.

3.1.2 Clear-sky and clearness indices

The clear-sky index, denoted kc, is fundamental to research presented in this thesis. It

is also important to understand similar parameters such as the clearness or cloudiness

index, kT, so as not to confuse them with kc.

Black et al. (1954) first posed the concept of normalising radiation measurements to

their associated clear-sky potential. Inspired by Ångstrom (1924), who explored the

relationship of actual sunshine duration to potential maximum sunshine duration, and

by Prescott (1940), who advanced the concept to explore the duration of sunshine and

the theoretical amount of radiation potential if the atmosphere were perfectly trans-

parent (Brunt, 1939), Black et al. (1954) explored normalising daily values of G by

daily values of Gcs. Liu and Jordan (1960) provided the first modern interpretation

of the concept of “cloudiness index” when normalising the hourly and daily measured

global, diffuse and direct irradiance by the extraterrestrial radiation to arrive respec-

tively at indices of kT, kd and kD. The cloudiness index is often termed clearness

index (Duffie and Beckman, 2006) and henceforth will always be denoted as kT. The

reason for this preference is that the kT implies that it is a better representation of

clouds, whereas normalising by the extraterrestrial irradiance actually encompasses all

atmospheric losses as well. kc would be much more deserving of the term “cloudiness

index” as the other atmospheric losses and light scattering are inherently contained

within Gcs. kT is calculated as

kT =
G

Go
(3.1)
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Bird and Hulstrom (1981b) enabled advancement in irradiance index classification

when they produced a methodology to estimate the clear-sky radiation incident upon

the Earth’s surface, Gcs. The derivation of Gcs provided a new term that could be

normalised against, leading to the birth of the kc defined as

kc =
G

Gcs
(3.2)

G and Gcs are both irradiance values that arrive at the surface of the Earth on a

horizontal plane, this makes kc a dimensionless property. G encompasses all losses up

until ground measurement, Gcs is the theoretical maximum under clear-sky conditions

and accounts for atmospheric absorption and scattering losses, but not those as a result

of clouds. The implication is that kc describes the losses or gains that are principally

attributed to the presence of clouds, whereas kT describes all loses from outside of the

atmosphere to the ground.

kc has a significant advantage over kT as it allows the removal of diurnal and sea-

sonal signals from radiation time series enabling advanced analysis techniques such as

wavelets or computing power content fluctuation (Engerer and Mills, 2014).

kc is equal to 1 when G = Gcs. kc is less than 1 when Gcs > G, the real losses are

greater than the theoretical, indicating cloud or heightened atmospheric conditions of

scattering, absorption or other. The most common cause of kc < 1 is from clouds. kc

is greater than 1 when Gcs < G, this can be from either reduced impact of atmospheric

considerations or from added reflections, often from the edge of clouds.

3.1.3 Markov chains

To synthetically recreate weather events, Markov chains are employed to capture the

transition probabilities of meteorological variables over time. The application and

mathematics will be discussed in detail in chapter 3, however, the concept and brief

history of Markov chains will be introduced here.

Markov chains are a method of describing changes in events over time. The origin of

Markov chains begins with Plato, who speculated that after an uncountable number

of years, the universe would return to its pure form. Pure forms are abstract concepts

such as a perfectly straight line or a circle existing naturally in the world. In the 16th

century, Bernoulli explored the mathematics to try and describe the un-pure forms

and patterns of the world by developing upon the theory of expectation. He applied

mathematics to accurately estimate the unknown probability of an event as derived



Chapter 3. SIG development 37

Figure 3.1: Example of a three-state Markov chain with the associated transition
probabilities from each of the three states.

from the frequency of that event’s occurrence within independent trials (Basharin

et al., 2004). This is most aptly described with a cup of white and black beads.

Selecting a bead from the cup, Bernoulli recorded the outcome before replacing it

and repeating the process. He noted that the expected value of white versus black

observations will converge on the actual ratio as the number of trials increases, this

is now known as the theory of large numbers. With more application and research,

probability distributions emerged which suggested that the average fate of events was

somehow predetermined, known as the Central limit theorem. Theological opposition

began. The idea of predefined statistics governing nature was a dangerous proponent

to the religious doctrine of free will and so theologian-turned-mathematician Pavel

Nekrasov made a claim that the law of large numbers is only applicable for events with

independence, whereby the outcome of previous events does not affect the outcome of

future events. Andrey Markov, a Russian mathematician with known public animosity

towards Nekrasov, put his expertise to disproving him and extended the law of large

numbers in 1906 by applying it to dependent variables (Markov, 1906). By doing so, he

developed a new concept known as chain dependence. Chain dependence is a branch

of stochastic mathematics that still persists to the present day, although it is popularly

known as Markov chains (Seneta, 1966).

The use of Markov chains facilitates a stochastic process in a probabilistic mathemat-

ical method whereby transitions from one state to the next are directed by discreet

probabilities taken from the statistics of real-world processes. By recording the tran-

sitions from one state to the next, the number of transitions can be used to interpret

the probability of transition. This can be simply demonstrated by figure 3.1 which

shows a three-state Markov chain. Notice that states A and C have a chance of 0.3

and 0.5 respectively to remain at their current state, however, B will always transition

to either A or C. The total probability leaving each state will always equal 1 because

a new state must always occur and is therefore a certainty.
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Markov chains are most effective when used to describe states that have temporal

dependencies on previous states. Take a fair coin toss, for example. The probability of

any fair coin toss is independent of any toss that proceeded it, and so Markov chains

would represent the transition of each state to either heads or tails as equal. This is not

a good use of Markov chains as there is no dependency on a previous state. However,

using a Markovian process, it would be possible to deduce a time dependent statistic,

such as the distribution of the number of consecutive heads. Variables that follow

a progression are much better described using Markov chains. The first ever use of

Markov chains was by Andrey Markov himself. He applied his self-titled mathematics

to Alexander S. Pushkin’s poem “Eugeny Onegin” in order to demonstrate dependent

trials with what can be regarded as a simple chain. Of 20,000 letters in the poem,

Andrey Markov calculated the stationary vowel probability is P = 0.432, that the

probability of a vowel immediately following another vowel is P1 = 0.128, and the

probability of a vowel being followed by a consonant is P2 = 0.663 (Markov, 1906).

These fundamentals led Google co-founders, Sergey Brin and Larry Page to develop

a page ranking analysis method called PageRank (Page et al., 1999), which is the

driving force behind Google’s search engine success. Their method uses Markov chains

to assign quality to web pages based on the input search parameters.

Markov models are a very popular method of stochastic data generation as the concept

of temporally dependent states can be well applied to many data variables. Weather

variables in particular lend themselves well to Markov chains as the weather from one

hour to the next depend highly on each other. Markov models that consider weather

have been used in many applications, from wind estimates (Masseran, 2015), solar

energy estimations (Hocaoğlu, 2011; Bhardwaj et al., 2013; Vindel and Polo, 2014b),

and in weather time series generation (Yang et al., 2011).

Within this thesis, the states used for Markov chains are mean hourly meteorological

observations such as cloud cover. Each state will represent an okta condition and so the

Markov process will have nine states, equal to the number of okta conditions shown in

table 3.1. By recording the transitions across a fixed time period, transition matrices

can be constructed that detail the probability of transition from one state to the next.

3.1.4 Meteorology and atmosphere

The intention of this section is to give an overview of the complexities offered to the

irradiance at the Earth’s surface as a result of meteorology and atmosphere.

The concept of the solar constant is important to understanding why meteorological

conditions offer the most significant modelling difficulties. The solar constant is a
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Figure 3.2: The annual variation in extraterrestrial radiation (PVPerformance Mod-
eling Collaborative, 2016)

measure of the mean solar electromagnetic radiation incident upon an area of a plane

perpendicular to the solar rays over a distance that is approximately the mean distance

from the Sun to the Earth (Kopp and Lean, 2011). From maximum to minimum, the

solar constant is approximately 1361 to 1362 Wm−2. The significance of this is that the

solar flux density is easily calculated without the interference of the Earth’s atmosphere

(Liu and Jordan, 1960).

The solar irradiance at the edge of the atmosphere is known as the extraterrestrial

radiation. It is not as consistent as the solar constant as the Earth’s orbit undergoes

cyclical changes in distance to the sun. The solar constant is measured at a constant

distance of one astronomical unit (AU) and does not account for orbit. The amount

of extraterrestrial radiation that is received at the edge of the Earth’s atmosphere on

a plane perpendicular to the sun is a function of the solar constant and the Earth’s

position within its orbit, or time of year. Figure 3.2 shows how the extraterrestrial

irradiance varies throughout the year.

The extraterrestrial radiation is the last calculation of irradiance before accounting for

meteorology, atmosphere and all of the components within it. Iqbal (2012) details many

of the factors that must be considered for modelling the solar radiation under clear

sky conditions: water vapour, aerosols, optical path length, air mass, ozone, aerosols,

scattering of direct solar radiation, Rayleigh scattering, Mie scattering, absorption of

radiation by gases, absorbers across the light spectrum, direct spectral irradiance and

atmospheric albedo. This is not an exhaustive list, however, it serves to demonstrate
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Figure 3.3: Solar radiation arriving on the ground under cloudy skies, inclusive of
the many types of scattering and reflection losses in the Earth’s atmosphere (Iqbal,

2012).

the complexity of the issue. These factors all have well established mathematical

methods to incorporate them when calculating the solar radiation at ground level

under clear sky conditions. The real problem presents itself when modelling the solar

resource in clouded sky situations.

Figure 3.3 depicts the various complications with calculating the incident irradiance

in the presence of clouds. Optical losses when travelling through clouds: scattering of

thin clouds, cloud edge reflections, aerosol and air molecule scattering, and the diffuse

irradiance arriving on a horizontal surface. Section 3.3.6 will cover these factors in

detail, however, the concept is introduced here.

Clouds heavily influence the incident radiation received at ground level. When a cloud

passes in front of the sun, nearly all of the direct normal irradiance is removed from

the available extraterrestrial radiation. Cloud cover is a variable well recorded in the

UK and in many parts of the world. Figure 1.2 shows all of the observation stations

operated by the UK Met Office. The temperature, pressure, cloud amount, cloud

type, rainfall and sunshine hours are routinely measured to a temporal resolution of

typically an hour at these stations and at others around the world (Smith et al., 2017).

Research has been carried out for nearly a century that has attempted to derive the

solar irradiance from these meteorological variables; this is discussed in more detail in

Chapter 3. The main variable of interest in this research is the total cloud amount.
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Table 3.1: Conversion of the total cloud amount, N , in okta (reported as eighths)
to the cloud coverage fraction, C (reported as tenths). N = 9 represents sky that is

obscured due to fog/haze/other meteorological phenomena (NOAA, 2016b)

Okta, N Cloud cover, C Description
(eighths) (tenths)

0 0 Completely clear sky
1 1 or less, but not zero Very few clouds
2 2 to 3 Few clouds
3 4 Scattered clouds
4 5 Half of sky covered
5 6 Over half of sky covered
6 7 to 8 Many clouds
7 9 or more, but not 10 Small pockets of clear sky
8 10 Completely overcast
9 10 Obscured by meteorological phenomena

The variable total cloud amount is denoted N in this thesis, and is measured with

units called okta. An okta is the unit that gives magnitude to the amount of cloud

in the observable sky, reported in eighths. 0 okta represents the complete absence of

cloud, while 8 okta represent total cloud cover; an additional value of 9 okta represents

full coverage due to fog or other meteorological phenomena. Cloud cover fraction is

derived from the okta value using the Met Office descriptions and is represented from

0 to 10 out of 10 (UKMO, 2010), it is denoted as C throughout this thesis and the

conversion can be seen in table 3.1. The most significant loss of energy to the solar

resource is the presence of cloud, the theory on how these losses can be modelled is

presented section 3.1.

N is recorded by either a human observer or from a cloud-base recording laser. There

is a general disparity between the two with agreements 39% of the time, and 88%

within 2 okta (Wauben et al., 2006; Smith et al., 2017). This agreement is attributed

to the subjective observer judgement at the end of an hour and the base recorder

average over a whole hour (Muneer et al., 1998). Furthermore, directionality of the

cloud-base recording laser (vertical) can influence the reading. The angle of the sun

away from vertical in the UK is at least 27◦ and so the automated recording may

not be representative. According to Smith et al. (2017), a meteorological convention

for recording N is that the total cloud amount is recorded by a human observer and

individual layer cloud amounts are recorded by automated equipment.

3.1.5 Solar intermittency, variability and fluctuations

Solar power variability, intermittency and fluctuations are terms that are often used

interchangeably in research to have the same meaning. All terms, when applied to
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power, describe the inherent nature of the solar energy resource to change in power

availability, by which the power provided by the sun is not constant or controllable

Sayeef et al. (2012). This thesis, however, considers two categories to the terms that are

independent of each other. Variability is indicative of a steady change in magnitude

progressing over time, such as a lull in the wind speed or the seasonal change in

atmospheric water vapour concentrations impacting radiation absorption. Variability

features within solar resource modelling, however, it does not imply a finality that

should be used to describe loss of power from clouds, as is often the case in research.

The term fluctuations, on the other hand, is much more suggestive of the stopping or

starting of something. For example: a flickering light bulb, an engine that is cutting

out, or the inhibiting of direct irradiance due to the presence of cloud. Intermittency is

the preferred term to encompass the idea and concept, or as an adjective. A fluctuation

is the preferred term to represent the physical change, used as a noun.

Conventional fossil based generation or renewable technologies such as biomass, hydro

or nuclear do not suffer from variability and intermittency challenges because the

power output requirement from these technologies can be planned through resource

management and are therefore dispatchable. With variable resources such as wind,

and intermittent resources such as solar power, the resource is available only when the

natural conditions allow.

It is well established that the solar resource is highly intermittent. The degree of in-

termittency, however, is mainly dependent on the temporal resolution on which it is

observed (Lave and Kleissl, 2010; Perez et al., 2011). This is because irradiance fluctu-

ations occur at the sub-second level all the way up to slow, monthly changes and annual

variation. Lave et al. (2012) quantify the fluctuations over different temporal frequen-

cies and find distinct wavelets that show an increase in probability of a large ramping

event with increasing temporal resolution. Ramping events at a higher temporal reso-

lution are more prevalent and frequent when compared with coarser, lower resolution

irradiance data, which nullifies ramping events through averaging. Figure 3.4 demon-

strates this using four hours of global horizontal incident irradiance (GHI) observations

and temporal resolution ranging from 1-sec to 10-mins measured in Leeds, UK. The

GHI is averaged to create coarser, lower resolution irradiance and it can clearly be

seen that the intermittency decreases with a lower temporal resolution. Typically, the

irradiance curve is curved over 24 hours, however, this plot is a 4-hour segment and

the scale on the y-axis is insensitive to real changes, the figure is not intended for

extracting irradiance magnitudes, merely to demonstrate the presence of ramps and

detail at higher temporal resolutions. The dip at midday is representative of a clouded

period.
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Figure 3.4: Global horizontal incident irradiance in Leeds, UK on 25/06/2015 be-
tween the hours of 10:00 and 14:00. The data was logged using a horizontally-mounted
silicon photodiode (BPW20) in short-circuit current mode with a linear current re-
sponse converted to voltage with a transconductance amplifier, logged at 10 Hz using
a 10-bit DAC. The data has been averaged across timescales of, from top to bottom:

1 second, 10 seconds, 1 minute, 10 minutes and 1 hour.

The power that is available to a power conversion technology, such as a PV inverter,

is defined as the incident solar irradiance upon the receiver multiplied by the system’s

effective area (Wm−2 × m2 = W ) (Kleissl, 2013). Therefore, the power output is

directly proportional to the incident irradiance and is subject to its inherent rapid

intermittency (Marcos et al., 2011).

Irradiance fluctuations are caused by clouds that pass across the sun, cloud dynamics,

atmospheric losses, the transportation of airborne pollutants and more (Suehrcke and

McCormick, 1989; Vindel and Polo, 2014a; Calinoiu et al., 2014).

Another example that helps to demonstrate that intermittency is more of an issue than

variability is the idea of power inertia between intermittent solar power and variable

wind power. Perhaps one of the most significant reasons that intermittency in solar

power deliverance is more of an issue than with the other variable technologies is the

distinct lack of inertia with which PVs produce energy. Wind power generates power

with considerable inertia, meaning that when the resource suddenly drops, the inherent

inertia of spinning blades “cushions” the ramp of power loss. When a cloud passes

across a PV panel, there is no residual power inertia and so the down ramp of power is

instant (Sayeef et al., 2012), it is acknowledged that a large installation spread over a
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Table 3.2: Relationships between meteorological variables and radiation. Key: SD
= sunshine duration, CF = cloud fraction, CT = cloud type, OCF = opaque cloud
fraction, DTR = diurnal temperature range, PR = precipitation. Clearness index,
kt, and clear-sky index, kc, were defined in section 3.1. Table produced by Dr C. J.

Smith.

Study Derived quantity Variables

Ångstrom (1924) Daily clear-sky index SD
Prescott (1940) Monthly clearness index SD
Wörner (1967) Hourly clearness index CF
Kasten and Czeplak (1980) Hourly clear-sky index CF, CT
Nielsen et al. (1981) Hourly net and global radiation CF
Brinsfield et al. (1984) Daily global radiation CF, OCF
Bristow and Campbell (1984) Daily clearness index DTR
Hargreaves et al. (1985) Daily global radiation DTR
de Jong and Stewart (1993) Daily clearness index DTR, PR
Supit and van Kappel (1998) Daily clearness index DTR, CF
Muneer et al. (1998) Hourly beam and diffuse radiation SD
Matszuko (2012) 10-minutely global radiation CF, CT

spatial domain would not receive an instantaneous ramp, this is more a function of the

spatial dispersion and geographic smoothing, such is the importance of understanding

the correlation in the spatial dimension. Sayeef et al. (2012) performed a thorough

exploration of the solar intermittency challenge and described it as a fundamental

barrier to the uptake of large-scale solar power around the world. They find that

there is very little real-world data for use in discovering how solar intermittency affects

electricity networks.

It is important that solar intermittency is a well represented component when perform-

ing solar resource assessment for integrating PV into the grid. Methods and notable

research will be explored in detail in section 3.2.

3.2 Literature review of temporal solar irradiance gener-

ators

The generation of synthetic irradiance time series can be broken into two performance

categories. The first considers only a temporal dimension (one-dimensional), whilst the

second considers temporal and spatial dimensions (two or three-dimensional). Spatio-

temporal methodologies are discussed in chapter 4. Whilst all methodologies to gener-

ate synthetic irradiance time series include a temporal dimension, the majority do not

consider the spatial dimension. This literature review only considers those methodolo-

gies.
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Synthetic irradiance generation is achieved using assumptions, physics and the inclu-

sion of ground based observations of a variety of meteorological variables. The physics

and assumptions are discussed later in this chapter. Table 3.2 lists notable research

that have studied the relationship between a meteorological variable and the solar ra-

diation. From as early as 1924, the daily clear-sky index could be determined from the

sunshine duration and could then be used to form a time series of mean daily irradiance

value for a year. Moving forward from this sees the development of irradiance synthesis

opportunities derived from hourly cloud statistics of fraction, type and opacity. The

ambient temperature has also been used to determine the daily global irradiance. Hoff

and Perez (2010) state that it would be possible to model the variability of a single

location based on hourly satellite derived data. This statement is extended within this

chapter to be also possible from hourly weather data.

From the grid impact review, a methodology is required that incorporates solar vari-

ability and intermittency along the time series at high temporal resolution. Many

methodologies exist that do not consider solar variability or intermittency. Badescu

et al. (2012) examine the performance of 54 different models that can achieve cloudless

sky irradiance time series. These models present the myriad of methodologies that

exist with the ability to estimate solar radiation from readily available inputs. They

do not, however, produce time series that vary according to state of the sky. In fact

all of the models tested failed the stage that explored sensitivity to the state of the

sky, for example N . One issue is the large variety of input data that models require.

Models exist from a single input of zenith angle, which describes the sun’s position

in the sky, to nine inputs that include astronomical, geographical, meteorological and

turbidity based inputs. The sector of calculating the solar clear-sky radiation is rather

saturated and many excellent methodologies exist. However, models examining syn-

thetic production of varying and intermittent solar time series are fewer. These are

the models and methodologies of interest.

Polo et al. (2011) produce 10-min resolution synthetic irradiance time series with the

inclusion of solar intermittency, derived from hourly mean observations of solar irra-

diance and adding random fluctuations. This method is suitable for instances with

reasonable data availability. Whilst dealing with the issue of adding fluctuations by

identifying sky conditions and appropriate kT distributions, the method fails to offer

true synthesis of irradiance without an irradiance input, nor is 10-mins a high enough

temporal resolution for the aims of this thesis. The addition of random fluctuations was

shown to offer reasonable likeness to real observational data through cumulative prob-

ability distribution function (CDF) comparison of the irradiance magnitude of both
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modelled and observed data. The daily and monthly means were shown to have excel-

lent reproducibility, indicating that synthesis is viable when increasing the temporal

resolution.

Expanding on this work, Larraneta et al. (2015) generate synthetic 10-min resolu-

tion DNI data from mean hourly values of sky classification and irradiance using a

stochastic driven component and identification of sky classifications as a function of

an index expanded from Skartveit and Olseth (1992). Again, this work suffers from

insufficient temporal resolution outputs and a requirement of an irradiance time series

as an input. The irradiance from Polo et al. (2011) are analysed and separated into

four sky classifications, separated by the prevailing kT values and fluctuations using

an assessment method developed by Perez et al. (1990). The use of sky classifications

was shown to improve performance. As sky classifications require an irradiance time

series to analyse, a similar approach could be employed using N .

An improvement of incorporating solar intermittency and increasing temporal resolu-

tion from 1-hour irradiance observation data down to synthetic 1 min irradiance time

series is achieved by Fernández-Peruchena and Gastón (2016). The methodology anal-

ysed the calculated kT progression statistics from four 1 min irradiance observations

at different latitudes. Daily distributions of kT were produced and for each hour of

observation data, intermittency is applied by implementing a time series of kT that is

synthetically generated as a function of the day and current mean hourly kT. These

stored hourly kT time series are drawn upon by selecting the current day and the most

appropriate hourly kT time series in accordance to the input hourly GHI irradiance, a

1 minute resolution is therefore achieved. The principal assumption for this methodol-

ogy to work is that the high-frequency fluctuations caused by clouds are dynamically

reproduced from a 2-year long ground measurement of local intermittency, this cer-

tainly fails to capture the typical meteorological year (TMY). A TMY in reference to

solar irradiance is a time series that captures the statistics of a typical year, such that

extreme events do not skew the data. Ten years of time series data is accepted as the

standard duration for capturing these annual, seasonal and monthly deviations, and is

even discussed by the same authors as a requirement in an earlier paper (Fernández-

Peruchena et al., 2015). The intent of the methodology is that with the statistics

of four high frequency GHI time series, many other irradiance time series could be

produced. This is known to offer a wide range of mistakes as Smith et al. (2017)

demonstrate that the longitude and latitude influence the frequency of cloud fraction

present at a site. These cloud fractions have very well defined kc distributions. There-

fore, taking a single location to generate the statistics, and then applying them to a

different geographic region can cause inaccuracies. It is important that a methodology
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for synthetic irradiance considers the geographic dispersion of meteorology. Further-

more, Fernández-Peruchena and Gastón (2016) require an irradiance input in order to

compare magnitudinal similarities with which to fill in the gaps between hours.

There are more methods that attempt to fill the gaps between measurements as opposed

to a truly synthetic generation tool with no irradiance input as a guide or foundation.

Whilst lessons can be taken from these methodologies, such as the identification of

kT distributions with sky conditions and stochastic drivers of sky classifications, they

do not touch upon the aims of this thesis. A common theme of these closely related

studies is the identification of sky types or cloud presence. Clouds are one of the largest

influences on solar radiation attenuation (Kasten and Czeplak, 1980; Matszuko, 2012)

and so the cloud coverage is a highly useful variable for solar radiation prediction. The

analysis of cloud based observations to provide meaningful time series is therefore an

interesting and relevant field of study.

To the author’s knowledge, the one-to-one relationship between kc and only N has

not been investigated previously. There are cloud fraction relationships that correlate

N to a radiation quantity such as Wörner (1967), and employed by Supit and van

Kappel (1998), who derive kt from geographically fitted constants. Later, Kasten

and Czeplak (1980) found the relationship between kc and N using 10 years of data

from Hamburg, Germany and was shown to be applicable to the UK by Muneer et al.

(1998). Again, this relationship depends on a geographical dependant constant that

can be tuned, and so are not one-to-one. Brinsfield et al. (1984) managed to predict

solar radiation based on the opaque cloud fraction, an infrequently recorded variable.

Matszuko (2012) derived the relationship by N and solar elevation that facilitates the

normalising of kc by N = 0. It is pointed out by Matszuko (2012) that cloud opacity

has a very diverse range when categorised by N , such that N can equal 8 for 100% sky

coverages by clouds, however the type of cloud can cause the opacity to range from

98–100% from cirrus to lows of 7% for nimbostratus. Both cloud types can offer N = 8,

yet kc could range from 0.07–0.98. It is for this reason that a one-to-one relationship

could be useful. Work presented later in this chapter will detail a methodology from a

collaborative piece of research found by the author and Smith et al. (2017) that derives

this one-to-one relationship.

An interesting development comes from Ngoko et al. (2014) where 1-min global irradi-

ance time series are synthetically generated from the stochastic progression of kT. The

model described is able to produce truly synthetic time series such that no irradiance

data is required as an input once primary analysis of a time series is completed, and so

is considered a direct alternative to the SIG. Two high temporal resolution irradiance

time series from Tokyo, Japan, are analysed and Markov transition matrices (MTM)
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are produced from the progression of calculated kT, the MTMs are categorised by the

daily mean of kT. Once the MTMs are produced, they can be used stochastically to

generate synthetic time series. There are significant drawbacks, however. The most

apparent drawback is the validation method compares against the same data analysed

for kT transition probabilities to validate the results. This removes the ability to test

whether their kT transition probabilities can be translated to other regions. What is

evident from their validations is that their statistical performance lies very close to

the mean of the performances of both validation/input locations. The implication is

that the methodology would not be robust for regions that do not have an existing

1-min irradiance input, and therefore it does not satisfy the requirements set out by

this thesis of high geographic dispersion. The idea of making MTMs of kT from larger

category bins of the mean daily kt is one well worth developing and the methodol-

ogy does demonstrate appropriate recreation of kT using Markov chains. Ngoko et al.

(2014) also demonstrates the suitability of using first order Markov chains when used

with irradiance time series generation. This can also be adopted in the SIG.

The sky type is a variable used first by Perez et al. (1993), who derived them us-

ing high-quality sky-scan data, and then later by Torres et al. (2014) to categorise

the sky and its cloud based conditions into 15 standard categories. These categories

are analysed for transition probabilities in order to facilitate the use of first order

Markov chains for synthetic and stochastic sky type time series progression. The in-

teresting component of this work is the successful recreation of the sky types validated

against two independent locations and the identification of distinct seasonal sky types.

Whilst the input data is certainly not easily obtained, as sky type nor historic sky-scan

data are often reported, the seasonal dependent MTMs offered an excellent validation.

The implication here is that the sky types, when broken by season, are statistically

and stochastically reproducible, as well as distinctly different. A seasonal dependency

should be explored.

Pérez-Burgos et al. (2015) undertook analysis of kc (labelled as the cloud modification

factor in their study) as a mean hourly diurnal average for each month. This means

that the kc is shown to be statistically predictable by day, and by hour of the day, when

taken as a mean. The tool is intended for long term, synthetic time series production

and is shown to validate well with long term reproductions. Whilst this research

does not touch upon variability, intermittency nor high temporal resolution, it does

interestingly show that kc has a strong diurnal dependency. It is hypothesised within

this project that geographically dependent cloud dynamics during different times of

the day can be highly influential. The idea of diurnal dependency could be considered

in the stochastic production of MTMs.
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A highly relevant research paper that satisfies the rational of this thesis was produced

by Ehnberg and Bollen (2005), who also did not wish to use irradiance data as an input

into their research recognising the often limited access to it. They instead proposed

the use of N , which can be measured without equipment and by eye for intervals of 1

to 3 hours. It is stated that “by assuming a deterministic relationship between cloud

coverage and hourly global solar radiation, the need for measurement of the latter

disappears.” The model by Ehnberg and Bollen (2005) stochastically and synthetically

generates an irradiance time series from a first order Markov chain process with MTMs

derived from time series of N . The output is 6 min time series of irradiance with

intended application in grid impact analysis. The authors note yearly, seasonal, daily as

well as random patterns in the analysed GHI and used standardised clear sky irradiance

calculations and coupled them with distributions of GHI at each value of okta, this is

further explained by Gueymard and Wilcox (2011) who state that the GHI accumulated

during a year is practically independent of GHI of a proceeding or subsequent year.

The methodology by Ehnberg and Bollen (2005) is the beginning of an excellent line

of research. Firstly, it confirms the success of a first order Markov chain approach to

modellingN . Secondly, linking the GHI by probability density to each value ofN allows

for synthetic and stochastic production of irradiance fluctuations. The work is not

properly validated, and so without recreating this work, it is difficult to comment on its

geographic limitation. The authors do suggest that it is applicable to anywhere within

the same climatic region, although this is speculative and presents an opportunity for

further research. 6 min resolution is also coarse for certain grid impact analysis.

Moving away from kc, kT and GHI based deterministic models, it is possible to use

a completely different theory termed a sun obscured methodology. A sun obscured

based model functions such that, at each time step, it is determined whether there

is a cloud blocking out the DNI or not. Previous mentions of models have typically

required an irradiance input as guidance, or have added random fluctuations to recreate

solar intermittency with no real guide from the most significant attenuator of solar

irradiance — clouds. The rationale of this thesis is to be able to produce irradiance

time series without the need of a prior irradiance input, similar to the early attempt by

Ehnberg and Bollen (2005). Gafurov et al. (2015) reiterates that the need for regional

irradiance comparisons within a synthetic irradiance model defeats the purpose of

synthetic irradiance modelling, as data must have already existed. Gueymard and

Myers (2009) state that relying on irradiance data can be a mistake due to the large

systematic errors involved in the recording method. They encourage less dependence

on datasets when deriving relationships and statistics. A sun obscured model is a type

less explored in the literature and removes dependence on solar irradiance time series

as an input.
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Morf (1998) was the first to produce a sun obscured type method by stochastically

deriving a time series of clear and cloudy periods before using a simple procedure to

estimate the irradiance into beam and diffuse subcomponents. Figure 3.5 demonstrates

the original sun obscured methodology by Morf (1998). The duration for periods of sun

obscured are driven by the negative natural log of a random variate evenly distributed

between 0 and 1, R, multiplied by the mean duration of a clouded period, which were

determined through analysis of sample observation data; the same method is employed

for clear periods. This treatment of clear periods as the same as clouded periods

could prove useful for mathematically representing the sky. A first order Markov

chain process is employed to drive the MTMs of the clear and cloudy periods. Using

conventional clear sky irradiance calculations and separating the irradiance into beam

and direct components, a synthetic irradiance time series was generated without the

need for irradiance data inputs. This work was extended by Morf (2011) with the

conception of quantifying the cloud amount across a spatial domain and analysing

the application of a stochastic process using N . The study and validation of the

stochastic N time series demonstrated the success of first order Markov chain ability

at reproducing N .

A particularly promising finding from the work by Morf (1998) and Morf (2011) was

that the steady state probability distribution of N is invariant to the size of the ob-

served area. This opens up the possibility to synthetically map the sky, knowing

that over the hour, an element in a spatial domain will converge towards the value

of measured N . Neither research papers by Morf (1998, 2011) considered irradiance

generation with fluctuations caused by cloud or other variability inducing elements. A

further development by Morf (2013) employed a two step process to include irradiance

fluctuations. Firstly, the strict on/off shape of the sun obscured methodology (figure

3.5 bottom) was smoothed before feeding the smoothed signal into a window filter,

which uses the moving average of the input signal. This approach to fluctuations does

not consider observable phenomenon of irradiance fluctuations such as cloud edge en-

hancements and smoothing as a function of cloud cover, and so there is an opportunity

to implement or develop a better tool for modelling the solar variability using a sun

obscured methodology.

3.2.1 Summary of identified research opportunities

The literature reviewed here can be summarised into the following research opportu-

nities that facilitate temporal synthetic solar irradiance generation:
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Figure 3.5: Demonstration of the sun obscured methodology derived by Morf (1998).
Top) the stochastic insolation function over time, where 1 and 0 indicate clear and
clouded periods, respectively. Bottom) the corresponding irradiance output as guided

by the stochastic insolation function.

• The application of random number generation to statistically accurate irradiance

fluctuations was shown to be a useful method of filling the gaps between hours.

Using statistics that do not relate directly to an irradiance time series, such as

N , in combination with random number generation could aid in synthetically

representing irradiance fluctuations.

• Similarly to the use of sky classifications dictating the distribution of kT, the use

of N in place of sky classifications could be used to determine the distribution of

clear sky or clearness indices.

• The capturing of a TMY for well balanced statistical representation of meteoro-

logical observation variables is imperative for accurate generation of short and

long time scale simulations.

• Stochastically driven models using first order Markov chains are highly appropri-

ate tools for variables such as N , temperature, kT and kc. The utilisation of first

order Markov chains is proven to be an effective synthetic generation technique.

• Creating density functions of kT is popular. As discussed in section 3.1, kc is

a more appropriate description of the clouds. There is scope for classifying kc

by different sky classifications or other meteorological variables and producing

density functions for stochastic use.

• Sky type that is separated by season can be reproduced synthetically and stochas-

tically using Markov chains. This presents an opportunity for using readily avail-

able cloud amount data and performing stochastic analysis for the recreation of

seasonally accurate sky conditions. Furthermore, the diurnal predictability of kc

suggests that the inclusion of a diurnal dependency within a model would be a
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useful inclusion. As kc describes solar attenuation from clouds, it suggests that

N could also be represented diurnally.

• The development of a model that does not require an irradiance input at point

of use so that the methodology can be considered truly synthetic.

• The inclusion of solar variability over yearly, seasonal, monthly and daily time

scales could help maintain irradiance fluctuation validity at increasing time scale

analysis.

• A sun obscured methodology has demonstrated the most flexibility for synthetic

solar irradiance generation.

3.3 Methodology of the Solar Irradiance Generator

The SIG presented in this chapter has been separated into 7 distinct sections. They

are listed below with a brief description of what can be expected in each.

• 3.3.1 Input data requirements

– A discussion of the observational data requirements for the SIG and prepro-

cessing for use. A list of the user defined inputs that allow flexible model

utilisation.

• 3.3.2 Cloud sample production

– Definition of a cloud sample and explanation of the calculations and pro-

cesses involved with their production.

• 3.3.3 Constructing the Markov transition matrices

– Description of the fundamental mathematics, method of separating by sea-

son, diurnally, and pressure state, creation of the MTMs and their imple-

mentation within the SIG.

• 3.3.4 Stochastic generation of weather variable time series

– Detailing of the process of stochastic weather generation to produce time

series of N , pressure, cloud height and wind speed. This is sectioned into the

preliminary initialisation settings, and by each variable being stochastically

generated.

• 3.3.5 Sun-Earth geometry
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– Method of calculating the solar position relative to a point source on the

Earth’s surface. Calculations of solar angles and time required for irradiance

calculations.

• 3.3.6 Generation of clear-sky indices

– Breakdown of the method to generate a time series of the clear-sky index.

Detailing the methodology that considers the relationship between N and

kc, adding fluctuations, smoothing during periods of stability, variability

and intermittency.

• 3.3.7 Irradiance calculations

– Review of appropriate irradiance calculations and their implementation within

the SIG. Detailing the application of the clear-sky indices, the separation of

GHI into its direct and diffuse subcomponents. Translation from GHI onto

an arbitrary plane.

For better visualisation of the SIG, a flow chart is produced and shown in figure

3.6. The green parallelograms are indicative of inputs into the SIG. Whilst there

appear to be many, only the top left “Observation Data” requires a data source. Each

of the blue rectangles represents a distinct section of script found within the SIG.

These roughly correspond to the sections within this chapter with the exception of the

irradiance calculations, this section is separated in the flow diagram into theoretical

clear sky irradiance process and the Global horizontal irradiance and tilt onto arbitrary

plane process, although they are discussed together within this chapter. The output

irradiance time series are represented by the yellow parallelogram.

All data processing was performed using the commercial software package Matlab

r2015a (Matlab, 2015). The raw computer script for the SIG is appended in section A.

An example of the SIG output and a brief representation of the stochastic sun obscured

method is demonstrated in figure 3.7. Figure 3.7a shows the stochastically generated

N in okta for corresponding hours. N transitioned in 20 of the 24 time steps and so

would be considered an unstable day with high scattering of cloud. This is further

demonstrated by the figure 3.7b, which presents the one-dimensional sun obscured

representation of cloud cover, where black indicates the presence of a cloud, white

representing clear sky. The ratio of clear to cloudy within each hour of the simulation

is equal to the corresponding okta number in the figure 3.7a. Figure 3.7c shows the

resultant tilted irradiance time series for the simulated day typical of June in Leeds,

UK. Periods of intermittency are directly proportional to presence of cloud, as is ex-

pected in a sun obscured methodology. Furthermore, irradiance variability can be seen
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Figure 3.6: Flow chart summarising processes within the SIG. Green parallelograms
represent an input into the model, blue rectangles represent a process, and the yellow
parallelogram at the bottom indicates the synthetic irradiance output times series.

during the intermittent periods, this is most noticeable at intermittent periods at 4pm

and 7pm.

3.3.1 Input data requirements

This section is separated into two categories: input observation data and user defined

inputs. The input observation data is the raw data used to generate the MTMs, while

the user defined inputs are for the SIG simulation parametrisation to enable the most

appropriate output irradiance time series.
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Figure 3.7: An example output of the SIG for a typical day in June for Cambourne,
UK, that visually demonstrates the fundamental working of the SIG. Plot a) shows
the mean okta number stochastically derived at each hour. Plot b) shows the corre-
sponding cloud cover time series in a minutely resolution, where black is indicative
of cloud present and white indicating periods of clear sky. Plot c) shows the resul-
tant tilted irradiance, although this simulation was performed on a plane horizontally

aligned for Cambourne, UK.

3.3.1.1 Input observation data

The raw observation data inputs required for the SIG are mean hourly weather obser-

vations of the following list. Note that the choice of unit is selected as they are the

unaltered format of the UKMO:

• mean sea level pressure, p (hPa)

• wind speed, u10 (recorded at 10m above surface, knots)

• cloud base height, z (decametres)

• total cloud amount, N (okta)
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The listed units are the raw format used in this model. Conversions are used within

the SIG from hPa to mbar, knots to ms−1 (0.515 ms−1/knot as defined by Met Of-

fice), decametres are reduced to metres and okta are converted from N (eighths) to C

(tenths).

In order to capture accurately the probability statistics of a TMY, a minimum of 10

years of observational data are recommended (Fernández-Peruchena et al., 2015). It is

common that faults and routine maintenance interrupts constant recording of variables;

gaps can range from hours to months. For this reason, 12 years of observation data

were taken to ensure analysis of at least 10 worth years of weather transitions.

As was discussed in section 1.2 and 3.1.4, the UKMO (2010) maintain long term mete-

orological data sets of weather observations in the Met Office Integrated Data Archive

System (MIDAS) data set (MIDAS, 2015) and is operated by the British Atmospheric

Data Centre (BADC, 2013). Within the data sets, the UK Hourly Weather data ex-

ists that records 104 weather parameters. These data sets are available with excellent

geographic dispersion around the UK as was shown in figure 1.2.

The hourly weather data is extracted from the data base all sites by year in text format

documents. Each observation station has an individual identification number that can

be used to extract the relevant data for the location of study. Data undergoes various

quality controls at observation and can result in duplicates of certain hours. Where

this occurs, the observation with the most recent time stamp is selected, as is suggested

by the Met Office.

The steps for data preparation are as follows:

1. Import data assigning a known value for missing measurements (-9999 was used)

2. Filter required data by using unique station identifier

3. Order chronologically

4. Remove duplicates by selecting the most recent time stamped observation

5. Commit to file for use in the SIG

3.3.1.2 User defined variables

The SIG is built and designed with consideration for potential future development and

so has some flexibility with user input. The SIG is robust enough to handle variants of

all user defined inputs. The script for the user defined variables is found in appendix

section A.2. The user defined inputs are as follows:
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• The simulation start day, dt=1

– The day number, where 1 is equal to 1st January up to 366 equalling the

31st December. If the year is not a leap year, 366 will become 1st January

of the following year. Numbers outside of these ranges will become the 1st

of the same or following year, accordingly.

• The simulation start year, yt=1

– Any year is theoretically achievable, although is limited by the capability

of the Sun-Earth geometry methodology selected. Years tested were from

2001-2016.

• The duration of the simulation, Tt(1,2,...T )

– The input is required in years. Selecting a single day is possible by inputting

1/365. The minimum selection is one day.

• Longitude, Φ, and latitude, Θ

– Set the location of the study in degrees. Six significant figures were used

in the study. Φ and Θ are provided for each weather station by MIDAS

(2015), although can be determined using free online mapping applications.

• Height above sea level, zl

– Set zl for the location of study in metres. Provided at each weather station

by MIDAS (2015), although can be determined using free online mapping

applications.

• Panel pitch (tilt), βp

– The pitch is required in degrees measured from horizontal, 0◦, to vertical

at 90◦. The model will not accept values outside of this range and assign

outliers to the minimum or maximum accordingly.

• Panel azimuth (aspect or orientation), βa

– The azimuth of the panel is required in degrees measured with 0◦ as south

with angle moving clockwise. Values outside the range of 0◦ to 359◦ are

assumed to obey circular rotations. E.g. 360◦ would again represent south

and −90◦ = 270◦ would represent east.

• Range of wind speeds urange
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– The range of wind speeds available within the input data in ms−1. The

range could be altered to include higher speeds should a certain site use

different input data than MIDAS (2015).

• Number of cloud samples, ns

– ns number of cloud samples that are produced per value of cloud speed,

uref , and per value of C.

3.3.2 Cloud sample production

A fundamental part of this study is to produce statistically accurate time series us-

ing a sun obscured methodology. The sun obscured element is achieved through the

modelling of the sky as a series of clouds that will indicate whether or not the sun is

covered. To do this, the clouds must be synthetically represented.

A terminology is introduced here for simplicity throughout methodologies. As the SIG

is computationally produced, the variables are structured in either one-dimensional or

two dimensional computational matrices. These will be denoted as 1DM or 2DM.

A cloud sample is a term conceived by the author. It is a Boolean 1DM that represents

the sky for one hour. A Boolean 1DM contains only 1’s or 0’s for use in logical

operation. The resolution modelled in the SIG is 1 min and so a cloud sample will

have 60 elements within the 1DM, each containing a 1 or 0 representing obscured or

not obscured by cloud at each time step for the hour, respectively. An example was

demonstrated in figure 3.7b.

An interesting approach comes from Evans and Wiscombe (2004) who stochastically

generate “cloud fields” from radar profile statistics. Using these statistics and their

novel algorithm, a synthetic and statistically relevant two-dimensional representations

of the clouds in the sky can be produced. The key issue is that radar input data is

required in order to validate and produce the cloud fields, it is also an additional dimen-

sion than is not required for temporal only modelling. Discussion of two dimensional

cloud representations is made in section 4.2.2.

To the author’s knowledge, there are no other published methods to produce a cloud

sample. Other sun obscured methodologies have used statistical probability of a change

from an obscured to not obscured moment (Morf, 2011), however did not need to

produce a synthetic representation. A novel approach is presented that generates

synthetic 1DM cloud samples.
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In the SIG, two variable ranges are previously defined that can be used for cloud sample

production: the hourly mean cloud amount in tenths, C ( 0
10 to 10

10) and the cloud speed,

u10 (0 to 30 ms−1). A temporal methodology requires only a single passage of beam

irradiance from sun to the solar panel, therefore a representation of the whole sky is

not required and a one-dimensional approach is used.

The typical method for measuring N is to use a cloud base recorder, which uses a

vertical laser pulse to track cloud presence (UKMO, 2010). This measurement device

takes readings in a single direction and so the okta number derived is considered

an acceptable representation of an hour’s ratio between obscured and clear moments

directly above measurement, although perhaps not as accurate a measurement of the

entire observable sky Smith et al. (2017). The implication for synthetic generation is

that a one-dimensional format is well suited from okta measurement techniques and

that the final obscured to not obscured ratio within the cloud sample must be directly

comparable to the targeted coverage value.

The other variable considered to influence the synthetic generation of cloud samples is

the cloud speed, uref . Solar intermittency was shown to be a function of uref by Arias-

Castro et al. (2014). It is intuitive that the faster a cloud is travelling, the quicker

it will pass by a point on the surface and no longer obstruct the direct irradiance.

Should uref be known, the other influencing factor would be the size of the cloud and

the number of clouds in the sky.

Three fundamental statements can therefore be used to synthetically generate a cloud

sample:

1. Mean hourly N is an appropriate representation of the ratio of obscured to not

obscured minutes within a cloud sample.

2. With a fixed uref over an hour, intermittency becomes a function of the cloud

size and number of clouds.

3. Theoretically, a 1DM representation of a period of clear sky “moving” across a

point on the surface could be punctuated by a period of cloud defined by uref

and cloud size.

All values of uref and C can be stochastically selected within the SIG, and so ns number

of cloud samples for all combinations of both uref and C will be generated. The final

components required are the cloud size, x, and number of clouds, nc. The cloud

samples will be generated by following a distribution of x for a single linear dimension

in a Boolean 1DM format.
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Horizontal x distributions are shown to be well-represented using a single power-law

relationship using an exponent of β < 2 (Wood and Field, 2011; Stull, 1988; Leahy

et al., 2012; Pressel and Collins, 2012; Ray and Engelhardt, 1992). The single power-

law is shown in equation 3.3.

P (x) = αx−β (3.3)

where x is the horizontal cloud length, β is the exponent taken at 1.66 between 0.1-

1000 km (Wood and Field, 2011), α is a constant and P (x) is the probability that x

will occur.

This distribution by Wood and Field (2011) was produced using two separate imaging

techniques from the MODIS satellite and from aircraft observations. Their model that

proposes equation 3.3 was validated against both sets of data. The use of β < 2 allows

for variation in geography and season, the closer to 2, the wider the range of reproduced

cloud lengths making.

Equation 3.3 represents the probability of x without size limits. By rearranging equa-

tion 3.3, it is possible to introduce these size limits. This will facilitate its utilisation for

pseudo-random number extraction from the single power-law distribution. Equations

3.4 to 3.7 demonstrate how equation 3.3 can be modified for pseudo-random number

extraction.

x = (κ+ λR)
1

1−β (3.4)

R ∼ U(0, 1) (3.5)

where R is a random variable that is uniformly distributed between 0 and 1, and κ

and λ are coefficients defined by the upper and lower limits of x as

κ = x1−β
max (3.6)

and

λ = x1−β
min − κ (3.7)

where xmin is the minimum cloud length and xmax is the maximum cloud length.

These equations allow a cloud size to be extracted that follow the distribution outlined

by Wood and Field (2011).

The proposed cloud sample methodology is to make a single, very long, 1DM “cloud

population” distance series. Cloud population is a term used to describe a very long

stretch of cloudy and clear periods that can be used to extract cloud samples from.

Firstly, the cloud population is created with of zeros representing a stretch of clear
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sky, denoted x, then populate it with alternating lengths of obscured and not obscured

with length pseudo-randomly extracted from the modified Wood and Field (2011)

relationship. Each element in the cloud population has a resolution of 10 meters (the

smallest resolution defined by xmin). x is converted into units of time with a resolution

of 1-min. This is achieved through the decimation (or resampling) of x by a sampling

rate, ψ, that is a function of uref . The resultant 1DM cloud population time series

contains a binary representation of each minute’s coverage condition for an overall

maximum duration that is computationally achievable — the 1DM cloud population

time series of cloud cover indication is denoted xψ. A cloud sample can be randomly

extracted from any 60 min stretch within xψ, it can then be analysed to determine

C. The cloud sample can then be binned by the appropriate uref and C, for later

extraction during the stochastic weather generation phase.

The described methodology for cloud sample production can be broken down into the

following steps:

1. Define the length of x, urange, range of C and ns

2. Populate x with cloudy and clear periods using distributions of x

3. Convert the distance series x to time series xψ by resampling by ψ

4. Randomly select a 60 min cloud sample from xψ

5. Store the cloud sample in the appropriate bin indexed by uref and C

6. Repeat process until each bin (all combinations of uref and C) has ns samples

3.3.2.1 Producing a one-dimensional-matrix distance series of cloud cover

Computationally looping through x, a cloud is added with its x determined from

equation 3.4. Immediately following the cloud, a gap of clear sky is synthetically added

with clear horizontal distance drawn from the same distribution. This assumption is

valid as the x is not intended to be an accurate representation of sky, only a vessel

to hold potentially realistic options of which a clouded sky might manifest and is an

important tool for sun obscured methodologies (Morf, 2011). Furthermore, a gap is

required, as having two clouds back-to-back would alter the reproduction of the Wood

and Field (2011) distribution of x. Once x is populated, it is ready for resampling by

ψ.
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3.3.2.2 Producing a one-dimensional-matrix time series of cloud cover

A signal poly-phase filtering technique (implemented using the built in Matlab “re-

sample” function (Oppenheim et al., 1999; Matlab, 2012)) is applied that decimates x

by a sampling rate, ψ. The result is the Boolean 1DM time time series, xψ. For every

uref , x is resampled to ensure that the time resolution, tres is kept at 1 min.

The clouds are assumed to be travelling at a constant uref for each hour of simulation.

ψ can therefore be a function of uref and so the calculation of ψ used in the signal

poly-phase filtering technique is given by

ψ =
xres

u× tres
(3.8)

Where xres is the spatial resolution of x. For use in this model xres = 10 m and tres = 60

s, and so equation 3.8 can be expressed as ψ = (6u)−1.

3.3.2.3 Random extraction of a cloud sample

Hour long cloud samples can now be randomly extracted from xψ. C of the cloud

sample is then determined through equation 3.9.

C =

( i+59∑
i=nels×r

xψ

)/
60 (3.9)

Where the overline represents the mean, nels is the total number of elements in xψ, i

is therefore a random start point along the length of xψ.

Cloud samples are continuously extracted from xψ until there is a cloud sample database

consisting ofns samples for each possible uref at each C.

The script that details the cloud sample production method is shown in section A.1.

3.3.3 The Markov chain process and Markov transition matrices

To implement a stochastic element to the SIG, a Markov chain process is used. Markov

models are a very popular method of stochastic data generation and have been used

in many applications, from wind estimates (Masseran, 2015), solar energy estimations

(Bhardwaj et al., 2013; Vindel and Polo, 2014b; Hocaoğlu, 2011), and in weather

variable generation (Yang et al., 2011; Ehnberg and Bollen, 2005; Morf, 2011).
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The script for construction and implementation of Markov chains can be seen in ap-

pendix sections A.5 and A.6.

An MTM contains the probability of transition from any of the states to all other

possible states. They are therefore always square, examples are shown later within

this section.

3.3.3.1 Mathematical background of Markov chains

A Markovian process is a probabilistic mathematical method whereby transitions from

one state to the next are directed by discreet probabilities taken from the statistics of

real-world processes; the background was covered in section 3.1.3. In the case of the

SIG, statistics are developed from real observational transitions of N , u10 and z. From

these statistics, MTMs can be constructed.

The SIG uses a single order Markov chain process whereby only one previous time-

step, t− 1, influences the transition of states from t− 1 to t. Higher order transitions

exist beyond the first order, t − 1, through to the nth order, t − n, however Ehnberg

and Bollen (2005) successfully reproduced N with a first order Markov process and

so the same is used for the SIG. Ngoko et al. (2014) describes how a Markov process

(Mt, t = 0, 1, 2, . . . T ) that has s allowable states (1, 2, . . . , s) is in state 1 at time t if

Mt = 1. Note that t is a relative term indicating the current time step. The simulation

runs to duration T from t(1, 2, . . . T ) and so t − 1 denotes the previous time step

regardless of the time step.

In this first order Markov process, allow the previous time step (Mt−1) to be in state

1, and the next time step (Mt) to be in state 2. This illustrates that, Mt−1 = 1 has

undergone a transition to Mt = 2. This transition is denoted (Mt−1 = 1|Mt = 2).

The chance of this transition occurring is given by discreet probability P12. It is

calculated by counting the observable transitions of (Mt−1 = 1|Mt = 2) and dividing

it by the total number of times that Mt−1 = 1 has undergone any transition to any

state (Mt−1 = 1|Mt = s). P12 can therefore be expressed as

P12 =

∑
(Mt−1 = 1|Mt = 2)∑
(Mt−1 = 1|Mt = s)

(3.10)

These probabilities are stored in a first order MTM, P1, and can be represented as
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Table 3.3: Indication of how the MTMs for each weather variable are separated
accounting for seasonal, above and blow pressure and diurnal differences.

Weather variable By season By pressure Diurnally Number of MTMs

Cloud amount X X X 12
Cloud height X 4
Wind speed X 4

P1 =


P11 P12 . . . P1s

P21 P22 . . . P2s

...
...

. . .
...

Ps1 Ps2 . . . Pss

 (3.11)

Note that the sum of each row is equal to 1 as it contains all the possible state transition

outcomes, each row is therefore a probability density function (PDF). Columns cannot

be compared in this way as they are independent of each other.

3.3.3.2 Constructing the Markov transition matrices

Constructing an MTM requires the conversion of a variable’s range of magnitudes into

discreet states. For N , each okta number (0, 1, . . . , 9) is a unique state. Variables of z

and u10 are rounded to the nearest integer for binning into discreet states.

The number of MTMs must be defined, this is because variables are to be separated

by season, diurnally and for above and below average pressure systems. These are

indicated in table 3.3. When a variable is separated by season, four MTMs will be

produced. N is separated further by above and below average p, doubling the number

of MTMs required as each pressure group is then divided by season. An additional

four N MTMs are produced for the morning of each season, defined as before 6am.

Therefore, there are 20 different MTMs to be produced. These MTMs are filled with

the transition probabilities using the previously described mathematical method.

Firstly, the mean of all p observations is calculated, p, and used as a marker that

defines whether or not an observation is classified as above or below average pressure.

High and low pressure systems within the UK offer very diverse and often distinct

weather patterns. High pressure systems often bring stability and clear skies, this is

due to the sinking air that lowers the tendency for water vapour to form into clouds on

account of the temperature and humidity of transported air. In low pressure systems

the reverse occurs, resulting in increased cloud formation and often bringing broken

and scattered rain clouds and infrequent clear-sky (MetOffice, 2015). The hypothesis

is that, by splitting the observations by above and below average pressures, these
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pressure dependent weather tendencies may be captured. It is acknowledged that a

high or low weather pressure system is relative to the pressure systems and geography

that surround them, however, using p is a very simple mechanism to achieve consistent

differences in the MTM probabilities.

Season indicators are determined. This is done by assigning respective values of 1–4

representing spring through winter. Each season offers unique weather, particularly

in temperate climates that have distinct seasons. By separating the weather variables

by season, it is hypothesised that the inherent seasonal weather will be statistically

captured within each MTM.

The final indicator to be produced is that of a diurnal dependency. There is an in-

creased tendency for higher N states during the morning as the introduction of the

sun’s heat destabilises the atmosphere, and so the build up to sunrise is appropriately

modelled. <6am is considered the cut-off because it is a typical sunrise in the summer

for the applied study locations (around Θ = 50◦). 5 hours allows 5 okta transitions

and is considered an appropriate duration for the slight propensity to shift towards

increased okta to manifest.

The steps taken to produce the 20 MTMs are summarised as:

1. Determine the mean sea level pressure, p, of all observed p data and assign above

or below average pressure indicators to each observation

2. Determine the season using the time stamps and assign seasonal indicators to

each observation

3. Determine observations that occur during the morning (between 00:00–06:00)

and assign indicators (1–4) to each observation

4. Loop through entire length of observation data of all variables (N , z and uref )

• Select the appropriate MTM using the three types of indicators (consider-

ations shown in table 3.3)

• Keep a tally in the MTM at appropriate element (as demonstrated in section

3.3.3.1)

5. Convert tallies into probability density functions, and therefore MTMs, as per

equation 3.10

Once these steps are complete, the MTMs holds rows of the PDF of each state tran-

sitioning to all other states. An example of a fully populated MTM of variable N is

shown in figure 3.8 where the probability of transition is represented as a colour with
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Figure 3.8: Colour plot illustrating the MTM for the mean annual transition prob-
ability of okta number from the current hour (y-axis) to the next hour (x-axis). This
MTM was made using data taken from the MIDAS (2015) data sets for Cambourne,

UK.

the key shown on the right. This particular MTM details N that is not separated

by season, pressure or time of day. It is therefore the mean transition probability.

There is a distinguished pattern in the y = x direction (note the orientation of the

y-axis direction, this is the natural orientation for MTMs). The pattern is indicative

of a tendency for an okta value to transition to the same value from one hour to the

next. Physically this represents N staying the same from one hour to the next. The

probability for 0 okta to transition to 0 okta in Cambourne for the whole year is,

P (Mt = 0|Mt−1 = 0) = 0.71.
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3.3.3.3 Implementing a Markov chain

For computational use of MTMs within a stochastic process, the row PDFs are con-

verted to cumulative probability functions (CDF), denoted as P1
C , using the following

P1
C =



P11 (P11 + P12) . . .
s∑

n=1
P1n

P21 (P21 + P22) . . .
s∑

n=1
P2n

...
...

. . .
...

Ps1 (Ps1 + Ps2) . . .
s∑

n=1
Psn


(3.12)

The implementation of MTMs in a stochastic process is achieved in four steps that are

visually demonstrated in figure 3.9. In this plot, the transition from state s at Mt−1

to a new state at Mt is presented. The green circle indicates the first time step and

the yellow circle indicates the second time step. To transition between the two, the

process enters the four step process coloured orange. In this example, a simple 3 state

variable is used; its P1
C is shown in the bottom left inside the green dashed box. Each

row of the MTM represents a unique CDF of a state’s transitions. s at Mt−1 is equal

to 1. The first step is to extract the appropriate CDF from the MTM, P 1
C(st−1|s), this

has been colour coded for ease. The second step is to employ a pseudo-random number

generator that drives the stochastic selection.

The variable R is derived from a uniform distribution between 0 and 1, R ∼ U(0, 1).

R is then queried against each of the probabilities inside of P 1
C(s|st−1) using a logical

if statement such that if R is greater than the individual probability, a value of 1 is

assigned, else a value of 0 is assigned. The result is a Boolean matrix, R, that will be

used to indicate the next state. It is expressed as

R = R > P1
C(st−1|s)

if−−−−→

1 true

0 false
(3.13)

The final step to determining the state is by taking a sum of the 1DM Boolean matrix

R. All variables are structured in a 1DM and ordered with predetermined resolution

for each element, ω. For example, each element for cloud height represents 100 m and

so ω = 100 for z. R contains the number of states that satisfies equation 3.13, and

therefore the state indicated by R can be calculated as

st = (1 +
∑

R)× ω (3.14)
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Figure 3.9: Demonstration of the stochastic Markov chain process from the current
hour, Mt−1 = 1, to the next hour, Mt = 3. In the bottom left, the cumulative
first order MTM for an arbitrary variable containing 3 states is shown, P1

C . As the
current hour is at state 1 (Mt−1 = 1), the appropriate row of P1

C(S|1) is selected. The
stochastic process is looped through, as indicated by orange arrows until Mt is found
to be at s = 3. This process is repeated for t(1, 2, . . . , T ). However, Mt becomes Mt−1

at each time step, t.

Once all MTMs are produced, their implementation in stochastic generation of weather

time series can occur.

3.3.4 Stochastic generation of weather variable time series

This section will detail the process of obtaining stochastic weather variable time series

of z, u10, and N . This part of the model can be thought of as the weather variable

generator.

The outcomes of this section are stochastic time series of the weather variables, as

well as perfect time series of time stamps that indicate the year, month, day, hour,

minute and the season at each time step. Furthermore, through application of the

cloud samples, a minutely time series representation of C is produced, which is a

binary 1DM containing the state of cloud each minute of simulation denoted C, this

is the only variable that presents intra-hour variability.
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3.3.4.1 Initialising the weather variable generator

Before variables can be stochastically generated, an initiation sequence is run that

facilitates the weather variable generator. As the SIG allows for user defined inputs,

it must be robust and flexible enough to allow for input variation. For example, the

SIG must be flexible to leap years, changing starting day, and any simulation duration.

This section will discuss the steps to initiate the weather variable generator, the script

for this can be referred to in appendix section A.6.

The weather variable generator must be initialised with starting values for each weather

variable. Ehnberg and Bollen (2005) state that choosing arbitrary starting conditions

of variables has no long term influence on the stochastic process. For this reason,

variables are selected randomly from their individual normalised maximum variable

ranges using a random variate drawn from a uniform distribution as follows

Nt=1

u10,t=1

zt=1

 = U(1, 0)×


Nmax

u10,max

zmax

(3.15)

zmax is derived from the observable data as the maximum observable, whereas Nmax

and umax are previously known as 9 okta and 60 ms−1, respectively. The output of

equation 3.15 is rounded to the nearest appropriate integer.

In order to select a pressure system duration, Pd, a frequency table for each above

and below average system duration is produced. A PDF of Pd is developed for both

pressure states. These can then be used in conjunction with a pseudo-random number

generator to extract Pd. The current run time of a pressure system is updated with

each time step of the simulation. When Pd expires, a new duration is selected. An

assumption is that the pressure systems always alternate between above and below

average.

3.3.4.2 The weather variable generator process

Using the initialised variables, appropriate MTMs can be selected for each variable as

the pressure state, hour of day and season are all now known from initialisation.

The weather variable generator takes each hour of simulation as a time step in chronol-

ogy. At each hour of simulation, N , u10 and z are stochastically selected from the

appropriate MTM following the process outlined in section 3.3.3.3.
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N is converted to C as detailed in table 3.1. The benefit of this conversion is that a

wider range of obscured to not obscured fractions can be produced, enabling better

total cloud amount flexibility.

An assumption is that clouds travel at the same speed as the wind speed at the height

of which they exist. This is intuitive as the wind speeds are what drives cloud motion.

The cloud speed at a reference height is denoted uref . For clouds in the atmospheric

boundary layer u10 can be extrapolated using the stochastically selected value of z as

the target reference height, zref , as shown in equation 3.16. The atmospheric boundary

layer fluctuates in height, however the supporting documentation recommends using

an extrapolation for up to 1 km.

To extrapolate u10 from 10 m measurement to a height of zref , the following logarithmic

profile extrapolation from Best et al. (2008) is used

uref = u10
ln(zref/z0ref)

ln(10/z0ref)
(3.16)

where z0ref is the roughness length of the location set to 0.14 for rural locations (Best

et al., 2008).

Above the atmospheric boundary layer, the geostrophic wind speeds in the free atmo-

sphere are influenced by pressure and thermal gradients (UKMO, 1997). Estimating

geostrophic wind speeds is difficult using mean hourly surface observational data, thus

presenting one of the limitations of the SIG. Without readily available information

of atmospheric pressure and thermal gradients, alternatives must be used. Excellent

methods exist to estimate uref , such as the wavelet variability model (Lave and Kleissl,

2013), however, the data input required is an irradiance profile — an input avoided in

the rationale of this methodology. Future development is required to truly address uref ,

the validation results however were found to be relatively insensitive to this aspect,

and so at this time a guided estimation is utilised. Using the same urange as used in

the wavelet variability model (0 to 25 ms−1) and typical geostrophic wind speeds of

3.5 ms−1 (Mathiesen et al., 2013), the estimated wind speed at cloud heights above 1

km is determined allowing variation between the suggested range with the mean found

at the typical free atmosphere wind speed as

uref,(zref>1km) ∼ Γ(2.69, 2.14) (3.17)

Where Γ(·) is the gamma distribution function, 2.69 is the Gamma shape parameter

of the and 2.14 is the Gamma scale parameter fitted to have mean uref = 3.5 ms−1

with a urange of 0 to 25 ms−1 (Mathiesen et al., 2013).
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Now that uref and C are defined, a cloud sample can be selected from the cloud sample

database. The indexing equation for selecting the appropriate bin can be seen on line

73 in appendix section A.7. The equation is robust for flexibility with range of uref

and nc, a random variate from U(1, 0) is used to select from the bins containing ns

options of cloud sample per uref per C.

The final step in the weather variable generation is to update the time stamp and re-

initialise the variables. The year, month, day and hour must be defined at each time

step of simulation. An hour is added at the end of each iteration, all time resolutions

are updated against the new hour. The hours within the simulation operate from 1 to

24. These indicate the 1st and 24th hour of the day and so hour 1 represents 00:00–

01:00, and hour 24 represents 23:00–00:00. Should the hour move from 24 back to 1,

the day number is increased. Should the day number move outside of a month’s range,

the month is increased. Should the month move from December to January, the year

is increased. The season is defined using day numbers. With the new time stamp, the

MTMs can be initialised again for use in the stochastic selection of a variable.

This whole process is repeated for the entire user defined duration of the simulation.

The result is a Boolean 1DM time series of cloud cover with a 1-min resolution, C. C

is the sun obscured part of the SIG and is used in the production of kc, and ultimately

GHI.

An example of stochastic progression of time series can be seen in figure 3.10. It shows

the stochastic time series of the three generated variables of C, z and uref . Notice some

correlation between the cloud height and cloud speed, as is consistent with equation

3.16.

3.3.5 Sun-Earth geometry

As each minute within C is to be aligned with theoretical irradiance, it is critical to

know the sun’s position in the sky as viewed from the location on the Earth’s surface,

as input from latitude Θ and longitude Φ.

This section discusses the options of calculating the sun’s position relative to a location

on the surface of the Earth.

3.3.5.1 Background to calculating solar angles

Before exploring the literature options for solar geometry calculations, some definitions

must be defined first. To describe the position of the sun in the sky as it would be
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Figure 3.10: Examples of the stochastically generated time series of (top) the cloud
amount C in tenths, (middle) the cloud height zref in m, and (bottom) the cloud
speed uref in ms−1. The resolution is 1-hour and spans for 15 full days modelled for

1st-15th January 2012

viewed from a point on the Earth’s surface, two angles are required: the solar zenith

angle, θz, and the solar azimuth angle, τ . Equations for both are described later in

this section.

θz is the angle that describes the distance of the sun away from the vertical zenith

from a point on the Earth’s surface. It is dependent on the time of day as well as the

solar declination, δ. τ describes the horizontal position of the sun in relation to the

southern meridian. Some authors use an alternate definition that describes the τ from

the north meridian, this thesis will use the definition where τ = 0◦ describes the sun

as directly south of a point on the Earth’s surface, increasing in a clockwise manner

where 90◦, 180◦ and 270◦ are west, north and east, respectively. Much like θz, τ is

dependent on time and δ. Both angles are shown in 3.11.
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Figure 3.11: Simple diagram of a sky dome indicating measurements of the solar
zenith angle, θz, measured between the local vertical and the direction of the solar
beam; and the solar azimuth angle, Az although denoted τ in this thesis, measured
from the south meridian to the direction of the sun. All these angles are in relation
to a point P, on the Earth’s surface (image reproduced with permission from ITACA

(2015)).

There are many methodologies to determine the Sun-Earth geometry. The requirement

of the SIG is to produce the geometry to a high accuracy to facilitate high temporal

resolution. For this reason, only literature dealing with high accuracy estimates of θz

and τ are considered. Importance is placed on the accuracy of the model, however

there is a trade off with computational complexity and input requirements. The most

appropriate model is therefore the greatest accuracy offered within the acceptability

of computational power. As this model can be used for concentrating solar power

systems as well as PV, a higher accuracy (< 0.005)) is desirable. Application in

solar concentration and tracking technologies require a higher accuracy than stationary

systems, as stationary systems can tolerate errors of a few degrees before significant

losses occur (Grena, 2012). Table 3.4 lists some of the most significant literature that

calculates the Sun-Earth geometries. Uncertainties are typically ≤ 0.01◦ in solar zenith

and azimuth calculations.

Of these models, Blanco-Muriel et al. (2001) presented the Plataforma Solar de Almeria
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Table 3.4: Solar parameters calculated by different authors. This table was repro-
duced from Blanco-Muriel et al. (2001) and updated by the author. δ is the declination
angle, ra is the right ascension, EoT is the equation of time or equivalent, θa is the

azimuth angle, and θz is the zenith or elevation angle.

Reference δ ra EoT θa θz
Cooper (1969) X
Spencer (1971) X X
Swift (1976) X
Pitman and Vant (1978) X X
Walraven (1978) X X X X
Lamm (1981) X
Michalsky (1988) X X X X X
Blanco-Muriel et al. (2001) X X X X X
Reda and Andreas (2004) X X X X X
Grena (2008) X X X X X
Chang (2009) X X X X X

(PSA) algorithm that is the most often used, reportedly for its simplicity and low error.

There are more benefits to this methodology. It has a more efficient and simplified

method of calculating the Julian Day from an input of calendar date, has a higher

computational efficiency, models earlier than the Blanco-Muriel model are inaccurate

for the southern hemispheres, the only input requirements are time and location of

which both are input by the user. These reasons make the Blanco-Muriel et al. (2001)

model ideal for use in the SIG.

More modern methodologies exist such as the Reda and Andreas (2004) who present

the Solar Position Algorithm (SPA). The SPA offers a very low error of < 0.0003◦

and performs significantly better than the PSA at higher zenith angles, however it

requires the local atmospheric pressure and temperature as an input. This is also true

of the most accurate method found at time of writing by Grena (2008). Neither the

pressure nor temperature are known at each minute, which makes these methodologies

unsuitable for use in the SIG.

The PSA by Blanco-Muriel et al. (2001) is not without flaw. The time period of

validity is 1995-2015 without further analysis and updating the constants within the

method. This still does not present an issue to the proposed methodology as the

observation data and data used in validation are within these limits, however, it does

present an opportunity for future improvement. Other methods exist to obtain greater

flexibility with the time range of such as Reda and Andreas (2004), Grena (2008)

and Grena (2012) which operate between 2000 BC to 6000 AD. As mentioned, these

models require pressure and temperature, furthermore, they have significantly higher

computational demand (orders of 10 times more). For all these reasons, the model
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proposed by Blanco-Muriel et al. (2001) is selected for implementation within the SIG

as it the most appropriate for application in grid impact analysis.

3.3.5.2 Blanco-Muriel PSA algorithm methodology

The inputs required in the PSA are time and location. Time can be input in calendar

format as five separate variables of year, month and day (y, m and d, respectively)

with the Universal Time in hours and minutes (h and min). These are all SIG outputs

from section 3.3.4. The location is required in degrees, these are user defined inputs of

Θ and Φ, which each MIDAS (2015) station provides to four decimal places.

The following equations detail the PSA model. Some symbols differ from the original.

All of the following are calculated using 1DM time series for each variable presented.

The Julian Day, JD, is calculated uniquely by Blanco-Muriel et al. (2001). It is an

integer assigned to the whole solar day, beginning with 0 at noon on the 1st January

4713 BC in accordance to the Julian calendar. The PSA expression of JD here allows

for the hour to be modelled, and subsequently the minutely fraction of JD through

use of h containing minute fractions. JD is calculated as

a =

⌊
m− 14

12

⌋
(3.18)

JD =

⌊
1461(y + 4800 + a)

4

⌋
+

⌊
367(m− 2− 12a

12

⌋

−

⌊
3(y + 4900 +

⌊
a

100

⌋
4

⌋
+ d− 32075− 0.5 +

h

24
(3.19)

The use of b c is a modulo, floor or integer division function whereby the remainder

in the division is disregarded. Note that the final division of equation 3.19 is not an

integer division.

In the PSA, JD is normalised to 1st January 2000 and made to begin at midnight as

opposed to noon using the following adjustment.

JDn = JD − 2451545.0 (3.20)

The sun’s ecliptic coordinates of ecliptic longitude Φsun and the obliquity of the ecliptic

ep are derived from JDn.
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Ω = 2.1429− 0.0010394594× JDn (3.21)

Φsun = 4.8950630 + 0.017202791698× JDn (3.22)

Where Φsun is the mean longitude of the sun.

g = 6.2400600 + 0.0172019699× JDn (3.23)

Where g is the mean anomaly of the sun.

Φsun = Φsun + 0.0334160 sin(g) + 0.00034894 sin(2g)− 0.0001134− 0.0000203 sin(Ω)

(3.24)

ep = 0.4090928− 6.2140e−9 × n+ 0.0000396 cos(Ω) (3.25)

From the ecliptic coordinates, the celestial coordinates of the right ascension, ra, and

the solar declination, δ, can be calculated.

ra = tan−1

[
cos(ep) sin(Φsun)

cos(Φsun)

]
(3.26)

care must be taken that ra value is greater than 0. Blanco-Muriel et al. (2001) add a

logical query that adds 2π to ra should it fall below 0.

δ = sin−1
[

sin(ep) sin(Φsun)
]

(3.27)

The next step in the PSA is the conversion from celestial coordinates to horizontal

coordinates. This requires the time format of Coordinated Universal Time (UTC)

whereby hours can be positive and negative either side of UTC with a decimal repre-

sentation of minutes (e.g. 17.5 would be 17:30). In this time format, the hour angle ω

can be calculated. ω is used to describe the solar time as a rotation such that −180◦ is

solar midnight through to 0◦ at solar noon, approaching 180◦ as time approaches solar

midnight once more.

gmst = 6.6974243242 + 0.0657098283× JDn + h (3.28)

Where gmst is the Greenwich mean sidereal time.

lmst = (gmst× 15 + Φ)
π

180
(3.29)
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Where lmst is the local mean sidereal time.

ω = lmst− ra (3.30)

Finally the θz and τ can be determined from Θ, ω and δ.

θz = cos−1
[

cos(Θ) cos(ω) cos(δ) + sin(δ) sin(Θ)
]

(3.31)

τ = tan−1

[
− sin(ω)

tan(δ) cos(Θ)− sin(Θ) cos(ω)

]
(3.32)

Blanco-Muriel et al. (2001) apply a correction to θz termed the parallax correction,

Plax

P lax =
rE
u

sin θz (3.33)

Where rE is the Earth’s mean radius taken as 6371.01 km and au is the Astronomical

Unit taken as 149, 597, 890 km. Lastly, the parallax correction is applied.

θz = θz + Plax (3.34)

Further reading and an in depth discussion of the angles and concepts are provided by

Kalogirou (2014).

3.3.6 Generation of clear-sky indices

This section will detail how a time series of kc is created accounting for different okta

states, sun obscured moments, random fluctuations and states of cloud stability. This

time series of kc will be denoted kc. As discussed in section 3.1.2, the irradiance

will be expressed in terms of the clear-sky index kc, a ratio that parameterises the

atmospheric transmission of irradiance. It is found as the ground measured irradiance

over the clear sky irradiance, kc = G/Gcs. The SIG script regarding this section can

be seen in appendix section A.9.

3.3.6.1 Relationship of clear-sky index to total cloud amount

In order to account for the varying optical thicknesses from clouds, kc is selected from

a distribution as opposed to a fixed value. The hypothesis proposed here is that

the irradiance presents a statistical distribution with a one-to-one relationship to N ,

kc = f(N). In order to test this hypothesis, the author entered into a collaboration with
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research partner Dr Christopher J. Smith, who at the time of writing was undertaking

a PhD in computational methods for assessment of solar energy potential in present

and future climates. The hypothesis proposed here after collaboration was extended

and developed upon and published (Smith et al., 2017). The idea was conceptually

the authors’. The design of the methodology to analyse k = f(N) was a collaborative

effort however the coding to derive the relationship was carried out by Dr Smith. The

intention is to develop distributions of N = 0, 6, 7, 8, which describe periods of clear,

partially cloudy, nearly overcast and overcast skies, respectively. For N = 1–5, there

are significant areas of clear sky, this presents the challenge to estimating the sun

obscured portion of the kc distribution. For this reason, N = 6 is assumed to be

representative of the distributions associated with partly clouded sky, and so clouds

that exist within N = 1–6 will be represented by the optical depths described by the

kc distribution for N = 6.

Perhaps one of the most popular methods of calculating Gcs is the DISORT radia-

tive transfer model (Stamnes et al., 2000). There were 49 publications mentioning

or directly using the DISORT package in 2016 alone. This is unsurprising as it has

had commercial development since its creation in 1988, with many journal publica-

tions detailing its development. DISORT is one of the standard radiative transfer

solvers in the libRadtran package (Mayer and Kylling, 2005). For this ease of ap-

plication and well received reviews and development from the scientific community,

DISORT is the methodology of choice to calculate estimations of Gcs for deriving

the kc = f(N) relationship. In the DISORT calculations, the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis data is accessed

(ECMWF, 2014) at a resolution of 1.5◦×1.5◦ to obtain atmospheric profiles of temper-

ature, O3 concentration, precipitable water vapour and surface albedo for each month

of 2012. Monthly aerosol data was provided by the GLOMAP model at a resolution

of 2.8◦× 2.8◦, specifying scattering and absorption coefficients and asymmetry param-

eters for 6 bands in the shortwave spectrum for sulphate, sea-salt, black carbon and

particulate organic matter aerosols in four size modes (Scott et al., 2014). Through

use of the DISORT model, Gcs is determined which facilitates the derivation of kc as

a function of N .

The following steps were taken to determine the relationship kc = f(N):

1. Observations of G and N taken from 91 MIDAS (MIDAS, 2015) stations for the

year 2012. 111090 observations were used in total.

2. Set 9 okta to overcast hours of 8 okta, N(N=9) = 8. Keep only N = 0, 6, 7, 8.
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Hourly okta, N kc distribution for cloud cover

0 kc ∼ N(0.99, 0.08)
1–6 kc ∼ N(0.6784, 0.2046)
7 kc ∼Weibull(0.5577, 2.4061)
8 kc ∼ Γ(3.5624, 0.0867)

Table 3.5: Distributions of kc by N derived from histograms shown in figure 3.12.
The normal distributions are parameterised by (µ, σ) where µ is the mean and σ is the
standard deviation. The Weibull and Gamma (Γ(a, b)) distributions are parameterised

by (a, b) where a is a shape parameter and b is a scale parameter.

3. Reject hours where θz was greater than 80◦ in order to minimise horizon effects

and night time.

4. kc is calculated from measured G and theoretical calculation of Gcs (using the

DISTORT package in libRadtran that follows the Blanco-Muriel et al. (2001)

algorithm).

5. Group kc values by associated N .

6. Produce histograms and fit distributions using maximum likelihood estimation

(N = 0 was fitted visually with a normal distribution).

The final distributions of kc by N are shown in figure 3.12 and listed in table 3.5.

Also shown in figure 3.12 is the bimodal distribution of kc when not a function of N .

Two distinct peaks can be seen that are indicative of clear and cloudy categories of

irradiance.

In the N = 0 histogram, there are several kc values that are significantly less than

1, indicating that even when no cloud is registered, the irradiance reported can be

much lower than expected. This can be explained by the fact that the cloud sensor is

pointing directly upwards whilst the sun is in a different sector of the sky and could

possibly be obscured by cloud. This is particularly an issue in the UK where the sun is

always at least 27◦ from zenith. To ensure realistic kc values when the sun is shining,

these low values are rejected and a normal distribution fitted visually to the obvious

peak of the histogram, which represents genuinely clear hours.

3.3.6.2 Clear-sky index with a 1 minute resolution

A baseline time series of clear-sky index is made for each day that is applied to moments

when the sun is not obscured. This sun-not-obscured baseline time series is denoted

kc,clear. Each day of simulation, a single value of kc is extracted and applied to every

minute of that day. Every day is different and, therefore, accounts for solar variability
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Figure 3.12: Top) bi-modal histogram of all hourly kc observations taken from 63
UK weather stations between 2010-2013. Bottom) histograms of kc separated by N ,
with analytical distributions fitted and shown in red. Plots produced by Dr Chris

Smith.
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between days. The distribution of kc used to select daily kc,clear is dependent on the

climate of study. For Cambourne, UK, the sun-not-obscured hours were found to

be well represented using a normal distribution N(0.99, 0.008). This distribution is

relative to the CSI, which is dependent on the method of calculation, discussed in

section 3.3.7.

For clouded hours, the baseline time series of clear-sky index is made for the whole

duration of the simulation that is applied to moments when the sun is obscured. This

time series is denoted kc,cloud, and is selected from the appropriate distribution of kc

by N .

To move from hourly resolution to minutely representations of both of kc,cloud and

kc,clear, a linear interpolation between each value of kc,cloud and kc,clear in the time

series was performed to obtain baseline minutely time series, denoted kc,cloud,m and

kc,clear,m.

To produce more realistic irradiance profiles that have intra-hour variability and fluctu-

ations during clouds, kc,cloud,m is allowed to fluctuate between fixed intervals. The SIG

allows fluctuations at intervals that are a factor of 60 (as this is the maximum number

of fluctuations within the hour). Allowing fluctuations at intervals > 10 minutes did

not offer similarities in terms of ramp rate occurrences or the variability indices (de-

scribed later in section 3.4), whilst fluctuations at < 5 minute intervals saw too much

variability. The intention is to capture the gentle rolling of the kc,cloud,m observed in

real irradiance, attributed to changing cloud shape. Every 6 mins, a new kc value is

extracted and linearly interpolated between.

The sun obscured method can now be put in place to produce a single, 1 min resolution

time series of the clear-sky index, kc,m. This is achieved using B, the Boolean 1DM

indicating cloud or clear periods every minute. By looping through each time step, t,

the appropriate kc is selected from either kc,cloud,m or kc,clear,m.

Bt = 1
if−−−−→

True ktc,m = ktc,cloud,m

False ktc,m = ktc,clear,m

(3.35)

Where Bt = 1 is a logical query asking whether there is cloud at time step t.
if−−−−→

is the use of a logical if operator. The result of this equation assigns a kc value from

either kc,cloud,m or kc,clear,m into the appropriate t location of kc,m, depending on the

outcome of the logical query.
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Following this, minutely kc variations were introduced for both obscured and not ob-

scured minutes by using a Gaussian white noise multiplier as a function of the hourly

N .

kc,m = kc,mf, f ∼ N(1, σ) (3.36)

Where the standard deviation, σ is arbitrarily assigned for obscured minutes as

σ = 0.01 + 0.003N (3.37)

And for not obscured minutes as

σ = 0.001 + 0.0015N (3.38)

Equation (3.37) provides the greatest variation in obscured minutes for higher N while

equation (3.38) provides the greatest variation in clear minutes with increasing N .

A further two adjustments are made to ensure that unrealistic values of G are not

seen. If a value in kc,m is less than 0.01, it is set equal to 0.01. At the other end of

the scale, there are many situations where kc,m exceeds a value of 1 in the distribution

tails. This is most likely to happen at low solar elevations where horizon and ground

effects are more pronounced, and the division of a small G by a very small Gcs leads to

high values of kc. The largest values of kc from the observed irradiances were found to

obey the relationship with R2 = 0.9931, fitted using maximum likelihood estimation

of θz against kc such that:

kc,max(θz) = 27.21 exp(−114 cos θz) . . .

+ 1.665 exp(−4.494 cos θz) + 1.08
(3.39)

kc,m is set equal to kc,max if the value drawn from the distribution exceeds this upper

threshold.

3.3.6.3 Extended periods clear and overcast conditions

If the sky is overcast for an extended period, defined as a period of 8 okta lasting

longer than 6 hours, a smoothing is made to corresponding moments in kc,cloud. This

is justified because the clear-sky index of overcast skies does not vary extensively

(Skartveit and Olseth, 1992; Stein et al., 2012). Firstly, a static number of intervals is
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set for simple computational application. 20 intervals will separate the first and last

minute of the extended period. The kc,cloud at each of the 20 intervals is kept, whilst the

rest are removed. Between each interval, kc,cloud values are linearly interpolated using

a uniform linear spacing function in Matlab. The Gaussian white noise is re-applied

to these periods.

A similar function is applied to extended periods of 0 okta, except the duration is

reduced to periods lasting more than 3 hours. Contrastingly to the long period of 8

okta, no intervals are set, therefore, kc,clear,m is defined as a linear interpolation from

the first minute to the final minute of the extended period.

Both kc,clear,m and kc,cloud,m are assimilated to form a single 1DM of the clear-sky

indices kc. This is assigned using the Boolean 1DM of sun obscured indicators, B,

produced in section 3.3.4. The assimilation is achieved as

kc =

B = 0
if−−−−→ kc,clear,m

B = 1
if−−−−→ kc,cloud,m

(3.40)

This places the clear-sky indices from the extended clear and overcast periods in the

appropriate time step of kc.

3.3.6.4 Introduction of cloud edge enhancement events

A final alteration to kc is the inclusion of cloud edge enhancements. Cloud edge

enhancement, CEE, describes events whereby a point on the Earth’s surface receives

a larger amount of incident irradiance than is available in the clear-sky irradiance.

The events are attributed to irradiance reflecting from the edges of clouds. The typical

behaviour of irradiance in the 60 sec leading up to, and after the largest 1 sec ramps

is detailed by Lave et al. (2012). This behaviour is applied to periods of transitions

from clear to clouded moments, which can be found as transitions from both 1↔ 0 in

B. The CEE behaviour is normalised to 1 to form a correctional factor for both ramp

up events, CEEup, and ramp down events, CEEdown, and are expressed as a function

of a magnitude, M .

The magnitudes of CEE ramps, M , were analysed using 1 min data from the WRMC-

BSRN (2014) against the corresponding mean hourly weather observational data of

okta from MIDAS (2015) of the same geographic location. The frequency and mag-

nitude of ramp events attributed to CEE correlated with the N . CEE events were

mathematically defined by the author as moments of G that are > 25% of Gcs, which
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is calculated using the HELIOSAT method as described by Hammer et al. (2003) and

is detailed in setion 3.3.7. CDF profiles of the magnitude for each N were made al-

lowing for random variate driven extraction once the appropriate N -guided magnitude

distribution is selected. The normalised CEE correction factors are further corrected

as a function of M , which is itself a function of N , as detailed in equations 3.41–3.43.

M = f(N) (3.41)

Once M is determined, the appropriate kc inside kc can be modified according to the

CEE moment by using the time index t

CEEup = kc,t(1 +M) (3.42)

CEEdown = kc,t(1−M) (3.43)

The application of the CEE is performed using B. Iterating through kc and using a

logical if statement that queries whether Bt undergoes a ramp on account of cloud,

the appropriate M adjusted CEE correction factor (CEEup or CEEdown) is applied

to the time before and after the ramp as shown in equations 3.44–3.45.

Bt−1 = 1 & Bt = 0
if−−−−→ kc,t = CEEup (3.44)

Bt−1 = 0 & Bt = 1
if−−−−→ kc,t−1 = CEEdown (3.45)

kc now contains a time series of the clear-sky index for every minute of simulation.

It contains within it daily fluctuations, 6 min variability, cloud edge enhancements,

stability in extended overcast and clear periods and 1 min fluctuations guided by

cloud amount. The distributions by N contain inherent seasonal, diurnal and pressure

system dependent coverage values. It is acknowledged that CEE is more likely to be

specific to certain cloud types, namely cumulus, there is no method available to assign

a cloud type to the binary representations. As such the chance of occurrence is used

to determine if a cloud receives a CEE event correction.

3.3.7 Irradiance calculations

Once kc have been generated for the simulation duration, T , the irradiance on an arbi-

trary plane is calculated that accounts for atmospheric and meteorological attenuation.
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The irradiance calculations are in two distinct parts. Firstly, the theoretical CSI and

its direct and diffuse components (Gcs, GB,cs and GD,cs, respectively) based on Sun-

Earth geometry are calculated before the atmospheric and meteorological transmission

attenuation are accounted for to obtain the simulated GHI, G. Lastly, the actual

received direct and diffuse horizontal irradiance (GB and GD) are calculated from their

clear sky counterparts before being translated onto an arbitrary plane to estimate the

tilted irradiance, GT .

3.3.7.1 Obtaining the theoretical clear sky irradiance

Irradiance models that calculate the CSI at any point on the Earth’s surface exist

extensively in literature. This thesis does not attempt to create a new version of a

CSI model as it is far beyond the scope of this thesis. With the proliferation of CSI

models in literature, it can be difficult to select an appropriate method, particularly

as many are introduced without appropriate validation (Gueymard, 2012). Reviews of

these models have existed as early as 1978 with Atwater and Ball (1978), then later

by Bird and Hulstrom (1981a), Carroll (1985), Gueymard (2012) and Badescu et al.

(2012).

The DISORT model is complex and, therefore, is not as suitable for deployment in the

SIG when there are well-validated, simple alternatives. A model identified as a good

methodology with very few inputs in the review of CSI models by Gueymard (2012) is

the HELIOSAT method proposed by Hammer et al. (2003). The HELIOSAT method

is flexible enough to calculate minutely GB,cs and GD,cs for any location of choice in

very little computational time. Therefore, the HELIOSAT methodology is utilised in

the SIG and can be seen as model script in appendix section A.8 from line 23 onwards.

The first step is to determine the extraterrestrial irradiance, G0, from the solar constant

(taken as 1367 Wm−2). As the Earth’s orbit around the sun changes throughout the

year on account of orbital eccentricity, ε, G0 can be found following equations 3.46 and

3.47 as accounting for ε and using the day number, d (Snasel et al., 2011).

ε = 1 + 0.03344× cos

(
2πd

365.25
− 0.048869

)
(3.46)

G0 = 1367× ε (3.47)

The air mass, m, must be calculated next and is found with an expression introduced

by Kasten and Young (1989) shown in equation 3.48. The air mass is the path length

that light must travel through the atmosphere before it arrives at the Earth’s surface
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normalised to the shortest possible path.

m =
1−

zl

10000
cos θz + 0.50572(96.07995− θz)−1.6364

(3.48)

Where zl is the height above sea level of the location being modelled in metres.

The Rayleigh optical thickness, δR, is the the optical thickness of a clean and dry

atmosphere where only Rayleigh scattering occurs, it is a description of how much

light is lost to the scattering of light off air molecules.

δR =

(6.6296 + 1.7513m− 0.1202m2 + 0.0065m3 − 0.0013m4)−1 m < 20

(10.4 + 0.718m)−1 m > 20

(3.49)

δR differs for m above 20 and is the basic parameter in determining the Linke turbidity

factor, TL (Kasten, 1996). TL is defined as the total number of Rayleigh atmospheres

necessary to represent the actual optical thickness of the atmosphere. TL is described

as a very convenient tool of approximation that describes the optical thickness of the

atmosphere due to both the absorption and scattering by aerosol particles, and the

absorption of radiation by any water vapour present in a clean and dry atmosphere.

The larger the value of TL, the larger the attenuation of radiation within a clear sky

atmosphere (SoDa, 2016).

For use in HELIOSAT, TL is normalised by δR and m to avoid daily variations and is

denoted TL,2.

TL,2 =
TL(m)δR

δR(2)
(3.50)

To obtain TL,2, lookup tables containing TL,2 are taken from SoDa (2016); they exist

for each month of the year. The lookup tables form a map with a spatial resolution

of 5 minutes of arc angle, which approximates to 10 km at mid-latitudes. They were

calculated adhering to methods outlined by Diabaté et al. (2003). An example of a TL

look-up table is provided in figure 3.13.

The clear sky direct and diffuse irradiance components (GB,cs and GD,cs) are obtained

as

GB,cs = G0e(−0.8662×LT,2×δR×m) cos θz (3.51)
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Figure 3.13: Global map of the Linke turbidity, TL, to 5 minutes of arc angle for
January 2002 taken from SoDa (2016). TL = 1 indicates a perfectly clear and dry
atmosphere. TL increases as the presence of atmospheric aerosol and water vapour

increases.

.

GD,cs = G0(0.0065 + (−0.045 + 0.0646LT,2 cos θz + (0.014− 0.0327LT,2 cos θ2
z) (3.52)

Gcs can then be found as the sum of its components

Gcs = GB,cs +GD,cs (3.53)

The GHI at ground level, G, that incorporates meteorological attenuation of clouds is

given by

G = kcGcs (3.54)

3.3.7.2 Translating irradiance onto an arbitrary plane

There are numerous options for the translation of irradiance onto an arbitrary plane

to estimate GT . Gueymard and Myers (2009) found in a comprehensive comparison of
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ten tilt models that the Klucher (1979) model, a relatively simple model, performed

generally better than more complex alternatives. The Klucher (1979) model is an

advancement on the Liu and Jordan (1960) model and can be expressed in terms of the

three components of diffuse irradiance, GD: horizontal, circumsolar and isotropic. The

horizontal is the increased brightness towards the horizon, the circumsolar describes

the forward scattering of radiation from aerosols, and the isotropic component that

considers diffuse to be uniform intensity from all directions.

For use of the Klucher (1979) model, the decomposition of G into its GB and GD

components is necessary in order to calculate GT . GB under all sky conditions is

shown to be related to both kc and GB,cs by using an adjustment by Müller and

Trentmann (2010) such that

GB =


0 kc <

19
69 ;

GB,cs(kc − 0.38(1− kc))
2.5 19

69 ≤ kc ≤ 1;

GB,cskc kc > 1.

(3.55)

GD can then be found as the difference from G and GB.

GD = G−GB (3.56)

GB and GD can then be translated onto an arbitrary plane

GT = GD(
1 + cosβp

2
)× (1 + F sin3 βp

2
)× (1 . . .

+ F cos2 θi sin3 θz) +GB
cos θi
cos θz

,
(3.57)

where βp is the arbitrary plane pitch, and F is a modulating factor calculated as

F = 1− (GD/(GB +GD))2 (3.58)

The final calculation required to arrive at GT using the Klucher model is to derive θi.

This can be achieved using θz, βp, τ and the azimuth of the arbitrary plane βa

θi = cos−1(sin θz × sinβp × cos(βa − τ) + cos θz × cosβp) (3.59)
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3.3.8 Computational demand

The SIG is computationally friendly using the standard university issued desktop op-

erating a dual core with 4 GB of RAM. To produce the 7 years of data in order to

validate against the BSRN data sets, the model typically required 15 mins to complete.

Reading in the data takes 2 mins (though once the first simulation is run, the data is

stored for future). Markov production and preliminary calculations take less than 1

min. Creating the sun obscured time series took around 5 mins. The longest section

is the irradiance calculations, which consume the remaining duration (excluding some

output plots). This is fundamentally due to the need for storing each of the PSA model

variables for each minute of simulation (of which there are over 3,679,200 data points

per variable when operating for 7 years). This indicates that there is a larger than

proportional response with increasing simulation duration. The model takes roughly 3

mins to produce a full year of irradiance (should the input data be loaded into Matlab).

3.4 Validation of the Solar Irradiance Generator

Two validations of the SIG outputs are carried out. The first using mean hourly GHI

observation data from MIDAS (2015) for Leeds, UK. The second using 1-minute GHI

observational data from BADC (2013) for Cambourne, UK.

3.4.1 Hourly validation for Leeds, UK

For the application of the model, 12 years of mean hourly weather observations for

Leeds Church Fenton (Source ID: 533) were taken from the MIDAS (2015) data set

to produce the MTMs. In order to validate the SIG, 12 years of radiation observation

data were taken for the same monitoring station for comparison. Missing data points

are assumed not to impact the validation significantly. In cases where duplicate mea-

surements exist, the hour with the most recent observation time stamp is selected as

is advised by MIDAS (2015).

Figures 3.14 and 3.15 illustrate a direct comparison between modelled and observa-

tional 10-year mean hourly irradiance. The diurnal representation in figure 3.14 shows

a strong match between observed and modelled GHI for each season and annually.

All GHI peaks are well matched, however for spring and winter there is an slight

overestimation in midday irradiance. There are many possible causes of this slight

overestimation. Firstly, the model can stochastically select better weather conditions

than are found in the observation data for midday in spring and winter resulting in
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Figure 3.14: Comparison between modelled (mod) and observed (obs) mean diurnal
irradiance profiles separated by season and the annual mean diurnal irradiance profile.
The means are made from 10-years of modelled output and 10-years of validation data

for Leeds, UK.

an overestimation. The stochastic selection of weather and kc,clear is not expected to

provide this overestimation as there were 10 years of spring analysed and so stochastic-

ity provides accurate representation of a TMY. Secondly, the daily background kc,clear

taken from the N(0.99, 0.008) distribution could randomly select higher values then

occurred in observation data. Thirdly, the TL,2 selected from the look up tables was

taken for a single year were perhaps lower than was apparent in the observation data.

Lastly, the final explanation offered is that of the error found in GHI measurement

equipment. If the HELIOSAT method is to be trusted, and the distributions of kc,clear

be accurate, there are well known errors of spectral response and fouling of pyranome-

ters that may place calibration errors in line with those presented here. It is difficult

to attribute the overestimation.

The 10-year mean irradiance is indicated by the + scatter point at 112.5 Wm−2 ob-

servational and 113.5 Wm−2 modelled, giving approximately a 0.9% yearly irradiance

overestimate for the location of Leeds. Whilst the intent of the model is not to produce

hourly mean data in this format, averaging the minutely irradiance generated by the

model over hourly time steps shows a strong correlation when compared with the ob-

servational data (R = 0.9715). This is considered an excellent result when considering

the fact that the synthetic data that was not produced to recreate historic irradiance.
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Figure 3.15: Comparison scatter plot for each 10-year mean hour of modelled output
data against the corresponding hour of observation data. The yearly mean is also

included. An x = y line is included for reference.

Figure 3.16 displays mean hourly irradiance CDF distributions of both modelled and

observed irradiance data. The correlation between the modelled and observational

outputs is R = 0.9963, which demonstrates an exceptional fit for magnitudinal repre-

sentation of the mean hourly irradiance. Whilst it is accepted that the hourly mean

values are not suitable for grid impact analysis, what is demonstrated by this is that

long term statistics of the synthetic irradiance generator are captured. Figure 3.16 is

particularly telling of this as it demonstrates that the SIG captures a TMY.

For a more significant measure of performance, a minutely validation is performed.

3.4.2 Minutely validation for Cambourne, UK

Validation against a minutely irradiance dataset is necessary to confirm that the SIG

can successfully generate statistically representative, 1 minute resolution irradiance

time series.
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Figure 3.16: Comparison of the mean hourly irradiance frequency cumulative proba-
bility distribution profiles for 10 years of modelled and observational data from Leeds,

UK.

To demonstrate this, 7 years of minutely radiation data was taken from the World

Radiation Monitoring Centre - Baseline Surface Radiation Network (WRMC-BSRN)

from BSRN station number 50, located in Cambourne, Cornwall, UK (WRMC-BSRN,

2014). Missing data points were ignored and deemed not to impact the distributions

for comparison significantly. 12 years of mean hourly weather observations for the

monitoring site at Cambourne (Source ID: 1395) were taken from MIDAS (2015) to

produce the appropriate MTMs. The SIG inputs were adjusted for the location of the

MIDAS (2015) Cambourne weather station using a latitude of 50.2178, longitude of

−5.32656, and height above sea level of 87m.

Three metrics are used to validate the intermittent nature of the SIG outputs: the

variability index (VI), the irradiance magnitude frequency (IF) and the ramp rates

(RR). A validation is made through both a comparison of CDFs through correlation

checking and by using the 2-sample Kolmogorov-Smirnov (K-S) test for each metric,

for each day of the year. They are described here in turn.

The VI is a metric created by Stein et al. (2012) used occasionally in literature to
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Figure 3.17: Examples of daily global horizontal irradiance time series is categorised
using the daily mean variability index (VI). In red is the global horizontal clear sky
irradiance and in blue is the global horizontal irradiance. The image was produced

by Stein et al. (2012).

quantify the amount of solar variability over a set period of time, it is defined as the

ratio between the rate of change of GHI and the rate of change of CSI. The more

intermittent the day’s irradiance, the higher the VI. It is calculated as

V I =

∑T
t=2

√
(Gt −Gt−1)2 + ∆t2∑T

t=2

√
(Gcs,t −Gcs,t−1)2 + ∆t2

(3.60)

Conceptually, the VI can be thought of as a comparison of smoothness between G and

Gcs. Should G be a perfectly clear day and mirror appropriately to Gcs, then VI would

be equal to or approaching 1. By nature of the equation 3.60 and the smoothness of

Gcs, VI does not fall below 1. Figure 3.17 shows examples of different values of the VI.

The IF metric is a direct magnitudinal comparison of the full spectrum between ob-

served GHI, and modelled GHI, over a specified time period and binned to the nearest

integer.
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The RR metric is a comparison of the ramps present in observation and modelled GHI.

A ramp was defined earlier as the fractional change in output from one time step to

the next. RR is > 1 when G increases between time steps, and is < 1 for decreases in

G. It can be expressed as

RR =
Gt
Gt−1

(3.61)

CDF comparisons are made using the inbuilt Matlab function of the 2-sample correla-

tion coefficient (MathWorks, 2016) and displayed in equation 3.62.

R =

∑
x

∑
y

(Axy −A)(Bxy −B)√(∑
x

∑
y

(Axy −A)2

)(∑
x

∑
y

(Bxy −B)2

) (3.62)

Where R is the correlation coefficient, A and B represent the mean GHI within the

respective time series A and B, and Axy and Bxy are individual GHI values within

the time series A and B. R is equal to 1 when the correlation is perfect, −1 when the

correlation is perfectly negative, and 0 when no correlation is present.

The 2-sample K-S test was carried out for each of the three metrics. The K-S test is

a non-parametric evaluation of the difference between two CDFs. It tests the absolute

difference in probability for all x-axis bins of the CDFs for the two samples, this

difference is then checked against the pre-defined confidence limit to determine the

success of the test. The K–S test is provided as an inbuilt function in Matlab with

both CDFs and the confidence limit as inputs (MathWorks UK, 2016). The test returns

two values. The first is a logical indicator if the test has passed or not. A pass is defined

as the probability of any y value in the CDF being within the confidence limit. The

second returned value from the K–S test is called the asymptotic p-value, defined as

the probability of observing a test statistic as extreme as an observed value that would

fail the test. The p-value is always between 0 and 1. 0 indicates an impossibility

for the point within the CDF to manifest as a value outside of permissible range. 1

indicates a certainty that the value is always outside of the permissible range. To pass

the K–S test, the p-value must be below the confidence limit set. Therefore, for a day

of modelled GHI to pass against observed GHI, the modelled p-value must be within

the confidence limit of the observed p-value.

In order to perform a K-S test, an appropriate sized sample is required. As the intent

is to derive the minutely significance of data, a yearly subset would be too large to

discern overly meaningful statistics of smaller time scales. As a single day is the

smallest simulation duration permissible by the SIG, a day will be used to define the

subset size. The results will therefore represent the minutely resolution success over
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Figure 3.18: Cumulative probability distribution plots of the (a) daily variability
index, (b) the minutely irradiance ramp-up and ramp-down occurrences, and the (c)
minutely global horizontal irradiance frequencies for both the modelled data and the

observed data from Cambourne, UK.

the course of a day, it is worth noting that the test is only performed on the portion

of the day when irradiance is present between sunrise and sunset, or when θz < 90,

and so a day’s data does not contain the full 1440 minutes of G. As the synthetic

data is not a historical representation or reproduction, a single day of modelled data

is not expected nor intended to align with observed data. For this reason, each day

selected from the subset is combined with all its corresponding days from successive

years, and so the GHI data is binned by calendar day. 7 years of observation data for

Cambourne is available from the BSRN between 01/01/2007–31/12/2013, and so 7 of

the same day from successive years is used for the K-S subset. For example, a single

subset contains 7 versions of the 1st of January from 2007 to 2013. 365 subsets will be

produced (ignoring 29th Februray, which only occurs twice in the specified range) and

so success is reported in the number of days that passed the K–S test out of 365.

To carry out the K-S test on the VI, the 1 minute values of VI were taken as the subset,

this differs to the daily value demonstrated in figure 3.17, however equation 3.60 is not

limited by time step and 1 min is suitable. The comparison of the SIG output and the

observed data CDFs for VI are shown in figure 3.18a. The two CDFs correlate with

a correlation coefficient of R = 0.9903. The model generated VIs have an increased

frequency of mildly variable days between variability indices 10 to 25, as is indicated

by the steeper slope, whilst having a slightly reduced frequency of extremely variable

days and extremely stable days.

Table 3.6 indicates that 345 of the 365 days passed the 2 sample K-S test when using a

significance level of 99%. Although 20 days seems significant, it equates to 94.52% of

days being recreated with a stringent confidence limit. The fact that 5 days failed the

test with a 90% confidence suggests an imbalance between the statistical likelihood of

the meteorology. The observation data possibly manifests weather that is considered
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extremity, or away from the TMY. The weather generator can reproduce these periods,

however not on the required day to validate against observation data, and so any at-

tempt to validate against an uncommon day of weather will result in failure of the K-S

test. No annual temporal bias was observed from the days that fail the K-S test, such

that the failed days were randomly positioned throughout the year. This compliments

the point that the synthetic data is not intended to recreate historic data, yet statisti-

cally captures the minutely variability in 94.52% of days.There was a correlation to the

days that failed that happened to have more cloudier days that is statistically likely

at that time of year. The stochastic model captures the TMY through aggregating

the discreet Markov transition probabilities from 12 years. Therefore, a single day of

coincidental cloudiness would be considered extreme when comparing in this calendar

confined manner, and so would regularly fail the K-S test for that day.

The same K–S subset production approach is further applied for the RR and IF metrics.

The comparison of the RR CDF, as shown in figure 3.18b, has a correlation coefficient

of R = 1. Both the 1-minute interval of ramp-up and ramp-down events are captured

excellently using the SIG. This is furthermore demonstrated with the results from the

day-by-day K-S tests shown in table 3.6. All days tested passed with a significance

level of 99% with mean asymptotic p-value of 6.7365e−29.

Figure 3.18c shows the comparison of the IF CDFs. The correlation coefficient is

R = 0.994 with a very slight underestimation of the mid-range irradiance occurrences.

A possible cause for this is assigning okta values 1–6 with kc values derived from the

distribution of N = 6. It is expected that because the difference in kc(N) distributions

shows a shift from very low kc at N = 8 to medium kc at N = 6, that perhaps as

N → 1 the kc values also approach 1. This implies that by assigning clouded periods

during N = 1 from the kc(N = 6) distribution, an underestimation in irradiance would

be observed. The K-S test on the IF shows that over 350 days passed the test which

is equal to 95.89% at a significance level of 99%.

Figure 3.18 cannot be compared with literature benchmarks, as there are no 1-min

competitors when it comes to synthetic solar irradiance generators. There are a few

higher resolution synthetic irradiance generators. Figure 6 by Ngoko et al. (2014)

displays the reproduction of CDF comparisons of both the clear-sky index and IF

from their stochastic model using Markov chains. Their methodology is flawed, such

that their validation data feeds the input of the model, and yet their reproduction

of data fits neither of the two input high resolution time series; the SIG outperforms

this model. There exist comparisons of interpolation methods of increasing temporal

resolution of solar irradiance data from figure 8 by Fernández-Peruchena and Gastón

(2016) who successfully recreate 1-min IF with high accuracy. Their use of PDF over
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K-S test Significance Level 90% 92.5% 95% 97.5% 99%

Variability index 360 358 357 352 345
Ramp rate occurrence 365 365 365 365 365
Irradiance frequency 363 360 359 356 350

Table 3.6: The number of days (out of 365) that pass the 2-sample Kolmogorov-
Smirnov test on 7 of the same calendar day from successive years of both modelled and
observational CDFs containing the minutely variability indices, minutely ramp rate
occurrences, and the minutely irradiance frequency, tested at increasing confidence

limits.

CDF makes like-for-like comparisons to the SIG difficult, particularly as no empirically

derived statistical comparison is made in their work; visually our works are comparable.

Perhaps more interesting is the work on VI by the creator of the metric, figure 12 by

? where they demonstrate the 1-min ramp rates for different groupings of cloud type.

Whilst the overall CDF is not presented, only a clip of CDF probabilities from 0.95 to

1, this is directly comparable to figure 3.18 as it shows how the fractional ramp change

curves from no noticeable ramp to a 70% at similar probability magnitudes. The SIG

does not have the capabilities to separate out cloud types to directly compare, however,

the similarities are clear. The closest competitor to the SIG is Ehnberg and Bollen

(2005) who used a simple Markov model to synthetically simulate irradiance values,

however they made no attempt at validation. For these reasons, the SIG validations

in figures 3.16 and figure 3.18 can be considered benchmarks.

3.5 Discussion of results

This section will discuss the implementations within the SIG and analyse their signif-

icance.

A distinctive element of the SIG is the use of 20 different MTMs in order to capture

seasonal, diurnal and pressure based variations. These will be discussed in turn, as

will the irradiance and ppotential research opportunities.

Combined, the 20 MTMs successfully replicated the okta frequency distribution of

the 12 years of observation data. The mean percentage error between the modelled

and observed okta transitions was −0.03%, calculated as the mean of the percentage

difference for each okta state. Furthermore, a comparison of CDFs of the modelled and

observed okta frequency had a correlation coefficient of R = 0.9956. This demonstrates

that the overall statistics for Leeds were retained using 20 separate MTMs, whilst also

capturing more detailed transition characteristics at certain times of a year.
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Each type of okta MTM (diurnal, pressure, and season) is analysed through examining

the deviation away from the annual mean okta MTM (shown earlier in this chapter in

figure 3.8) to assess the impact each of the different types have on the MTM probabil-

ities.

The mean okta MTM is produced accounting for every transition in the observation

data, and is not separated by season, pressure or time of day. It is considered the base-

line for this type of methodology, as it has been demonstrated previously by Ehnberg

and Bollen (2005).

3.5.1 Diurnally weighted okta Markov transition matrices

The most significant deviation of transition probability away from the mean okta MTM

is seen with the morning diurnal dependency MTM. A comparison of the mean of

the diurnal MTMs (so that variations caused by pressure and seasonal differences

are excluded), minus the mean okta MTM shown in figure 3.19. The differences in

probability below ±0.01 are removed from the plot so that only the most significant

deviations from the mean are coloured.

There is a very distinct pattern of the probability for an okta value to remain the

same from one state to the next, with a decrease of between 0.01 and 0.25 for 0 to 6

okta. The chance of Nt = Nt−1, or the okta state remaining the same, is defined by

the author as stability, as it represents no change in N . Instability is defined as the

increased chance to move away from the current state, Nt 6= Nt−1. 7, 8 and 9 okta

have an increased probability of remaining the same, and so cloudier weather states

will tend to last longer. This can be viewed as a tendency for instability at lower okta

states, and the reverse at 7–8 okta.

Significant probability increases for all okta states to transition to a higher okta state

are observed. This is indicated by the continuous blue strip seen to the right of x = y

(note the x = y direction is from top left to bottom right). The most significant

increase is seen for 0 okta, where an increase towards 3 through 6 okta is observed at

the expense of stability. Interestingly, there is also a slight increase for 3, 4 and 8 okta

to transition down to 0 okta. This diurnal MTM could be described as capturing the

tendency for scattered clouds to either clear or thicken.

The physical implication of this is that during the morning period (00:00–05:00am),

the current okta state has an increased chance to transition towards an okta state of

6–8 or 0, and so a clouded state is most likely to develop into either fully obscured

or complete clear sky by 6am. This increased tendency towards both okta extremes
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Figure 3.19: Colour plot indicating the deviation of the diurnally subjective okta
MTM minus the annual yearly mean okta MTM. White space indicates a ≤ ±0.01

change in transition probability.

away from stability during the morning period was described in section 3.3.3 as the

unstable atmosphere with the introduction of the sun’s heat. This phenomenon cannot

be captured using only the mean okta MTM.

3.5.2 Pressure weighted okta Markov transition matrices

The reason for the inclusion of transitions based on pressure is to attempt to capture

variations in weather that are caused by high and low pressure systems. The approach

is simplified to be either above or below the average pressure.

Figure 3.20 shows a slightly different analysis than was presented in the diurnal com-

parison for simplicity of direct comparison, and so does not use the mean okta MTM.

The mean below average (BA) transition probabilities are subtracted from the mean

above average probabilities (AA). This means that blue squares represent occurrences

where the BA transition probability is greater than that of AA, implying that blue

transitions are more likely in BA pressure systems. The green squares represent where
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Figure 3.20: Colour plot indicating the difference between the above average pres-
sure MTM (AA) minus the below-average pressure MTM (BA). White space indicates

a ≤ ±0.01 change in transition probability.

AA transition probability is greater than that of BA, implying that green transitions

are more likely in AA pressure systems.

The most distinctive observation is that the probabilities for 0–3 okta to transition to a

cloudier state are consistently and significantly greater during periods of BA pressure.

This supports the rationale that low pressure systems have increased unstable weather

conditions and so clear skies are much more likely to develop into cloudier skies. This

instability is further demonstrated with 7–8 okta having a higher tendency change

between themselves, suggestive of the complete overcast periods to be more likely a

function of larger rain clouds than they are stable overcast conditions.

The transitions are more stable during AA pressure as is demonstrated with an in-

creased probability in the x = y. 1 to 2 okta under AA pressure conditions have a

slight increase in probability to become less cloudy, moving towards clear sky. This is

representative of typical high pressure system weather of completely clear. There is

also the increased tendency for 7 and 8 okta remaining the same during AA pressure

conditions. This could be attributed to the very high cirrus clouds that occur during
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Figure 3.21: Colour plot indicating the deviation of the individual season MTMs
from the yearly mean okta MTM. The colour indicates the difference in transition
probability, whilst white space indicates a ≤ ±0.015 change in transition probability.

high pressure systems that can form fully overcast sky. When these conditions occur,

they have an increased stability, whereas overcast conditions dissipate over time.

3.5.3 Seasonally weighted okta Markov transition matrices

The variation in N transition probability due to the different seasons is detailed in

figure 3.21, where the deviation from the the mean okta MTM is shown for each season.

In order to observe only significant differences, deviations of ±0.015 are removed. Each

season will be discussed in turn.

Autumn variations are the closest to the mean okta MTM. The frequency of occurrence

of 2–6 okta are the lowest in observation data and, therefore, differences in this range

offer the least impact on the overall SIG output. There is a tendency for states to

move to either 0–1 or 6 okta, as is indicated by the blue squares. There is a significant

increase in stability for 0 and 8 okta. This physically represents clear and cloudy

periods lasting longer, perhaps typical of longer duration weather systems.
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Spring transitions are similar to those of autumn in that the most significant deviations

occur during the least sensitive okta range. There is, however, a distinct shift to favour

stability between medium okta states of 1 and 5. There is a small reduction of ∼ 0.11 in

probability of remaining clear sky, and a very significant reduction in the probability

of remaining fully overcast. This suggests that spring is more stable at states 1–7,

yet less stable at 0 and 8 okta. The interpretation is increased amount of scattered

cloud and fewer periods of clear sky and over cast. It is worth noting, however, that

the transition (Mt−1 = 0|Mt = 0) has a probability of 0.7157 within the mean okta

MTM, the reduction seen in spring only lowers the probability to ∼ 0.7, which is still

considerable. (Mt−1 = 8|Mt = 8) has a mean probability of 0.7179, which is reduced

to ∼ 0.605, presenting a more significant reduction.

Summer and winter contain the most variations away from the mean okta MTM.

Summer is the most important month as it is the season receiving the majority of yearly

irradiance. Summer sees an increase in the probabilities along x = y, suggesting stable

meteorology; this is in direct contrast to the pattern observed in winter. Interestingly,

winter has an increased tendency to move towards the two extremes of 0 and 8 okta

while summer does not. Intuitively, it is expected that summer would contain the most

clear sky to clear sky transitions on account of more high pressure systems, however,

there is a large reduction in (Mt−1 = 0|Mt = 0) that cannot be directly attributable to

probability increases seen towards 2 and 9 okta. This is because all other transitions

from 0 okta to all states undergo a slight increase that is below the cut-off limits on

the figure, and so are not reported as significant. As discussed, the probability of

(Mt−1 = 0|Mt = 0) is still considerable despite the reduction. Winter sees the most

intuitive changes. States of 1–7 okta all have an increased tendency towards a cloudier

state, as expected from a more adverse weather conditions during the season.

It is worth noting that the differences reported here are specific to the location of Leeds,

whilst the differences may be similar in nature, the seasonal, diurnal and pressure

differences are specific to the input observational data, such is the motivation of having

a geographically flexible model.

3.5.4 Discussion of the synthetic irradiance

Hourly averages of kc derived from the SIG were compared with kc values from the

MIDAS (2015) data as is shown in figure 3.22. Note how there is a bi-modal set of

peaks in the PDF of kc. The two peaks are attributed to cloudy periods and clear

periods.



Chapter 3. SIG development 103

0 0.5 1 1.5
0

0.5

1

1.5

Clear−sky index

F
re

qu
en

cy
 d

en
si

ty

Figure 3.22: Histogram of the mean hourly observed values of kc (bar) compared
to the values of kc from the SIG (line).

It can be seen that the SIG recreates the bimodal structure of the real-world distri-

bution of clear-sky indices. The peaks from the simulated data are of similar height

to the MIDAS data, although the intermodal spread is lower and, in particular, there

are fewer extreme high or low values in the simulated data. The use of kc(N = 6)

for N(1, 2, 3, 4, 5, 6) is the most likely cause for the misalignment of the peaks. Using

this distribution skews the frequency of kc values towards the kc(N = 6) distribution,

which is a normal distribution of N(0.6784, 0.2046). Appropriately assigning individ-

ual distributions to all N states may potentially introduce a more aligned intermodal

spread.

Figure 3.23 displays the diurnal root mean square error ( RMSE) of the simulated data

for each season and annually, averaged across 10 years. The RMSE is calculated as a

direct comparison of 10 years of modelled mean hourly irradiance data aligned with 10

years of mean hourly observational data, it is is found as

RMSE =

√∑D
d=1(Ĝd −Gd)2

D
(3.63)
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Figure 3.23: The diurnal mean hourly irradiance root mean square error (Wm−2),
averaged across 10 simulations. The RMSE is displayed diurnally and separated by

season, the yearly diurnal RMSE is also shown.

Where Ĝd is the modelled value of the irradiance and Gd is the observed for each of

the same hour of the day, for the total number of days that exist within that season,

across all 10 years, D. The output represents a scale-dependent aggregate of all the

error magnitudes into a single value.

The time of day of most importance is around midday during the summer season,

as it has the most clear-sky irradiance and, therefore, the potential for the largest

ramp-rates and peak outputs. Typical clear irradiance outputs during these times are

conservatively around 900 Wm−2 at Cambourne. The RMSE in figure 3.23 at midday

in summer is at 14 Wm2, offering potential mean hourly irradiance error of ±1.5%.

The majority of hourly RMSE values fall below 15 Wm2.

There is also a tendency for increased error at sunset, when compared to sunrise. This

could potentially be due to a sun-Earth geometry alignment with the time stamp, or

perhaps the time within the minute at which irradiance is recorded.
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3.6 Chapter summary

The aim of this chapter was to ascertain whether a synthetic irradiance generation

methodology could be developed that can produce a high temporal resolution, sta-

tistically accurate irradiance time series using only readily available, geographically

dispersed, mean hourly meteorological observations as an input. In order to achieve

this, the SIG was developed following these criteria.

This chapter presented the SIG, a methodology for a stochastic, sun obscured type,

temporal-only, synthetic irradiance generator with a temporal resolution of 1 minute.

One-dimensional cloud samples were generated so that the horizontal cloud length

follows a power law relationship. Twenty different MTMs were used in setting the

hourly weather variable conditions and were used to determine the 1 minute indication

of the state of sun obscured. These MTMs accounted for seasonal, diurnal and pressure

variability. Distributions of the clear-sky index by okta value were developed and

implemented. Further methods were adopted to generate clear-sky indices that enable

1 minute intermittency and variability. Typical outputs can be seen in figure 3.24.

The method was applied to the city of Leeds, UK, and validated using independent

hourly radiation measurements from the same site. Furthermore, a 1 minute resolu-

tion validation was carried out using irradiance data from the town of Cambourne,

UK. Metrics of variability index, ramp rates magnitudes and irradiance magnitude

frequency were shown to be captured excellently with the SIG when tested to 99%

confidence limits using the 2 sample Kolmogorov-Smirnov test.

It can be concluded that it is possible to generate 1 minute resolution irradiance time

series from readily available 1 hour weather data that capture the statistics of 1 minute

irradiance observations. The geographic dispersion and spatial separation will be fur-

ther investigated in chapter 4.

3.6.1 Key points, applicability and potential development

The use of diurnally representative MTMs was shown to have the most significant

deviation from conventional methods of stochastic cloud amount generation. The dif-

ference in okta transition probability due to pressure system and season also allows for

greater accuracy in capturing the weather conditions of a geographical location.

The distribution of hourly clear-sky indices is recreated, whilst allowing for minutely

clear sky index fluctuations. There is potential for extending the research between the

clear-sky index and cloud amount.
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Figure 3.24: Three days of example irradiance profile outputs from the SIG (top),
and from observational data (bottom). Note this is neither a predictive method nor a
forecasting model and so the synthetic profiles are not intended to match or recreate
observational data. The purpose of this figure is to demonstrate the SIG’s output and
to show real 1-minute resolution observational data irradiance profiles, the days 176 to
178 were selected purposely as they presented similar corresponding characteristics.

Individual simulations at nearby locations using the SIG do not correlate due to the

non-spatial nature of the methodology. The SIG output is a synthetic global solar

irradiance time series upon an arbitrary plane at a 1-minute resolution. It is a tem-

poral data series only, and does not include a spatial dimension. Its applications are

therefore limited to cases where the spatial element is not integral, such as small scale

studies where a single high-resolution irradiance data series input is ideal. The SIG has

suggested application, therefore, in the improved modelling of small-scale PV supply,

demand, and storage systems, calculating electricity supply on a time scale that better

matches the demand flows. Regular demand flows operate with high power across a

small duration, meaning that mean hourly averages fail to capture electricity peaks in

the supply and demand. To appropriately capture electricity flows within the residence

that can accurately calculate efficiencies, self-consumption losses, battery charge and

discharge states, an appropriately high-resolution time scale is required (Torriti, 2014;

Darcovich et al., 2015).

The SIG is not theoretically limited to a 1 minute resolution, although for confidence,
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higher quality resolution observation data would be required for analysis and validation.

This will not be considered within this thesis as 1 minute is already a large gain on the

literature, more pressing is that the SIG could be extended through the inclusion of a

spatial dimension. A spatial dimension is crucial for aggregated grid impacts analysis

and, therefore, forms the basis of the next chapter.





Chapter 4

Spatially Decorrelating Solar

Irradiance Generator (SDSIG)

development

The research problem addressed within this chapter asks whether or not it is possible

to produce statistically accurate, synthetic irradiance time series that vary on both a

temporal and spatial dimension, and that facilitate multi-variate grid impact analysis.

In order to answer this question, the first objective presented in this chapter is the

development from the SIG to become a model that can produce irradiance time series

that vary on a spatial dimension whilst continuing to use only readily available, well

geographically dispersed, mean hourly meteorological observations as an input. This

development is treated as a new model and is referred to as the Spatially Decorrelating

Solar Irradiance Generator using the acronym SDSIG. The term decorrelating is used

as it captures the concept that the irradiance at two different locations are different

yet related. The alternative is to use the term correlating, however, the author feels

that this should be used to describe perfectly matching irradiance time series in use

at different locations. Therefore, they would perfectly correlate. The second objective

presented in this chapter is the demonstration of the SDSIG’s applicability in grid

impact analysis by exploring the grid impact of voltage fluctuations, using the metric

of OLTC overuse, as was proposed in section 2.5.

This chapter will first introduce the concept of spatio-temporal solar resource gen-

eration through a review of the most recent literature, highlighting alternatives and

opportunities for development. The SDSIG will then be described in overview so that

the reader may follow the steps and have a reference; each significant step will feature

109
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its own section. The methodology discuses and summarises the elements of the SIG

that are retained. Furthermore, the SDSIG is provided in its raw coded script, as

produced using Matlab (2015) software. It is appended to this thesis and is separated

into sections that correspond well to this chapter, see section B.

The preliminary development concepts of the SDSIG have been accepted in a special

issue of the Journal of Solar Energy for International Solar Energy Society’s Solar

World Congress 2015 (SWC2015) (?), with expected online availability 2 years after

the conference in November 2017. The fully validated and finalised version of the

SDSIG presented in this chapter was condensed and is published in the Journal of Solar

Energy (Bright et al., 2017). Research into kc distributions by N was undertaken to

further analyse kc dependency on both N and θe, this work was published in Smith

et al. (2017), of which I am a co-author, and will feature in section 4.2.4.1.

The application of the SDSIG onto a theoretical schematic of a section of the LV grid

was produced in collaboration with Oytun Babacan under the supervision of Prof.

Jan Kleissl while undertaking a research scholarship to the University of California,

San Diego (UCSD). The collaboration successfully combined the SDSIG with Oytun

Babacan’s power flow model to analyse the impact of using decorrelating irradiance

time series on OLTC operations compared to using correlating irradiance time series.

Section 4.5 contains collaborative work.

4.1 Literature review of spatio-temporal solar irradiance

generators

Chapter 3 discussed the one-dimensional, temporal solar irradiance generator method-

ologies that exist in literature. This chapter will not reproduce the lessons learned

from section 3.2 and will only focus on the introduction of a spatial element to solar

irradiance generation.

An important distinction and definition must be made by the author that limits what

is, and isn’t, considered an application of spatio-temporal solar irradiance generation.

Performing a study using perfectly correlating irradiance across a spatial domain is

considered by the author not to be a spatio-temporal application. This is because the

time series do not consider the influence of space between sites, despite the simula-

tion physically including this spatial separation. Therefore, only methodologies that

consider the influence of space are considered by the author to be spatio-temporal

applications; this opinion is shared by Harvill (2010).
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Spatio-temporal solar irradiance generation can be achieved through a variety of meth-

ods that use many types of available input data in order to generate irradiance time

series at two or more locations. Whilst single irradiance time-series like those from

the SIG are useful for studies that consider only a single input, such as the supply

and demand electricity flows of a photovoltaic connected house, e.g. the transient PV

system model by Patsalides et al. (2016), one-dimensional correlating solar irradiance

data are only suited to a small spatially-sized applications. Much of the reviewed

spatio-temporal research that explore grid impacts from PV intermittency resort to

using correlating irradiance time-series, despite a need for decorrelation (Widén et al.,

2010; Kaplani and Kaplanis, 2012), which was considered in the previous paragraph

to not be a spatial application. The justification for resorting to correlating data is

stated as lacking data availability or the lack of synthetic, spatially decorrelating solar

irradiance generation methodologies to supply the time-series.

There are many types of spatio-temporal solar irradiance generation methodologies.

Simple approaches interpolate data between sites, whilst more complex methods ex-

trapolate from a single site. Both these types will be discussed, although it is worth

stating that the nature of both extrapolation and interpolation require irradiance ob-

servation data inputs and so automatically do not complement the aims of this thesis.

Some approaches consider the statistical relationship and influence of spatial separation

upon irradiance, whilst others adopt these statistics to synthetically generate irradi-

ance. With all these approaches in mind, this literature review will begin with two

suggestions. The first is by Gafurov et al. (2015), who suggest that there are no known

methods for the integration of spatial correlation of solar radiation into synthetic data

using reduced and easily available inputs. The second by Munkhammar et al. (2017),

who second this finding and forward that the ideal situation for grid impact analysis

would be to have unique irradiance time series for each PV system connected to the

grid, as they differ depending on the distance between sites. The author shares these

opinions.

The spatial correlation of solar irradiance is highly dependent on cloud dynamics and

the geographic separation between sites (Lave and Kleissl, 2013). Importantly, the

irradiance at each location are inherently decorrelating as no two sites can be the

identical at all times, this opens the idea for geographic smoothing, whereby one site

could receive maximum irradiance whilst another could potentially receive minimum.

This concept is well documented in literature through the study of aggregated PV

power output. When irradiance time series across a spatial domain are aggregated,

a geographical smoothing effect plays a role in tempering the disruption caused by

dramatic ramping events from clouds (Suehrcke and McCormick, 1989; Otani et al.,

1997; Wiemken et al., 2001; Curtright and Apt, 2008; Lave and Kleissl, 2010; Lave
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et al., 2012; Marcos et al., 2012). This smoothing can be exploited to minimise high-

frequency-variability by increasing the geographic dispersion between sites (Lave and

Kleissl, 2010; Arias-Castro et al., 2014; Lave et al., 2015; Perez and Fthenakis, 2015),

benefiting the DNO in both utility-scale PV power plants and residential PV by reduc-

ing the affected voltage from synchronised ramping events (Arias-Castro et al., 2014;

Marcos et al., 2016). Utility scale PV plants can be planned considering geographic

dispersion, such as maximising the separation of panels should space availability allow.

By contrast, the uptake locations of PV-DG is largely unplanned as it is determined by

the consumer. Whilst PV-DG does not typically allow for planned geographic smooth-

ing, it naturally occurs so long as multiple installations occur. Aggregation does not

solve voltage problems because single intermittent systems can still cause voltage fluc-

tuations, however, it does reduce transformer tap changer operations. Geographic

smoothing does not remove the need for high resolution, decorrelating solar irradiance

generation as it is imperative to understanding the effect.

Studying the spatial correlation of irradiance can be difficult as it is limited by the need

for high resolution data observations that contain an appropriate spatial separation

between measurements. The result is researchers regularly use PV power outputs to

determine spatial correlation. Wiemken et al. (2001) perform a study on data collected

by Beyer et al. (1991), who gathered hourly solar data across an extensive number of

sites in Germany. Their comparisons of averaged sites versus single sites demonstrated

that decorrelation exists with an exponential decay relationship with separation, figure

4.1 displays the correlation versus separation plot determined by Wiemken et al. (2001).

Much research exists that explores the spatial correlation of irradiance across varying

distances and time scales (Beyer et al., 1991; Wiemken et al., 2001; Hoff and Perez,

2010; Perez et al., 2011; Gueymard and Wilcox, 2011; Lave et al., 2012; Widen, 2015;

Gafurov et al., 2015; Perez and Fthenakis, 2015).

Otani et al. (1997) developed a method to calculate cross-correlation between multiple

sites within an area of 4 km × 4 km. They found that the correlation between sites

has a dependency on the day; the sites did not always correlate. Figure 4.2 shows the

findings of Otani et al. (1997) looking at two separate days. The 7th October 1996

saw strong linear regression correlation between sites, whereas there was very little

correlation for the 2nd October 1996. Otani et al. (1997) did not make a differentiation

between cloud motion direction, nor do they explore the influencing factors behind the

weather differences between days. Using the longitude and latitude provided by Otani

et al. (1997), and exploring historic weather data from nearby Tokyo, Japan, it was

found that both days were cloudy, however, the 7th more so than the 2nd. The 7th

also featured a significantly higher wind speed which may have influenced the cloud

speed. The 7th featured westerly winds whilst the 2nd featured northerly winds, it
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Figure 4.1: Spatial cross-correlation structure (cross-correlation as function of inter-
station distance) of hourly irradiance data gained from an independent long term (10
years) data set of 6 sites in Germany from Beyer et al. (1991). The line represents a

fit to these data using an exponential decay by Wiemken et al. (2001)

Figure 4.2: Irradiance fluctuation correlation coefficients between geographical dis-
persed solar measurement devices for two different days of 2nd and 7th October 1996
in north of Tokyo, Japan. The 7th October data is fitted with a linear trend line.

Plot produced by Otani et al. (1997)
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is possible that the connection between wind direction and cloud direction indicates

that the 2nd and 7th October had clouds moving roughly perpendicular to each other.

Otani et al. (1997) treated all sites as isotropic with expected unity in all directions

which may explain why their correlations did not align as expected. Arias-Castro

et al. (2014) make the decisive argument that the directionality of cloud motion has

significant bearing on the correlation, suggesting that an anisotropic correlation is the

only true approach to correctly identifying correlation. Their methodology was tested

against real world observations. For clarity, anisotropic models consider the influence

of differences in cloud direction, whereas isotropic models do not account for cloud

direction or assume a fixed direction.

Research explores the spatial anisotropic nature of solar irradiance as a function of

cloud speed, size and motion (Hinkelman, 2013; Arias-Castro et al., 2014; Perez and

Fthenakis, 2015). Solar variability cannot be considered as purely isotropic (Hinkel-

man, 2013; Lave and Kleissl, 2013), as is often assumed in previous research. The

cloud dynamic and motion is the predominant driver of anisotropy, therefore, cloud

direction, speed and size determine the correlation between sites. Smaller clouds cause

a lower correlation between sites, except for sites directly in the along wind direction

of cloud motion. Sites in the crosswind direction do not correlate strongly until the

cloud size significantly increases (Hinkelman, 2013; Arias-Castro et al., 2014). These

small clouds exist most commonly in tropical climates, such as Hawaii, that receives

consistent trade cumuli clouds of small radii. Hinkelman (2013) demonstrated that, in

Oahu, the larger the separation between sites, the greater the observed ramp decorre-

lation. For weather systems such as in the United Kingdom, that are dominated by

large-scale synoptic weather systems of up to hundreds of kilometres in size, it can be

inferred that, there is a greater chance that two locations separated by a large distance

will become covered by the same cloud with larger cloud sizes. This was demonstrated

in the spatio-temporal variability study by Glasbey et al. (2001) in a location where

larger synoptic weather systems are dominant; the correlation in the crosswind was

greater. The anisotropic effect is strongest at short time scales (Perez et al., 2012;

Hinkelman, 2013; Widen, 2015). The shorter the time scale, the greater the decorrela-

tion (Inman et al., 2013). Therefore, cloud size, direction and temporal resolution are

important considerations for developing the SDSIG.

Another factor identified as important to the spatial decorrelation of solar irradiance

is the topography of the study area. Complex topographies can significantly impact

the number of sunshine hours a location can receive. Olseth et al. (1995) studied the

impact of geographical positioning to explore the impacts of topography and sun angles

at high latitudes. The effect of terrain on available irradiance is described as a micro-

climatological parameter and varied between 317 to 839 kWhm−2 across a 10 km2
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area. The implication of this is that complex topographies are required to capture this

influence, as the aim of this thesis is to develop a methodology to produce spatially

decorrelating irradiance time series derived from assumptions and readily available

input observation data, incorporating topographical influence is beyond the scope of

the SDSIG at this phase.

Extrapolation of irradiance data from a single source is fairly common in literature.

Gueymard and Wilcox (2011) state that a solar irradiance measurement station could

be used to possibly represent the solar resource at nearby locations, negating the need

for additional measurements for around 50 km. Khalili et al. (2009) estimated spatial

daily solar irradiance data extrapolating from a point source using autocorrelation,

although do not produce a resolution useful enough for grid impact analysis. Almost

all extrapolation techniques, whilst using spatial correlation, do not produce time series

that are spatially decorrelating to each other. They instead produce a single time series

independent of all others generated.

There are two models found in the literature that offer potential alternatives to the

SDSIG, however, they require an irradiance input by virtue of an extrapolation tech-

nique. Munkhammar et al. (2017) presented a methodology named the Copula model,

whereby decorrelating instantaneous kc are probabilistically generated for any number

of locations based on the cross-correlations between kc values derived from measure-

ments at the same location. Munkhammar et al. (2017) hypothesised that the spatial

decorrelation statistics derived at Oahu, HI USA, could be applied globally. The au-

thor feels that this hypothesis is highly unlikely due to the lack of considerations in the

derivation of the kc distribution in Munkhammar et al. (2017). Only the hours with

θe > 25◦ are considered, which excludes many periods of lower kc events (Smith et al.,

2017). Their model lacks the appropriate bimodal relationship of the kc PDF that they

themselves demonstrated to exist. This is where the SDSIG offers an advantage over

the very few legitimate alternatives. The kc distributions by N are able to capture this

bimodal shape.

The second alternative methodology is the wavelet variability model by Lave et al.

(2013) and Lave and Kleissl (2013). The wavelet variability model is a spatio-temporal

methodology that produces spatially decorrelating irradiance time series from a single

point sensor irradiance input and a daily correlation scaling coefficient derived as a

function of cloud speed. The key problem with this method is a requirement of knowing

the cloud speed. The authors do propose a method of determining the cloud speed from

numerical weather forecasts and have produced daily correlation scaling coefficients for

North America. This makes the wavelet variability methodology a partial competitor

for spatially decorrelating synthetic irradiance generation for North America.
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Interpolation is another method of synthetically producing irradiance time series using

station-pair analysis. This type of methodology would be ideal if it could be proven

accurate from readily available, high resolution irradiance data sets such as those from

the WRMC-BSRN (2014), however, these are typically spaced over hundreds to thou-

sands of kilometres. Calif and Soubdhan (2016) analyse this station pair correlation

over 38 km and find a strong influence on the time resolution used in the analysis.

Longer time scales demonstrated greater correlation than the 10 min analysis. This

evidences the existence of a threshold time scale, below which there is no significant

correlation. Marcos et al. (2016) presents an interpolation model that can simulate

spatial decorrelation of irradiance time series from a 1 year time series of 1 second

irradiance data from 6 sites dispersed over 1100 km2. They found that there is a link

in correlation between sites, however, it is dependent on the time resolution explored.

6 km separation was significant enough to minimise ramping events from PV plants

having an influence on aggregated power flows in real time. This interpolation study

does not produce synthetic irradiance time series, it only studies the link between sites.

Widen (2015) use station-pair analysis to integrate the geographic smoothing of dis-

tributed irradiance data over a spatial domain of 1 km2 and time scales of a few minutes

using what is called a virtual network. The model generates irradiance with an esti-

mated aggregate smoothing effect using arbitrary input power output profiles from

power plants. This method is useful in power flow models although is not applicable

to real scenarios as the model is only simulated on virtual networks, not derived from

real world observations.

The most recent developments in interpolation based spatio-temporal irradiance time

series modelling comes from Patrick et al. (2016), who present a statistical model of

high spatial and temporal resolution at 100 m2 and 1 min respectively. Their non-

separable spatio-temporal GHI data model outperforms alternative natural neighbour

interpolations of the footprint of a PV system.

These methods by Lave and Kleissl (2013), Calif and Soubdhan (2016), Marcos et al.

(2016), Widen (2015) and Patrick et al. (2016) require spatially distributed irradiance

data and cannot account for variable weather conditions between days. Furthermore, a

key distinction between these methodologies and the SDSIG is that they are upscaling

techniques. This means that they would only be able to generate either the aggregated

irradiance of a spatial domain, or a single irradiance time series that would not decor-

relate to additional generated time series. They cannot offer individual, decorrelated

time series, and are therefore not suitable for multi-variate, house-scale grid impact

analysis. They would potentially be more suited to aggregated utility-scale analysis.
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Arias-Castro et al. (2014) present the Anisotropic Correlation Model (ACM) that eval-

uates the spatial decorrelation of irradiance between real world observation sites from

Oahu, Hawaii, where small trade cumuli are the norm with typical diameters of 1km

or less. This method does not produce irradiance time series and so cannot be consid-

ered an alternative to the SDSIG, however, there are crucial assumptions within the

ACM that facilitate the move from the SIG to the SDSIG. Firstly, the method of syn-

thetically representing a cloud is novel and proven to be effective, and secondly shows

that anisotropy is an essential inclusion in spatial solar modelling. Further discussion

regarding the clouds is made in section 4.2.2.

Widen (2015) pointed out the complex nature of having to model exact cloud shape,

movement and evolution. These elements are fundamental to including a spatial el-

ement within the model. To get around this, they make the assumption that clouds

move with constant speed across a spatial domain called a virtual network. This con-

cept of a virtual network was designed by Hoff and Perez (2010) and Perez et al. (2012)

that allows the exploration of solar correlation with increasing arbitrary distance be-

tween station pairs assuming that clouds do not change over that distance and move

at constant cloud speed. They find that site pair correlation from clouds predictability

decreases as a function of distance. More interestingly, however, they find that the

decrease is inversely proportional to the data frequency. These works are the close

alternatives to the SDSIG presented in this chapter as they can synthesise irradiance

time series with basic assumptions, however, one other target of this thesis is to create

statistically accurate irradiance profiles. Statistically accuracy is also site specific such

that it captures the local TMY of an area. There are no inputs that guide this weather

such as the MTMs in the SIG. The assumptions of cloud direction and speed main-

taining a constant between stations is a useful inclusion that can be applied within the

SDSIG.

A fitting end to this literature review is to revisit the comment by Gafurov et al. (2015)

and Munkhammar et al. (2017) who suggested that currently, there are no known

methods for the integration of spatial correlation of solar radiation into synthetic data

by using reduced and easily available inputs. A review of the literature finds them

to be accurate. Whilst there are some spatio-temporal methodologies that deal with

real observational data and the extrapolation or interpolation of measured irradiance to

different sites, the authors are unaware of any research that deals with synthetic spatio-

temporal irradiance generation derived using readily available data. The research aim

of this thesis (section 1.4.1) is the development of a methodology that can facilitate

synthetic spatio-temporal irradiance generation using readily available hourly weather

observation data. It is therefore a strong indicator of novelty that no true synthetic

irradiance generation technique exists as of yet.
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4.1.1 Summary of identified research opportunities

There is a clear lack of competitive alternatives to the SDSIG in research. However, the

methods employed by extrapolation, interpolation and attempted synthesis techniques

offer lessons for consideration on spatial variability and correlation between sites.

Firstly, clouds are difficult and complex to simulate. This is even truer when attempt-

ing to use readily available input data. Very few pieces of literature have attempted

this, and when they have, simple assumptions were employed. With these simple as-

sumptions, the solar irradiance time series from the models have validated against real

observation data and, therefore, it is feasible. Further literature review will take place

addressing the ability to synthesize clouds in section 4.2.2.

Secondly, studies considering correlation between station pairs exploring different ori-

entations away from the cloud motion direction. There is clear correlation anisotropy

between sites the along and cross wind directions. It is important that the SDSIG

enables this behaviour to be captured. This means that the cloud direction must be

included within the SDSIG.

Lastly, there are the development opportunities identified from the SIG as outlined in

section 3.6.1 and summarised as:

• The SIG could be extended through the inclusion of a spatial dimension.

• The potential for extending the research between the kc and total cloud amount.

• The methodology could theoretically be applied to produce secondly time series.

4.2 Methodology of the Spatially Decorrelating Solar Ir-

radiance Generator

This section will detail the intricacies associated with advancing the SIG to become the

SDSIG. The SDSIG methodology detailed here is summarised in figure 4.3. Red circles

in the top right of each component of the flow chart indicate where a development has

been made on the previous methodology. Each of these developments will be detailed

in their own subsection as listed:

• 4.2.1 Data requirements

– A discussion and list of the additional user defined data requirements by

the SDSIG.
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Figure 4.3: Flow chart summarising the SDSIG methodology. Green parallelograms
represent an input, blue rectangles represent a process, and the yellow parallelogram
at the bottom indicates the output. A red circle marker to the top right of a box
highlights where changes have been made to enhance the SIG methodology to include

a spatial dimension.
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• 4.2.2 Cloud field production

– A definition of a cloud field. Literature review and details of the methods

available to produce a cloud field. Development of new methodology to

produce cloud fields of each N and uref .

• 4.2.3 Cloud field motion across a spatial domain

– Details and discussion of the methodology developed to move the cloud

fields over a spatial domain containing the houses.

• 4.2.4 Generation of clear-sky indices

– There are new considerations for the generation of kc. Cloud edge enhance-

ments, improved accuracy of kc distributions, and extended stable okta

periods are discussed and the methodologies detailed.

4.2.1 Data requirements

The SDSIG still operates on the same input data as detailed in section 3.3.1 as total

cloud amount in okta (N), wind speed measured at 10 m above the ground (u10), cloud

base height (zref) and atmospheric pressure (p).

In addition to the user defined variables detailed in section 3.3.1.2, there are additional

required data from the user. The new inputs are indicated with the red circle in the

top right of the green parallelogram in figure 4.3, furthermore, the script can be seen

in section B.2.

The new inputs are individual characteristics for each house within the spatial domain

where an irradiance time series is desired. They are described as follows:

• Length and size of the spatial domain, X by Y

– The spatial domain is selected to be 1500 m in length and square (X = Y );

however, this is a computational limitation. Larger spatial domains can be

produced with this method although they require the reproduction of cloud

fields to match this size. Morf (2013) state that 30 km would suitable for

an “under the same sky” approach as N is representative to the horizon.

• The coordinates of each unique location, xl, yl, and zl

– The SDSIG operates on Cartesian coordinates, and not longitudes or lati-

tudes. The Cartesian coordinates are in metres ranging from 1 m to X. Φ
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and Θ are placed centrally within XY such that (xΦ, yΘ) = (X/2, Y/2). xl

and yl are therefore in reference to (xΦ, yΘ) where (1, 1) = ((xΦ−X/2, yΘ−
Y/2). zl is the height above sea level at each location in metres.

• Panel pitch (or tilt) and azimuth (or orientation/aspect) of each location, βlp and

βla, respectively

– These are used the same as in the SIG, however, the SDSIG can handle

unique βlp and βla for each house.

The SDSIG has the ability to provide each house with an individual height, panel pitch

and azimuth, which is rarely employed by current approaches (Engerer and Mills, 2014).

4.2.2 Cloud field production

The transition from one-dimensional cloud representation, as used in the SIG, to two-

dimensional cloud representation requires a new approach to synthetically model the

sky and the clouds within it.

The cloud samples introduced in section 3.3.2 were represented using a physical 1DM

distance series. Each element within the 1DM physically represented a distance em-

ploying binary indicators to indicate the presence of cloud. This process was compu-

tationally demanding on one-dimension, to replicate this method with two-dimensions

across a spatial domain that is sized XY would increase the computational demand

by a factor of XY . This limitation drives the need for a complete redevelopment of

the cloud representation methodology, which begins with a return to the literature.

4.2.2.1 Methods of synthesising a cloud field

Morf (2011), who presented a direct alternative to the SIG, made a particularly promis-

ing finding that “The steady state probability distribution of the cloud cover is invariant

to the observation area over a wide range”. This presents the possibility to syntheti-

cally map the sky, knowing that over the hour, an element in the spatial domain will

converge towards the value of the measured okta. The implication here is twofold such

that the sky can be synthetically represented and that the passage of cloud should

cause an element within the domain to converge towards the okta value.

For the selection of the size of a cloud field, there is both a physical and computational

limitation. The computational limit is how large a cloud field can be modelled that is

within the tolerance of available computational power; larger cloud fields require more
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computational power. The computational limit for the equipment used to develop the

SDSIG was found to be computationally tolerable around a cloud field size of 1500 m2,

although this feature is dependent on the accuracy required to assess the C value of a

synthesised cloud field, and also the temporal resolution of the simulation. The physical

limit is how large a cloud size can be statistically represented by N . The question is

therefore, to how far is a value of okta representative of the sky? Morf (2013) suggests

this limit is 30 km as is appropriate for horizon distance. This is intuitively reaffirmed

as total cloud amount observations are often made by a human observer who assesses

the visible sky. Gueymard and Wilcox (2011) suggests that a measurement station

could possibly represent the solar resource at nearby locations, suggesting a spatial

coarseness of 50 km, or representative to 25 km applicability to each modelled area.

These two suggestions find the computational limit to be the bottleneck. There is no

further investigation into the representation of okta with distance as the computational

limit is well within the physical limit.

Arias-Castro et al. (2014) presented the anisotropic correlation model that produces

cloud fields for analysis of the spatial correlation between two sites as a result of si-

multaneous ramping. A fixed motion vector is applied to a cloud field with arbitrary

spatial domain size and fixed cloud radii. The cloud centres are selected using a homo-

geneous spatial Poisson point process whereby a random location within mathematical

space is chosen with uniform distribution. Cloud shape is taken as a fixed circle. To

the authors’ knowledge, there is no published research on the geometric representation

of cloud shape, as was also concluded by Arias and Bae (2016). Their model was val-

idated against spatially dispersed data at Oahu, Hawaii (Hinkelman, 2013), and was

found to perform well at short time scales, including 1 minute. From the literature

review by Arias-Castro et al. (2014), no methods of modelling the cloud shape or cloud

fields were found; there are some newer developments since this publication, however.

Cheng and Yu (2015) use representative sky images of different cloud types to produce

a sky field in order to forecast the solar irradiance. The issue with this method is

the availability of sky images, correct identification of cloud types, and being able to

statistically and stochastically reproduce the presence of different cloud types within

a simulation. Furthermore, the use of a sky-image does not consider diffuse and other

irradiance calculations. This method could perhaps be modified to fit a more binary

pattern to utilise the cloud shape in synthetic modelling. As the SIG and SDSIG

do not have the stochastic development of cloud types, this method is not considered

further. The use of sky imagers to derive cloud shape and motion are becoming more

popular with Tzoumanikas et al. (2016), Dulski et al. (2011), Barbieri et al. (2016) and

Wang et al. (2016) all being able to determine the presence of cloud from the imagers.

Peng et al. (2016) propose a method of synthesizing cloud motion with stored cloud
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templates taken from sky imagers. The need for this additional information presents

a barrier as a sky imager is required to produce the database. Otherwise, access to a

database is required, without which, this method is not appropriate for the rationale

for this thesis; it does pose interesting potential future research potential.

A simpler approach is presented by Augsburger and Favrat (2013) that only considers

the worst case scenario to solar concentrating heliostats — cumulus clouds with no

solar transmittance. They select a cloud motion vector taken as the mean cloud motion

direction and cloud speed at a site in Tucson, Arizona USA. A single cloud, sized larger

than the solar receiver field, is passed across the simulated space. For a single and short

simulation, this method is computationally simple. However, a physical spatial 2DM

approach becomes more computationally demanding with longer passages of time.

The most interesting information presented by Augsburger and Favrat (2013) is the

distributions of cloud speed for Tucson. The implementation of cloud speed in the SIG

was rather arbitrarily defined due to lacking literature discovered on cloud speed. The

distribution of cloud speed as Γ(3.1608, 1.46735) gives a mean velocity of 4.64 ms−1.

Preferably, a historic time series of cloud speeds motion vectors would exist so that

the stochastic Markov chain approach could be applied. As this data is not readily

available, the use of a distribution is instead employed. This can be implemented in

the SDSIG and is presented in the next section.

The addition of satellite derived cloud fields could prove useful for cloud field pro-

duction. Luo et al. (2008) provide a methodology to extract binary representation of

clouds of a predefined type using MODIS satellite images, these images could then

be used to synthetically generate realistic cloud fields. For appropriate utilisation of

satellite images, there would need to be a relationship derived between N and cloud

type, and a relationship between cloud type and kc. An alternative method by Dulski

et al. (2011) uses thermal infra-red analysis to derive temperature statistics of clouds

to develop synthetic cloud shapes. They propose an interesting two-dimensional noise

production, however, the lacking ability to geometrically represent a cloud is not com-

plementary to a sun obscured type methodology.

In summary, at the time of developing the SDSIG and to the author’s knowledge, there

were no suitable methods of cloud field production aside from the simple approach by

Arias-Castro et al. (2014), which can be developed upon to include variation in cloud

size following the Wood and Field (2011) distributions discussed in section 3.3.2.
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Figure 4.4: Example visualisations of cloud fields for coverage values C = 1 to 10.
The X dimension is equal to 3600uref and the cloud speed of these cloud fields is
uref = 1 ms−1. These plots are merely visualisations of what are in fact a 3×nc 2DM

of xc-yx-rc.
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4.2.2.2 Developed approach to synthesising cloud fields

The cloud sample method in the SIG uses a computationally demanding physical rep-

resentation of distance using a 1DM whereby each element is assigned a representative

distance. For progression to a faster and more sophisticated cloud field production, a

method of vectorisation is developed whereby the clouds are defined in space with a

geometric expression, and are not physically mapped in a 2DM. The computational

demand is, therefore, only limited by the number of clouds, nc, that can be stored in

each cloud field. The script for cloud field synthesis is included in section B.1.

As with Arias-Castro et al. (2014), the clouds are assumed to be perfectly circular.

This opens the opportunity to represent clouds as a centre point and radii. A centre

point of a cloud can be denoted using Cartesian coordinates (xc, yc) within defined

mathematical space, the radius is denoted rc. A cloud field is therefore an array

with length nc containing xc-yc-rc values of each cloud; a cloud field is therefore a

2DM that is 3 × nc elements large. nc was set to 1200 clouds and so each cloud

field contains 3600 elements. Should the SIG cloud sample methodology be used as

opposed to this vectorisation method, the spatial granularity would be
√

3600 = 60 m.

The new vectorised method does not have a spatial granularity limitation and is only

limited by the temporal resolution. Overall this is a much more efficient and accurate

development.

Figure 4.4 shows actual cloud fields for each coverage value, for clouds moving at 1

ms−1. A simplified cloud field is also seen later in figure 4.5 as black rectangle A and

the two clouds c1 and c2, or in later in figure 4.7 as the dashed orange box containing

clouds.

The proposed production technique creates 500 different cloud fields, ns, for each

integer of cloud coverage fraction (C = 0 to 10 out of 10) and for each possible value of

cloud speed (uref = 1 to 30 ms−1), totalling 165, 000 different cloud fields to be stored

consisting of 594 million elements. Reducing ns by 1 reduces the number of elements by

1.188 million while reducing nc by 1 reduces the number of elements by 0.495 million,

and so considerable space saving could be made by reducing either. An option could

be to link the size of ns by the prevalence of N at the location of study by using the

MTM distributions of N , assigning more cloud fields to oktas with higher prevalence

in observations. However, this would unnecessarily require the re-production of cloud

fields with each simulation, resulting in extremely poor computational performance..

A cloud field can now be selected as desired once the stochastic weather time series is

generated.
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The coordinates of each cloud’s centre all fall within the cloud field’s spatial domain,

which is sized to cover the simulation area for exactly one hour, the size of the cloud

field is therefore a function of uref . For computational purposes, cloud fields always

travel parallel to the x axis, this allows the y axis of a cloud field to remain independent

of uref . Ttherefore, the size of a cloud field is 3600uref -by-1.5 km, where 3600 is the

number of seconds in an hour. To produce ns cloud fields for each uref at each C, an

iterative process is proposed. The process is first described before being summarised.

Firstly, the target C value is set, it is denoted Ct. Ct is the coverage desired for the

cloud field being produced and so with each cloud added to a cloud field, the actual C

can be checked against Ct to determine satisfaction. It was decided that a tolerance

must be permitted due to the nature of recording N . Oktas are reported as discreet

integers that have been binned from what is in reality a continuous value, e.g. 3 okta is

actually representing 2.5 to 3.49 okta. Including a random variate to Ct would allow for

a more representative set of cloud fields per each C. To achieve this, Ct = Ct ± 0.5R

where R is a random variate drawn from a uniform distribution between 0 and 1,

R ∼ U(0, 1).

The second stage of each iteration is to add a cloud, defined as xc-yc-rc, to the cloud

field. The coordinates of the cloud centre xc and yc need to be defined. There is no

bias applied to the positioning of clouds into the cloud field as a homogeneous spatial

Poisson point process is used, such as was used in (Arias-Castro et al., 2014). A

homogeneous spatial Poisson point process randomly selects a point in mathematical

space with uniform distribution. This is very simply modelled as xc ∼ U(0, X) and

yc ∼ U(0, Y ), where Y = 1500 m and X = 3600uref m. The next step assigns the cloud

a radius, rc. In the SIG, cloud sizes were drawn from the distributions by Wood and

Field (2011) and was proved to be an effective tool. The same distributions are used

to select rc as adapted from equation 3.3 to reflect that r is a horizontal cloud length.

It is, therefore, inclusive of converting from what is effectively a diameter to become a

radius.

r =
(κ+ λR)

1
1−β

2
(4.1)

Once a cloud is added, the updated C of the cloud field must be determined. The exact

geometric solution to C is complex because clouds can overlap. Up to 75% of their area

can exist outside of the cloud field environment should it be centred at the very corner

of the domain. With nc = 1200, there is a high probability of overlap, as is clearly

shown in figure 4.4. Therefore, it is computationally demanding to determine the area

obscured from xc-yc-rc values. A solution was developed that can be adjusted for

different computational availability depending on the accuracy of the required answer.

The solution is visually demonstrated in figure 4.5 and is described here.
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Figure 4.5: Example of the utilisation of equation 4.2. A is the cloud field domain
defined by its four points. c1 and c2 combined create ci and are shown in blue defined
by their respective (xc, yc) centre points and radii rc. The spatial resolution xres is the
distance between sample points. The colours of the sample points (orange) indicates
a point that is within both A and ci, (green) a point found only within A and (grey)

any point outside of A. The resultant Cfrac = 0.367 and C = 4 tenths

Let the cloud field be rectangle A defined by four coordinates as (0, 0), (Xc, 0), (0, Y )

and (Xc, Y ). Xc reflects the different x-axis sizes of the cloud field and the spatial

domain such that X 6= Xc for uref > 1 ms−1, whereas the y-axis of both the cloud field

and spatial domain are equal regardless of uref . The space inside A can be expressed

using a gridded sample of Cartesian coordinates (x, y). The rectangle is filled with

circles, ci where i(1, 2, . . . nc). The area of each circle can also be expressed using

Cartesian coordinates as any coordinate that is within the cloud xc,i-yc,i.

Each cloud is defined as any Cartesian coordinate that exists within the circle and

can be found using ri. The list of coordinates within a cloud can be written ci =

{(xc,i, yc,i) : (Xc − xc,i)2 − (Y − yc,i)2 ≤ r2
c,i}. The same view can be taken for the

rectangle such that A = {(x, y) : 0 ≤ x ≤ Xc, 0 ≤ y ≤ Y }. The coverage value of the

cloud field is therefore the ratio of all Cartesian coordinates that exist in both A and

ci, it can be written using the logical and wedge symbol as

Cfrac =
A ∧ ci
A

(4.2)
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Where Cfrac is the estimated fraction of the coverage value. To convert Cfrac to C in

tenths, a multiplication by 10 and rounding must occur, C = [10Cfrac].

The issue with equation 4.2 is that, to be computationally represented, a spatial res-

olution xres must be used between each Cartesian coordinate considered in A and ci,

this heavily influences the computational demand. The spatial resolution can best be

considered a grid of sample points, as is shown in figure 4.5. The equation can be

operated with any xres, although for an accurate estimation of C a smaller xres may

be required, this is further discussed in section 4.4. The smallest computationally tol-

erable xres with the equipment available was 50 m, which is equivalent to 31uref × 31

sample points per cloud field.

The final step of the iteration is to check the calculated Cfrac value back against the

target Ct value. Should Cfrac be less than Ct, then another cloud (or multiple of clouds

for higher uref) is added into the cloud field and new C is redefined. Once Cfrac has

reached Ct, it is ensured that the same C has been attained by rounding such that if

the rounded values of Ct and C are the same, then the cloud field is acceptable. This

is expressed in the following equations.

C < Ct
if−−−−→

True Add new cloud

False Continue to next eq.
(4.3)

[C] = [Ct]
if−−−−→

True Store cloud field in appropriate bin

False Reject cloud field
(4.4)

Where [·] is a nearest integer rounding, and
if−−−−→ is a logical if statement with two

outcomes of true or false.

The process to generate a cloud field is summarised as follows:

1. Set Ct within the range 0–10±0.5R

2. Add a cloud into the cloud field with random centre point (xc,yc)

3. Extract a cloud radius, rc

4. If the number of clouds exceeds nc, reset the cloud field

5. Compute the new coverage value, Cfrac and C
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6. If C < Ct move to step 2, else continue

7. If [C] > [Ct] reset the cloud field, else continue

8. Store the cloud field into a storage bin indexed by C and uref

9. Make new cloud field and repeat until there are ns cloud fields of each Ct at each

value of uref in every bin

4.2.3 Simulating cloud motion

This section will detail the methodology that “moves” the cloud fields over the spatial

domain containing all of the houses. The result is the production of individual binary

1DMs of sun obscured indication (B) and clear-sky index (kc) for each house.

The SIG did not require this step as the cloud sample was already in the form of B,

and kc was extracted every 6 mins. With the development towards cloud fields in a

vectorised format, an entirely new methodology is required.

4.2.3.1 Weather variable generation and cloud field selection

As with the SIG, the same Markov chain production and implementation process and

weather variable generation is employed in the SDSIG and can be seen in appendix

sections A.4 to A.7. Weather variable generation operates the same as in the SIG

with a subtle difference that now, in order to reference a cloud field, an hourly time

series of cloud field reference number, n, is also generated. A cloud field is stored as a

function of uref and C with ns options for each combination of uref and C. Therefore,

n is a random selection from the available options and can be expressed as n = [nsR]

were R ∼ U(0, 1). The weather variable generation is the same as the SIG and so all

discussion relating to the MTMs and seasonality applies to the SDSIG also.

After weather variable generation, hourly time series of uref , C and n exist that are

applied ubiquitously to the whole spatial domain. The assumption is that all weather

variables are applicable to the selected spatial domain size of 1500 m. C is suggested

to be well represented to 30 km (Gueymard and Wilcox, 2011; Morf, 2013). u10 is

highly variable depending on the surrounding topography. As its use is to estimate a

cloud speed, that too is assumed to have similar representation over 30 km.
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Figure 4.6: Cloud speed distribution for Tucson, AZ USA, produce by Augsburger
and Favrat (2013)

4.2.3.2 Cloud field motion across a spatial domain

The model script for cloud motion code is intertwined with kc generation and can be

seen in coded format in section B.5 from line 152 onwards. This is because each cloud

in the cloud field is assigned a unique kc value to account for varying cloud thickness.

The best way to visualise cloud motion is to imagine the cloud field moving across the

spatial domain from right to left. As the process is vectorised, movement is actually

achieved by updating the house-to-cloud distances each time step using uref and t. The

distances facilitate movement of a cloud field, so there is no physical representation,

only a constant list of house-to-cloud distances that are updated with each time step.

The following methodology description has been accepted for a special issue volume in

the Journal of Solar Energy (?). For best understanding of the described methodology,

refer to figure 4.7 for visual interpretation.

uref is extrapolated from u10 in both the SIG and SDSIG for clouds below 1 km.

For clouds above this limit, the SIG extracted uref from a gamma distribution of

Γ(2.69, 2.14). Research for the SDSIG revealed a study by Augsburger and Favrat

(2013) that calculated probability distributions for cloud speed and size; they are

displayed in figure 4.6. Augsburger and Favrat (2013) find the cloud velocity to be

represented by a gamma distribution of uref ∼ Γ(3.1608, 1.46735) for Tucson, Az USA.

As the research on this topic is scarce and the SIG assumption was based of a mean

and a range from two different studies, using this gamma distribution from Augsburger

and Favrat (2013) offers more realism and accuracy to uref . Whilst Az, USA, is not
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Figure 4.7: Visual demonstration of the cloud motion and sun obscured methodolo-
gies The dashed box represents a cloud field full of clouds with centre points (xc, yc)
and radii, rc, that is travelling at speed uref across the spatial domain in solid blue
containing the houses positioned at ((x′l, y′l) and indicated by crosses. The spatial
domain has dimensions XY while the cloud field has dimensions XcY . The shade of
the crosses indicates overlap by a cloud when darker. The clouds are represented by
grey discs. The straight line distance from location centre to cloud centre is denoted
d, and the cloud field moves at each time step, t, in the direction indicated by the

arrow marked uref .

geographically applicable to the UK, it is the only real indicative distribution of cloud

motion vectors published and known to the author. The cloud speed range is within

the expected and projected range predicted for the UK, and as the previous distribu-

tion was arbitrarily assigned, this is now at least guided by literature. Further research

into the cloud motion vectors is assigned to future work. For the most computation-

ally efficient process, the cloud fields are always modelled approaching from the same

direction parallel to the x-axis, this allows the y-axis to remain unchanged and halves

the number of calculations. In order to facilitate this constant motion direction of the

cloud fields whilst also allowing for changing cloud motion direction each hour, the

houses are rotated about the cloud direction angle, θ, modifying to rotational matrices

demonstrated in equation 4.5 and coded as a Matlab function in section B.3. The

modification changes rotation about point (0, 0) to be a function of the centre of the

user defined spatial domain, set to (750, 750) in the SDSIG although is flexible to new

inputs.

[
x′l
y′l

]
=

[
cos θ − sin θ

sin θ cos θ

][
xl

yl

]
(4.5)

Where xl and yl denote the initial coordinates of the house within the spatial domain,

and x′l and y′l are the house coordinates rotated by cloud direction angle θ.
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The angle by which to rotate is determined using a normally distributed random walk,

with standard deviation equal to 10◦ around the previous time-step’s cloud direction,

such that θt ∼ N(θt−1, 10◦). 10◦ is arbitrarily selected to allow for gradual changes

in direction each hour. Allowing gradual changes is considered to be important as

it will affect the correlation between two sites. The alternative is to fix a uniform

cloud direction such as in Arias-Castro et al. (2014). This will result in constant

anisotropic correlation over a year, which is not realistic for most geographies. The

random walk method does not produce a uniform distribution as it does not facilitate

large changes in cloud direction between hours. The output is random and arbitrary

as it is not weighted or biased, however it is limited in step size in order to reproduce

gradual change. The impact of the assumption is discussed in section 4.4.1 and the

development of cloud motion direction distributions added as an interesting field for

future work.

Wind direction at typical measured height of 10 m is not representative of the cloud mo-

tion direction, which can have multiple layers travelling in different directions. Methods

exist to estimate cloud motion direction that require sophisticated equipment (Wang

et al., 2016; Chow et al., 2011), however, until a method is available that accurately

represents the cloud direction using simple and readily available inputs in order to

maintain the rationale of the work, a simple random walk method is adopted for sim-

ulations where cloud direction changes with weather system (e.g. temperate climates)

and a uniform direction can be selected for simulations with prevailing cloud directions.

For example, equatorial and tropical trade wind influenced sites Hinkelman (2013).

At each time step, the distance from each house to the centre of each cloud within the

cloud field must be calculated.

Firstly, let the x-axis length of the spatial domain be X and the x-axis length of the

cloud field be Xc, the coordinates of a house and each cloud are (x′l, y′l) and (xc, yc)

respectively.

The distance from a house to the right side edge of the spatial domain is found as

∆xl = X − x′l (4.6)

While the distance from the cloud centre to the left side edge of the cloud field is equal

to xc.

The overlap of domains is defined as the number of time steps, t, multiplied by the

temporal resolution, tres. Therefore, the distance in the x-axis direction from the house

to the cloud centre, ∆x, is given by



Chapter 4. SDSIG development 133

∆x = ∆xl + xc − (t× tres) (4.7)

The distance in the y-axis from a house to a cloud is given by

∆y = yc − y′l (4.8)

Now that the x-axis and y-axis distances from a house to a cloud centre are known,

and because it produces a right-angled triangle, the horizontal distance from the house

to the cloud centre, d, can therefore be calculated using Pythagoras’ theorem as

d =
√

∆x2 + ∆y2 (4.9)

Figure 4.7 visualises the described distances from equations 4.5 to 4.9.

For every time step of the simulation t, using d and rc it is determined if the house is

covered by cloud(s) or not. To do this, a logical if statement is applied such that

rc > dt
if−−−−→

True Bt = 1

False Bt = 0
(4.10)

Where Bt is a Boolean matrix indicating the presence of cloud at the tth time step;

Bt = 1 signifies the presence of cloud, whereas no cloud is represented by 0. The symbol
if−−−−→ denotes the use of a logical if statement offering two outcomes depending on

the satisfaction of the logical expression rc > dt. Equation 4.10 is performed for every

house against every cloud and 1DM time series of B is made for every house.

To ensure that clouds are not abruptly cut off between hours of simulation, in situations

where cloud centre points are close to the edge, three sequential cloud fields (past,

present and future) are logically queried at each time step, as per equation 4.10. The

iterative if statement is repeated each t until the current cloud field has passed outside

the spatial domain. At this point, all the sequential cloud fields are updated to reflect

that the hour has finished: the future sample begins to pass directly over the spatial

domain and therefore becomes the current cloud field, the past cloud field is removed

and replaced by the expired current cloud field. Lastly, a new future cloud field is

selected. This prevents sudden disappearance of cloud once an hour is ended, which

resulted in consistent clear sky periods each hour.
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Each cloud in the cloud field is assigned a unique kc value so that alongside B, kc can

be generated for use in irradiance calculations as in the SIG. This is discussed in the

next section.

4.2.4 Generation of clear-sky indices

This section will introduce how kc is generated for each house. Recall that, kc refers

to a single value of the clear-sky index while kc is a time series of kc.

The SIG had some limitations. The first limitation was the use of only four different

distributions of N , from which to extract a kc. The limitation is for N = 1–5, as they

are all extracted from the same distribution of kc(N = 6); this is now known to depend

strongly on θe. Smith et al. (2017) show a distinct set of kc distributions for all N , and

also for bands of θe. The inclusion of distributions for the ten values of N and for nine

10◦ bands of θe means the SDSIG will now make available 90 different distributions

from which to extract kc = f(N, θe). This is discussed in section 4.2.4.1

Perhaps the most significant limitation to the SIG was the implementation of a res-

olution by which kc values were extracted every 6 mins and all minutes in between

were linearly interpolated. Furthermore, Gaussian white noise was added to kc in an

attempt to produce more realistic irradiance profiles. The temporal resolution that the

methodology can be applied on is also limited by these assumptions. Theoretically, the

SIG is flexible to any time resolution, although the 6 minute and Gaussian fluctuations

limit its performance. By developing the SDSIG in a vectorised format and removing

the 6 min resolution and Gaussian white noise, the temporal resolution is flexible to

temporal resolution. The next step is to generate kc with the same time flexibility.

This is discussed in section 4.2.4.2.

Further analysis into what constitutes a CEE event and how it can be incorporated

into the SDSIG was performed and discussed in section 4.2.4.3.

4.2.4.1 Clear-sky index distributions by both okta and elevation angle

This section considers the author’s co-authored publication in the Journal of Solar

Energy with Dr Christopher Smith (Smith et al., 2017). References to Smith et al.

(2017) in this subsection indicate work that Dr Christopher Smith did, and not the

author of this thesis.

kc distributions byN and θe from UK data are derived by Smith et al. (2017) developing

upon those originally published by Bright et al. (2015). The elevation angle dependency
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of kc was hypothesised to be a result of the solar path through the different geometries

of clouds, such that low θe corresponds to higher attenuation within clouds.

Smith et al. (2017) found that the distribution by N and θe can be represented by Burr

III distributions for N(0, 1, 2, 3) and by general gamma distributions for N(4, 5, 6, 7, 8).

The PDF of the Burr type III distribution is given by

f(x) =
ck

a
(
x

a
)−c−1(1 + (

x

a
)−c)−k−1 (4.11)

Where a is a positive scale parameter, and both c and k are positive shape parameters.

The PDF of the generalised gamma is given by

f(x) =
pxd−1exp(−(x/a)p)

adΓ(d/p)
(4.12)

where p and d are shape parameters and a is the scale parameter. Γ(·) is the gamma

function that generalises factorials to real numbers.

Figure 4.8 demonstrates the individual kc dependences by N and θe. A bimodal shape

is observable for all θe > 10◦. For θe = 0◦, there is very little definition of a kc peak at

1.

The distributions are limited to elevation angles ≤ 50◦ in Smith et al. (2017) as they

were derived for the UK where the sun is always at least 27◦ from solar zenith. For

applicability elsewhere in the world, such as San Diego, CA USA, an extrapolation is

required to determine kc distributions for θe up to 80◦. This was carried out by extend-

ing the best fitting trend of both the shape and scale parameters when plotted against

elevation angle. There is only a very small difference observed when extrapolating the

distributions from 50◦ up to 80◦. This is perhaps further support of the hypothesis

made by Smith et al. (2017) that the dependency was due to the path that the light

travels through the cloud, and that clouds are often wider than they are tall for most

cloud types. Therefore, the attenuation is higher when the sun is lower in the sky. At

θe > 50◦, the path travelled through the cloud is from above and so share a similar kc

distribution to θe = 50◦. The use of an extrapolation is acceptable due to the fact that

the sensitivity is low.

The distributions from Smith et al. (2017) and extrapolations are included in section

B.7 alongside the distribution parameters for each value of N and θe.

One assumption with using these distributions is that the kc distributions by N and θe

hold accuracy when applied globally. It is thought that annual hourly kc histograms

are different for each geographic location because they experience different quantities
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Figure 4.8: 1) Histograms of the clear-sky index distributions by okta for all solar
elevation angles. 2) Histograms of the clear-sky index distributions by solar elevation
angle bands for all okta. Both plots were produced by and published in Smith et al.

(2017)
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of okta states, not because the kc distribution by each okta is different around the

world. A desert climate would experience greater quantities of 0 okta and fewer 6-8

okta than the north of Scotland would. The annual kc distribution would therefore be

a function of okta frequency. This assumption does have limits as the kc distribution

by N does vary. It is acknowledged that different okta will inherently possess a myriad

of different cloud types at different geographies, some types more prevalent than others

depending on the climatic region. However, the irradiance magnitude frequencies that

are produced using the distributions shown later in this chapter suggest suitability for

international use through validation at two additional climates.

The method of producing B within the SDSIG cannot physically account for the solar

elevation. Sun obscured is modelled such that the sun is directly overhead each house

within the spatial domain. Therefore, an assumption is made that the SDSIG method

captures the influence of solar geometry and a third dimension through using the

changes in optical thickness that are limited to the different kc distributions derived

accounting for θe.

4.2.4.2 Implementation of clear-sky index distributions

To extract a kc from the distribution, both the N and θe must be known for that

time-step of the simulation.

N is stochastically derived in the weather variable generator and θe is calculated at

each time-step following the algorithm defined by Blanco-Muriel et al. (2001), detailed

in section 3.3.5.2. The lowest θe that exists within that hour of simulation is taken

as the reference with which to select the appropriate kc distribution for use. Once

the appropriate distribution is selected, each cloud contained within a cloud field is

assigned an individual kc extracted from that distribution. The cloud’s associated kc

is applied to the entire area of the disc. Should a house be obscured by more than one

cloud, a mean of all kc is taken. When a house is obscured by more than one cloud, it

would be intuitive to think that taking a multiple or additive of all obscuring kc would

be the correct solution, however, this would lead to extreme values of kc that do not

appropriately reflect the distributions. Furthermore, the cloud field methodology is

not a realistic representation of the sky, therefore, overlapping clouds are not reflective

of actual overlapping clouds where the multiple of optical thicknesses would be true.

As overlapping discs within the cloud fields do not indicate the presence of more cloud,

the mean is taken. To implement the mean, the following logical query is used.

As with equation 4.10 in section that produces B, at the same time step, a time series

of kc is created and denoted as kc for each house as
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d < rc
if−−−−→ kc,t =

1

nc

nc∑
1

kc (4.13)

The final inclusion is to provide kc for periods of clear sky (B = 0) when a house is

not obscured by cloud. This is considered to be the clear sky irradiance, however, it

must include inter-day variability similar to those contained in the Linke turbidity. kc

for moments of clear sky within the SIG were drawn from a normal distribution of

N(0.99, 0.08). The most significant deviation from using the UK derived kc distribu-

tions for application in San Diego, CA USA, was visibly fitting a new kc distribution for

clear sky moments. Using the inbuilt Matlab distribution fitting tool (Matlab, 2015),

the clear-sky peak was found to fit a normal distribution of N(1.02394, 0.04), Oahu, HI

USA, was found to fit a Burr distribution of B(0.9813, 0.72.37, 0.1203). This adjust-

ment is accredited to sensor offsets and climatic regional differences, furthermore it is

reflective of inaccuracy of the Linke turbidity during the years of validation. Further

research would be required to derive daily kc for periods of clear sky between gaps in

the clouds.

4.2.4.3 Inclusion of cloud edge enhancement events

The concept of CEE was introduced in section 3.3.6.4. It is summarised as an event

whereby a point on the Earth’s surface receives a larger amount of GHI than is avail-

able in the theoretical CSI. These events are attributed to additional beam irradiance

reflecting off the edge of a cloud or multiple clouds. The effect is examined to a 1-sec

resolution by Lave et al. (2012) and simulated with a spatial dimension by Pecenak

et al. (2016).

After development of the SIG, analysis was performed to compute the CEE magnitude

and probability of CEE occurrence. The magnitudes of the CEE ramps were analysed

through comparison of 1-min GHI data from the WRMC-BSRN (2014) against the the-

oretical CSI data calculated with the PSA from Hammer et al. (2003) and HELIOSAT

from Müller and Trentmann (2010).

To identify a CEE event, the fractional difference of the observed GHI from the calcu-

lated CSI was calculated and can be described such that a fractional difference of 1 is

for CSI=GHI, < 1 is for CSI>GHI, and > 1 is for CSI<GHI. An issue presents itself

at this point. Because the method of CSI calculation is synthetic, it does not always

produce similar irradiance magnitudes as the clear periods in the observed GHI, and

so a fully clear day can exist with a consistently higher irradiance than with using the

PSA. This is demonstrated in figure 4.9 where the observed GHI is consistently 16%
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Figure 4.9: A sample clear-sky irradiance time series (cyan) alongside observed
global horizontal irradiance from WRMC-BSRN (2014) in Cambourne (red) and the
percentage difference between the two (blue). The y axis is both irradiance (Wm−2)

and percentage difference (%).

greater than the CSI. For this reason, a definition of what constitutes a CEE is made.

For mathematical identification, a CEE event is defined as instances of GHI that are

greater than the corresponding CSI by at least a certain margin, this margin is called

the cut-off and is denoted Mmin. Therefore, for a CEE event to be registered, the

fractional difference between GHI and CSI must surpass Mmin. Four different Mmin

cut-offs are explored as 0, 0.05, 0.1 and 0.16. Mmin = 0.16 was selected for use in the

SDSIG as it was the largest consistent cut-off observed throughout a day as shown in

figure 4.9.

A simple estimation was made to identify the chance of a CEE event occurring. This is

defined as the number of events existing above Mmin divided by the number of events

in total, such that

M =
GHI

CSI
(4.14)∑(

M > (1 +Mmin)
)∑

M
(4.15)

Where M is the fractional magnitude of the CEE event, the use of
∑

in this case is

referring to the number of events in each.

To gain more insight into when a CEE event may occur, the chance and magnitude of

a CEE event is separated by N , θz and Mmin, and is shown in figure 4.10 and 4.11.

The introduction of Mmin shows a stark reduction in probability for lower N . This can
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Figure 4.10: The chance of a cloud edge enhancement event occurring at different
(top) okta values and (bottom) zenith angles, all separated by varying cut-off margins.

Figure 4.11: The cumulative probability function of cloud edge enhancement frac-
tional magnitude (top) separated by each okta value and (bottom) separated by bands

of solar zenith angle.

be explained by the ratio of time experienced under clear-sky. Conditions of 7 okta

will present very few periods of clear sky with which to undergo a CEE event, where as

conditions of 1 okta had the highest probability. At Mmin = 0.16, the chance of a CEE

event remains between 0.5 and 0.13 for all N . Because there is no DNI in conditions

of 8 okta, the chance of CEE is minimal. Mmin influences lower θz, with the chance of

CEE remaining high for θz > 50.

This representation of a chance is not truly indicative that, if a cloud is passing across

the sun, a CEE will or will not occur. This chance is more indicative of the fraction

of the day by N and θz that underwent high irradiance moments.

One assumption is that all instances of M > Mmin are a result of CEE. Furthermore,

the CDF profiles generated are assumed to be accurate to all climates, this assumption

is minimised through the inclusion of θz, as these are accurate for all climates.

The steepness of CDF profiles separated by both N and θz were found to have a

proportional relationship with M as is shown in figure 4.11. CEE achieves greater
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magnitudes with a larger θz (when the sun is lower in the sky). This is unsurprising as

the irradiance is low at large θz and, therefore, the fractional increase in irradiance can

be exaggerated when not considered in absolute terms. A similar pattern is observed

with greater magnitudes achieved with greater N . M at large θz is less of an issue,

in terms of grid impacts as the absolute change in irradiance is lower than during low

θz and represents only a small ramping event. This discussion is continued in section

4.4.4.3.

CDF profiles of M for each value of N and for each band of θz were made. A ran-

dom variate driven extraction is utilised once the appropriate okta-guided magnitude

distribution is selected using the appropriate θz and N at a time step.

MCDF = f(N, θz) (4.16)

M = 1 + (MCDF < R) (4.17)

Where MCDF is the CDF profile selected using N and θz. R is a random variate

from a uniform distribution between 0 and 1. The use of R here allows for random

number extraction following the selected MCDF. Adding 1 normalises M to become a

correctional factor that can be directly applied to kc through multiplication.

For application in a 1-min resolution SDSIG simulation, a simple approach is adopted.

The chance of a CEE event is extracted using N and θz and is logically queried against

R. Should a CEE event be required, for the preceding two minutes and subsequent two

minutes of the presence of a cloud, a stepwise fractional increase is applied proportional

to M . The minutes directly before and after a cloud are allowed an M increase, whilst

the minutes surrounding these receive a M
2 increase. The reason for this is to allow

gradual increase without affecting the overall ramps, similar to observations in Lave

et al. (2012).

The application of CEE is performed by stepping through the Boolean matrix of cloud

presence, B, and using a logical if statement that queries whether Bt undergoes a

ramp on account of cloud cover. Should Bt undergo a ramp, the equivalent time step

within k c is adjusted using the logical if statement as shown below. Equation 4.18

represents a ramp down, equation 4.19 a ramp up.

Bt−1 = 0 & Bt = 1
if−−−−→

k tc = k tc(M) & k t−1
c = k t−1

c (
M

2
) (4.18)
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Bt−1 = 1 & Bt = 0
if−−−−→

k tc = k tc(M) & k t+1
c = k t+1

c (
M

2
) (4.19)

4.2.4.4 Extended periods of clear and overcast sky

Extended periods of completely clear or overcast skies do not offer much short-term

variability (Skartveit and Olseth, 1992) and so for long, consecutive periods of 0 or 8

okta, a smoothing adjustment is made for periods of 8 okta lasting > 4 hours or for

periods of 0 okta lasting > 3 hours. The SIG also had this inclusion, however, a linear

interpolation was used that created a poor visual fit.

Within the SDSIG, and observable in code format in section B.6, a random number

of intervals is selected from 1 to 5 multiplied by the number of hours in the extended

periods of okta 0 or 8. The SIG used 20 intervals regardless of the duration meaning

that the minimum change in kc is every 12 mins. Allowing for this random inclusion

of intervals allows the representation of more types of overcast skies. The intervals are

evenly spaced throughout the duration and kc values are drawn from the appropriate

kc distribution. The progression of kc between intervals is filled using an inbuilt Mat-

lab piecewise cubic hermite interpolating polynomial technique (pchip). The pchip is

favourable to the next effective, non-linear interpolation technique called a smoothing

spline as the spline method has tendency to overshoot and oscillate if the data are not

smooth (Moler, 2010). This smoothing is required as the kc distributions for 8 okta

do not take into account the cloud amount duration, this would require a complex

stochastic element to the derivation of kc distributions.

Without the smoothing there are few periods of smooth irradiance during conditions

of 8 okta that are regularly seen in real irradiance observations. This would results in

an overestimation of the variability index discussed in section 4.3.

4.2.5 Spatially Decorrelating Solar Irradiance Generator outputs and

computational performance

The outputs of the SDSIG are multiple irradiance time series for any x-y-z location

within the 1.5 km2 spatial domain, each with an individual panel pitch and azimuth.

The computational speed of the SDSIG for single day outputs is fast once the initial-

isation is performed. Once the simulation duration extends to a year, the number of

houses in the system becomes crucial to computational speed, impacting it proportion-

ally.
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For the grid impact application of the SDSIG in section 4.5, over 2400 locations were

required for a whole year. This was very computationally demanding and required over

7 days to complete on a standard desktop computer. It is worth commenting that the

intention of this thesis was proof of concept and the development of a mathematical

methodology, not for computational perfection. Training and learning to code a com-

puter model were obtained throughout the completion of this thesis, naturally there

may exist inexperienced computational execution inefficiencies.

The initialisation of the model requires the production of the cloud field samples and

the collation of the input parameters.

4.2.6 Computational demand

The SDSIG is understandably much more computationally demanding than the SIG.

Though the SDSIG can operate the same as the SIG, should only a single house be

desired for an irradiance time series. The real test of the SDSIG when using a dual core

4 GB RAM standard university machine was to produce the 2438+ (the plus is because

some nodes were un-necessary) irradiance profiles for a single year. This operation

required 7 days to complete. Reading in the data takes 3 mins and is stored for future

operations during the same session. The production of the Markov transition matrices

requires a minute. The generation of the stochastic weather variable time series requires

less than 1 minute. The issue comes when deriving the clear-sky index time series and

subsequently the irradiance for each property within the simulation. The process is

iterative, running through an hour at a time before determining the clear-sky index,

GHI, DNI, and diffuse time series for each property, then moving to the next hour.

The clear sky irradiance is calculated for a year which requires less than a minute. The

remaining calculations, demand the whole time. The SDSIG time duration is therefore

directly proportional to the product of the number of houses. This methodology, if run

through more RAM and processing power would dramatically reduce the requirements

of the SDSIG; time requirements would be nullified should access to a supercomputer

be available.

4.3 Validation of the Spatially Decorrelating Solar Irra-

diance Generator

The SIG was validated on both 1 hour and 1 minute resolutions. For the SDSIG, a 1

hour validation is considered not to add value to the methodology and is not included.
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The SDSIG was validated to 1 minute in two locations across the UK that each repre-

sent a significant weather type of the country. Cambourne, Cornwall, receives some of

the highest annual mean solar irradiance in the country and Lerwick, Shetland, receives

some of the lowest annual mean solar irradiance. The SDSIG is also demonstrated in

San Diego, California USA and Oahu, HI USA. San Diego represents a desert climate

while Oahu is a tropical pacific island climate, both are a real test for the SDSIG to

demonstrate geographic flexibility.

Validation is difficult on a spatial dimension as there are very few sites world wide

with open access to well-maintained, geographically dense, high resolution irradiance

time series that also coincide with meteorological weather observations for activation

of the SDSIG. Only one site exists as maintained by Hinkelman (2013) that is used

with regularity in the research (Arias-Castro et al., 2014). The data is from Oahu, HI

USA.

Presented first in this section is a 1 min temporal validation for Cambourne, Lerwick

and San Diego. Secondly, both a temporal and spatial validation for Oahu is made.

4.3.1 Temporal validations for the UK and USA

In order to demonstrate the SDSIG’s capabilities, three temporal validations were car-

ried out for (1) Cambourne, UK (2) Lerwick, UK, and (3) University of California, San

Diego (UCSD), USA. A temporal validation does not consider the spatial correlation.

A single synthetic irradiance time series from the SDSIG is compared against locally

measured GHI. For both UK sites, the GHI data are taken from the World Radiation

Monitoring Centre – Baseline Surface Radiation Network (WRMC-BSRN) (WRMC-

BSRN, 2014) from station numbers 50 for Cambourne and 51 for Lerwick. The GHI

data for San Diego is taken from the rooftop of the Engineering Building Unit II at

UCSD (Lave et al., 2012). For both UK sites, missing data points were ignored and

deemed not to significantly impact the distributions for comparison.

All data processing was performed using the Matlab r2015b (Matlab, 2015). Hourly

weather observational data are taken from the British Atmospheric Data Centre’s

(BADC) Met Office Integrated Data Archive System (MIDAS) (BADC, 2013) for

the two UK sites, and from the National Oceanic and Atmospheric Administration’s

(NOAA) Quality Controlled Local Climatological Data (QCLCD) (NOAA, 2016a) for

the USA site. As monitoring stations are occasionally taken off-line for repairs or up-

grades for months at a time, where possible, more than 10 years of meteorological data

are preferable to allow at least 10 years data for each variable that requires a MTM to
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Figure 4.12: Results of the K–S test for each of the three locations for the four
metrics of variability index (VI), ramp rates (RR), irradiance frequency (IF) and the
clear-sky index (KCI). Percentage of successful days that pass the K–S test are shown
by location for each metric at increasing K–S test confidence limits. Observation and
modelled synthetic data for each calendar day of the year are subject to the test and
the percentage indicates how many of these days passed the K–S test at the indicated

confidence limit.

be created. This facilitates the statistical capturing of a TMY. 12 years of data were

taken from BADC and 11 years are taken from NOAA.

NOAA data does not report total cloud amount in okta, instead, cloud is given a

description at three separate levels as: Clear, 0/8; Few, >0/8 – 2/8; Scattered, 3/8 –

4/8; Broken, 5/8 – 7/8; or Overcast, 8/8; the fractions of 8 indicate the intended cloud

cover derived from the descriptions in okta. Where a range of okta can be inferred,

equal probabilities for each integer within the range are assigned. As okta values are

a discreet value from a continuous measurement, they can realistically be considered

±0.5 okta; for the description of Few clouds, the value is allowed to achieve 0 okta due

to rounding, despite being > 0.

Issues exist with multiple descriptions of cloud layers. An example of a potential

code for an hour of cloud cover from NOAA is “FEW BRK OVC”, which details the

cloud type across three separate layers. In this instance, the description with greatest

associated thickness of cloud is taken as the reference — OVC — and so an a value of

8 okta would be assigned.
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Figure 4.13: Comparison of CDF profiles from 1-year of observation data (blue
dashed line) and synthetic modelled data (red solid line) of the four metrics, from
left column to right: variability index, irradiance frequency, ramp rate occurrence
and clear-sky index, at each location, from top row to bottom: Cambourne, Lerwick
and San Diego. Each CDF comparison has an individual 2-D correlation coefficient

displayed inside the axes.

Four metrics are used to validate the temporal nature of the model’s output: the

variability index, the irradiance frequencies, the ramp rates, and the 1-min clear sky

index. They are denoted as VI, IF, RR and KCI respectively and will be discussed

in turn. Comparisons are made between the cumulative distribution function (CDF)

profiles of both the synthetic and the observation data made from one year of 1-minute

values of each metric. Furthermore, the two–sample Kolmogorov–Smirnov (K–S) test

was carried out following the same method as outlined in section 3.4. In this case, the

K–S test is reported as a percentage of days that satisfy the hypothesis at increasing

confidences limits — a higher percentage indicates a better performance. The subset

of each K–S test consisted of data from seven of the same day from 7 different years for

both UK sites. For example, seven modelled samples of the 1st January represent one

subset, and is compared against a subset made from seven samples of the corresponding

day from observational data. Only two years of observation data are available for the

San Diego validation, and so the K–S subset consists of only two days at best. This

is not seen as a problem as a smaller subset will be harder to validate against. The

K–S test is reportedly acceptable down to sample sizes of 10 to 100. The smallest

subset in this validation is 1440, and so the test is suitable. The K–S test results are
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displayed in figure 4.12 and comparative CDF profiles of the metrics in figure 4.13 with

the correlation coefficient denoted as R and calculated using Matlab’s 2-D correlation

coefficient function (MathWorks, 2016).

Figure 4.13 shows that the RR are captured well for all locations with the CDF com-

parisons correlating at R = 0.9982 to 0.9992, and using the K–S test, 100% of days

reject the null hypothesis that the modelled and observed minutely datasets are not

from the same dataset with a confidence of 99% for both UK sites, whereas 98.64%

of days reject the null hypothesis at 99% confidence for San Diego. The accuracy of

capturing the daily RR for each day is of vital importance for suitability in grid impact

studies and so this result gives confidence for use of the SDSIG in year long grid impact

studies.

The IF are calculated by binning each irradiance value of both the synthetic and

observation datasets to the nearest integer before creating a frequency table of each

daily subset. Binning is necessary as the small subsets do not produce well defined

PDFs with irradiance values at 2 decimal places. The IF CDF profiles correlate across

all locations with R = 0.9991 to 0.9996. The K–S test result shows that Cambourne,

Lerwick and San Diego have 97.53%, 97.26% and 95.34% of days, respectively, that

reject the null hypothesis and pass the K–S test with a confidence limit of 99%. The

K–S test for San Diego has the lowest percentage of successful days for IF. This is

expected to be caused by a low sample size availability for validation. To pass the

K–S test using only 2 days of observation data requires similar weather features within

both samples of the synthetic and observation data, e.g. comparing two cloudy days

against two clear days would fail the K–S test. The result for San Diego still offers

high confidence in the model’s ability to statistically recreate IF for as few as two days

of simulation, although the long term IF for San Diego are clearly well captured, as is

shown by the CDF comparison.

The CDFs of a year of VI correlate with R = 0.9585 for Cambourne and 0.9815 for San

Diego; K–S tests show 97.81% and 99.18% for both locations, respectively, with a 99%

confidence. Lerwick sees VI correlation at R = 0.9083 yet a K–S result showing 100%

of days rejecting the null hypothesis with a 99% confidence. This indicates that whilst

the VI may be slightly higher than reality, it is still within the confines of typical daily

VI values. The minutely VI, as used in the K–S tests, for Lerwick satisfy the K–S test

with no annual bias. However, there is clearly a discrepancy between daily mean VI,

as shown in the CDF profile. The largest discrepancy for Lerwick and Cambourne is

for a VI value of 1, which is under-represented in the model. A VI of 1 is seen for a

clear or an overcast day. The success of the K–S test suggests that the discrepancy in

the overall CDF comparison is well distributed across the annual irradiance time series
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so as not to influence the daily subsets with a high confidence. A similar systematic

error in representing the daily VI has clearly been carried forward from the SIG to

the SDSIG. Whist it is apparent that the performance of the VI metric worsened from

the SIG to the SDSIG, it opens the possibility for further discussion, development

and research. It was believed that the added complexity from the former to the latter

would facilitate a closer correlation, however this was not the case. It is suggested with

firmer hypothesis that a higher order Markov chain is required to capture the daily VI.

This does not detract from the excellent validation in all other categories.

KCI is calculated as kc = G/Gcs where G is the global horizontal irradiance and Gcs

is the global clear sky irradiance, both in Wm−2. The KCI CDFs correlate highly for

Cambourne, Lerwick and San Diego with R = 0.9977, 0.9981 and 0.9974, respectively.

This is a demonstration of how using a Markov chain produces a well represented

distribution of N and how the distributions of kc weighted by both N and θe accurately

create real world distributions of kc and importantly, a vast improvement on the KCI

captured in the SIG. The K–S test results show that both Lerwick and Cambourne

have 100% successful days while San Diego sees 96.44%, all with a 99% confidence

limit. The lower score for San Diego is suggestive that the kc distributions are not

exact for the desert climate; however, they do offer good accuracy.

As discussed with the equivalent plot for the SIG, there is little research that supports

these 1-min statistical plots shown in figure 4.13. The IF compared in figure 9 by

Grantham et al. (2017) shows excellent reproduction of the DNI and GHI between ob-

served and synthetic data. Their correlations boast R values of 0.984 to 0.999. What is

remarkable is that Grantham et al. (2017) present an interpolation model such that the

hourly irradiance values are already extremely guided; the SDSIG has no such luxury

and instead relies on the stochastic and probabilistic distributions of meteorological

variables whilst achieving greater average IF correlation results. Munkhammar et al.

(2017), who presented the copula method on virtual spatial networks — a competitor

of the SDSIG, did not compare irradiance outputs with data, instead they validated

the spatial correlation. Figure 9 by Larraneta et al. (2015) shows CDFs of the IF for

10-min synthetic DNI values separated by kc. Whilst they do not report the correla-

tion, their M5 model would pass the IF K-S test with a 97.5% confidence with 10-min

profiles whereas the SDSIG passes with 1-min resolution at 99% confidence. Figure 6

by Ngoko et al. (2014) displays PDFs of the clearness index demonstrating a strong fit,

though without statistically quantifying it. The SDSIG performs in a similar manner,

despite not using high frequency irradiance to derive the statistics, one of the key flaws

in the Ngoko et al. (2014) methodology.
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Table 4.1: Station metadata from the NREL Oahu Radiation Monitoring Station
(Sengupta and Andreas, 2010) showing the height above sea level (zl), latitude (Θ)

and longitude (Φ) for each ID in figure 4.14.

ID zl (m) Θ (◦) Φ (◦)

DHHL 1 8 21.31533 -158.08700
DHHL 2 10 21.31451 -158.08534
DHHL 3 9 21.31236 -158.08463
DHHL 4 9 21.31303 -158.08505
DHHL 5 10 21.31357 -158.08424
DHHL 6 3 21.31179 -158.08678
DHHL 7 9 21.31418 -158.08685
DHHL 8 3 21.31034 -158.08675
DHHL 9 5 21.31268 -158.08688
DHHL 10 7 21.31183 -158.08554
DHHL 11 7 21.31042 -158.08530
AP 1 10 21.31276 -158.08389
AP 3 10 21.31281 -158.08163
AP 4 9 21.31141 -158.07947
AP 5 7 21.30983 -158.08249
AP 6 6 21.30812 -158.07935
AP 7 11 21.31478 -158.07785

4.3.2 Spatial validation for Oahu, Hawaii

In order to validate the spatial dimension of the SDSIG, a test was carried out on global

horizontal irradiance time series taken from the Oahu Solar Measurement Grid shown

in figure 4.14 as maintained by the National Renewable Energy Laboratory (NREL)

(Sengupta and Andreas, 2010).

The observation Oahu irradiance time series were averaged from 1 second to 1 minute

in adherence with the SDSIG outputs. The data exists for 593 days from 18th March

2010 to October 31st 2011, inclusive. The input meteorological data for the SDSIG

were taken from the QCLCD archive (NOAA, 2016a) for station location Kalaeloa

Airport, John Rodgers field, Kapolei, HI USA (ID:22551); the site is at latitude 21.316◦,

longitude -158.066◦, and 10 m above sea level. The user defined input variables that

detail each property in the SDSIG are shown in table 4.1. The straight line distance

between station pairs are calculated using the haversine formula using Θ and Φ.

The SDSIG is first subject to a temporal validation against one of the Oahu mea-

surement sites selected at random. This is to demonstrate the SDSIG’s suitability at

creating statistically accurate irradiance time series for Hawaii.

Using the four metrics as before of VI, RR, IF and KCI, the correlation coefficient when

comparing CDFs from modelled and observed data are R = 0.9825, 0.9945, 0.9990 and

0.9840, respectively. The VI metric correlates the least for Hawaii; the SDSIG does
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Figure 4.14: Geographical layout of the measurement stations at the NREL Oahu
Solar Measurement Grid (Sengupta and Andreas, 2010) on Department of Hawaiian
Homeland (DHHL) and Kalaeloa Airport (AP) property. The arrows indicate the

direction of prevailing wind.

not produce many days of complete clear sky for Hawaii that leads to VI=1. Two

possible explanations are presented for this. The first is that the SDSIG outputs are

representative of a typical meteorological year and the 593 days of observation data

maybe had days of non-typical clear sky stability. The second interpretation is that the

use of a first order Markov chain does not facilitate extremely long periods of clear sky,

or 0 okta, for long enough durations. The probability of 0 okta transitioning to 0 okta

for Cambourne was shown in figure 3.9 to be 0.71. Therefore, for a whole 24 hours of

consecutive 0 okta, as is possible in reality, the chance of this being reproduced within

the SDSIG is 0.7124 = 0.027%, or 1 in 3703 days. This is a potential weakness in the

SDSIG.

The K–S test results on the metrics, calculated in the same manner as in section

4.3.1, found that 99.73%, 100%, 98.90% and 90.96% days pass the test to a 99%

confidence level, respectively. The lower success rate for KCI is perhaps indicative of

okta correlations from Smith et al. (2017) are not suited to all geographic and climatic

regions. Alternatively, the use of the Burr distribution for all kc,clear allows for a wider

range of achievable values. This means that it is possible for days to differ more

significantly for the Oahu distribution, resulting in a failure.
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Figure 4.15: Correlation coefficients of individual station-pair w min GHI time
series for 593 days plotted against the station-pair site separation. Every station-pair
combination of the 17 site from the Oahu Solar Measurement Grid is represented as
a symbol. Key: mean absolute percentage error (MAPE), root mean square error

(RMSE), correlation coefficient (R), and maximum observed error (max E).

The spatial correlation between every station-pair is calculated over a time scale of

593 days. The correlation between GHI time series of two sites is calculated as the

two-sample correlation coefficient (MathWorks, 2016) as was discussed in section 3.4.

The correlation is plotted against the straight line separation between pairs and shown

in 4.15 and displayed in equation 3.62.

One assumption used for the validation was to fix the cloud direction from a north-

easterly of 60◦, as was used by both Arias-Castro et al. (2014) and Hinkelman (2013).

The SDSIG performed similar to observation data. The mean absolute percentage error

for the site-separated, time-averaged correlation is 0.865%. The root mean square error

is 0.01. The correlation coefficient between the data is R = 0.9523. The maximum

observed error in correlation was 0.03, or 3%; this is a strong performance. There

is an clear disparity between the two curves. The correlation between observed and

modelled data is well matched over 500m, however, divergence exists beyond. Both

curves behave exponentially with site separation, as was also observed by Wiemken

et al. (2001) at similar magnitudes. The cause of this separation is thought to be the

cloud direction.
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Arias-Castro et al. (2014) studied 13 days of data and found unique correlation patterns

in along and cross wind station pairs. For these 13 days, the cloud motion direction was

near-constant around 60◦. The cloud direction over 593 days is variable and different

cloud layers were prevalent in satellite images. One limitation within the SDSIG is

that there is no empirically derived method of including cloud motion direction. Using

a cloud motion direction of 60◦, the correlation can be seen to curve away from the

observation data with increasing site separation. This is expected to be caused by

fixed along and cross wind station pairs in the SDSIG, yet the along and cross wind

pairs change with cloud direction within the observation data. Spatial correlation is

sensitive to cloud motion direction and will be discussed further in section 4.3.1.

4.4 Discussion of the Spatially Decorrelating Solar Irra-

diance Generator

This section will present a discussion of the successes and limitations offered with the

development of the SDSIG. The spatial correlation is illustrated and discussed. Each

methodological update within the SDSIG is discussed in turn. Lastly, a simple case

study to demonstrate typical outputs and usage is performed.

4.4.1 Illustration of the instantaneous spatial correlation

Four simulations are run to explore the instantaneous spatial correlation. (1) Running

the SDSIG with no influencing or weighting any variable is labelled the “Control”

scenario, it represents normal operation of the SDSIG. (2) The “Prevailing” scenario

has only the cloud motion direction fixed from the same location (North) to represent

constant along and cross wind directions. (3) Fixing only the cloud coverage, and (4)

fixing the cloud speed with constant coverage and cloud motion direction.

The instantaneous spatial correlation is calculated by comparing a reference point

located within the spatial domain to all other points in the spatial domain and querying

the sun-obscured state, found in B. There only exist two states of cloudiness: obscured

by cloud or not obscured by cloud. When a location in the grid shares the same state

of cloudiness as the reference state, the correlation is assigned as 1, otherwise an anti-

correlation of −1 is assigned for opposing states. Taking the mean of these correlations

over a time period determines the overall instantaneous correlation of all locations to

the reference point over that time scale. This is achieved by adopting a systematic

grid-reference approach and testing each point individually against the reference.
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Figure 4.16: Spatial correlation between centre point to all other locations within
the spatial domain. The top plot is the control simulation where no variables were
fixed, whereas the bottom plot has the wind direction fixed from the north (top of

plot). The numbers indicate the correlation along the labelled contour.

The instantaneous correlation, as used by Arias-Castro et al. (2014), does not consider

time delay of ramping events as with many other literature. Instead, it expresses the

probability of two sites to be covered by cloud (not necessarily the same cloud) at

any one instant. This type of correlation cannot be compared to the curves shown

in the section 4.3.2 because that considered the correlation coefficient of extended

irradiance time series. The purpose of the instantaneous correlation is for illustration

and discussion.

Figure 4.16 shows how the spatial correlation manifests across a time period of a year.

The reference point is selected as the central most point within the spatial domain at

(750,750). The prevailing wind scenario over a year shows less decorrelation with site

separation as well as a tendency for anisotropy. The control scenario is more isotropic.
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Figure 4.17: Line plot of the correlation from the reference point to the edge of
the spatial domain for the control scenario (blue dashed line) and the prevailing wind
scenario (red solid or dotted line). Top: mean correlation over the domain for the
mean of X and Y directions in the control scenario and the individual along and cross
wind profiles for the prevailing scenario. Bottom: difference in correlation between

the individual X and Y directions for both the control and prevailing scenarios.

Further assessment was carried out by relocating the reference point to the north-

western most point within the spatial domain at (1, 1500) so that the decorrelation

over a longer distance can be examined. This can be seen in figure 4.17 where the top

plot demonstrates how correlation in both the along and cross directions change with

distance for both scenarios. Decorrelation is observed for both scenarios; however,

the prevailing scenario in the along direction undergoes less decorrelation while the

control and prevailing along direction follow a similar, more decorrelated trajectory.

The control x and y directions were very similar and so only the mean is shown.

Figure 4.16 shows that a prevailing wind scenario within the model captures the

anisotropic tendency, which is also discussed by Arias-Castro et al. (2014) and Lonij
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Figure 4.18: Wind rose showing the probability density of the hourly cloud motion
approach direction over 1-year simulation. Each bin represents 22.5◦. The direction
indicates where the clouds are travelling from. The grey thick grey even distribution

marker is a probability of 6.25% and represents perfectly even distribution.

et al. (2013), it also demonstrated by Lave and Kleissl (2013) and measured by Hinkel-

man (2013). This anisotropy is further shown in the bottom plot of figure 4.17 where

the correlation differences in the along and cross directions are plotted against dis-

tance from the reference point within the spatial domain. The anisotropy is evidenced

by the diverging levels of correlation in the different axial directions. For the control

scenario, a steady fluctuation around a correlation difference of 0 is observed. With

a perfect distribution of cloud movement direction, the control sample becomes more

circular. Throughout a year’s simulation, however, the cloud motion direction is not

entirely uniform as is shown in 4.18 where the control simulation’s hourly cloud motion

direction for the year is shown on a wind rose. Clouds approaching from a northerly

direction dominated the simulation due to the nature of the random walk method

applied.

The random walk method does not produce a uniform distribution as it does not

facilitate large changes in cloud direction between hours. The output is random and

arbitrary as it is not weighted or biased, however, it is limited in step size in order to

reproduce gradual change. In this particular simulation, by chance, the random walk

remained for longer approaching from a northerly direction, because of this a greater
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Figure 4.19: Line plot of the mean instantaneous correlation from the centre point
to the edge of the spatial domain. The left plot shows the results of simulations
with fixed cloud coverage percentages and all other variables operate as normal. The
right plot shows how the along (solid) and cross (dashed) wind correlation at different
cloud speeds, as well as the mean correlation of all wind speeds in solid yellow. The
simulation fixed the variables cloud coverage to C = 5 and the cloud direction from

the north.

correlation is observed in the y-axis, which explains the falling trend in correlation

difference over distance.

The difference in cross wind and along wind correlation for the prevailing wind scenario

sees a steady increase with distance as the decorrelation in the along wind direction

plateaus at 0.6 while the cross wind continues decorrelating. The expectation is that

with increasing distance from the reference point and when the spatial correlation is

no longer influenced by the size of cloud and cloud motion direction, the correlation

will become a function of C for as long as both points share the same C. Lonij et al.

(2013) also observe correlation change in along and cross wind directions and see a

separation up until 10 km. Anisotropy was observed to be more defined over sampling

periods of a day to a month, however, there was small change when observing 6 month

to a year’s correlation. Shorter sampling periods are more prone to a prevailing wind

scenario and so will favour anisotropy. With a longer sampling period, the SDSIG will

offer a more evenly distributed cloud motion direction.

Figure 4.19 shows how the correlation from the centre point to the edge of the domain

is influenced by fixing N or the uref . Separate simulations were performed for each line

plot. The scenario for the left plot of figure 4.19 was the same as the control scenario

conditions with exception of the N , which was incrementally increased each simulation

and fixed for the entire year. It can be observed that for both fully overcast and fully

clear scenarios, the correlation is > 0.95 for the entire length of the spatial domain.

This is expected as constant obscured or not obscured skies experience very few ramp



Chapter 4. SDSIG development 157

occurrences. Ramp occurrences do occur for some hours of fully clear or overcast sky

as the cloud fields are produced by assigning a discreet value of C through rounding the

continuous data allowing C = Ct±0.5. More significant is the rapid drop in correlation

for 40 to 60% cloud cover scenarios, which undergo a steep decline in correlation from 1

to 0.25 over 750m. Cloud coverage constants of 20% and 80% share a similar correlation

regression to each other, dropping < 0.5 over 750m. The okta frequency during a year

long simulation for all three study sites is dominated by cloud coverage events of 0%

and 100% with probability densities of 14% and 21% respectively, where 9% is the

evenly distributed probability. This dominance is why the annual correlation over the

domain only falls to 0.6 and not to the lower values shown by other coverage scenarios.

Sites that have a higher correlation will suffer from greater probability of synchronised

ramping events (reduced geographic smoothing), which are of high concern to DNOs.

The frequency of ramp rates is also of importance; the highest correlating state of a

coverage equal to 0% does not present as large an issue as the scattered cloud states

because the frequency of ramps is much lower. The more decorrelated an area the less

synchronised the ramps. What is evident from figures 4.16, 4.17 and 4.19 is that to

achieve favourable, decorrelated conditions, the separation between locations must be

maximised.

The simulation conditions for the right plot of figure 4.19 had the cloud coverage

set to C = 5 and the cloud direction fixed at approaching from the north as with

the prevailing scenarios. The plot shows how fixing the speed of the cloud influences

correlation over the spatial domain. The cross wind directions in both east and west

were similar if not the same and so only the mean of both is shown. The along direction

is the mean of the correlations in both the north and south directions. Cloud speeds

of uref = 1, 10 and 30 ms−1 are shown to represent the upper and lower limits of

the cloud speed range as well as the mode. In the control scenario, the probability

of occurrence for a cloud motion of ≥ 25 ms−1 is ≤ 0.0114%, speeds between 1 and

10 ms−1 dominate the simulation cloud speed frequency. The instantaneous spatial

correlation increases with uref ; analysis intervals were 5 ms−1. As C, uref and cloud

direction are fixed for each simulation, the variation in correlation must be independent

of these variables. One possibility is the influence of cloud size. By nature of the cloud

sample production technique, larger clouds are more prevalent at higher wind speeds

as adding a large cloud to the lower coverage values causes [C] > [Ct] and the cloud

sample must be reset. This is intuitive as a large cloud cannot exist in a near cloudless

environment. At higher Ct, as more clouds are required to fill the cloud sample, it

causes long overlaps that effectively increase the cloud size. This is further explained

by Arias-Castro et al. (2014), who demonstrated that if two locations are covered

by the same cloud, the instantaneous correlation will be higher and, therefore, larger
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clouds offer greater correlation. There is increasing convergence in the instantaneous

correlation with increasing uref in both the along and cross wind directions. The cause

of this is suspected to be that, as the cloud speed increases, two locations will not be

under the shading of the same cloud for as many time steps as with low cloud speeds.

This means that the instantaneous correlation becomes more a function of C than the

direction or uref . This is further explained in a study by Munkhammar et al. (2017)

who note that the instantaneous correlations are not dependent on the cloud speed.

4.4.2 Cloud fields

The most distinctive element of the SDSIG is the introduction of a spatial dimension.

This is achieved through the development of cloud fields that pass across a 1.5 km2

spatial domain.

A literature review on synthetically representing a cloud field found very few options

of synthesis. For this reason, a new method was devised whereby clouds were assumed

to be circular with centre point randomly located inside a rectangular domain with

radii extracted from Wood and Field (2011).

The following assumptions were used to generate the cloud fields:

1. Clouds can be represented by circles

2. A two-dimensional approach can be representative of a three-dimensional prop-

erty

3. Only a single layer of cloud is used

4. Clouds move in a constant direction and speed for the whole hour

5. An okta value is fully representative of the sky for the whole hour and across the

spatial domain

6. An estimation of the coverage is sufficient to categorise a cloud field

7. Overlapping clouds should be taken as the mean of clear-sky indices, not the

multiple

8. The computational maximum number of clouds is representative of the sky for

the hour

It is very difficult to test the validity of some of these assumptions because there are

no alternatives to test against. The validation of the SDSIG shows that the VI, IF, RR
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and KCI metrics perform excellently with both the K–S test and correlation coefficient

comparisons with observation data.

Some of these assumptions are clearly false in reality, such as the first assumption

that represents clouds as perfect circles. The need for representing them as a simply-

definable for computational use, alongside the lack of literature offering alternatives,

necessitates the assumption. There are alternative geometric assumptions that could

have been used such as squares or ovals, however, there is as little support for any

geographic shape. Circles were used by Arias-Castro et al. (2014), however, no sup-

porting justification was offered. The reason for selecting a circle for the SDSIG is

that the area of a circle can be defined using a single parameter, r, and so is the

least computationally demanding geometry to produce and use. It is accepted that

using a circular cloud sacrifices description of the cloud type in effect. However, the

distributions of kc(N) facilitate the engineering of cloud types. The cloud type is not

a variable accessible by the model and such, a circular cloud of very high kc would be

more indicative of high cirrus clouds more-so than thicker cumulus.

The second assumption is that the two-dimensional discs represent a three-dimensional

cloud. The third spatial dimension to a cloud is given through the addition of an op-

tical depth using kc. The information required to generate accurate three-dimensional

representations of clouds would move the SDSIG away from the initial rational of being

able to produce irradiance time series from readily available simple inputs. Informa-

tion on atmospheric pressure and temperature gradients as well as cloud types and

weather system progression would be required to capture the clouds. The use of kc for

the third-dimension, at least, has some statistical background. Ultimately, increased

complexity to the clouds would need to add value to the validation of the IFs. As the

validation demonstrates a strong validation for the IFs, no future work is recommended

in the addition of a third-dimension to the cloud fields at this stage.

The third assumption that only a single cloud layer is used can potentially influence

the true spatial correlation. This is another assumption that is incorrect in reality.

From the beginning of this thesis, the author has witnessed many days where there

are three layers all moving seemingly independent of each other. The presence of

three cloud layers is a regular occurrence and the variables of motion direction, cloud

speed or cloud amount do not necessarily correlate between layers. Some databases

report on the cloud amount over three layers of cloud, assigning a total cloud amount

to each layer, such as the NOAA QCLCD and UKMO MIDAS data from BADC. In

practise, three layers could be simply achievable within the SDSIG by repeating the

cloud motion three separate times and collating the resultant B and kc, however, it

would take three times the duration to produce with little evidence of added value.
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Sites that record N using ceilometers report it for each cloud layer and so there is

potential to identify relationships of N between the layers, however, the issue still

exists for direction and speed. N is deemed to be representative of the sky regardless

of the number of layers. 8 okta represents 100% coverage with any number of cloud

layers, and 5 okta is assumed to mean 50% coverage considering every layer. For this

reason, the exclusion of multiple cloud layers is assumed to only influence direction

and speed. What can be deduced from the illustration of spatial correlation in figure

4.16 is that the prevailing wind scenario demonstrates the anisotropic correlation over

1.5 km2 and can be considered the baseline without considering cloud direction across

multiple layers. With multiple layers moving in individual directions, the correlation

will appear closer to isotropic as in the control scenario. With more cloud directions,

the more isotropic the spatial correlation becomes, as was demonstrated in the bottom

plot of figure 4.17. For these reasons, the future inclusion of multiple cloud layers

is not considered to impact significantly the time series outputs, particularly while

there is little or no supporting research to facilitate its inclusion using simple inputs

or statistical relationships.

The fifth assumption comes from Morf (2011) who found that a point in the sky will

converge on the okta value over time. This finding justified the use of a synthetic

method to represent the binary sun obscured nature in a model. To analyse whether

the cloud field method performs as suggested by Morf (2011), a 4 year simulation

was performed for a house positioned in the very centre of the spatial domain. Every

hour, the hourly C value is compared to the actual C experienced at the house, Ch.

Figure 4.20 (top left) shows a histogram of the fractional difference between Ch and

the cloud field’s C. It can be seen that Ch most often matches the cloud field’s C over

an hour, it resembles a normal distribution with mean around a fractional difference of

1 (indicating no difference). There are some surprising instances where Ch is nearly 3

times greater than the cloud fields C. In order to explain this, further analysis across

the coverage range is performed. Figure 4.20 shows histograms of Ch for each different

cloud field C indicated in bold above each plot. C = 10, or 100% coverage, experiences

the greatest accuracy with very few instances of Ch falling below the cloud field’s C.

Interestingly, it shows how even under predominantly covered skies, a house has the

potential to experience much lower coverage. To explain those instances whereby the

house can experience Ch that is > 3 times greater than the cloud field’s C, we can

observe the histograms for C = 1 to 3, where it is possible to experience the whole

range of possible coverages within the cloud field. For C = 6 to 9 there is a high

probability for the house experience Ch = 10. To understand the wide range of Ch

values when targeting a particular C, figure 4.21 shows analysis of two potential paths

that a house could take through a cloud field. This idea of a path experiencing a
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Figure 4.20: Top left) histogram of the fractional difference between the actual
coverage value experienced at a house in the centre of the spatial domain and the
hourly coverage value of the whole sky. Top right) CDF of the histogram in top left.
All below) histograms of the actual experienced coverage, Ch in tenths for each target

C value indicated in bold above each plot.
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Figure 4.21: Analysis of the C = 5 cloud field taken from figure 4.4. Two potential
paths that a house may take through the cloud field are indicated. Clouded sections
of the path are shaded yellow and clear sections are shaded red. The actual coverage

value experienced on both paths are shown below the cloud field.

different C to the overall cloud field is also seen in reality with the method of recording

N . N can be measured by either an automated ceilometer or a human observer. The

human observer is found to be more accurate as they can easily scan the whole sky to

estimate N (Smith et al., 2017). The ceilometer measures the path such as in figure

4.21, and will experience greater distribution of errors. The SIG has a more accurate

method of synthetically generating C to match observation. Accuracy here is defined

as the 1-min time series of C achieving an hourly mean average cloud cover closest

to the target okta value. However, the added spatial dimension with the cloud field

method allows for realistic variations in Ch.

To assess the convergence over time, figure 4.22 plots the moving average of Ch through-

out an hour. As Morf (2011) suggested, a point location within the cloud field converges

close to the a solution overtime. However, what is found is that Ch is not always that

of the cloud field with the exception of C = 10. Solutions typically converge within

20 minutes, although infrequently on the correct C. This means that Morf (2011) is

correct in suggesting that the solution will converge over time, although is incorrect

in suggesting that it will converge on the correct okta within the hour, particularly

for C = 2 to C = 7. An important consideration is the influence of cloud speed. As

the area of the cloud field is directly proportional to the cloud speed (X = 3600uref),

larger uref produces larger sample size with which to estimate the cloud field’s actual

C value and is therefore more accurate at estimating. The variability in Ch is not

considered to be a negative of the SDSIG, in fact, it is considered by the author to add

more realism to the outputs.
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Figure 4.22: Convergence of the coverage value over time. Each line represents an
hour of simulation where the experienced coverage develops over time, the solution is
calculated as a moving average. The solutions are separated by the target coverage
values for the whole cloud field. These plots complement the method shown in figure

4.21.

The sixth assumption, that an estimation of the coverage is sufficient to categorise

a cloud field, was analysed and presented in figure 4.23. The method presented to

estimate C was shown in figure 4.5 whereby a spatial resolution was used to estimate

the C of a cloud field. The SDSIG used a 50 m resolution to estimate a cloud field’s C.

Figure 4.23 shows analysis of the difference in the grid resolution used to estimate C in

order to establish the accuracy of this assumption. There are two distinct conclusions

to draw from this figure. The first is that there is no significant difference between

estimating the coverage using a 1 m grid mesh resolution or using 250 m. The exact

solution presented in equation 4.2 can be assumed to be found with a resolution of 1

m, therefore, an estimation using a resolution of up to 250 m is suitable for the model.

The cloud fields used in the validation were produced using a resolution of 50 m, this
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Figure 4.23: The estimated coverage value versus the target coverage value for
increasing spatial grid resolution, res. A line along x = y is provided for reference.

was at the cost of increased computational demand, however, it assured that accuracy

and confidence were maintained. The deviation away from the x = y line is due to the

inclusion of Ct ± 0.5R as discussed in section 4.2.2.2, the important information from

the figure is how close together the points are.

The seventh assumption that overlapping clouds should be taken as a mean was justified

in the methodology section 4.2.2.2. There is no method of assessing the extent of this

assumption without detailed clear-sky indices with associated cloud thicknesses.

The eighth assumption, that the computational maximum number of clouds is rep-

resentative of the sky for the hour of cloud, poses a problem. Setting a maximum

number of clouds when analysing a high cloud speed and high okta value (uref = 30

and N = 7 = 87.5%), the area, A, required to be covered by cloud is 1500 m ×3600 s

×30 ms−1 = 162, 000 km2. The maximum number of clouds in a cloud field is set to

nc = 1200. The area of the cloud is found as πr2 and so to determine the average r

required per cloud (assuming no overlap) in order to achieve a cloud field within ≤ nc
clouds is found to be 194 m using the following equation.

r =

√
AN

nc

1

π
(4.20)

Overlap within the SDSIG is a extremely likely, as was easily demonstrated in fig-

ures 4.21 and 4.4, and so realistically r = 194 m would be too small an estimate.

Figure 4.24 shows the distribution of r from the Wood and Field (2011). The mean

r produced in 1200 clouds was found to be represented by a gamma distribution of

Γ(0.61134, 9.0875) where the modal radius was 400 m, suggesting that the choice of
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Figure 4.24: Histogram of cloud radii as drawn 108 times from the Wood and Field
(2011) distributions and adjusted to apply limits. All radii above a limit are combined

in the final bin.

1200 clouds is satisfactory. This was found using distribution fitting software from

Matlab (2015).

The implication of the validation is that the cloud field method, inclusive of all its

assumptions, is successful in answering the research question that it is possible to

produce statistically accurate, synthetic irradiance time series that vary on both a

temporal and spatial domain of the thesis. Furthermore, the cloud field method helps

satisfy the research aim to develop a methodology that incorporates a spatial dimen-

sion, facilitating the production of multiple, spatially decorrelating irradiance time

series. The success of the cloud field is best demonstrated with the RR accuracy, the

calculation of the RR is heavily dependent upon the cloud field and so success here

demonstrates the suitability of the cloud field methodology in synthetically generating

a real world statistic.

4.4.3 Cloud motion

The cloud motion development facilitated the passage of cloud fields over a spatial

domain containing the houses. The spatial domain is limited in size by the cloud field

size, which is itself only limited by computational storage and power requirements.

The cloud motion section of the model was developed with robustness in mind and so

it is designed such that it is flexible to both spatial and temporal resolution changes,

meaning that any size cloud field or time step under an hour can be managed. Time

steps over an hour can be used, however, it would be found by taking the average

of a higher resolution and so there would be no benefit of using the SDSIG. There
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are two identified limitations to the cloud motion methodology. The first is potential

overestimation of cloud between hours and the second is a limitation to where houses

may be positioned within the spatial domain.

Firstly, there is a potential over estimation with clouds centred at the edge of a field

being accounted for in adjoining cloud fields as there is no hard severance of cloud

between hours. It is possible and computationally simpler to include this severance,

however, clouds will simply disappear or appear at every hourly transition, as such can

cause synchronised ramping events at the edges of the domain that are to be avoided.

The correlations are truer to the circular geometries by allowing each cloud to fully

pass across the spatial domain; however, there is the potential for overestimation of

cloud with cloud centre xc < r. This could be particularly significant if a cloud of

cloud size xmax is situated near the edge of the cloud field. It would influence upon

the C value of adjacent cloud fields. If this potential over estimation of cloud cover

is significant, it is not evident in the validations shown in figure 4.13. It is perhaps

responsible for the wide breadth of Ch in the histograms of figure 4.20.

A further potential overestimation exists depending on the type of okta recording

method used for the input data. When a human observer records N , the slightest

presence of cloud is not treated as N = 0, instead N = 1 is assigned. When cloud

fields are being made, the target coverage value, Ct, has a ±0.5R inclusion. This

means that some clouds will be added to the cloud field for N = 0 targets. When

using ceilometers, however, this inclusion is fair as ceilometers can only track a single

path along the sky (Smith et al., 2017). These overestimation potentials are not evident

in the validation and not considered to be detrimentally significant.

Secondly, there is a limitation with limiting the spatial domain where the houses can

exist. Because the method of simulating cloud direction is to rotate the houses instead

of changing the approach direction of the cloud field, houses outside of a circle centred

at (750,750) with r = 750 m, when rotated, will exist outside of the spatial domain.

This is demonstrated in figure 4.25. A hard limit is placed that moves any house that

falls outside of the spatial domain back within the limits to the nearest satisfactory

(x′l, y′l). The maximum displacement, denoted as q in figure 4.25, can be found as

q = |0.5(
√

2X − X)|; for X = Y = 750 and q = 220 m. A potential solution,

which would redefine the the shape of spatial domain in where houses can exist is

changed to be a circle that fits perfectly to the XY domain defined as (x, y, r) =

(0.5X, 0.5Y, 0.5X), this would remove any displacement. A better solution would be

to use more computationally powerful equipment and extend the study to a larger

spatial domain.



Chapter 4. SDSIG development 167

Figure 4.25: Demonstration of how a house, when initially located at (0, Y ), can be
positioned outside of the spatial domain when rotated by the cloud motion direction,
θ. The method of determining the maximum distance outside of the domain, q, is

detailed.

4.4.4 Clear-sky indices

kc generation within the SDSIG differs from SIG in three distinct categories: synthetic

fluctuations, applicability to different climatic regions, and CEE events. These will be

discussed in turn.

4.4.4.1 Clear-sky indices fluctuations

kc within the SDSIG are cleaner in comparison to the SIG, in that fewer adjustments

are made. The SIG applied Gaussian noise and 6 min fluctuations. Both these methods

are removed as there is not enough research to support their use besides their successful

implementation in the validation of Bright et al. (2015).

The fluctuations in kc are inherent to the cloud field methodology. Each cloud is

assigned a kc from the new kc(N, θe) distributions. Due to the nature of taking the
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mean of overlapping clouds, variability is achieved without the need to add in Gaussian

noise or fluctuations.

The only synthetic change to the kc time series after the cloud motion is that of smooth-

ing events of extended 0 and 8 okta periods. The SIG employed a linear interpolation

between points; however, better and more realistic interpolations exist to facilitate

smooth and gradual changes in kc. Using linear interpolations increases the daily vari-

ability index and lowers the probability of achieving a VI=1. When using a smoother

interpolation, for example a spline or a pchip, these lower VI are improved. The VI

was the weakest metric performance from all validation locations and so this section is

considered to be highly important. Using the pchip over the linear interpolation does

contribute well to smooth irradiance time series, however, it is longer term statistics

of higher order Markov chains that may facilitate more realistic daily VI values.

4.4.4.2 Differences between climate regions

The SDSIG was applied in different climatic regions and performed well according to

validations. A key assumption to facilitate this was that the distributions of kc(N, θe)

are globally applicable. This assumption requires substantially more research to vali-

date, however, some intuition into the subject can enable discussion.

The different okta conditions are made by weather systems and, therefore, cloud types

that are inherent to weather systems. Weather systems are typical to the region that

they exist in with the addition of extreme events. Considering the UK, a thin blanket

layer of cloud can result in 8 okta, furthermore a thick layer of cloud will also cause

8 okta. Both of these conditions have inherent cloud types that influence the wide

distribution of mean hourly kc. Therefore, for this distribution to be applicable to a

different climatic region, a similar construction of cloud types are required to recreate

the same 8 okta distribution. So the driving question that influences this assumption is

is the total cloud amount from different regions made up of similar cloud types? This

question has not been answered in this thesis, however, there is indication of this being

the case between the UK and San Diego as was suggested by the KCI validation CDFs

in figure 4.13.

One assumption involved the derivation of the kc distribution for clear periods. For

the UK, moments of clear sky were found to be satisfied using kc ∼ N(0.99, 0.08),

however, this had to be revisited when repositioning the SDSIG to San Diego and

Oahu. Analysing the irradiance data from San Diego, clear sky conditions were found

to be satisfied using kc ∼ N(1.02394, 0.04) and by B(0.9813, 0.72.37, 0.1203) for Oahu.

This is indicative of either the limitation of the clear-sky model by Hammer et al.
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(2003) or inaccuracies in the Linke turbidity. The PSA by Hammer et al. (2003) is

supposed to estimate the CSI for a location, however, it underestimates San Diego

by 2.4% and overestimates the UK by 1%. Using these normal distributions, the IF

validations for all locations had excellent performances in both correlation and K–S

test. This is indicative of the need for a better estimation of CSI that is more globally

applicable. Failing that, it would be possible to determine the CSI for every BADC

site and select the nearest distribution from user defined inputs of Θ and Φ. Further

investigation into this clear sky condition dependency on geography would be a useful

addition.

4.4.4.3 Cloud edge enhancement events

The inclusion of CEE chance is not effective as there is too much uncertainty surround-

ing what is and isn’t a CEE event. To appropriately determine whether CEE events

(GHICSI > Mmin) is attributable to a cloud’s edge requires the knowledge of the presence

of the cloud, and so this simple estimation method is deemed to be insufficient as it

cannot know whether a cloud is present. Intuitively, it can be hypothesised that the

irradiance will always undergo some form of CEE event, even if the impact is negligible.

The chance, determined with the simple estimation, merely describes the fraction of

time that GHI is potentially undergoing CEE, it does not describe if a particular cloud

edge will cause an enhancement event or not. Without a method to determine which

data within the GHI time series are recorded with a cloud near to the sun’s location

within the sky, it is not sufficient enough to to state with certainty that observed mo-

ments of high GHI are directly attributable to CEE. The magnitudes, M , derived are

representative of real enhancement events and can be assumed to be caused by CEE,

for this reason M can still be used to implement a CEE event. The distinct pattern of

increasing M with both increasing θz and N can also be used. There must be a better

method to determine the chance of CEE.

The use of sky-imagers could be utilised to assist in furthering the understanding of

CEE statistics such as directly attributable magnitudes and chance of occurrence, how-

ever, this was outside the scope of this PhD project. Furthermore, PV inverters are

typically oversized to manage CEE events. These modern technologies and grid archi-

tecture minimise the impact from CEE at a grid impacts analysis level. Therefore, the

only added value to the SDSIG from more accurate CEE events is a better representa-

tion of a ramp-up or ramp-down events. As the primary aim of the thesis is to model

irradiance, it is deemed by the author a useful line of further research.
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Figure 4.26: A theoretical set-up used to demonstrate the functionality of the SD-
SIG. The numbers indicate 5 different houses located in Cambourne, UK, for which

spatio-temporally decorrelating irradiance time-series are generated.

CEE implementation was first developed for the SIG and a similar methodology was

applied to the individual B 1DMs for each house in the SDSIG. A future development is

to employ a more sophisticated methodology that can incorporate the spatial influence

of CEE. This would be more complementary to the vectorised cloud motion section

in the SDSIG. A proposed methodology could be achieved by defining a banded ring

around each cloud that is sized as a fraction of rc. The 1 sec profiles of CEE produced

by Lave et al. (2012) could be applied across the partial radius of the banded ring.

Within the cloud motion methodology, whenever the time step lands within this banded

ring, a CEE event can be applied adjusting by an extracted M from the CDFs made

in section 4.2.4.3. This proposed method would be flexible to changes in both the

spatial and temporal resolution. Due to time constraints within the PhD, this has

not been explored further within this thesis, however, remains as an interesting future

work consideration.

4.4.5 Simple case study demonstrating the use of the Spatially Decor-

relating Solar Irradiance Generator

This demonstration was published in ? after being selected for publication from the

International Solar Energy Society’s special issue in the Journal of Solar Energy for

the Solar World Congress 2015, Daegu, South Korea.

To illustrate how the SDSIG takes user inputs and delivers spatially decorrelating

irradiance time series, the model is applied to a hypothetical configuration for the

location of Cambourne, UK. Figure 4.26 illustrates the configuration.

Table 4.2 shows the physical parameter inputs required for each of the houses within

the simulation. The xl and yl coordinates are noted in reference to the centre of the
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Table 4.2: Physical parameters as user defined inputs into the SDSIG for the 5
houses in the case study as shown in figure 4.26. The letter C denotes the centre of

the spatial domain at (750,750).

1 2 3 4 5

xl (m) C C-500 C C+500 C
yl (m) C+500 C C C-200 C-250
zl (m) 87 87 87 87 87
βla (◦) 0 0 0 0 0
βlp (◦) 0 0 0 0 0

spatial domain, C, defined as (750,750). The azimuth angles are defined as -180◦ to

180◦ East to West, with South being an angle of 0◦, although βla does not inflence this

simulation as βlp = 0 and so all irradiance values are GHI.

The model is functional for all βla and βlp with reference to the input Φ and Θ. The

weather station in Cambourne, UK is at Φ = −5.32656◦ andΘ = 50.2178◦, with an

elevation of z = 87 m above sea level. The temporal resolution of 1 minute has a

spatial granularity defined as the smallest distance between houses where a difference

in irradiance can be observed. This is determined using the temporal resolution of 60 s

and the typical cloud speed of 5 ms−1 giving typical granularity around 300 m.min−1.

The scenario depicted in figure 4.26 shows that the houses are separated by at least

250-1020 m and should, therefore, demonstrate decorrelation. In order to observe

spatially decorrelating irradiance time series for houses closer together, a decreased

granularity would be required. This is achieved by increasing the temporal resolution.

Figure 4.27 displays a typical output from the model using inputs from table 4.2.

The profile is typical of a clear day in mid-January for the location of Cambourne,

UK. Typical patterns can be observed associated with the spatial decorrelation. Most

notably at around 700 minutes, there is a gradual ramp down in output at house 1

a few minutes before the other 4 houses undergo a similar ramp down, this can be

attributed to the wind speed and direction at the time; the clouds were travelling

north to south. At 860 minutes, house 2 is the only house to undergo a large ramp

down event.

The implication of this is that, on aggregate, this ramping event may not significantly

impact the voltage across a transformer. Were each property given correlating irradi-

ance time series, e.g. all equal to house 2, all houses would be subject to the same ramp

at 860 min resulting in understating the aggregated irradiance. The SDSIG provides

individual irradiance profiles with individual house installation characteristics of βla

and βlp. It is therefore ready to be applied to a grid impact analysis.
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Figure 4.27: Synthetic decorrelating irradiance profiles for 5 houses on the 10th Jan
from SDSIG located in Cambourne, UK.

4.5 Application of the Spatially Decorrelating Solar Ir-

radiance Generator in a grid impact assessment case

study

This section was produced collaboratively with Oytun Babacan and Prof. Jan Kleissl

on a research scholarship to UCSD. The power flow model presented was constructed

by Oytun Babacan, although assumptions, case study design, interpretation of results

and presentation are collaborative. This section is published in the Journal of Solar

Energy Bright et al. (2017).

The final research problem of this thesis is to demonstrate the applicability of the

SDSIG outputs in application to a multi-variate grid impacts analysis and explore one

of the identified grid impacts. To do this, a grid impact assessment was devised.

4.5.1 Overview of the grid impact study

The power flow simulation simulates the electricity flows around a typical LV distribu-

tion network feeder spread over 1.5 km2 with 2438 nodes that each have the potential
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for PV installation.

In order to demonstrate the advantages of spatially decorrelating irradiance time series

over correlating irradiance time series, 2438 spatially decorrelating irradiance time

series are generated from the SDSIG and three scenarios are proposed.

Firstly, a baseline is established by running the power flow model with no PV instal-

lations and so irradiance has no generational impact on the electricity grid. Secondly,

spatially decorrelating and temporally unique synthetic irradiance time series from the

SDSIG are assigned for each available PV system in the distribution system. Lastly, a

single correlating irradiance time series, randomly selected from the SDSIG, is applied

to for all available PV systems in the distribution grid.

The simulations are performed as individual daily simulations for a complete year (365

days) of data and for varying solar PV penetration levels. The location chosen for

the study is UCSD, CA USA. Power flow simulations are conducted using OpenDSS

(EPRI, 2008), an open source electric power distribution system simulator.

4.5.2 Test circuit information and data sources

The IEEE 8500-node test circuit is chosen to build the distribution system as it is

publicly available, well-documented and well-tested in literature. The test case de-

scription states that the circuits are realistic (IEEE, 2013). The IEEE test circuits are

anonymised actual circuits from throughout the USA. They are realistic such that they

are in fact real, however, the data is protected. The purpose of using an American grid

was to boost both the collaborative initiative with UCSD as well as aiding the valida-

tion and applicability to the San Diego validation site. A diagram of the test circuit

is shown in figure 4.28. This circuit is a radial distribution feeder with multiple feeder

regulators and capacitors (Arritt and Dugan, 2010). It resembles a large network with

many common power system elements found in a residential distribution feeder. The

longest possible distance from the substation is approximately 17 km and the circuit

has a peak load of approximately 10.7 MW, at which it exhibits approximately a 10%

loss.

PV generation installations are assumed to be rooftop systems distributed in the test

circuit. Each PV system is installed to the secondary side of the service transformer

adjacent to the respective load point. Each system is specified to have a capacity equal

to the peak demand of that load point. Their pitch angles are kept at 20◦ and their

azimuth angles are kept at 0◦ (due south).
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Figure 4.28: On-line diagram of the 8500-node feeder circuit used in the power flow
simulations (IEEE, 2013).

PV systems are sited at randomly selected load points in the circuit until a desired

PV penetration is achieved. As the PV penetration level in the distribution system is

increased, already existing PV systems are retained and new systems are added in a

similar random fashion until the new desired PV penetration is achieved again. The

PV penetration (PVP) definition used in the grid impacts study is:

PVP =

M∑
m=1

PmPV

N∑
n=1

Pnload

(4.21)

Where M is the total number of PV systems adopted in the distribution system, N is

the total number of load points in the circuit and Pload and PPV indicate peak rated

power of load points and PV systems, respectively.

PVP levels used in this study are 0%, 25%, 50% and 75%. Higher PVP simulations are

not considered as voltage regulation, using tap changers alone, cannot maintain the
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system voltage targets during high solar and low demand periods on certain simulation

days.

Simulations are carried out using 1-minute resolution demand data and solar generation

time series. Generic demand profiles for residential buildings in San Diego are taken

from the dataset provided by Open Energy Information (OpenEI, 2014). The PV

system power outputs are computed using a power conversion model for distributed

PV systems presented in Jamaly et al. (2013). Each PV system is coupled with in

inverter that has an efficiency of 0.95 and operates at unity power factor. The inverters

are sized to match the PV system nameplate capacity at the location. The resulting

AC power profiles are directly fed into OpenDSS using its “loadshape” object.

4.5.3 On-line tap changer operations grid impact metric

Voltage in a distribution system fluctuates due to local variations in real power or

reactive power injections and/or absorptions due to changes in power supply and de-

mand. In the scenarios considered in this study, voltage fluctuations are either caused

by house variations in real power injections by solar PV, or real power absorptions by

local demand. The sensitivity of both data sets to the distributed solar PV generation

impacts are determined by computing the increase in the number of OLTC operations

required to maintain the voltage within pre-defined limits of the test circuit. The

voltage regulation decisions for the simulations are output by the “RegControl” ob-

ject defined in OpenDSS. The target voltage and bandwidth definitions of the voltage

regulators are kept the same as in the original test circuit.

As was well researched and detailed in chapter 2, there is no consensus metric de-

veloped to compare grid impacts. The number of OLTC operations was identified as

an appropriate metric to compare grid impact analysis scenarios and for this reason

is used to demonstrate the impact of increasing PVP upon the distribution grid. In

each power flow scenario, the accumulated depth of required OLTC operations at all

voltage regulators are recorded and compared. The depth of OLTC operation is the

magnitude (depth) per operation.

4.5.4 Results of grid impact assessment

The resulting daily OLTC operations depth are shown in figure 4.29 for a year of

simulations for varying PV penetration levels. The baseline No PV case has a median

OLTC depth of 187 per day, with 4 outliers and a maximum depth of 354 per day.

The power flow scenario using the single correlated time series data is named herein as
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the red case and the scenario using the spatially decorrelated and temporally unique

synthetic GHI time series is named as the green case following the colour choice in

figure 4.29. The results for all PVP levels are as follows:

• 25% PVP simulations

– red case: 18 outliers with a maximum of 477 per day

– green case: 9 outliers with a maximum of 365 per day

• 50% PVP simulations

– red case has 17 outliers with a maximum of 827 per day

– green case has 18 outliers with a maximum of 535 per day

• 75% PVP simulations

– red case has 15 outliers with a maximum of 1249 per day

– green case has 17 outliers with a maximum of 697 per day

• Red cases have a median that is higher than those of green cases with increasing

PVP by 10, 49, 93 OLTC operation depth per day, respectively

For both the correlating and decorrelating irradiance time series, OLTC operation

depth increases with PVP. However, the magnitude and frequency of severe tap chang-

ing events rise significantly faster in the simulations using the correlating time series.

In very high PVP cases, such as a distribution system with 75% PVP, using correlating

time series results in cases where voltage regulators change taps up to an accumulated

depth of 1249 compared to an accumulated depth of 697 when using decorrelating

time series, giving an 80% potential overestimation. Such extreme results would result

in overly conservative PV impact mitigation measures for the distribution system in

question, which would be detrimental to PV uptake.

4.6 Chapter summary

The research problem addressed in this chapter asked if it was possible to produce

statistically accurate, synthetic irradiance time series that vary on both a temporal and

spatial dimension, facilitating multi-variate grid impact analysis. The first objective

of this chapter was to address this question through the development the SDSIG, a

spatio-temporal methodology that meets all the criteria demanded in the scope of this

thesis. The second objective of this chapter was to demonstrate the applicability of the
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Figure 4.29: Number of tap operations over a day for a complete year (365 days)
of simulation under varying PV penetration level in the IEEE8500 node distribution
system (0%, 25%, 50% and 75%). Red represents the power flow scenario using the
single correlated time series data across the distribution system and green represents
the scenario using the spatially decorrelated and temporally unique synthetic GHI
time series from the SDSIG. Blue represents the No PV case. The black horizontal
bar indicates the median. The thick vertical lines show the upper and lower quar-
tiles. Thin vertical lines extend between maximum and minimum values excluding
the outliers. The outliers are shown as circles. This plot was produced by Oytun

Babacan.

SDSIG in application to a grid impacts methodology, exploring a grid impact metric

of OLTC operations identified in the literature review.

This chapter achieved these objectives through a thorough literature review of the cur-

rent research identifying the potential fields and opportunities to develop the SDSIG

from the SIG. The appropriate developments were made and then output time series

validated. The SDSIG was then applied to a grid impacts analysis to assess the ad-

vantages of using decorrelating time series over correlating time series by comparing

the affect they have on the number of OLTC operations in a power flow simulation.

A temporal validation was carried out using four metrics comparing the correlation

between CDF observation data and the synthetic model output data at four sites

around the world. The K–S test using increasing confidence limits from 90% to 99% was

also carried out on daily subsets containing 1-min resolution irradiance data comparing

the goodness of fit of each metric. The metrics are the variability index, ramp rate

size, irradiance magnitude frequency and the clear-sky index. Each metric passed the

K–S test with 99% confidence limit with minimum success of 90.96% days and average

score of 95.99% days. The CDF comparisons for all metrics had a minimum correlation

coefficient of R = 0.9083 and mean of R = 0.9872.
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A spatial validation was carried out by calculating the correlation coefficient of 593

day long GHI time series between every station-pair combination of 17 irradiance

measurement devices from NREL’s Oahu Solar Measurement Grid. This was compared

to the same test using SDSIG outputs. The mean absolute percentage error of spatial

correlation against site separation was 0.8648%, RMSE = 0.01, and the correlation

coefficient was R = 0.9552.

The SDSIG illustrates the instantaneous spatial decorrelation of the output time se-

ries. The instantaneous correlation is shown to behave anisotropically with a fixed

cloud motion direction. Spatial decorrelation is shown to become more isotropic with

a more uniformly distributed cloud motion direction. With the analysis time scale at

1-year, the minimum correlation observed across 1.5 km separation was 0.52 for both

prevailing and control scenarios. The most noticeable decorrelation caused by cloud

cover conditions is under scenarios of 40% to 60% cloud cover, whereas the least decor-

relation is for 0% and 100% cloud cover. Increasing cloud movement speed is shown

to increase both the along and across wind instantaneous correlation with distance.

However, this is suspected to be a result of the tendency for increased cloud size with

higher uref and Ct in the cloud field production and not due to the actual cloud speed.

Furthermore, there is increasing correlation convergence with increasing uref . This is

suspected to be due to clouds passing too quickly to be captured in detail in a 1-min

resolution study, resulting in correlation becoming a function of C and not uref .

From the application into the power flow study, it was shown that the magnitude

and frequency of severe tap changing events are significantly higher in the simulations

using a single correlating GHI time series when compared to assigning individually

decorrelating GHI time series to each house. Using correlating GHI time series for PV

penetration scenarios of 25%, 50% and 75%, an increase in the OLTC operation depth

had a median that is higher by 10, 49, and 93 per day with increasing PV penetration,

respectively, than scenarios using spatially decorrelating GHI time series. The SDSIG

time series would allow the grid operator to determine more realistic PV mitigation

estimates and could avoid over-investment in voltage regulation equipment.
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Conclusions and future work

The aim of this research was to develop a novel modelling methodology that produces

synthetic irradiance time series that varied on both a temporal and spatial dimension,

and that were suitable for application in multivariate grid impact analysis whilst being

derived from readily available hourly observation data only.

This research aim was sub-categorised into three research problems. Each problem was

examined and addressed in its own chapter. They are concluded in turn within this

section. The research problem is introduced, brief summary of key findings given, and

a discussion of the implications of the findings made.

5.1 Research summary

1) What are the key distribution network impacts associated with increasing

penetration of intermittent solar PV technology into the grid, the identification of which

will help guide the requirement criterion for synthetic irradiance time series?

To address this research problem, a thorough literature review was carried out on the

identified grid impacts, as well as applicable studies upon each impact. The literature

review identified the key impact as voltage fluctuations, harmonic distortions, uninten-

tional islanding, reverse flow, increased demand peaks and hot-spots. The impact of

voltage fluctuations was identified as, and considered to be, the most concerning im-

pact as it is most commonly mitigated by degradable devices, overuse of which presents

a significant potential expense to the DNO. A review of studies regarding voltage fluc-

tuations found a clear lack of a consensus performance metric in order to establish

baselines and comparisons, and so it is suggested and implemented that the overuse

of on-load tap changers (OLTCs) be adopted for this purpose. From the literature

179
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attempting to quantify and address grid impacts from solar PV, the key observation

was the frequent claim of a lack of readily available irradiance data for use. Too many

studies used insufficient resolution irradiance data as an input into a grid impact study,

claiming lack of data availability as justification. Using 1-hour resolution irradiance

data can underestimate the magnitude and impact of certain grid impacts, particularly

voltage fluctuations. This observation was the principal driver for the development of

the SIG and SDSIG as there was a clear research gap for the synthetic generation of

high resolution input solar irradiance time series that are statistically accurate, repro-

ducible and are globally applicable for use in grid impact analysis.

2) Can synthetic irradiance time series be generated with significant statistical

accuracy using readily available, well geographically dispersed, mean hourly meteorolog-

ical observations as an input, facilitating access to more appropriate data for temporal

grid and solar systems study?

This research problem required a proof of concept study to assess whether or not it is

possible to make the synthetic irradiance. A review of literature found few options of

producing statistically accurate time series from readily available data, most required

an irradiance time series as an input from which to interpolate a higher resolution

time series. Due to lacking alternatives, a new methodology and model was built and

titled the Solar Irradiance Generator (SIG). The SIG presented in this this was the

first model to simulate statistically sized clouds alongside clear-sky index distributions

by okta in order to stochastically derive weather conditions and ultimately synthesise

irradiance. The SIG was the first method to employ multiple MTMs in order to

capture the identified seasonal, diurnal and pressure differences in the cloud cover

amount. Novelty was demonstrated in the sizing of clouds and the utilisation of cloud

samples. Further novelty was demonstrated in the method of producing the clear-sky

index by using distributions by okta value and allowing cloud edge enhancement and

other fluctuation features to be captured.

The validation of the SIG at the location of Cambourne, UK, demonstrated that it

is indeed possible to produce high resolution, synthetic irradiance time series from

readily available, mean hourly weather data. The implication of this is that every piece

of research reviewed that cited lack of data availability as a limit could be repeated

at a temporal resolution down to 1 minute. Applications of the SIG are limited to

cases where a spatial element is not integral, such as small scale studies where a

single high-resolution irradiance data series are desired. The literature review found

numerous studies using inadequate time resolution data where the SIG methodology

would have been ideal in supplying data. Example applications of the SIG include PV

generation models, PV supply/demand models, PV and battery storage integration
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models, inverter models and PV system power control strategies. The validation of the

SIG demonstrates that it captures the inherent 1-min qualities of solar irradiance that

were identified as crucial in the grid impacts literature review, however, for suitability

of grid impact studies, a spatial element is required.

3) Is it possible to produce statistically accurate, synthetic irradiance time se-

ries that vary on both a temporal and spatial dimension, facilitating multi-variate grid

impact analysis?

The final research problem required further proof of concept as to whether or not it

possible to take readily available hourly inputs and produce spatially decorrelating irra-

diance with a 1 minute resolution. In order to answer this, the Spatially Decorrelating

Solar Irradiance Generator (SDSIG) was developed. A study of the literature found

two independent journal articles that agree with the author that there is currently no

known method of producing synthetic, spatially decorrelating irradiance time series

from readily available data. All identified potential alternatives required an irradiance

time series with the same temporal resolution as the desired output in order to repre-

sent spatial decorrelation. For this reason, the SDSIG is considered the first of its kind

and so contains inherent novelty within the methodology. The cloud field production

method for representing the sky with increasing amounts of cloud, as well as their

deployment within the cloud motion vectorisation, facilitated a brand new method of

solar irradiance estimation. Furthermore, the deployment of 90 different distributions

of clear-sky index categorised by total cloud amount and solar elevation is certainly

a first that facilitated greater geographic flexibility of the SDSIG through incorpo-

ration of solar elevation. The additional distributions allowed for the improvement

in synthetic reproduction of irradiance magnitudes that are statistically accurate to

observational data. The robustness of the SDSIG method can facilitate any time res-

olution or spatial dimension, although to operate at higher temporal resolutions with

confidence requires more quality irradiance time series datasets to validate against.

Temporal validations were carried out at four sites that represent three different cli-

mates (temperate, desert-like, and tropical pacific island) in two countries (UK and

USA). The success of these validations demonstrates the statistical accuracy of the SD-

SIG generated solar irradiance time series. However, it was the success of the spatial

validation that answer the research problem that it is possible to produce synthetic

irradiance time series that have a spatial dimension. This is not known to have been

achieved in previous literature. The implication is that, with readily available inputs,

such as those from the Met Office or NOAA that cover the whole UK and North Amer-

ica, synthetic irradiance time series that vary on a spatial dimension can be generated.

Therefore, there is now is no need to have to resort to insufficient temporal resolution
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irradiance data when analysing grid impacts, unless the input observations are not

available. The SDSIG has suggested use in any type of PV-DG grid modelling, solar

farm modelling, or situation where the irradiance at two sites separated more than

roughly 60 m (at 1 minute resolution) is required. The SDSIG could provide unique,

spatially decorrelating irradiance profiles to each point node on a grid case study, each

can have distinct orientation and roof tilts. This has has never been an option before

using synthetic modelling.

The final objective to the research problem was to demonstrate the SDSIG’s applicabil-

ity into multi-variate grid impact analysis. A power flow study demonstrated that the

magnitude and frequency of severe tap changes were significantly higher in the simula-

tions for all PV penetrations when using a correlated irradiance time series compared

to using decorrelating irradiance time series from the SDSIG. This demonstrates that

excluding decorrelation from grid impact studies will likely result in over estimation

of the impacts, this could lead to implementing over-conservative mitigation policy or

technology to the grid. The SDSIG not only solves the problem of lacking, high reso-

lution irradiance time series data availability, it can facilitate more robust and realistic

analysis through allowing decorrelating and individualised house pitch and azimuth

variables.

5.2 Contributions to knowledge

The principal contribution to knowledge is the development of a methodology that

synthesises irradiance at the highest-temporal resolution downscaling for synthic mod-

elling available at time-of-writing.The model is certainly a first to the field to provide

individualised property options (location, roof tilt, orientation) for any number of lo-

cations in a spatial domain. The availability of this well-validated tool to produce

spatially decorrelated profiles fills a significant gap where there is only one real set of

observation measurements at the site of Oahu, Hawaii. Other measurement sites with

spatial separation exist, however are private installations such as those at UCSD. This

model can, therefore, be used by researchers to produce irradiance time series that are

statistically accurate and spatially relevant without having to limit their geographical

region of study. This is a particularly useful contribution of knowledge, and to date

(June 2017), there does not exist an alternative methodology to derive such spatial

irradiances, and yet research into this field has increased. The author’s papers at time

of submission have received a combined 24 citations, some of which are attempting to

improve upon the validation and spatial correlation component developed in this thesis

(widely recognised in the field J. Munkhammar and J. Widén of Uppsala University).
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Many of these citations are in relation to grid impacts on the low voltage grid. It

is therefore, the authors opinion that the methodology presented here is a significant

contribution to knowledge in the field. There are key features of the model that make

this true and are subsequently detailed.

The Markovian approach to solar modelling was expanded upon and demonstrably

improved the diurnal, seasonal and effective weather system statistics of cloud amount.

The most related study in the field uses only a single Markov transition matrix to define

the change of total cloud amount. This research expanded upon the single matrix

to using 20 separate matrices and showed that ignoring seasonality, diurnality and

pressure dependencies will lead to significant biases. Seasonality strongly impacts the

transition states by up to 10% difference in probability when compared to the single

Matrix. The implementation of 20 matrices is not computationally demanding, in fact,

the separation and construction of all Markov transition matrices is the fastest part of

the model. This demonstrates that all future studies can easily apply this technique to

remove annual, seasonal and diurnal biases from stochastic solar irradiance modelling,

presenting a significant improvement to the field. The bias of time-of-day for the site

studied was demonstrated to have the largest bias. The time of day is intuitively the

most variable as it is the smallest change allowable in the variables. Furthermore, it is

intrinsically linked to the solar elevation angle, which was later demonstrated to hold

significant relationships to clear-sky index and therefore solar irradiance measured at

the ground; thus, corroborating the finding.

The use of geometrically fixed cloud fields is a valid tool to produce accurate binary

spatial correlation and highly accurate ramp-rate reproductions across four different

climatic regions, marrying the computational burden with empirically derived cloud

size distributions. The idea had been proposed once before, however the utilisation with

sizing distributions is entirely novel. The spatial validation application to the Hawaii

dataset showed strong performance between synthesised cloud cover and reality. Such

a simple computational approach opens future avenues of modelling cloud fields of

many sizes.

The use of okta to produce distinct clear-sky index distributions is an incredibly ef-

fective approach in order to capture diurnal, seasonal trends of realistic irradiance

magnitudes. The separation of okta by the solar elevation angle bands allows for more

geographic flexibility and reduction in diurnal bias than using just the diurnal Markov

transition matrix alone. Solar elevation angle is easier categorised at different latitudes

than the hour of day itself as an integer, this allows for greater accuracy in synthesising

irradiance magnitudes at the variety of latitudes studied for all times of day. These

distributions are being further extended by the research group at Uppsala University
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to determine if they are globally applicable. This is a fundamental improvement to

understanding how different weather types influence the solar attenuation, particularly

useful to the field is the representation of solar irradiance at low sun angles, where the

sun is near the horizon, which is often ignored or excluded in solar resource assessment

(sometimes ignoring up to 50% of data when solar zenith less than 60◦ are removed).

A strict relationship was discovered between the cloud fraction and spatial correlation,

whereby the spatial correlation is least at 50% cloud cover and increases as one of the

states (clear or cloudy) becomes more dominant. This is a useful finding as it is the

first study to demonstrate that the spatial correlation of solar irradiance is directly

related to the state of sky. All studies prior to this have not isolated a variable to

discuss the influence of spatial separation and have instead considered it as aggregated.

The interesting use of this relationship is that it local weather statistics, which are

readily available from satellite imagery or meteorological agencies, can be used to

assess the typical spatial decorrelation at a large scale PV site or distributed PV

generation in a grid system depending on prevailing weather and to identify potential

days that pose synchronous ramping risks— remembering that lower correlation is

beneficial to avoid synchronous ramping. A site such as Hawaii, where the clouds

are known to be constant and consistently 50% coverage, it can be assumed that

there will be maximum decorrelation between sites. Contrastingly to the finding of

cloud fraction, the cloud speed was found to be non-influential on the instantaneous

correlation over small distances. Other studies have demonstrated that the cloud

speed is fundamental when linking ramp coincidences, however they only consider the

time delay between sites, which does not inform power engineers of likely scenarios

for any time-instance of a grid. Knowing that the cloud speed is insignificant on

the instantaneous spatial decorrelation is useful as it facilitates the option of ignoring

the accuracy of this factor, or assume a simple distribution. As this was a large

computational expense in producing the cloud fields, this is a useful finding.

This research was the first to demonstrate the impact of using correlating instead of

decorrelating irradiance on a modelled electricity grid. The application to an IEEE

test feeder showed that the increase in on-load tap changer operations was significantly

impacted when using synchronous ramping (same irradiance profile for all properties

in a spatial domain) when compared to using decorrelating irradiance profiles (unique

irradiance profiles individualised to each property). The importance of this is that

any study using correlating irradiance — of which there are many, if not nearly all —

have over estimated the impact of “synchronous” ramping events, as the events are

not truly synchronous. The overestimation of impact from solar PV is damaging to

the opinion, desirability and attractiveness of the technology. This is likely the exact

opposite intention held by the researchers. The presented research allows a fairer test



Chapter 6. Conclusions and future work 185

solution for the impact of solar PV at aggregated 1-min time resolution, which was

identified to be a good starting time resolution in from a study of the grid impacts and

power systems response. Ideally this time resolution could be reduced, however, 1-min

downscaling from 1-hour presents the new benchmark in the field.

In summary, being able to operate now with statistically accurate spatial decorrela-

tion and at a high temporal resolution is a significant advantage to the field of solar

modelling and grid integration studies. The developed model in this thesis provides

this capability. Naturally, there are some limitations to the work and some areas for

improvement. These are discussed in the following section.

5.3 Limitations and ideas for future work

There are general considerations and specific ideas for advancement of both the field

of synthetic solar resource assessment and of the SDSIG itself. This section will be

split between those general comments regarding the solar resource assessment field,

and those that are specified to certain aspects of the SDSIG.

5.3.1 General future enablers to advance the impact of theoretical

solar resource modelling

An impression from the grid impacts literature review was that more industrial col-

laborations are required in order for progress in maximising PV penetration into the

LV grid. Without real grid schematics or empirical testing on networks to appropri-

ately validate grid impact analysis and power flow tools, it is difficult to state with

empirical certainty how conservative an approach is, or isn’t, when considering voltage

fluctuations. This link to industry could be benefited through the establishment of

grid impact baseline consensus metrics with which to benchmark studies and method-

ologies, such as the over use of on-load tap changers; the empirical analysis of these

grid impact metrics would help connect theoretical conclusions to the real world, such

as those of the power flow application of the SDSIG.

Access to well-distributed, high resolution solar irradiance data is imperative to ad-

vance the field of spatially decorrelating irradiance models. To date, the only real place

to access trusted and well-maintained data with a spatial separation is from Oahu, HI

USA. Whilst this is an excellent resource, it limits all studies to an area with a prevail-

ing cloud direction, a predominant cloud type and a tropical island climate. There is a

need to establish a network of irradiance monitoring sites with good spatial separation
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that are structured with appropriate station-pairing in order to determine the cloud

direction. This would advance the knowledge of different climatic zones and provide

a better platform for those studying solar resource modelling with opportunities for

validation and statistical analysis of the spatial correlation of solar irradiance.

5.3.2 Specific opportunities to develop the Spatially Decorrelating

Solar Irradiance Generator

In its current format presented in this thesis, the SDSIG operates within a 1.5km2

spatial domain as was found to be computationally tolerable for producing > 2400

year-long irradiance time series for the grid impact study, however, the methodology

is robust enough to explore much larger areas and could deliver greater understanding

of spatial correlation at areas around the world. Furthermore, the spatial granularity

is found to be 60m as is the smallest distance travelled by a cloud travelling 1 ms−1 for

60 s. This does not mean that there will be no differences between two sites located

closer together than the granularity, as the clouds can be centred anywhere within the

cloud field, it means that the minimum a cloud can move with each 1 min time step

is 60 m. Transition to a 1-sec resolution is theoretically plausible with the SDSIG and

would reduce the granularity to 1m.

Analysis of the minimum cut-off duration for both 0 and 8 okta smoothing periods

would benefit this methodology. The use of > 3 hours for 0 okta within the SDSIG

is a conservative estimation and is intuitively as low as 30 mins. This may reduce

the variability index (VI) in the SDSIG, improving the temporal validation metric

performance. The VI is the metric with the weakest performance within both te

SIG and SDSIG. The implication of this is that daily solar variability is not being

statistically reproduced as well as it could be. The author believes this is a result of

using only a single order Markov chain dependency, considering the weather variable

transitions from only one hour previous. The best demonstration of this is that the

probability for complete clear sky to remain stable between hours in Leeds is 0.71. For

a full day of complete clear sky, which is reasonably well experienced in winter and

summer anti-cyclone weather systems each year, the chance is 0.7124 ≡ 1
3703days, or

approximately 1 day in 10 years. With hindsight, it is a reasonably obvious limitation,

however, literature used similar assumptions and validations were not too negatively

impacted using a single order. After the above future work of expanding the spatial

and temporal resolutions, the progression to a higher order Markov chain, and a study

to analyse the most appropriate order, is a recommended piece of future research.
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The cloud fields are a highly novel aspect of this thesis, as such there is plenty of

scope for development. The SDSIG at present does not allow for the clouds passing

across the domain to develop in the dynamic way with progression of time like clouds

do in reality. Cloud edges in the cloud field are clearly defined such that the direct

irradiance is subject to a binary on-or-off. Ideally the model could take a more dynamic

approach and allow the clouds to develop over time with knowledge of weather systems

beyond what is simply employed at current using high and low pressure environments.

The Markov chains perform well enough to allow variation in the systems that occur,

however, to capture a cloud system of hundreds of kilometres long, the stochastic

weather would have to produce multiple events of N = 8. It would be interesting to

explore the concept that, instead of selecting the cloudiness for the hour ahead, but

to select the weather system for the next 3 days to 3 weeks to have dynamic cloud

transitions starting in the cirrus region before gradually moving into a fully developed

cumulonimbus cloud. One more development to the cloud field implementation would

be to achieve more complex three-dimensional shapes through a change in clear-sky

irradiance across the domain of the circular cloud. The clouds could be assumed

to be spherical through applying different attenuations across the diameter of the

cloud. There is little scientific evidence that justifies this; however, it would be a very

interesting piece of research.

Whilst the model in its current state satisfies validations for the geographic regions

attempted (San Diego, Oahu, Cambourne and Lerwick), this is not enough to suggest

the SDSIG is globally applicable, despite hypothesising that this may be the case.

More locations must be validated against before global accuracy can be claimed. One

of the limits that will likely hold back the global applicability of the SDSIG is the use

of the relationships of clear-sky index to okta and solar elevation. The pattern caused

by solar elevation is expected to be globally applicable as the nature of this correction

is to do with the geometric path that light takes through the clouds, not necessarily

to do with the cloud type. The okta number, however, is expected to be a function of

cloud type. 8 okta in the UK may not share the same clear-sky index distribution as

8 okta from each of the climatic region. For true geographic flexibility, the clear-sky

index distributions would need to be examined globally and compared for similarity or

distinct and definable differences. An alternative is to research a possible link between

the clear-sky index and the cloud type, and then to further analyse the distribution

of cloud type with total cloud amount around the world. This would be an incredibly

large undertaking. An estimation of the added value gained of this line of research

would be needed as recommended starting point. A better understanding of the global

validity of clear-sky index distributions could facilitate the SDSIG to perform globally.
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The cloud edge enhancement (CEE) application within the SDSIG could potentially

be much more sophisticated whilst being computationally less demanding. CEE could

be applied as a function of space, as opposed to its current implementation of time.

As the temporal resolution of the SDSIG is increased, it will become more poignant

to explore the spatial influence of CEE and include it within the SDSIG. Further

research into the probability of occurrence and magnitudes of CEE would also help

guide implementation into the SDSIG. The principal concept of spatially applied CEE

has been theorised by the author such that a banded ring is made around each cloud

as a function of that cloud’s radius. The ramping pattern discovered by Lave et al.

(2012) can be applied along the band’s width. The cloud field is then moved across the

spatial domain as usual. Should the house be positioned inside one of the bands and

not also inside a cloud, a CEE correctional factor from Lave married with a magnitude

M from the analysis in section 4.2.4.3 can be applied to the clear-sky index for that

house. Intuitively, the CEE is a spatial variable similar to the circumsolar of the sun,

and its temporal nature is only due to the speed of the cloud which would lend itself

well to the CEE correctional factor by Lave et al. (2012). The added value should be

explored first as, with intended application to PV power models, the typical oversize

of inverters may nullify the benefits of, and need for, CEE accuracy.

Shading due to terrain topology such as blocking mountainous landscapes, would be an

interesting inclusion to the SDSIG. Currently, only the topographical height is utilised

for the PSA sun-Earth calculations. Geographic areas of significant height differences

would change the irradiance availability at certain times. It is noted that this would

only improve accuracy of periods with lower irradiance, however total harmonic dis-

tortion is reportedly at its highest during power outputs that are below 20 to 25% of

the rated capacity (Du et al., 2013; Fekete et al., 2012). The EN 50160 states that

harmonics up to the 40th harmonic must remain within 8% of their nominal value and

so it is possibly a useful and interesting improvement to the SDSIG.

Wind direction at measured height is not representative of the motion of clouds, which

can have multiple layers travelling in different directions. To maintain the rationale

of the thesis of using simple and readily available inputs, methods to determine the

cloud direction such as Wang et al. (2016); Chow et al. (2011) require sophisticated

equipment and so are not suitable for this study. Methods or statistics that could be

simply employed to estimate realistic cloud direction and general cloud motion would

be an interesting inclusion. Recent work at the University of Leeds examined this

and has preliminarily shown positive correlation between ground based wind speed

measurements and the estimated cloud speed using triangulated pyranometer GHI

data. At current, the author feels that the inclusion of more accurate cloud direction
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is the most limiting assumption to the SDSIG and is the most pressing piece of future

work.





Appendix A

Solar Irradiance Generator

scripts

The scripts presented in this appendix are all produced using Matlab 2015b software.

The colour code presented is as follows:

• Black — executable script

• Green — non-executable comments

• Blue — Matlab function or operator

• Red — deletion of a variable

A.1 Cloud sample production

1 %% Cloud Sample Production

2

3 %% Variables

4 % User defined

5 cloud_vector_length =10^8; %(decameters) lenght of large cloud sample

6 num_of_options =1000;%number of sample hours per wind speed per coverage

7 u_range =30;%all possible wind speeds (m/s).

8 coverage_range =9;% C=(1:9) /10. 0/10 and 10/10 are both all zeros or ones.

9

10 % Pre allocate arrays

11 cloud_sample=zeros(1, cloud_vector_length); %pre -allocate memory. construct array

of variable length

12 combined_record=zeros(cloud_vector_length ,1);

13

14 % Preliminary definitions

15 marker =1; %indexing initiation within the sample

16 % Power Law Exponent /// p(x)=Cx^-B /// incorporated xmin and xmax

191
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17 % (Wood & Field , 2011, Journal of Climate , Volume 24, p4800).

18 % powerlaw becomes x=(alpha+beta*r)^(1/(1 -B)).

19 % where r==0 gives x_max. rand ==1 gives x_min.

20 B=1.66; % as recommended

21 x_min =10;%minimum cloud length (decameters).

22 x_max =150000;%maximum cloud length (decameters).

23 alpha=x_max ^(1-B);

24 beta=x_min^(1-B) - alpha;

25

26 %% Produce Large Cloud Vector

27 while marker <length(cloud_sample);

28 %ADD CLOUD

29 % produce random value for use in power law

30 cloud_rand=rand; %N[0,1]

31 % apply single power law to produce a cloud length

32 cloud_length=floor (( alpha+beta*cloud_rand)^(1/(1 -B)));

33 % keep a log of the length for later plots (to prove power law)

34 combined_record(marker ,1)=cloud_length;

35 % if the cloud length goes beyond vector length , limit it.

36 if cloud_length+marker >length(cloud_sample);

37 cloud_length=length(cloud_sample)-marker;

38 end

39 % put the cloud in the array at the correct point

40 cloud_sample (1,marker:marker+cloud_length)=1;

41 % update the current point along the sample

42 marker=marker+cloud_length;

43

44 %ADD CLEAR

45 clear_rand=rand; %REPEAT for a period of clear sky.

46 clear_length=floor (( alpha+beta*clear_rand)^(1/(1 -B)));

47 combined_record(marker ,1)=clear_length;

48 if clear_length+marker >length(cloud_sample);

49 clear_length=length(cloud_sample)-marker;

50 end

51 cloud_sample (1,marker:marker+clear_length)=0;

52 marker=marker+clear_length;

53 end

54

55 % create frequency and probability stats using tabulate function

56 combined_record=tabulate(combined_record);

57 % find the number of clouds produced over the sample range.

58 num_of_clouds=sum(combined_record (2: length(combined_record) ,2))/2;

59

60 %% Reshape cloud population , Randomly Sample cloud population , Allocate cloud

sample

61 %make coverage arrays

62 for i=1: coverage_range

63 bin=zeroes(num_of_options*u_range ,60);

64 assignin(’base’,[’coverage_bin_ ’,num2str(i)],bin);

65 end; clear bin

66

67 %loop whole range of u and create samples.

68 for u=1: u_range %cycle through all the different windspeeds

69 %resample the cloud cover

70 epm=u/(1/6);% resample rate to convert the cloud_sample
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71 cloud_resampled=resample(cloud_sample ,1,epm); % resample(data ,P,Q) resamples

data such that the data is interpolated by a factor P(1) and then decimated

by a factor Q(epm)

72 %remove noise from resampled data to maintain binary

73 cloud_resampled(cloud_resampled <0.5) =0;

74 cloud_resampled(cloud_resampled >=0.5) =1;%

75

76 %pre allocate space

77 entry_count=zeros (1,9); %log of cloud sample = a coverage value

78 tally=zeros (1,9); %to check if correct amount of options produced

79

80 %start selecting cloud samples from the resampled vector

81 while sum(tally)~=( num_of_options*coverage_range);

82 %random location from all but final hour of cloud cover

83 r=rand *(1 -(61/ length(cloud_resampled)));

84 %extract a cloud sample

85 sample_hour=cloud_resampled(ceil(r*length(cloud_resampled)):59+ ceil(r*

length(cloud_resampled)));

86 %determine coverage

87 coverage=round(sum(sample_hour)/6);

88 %assign cloud sample to appropriate bin

89 switch coverage

90 case {0,10} %skip if 0 or 10

91 case 1

92 %keep tally of entries into each case

93 entry_count (1,1)=entry_count (1,1)+1;

94 %fill bin if there is space

95 if entry_count (1,1) <=num_of_options;

96 %update bin space

97 tally (1,1)=tally (1,1)+1;

98 %place the hour sample in correct space

99 coverage_bin_1(u*num_of_options -( num_of_options -tally (1,1))

,:)=sample_hour;

100 end

101 %repeat for all coverage values

102 case 2

103 entry_count (1,2)=entry_count (1,2)+1;

104 if entry_count (1,2) <=num_of_options;tally (1,2)=tally (1,2)+1;

coverage_bin_2(u*num_of_options -( num_of_options -tally (1,2)) ,:)=sample_hour;

end;

105 case 3

106 entry_count (1,3)=entry_count (1,3)+1;

107 if entry_count (1,3) <=num_of_options;tally (1,3)=tally (1,3)+1;

coverage_bin_3(u*num_of_options -( num_of_options -tally (1,3)) ,:)=sample_hour;

end;

108 case 4

109 entry_count (1,4)=entry_count (1,4)+1;

110 if entry_count (1,4) <=num_of_options;tally (1,4)=tally (1,4)+1;

coverage_bin_4(u*num_of_options -( num_of_options -tally (1,4)) ,:)=sample_hour;

end;

111 case 5

112 entry_count (1,5)=entry_count (1,5)+1;

113 if entry_count (1,5) <=num_of_options;tally (1,5)=tally (1,5)+1;

coverage_bin_5(u*num_of_options -( num_of_options -tally (1,5)) ,:)=sample_hour;

end;
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114 case 6

115 entry_count (1,6)=entry_count (1,6)+1;

116 if entry_count (1,6) <=num_of_options;tally (1,6)=tally (1,6)+1;

coverage_bin_6(u*num_of_options -( num_of_options -tally (1,6)) ,:)=sample_hour;

end;

117 case 7

118 entry_count (1,7)=entry_count (1,7)+1;

119 if entry_count (1,7) <=num_of_options;tally (1,7)=tally (1,7)+1;

coverage_bin_7(u*num_of_options -( num_of_options -tally (1,7)) ,:)=sample_hour;

end;

120 case 8

121 entry_count (1,8)=entry_count (1,8)+1;

122 if entry_count (1,8) <=num_of_options;tally (1,8)=tally (1,8)+1;

coverage_bin_8(u*num_of_options -( num_of_options -tally (1,8)) ,:)=sample_hour;

end;

123 case 9

124 entry_count (1,9)=entry_count (1,9)+1;

125 if entry_count (1,9) <=num_of_options;tally (1,9)=tally (1,9)+1;

coverage_bin_9(u*num_of_options -( num_of_options -tally (1,9)) ,:)=sample_hour;

end;

126 end

127

128

129 end

130 end

131

132 %Combine all bins into single array

133 sun_obscured_options =[ coverage_bin_1;coverage_bin_2;coverage_bin_3;

coverage_bin_4;coverage_bin_5;coverage_bin_6;coverage_bin_7;coverage_bin_8;

coverage_bin_9 ];

134 %Save the array to file

135 csvwrite(’Cloud_Samples ’,sun_obscured);

A.2 User defined variables

1 %% User Defined Variables

2 start_day =1; % choose the day number from which to start from

3 start_year =2001; % choose the year from which to start from

4 num_of_years =7; % set the duration from the model to run

5 leap_years =( start_year:start_year+num_of_years); %make array of years

6 leap_years=floor(floor(leap_years ./4) ./( leap_years ./4)); %determine if leap year

7 num_of_days =365* numel(leap_years ==0) +366* numel(leap_years ==1); %create number of

days in accordance to leap years

8 latitude =50.2178; % set the latitude. Currently Cambourne , UK

9 longitude = -5.32656; % set the longitude. Currently Cambourne , UK

10 height_above_sea_level =87; %meters above sea level. Currently Cambourne , UK

11 panel_pitch =0; %(degs.)panel angle measured from the horizontal

12 panel_azimuth =0; %(degs.) panel orientation (+ -180=North , 0=south ,-90=west , 90=

east)

13 u_range =60;%the range of windspeeds. standard =60. Defined from Met Office.

Adaptable only with new cloud sample technique
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14 num_of_options =1000;% the number of options per windspeed per coverage. standard

=1000. Adaptable only with new cloud sample technique

A.3 Data import

1 %% Read In Data

2 % Select appropriate location raw data

3 pressure=csvread(’1395 pressure2001to2012.csv’);

4 data1=csvread(’1395 data2001to2012.csv’); %Note not all these variables are

required: 1) hour% 2) cloud total (okta)% 3) Low cloud type% 4) Medium Cloud

Type% 5) high cloud type% 6) cloud base height 7) pressure (msl)% 8) 1 -

cloud ammount% 9) 1 - cloud type% 10) 1 - cloud height (decameters)% 11) 2

"" 12) 2 ""% 13) 2 ""% 14) 3 ""% 15) 3 ""% 16) 3 ""% 17)

Air temp% 18) year% 19) hour of day 20) day number% insert 6 blank rows to

fill with markov case , season , hp/lp systems x4% 27) wind direction% 28)

wind speed

5 data = [data1 (: ,1:20) zeros(length(data1) ,6) data1 (: ,20+1: end)]; %make space for

season markers , markov chain markers etc. 6 columns.

6 sun_obscured_options = csvread(’Sun_Obscured_Options_Generic.csv’); %Read in the

sun obscured options , each line is an array full of clouded hours in

minutes (:,60).

A.4 Preliminary Markov chain framework

1 %% Preliminary Preparation for Markov Chain production

2

3 % Define the seasons.

4 season=zeros(length(data) ,1); %pre allocate array

5 for i=1: length(data)%For each hour measurement. NB: Spring=Mar to May. Summer=

Jun to Aug. Autumn=Sept to Nov. Winter=Dec to Feb

6 if isinteger(data(i,18) /4)== 1;%this is a method to check whether the year

is a leap year. then updates the day at which the seasons start and end.

7 springstart =61; springend =152;

8 summerstart =153; summerend =244;

9 autumnstart =245; autumnend =335;

10 winterstart=and (1 ,336);winterend=and (60 ,366);

11 else %account for leap year

12 springstart =60; springend =151;

13 summerstart =152; summerend =243;

14 autumnstart =244; autumnend =334;

15 winterstart=and (1 ,335);winterend=and (59 ,365);

16 end

17

18 %query the day number , then assign the appropriate season number

19 if data(i,20) >= springstart && data(i,20) <=springend;

20 season(i,1)=1;

21 elseif data(i,20) >=summerstart && data(i,20) <=summerend;

22 season(i,1)=2;

23 elseif data(i,20) >= autumnstart && data(i,20) <=autumnend;
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24 season(i,1)=3;

25 else season(i,1)=4; %else winter

26 end

27 end

28 data (:,21)=season;%column 21 = season {1,2,3,4}

29

30 % Assign a case number in order to populate the correct Markov Table.

31 pressure_avg=mean(pressure (:,2)); % Calculate the average pressure

32 markovcase=zeros(length(data) ,1); % pre -allocate memory

33

34 for i=1: length(data);%rows :21 = season. 7=mean sea level pressure

35 % Markov chains for each season and pressure state

36 if data(i,21) ==1 && data(i,7)<pressure_avg;

37 markovcase(i,1)=1; %spring low pressure

38 elseif data(i,21) ==1 && data(i,7)>pressure_avg;

39 markovcase(i,1)=2; %spring high pressure

40 elseif data(i,21) ==2 && data(i,7)<pressure_avg;

41 markovcase(i,1)=3; %summer low pressure

42 elseif data(i,21) ==2 && data(i,7)>pressure_avg;

43 markovcase(i,1)=4; %summer high pressure

44 elseif data(i,21) ==3 && data(i,7)<pressure_avg;

45 markovcase(i,1)=5; %autumn low pressure

46 elseif data(i,21) ==3 && data(i,7)>pressure_avg;

47 markovcase(i,1)=6; %autumn high pressure

48 elseif data(i,21) ==4 && data(i,7)<pressure_avg;

49 markovcase(i,1)=7; %winter low pressure

50 elseif data(i,21) ==4 && data(i,7)>pressure_avg;

51 markovcase(i,1)=8;

52 end

53 end

54 data (:,22)=markovcase;%populate the markov case into the data file

55

56 % Pre -allocate memory for the 8 different markov transition matrices (MTM)

57 springlp=zeros (10 ,10); springhp=zeros (10 ,10);

58 summerlp=zeros (10 ,10);summerhp=zeros (10 ,10);

59 autumnlp=zeros (10 ,10);autumnhp=zeros (10 ,10);

60 winterlp=zeros (10 ,10);winterhp=zeros (10 ,10);

61

62 % Assign okta of (0/8) a value of 10 for use in columns for indexing ease

63 for i=1: length(data); % column meaning = 2) hourly okta. 8,11,14) okta layer

64 if data(i,2) ==0; data(i,2) =10; end %if the okta reading is 0....

65 if data(i,8) ==0; data(i,8) =10; end % ... assign a value of 10

66 if data(i,11) ==0; data(i,11) =10; end

67 if data(i,14) ==0; data(i,14) =10; end

68 end

A.5 Markov chain creation

1 %% Create Markov Chains

2

3 % Populate the Markov chains with real transitions from observation data

4 for i=2: length(data); % index key: i=next , i-1=now.
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5 markov=data(i,22); %column 22 = markov case

6 %if a data point follows another (and is not a missing value of -9999)

7 if data(i-1,2)~= -9999 && data(i,2) ~= -9999;

8 switch markov; %switch to the appropriate MTM

9 %tally/populate the markov chain in appropriate place

10 case 1; %spring low pressure

11 springlp(data(i-1,2),data(i,2))= springlp(data(i-1,2),data(i,2))+1;

12 case 2; %spring high presusre

13 springhp(data(i-1,2),data(i,2))=springhp(data(i-1,2),data(i,2))+1;

14 case 3; %summer low pressure

15 summerlp(data(i-1,2),data(i,2))=summerlp(data(i-1,2),data(i,2))+1;

16 case 4; %summer high pressure

17 summerhp(data(i-1,2),data(i,2))=summerhp(data(i-1,2),data(i,2))+1;

18 case 5; %autumn low pressure

19 autumnlp(data(i-1,2),data(i,2))=autumnlp(data(i-1,2),data(i,2))+1;

20 case 6; %autumn high pressure

21 autumnhp(data(i-1,2),data(i,2))=autumnhp(data(i-1,2),data(i,2))+1;

22 case 7; %winter low pressure

23 winterlp(data(i-1,2),data(i,2))=winterlp(data(i-1,2),data(i,2))+1;

24 case 8; %winter high pressure

25 winterhp(data(i-1,2),data(i,2))=winterhp(data(i-1,2),data(i,2))+1;

26 end

27 end

28 end

29

30 % Calculate pressure system duration

31 %columns = 23) high pressure indicator , 24)low pressure indicator

32 for i=1: length(data); %for the length of the pressure data..

33 if data(i,7)>pressure_avg; data(i,23) =1; %if pressure is above average

34 else data (i,24) =1; %assign a value of 1.

35 end

36 end

37

38 % calculate duration of the high pressure system , account for missing data.

39 for i=2: length(data) -1;

40 if data(i:i-5,7) == -9999;%if there are 5 missing data plots ,

41 %end the duration count

42 elseif data(i,7) == -9999; %assume pressure is maintained

43 data(i,25)=data(i-1,25); data(i+1 ,25)=data(i-1,25);

44

45 %if pressure is maintained make cumulative tally of duration

46 elseif data(i,23) ==1 && data(i+1,23) ==1;

47 data(i+1,25)=data(i,25)+data(i+1,23);

48 end

49 end

50

51 %remove all but the final duration count , leaving only actual duration

52 for i=1: length(data) -1;

53 if data(i+1,25) ~=0;

54 data(i,25) =0; end

55 end

56

57 %repeat whole process for above for low pressure

58 for i=2: length(data) -1;

59 if data(i:i-5,7) == -9999; %using column 26 to do this.
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60 elseif data(i,7) == -9999; data(i,26)=data(i-1,26); data(i+1 ,26)=data(i-1,26);

61 elseif data(i,24) ==1 && data(i+1,24) ==1; data(i+1,26)=data(i,26)+data(i

+1,24);

62 end

63 end

64 for i=1: length(data) -1;

65 if data(i+1,26) ~=0; data(i,26) =0; end

66 end

67

68 %combine results and index by season

69 season_indicators=data (:,21); %season indicators

70 highpressure=data (:,25); %lp durations

71 lowpressure=data (: ,26); %hp durations

72

73 %tabulate the findings into the pressure system and season

74 %"tabulate" produces a frequency dist. table for each discreet value

75 springhpsys=tabulate(highpressure(season_indicators ==1));

76 summerhpsys=tabulate(highpressure(season_indicators ==2));

77 autumnhpsys=tabulate(highpressure(season_indicators ==3));

78 winterhpsys=tabulate(highpressure(season_indicators ==4));

79 springlpsys=tabulate(lowpressure(season_indicators ==1));

80 summerlpsys=tabulate(lowpressure(season_indicators ==2));

81 autumnlpsys=tabulate(lowpressure(season_indicators ==3));

82 winterlpsys=tabulate(lowpressure(season_indicators ==4));

83

84 %make a diurnal markov chain for the morning (between 1-5am)

85 ammarkov=zeros(length(data) ,7); %pre allocate

86 ammarkov (:,1)=data (:,19); %hour of day

87 ammarkov (:,2)=data (:,21); %season

88 ammarkov (:,3)=data (:,2); %okta

89 %separate out the okta number by season

90 for i=1: length(ammarkov);

91 if ammarkov(i,1) <6; %for hours 0--5.

92 if ammarkov(i,2) ==1; %if the season is spring ...

93 ammarkov(i,4)=ammarkov(i,3);%... populate appropriate column.

94 elseif ammarkov(i,2) ==2; ammarkov(i,5)=ammarkov(i,3);%summer

95 elseif ammarkov(i,2) ==3; ammarkov(i,6)=ammarkov(i,3);%autumn

96 else ammarkov(i,7)=ammarkov(i,3);%winter

97 end

98 end

99 end

100

101 %pre -allocate memory for the morning markov chains

102 morningspring=zeros (10 ,10);

103 morningsummer=zeros (10 ,10);

104 morningautumn=zeros (10 ,10);

105 morningwinter=zeros (10 ,10);

106

107 %usage is (now ,next) i=next , i-1=now.

108 for i=1: length(ammarkov); %change -9999 values to 0

109 for j=4:7;

110 if ammarkov(i,j)== -9999; ammarkov(i,j)=0; end

111 end

112 end

113
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114 %Populate Markov chains with transition frequency

115 %... okta transition from the current state(i) to future state (i+1)

116 for i=2: length(ammarkov);%spring

117 if ammarkov(i-1,4)~=0 && ammarkov(i,4) ~=0; %if correct season ...

118 %.... populate the Markov chain

119 morningspring(ammarkov(i-1,4),ammarkov(i,4))=morningspring(ammarkov(i-1,4),

ammarkov(i,4))+1; end

120 end

121 for i=2: length(ammarkov);%repeat for summer ...

122 if ammarkov(i-1,5)~=0 && ammarkov(i,5) ~=0;

123 morningsummer(ammarkov(i-1,5),ammarkov(i,5))=morningsummer(ammarkov(i-1,5),

ammarkov(i,5))+1; end

124 end

125 for i=2: length(ammarkov);%... autumn

126 if ammarkov(i-1,6)~=0 && ammarkov(i,6) ~=0;

127 morningautumn(ammarkov(i-1,6),ammarkov(i,6))=morningautumn(ammarkov(i-1,6),

ammarkov(i,6))+1; end

128 end

129 for i=2: length(ammarkov);%... winter

130 if ammarkov(i-1,7)~=0 && ammarkov(i,7) ~=0;

131 morningwinter(ammarkov(i-1,7),ammarkov(i,7))=morningwinter(ammarkov(i-1,7),

ammarkov(i,7))+1; end

132 end

133

134 %Create Markov transition matrices for wind speed

135 windspeedupdate=data (:,28); %separate out the windspeeds

136 windspeedupdate(windspeedupdate ==0) =1; %windspeed of 0 knotts is now = 1 knott

for indexing purposes

137 data (: ,28)=windspeedupdate; %replace the column with updated values

138 wind_max=max(data (:,28)); % determine the maximum measured windspeed

139

140 % pre allocate memory for wind markovs using the maximum wind speed for each

season

141 wind_spring=zeros(wind_max ,wind_max);

142 wind_summer=zeros(wind_max ,wind_max);

143 wind_autumn=zeros(wind_max ,wind_max);

144 wind_winter=zeros(wind_max ,wind_max);

145

146 %populate the Markov cains with tranasition frequency

147 for i=2: length(data); % i=next , i-1=now.

148 seasonmarker=data(i,21); %season

149 if data(i-1,28) ~= -9999 && data(i,28) ~= -9999; %if a data point follows

another (and is not a missing value of -9999) (a genuine transition)

150 switch seasonmarker;

151 case 1; %spring

152 wind_spring(data(i-1,28),data(i,28))= wind_spring(data(i-1 ,28),data(i,28))+1; %

populate the markov chain tally in appropriate place

153 case 2; %summer

154 wind_summer(data(i-1,28),data(i,28))= wind_summer(data(i-1 ,28),data(i,28))+1;

155 case 3; %autumn

156 wind_autumn(data(i-1,28),data(i,28))= wind_autumn(data(i-1 ,28),data(i,28))+1;

157 case 4; %winter

158 wind_winter(data(i-1,28),data(i,28))= wind_winter(data(i-1 ,28),data(i,28))+1;

159 end

160 end
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161 end

162

163 % Make the cloud height Markov chains

164 %take the cloud heights of the 3 levels measured

165 cloudheightupdate1 =[data (:,10),data (: ,13),data (:,16)];

166 %make -9999 values a NaN to use nanmean function

167 cloudheightupdate1(cloudheightupdate1 == -9999) =0/0;

168 %mean cloud height to nearest 5

169 cloudheightupdate=round(round(nanmean(cloudheightupdate1 ,2))./5) .*5;

170 cloudheightupdate(isnan(cloudheightupdate)==1) = -9999;%revert away from NaN

171 cloudheightupdate(cloudheightupdate ==0) =1; % for indexing. returned to 0 later.

172 %update the cloud height values

173 data (:,6)=cloudheightupdate;

174 cl_h_max=ceil(max(data (:,6))); %max cloud height

175

176 %pre allocate Markov chains for processing speed

177 cloudheight_spring=zeros(cl_h_max ,cl_h_max);

178 cloudheight_summer=zeros(cl_h_max ,cl_h_max);

179 cloudheight_autumn=zeros(cl_h_max ,cl_h_max);

180 cloudheight_winter=zeros(cl_h_max ,cl_h_max);

181

182 %Populate the Markov chains with the transition frequency

183 for i=2: length(data); % i=next , i-1=now.

184 seasonmarker=data(i,21); %season

185 if data(i-1,6)~= -9999 && data(i,6) ~= -9999; %if a genuine transition

186 switch seasonmarker; %season indicator (1--4)

187 case 1; %spring

188 cloudheight_spring(data(i-1,6),data(i,6))= cloudheight_spring(data(i-1,6),data(i

,6))+1; %populate the markov chain in appropriate place

189 case 2; %summer

190 cloudheight_summer(data(i-1,6),data(i,6))= cloudheight_summer(data(i-1,6),data(i

,6))+1;

191 case 3; %autumn

192 cloudheight_autumn(data(i-1,6),data(i,6))= cloudheight_autumn(data(i-1,6),data(i

,6))+1;

193 case 4; %winter

194 cloudheight_winter(data(i-1,6),data(i,6))= cloudheight_winter(data(i-1,6),data(i

,6))+1;

195 end

196 end

197 end

198 cloudheight_spring (1,1)=0; %replace ch=0 with value of 0, not 1

199 cloudheight_summer (1,1)=0;

200 cloudheight_autumn (1,1)=0;

201 cloudheight_winter (1,1)=0;

202

203 %Analyse the Pressure

204 Pmsl=pressure (:,2); %extract the pressure values , note that they are recorded

and normalised to mean sea level pressure

205 Pmsl=round(Pmsl); %give each value a unique integer for referencing

206 Pmax=ceil(max(Pmsl)); %find the max pressure

207 PAAmarkov=zeros(Pmax ,Pmax); %preallocate Markov chains for above..

208 PBAmarkov=zeros(Pmax ,Pmax); % ...and below mean pressure

209

210 %populate the appropriate pressure in the Markov chains
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211 for i=1: length(Pmsl) -1; %for the length of the pressure readings

212 if Pmsl(i)<=ceil(pressure_avg) && Pmsl(i+1) <=ceil(pressure_avg) %if two

consecutive measurements are below average then keep a transition tally

213 PBAmarkov(ceil(Pmsl(i)),ceil(Pmsl(i+1)))=PBAmarkov(ceil(Pmsl(i)),ceil(Pmsl(i+1))

)+1;

214 end

215

216 if Pmsl(i)>ceil(pressure_avg) && Pmsl(i+1)>ceil(pressure_avg)

217 PAAmarkov(ceil(Pmsl(i)),ceil(Pmsl(i+1)))=PAAmarkov(ceil(Pmsl(i)),ceil(Pmsl(i+1))

)+1;

218 end

219 end

220

221 % Produce the CDF of each pressure and season for each okta/cloudheight/

windspeed/pressure/pressure duration Markov chain.

222

223 % seasonal high pressure

224 springhp_prob=springhp ./(sum(springhp ,2)*ones (1 ,10));%Calculate the PDF

225 cum_springhp_prob=cumsum(springhp_prob ,2); %convert into CDF

226 % this process is repeated for all markov chains

227 summerhp_prob=summerhp ./(sum(summerhp ,2)*ones (1 ,10));

228 cum_summerhp_prob=cumsum(summerhp_prob ,2);

229 autumnhp_prob=autumnhp ./(sum(autumnhp ,2)*ones (1 ,10));

230 cum_autumnhp_prob=cumsum(autumnhp_prob ,2);

231 winterhp_prob=winterhp ./(sum(winterhp ,2)*ones (1 ,10));

232 cum_winterhp_prob=cumsum(winterhp_prob ,2);

233

234 % seasonal low pressure

235 springlp_prob=springlp ./(sum(springlp ,2)*ones (1 ,10));

236 cum_springlp_prob=cumsum(springlp_prob ,2);

237 summerlp_prob=summerlp ./(sum(summerlp ,2)*ones (1 ,10));

238 cum_summerlp_prob=cumsum(summerlp_prob ,2);

239 autumnlp_prob=autumnlp ./(sum(autumnlp ,2)*ones (1 ,10));

240 cum_autumnlp_prob=cumsum(autumnlp_prob ,2);

241 winterlp_prob=winterlp ./(sum(winterlp ,2)*ones (1 ,10));

242 cum_winterlp_prob=cumsum(winterlp_prob ,2);

243

244 % low pressure system duration

245 springlpsys (: ,[2,3]) =[]; springlpsys_mean=mean(springlpsys);

246 springlpsys_std=std(springlpsys); %find standard deviation for pressure

247 summerlpsys (: ,[2,3]) =[]; summerlpsys_mean=mean(summerlpsys);

248 summerlpsys_std=std(summerlpsys);

249 autumnlpsys (: ,[2,3]) =[]; autumnlpsys_mean=mean(autumnlpsys);

250 autumnlpsys_std=std(autumnlpsys);

251 winterlpsys (: ,[2,3]) =[]; winterlpsys_mean=mean(winterlpsys);

252 winterlpsys_std=std(winterlpsys);

253

254 % high pressure system duration

255 springhpsys (: ,[2,3]) =[]; springhpsys_mean=mean(springhpsys);

256 springhpsys_std=std(springhpsys);

257 summerhpsys (: ,[2,3]) =[]; summerhpsys_mean=mean(summerhpsys);

258 summerhpsys_std=std(summerhpsys);

259 autumnhpsys (: ,[2,3]) =[]; autumnhpsys_mean=mean(autumnhpsys);

260 autumnhpsys_std=std(autumnhpsys);

261 winterhpsys (: ,[2,3]) =[]; winterhpsys_mean=mean(winterhpsys);
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262 winterhpsys_std=std(winterhpsys);

263

264 % produce morning markov chains for each season

265 morningspring_prob=morningspring ./( sum(morningspring ,2)*ones (1,10));

266 cum_morningspring_prob=cumsum(morningspring_prob ,2);

267 morningsummer_prob=morningsummer ./( sum(morningsummer ,2)*ones (1,10));

268 cum_morningsummer_prob=cumsum(morningsummer_prob ,2);

269 morningautumn_prob=morningautumn ./( sum(morningautumn ,2)*ones (1,10));

270 cum_morningautumn_prob=cumsum(morningautumn_prob ,2);

271 morningwinter_prob=morningwinter ./( sum(morningwinter ,2)*ones (1,10));

272 cum_morningwinter_prob=cumsum(morningwinter_prob ,2);

273

274 % produce wind speed markov chains for each season

275 wind_spring_prob=wind_spring ./(sum(wind_spring ,2)*ones(1,length(wind_spring)));

276 cum_wind_spring_prob=cumsum(wind_spring_prob ,2);

277 wind_summer_prob=wind_summer ./(sum(wind_summer ,2)*ones(1,length(wind_summer)));

278 cum_wind_summer_prob=cumsum(wind_summer_prob ,2);

279 wind_autumn_prob=wind_autumn ./(sum(wind_autumn ,2)*ones(1,length(wind_autumn)));

280 cum_wind_autumn_prob=cumsum(wind_autumn_prob ,2);

281 wind_winter_prob=wind_winter ./(sum(wind_winter ,2)*ones(1,length(wind_winter)));

282 cum_wind_winter_prob=cumsum(wind_winter_prob ,2);

283

284 % produce cloud height markov chains for each season

285 cloudheight_spring_prob=cloudheight_spring ./(sum(cloudheight_spring ,2)*ones(1,

length(cloudheight_spring)));

286 cum_cloudheight_spring_prob=cumsum(cloudheight_spring_prob ,2);

287 cloudheight_summer_prob=cloudheight_summer ./(sum(cloudheight_summer ,2)*ones(1,

length(cloudheight_summer)));

288 cum_cloudheight_summer_prob=cumsum(cloudheight_summer_prob ,2);

289 cloudheight_autumn_prob=cloudheight_autumn ./(sum(cloudheight_autumn ,2)*ones(1,

length(cloudheight_autumn)));

290 cum_cloudheight_autumn_prob=cumsum(cloudheight_autumn_prob ,2);

291 cloudheight_winter_prob=cloudheight_winter ./(sum(cloudheight_winter ,2)*ones(1,

length(cloudheight_winter)));

292 cum_cloudheight_winter_prob=cumsum(cloudheight_winter_prob ,2);

293

294 %pressure

295 PAAmarkov_prob=PAAmarkov ./(sum(PAAmarkov ,2)*ones(1,Pmax));

296 cum_PAAmarkov_prob=cumsum(PAAmarkov_prob ,2);

297 PBAmarkov_prob=PBAmarkov ./(sum(PBAmarkov ,2)*ones(1,Pmax));

298 cum_PBAmarkov_prob=cumsum(PBAmarkov_prob ,2);

A.6 Preliminary weather variable generation framework

1 %% Preliminary Stochastic Weather Generation Setup

2 %define the seasons start and end day

3 springstart =60; springend =151;

4 summerstart =152; summerend =243;

5 autumnstart =244; autumnend =334;

6 winterstart=and (1 ,335);winterend=and (59 ,365);

7

8 % Randomly set beginning pressure system with 50:50 chance
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9 if rand <0.5; start_pressure_sys =1; %1=above average pressure

10 else start_pressure_sys =0; % 0= below average pressure.

11 end

12

13 % determine start season for the specified start point

14 if start_day >= springstart && start_day <= springend; start_season =1;

15 elseif start_day >= summerstart && start_day <= summerend; start_season =2;

16 elseif start_day >= autumnstart && start_day <= autumnend; start_season =3;

17 else start_season =4;

18 end

19

20 %determine the first morning okta Markov chain required

21 switch start_season; %use the start season to select appropriate MTM

22 case 1; weather_start=cum_morningspring_prob;

23 case 2; weather_start=cum_morningsummer_prob;

24 case 3; weather_start=cum_morningautumn_prob;

25 case 4; weather_start=cum_morningwinter_prob;

26 end

27

28 hours=ceil(num_of_days *24); %total number of hours in the simulation

29 day_number=start_day; %set the day number at start of simulation

30 year=start_year;%set the year at start of simulation

31 pressure_sys=start_pressure_sys;%set the pressure at start of simulation

32 current_season=start_season;%set the season

33 hour_number =1; %set the hour number

34

35 %Determine the starting pressure system duration

36 %Normal dist with observed means and stddev

37 if pressure_sys ==0; %if it is low pressure

38 switch start_season; % find the current seasons pressure system

39 case 1;

40 sys_duration=floor(normrnd(springlpsys_mean ,springlpsys_std));

41 case 2;

42 sys_duration=floor(normrnd(summerlpsys_mean ,summerlpsys_std));

43 case 3;

44 sys_duration=floor(normrnd(autumnlpsys_mean ,autumnlpsys_std));

45 case 4;

46 sys_duration=floor(normrnd(winterlpsys_mean ,winterlpsys_std));

47 end

48 else % else if it is high pressure

49 switch start_season; % find the current seasons pressure system

50 case 1;

51 sys_duration=floor(normrnd(springhpsys_mean ,springhpsys_std));

52 case 2;

53 sys_duration=floor(normrnd(summerhpsys_mean ,summerhpsys_std));

54 case 3;

55 sys_duration=floor(normrnd(autumnhpsys_mean ,autumnhpsys_std));

56 case 4;

57 sys_duration=floor(normrnd(winterhpsys_mean ,winterhpsys_std));

58 end

59 end

60

61 % Randomly set all variables at the start of simulation from N[0,1]

62 current_cloud_height=ceil(rand *250);

63 current_wind_speed =ceil(rand*wind_max);
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64 current_weather_okta =ceil(rand *10);

65 current_pressure=round(pressure_avg); %take the mean for start P

66

67 %select appropriate above or below pressure Markov chain

68 if pressure_sys ==0; %if pressure system is below

69 Pressure_markov=cum_PBAmarkov_prob;

70 else Pressure_markov=cum_PAAmarkov_prob;

71 end

72

73 %Determine starting Wind speed and cloud height using season Markov chains

74 switch start_season;

75 case 1;

76 wind_start=cum_wind_spring_prob;

77 cloud_height_start=cum_cloudheight_spring_prob;

78 case 2;

79 wind_start=cum_wind_summer_prob;

80 cloud_height_start=cum_cloudheight_summer_prob;

81 case 3;

82 wind_start=cum_wind_autumn_prob;

83 cloud_height_start=cum_cloudheight_autumn_prob;

84 case 4;

85 wind_start=cum_wind_winter_prob;

86 cloud_height_start=cum_cloudheight_winter_prob;

87 end

88

89 % Stochastically select first of weather variables

90 future_weather_okta =1+sum(weather_start(current_weather_okta ,:)<rand);

91 future_wind_speed =1+ sum(wind_start(current_wind_speed ,:)<rand);

92 future_cloud_height =1+sum(cloud_height_start(current_cloud_height ,:)<rand);

93 future_pressure =1+ nansum(Pressure_markov(current_pressure ,:)<rand);

94

95 % Pre -allocate memory for speed by making the arrays

96 weather_record = zeros(hours ,10);

97 sun_obscured = zeros(hours *60,1);

98 sun_obs_record=zeros(hours *60 ,3);

99 u_ref=zeros(hours *60,1);

100 hour_x=zeros(hours *60,1);

A.7 Stochastic generation of weather variable and sun

obscured time series

1 %% Stochastic Generation of Weather Variable Time Series

2 for hour =1: hours; %loop through every hour of the desired simulation time

3

4 % Stochastic selection of weather variables

5 current_weather_okta=future_weather_okta;

6 current_wind_speed=future_wind_speed;

7 current_cloud_height=future_cloud_height;

8 current_pressure=future_pressure;

9

10 % Determine the current month
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11 month = ceil(day_number /30.501);

12

13

14 % Convert Okta number into its proportionate sky coverage (out of 10)

15 % WMO2700 code povides conversions of okta in 8ths to 10ths.

16 switch current_weather_okta;

17 case 1; coverage =1; % <=1/10 but not zero

18 okta_minutely(hour *60 -59: hour *60) =1;

19 case 2; coverage =2+ floor (2* rand); %2/10 - 3/10

20 okta_minutely(hour *60 -59: hour *60) =2;

21 case 3; coverage =4; %4/10

22 okta_minutely(hour *60 -59: hour *60) =3;

23 case 4; coverage =5; %5/10

24 okta_minutely(hour *60 -59: hour *60) =4;

25 case 5; coverage= 6; %6/10

26 okta_minutely(hour *60 -59: hour *60) =5;

27 case 6; coverage =7+ floor (2* rand); %7/10 or 8/10

28 okta_minutely(hour *60 -59: hour *60) =6;

29 case 7; coverage =9; %9/10+ but not 10/10

30 okta_minutely(hour *60 -59: hour *60) =7;

31 case 8; coverage =10; %10/10

32 okta_minutely(hour *60 -59: hour *60) =8;

33 case 9; coverage =10; %meteorlogical phenomena

34 okta_minutely(hour *60 -59: hour *60) =9;

35 case 10; coverage =0; %0/10

36 okta_minutely(hour *60 -59: hour *60) =0;

37 end

38

39 % Calculate the windspeed at the cloud height (met office):

40 % Use log scale for <1km height. Use gamrnd for >1km.

41 if current_cloud_height <100; %height is in decameters so <1km

42 u_ref=ceil(current_wind_speed *0.515*(( log(current_cloud_height *10/0.14))

/(log (10/0.14)))); %perform the met office interpolation %note the 0.515

conversion of knots to m/s. 0.14 is for a rural setting , this could perhaps

be updated based on desired location.

43 else % else use the ganrnd function above 1km.

44 %gives mean of 3.49m/s with range 0-25 and 0.5% above 25.

45 u_ref=round(gamrnd (2.7 ,2.144));

46 end

47 % if the windspeed is outside of limits , set to closest min or max

48 if u_ref <1; u_ref =1; end

49 if u_ref >60; u_ref =60; end

50

51 % Keep a record of weather variable time series

52 weather_record(hour ,1)=hour_number;

53 weather_record(hour ,2)=day_number;

54 weather_record(hour ,3) = year;

55 weather_record(hour ,4)=current_season;

56 weather_record(hour ,5)=current_weather_okta;

57 weather_record(hour ,6) = pressure_sys;

58 weather_record(hour ,7)=sys_duration;

59 weather_record(hour ,10) = u_ref;

60 weather_record(hour ,8) = coverage;

61 weather_record(hour ,9) = current_cloud_height;

62
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63 % Create a minutely time series of variables

64 month_record(hour *60 -59: hour *60,1)= month;

65 season_record(hour *60 -59: hour *60,1)=current_season;

66 pressure_record(hour *60 -59: hour *60,1)=current_pressure;

67 coverage_vector(hour *60 -59: hour *60,1)=coverage;

68

69 % Select cloud sample from appropriate bin to creat 1-min time series

70 switch coverage

71 case {1,2,3,4,5,6,7,8,9} %for coverage of 1-9.

72 random=rand; % N[0,1]

73 sun_obscured(hour *60 -59: hour *60,1)=sun_obscured_options ((( u_range*

num_of_options *(coverage -1))+ceil(num_of_options*u_ref -( random*

num_of_options))) ,:); %note this is a complicated indexing that uses the

coverage and the windspeed to randomly select 1 of the 1000 options for that

particular C and u.

74 case 10 %for fully overcast , the coverage for the hour is total , and so

all 60 elements recieve a value of 1.

75 sun_obscured(hour *60 -59: hour *60,1) = 1; %sun_obscured is the primary

array to come out of this long for loop.

76 end

77

78 % Produce minutley hour and day fraction. e.g. minute 1 of hour 1 would be

1.00. minute 60 of hour 1 would be 1.983. This is for use later in the

irradiance calculations

79 hour_run=hour_number +(1/60) :(1/60):hour_number +1;

80 hour_x(hour *60 -59: hour *60,1)=hour_run ’;

81 day_run=linspace(day_number+hour_number *(1/60) ,day_number +( hour_number +1)

*(1/60) ,60);

82 day(hour *60 -59: hour *60 ,1)=day_run ’;

83

84 % Determine if current year is leap year and add the additional day

85 if floor(year /4)/(year /4) ==1; %if the year is a multiple of 4

86 days_in_year =366; %increase the days of the year to 366.

87 else days_in_year =365; % else set it at 365.

88 end

89

90 % Determine current season

91 if day_number >= springstart && day_number <= springend;

92 current_season =1;

93 elseif day_number >= summerstart && day_number <= summerend;

94 current_season =2;

95 elseif day_number >= autumnstart && day_number <= autumnend;

96 current_season =3;

97 else

98 current_season =4;

99 end

100

101 % Stochastically set length of next pressure system if it has ended

102 %ASSUMPTION: pressure system always switches from low to high

103 if sys_duration ==0; %if ended..

104 if pressure_sys ==0; %if currently below average ...

105 pressure_sys =1;%... switch to an above average.

106 switch current_season;

107 case 1;

108 sys_duration=round(normrnd(springhpsys_mean ,springhpsys_std));
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109 case 2;

110 sys_duration=round(normrnd(summerhpsys_mean ,summerhpsys_std));

111 case 3;

112 sys_duration=round(normrnd(autumnhpsys_mean ,autumnhpsys_std));

113 case 4;

114 sys_duration=round(normrnd(winterhpsys_mean ,winterhpsys_std));

115 end

116 else pressure_sys =0; %... else switch to a below average

117 switch current_season;

118 case 1;

119 sys_duration=round(normrnd(springlpsys_mean ,springlpsys_std));

120 case 2;

121 sys_duration=round(normrnd(summerlpsys_mean ,summerlpsys_std));

122 case 3;

123 sys_duration=round(normrnd(autumnlpsys_mean ,autumnlpsys_std));

124 case 4;

125 sys_duration=round(normrnd(winterlpsys_mean ,winterlpsys_std));

126 end

127 end

128 % if pressure system hasn ’t finished yet , reduce the count by an hour.

129 else sys_duration=sys_duration -1;

130 end

131

132 % Select correct Markov chains

133 switch current_season;

134 case 1 % spring

135 if pressure_sys ==0; future_weather_markov=cum_springlp_prob;

136 else future_weather_markov=cum_springhp_prob;

137 end

138 case 2 % summer

139 if pressure_sys ==0; future_weather_markov=cum_summerlp_prob;

140 else future_weather_markov=cum_summerhp_prob;

141 end

142 case 3 % autumn

143 if pressure_sys ==0; future_weather_markov=cum_autumnlp_prob;

144 else future_weather_markov=cum_autumnhp_prob;

145 end

146 case 4 % winter

147 if pressure_sys ==0; future_weather_markov=cum_winterlp_prob;

148 else future_weather_markov=cum_winterhp_prob;

149 end

150 end

151

152 % Select the morning Markov chain when hour number is 1-5am

153 if hour_number <6;

154 switch current_season;

155 case 1 ;

156 future_weather_markov=cum_morningspring_prob;

157 case 2 ;

158 future_weather_markov=cum_morningsummer_prob;

159 case 3 ;

160 future_weather_markov=cum_morningautumn_prob;

161 case 4 ;

162 future_weather_markov=cum_morningwinter_prob;

163 end
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164 end

165

166 % Select the appropriate Markov chain for wind speed and cloud height

167 switch current_season;

168 case 1;

169 wind_start=cum_wind_spring_prob;

170 cloud_height_start=cum_cloudheight_spring_prob;

171 case 2;

172 wind_start=cum_wind_summer_prob;

173 cloud_height_start=cum_cloudheight_summer_prob;

174 case 3;

175 wind_start=cum_wind_autumn_prob;

176 cloud_height_start=cum_cloudheight_autumn_prob;

177 case 4;

178 wind_start=cum_wind_winter_prob;

179 cloud_height_start=cum_cloudheight_winter_prob;

180 end

181

182 % Select appropriate pressure Markov chain

183 if pressure_sys ==0;

184 Pressure_markov=cum_PBAmarkov_prob;

185 else Pressure_markov=cum_PAAmarkov_prob;

186 end

187

188 % Stochastically determine the future weather states

189 future_cloud_height =1+sum(cloud_height_start(current_cloud_height ,:)<rand);

190 future_weather_okta =1+sum(future_weather_markov(current_weather_okta ,:)<rand

);

191 future_wind_speed =1+ sum(wind_start(current_wind_speed ,:)<rand);

192 future_pressure =1+ nansum(Pressure_markov(current_pressure ,:)<rand);

193

194 % Update the timing structures.

195 hour_number=hour_number +1; %increase the hour_number by one

196 if hour_number ==25;

197 hour_number =1;% if this hour number exceeds 25, reset it

198 day_number=day_number +1; %increase day number

199 %has a year ended?

200 if day_number == days_in_year %if yes then reset timings

201 day_number =1;

202 hour_number =1;

203 year=year +1;

204 end

205 end

206 end %and repeat until the simulation is complete

A.8 Global horizontal clear-sky irradiance calculations

1 %% Irradiance Calculations (by Dr Chris Smith and Jamie Bright)

2

3 % Calculate solar angles and timings - using Muriel -Blanco algorithm

4 %Blanco -Muriel et al., 2001, Solar Energy 70(5) 431 -441

5 julian_day=day +2455927.5 -1/48;



Appendix A. SIG scripts 209

6 n=julian_day -2451545; %Normalise to 01/01/2000 00:00

7 Omega =2.1429 -0.0010394594*n;

8 L=4.8950630+0.017202791698*n;% mean longitude

9 g=6.2400600+0.0172019699*n;% mean anomaly

10 l=L+0.03341607* sin(g)+0.00034894* sin(2*g) -0.0001134 -0.0000203* sin(Omega); %

ecliptic longitude

11 ep =0.4090928 -6.2140e-9*n+0.0000396* cos(Omega); % obliquity of the ecliptic

12 ra=mod(atan2(cos(ep).*sin(l),cos(l)) ,2*pi);%right ascension

13 delta=asin(sin(ep).*sin(l));%declination

14 gmst =6.6974243242+0.0657098283*n+mod(hour_x ’-2,24);%GMT

15 lmst=(gmst *15+ longitude)*pi/180;%local mean sidereal time

16 hour_angle=lmst -ra;

17 theta_z=acos(cosd(latitude)*cos(hour_angle).*cos(delta)+sin(delta)*sind(latitude

));%Solar zenith angle

18 Parallax =6371.01/149597890* sin(theta_z); %Parallax correctional factor

19 zenith_angle =( theta_z+Parallax)*180/pi;%adjustment to zenith due to parallax.

20 elevation =90- zenith_angle;%elevation angle , i.e. complement of zenith

21 azimuth=atan(-sin(hour_angle)./( tan(delta).*cosd(latitude)-sind(latitude).*cos(

hour_angle)));%azimuth angle of sun

22 incident_angle=real(acosd(sind(zenith_angle).*sind(panel_pitch).*cosd(

panel_azimuth -azimuth)+cosd(zenith_angle).*cosd(panel_pitch)))’;%solar

incident angle taking into account panel tilt and azimuth

23

24 % top of atmosphere normal irradiance

25 eccentricity =1+0.03344* cos(2*pi*day /365.25 -0.048869);

26 solar_constant =1367* eccentricity;clear eccentricity

27

28 % Kasten airmass formula as a function of zenith angle

29 airmass=zeros(1,length(month_record));

30 airmass(zenith_angle <=90)=(1- height_above_sea_level /10000) *(( cosd(zenith_angle(

zenith_angle <=90))+0.50572*(96.07995 - zenith_angle(zenith_angle <=90))

.^( -1.6364)).^(-1));

31 airmass(zenith_angle >90)=Inf;

32

33 %CalculateRayleighoptical depth as a function of airmass

34 Rayleigh=zeros(length(solar_constant) ,1);

35 Rayleigh(airmass <20) =1./(6.6296+1.7513* airmass(airmass <20) -0.1202* airmass(

airmass <20) .^2+0.0065* airmass(airmass <20) .^3 -0.00013* airmass(airmass <20) .^4)

;

36 Rayleigh(airmass >=20) =1./(10.4+0.718* airmass(airmass >=20));

37

38 % Retrieve Linke Turbidity for nearest 1/12 degree grid square and month

39 % get values from TIF file of Linke turbidities

40 lat_index=round((-latitude +1/24+90) *4320/360); %round the latitude

41 lon_index=round(( longitude +1/24+180) *4320/360); %round the longitude

42 LinkeTurbidity2=zeros (12,1);%pre allocate array with space for each month

43 month_strings ={’January ’,’February ’,’March’,’April ’,’May’,’June’,’July’,’August ’

,’September ’,’October ’,’November ’,’December ’};

44 for i=1:12

45 %Open Linke turbitiy for January

46 tiffData=Tiff([’supportingfiles/linke/’,month_strings{i},’.tif’],’r’);

47 loadup = single(tiffData.read())/20; % Linke Turbidity = greyscale_value /20

48 LinkeTurbidity2(i)=loadup(lat_index ,lon_index); %extract the appropriate

linke turbidity value for that latitude and longitude and place in array

49 clear loadup %clear the loadup data to save space
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50 tiffData.close(); %close the tiff data

51 end

52 clear tiffData %clear all the tiff data.

53

54 % Calculate direct and diffuse clear sky irradiance

55 diffuse_horizontal_cs=solar_constant .*(0.0065+( -0.045+0.0646.* LinkeTurbidity2(

month_record)).*cosd(zenith_angle ’) +(0.014 -0.0327.* LinkeTurbidity2(

month_record)).*cosd(zenith_angle ’).^2);

56 diffuse_horizontal_cs(diffuse_horizontal_cs <0)=0;

57 direct_horizontal_cs=solar_constant .*exp ( -0.8662.* LinkeTurbidity2(month_record)

.* Rayleigh .*airmass ’).*cosd(zenith_angle ’);

58 direct_horizontal_cs(direct_horizontal_cs ==0) =0;

59 direct_horizontal_cs(isnan(direct_horizontal_cs))=0;

60 global_horizontal_cs=direct_horizontal_cs+diffuse_horizontal_cs;

A.9 Generation of minutely clear-sky index time series

1 %% Generate the Minutely Clear -Sky Index

2

3 % Select clear and cloudy properties for each day from appropriate distribution

4 okta_hourly=weather_record (:,5);%hourly okta time series

5

6 hours = numel(okta_hourly); %total number of hours

7 days = hours /24; %number of days

8

9 % Apply variability to clouded moments using 6 min cycles.

10 resolution =6; %must be a factor of 60 1,2,3,4,5,6,10,12,15,20,30,60.

11 shift_factor =60/ resolution; %used in indexing.

12

13 % Pre allocate memory

14 obscured_min=zeros(hours *60,1);

15 not_obscured_min=zeros(hours *60,1);

16 obscured_factored=zeros(hours*shift_factor ,1);

17 kcMinutely=zeros(numel(sun_obscured) ,1);

18

19 % Determine Okta value every 6 mins.

20 for i=1: length(okta_hourly) % loop through each hour

21 okta_factored(i*shift_factor -( shift_factor -1):i*shift_factor)=okta_hourly(i);

22 end

23

24 % Pick clear -sky index from the corresponding okta weighted distribution

25 obscured_factored(okta_factored <=6) = normrnd (0.6784 , 0.2046 , numel(

okta_factored(okta_factored <=6)) ,1); %for okta of <=6, choose a kc from the

normal distribution of mean 0.6784 and stddev 0.2046

26 obscured_factored(okta_factored ==7) = wblrnd (0.557736 , 2.40609 , numel(

okta_factored(okta_factored ==7)) ,1); %as above but for okta 7 and using

weibul distribution

27 obscured_factored(okta_factored >=8) = gamrnd (3.5624 , 0.08668 , numel(

okta_factored(okta_factored >=8)) ,1); %as above but for okta 8 and using

gamma distribution

28

29 % Ensure sun_obscured hourly does not exceed 1
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30 while numel(obscured_factored(obscured_factored >1))>0 % limited obscured kc

value to 1. if it is, re select from the okta 8 distribution.

31 obscured_factored(obscured_factored >1)=gamrnd (3.5624 , 0.08668 , numel(

obscured_factored(obscured_factored >1)), 1); %re select using okta 8

distribution

32 end

33

34 % Interpolate the k_c values to 1-min resolution from the 6 min

35 for i=1: length(obscured_factored) -1;

36 obscured_min(i*resolution -(resolution -1):i*resolution)=linspace(

obscured_factored(i),obscured_factored(i+1),resolution);

37 end

38

39 % Pick clearsky minutes from a normal distribution. One k_c each day (

variability of atmospheric turbidity , etc)

40 not_obscured=normrnd (0.99 ,0.08 ,days ,1);

41

42 % Combine clear -sky and covered k_c time series based on sun obscured [0,1]

43 kcMinutely(sun_obscured ==1)=obscured_min(sun_obscured ==1);

44 kcMinutely(sun_obscured ==0)=not_obscured(ceil(find(sun_obscured ==0) /1440));

45

46 % Add gaussian white noise as a function of cloud cover for all conditions

47 kcMinutely(sun_obscured ==1)=kcMinutely(sun_obscured ==1).* normrnd (1 ,0.01+0.003*

okta_minutely(sun_obscured ==1) ’);

48 kcMinutely(sun_obscured ==0)=kcMinutely(sun_obscured ==0).* normrnd (1 ,0.001+0.0015*

okta_minutely(sun_obscured ==0) ’);

49

50 % For long periods of okta 0, apply a smoothing.

51 % pre allocate memory

52 Period_of_Ok0=zeros(length(okta_minutely) ,1);

53 Ok8_ind=zeros(length(okta_minutely) ,1);

54

55 % Find beginning and end of each okta 0 period

56 for i=2: length(okta_minutely) -1;

57 % indicate the start and end of okta 0 period with a 1 and 2 among 0s

58 if okta_minutely(i)==0 && okta_minutely(i+1)==0 && okta_minutely(i-1) ~=0;

59 Period_of_Ok0(i)=1;

60 end

61 if okta_minutely(i)==0 && okta_minutely(i-1)==0 && okta_minutely(i+1) ~=0;

62 Period_of_Ok0(i)=2;

63 end

64 end

65

66 % Determine the length of the period

67 Ok0_duration =1; %Set tally varibale at 1

68 ok0_cutoff =3.5; %set the cutoff period in hours

69 for i=1: length(Period_of_Ok0)-1 %loop through every minute

70 %Once identified the start , begin the tally

71 if Period_of_Ok0(i)==1

72 if i+Ok0_duration ==numel(Period_of_Ok0);break; end

73 while Period_of_Ok0(i+Ok0_duration)~=2;

74 %update tally until end of okta period is found

75 Ok0_duration=Ok0_duration +1;

76

77 % model saftey protocols
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78 if i==numel(Period_of_Ok0); break; end

79 if i+Ok0_duration ==numel(Period_of_Ok0);break; end

80 end

81 end

82

83 %Check the duration against the desired cutoff period

84 if Ok0_duration >= ok0_cutoff *60;

85 %Apply smoothing from normal distribution around 1

86 kcMinutely(i:i+Ok0_duration)= normrnd (1 ,0.0015 , Ok0_duration +1,1);

87 end

88

89 % reset the duration tally variable

90 Ok0_duration =1;

91 end

92

93 % For long periods of Ok8 apply smoothing. Repeat of above

94 for i=2: length(okta_minutely) -1;

95 if okta_minutely(i)==8 && okta_minutely(i+1)==8 && okta_minutely(i-1) ~=8;

96 Ok8_ind(i)=1;

97 end

98 if okta_minutely(i)==8 && okta_minutely(i-1)==8 && okta_minutely(i+1) ~=8;

99 Ok8_ind(i)=2;

100 end

101 end

102

103 Ok8_duration =1;

104 ok8_cutoff =5;

105 intervals=ok8_cutoff *4; %20 intervals across any long period of Ok8.

106

107 for i=1: length(Ok8_ind) -1

108 if Ok8_ind(i)==1

109 if i+Ok8_duration ==numel(Ok8_ind);break; end

110 while Ok8_ind(i+Ok8_duration)~=2;

111 Ok8_duration=Ok8_duration +1;

112 if i==numel(Ok8_ind); break; end

113 if i+Ok8_duration ==numel(Ok8_ind);break; end

114 end

115 end

116

117 if Ok8_duration >= ok8_cutoff *60;

118

119 % Make blank array of each hour within extended okta 8 period

120 els=zeros (1+ intervals ,1);

121 for j=2: length(els);

122 %evenly split the period by the desired number of intervals

123 els(j)=ceil(Ok8_duration *((j-1)/intervals));

124 end

125

126 % Update the kcminutely in the appropraite place with linearly spaced kc

values with small flux.

127 for j=1: length(els) -1;

128 kcMinutely(i+els(j):i+els(j+1))=linspace(kcMinutely(i+els(j)),

kcMinutely(i+els(j))*normrnd (1 ,0.1),els(j+1)-els(j)+1);

129 end

130
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131 % Add structured fluctuations throughout the smoothed data

132 fluxes=roundn(rand(intervals ,1) ,-1);

133 gap=ceil(Ok8_duration/intervals);

134 flux_min=zeros(length(Ok8_duration) ,1);

135 for k=1: length(fluxes);

136 flux_min(k*gap -(gap -1):k*gap ,1)=fluxes(k,1);

137 end

138 %similar to a gausian noise , however allows for variation in std dev

139 for k=1: length(flux_min);

140 if flux_min(k,1) <0.4

141 flux_min(k,2)=1+ abs(normrnd (0 ,0.005));

142 elseif flux_min(k,1) <0.7

143 flux_min(k,2)=1+ abs(normrnd (0 ,0.03));

144 else flux_min(k,2) =1+abs(normrnd (0 ,0.05));

145 end

146 end

147 % Apply fluctuations back into the clear -sky index time series

148 kcMinutely(i:i+Ok8_duration)=kcMinutely(i:i+Ok8_duration).* flux_min (:,2);

149

150 end

151 Ok8_duration =1;

152 end

153

154 %Clear sky index upper limit maximum by zenith angle

155 for i=1: length(kcMinutely); %check each k_c

156 %detemine the theoretical maximum kc value based on the zenith at time

157 kcmax = 27.21* exp( -114* cosd(zenith_angle(i))) + 1.665* exp ( -4.494* cosd(

zenith_angle(i))) + 1.08;

158

159 % Reassign random value from ok 8 distribution if too large

160 if kcMinutely(i)>kcmax

161 kcMinutely(i)=wblrnd (0.3, 1.7);

162 end

163

164 % Assign minimum value if below theoretically possible

165 if kcMinutely(i) <0.01;

166 kcMinutely(i)=0.01;

167 end

168 end

169

170

171 % Add irradiance peaks at moment of cloud shift. Cloud edge enghancement

172

173 %assign a chance of CEE

174 chance =0.40;

175

176 %apply irradiance peaks if chance is satisfied

177 for i=3: length(kcMinutely);

178 a=rand; % select a random value to test against the chance variable

179 %at period the minute before/after a cloud , apply a CEE by norm dist.

180 if sun_obscured(i-1)-sun_obscured(i)==1;

181 if a>chance;

182 kcMinutely(i)=kcMinutely(i)*normrnd (1.05 ,0.01 ,1);

183 end

184 elseif sun_obscured(i-1)-sun_obscured(i)==-1;
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185 if a>chance

186 kcMinutely(i-1)=kcMinutely(i-1)*normrnd (1.05 ,0.01 ,1);

187 end

188 end

189 % add slighter enhancement in minutes either side of above

190 if sun_obscured(i-2)-sun_obscured(i-1) ==1;

191 if a>chance;

192 kcMinutely(i)=kcMinutely(i)*normrnd (1.025 ,0.01 ,1);

193 end

194 elseif sun_obscured(i-2)-sun_obscured(i-1)==-1;

195 if a>chance;

196 kcMinutely(i)=kcMinutely(i)*normrnd (1.025 ,0.01 ,1);

197 end

198 end

199 end

A.10 Calculation of tilted irradiance by component

1 %% Calculate GHI , DNI and DHI , and translate onto arbitrary plane

2

3 %Apply clear -sky index to global clear sky irradiance

4 global_horizontal = kcMinutely .* global_horizontal_cs;

5

6 %Calculate DNI according to Muller and Trentmann (2010).

7 direct_horizontal=zeros(numel(sun_obscured) ,1);

8 direct_horizontal(kcMinutely <1& kcMinutely >19/69)=direct_horizontal_cs(kcMinutely

<1& kcMinutely >19/69) .*( kcMinutely(kcMinutely <1& kcMinutely >19/69) -0.38*(1-

kcMinutely(kcMinutely <1& kcMinutely >19/69))).^(2.5);

9 direct_horizontal(kcMinutely >=1)=direct_horizontal_cs(kcMinutely >=1);

10 direct_horizontal(direct_horizontal <0)=0;

11 global_horizontal(global_horizontal <0)=0;

12 diffuse_horizontal=global_horizontal -direct_horizontal;

13

14 % Translate onto arbitrary plane using Klucher model

15 F=1-( diffuse_horizontal ./ global_horizontal).^2; % modulating factor

16 isotropic =(1+ cosd(panel_pitch))/2; % isotropic component

17 horizonal =(1+F.*( sind(panel_pitch)/2) .^3); % horizon brightening term

18 circumsol =(1+F.*( cosd(incident_angle)).^2.*( sind(zenith_angle ’)).^3);%

circumsolar diffuse irradiance

19 panel_irradiance=diffuse_horizontal .* isotropic .* horizonal .* circumsol+

direct_horizontal ./cosd(zenith_angle ’).*cosd(incident_angle);

20

21 %take account of night

22 panel_irradiance = (panel_irradiance > 0).* panel_irradiance;
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Spatially Decorrelating Solar

Irradiance Generator scripts

B.1 Cloud field production

1 %% Vectorised Method of producing cloud fields of different coverage , C, at

different cloud speeds , u.

2 clearvars

3

4 %% input variables

5 hour =3600; %hour in seconds

6 temporal_res =3600; %temproal resolution in seconds

7 spatial_res =1500; %spatial resolution in meters

8 num_of_cloud_field =500; %number of options of each u, at each C.

9 c_range =11; % C_r =(0:10) /10. coverage 0:10.

10 u_range =30; % cloud speed range 1:30 m/s

11 max_num_of_clouds =1200; %maximum number of clouds. This is used within the

output arrays.

12 domain_y_max=spatial_res; %maximum size within the y direction. This is a

function of the spatial resolution.

13

14 B=1.66; % Power Law Exponent /// p(x)=Cx^-B /// (Wood & Field , 2011, Journal of

Climate , Volume 24, p4800).

15 cloud_x_min =1;%minimum cloud length (decameters). Power law applicible to

0.1 -1500km (Wood & Field ,2011)

16 cloud_x_max =300;%maximum cloud length (decameters). (decameters selected as 10m

=1 element resolution within vector) %set to 3000m as any cloud larger than

this would fill the domain.

17

18 %% make the blank arrays to pre -allocate memory.

19 cloud_field0=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field); %make output

arrays (filled with 3(xyr) x max_num_of_clouds options)

20 cloud_field1=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

21 cloud_field2=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

22 cloud_field3=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

23 cloud_field4=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

215
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24 cloud_field5=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

25 cloud_field6=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

26 cloud_field7=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

27 cloud_field8=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

28 cloud_field9=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

29 cloud_field10=zeros(max_num_of_clouds*u_range ,3* num_of_cloud_field);

30 clouds_store=zeros(u_range*c_range*num_of_cloud_field ,1);

31 u_store=zeros(u_range*c_range*num_of_cloud_field ,1);

32 C_store=zeros(u_range*c_range*num_of_cloud_field ,1);

33

34 %Make the cloud field

35 error_flag =0; % the error flag is used to break the process if cloud number

exceeded

36 rejections =0; %counts the rejected cloud fields for each u and C to help

streamlining

37 for u=1: u_range; % loop through each cloud speed

38 domain_x_max=u*3600;

39 uTic=tic;

40 disp([’u = ’,num2str(u)]);

41 for C=0: c_range

42 cloud_field =0; %a marker of the current field to populate

43 tic % start a timer to track for user

44 while cloud_field < num_of_cloud_field

45 coverage = -1; %mean coverage of current field. Set below

permissible to begin

46 clouds = 0; % number of clouds within the field

47 output_x=zeros(max_num_of_clouds ,1);%preallocate x,y,r arrays

48 output_y=zeros(max_num_of_clouds ,1);

49 output_r=zeros(max_num_of_clouds ,1);

50

51 while coverage < C % while the fields coverage is below the target

52

53 %Add clouds cloud

54 clouds_per_time =30+ round(u/3)+C*u; %add more than 1 each

iteration to save time

55 clouds=clouds +1;

56 num_of_clouds=clouds_per_time*clouds; %report current number of

clodus

57 if num_of_clouds >max_num_of_clouds;error_flag =1; end %use error

flag if larger than permissible

58 if error_flag ==1;

59 disp(’ERROR: max number of clouds exceeded ’);

60 break %break the process

61 end

62

63 for i=num_of_clouds -( clouds_per_time -1):num_of_clouds;

64 output_x(i,1)=rand*domain_x_max; %place the centrepoint

within the x domain

65 output_y(i,1)=rand*domain_y_max; %place the centerpoint

within the y domain

66 output_r(i,1) =10*0.5*(( alpha+beta*rand)^(1/(1 -B))); %radius

according to power law. in meters.

67 end

68

69 %Analyse Coverage Value
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70 %the coverage will be calculated by regarding the domain area to

be a set of xy coordinates. The exact area covered within the domain can be

calculated , however it requires compex surface integrations , and so a

simple counting squares approach will suffice.

71

72 xref =0;%the first x coordinate to check

73 yref =0;%the first y coordinate to check

74 xres =50;%is u*3600 m long. take a reading every "xres" metres

along the x-axis of the domain. minimum 3600 long , maximum 108000 long.

Accuracy and speed lives or dies here.

75 yres =50;%is 1500 m long. will check every "yres" metres along

the y-axis of the domain.

76 covered_tally =0; %reset the tally of covered points

77 total_xys =( domain_x_max/xres)*( domain_y_max/yres); %total number

of points within the domain. resembles an area. X/res * Y/res

78

79 while xref <domain_x_max && yref <domain_y_max %once xref and y

ref == the limits of the domain , every point has been checked.

80

81 distances_to_cloud_centres=sqrt(( output_x (1: num_of_clouds)-

xref).^2+( output_y (1: num_of_clouds)-yref).^2); %find the distances to the

centre point of each circle using pythagoras to find the hypotenuse of a

right angled triangle with sides of dx and dy

82

83 if max(distances_to_cloud_centres <output_r (1: num_of_clouds))

==1; % d<r returns a binary array with 1 if the distance to cloud centre is

less than r, and 0 if not. therefore the max of this array will return 1 or

0. If the answer is 1 then the (xref ,yref) coordinate is within a cloud ’s

radius , and therefore covered.

84 covered_tally=covered_tally +1; %if it is covered , add a

point to the tally

85 end

86

87 yref=yref+yres; %add an increment to the x axis for the next

coordinate to check.

88 if yref== domain_y_max; %if the coordinate is at the end of

the row ...

89 xref=xref+xres; %.. then increase the column yref by the

one increment ==yres ...

90 yref =0; %... and reset the xref back to 0. The while

loop will end once xref and yref are at their max.

91 end

92 end

93

94 coverage=round (10* covered_tally/total_xys); %(the number of (

xref ,yref) coordinates covered , divided by the total number of (xref ,yref)

coordinates within the domain = the coverage fraction *10 and rounded=integer

of coverage.

95

96 %if the sample is larger than C, then reset the sample and start

again

97 if coverage >C;

98 clouds = 0;

99 coverage =-1;

100 output_x=zeros(max_num_of_clouds ,1);
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101 output_y=zeros(max_num_of_clouds ,1);

102 output_r=zeros(max_num_of_clouds ,1);

103 rejections=rejections +1;

104 % disp([’ total rejections=’,num2str(rejections) ,’| C=’,

num2str(C),’ u=’,num2str(u)]);

105 end

106

107 end

108

109 cloud_field=cloud_field +1;

110 clouds_store ((u-1)*c_range*num_of_cloud_field+C*num_of_cloud_field+

cloud_field ,1)=num_of_clouds;

111 C_store ((u-1)*c_range*num_of_cloud_field+C*num_of_cloud_field+

cloud_field ,1)=coverage;

112 u_store ((u-1)*c_range*num_of_cloud_field+C*num_of_cloud_field+

cloud_field ,1)=u;

113

114

115 %% Allocate into bins arranged by coverage.

116 switch C

117 case 0

118 cloud_field0(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

119 case 1

120 cloud_field1(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

121 case 2

122 cloud_field2(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

123 case 3

124 cloud_field3(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

125 case 4

126 cloud_field4(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

127 case 5

128 cloud_field5(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

129 case 6

130 cloud_field6(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

131 case 7

132 cloud_field7(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

133 case 8
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134 cloud_field8(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

135 case 9

136 cloud_field9(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

137 case 10

138 cloud_field10(max_num_of_clouds*u-( max_num_of_clouds -1):

max_num_of_clouds*u,cloud_field *3-2: cloud_field *3)=[output_x ,output_y ,

output_r ]; %cloud_fieldx(x:x+500,y:y+3)=xyr.

139 end

140

141 if error_flag ==1; break ;end %continue breakdown if error occurs

142 end

143 timer=toc;

144 disp([’ C=’,num2str(C),’ time=’,num2str(timer /60),’mins’])

145

146 if error_flag ==1; break ;end

147 end

148 toc(uTic)

149 if error_flag ==1; break ;end

150 end

151

152 disp([’ total rejections=’,num2str(rejections)]);

153 %Summarise the results

154 u_mean=zeros(length(u_store)/num_of_cloud_field ,1);

155 C_mean=zeros(length(u_store)/num_of_cloud_field ,1);

156 n_mean=zeros(length(u_store)/num_of_cloud_field ,1);

157

158 for i=1: length(u_mean)

159 %take means for summary

160 u_mean(i)=mean(u_store ((i-1)*num_of_cloud_field +1:i*num_of_cloud_field));

161 C_mean(i)=mean(C_store ((i-1)*num_of_cloud_field +1:i*num_of_cloud_field));

162 n_mean(i)=mean(clouds_store ((i-1)*num_of_cloud_field +1:i*num_of_cloud_field)

);

163 end

164

165 %write to files out from matrix "cloud_field"

166 disp(’Writing Files’)

167 for i=0: c_range -1

168 string =[’cloud_field ’,num2str(i)];

169 X=eval(string);

170 dlmwrite ([’V2_clouds_vectors_sample ’,num2str(i),’__temporal_res_ ’,num2str(

temporal_res),’__spatial_res_ ’,num2str(spatial_res),’__’,num2str(

num_of_cloud_field),’_num_of_cloud_field ’,’__’,num2str(max_num_of_clouds),’

max_num_of_clouds ’],X)

171 end

B.2 User defined variables

1 %% Preamble
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2 tic %set a timer

3 read_file_check=exist(’read_files ’,’var’); %check to see if data is already

loaded (time saving). Note that this will fail if running two differnet

versions simultaneously nd "clear all" in the command window will be

required.

4 data_exist_check=exist(’cov1’,’var’); %check if the data is truly loaded (if

first run failes (i.e. typo in run_validation , then this will not load

without this line). This is a double check

5 if read_file_check ==0; %if it isn ’t already loaded ...

6 read_files=’y’; %read in the files this simulation.

7 elseif data_exist_check ==0; %if it isn ’t already loaded ...

8 read_files=’y’;

9 else read_files=’n’; %if they aren ’t loaded. load them

10 end

11 %clear all other variables so new simulation can be performed

12 clearvars -except pressure data cov* read_files tstart %keep continuous files

13

14 %% User Defined Variables

15 % User defined variables to set

16 start_day =1; % choose the day number from which to start from

17 start_year =2001; % choose the year from which to start from. Not really

important as leap years not currently accounted for.

18 num_of_years =7; % set the duration from the model to run (1/365.25 will select 1

day etc.)

19 num_of_days =365*6+366; %could account for leap years here , as per example.

20

21 %Unique to the SDSIG

22 time_zone_difference =0; %GMT =0. California is 8 hours behind.

23 latitude_central =50.2178; % set the latitude. Cambourne in this example.

24 longitude_central = -5.32656; % set the longitude of the desired location.

25 height_above_sea_level_central =87; %meters above sea level.

26 u_range =30; % the range of cloud speeds in m/s. Currently set as standardised

from ’Cloud_Sampling_Technique.m’.

27 temporal_res =60; %number of time steps to be produced per hour. e.g. 1=1-hour.

60=1-min. 3600=1 - sec

28 spatial_res =1500;% size of the spatial domain in metres. New cloud fields would

need to be produced if increased. Currently a computational limit , not a

theoretical one.

29 max_num_of_clouds =1200; %the max number of clouds allowable in a cloud field.

Computational limit

30 switch temporal_res

31 case 60

32 num_of_samples =500;% the number of options per windspeed per coverage.

33 case 3600

34 num_of_samples =200; %fewer for 1 sec as computationally more demanding

35 end

36

37 %% define the characteristics of the properties within the spatial domain

38

39 num_of_houses =50; %referred to as houses , but only indicates a location

40 house_info=zeros(num_of_houses ,5); %define houses into x,y,h,azimuth ,paneltilt

41 for i = 1: num_of_houses;

42 house_info(i,1)=1+ spatial_res*rand; % assign random x axis

43 house_info(i,2)=1+ spatial_res*rand;% assign random y axis
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44 house_info(i,3)=height_above_sea_level_central*normrnd (1 ,0.1); %assign

random hasl

45 house_info(i,4)=0; %azimuth , between East -West ( -180 ,180)

46 house_info(i,5)=0; %assign panel tilt

47

48 end

49

50 [house_info (:,1),house_info (:,2)]= matrot (90, house_info (:,1),house_info (:,2),

spatial_res); %as the cloud fields will computatonally pproach from the

right (arbitrarily selected), and 0deg is a northerly cloud direction ,

rotate the XY 90, so that north now points to the direction of the

approaching cloud tile. This essentially normalises the cloud angle.

B.3 Matrices rotational function

1 %% The Matrix Rotation Function

2 % function that circularly rotates xy values within a square matrix

3 % clockwise about its centre point by defined angle.

4 % Created by : Jamie Brght

5

6 % [x2 y2] = matrot(theta ,x1,y1 ,m,n)

7 % Where:

8 % theta is the angle (degs) to rotate coordinates by

9 % x1 is the list of x coordinates (n index)

10 % y1 is the list of corresponding y coordinates (m index)

11 % m is the number of rows in the matrix to rotate

12 % n is the number rof columns in the matrix to rotate

13 % x2 is the rotated n-index of the corresponding x1 input

14 % y2 is the rotated m-index of the corresponding y1 input

15

16 %% The function

17 function [x2 , y2] = matrot(theta ,x1,y1,mat_size)

18 %convert theta for clockwise rotation , clockwise seems more natural

19 theta = -theta;

20

21 %determine centre point from input m and n values

22 C=round(mat_size /2);

23

24 %convert to cartesian coordinates using new centrepoint

25 dx1=x1 -C;

26 dy1=y1 -C;

27

28 %calculate the x’ and y’ values using the rotational matrices

29 dx2=dx1.*cos(degtorad(theta)) - dy1.*sin(degtorad(theta));

30 dy2=dx1.*sin(degtorad(theta)) + dy1.*cos(degtorad(theta));

31

32 x2=dx2+C;

33 y2=dy2+C;

34

35 %if the rotation takes the point outside of the defined m-by-n matrix , set it at

the nearest point.

36 x2(x2 <1) =1;
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37 x2(x2>mat_size)=mat_size;

38 y2(y2 <1) =1;

39 y2(y2>mat_size)=mat_size;

40

41 end

B.4 Data import

1 %% Read In Data

2

3 %When using NOAA data. Extract in the same format as BADC data.

4 ND=csvread(’supportingfiles/NOAA_data.csv’);%extract the data

5 ND(isnan(ND)==1) = -9999;%replace NaN values with the -9999 format

6 % The required format: hourrun/okta/blanks 3-4-5/CBH/P/blanks8

-9-10 -11-12-13 -14-15-16/ blankl/air temp/year/hour of day/day number /6 blanks

/wind direction/wind speed.

7 data=[ND(:,5),ND(:,11),zeros(length(ND) ,3),ND(:,10),ND(:,9),zeros(length(ND)

,10),ND(:,1),ND(:,6)+1,ND(:,3),zeros(length(ND) ,7),round(ND(:,8))];

8 pressure=ND(:,9);

9

10 %load up the cloud fields.

11 %Cloud fields are stored according to the temporal res , spatial res , number of

fields per u per C, and number of clouds. Using the user defined inputs ,

select the cloud fields.

12 for i=0:10

13 name=[’V2_clouds_vectors_sample ’,num2str(i),’__temporal_res_ ’,num2str(

temporal_res),’__spatial_res_ ’,num2str(spatial_res),’__’,num2str(

num_of_samples),’_num_of_samples__ ’,num2str(max_num_of_clouds),’

max_num_of_clouds ’];

14 x=dlmread(fullfile(’supportingfiles ’,name));

15 assignin(’base’,[’cov’,num2str(i)],x);

16 end

B.5 Cloud motion and clear-sky index implementation

1 %% Cloud motion

2 for Hour =1: hours %loop every hour in the simulation

3 okta=okta_hourly(Hour); %extract the okta for that hour

4 elev_hour=round(min(elevation(Hour*temporal_res -( temporal_res -1):Hour*

temporal_res))/10) *10; %determine the lowest elevation within that hour (

from the 1-min -res vector) rounded to nearest 10.

5

6 if Hour >1; For all hours after the very first in the simulation ..

7 xyr=xyr2; %the current cloud field is set the previous hour ’s future

cloud field , and so only need to load new xyr2

8 else %for the first hour , create the cloud field.

9 %extract the weather data to select appropriate cloud field.

10 u_ref=hourly_u(Hour); %cloudspeed

11 c_ref=hourly_c(Hour); %coverage



Appendix B. SDSIG scripts 223

12 n_ref=hourly_n(Hour); %random variate for the hour

13 dir_ref=hourly_dir(Hour); %cloud direction

14

15 %Extract a cloud field

16 switch c_ref

17 case 0

18 xyr=cov0(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

19 case 1

20 xyr=cov1(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

21 case 2

22 xyr=cov2(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

23 case 3

24 xyr=cov3(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

25 case 4

26 xyr=cov4(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

27 case 5

28 xyr=cov5(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

29 case 6

30 xyr=cov6(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

31 case 7

32 xyr=cov7(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

33 case 8

34 xyr=cov8(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

35 case 9

36 xyr=cov9(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

37 case 10

38 xyr=cov10(u_ref*max_num_of_clouds -( max_num_of_clouds -1):u_ref*

max_num_of_clouds ,3*n_ref -2:3* n_ref);

39 end

40 end

41

42 %ignore empty cloud slots (there can be 0: max_num_of_clouds in each tile),

extract only present clouds for computational efficiency and accuracy

43 r1=xyr(:,3); r1=r1(r1 >0);

44 x1=xyr(:,1); x1=x1(r1 >0);

45 y1=xyr(:,2); y1=y1(r1 >0);

46 kc1 = zeros(1,numel(r1 >0));

47

48 %% Assign kc values to each cloud

49 if elev_hour <0 %if the elevation angle is below 0, the sun is set and it is

unimportant , so skip and save time

50 else

51 CompoundConditionInd= (coeff.elevmin == elev_hour) & (coeff.okta1==okta);

%find the appropriate row reference for the distribution parameters within

the coefficients.csv file using compound logical statment
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52 switch okta

53 case {0,1,2,3} %okta 0:3 all use a BurrIII distribution

54

55 %extract the shape and scale parameters from coefficients.csv

using the indicator CompoundConditionalInd

56 alpha_ScaleParameter=coeff.scale(CompoundConditionInd ==1);

57 c_ShapeParameter=coeff.shape1(CompoundConditionInd ==1);

58 k_ShapeParameter=coeff.shape2(CompoundConditionInd ==1);

59

60 %Create the BurrIII distribution PDF using the paramaters above

61 burrIIIPDF =(( c_ShapeParameter .* k_ShapeParameter)./

alpha_ScaleParameter).*( distribution_range ./ alpha_ScaleParameter).^(-

c_ShapeParameter -1) .*1+( distribution_range ./ alpha_ScaleParameter).^(-

c_ShapeParameter)).^(- k_ShapeParameter -1);

62 burrIIICDF=cumsum(burrIIIPDF)./100; %make CDF.

63

64 %assign each cloud a kc value from the new distribution

65 for ii=1: numel(r1 >0)

66 kc1(ii)=sum(burrIIICDF <rand)./100;

67 end

68

69 case {4,5,6,7,8,9} %okta 4:9 use a generalised Gamma function

70 %extract the shape and scale parameters from coefficients.csv

using the indicator CompoundConditionalInd

71 a_ScaleParameter=coeff.scale(CompoundConditionInd ==1);

72 p_ShapeParameter=coeff.shape1(CompoundConditionInd ==1);

73 d_ShapeParameter=coeff.shape2(CompoundConditionInd ==1);

74 %create the Genralised Gamma distribution PDF using the above

parameters.

75 genGammaPDF =( p_ShapeParameter .* distribution_range .^(

d_ShapeParameter -1).*exp(-( distribution_range ./ a_ScaleParameter).^

p_ShapeParameter))./( a_ScaleParameter .^ d_ShapeParameter .* gamma(

d_ShapeParameter ./ p_ShapeParameter));

76 genGammaCDF=cumsum(genGammaPDF)./100; %make CDF

77

78 %assign each cloud a kc value from the new distribution

79 for ii=1: numel(r1 >0)

80 kc1(ii)=sum(genGammaCDF <rand)./100;

81 end

82 end

83 end

84

85 %% Now perform the same for the future hour.

86 if Hour <(hours -1) %so long as it is not the end of the simulation ...

87

88 u_ref_next=hourly_u(Hour +1);

89 c_ref_next=hourly_c(Hour +1);

90 n_ref_next=hourly_n(Hour +1);

91 dir_ref_next=hourly_dir(Hour +1);

92

93 switch c_ref_next

94 case 0

95 xyr2=cov0(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

96 case 1
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97 xyr2=cov1(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

98 case 2

99 xyr2=cov2(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

100 case 3

101 xyr2=cov3(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

102 case 4

103 xyr2=cov4(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

104 case 5

105 xyr2=cov5(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

106 case 6

107 xyr2=cov6(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

108 case 7

109 xyr2=cov7(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

110 case 8

111 xyr2=cov8(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

112 case 9

113 xyr2=cov9(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

114 case 10

115 xyr2=cov10(u_ref_next*max_num_of_clouds -( max_num_of_clouds -1):

u_ref_next*max_num_of_clouds ,3* n_ref_next -2:3* n_ref_next);

116 end

117

118 r2=xyr2 (:,3); r2=r2(r2 >0);

119 x2=xyr2 (:,1); x2=x2(r2 >0);

120 y2=xyr2 (:,2); y2=y2(r2 >0);

121 kc2 = zeros(1,numel(r2 >0));

122

123 %% Apply KC

124 if elev_hour <0

125 else

126 CompoundConditionInd= (coeff.elevmin == elev_hour) & (coeff.okta1==

okta);

127 switch okta %loop through each moment within the temporary , hourly

okta factored vector

128 case {0,1,2,3} %okta 0:3 all use a BurrIII distribution

129 alpha_ScaleParameter=coeff.scale(CompoundConditionInd ==1);

130 c_ShapeParameter=coeff.shape1(CompoundConditionInd ==1);

131 k_ShapeParameter=coeff.shape2(CompoundConditionInd ==1);

132 burrIIIPDF= (( c_ShapeParameter .* k_ShapeParameter)./

alpha_ScaleParameter).*( distribution_range ./ alpha_ScaleParameter).^(-

c_ShapeParameter -1) .*1+( distribution_range ./ alpha_ScaleParameter).^(-

c_ShapeParameter)).^(- k_ShapeParameter -1);

133 burrIIICDF=cumsum(burrIIIPDF)./100;

134 for ii=1: numel(r2 >0)

135 kc2(ii)=sum(burrIIICDF <rand)./100;

136 end
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137

138 case {4,5,6,7,8,9} %okta 4:9 use a generalised Gamma function

139 a_ScaleParameter=coeff.scale(CompoundConditionInd ==1);

140 p_ShapeParameter=coeff.shape1(CompoundConditionInd ==1);

141 d_ShapeParameter=coeff.shape2(CompoundConditionInd ==1);

142 genGammaPDF =( p_ShapeParameter .* distribution_range .^(

d_ShapeParameter -1).*exp(-( distribution_range ./ a_ScaleParameter).^

p_ShapeParameter))./( a_ScaleParameter .^ d_ShapeParameter .* gamma(

d_ShapeParameter ./ p_ShapeParameter));

143 genGammaCDF=cumsum(genGammaPDF)./100;

144 for ii=1: numel(r2 >0)

145 kc2(ii)=sum(genGammaCDF <rand)./100;

146 end

147 end

148 end

149

150 end

151

152 %% Move the clouds for this hour

153 %pre allocate for computational efficiency.

154 separation=zeros(num_of_houses ,60); %1 row per location

155 house_coverages=zeros(num_of_houses ,60);%60 mins=cols

156 house_kcvalues=zeros(num_of_houses ,60);

157

158

159 for cloudmovement =1: temporal_res; %move the clouds looping each time step

160

161 for house =1: num_of_houses %take each house at a time

162 %orientate by the cloud direction

163 [XY_rotated (:,1),XY_rotated (:,2)]= matrot(dir_ref ,round(house_info

(:,2)),round(house_info (:,1)),spatial_res);

164 dxd=spatial_res -XY_rotated(house ,1); %distance: house x location to

far edge of domain edge

165 dX=cloudmovement *(3600/ temporal_res)*u_ref_next; %Distance: house

domain and cloud domain overlap

166 dxeC2=dxd -dX+u_ref *3600; %distance: house to far edge of cloud field

167 separation(house ,cloudmovement)=XY_rotated(house ,1);

168

169 % attach together the cloud fields

170 r_C1=[r1;r2]; %combine the radii from both cloud fields

171 x_C1=[x1 -3600* u_ref;x2]; %combine coordinates of clouds adjusting x

by the size of the cloud field domain

172 y_C1=[y1;y2]; %combine y coordinates of two fields

173 kc_C1=[kc1 ’;kc2 ’]; %combine kc values of all.

174

175 clouds=length(r_C1(r_C1 >0)); %determine the number of clouds within

the cloud domain

176 if clouds >0 %so long as clouds are present ...

177 dx=dxd+x_C1 -dX; % distance along x axis from house to cloud

centre

178 dy=XY_rotated(house ,2)-y_C1; %distance in y direction of house

to cloud

179 d=sqrt(dx.^2+dy.^2); %direct line from house to cloud

180 house_coverages(house ,cloudmovement)=sum(d<r_C1(r_C1 >0)); %

record how many clouds are covering the house
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181 kcs1=kc_C1(d<r_C1); %extract appropriate kc values that cover

the house

182 if isempty(kcs1)==0

183 house_kcvalues(house ,cloudmovement)=mean(kcs1); take a mean

of the kc values

184 end

185 end

186 end

187 end

188

189 %% write separation house_kcvalues and house_coverages

190 for house =1: num_of_houses

191 dlmwrite ([’F:\ file_location\’,num2str(house),’_separation.mat’],

separation(house ,:),’-append ’);

192 dlmwrite ([’F:\ file_location\’,num2str(house),’_house_kcvalues.mat’],

house_kcvalues(house ,:),’-append ’);

193 dlmwrite ([’F:\ file_location\’,num2str(house),’_house_coverages.mat’

],house_coverages(house ,:),’-append ’);

194 end

195 end

B.6 Clear-sky modification and incident irradiance calcu-

lations

1 %% Kc production

2 %initialisation

3 not_obscured_min=zeros(1,hours*temporal_res); %pre allocate array

4 day_floor=floor(day); %gain day number

5 % create a vector containing 1minute resolution cloud speed values

6 for i=1: length(u_hourly)

7 u_minutely(i*temporal_res -( temporal_res -1):i*temporal_res)=u_hourly(i);

8 end

9

10 %kc values for clear sky periods based on Demroes kc_index using distribution

curve fitting.

11 for i=1: floor(length(not_obscured_min)/1440) % loop through each day

12 not_obscured_min(i*1440 -1439:i*1440)=normrnd (0.99 ,0.08);%

13 % this distribution is N(0.99 ,0.08) for Camborne ,

14 % tLocationScale(mu=1.11566 , sigma =0.111785 ,nu =3.2205) for Lerwick

15 % Burr dist(alpha =0.981286 ,c=72.3685 ,k=0.120297) for Hawaii

16 % and N(1.02394 ,0.04) for San Diego

17

18 end

19

20 not_obscured_min(zenith_angle >90) =0; %take account of night

21

22 for house =1: num_of_houses % loop through each houses

23 %% load up each house ’s data

24 house_kcvalues_temp=dlmread ([’F:\ file_location\’,num2str(house),’

_house_kcvalues.mat’]) ’;
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25 house_coverages_temp=dlmread ([’F:\ file_location\’,num2str(house),’

_house_coverages.mat’]) ’;

26 sep_temp=dlmread ([’F:\ file_location\’,num2str(house),’_separation.mat’]) ’;

27

28 %pre allocate

29 separation=zeros(size(u_minutely));

30 house_coverages=zeros(size(u_minutely));

31 house_kcvalues=zeros(size(u_minutely));

32

33 for i=1: hours %extract the house data to working files

34 separation(i*60 -59:i*60)=sep_temp(:,i)’;

35 house_coverages(i*60 -59:i*60)=house_coverages_temp (:,i)’;

36 house_kcvalues(i*60 -59:i*60)=house_kcvalues_temp (:,i)’;

37 end

38

39 %separation in time from edge of domain at each moment.

40 separation=separation ./ u_minutely;

41 separation=floor(separation ./ temporal_res);

42

43 %produce indicators of 8 okta periods

44 Ok8_ind=zeros(length(okta_minutely) ,1); %pre allocate

45 for i=2: length(okta_minutely) -1; %loop through okta

46 if okta_minutely(i)==8 && okta_minutely(i+1)==8 && okta_minutely(i-1)

~=8;

47 Ok8_ind(i)=1; %indicate start of period

48 end

49 if okta_minutely(i)==8 && okta_minutely(i-1)==8 && okta_minutely(i+1)

~=8;

50 Ok8_ind(i)=2; %indicate end of period

51 end

52 end % in 00010000200 format now.

53

54 Ok8_duration =1; %initialise the marker

55 ok8_cutoff =4; %set the okta 8 cutoff period

56 a_ScaleParameter=coeff.scale (78); %extract the shape and scale parameters

from coefficients.csv using the indicator CompoundConditionalInd

57 p_ShapeParameter=coeff.shape1 (78); % parameters for okta 8 at 10deg elev

58 d_ShapeParameter=coeff.shape2 (78); %else zeros propagate into obscured min

59 %create the Genralised Gamma distribution PDF using the above parameters.

60 genGammaPDF =( p_ShapeParameter .* distribution_range .^( d_ShapeParameter -1).*exp

(-( distribution_range ./ a_ScaleParameter).^ p_ShapeParameter))./(

a_ScaleParameter .^ d_ShapeParameter .*gamma(d_ShapeParameter ./ p_ShapeParameter

));

61 genGammaCDF=cumsum(genGammaPDF)./100; %find the CDF

62

63 for i=1: length(Ok8_ind)-max(max(separation)) %cycle through the indicators

64 if Ok8_ind(i)==1 %if this is the start of an okta 8 period

65 if i+Ok8_duration ==numel(Ok8_ind);break; end %if its the end of the

array , break the for loop , else errors.

66 while Ok8_ind(i+Ok8_duration)~=2; %while the period of okta 8

continues

67 Ok8_duration=Ok8_duration +1; %keep tally of the duration

68 if i==numel(Ok8_ind); break; end %if its the end of the array ,

break the while
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69 if i+Ok8_duration ==numel(Ok8_ind);break; end %if its the end of

the array , break the while

70 end

71 end

72 if Ok8_duration >= ok8_cutoff*temporal_res; %if the duration is at least X

hours or more.

73 intervals=ceil (5*( Ok8_duration/temporal_res)*(rand +0.0001)); %random

number of intervals

74 els=ones (1+ intervals ,1); %make blank array of each hour plus the

start hour

75 for j=1: length(els); %loop through each hour in els.

76 els(j)=ceil(Ok8_duration *((j-1)/intervals))+i; %find the element

row reference to split the moment into sections

77 end

78 Ok8_kcvalues=zeros(size(els));

79 for ii=1: length(els)

80 Ok8_kcvalues(ii)=sum(genGammaCDF <rand)./100; %assign kc to each

interval

81 end

82 xx=els(1):els(end);

83 house_kcvalues(els(1)+ceil(mean(separation(iii ,els(1):els(end)))):

els(end)+ceil(mean(separation(iii ,els(1):els(end)))))=interp1(els ,

Ok8_kcvalues ,xx,’pchip ’);%piecewise cubic hermit interpolation technique

between the kc values.

84 end

85 Ok8_duration =1; %reset the duration and loop again.

86 end

87

88 % pre -allocate irradiance arrays

89 house_panel_irradiance=zeros(numel(house_coverages (1,:)) ,1);

90 house_GHI=zeros(numel(house_coverages (1,:)) ,1);

91

92 disp([’ ...for house: ’,num2str(house)]) %indicate to the user

the progress

93 panel_tilt=house_info(house ,5) ; %extract the individual location geography

and geometry

94 panel_orientation=house_info(house ,4);

95 panel_hasl=house_info(house ,3);

96 incident_angle=real(acosd(sind(zenith_angle).*sind(panel_tilt).*cosd(

panel_orientation -azimuth)+cosd(zenith_angle).*cosd(panel_tilt))); % solar

incident angle taking into account panel tilt and azimuth

97

98 sun_obscured=house_coverages;%

99 sun_obscured(sun_obscured >1) =1; %normalise the number of clouds covered by

to create B 1DM

100 kcMinutely= house_kcvalues;%temporary kc 1DM

101

102 %% for long periods of Okta 0. As for 8

103 Ok0_ind=zeros(length(okta_minutely) ,1);

104 for i=2: length(okta_minutely) -1;

105 if okta_minutely(i)==0 && okta_minutely(i+1)==0 && okta_minutely(i-1)

~=0;

106 Ok0_ind(i)=1;

107 end
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108 if okta_minutely(i)==0 && okta_minutely(i-1)==0 && okta_minutely(i+1)

~=0;

109 Ok0_ind(i)=2;

110 end

111 end

112 Ok0_duration =1;

113 ok0_cutoff =3;

114 intervals =1;

115 for i=1: length(Ok0_ind)-1

116 if Ok0_ind(i)==1 %if this is the start of an okta 0 period

117 if i+Ok0_duration ==numel(Ok0_ind);break; end

118 while Ok0_ind(i+Ok0_duration)~=2; %while the period of okta 0

continues

119 Ok0_duration=Ok0_duration +1; %keep tally of the duration

120 if i==numel(Ok0_ind); break; end

121 if i+Ok0_duration ==numel(Ok0_ind);break; end

122 end

123 end

124 if Ok0_duration >= ok0_cutoff*temporal_res;

125 %instead of a straight linear between the start and end period (very

much not the case in real life), there are a fixed amount of intervals

between kc values for the whole duration of okta 0.

126 els=zeros (1+ intervals ,1);

127 for j=2: length(els);

128 els(j)=ceil(Ok0_duration *((j-1)/intervals));

129 end

130

131 kc_ok0=normrnd (1.02394 ,0.04 , size(els));

132 kc_ok0(kc_ok0 >1.3)=normrnd (1,0.2,size(kc_ok0(kc_ok0 >1.3)));

133 kc_ok0(kc_ok0 <0.9)=normrnd (1,0.2,size(kc_ok0(kc_ok0 <0.9)));

134 Ok0_kcvalues=kc_ok0;

135

136 for j=1: length(els) -1;

137 intlinspace=linspace(Ok0_kcvalues(j),Ok0_kcvalues(j+1),els(j+1)-

els(j)+1);

138 end

139 end

140 Ok0_duration =1;

141 end

142

143 % populate kc minutely with the clear moments.

144 kcMinutely(sun_obscured ==0) = not_obscured_min(sun_obscured ==0);

145 %remove impossible extremes to the limit

146 kcMinutely(kcMinutely <0.01)=normrnd (1.02394 ,0.04 ,1 , numel(kcMinutely(

kcMinutely <0.01)));

147

148 %% Add irradiance peaks at moment of cloud shift , as observed in data. Increased

reflected irradiance

149 % observed in observational data is a peak in irradiance just before and

after a moment of cloud , this is due to increase reflected beam irradiance.

150 % to attempt to recreate this , fluxes based on a normrand distribution

are applied to the minute before and after a cloud , limited to a chance

defined as:

151 chance =0.30;% 30% of the time , this will be applied

152 for i=3*( temporal_res /60):length(kcMinutely); %loop through kcMinutely
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153 chance_test=rand; % select a random value to test against the chance

variable.

154

155 %END OF CLOUD

156 if sun_obscured(i-1)-sun_obscured(i)==1; % sun obscured is 0001111000

indicating cloud. if i-1 - i = 1. then i must be the end of a clouded period

, and so...

157 if temporal_res /60>1 %for 1 sec res

158 increase =linspace(normrnd (1+0.05* chance_test ,0.01 ,1) ,1,

temporal_res /60);

159 increase2=linspace(normrnd (1+0.025* chance_test ,0.01 ,1) ,1,

temporal_res /60);

160 elseif temporal_res /60==1 %for 1 min res

161 increase=normrnd (1+0.05* chance_test ,0.01 ,1);

162 increase2=normrnd (1+0.025* chance_test ,0.01 ,1);

163 end

164 kcMinutely(i-temporal_res /60+1:i)=kcMinutely(i-( temporal_res /60) +1:i

).* increase;%... apply a small increase in kc.

165 kcMinutely(i-temporal_res /60+2:i)=kcMinutely(i-temporal_res /60+2:i)*

increase2; %... apply a smaller increase to the kc value

166

167 %START OF CLOUD for 1-sec resolution

168 elseif sun_obscured(i-1)-sun_obscured(i)==-1; %else if i-1 - i=-1 (

indicating that i start of a clouded period , and so i-1 is the last period

before cloud

169 if temporal_res /60>1 %for 1 sec

170 increase =linspace(normrnd (1+0.05* chance_test ,0.01 ,1) ,1,

temporal_res /60);

171 increase2=linspace(normrnd (1+0.025* chance_test ,0.01 ,1) ,1,

temporal_res /60);

172 elseif temporal_res /60==1 % for1 -min

173 increase=normrnd (1+0.05* chance_test ,0.01 ,1);% pick a single

increase

174 increase2=normrnd (1+0.025* chance_test ,0.01 ,1);

175 end

176 kcMinutely(i-temporal_res /60:i)=kcMinutely(i-temporal_res /60:i)*

increase; %apply CEE

177 kcMinutely(i-temporal_res /60-1:i)=kcMinutely(i-temporal_res /60-1:i)*

increase2; %apply CEE

178 end

179 end

180

181

182 %% irradiance calculations following Muller and Trentman

183

184 kcMinutely=kcMinutely ’;

185 global_horizontal = kcMinutely .* global_horizontal_cs;

186 direct_horizontal = zeros(numel(sun_obscured) ,1);

187 direct_horizontal(kcMinutely < 1 & kcMinutely > 19/69) =

direct_horizontal_cs(kcMinutely < 1 & kcMinutely > 19/69) .* (kcMinutely(

kcMinutely < 1 & kcMinutely > 19/69) - 0.38*(1 - kcMinutely(kcMinutely < 1 &

kcMinutely > 19/69))).^(2.5);

188 direct_horizontal(kcMinutely >=1) = direct_horizontal_cs(kcMinutely >=1);

189 direct_horizontal(direct_horizontal <0) =0;

190 global_horizontal(global_horizontal <0) =0;
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191 diffuse_horizontal = global_horizontal - direct_horizontal;

192 diffuse_to_global_ratio=diffuse_horizontal ./ global_horizontal;

193

194 house_GHI=global_horizontal; % store the GHI for each house

195 % Panel irradiance using Klucher model

196 F=1-( diffuse_horizontal ./ global_horizontal).^2; % modulating factor

197 isotropic =(1+ cosd(panel_tilt))/2; % isotropic component - invariant to

direct/global ratio

198 horizonal =(1+F.*( sind(panel_tilt)/2) .^3); % horizon brightening term

199 circumsol = (1 + F .* (cosd(incident_angle)).^2 .* (sind(zenith_angle)).^3);

% circumsolar diffuse irradiance

200 panel_irradiance = diffuse_horizontal .* isotropic .* horizonal .* circumsol +

direct_horizontal ./cosd(zenith_angle).*cosd(incident_angle);

201

202 end %repeat all of the above for each property
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B.7 Clear-sky distributions by okta and solar elevation

angle

The columns from left to right detail: the type of observation, where auto means that

the okta measurement was automated, extrapolated indicates a calculated value; the

okta value for the hour of observation; the elevation angle calculated using the Blanco-

Muriel et al. (2001) method; the type of PDF distribution referencing equations 4.11

and 4.12; and the scale and shape parameters.where scale, shape1 and shape2 relate

to a, c and k for the Burr distribution and a, p and d for the generalised Gamma

distribution respectively. All auto observation types are provided by Smith et al.

(2017), extrapolations were produced for this thesis by the author.
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Table B.1: kc distribution parameters for each N at bands of θe.

Obs. Type N θe (◦) Type Scale Shape1 Shape2

auto 0 0 burr3 1.004255336 8.052092191 0.334129357
auto 0 10 burr3 1.050077073 30.01220485 0.157472184
auto 0 20 burr3 1.042700528 79.30702738 0.109783689
auto 0 40 burr3 1.041613605 90.44856240 0.114735689
auto 0 50 burr3 1.040348257 106.6777365 0.115167702
extrapolated 0 60 burr3 1.040521909 112.5163000 0.118202507
extrapolated 0 70 burr3 1.039559971 115.5973000 0.120648195
extrapolated 0 80 burr3 1.038727421 114.5183000 0.123093882

auto 1 0 burr3 0.867720611 5.957029683 0.461528066
auto 1 10 burr3 1.034635381 23.30982421 0.135960831
auto 1 20 burr3 1.054028048 45.77649839 0.086326021
auto 1 30 burr3 1.053426748 61.22887273 0.079636671
auto 1 40 burr3 1.048370781 68.68864970 0.080905594
auto 1 50 burr3 1.051091805 83.38138037 0.076478660
extrapolated 1 60 burr3 1.046876702 101.9297000 0.073768447
extrapolated 1 70 burr3 1.045490232 117.3217000 0.070941131
extrapolated 1 80 burr3 1.044103763 132.7137000 0.068113815

auto 2 0 burr3 0.772062039 4.956047790 0.602223618
auto 2 10 burr3 0.997637427 16.12370693 0.171203773
auto 2 20 burr3 1.042715447 33.04399206 0.099150179
auto 2 30 burr3 1.044202341 43.36090288 0.087526150
auto 2 40 burr3 1.039137747 44.65686053 0.094115982
auto 2 50 burr3 1.042453935 59.13488558 0.081633453
extrapolated 2 60 burr3 1.040665084 61.34531164 0.079116354
extrapolated 2 70 burr3 1.040080171 65.44531164 0.074520320
extrapolated 2 80 burr3 1.039495257 67.34531164 0.069924285

auto 3 0 burr3 0.757087430 4.719955631 0.599814980
auto 3 10 burr3 0.962886251 13.26425890 0.200494203
auto 3 20 burr3 1.020610812 24.55724953 0.125177010
auto 3 30 burr3 1.022096040 29.50479982 0.117465722
auto 3 40 burr3 1.016061077 35.57528316 0.108648429
auto 3 50 burr3 1.017760391 40.28732067 0.107029008
extrapolated 3 60 burr3 1.014303520 49.62322278 0.098764717
extrapolated 3 70 burr3 1.012135695 56.75800701 0.092438587
extrapolated 3 80 burr3 1.009967870 63.89279125 0.086112457

auto 4 0 gengamma 0.005480077 0.557400437 7.919701074
auto 4 10 gengamma 0.806798567 3.780633147 3.215699506
auto 4 20 gengamma 0.974592663 7.684412120 3.139798302
auto 4 30 gengamma 0.993042269 10.02624460 3.491953440
auto 4 40 gengamma 0.995177810 11.93575235 3.630871979
auto 4 50 gengamma 0.994027855 14.37955261 4.151900930
extrapolated 4 60 gengamma 1.004320429 17.65246097 4.235087789
extrapolated 4 70 gengamma 1.010364540 20.39297386 4.471435442
extrapolated 4 80 gengamma 1.016408652 23.13348674 4.707783094
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Table B.2: kc distributions continued

auto 5 0 gengamma 0.002024238 0.491298962 8.157538816
auto 5 10 gengamma 0.664559633 2.792447091 3.430206866
auto 5 20 gengamma 0.892248369 5.438275550 3.231241189
auto 5 30 gengamma 0.945393148 7.635869694 3.313058175
auto 5 40 gengamma 0.931245632 8.260396607 3.653753416
auto 5 50 gengamma 0.935768143 9.660919904 3.887662670
extrapolated 5 60 gengamma 0.955266774 12.15815604 3.904411614
extrapolated 5 70 gengamma 0.966907955 13.99957168 4.038153998
extrapolated 5 80 gengamma 0.978549135 15.84098732 4.171896381

auto 6 0 gengamma 0.001677573 0.481989924 8.089286482
auto 6 10 gengamma 0.486147982 2.088140534 3.837157871
auto 6 20 gengamma 0.757850646 3.823759792 3.334064542
auto 6 30 gengamma 0.851623471 5.457121350 3.180219803
auto 6 40 gengamma 0.852367455 5.904250269 3.438878141
auto 6 50 gengamma 0.846455350 6.324495209 3.815566128
extrapolated 6 60 gengamma 0.844980637 8.242714566 3.539666331
extrapolated 6 70 gengamma 0.842396577 9.451120771 3.545829342
extrapolated 6 80 gengamma 0.839812516 10.65952698 3.551992353

auto 7 0 gengamma 0.004537068 0.484621732 4.421152054
auto 7 10 gengamma 0.433486322 1.799709961 2.240029318
auto 7 20 gengamma 0.614610937 2.627897221 2.025277836
auto 7 30 gengamma 0.703741809 3.469979894 2.067728901
auto 7 40 gengamma 0.730381459 4.012040212 2.193316054
auto 7 50 gengamma 0.744532927 4.489305108 2.186545792
extrapolated 7 60 gengamma 0.767009849 5.564174719 2.160900930
extrapolated 7 70 gengamma 0.787405408 6.349960156 2.167008046
extrapolated 7 80 gengamma 0.807800967 7.135745593 2.173115163

auto 8 0 gengamma 0.000167928 0.360116297 5.355314757
auto 8 10 gengamma 0.097204818 1.010969390 3.442829280
auto 8 30 gengamma 0.201529223 1.331344298 2.956426748
auto 8 40 gengamma 0.266130988 1.553540024 2.833357620
auto 8 50 gengamma 0.256395382 1.541268725 2.897819486
extrapolated 8 60 gengamma 0.296218024 1.941970737 2.837260690
extrapolated 8 70 gengamma 0.323651103 2.180435021 2.807957059
extrapolated 8 80 gengamma 0.351084183 2.418899304 2.778653428

auto 9 0 gengamma 0.000342508 0.370450077 4.788361112
auto 9 10 gengamma 0.286555027 1.598964824 2.064839918
auto 9 20 gengamma 0.001227201 0.470980381 5.444603927
auto 9 30 gengamma 0.000303258 0.406115613 5.805599776
auto 9 40 gengamma 0.000559751 0.429564979 5.533348309
auto 9 50 gengamma 0.000815644 0.491761514 7.420808991
extrapolated 9 60 gengamma 0.000815644 0.491761514 7.420808991
extrapolated 9 70 gengamma 0.000815644 0.491761514 7.420808991
extrapolated 9 80 gengamma 0.000815644 0.491761514 7.420808991
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Marcos, J., Marroyo, L., Lorenzo, E., Garćıa, M., 2012. Smoothing of PV power fluctuations
by geographical dispersion. Progress in Photovoltaics: Research and Applications 20 (2),
226–237.

Markov, A., 1906. Extension of the law of large numbers to dependent quantities. Izv. Fiz.-
Matem. Obsch. 15, 135–156.

Masseran, N., 2015. Markov chain model for the stochastic behaviors of wind-direction data.
Energy Conversion and Management 92 (0), 266 – 274.

Mathiesen, B. V., Lund, H., Karlsson, K., 2011. 100% Renewable energy systems, climate mit-
igation and economic growth. The 5th Dubrovnik Conference on Sustainable Development
of Energy, Water and Environment Systems, held in Dubrovnik September/October 2009.
Applied Energy 88 (2), 488 – 501.

Mathiesen, P., Collier, C., Kleissl, J., 2013. A high-resolution, cloud-assimilating numerical
weather prediction model for solar irradiance forecasting. Solar Energy 92, 47 – 61.

MathWorks, 2016. 2-D correlation coefficients - Matlab corr2.

MathWorks UK, 2016. Two-sample Kolmogorov-Smirnov test - Matlab kstest2. Accessed on:
04/04/2016.

Matlab, 2012. R2014a documentation, signal processing, multirate signal processing, resample.
URL http://uk.mathworks.com/help/signal/ug/resampling.html

Matlab, 2015. version 8.6.0.267246 R2015b. The MathWorks Inc., Natick, Massachusetts.

Matszuko, D., 2012. Influence of the extent and genera of cloud cover on solar radiation inten-
sity. International Journal of Climatology 32, 2403–2414.

http://uk.mathworks.com/help/signal/ug/resampling.html


Bibliography 244

Mayer, B., Kylling, A., 2005. Technical note: The libRadtran software package for radiative
transfer calculations – description and examples of use. Atmospheric Chemistry and Physics
5, 1855–1877.

MetOffice, 2015. Learning. Tech. rep., UK Met Office.
URL http://www.metoffice.gov.uk/learning/

Michalsky, J. J., 1988. The astronomical Almanac’s algorithm for approximate solar position
(1950–2050). Solar Energy 40 (3), 227 – 235.

MIDAS, 2015. UK Met Office Integrated Data Archive System (MIDAS) land and marine
surface stations data (1853-current).
URL http://badc.nerc.ac.uk

Mokhtari, G., Nourbakhsh, G., Zare, F., Ghosh, A., 2014. Improving the penetration level of
PVs using DC link for residential buildings. Energy and Buildings 72 (0), 80 – 86.

Moler, C., 2010. Numerical Computing with MATLAB: Revised Reprint. Society for Industrial
and Applied Mathematics.

Monfared, M., Golestan, S., 2012. Control strategies for single-phase grid integration of small-
scale renewable energy sources: A review. Renewable and Sustainable Energy Reviews 16 (7),
4982 – 4993.

Moreno-Tejera, S., Silva-Perez, M., Lillo-Bravo, I., Ramirez-Santigosa, L., 2016. Solar resource
assessment in seville, spain. statistical characterisation of solar radiation at different time
resolutions. Solar Energy 132, 430 – 441.

Morf, H., 1998. The Stochastic two-state solar irradiance model STSIM. Solar Energy 62 (2),
101 – 112.

Morf, H., 2011. The stochastic two-state cloud cover model STSCCM. Solar Energy 85 (5), 985
– 999.

Morf, H., 2013. A stochastic solar irradiance model adjusted on the Angstrom–Prescott regres-
sion. Solar Energy 87 (0), 1 – 21.

Mouheb, M., Hamidat, A., Loukarfi, L., 2012. Impact of PV compensation in improving the
voltage drop in electrical networks LV. Energy Procedia 18 (0), 751 – 761.

Mu, Y., Wu, J., Jenkins, N., Jia, H., Wang, C., 2014. A spatial–temporal model for grid impact
analysis of plug-in electric vehicles. Applied Energy 114 (0), 456 – 465.

Müller, R., Trentmann, J., 2010. Algorithm theoretical baseline document direct irradiance at
surface. Tech. rep., EUMETSAT Satellite Application Facility on Climate Monitoring.

Muneer, T., Gul, M., Kambezedis, H., 1998. Evaluation of an all-sky meteorological radiation
model against long-term measured hourly data. Energy Conversion and Management 19,
303–317.

Munkhammar, J., Widén, J., Hinkelman, L. M., 2017. A copula method for simulating corre-
lated instantaneous solar irradiance in spatial networks. Solar Energy 143, 10 – 21.

Ngoko, B., Sugihara, H., Funaki, T., 2014. Synthetic generation of high temporal resolution
solar radiation data using markov models. Solar Energy 103 (0), 160 – 170.

Nguyen, A., Velay, M., Schoene, J., Zheglov, V., Kurtz, B., Murray, K., Torre, B., Kleissl, J.,
2016. High PV penetration impacts on five local distribution networks using high resolu-
tion solar resource assessment with sky imager and quasi-steady state distribution system
simulations. Solar Energy 132, 221 – 235.

Nielsen, L. B., Prahm, L. P., Berkowicz, R., Conradsen, K., 1981. Net incoming radiation
estimated from hourly global radiation and/or cloud observations. Journal of Climatology
1 (3), 255–272.

NOAA, 2016a. Quality Controlled Local Climatological Data (QCLCD). National Centres for
Environmental Information. Accessed on: 31/01/2016.
URL http://www.ncdc.noaa.gov/qclcd/

NOAA, 2016b. WMO 2700 code conversion table. Tech. rep., National Oceanic and Atmo-
spheric Administration.
URL www.nodc.noaa.gov/archive/arc0021/0000907/1.1/data/0-data/HTML/

WMO-CODE/WMO2700.HTM

Nykamp, S., Molderink, A., Hurink, J. L., Smit, G. J. (Eds.), 2012. Statistics for PV, wind

http://www.metoffice.gov.uk/learning/
http://badc.nerc.ac.uk
http://www.ncdc.noaa.gov/qclcd/
www.nodc.noaa.gov/archive/arc0021/0000907/1.1/data/0-data/HTML/WMO-CODE/WMO2700.HTM
www.nodc.noaa.gov/archive/arc0021/0000907/1.1/data/0-data/HTML/WMO-CODE/WMO2700.HTM


Bibliography 245

and biomass generators and their impact on distribution grid planning. The 24th Interna-
tional Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact
of Energy, ECOS. Vol. 45.

O’Hare, G., Sweeney, J., Wilby, R., 2005. Weather, Climate, and Climate Change: Human
Perspectives. Pearson Prentice Hall.

Olseth, J. A., Skartveit, A., Zou, H., 1995. Spatially continuous mapping of solar resources in
a complex high latitude topography. Solar Energy 55 (6), 475 – 485.

Omran, W. A., Kazerani, M., Salama, M. M. A., 2011. Investigation of methods for reduc-
tion of power fluctuations generated from large grid-connected photovoltaic systems. IEEE
Transactions on Energy Conversion 26 (1), 318–327.

OpenEI, 2014. Commercial and residential hourly load profiles for all TMY3 locations in the
United States. Tech. rep., Office of Energy Efficiency Renewable Energy.
URL http://en.openei.org

Oppenheim, A. V., Schafer, R. W., Buck, J. R., 1999. Discrete-time Signal Processing (2nd
Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Otani, K., Minowa, J., Kurokawa, K., 1997. Study on areal solar irradiance for analyzing
areally-totalized PV systems. Solar Energy Materials and Solar Cells 47 (1–4), 281 – 288.

Paatero, J. V., Lund, P. D., 2007. Effects of large-scale photovoltaic power integration on
electricity distribution networks. Renewable Energy 32 (2), 216 – 234.

Paevere, P., Higgins, A., Ren, Z., Horn, M., Grozev, G., McNamara, C., 2014. Spatio-temporal
modelling of electric vehicle charging demand and impacts on peak household electrical load.
Sustainability Science 9 (1), 61–76.

Page, L., Brin, S., Motwani, R., Winograd, T., November 1999. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab.

Pai, M. A., 2016. Power system dynamics and stability / Peter W . (April).

Palizban, O., Kauhaniemi, K., Guerrero, J. M., 2014. Microgrids in active network manage-
ment—part I: Hierarchical control, energy storage, virtual power plants, and market partic-
ipation. Renewable and Sustainable Energy Reviews 36, 428–439.

Papaioannou, I. T., Purvins, A., 2014. A methodology to calculate maximum generation capac-
ity in low voltage distribution feeders. International Journal of Electrical Power and Energy
Systems 57 (0), 141 – 147.

Parkinson, G., June 2015. Ergon imposes new limit on rooftop solar system. Tech. rep., Renew
Economy.
URL reneweconomy.com.au/ergon-imposes-new-limit-on-rooftop-solar-systems-66926/

Passey, R., Spooner, T., MacGill, I., Watt, M., Syngellakis, K., 2011. The potential impacts of
grid-connected distributed generation and how to address them: A review of technical and
non-technical factors. Energy Policy 39 (10), 6280 – 6290.

Patel, N. R., Lokhande, M. M., Jamnani, J. G., 2014. Solid-State On Load Tap-Changer for
Transformer Using Microcontroller (January), 101–104.

Patrick, J. D., Harvill, J. L., Hansen, C. W., 2016. A semiparametric spatio-temporal model
for solar irradiance data. Renewable Energy 87, Part 1, 15 – 30.

Patsalides, M., Efthymiou, V., Stavrou, A., Georghiou, G. E., 2016. A generic transient PV
system model for power quality studies. Renewable Energy 89, 526 – 542.

Pecenak, Z. K., Mejia, F. A., Kurtz, B., Evan, A., Kleissl, J., 2016. Simulating irradiance
enhancement dependence on cloud optical depth and solar zenith angle. Solar Energy 136,
675 – 681.

Peng, Z., Yu, D., Huang, D., Heiser, J., Kalb, P., 2016. A hybrid approach to estimate the
complex motions of clouds in sky images. Solar Energy 138, 10 – 25.

Perez, M. J., Fthenakis, V. M., 2015. On the spatial decorrelation of stochastic solar resource
variability at long timescales. Solar Energy 117, 46 – 58.

Perez, R., Ineichen, P., Seals, R., Zelenka, A., 1990. Making full use of the clearness index for
parameterizing hourly insolation conditions. Solar Energy 45 (2), 111 – 114.

Perez, R., Kivalov, S., Schlemmer, J., Jr., K. H., Hoff, T., 2011. Parameterization of site-specific
short-term irradiance variability. Solar Energy 85 (7), 1343 – 1353.

http://en.openei.org
reneweconomy.com.au/ergon-imposes-new-limit-on-rooftop-solar-systems-66926/


Bibliography 246

Perez, R., Kivalov, S., Schlemmer, J., Jr., K. H., Hoff, T. E., 2012. Short-term irradiance
variability: Preliminary estimation of station pair correlation as a function of distance.
Solar Energy 86 (8), 2170 – 2176, progress in Solar Energy 3.

Perez, R., Seals, R., Michalsky, J., 1993. All-weather model for sky luminance distribu-
tion—preliminary configuration and validation. Solar Energy 50 (3), 235–245.

Pitman, C. L., Vant, L. L. (Eds.), 1978. Errors in locating the Sun and their effect on solar
intensity predictions. In: Meeting of American Section of the International Solar Energy
Society, Denver, 28 Aug 1978.

Pittock, A., 2013. Climate Change: The Science, Impacts and Solutions. Taylor and Francis.

Polo, J., Zarzalejo, L., Marchante, R., Navarro, A., 2011. A simple approach to the synthetic
generation of solar irradiance time series with high temporal resolution. Solar Energy 85 (5),
1164 – 1170.

Pourbabak, H., Kazemi, A., 2014. A new technique for islanding detection using voltage phase
angle of inverter-based DGs. International Journal of Electrical Power and Energy Systems
57 (0), 198 – 205.

Prescott, J. A., 1940. Evaporation from water surface in relation to solar radiation. Transactions
of the Royal Society of South Australia 64, 114–118.

Pressel, K. G., Collins, W. D., 2012. First-order structure function analysis of statistical scale
invariance in the airs-observed water vapor field. Climate 25, 5538–5555.
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