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Abstract 

This thesis comprises experimental investigations regarding the 

microphysical processes occurring within mesospheric clouds on Earth and 

Mars.  

CO2 trapping in amorphous ice was investigated with relevance to Earth’s 

mesosphere as a possible temporary sink of  gas phase CO2. Experimental 

limits to the trapping process were evaluated and extrapolated to 

mesospheric conditions. This process was shown to be only plausible under 

extreme conditions. Metal deposition on low temperature ice was also 

investigated with relevance to PMCs. The reactivity of Mg and K was 

evaluated experimentally and with electronic structure calculations. A 

secondary Meteoric smoke Particle (MSP) formation process was 

hypothesised, with calculations suggesting this will impact the distribution of 

MSPs in the mesosphere during cloud season. 

In regards to the Martian mesosphere, microphysical processes that 

influence CO2 cloud formation have been investigated using a novel 

experimental system. Mass distributions of CO2 nucleation on nanoparticles 

were used to determine variables critical to modelling CO2 cloud formation. It 

is predicted here that lower temperatures than previously thought would be 

required to form CO2 clouds in the mesosphere. The crystal structure of CO2 

ice under Martian conditions has also been experimentally investigated, with 

a cubic crystal structure determined (CO2-I). Temperature dependent 

parameters of CO2-I were applied to rates of nucleation and sedimentation 

for CO2 ice particles. 
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1 Introduction to Mesospheric clouds on Earth and Mars 

 

This chapter provides the current understanding in the literature regarding 

mesospheric clouds on Earth (section 1.1) and mesospheric CO2 clouds on 

Mars (section 1.2). Scientific questions relating to the microphysical gas-

phase and surface processes of ice particles occurring in these clouds are 

posed by highlighting gaps in the literature. These questions are 

summarised as research questions and project aims in section 1.4. 

1.1 The Earth’s mesosphere 

The mesosphere of Earth lies between the stratosphere and the 

thermosphere covering an altitude range of approximately 50 – 100 km. The 

temperature of the mesosphere decreases with increasing altitude due 

primarily to reduced solar heating of the rarefied atmosphere and increased 

cooling by CO2 emission. The mesopause is where the coldest temperatures 

on Earth are observed (as low as 90 K under extreme conditions) [Lübken et 

al., 2009]. Extra-terrestrial input of meteoric material to this region of the 

atmosphere from above, and vertical mixing from below means the 

mesosphere, although rarefied, is home to a series of complex gas and 

surface chemistry processes (discussed in subsection 1.1.1). The 

mesosphere is also home to the highest altitude clouds on Earth, Polar 

Mesospheric Clouds (PMCs), which are the focus of this introduction 

section. 
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1.1.1 Metal layers 

Meteoric material enters the upper atmosphere (total input of material 

43 ± 14 t d-1) at high speeds (12 – 70 km s-1), leading to ablation of a fraction 

of the material due to frictional heating [Carrillo-Sánchez et al., 2016]. The 

injection rates for a variety of metals, predicted by the Chemical ABlation 

MODel (CABMOD) [Vondrak et al., 2008], for a 5 µg meteoroid entering the 

atmosphere at 20 km s-1, are shown in the top panel of Figure 1.1. After 

release of the metals at altitudes relative to the characteristic temperature 

profile at which they ablate in relation to the velocity of the particle, the 

metals undergo ion and neutral chemistry, producing layers of metal atoms 

in the upper mesosphere. Subsequent gas-phase reactions of these metals 

leads to the formation of stable reservoirs (e.g. metal oxides and silicates), 

which polymerize into Meteoric Smoke Particles (MSPs) [Plane, 2003; 

Saunders and Plane, 2006]. Using Fe as an example, the most likely MSP 

constituents are: goethite (α-FeOOH); hematite (Fe2O3); pyroxene (FeSiO3); 

and fayalite (Fe2SiO4) [Plane, 2012]. This loss of metals to form MSPs is 

replenished by constant ablation of fresh meteoric input (e.g. Fe has an 

injection rate of approximately 0.01 atom cm-3 s-1 at 80 km) [Carrillo-Sánchez 

et al., 2016]. MSPs are a significant source of refractory nanoparticles (<15 

nm radius) in the mesosphere of Earth [Plane, 2012], illustrated by a 

predicted MSP distribution shown in the bottom panel of Figure 1.1 [Plane et 

al., 2014]. These MSPs are the likely source of ice nucleating particles 

(INPs) for PMCs, discussed in more detail in subsection 1.1.3 [Hervig et al., 

2012]. Metals can also be taken up on the surface of mesospheric ice 

particles due to the overlap in the altitude range of the metal layers with 

PMCs; this is discussed in detail in subsection 1.1.6 [Plane et al., 2004]. 
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Figure 1.1: In the top panel an example of a modelled ablation profile for a 5 

µg meteoroid is shown. Taken from [Vondrak et al., 2008]. In the 

bottom panel an MSP size distribution for the mesosphere is shown, 

calculated using a 1-D microphysics model for an ablated meteoric 

input of 5 t d-1. Adapted from Plane et al. [2014].  
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1.1.2 PMCs 

PMCs (also known as noctilucent clouds (NLCs)) are in terms of cloud types 

on Earth, a relatively newly observed phenomenon, with the first 

observations made two years after the 1883 eruption of Krakatoa [Gadsden 

and Schroder, 1989]. For a review on the early research into PMCs, Thomas 

[1991] provides a comprehensive summary of pre-1991 investigations. 

These early studies lacked a lot of the quantitative capabilities of modern 

studies, with recent developments in satellite technology, radar and lidar 

leading to a greater understanding of the microphysical properties of PMCs 

that are discussed within section 1.1. PMCs have also been tentatively 

linked to climate variability, suggested as a sensitive indicator of climate 

change in the mesosphere due to changing temperature and water vapour 

[Thomas and Olivero, 2001]. Recent analysis of data from 1979 – 2013 

highlighted long term trends, with cooling of 0.58 ± 0.32 K decade-1 at an 

altitude of 83 km [Berger and Lübken, 2015]. 

1.1.3 Microphysics of PMCs 

PMCs typically form in the polar summer mesopause region, at 

temperatures below 145 K [Rapp and Thomas, 2006]. Weaker PMCs have 

also been observed at mid-latitudes [Hervig et al., 2016b]. The temperatures 

in the 80 – 90 km region for PMC formation are typically 125 - 145 K but can 

reach temperatures as low as approximately 90 K [Lübken et al., 2009]. 

Negative temperature perturbations caused by the propagation of gravity 

waves from the lower atmosphere can lead to favourable supersaturation 

conditions for PMC formation and are observed in the cloud morphology as 

wave structures [Chandran et al., 2012; Yue et al., 2014].  
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Wegener [1912] first suspected that mesospheric clouds, like other terrestrial 

clouds, were formed mainly of water ice. This was reinforced by 

observations of  water ice supersaturations and temperature associated with 

PMCs. Using data from the HALogen Occultation Experiment (HALOE) 

instrument on the Upper Atmosphere Research Satellite (UARS), water ice 

was confirmed as the primary component of PMCs by Hervig et al. [2001]. 

Observed IR spectra of PMCs showed good agreement with model 

simulations of ice particle extinction.     

Homogeneous nucleation, heterogeneous nucleation and ion-induced 

nucleation of water ice are the pathways for PMC formation in the 

mesosphere, with nucleation occurring in the deposition mode (condensed 

from the vapour phase) because of the low temperatures and pressures in 

this region of the atmosphere. It has been hypothesised that below 125 K 

ion-induced nucleation could produce populations of small ice particles in the 

mesosphere [Arnold, 1980; Gumbel et al., 2003]. Similarly, homogeneous 

nucleation requires low temperatures to occur and, until recently, was 

thought to be of negligible importance in the mesosphere [Gadsden and 

Schroder, 1989]. However, it has been shown through a 1D model that, 

under certain mesospheric conditions (≤ 110 K and a H2O mixing ratio of 

1 ppmv), 104 - 105 cloud particles cm-3 can be produced homogeneously. 

This is most likely to occur during fast cooling rates (>0.5 K min-1) where 

super-saturations can reach a homogeneous threshold before H2O vapour is 

depleted by heterogeneous crystal growth [Lübken et al., 2009; Murray and 

Jensen, 2010].  
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Heterogeneous ice nucleation is thought to be the most prominent pathway 

to nucleation of ice particles in the mesosphere, where a reduction in the 

energy barrier to nucleation is achieved in the presence of suitable ice INPs. 

This enables nucleation at more typically observed mesospheric conditions 

compared to ion-induced or homogeneous nucleation. [Rapp and Thomas, 

2006].  

MSPs are thought to be the major INP source in the mesosphere of Earth 

with their composition and formation discussed in subsection 1.1.1. 

Observational evidence of MSP inclusion in PMC ice was achieved using 

measurements from the Solar Occultation For Ice Experiment (SOFIE) 

spectrometer on the the Aeronomy of Ice in the Mesosphere (AIM) satellite, 

suggesting that 0.01 – 3% by volume of PMC ice particles were MSPs 

[Hervig et al., 2012]. Observations of ice particle size by the Cloud Imaging 

and Particle Size (CIPS) instrument on AIM were reconciled with SOFIE 

data when a 0.5% volume inclusion of MSPs was assumed [Bailey et al., 

2015], in agreement with in situ rocket-borne dust probe measurements of 

ice fragments [Havnes et al., 2014]. 

The phase of H2O-ice in the mesosphere has been an area of some debate, 

as until recently it was assumed to form Crystalline Solid Water (CSW), 

regardless of the fact that Amorphous Solid Water (ASW) is known to exist 

under mesospheric conditions [Rapp and Thomas, 2006]. Experimentally it 

has been shown that at temperatures below 130 K ASW can form, predicted 

in the mesosphere to convert to CSW on a timescale of hours [Kohl et al., 

2005; Murray and Jensen, 2010]. Using observations from SOFIE and 

modelled extinctions for ASW, Hervig and Gordley [2010] concluded that 



- 26 - 

crystalline cubic ice was the primary phase in PMCs but could not rule out 

undetected ASW. This understanding is important due to the lower interfacial 

energy of ASW compared to the crystalline forms (cubic and hexagonal), 

which in turn leads to a lower energy barrier to nucleation. 

With heterogeneous nucleation being the dominant process of ice formation, 

there is a great deal of interest in the types of ice-nucleating particle that are 

present in the mesosphere and how they interact with H2O vapour. 

Investigations into mesospheric particles have been undertaken with a focus 

on their impact on ice formation. Comparisons of model studies of PMCs to 

lidar observations have shown that both an understanding of the 

mesospheric circulation processes and the nucleating efficiency of the INP is 

crucial for reproducing observed PMCs [Asmus et al., 2014; Wilms et al., 

2016].  

The ice-nucleation capabilities of MSP analogues have been investigated 

experimentally with relevance to the upper troposphere and stratosphere 

using the AIDA chamber [Saunders et al., 2010]. Fe2O3, MgO and SiO2 were 

found to be reasonably efficient INP when evaluated with Classical 

Nucleation Theory (CNT) above 180 K. These temperatures are still too high 

to apply to the mesosphere but under mesospheric conditions it is 

speculated that further reductions in efficiency would be observed. This is in 

line with measurements of H2O nucleation on a silicon wafer at ≥ 150 K 

[Trainer et al., 2009]. Currently the contact parameter and saturation ratios 

for heterogeneous nucleation on suitable INPs such as MSP analogues 

studied under mesospheric conditions are not yet known, but are currently 

under investigation [Nachbar et al., 2016a]. 
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1.1.4 Vertical structure of PMCs 

Figure 1.2 provides a summary of the processes that are involved in the 

formation of a PMC. Via the nucleation pathways discussed in section 1.1.3, 

ice number density increases in the presence of sufficiently high H2O vapour 

concentrations, ice nucleating particles and temperatures sufficiently below 

the H2O frost point. Ice particles are present at altitudes of 82 – 88 km but 

the vertical structure of the layer varies [Hervig et al., 2011]. The ice number 

density reduces with decreasing height, some particles sublimating at the 

expense of others who grow and sediment. This produces a smaller 

population of ice particles with increased radii at the base of the cloud [Rapp 

and Thomas, 2006]. These mesospheric ice particles are present at 

extremely small radii compared to tropospheric cloud formations (e.g. mean 

PMC ice particle radii of 30 - 80 nm [Robert et al., 2009; von Savigny and 

Burrows, 2007] while mean cirrus radii are > 1 mm [Tian et al., 2010]), with 

the largest particles at the base of the cloud scattering light to a great 

enough extent to become optically visible [von Cossart et al., 1999]. These 

large particles sublimate at the base of the cloud layer due to sedimentation 

into an unsaturated/warmer region of the mesosphere. This sublimation is 

observed as an enhancement in H2O vapour [Hervig et al., 2015].  

Polar mesospheric summer echoes (PMSE) are scattering of radar waves 

observed in the very high frequency (VHF) range, and in the mesosphere 

are caused by the interaction of electrons with ice particles [Rapp and 

Lübken, 2004]. PMSE  provide a way to observe sub-visible ice particles 

above the PMC layer, due to charging of the ice particles. These ice 
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particles become charged due to the fact they are immersed in the plasma of 

the D-region of the ionosphere, which leads to sharp gradients of electron 

number densities and therefore irregularities in the radio refractive index. 

 

Figure 1.2: General summary of the evolution of ice particles within a 

mesospheric cloud (NLC/PMC) and the presence of PMSEs. Adapted 

from Rapp and Thomas [2006].  

 

1.1.5 CO2 and H2O in the mesosphere 

The relative composition of some gases in the mesosphere is markedly 

different compared to the lower atmosphere. This may have implications 

concerning the composition of mesospheric ice particles due to the ability of 

ice to trap and adsorb gases. Figure 1.3 shows data from satellite 

observations with model fits and clearly reveals that CO2 is well mixed in the 

atmosphere up to approximately 80 km, above which ultraviolet (UV) 

photolysis of CO2 to CO and diffusive separation become the dominant 

processes. This results in a rapid decline in CO2 mixing ratios in the 
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thermosphere. Increases in anthropogenic carbon oxide (COx) emissions are 

leading to an increase in the overall upper atmospheric concentrations, with 

a global increase of ~20 ppm decade-1 at an altitude of 80 km [Emmert et al., 

2012; Garcia et al., 2014]. At PMC altitudes the CO2 concentration (using 

trends up to 2015) is above 360 ppm, which will continue to increase for the 

foreseeable future [Yue et al., 2015].  

 

Figure 1.3: Average volume mixing ratios for CO, CO2 and COx 

(2004 - 2012) in the Earth’s mesosphere, from the Atmospheric 

Chemistry Experiment (ACE) and the National Centre for Atmospheric 

Research (NCAR) model. Reproduced from Emmert et al. [2012]. 

 

H2O vapour is present in significantly lower concentrations than CO2, even 

during the summer when concentrations are enhanced during the PMC 

season. Atmospheric upwelling and methane (CH4) oxidation are thought to 
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be the main sources of mesospheric H2O vapour [Rong et al., 2012; 

Thomas, 1991]. Mesospheric H2O concentrations in the northern 

hemisphere (77ºN) are increasing at a rate of 0.07 ± 0.03 ppm decade-1 

[Hervig et al., 2016a]. H2O mixing ratios for the summers of 2007 and 2008 

at mesospheric altitudes are shown in Figure 1.4 and are determined from 

Microwave Limb Sounder (MLS) retrievals [Rong et al., 2010]. At PMC 

altitudes, H2O mixing ratios can vary from 0 to 10 ppm at the height of the 

PMC cloud season. This leads to a large ratio of CO2:H2O in the 

mesosphere (>37:1) compared to the lower atmosphere (>0.01:1). This large 

ratio raises questions about the interactions of H2O ice in PMCs and gas-

phase CO2 under these conditions. 

 

 

Figure 1.4: Profiles of altitude versus time for H2O mixing ratios from the 

MLS on board the Aura satellite. The bottom abscissa indicates days 

from the summers solstice (DFS). Adapted from Rong et al. [2010]. 
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It has been shown through the use of temperature-programmed desorption 

(TPD) experiments and Infra-red (IR) spectroscopy studies that CO2 can be 

effectively trapped within ASW [Galvez et al., 2008]. However, these 

experiments so far have not been undertaken at conditions relevant to the 

mesosphere of Earth. Ultra-high vacuum (UHV) studies using CO2:H2O 

mixed ices have often focused on the interstellar medium (ISM). Here the 

temperatures are often below atmospheric relevance (<90 K), and high 

H2O:CO2 ratios have been used as 60-70% of interstellar ice is H2O 

[Escribano et al., 2013; Galvez et al., 2007; Hodyss et al., 2008b]. More 

relevant studies at higher CO2:H2O ratios and pressures have focused on 

the Martian regolith which is a seasonal layer of ice that forms at the surface. 

This involved studies at higher temperatures of 140 – 200 K comparable to 

the Martian polar regions during winter (discussed in section 1.2) [Bar-nun et 

al., 1985; Mitterdorfer et al., 2011; Trainer et al., 2010]. Often in these 

studies, although the ratio of gases is known the actual flux of molecules to 

the surface is not constrained. Formation of ASW has been proposed In the 

mesosphere and could persist for several hours before crystallisation to 

CSW occurs [Murray and Jensen, 2010]. Given the high ratios of CO2:H2O 

(> 37:1), increasing trends in concentrations and possible ASW formation, it 

may be possible to trap CO2 in ice under mesospheric conditions. The ice 

particles would then act as a temporary sink for gas phase CO2. 

1.1.6 Metal uptake on PMCs 

As well as being involved in the initial nucleation of ice particles in PMCs 

through formation of MSPs, it has been shown that metals from the layers 

discussed in sub section 1.1.1 can also be efficiently removed from the gas 
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phase by ice in the mesosphere. Lidar measurements at Spitzbergen (78ºN) 

of the K layer along with PMSE and PMC observations, showed a reduction 

in the underside of the layer in the presence of PMC [Lübken and Höffner, 

2004; Raizada et al., 2007]. Satellite observations have also highlighted the 

correlation between PMC occurrence, and depletion of the underside of the 

K layer at high latitudes [Dawkins et al., 2015]. In the case of Fe, bite-outs 

have been observed in the underside of the metal Layer in the presence of 

PMCs [Gardner et al., 2005; Plane et al., 2004]. The depletion of the Fe 

layer by heterogeneous uptake on PMCs is shown in Figure 1.5. Based on 

measurements from the Scanning Imaging Absorption Spectrometer for 

Atmospheric CHartographY (SCIAMACHY) on board Envisat, an anti-

correlation between Mg density and PMC radiance was observed at high 

latitudes, tentatively suggesting Mg may be depleted by PMCs [Langowski et 

al., 2015].  

 

Figure 1.5: Simultaneous retrievals of atomic Fe density and PMC 

backscatter (expressed as equivalent Fe atoms cm-3) showing a bite-

out in the underside of the Fe layer in the presence of PMC. Adapted 

from Plane et al. [2004]. 
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Experimentally, the uptake of metals on ice has been previously investigated 

with applications to PMCs, showing efficient uptake (uptake coefficient close 

to 1) for Na and K at 80 - 150 K and Fe at 135 – 150 K, explaining the 

observed metal depletion during PMC events [Murray and Plane, 2005]. A 

study by Frankland and Plane [2015] found that Fe was efficiently released 

from the ice into the gas phase by energetic ion sputtering by Ar+, though did 

not co-desorb when the ice sublimated. Investigations into the photoelectric 

emission of K, Na and Li on ice have also been undertaken, with the decay 

in K signal thought to be due to KOH formation [Vondrak et al., 2006; 

Vondrak et al., 2009]. The uptake and reactivity of Mg on ice and 

experimental determination of the reactive products of K on ice have not 

been experimentally investigated previously. An understanding of these 

metal ice interactions is pertinent for understanding metal layer chemistry in 

the mesosphere and the formation of MSPs. 
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1.2 The Martian mesosphere 

The Martian atmosphere has important differences when compared to that of 

the Earth, both dynamically and in its composition. These differences arise 

from influences during the evolution of the planets, and orbital, size and 

topographical differences. Mars atmosphere consists of 96% CO2 with trace 

species including Ar, N2, O2 and CO, with H2O vapour also being present at 

the surface (0.03%) [Mahaffy et al., 2013; Prinn and Fegley, 1987]. 

The surface atmospheric density on Mars is significantly lower than Earth 

with average surface pressures varying from approximately 4 - 8 mbar 

[Millour et al., 2008]. This pressure range is due to seasonal variations with a 

pressure minimum during winters caused by condensation of up to 20% of 

atmospheric CO2 onto the polar caps forming a solid CO2 regolith [Hourdin 

et al., 1993; Noguchi et al., 2014]. The mesosphere of Mars extends from 

approximately 50 to 100 km with pressures ranging from 10-2 to 10-4 mbar 

and temperatures as low as 80 K [Forget et al., 2009]. Figure 1.6 shows 

temperature profiles recorded close to the Martian northern hemisphere 

summer solstice and represent a relatively warm profile compared to Martian 

winter [Leovy, 2001]. Temperature profiles on Mars are notably different to 

Earth, one significant difference being a less varied profile at higher altitudes 

with the absence of clear temperature maxima and minima. Mars does not 

have a stratosphere like Earth due to the absence of an O3 layer. This 

means vertical transport to the mesosphere is a more prominent process in 

controlling local temperature conditions. Daily variations in temperature are 

extreme with the rarefied dry atmosphere meaning heat is radiated quickly 

from the surface at night. H2O and CO2
 are atmospherically present as 
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vapour and as clouds (tropospheric and mesospheric) with sub-zero surface 

temperatures and pressures too low to accommodate significant liquid H2O 

[Smith, 2002; Vincendon et al., 2011]. Atmospheric H2O and more 

specifically CO2 ice in the form of clouds is discussed in greater detail in the 

following subsections. 

 

Figure 1.6: Martian atmosphere temperature profiles for the Viking landers 

compared to a standard earth atmosphere temperature profile. A and C 

show the Martian adiabatic lapse rate and CO2 condensation 

temperature respectively. Adapted from [Leovy, 2001]. 
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1.2.1 CO2 ice clouds 

CO2 ice clouds on Mars are an extremely interesting atmospheric 

phenomenon, not just because they involve a substance other than H2O ice, 

but because they involve condensing the major constituent of the 

atmosphere. Unlike H2O ice clouds, this produces crystal growth that is not 

typically diffusion limited. Although CO2 ice is present on other planetary 

bodies, Mars is currently the only known planet where study of these 

unusual cloud formations is feasible. An understanding of CO2 clouds is 

crucial to accurately model the Martian atmosphere and assess the 

habitability of other extrasolar planets [Selsis et al., 2007]. CO2 clouds may 

also be of importance for understanding past Martian climate, in which CO2 

clouds in an early denser atmosphere could have warmed the Martian 

surface sufficiently to allow for liquid water [Forget and Pierrehumbert, 1997; 

Forget et al., 2013; Mischna et al., 2000; Ramirez and Kasting, 2017; 

Wordsworth et al., 2013].  

The first observations of CO2 ice in the Martian atmosphere were performed 

by Herr and Pimentel [1970] using data from the Mariner 6 and 7 missions. A 

comparison of the observed reflectance at 4.3 µm with laboratory spectra for 

solid CO2 suggested its presence within the atmosphere. The Mars 

Pathfinder mission in 1997 took images of blue cirrus-like features from the 

Martian surface (Figure 1.7) that further suggested the presence of high 

altitude CO2 clouds [Smith et al., 1997a]. 
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Figure 1.7: Picture taken from the Mars pathfinder rover of a suspected high 

altitude CO2 cloud. Reproduced from Smith et al. [1997a]. 

 

Many studies produced indirect evidence of CO2 clouds based on observed 

clouds linked to low atmospheric temperatures in which it would be possible 

for CO2 to condense (see, for example [Bell et al., 1996] or Clancy and 

Sandor [1998]). The first comprehensive spectral identification of Martian 

mesospheric CO2 clouds was achieved in 2006 using the Observatoire pour 

la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on board 

the Mars Express satellite. Montmessin et al. [2007] identified the 

characteristic solid CO2 reflectance at 4.26 µm as well as ruling out the 

presence of H2O ice or dust clouds.  

Geographical and seasonal mapping of these high level CO2 clouds has 

since been undertaken with an ever-increasing library of observed cloud 

formations. Cloud observations in the mesosphere are mainly attributed to 

CO2 ice, while H2O clouds are a minor component [Vincendon et al., 2011].  

Some example images from the Mars Express satellite are shown in Figure 
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1.8. The full range of these observed mesospheric CO2 clouds covers 

altitudes from 60 to 100 km [Clancy et al., 2007; Montmessin et al., 2006].  

 

 

Figure 1.8: Pictures containing high altitude Martian cloud formations from 

the High Resolution Stereo Camera (HRSC), onboard the Mars 

express satellite.  Reproduced from Maattanen et al. [2010]. 

 

Mesospheric CO2 clouds are mostly constrained to equatorial regions 

(between 20ºN and 20ºS) around the northern hemisphere summer solstice 

at solar longitudes (Ls) of 0º - 140º when the mesosphere is coldest 

[Listowski et al., 2013]. For reference in relation to the northern hemisphere, 

Ls = 90º is the summer solstice and Ls = 270º is the winter solstice. The two 

main types of these clouds vary depending on the time of day with daytime 
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and night-time clouds at altitudes of approximately 65 to 85 km and 

90 to 100 km respectively. Night-time clouds consist of smaller particle radii 

(approximately 0.1 µm) compared to their daytime counterparts (1 – 3 µm 

radii) due to the higher altitude at which they form [Montmessin et al., 2007; 

Vincendon et al., 2011]. A third, less frequently observed type occurs in mid-

latitude regions at altitudes of 53 – 62 km with mean particle radii of 2 µm 

[Maattanen et al., 2010; McConnochie et al., 2010]. These high altitude 

clouds are not typically observed during the Mars dust storm season at 

Ls =180º - 330º  [Clancy et al., 2007; Zurek and Martin, 1993]. This is due to 

warming of the atmosphere by the dust layer, which leads to mesospheric 

temperatures that are not conducive for cloud formation [Forget et al., 1999; 

Smith et al., 2002].  

CO2 clouds are also present within the troposphere at altitudes less than 

20 km, forming in polar regions during the night with particle radii up to 

100 µm [Hayne et al., 2012]. They form predominantly during northern 

hemisphere winter when temperatures closer to the surface are low enough 

for CO2 condensation [Hu et al., 2012]. Unlike mesospheric clouds these 

tropospheric clouds can precipitate CO2-snow down to the Martian surface, 

when temperatures are low enough (< 145 K). This is thought to contribute 

to the accumulation of ice at the poles during winter, a process that reduces 

the atmospheric pressure by up to 20% [Hayne et al., 2014; Hourdin et al., 

1993]. 

1.2.2 Microphysics of CO2 clouds 

Particle radii as large as 3 µm in daytime mesospheric CO2 clouds are 

surprisingly large, considering these clouds are formed at altitudes of up to 
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85 km [Vincendon et al., 2011] where the sedimentation velocity exceeds 

10 m s-1. These particles are much larger than the small ice crystals of 

Earth’s PMCs (subsection 1.1.3) [Hinson and Wilson, 2002]. This large 

particle size is not assisted by rapid crystal growth which had been 

previously assumed due to the abundance of available CO2. The rarefied 

atmosphere limits heat transport while maintaining a high temperature 

difference between the crystal and gas phase, which leads to low crystal 

growth rates after a critical ice germ has formed. As a consequence, this 

limits the maximum ice particle radii [Listowski et al., 2013]. It is also 

hypothesised that mesospheric updrafts caused by moist convective 

processes may counteract the rapid sedimentation of the particles and 

therefore account for the larger than expected CO2 particle sizes [Colaprete 

and Toon, 2003; Maattanen et al., 2010]. As with H2O clouds the amount of 

available INP also affects ice particle size with increased INP concentrations 

leading to predictions of a greater number of smaller CO2 crystals [Colaprete 

et al., 2008; Maattanen et al., 2005]. 

The extremely low temperatures required for CO2 deposition (CO2 frost point 

temperatures as low as 95 K) are not normally reached in the mesosphere. 

This has led to speculation that the propagation of gravity waves is required 

to achieve localised areas of lower temperatures or ‘cold pockets’ in a similar 

fashion to the Earth’s mesosphere [Clancy and Sandor, 1998; Gonzalez-

Galindo et al., 2011]. Recent studies have found a correlation between CO2 

cloud occurrence and suitable conditions for gravity wave propagation during 

equatorial summer. This suggests that gravity waves are necessary to 

create these ‘cold pockets’ in which CO2 clouds can form [Spiga et al., 

2012]. These localized low temperature regions constrain the location and 
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the vertical and horizontal morphology of the clouds. The wave patterns 

seen in the cirrus-like structures shown in Figure 1.8 illustrate the gravity 

waves effects. 

Homogeneous nucleation of CO2 is predicted to require very high 

supersaturation conditions and is thought to be an unlikely pathway to CO2 

cloud formation in the Martian atmosphere under realistic temperature 

conditions [Maattanen et al., 2005; Maattanen et al., 2010]. It is also thought 

that ion-induced nucleation would not be able to compete with 

heterogeneous nucleation in CO2 clouds on Mars [Listowski et al., 2014]. As 

is the case for PMCs on Earth, heterogeneous ice nucleation via deposition 

of CO2 is therefore thought to be the likely nucleation pathway to cloud 

formation [Maattanen et al., 2005].  

Experimental studies concerning heterogeneous Martian CO2 ice nucleation 

are extremely limited compared to Martian and terrestrial H2O ice nucleation. 

Generally experimental studies regarding CO2 ice have been tailored 

towards the similar focus of the CO2 trapping described in subsection 1.1.5, 

regarding its occurrence in the ISM or its presence on Mars polar caps 

[Escribano et al., 2013; Malyk et al., 2007; Trainer et al., 2010]. The only 

experimental study to date of the kinetics of CO2 ice nucleation relevant to 

the Martian atmosphere (theory detailed in subsection 1.3) was undertaken 

by Glandorf et al. [2002] using a similar UHV-based experimental setup. 

Instead of dust or MSP analogue, H2O ice condensed onto a Si wafer was 

used as a substrate. Via the use of reflective absorbance infra-red 

spectroscopy (RAIRS) the broadening and strengthening of the asymmetric 

stretch and bend absorbance features of CO2 were used to estimate the 
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point of nucleation. This led to a series of critical saturation (Scrit) and contact 

parameters (m) for CO2 ice nucleation across the temperature range 

130 to 140 K. Using CNT a critical nucleation rate of 1 cm-2 s-1 was 

assumed, determining a Scrit of ~1.34 and an m = 0.95, suggesting H2O 

would act as an efficient INP under these conditions (m = 1 is a theoretical 

“perfect” INP). A lack of consideration for the effect of dust particles in 

heterogeneous CO2 nucleation (possible INPs are discussed in subsection 

1.2.3) is apparent in the literature, while the temperatures studied are ≥ 40 K 

above typical saturation temperatures in the mesosphere. Subsequent 

modelling of CO2 clouds has often relied on this set of CNT parameters 

(such as Maattanen et al. [2005], the theory of which is described in 

subsection 1.3). Due to the limitations of the dataset, approximations were 

required for CO2 nucleation on dust with a contact parameter for water ice on 

dust used instead (m = 0.97). This again lacks applicability to CO2 clouds 

which are observed at mesospheric altitudes.  

CO2 clouds included in Mars general circulation models have sometimes 

treated CO2 nucleation as activated when any super-saturation was 

achieved (i.e. S > 1) regardless of the likely need for increased 

super-saturation for significant nucleation rates to occur [Forget et al., 1998]. 

The first model to allow for super-saturation conditions and inclusion of 

mesospheric CO2 clouds again used the values of Glandorf et al. [2002] but 

overestimated ice crystal growth rates [Colaprete et al., 2008]. Recent 

developments have better accounted for reduced growth rates at high 

supersaturations allowing for more accurate modelling of cloud lifetimes, 

effective crystal radii and opacities when compared to observations 

[Listowski et al., 2013; Listowski et al., 2014]. Modelling by Yiğit et al. [2015] 
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used sub grid-scale gravity waves to produce local temperature minimums 

necessary to facilitate CO2 nucleation. Yiğit et al. [2015] was generally able 

to use this method to reproduce observed clouds but did not include detailed 

microphysics, instead determining cloud formation at S = 1.35 (taken from 

Glandorf et al. [2002]). This led to an over-prediction of clouds in polar 

regions and globally at high altitudes. Due to the steep temperature 

gradients required from gravity waves to form CO2 clouds, understanding the 

microphysics and determining cloud activation temperatures is crucial to 

correctly model observed cloud occurrence. 

1.2.3 Possible INPs in Martian clouds 

The variety of possible INPs present for heterogeneous ice nucleation on 

Mars (both for H2O and CO2) shows marked differences compared to Earth. 

Mars does not have INP sources such as oceanic and biogenic aerosols, so 

there is a smaller variety of possible INPs available. Over recent decades, 

using satellite measurements as well as data from the Viking Landers and 

the Mars Exploration Rovers, it has become apparent that Martian surface 

dust has a reasonably global uniformity [Yen et al., 2005]. The dominant 

mineralogy is that of basaltic rocks, with feldspar rich dusts, Mg/Fe 

phyllosilicates such as Kaolinite (Al2Si2O5(OH)4) and zeolites identified at 

multiple locations on the Martian surface [Aronson and Emslie, 1975; Clark 

et al., 1982; Mustard et al., 2008; Ruff, 2004]. The recent Mars Curiosity 

mission has led to one of the most comprehensive analyses of dust from the 

Martian surface to date, via X-ray diffraction (XRD) with the major 

components being plagioclase feldspars and forsteritic olivine (Mg2SiO4) 

[Bish et al., 2013]. 
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As well as the lack of variety in aerosol sources, the high frequency of dust 

storms (including global storms) is thought to be the reason behind the 

similarities in surface dust mineralogies regardless of geographic location 

[Bish et al., 2013; Elteto and Toon, 2010]. These dust storms can inject 

aerosols high into the mesosphere (> 60km) and could be a source of INP 

for CO2 and H2O clouds [Clancy et al., 2010]. For night-time CO2 clouds 

(forming above 80 km) the dust maxima (defined as the point of highest dust 

mixing ratio) is typically below 30 km [Heavens et al., 2011], while for 

daytime clouds (forming as low as 60 km) the dust maxima is up to 65 km 

[Guzewich et al., 2013]. This suggests Martian Dust particles (MDPs) could 

in some cases act as INP for daytime CO2 clouds in the lower mesosphere. 

However, modelling of the mesosphere has shown that elevated surface 

dust alone cannot account for the thickness of observed high altitude CO2 

clouds [Listowski et al., 2014]. The occurrence of MDPs at high altitudes is 

also often coupled with a warming of the atmosphere due to increased dust 

loading, which produces conditions not conducive to CO2 ice formation.  

A sporadic ionospheric layer has been observed between 65 and 110 km 

and attributed to the ablation of meteors [Pätzold et al., 2005]. Using 

instruments on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) 

spacecraft Mg+ and Fe+ has been observed in the upper atmosphere of Mars 

[Benna et al., 2015; Schneider et al., 2015]. It has also been predicted that 

Mg and Fe layers (and subsequent polymerisation to form MSPs e.g. MgOH 

and MgCO3) could be present at CO2 cloud altitudes [Whalley and Plane, 

2010]. It is therefore thought that, in regards to high altitude clouds, MSPs 

could act as INP similarly to PMCs on Earth (discussed in subsection 1.1.1) 

[Listowski et al., 2014]. H2O ice is also thought to be a possible INP for 



- 45 - 

heterogeneous nucleation of CO2 and is currently the only INP that has been 

experimentally investigated (Glandorf et al. [2002], see subsection 1.2.2) 

[Isenor et al., 2013; Pollack, 1977]. H2O ice clouds have been observed up 

to altitudes of 80 km during southern spring consistent with observations of 

H2O concentrations above saturation [Maltagliati et al., 2013; Vincendon et 

al., 2011]. However CO2 clouds are not typically observed at this time, and 

during their main occurrence period, H2O supersaturations are confined to 

altitudes below 50 km. This further brings into question the validity of using 

the H2O substrate measurements of CO2 nucleation by Glandorf et al. [2002] 

to describe high altitude CO2 clouds and the need for study of nucleation on 

particles more analogous to the mesosphere. 

1.2.4 Crystallographic properties of CO2 ice on Mars 

The structure and thermodynamic properties of CO2 ice particles are also 

important for building a detailed understanding of the formation of 

mesospheric CO2 clouds. As discussed in the previous subsections, 

accurate parameterization of these clouds helps in understanding the 

Martian climate as a whole (past and present). This understanding of particle 

properties is also pertinent for precipitation and CO2 ice formation at the 

Martian regolith [Hayne et al., 2014]. 
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Figure 1.9: Unit cell of cubic CO2-I. Carbon and oxygen atoms are indicated 

by the black and red spheres respectively. The diagram was produced 

using the software package Diamond [Crystal Impact]. 

 

Low pressure CO2 ice has previously been described with a cubic structure 

with crystal symmetry of space group Pa-3 (No. 205) [de Smedt and 

Keesom, 1924]. A single lattice parameter, a, is needed to describe the unit 

cell since a = b = c and =  =  = 90°. The cubic symmetry of the unit cell 

can be seen in Figure 1.9. The single lattice parameter of this ice (assigned 

as CO2-I) has been previously determined with limited temperature 

resolution at low temperatures (<115 K) and under unknown deposition 

pressure conditions [Keesom and Kohler, 1934a; b; Maass and Barnes, 

1926]. Given the variability in the forms of H2O ice at low temperatures and 

pressures [Murray et al., 2015], it would be worth investigating the crystal 

structure of CO2 ice under Martian atmospheric conditions.  
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Parameters related to CO2 crystal structure such as CO2 ice density vary in 

the literature at low temperatures relevant to mesospheric CO2 clouds. A 

temperature-independent CO2 density value of 1.6 g cm-3 is often used in 

nucleation and modelling studies [Listowski et al., 2013; Listowski et al., 

2014; Maattanen et al., 2007; Maattanen et al., 2005; Wood, 1999]. While 

the density of H2O ice remains relatively constant over the temperature 

range of the Martian atmosphere, it is known that the density of CO2-I ice is 

temperature dependent, but is poorly constrained through the Martian 

mesospheric temperature range. The commonly used CO2 ice density value 

of 1.6 g cm-3 is applicable to 168 K, a temperature higher than is relevant for 

CO2 cloud formation, and is based originally on density values determined 

by Maass and Barnes [1926]. This is lower than density values determined 

for CO2 ice at 83 K of 1.68 g cm-3 in a study by Keesom and Kohler [1934a] 

(later corrected by Curzon [1972]). Inaccuracies in the density value used for 

CO2 ice will affect parameters such as ice nucleation, particle growth and 

sedimentation rates in the modelling of CO2 clouds and are worth refining.  

1.3 Classical nucleation theory for mesospheric CO2 clouds 

As discussed in subsection 1.2.2 heterogeneous ice nucleation via 

deposition of CO2, in which the energy barrier to nucleation is reduced by the 

presence of an INP, is thought to be the likely nucleation pathway for CO2 

clouds on Mars [Maattanen et al., 2005]. CNT is used to describe this 

nucleation and specifically heterogeneous nucleation induced by surface 

diffusion was used in the analysis of results in Chapter 5 and 6. This theory 

assumes that CO2 molecules stick for a certain period of time on the INP and 

can then diffuse to combine and form clusters; this may result in a critical 
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cluster leading to stable nucleation of CO2 ice on the particle. Described 

here, the theory has been previously applied to the study of CO2 ice clouds 

[Listowski et al., 2014; Maattanen et al., 2007; Maattanen et al., 2005]. The 

rate of heterogeneous ice nucleation (Jhet) for a spherical INP is given by:  

𝐽ℎ𝑒𝑡 = 𝐴𝑁𝑍ℎ𝑒𝑡𝛽ℎ𝑒𝑡𝑐1,𝑠exp (
−∆𝐹ℎ𝑒𝑡

𝑘𝑇
)     (1.1) 

where AN is the surface area of the INP; Zhet is the heterogeneous Zeldovich 

factor which corrects for the dissociation of super-critical clusters; βhet 

accounts for the flux of CO2 molecules on the INP via diffusion to form the 

critical cluster; c1,s is the concentration of monomers on the INP surface and 

ΔFhet is the free energy of forming the critical cluster on the surface of the 

INP, determined from the Gibbs-Thomson equation. ΔFhet is calculated in 

relation to the homogeneous form (ΔFhom) with a reduction in the energy 

barrier by a factor f(m,x) as described in Fletcher [1958]. The complete ΔFhet 

description is given by: 

∆𝐹ℎ𝑒𝑡 = 𝑓(𝑚, 𝑥)
16𝜋𝑉2𝜎3

3(𝑘𝑇 ln𝑆)2
      (1.2) 

where V is the molecular volume in the condensed phase (mm/ρ, where mm 

is the mass of the molecule); σ the surface tension (0.08 J m-2
 taken from 

Wood [1999]); and S the saturation ratio of CO2; x is the ratio of the size of 

the INP to the critical cluster, and m is the contact parameter equal to cos θ, 

which relates to the contact angle between the INP and the nucleating 

phase. The concept of m is shown in Figure 1.10, where a reduction in the 

contact angle reduces the overall surface area of the spherical ice cluster 

while increasing the proportional surface area exposed to the INP surface. 

This gives a reduction in the energy barrier (ΔFhet) to nucleation in CNT.  
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Figure 1.10: Representation of the contact angle parameter (m) of an ice 

embryo on the surface of an INP regarding deposition ice nucleation 

using CNT.  

 

 

 

 

 

1.4 Project aims 

This literature review has highlighted several research questions and aims to 

be investigated within this thesis, that relate to the formation and 

composition of ice in the mesospheres of both Earth and Mars. Four key 

research questions and aims of this thesis are described here, two relating 

to PMCs on Earth (section 1.4.1) and two relating to mesospheric CO2 

clouds on Mars (section 1.4.2). 

1.4.1 Research questions relating to PMCs on Earth 

The Earth’s mesosphere contains within it the highest and coldest cloud 

formations on Earth, where temperatures can reach as low as 90 K as well 

as relatively high ratios of CO2:H2O (> 37:1) [Emmert et al., 2012; Lübken et 

al., 2009]. CO2 trapping in H2O ice matrices has been shown to occur under 
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different ratios of CO2:H2O and temperatures than is relevant for the 

mesosphere [Galvez et al., 2008; Hodyss et al., 2008a; Hodyss et al., 

2008b; Mate et al., 2008]. The first aim of this project is therefore to 

investigate experimentally whether high CO2:H2O ratios could lead to 

gaseous CO2 trapping within mesospheric ice particles, acting as a 

temporary sink of CO2. This question is answered through the use of TPD 

experiments in a UHV chamber via deposition of representative CO2 and 

H2O fluxes, with the results of this aim detailed in Chapter 3. 

Uptake of metals on PMCs has been shown to significantly deplete the metal 

layers of Fe, Na and K in the mesosphere [Gardner et al., 2005; Plane et al., 

2004; Raizada et al., 2007]. It has been suggested that mesospheric Mg 

could also be depleted by uptake on PMC ice particles [Langowski et al., 

2015]. The uptake and reactivity of Mg on ice and experimental 

determination of the reactive products of K on ice does not appear to have 

been studied experimentally. The uptake and reactivity of Mg and K is 

therefore investigated here using the UHV chamber mentioned above and 

the results are described in Chapter 4. 

1.4.2 Research questions relating to Martian mesospheric CO2 

clouds 

The mesosphere of Mars contains the only observable occurrences of CO2 

clouds. The microphysics of CO2 ice formation in these clouds, as well as the 

INP required for nucleation are currently not well understood and are subject 

to great uncertainty in cloud models. The only experimental study of CO2 

nucleation by Glandorf et al. [2002] was done using a H2O ice substrate at 

temperatures too high for the Martian mesosphere (> 130 K). CO2 nucleation 
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has not been investigated on representative nanoparticles (such as MSP 

analogues) or under more representative temperature conditions observed 

in the Martian mesosphere. In order to improve the parameterization of 

these CO2 clouds using CNT (section 1.3), CO2 deposition on analogue 

MSP nanoparticles is investigated here using a novel experimental setup 

called the Trapped Reactive Atmospheric Particle Spectrometer (TRAPS). 

The results of these experiments are discussed in Chapter 5.  

The phase diagrams of some compounds, such as water ice, display 

complexity with the presence of multiple metastable and stable phases at 

low temperatures and pressures [Hobbs, 1974; Petrenko and Whitworth, 

1999; Salzmann et al., 2011]. The CO2 ice structure has never been 

previously determined experimentally under conditions of deposition growth 

analogous to the temperature and pressure conditions of clouds in the 

mesosphere of Mars. Determination of low temperature phases of CO2 ice or 

confirmation of an existing phase of relevance to ice formation in the Martian 

atmosphere is therefore worth investigating. An understanding of the 

fundamental parameters of CO2 ice such as ice density and crystal shape 

are also important for further reducing uncertainties in the modelling of CO2 

clouds on Mars. In order to answer this aim, CO2 deposition is investigated 

under Martian temperature and pressure conditions in an environmental 

chamber, probed by XRD. The results are detailed in Chapter 6.  
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2 Experimental apparatus and instrument development 

 

This chapter describes the range of experimental apparatus used throughout 

the results chapters of this thesis, to answer the aims detailed in Chapter 1. 

A UHV chamber is described, which was used to investigate CO2 trapping in 

amorphous ice in chapter 3 and to investigate Mg and K uptake on ice in 

chapter 4. A RAIRS system is detailed which was designed and built to 

complement the analysis available for studies in the UHV chamber. Spectra 

of the IR peak positions of benzene were used to test the RAIRS system and 

evaluate its capabilities. The TRAPS instrument at KIT was used in chapter 

5 to investigate CO2 nucleation on nanoparticles. Finally, an XRD chamber 

system and flow setup is described in chapter 6 and was used to determine 

the fundamental properties of CO2 ice under Martian conditions.  
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2.1 UHV chamber studies 

In order to investigate ice particles relevant to PMCs a UHV chamber system 

was used. The UHV chamber is described in subsection 2.1.2, while the 

specific experimental methodology utilising the UHV chamber is contained 

within the results chapters 3 and 4. 

2.1.1 Why use UHV? 

The use of UHV allows for the use of a variety of analytical methods for 

nanoscale surfaces and has several key advantages over higher pressure 

systems. Due to the extreme low pressures within the UHV chamber (in this 

system, typically 3 x 10-9 mbar) the mean free path of a H2O molecule is 

approximately 19 km. This means that in the 30 cm diameter chamber 

described below, gas molecules collide far more frequently with the walls of 

the chamber than with each other. Thus, gas-surface interactions dominate 

over gas-gas interactions. This ensures that, during dosing, species directed 

at the substrate interact with the substrate surface first before interacting 

with residual gas phase molecules in the chamber. The combination of a low 

pressure environment, and the ability to resistively heat or energetically 

sputter the sample allows for the preparation of atomically clean sample 

surfaces. The molecular flux of contaminants from the residual gas is also 

drastically reduced with decreasing pressure. Under UHV conditions these 

clean surfaces can be maintained for several hours. Using the 

Hertz-Knudsen equation under the conditions of the UHV chamber 

(described in subsection 2.1.2) and assuming a sticking coefficient of 1, it 

would take several hours to build up just one monolayer (approximately 

1 x 1015 molecules) of contaminant on the sample. This is crucial for 
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experiments taking several hours that look at the interaction of thin ice films 

with monolayer scale depositions of CO2 or metal species.  Given the focus 

of the thesis, the use of a UHV chamber for the reasons discussed above 

provides a suitable environment for producing ice layers analogous to the 

nanoscale ice particles in the low pressure region where PMCs form. 

2.1.2 The UHV system 

The experimental system used in this thesis comprises at its core the central 

UHV chamber with a selection of sample preparation and characterisation 

instruments. This instrument has been described in part elsewhere 

[Frankland and Plane, 2015; Vondrak et al., 2006; Vondrak et al., 2009] and 

is described in detail here. The UHV chamber (shown in Figure 2.1) is a 

cylindrical stainless steel chamber with a diameter of 30 cm and a volume of 

approximately 25 L. This system is pumped down to pressures of 3 x 10-9 

mbar by a 550 L s-1 turbomolecular pump (Varian, TV551 Navigator), which 

in turn is backed by a high vacuum rotary pump (Varian, DS302). The 

pressure within the chamber is measured by an ionization gauge (Varian 

UHV-24), capable of measuring pressures as low as 2 x 10-11 mbar. In order 

to remove residual water from the system, and achieve lower pressures of 

10-10 mbar, the system can be baked using ceramic heaters at 450 K for 

several days. However, due to the introduction of heat-sensitive KBr 

windows for the IR system (described in section 2.2), bake out was not 

usually carried out. The UHV chamber is made up of three levels of ports 

and attachments (levels A, B and C) with Level C containing the preparation 

and characterisation instruments; a top down schematic diagram of this level 

is shown in Figure 2.1. The UHV chamber is currently equipped with a 
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monolayer deposition source (Caburn MCD LTd., e-vap 100) used for Mg 

deposition (Goodfellows, 99.9+% purity), a shrouded alkali metal dispenser 

for K deposition (Saes Getters, K/NF/4.5/25 FT10+10) and a needle valve 

(NUPRO, SS4BK) linked to a glass gas-handling line. The inert ion (Ar+ or 

Kr+) sputter source (PSP technology Ltd., ISIS 3000) is used for energetic 

ion sputtering of the sample but can be modified in order for it to function as 

a leak valve, enabling background dosing for the calibrations described in 

section 3.2. The chamber is also equipped with a quadrupole mass 

spectrometer (QMS) (Hiden, HAL 3F 301 RC PIC) which is mounted at level 

C for the experiments in this thesis but can be lowered to level A if 

necessary. 

Within the centre of the UHV chamber is a Cu(111) crystal sample of 12 mm 

diameter and 2.5 mm thickness, polished to 1 µm and oriented to ± 0.5º of 

the (111) plane. This is mounted onto the end of a liquid N2 cooled oxygen 

free high conductivity (OFHC) copper cold finger which in turn is mounted 

onto an xyzθ manipulator. The base temperature of this sample is 

dependent on the quality of the connection to the W wires when mounted, 

and has ranged from 98 – 110 K across the studies described in this thesis. 

The sample can be heated resistively by tungsten wires embedded in the 

perimeter of the Cu(111) crystal, powered by a high voltage supply (Agilent, 

6572A). The Cu crystal surface temperature is monitored using a K-type 

thermocouple positioned in a small hole on the side of the Cu(111) crystal.  
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Figure 2.1: Schematic diagrams of a top-down view of the UHV chamber 

and level C instruments (top) and side view of the Cu(111) substrate 

mounted to the OFHC copper cold finger. 

 

The needle valve and inert ion sputter source on the UHV chamber are 

directly connected to a glass gas-handling line where preparation and 

purification of gases, vapours and mixtures for use in the UHV chamber is 

carried out. The glass gas-handling line is pumped by a diffusion pump 
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(Edwards, B34431978) which is backed by a rotary pump (Edwards, E2M5). 

The pressure between the diffusion and rotary pumps is measured using a 

gauge (Edwards, 501), while the pressure in the gas line is monitored using 

two Baratron gauges, 0-10 and 0-1000 torr (MKS baratron 622A). The use of 

CO2 and H2O in this glass gas-handling line are described in Chapter 3, 

while the use of H2O, Ar and Kr are detailed in Chapter 4. 
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2.2 RAIRS system: Design and testing 

A new addition to the UHV system developed during this PhD project was a 

RAIRS system to perform IR spectroscopic measurements of species 

adsorbed to the sample within the UHV chamber. 

2.2.1 Why use RAIRS? 

Vibrational spectroscopy is a useful tool for studying the bonding of atoms 

regardless of whether they are in a gaseous or condensed phase. IR 

spectroscopy can provide specific information on the types of bonds present 

(and therefore what compounds are present), the crystal structure and the 

orientation of molecules in a sample [Backus et al., 2004]. RAIRS has also 

been used to determine the point of ice nucleation in substrate-based 

experiments [Iraci et al., 2010; Phebus et al., 2011]. RAIRS is also non-

destructive, allowing it to be combined experimentally with other analysis 

techniques without altering the sample.  

IR spectra result from transitions between quantised vibrational energy 

levels. Molecules can have a range of vibrational motions in the IR via the 

stretching and bending modes of bonds. A combination of observed IR 

absorption bands (peak position and peak shape) gives information on the 

bonds present in a molecule and can also provide information regarding 

bonding sites and molecular orientation. 

In order for a molecule to be IR active there must be a change in dipole 

moment as a result of the vibration that is induced when IR radiation is 

absorbed. The surface selection rule describes when a molecular vibration is 

IR active, as shown in Figure 2.2. When a molecule is orientated parallel to 
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the surface it is adsorbed to, the oscillating molecular dipole (µM) is 

cancelled out by the opposing force of the oscillating image molecular dipole 

(µI) of the surface. Thus the molecular vibration is IR inactive. However, 

when a molecule  is orientated perpendicular to the surface the dipole 

interactions are reinforced meaning it is IR active [Greenler, 1966].  

 

 

Figure 2.2: Illustration of the surface selection rule for RAIRS. Reproduced 
from Attard [1998]. 

 

Due to the opacity of the metal substrates used in the UHV chamber, 

transmission experiments are not a viable option leading to the use of the 

reflection mode RAIRS. The RAIRS system developed for this UHV chamber 

is described in the following subsection. 
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2.2.2 RAIRS design 

Figure 2.3 shows a schematic diagram of the UHV chamber at level A with 

the designed optical system. This consists of a Fourier transform IR (FTIR) 

spectrometer (Bruker, IFS 66/S) with an expandable spectral range from far 

IR to the near UV. This spectrometer is equipped with a mid IR source 

(Globar) that is externally cooled by deionised water (Aquatherm WGB). 

Within the interferometer of the spectrometer a germanium (Ge) on 

potassium bromide (KBr) beamsplitter (Bruker, T303/8A) is installed 

covering the spectral range of 370 – 7800 cm-1. This beamsplitter can be 

switched out to access higher wavelengths. The spectrometer is purged 

using a regulated dry N2 flow of 600 L/hr. This protects the optics and 

importantly reduces unwanted noise in the IR spectrum from the absorbance 

of CO2 and H2O. For internal sampling the system contains an IR detector 

(Bruker, DLATGS KBr) with a spectral range of 360 – 12000 cm-1. For 

external sampling the beam is rerouted through the UHV chamber by a 

custom designed optical system. 

To enable transmission of IR through the chamber and onto the sample, the 

UHV chamber was equipped with KBr vacuum viewports (MDC Vacuum 

Ltd., DN40CF) at port positions 3 and 7. These windows can become 

degraded if heated to a temperature above 320 K, which is the reason that 

the UHV chamber could not be baked out (in a typical bake out a 

temperature of 450 K is reached). This means the minimum achievable UHV 

chamber pressure was limited to the 10-9 mbar range. These conditions still 

provide the low pressures necessary for UHV work. A series of mirrors 

encased within a purged system was required in order to manipulate the 
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beam through the UHV chamber to reflect off the Cu(111) sample and out to 

an external detector. Custom designs for the purge box and detector purge 

box that house the optics are shown in Figure 2.4.  

 

Figure 2.3: Schematic diagram of the UHV chamber (level A) and Bruker IFS 

66/S FTIR spectrometer with details of the optical setup. The red dotted 

lines indicate the IR beam path from the Globar IR source within the 

spectrometer to the external mercury cadmium telluride (MCT) 

detector. 

 

The mirror system comprises a periscope arrangement in the first purge box 

(Figure 2.4a), containing a 5 cm diameter flat silver mirror to angle (as the IR 

beam exits the spectrometer) the beam at an angle of incidence of 45º. The 

second mirror is a 5 cm diameter concave silver mirror (approximate focal 

length 28 cm), that is used to focus the IR beam onto the metal substrate in 

the centre of the UHV chamber. This two mirror arrangement allows for easy 

IR beam manipulation into the chamber and ensures that the beam is 



- 62 - 

efficiently reflected at angles of incidence close to 45º (reflectance of > 95 % 

across the mid-IR range). The second purge box (Figure 2.4b) is positioned 

after the beam has passed through the UHV chamber and reflected off the 

substrate. This purge box contains a 5 cm diameter silver off-axis parabolic 

mirror, with a focal length of 10 cm (where the external detector is 

positioned). This focusing ensures that as much of the light reflected from 

the substrate as possible reaches the sensor of the detector. The external 

detector is a liq-N2 cooled mercury cadmium telluride (MCT) IR detector with 

a spectral range of 420 – 5000 cm-1 (InfraRed associates, MSL-8). The 

mirrors in the first purge box are attached to 2-point kinematic mounts while 

the parabolic mirror is attached to a 3-point kinematic mount, which allow for 

fine adjustment of the reflected angle of the IR beam.  

The purge boxes are connected to the UHV chamber through flexible 

PolyVinyl Chloride (PVC) tubing and nylon flanges in order to ensure a 

sustained purge, thereby reducing beam contamination by residual mid-IR 

absorbing gas species present in the lab such as CO2 and H2O. Both purge 

boxes are purged from the same N2 line as the spectrometer, with a needle 

valve used to distribute a comparatively reduced flow to the purge boxes. 

The use of flexible PVC tubing to connect the mirror systems increases the 

range of beam angles that can be readily accessed and enables easy beam 

alignment by shifting the position of the purge box containing the parabolic 

mirror and MCT detector. As the KBr windows on the UHV chamber are 

water soluble, both boxes contain silica gel beads in order to absorb H2O 

vapour, thus reducing the humidity within the system and minimising 

degradation of the windows. These KBr windows have excellent 

transmission across a 330 – 40000 cm-1 range, while the current optics 
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provide high reflectivity from 400 – 22000 cm-1. Combining this with the 

ability to switch the external detector and spectrometer IR source to access 

other frequency ranges (e.g. a NIR detector for the range 4000 - 12500 cm-1) 

gives great flexibility in the range of absorption bands that could be studied, 

depending on the molecule in question.  

 

Figure 2.4: Top (i) and side views (ii) of the purge box (a) and detector purge 

box (b) designs that house the external mirrors used to reroute the IR 

beam through the UHV chamber. 

 

a)i b)i 

b)ii a)ii 
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2.2.3 Use of a grazing angle 

The port positions for the reflected IR beam path described in section 2.2 

were specifically chosen to provide the highest angle of incidence possible 

(for grazing angle FTIR spectroscopy), with mirror manipulation allowing for 

calculated angles of incidence to the sample greater than 75̊ (typically 78̊ 

was achieved). This is advantageous because for a beam perpendicular to 

the sample surface the phase shift in the incident and reflection vectors 

approaches 180º so that they cancel each other out via destructive 

interference; this means that minimal absorption is observable. At increasing 

angles of incidence, changes in the phase shift lead to a sizeable electric 

vector perpendicular to the sample surface approaching maximum 

observable absorbance at an angle of incidence of 88̊ [Poling, 1970]. This is 

also advantageous because at larger angles of incidence the effective path 

length through the sample is increased and a double pass through the 

sample occurs. Thus, in accordance with Beer’s law of absorbance, the 

absorption is enhanced resulting in a strengthening of the difference 

between background and sample signal and therefore further improving the 

signal-to-noise ratio.  

2.2.4 Testing the RAIRS system 

Initial tests of the RAIRS system simply looked at improving and achieving 

the highest possible signal-to-noise through the UHV chamber. Experiments 

in which background and sample scans were taken sequentially under 

unchanged substrate conditions (115 K and 3 x 10-9 mbar) but at varying 

signal amplitude were undertaken. This was achieved by partial 

misalignment of the IR beam producing a less than optimal interferogram, in 
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order to evaluate background drift in the signal with changing amplitude. All 

spectra shown were taken at a base temperature of approximately 115 K 

due to the lower thermal conductivity of the stainless steel compared to Cu. 

The interferogram is the raw sample signal collected by the spectrometer 

before it is converted to an IR spectrum by Fast Fourier Transform (FFT) 

analysis. These comprised 560 accumulations of background spectra, 

followed by 560 accumulations of sample spectra (10 minute scans). An 

example of these initial tests is shown in Figure 2.5. Scans across different 

signal ranges illustrate that increased signal amplitude leads to reduced 

noise and highlights the deviation from a zero background at lower signal 

amplitudes. This curvature of the IR profile can be caused by slight changes 

in the experimental setup and variability in the IR detector. The effect of 

spectra curvature is reduced by increasing the signal amplitude and 

therefore optimizing the interferogram. It is clear that noise from background 

spectral features dominates in some regions, such as variability in the O-H 

stretch of H2O at wavelengths above 3000 cm-1. It should be noted that the 

absorbance in this study is shown in terms of log10(ΔR/R0),  the ratio of 

change caused by the sample (ΔR) from the background (R0) instead of 

simply absorbance units (AU). This is because in the case of FTIR a single 

beam spectrum is obtained, meaning the background has to be taken 

separately to the sample (under the same orientation, temperature and 

pressure conditions) before being recombined, effectively producing a 

fractional sample absorbance relative to the background. 
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Figure 2.5: A plot of absorbance against wavenumber illustrating the effect 

of increased signal amplitude on background drift in the measured 

absorbance for the mid-IR wavenumber range of the Bruker IFS 66/S 

instrument. Profiles are aligned to highlight the relative shift in 

absorbance profile across the mid-IR.  

 

2.2.5 RAIRS spectra of Benzene on Fe2SiO4 

In order to test the capabilities of the newly constructed RAIRS system to 

measure absorbance, IR spectra were taken to evaluate the characteristic IR 

absorption band positions for thin films of benzene. 

The UHV system at the time was being used to study acetylene uptake and 

reactivity to form benzene, with relevance to atmospheric uptake on 

meteoric particles and reaction processes occurring within the atmosphere 

of Saturn’s moon Titan. Cu is known to react with acetylene and could form 

explosive compounds such as Copper acetylide. Therefore to ensure the 

safety of the UHV system, the Cu(111) substrate was replaced for this 

particular study with a stainless steel disc of the same dimensions. This was 
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coated in a layer of a cosmic dust analogue in the form of amorphous 

fayalite (Fe2SiO4) [Saunders and Plane, 2006] to simulate uptake on a 

particle in Titans atmosphere. A rough surface created by Fe2SiO4 particles 

(particle radii up to hundreds of nm) increases the fraction of scattered light 

through diffuse reflection and reduces the specular reflected light, thus 

reducing the signal at the detector from the substrate (compared to the Cu 

substrate). The high surface roughness will also impact the sample 

absorbance for lower surface coverages of benzene due to shadowing 

effects by the Fe2SiO4 particles, essentially reducing the intensity of IR that 

reaches the benzene molecules on the surface.  

Benzene (calibrated using the same beam flux procedures detailed in 

Chapter 3) was dosed for a range of timescales to produce a range of film 

thicknesses (1 x 1016 – 1 x 1018 molecules) at 115 K on to the steel/Fe2SiO4 

substrate in the form of a collimated beam via the needle valve on level C of 

the UHV chamber. The sample was then lowered to level A and aligned with 

the IR beam to optimize the interferogram and achieve the largest signal 

amplitude possible (~80). 1560 IR spectra (taking ~30 minutes) were 

accumulated for the background (prior to dosing), and also for sample 

scans. Typical spectra were recorded at 2 cm-1 resolution using an 8 mm 

beam width across a scan range of 400 - 4000 cm-1. IR spectra from these 

experiments are shown in  Figure 2.6, with each peak shown from the 

thinnest benzene layer where the peak was observed up to a coverage of 

1 x 1018 molecules. A shift to lower frequencies is observed for the C-H out-

of-plane bend (4 cm-1) when reducing the benzene layer thickness and 

therefore moving towards the monolayer regime. A smaller shift of the same 

trend is observed for the C-C aromatic stretch on the order of 1 cm-1. This 
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trend of shifting peak with decreasing benzene thickness is not observed for 

the C-H in-plane bend, however the smallest coverage it was observed at 

was still well in the multilayer regime at 3 x 1017 molecules. This peak shift 

could relate to the different binding sites of the benzene onto Fe2SiO4 

(monolayer adsorption) vs benzene adsorbing onto other benzene 

molecules (multilayer adsorption). Peak shifting for the C-H out-of-plane and 

in-plane bend relating to surface coverage is consistent with the findings of 

Thrower [2009] for benzene adsorbed on amorphous silica. The absorbance 

of the C-H out-of-plane bend also drops off when approaching the lowest 

coverages, which may be explained by the shadowing effect of the rough 

Fe2SiO4 surface. Given that a benzene molecule is ~0.5 nm in diameter and 

the Fe2SiO4 particles can be 2 magnitudes larger in size, it would be 

plausible that the effects of the surface could impact the absorbance even 

for thicker benzene layers. 

 



- 69 - 

 

Figure 2.6: IR absorbance spectra taken for a range of benzene coverages  

illustrating the peak positions for the different vibrational modes of 

benzene. High and low dose plots are included for the C-H out of plane 

bend of benzene, in order to show the detection limit of the instrument. 

 

Band assignments for the vibrational modes of benzene based on the 

multilayer benzene absorbance peaks observed in Figure 2.6 were made in 

accordance with previous literature and are shown in Table 1. The best 

agreement in peak assignment occurs when comparing to the study of 

benzene on amorphous SiO2 from Thrower [2009] with peak assignment 
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agreeing on average within 3 cm-1. Reasonable agreement is also observed 

when comparing to the study on an Si(111) crystal [Strazzulla et al., 1991]. 

However, comparing to the study on Al by Ruiterkamp et al. 

[2005],disagreement in peak assignment is on average 9.5 cm-1 and as high 

as 18 cm-1 for the weakly absorbing combination bands. These 

discrepancies may relate to the specific methodology of the study, or effects 

of the substrate altering the absorbance peaks. 

Table 1: Assignments of vibrational modes for the IR peaks of benzene 

observed in this study for amorphous Fe2SiO4 on stainless steel. 

Literature values are also included from studies on Al from Ruiterkamp 

et al. [2005], on amorphous SiO2 from Thrower [2009] and from a 

Si(111) crystal from Strazzulla et al. [1991]. All frequencies are in cm-1 

and mode numbers are included in brackets. 

 

 

Detection limits under the conditions of this study were based on a 3σ 

evaluation of the background noise of spectra in Figure 2.6 and varied 

depending on the wavenumber range and benzene film thickness. The 

detection limits across the mid-IR range studied (500 – 4000 cm-1) varied 
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from log10(ΔR/R0) = ± 0.0025 up to ± 0.01 in noisier regions more affected by 

background fluctuations, such as the O-H stretch region of H2O 

(> 3000 cm-1). This meant that the strongest absorbing band of benzene in 

this case (C-H out of plane bend) was detectable at surface coverages of 

≥ 1 x 1016 molecules. Using a resolution of 1 cm-1 did not yield further peak 

information and actually reduced the signal observed, due to the need for a 

smaller beam aperture giving reduced beam intensity at the detector. 

It should be noted that further improvements to the system have taken place 

since these initial test spectra of benzene were taken. The system now 

achieves signal amplitudes in the region of 200 (previously 70) and noise of 

log10(ΔR/R0) = ± 0.001. This was achieved by switching back to the more 

reflective Cu(111) substrate, the introduction of a concave mirror with a more 

appropriate focal length and further improvements to the grazing angle 

achieved through the sample. This focuses more of the IR beam on to the 

substrate, leading in turn to more light passing through the sample and 

reaching the detector. Therefore, the detection limits shown in the benzene 

spectra are an upper limit. 
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2.3 TRAPS/MICE apparatus 

In order to investigate the nucleation of CO2 ice on nanoparticles and 

provide insight into the nucleation kinetics of CO2 in the Martian 

mesosphere, a specialized experimental system was required. The 

experiment in its entirety is called the TRAPS and comprises two key 

components described in this section: a microwave plasma NanoParticle 

Source (NPS), and a Molecular flow Ice CEll (MICE). The results using this 

system are detailed in Chapter 5. 

2.3.1 Why use MICE?  

The study of suspended particles exposed to saturated environments has 

been typically studied using diffusion chambers [Langsdorf, 1939]. A current 

example of such systems, referred to as Continuous Flow Diffusion 

Chambers (CFDCs), is often used for the study of H2O ice nucleation with 

application to tropospheric ice clouds on Earth [Salam et al., 2006]. CFDCs 

operate at much higher temperatures (> 190 K) and pressures (500 – 1000 

mbar) and typically much lower saturations (S = 1- 2) than the conditions 

observed for CO2 nucleation in the mesosphere of Mars [Gonzalez-Galindo 

et al., 2011; Listowski et al., 2014; Rogers et al., 2001]. The instruments 

comprise a cold and warm plate coated in ice in a parallel orientation (they 

can also be used in other geometries such as cylinders). When heat and 

vapour is transported from the warm to cold plate via diffusion, linear 

gradients of temperature and vapour concentration are created in the space 

between the plates but this leads to a nonlinear saturation profile. 
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In the case of the MICE apparatus the system is run at much lower 

pressures than a diffusion chamber (10-3 mbar). At these low pressures 

diffusion does not determine the saturation profile (continuum regime). This 

is because at low pressure the MICE operates in a free molecular flow 

regime, where the mean free path of the CO2 in the gas phase is larger than 

the distance between the plates. This is similar to the principles of gas-

surface interactions discussed for UHV chambers in subsection 2.1.1. The 

gas particles retain their Maxwell-Boltzmann distribution relating to the 

temperature of the wall they were released from, which produces a more 

linear saturation profile between the plates, and also enables higher 

saturation conditions to be achieved [Duft et al., 2015]. This low pressure 

(10-3 mbar), high saturation environment (S = ~1000) in the molecular flow 

regime produced in the MICE within the TRAPS apparatus is crucial for 

producing reproducible conditions close to the mesospheric CO2 clouds 

seen on Mars. 

The TRAPS system encompassing the MICE has previously been used to 

study currently unpublished work on water ice growth on MSP analogues 

applicable to the Earth’s mesosphere [Nachbar et al., 2016a]. For the work 

in this thesis it was used to study CO2 ice growth under conditions applicable 

to the Martian mesosphere. As indicated in the contributions section, the 

MICE was developed and implemented primarily by Dr Denis Duft and Mario 

Nachbar [Duft et al., 2015]. The TRAPS system including the NPS was 

initially designed by Meinen et al. [2010]. 
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2.3.2 The TRAPS system 

The NPS shown in Figure 2.7 produces nanoparticles which can be seen as 

analogous to particles of meteoric origin of which SiO2 (ρ = 2.3 g cm-3) and 

FexOy (ρ = 5.2 g cm-3) are produced. Solid ferrocene (Fe(C5H5)2) is used as 

a precursor source of Fe atoms when producing FexOy and in the case of 

SiO2 nanoparticles liquid tetraethyl orthosilicate (C8H20O4Si) is used as a Si 

precursor. The precursors are heated and introduced as a vapour into a flow 

tube system. These  precursor species are mixed with a flow of primarily He 

(3 standard litres per minute (slm)) and passed through a microwave 

resonator creating a plasma (total pressure of 60 mbar) where the 

precursors are dissociated. An additional 0.3 slm upstream flow of He (80%) 

and O2 (20%) is introduced, causing oxidation of the metastable excited Fe 

or Si atoms in the microwave reactor and subsequent particle formation 

(particle radii <4 nm under these conditions). Nanoparticles produced in 

comparable experimental systems were shown to be compact, spherical and 

singly charged and so are assumed to be in this study [Giesen et al., 2005]. 

The complete schematic diagram of the TRAPS system in Figure 2.8 shows 

where the charged nanoparticles are introduced to the system. The 

nanoparticles are transferred to a low pressure environment and constrained 

into a beam through the use of a flow-limiting orifice (FLO) and an 

aerodynamic lens (ADL). The charged particles are guided by a quadrupole 

deflector with charged electrodes to deflect the particles around the 90° 

bends of the system. The voltage at these electrodes can be manipulated to 

mass select the size of particle of interest that enters the MICE quadrupole 

ion trap. Radio frequency potentials higher than the kinetic energy of the 
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particles at Uin and Uout are used to contain 107 - 108 particles. A He 

background gas is used to slow the particles via collisions to avoid particle 

loss during filling (during which Uin  is opened). 

 

Figure 2.7: Schematic diagram of the NPS within the TRAPS apparatus for 

production of SiO2 and FexOy particles. Adapted from Nachbar [pers 

comms, 2014]. 

 

The MICE system in which the particles are trapped comprises a copper 

tube (the “cold” wall) on which four copper quadrupole rods are connected 

with high thermal conductivity spacers (SHAPAL, Tokuyama Corp.) which 

account for 75% of the surface area inside the chamber. The cooling tube 

(and therefore the quadrupole rods) is connected to a He gas cryostat (DE-

104B-Turbo, Advanced Research Systems Inc.) with a temperature range of 

25 – 300 K. Between the cold wall and the quadrupole rods (and covering 

the space between the rods) is a gold plated copper tube that acts as a 

“warm” wall, connected with low thermal conductivity spacers (PEEK, Victrex 

plc.) and accounts for the remaining 25% of the surface area within the 

chamber. This warm wall is heated by two heating foils that are positioned to 
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minimise temperature gradients across the MICE. The temperature is 

measured using five Pt-100 probes embedded within the length of the cell. 

The warm wall surfaces are saturated (at the example base temperatures 

given) with CO2 producing an ice layer with a typical thickness in the region 

of 20 - 50 μm. The CO2 ice is deposited onto the warm walls of the chamber 

using CO2 vapour passed through a hole-filled steel tube that is inserted into 

the centre of the MICE. Via surface heating and cooling of the MICE system, 

the CO2 vapour concentration (by sublimation of the CO2 ice on the walls) 

and particle temperature can be manipulated until CO2 ice nucleation 

conditions are reached. The low pressure on the order of 10-3 mbar when 

entering the MICE is achieved by a rotary pump and the FLO. The geometry 

of the system enables homogeneous saturation and temperature conditions 

in the central region of the chamber (7 mm radius) with in which the particle 

beam is contained (1 mm radius). As noted in subsection 2.3.1, 

supersaturation under free molecular flow condition reaches higher values 

and extends over a larger volume than in the diffusive case. Unfortunately 

due to rapid sublimation of CO2 from the surfaces of the MICE at particle 

temperatures above 75 K, studies of ice growth and nucleation were limited 

to CO2 concentrations and temperatures slightly below that of the Martian 

mesosphere. A slight temperature gradient across the MICE of 0.1 K gives a 

particle temperature uncertainty of 0.4 K and an uncertainty in CO2 

concentration of approximately 10%. 
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Figure 2.8: Schematic diagram of the TRAPS system. The inflow of particles 

from the nanoparticle source is indicated in the bottom left of the 

diagram, while the MICE apparatus is the name for the quadrupole ion 

trap. In the experiments detailed in this thesis the Laser and X-ray 

based analysis shown was not possible. Reproduced from Nachbar 

[pers comms, 2014]. 

 

Using a series of delayed pulses, particles are ejected from the MICE (~105 

particles per pulse) and subsequently detected by a home-built Time-Of-

Flight Mass Spectrometer (TOF-MS). This allows for the growth of CO2 ice 

on the nanoparticles to be evaluated using the time-resolved particle size 

determination of which the specific methods for a typical experiment and 

results for CO2 ice nucleation are described in Chapter 5. 
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2.4 Environmental XRD chamber 

The CO2 ice crystal structure under conditions relevant to the mesosphere of 

Mars was determined using a temperature-controlled stage enclosed within 

an environmental chamber equipped with an x-ray diffractometer. This 

chamber has previously been used to investigate the properties of H2O ice 

[Malkin et al., 2012; Malkin et al., 2015; Murray et al., 2015]. The 

instrumental setup is detailed below, while results using this instrument and 

the specific experimental methods are described in Chapter 6. 

2.4.1 Why use XRD? 

XRD is an extremely useful technique for measurements of crystal structure. 

This is mainly due to its ability to act as a non-destructive in situ analysis 

technique for determining the phase and orientation of crystalline ice films. 

Being able to probe with X-rays a surface that is exposed to Martian 

mesospheric temperature and pressure conditions through the use of an 

environmental chamber is advantageous for the study detailed here. The 

crystallographic structure of a solid can be determined using X-rays through 

the application of Bragg’s law.  

A crystal consists of an arrangement of the unit cell (the smallest volume 

that contains the repeating structure) into a lattice. Crystals are grouped into 

different three-dimensional lattice systems, of which cubic is of particular 

interest for low-temperature and low-pressure CO2 ice formation. 

Crystallographic directions are lines linking atoms or molecules of a crystal 

in a particular direction within the unit cell, while crystallographic planes are 

planes linking these lines. Miller indices (hkl) indicate the three-dimensional 
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orientation of the surface of a crystallographic plane depending on how it 

inversely intercepts the vectors of the lattice. These planes of atoms within a 

crystal are spaced a distance d (Å) apart and can be resolved into several 

atomic planes within a crystal, each with a different d spacing. Bragg’s law 

provides the angles for coherent and incoherent scattering by X-rays from 

planes within a crystal lattice which quantitatively determine this d spacing in 

relation to 2θ angle. This relation is shown by:  

2𝑑ℎ𝑘𝑙 sin 𝜃 = 𝑛𝜆      (2.1) 

where 𝜆 is the wavelength of the incident X-ray beam and n is an integer. 

Two beams with identical 𝜆 and phase approach a crystalline solid and are 

scattered off two different atoms within it as shown in Figure 2.9. X-rays 

scattered from parallel planes will combine constructively (constructive 

interference), when the θ between the plane and the X-ray results in a path-

length difference that is a multiple of n and of the X-ray 𝜆 (meaning they 

remain in phase). Bragg’s law  describes the situation for the strongest 

constructive interference, shown as defined sharp Bragg peaks in an XRD 

pattern. The angle of this peak is a product of the average d in the crystal. 

Periodically repeating systems such as crystals have a Fourier transform 

repeating at specific points in reciprocal space which gives rise to the 

specific angles of Bragg peaks increasing in intensity depending on the 

number of scattering planes. The produced peaks in spectra from X-ray 

diffraction can then be fitted to a hypothesised crystal structure and analysed 

to determine the specific crystal parameters of the sample [Rietveld, 1969]. 

The specific methods employed for this pattern fitting are discussed in more 

detail in Chapter 6. 
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Figure 2.9: Illustration of Bragg diffraction for a crystal plane, two X-ray 

beams of identical 𝝀  are scattered by two different atoms within a 

crystal, the difference in the distance travelled by the lower beam 

equalling 2d sin θ. 

 

2.4.2 The XRD system 

The X-Ray diffractometer (Bruker D8 Advance) was configured in a standard 

reflectance geometry and equipped with a Cu Kα X-ray source (λ=1.540598 

Å). This system does not have a monochromator, which means that the Kα-1 

(λ=1.5406 Å), Kα-2 (λ=1.5444 Å) and Kβ (λ=1.3922 Å) emissions are not 

filtered out and can reach the sample. Any unwanted peaks related to Kβ 

emissions are normally within signal noise, but can be accounted for in 

subsequent analysis. Diffracted X-rays from a sample mounted on an Anton 

Paar TTK 450 temperature-controlled stage were detected by a VÅNTEC 

detector (shown in Figure 2.10). The use of Kapton-film windows sealed with 

O-rings allowed for the transmission of X-rays in and out of the 

environmental chamber. The air-tight chamber was pumped by using a 

Pfeiffer Duo 2.5A vacuum pump allowing a pressure range of 1x10-3 - 1x103 

mbar. This stage was cooled with liquid nitrogen pumped using a Thomas 

VTE 6 vacuum pump and the temperature was controlled using a Eurotherm 

PID controller and resistive heaters. The sample support could be cooled to 
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a stable temperature from ambient to 80 ± 0.2 K. During experiments this 

temperature was maintainable at pressures below 10 mbar. Under higher 

pressures and therefore higher gas inflows, the substrate temperature 

became unstable due to heating from the chamber gas and a deviation from 

equilibrium conditions. The sample support was constructed from aluminium, 

covered with a borosilicate glass slide (160 μm thickness), and adhered to 

the aluminium support using a thin layer of vacuum grease. The temperature 

was measured using a Pt-100 probe directly inserted into the sample 

support. Heat conducting grease was used to maximise thermal contact 

between the probe and the sample support, as well as between the sample 

support and the cold stage, thus minimising temperature measurement error 

and maximising cooling and heating efficiency. 

This stage is probed using the powder X-ray diffraction (XRD) technique of 

which the principles are detailed in subsection 2.4.1. In the experiments 

described in Chapter 6, CO2 gas was either vapour-deposited onto a flat 

substrate, or CO2 in the form of powdered dry ice was placed in a sample 

holder and inserted into the chamber before XRD analysis.  
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Figure 2.10: Schematic diagrams of the front view of the TTK 450 

temperature controlled stage (left) and top down view of the 

experimental system (right). The position of the CO2 ice sample is 

indicated by the blue rectangle (not drawn to scale). 

 

 

 

 

 

 



- 83 - 

3 CO2 trapping in amorphous H2O ice: Relevance to polar 

mesospheric cloud particles 

 

CO2 is subject to uniform vertical mixing from the surface up to altitudes at 

which PMCs can form, leading to a large CO2:H2O ratio in the mesosphere 

(>37:1) compared to the lower atmosphere (>0.01:1) [Emmert et al., 2012; 

Rong et al., 2010]. This opens the question as to whether CO2 could become 

trapped within, and affect the properties of, PMC ice particles. Previously, 

CO2 has been trapped experimentally in ASW for application to the ISM, on 

comets and icy satellites, where H2O/CO2 ice interactions are thought to be 

prevalent, but not under atmospherically relevant concentrations of CO2 and 

H2O [Galvez et al., 2008; Hodyss et al., 2008b; Mate et al., 2008]. This 

chapter describes TPD experiments undertaken in an UHV chamber to 

evaluate whether CO2 could become trapped in PMC ice particles. Beam 

flux calibrations were used to quantify the flux of CO2 and H2O to the sample 

surface. CO2:H2O gas mixtures were used to form ice layers that contained 

trapped CO2 in the ice matrix at ratios of 1:1 - 12:1. Due to the presence of a 

sufficient CO2 flux, CO2 trapping in ASW was evaluated in terms of a limiting 

experimental H2O flux (4.8 x 1013 molecules cm-2 s-1) at conditions above a 

12:1 ratio and compared to atmospheric conditions. This comparison 

suggests that in a saturated H2O environment during PMC season (10 ppmv 

of H2O), CO2 trapping would only be plausible under extreme temperatures 

below 100 K. 
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3.1 Methodology 

In this section, the techniques and procedures that were used to produce 

and analyse thin ice films using gas mixtures of CO2 and H2O are described. 

The methods described within this chapter use the UHV chamber apparatus 

and associated instruments described in detail in Chapter 2. The results of 

experiments performed using these methods  are detailed in section 3.3, 

while the preparation and dosing of the gases is also relevant for the 

methods employed for the beam flux calibrations in section 3.2.  

3.1.1 CO2:H2O gas bulb mixtures 

In order to purify H2O for use in gas mixtures of varying CO2:H2O ratio the 

freeze pump thaw method was employed. On a glass gas-handling line a 

sample of deionised water was attached. Liquid N2 was used to freeze the 

H2O which was subsequently exposed to the vacuum. The line was then left 

to reach base pressure as degasification of the H2O took place, while 

maintaining minimal H2O vapour release from the solid. Once the pressure 

began to rise (indicating the H2O ice had started to melt), the sample was 

isolated from the glass gas-handling line, the ice melted and the whole 

freeze pump thaw process repeated (3 times). The line was then flushed 

with the H2O vapour twice before the gas bulb was filled. The CO2 was 

introduced to the gas line as dry ice, and pumped on several times to 

remove impurities. The line was then flushed with CO2 and the bulb filled. In 

the case of the experiments described in section 3.3, gas bulbs of varying 

CO2:H2O ratio were prepared via manometric techniques, of which the lower 

vapour pressure H2O was always introduced first, before filling with the 

higher pressure CO2.  
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3.1.2 Sample preparation and CO2:H2O gas dosing 

Prior to dosing, the Cu(111) crystal sample within the UHV chamber was 

annealed to 800 K for 30 minutes via resistive heating, in order to clean the 

crystal surface. Once the sample temperature had reduced, the cold finger 

was filled with liquid N2 to decrease the sample temperature to a stable base 

reading of approximately 98 K. The base temperature was maintained 

throughout the experiment by refilling the cold finger at regular intervals.   

The sample was oriented to face the needle valve (X = 10 mm, Y = 13 mm, 

Z = 170 mm, θ = 330°) for dosing of the CO2/H2O gas mixture with the Hiden 

QMS set to measure the species of interest (in this case (where m is in g) 

m/z = 18 (H2O) and 44(CO2)). The required glass gas-handling line pressure 

of the gases corresponded to a specific beam flux (calculated in subsection 

3.2.2) and was typically 15 torr. Once all mass traces were stable, the dose 

was started by opening the needle valve (NUPRO, SS4BK), which produced 

a collimated diffusive beam targeted at the Cu(111) crystal. Once the dose 

time was complete (typically 2 hours), the needle valve was closed, at which 

point TPD analysis could be undertaken. An example dose from a typical 

experiment is shown in Figure 3.1, and effectively shows the detected CO2 

and H2O that was not adsorbed onto the Cu(111) sample. 
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Figure 3.1: Example mass spectrometer trace of CO2 and H2O (x10 for 

clarity) during a two hour dose onto the Cu(111) sample at 98 K for a 

CO2:H2O ratio of 6:1. 

 

3.1.3 Temperature programmed desorption 

Once the background QMS mass counts had stabilised after a gas dose, a 

TPD experiment could be undertaken to analyse the composition of the thin 

ice film produced. The sample was repositioned to face the QMS (X = 10, 

Y = 13, Z = 175, θ = 170°) in order to maximise the signal from species 

desorbing from the Cu(111) crystal. The QMS was set to monitor relevant 

mass traces and also recorded the temperature relayed from the K-type 

thermocouple embedded in the sample. Resistive heating was then applied 

by setting a specific voltage that produced a linear heating ramp of 0.25 K s-1 

across the temperature range of interest (98 – 200 K). Results from 

experiments using this TPD procedure on thin CO2 and ASW films are 

shown in section 3.3. 
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3.2 Beam flux calibrations 

In order to carry out the experiments detailed in section 3.3 it was necessary 

to calibrate the beam flux, Fbeam, of the UHV chambers’ collimated diffusive 

beam doser (NUPRO, SS4BK) for CO2 and H2O and evaluate a stable 

pressure range for the study. This provided a quantitative measure of the 

gas species used in the CO2 trapping experiments detailed in section 3.3. 

3.2.1 Theory 

Pump-down beam flux calibrations were carried out based on theory from 

Oakes [1994] and are described below, modified for the experimental 

system used in this study. The pump-down beam flux calibrations assume 

that the number of molecules entering the chamber, Fin, is equal to the 

number of molecules leaving, Fout. Fout is derived from a time dependent 

version of the ideal gas equation and is shown in equation 1, where n is the 

number of molecules, P is the pressure, Vsystem is the volume of the UHV 

chamber, kB the Boltzmann’s constant and T is the temperature. The pump 

down curves of each species provide the change in gas pressure over time, 

dP/dt for that species.   

𝑭𝒐𝒖𝒕 =  
𝒅𝒏

𝒅𝒕
=  

𝑽𝒔𝒚𝒔𝒕𝒆𝒎

𝒌𝑩𝑻
 
𝒅𝑷

𝒅𝒕
        (3.1)  

 

The exponential decay of the gaseous species at the termination of the dose 

(the pump-down curve) is described in Equation 3.2 and is shown 

experimentally in Figure 3.2 where P0 is the initial pressure, with Cm the 

pumping coefficient for the gas at mass m. This is differentiated at the initial 

time to, giving the initial pressure change (Equation 3.3). Substituting this into 
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Equation 3.1, given the previous assumption that Fin = Fout, as well as 

accounting for the cross sectional area of the beam (Abeam), yields the 

calculation of Fbeam in units of molecules cm-2 s-1 (Equation 3.4). The values 

for Fbeam are calculated using a similar experimental procedure to the one 

described in  Frankland [2011] and are detailed in the following subsection. 

𝑷 = 𝑷𝟎𝒆−𝑪𝒎𝒕        (3.2) 

 

|
𝒅𝑷

𝒅𝒕
|

𝒕𝟎

= 𝑪𝒎𝑷𝟎𝒆−𝑪𝒎𝒕𝟎 =  𝑪𝒎𝑷𝟎𝒆𝟎 =  𝑪𝒎𝑷𝟎    (3.3) 

 

 𝑭𝒃𝒆𝒂𝒎 =  
𝑽𝒔𝒚𝒔𝒕𝒆𝒎

𝒌𝑩𝑻
|

𝒅𝑷

𝒅𝒕
|

𝒕𝟎

𝟏

𝑨𝒃𝒆𝒂𝒎
=

𝑽𝒔𝒚𝒔𝒕𝒆𝒎𝑪𝒎𝑷𝟎

𝒌𝑩𝑻𝑨𝒃𝒆𝒂𝒎
    (3.4) 

 

 

Figure 3.2: QMS counts (a.u) versus time (s) for an example CO2 pump 

down curve highlighting the position of P0 and t0 at a dosing pressure of 

5 torr.  
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3.2.2 Beam flux determination for CO2 and H2O 

Sets of pump-down experiments were carried out for both H2O and CO2 in 

order to quantify both species in terms of pressure and Fbeam within the UHV 

chamber. The pump-down experiments were performed under UHV 

conditions at base pressures in the range of 10-9 mbar. The gate valve 

between the turbo pump and UHV chamber was partially closed in order to 

throttle the pumping speed. This caused a slower signal decay and therefore 

provided greater time resolution (increased number of data points) for the 

pump down curve analysis. Pure gas mixtures were prepared in the vacuum 

gas line (see subsection 3.1.1 for method) with pressures in the bulb of 

1 - 15 torr for H2O and 5 - 16 torr for CO2. 

In order to limit the sample’s effect on the dosing beam the sample was 

raised out of beam alignment (z = 200 mm) and kept at room temperature 

(approximately 295 K) throughout the experiments. H2O and CO2 doses 

were undertaken at 4 different gas bulb pressures and repeated a minimum 

of 3 times for each pressure. The QMS (Hiden, HAL 3F 301 RC PIC) 

measured the intensity of CO2 and H2O (masses m/z = 44 and 18, 

respectively) during each experiment (as detailed in subsection 3.1.2). In 

order to achieve a stable maximum value for H2O intensity, a dose of 30 

minutes was required with a 30 minute gap between doses to allow for the 

pressure within the chamber to return back to base levels (10-9 mbar). For 

CO2, doses only  required 2 minutes to achieve a stable intensity with only a 

4 minute interval between doses. An example CO2 pump down experiment is 

shown in Figure 3.3. 
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Figure 3.3: QMS counts (a.u.) versus Time (s) for repeats of CO2 pump-

down experiments undertaken at 12 torr.  

 

Maximum QMS counts for each dose were averaged across a minimum of 

300 data points and then repeat experiments were averaged at each 

pressure. The error was determined as the standard deviation of all the 

averaged doses at that pressure. A fit applied to the data shows a 

reasonable linear relationship between QMS counts and the gas bulb dosing 

pressure. Full profiles of both gas species are shown in Figure 3.4. 
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Figure 3.4: QMS counts (a.u.) versus dosing pressure (torr) for CO2 and H2O 

over a range of pressures.  

 

In order to apply the QMS count profiles for CO2 and H2O from the 

pump-down experiments across the relevant pressure range and allow for 

the calculation of the Fbeam, a conversion from QMS counts to Pascals was 

necessary via background calibration experiments. To enable these 

calculations, the ion sputter source (PSP vacuum, ISIS 3000) was modified 

and used as a leak valve for background dosing. H2O and CO2 at pressures 

in the range of 10-7 – 10-9 mbar were leaked into the chamber while QMS 

counts of the respective species were monitored using the QMS. Figure 3.5 

displays the calibration graphs for H2O and CO2, with linear fits (showing 

good agreement) used to produce pressure calibration equations (equations 

3.5 and 3.6, respectively). A conversion factor was applied to the calibrations 

so that pressure units were converted from mbar (the units of the UHV 

chambers ion pressure gauge) to Pascals. 
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 𝐻2𝑂 (𝑃𝑎) =
𝐻2𝑂 (𝑄𝑀𝑆 𝑐𝑜𝑢𝑛𝑡𝑠)−946.12

4.35 x 1011  x 100    (3.5) 

 

 𝐶𝑂2 (𝑃𝑎) =
𝐶𝑂2 (𝑄𝑀𝑆 𝑐𝑜𝑢𝑛𝑡𝑠)−1143.94

2.90 x 1011  x 100    (3.6) 

   

 

Figure 3.5: QMS counts (a.u.) versus chamber pressure (mbar) across a 

range of pressures for background doses of H2O (top) and CO2 

(bottom).  
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The initial start of each pump-down experiment was isolated and the time 

corrected to start from zero (as previously shown in Figure 3.2). Plots of 

ln(P) against t for each experiment were constructed (an example plot is 

shown in Figure 3.6) and a linear fit applied. This is equal to a logarithmic 

version of equation 3.2 (shown in Equation 3.7). This fit was then used to 

calculate the values of P0 and Cm for each species at each gas bulb 

pressure.    

ln(𝑃) = −𝐶𝑚𝑡 + ln (𝑃0)       (3.7) 

 

Figure 3.6: Examples of the natural logarithm of pressure (Pa) for three 

repeat pump-down curves for CO2 at a dosing pressure of 12 torr. 

 

The averaged values for P0 and Cm at each gas bulb pressure are shown for 

H2O and CO2 in Table 2. The values of Cm should remain constant for each 

gas species as the mass of the beam species is unchanged. Values for H2O 

in the gas bulb range of 5 – 15.1 torr are in good agreement with an average 

of 0.049 ± 0.007 s. However, an anomalous value is present at 1 torr 



- 94 - 

(0.24 s). This is probably due to low H2O counts close to the noise of the 

QMS signal, combined with the pressure calibration including an intercept 

above zero (1000 counts). Values of Cm for CO2 show good agreement 

across the pressure range studied with an average of 3.64 ± 0.1 s, although 

this did not include results obtained at a lower pressure of 1 torr which lead 

to the discrepancies in Cm values for H2O.  

Fbeam was calculated using Equation 3.4 (with the reported Cm and P0) where 

Vsystem is 0.025 m3, Abeam is 1.13×10-4 m2 and T was assumed as 300 K. 

Values of Fbeam were averaged at each gas bulb pressure are shown in 

Table 2 as well as being plotted against dosing pressure in Figure 3.7. Fits 

to the data suggest the relationship between Fbeam and dosing pressure for 

both species is approximately linear. These fits were used to produce an 

equation for determining Fbeam (units of molecules cm-2 s-1) for H2O and CO2 

for a given dosing pressure (equations 3.8 and 3.9 respectively).  

 

Figure 3.7: Plots of Fbeam against dosing pressure for CO2 and H2O.  
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𝐹𝑏𝑒𝑎𝑚 H2O = 1.564 x 1011 x H2O (𝑃 / torr) − 1.274 x 1010           (3.8) 

𝐹𝑏𝑒𝑎𝑚 CO2 = 4.115 x 1013 x CO2 (𝑃 / torr) − 6.645 x 1013    (3.9) 

Table 2: H2O and CO2 Pump-down values of P0, Cm and Fbeam for a range of 

glass line pressures. The errors on Fbeam are the standard deviation of 

the repeat measurements at each pressure. 

Glass Line 

Pressure / 

torr 

P0 / Pa Cm / s Fbeam / molecules cm-2 s-1 

H2O 

1 (1.17 ± 0.27) x10-7 0.24 ± 0.19 (1.36 ± 0.74) x 1011 

5 (2.79 ± 0.39) x10-6 0.057 ± 0.004 (8.52 ± 1.76) x 1011 

10 (5.96 ± 0.28) x10-6 0.048 ± 0.004 (1.52 ± 0.15)  x 1012 

15.1 (1.03 ± 0.07) x10-5 0.043 ± 0.002 (2.36 ± 0.28) x 1012 

CO2 

5 (7.12 ± 0.92) x10-6 3.7 ± 0.17 (1.41 ± 0.22)  x 1014
 

9 (1.48 ± 0.29) x10-5 3.68 ± 0.17 (2.92 ± 0.6) x 1014 

12 (2.3 ± 0.08) x10-5 3.47 ± 0.19 (4.26 ± 0.16) x 1014 

15.6 (3.02 ± 0.48) x10-5 3.71 ± 0.22 (5.96 ± 0.74) x 1014 

 

Inspection of Table 2 reveals significant discrepancies in the calculated 

values of Fbeam. The values obtained for CO2 are 2 - 3 orders of magnitude 

higher than for H2O over a similar range of gas bulb pressures. This 

predicted H2O flux is several magnitudes too low to form the multilayer films 

shown in subsection 3.3.2 on experimental timescales. This may be due to 

the loss of H2O to surfaces on the dosing line, within the doser and within the 
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chamber, an issue that is exacerbated by the needle valve position not being 

diametrically opposite the QMS detector and instead offset by 45º. This 

causes the collimated beam of  H2O molecules to collide with the sides of 

the UHV chamber before reaching the detector. This is highlighted by the 

H2O pump-down experiments taking 15 times longer to stabilise the dose 

and 15 times longer to return to base pressure when compared to CO2. 

Given this uncertainty, the H2O beam flux used in the following sections is 

instead estimated based on the pressure relationship of the CO2 flux, using a 

stable combined glass gas-handling line pressure for both species of 15 torr. 
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3.3 CO2 trapping in amorphous H2O ice 

3.3.1 CO2 desorption from the Cu(111) substrate 

Using the methods described in section 3.1, initial experiments were 

undertaken to look at the desorption profile of a pure CO2 dose in the 

absence of H2O. CO2  was dosed onto the bare Cu(111) sample at base 

temperature (approximately 98 K) for a range of dosing times 

(1200 - 7200 s) with subsequent TPD analysis shown in Figure 3.8. As the 

TPD begins, instantaneous rapid desorption of CO2 is observed, suggesting 

that the majority of the CO2 that sticks to the Cu(111) surface is only 

extremely weakly physisorbed under these temperature conditions. This 

conclusion is reinforced by the study of Ernst et al. [1999] in which they 

found that the desorption maximum of CO2 (on a Cu(110) crystal within a 

similar UHV system) occurred between 90 and 100 K, meaning that the 

adsorption conditions in this study (approximately 98 K) lie within the 

desorption profile of CO2. This is further indicated by the disjointed leading 

edge of the profile. The leading edge of the TPD profiles peak at 

approximately 125 K followed by a falling edge with the absence of further 

desorption features, returning to background at approximately 220 K. It 

should be noted that the desorption profiles for CO2 show no trend of 

increased adsorption with increasing dose length (total CO2 flux to the 

sample ranges from 5 x 1017 up to 3 x 1018 molecules) and are broadly 

comparable across the CO2 dose lengths investigated. This suggests a 

barrier to CO2 adsorption on already adsorbed CO2, due to a further 

reduction in sticking coefficient when transitioning from the monolayer to 

multilayer regime. This is due to the weak intermolecular interactions (van 
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der Waals forces) of CO2/CO2 adsorption being easily broken down by 

thermal agitation, leading to a short residence time for CO2 on the surface. 

This contrasts with the stronger interactions of polar H2O molecules 

adsorbing onto H2O, of which a minimal barrier to multilayer adsorption 

exists under the conditions in this study. It is worth noting that neither the 

monolayer CO2 or multilayer H2O is chemisorbed. The H2O shown in the 

following subsection is physisorbed under low enough temperature 

conditions that the weak intermolecular interactions are not broken down. A 

fraction of the CO2 flux is weakly physisorbed to the Cu(111) substrate or to 

already adsorbed H2O (the sticking coefficients of CO2 on H2O and CO2 on 

Cu are close to zero).     

 

 

Figure 3.8: TPD traces of CO2 on bare copper showing the desorption rate in 

QMS counts (a.u.) against temperature (K) for CO2 deposited at base 

temperature (98 K) and varying dose lengths (1200 – 7200 s). 
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3.3.2 CO2 trapping and release from H2O ice 

In order to investigate the process of CO2 trapping in H2O ice, CO2:H2O gas 

mixtures were deposited and then probed via TPD (as detailed in sub-

section  3.1.3). Figure 3.9 shows TPD traces of CO2 desorption from six 

different experiments in which CO2:H2O mixtures of varying ratios (1:1 to 

13:1) were dosed onto the Cu(111) sample at base temperature 

(approximately 98 K). These CO2 TPD traces were background corrected 

using pure CO2 TPD traces (shown in subsection 3.3.1), in order to remove 

the desorption trace of externally adsorbed CO2. This results in the residual 

profile only indicating CO2 desorption features of CO2 internally trapped 

within the H2O ice matrix. The first desorption feature of trapped CO2 occurs 

around 30 K higher than the peak of external CO2 desorption at 157 K and is 

prominent in the 1:1 and 3:1 ratio experiments. This desorption feature is 

known as the  molecular volcano peak [Smith et al., 1997b]. The second 

broader desorption feature accounts for the majority of internal CO2 

desorption at CO2:H2O ratios of 3:1 to 12:1 and occurs at 160 - 175 K, 

referred to as the co-desorption peak. The CO2 co-desorption peak becomes 

more prominent while the molecular volcano becomes less prominent, as the 

CO2:H2O ratio increases (and therefore the H2O flux is reduced). This is 

followed by a reduction in the co-desorption peak until the CO2:H2O ratio 

reaches 13:1, at which point negligible CO2 trapping is observed in the ice 

matrix. This trend of reduced CO2 trapping with increasing CO2:H2O ratio is 

consistent with Galvez et al. [2008]. 
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Figure 3.9: Background corrected TPD traces showing the desorption rate 

(a.u.) of CO2 against temperature (K) for trapped CO2/H2O films (offset 

for clarity; the zero in each plot is the value at 145 K). The CO2:H2O 

ratio in the dosing mixture is indicated on the right-hand side of each 

profile. 

 

In order to explain the origin and cause of CO2 trapped internally in the H2O 

ice matrix, the complementary H2O TPD traces are required. These are 

shown in Figure 3.10, with the H2O TPD trace at each CO2:H2O ratio 

corresponding to the CO2 TPD trace of the same CO2:H2O ratio shown in 

Figure 3.9. The ice film thickness was estimated knowing the total flux of 
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H2O to the sample during the dose (calculated in section 3.2), the sticking 

coefficient of H2O (0.97 at 98 K), the density of ASW (0.9 g cm-3) and the 

area of the Cu(111) sample (all variables taken from Brown et al. [1996]). 

Each H2O TPD trace contains two distinct peaks (most prominently 

observable for the 1:1 CO2:H2O ratio experiment). The first is the ASW 

desorption peak (the shoulder of the main peak) which occurs at the same 

temperature as the CO2 molecular volcano (157 K). This shoulder indicates 

that ASW was initially deposited onto the surface at 98 K. ASW forms under 

these conditions as the H2O molecules do not have the sufficient energy 

required to re-orientate to more energetically favourable positions and form 

CSW. The disordered, porous nature of the ASW that forms means that 

trapped CO2 molecules can occupy a wide range of different site geometries. 

The shoulder that can be observed in the leading edge of the H2O 

desorption is due to increasingly dominant crystallization of the ASW to form 

CSW under these temperature conditions which slows overall H2O 

desorption. This is due to enough thermal energy becoming available as the 

temperature increases to mobilise and reorganise the H2O molecules from 

the disordered ASW to form ordered CSW. As the H2O film thickness 

increases, the ASW and intrinsically linked CO2 molecular volcano peak shift 

to higher temperatures due to the greater abundance of ASW available for 

desorption and crystallisation.  
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Figure 3.10: H2O TPD traces showing the desorption rate (a.u.) against 

temperature (K) for the same CO2:H2O ratios as in Figure 3.9 (note that 

the traces are offset for clarity). Each H2O trace is labelled with the 

CO2: H2O ratio, the factor by which the data has been rescaled for 

clarity (if applied) and, in parenthesis, the estimated H2O film thickness 

in nm. 

 

The phase change in the H2O ice and the coupled release of trapped CO2 

via the molecular volcano from the ASW ice matrix can be explained using 

one of two theories: the glass transition; and crystallisation-induced cracking. 

In the first theory, the ASW film undergoes a glass transition during 
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annealing [Jenniskens and Blake, 1994] which transforms the film into a 

viscous liquid, enabling the H2O molecules to re-organise and freeze into 

CSW (the H2O desorption shoulder). This molecular reorganisation causes 

cavities in the ice matrix to open, releasing the trapped CO2 molecules 

(molecular volcano) in the uppermost part of the H2O film producing a short, 

sharp peak. The temperature of this H2O glass transition is dependent on 

several variables including the initial deposition temperature and the heating 

rate applied [Jenniskens and Blake, 1996]. In the second theory, the H2O ice 

remains in the “solid” phase throughout the ASW to CSW phase transition. 

During crystallisation, cracks propagate down through the H2O film enabling 

the CO2 trapped in cavities to escape to vacuum [May et al., 2012; 2013]. 

This theory is better able to explain the shift to higher temperatures in the 

CO2 molecular volcano with respect to increasing film thickness, as the 

cracks take longer and require higher temperatures to propagate further 

down the ice layer [May et al., 2011]. 

The second, higher temperature H2O desorption peak is the peak of the 

CSW desorption. The CO2 co-desorption peak appears at the temperature 

where maximum desorption of CSW occurs and again shifts to higher 

temperatures for thicker ice layers. This co-desorption is the release of the 

remaining CO2 trapped in the lower layers of the ice matrix that did not have 

access to the outer surface of the H2O film during crystallisation of the ASW 

[Kumi et al., 2006; Malyk et al., 2007]. 

The extent of CO2 trapping, as previously mentioned, becomes limited at a 

CO2:H2O ratio of 13:1, at which point no CO2 desorption features were 

observed within the ice matrix. In these experiments as the CO2:H2O ratio 

increases, so does the CO2 flux, while the H2O flux is decreasing. Given that 
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the ice film is thinner at 13:1 than the other experiments, it could be the case 

that the amount of trapped CO2 is simply below the detection limit of the 

QMS due to a smaller ice volume. To rule this possibility out, long dose 

experiments at a CO2:H2O ratio of 13:1 were carried out to produce film 

thicknesses comparable to the lower ratio experiments where CO2 trapping 

was observed. These experiments still produced no detectable trapped CO2. 

Given that sufficient CO2 and sufficient film thickness is available across all 

CO2:H2O ratios, the trapping mechanism must be limited by the H2O flux to 

the sample surface. Experimentally, this gives a lower limit H2O flux for CO2 

trapping under these conditions of 4.8 x 1013 molecules cm-2 s-1
. At lower 

H2O fluxes, additional H2O molecules are not adsorbed quickly enough to 

close micro-pores in the ice surface. This allows briefly adsorbed CO2 

molecules within these micro-pores to desorb before they can be trapped 

[Bar-Nun et al., 2007; Galvez et al., 2008; Laufer et al., 1987]. 

3.3.3 CO2 trapping under mesospheric conditions 

In this subsection the experimentally determined lower limit H2O flux for CO2 

trapping in ASW is evaluated to determine under what mesospheric 

conditions CO2 trapping could occur. This required a comparison to a 

realistic mesospheric H2O flux (units of molecules cm-2 s-1) where the uptake 

coefficient was assumed to be unity and is given by:  

H2O flux =
𝑐̅

4
[H2O]       (3.10) 

where 𝑐̅ is the mean thermal velocity of the H2O molecules (units of cm s-1) 

given by: 

𝑐̅ = 1.46×104√𝑇/𝑀      (3.11) 
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where T is the absolute temperature in K and M is the molar mass in g. The 

H2O flux was calculated for conditions typical of the PMC cloud season at an 

altitude of 83 km (10 ppmv of H2O for a total pressure of 1 Pa [Hervig et al., 

2009; Rong et al., 2012]). For an atmospheric temperature the same as the 

experimental study (98 K), the maximum H2O flux predicted is 6.3 x 1013 

molecules cm-2 s-1, slightly higher than the experimental threshold of 

4.8 x 1013 molecules cm-2 s-1
. A mesospheric CO2 flux was calculated in the 

same way for conditions of 360 ppmv of CO2 at 1 Pa [Emmert et al., 2012], 

giving 1.2 x 1015 molecules cm-2 s-1. This mesospheric CO2 flux is higher 

than the experimental range investigated (CO2 flux = (3.4 - 6.3) x 1014 

molecules cm-2 s-1) suggesting sufficient CO2 was available to facilitate 

trapping. So far this comparison is for a low temperature of 98 K, a 

temperature that would require strong gravity wave perturbations, rarely 

reached in the mesosphere [Lübken et al., 2009]. If a parcel of air was 

cooled to such low temperatures the H2O would have already condensed, 

either via heterogeneous nucleation below 145 K to CSW or to ASW via 

homogeneous nucleation at highly supersaturated conditions 

(Sice = 104 - 108) [Lübken et al., 2009; Murray and Jensen, 2010; Plane, 

2011; Rapp and Thomas, 2006]. It is therefore necessary to extend this 

comparison to more frequently observed mesospheric temperature 

conditions in order to determine the full range of conditions under which CO2 

trapping would be plausible atmospherically. This can be done by estimating 

the average number of H2O molecules that would need to deposit onto a 

CO2 molecule on the ice surface, in order to prevent the CO2 molecule 

desorbing. First, the residence time of a CO2 molecule on the ASW surface 
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(𝜏)  is calculated using the reciprocal of the desorption rate coefficient for 

CO2, kdes, given by Attard [1998] as: 

𝜏 =
1

𝑘𝑑𝑒𝑠
=

1

𝐴 exp(−
E𝑑𝑒𝑠

R𝑇
)
      (3.12) 

where A is a pre-exponential factor corresponding to the average frequency 

of oscillation for the librational modes of CO2 (2.9 x 1012 s-1) and Edes is the 

binding energy of CO2 on ASW (23.7 kJ mol-1)[Sandford and Allamandola, 

1990]. This gives 𝜏  = 1.48 s for CO2 on ASW at 98 K. Then, taking the 

collision cross section of a CO2 molecule as 0.52 nm2 [Atkins and De Paula, 

2009] and the measured experimental H2O flux limit, a minimum of 0.4 H2O 

molecules must deposit on a CO2 molecule in order to trap it within the ASW 

before it desorbs. Following this, the number of H2O molecules depositing on 

an adsorbed CO2 molecule under a range of atmospheric temperature and 

H2O concentrations was calculated, accounting for the change in CO2 

residence time and H2O/CO2 flux. Using 0.4 H2O molecules per CO2 as a 

lower limit, the minimum atmospheric H2O mixing ratio required to achieve 

CO2 trapping across  temperatures of 90 - 110 K is shown in Figure 3.11.  

The region above the red line indicates plausible mesospheric conditions for 

CO2 trapping in ASW. Current maximum mesospheric H2O concentrations 

during the PMC season are approximately 10 ppmv, suggesting 

temperatures below 100 K would be required for CO2 trapping within PMC 

ice particles. At higher (but still extreme) temperatures more often reached in 

the mesosphere, such as 110 K, the H2O concentration would need to be an 

order of magnitude higher to allow for CO2 trapping to become a significant 

process. This leads to the conclusion that CO2 trapping in ice under current 
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mesospheric conditions would only be plausible at extreme temperatures 

below 100 K and not be a common occurrence.  

 

 

Figure 3.11: A plot of the minimum H2O concentration (ppmv) required to 

trap CO2 in ASW, as a function of temperature. Conditions above the 

red line are conducive to CO2 trapping in ASW. 

 

The changing mesosphere was discussed in chapter 1 and could make CO2 

trapping in the mesosphere a more likely process in the future. CO2 is well 

mixed up to approximately 80 km, increasing in the mesosphere at 

comparable rates to surface CO2 at approximately 20 ppm decade-1 [Emmert 

et al., 2012; Garcia et al., 2014]. Mesospheric H2O concentrations in the 

northern hemisphere (77ºN) are increasing at a proportionally smaller rate of 

0.07 ± 0.03 ppm decade-1 [Hervig et al., 2016a]. The mesosphere is also 

cooling at the polar regions at a rate of 0.58 ± 0.32 K decade-1 [Berger and 

Lübken, 2015]. This mesospheric cooling is driven by CO2 which has a 
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cooling effect above 20 km. CO2 converts thermal energy into IR 

fluorescence, a significant fraction of which escapes into space [Laštovička 

et al., 2008]. These trends in H2O and CO2 concentration, as well as an 

intrinsically linked cooling mesosphere all make the process of CO2 trapping 

more likely in the future. The likelihood of this process occurring in the 

mesosphere should therefore be revisited if current trends persist.   

3.4 Summary and conclusions 

This work has detailed the processes of experimentally trapping CO2 within 

an amorphous H2O ice across a range of CO2 and H2O deposition conditions 

within a UHV chamber. Specifically, the molecular volcano and co-

desorption of CO2 was investigated. Through quantitative determination of 

the beam flux for the gas species, the limit of CO2 trapping was established, 

and attributed to the reduction in the H2O flux. Comparison of experimental 

trapping limits to comparable conditions in the mesosphere of Earth, leads to 

the conclusion that CO2 trapping is currently an unlikely process except 

under the most extreme temperature conditions (< 100 K). 
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4 Deposition of Mg and K on ice: Effects of sublimation and 

energetic particle bombardment 

 

The deposition and potential reactivity of metal atoms on water ice can be an 

important process in the mesosphere, affecting the gas-phase chemistry 

[Murray and Plane, 2005]. In this chapter Mg and K were deposited on 

water-ice films prepared under UHV conditions at temperatures of 110 to 

140 K. Energetic sputtering of metal-dosed ice layers by 500 eV Ar+ and Kr+ 

ions showed that whereas K reacts on (or within) the ice surface to form 

KOH, adsorbed Mg atoms are chemically inert. Combining the experimental 

data with electronic structure calculations of the metals bound to an ice 

surface, Mg was found to be unreactive, binding at surface defects, while K 

readily reacted with the ice surface to produce KOH (8 kJ mol-1 exothermic). 

Theoretical adsorption energies are also reported for K (-68 kJ mol-1), Mg (-

91 kJ mol-1) and Fe (-306 kJ mol-1) on ice. TPD experiments revealed that 

negligible Mg and K containing species co-desorb when the ice film 

sublimates, indicating that uptake on ice particles causes irreversible 

removal of the metals from the gas phase. This suggests that uptake on ice 

particles in polar mesospheric clouds accelerates the formation of large 

meteoric smoke particles (≥ 1 nm radius) following sublimation of the ice. 
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4.1 Methodology 

The UHV chamber used in this study was also used in Chapter 3 to look at 

CO2 trapping in ASW and is described in detail in Chapter 2. To avoid 

repetition, detail regarding preparation of gas mixtures, dosing and TPD can 

be found in section 3.1. Prior to each experiment the Cu(111) crystal was 

cleaned by annealing to 800 K for 30 min and when necessary, sputtered by 

500eV Ar+ or Kr+ using the inert ion sputter source to remove any residual 

Mg or K.  

In a typical experiment an H2O ice film was deposited on the Cu(111) crystal 

using a purified source of H2O, directed by the needle valve at the substrate 

(held at mesospherically relevant temperatures of either 110 or 140 K) as an 

effusive collimated beam. To determine surface coverage, the pressure 

dependent beam flux of this doser for H2O was previously calibrated for the 

UHV chamber in section 3.2 and for this study was 

5.5 x 1014 molecules cm-2 s-1. For a 7200 s H2O dose under the temperature 

conditions of this study (110 – 140 K) using a sticking coefficient of 0.97 and 

an ice density of 0.9 g cm-3 taken from Brown et al. [1996], this deposited an 

estimated 1.3 µm thick ice film. A Mg or K layer was then dosed on top 

(surface) or in the middle (sandwich) of the ice film using the appropriate 

monolayer dosing apparatus. This metal-ice layer was then subject to 

analysis via two different thin film techniques. The first was TPD (see sub-

section 3.1.3), which investigated the thermal release from the ice layer of 

Mg and K containing species. A linear heating ramp of 0.5 ± 0.02 K s-1 was 

used, corresponding to the maximum evaporation rate of PMC ice particles 

estimated by [Gadsden, 1982]. The second technique used was energetic 
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ion sputtering by 500 eV Ar+ or Kr+ directed at the Cu(111) substrate, 

combined with mass spectrometry to monitor ejected species. The energetic 

sputtering removes layers of the H2O ice film and adsorbed metal species, 

effectively burrowing through the ice layer to provide a profile of the metal 

species present throughout the ice (illustrated in Figure 4.1).  

 

Figure 4.1: Diagram showing the energetic sputtering ions of an Mg dosed 

ice layer by 500 eV Ar+. This high energy impact stripped Mg (or K) and 

H2O from the layer which was then detected by the QMS. 

 

The mass spectra taken of Mg-ice and K-ice sputtering were background 

corrected against a corresponding sputter profile of pure ice. These sputter 

profiles were also normalized in terms of fluctuations in the ion beam, 

measured as a change in the current to the sample via a pico-ammeter 

connected to the substrate. Results from TPD experiments are described in 

section 4.2. Energetic sputtering of pure H2O layers are shown in section 4.3 

and sputtering of Mg and K dosed ice layers are shown in section 4.4. The 
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electronic structure calculations and analysis shown in section 4.5 were 

carried out by Prof John Plane. 

4.2 Sublimation of metal-ice layers 

Mg-ice and K-ice layers were deposited as described in section 4.1 and then 

subject to TPD in order to simulate the sublimation of ice particles within a 

PMC. In Figure 4.2 TPD traces of multilayer H2O films (Mg or K dosed ice) 

deposited at 140 K are shown, a profile that is consistent with previous 

studies [Fraser et al., 2001]. In the case of H2O dosed at 140 K 

(subsequently cooled to 110 K before TPD), a crystalline ice is formed [Sack 

and Baragiola, 1993; Safarik and Mullins, 2004]. This ice layer therefore 

does not undergo the glass transition of the amorphous ice deposited at 

98 K and discussed in Chapter 3. As the temperature of the sample was 

increased from 110 K, sublimation of the ice was detectable at 

approximately 140 K, peaking at 183 K. If the adsorbed Mg and K did desorb 

from the ice layer, co-desorption would have peaked at approximately the 

same temperature as the crystalline ice. Co-desorption has been previously 

observed in chapter 3, for CO2 trapped in H2O ice. However, the TPD traces 

for Mg and K are primarily within the background noise (3σ) suggesting that 

desorption of the metals from the ice was negligible. Monitoring other K 

(KOH) and Mg (MgO, MgOH, Mg(OH)2) species during the TPD experiments 

also displayed no detectable co-desorption peak. This lack of co-desorption 

was also observed in TPD traces taken of Mg and K dosed onto amorphous 

ice at 110 K.  
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 Figure 4.2: TPD traces of Mg (top) and K (bottom) dosed onto H2O ice at 

140 K, including associated compounds that were monitored by the 

QMS. The dashed lines indicate the 3σ noise for the corresponding 

species based on the background signal. 

 

Figure 4.3 shows mass spectra of energetic ion sputtering (500 eV Kr+ for K, 

500 eV Ar+ for Mg) of the Cu substrate carried out after the TPD shown in 

Figure 4.2. In both the case of Mg and K, clear broad peaks were detected 

(m/z = 24 and 39 respectively) corresponding to the respective metal 

species. This observation reveals that instead of co-desorbing with the ice, 

Mg and K species are instead left behind as a residual on the Cu(111) 
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substrate after the ice layer has sublimated, this process has also been 

observed previously in the case of Fe [Frankland and Plane, 2015].  

 

Figure 4.3: Histogram mass spectra of the Mg (top) and K (bottom) 

normalized signal observed during energetic ion sputtering (by either 

500 eV Ar+ or Kr+) of the Cu substrate after sublimation of the ice layer. 

m/z gaps in the sputter profiles correspond to the removal of 

background signals for N2 (m/z = 28) and double charged Kr (m/z = 42). 
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4.3 Energetic sputtering of pure H2O ice 

 

Figure 4.4: Example H2O trace monitored during the time of energetic 

sputtering by 500 eV Ar+ of a 1.3 µm ice layer held at 110 K. Linear fits 

are applied to two sections of the data to illustrate a reduction in signal 

to background levels.  

 

Background experiments were undertaken to investigate the sputtering of 

the H2O ice layer by 500 eV ions. An example of such an experiment is 

shown in Figure 4.4 for sputtering of a 1.3 µm H2O layer by 500 eV Ar+. The 

H2O signal reduces with time, as sputtering removes H2O molecules from 

the ice surface until the signal reaches background levels at 2100 s. At 

2100 s the Ar+ beam has sputtered down through the whole ice layer and 

coincides with a sputter peak at m/z = 63, attributed to sputtering of the now 

exposed Cu(111) substrate.  
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Sputtering at 500 eV can be described as a cascade of elastic collisions 

within the ice when the Ar+ impacts the ice surface [Galli et al., 2016]. This 

means each Ar+ ion impacts a wider area of the sample than simply its 

physical cross section. The sputter rate of H2O can be estimated using an 

Ar+ flux of (8.2 ± 0.3) x 1013 Ar+ cm-2 s-1 [Frankland and Plane, 2015], the 

total sputter time of 2100 s and the total number of H2O molecules adsorbed 

to the substrate (3 x 1018 molecules). This gives a sputter rate estimate of 17 

H2O molecules for each Ar+ impact. It should be noted that this is an upper 

limit estimate, as only an unknown fraction of the H2O layer is removed by 

sputtering. This means that the real sputter rate will be less than 17 H2O 

molecules per Ar+. This upper limit sputter rate is still of comparable 

magnitude to literature values for Ar+ sputtering of low temperature H2O ice 

[Famá et al., 2008; Galli et al., 2016].  

4.4 Energetic sputtering of Mg and K dosed ice  

The interaction of Mg and K adsorbed to the ice layer was probed by in-situ 

sputtering of the ice without TPD. Metal-ice layers were deposited (see 

section 4.1) and 60 minutes after deposition were subject to energetic 

sputtering. The normalized signals of gas phase Mg and K species removed 

from H2O ice via energetic ion sputtering are shown in Figure 4.5. By 

monitoring the H2O sputtering (see section 4.3) and knowing the H2O ice 

thickness (1.3 µm), it was possible to convert the total sputter time 

(assuming a linear sputter rate) to an estimate of the distance through the 

ice layer, shown on the top abscissa in Figure 4.5. 
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Firstly, it is clear from the sputter profiles that energetic sputtering by 500 eV 

Ar+ and Kr+ readily removes Mg and K from the ice surface that were 

adsorbed 60 minutes after deposition. The metal traces reach background 

levels by the time the energetic sputtering had burrowed through the H2O ice 

film (2100 s) and begun to sputter the Cu(111) substrate below. 

In the case of Mg (top of Figure 4.5), the profiles of surface compared to 

sandwich adsorbed Mg are quite different. The surface adsorbed Mg 

remained close to the surface of the ice, producing a sharp peak 

approximately 80 nm below the surface of the ice layer. A rapid initial decay 

in the signal with a long tail is observed after the Mg peak. The sandwiched 

H2O-Mg-H2O layer peaks closer to the middle of the ice layer (approximately 

500 nm deep) as would be expected based on the deposition conditions, but 

has a broader, more diffuse profile both towards the surface of the ice, and 

towards the Cu(111) substrate. 

In the case of K (middle of Figure 4.5), differences compared to the position 

of the Mg within the ice layer are apparent, and generally the K species are 

adsorbed deeper in to the ice. The surface adsorbed K displays a broader 

primary peak that occurs almost 300 nm deeper into the ice layer than for 

surface Mg. The peak K signal from the sandwiched H2O-K-H2O layer is 

from deeper into the ice than the respective Mg experiment, but shows a 

peak profile similar to the surface adsorbed K. A smaller secondary peak in 

the signal near the surface of the ice is observed at the same ice depth 

(approximately 100 nm) in both K experiments. This comparable K ejection 

from different deposition conditions could be caused by K ejected during 
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sputtering from a different surface such as the W mounting wires, or Cu 

support arms where H2O may also have been present.  

 

 

Figure 4.5: Vertically offset profiles of normalized Mg and K signals 

produced by energetic sputtering of metal-ice layers deposited at 110 K 

using 500 eV ions of Ar+ or Kr+. “Surface” profiles indicate metal 

adsorbed onto the 1.3 µm ice layer, while “sandwich” profiles indicate 

when the metal was adsorbed between two 0.65 µm ice layers. The 

bottom profile highlights KOH formation when the QMS was set to 

lower ionisation energies in order to avoid fragmentation (20 eV instead 

of 70 eV). 
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An interesting question is what process governs the differing peak positions 

of the metals. Are the differences due to the binding, diffusion rates or simply 

just different deposition conditions created by the two dosers. A set of 

experiments with a range of delay times before sputtering (15 – 120 mins) 

did not exhibit an observable trend of increased diffusion of the metals into 

the ice with time. The possible effects of the different binding of the metals is 

discussed in section 4.5 but it isn’t possible to rule out possible effects of 

different deposition conditions.  

With the QMS set at an electron energy of 70 eV, no reactive products of Mg 

or K on the ice surface were detected (m/z range of 20 – 80). This could be 

due to un-reactivity of the metals with the ice, or because reaction products 

were fragmented within the QMS and therefore not detected. The electron 

impact ionization of the QMS was therefore shifted down to lower electron 

energies (20 eV) in order to detect reaction products that would otherwise 

have been fragmented at 70 eV. Once again, no reaction products were 

detected across deposition temperatures of 110 - 140 K for Mg, suggesting 

Mg is unreactive when adsorbed to ice under these conditions. K-ice 

experiments at lower electron energy led to an observed peak at m/z=56 in 

the sputter signal, assigned as KOH and shown at the bottom of Figure 4.5. 

The corresponding K signal has been scaled and highlights the comparable 

profile shape of K and KOH through the ice layer. Both the primary and 

secondary peaks of K and KOH occur at similar distances into the ice, 

suggesting KOH is formed wherever K is present. In a previous photoelectric 

emission study by Vondrak et al. [2009] the K signal on the ice decayed on a 

time scale of several minutes. Given the 60 minutes’ delay between 

deposition of the metal and sputtering in these experiments, it suggests that 
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(in the absence of another loss mechanism) complete conversion of K to 

KOH in the ice layer is occurring. The observed K signal at 20 eV would then 

be attributed to the majority of KOH formed on the ice still fragmenting under 

these conditions. Operating the QMS at 20 eV was the experimental lower 

limit of the system in terms of detecting K species ejected from the ice. 
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4.5 Electronic structure calculations of Metal-ice 

interactions 

In order to explain and understand the reactivity of K and un-reactivity of Mg 

on the ice surface seen in the experimental data in section 4.4, theoretical 

calculations of the metals binding to ice were undertaken. Calculations for 

Fe with relevance to the previous work of Frankland and Plane [2015] were 

also done. These electronic structure calculations were carried out by Prof 

John Plane at the B3LYP/6-311+G level of theory using the Gaussian 09 

suite of programs [Frisch et al., 2009].  

Figure 4.6 shows the optimized structures of Mg, Fe and K adsorbed on a 

model ice surface consisting of 12 H2O molecules arranged in two stacked 

hexagonal rings. There are significant differences in the way the three metal 

atoms adsorb.  

In the case of Mg, the adsorption energy is -91 kJ mol-1; however, the Mg is 

bound to the lone electron pair on a single H2O molecule, on the outside of 

the hexagonal H2O structure at a surface irregularity. The Mg is therefore 

unreactive, but adsorbs relatively strongly at this site. Binding at the surface 

irregularity in a theoretical open 12 H2O molecule system is possible, but 

would have different implications for a real bulk ice in the case of a PMC 

particle. Instead of binding at the edge of the H2O ring Mg would bind only at 

a defect/imperfection on the crystal surface such as a step edge. This Mg 

adsorption behaviour could explain the experimental observation in Figure 

4.5 where the majority of the Mg is adsorbed close to the surface of the ice. 

Binding only at surface defects also suggests that the uptake of Mg onto ice 
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will be lower compared to K or Fe and will depend on its ability to migrate to 

these surface defect sites. 

The Fe adsorption energy is -306 kJ mol-1, because the Fe has actually 

inserted into a H2O molecule to form the very stable HFeOH molecule bound 

to the surface. This is consistent with the observation of Fe(OH)2 in the 

sputtering experiment of Frankland and Plane [2015]. After the formation of 

HFeOH, further rearrangement with an adjacent H2O on the surface should 

produce Fe(OH)2 + H2 without a significant activation barrier [Frankland and 

Plane, 2015].  

The K adsorption energy is lower at -68 kJ mol-1. However, once adsorbed 

the K atom can insert into a surface H2O, producing KOH embedded at the 

ice surface with a dangling H atom (bottom panels of Figure 4.6). This state 

is only 60 kJ mol-1 higher in energy than the initially adsorbed K atom. Thus, 

the overall process to form KOH is -8 kJ mol-1. This process is slightly 

exothermic or perhaps thermo-neutral, within the uncertainty at this level of 

theory [Foresman and Frisch, 1996]. In contrast, the gas-phase reaction K + 

H2O  KOH + H is 171 kJ mol-1 endothermic (at the B3LYP/6-311+g(2d,p) 

level), illustrating the significant solvation of polar KOH on the ice surface. 

Once KOH has formed, the dangling H atom can easily migrate across the 

surface to find another dangling H and form H2. The energy involved in 

converting the adsorbed K to KOH is consistent with the decay rate of K of 

5  10-3 s-1 on ice at 92 K [Vondrak et al., 2009].  

Without the metals present in these electronic structure calculations this 12 

H2O molecule system would be observed as two perfectly mirrored 

hexagonal rings. Due to the strong binding of the metals to the ice 
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(equivalent of 3+ hydrogen bonds) distortion of the H2O rings occurs. Less 

distortion would be expected for a real world bulk ice system, in which the 

H2O rings are locked into more rigid sheets of hexagons. 

 

 

Figure 4.6: Structures of Mg, Fe or K bound to a model ice surface of two 

hexagonal rings of 6 H2O molecules based on electronic structure 

calculations (at the B3LYP/6-311+G level of theory). The white spheres 

are H atoms and the red spheres are O atoms. An Mg atom (yellow 

spheres) is shown bound to ice in the top two panels, while an Fe atom 

bound to ice (grey spheres) is shown in the following two panels. In the 

lower 4 panels a K atom is shown first binding to the ice and then 

reacting to form KOH and releasing an H atom. 
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4.6 Effect of metal uptake on ice on MSP coagulation 

It was shown in section 4.2 that Mg and K were not co-desorbed with the ice 

layer during sublimation and instead the metals were left as residuals on the 

substrate surface. This process has also been observed for Fe by Frankland 

and Plane [2015]. This residual formation raises an interesting question 

regarding the coagulation of MSPs in the presence of PMCs. 

The 1.3 µm thick H2O film was evaporated during the TPD experiments in 

approximately 100 seconds giving a desorption rate of 13 nm s-1 (at a 

heating ramp of 0.5 ± 0.02 K s-1). This rate is much higher than the predicted 

maximum desorption rate estimated in the mesosphere of about 0.6 nm s-1 

(for a 50 nm radius ice particle at 170 K) by Gadsden [1982]. It is unlikely 

that adsorbed metals on PMC particles undergoing this comparatively slower 

evaporation rate would co-desorb, and indicates that the experimental 

observation here should be atmospherically analogous to the sublimation of 

PMC particles. 

For PMCs this suggests that any metals removed from the gas phase onto 

the ice particle surface would be permanently locked into the solid phase. As 

the region of the mesosphere warms, or the PMC particles sediment into a 

warmer and/or unsaturated region of the mesosphere, sublimation of the 

H2O will commence. The adsorbed metal species will then migrate deeper 

into the particle until sublimation of the PMC particle is complete, leaving 

behind a residual particle composed of adsorbed metal atoms, metal 

compounds, and MSPs, including (for heterogeneous nucleation) the particle 

on which the ice originally condensed. This process means that PMC 

particles in the Earth's mesosphere will compete with MSP growth via 
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coagulation and condensation of metallic species from the gas phase, which 

in turn may influence the growth and transport of MSPs during summer at 

high latitudes. PMCs could therefore act as a second MSP coagulation 

mechanism. Figure 4.7 shows a comparison of the surface area available for 

growth and coagulation on existing MSPs (taken from modelling the 

distribution of charged particles measured by a rocket payload  [Plane et al., 

2014]), compared with the surface area available on ice particles during a 

strong PMC event (modelled from lidar backscatter measurements at the 

South Pole [Plane et al., 2004]). At the cloud peak, the PMC provides at 

least 2 orders of magnitude greater available surface area for metal uptake 

compared to the background MSPs.  

In order to illustrate the effect of the increased surface area available on 

PMCs for MSP production, a simple model of MSP formation due to metal 

uptake on PMCs is detailed here for typical PMC conditions in the 

mesosphere. Metal uptake was evaluated for a mesospherically abundant 

metal (Fe) using conditions representative of 83 km and 140 K with an Fe 

density of 104 atom cm-3 based on model and lidar data from Feng et al. 

[2013]. Injection of fresh Fe into the layer from meteoric ablation is taken as 

0.05 atom cm-3 s-1 from Carrillo-Sánchez et al. [2016]. An uptake coefficient 

of unity is used for Fe on ice and uptake is calculated using first order uptake 

kinetics (see Frankland et al. [2015] for theory).  
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Figure 4.7: Comparison of available surface area from MSPs (taken from 

modelling the distribution of charged particles measured by a rocket 

payload [Plane et al., 2014]) and during a strong PMC event (modelled 

from lidar backscatter measurements at the South Pole [Plane et al., 

2004]). 

 

This uptake of Fe over time is shown in Figure 4.8 for a range of ice particle 

concentrations. At an ice surface area of 6 x 10-8 cm2 cm-3 (200 cm-3 of 50 

nm radius ice particles) the Fe layer is 99+ % depleted within 5 hours under 

the strong PMC conditions shown here [Murray and Plane, 2005; Plane et 

al., 2004]. Therefore, assuming complete depletion of the Fe layer on this 

timescale is a reasonable approximation. While PMCs can persist for 24+ 

hours, 5 hours is representative of individual ice particle lifetimes in a strong 

PMC [Kiliani et al., 2013]. The Fe adsorbed to an individual ice particle is 

assumed to coagulate into a single spherical MSP (density of 2 g cm-3) after 
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sublimation of the ice. This produces MSPs (200 particles cm-3) with a radius 

of 1.25 nm (If fayalite (Fe2SiO4) was formed) or a radius of 1 nm (if goethite 

(FeO(OH)) was formed).  

This simple model does not account for coagulation with any MSP that 

nucleated the ice initially, which would further increase the radius of the 

residual MSP formed. Inclusion of any MSPs already present in the ice can 

be evaluated using the measurements of Hervig et al. [2012] where a 

0.01-3% volume inclusion of MSP in PMC particles was deduced. If this 

volume of MSP was present in 50 nm radius ice particles after sublimation it 

would leave a 2.4 – 15.8 nm radius MSP (assuming the same MSP density 

of 2 g cm-3). 

 

Figure 4.8: Calculated depletion of a 104 atom cm-3 Fe layer by uptake on 

50 nm radius ice particles at varying number concentrations. This was 

for typical conditions at 83 km.  
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MSP formation by PMCs can be compared to the predicted growth of MSPs 

by coagulation in a 1-D microphysical model that used an ablated input of 

5 t d-1 [Plane et al., 2014]. For an altitude of 83 km, the concentration of 

1 nm radius MSPs is 100 cm-3 and for 2 nm radius MSPs is 60 cm-3. The 

coagulation of MSPs in PMC particles would affect the distribution of MSPs 

in the region of the cloud, increasing the number of ≥ 1nm  radius MSPs 

present after sublimation of the cloud layer. Further modelling accounting for 

both the PMC microphysics and MSP coagulation is necessary to fully 

understand the effect of these competing coagulation processes on the 

overall distribution of MSPs in the mesosphere. 

4.7 Summary and conclusions 

In this chapter experiments on ice films within a UHV chamber were used to 

investigate the binding and reactivity of Mg and K on ice at temperatures of 

110 – 140 K. Both metals were readily adsorbed under these conditions but 

were found not to co-desorb with the ice layer upon sublimation. Sputtering 

experiments showed that the metals are left as residuals after the ice 

sublimes. It is hypothesised here that PMCs could act as a secondary 

coagulation mechanism. The depletion of metal during a PMC event would 

lead to the formation of a population of large (≥ 1 nm radius) MSPs in the 

region of the cloud. Additionally, due to the differing reactions of the metals 

with the ice compared to reactions in the gas phase, the MSPs produced 

may be of different composition. The effects on the mesosphere of this 

process requires future modelling to account for cloud microphysics and 

competing MSP formation mechanisms. Energetic sputtering by 500 eV Ar+ 

and Kr+ of metal dosed ice layers also showed that Mg was unreactive, while 
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K formed KOH on the ice surface. These observations were supported by 

electronic structure calculations, with an Mg atom shown to be unreactive 

due to binding on a lone H2O molecule at a surface irregularity, while an 

initially adsorbed K atom requires relatively little energy to insert into a 

surface H2O to produce KOH and a dangling H atom. The calculations here 

also explain a previous observation that adsorbed Fe reacts on low-

temperature ice to produce Fe(OH)2. 
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5 Heterogeneous CO2 ice nucleation on nanoparticles 

under Martian mesospheric conditions 

 

Mesospheric CO2 ice clouds are an unusual formation observed in the 

Martian atmosphere [Montmessin et al., 2006]. These clouds are thought to 

be formed via deposition of CO2, the main constituent of the atmosphere, 

following heterogeneous nucleation. MSPs have been suggested as a likely 

INP for these clouds [Listowski et al., 2014]. This relatively newly observed 

cloud is poorly understood, with large uncertainties and unknowns regarding 

the microphysical formation process. The TRAPS instrument (detailed in 

chapter 2) was used at temperature and pressure conditions close to the 

mesosphere of Mars to investigate heterogeneous nucleation of CO2. 

Results from experiments using TRAPS to investigate the nucleation and 

growth of CO2 ice on nanoparticles (MSP analogue nanoparticles of FexOy 

and SiO2) are presented here. A desorption energy of CO2 on the 

nanoparticles was determined as ΔFdes = (18.5 ± 0.2 kJ mol-1), while the 

contact parameter m was determined using CNT as 0.78 ± 0.02. Applying 

these CNT parameters to CO2 clouds in the Martian mesosphere gave 

nucleation activation temperatures of 8 – 18 K (dependent on particle size) 

below the CO2 saturation temperature. This suggests that lower 

temperatures are required to initiate cloud formation than previously thought.  
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5.1 Methodology 

As stated in the contributions section, the work in this chapter was led by Dr 

Denis Duft and Mario Nachbar [Duft et al., 2015; Meinen et al., 2010]. This 

included the development and methodology of the TRAPS instrument and 

leading the raw data analysis for these experiments. The TRAPS instrument 

used in this study was detailed in chapter 2, with the methods for a typical 

experiment looking at CO2 deposition on nanoparticles detailed here. 

First, a population of nanoparticles of either FexOy or SiO2 was generated in 

a 3.3 slm flow of He and O2 by using a suite of precursor flows, in 

combination with a microwave plasma particle source within the NPS. This 

formed spherical, compact and singly charged particles with typical radii of 

2 – 4 nm, depending on the vapour pressure of the precursors [Giesen et al., 

2005]. The particle flow (60 mbar) was then transferred into a vacuum 

chamber (10-3 mbar) using differential pumping in combination with the FLO 

and ADL. The charged particles were controlled using ion guides and 

quadrupole deflectors to transfer the particles to the MICE (see chapter 2 for 

more detail on the MICE). Typically 107 particles were introduced to the 

MICE in 1 s, where the particle temperature (Tpart) and supersaturation was 

held constant (e.g. Tpart = 69.44 ± 0.4 K and S = 567 ± 142) during the 

experimental timescale (typically 140 s). The associated errors are caused 

by the slight temperature gradient (0.1 K) across the length of the MICE. 

Deposition of CO2 occurred on the nanoparticles if supersaturation in the 

MICE was sufficient. The deposition rate of CO2 was probed in each 

experiment by extracting a fraction of the total particle population 

(approximately 105 particles every 6 s) at time intervals relative to the 
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particles residence time in the MICE. The extracted particles were assumed 

to be representative of the total particle population due to the relatively 

homogeneous temperature and saturation conditions within the MICE. 

These extracted particles were then transferred to a TOF-MS to evaluate the 

time dependent growth of CO2 ice on the particles. A TOF-MS accelerates 

ions in relation to their mass to charge ratio, with heavier ions travelling 

slower and taking longer to reach the detector compared to lighter or multiply 

charged ions. The time-of-flight spectra can therefore be used to evaluate 

the added mass of the CO2 deposited on the initially bare nanoparticles as a 

function of residence time in the MICE (knowing the initial particle mass). 

This was achieved by fitting the recorded particle time-of-flight spectra with a 

Gauss curve. The peak of the mass for the Gaussian distribution was 

determined as the modal particle mass with 1σ of the fit as the uncertainty. 

In the following section, an example of the particle mass distributions for 

three experiments on SiO2 nanoparticles is used to illustrate CO2 deposition 

and growth under different conditions. 

The full temperature range accessible to the MICE in this study was 

62 - 73 K. This was limited by the rapid loss of CO2 ice from the warm walls 

of the MICE at higher temperatures. The upper limit of 73 K is close to the 

conditions where CO2 clouds have been observed in the Martian 

mesosphere (75 -100 K) [Montmessin et al., 2006]. The CO2 pressure in the 

MICE (10-3 mbar) satisfactorily reproduces typical mesospheric conditions 

observed on Mars for altitudes of approximately 80 km [Forget et al., 2009].  
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5.2 CO2 adsorption, nucleation and growth 

Figure 5.1 shows a series of measurements of CO2 nucleation and growth 

on 2.5 nm radius SiO2 particles. The CO2 concentration in these three 

experiments was held constant at 109 cm-3 while the Tpart was altered. 

Lowering the Tpart therefore increased the supersaturation that the particles 

were exposed to. The mass of the bare SiO2 particles (black dashed line) 

corresponds to a particle distribution exposed to conditions in the MICE 

where CO2 deposition did not occur. Any additional mass above this line is 

therefore attributed to uptake of the CO2 atmosphere within MICE. Lowering 

the Tpart and therefore increasing the supersaturation led to three distinct 

types of CO2 deposition (shown by [a], [b] and [c]). Curve [a] shows a 

situation where the nanoparticles were exposed to sufficient supersaturation 

to cause adsorption of CO2 on the SiO2 (S = 900) but not high enough to 

overcome the energy barrier to nucleation. With increasing exposure time to 

supersaturated conditions the number of CO2 molecules adsorbed increases 

(exponential growth), before reaching an equilibrium. At this equilibrium point 

the adsorbing and desorbing flux of CO2 from the SiO2 particle surface is 

assumed to be the same, observed as a plateau in particle mass. This 

relationship is used to evaluate an important parameter in CNT, the ΔFdes of 

CO2 on the nanoparticles, calculated in section 5.3. At a slightly lower 

temperature (66.4 K) shown in curve [b], the supersaturation is high enough 

(S = 2100) to overcome the energy barrier to nucleation. Growth can be 

seen to occur exponentially until it diverges from adsorption growth at a 

residence time of approximately 67 s. This divergence from adsorption 

growth to linear rapid growth is interpreted as the point of nucleation. This 
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was used to calculate another crucial parameter in CNT, m, in section 5.4. 

Finally, curve [c] at a further decreased Tpart (64 K) and significantly 

increased supersaturation (S = 11500) produces a high nucleation rate, with 

rapid linear growth from the onset of observation. This differing deposition 

behaviour over < 3 K highlights the steep temperature dependence of CO2 

nucleation on these nanoparticles. 

Note that as well as the three experiments shown in Figure 5.1, many 

experiments were done on SiO2 and FexOy over a range of Tpart and 

supersaturation conditions. For determining the ΔFdes of CO2 on the 

nanoparticles in section 5.3 and for the m determination in section 5.4 a total 

of 142 experiments were undertaken. See Nachbar et al. [2016b] for a 

comprehensive table of all the experiments carried out for analysis.  
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Figure 5.1 Particle mass against residence time in the MICE for a set of 

experiments of CO2 deposition on 2.5 nm radius SiO2 particles. 

Different growth regimes are shown for adsorption (curve [a]) used to 

determine the ΔFdes, delayed nucleation and growth (curve [b]) used to 

determine the m and also rapid initial nucleation and growth (curve [c]). 

The error bars relate to the standard deviation of the measured time-of-

flight spectra. 
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5.3 Desorption energy of CO2 on SiO2 and FexOy 

Determination of the ΔFdes for CO2 on the SiO2 and FexOy used in this study 

is necessary for accurately calculating the surface monomer coverage of 

CO2, c1,s on an INP under atmospheric conditions. c1,s is a variable within the 

CNT theory approach to heterogeneous nucleation (see Equation 1.1 in 

section 1.3). The c1,s on the surface of an INP is calculated from the 

incoming and outgoing flux of CO2 molecules by assuming a steady state, 

where the outgoing flux is dependent on the ΔFdes. c1,s is shown as: 

where 𝜐 is the vibrational frequency of a CO2 molecule on the surface of the 

INP (2.9 x 1012 s-1 taken from Sandford and Allamandola [1990]), 𝑝𝐶𝑂2
is the 

CO2 vapor pressure and 𝑚𝐶𝑂2
is the mass of a CO2 molecule. It is important 

to determine the ΔFdes  for both SiO2 and FexOy as c1,s affects the nucleation 

rate with a c1,s
2 dependency. 

Experiments using SiO2 and FexOy nanoparticles that exhibit adsorption 

growth behaviour similar to that seen in curve [a] of Figure 5.1 were used to 

determine the ΔFdes. In the case of curve [a] the mass of approximately 1200 

CO2 molecules was added to the bare SiO2 particle. Making the assumption 

of sub-monolayer CO2 coverage the c1,s was calculated. The c1,s was then 

divided by the gas phase CO2 concentration and, knowing the Tpart, the only 

unknown variable in Equation 5.1 was the ΔFdes. Equation 5.1 was fitted 

using a non-linear least squares method known as the Levenberg-Marquardt 

algorithm for a range of  Tpart (and therefore a range of c1,s) to determine 

 𝑐1,𝑠 =
𝑝𝐶𝑂2

𝜐√2𝜋𝑚𝐶𝑂2
𝑘𝑇𝑝𝑎𝑟𝑡

∙ 𝑒𝑥𝑝 (
∆𝐹𝑑𝑒𝑠

𝑘𝑇𝑝𝑎𝑟𝑡
) 

(5.1) 
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ΔFdes. The same fitting was done for the upper and lower limits of the 

normalized c1,s values to determine the error. This gave a  ΔFdes of 

18.43 ± 0.15 kJ mol-1 and 18.52 ± 0.15 kJ mol-1 for CO2 on FexOy and SiO2 

respectively. The ΔFdes for is substrate specific. However, in this case the 

ΔFdes of both materials agree within error, so a common value is used in this 

study of 18.5 ± 0.2 kJ mol-1. 

5.4 Contact parameter determination 

The surface diffusion approach of CNT was used to evaluate m and is 

described in detail in chapter 1. Briefly, CNT assumes that adsorbed CO2 

molecules diffuse on the INP surface. These CO2 molecules can then collide 

and combine to form clusters, which could reach the critical size to initiate 

nucleation. m relates to the contact angle of the nucleating phase on the 

particle surface (m = cos θ) (see Figure 1.10) and is a measure of the 

specific nucleating ability of an INP, reducing the free energy barrier to 

nucleation (ΔFhet) (Equation 1.2).  

A set of experiments using a range of conditions for both SiO2 and FexOy 

nanoparticles that produced growth similar to that seen in curve [b] in Figure 

5.1 was used to determine m for nucleation of CO2 on nanoparticles in the 

MICE. This involved experiments with particles of initial radii of 2.4 –

 3.1 nm for SiO2 and 1.9 – 2.1 nm for FexOy, particle temperatures of 64 –

 73 K and CO2 concentrations from 8 x 108 cm-3 to 4 x 1011 cm-3 (the full 

experiment list can be found in Nachbar et al. [2016b]). 

The c1,s (Equation 5.1) used in CNT assumes a steady state equilibrium. The 

steady state assumption of the growth plateau in ΔFdes experiments is not 
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observed in these experiments. This is because the particles continue to 

adsorb more CO2 molecules as a function of the time exposed to 

supersaturated vapour in the MICE. The nucleation rate is time dependent, 

increasing during adsorption until either the critical concentration to initiate 

nucleation (rapid growth in curve [b]) or the equilibrium surface concentration 

(plateau in curve [a]) is reached. In the case of curve [a], the nucleation rate 

is too low to initiate nucleation on enough particles to be observable on 

experimental timescales (140 s). The lower temperature of curve [b] means 

a higher equilibrium c1,s (see Equation 5.1). Increased exponential growth 

compared to curve [a] is apparent due to the higher equilibrium c1,s. At a 

residence time of approximately 67 s the exponential growth changes to 

rapid linear growth, interpreted as the point of nucleation. The surface 

concentration of CO2 at this transition point for each experiment is therefore 

determined as the critical concentration for nucleation. 

No significant broadening of the particle mass distributions was observed 

during nucleation. This suggests that nucleation of the majority of the 

particles occurred within a single experimental time step (6 s). The 

nucleation rate at the critical surface concentration of CO2 is therefore 

estimated as 1/6 times this value. Combining these variables with the INP 

radius, Tpart, CO2 concentration and saturation ratio (in the MICE), Equation 

1.1 can be numerically solved to determine m, which is rather insensitive to 

the nucleation rate. One order of magnitude change in nucleation rate 

produces only a 1% change of m. The error associated with this order of 

magnitude change is combined with the errors of the other variables to give 

an overall error in the m value. As the nucleation is extremely temperature 

dependent the main error source in m is due to the ± 0.4 K uncertainty in the 
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temperature of the MICE. The determined m values are shown in Figure 5.2. 

A lack of temperature dependence on m is apparent over the temperature 

range 64 – 73 K and there is no significant difference within error of the m 

determined for the different INPs (SiO2 and FexOy). Therefore an overall 

mean value for the m of 0.78 ± 0.02 was determined.  

 

Figure 5.2: The m with particle temperature for FexOy particles and SiO2 

particles. The dashed line and shaded area represent the determined 

mean value of 0.78 ± 0.02. 
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5.5 CO2 nucleation in the Martian mesosphere 

The mean value of m (0.78 ± 0.02) was used in conjunction with the ΔFdes 

(18.5 ± 0.2 kJ mol-1) to evaluate the nucleation rates of CO2 under 

representative Martian mesospheric conditions. This extrapolation makes 

the assumption that the m and ΔFdes values are independent of Tpart. A CO2 

ice density of 1.5 g cm-3 was used in this section taken from Luna et al. 

[2009]. The use of this density value was valid for evaluation of the 

experimental data at temperatures below 80 K. Use of this density above 

80 K is investigated in chapter 6. 

5.5.1 CO2 nucleation rates using a fixed atmospheric density  

Initially a fixed CO2 concentration of 1 x 1014 cm-3 was used to evaluate 

nucleation rates, which corresponds to a mesospheric altitude of 

approximately 70 km [Forget et al., 2009]. Nucleation rates as a function of 

temperature were calculated for a range of INP sizes (1 – 30 nm radius) and 

are shown in Figure 5.3. The nucleation rate is extremely temperature 

dependent, increasing by 3 orders of magnitude for a 1 K reduction in 

temperature. It is also significantly dependent on the size of the INP, for 2 –

 30 nm radii INP a 13 K shift in the nucleation rate profile is apparent. At 

larger INP radii the effect is minimal as increasing the INP radii from 

30 - 200 nm only shifts the nucleation temperature by 1 K. 
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Figure 5.3: Nucleation rates for different INP sizes (1 – 30 nm radius) using 

CNT as a function of temperature. A fixed CO2 concentration of 

1 x 1014 cm-3 was used here. The values of ΔFdes and m were 

determined in sections 5.2 and 5.4 respectively.  

 

5.5.2 CO2 nucleation rates using a variable atmospheric density  

The use of a single atmospheric density provides an illustration of the 

dependence of nucleation rate on temperature and particle size. The 

calculated nucleation parameters are now instead applied to an atmospheric 

density profile in order to relate directly to atmospheric observations. 

Nucleation rates were calculated using a fit to the overall atmospheric 

density of the entry profile of the Mars Pathfinder from Magalhães et al. 

[1999], assuming a 95% mixing ratio for CO2 [Mahaffy et al., 2013].  

Due to the steep temperature dependence of the nucleation observed in 

Figure 5.3, at each particle size a characteristic temperature is apparent for 
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nucleation. The cold pockets in which mesospheric CO2 clouds form have a 

lifetime of a few hours [Listowski et al., 2014]. Here it is assumed that in the 

presence of abundant INPs a nucleation rate of 0.01 s-1 is sufficient to form a 

cloud on this timescale. The temperature at which this nucleation threshold 

is reached is referred to here as the Nucleation Activation Temperature 

(NAT).  

The altitude dependent NATs for 2 nm and 30 nm radius INPs in the Martian 

atmosphere is shown in Figure 5.4. The Pathfinder temperature profile from 

Magalhães et al. [1999] includes temperatures up to 5 K below the 

saturation temperature (Tsat) (where S = 1) at an altitude of 80 km. In early 

modelling studies of CO2 cloud this would have been deemed sufficient to 

activate cloud formation [Forget et al., 1998]. However, the predicted NATs 

in this study are 8 – 18 K below the Tsat, suggesting CO2 clouds would not 

have formed under these conditions. Significant temperature depression 

below Tsat is therefore necessary to form CO2 clouds in the Martian 

mesosphere when using this parameterization. The temperature depression 

required to facilitate cloud formation can be seen in the satellite temperature 

profile taken from Montmessin et al. [2006] of occ #1205. A cold pocket is 

present at an altitude of approximately 96 km, where temperatures dropped 

up to 20 K below the Tsat. These conditions are predicted to lead to cloud 

formation on INPs with radii ≥ 2 nm. This prediction is corroborated by the 

observation of a detached layer at altitudes just below the temperature 

minimum (approximately 75 – 93 km altitude). This detached layer was likely 

caused by nucleation of CO2 and subsequent growth and sedimentation of 

the CO2 ice particles from the cold pocket above.  
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It should be noted that the problem of predicting cloud formation in reality is 

more complex than the simple comparison shown here, requiring modelling 

that includes microphysical processes. Cloud formation is still dependent on 

the availability of sufficiently active INP and sufficient exposure time to 

supersaturated conditions. This is highlighted by observations in certain 

cases of temperatures up to 20 K below Tsat in the absence of CO2 cloud 

[Montmessin et al., 2011]. It would be advantageous in the future to have 

observations of particle size distributions in the mesosphere, given the high 

variability of nucleation rates depending on particle size. 

The NATs were recalculated using the m of 0.95 taken from Glandorf et al. 

[2002]. This comparatively higher m produces NATs 5 - 7 K warmer. Several 

major differences between this study and the work of Glandorf et al. [2002] 

could account for the difference in reported m and subsequently shifted 

NATs. Firstly the temperature range studied by Glandorf et al. [2002] was 

130 -140 K, significantly higher than the 64 – 73 K investigated in this study. 

Temperature dependence of m has been previously observed for 

experiments looking at H2O ice nucleation on Mars [Trainer et al., 2009]. No 

temperature dependence in m was observed over the individual temperature 

range in both studies (approximately 10 K) but a gradient in m could be 

apparent over the full 76 K temperature range. Finally and possibly most 

importantly, Glandorf et al. [2002] investigated CO2 nucleation on planar H2O 

instead of on SiO2 and FexOy nanoparticles. This will lead to the availability 

of different nucleation sites that could be less efficient in the case of this 

study.  
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Figure 5.4: Calculated NAT (nucleation rate = 0.01 s-1) with altitude for a 

2 nm (green curve) and 30 nm INP (cyan curve), the shaded area is the 

uncertainty due to the error in m and ΔFdes. For comparison, the Tsat is 

included (blue curve, where S = 1). Two measured temperature 

profiles, the Pathfinder entry profile [Magalhães et al., 1999] and orbit 

1205 (occ. #1205) of Montmessin et al. [2006], are shown for 

comparison. A detached layer observed during the measurement of occ 

#1205 (attributed here to CO2 cloud formation) is shown by the grey 

shaded area. 
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5.5.3 INPs in the Martian mesosphere 

Whatever the cause of the differences in m, it is also worth evaluating which 

parameterization is most applicable to the Martian mesosphere. The 

likelihood of H2O INPs for mesospheric CO2 cloud formation was questioned 

previously in section 1.2.3. Due to the lack of H2O supersaturation in the 

mesosphere (altitudes above 50 km) during CO2 cloud season, H2O ice is an 

unlikely nucleation pathway [Maltagliati et al., 2013]. This suggests that the 

parameterization of Glandorf et al. [2002] isn’t applicable to typical 

mesospheric CO2 clouds. MDPs were suggested in section 1.2.3 as a 

possible INP source, when the second dust maxima (45 – 65 km) and 

mesospheric CO2 cloud altitude range (60 – 80 km) overlap during the 

daytime [Guzewich et al., 2013; Montmessin et al., 2006]. The 

measurements in this study of m could be applied to MDPs. Given the 

comparable nucleating efficiency (within error) in this study of the SiO2 and 

FexOy and the comparable ΔFdes (18.5 ± 0.2 kJ mol-1) to that of an MDP 

analogue palagonite (19.6 kJ mol-1) [Zent and Quinn, 1995]. However, in 

order to substantiate this hypothesis, studies on more INPs with differing 

composition (including MDP analogues) should be carried out in the future to 

determine possible variability in m. MSPs are thought to be the likely source 

of INPs for these high altitude clouds, as the presence of MDPs alone can’t 

reproduce observed mesospheric CO2 clouds [Listowski et al., 2014]. Given 

the use of MSP analogues in this study, this parameterization is 

recommended for application in future modelling of mesospheric CO2 ice 

clouds. 
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5.6 Summary and conclusions 

A novel experimental system (TRAPS) has been employed to investigate the 

nucleation of CO2 on nanoparticles of SiO2 and FexOy under conditions close 

to those observed in the Martian mesosphere. Distinct adsorption and 

nucleation growth regimes on these two analogues were observed and used 

respectively to determine a mean ΔFdes of 18.5 ± 0.2 kJ mol-1 and m of 

0.78 ± 0.02. Applying these CNT parameters to CO2 clouds in the Martian 

mesosphere led to NATs 8 – 18 K (dependent on INP size) below the Tsat. 

This suggests that a larger temperature depression below Tsat than 

previously thought is needed to form clouds. The nucleation parameters 

included here are recommended for use in future modelling studies of the 

mesosphere. 
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6 CO2 ice structure and density under Martian atmospheric 

conditions 

Clouds composed of CO2 ice form throughout the Martian atmosphere as 

detailed in chapter 1. Mesospheric CO2 ice clouds are thought to form at 

temperatures below 100 K (investigated in chapter 5) [Listowski et al., 2014]. 

Lower altitude CO2 ice clouds in the wintertime polar regions form up to 

around 145 K and are related to the build-up of the polar ice caps [Hayne et 

al., 2012]. However, the crystal structure and related fundamental properties 

of CO2 ice under Martian conditions are poorly characterised. Here, XRD 

measurements of CO2 ice are presented, grown via deposition from the 

vapour phase under temperature and pressure conditions analogous to the 

Martian mesosphere. A crystalline cubic structure was determined, 

consistent with the low-pressure polymorph (CO2-I, space group Pa-3 (No. 

205)) for CO2 deposited at temperatures of 80 - 130 K and pressures of 

0.01 – 1 mbar. The thermal expansion of CO2 was determined across 80 –

 130 K that allowed for a fit of CO2 ice density measurements across a larger 

temperature range (80 – 195 K) when combined with literature data (CO2 

density in g cm-3 = 1.72391 - 2.53x10-4 T - 2.87x10-6 T2). Temperature-

dependent CO2 density values were used to estimate sedimentation 

velocities and heterogeneous ice nucleation rates and is recommended for 

use in future studies of Martian clouds. The possible shape of CO2 ice 

crystals in the Martian atmosphere was predicted and shows that a cubo-

octahedron is the equilibrium shape. A range of shapes in the Oh point group 

is also possible, from cubes to octahedra. 
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6.1 Methodology 

CO2 ice crystal structure was examined on a temperature-controlled stage 

enclosed within an environmental chamber. This stage is probed using 

powder XRD. A description of the instrument, and detail of the XRD 

technique can be found in Chapter 2. In these experiments, CO2 gas was 

either vapour deposited onto a flat substrate, or CO2 in the form of powdered 

dry ice was placed in a sample holder and inserted into the chamber. This 

XRD instrument has been used previously to study vapour deposited H2O 

ice [Malkin et al., 2015; Murray et al., 2015]. 

In a typical vapour-deposition experiment the environmental chamber was 

first pumped to a pressure of < 1x10-2 mbar to ensure minimal H2O vapour 

contamination during cooling. The sample was then cooled from 300 K to 

80 K at a rate of 20 K min-1. At the deposition temperature a diffraction 

pattern was recorded (2θ = 20°- 50°) to ensure no contamination in the form 

of water ice frosting had occurred on the glass slide. For CO2 vapour 

deposition, a flow of pure CO2 gas (Air Products CO2 purity 4.5) was 

administered directly into the chamber via a needle valve. The 

environmental chamber was kept at low pressures during deposition 

(0.01 - 1 mbar) using the vacuum pump and throttle valve. Low-resolution 

XRD patterns (2θ = 20°- 30°) were taken continuously during deposition until 

sufficient signal was observed. The system was then sealed to maintain the 

pressure and higher resolution XRD patterns with increments of 

2θ = 0.0426° were obtained at 2θ = 20° - 50°. Experimental diffraction 

patterns were corrected against an Si standard, accounting for peak shifting 

due to sample height.  
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For experiments looking at the structure of dry ice, an indented aluminium 

sample holder without a borosilicate glass slide was used. Dry ice was 

ground using a pestle and mortar and packed into the sample holder under 

liquid N2. A flow of dry Ar gas over the holder was used to minimise water ice 

contamination. Grinding was done in order to minimise the preferred 

orientation in the crystals. The environmental chamber was cooled to 80 K at 

vacuum in the absence of a sample holder and was flushed with dry N2 

before transferring the sample holder containing the dry ice into the chamber 

and promptly sealing it. XRD patterns were then taken across the scan 

range 2θ = 20° - 50°. XRD patterns of dry ice, and CO2 ice deposited at 80 K 

and 110 K are shown in the following section in order to determine the 

crystal structure and temperature dependent properties of the ice. 
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6.2 Crystal structure of CO2 ice deposited from vapour 

Figure 6.1 shows diffraction patterns of typical vapour-deposited CO2 ice at 

80 K and 110 K, ground dry ice and a predicted pattern using known lattice 

parameters of CO2-I with space group Pa-3 (taken from de Smedt and 

Keesom [1924]). The structure of CO2-I is detailed in subsection 1.2.4 and is 

described by a single lattice parameter, due to its cubic structure. 

Experiments were carried out at pressures as low as 0.01 mbar, 

corresponding to a Martian atmospheric pressure where CO2 clouds have 

been observed at altitudes of 60 - 65 km [Forget et al., 2009; Kleinbohl et al., 

2009]. The vapour-deposited ice at 80 K displays distinct Bragg peaks 

associated with a crystalline structure, consistent with previous studies that 

suggest amorphous CO2 ice only forms at temperatures below 50 K [Souda, 

2006]. The Bragg peaks in the vapour-deposited and dry ice samples are at 

comparable 2θ angles to the Bragg peaks in the predicted pattern. However, 

the 200 peak at 33o is absent in the vapour-deposited material at 80 K and 

the relative peak intensities vary between the measured (80 K, 110 K and 

dry ice) and calculated pattern for an ideal powder. 

In order to test if the diffraction pattern for the vapour-deposited ice was 

consistent with the CO2-I phase it was necessary to use a Rietveld 

refinement method [Rietveld, 1969]. Initially, the whole powder pattern 

decomposition was performed following the Pawley [1981] method (using 

the software package TOPAS 4.2) in order to confirm a fit to the CO2-I 

literature crystal structure and determine the lattice parameters. The fit to the 

diffraction pattern in Figure 6.1 shows that the ice generated via vapour 
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deposition has a structure consistent with standard CO2-I but with preferred 

orientation.  

 

 

Figure 6.1: Background corrected and vertically offset experimental XRD 

patterns of a typical vapour-deposited CO2 ice at 80 K and 110 K, 

ground dry ice and a calculated XRD pattern based on current crystal 

structure for CO2-I [de Smedt and Keesom, 1924]. Profiles are 

normalised to the intensity of the 111 peak (2θ = ~27.5º). The TOPAS 

refinement of the vapour-deposited and dry ice CO2 patterns (black 

lines) for CO2-I using the Pawley [1981] method is indicated by the red 

lines. The grey line shows the residuals of the fits. 
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6.2.1 Preferred orientation in CO2 ice 

Preferred orientation in powder diffraction patterns arises whenever there is 

a non-random orientation of crystallites in a sample. In order to obtain a 

perfect powder pattern, crystallites must be both numerous and randomly 

orientated. This produces diffraction rings and is comparable to the powder 

XRD technique used here where the detector measures across a segment of 

the diffraction ring. In contrast, if a population of crystals all had identical 

crystallographic orientation, as might happen in epitaxial growth on a 

surface, all the diffracted X-rays would be concentrated into spots with each 

spot corresponding to a specific crystallographic plane. In the case of this 

situation, the powder XRD instrument would not produce a meaningful 

diffraction pattern. An intermediate situation exists in Figure 6.1 where the 

crystallites are partially ordered, which results in Bragg peaks which can 

either be more or less intense than those in the ideal powder pattern and 

sometimes be missing all together. The analysis presented in Figure 6.1 

shows that patterns of the CO2 ice grown from the vapour phase and the 

powdered dry ice sample are consistent with the standard CO2-I phase with 

different degrees of preferred orientation. 

In addition to using the Pawley [1981] refinement method, the XRD patterns 

of vapour-deposited CO2-I were also refined using the Le Bail et al. [1988] 

method. Although both are least-squares refinements, the method 

developed by Le Bail et al. [1988] treats the diffraction patterns without the 

need for peak intensities (while other crystallographic parameters are 

known), which in this case are affected by preferred orientation. This 

simplified method is reasonable due to the lack of overlapping Bragg peaks. 
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The crystallographic properties calculated by both of these refinement 

methods agreed within error.  

6.2.2 Temperature dependence of CO2 ice structure 

CO2 ice layers deposited at 80 K and 110 K were warmed at 1 K min-1 with 

diffraction patterns taken at 5 K intervals. The temperature dependence of 

the unit cell parameters of CO2-I deposited from the vapour at 80 K 

(80 - 120 K) and 110 K (110 – 130 K) was determined from this using the 

Pawley [1981] refinement method detailed in section 6.2 and is shown in 

Figure 6.2. The experiments in this study require a thin CO2 film in good 

thermal contact, limiting the study to temperatures of ≤ 130 K because the 

ice film was lost to sublimation at higher temperatures. The length of the 

lattice parameter (and therefore unit cell volume) increases with temperature 

due to thermal expansion of the crystal lattice. Good agreement within error 

can be seen between the CO2 ice deposited at different temperatures. 
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Figure 6.2: CO2-I lattice parameters and unit cell volumes for deposition at 

80 K and 110 K. The blue line indicates a polynomial fit to the dataset. 

 

6.2.3 CO2 ice density 

The CO2 ice density was calculated based on changes in the unit cell 

volume with temperature. The CO2 ice densities as well as the lattice 

parameters from Figure 6.2 are tabulated in Table 3. The densities from this 

study and other literature values are shown in Figure 6.3. A larger density 

(1.684 ± 0.002 g cm-3 at 80 K) is reported here when compared to the 

corrected CO2 density values of Keesom and Kohler [1934a] (where the 

lattice parameter values were converted from kX to Å (where 1 kX = 1.002 Å 

[Bragg, 1947] by Curzon [1972]). While one density value at 90 K from 

Maass and Barnes [1926] is in good agreement with the present study, the 

variability in the values determined when repeated (1.663 - 1.674 g cm-3 at 
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90 K) compared to the higher temperature densities (≥ 138 K) suggests 

errors in their method when applied to these low temperatures. It should be 

noted that in this study the density determined from temperature repeats in 

different experiments agreed within error. The higher temperature values 

from Maass and Barnes [1926] follow a similar temperature dependence to 

the lower temperature values determined in this study. While a lattice 

parameter for CO2 ice at 150 K based on a single crystal refinement by 

Simon and Peters [1980], when converted to a density, is in significant 

disagreement with this study and other literature density values (it should be 

noted that no temperature uncertainties are given by Simon and Peters 

[1980]). 

Table 3: Summary of CO2-I crystal structure parameters with temperature, 

determined from diffraction patterns of vapour deposited CO2 ice. 
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In general the density profile can be seen to decrease with increasing 

temperature, consistent with the thermal expansion of CO2 ice. A second-

order polynomial fit through the data in this study (80 – 130 K) and the 

Maass and Barnes [1926] data at temperatures ≥ 138 K yields the following 

equation of state for the CO2 ice density (in units of g cm-3) at 1x10-2 mbar:  

     CO2 density (80 − 195 K) = 1.72391 − 2.53 ×10−4    (6.1) 

                          𝑇 − 2.87×10−6  𝑇2  

 

 Figure 6.3: CO2 density values obtained from the lattice constants 

determined in this study as well as comparisons with literature values 

[Keesom and Kohler, 1934a; Maass and Barnes, 1926; Simon and 

Peters, 1980]. The 2nd order polynomial fit is represented by the red 

line. The red circle indicates the literature value typically used in 

Martian modelling of 1.6 g cm-3. 
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6.2.4 Linear thermal expansion of CO2-I 

Using the temperature-dependent polynomial fit to the CO2 density across 

80 – 195 K, linear thermal expansion coefficients for CO2-I were calculated 

from the volume expansivity coefficient (β) given by: 

𝛽 = (1 𝑉⁄ )(𝑑𝑉 𝑑𝑇⁄ )        (6.2) 

where the linear expansivity coefficient (α) is then (1/3)β. The thermal 

expansion of CO2 shown in Figure 6.4 is compared to hexagonal H2O ice 

(H2O-Ih) over the same temperature range [Röttger et al., 1994]. The thermal 

expansion of CO2-I shows a positive gradient and doubles over the 

temperature range (80 – 195 K), much larger compared to H2O ice. This 

rapid expansion for CO2-I highlights the need to use temperature-dependent 

parameters when modelling CO2 ice.  

 

Figure 6.4: Linear thermal expansion coefficients (x105) calculated for CO2-I 

from Equation 6.1 and for H2O-Ih using data reproduced from Röttger et 

al. [1994]. 
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6.3 Mesospheric effects of changing CO2 ice parameters 

In this section the effect of crystal structure and density on the microphysics 

of mesospheric CO2 clouds on Mars is explored. The impact of using the 

temperature-dependent density data from this study is compared to the 

previously used values in the literature of 1.5 g cm-3 and 1.6 g cm-3 taken 

from Luna et al. [2009] and Wood [1999] [Listowski et al., 2013; Listowski et 

al., 2014; Maattanen et al., 2005]. It is worth noting that the often used 

literature value of 1.6 g cm-3 (highlighted in a red circle in Figure 6.3) was 

measured at 168 K. This is ≥ 50 K warmer than Tsat is observed in the 

Martian mesosphere. 

6.3.1 Sedimentation of CO2 ice particles 

Certain CO2 ice particle variables relevant to mesospheric clouds are linearly 

dependent on CO2 ice density. This is illustrated, for example, by the Stokes 

sedimentation velocity (vsed) of CO2 ice particles as shown by Brasseur and 

Solomon [2006] as: 

𝑣𝑠𝑒𝑑 =
2𝜌g𝑟2Cc

9𝜂
        (6.3)  

where g is the gravitational constant for Mars (3.7 m s-2), r the ice particle 

radius, η the viscosity of CO2 gas and ρ the density of the CO2 ice. Cc is the 

Cunningham slip factor, which corrects for the low atmospheric densities on 

Mars and therefore the transition to the free molecular regime. Taken from 

Listowski et al. [2014] Cc is determined as 

1 + Kn[1.246 + 0.42 exp(-0.87/Kn)], where Kn is the Knudsen number, 

defined as the ratio of the mean free path over r. Using Equation 6.3 the 

sedimentation velocities of particles with a range of CO2 ice densities (where 
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1.684 g cm-3 valid at 80 K is taken from Equation 6.1) were calculated as a 

function of particle radius. An extreme atmospheric temperature profile was 

used, consistent with the negative temperature perturbation that would be 

caused by a large amplitude gravity wave at approximately 80 km altitude 

(2x10-4 mbar and 80 K) [Kleinbohl et al., 2009; Listowski et al., 2014; 

Montmessin et al., 2006]. Higher sedimentation velocities result from the 

higher density value found in this study, with the linear dependence of 

density on sedimentation causing a 5 % increase in sedimentation velocity 

(1.6 g cm-3 compared to 1.684 g cm-3
). For example, under these conditions 

a 500 nm radius CO2 ice particle falls an extra 1.6 km h-1 when the CO2 ice 

density is increased from 1.6 to 1.684 g cm-3. Extrapolating this to a 

population of CO2 ice particles within a mesospheric cloud inside a cold 

pocket, unperturbed sedimentation would lead to a more rapid decrease in 

altitude of a detached CO2 ice layer. This could result in shorter cloud 

lifetimes as the crystals fall into a warmer region below the cold pocket, 

causing rapid evaporation of the CO2 ice particles [Listowski et al., 2014]. In 

the case of tropospheric CO2 clouds (10 – 100 µm particle radii) forming at 

temperatures ≤ 145 K, a density value higher than the current literature 

(1.6 g cm-3) would also be required. Compared to current predictions, this 

would increase the precipitation rates of CO2 ice particles from the cloud and 

hence affect the accumulation rate of CO2 ice at the polar caps [Hayne et al., 

2014]. 
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6.3.2 Nucleation of CO2 ice particles 

Certain CO2 ice parameters related to mesospheric Martian cloud 

microphysics have a greater complexity in terms of the effect of changing 

density values when compared to the linear effect on sedimentation. An 

example is the mechanism through which cloud ice particles are formed. As 

discussed in section 1.2 and chapter 5, heterogeneous ice nucleation via 

deposition of CO2, in which the energy barrier to nucleation is reduced by the 

presence of an INP, is thought to be the likely nucleation pathway. 

Heterogeneous nucleation is therefore applied here and is described using 

the same CNT and conditions as Chapter 5 (see section 1.3).  

Heterogeneous nucleation rates of CO2 on small INP analogous to meteoric 

material at high altitudes (1 – 30 nm radius particles) are shown in Figure 

6.5. This was determined using the same parameters as the nucleation rates 

in chapter 5 but with a range of CO2 ice densities.  Changes in CO2 density 

alter the calculated values of the critical cluster, the number of molecules in 

the critical cluster and ΔFhet, which then impacts on the overall determined 

nucleation rates. The effect of shifting density is highlighted by the steep 

temperature dependence of the nucleation rates. Using the new 

temperature-dependent fit determined in this study (Equation 6.1) instead of 

the fixed value of 1.6 g cm-3 causes an approximately three-orders of 

magnitude increase in nucleation rate (at 85 K for a 1 nm radius INP). The 

impact of this density change reduces with increasing particle size but 

nucleation rates on 30 nm radius INP still increase by 1 – 2 orders 

of magnitude. This increased nucleation rate reduces the extent of negative 

temperature perturbations below Tsat that would be required to initiate CO2 
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cloud formation (shown in chapter 5). However, it should be noted that this 

effects modelling using the previous measurements of [Glandorf et al., 2002] 

as well. The conclusions of Chapter 5 are therefore still valid, and combining 

the new m, ΔFdes and ice density still gives lower NATs than previously 

thought.    

 

Figure 6.5: Heterogeneous ice nucleation rates at variable CO2 ice density 

(where “T dependent” indicates the temperature dependent-density fit 

produced in this study) for INP of selected radii between 1 and 30 nm. 

CO2 concentrations were fixed at 1014 cm-3, representative of an 

altitude of 70 km in the Martian atmosphere [Forget et al., 2009]. This 

figure is calculated using the same variables as Figure 5.3 including the 

reported m and ΔFdes. 
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6.4 CO2 ice crystal shape in the mesosphere of Mars 

The calculated crystal structure of CO2-I determined in section 6.2 is used to 

predict possible crystal shapes of Martian CO2 ice crystals. A range of 

crystal shapes have been suggested for the Martian atmosphere based on 

the crystal structure of CO2-I ice. Theoretical predictions for the shape of 

CO2 crystals on Mars include octahedra, cubes and truncated octahedra 

[Wood, 1999]. Experimentally, CO2 crystals grown on substrates were found 

to be dominantly octahedral, some examples of which are shown in Figure 

6.6  [Foster et al., 1998; Wergin et al., 1997]. 

 

Figure 6.6: SEM images of octahedral CO2 crystals grown on copper 

substrates (left) taken from Wergin et al. [1997] and regrown CO2 on a 

dry ice substrate (right) taken from Foster et al. [1998]. 

The Bravais-Friedel-Donnay-Harker (BFDH) approach is used here to 

predict the crystal shape of CO2 ice crystals from the crystallographic 

symmetry and lattice parameters. The BFDH approach assumes that the 

linear growth rate of a crystal face is inversely proportional to the 

corresponding interplanar distance [Donnay and Harker, 1937]. 

Consequently, faces with the smallest Miller indices, which have the largest 

interplanar distances, will grow the slowest. Faces with higher Miller indices 
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will expose more dangling bonds and be less stable, grow faster and 

therefore grow out quickly leaving crystals only expressing the lower energy, 

lower Miller index faces. The BFDH approach predicts that the {200} and the 

{111} families of faces will be expressed in crystals of CO2 ice and this 

results in a truncated octahedron shape (see Figure 6.7). In real crystals, 

significant deviations from the BFDH model can occur. This is due to the 

exact details of the chemical interactions between molecules which can be 

highly anisotropic and consequently lead to deviations of the growth rates 

from the simple relationship used in the BFDH approach. In case of CO2-I 

this means that crystal shapes can deviate from the idealised cubo-

octahedral shape in Figure 6.7. 

Ice crystals in the Earth’s atmosphere can take on a wide range of forms, 

from compact hexagonal plates and columns to the huge array of dendritic 

snowflakes; the crystal shape depending on temperature and 

supersaturation. Crystal shape is important because it influences crystal fall 

speeds, growth rates and their optical properties. Foster et al. [1998] 

demonstrated that extinction, absorption and scattering efficiencies in the IR 

are sensitive to crystal shape, which has implications for paleoclimate 

modelling of a warmer early Mars [Forget and Pierrehumbert, 1997]. It is 

thought that CO2 ice crystals in the Martian atmosphere are unlikely to form 

dendrites since dendritic structures form when crystal growth becomes 

diffusion limited. For CO2 ice crystals in the Martian atmosphere which is 

dominantly composed of CO2, diffusion limitation is unlikely [Wood, 1999]. 

Martian CO2 ice crystals are therefore likely to be compact crystals, that 

would be more reasonably modelled with a spherical assumption [Listowski 

et al., 2014]. The BFDH model demonstrates that these crystals may have 



- 164 - 

two families of faces exposed, the six-sided {111} family of faces and the 

four-sided {200} family.  

 

Figure 6.7: Truncated octahedral crystal structure predicted for CO2-I from 

BDFH analysis; the different crystallographic planes of the crystal are 

indicated in the brackets. This indicates that some combination of the 

two families of faces, {111} and {200}, will be expressed on crystals of 

CO2 ice. The potential range of crystal shapes which might be 

expressed is shown in Figure 6.8. This structure prediction was done 

using the software package Mercury 3.9 [Cambridge Crystallographic 

Data Centre]. 

 

CO2 ice may still exhibit a range of crystal shapes if the relative growth rates 

of the two groups of faces vary. The possible crystal shapes, all with the 

same Oh point group (derived from the space group of CO2-I), are shown in 

Figure 6.8. If the {111} family of faces grows faster than the {200} family then 

a crystal in the shape of a cube would be expected, whereas if the opposite 

is the case then an octahedron crystal would form. It is also possible that the 
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growth rates of the two sets of equivalent faces are competitive, in which 

case, similarly to that shown in the BFDH morphology in Figure 6.7, a cubo-

octahedron would form. Close inspection of the images of CO2 ice crystals in 

Foster et al. [1998] reveal that while some crystals are clearly octahedral, 

others are truncated with square faces which are consistent with cubo-

octahedra. In the Martian atmosphere CO2 crystals could have a range of 

morphologies, from cubic to octahedral. The exact crystal shapes which 

exist may depend on temperature and supersaturation of the atmosphere 

from which they grow as well as any effect of latent heat release on the 

temperature of the growing crystal. 

 

Figure 6.8: Illustration of how an octahedral (bi-pyramidal) crystal shape is 

related to a cube in which all shapes shown have the same point group 

(Oh) related to the space group of CO2-I). A cube results if the growth 

rate of the {111} family of faces grows more rapidly than the {200} 

family of faces, whereas an octahedron results if the opposite is true. If 

the growth rates of the two groups of faces are comparable as is the 

case in the BFDH analysis, a cubo-octahedral crystal forms. 
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6.5 Summary and conclusions 

In this chapter the first XRD diffraction patterns of CO2 ice, deposited under 

temperature and pressure conditions analogous to the Martian mesosphere 

were presented. A cubic crystal structure consistent with previous literature 

determinations of CO2-I with Pa-3 space group has been found under all 

conditions studied. Analysis of the diffraction patterns gave a lattice 

parameter of 5.578 ± 0.002 Å, a unit cell volume of 173.554 ± 0.19 Å3 and 

density of 1.684 ± 0.002 g cm-3 at 80 K. From the diffraction data, the density 

was determined from 80 to 130 K and combined with literature data to give a 

polynomial fit valid from 80 to 195 K (CO2 density (g cm-3) = 1.72391-

2.53x10-4 T – 2.87x10-6 T2). This was applied to sedimentation and ice 

nucleation rates relevant to CO2 ice clouds in the mesosphere of Mars. 

Finally, the crystal morphology of solid CO2 was predicted, suggesting that 

Martian CO2 ice crystals could take the shape of a cube, an octahedron or a 

cubo-octahedron. 
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7 Conclusions and future work 

 

An understanding of the microphysical processes occurring in PMCs on 

Earth and mesospheric clouds on Mars is crucial to accurately model and 

understand larger scale atmospheric processes. Chapter 1 provides the 

motivation and state of research for these cloud types and identifies specific 

research questions (section 1.4). These questions were investigated 

experimentally using the apparatus described in chapter 2, the results of 

which are detailed in chapters 3 – 6. The overall conclusions of the results 

chapters are included here along with suggestions of future work. Research 

relating to the Earth’s mesosphere is detailed in section 7.1 and research in 

the Martian mesosphere is detailed in section 7.2. 

7.1 Earth’s mesosphere 

7.1.1 CO2 trapping in ASW: applications to PMCs 

Chapter 3 addresses the question of whether the high ratio of CO2:H2O 

(>37:1) in the mesosphere could lead to CO2 trapping in ASW within PMCs 

[Emmert et al., 2012; Rong et al., 2010]. This trapping process had been 

experimentally investigated previously but not under deposition conditions 

analogous to the mesosphere (e.g. Galvez et al. [2008]). CO2 trapping was 

investigated here using a UHV chamber to produce ASW films at 98 K from 

gas mixtures of CO2 and H2O. These were then analysed using TPD. CO2 

was found to trap effectively within the ASW layer under certain conditions 

but was limited by the need for sufficient H2O flux to the sample surface 



- 168 - 

(> 4.8 x 1013 molecules cm-2 s-1). CO2 trapping was evaluated at the 

molecular level in terms of a need to adsorb sufficient H2O molecules onto a 

CO2 molecule to trap it before the CO2 desorbed from the ice surface. The 

experimental limits of CO2 trapping in ASW were compared to mesospheric 

fluxes of H2O and CO2 for different temperatures. This comparison 

suggested that the process would only be plausible at temperatures below 

100 K, which are  rarely reached in the mesosphere.  

7.1.2 Metal deposition on PMC particles 

Chapter 4 addresses another question regarding the interaction of gas-

phase species with PMC particles and how this might affect connected 

mesospheric processes. Specifically, the deposition of metals onto PMCs 

was investigated using the same UHV chamber as the results of chapter 3. 

Depletion of Fe, Na and K layers in the presence of PMCs has been 

observed [Gardner et al., 2005; Plane et al., 2004; Raizada et al., 2007] 

while it has been suggested that Mg could also be depleted by PMCs 

[Langowski et al., 2015]. Experiments on ice films within the UHV chamber 

were used to investigate the deposition and reactivity of Mg and K on ice at 

temperatures of 110 – 140 K for the first time. Both metals were readily 

adsorbed under these conditions and Energetic sputtering by 500 eV Ar+ 

and Kr+ showed that Mg was unreactive on the ice surface, while K formed 

KOH. These observations were supported by electronic structure 

calculations, with a Mg atom being shown to be unreactive due to binding on 

a lone H2O molecule at a surface irregularity (or surface defect on the ice), 

while an adsorbed K atom requires relatively little energy to insert into a 

surface H2O to produce KOH and a dangling H atom.  
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TPD experiments showed that Mg and K did not co-desorb with the ice layer 

upon sublimation. Sputtering experiments after the TPD showed that the 

metals were instead left as residuals after the ice sublimes. This provided an 

interesting conclusion that will impact the coagulation of MSPs in the 

mesosphere during PMC cloud season. Coagulation of MSPs is currently 

evaluated only in terms of self-polymerization  and on already formed MSPs. 

Due to the significant surface area available for uptake during a PMC event 

it is hypothesised here that the clouds could act as a second competitive 

coagulation mechanism for MSPs. Calculations suggest that the depletion of 

metal during a PMC event would lead to the formation of a population of 

large (≥ 1 nm radius) MSPs in the region of the cloud. Additionally, due to 

the differing reactions of the metals with the ice surface compared to metal 

gas phase reactions, the MSPs produced may be of different composition.  

7.1.3 Future work for the Earth’s mesosphere 

The mesosphere of Earth is subject to trends of decreasing temperature and 

increasing CO2 and H2O concentrations. These trends all move towards 

making the process of CO2 trapping more plausible in the future, as the 

extreme atmospheric conditions required are reached more frequently. 

Although this study of the CO2 trapping process is finite and doesn’t require 

significant further investigation, the increasing plausibility of this process 

should be revisited in the future if current mesospheric trends persist.   

The ability to accurately model the effect of metal uptake and subsequent 

MSP formation in PMCs, accounting for transport of the metals as well as 

competing coagulation mechanisms, was beyond the scope of the study in 

chapter 4 but is recommended for future investigation. This would be 



- 170 - 

achieved by a coupled model that accounts for both the cloud microphysics 

(and therefore the available surface area for metal uptake with altitude) and 

the competing MSP formation on existing MSPs. In general, the overall 

surface area available for MSP formation will be increased in the presence 

of PMCs and so this model (like the calculations in chapter 4) should lead to 

predictions of larger populations of increased radius MSPs. This will then 

have an impact on the gas phase chemistry of the mesosphere and 

sedimentation of MSPs into the stratosphere and beyond. 

7.2 The Martian mesosphere 

7.2.1 CO2 nucleation on nanoparticles in the mesosphere 

Chapter 5 address a need for improved understanding of the kinetics of CO2 

cloud formation by investigating heterogeneous nucleation of CO2 on 

representative particles for the first time. Mesospheric CO2 clouds are poorly 

understood with large uncertainties in the cloud microphysics. This 

knowledge is necessary in order to better model their occurrence in the 

Martian mesosphere and improve understanding of the atmosphere as a 

whole. This aim was achieved using the novel TRAPS instrument based at 

KIT using MSP analogues nanoparticles of SiO2 and FexOy. CO2 was 

deposited on these nanoparticles under conditions similar to the 

mesosphere of Mars produced in the MICE. A desorption energy of CO2 on 

the nanoparticles was determined as ΔFdes = (18.5 ± 0.2 kJ mol-1), while m 

was determined using CNT as 0.78 ± 0.02. Applying these CNT parameters 

to CO2 clouds in the Martian mesosphere gave nucleation activation 

temperatures 8 – 18 K (dependent on particle size) below the CO2 saturation 
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temperature. This suggests that lower temperatures are required to initiate 

cloud formation than has been previously predicted.  

7.2.2 CO2 ice structure under Martian atmospheric conditions 

Chapter 6 addresses another question that relates to an improved 

understanding of the microphysical processes of CO2 clouds on Mars. 

Specifically, the crystal structure of CO2 ice and its temperature dependent 

properties were experimentally investigated for the first time here under 

temperature and pressure conditions analogous to the Martian mesosphere. 

XRD patterns of CO2 ice were presented and a cubic crystal structure of 

CO2-I with Pa-3 space group was determined. From the diffraction data, the  

CO2 ice density was determined from 80  - 130 K and combined with 

literature data to give a polynomial fit valid from 80 to 195 K (CO2 density 

(g cm-3) = 1.72391-2.53x10-4 T – 2.87x10-6 T2). This was applied to 

sedimentation and ice nucleation rates relevant to CO2 ice clouds in the 

mesosphere of Mars. The CO2 crystal morphology was also predicted, 

suggesting that Martian CO2 ice crystals could take the shape of a cube, an 

octahedron or a cubo-octahedron. 

7.2.3 Future work for the Martian mesosphere  

In terms of future experimental work regarding the microphysics of CO2 

clouds, it would be advantageous to study CO2 nucleation on a wider range 

of nanoparticles to evaluate the effect of changing particle composition on 

ΔFdes and m. It is expected in the future that the NPS on the TRAPS 

instrument could be used to produce olivine nanoparticles that could be 

representative of MSPs on Mars. Investigating the nucleating efficiency of a 

range of particles, would also enable a better understanding of the possible 
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efficient sources of INP available on Mars. This is a similar idea as to how 

nucleation of H2O ice has been investigated in the troposphere of Earth. The 

overall aim is to achieve a fundamental understanding of the nucleation 

process and determine the key INP sources.  

MDPs are considered in chapter 5 as another possible INP source for CO2 

clouds. JSC MARS-1 and the more recently developed Mojave Mars 

Simulant (MMS) are two terrestrial simulants of Martian surface dust that 

could be used as MDP analogues for CO2 nucleation studies relevant to 

clouds forming at altitudes below 65 km [Peters et al., 2008; Pommerol et 

al., 2013]. The TRAPS instrument is not capable of simulating the higher 

temperature conditions necessary for these clouds. However, a small 

expansion chamber experiment is currently in development at KIT that was 

designed to study H2O ice nucleation [pers. comms., Michael Adams, 2016]. 

This chamber could be adapted using a liquid N2 cooling jacket to achieve 

temperature and pressure conditions analogous to the lower Martian 

atmosphere.  

The nucleation parameters presented in chapter 5 are presently the best 

available for modelling mesospheric CO2 clouds. Inclusion of these CO2 

nucleation parameters along with the temperature dependent density 

determined in chapter 6 is recommended for future modelling of the Martian 

mesosphere. Currently the first ever 3D model of the Martian atmosphere 

that incorporates mesospheric CO2 clouds is in development and will include 

the parameters presented here [pers. comms., Anni Maattanen, 2016]. The 

temperature dependent density reported in chapter 6 is  not only applicable 

to the mesosphere but is also useful for modelling of ice processes 
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throughout the Martian atmosphere including the seasonal CO2 polar caps. 

This parameterization will be incorporated into models that predict CO2 

snowfall from tropospheric CO2 clouds at the Martian poles [pers. comms., 

Paul Hayne, 2017]. 
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