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Abstract	

Heart	 failure	 results	 from	the	heart	pumping	 insufficient	quantities	of	blood	to	meet	

the	 body’s	metabolic	 requirements.	 This	 condition	 affects	 around	 600,000	 people	 in	

the	United	Kingdom	and	carries	with	it	a	significant	morbidity	and	mortality.	Patients	

typically	complain	of	reduced	exercise	capacity	and	a	poor	quality	of	life.	Whilst	there	

are	 various	 pharmaceutical	 options	 available	 to	 clinicians,	 none	 directly	 augment	

cardiac	 function.	 Cardiac	 resynchronisation	 therapy	 (CRT)	 is	 proven	 to	 reverse	 the	

progression	of	 left	 ventricular	 systolic	dysfunction,	 the	most	 common	cause	of	heart	

failure.	The	device	resynchronises	inefficient	cardiac	function,	reducing	symptoms	and	

improving	 stroke	 volume	 and	 life	 expectancy.	 However,	 only	 two	 thirds	 of	 patients	

typically	derive	benefit	from	this	pacemaker,	it	being	unclear	why.	Finding	a	sensitive	

and	specific	predictor	of	response	would	be	 invaluable,	preventing	potential	harm	to	

patients,	reducing	waste	and	targeting	the	patient	groups	who	will	derive	benefit.	

In	 this	 body	 of	 work,	 the	 heart	 failure	 syndrome	 is	 delineated;	 the	 evidence	

underpinning	 CRT	 discussed	 and	 the	 difficulties	 in	 defining	 response	 outlined.	 There	

are	2	main	research	themes	in	this	body	of	work,	measuring	and	predicting	response	

to	 CRT.	 In	 the	 former,	 the	 role	 of	 patient	 specific	 three-dimensional	 computational	

models	and	biophysical	properties	are	investigated,	and,	in	the	latter,	the	influence	of	

CRT	on	the	heart	failure	syndrome	using	biomarkers.		

It	 is	 concluded	 that	 CRT	 response	 can	 be	 predicted	 using	 patient	 specific	

computational	 models	 of	 the	 left	 ventricle,	 but	 they	 are	 too	 complex	 for	 routine	

clinical	 use.	 Biophysical	 markers	 have	 more	 merit	 in	 the	 immediate	 future,	 being	

simper	 and	 quicker,	 with	 measures	 of	 endothelial	 and	 skeletal	 muscle	 function,	

demonstrating	promise	in	a	small	cohort	of	patients.	Finally,	there	exists	a	significant	

level	 of	 undiagnosed	 pathology	 in	 this	 patient	 group,	 such	 as	 hyperuricaemia	 and	

hyperparathyroidism,	but	it	remains	unclear	what	impact	CRT	has	on	this	comorbidity.	
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Chapter	1			Introduction	

1.1 The	challenge	
 
Heart	 failure	 (HF)	 is	 a	 result	 of	 the	 heart’s	 reduced	 ability	 to	 pump	 blood	 due	 to	 a	

number	 of	 aetiologies,	 such	 as	 loss	 of	 effective	 contractile	 tissue	 due	 to	myocardial	

infarction	 or	 a	 fall	 in	 cellular	 contractility,	 such	 as	 cardiomyopathy.	 Subsequent	

changes,	 referred	 to	 as	 adverse	 modelling	 of	 the	 diseased	 left	 ventricle,	 such	 as	

dilatation	 and	 loss	 of	 synchronous	 contraction	 further	 reduce	 effective	 contractility	

and	 lead	 to	 a	worsening	 cycle	 of	 deteriorating	 cardiac	 function.	 However,	 HF	 is	 not	

simply	 a	 single	 organ	 disease	 but	 is,	 rather,	 a	 complex	 syndrome,	 resulting	 in	

impairment	of	many	other	organs	and	tissues	due	to	reduced	tissue	perfusion.		HF	is	a	

common	condition	with	a	UK	prevalence	of	over	900,000	1.	Optimal	pharmacological	

therapy	 such	 as	 beta-blockers,	 angiotensin-converting	 enzyme	 inhibitors	 and	

mineralocorticoid	receptor	antagonists	 for	HF	confer	clinical	benefit,	but	 there	 is	still	

considerable	morbidity,	accounting	for	approximately	120,000	admissions	per	year	 in	

the	UK	1.	The	annual	mortality	attributable	to	heart	failure	is	around	60%	2	and	costs	to	

the	health	care	system	are	among	the	highest	of	a	single	disease	3	and	increasing	as	a	

result	of	the	ageing	population.	Cardiac	resynchronisation	therapy	(CRT)	is	a	relatively	

new	treatment	for	HF,	 improving	the	mechanical	efficiency	of	the	heart	by	artificially	

pacing	 both	 the	 left	 and	 right	 ventricles	 to	 re-coordinate	 the	 timing	 of	 electrical	

stimulation	 and	 thus	 synchronous	 mechanical	 contraction.	 This	 correction	 of	

dyssynchrony	is	associated	with	improvements	in	left	ventricular	(LV)	systolic	function	
4,	myocardial	oxygen	consumption	5,	morbidity	and	mortality	6.	

	

Recent	advances	in	cardiac	imaging	allow	accurate	measurement	of	cardiac	geometry,	

wall	motion	and	chamber	flow	patterns	and	combining	these	with	electro-anatomical	

mapping	 systems	 and	 high-fidelity	 invasive	 pressure	 measurement	 provide	 high	

resolution	 data	 sets	 for	 characterising	 individual	 HF	 patients.	 In	 addition,	 the	 clinic	

record,	 integrated	 with	 epidemiological	 data	 provides	 an	 additional	 resource	 with	

which	 to	 personalise	 care.	 In	 order	 to	 best	 use	 these	 advances,	 there	 is	 increasing	

momentum	behind	a	paradigm	shift	away	from	predefined	clinical	indices	determining	
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treatment	options	and	a	 towards	 true	personalisation	of	 care	based	on	 imaging	and	

modelling	an	individual’s	specific	physiology.		

An	exciting	and	highly	promising	strategy	underpinning	this	shift	is	the	assimilation	of	

multiple	 image	 sets	 into	 personalised	 state	 of	 the	 art	 biophysical	 models.	 The	

development	of	such	models	provides	the	ability	 to	capture	the	multi-factorial	cause	

and	 effect	 relationships,	 which	 link	 the	 underlying	 pathological	 mechanisms.	

Furthermore,	 using	 a	 biophysical	 basis	 presents	 unique	 opportunities	 to	 assist	 with	

treatment	 decisions	 through	 the	 derivation	 of	 quantities	 that	 cannot	 be	 imaged	 but	

are	likely	to	play	a	key	mechanistic	role	in	HF	e.g.	tissue	stress	and	pump	efficiency.		

	

A	number	of	key	developments	are	beginning	to	allow	clinical	translation,	including	3D	

image	 acquisition,	 image	 processing	 advances,	 improved	 numerical	 methods	 and	

increased	 performance	 per	 unit	 cost	 of	 computing,	which	 allow	 the	 use	 of	 complex	

computational	 models	 in	 a	 clinical	 setting.	 Such	 finite	 element	 based	 models	

accurately	 represent	 both	 anatomy	 and	 detailed	microstructure.	 	 The	mathematical	

descriptions	 serve	 as	 spatial	 frameworks	 for	 embedding	 cellular	models	 of	 electrical	

activation	 and	 tension	 generation,	 producing	 cardiac	 contraction.	 Through	 the	

activation	 of	 multi-scale	 approaches	 these	 cell	 and	 organ	 models	 can	 be	 coupled	

together	 to	 produce	 increasing	 sophisticated	 simulations	 of	 cardiac	 physiology,	 in	

health	 and	 disease.	 The	 proposition	 of	 using	 personalised	 multi-scale	 models	 of	

patients	to	map	disease	and	model	therapies	and	remains	a	tantalising	possibility.		

1.2 Aims	and	Objectives	

The	aims	of	the	project	were	threefold;		

• to	 assist	 in	 the	 design	 of	 patient-specific	 biophysical	 models	 of	 left	 ventricle	

based	 on	 data	 acquired	 from	 cardiac	 imaging	 that	 are	 able	 to	 predict	 the	

response	of	the	LV	to	CRT,		

• to	investigate	how	the	patient’s	routine	clinical	record	might	be	used	to	inform	

a	patient-specific	models	an	finally,	

• to		investigate	novel	methods	of	characterising	the	HF	failure	syndrome	which	

may	 have	 additional	 value	 in	 assisting	 the	 prediction	 and	 measurement	 of	

response	to	this	therapy.		
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The	work	was	founded	on	the	success	of	an	earlier	pilot	study	from	the	same	partners.		

For	the	pilot,	image	acquisition	was	carried	out	in	a	state	of	the	art	research-intensive	

clinical	imaging	centre	at	Kings	College,	London	(KCL).	The	objectives	of	this	study	were	

to	improve	both	patient	selection	for,	and	maximise	response	to,	CRT	by:	

• Identification	 of	 predictors	 and	 markers	 of	 response	 to	 CRT	 –	 using	 novel	

biomarkers	and	biophysical	markers.	

• Using	 a	 robust	 approach	 to	 the	 assessment	 of	 clinical	 response	 to	 CRT	 –	

including	LV	function,	patient	symptoms	and	cardiorespiratory	performance.	

• Creating	 patient-specific	models,	which	 could	 be	 used	 to	 predict	 response	 to	

CRT	using,	personalised	anatomical,	electrophysiological	and	mechanical	data.	

• Device	 personalisation	 through	 optimisation	 of	 atrioventricular	 and	

interventricular	delays	at	6	weeks	post	CRT	implantation,	thus	ensuring	that	the	

device	best	compliments	the	patient’s	native	electrophysiology.	

• Determine	 the	 feasibility	 of	 translating	 the	 workflow	 from	 a	 specialist	 high-

volume	academic	cMR	unit	to	a	routine	hospital	setting	(STHT)	with	a	different	

cMR	 scanner,	 sequences	 and	 staff,	 laying	 the	 groundwork	 for	 a	 large	

multicentre	randomised	control	trial. 

1.3 Chapter	content	

The	next	two	chapters	continue	to	provide	the	background	to	the	project.	Chapter	2	

presents	our	current	clinical	understanding	of	heart	 failure	 including	 the	concepts	of	

left	ventricular	systolic	dysfunction,	cardiac	dyssynchrony,	heart	failure	and	the	heart	

failure	 syndrome	and	 the	 associated	 epidemiology,	 aetiology,	 pathophysiology	 and	

pharmacology	of	 treatment.	Chapter	 3	focuses	 on	 the	 introduction	 of	cardiac	

resynchronisation	 therapy	(CRT)	as	 a	 recent	 treatment	 for	 left	 ventricular	 systolic	

dysfunction-heart	failure	and	the	history	of	its	development	and	proposed	mechanism	

of	 action.	 It	 also	 provides	 information	 on	 the	implantation	 procedure	and	 highlights	

the	 complexities	 and	 resulting	 challenges	 in	 trying	 to	 measure	 a	 response	 to	

CRT	including	the	 potential	 ways	 in	 which	 a	 positive	 response	 might	 be	defined.	

Finally,	the	current	clinical	evidence	base	for	the	use	of	CRT	is	presented.	

The	cohort	 of	21	 patients	recruited	 in	 Sheffield	 are	 presented	 in	 Chapter	 4.		 This	

chapter	gives	a	comprehensive	account	of	how	the	patient	cohort	was	selected,	details	

of	 the	ethical	 approval,	 the	 characteristics	 of	 the	 cohort	 at	 baseline	 before	 cardiac	
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resynchronisation	therapy	implantation	and	the	materials	and	methods	used	to	study	

the	 patients.		Chapter	 5	 defines	 the	 way	 in	 which	 a	response	 to	 cardiac	

resynchronisation	 therapy	has	 been	 defined	 for	 the	 purposes	 of	 this	PhD,	and	

describes	more	 traditional,	 albeit	 very	 comprehensive,	assessment	 of	 the	 patients	at	

baseline	and	then	at	6	and	12	months	following	implantation	to	assess	their	response	

in	4	separate	domains,	including	symptoms	and	quality	of	life,	left	ventricular	size	and	

function,	6	minute	walk	duration	and	cardiopulmonary	exercise	testing.	

Chapters	6,	7	and	8	describe	new	approaches	to	assessment	and	novel	tools	including	

the	development	of	patient-specific	computational	models	of	 the	heart	created	using	

data	 from	 their	 routine	 clinical	 record	(Chapter	 6).	 Pre-existing	 data	 from	 the	

literature	was	 also	 used	to	map	 function	of	 the	 failing	 left	 ventricle	in	 an	 attempt	 to	

measure	 response	 to	 cardiac	 resynchronisation	 therapy,	 using	 lumped	 parameter	

models	 and	subsequently	3D	 models	 of	 the	 left	 ventricle	 from	 cardiac	 magnetic	

resonance	 imaging	 in	an	attempt	 to	predict	 response.	Chapter	7	considers	 the	use	of	

biomarkers	 such	as	parathyroid	hormone	and	biophysical	markers	 such	as	hand	grip	

strength	 in	 an	 attempt	 to	 both	 predict	 and	 measure	 response	 to	 cardiac	

resynchronisation	therapy	and	what	insights	such	markers	offer	into	the	heart	failure	

syndrome.	The	clinical	 utility	 of	 the	 models,	 biomarkers	 and	 biophysical	 markers	 in	

terms	what	 they	add	 to	existing	measures	and	predictors	of	 response	and	how	 they	

could	 be	 used	 in	 a	 routine	 clinical	 setting	 are	 brought	 together	 and	 discussed	 in	

Chapter	8.	

The	 final	 chapter	 brings	 together	 all	 aspects	 of	 the	 work	 in	 the	 form	 of	 a	 general	

discussion	and	final	conclusions	and	highlights	areas	which	might	benefit	 from	further	

investigation	based	on	the	findings	of	the	PhD.	
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Heart	Failure	
 
In	this	chapter	the	epidemiology,	aetiology	and	pathophysiology	of	heart	failure	will	be	

discussed,	along	with	how	it	is	diagnosed,	the	role	of	dyssynchrony	and	it’s	treatment.	

1.4 Introduction	
 
According	to	Dickstein	et	al	 (2008)	heart	 failure	(HF)	 is	defined	as	"a	complex	clinical	

syndrome	 that	 can	 result	 from	 any	 structural	 or	 functional	 cardiac	 disorder	 that	

impairs	the	ability	of	the	ventricle	to	fill	with	or	eject	blood”	8.		

	

A	 diagnosis	 of	 HF	 depends	 on	 evidence	 of	 impairment	 of	 cardiac	 function	 in	 the	

context	of	symptoms,	and	signs,	of	salt	and	water	retention.		As	described	by	Dickstein	

et	al	 (2008),	HF	can	be	classified	by	 time	(acute	vs.	chronic),	anatomy	(right	vs.	 left),	

physiology	 (systolic	 vs.	 diastolic),	 aetiology	 (ischaemic	 vs.	 non-ischaemic),	 genetics	

(inherited	vs.	acquired)	and	sequelae	(low	vs.	high-output)	8.	

	

It	is	important	to	recognise	that	HF	is	not	simply	an	insult	affecting	a	single	organ	but	

is,	 rather,	 a	multifaceted	 syndrome	which	 can	 result	 in	 impairment	of	 psychological,	

musculoskeletal,	haematological,	pulmonary,	endocrine,	endothelial,	renal	and	hepatic	

systems.	 	 Whilst	 the	 presence	 of	 these	 broader	 effects	 is	 not	 prerequisite	 for	 the	

diagnosis	 of	 HF,	 related	 non-cardiac	 tissue,	 or	 indeed	whole	 organ	 dysfunction	may	

influence	both	the	perception	and	severity	of	symptoms	in	HF	patients.		Many	of	these	

potentially	 important	aspects	have	yet	 to	be	 investigated	 in	relation	to	HF	therapies,	

for	 example,	 the	 influence	 of	 resynchronisation	 of	 a	 failing	 heart	 on	 other	 organ	

dysfunction	is	not	known	nor,	more	importantly,	is	whether	baseline	markers	of	such	

dysfunction	pre-implantation	can	predict	the	response	to	CRT.	

1.5 Epidemiology	

1.5.1 Frequency	
	

In	 the	21st	 century,	 the	prevalence	of	HF	 in	 the	UK	 is	estimated	 to	be	7.1-13.5/1000	

persons	with	an	incidence	1.3-2/1000	person	years	9-11.		Whilst	estimates	regarding	the	

frequency	of	HF	 in	the	UK	vary,	there	 is	general	agreement	within	the	 literature	that	
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the	problem	is	increasing	and	that,	increasing	age	is	accompanied	by	increasing	risk	of	

developing	 HF	 12-14.	 	 As	 discussed	 by	 Najafi	 et	 al	 (2009),	 the	 increasing	 caseload	

observed	may	simply	be	a	function	of	an	expanding	population,	even	if	the	incidence	

of	 heart	 failure	per	 se	 is	 static	 15.	 However,	 there	 are	 concerns	 that	 the	 problem	 is	

under-estimated.	 	 This	 may	 be	 due	 to	 erroneous	 hospital	 discharge	 summaries	 16,	

incorrect	documentation	of	diagnoses	17	or	cases	that	remain	undetected	clinically	18.		

1.5.2 Mortality	
	

In	 the	mid-21st	century,	 the	5-year	survival	 for	patients	with	HF	was	estimated	to	be	

between	 25%	 and	 53%,	 with	 a	 mean	 value	 worse	 than	 that	 for	 bladder,	 bowel,	

prostate	 and	 breast	 cancer	 13	 14	 19.	 	 Such	 data	 are	 based	 upon	 observational	 work,	

retrospective	 studies	 or	 randomised	 controlled	 trials	 (RCTs)	 for	 highly	 selected	

populations,	making	comparisons	between,	and	generalisations	to,	other	populations	

difficult	20	21.	

	

Despite	the	increase	in	prevalence,	the	mortality	of	HF	appears	to	be	falling,	mirroring	

that	 of	 ischaemic	 heart	 disease	 (IHD),	 the	main	 cause	of	HF	 22	 23.	 It	 follows	 that	 the	

increasing	number	of	patients	with	IHD,	who	survive	their	index	event	e.g.	myocardial	

infarction	 (MI),	 go	 on	 to	 develop	 HF,	 because	 more	 patients	 receive	 preventative,	

more	 effective	 and	 timely	 reperfusion	 therapy	 following	 their	MI,	 and	 so	more	 lives	

and	myocardium	is	saved	24	 25.	Thus,	rather	than	dying	from	a	single	MI,	patients	are	

living	long	enough	to	suffer	recurrent	MIs	and/or	develop	subsequent	LV	impairment	

and	the	resulting	clinical	signs	and	symptoms	of	HF.		

1.5.3 Morbidity	
	

In	 the	 last	 few	 years	 HF	 has	 become	 established	 as	 the	 most	 common	 cause	 of	

hospitalisation	in	the	over	65s	with	the	average	length	of	inpatient	stay	approaching	1	

week	26,	and	the	readmission	rate	in	the	6	months	following	discharge	almost	50%	27.	

HF	accounts	for	over	2%	of	the	annual	NHS	budget	(£2	billion),	with	the	vast	majority	

of	this	sum	spent	on	costly	admissions	to	hospital	and	subsequent	inpatient	episodes	1.		

HF	 is	 associated	 with	 a	 marked	 reduction	 in	 quality	 of	 life,	 determined	 not	 just	 by	

impairment	of	physical	health	(many	patients	having	greater	physical	impairment	than	

those	with	arthritis	or	chronic	lung	disease)	but	also	by	deterioration	of	mental	health.		
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Clinically	significant	depression	is	present	in	over	a	fifth	of	HF	patients,	the	degree	and	

prevalence	increasing	with	the	severity	of	HF	28.		This	is	important,	as	the	perception	of	

symptoms	 of	 chronic	medical	 conditions,	 such	 as	HF,	 is	 closely	 intertwined	with	 the	

mood	of	the	patient.	

1.5.4 Ethnicity	
	

There	 is	 currently	 a	 paucity	 of	 evidence	 relating	 to	 ethnic	 differences	 in	HF	 and	 low	

recruitment	 of	 ethnic	minorities	 to	 RCTs	 continues	 to	 present	 a	 challenge.	 	 Possible	

reasons	 for	 low	 recruitment	 include;	 distrust	 of	 the	 medical	 community,	 failure	 to	

actively	recruit	such	minorities	and	lack	of	knowledge	within	ethnic	communities	about	

research	and	 therefore	 clinical	 trials	 29.	 Some	 researchers	have	argued	 that	ethnicity	

should	be	the	basis	for	the	design	of	RCTs	as	this	would	ensure	active	recruitment	of	

such	minorities	whilst	others	counter	argue	that	trials	should	concentrate	on	diversity	

and	 inclusivity.	 In	 consequence,	 a	 strategy	 of	 recruitment	 based	 on	 positive	

discrimination	has	been	trialled	but	is	yet	to	be	adopted	globally	30.		This	is	particularly	

important	as	there	is	evidence	to	suggest	that	the	relative	risk	of	HF	and	subsequent	

morbidity	is	greatest	in	South	Asians	31.		This	may	reflect	differences	in	the	aetiology	of	

HF	32,	the	prevalence	of	risk	factors,	difficulties	in	managing	patients	in	whom	English	

may	not	be	their	first	language	33	or	other	factors	such	as	response	to	treatment	34.	

1.5.5 Gender	
	

Prevalence	of	HF	varies	between	genders,	with	prevalence	in	females	estimated	at	7.8-

11.5/1000	 persons	 compared	 to	 6.4-28.5/1000	 for	 males	 and	 the	 incidence	 is	

estimated	 at	 3.9-5.6/1000	 person	 years	 for	 females	 compared	 to	 4.1-4.4/1000	 for	

males	10	11	15.	Women	typically	have	a	better	prognosis,	following	a	diagnosis	of	HF,	but	

there	 is	 debate	 as	 to	 whether	 this	 is	 independent	 of	 the	 ejection	 fraction	 (EF)	 or	

aetiology	 35-37.	 At	 diagnosis,	 women	 are	 typically	 older,	 with	 greater	 frequency	 of	

hypertension	(HTN),	diabetes	mellitus	(DM)	and	symptoms	but	are	less	likely	to	smoke	

or	have	known	IHD	38.		Women	are	significantly	under-represented	in	clinical	HF	trials	

and	reasons	 for	 this	 include	specific	exclusion	criteria	 limiting	 female	participation	 in	

order	 to	 avoid	 pregnant	 women,	 and	 also	 age;	 with	 women	with	 HF	 tending	 to	 be	

older	39	40.		Women	are	also	less	likely	to	receive	treatment	due	to	concerns	over	lack	

of	 prospective	 data,	 and	 possible	 gender-specific	 effects	 of	 treatment	 41-43.		
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Specifically,	with	 reference	 to	 the	key	CRT	 trials,	well	over	70%	of	patients	 recruited	

are	male	6	44-49.	

1.6 Aetiology	

HF	can	be	classified	by	time,	anatomy,	physiology,	genetics	and	sequelae,	all	of	which	

will	have	varying	aetiology.		As	mentioned	above,	the	most	common	cause	of	HF	in	the	

UK	 is	 IHD,	 accounting	 for	 over	 two	 thirds	 of	 cases,	 usually	 as	 a	 result	 of	 coronary	

atherosclerosis	leading	to	myocardial	infarction,	death	of	myocardium	and	subsequent	

development	of	myocardial	scar,	LVSD	and	HF-LVSD	50.	 	Whilst	 there	are	many	other	

possible	 causes	of	HF,	 the	 relative	 frequency	and	distribution	of	 these	will	of	 course	

depend	on	the	population	studied.		The	next	section	briefly	outlines	the	causes	of	HF	

and	 discusses	 the	 causes	 of	 HF-LVSD	 in	 more	 detail.	 	 The	 causes	 of	 HF	 per	 se	 are	

summarised	in	table	1.	

	
Table	1:	Major	causes	of	HF	

Cause	 Example	 Ventricle		 Incidence	

Vascular	dysfunction	 Ischaemic	heart	disease	 Left	 Common	

Rhythm	disturbance	 Atrial	fibrillation	 Both	 Common	

Valvular	dysfunction	 Mitral	regurgitation		 Left	 Common	

Lifestyle	 Obesity	 Left	 Common	

Pulmonary	disease	 Pulmonary	embolus	 Right	 Intermediate	

Idiopathic	 Dilated	cardiomyopathy	 Both	 Intermediate	

Infective	 Viral	myocarditis	 Both	 Rare	

Infiltrative	diseases		 Amyloidosis	 Both	 Rare	

Autoimmune	disease	 Hyperthyroidism	 Both	 Rare	

Inherited	 Atrial-septal	defect	 Right	 Rare	

Drug	side-effect	 Bleomycin	chemotherapy	 Both	 Rare	

Physiological	state		 Post-partum	cardiomyopathy	 Both	 Rare	
	

As	suggested	by	a	review	of	studies	published	11	50-56	between	1991	and	2010	(table	2),	

the	 ratio	 of	 the	 aetiology	 of	 HF	 between	 ischaemic	 and	 non-ischaemic	 disease	 has	

remained	constant	at	50:50.	 	As	 these	studies	are	drawn	 from	different	populations,	

with	 varying	 cohort	 sizes,	 follow-up,	 and	 methodologies	 it	 is	 difficult	 to	 draw	 firm	

conclusions.	 	 However,	 it	 appears	 that	 there	 has	 been	 a	 steady	 increase	 in	 HF	

attributed	 to	 valvular	 heart	 disease	 (VHD)	 and	 a	 rise,	 followed	 by	 a	 fall,	 in	 HTN.		
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Influences	of	other	factors,	e.g.	alcohol	consumption,	remain	unchanged.		This	seems	

to	 make	 sense;	 the	 incidence	 of	 degenerative	 valve	 disease	 is	 increasing	 as	 the	

population	ages	and	expands,	leading	to	consequences	such	as	HF.		HTN	on	the	other	

hand,	is	being	diagnosed	and	managed	more	aggressively	and	so	one	would	naturally	

expect	cases	of	HF	due	to	HTN,	typically	that	due	to	chronic	and	poorly	controlled	HTN,	

to	 fall.	 	 Finally,	 risk	 factors	 for,	 and	 prevalence	 of,	 alcohol	 excess	 during	 this	 period	

have	 remained	 relatively	 constant.	 As	 McMurray	 and	 Stewart	 (2000)	 57	 have	

commented,	for	patients	with	multiple	risk	factors	it	is	very	difficult	to	attribute	HF	to	a	

single	 cause;	 patients	 may	 have	 undiagnosed	 or	 subclinical	 risk	 factors,	 treated	

differently,	and	with	variable	effect,	all	of	which	cold	have	contributed	to	HF.	

Table	2:	A	summary	of	HF	aetiology	in	8	studies	published	between	1996	to	2010

	

1.7 Pathophysiology	
This	 is	 a	 complex	 area,	 depending	 on	 aetiology	 and	 also	 rate	 of	 development.	 	 The	

section,	which	 follows,	 discusses	HF-LVSD	 in	 depth	 and	 briefly	 describes	 LV	 diastolic	

dysfunction.	 	 These	may	 coexist.	 	 In	 addition,	 systolic	 function	 of	 the	 right	 ventricle	

(RV)	 can	 become	 impaired	 resulting	 in	 right	 ventricular	 failure	 (RVF)	 in	 isolation,	 or	

both	ventricles	may	develop	simultaneous	systolic	dysfunction,	leading	to	biventricular	

or	congestive	cardiac	failure	(CCF).	 	As	these	are	not	the	primary	focus	of	this	thesis,	
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for	the	sake	of	brevity,	they	are	not	considered	here.	Why,	and	at	what	point,	patients	

with	LVSD	without	symptoms	develop	symptomatic	HF-LVSD,	remains	unclear.	

1.7.1 Systolic	Dysfunction	
	

The	primary	pathophysiological	mechanism	in	LVSD	is	a	reduction	in	stroke	volume	and	

a	 subsequent	 fall	 in	 cardiac	 output,	 despite	 a	 compensatory	 rise	 in	 heart	 rate.	 	 This	

results	in	a	reduction	in	the	supply	of	blood	to	the	tissues	from	the	left	ventricle	(LV).		

LVSD	 may	 arise	 from	 a	 reduction	 in	 functioning	 myocardium	 following	 an	 MI,	 LV	

outflow	 obstruction	 e.g.	 as	 in	 aortic	 stenosis,	 an	 increase	 in	 the	 systemic	 after-load	

increasing	 cardiac	 work,	 e.g.	 as	 in	 HTN	 or	 an	 increase	 in	 the	 systemic	 pre-load	 e.g.	

iatrogenic	 fluid	 overload.	 	 This	 fall	 in	 CO	 leads	 to	 changes	 in	 the	 Frank-Starling	

mechanism	 (FSM),	hormonal	 regulation,	autonomic	nervous	 system	and	 the	vascular	

system,	 leading	 to	 adverse	 cardiac	 remodelling	 and	 impairment	 in	 other	 tissues	

downstream.	These	pathophysiological	changes	determine	the	presence	of	symptoms	

and	signs	in	HF	58	and	have	been	addressed	by	effective	treatment	modalities	(via	the	

renin-angiotensin-aldosterone	 system	 [RAAS]	 using	 angiotensin	 converting	 enzyme	

inhibitors	[ACE-I],	for	example)	as	well	as	being	used	as	biomarkers	in	HF	diagnosis	and	

prognosis	59	e.g.	brain	natriuretic	peptide	(BNP).		

1.7.2 Frank-Starling	Mechanism		

In	health,	the	FSM	60	links	increasing	venous	return	with	increased	SV	and	therefore	CO	

(see	 figure	1).	 	 This	 is	 due	 to	 the	unique	 length-tension	 relationship	 (LTR)	of	 cardiac	

muscle	 whereby	 increasing	 the	 length	 of	 the	 sarcomere	 increases	 the	 number	 of	

possible	actin-myosin	interactions.		Unlike	skeletal	muscle,	cardiac	muscle	cells	are	not	

at	their	optimum	length	at	rest,	and	thus	increasing	venous	return	(VR)	pre-stretches	

the	myocardium,	 increasing	 the	 length	of	 the	muscle	 fibres,	which	 increases	 the	 left	

ventricular	 end-diastolic	 volume	 (LVEDV)	 number	 of	 potential	 actin-myosin	

interactions	and	so	produces	a	more	forceful	contraction,	increasing	the	stroke	volume	

(SV).	 	 However,	 the	 FSM	 is	 also	 central	 to	 the	 pathophysiology	 of	 LVSD.	 	 Sustained	

increases	 in	 VR	 combined	 with	 myocardial	 necrosis	 and	 scarring	 cause	 pathological	

over-stretching	 of	 the	 myocardium,	 disrupting	 the	 LTR,	 reducing	 the	 number	 of	

potential	actin-myosin	interactions,	and	thus	the	force	of	contraction	(see	figure	2)		61.		
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Figure	1:	Frank-Starling	mechanism	and	effect	on	contractility	and	afterload	

	

	

	

	

	

	

	

	

	

Figure	on	the	left	demonstrating	the	S	shaped	relationship	between	stroke	volume	(SV)	

and	 left	 ventricular	 end	 diastolic	 volume	 (EDV),	 with	 stroke	 volume	 increasing	 with	

increasing	end-diastolic	 volume,	 to	a	point.	 Figure	on	 the	 right,	 again	demonstrating	

the	 S	 shaped	 relationship	 between	 SV	 and	 LVEDV	with	 the	 influence	 of	 contractility	

(positive)	and	afterload	(negative)	on	both.	
	

Figure	2:	Effect	of	increasing	EDV	on	SV	in	various	physiological	states	

	

	
Figure	2	demonstrating	 the	relationship	between	SV	and	LVEDV	 in	 the	presence	of	a	

range	of	conditions,	from	exercise,	at	rest,	with	heart	failure	and	in	cardiogenic	shock,	

the	SV	increasing	as	the	EDV	increases	until	a	point	when	the	heart	begins	to	fail.	
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1.7.3 Hormonal	regulation	
	

LVSD	leads	to	the	upregulation	of	the	several	neuro-hormones,	specifically;	the	RAAS,	

natriuretic	 peptides	 and	 anti-diuretic	 hormone	 (ADH).	 	 Initially	 these	 act	 to	

compensate	 for	 failing	 ventricular	 function,	 maintaining	 tissue	 perfusion	 but	 as	 the	

disease	progresses	they	eventually	catalyse	both	the	development	and	the	progression	

of	HF.	

1.7.3.1 Renin-Aldosterone-Angiotensin	System	
	

Upregulation	 of	 the	 RAAS	 leads	 to	 increasing	 blood	 concentrations	 of	 renin,	

angiotensin	 II	and	aldosterone.	 	A	 reduction	 in	CO	results	 in	a	 fall	 in	 renal	perfusion,	

which	 is	 detected	 by	 the	 juxtaglomerular	 apparatus	 of	 the	 afferent	 arteriole	 in	 the	

kidney	 as	 a	 decrease	 in	 the	 afferent	 pressure.	 	 This	 stimulates	 the	 release	 of	 renin,	

which	 catalyses	 the	production	of	 angiotensin	 I	 from	angiotensinogen	 and	 then	ACE	

catalyses	the	conversion	to	angiotensin	I	to	II	(figure	3).	

	

Angiotensin	II	mediates	its	effects	in	5	ways	by;	increasing	sympathetic	nervous	system	

(SNS)	 activity,	 increasing	 Na+	 and	 Cl-	 absorption	 from	 the	 ascending	 loop	 of	 Henle,	

stimulating	the	release	of	aldosterone	 from	the	adrenal	cortex,	stimulating	arteriolar	

vasoconstriction	 (systemic	 and	 renal)	 and	 stimulating	 the	 secretion	 of	 anti-diuretic	

hormone	from	the	posterior	lobe	of	the	pituitary	gland.	

	

The	net	effect	 is	retention	of	salt	and	water.	 	This	 increases	plasma	volume	(PV)	and	

hence	blood	pressure,	which,	for	the	short	term,	improves	tissue	perfusion.		However,	

this	short-term	gain	comes	at	a	long-term	cost	of	an	increasing	workload	on	an	already	

failing	 myocardium,	 thus	 exacerbating	 LV	 dysfunction.	 	 Aldosterone	 release	 is	

stimulated	not	only	by	angiotensin	II	but	also	by	atrial	stretch	and	mediates	its	effect	

by	 stimulating	 the	 receptors	 in	 the	 distal	 tubule	 and	 collecting	 ducts	 of	 the	 kidney,	

augmenting	 the	 return	 of	 Na+	 to	 the	 plasma	 and	 the	 retention	 of	 K+	 in	 the	 filtrate,	

ultimately	increasing	PV,	VR	and	therefore	CO.	
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Figure	3:	The	complexities	of	the	Renin-Angiotensin-Aldosterone	System	

Figure	3	demonstrates	 the	complexities	of	 the	RAAS,	with	 its	effects	downstream	on	

the	sympathetic	nervous	system,	vasculature,	salt	and	water	retention.	

	

ACE	 =	 angiotensin	 converting	 enzyme,	 ADH	 =	 anti-diuretic	 hormone,	 Aldo	 =	

aldosterone,	Ang	=	angiotensin,	Ang	II	=	angiotensin	II,	Ang	T	=	angiotensinogen,	CO	=	

cardiac	output,	EDV	=	end-diastolic	volume,	HR	=	heart	rate,	PV	=	plasma	volume,	TPR	

=	total	peripheral	resistance,	SV	=	stroke	volume,	Vaso	=	vasoconstriction	

1.7.3.2 Natriuretic	Peptides	
	

Natriuretic	 peptides	 (NPs)	 comprise	 atrial	 (ANP),	 brain	 (BNP)	 and	 C-type	 (CNP)	

peptides,	 produced	 by	 the	 atria,	 ventricles	 and	 vascular	 endothelium,	 respectively.		

Each	is	released	in	response	to	several	stimuli	but	the	unifying	stimulus	is	stretch,	due	

to	 increased	 plasma	 volume.	 	 All	 are	 significantly	 elevated	 in	 HF-LVSD.  BNP	 is	

synthesised	 and	 stored	 as	 pre-pro-BNP	 (inactive),	 cleaved	 to	 proBNP	 (inactive)	 and	

then	 to	 BNP,	 which	 is	 released	 from	 the	 cardiac	myocyte	 along	 with	 its	 N	 terminal	

component	 (NT-proBNP),	 a	 76	 amino	 acid	 biologically	 inactive	 fragment.	 	 Both	 ANP	

and	 BNP	 augment	 natriuresis,	 reduce	 plasma	 volume	 and	 reduce	 BP	 by	 relaxing	

arterioles,	hence	protecting	the	failing	heart.		In	contrast,	the	actions	of	CNP	remain	to	

be	 fully	 elucidated.	 	 Although	 it	 may	 have	 a	 protective	 function,	 its	 role	 remains	

controversial	62	63.	The	use	of	BNP	as	a	clinical	marker	has	increased	in	the	past	decade,	

particularly	 in	 primary	 care,	 and	 it	 is	 included	 in	 the	 European	 Society	of	 Cardiology	

(ESC)	guidelines	for	the	clinical	diagnosis	of	HF	8,	it	is	also	used	for	research	purposes,	

and	 in	secondary	care,	when	assessing	response	to	HF-LVSD	treatments,	such	as	CRT	
44.		
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1.7.3.3 Anti-diuretic	hormone	
 
ADH	is	synthesised	in	the	hypothalamus	and	is	released	from	storage	in	the	posterior	

lobe	of	the	pituitary	gland.		It	acts	on	the	aquaporin	channels	of	the	distal	tubule	and	

collecting	 duct	 in	 the	 kidney,	 increasing	 the	 volume	 of	 water	 reabsorbed,	 thus	

producing	more	dilute	plasma	and	more	concentrated	urine.		The	resulting	increase	in	

plasma	volume	increases	cardiac	preload	and	it	also	acts	to	increase	systemic	vascular	

resistance.		This	process	has	been	the	focus	of,	as	yet	unsuccessful,	therapies	(such	as	

Tolvaptan),	which	block	ADH	and	act	to	treat	fluid	overload	in	HF-LVSD	64.		

1.7.4 Sympathetic	nervous	system		
 
Reduction	in	CO	is	detected	as	a	drop	in	pressure	by	baroreceptors	in	the	aortic	arch	

and	 carotid	 bodies,	 stimulating	 a	 release	 of	 noradrenaline	 from	 the	 SNS,	 increasing	

peripheral	 resistance	 (and	 therefore	 BP)	 via	 α1	 receptors	 and	 increasing	 cardiac	

contractility	 (inotropy)	 and	 heart	 rate	 (chronotropy)	 via	 β1	 receptors.	 	 However,	 as	

before,	this	short-term	measure	to	increase	CO	and	maintain	tissue	perfusion	results	in	

an	increase	in	workload	for	the	heart	and	thus	exacerbates	HF	in	the	longer	term.		

1.7.5 Vascular	Changes	
 
As	mentioned	previously,	 in	HF	 there	 is	a	progressive	 increase	 in	peripheral	 vascular	

resistance	(PVR),	stimulated	by	upregulation	of	SNS	and	angiotensin	II	amongst	other	

factors.	 	 The	blood	vessels	 themselves	are	not	merely	passive	 conduits,	but	 they	 (or	

rather	their	endothelium)	produce	paracrine	mediators	that	influence	their	tone.		

	

Endothelin	 is	 an	 example	 of	 one	 such	 mediator.	 	 Endothelin	 is	 a	 potent	

vasoconstrictor,	 which	 increases	 PVR	 and	 Na+	 uptake	 by	 vasoconstriction	 of	 the	

afferent	 arteriole	 thus	 increasing	 BP.	 	 Its	 release	 is	 stimulated	 by	 angiotensin	 II	 and	

ADH	and	inhibited	by	nitric	oxide	(NO).		Endothelin	levels	correlate	with	the	severity	of	

HF-LVSD	 and	 can	 be	 used	 to	 stratify	 patients	 in	 terms	 of	 prognosis.	 	 Unfortunately,	

despite	 the	 development	 of	 endothelin	 antagonists,	 targeting	 endothelin	 has	 yet	 to	

yield	 a	 successful	 treatment	 modality	 for	 HF-LVSD	 65.	 This	 is	 presumably	 because	

endothelin	is	an	epiphenomenon	of	the	HF-LVSD	syndrome	rather	than	a	causal	agent.		
	

Conversely,	 the	 release	 of	 NO,	 a	 potent	 vasodilator,	 is	 reduced	 in	 HF-LVSD.	 	 The	

balance	 of	 vascular	 mediators	 acting	 upon	 the	 vascular	 endothelium,	 causing	
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vasodilation	 and	 vasoconstriction	 is	 referred	 to	 as	 endothelial	 function.	 	 This	 is	 a	

measure	of	the	severity	of	HF	66	and	is	improved	by	medication	67	and	aerobic	exercise	
68.	Endothelial	function	can	be	assessed	in	several	ways,	one	of	which	is	through	use	of	

a	 technique	 known	 as	 flow-mediated	 dilatation	 (FMD),	 measuring	 the	 percentage	

increase	 in	 the	diameter	of	 the	brachial	artery	 immediately	 following	a	set	period	of	

occlusion.			

1.7.6 Cardiac	remodelling	
 
Myocardial	 ischaemia,	 valvular	 disease	 and	 increased	 LV	 afterload	 (due	 to	

hypertension	 or	 diabetes)	 leads	 to	 upregulation	 of	 neuro-hormones	 and	 decreased	

myocyte	contractility	hypertrophy,	and	ultimately,	cell	death.		LV	hypertrophy	(LVH)	is	

typically	eccentric	and	follows	a	period	of	focal	cardiac	ischaemia,	resulting	in	death	of	

the	 infarcted	 tissue	 and	 compensatory	 regeneration	 of	 the	 surrounding	 tissue.	 	 The	

hypertrophic	 response	 is	a	homeostatic	attempt	to	overcome	the	 increase	 in	LV	wall	

shear	 stress	 according	 to	 Laplace’s	 law.	 	 LVH	 initially	 serves	 to	 augment	 the	 pump	

function	of	the	failing	heart	by	increasing	contractility,	but	this	also	results	in	increased	

myocardial	 stiffness	 and	 reduced	 ventricular	 relaxation.	 	 Eventually,	 however	 this	

compensatory	mechanism	 is	overcome,	 leading	 to	LV	dilation	and	changing	shape	of	

the	LV,	from	a	hemi-ellipse	to	a	near	spherical	shape.		

1.7.7 Other	changes	
 
As	mentioned	previously,	HF-LVSD	is	not	a	disease	specific	to	the	heart	but	rather	it	is	

a	syndrome	affecting	many	systems,	including	kidney,	thyroid	69,	parathyroid	70,	bone	
71,	lungs	72	and	skeletal	muscle	73.		With	reference	to	skeletal	muscle,	HF	leads	not	only	

to	 a	 loss	 of	 muscle	 mass,	 but	 alterations	 in	 muscle	 power	 74,	 fibre	 distribution	 75,	

metabolism76,	 mitochondrial	 structure	 77	 and	 function	 78,	 nutritive	 flow	 79	 and	

respiration	 80.	 This	 sarcopenia	explains	many	of	 the	 symptoms	of	HF	 such	as	 fatigue	

and	 breathlessness	 and	 indicates	 why	 aerobic	 exercise,	 employed	 in	 cardiac	

rehabilitation	centres,	may	be	beneficial	by	halting	or	partially	reversing	some	of	these	

changes.	 	 It	also	suggests	that	evaluation	of	skeletal	muscle	strength	 in	patients	with	

HF-LVSD	may	prove	fruitful	to	assess	or	predict	response	to	therapies.	For	example,	it	

may	 be	 shown	 that	 it	 is	 skeletal,	 not	 cardiac	muscle,	 driving	 symptoms;	 hence	 they	



								|	Page	42	

experience	no	symptomatic	improvement	in	their	HF	despite	optimal	medical	therapy,	

and	so	cardiac	rehabilitation	with	a	graded	exercise	prescription	might	be	beneficial.		

	
Moreover,	 it	 has	 been	discovered	 that	 biomarkers,	 such	 as	 urinary	micro-albumin	 81	

(UMA)	 and	 parathyroid	 hormone	 70	 (PTH),	 elevated	 in	 a	 response	 to	 the	 systemic	

effects	of	HF-LVSD,	can	help	 in	the	estimation	of	the	morbidity	and	mortality	of	such	

disease.	 Uric	 acid	 82	 and	 C-reactive	 protein	 83	 (CRP),	 markers	 of	 inflammation,	 are	

implicated	in	the	pathogenesis	of	IHD	and	HF-LVSD	and	have	been	found	to	correlate	

with	overall	prognosis	in	both	conditions.	

1.7.8 Diastolic	Dysfunction		
	

In	contrast	to	LVSD,	the	pathophysiology	of	diastolic	dysfunction	is	poorly	understood.	

Diastolic	dysfunction	refers	to	the	failure	of	the	myocardium	to	relax	during	diastole,	

due	 to	 increased	stiffness	and	reduced	compliance.	 	 In	 the	presence	of	 symptomatic	

HF,	with	near/normal	 systolic	 function	 isolated	diastolic	dysfunction	 is	 referred	 to	as	

heart	failure	with	a	preserved	ejection	fraction	(HFPEF);	this	often	coexists	with	LVSD.		

In	 HFPEF,	 LV	 diastolic	 dysfunction	 typically	 arises	 from	 sustained	 and	 elevated	

afterload	due	to,	for	example,	poorly	controlled	HTN.		The	increase	in	afterload	results	

in	marked	 compensatory	 LVH,	 the	net	 effect	 of	which	 is	 a	 thick	 ventricular	wall	 and	

small	 ventricular	 cavity.	 	 This	 causes	 raised	 left	 ventricular	 end-diastolic	 pressure	

(LVEDP),	 inadequate	 filling	 of	 the	 ventricle,	 a	 reduction	 in	 SV	 and,	 as	 in	 LVSD,	 a	

reduction	in	CO.		This	is	clinically	significant	as	approximately	70%	of	ventricular	filling	

is	 passive	 and	 occurs	 during	 ventricular	 diastole.	 	 The	 remaining	 30%	 of	 ventricular	

filling	is	active	due	to	atrial	systole,	the	so-called	‘atrial	kick’.	There	is	some	evidence	to	

suggest	that	there	 is	an	active	fibrotic	process	 involved	and	that	such	stiffness	 in	the	

ventricular	wall	limits	coronary	perfusion	and	may	cause	microvascular	ischaemia	84	85.		

Debate	continues	as	to	whether	HFPEF	is	truly	a	discrete	entity	or	marks	a	transitional	

phase	 between	 the	 normal	 heart	 and	 HF-LVSD,	 and	 furthermore	 whether	 HFPEF	 is	

truly	the	same	condition	as	diastolic	heart	failure,	another	term	frequently	used.	The	

rest	of	the	thesis	focuses	on	HF-LVSD	exclusively.	

1.8 Dyssynchrony		
 
Dyssynchrony	(DS)	is	an	absence	of	synchrony	between	or	within	cardiac	chambers.		
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1.8.1 Introduction	
	

In	 patients	with	 HF-LVSD,	 the	 contractile	 function	 of	 the	 LV	 is	 impaired	 and	 heavily	

dependent	on	preload	and	afterload.		In	this	situation,	any	conduction	delay	will	lead	

to	a	further	reduction	in	contractile	performance,	impairment	of	mechanical	efficiency	

and	unfavourable	energy	consumption.		The	electrical	delay	can	occur	anywhere	in	the	

conduction	system,	from	the	sinoatrial	(SA)	node	to	the	Purkinje	fibres	and	ventricular	

myocardium,	 and	 can	 manifest	 as	 a	 mechanical	 delay	 between	 the	 synchronised	

contractions	of	the	cardiac	chambers,	this	is	termed	dyssynchrony	(DS).		DS	or	electro-

mechanical	 delay	 between	 the	 atria	 and	 ventricles	 is	 termed	atrioventricular	DS	 (AV	

DS),	between	 the	 left	and	 right	ventricles,	 interventricular	DS	 (InterV	DS)	and	 finally,	

within	the	left	ventricle	itself,	intraventricular	dyssynchrony	(IntraV	DS).		

1.8.2 Myocardial	electrical	activation	sequence	
 
In	 brief,	 the	 SA	 node	 spontaneously	 fires,	 activating	 the	 atria,	 which	 then	 contract,	

filling	the	ventricles	actively	after	passive	filling.	This	same	signal,	after	a	delay,	passes	

through	 the	 AV	 node,	 to	 the	 ventricles,	 via	 the	 bundle	 of	 His	 and	 Purkinje	 fibres,	

resulting	in	ventricular	contraction	and	expulsion	of	blood	to	the	pulmonary	from	the	

right	ventricle	and	the	systemic	circulation	from	the	left.	So	in	healthy	individuals,	the	

atria	contract	then	the	ventricles	and	the	ventricles	then	contract	at	the	same	time.	

1.8.2.1 Atrial	and	Atrioventricular	conduction	
	

All	 cardiac	 tissue	 is	 electrically	 active,	 and	 so,	 many	 areas	 of	 the	 heart	 can	 act	 as	

potential	 pacemakers	 (see	 figure	 4).	 	 However	 if	 all	 such	 regions	 competed	 against	

each	other,	the	cardiac	cycle	would	become	disorganised	and	so	there	is	a	hierarchy,	

with	the	fastest	pacemaker	always	assuming	control	over	slower	ones.	 	For	example,	

the	SA	node	has	an	intrinsic	rate	of	100,	the	AV	node	70,	the	Bundle	of	His	30-40	and	

ventricles	<	30	depolarisations/min,	respectively.		Thus,	in	health,	the	normal	electrical	

activation	 sequence	 originates	 from	 the	 sinoatrial	 (SA)	 node,	 located	 between	 the	

superior	vena	cava	and	the	right	atrium.	
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Figure	4:	The	conduction	pathways	of	the	heart	

Figure	 4	 demonstrates	 the	 conduction	

pathways	 of	 the	 heart,	 within	 and	

between	 the	 atria,	 atria	 and	 ventricles	

and	the	ventricles	themselves.	

1:	SA	node,	2:	Bachmann’s	bundle,	3:	AV	

node,	 4:	 Bundle	 of	 His,	 5:	 Purkinje	 fibres	

and	6:	Fibrous	trigone.	

 
	

The	SA	node	contains	electrically	active	P	cells,	which	automatically	and	spontaneously	

depolarise	at	a	regular	interval.	 	Depolarisation	can	be	influenced	by	the	sympathetic	

and	parasympathetic	nervous	systems,	 increasing	or	decreasing	the	rate	respectively.		

The	 resulting	 atrial	 depolarisation	 is	 seen	 as	 the	 P	 wave	 on	 the	 ECG.	 The	 wave	 of	

cardiac	 depolarisation	 is	 conducted	 from	 the	 atria,	 by	 specialised	 conducting	

pathways,	which	 run	 anteriorly,	 centrally,	 and	 posteriorly	 to	 the	 AV	 node	 and	 takes	

around	100ms.	

	

The	heart	 is	 a	 functional	 syncytium,	 and	because	 the	 annulus	 fibrosus,	 between	 the	

atria	and	ventricles,	electrically	isolates	the	upper	chambers	from	the	lower	chambers,	

the	AV	node	is	the	only	intrinsic	pathway	connecting	the	two.		The	AV	node	slows	the	

transmission	of	the	depolarisation	wave	and	depolarisation	takes	approximately	80ms	

to	travel	from	the	atrial	to	the	ventricular	side	of	the	node	86.	This	ensures	that	atrial	

systole	 is	 completed	 after	 passive	 ventricular	 filling	 but	 prior	 to	 ventricular	 systole,	

optimising	 ventricular	 preload.	 	 This	 delay,	 together	 with	 the	 P	 wave	 duration,	

represents	the	PR	interval	on	the	ECG,	which	is	typically	around	40-200ms	duration.		

	

From	the	AV	node,	 the	signal	 is	 transmitted	along	 the	septum	via	 the	bundle	of	His,	

itself	 travelling	 along	 the	 interventricular	 septum.	 	Due	 to	 a	 higher	 concentration	 of	

gap	 junctions,	 transmission	 along	 this	 pathway	 is	 conducted	 at	 3-4m/s;	 significantly	

faster	than	transmission	through	the	ventricular	myocardium	which	is	0.3-1m/s	87.	

1.8.2.2 Ventricular	conduction	
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The	bundle	of	His	splits	into	2	branches,	right	and	left	bundle	branches;	as	the	latter	is	

comprised	 of	 anterior	 and	 posterior	 fascicles,	 the	 whole	 structure	 is	 termed	

trifascicular.	 	 The	 bundles	 are	 electrically	 isolated,	 electrically	 coupling	 to	 the	

myocardium	 via	 the	 Purkinje-myocardial	 junctions	 located	 sub-endocardially	 in	 the	

ventricles	only.		These	bundles	then	divide	to	give	a	large	reticular	structure,	known	as	

the	 Purkinje	 fibres.	 	 In	 health,	 the	 rapid	 conduction	 and	 broad	 reach	 of	 the	 fibres	

ensures	a	high	degree	of	electrical	and	therefore	mechanical	synchronicity	(both	inter-	

and	 intraventricular)	during	ventricular	depolarisation/systole.	 	 It	 takes	around	20ms	

for	the	signal	to	travel	from	the	bundle	to	 initiate	ventricular	depolarisation		87.	 	This	

can	be	seen	as	the	QRS	complex	on	the	ECG.	

	

In	 health,	 the	 first	 site	 of	 ventricular	 electrical	 activation	 is	 the	 LV	 at	 the	

interventricular	septum.		This	is	followed	shortly	afterwards	(10ms)	by	activation	of	the	

RV	88.	Following	this	activation,	the	wave-fronts	then	proceed	simultaneously	 in	both	

ventricles	from	apex	to	base	and	from	septum	to	lateral	wall.		In	health,	there	is	near	

simultaneous	ventricular	contraction,	 the	 interventricular	mechanical	delay	 (IVMD)	 is	

close	 to	 0ms	 and	 total	 ventricular	 activation	 time	 normally	 takes	 50-80ms	

corresponding	to	a	QRS	duration	of	a	similar	duration	88.	The	last	regions	of	right	and	

left	ventricles	 to	be	depolarised	are	 the	basal	areas	of	 the	pulmonary	conus	and	the	

posterolateral	region	respectively.	 	

1.8.3 Heart	Failure	
	

In	HF-LVSD	the	presence	of	both	structural	and	 functional	changes	 in	both	ventricles	

leads	 to	 abnormal	 electrical	 activation	 and	 propagation.	 	 As	 a	 result,	 sinus	 node	

incompetence,	atrial	arrhythmias	and	bundle	branch	blocks	 (BBB)	are	common.	 	The	

loss	of	normal	synchronous	sequence	of	electrical	activation	means	that	 the	signal	 is	

unable	 to	pass	 rapidly	 from	the	atria	 to	 the	ventricles	via	 the	specialised	conduction	

system.		Instead,	depolarisation	passes	between	the	myocytes	via	gap	junctions.		This	

transmission	path	is	up	to	4	times	slower,	resulting	in	asynchronous	and	pathological	

activation	 and	 atrioventricular	 uncoupling	 and	 leading	 to	 electromechanical	 DS	 as	

mentioned	above.		

1.8.3.1 Atrial	conduction	
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There	 is	 frequently	 bi-atrial	 dilatation	 in	 HF-LVSD	 with	 diffuse	 fibrosis	 and	 focal	

scarring	 due	 to	 a	 combination	of	 ischaemia,	 inflammation	 and	 increased	mechanical	

stress	 	 89.	 This	 can	 lead	 to	 alteration	 in	 gene	 expression,	 dysfunction	 of	 Ca2+	 ion	

channels	and	resulting	slow	and	abnormal	conduction.		Commonly,	there	is	also	sinus	

node	 dysfunction,	 leading	 to	 both	 chronotropic	 and	 inotropic	 incompetence.	 	 As	 a	

result,	there	is	significantly	reduced	atrial	systolic	function	in	HF-LVSD.	

1.8.3.2 Ventricular	conduction	
	

A	 left	bundle	branch	block	(LBBB)	refers	to	a	conduction	block	 in	any	part	of	the	 left	

intraventricular	 conduction	 pathway,	 from	 the	 main	 bundle	 to	 the	 fascicles.	 	 As	 a	

consequence	there	is	rapid	activation	of	the	RV	via	the	RBB	but	slow	activation	of	the	

left	 ventricle	 via	 the	 working	 myocardium.	 	 This	 results	 in	 early	 activation	 and	

contraction	 of	 the	 interventricular	 septum	 and	 late	 activation	 of	 the	 posterior	 and	

lateral	walls.		This	leads	to	posterolateral	stretching	as	the	septum	contracts	followed	

by	 late	 posterolateral	 contraction	 as	 one	 wall	 exerts	 forces	 on	 its	 corresponding	

contralateral	 partner.	 	 The	 consequence	 is	 a	heterogeneous	distribution	of	 LV	 stress	

(the	 amount	 of	 tension	 developed	 in	 the	 LV	 wall	 during	 systole)	 and	 strain	 (the	

percentage	 change	 describing	 the	 degree	 of	 deformation	 of	 the	 LV	 during	 systole).		

Conventional	catheter-mapping	techniques	and	3D	non-contact	mapping	show	that,	in	

patients	 without	 disease	 of	 the	 conduction	 system,	 there	 is	 a	 homogenous	 and	

continuous	activation	sequence	 in	the	LV,	which	takes	50-80ms.	 	However,	 in	LBBB	a	

functional	conduction	block	leads	to	discrete,	U-shaped	LV	activation.		In	patients	with	

QRSd		<	150ms	the	block	is	usually	positioned	laterally	but	for	those	where	the	QRSd	>	

150ms	the	block	is	located	anteriorly	LV	activation	takes	80-150ms	86.	

 
Right	bundle	branch	block	(RBBB)	describes	a	conduction	block	in	any	part	of	the	right	

interventricular	conduction	pathway,	specifically	anywhere	from	the	distal	His	bundle	

to	the	main	right	bundle.		As	a	result	there	is	rapid	activation	of	the	LV	via	the	LBB	but	

slow	activation	of	the	right	ventricle	via	the	working	myocardium.		In	the	presence	of	

RBBB,	 the	 earliest	 activation	 site	 is	 the	 LV	 septum	 followed	 by	 the	 RV	 septum	 from	

where,	 after	 a	 considerable	 delay,	 the	 wavefront	 spreads	 from	 cell	 to	 cell,	 to	 the	

anterior	and	 lateral	RV	walls	and	 finally	 the	right	ventricular	outflow	tract.	Similar	 to	

LBBB,	it	is	the	anterolateral	regions	that	have	delayed	activation	as	takes	80-120ms.		
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1.8.4 Aetiology	
	

DS	may	arise	as	consequence	of	IHD,	which	damages	not	only	the	myocardium	(leaving	

scar	 tissue	 following	 myocardial	 infarction,	 for	 example)	 but	 also	 the	 conducting	

system	e.g.	sinoatrial	node,	atrioventricular	node,	bundle	of	His	or	Purkinje	fibres.		This	

damage	 results	 in	 a	 delay	 in	 electrical	 activation	 of	 the	 myocardium	 and	

dyssynchronous	contraction	of	the	heart.		DS	is	common	in	populations	with	HF-LVSD,	

carries	 a	 poorer	 prognosis	 than	 HF-LVSD	 without	 DS	 and	 results	 in	 impairment	 of	

ventricular	filling,	systolic	function	and	worsening	of	functional	mitral	regurgitation.		

1.8.5 Epidemiology	
	

Estimates	of	the	prevalence	of	DS	depend	on	the	type,	definition	and	instrument	used,	

all	of	which	vary	between	studies.	

	

Atrioventricular	DS,	as	determined	by	a	prolonged	PR	interval,	has	a	prevalence	of	1-

2%	in	a	healthy	cohort	90	but	is	more	common	in	populations	with	HF-LVSD,	in	isolation	

(10%)	and	in	association	with	interV	DS		(4%)	91.		It	is	important	to	note	that,	none	of	

the	major	CRT	trials	comment	on	the	prevalence	of	AV	DS	in	their	study	populations.		

	

InterV	 DS,	 as	 determined	 by	 a	 prolonged	 QRSd,	 has	 a	 prevalence	 of	 1%	 in	 healthy	

adults	 at	 50	 years	 of	 age,	 increasing	 to	 17%	at	 80	 years	 of	 age	 92	 93.	 	 However,	 in	 a	

general	population	without	underlying	symptomatic	structural	heart	disease,	RBBB	 is	

not	typically	considered	to	be	a	sign	of	underlying	disease.		In	contrast,	LBBB	is	often	

pathological;	 prevalence	 increasing	 with	 diseases	 such	 as	 diabetes	 and	 IHD.		

Specifically,	in	a	HF-LVSD	population,	prevalence	is	30%	irrespective	of	age	94.		

	

If	 echocardiography,	 rather	 than	 surface	 ECG,	 is	 used	 to	 assess	 the	 interV	 DS,	 by	

measuring	 the	 IVMD	 as	 performed	 in	 the	 CARE-HF	 trial	 for	 example,	 then	 the	

prevalence	 increases	 to	 over	 60%	 44.	 	 Prevalence	 of	 interV	 DS	 also	 increases	 as	 the	

QRSd	 increases,	 for	 example	 with	 QRSd	 of	 <	 120ms,	 120-150ms	 and	 >	 150ms	 the	

prevalence	of	interV	DS,	as	defined	by	the	presence	of	an	IVMD	greater	than	40ms,	is	

reported	to	be	12.5%,	52.4%	and	72%	respectively		95.		
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There	are	no	 reported	 studies	of	 intraV	DS	 in	healthy	adult	populations,	presumably	

because	 in	 the	 absence	 of	 disease	 this	 is	 both	 uncommon	 and	 implausible.	 	 The	

prevalence	of	intraV	DS	in	a	HF-LVSD	population	increases	with	increasing	QRSd.		For	

example	 for	 durations	 of	 <	 120ms,	 120-150ms	 and	 >	 150ms	 the	 prevalence	 was	

reported	 to	 be	 29.5%,	 57.1%	 and	 71%	 respectively	 as	 determined	 by	 a	 >	 50ms	

difference	among	regional	pre-ejection	periods		95.	 	Similarly,	Emkanjoo	et	al	(2007)96	

reported	the	prevalence	of	intraV	DS	to	be	45.1%	and	23%	in	patients	with	a	prolonged	

versus	 normal	 QRSd	 respectively	 when	 measured	 using	 echocardiographic	 tissue	

Doppler	 imaging	 (TDI).	 This	 suggests	 that	 mechanical	 DS	 may	 be	 present,	 and	

demonstrable,	 by	 echocardiography	 even	when	 electrical	 DS	 cannot	 be	 detected	 by	

surface	 ECG	 and	 that	 the	 broader	 the	 QRSd	 the	 greater	 the	 likelihood	 of	 both	

mechanical	intra-	and	inter	DS.	

1.8.6 Assessment	
 
Assessment	of	DS	can	be	performed	using	a	variety	of	different	modalities.		

1.8.6.1 Electrocardiography	
		

Figure	5:	12	lead	ECG	demonstrating	LBBB	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5	 demonstrates	 a	 12	 lead	 ECG	 of	 a	 patient	 with	 left	 bundle	 branch	 block,	

demonstrating	classical	rS	pattern	in	leads	V1-3.	
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Figure	6:	ECG	leads	V1	and	V6	demonstrating	LBBB	

 
	

	

	

	

	

	

Figure	6	demonstrates	a	close	up	of	LBBB	as	seen	 in	 leads	V1	with	classic	 rS	pattern	

and	V6	with	classic	R	pattern.	

	

The	electrical	changes	occurring	in	the	heart	can	be	recorded	by	electrodes	placed	on	

the	surface	of	the	chest.		The	resulting	ECG	(figure	5)	may	give	the	first	indication	of	DS	

if	there	is	PR	prolongation	(>	0.2ms)	denoting	AV	delay	or	a	prolonged	QRSd	(>	0.12ms)	

with	an	atypical	morphology,	e.g.	LBBB	or	RBBB.	

1.8.6.2 Echocardiography	
 
Figure	7:	An	apical	4	chamber	trans-thoracic	echocardiogram		

	

Figure	 7	 demonstrates	 a	 B-

mode	 2	 dimensional	 image	 of	

heart	as	seen	 from	the	cardiac	

apex,	with	 both	 ventricles	 and	

both	atria,	hence	4	chambers.	

	

LA	 =	 left	 atrium,	 LV	 =	 left	

ventricle,	MV	=	mitral	valve,	RA	

=	 right	 atrium,	 RV	 =	 right	

ventricle,	TV	=	tricuspid	valve.	

	

Echocardiography	is	a	non-invasive	specialised	imaging	technique,	which	uses	a	probe	

containing	 piezo-electric	 crystals	 producing	 high	 frequency	 ultra-sound	 (USS)	waves.		

The	emitted	waves	are	reflected	by	the	 intra-thoracic	structures	to	differing	degrees.		

These	 reflected	 waves	 are	 then	 detected	 by	 the	 probe	 and	 transduced	 into	 an	

L
V	

R
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R
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TV	
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electrical	signal,	which	builds	an	image	of	the	heart	(figure	7).	Whilst	the	ECG	provides	

a	screening	tool	for	gross	electrical	DS,	AV	and	interV,	the	echocardiogram	can	provide	

more	 detailed	 information	 about	 mechanical	 DS,	 in	 particular	 IntraV	 DS.	

Echocardiography	has	the	advantages	of	speed,	portability	and	ease	of	use	but	it	can	

have	 limitations	 is	terms	of	field	of	view	and	also	suffers	from	poor	penetration	(e.g.	

for	 bone)	 and	 an	 inability	 to	 discriminate	 and	 differentiate	 between	 types	 of	 soft	

tissue.	

	

As	 highlighted	 below,	 a	 variety	 of	 specific	 echocardiographic	 modalities	 have	 been	

developed,	enabling	both	the	structure	and	function	of	the	heart	to	be	interrogated.		

	
M-mode	 (figure	 8	 bottom)	 produces	 a	 single	 discrete	 beam	 of	 USS	 in	 a	 series	 of	

juxtaposed	 parallel	 lines	 creating	 a	 continuous	 strip,	 or	 1D	 image,	 which	 allows	 a	

specific	 myocardial	 region	 of	 interest	 to	 be	 sampled.	 	 This	 modality	 enables	 the	

distance	of	structures	from	the	transducer	to	be	recorded	and	can	be	used	to	measure	

LV	diameter,	for	example.		

	

B	mode	(figure	8	top)	produces	real-time	dynamic	images	of	the	heart	in	cross	section.	

An	array	of	 crystals,	 are	activated	and	 inactivated	 in	phase,	producing	an	arc	of	USS	

lines,	 numbering	 around	100	per	 sector.	 	 These	 are	 then	 compiled	 into	 a	 2D	 image.		

Repetition	 of	 this	 process	 at	 100	 times	 per	 second	 enables	 visualisation	 of	 cardiac	

motion.	 	 This	 is	 used	 for	 gross	 assessment	 of	 cardiac	 function	 -	 for	 discrimination	

between	mild	–	moderate	–	or	severe	LV	systolic	dysfunction,	for	example.	This	can	be	

utilised	by	transthoracic	(TTE)	or	trans-oesophageal	(TOE)	echocardiographic	probes.	

Figure	8:	M	mode	echocardiogram	the	LV	in	parasternal	short-axis	view	

	

M	mode	

B	mode	
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Figure	 8	 demonstrates	 an	 black	 and	white	M	mode	 echocardiogram	 (bottom)	 taken	

the	in	long	axis	parasternal	view,	with	B	mode	(top)	and	cursor	seen	through	the	mitral	

valve	and	finally	ECG	recording	in	blue.	

	

Doppler	ultrasound	 is	used	 to	assess	 the	 speed	and	direction	of	blood	 flow	 through	

the	heart	and	 is	particularly	useful	 for	detecting	and	assessing	valve	dysfunction.	 	As	

blood	 is	 continuously	 moving,	 the	 frequency	 of	 the	 reflected	 USS	 beam	 alters,	 this	

change	in	frequency	is	known	as	the	Doppler	shift.		An	increase	in	frequency	denotes	

movement	 towards	 the	 transducer	 and	 a	 decrease	 in	 frequency,	 movement	 away,	

providing	 that	 the	 vector	 of	 flow	 is	 in	 line	with	 the	 USS	 beam.	 	 Doppler	 USS	 has	 3	

different	 modes,	 pulse	 wave	 (PW),	 continuous	 wave	 (CW)	 or	 colour	 flow	 mapping	

(CFM).	 	 PW	 uses	 discrete	 pulses	 of	 USS	 and	 has	 a	 high	 spatial	 resolution	 but	 low	

velocity	resolution.		Velocities	exceeding	the	detectable	range	result	in	aliasing,	leading	

to	‘wrapping’	of	the	image	and	subsequent	under	sampling	which	leads	to	inaccuracies	

in	the	measured	velocity.		CW	uses	continuous	emission	of	USS	waves.	This	avoids	the	

velocity	 issues	 affecting	 PW	 but	 limits	 spatial	 resolution.	 	 CFM	 gives	 a	 pictorial	

representation	 of	 the	 flow	 field	 with	 colours	 indicating	 the	 speed	 and	 direction	 of	

blood	flow.		

	

More	recently,	pulse	wave	tissue	Doppler	imaging	(PW	TDI)	has	been	developed.		This	

is	able	to	measure	the	direction	and	speed	of	the	contracting	or	relaxing	myocardium	

using	 a	 specific	 filter	 threshold	 to	 detect	 the	 low	 frequency,	 high	 amplitude	 signals	

produced	by	the	heart	as	it	moves.	

	

Several	 small	 single	 centre	 trials	 indicate	 that	 echocardiographic	parameters	 such	as	

septal-posterior	 wall	 motion	 delay	 (SPWMD)	 and	 interventricular	 mechanical	 delay	

(IVMD)	are	predictive	of	response	to	CRT	97	98.		However,	the	PROSPECT	trial	99,	a	large	

multicentre	trial	with	central	analysis	and	standardised	training	assessing	12	separate	

parameters,	was	unable	to	demonstrate	any	single	echocardiographic	measure	of	DS	

which	predicted	response	to	CRT,	either	through	LVESV	or	a	clinical	composite	score.		

However,	this	outcome	may	be	related	more	to	“technical	and	interpretative	factors”	

according	 to	 Chung	 et	 al	 (2008)99	 rather	 than	 the	measurements	 themselves.	 Other	

potential	 echocardiographic	 metrics	 to	 quantify	 DS	 and	 predict	 response,	 such	 as	
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strain,	strain	rate	and	speckle	tracking,	have	been	 investigated	100-102.	 	Whilst	current	

evidence	 looks	promising,	 these	techniques	remain	confined	to	use	as	research	tools	

and	so	the	QRS	duration	on	the	surface	ECG	currently	remains	one	of	the	few,	 if	not	

the	 only,	 robust	 predictors	 of	 response	 to	 CRT	 103.	 	 However,	 in	 the	 absence	 of	 a	

prolonged	QRSd,	it	has	become	apparent	following	the	EchoCRT	trial104,	that	searching	

for	and	treating	intraV	DS	can	actually	lead	to	harm.		

	

3D	echocardiography	

Three	dimensional	 echocardiography,	 available	 in	 transthoracic	or	 trans-oesophageal	

probes,	consists	of	a	matrix	array	of	2400	elements	which	can	be	focused	and	steered,	

sampling	 the	 heart	 in	 a	multitude	 of	 directions,	 which	with	 combined	 a	 proprietary	

processing	system,	 reconstructs	a	pyramidal	volume	dataset,	 such	as	a	3D	still	or	4D	

movie.	 The	 image	 seen	 is	 either	 comprised	 of	 a	 series	 of	 2D	 images,	 taken	 over	

consecutive	heart	beats	and	“stitched”	together,	or	more	recently	a	complete	dataset	

can	be	acquired	in	a	single	heartbeat,	termed	real-time	3D.	

1.8.6.2.1 Atrioventricular	Dyssynchrony	
	

The	presence	of	mechanical	AV	DS	delays	the	onset	of	ventricular	systole	in	relation	to	

atrial	filling,	shortening	the	passive	ventricular	filling	period	and	leading	to	suboptimal	

ventricular	filling	due	to	superimposition	of	active	atrial	contraction	with	early	passive	

filling.	 This	 leads	 to	 suboptimal	 preload,	 causing	 a	 reduction	 in	 SV	 and	 late	 diastolic	

(presystolic)	 functional	 mitral	 regurgitation.	 	 AV	 DS	 is	 typically	 measured	 using	

echocardiography	 (figure	 9),	 from	 the	 apical	 4-chamber	 view,	 using	 trans-mitral	 PW	

Doppler	 with	 the	 imaging	 plane	 between	 the	 tips	 of	 the	 fully	 open	mitral	 valve,	 to	

study	ventricular	inflow.		The	total	diastolic	filling	interval	(dFT),	also	known	as	mitral	

valve	 ejection	 time	 (MVET),	 comprises	 the	 E	wave	 (ventricular	 relaxation)	 and	 the	A	

wave	 (atrial	 systole)	 indicating	 early	 passive	 and	 late	 active	 ventricular	 filling,	

respectively.		In	the	presence	of	AV	DS,	there	is	a	reduction	in	the	E	wave	duration	and	

the	dFT	 is	 reduced	 to	 less	 than	40%	of	 the	corresponding	cycle	 length,	measured	on	

the	ECG	below,	and	so	the	E	and	A	waves	begin	to	fuse.		



								|	Page	53	

Figure	9:	Echocardiographic	measurement	of	atrioventricular	dyssynchrony	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure	9	demonstrates	a	B	mode	4	chamber	echocardiogram	(top)	with	continuous	

wave	Doppler	(bottom)	used	to	measure	the	passive	(E	wave)	and	active	(A	wave)	

contributions	to	LV	filling.	

1.8.6.2.2 Interventricular	Dyssynchrony	
	

IVMD	or	InterV	DS	is	measured	by	echocardiography	using	pulse	wave	Doppler	flow.		In	

health,	the	total	ventricular	activation	time	is	60-80ms	corresponding	to	a	QRS	width	

of	70-80ms	and,	as	mentioned	previously,	 there	 is	almost	 simultaneous	biventricular	

contraction	 and	 a	 IVMD	 of	 close	 to	 zero.	 	 However,	 in	 BBB,	 the	 IVMD	 is	 typically	

increased	to	40ms	 in	the	presence	of	a	QRSd	of	>	150ms	 indicating	significant	 interV	

DS.	 	 IVMD	is	derived	from	a	series	of	measurements	of	both	ventricles,	primarily	the	

time	 from	 the	 onset	 of	 the	 Q	 wave	 of	 the	 QRS	 complex	 on	 the	 ECG,	 denoting	

ventricular	depolarisation,	 to	 the	onset	of	 flow	 through	 the	ventricular	outflow	 tract	

e.g.	 the	 delay	 between	 electrical	 activation	 to	 mechanical	 contraction.	 	 Flow	 is	

measured	 using	 CW	Doppler	 and	 represents	 the	 onset	 of	mechanical	 contraction	 of	

the	ventricle	(figure	10).	 	The	time	from	the	Q	wave	to	the	onset	of	flow	is	known	as	

the	 pre-ejection	 period	 (PEP)	 or	 ejection	 time	 (ET).	 	 The	 procedure	 is	 carried	 out	

similarly	for	the	LV	and	RV,	giving	the	LV-PEP	or	AVET	and	RV-PEP	or	PVET.		The	time	

difference	between	the	onset	of	LV	contraction	to	the	onset	of	RV	contraction	should	

be	<	40ms;	a	time	greater	than	this	is	pathological	and	represents	significant	IVMD.		

	

E 
E	wave	

A		wave	MVET	
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Figure	10	demonstrates	measurement	of	 the	aortic	valve	ejection	time	(left)	and	the	

pulmonary	 valve	 ejection	 time	 (right),	 using	 continuous	 wave	 Doppler	 through	 the	

respective	valves	to	measure	the	duration	from	the	Q	or	S	wave	to	the	onset	of	flow.	

1.8.6.2.3 Intraventricular	dyssynchrony	
	

IntraV	DS	 refers	 to	 the	 early	 or	 late	 contraction	of	 ventricular	wall	 segments	 due	 to	

electrical	 conduction	delays	within	 the	 LV	 resulting	 in	 electromechanical	 uncoupling.		

Measurement	of	 IntraV	DS	 is	more	challenging	 to	determine	than	 its	 interventricular	

counterpart;	being	open	to	interpretation	and	influenced	by	method	of	assessment.		It	

also	 lacks	a	 standardised	approach	or	agreed	defined	cut-off.	 It	 can	be	measured	by	

several	 modalities	 including	 M-mode,	 2D	 and	 3D	 echocardiography	 and	 cardiac	

magnetic	resonance	imaging.		

	

M-mode	ultrasound	imaging	

The	septal	to	posterior	wall	motion	delay	(SPWMD)	is	the	time	delay	between	septal	

and	posterior	wall	 systolic	 contraction	 (normal	<	130ms).	 	 In	a	parasternal	 short	axis	

view,	the	M	mode	cursor	is	positioned	perpendicular	to	the	septum	and	posterior	wall	

and,	with	reference	to	a	single	cardiac	cycle,	the	time	difference	between	the	onset	of	

the	Q	wave	component	of	 the	QRS	complex	on	 the	ECG	and	 the	peak	 inward	 septal	

AVET	
PVET	

Figure	10:	Echocardiographic	measurement	of	interventricular	dyssynchrony	
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and	 posterior	 wall	 motion	 is	 measured.	 	 M-mode	 is	 a	 simple,	 quick	 and	 readily-

available	tool	but	is	dependent	upon	good	echocardiographic	windows.		Disadvantages	

include	the	inability	to	measure	DS	in	other	LV	regional	walls.		Septal	or	posterior	wall	

akinesis	due	to	previous	MI	or	abnormal	RV	pressure/volume	load	will	also	 influence	

septal	motion	 leading	 to	 erroneous	measurement.	 	 In	 advanced	HF-LVSD,	 all	 inward	

wall	motion	is	severely	reduced,	therefore	determining	a	true	peak	can	be	challenging.		

	

Pulse-wave	tissue	Doppler	imaging		

Pulse-wave	TDI	(PW	TDI)	can	be	used	to	measure	intraventricular	dyssynchrony	since	

its	temporal	resolution	enables	the	clinician	to	determine	systolic	myocardial	velocities	

(Sm).	 	Most	commonly,	the	time	from	the	onset	of	the	QRS	complex	and	the	Sm	peak	

(time	to	Sm	peak)	and	the	time	from	the	onset	of	the	QRS	complex	and	the	onset	of	Sm	

(time	to	Sm	onset),	are	recorded.		A	period	of	>	65ms	recorded	for	the	time	to	Sm	peak	

between	 LV	 segments	 is	 considered	 a	 significant	 delay.	 	 Using	 apical	 2-,	 4-	 and	 5-

chamber	views,	the	cursor	is	placed	in	the	wall	of	the	ventricle	at	both	mid	and	basal	

regions,	creating	a	12-segment	model.		The	apical	segment	is	not	used	as	the	resulting	

data	 is	 considered	 to	 be	 unreliable.	 	 The	 Doppler	 trace	 creates	 a	 signal	 comprising	

three	waves:	the	systolic	myocardial	velocity	(Sm)	moving	towards	the	transducer	and	

the	early	diastolic	myocardial	velocity	(Em)	and	the	late	diastolic	myocardial	atrial	(Am)	

velocity	both	moving	away	from	the	transducer.		PW	TDI	is	considered	a	useful	method	

for	 assessing	 intraventricular	 dyssynchrony,	 which	 has	 been	 used	 successfully	 to	

predict	CRT	response	in	small	trials	105.		

	

However,	 since	 it	 is	 impossible	 to	 view	 all	 the	 segments	 in	 a	 single	 image,	multiple	

cardiac	 cycles	 are	 required	 to	 measure	 all	 the	 velocities.	 	 This	 may	 introduce	

inaccuracies	due	to	 inherent	variability	between	cycles,	especially	 in	patients	with	AF	

or	 ectopy.	 	 Furthermore,	 the	 technique	 is	 time-consuming,	 operator	 dependant	 and	

presents	a	steep	learning	curve	for	echocardiographers.		

	
Colour	TDI		

	There	 are	 a	 variety	 of	 techniques	 based	 on	 colour	 TDI,	 including	 Tissue	

Synchronisation	Imaging	(TSI)	and	Tissue	Velocity	Imaging	(TVI)	

	



								|	Page	56	

TSI	 and	 TVI	 are	 post-processing	 techniques,	 which	 are	 carried	 out	 offline,	 using	

previously	acquired	colour	 images,	from	apical	views.	 	The	main	advantages	over	PW	

Doppler	 as	 alluded	 to	 by	 Galderisi	 et	 al	 (2007)	 106,	 is	 that	 these	 techniques	 allow	

measurement	of	the	dyssynchrony	of	both	opposing	walls	and	different	regions	within	

the	same	wall,	from	a	single	view	and	a	single	cardiac	cycle.			

	

In	 TSI	 the	 velocity	 of	 the	myocardial	 tissue	 is	 analysed	 to	 determine	 a	 peak	 velocity	

within	a	selected	portion	of	the	cardiac	cycle	and,	since	the	peaks	occur	in	the	context	

of	 global	motion,	 a	 delay	 in	 peak	 wall	 motion	 will	 produce	 a	 delayed	 peak	 velocity	

(figure	 11).	 	 As	 for	 PW	 tissue	 Doppler,	 apical	 views	 are	 used	 to	 build	 a	 12-segment	

model	 including	 apical	 and	basal	 regions.	 	 The	 delay	 (in	ms)	within	 the	myocardium	

being	 viewed	 is	 automatically	 assigned	 a	 colour	 from	 green	 indicating	 synchrony	

(regions	 reaching	 peak	 velocity	 at	 the	 same	 time),	 to	 red	 indicating	 dyssynchrony	

(regions	 reaching	 peak	 velocity	 at	 different	 times).	 	 Colour	 relates	 to	 the	 amount	 of	

delay	 rather	 than	 tissue	 velocity	 and	 so,	 when	 applied	 across	 the	 2D	 LV	 image,	

produces	 a	 colour-coded	 map	 of	 wall	 motion	 delay	 allowing	 a	 quick	 ‘eyeball’	

assessment	 of	 DS.	 	 Individual	 segments	 can	 also	 be	 interrogated	 with	 an	 inter-

segmental	difference	of	>	40ms	indicating	DS.		

	

Figure	11:	TSI	displays	colour-coded	time-to-peak	tissue	Doppler	velocities	
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Figure	11	demonstrates	 tissue	synchronisation	 imaging	view	of	 the	 left	ventricle	 in	4	

(left)	and	2	chamber	views	(right).	On	the	left,	all	the	walls	are	green	demonstrating	no	

intra-ventricular	dyssynchrony	as	the	walls	contract	at	the	same	time,	on	the	right,	the	

postero-lateral	 wall	 is	 red	 and	 the	 antero-septum	 is	 amber,	 demonstrating	 intra-

ventricular	dyssynchrony.			

	

Similarly	TVI	reports	 longitudinal	myocardial	velocities	 (cm/sec)	and	can	be	displayed	

using	pulsed,	colour	or	M-mode	Doppler.		

	

PW	TDI	is	a	technically	demanding	technique	with	a	steep	learning	curve.		During	TDI	

acquisitions,	the	frame-rate	must	be	high,	the	sector	width	narrow,	gains	adjusted	 in	

order	to	view	TDI	clearly	and,	prior	to	measurement,	aortic	valve	opening	and	closing	

must	be	marked	in	order	to	differentiate	normal	from	post-systolic	contraction.	

	

Other	 techniques	 include	 the	 measurement	 of	 strain	 (amount	 of	 myocardial	

deformation).	 	 Strain	 is	 calculated	 throughout	 the	 cardiac	 cycle	 by	means	 of	 a	 post-

processing	technique	enabling	the	time	to	minimal	or	maximal	strain	to	be	assessed	in	

different	regions	of	the	LV.		Strain	rate	(e.g.	the	rate	of	change	of	strain)	imaging	can	

also	be	used.	 	 In	 theory,	both	of	 types	of	 strain	measure	are	superior	 to	TDI	as	 they	

facilitate	differentiation	of	active	and	passive	myocardial	motion.		

	

Finally,	speckle	tracking	is	a	modality,	which	detects	and	traces	the	movement	of	pixels	

in	 the	 moving	 myocardium	 and	 can	 be	 used	 to	 calculate	 strain.	 	 Longitudinal	 and	

transverse	 in	can	be	recorded	from	apical	views	and	radial	and	circumferential	strain	

from	 short-axis	 views	 (see	 figure	 12).	 	 The	 STAR	 trial	 demonstrated	 that	 radial	 and	

transverse	strain	measured	by	speckle	tracking	was	predictive	of	response	to	CRT		102.	
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Figure	12:	Speckle-tracking	time–strain	curves	in	a	HF	patient	with	LBBB	

	
Figure	 12	 demonstrates	 the	 four	 measurements	 of	 strain	 from	 the	 left	 ventricle,	

transverse	 and	 longditudinal	 from	 the	 apical	 four	 chamber	 and	 radial	 and	

circumferential	 from	 the	 parasternal	 short	 axis.	 Each	 demonstrating	 dyssynchrony,	

between	the	septal	and	lateral	or	anterior	and	posterior	walls	respectively.		

	
3D	echocardiography	
	

According	to	Galderisi	at	al	(2007)106,	the	advent	of	3D	transthoracic	echocardiography	

(3DTTE)	enabled	“intraventricular	dyssynchrony	 to	be	evaluated	by	analysing	LV	wall	

motion	 in	 multiple	 apical	 planes	 during	 the	 same	 cardiac	 cycle”	 and	 it	 also	 “offers	

better	spatial	resolution	than	a	single	plane”.	This	representation	of	the	3D	LV	volume	

(figure	 13),	 was	 used	 by	 Kapetanakis	 et	 al	 (2005)	 to	 quantify	 global	 LV	 mechanical	

dyssynchrony	derived	from	the	standard	deviation	of	the	time	taken	for	each	of	the	16	

LV	segments	to	reach	minimum	end	systolic	volume	107.	The	main	advantage	of	using	

3DTTE	 is	 that	 all	 16	 segments	 can	 be	 assessed	 simultaneously	 for	 intraventricular	

dyssynchrony	and	all	aspects	of	LV	systolic	 function	 including	radial,	 longitudinal	and	

circumferential	 contraction	 can	 also	 be	 evaluated.	 	 3DTTE	 allows	 for	more	 accurate	

volume	assessment	than	2DTTE.	 	This	 is	 important	 for	assessing	markers	of	response	

such	as	LVEDV.		
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3DTTE	 has	 several	 shortcomings,	 these	 include	 less	 than	 optimal	 feasibility;	 images	

must	 be	 of	 high	 quality	 to	 calculate	 volumes,	 which	 can	 prove	 to	 be	 more	 time-

consuming	than	conventional	2DTTE.		Temporal	resolution	is	currently	lower	than	for	

2DTTE,	 there	 is	a	narrower	angle	of	 image	acquisition	 thus	 large	LV	volumes	may	be	

curtailed,	 and	 finally	 image	 analysis	 must	 be	 performed	 off-line	 using	 proprietary	

software,	 such	as	TomTec	 (Tomtec	 Imaging	Systems	Gmbh,	Fulda,	Germany).	 	Unlike	

strain,	 or	 strain-rate,	 imaging,	 active	 and	 passive	 motion	 cannot	 be	 differentiated.		

Akinetic	 segments	may	move	 due	 to	 being	 pushed	 or	 pulled	 by	 adjacent	 segments,	

leading	to	incorrect	assumptions	and	inaccurate	calculations	of	wall	motion	or	volume.		

Acquisition	 is	 not	 possible	 for	 most	 patients	 with	 AF	 or	 ectopy	 with	 current	

echocardiography	 machines;	 as	 multiple	 cardiac	 cycles	 are	 needed	 to	 construct	 a	

moving	 image	 in	 3D,	 and	 so	 arrhythmias	 create	 artefacts.	 	 3DTTE	 is	 also	 very	

technically	demanding	and	operator	dependent.	

Figure	13:	Acquisition	of	3D	LV	image	(left)	and	analysis	of	the	16	segments	(right)	

	

	

	

	

	

	

	

Figure	13	demonstrates	the	real	time	acquisition	of	the	3D	whole	heart	image	on	the	

with	two	and	three	dimensional	images	of	the	left	ventricle	in	the	four	chamber	view	

(left)	with	off	line	analysis	of	the	relative	synchrony	the	16	colour	coded	left	ventricular	

segments	(right).	

1.8.6.3 Cardiac	Magnetic	Resonance		
	

Cardiac	magnetic	resonance	(cMR)	imaging	is	a	non-invasive	imaging	technique,	which	

creates	2D	and	3D,	static	and	dynamic	(albeit	not	real-time)	 images	of	the	heart	(see	

figure	14).	 	This	modality	can	be	used	 to	delineate	 the	geometry,	 tissue	architecture	

and	 function	of	 the	heart.	 	Unlike	USS,	 it	 is	 costly,	 time-	 and	 staff-intensive	 and	not	

portable	but	it	has	the	advantage	of	high	spatial	resolution.		
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cMR,	uses	the	principle	of	nuclear	magnetic	resonance,	the	phenomenon	atomic	nuclei	

resonating	 in	 response	 to	 radiofrequency	 waves	 (RF)	 and	 can	 discriminate	 between	

different	 tissue	 types	by	 virtue	of	 their	different	 concentrations	of	H	atoms.	 	A	 cMR	

sequence	 refers	 to	 a	 particular	 combination	 of	 radiofrequency	 pulses	 and	 gradients	

that	 produce	 images	with	 a	 specific	 appearance.	 	 There	 are	 2	 fundamental	 types	 of	

cMR	 sequence,	 namely	 gradient	 (GE)	 and	 spin	 (SE)	 echo	 sequences.	 	 With	 GE	

sequences	 blood	 and	 adipose	 tissue	 appear	 white,	 resulting	 in	 what	 is	 known	

colloquially	 as	 ‘white-blood’	 imaging.	 	 With	 SE,	 blood	 appears	 black	 whilst	 adipose	

tissue	is	white.		This	is	referred	to	as	‘black-blood’	imaging.		Fast	imaging	with	steady	

state	 free	 precession	 (SSFP)	 is	 a	 variant	 of	 GE,	 and	 is	 commonly	 used	 to	 determine	

areas	 of	 focal	myocardial	 dysfunction.	 	 SSFP	 is	 referred	 to	 as	 TrueFISP	 (fast	 imaging	

with	steady	state	precession),	FIESTA	(fast	imaging	employing	steady-state	acquisition)	

and	b-FFE	(balanced	fast	field	echo),	by	vendors	Siemens,	GE	and	Philips,	respectively.		

	

Due	 to	 the	 disparity	 between	 the	 cardiac	 cycle	 and	 the	 time	 taken	 to	 acquire	 cMR	

images,	ECG	gating	and	breath-hold	is	used	to	minimise	respiratory	and	cardiac	motion	

artefacts.		It	can	take	many	cardiac	cycles	to	acquire	a	single	cMR	image	of	the	whole	

heart;	 images	are	usually	acquired	during	diastole,	 triggered	by	 the	QRS	complex	on	

the	ECG.	

	

Factors	such	as	arrhythmias,	dysfunctional	breathing	and	adiposity	can	lead	to	 image	

degradation.	 	 Methods	 employed	 to	 increase	 the	 signal	 to	 noise	 ratio	 (SNR)	 and	

improve	contrast	between	tissues	include	premedication	with	agents	to	slow	the	heart	

rate	(prolonging	diastole)	and	the	use	of	intravenous	gadolinium	contrast	agents.		The	

latter	is	also	used	for	assessment	of	ischaemia	and	fibrosis.		More	recent	scanners	use	

a	 more	 powerful	 3	 Tesla	 (3T)	 magnetic	 coil	 (rather	 than	 1.5T)	 and	 so	 benefit	 from	

increased	 SNR	 and	 spatial	 and	 temporal	 resolution	 but,	 as	 consequence,	 specific	

absorption	rate	and	acoustic	noise	are	 increased,	degrading	 the	quality	of	 the	 image	

and	 leading	 to	 potential	 errors	 in	 volume	 assessment	 or	 tissue	 delineation.	 	 Cardiac	

structure	 and	 function	 can	be	 assessed	using	 cMR	based	on	 comparison	of	 absolute	

volumes	to	the	normal	population	or	calculation	of	changes	in	volume	with	the	cardiac	

cycle	e.g.	EF%.		Intraventricular	dyssynchrony	can	be	assessed	using	techniques	such	as	
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myocardial	tagging,	allowing	the	quantification	of	regional	wall	motion,	by	strain	and	

strain	rate.	
Figure	14	:	cMR	with	LV	in	diastole	(left)	and	systole	(right)	in	the	coronal	plane	

	

Figure	14	demonstrates	2	still	 images	taken	from	the	cine	of	a	healthy	patient	during	

cMR	with	ventriculat	diastole	on	the	left	and	ventricular	systole	on	the	right.	

1.9 Diagnosis	

The	working	diagnosis	of	heart	failure	is	generated	from	a	combination	of	the	patient’s	

history,	symptoms	and	signs	and	is	confirmed	or	refuted	by	investigations	performed.	

1.9.1 Symptoms	and	Signs	

The	presence	of	incidental	LVSD	is	not	sufficient	to	make	a	diagnosis	of	HF-LVSD	since,	

as	 mentioned	 earlier;	 HF-LVSD	 is	 defined	 as	 LVSD	 in	 the	 presence	 of	 the	

symptoms/signs	of	HF	e.g.	salt	and	water	retention.		This	is	relates	to	the	fact	that,	as	

McDonagh	et	al	(1997)	12	showed,	nearly	50%	of	patients	with	LVSD	are	asymptomatic	

and,	even	when	severe,	LVSD	may	cause	no	functional	limitations	108.		However,	these	

groups	 of	 patients	 remain	 at	 high	 risk	 of	 subsequently	 developing	 symptomatic	 HF-

LVSD.	

	

A	patient,	 typically	with	a	past	medical	history	 (PMH)	 including	HF-LVSD	 risk	 factors,	

will	present	de	novo	with	 symptoms	of	ankle	 swelling,	 cough,	dyspnoea	and	 fatigue.		

Of	 these,	 orthopnoea,	 dyspnoea	 and	 paroxysmal	 nocturnal	 dyspnoea	 (PND)	 are	

moderately	sensitive	and	specific	symptoms	of	HF-LVSD	109.		On	examination,	a	patient	

may	have	signs	of	pulmonary	congestion,	fluid	overload	or	reduced	organ	perfusion.		A	

raised	 jugular	 venous	 pulse	 (JVP),	 the	 presence	 of	 a	 third	 heart	 sound	 (S3)	 and	

tachycardia	are	specific	to	HF-LVSD	but	lack	sensitivity	(table	3).		
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Table	3:	Specificity	and	sensitivity	of	signs	and	symptoms	of	HF	

Clinical	Feature	 Sensitivity	(%)	 Specificity	(%)	

Sign	

Tachycardia	 7	 99	
Raised	JVP	 10	 97	

Third	heart	sound	 31	 95	
Peripheral	oedema	 10	 93	

Pulmonary	crepitations	 13	 91	

Symptom		

Orthopnoea	 21	 81	
Pedal	oedema	 23	 80	

Paroxysmal	nocturnal	dyspnoea	 33	 76	
Dyspnoea	 66	 52	

	

The	American	Heart	Association/American	College	of	Cardiology	(AHA/ACC)	guidelines	
110	state	that	there	is	a	poor	relationship	between	cardiac	performance	and	symptoms	

and	 discuss	 other	 cardiac	 factors	 influencing	 symptomatology,	 including	 “ventricular	

distensibility,	 valvular	 regurgitation,	 pericardial	 restraint,	 conduction	 disturbance,	

cardiac	rhythm	and	right	ventricular	function.”	together	with	non-cardiac	factors	such	

as	 abnormal	 “peripheral	 vascular	 function,	 skeletal	 muscle	 physiology,	 pulmonary	

dynamics,	neurohormonal	and	reflex	autonomic	activity,	and	renal	sodium	handling.		

1.9.2 Investigations	 	
According	 to	 the	National	 Institute	 for	Health	 and	Care	 excellence	 (NICE)	 guidelines,	

when	diagnosing	HF-LVSD,	one	should	assess	“severity,	aetiology,	precipitating	factors,	

type	of	cardiac	dysfunction	and	correctable	causes”	which	will	guide	management	111.		

Blood	 tests	 are	 necessary	 (table	 4),	 as	 abnormalities	 in	 these	 can	 lead	 to	 symptoms	

suggestive	of	HF-LVSD	(as	anaemia	causing	breathlessness	for	example)	or	exacerbate	

pre-existing	HF-LVSD	(as	in	cardio-renal	anaemia,	for	example).	

Table	4:	Blood	tests	used	in	the	investigation	of	HF		

Blood	test	 Reason	

Full	Blood	Count	 Anaemia	or	Infection	

Renal	Function	 Renal	failure	

Liver	Function	 Liver	failure	

Thyroid	Function	 Thyroid	disease	

Lipids	 Hypercholesterolaemia	

Glucose	 Diabetes	mellitus	
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The	 accuracy	 of	 diagnosis	 of	 HF-LVSD	 is	 often	 poor,	 due	 to	 a	 combination	 of	

misdiagnosis	 112	and	a	 lack	of	 confidence	amongst	clinicians	 113.	 	As	a	 result,	 in	areas	

such	 as	 primary	 care,	 which	 lack	 easy	 and	 rapid	 access	 to	 investigations	 such	 as	

radiography	and	echocardiography,	many	patients	routinely	have	blood	samples	taken	

and	NPs	measured	as	part	of	their	diagnostic	work	up	(table	5)	to	support	the	working	

diagnosis	of	HF-LVSD.		Indeed,	a	health	technology	appraisal	concluded	that	BNP	was	a	

more	 sensitive	 and	 specific	 diagnostic	 test	 for	 HF-LVSD	 than	 any	 other	 currently	

available	but	this	assumes	that	no	other	cause	of	raised	BNP	is	found	114.	

 
Table	5:	Levels	of	natriuretic	peptides	required	for	the	diagnosis	of	HF	

Natriuretic	Peptide	

BNP	 NT-proBNP	
Diagnosis	

Level	(pg/ml)	 Level	(pg/ml)	

<	100	pg/ml	 <	400	pg/ml	 Unlikely	

100-400	pg/ml	 400-2000	pg/ml	 Uncertain	

>	400	pg/ml	 >	2000	pg/ml	 Likely	

	
Figure	15:	CXR	demonstrating	acute	pulmonary	oedema	

Figure	 15	 is	 a	 plain	 film	

anterior-posterior	 chest	 x-

ray	 of	 a	 patient	 with	 acute	

left	 ventricular	 failure	

demonstrating	 bilateral	

frank	alveolar	oedema.	

	

A	 chest	 x-ray	 (CXR)	 may	

indicate	 signs	 of	 HF-LVSD	

(see	 figure	 15)	 such	 as	

alveolar	 oedema,	 pulmonary	 venous	 hypertension,	 cardiomegaly	 or	 an	 alternative	

diagnosis,	 such	 as	 pulmonary	 fibrosis,	 for	 example.	 	 ECG	 findings	 in	 HF-LVSD	 are	

typically	non-specific	but	include	LVH,	BBB,	pathological	Q	waves,	AF	and	ST	or	T	wave	

changes.	 	Whilst	 this	only	demonstrates	an	abnormality	of	cardiac	electrophysiology,	
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and	 not	 the	 degree	 of	 any	 abnormality	 nor	 any	 impact	 on	myocardial	mechanics,	 a	

normal	ECG	makes	the	diagnosis	of	LVSD	unlikely	(<	10%)	8.		

	

All	 patients	 with	 suspected	 HF-LVSD	 should	 have	 an	 early	 TTE	 to	 interrogate	 the	

structure	and	 function	of	 the	heart.	This	allows	 the	clinician	 to	assess	 the	volume	of	

the	heart	chambers	and	identify	any	underlying	pathology	such	as	valvular	defects	or	

abnormalities	of	contractility	of	the	myocardium.		LV	systolic	function	can	be	assessed	

either	by	subjective	gross	visual	appearance	e.g.	for	mild,	moderate	or	severe	LVSD	or	

by	 objective	 volume	 assessment	 to	 calculate	 the	 stroke	 volume	 (SV)	 or	 ejection	

fraction	(EF).	

	

Equation	(1)	stroke	volume:		

	

SV	=	LV	end	diastolic	volume	(LVEDV)	-	LV	end	systolic	volume	(LVESV)	

	

Equation	(2)	ejection	fraction:	

	

EF	=	SV/LVEDV		

	

This	relationship	is	widely	used	to	describe	the	systolic	function	of	the	LV	as	it	defines	

the	fraction	of	blood	pumped	out	of	the	LV	with	each	cardiac	contraction.		If	a	patient	

has	symptoms	and	signs	of	HF	but	the	EF	is	normal	(>	55%)	then	they	are	said	to	suffer	

from	HFPEF.		In	contrast,	if	the	EF	is	low	(<	55%)	then	this	is	referred	to	as	HF-LVSD	or	

HF	with	a	reduced	EF	(HFREF).		To	stratify	LVSD	further,	mild	LVSD	corresponds	to	an	

EF	of	45-55%,	moderate	35-45%	and	severe	<	35%.	 	There	are	other	measurements,	

which	may	be	abnormal	in	heart	failure,	including	left	atrial	size,	aortic	outflow	velocity	

time	 integral	and	 inferior	vena	cava	 flow.	 	Diastolic	dysfunction	can	be	diagnosed	by	

analysis	of	diastolic	filling	patterns	at	the	mitral	valve,	according	to	the	E/A	ratio,	which	

is	a	Doppler	measure	of	passive	 (E)	and	active	 (A)	LV	 filling	 through	the	mitral	valve.		

Other	 imaging	modalities	maybe	 indicated	 depending	 on	 the	 exact	 clinical	 scenario;	

including	 trans-oesophageal	 echo	 (TOE)	 for	 valvular	 disease,	 cardiac	 magnetic	

resonance	 (cMR)	 imaging	 for	myocarditis	 and	 cardiac	 computed	 tomography	 (CT)	 or	

invasive	angiography	(IA)	for	co-existing	IHD.	
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1.10 Classification	

1.10.1 Symptoms	

As	 mentioned	 above,	 HF	 is	 defined	 as	 abnormal	 ventricular	 systolic	 or	 diastolic	

function,	 in	 the	 presence	 of	 symptoms	 and	 signs	 due	 to	 salt	 and	 water	 retention.		

Symptoms	are	classified	clinically	using	the	subjective,	symptom-based	New	York	Heart	

Association	 (NYHA)	 functional	 classification	 (table	 6)	 as	 opposed	 to	 the	 objective,	

qualitatively-based	 and	 distinct,	 American	 Heart	 Association/American	 College	 of	

Cardiology	 (AHA/ACC)	stages	of	HF	 (table	7)	categorises	HF	 in	 terms	of	development	

and	progression.		

Table	6:	NYHA	functional	classification	of	symptom	severity	in	heart	failure	

Class	 Symptoms	 Limitation	 Example	

I	 None	 None	 Normal	activity	

II	 Mild	 Slight	 Breathless	on	incline	

III	 Moderate	 Moderate	 Comfortable	only	at	rest	

IV	 Severe	 Severe	 Breathless	even	at	rest	

	

The	 AHA	 stages	 are	 not	 intended	 to	 replace	 the	 NYHA	 classification	 but,	 rather,	

emphasise	risk	prevention	and	highlight	progression	and	treatment	of	HF	from	‘at	risk’	

to	end-stage,	particularly	as	the	NYHA	classification	only	refers	to	patients	with	overt	

and	 symptomatic	 HF.	 	 The	 newer	 staging	 system	 is	 not	 widely	 understood	 and	

furthermore	lacks	simple	quantitative	measures,	such	as	EF	or	BNP	for	example,	which	

help	to	categorise	and	compare	patients	115.	The	NYHA	functional	classification,	whilst	

poorly	 reproducible	 and	 open	 to	 misinterpretation	 116,	 is	 an	 otherwise	 useful	

stratifying	 tool	 and	 correlates	 well	 with	 mortality	 117.	 Finally,	 there	 are	 also	 more	

specific	classification	systems,	including	the	Killip	58	and	Forrester	118	classification	for	

assessing	HF	severity	post-myocardial	infarction.	

	

	

	

	



								|	Page	66	

Table	7:	AHA/ACC	classification	of	HF	

	

AHA	 =	 American	 heart	 association,	 ACC	 =	 American	 college	 of	 cardiology,	 DM	 =	

diabetes	 mellitus,	 HTN	 =	 hypertension,	 HF	 =	 heart	 failure,	 LVH	 =	 left	 ventricular	

hypertrophy,	 LVSD	 =	 left	 ventricular	 systolic	 dysfunction,	 SHD	 =	 structural	 heart	

disease.	

1.10.2 LV	function	

 
In	nephrology,	the	equivalent	of	HF	is	chronic	renal	failure	(CRF)	with	the	staging	used	

is	both	quantitative;	from	stage	1	(normal	kidney	function)	to	stage	5	(end	stage	renal	

failure),	and	quantitative,	by	means	of	the	estimated	glomerular	filtration	rate	(eGFR).		

The	 availability	 of	 a	 similar	 tool	 for	 HF	 would	 benefit	 clinicians	 and	 patients	 alike.		

Unfortunately,	 the	 situation	 is	 more	 complex	 for	 HF	 since,	 unlike	 the	 estimate	

glomerular	 filtration	 rate	 for	 the	 kidney,	 there	 are	 many	 markers	 of	 cardiac	 (dys-)	

function.		One	of	the	most	commonly-used	markers	of	LVSD	employed	in	diagnosis	of	

HF-LVSD	is	LVEF	but	this	has	several	specific	shortcomings,	including;		

	

• It	takes	no	account	of	LV	twist,	longitudinal	shortening	and	diastolic	function	119.		

• LVEF	may	be	preserved	in	HF	or	reduced	due	to	other	diseases	120.	

• It	can	be	measured	by	several	methodologies,	which	are	not	interchangeable	121.	

• The	relationship	between	symptoms	and	LVEF	is	poor	122.	

• In	the	measurement	of	LVEF,	inter-observer	reliability	is	poor	8.	

	

Thus,	 whilst	 a	 reduction	 of	 LVEF	 is	 associated	 with	 a	 poorer	 prognosis,	 LVEF	 has	

significant	limitations	in	the	context	of	the	search	for	a	universal	diagnostic	tool	123.			

	

HF	Stage	 Description	 Example	 NYHA	class	

A	 High	risk	without	SHD	or	signs/symptoms	of	HF	 HTN,	DM	 I	

B	 SHD	without	signs/symptoms	of	HF	 LVH,	LVSD	
II/III	

C	 SHD	with	current/previous	signs/symptoms	of	HF	 Clinical	HF	

D	 SHD	and	refractory	signs/symptoms	of	HF	 Heart	transplant	 IV	
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The	 value	 of	 biochemical	markers	 has	 yet	 to	 be	 determined	 fully	 but	 recent	 studies	

have	shown	that	it	is	possible	to	differentiate	AHA	HF	stages	using	clinical	and	neuro-

hormonal	profiling	 and	 these	 stages	 correlate	with	prognosis	 so	perhaps	 it	 is	 neuro-

hormonal	 profiling	 rather	 than	 2DTTE	 that	 should	 be	 used	 to	 diagnose	 and	 stratify	

patients	 with	 HF	 124.	 It	 has	 also	 been	 suggested	 that	 the	 concentration	 of	 serum	

natriuretic	peptide	correlates	with	the	degree	of	LVSD	and	so	the	severity	of	HF-LVSD.		

1.11 Treatment	

Suitable	 strategies	 for	 the	 treatment	 of	 HF-LVSD	 can	 be	 deduced	 from	 an	

understanding	of	the	pathophysiology.		Including;	

• Removal	of	 excess	 fluid;	 salt	 and	water	 retention,	which	manifests	 as	pulmonary	

and	peripheral	oedema,	can	be	treated	with	diuretics.			

	

• Augmentation	of	 the	pump	 function;	β-blockers	 slow	 the	heart	 rate,	 lengthening	

the	 duration	 of	 diastole,	 improving	 myocardial	 filling	 and	 reducing	 myocardial	

oxygen	demand.	

	

• Reducing	afterload;	ACE	 inhibitors	 reduce	 the	afterload	on	 the	heart	by	 reducing	

total	peripheral	resistance	and	so	reduce	myocardial	work.	

	

• Treating	any	underlying	causes;	it	is	important	to	ascertain	the	cause	of	the	LVSD,	

as	many	are	treatable	and	some	are	potentially	reversible.		

	

A	common	treatment	strategy	therefore	includes	the	use	of	loop	diuretics,	β-blockers	

and	ACE	inhibitors;	to	reduce	fluid	overload,	improve	heart	contractility	and	to	reduce	

adverse	 remodelling	 and	 afterload	 respectively	 2	 125	 126.	 Diuretics	 aside,	 all	 these	

treatments	 have	 been	 proven	 to	 reduce	 mortality	 and	 morbidity	 in	 HF-LVSD	

populations.	 	 Other	 treatments	 employed	 in	 refractory	 cases	 include;	 aldosterone	

antagonists,	 hydralazine,	 nitrates,	 thiazide	 diuretics	 and	 digoxin.	 	 Patients	may	 have	

frequent	 exacerbations	 requiring	 up-titration	 of	 therapy.	 	 Despite	 monitoring	 and	

adjustment	 of	 drug	 therapy,	 some	 patients	 require	 admission	 into	 hospital,	 for	

specialist	 assessment	 and	 further	 investigations	 and	 in	 extreme	 cases	 intravenous	
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therapy;	including	diuretics	and	inotropes,	intra-aortic	balloon	pumps	(IABP)	and	non-

invasive	ventilation	(NIV).	

	
Advanced	 therapies	 for	 patients	 whose	 symptoms	 remain	 refractory	 to	 oral	

medications	(NYHA	III-IV)	 include	 intravenous	therapy,	devices,	surgery	or	transplant.		

Surgical	 therapies	can	 include	removal	of	 infarcted,	and	thus	dead,	myocardium	(left	

ventricular	 restoration),	 mitral	 valve	 repair	 for	 mitral	 regurgitation,	 using	 left	

ventricular	assist	devices	(LVADs)	as	a	bridge	to	transplant	or	as	a	destination	therapy	

and,	most	radically	and	rarely,	 the	use	of	a	 total	artificial	heart	 (TAH).	 	The	ultimate,	

curative,	 therapy	 for	 HF-LVSD	 is	 a	 heart	 transplant	 but	 demand	 for	 donor	 hearts	

greatly	 outweighs	 the	 supply	 and,	 in	 cases	 where	 a	 donor	 heart	 is	 available,	 there	

remains	significant	morbidity	and	mortality	following	such	a	procedure.		

	

The	focus	of	this	thesis	is	examining	the	use	of	CRT	to	treat	patients	with	moderate	to	

severe	HF-LVSD.	CRT,	also	known	as	biventricular	pacing	or	multi-site	 left	ventricular	

pacing	is	a	relatively	new	therapy	for	the	treatment	of	HF-LVSD.	Whilst	both	the	acute	

and	 chronic	 effects	 of	 CRT	 on	 the	 cardiovascular	 system	 are	 well	 documented,	 its	

effects	 on	 other	 organ	 systems	 in	 the	 body	 in	 HF-LVSD	 are	 less	 well	 known	 and	 it	

remains	 unclear	 why	 a	 third	 of	 patients	 don’t	 respond	 to	 CRT	 despite	 meeting	

evidence	 based	 pre-implant	 criteria.	 This	 body	 of	 work	 will	 seek	 to	 address	 these	

points	using	novel	biomarkers	and	patient	specific	models,	and,	in	doing	so,	attempt	to	

further	refine	the	definition	of	response.	

	

1.12 Conclusions	
 
This	chapter	has	discussed	how	HF	is	common,	costly	and	deadly	and	the	many	effects	

it	 can	 have	 on	 other	 organs.	 In	 the	 next	 chapter	 we	 shall	 discuss,	 how	 cardiac	

resynchronisation,	 a	 therapy	 specifically	 developed	 for	 LVSD	 can	 improve	morbidity	

and	mortality	in	HF.	
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Chapter	2 Cardiac	Resynchronisation	Therapy		
 
This	 chapter	 discusses	 how	 cardiac	 resynchronisation	 therapy	 (CRT)	 was	 developed,	

how	 it	 is	 implanted,	 which	 patients	 benefit,	 the	 evidence	 and	 the	 difficulty	 in	

measuring	and	defining	response.	

2.1 Introduction	

Dyssynchrony	has	 been	 identified	 as	 a	 therapeutic	 target	 for	 patients	with	HF-LVSD.	

CRT	 can	be	used	 to	electrically	 resynchronise	 the	 cardiac	 chambers,	with	 the	 aim	of	

restoring	mechanical	synchrony.		In	essence,	CRT	rewires	the	right	atrium	(RA),	RV	and	

LV	 and	 restores	 electrical	 synchronicity,	 and	 thus	mechanical	 synchronicity,	 of	 atrial	

and	ventricular	contractions.		

	

The	goals	of	CRT	are	to	improve	patient’s	symptoms,	to	reduce	hospitalisation,	reduce	

death	and	finally	reduce	the	economic	burden	of	HF-LVSD	on	local	healthcare	systems.		

2.2 Brief	history	

In	the	late	1990s	researchers	began	to	investigate	ways	in	which	cardiac	dyssynchrony,	

could	be	corrected	using	pacemakers	to	pace	both	ventricles,	i.e.	through	biventricular	

(BiV)	 pacing.	 	 It	 was	 becoming	 apparent	 that	 LV	 function	 deteriorated	 in	 patients	

undergoing	long-term	RV	apical	pacing,	despite	normal	function	prior	to	implantation	
127.	 	Early	 trials	concluded	that	“biventricular	pre-excitation	could	restore	mechanical	

synchrony	 and	 improve	 acute	 left	 ventricular	 mechanics,	 energetic	 efficiency	 and	

regional	metabolism”	128.		

	

Subsequent	 clinical	 trials	 such	 as	 VIGOR129	 and	 PATH-HF130	 demonstrated	 that	 BiV	

pacing	led	to	reverse	remodelling.		Trials	such	as	IN-SYNC131,	MUSTIC132,	CONTAK	CD133	

and	 MIRACLE	 ICD49	 developed	 this	 concept	 further,	 establishing	 the	 safety	 of	 such	

devices	in	large	populations	and	the	pivotal	work	of	the	CARE-HF44	and	COMPANION134	

trials	 established	 that	 such	 treatments	 led	 to	 reductions	 in	morbidity	 and	mortality.	

Most	 recently,	 the	 large	 RAFT135	 trial,	 found	 significant	 benefit,	 in	 terms	 of	 both	

morbidity	and	mortality,	 in	mild-moderate	symptomatic	HF-LVSD.	 	For	a	 summary	of	

the	names,	acronyms	and	data	from	the	important	CRT	trials,	see	tables	8	and	9.			
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Table	8:	CRT	clinical	trial	names	and	their	acronyms.	

Table	9:	A	summary	of	the	important	CRT	clinical	trials	

 

2.3 Indications	

The	 recent	 NICE	 guidance	 (2014)136	 provides	 an	 essential	 update	 to	 the	 2007	

technology	appraisal	 137.	Previous	practice	 in	 the	UK	was	 to	 recommend	patients	 for	

CRT	 if	 they	 had	 symptomatic	 HF-LVSD	with	 an	 ejection	 fraction	 <	 35%	 and	were	 on	

optimal	medical	therapy	(OMT).	 	OMT	means	patients	are	taking	both	ACE-I	and	a	β-

blocker,	 at	 doses	 as	 high	 as	 can	 be	 tolerated,	 unless	 the	 drugs	 are	 specifically	

contraindicated.	 	 Symptoms	 should	 have	 been	 severe	 (NYHA	 III-IV)	 with	 patients	
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having	a	QRSd	>	150ms	or	a	QRSd	of	120-150ms	together	with	a	positive	dyssynchrony	

study.		An	exact	definition	of	a	‘positive	dyssynchrony’	study	was	not	given.	

	

In	 line	 with	 recent	 guidance	 from	 other	 regions	 of	 the	 world122	 138,	 current	 UK	

technology	appraisal	 is	explicit	depending	on	the	NYHA	class	and	QRS	duration	(table	

10	 and	 11).	 	 The	 level	 of	 severity	 of	 HF-LVSD	 (EF	 <	 35%)	 and	 OMT	 remain	 key	

requirements	but	now	CRT	is	suggested	in	patients	with	less	severe	heart	failure	(NYHA	

class	II).		Patients	with	NYHA	IV	should	only	be	considered	if	they	are	ambulatory	e.g.	

not	 bed-bound	 and	 the	 threshold	 for	 consideration	 based	 on	QRSd	 is	 now	 >	 120ms	

rather	than	>	150ms,	reflecting	recent	evidence.	A	further	distinction	is	the	absence	of	

a	requirement	 for	a	positive	echocardiography	dyssynchrony	study	 in	patients	with	a	

QRSd	<	150ms,	due	to	the	lack	of	evidence	of	such	studies	to	predict	response.		

Table	10:	NICE	2014	guidelines	for	implantation	of	CRT	

		 NYHA	class		

QRSd		(ms)	 I		 II		 III		 IV		

<	120		 ICD	if	there	is	a	high	risk	of	sudden	
cardiac	death		

ICD	and	CRT	not	
clinically	indicated		

120	–	149	
without	LBBB		 ICD		 ICD		 ICD		 CRT-P		

120	–	149	with	
LBBB		 ICD		 CRT-D		 CRT-P	or	CRT-D		 CRT-P		

≥	150		 CRT-D		 CRT-D		 CRT-P	or	CRT-D		 CRT-P		

	
Table	11:	International	guidelines	for	the	selection	of	patients	for	CRT	

Region	 UK	 USA	 Europe	

Clinical	criteria	

QRSd	 ms	 	>	120	*	 >	120	 >	120	

NYHA	 /IV	 II-IV~	 II-IV~	 II-IV~	

OMT	 Y/N	 Y	 Y	 Y	

LVEF	 %	 <	35	 <	35	 <	35	

Evidence	
Class	 I	-	III	 I	 I	 I	

Level	 A	-	C	 A	 A	 A	

Obtained	 Body	 NICE	 AHA	 ESC	
Date	 2014	 2012	 2012	
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LVEF	=	left	ventricular	ejection	fraction,	OMT	=	optimal	medical	therapy,		

NYHA	=	New	York	Heart	Association,	QRSd	=	QRS	duration.		

*	With	LBBB.	
~	Class	IV	patients	must	be	ambulatory.	

2.4 Device	
Figure	16:	CXR	with	CRT-D	in	situ	

A	 plain	 film	 antero-posterior	 chest	 x-ray	

demonstrating	 the	 presence	 of	 the	 CRT-D	

box	under	 the	 left	 clavicle,	 the	 atrial	 lead	

in	 the	 right	 atrial	 appendage,	 the	 right	

ventricular	 lead	(with	shocking	coil)	 in	the	

right	 ventricular	 apex	 and	 the	 left	

ventricular	 lead	 in	 the	 postero-lateral	

branch	vein	of	the	coronary	sinus.	

	

	

A	CRT	device	(see	figure	16)	is	essentially	a	pacemaker,	which	consists	of	a	metal	box	

and	leads.	The	box,	houses	a	computer,	circuitry	and	a	battery	sealed	within	titanium	

metal	case.	The	box	is	approximately	the	size	of	a	pocket	watch	and	weighs	about	75g.	

There	are	between	2	to	3	leads,	which	are	screwed	into	the	box	and	then	into	specific	

chambers	in	the	heart,	in	order	to	pace	them	appropriately.	The	device	may	also	have	

an	 implantable	 cardioverter	 defibrillator	 (ICD)	 function,	 termed	 CRT-D,	 which	 can	

either	 provide	 anti-tachycardia	 pacing	 or	 defibrillation	 function,	 if	 a	 malignant	

ventricular	 rhythm,	 such	 as	 ventricular	 tachycardia	 or	 fibrillation	 develops.	 	 If	 the	

device	does	not	have	a	defibrillator	function,	it	is	termed	CRT-P	(pacing).		

	

2.5 Procedure	

The	procedure	 takes	between	1.5-3	hours	 and	 is	 carried	out	 in	 an	electrophysiology	

laboratory.		The	patient	is	sedated	and	local	anaesthetic	is	administered.		Typically,	an	

incision	is	made	in	the	left	pectoral	region	and	a	subcutaneous	pocket	made	which	will	

serve	to	retain	the	pacemaker	generator,	 including	the	battery	and	circuitry.	 	Venous	
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access	is	gained	to	the	subclavian,	cephalic	or	axillary	veins,	using	radiographic	and/or	

venographic	guidance	(with	radio-opaque	contrast).		The	vessels	and	heart	are	imaged	

using	 fluoroscopy	 as	 the	 leads	 (right	 atrial	 and	 right	 ventricular)	 are	 placed	

endovascularly	 to	the	endocardium	of	 the	RA	(usually	within	the	appendage),	and	to	

the	 endocardium	 of	 the	 RV,	 typically	 at	 the	 apex	 or	 septum.	 The	 leads	 used	 are	

typically	active	fixation	leads,	which	have	a	small	retractable	screw	at	the	tip,	which	is	

deployed	 when	 the	 lead	 is	 in	 position	 ensuring	 a	 secure	 placement.	 	 The	 left	

ventricular	 lead,	 also	 inserted	 via	 the	 endovascular	 route,	 is	 introduced	 via	 the	

coronary	 sinus	 ostium	 and	 advanced	 retrogradely	 to	 one	 of	 the	 tributary	 coronary	

veins	on	the	epicardial	surface	of	the	LV	it	 is	held	in	place	passively	and	as	a	result	 is	

the	 lead	most	at	risk	of	displacement.	 	Following	 implantation	of	the	CRT	device,	the	

patient	 is	usually	kept	 in	hospital	 for	monitoring	overnight,	with	a	CXR	performed	to	

ensure	 that	 the	3	 leads	are	positioned	correctly	and	 that	 there	 is	no	pneumothorax.		

Finally,	 a	 12	 lead	 ECG	 is	 performed	 before	 discharge	 to	 ensure	 appropriate	

biventricular	capture	e.g.	QRSd	and	morphology,	as	baseline	for	future	comparison	e.g.	

to	detect	loss	of	capture	or	lead	displacement	and	especially	if	there	are	changes	made	

to	the	programmed	AV	or	VV	delays.	

2.6 Cost	

The	2014	NICE	Health	Technology	Appraisal136	updated	 the	 systematic	 review	of	 the	

cost	 effectiveness	 of	 CRT	 therapy	 based	 on	 data	 from	 the	 CARE-HF,	 COMPANION,	

CONTAK,	MIRACLE	and	MUSTIC	trials.		According	to	data	obtained	in	2011	from	across	

the	NHS,	the	average	cost	of	a	CRT-P	device	is	£3411	and	a	CRT-D	device	costs	around	

£12293.		With	implantation	costs	this	rises	to	£8281	and	£17,849	respectively.		Median	

time	to	device	failure	was	established	as	10.4	years	for	CRT-P	and	5.8	years	for	CRT-D.	

	

The	 systematic	 review	 looked	 at	 the	 incremental	 cost	 effectiveness	 ratio	 or	 ICER	

(defined	as	Cost	CRT	–	Cost	OMT	/	No	of	QALYs	CRT	-	No	of	QALYs	OMT)	in	conjunction	

with	the	quality-adjusted	life	years.		Quality	adjusted	life	years	(QALYs)	are	calculated	

as	 the	product	of	both	remaining	expected	 life	quantity	and	quality	and	so	a	year	of	

perfect	 life	 is	 1,	 less	 than	 perfect	 <	 1	 and	 death	 0.	 	 In	 the	 UK,	 NICE	 approves	

technologies,	 provided	 they	 do	 not	 exceed	 an	 ICER	 per	 QALY	 of	 >	 £30,000	 e.g.	

compared	 to	 the	 current	best	 treatments,	 an	 additional	 year	of	 perfect	 life	will	 cost	
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£30,000	using	this	therapy.	The	review	judged	that	CRT-P	was	associated	with	an	ICER	

per	QALY	of	£10,494	and	a	QALY	gain	of	0.70	 (equivalent	 to	256	days	of	 full	health)	

when	 compared	 with	 OMT.	 	 CRT-D	 on	 the	 other	 hand	 was	 associated	 with	 an	

incremental	 cost	 of	 £25,200	 and	 a	QALY	 gain	of	 0.99	 (equivalent	 to	 361	days	 of	 full	

health)	compared	with	OMT.		

	

It	 is	 worth	 revisiting	 the	 technology	 appraisal	 from	 2007137,	 as	 this	 concluded	 that	

“implanting	a	CRT	device	in	13	people	would	result	in	the	saving	of	one	additional	life	

over	 a	 3-year	 period,	 compared	 with	 optimal	 medical	 therapy”	 and	 that	 CRT-P	

becomes	cost	effective	after	3.5	years	of	therapy	and	CRT-D	after	7.5	years	of	therapy.	

Interestingly,	it	also	concluded	that	CRT	would	be	rendered	cost-ineffective	if	the	risk	

of	death	 from	worsening	HF-LVSD	 fell	below	15%	per	annum	or	 if	 the	CRT-D	battery	

failed	 in	 less	 than	 3.5	 years.	 	 Thus	 cost-effectiveness	 is	 influenced	 not	 only	 by	 the	

suitability	of	the	patient	but	also	by	the	longevity	of	the	device.	

2.7 Challenges	

According	 to	 the	 most	 recent	 European	 CRT	 survey	 in	 2009139,	 the	 UK	 is	 the	 10th	

highest	 user	 of	 CRT	 devices,	 with	 just	 over	 60	 implanted	 per	 million	 head	 of	

population,	 however,	 this	 falls	 short	 of	 the	 Heart	 Rhythm	 UK	 (HRUK)	 target	 of	 140	

implanted	per	million	population140,	achieved	in	countries	such	as	Denmark,	Germany	

and	Italy.		This	suggests	that,	in	the	UK	and	in	other	countries,	there	might	be	patients	

who	are	suitable	 for	a	device	such	as	CRT,	but	are	not	 receiving	 them.	This	could	be	

due	 to	 many	 reasons	 e.g.	 poor	 awareness	 of	 guidelines,	 loss	 to	 follow-up,	 patient	

wishes,	contraindications,	failed	 implantation,	unfavourable	anatomy	but	overcoming	

the	 barriers	 preventing	 suitable	 patients	 from	 receiving	 a	 device	 is	 clearly	 the	 first	

challenge	to	ensuring	such	a	laudable	target	is	met	e.g.	is	this	a	conscious	decision.		

	

Difficulties	 in	device	 implantation	are	reported	 for	around	5-10%	of	cases,	 thus	even	

eligible	 patients	 who	 are	 referred	 for	 a	 CRT	 device	 may,	 in	 the	 end,	 not	 have	 one	

implanted.		In	such	cases	the	patient	may	be	offered	a	second	attempt	at	implantation	

with	a	more	experienced	clinician,	at	a	higher	volume	centre	or	with	a	surgically	placed	

epicardial	LV	lead.	
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There	are	a	number	of	different	factors,	which	may	lead	to	failure	of	implantation;	

• Difficulty	visualising	and	cannulating	the	coronary	sinus		

• Highly	variable	anatomy	and	is	often	tortuous	coronary	sinus	

• Difficulty	accessing	the	area	with	the	greatest	electrical	or	mechanical	delay		

• Scar	tissue	may	prevent	stimulation	or	capture	of	that	area	of	myocardium	

• Unstable	LV	lead	position	

• Phrenic	nerve	stimulation	causing	patient	discomfort		

Of	 course,	 there	 are	 also	 the	 problems	 associated	with	 any	 implantable	 permanent	

pacemaker,	such	as	difficulties	in	venous	access	for	example.	

2.8 Complications		

Peri-procedural	 complications	 include;	 pocket	 haematoma,	 coronary	 vein	

dissection/perforation,	pneumothorax	or	death.		

	

Phrenic	nerve	stimulation	(PNS)	may	become	apparent	during	the	procedure,	or	more	

frequently,	 following	 discharge.	 Developments	 such	 as	 a	 quadripolar	 LV	 lead,	

comprising	 4,	 rather	 than	 the	 typical	 2,	 independent	 electrodes,	 is	 designed	 to	

stimulate	 the	 LV	 in	 4	 separate	 locations,	 increasing	 the	 number	 of	 potential	 pacing	

vectors	 from	 3	 to	 10,	 allowing	 the	 pacing	 vector	 which	 causes	 PNS	 to	 be	 avoided,	

without	the	need	to	reposition	the	LV	lead.	

2.9 Follow-up	

Post	procedure	all	patients	should	be	seen,	approximately	once	every	 three	months,	

by	 a	 technician	 in	 the	 ECG	 clinic,	 to	 ensure	 that	 their	 device	 (pacemaker	 +/-	

defibrillator)	is	working	correctly.		Any	problems	are	relayed	to	the	implanting	clinician	

and	the	patient	is	brought	back	to	see	the	clinician	three	months	post-implantation	to	

check	the	degree	of	improvement,	if	there	are	any	problems	with	the	device	but	also	

to	 see	 that	 the	 wound	 has	 healed	 well.	 	 In	 the	 interim	 the	 patient	 has	 access	 by	

telephone	 to	 a	 nurse	 specialist	 and	 are	 given	 advice	 on	 what	 to	 do	 in	 certain	

circumstances	e.g.	if	they	should	receive	a	shock.		At	3-month	follow-up,	if	the	patient	

is	 deemed	 to	 have	 responded	 i.e.	 they	 feel	 better,	 they	 are	 discharged	 from	 the	

tertiary	 devices	 clinic,	 back	 to	 either	 the	 referrer	 such	 as	 their	 tertiary	 heart	 failure	

specialist,	 secondary	 care	 cardiologist	 or	 even	 general	 practitioner.	 	 There	 are	

guidelines	set	by	the	HRUK	on	this	device	aftercare	141.	
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Some	manufacturers	 offer	 remote	 follow-up	 on	 certain	 devices,	 providing	 weighing	

scales	and	automated	sphygmomanometers	for	the	patient	to	use	in	their	own	home.		

There	is	daily	collection	of	device	data	via	Wi-Fi.		The	physician	has	access	to	such	data	

but	 this	 is	primarily	controlled	and	monitored	by	 the	manufacturer.	This	provides	an	

early	 warning	 system	 to	 pre-empt	 clinical	 deterioration	 and	 is	 part	 of	 the	 ongoing	

development	of	telemedicine	in	this	area.	

	

Longer-term	complications,	occurring	within	4	years	of	implantation	are	common	with	

50%	 of	 devices	 needing	 revision	 due	 to	 battery	 depletion	 and	 14%	 due	 to	

unanticipated	events	such	as	lead	displacement	or	infection	142.		

	

Implantation	onto	the	epicardial	 surface	of	 the	LV	offers	an	option	 for	patients,	who	

cannot	have	the	LV	 lead	 implanted	trans-venously	via	the	CS.	 	This	procedure	can	be	

carried	out	thorascopically	by	a	cardiothoracic	surgeon.		Finally,	through	its	increasing	

role	 and	 availability,	 cMR	 imaging	 delineation	 of	 the	 coronary	 sinus	 to	 aid	 the	

implantation	of	 the	technically	difficult	LV	 lead	and	the	mapping	of	scarring	 to	guide	

lead	placement,	may	also	lead	to	improved	identification	of	suitable	patients.		

	

Some	patients	may	be	termed	‘nonresponders’	to	CRT	despite	successful	implantation	

of	the	and	even	objective	 improvement	of	cardiac	function	post-implant.	This	affects	

up	to	a	third	of	patients	receiving	CRT	and	whilst	it	remains	unclear	why	such	patients	

don’t	derive	benefit,	 it	may	be	longer	because	it	 is	no	longer	the	heart	that	is	driving	

their	 symptoms	 143.	 Indeed,	 the	only	2	cardiac	measurements,	which	are	 required	 to	

satisfy	 implantation	 criteria,	 are	 QRSd	 and	 LVEF.	 	 In	 the	 original	 CRT	 trials,	 most	

patients	had	 isolated	HF-LVSD	 in	the	apparent	absence	of	explicit	comorbidities	such	

as	peripheral	vascular	disease,	depression,	malignancy	or	other	chronic	organ	failure,	

all	of	which	are	common	in	HF-LVSD	populations,	but	are	not	be	addressed	directly	by	

CRT.	The	complications	listed	above	are	not	insignificant,	particularly	so	if	the	patient	

does	 not	 go	 on	 to	 gain	 any	 benefit	 from	 their	 device.	 	 Clearly,	 a	 robust	 means	 of	

identifying	 all	 patients	who	would	 benefit	 from	 a	 CRT	 device,	 prior	 to	 implantation,	

would	prove	valuable	to	physicians,	researchers,	patients	and	device	manufacturers.	
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2.10 Benefits	

2.10.1 Observational	Trials	

During	the	mid	to	late-1990s,	many	observational	trials	were	conducted.		These	paved	

the	way	for	 the	development	of	clinical	guidelines	and	for	 further	research	 into	CRT,	

assessing	both	acute	haemodynamic	and	chronic	functional	improvements	in	patients	

with	HF-LVSD.		

	

Cazeau	et	al	(1994)144	performed	the	first-in-man	observational	trial	of	a	biventricular	

pacemaker	demonstrating	that	4-chamber	pacing	was	feasible	in	a	single	patient	with	

refractory	end-stage	HF-LVSD,	LBBB	and	interatrial	conduction	delay.		By	6	weeks	post-

implantation,	there	was	improvement	in	clinical	status,	from	NYHA	IV	to	II	and	a	17kg	

weight	loss	due	to	the	resolution	of	peripheral	oedema.		

	

Foster	 et	 al	 (1995)145	 demonstrated	 acute	 haemodynamic	 improvement,	 in	 terms	 of	

increased	 cardiac	 index	 and	 decreased	 systemic	 vascular	 resistance,	 for	 18	 patients	

between	 12	 and	 36	 hours	 after	 coronary	 artery	 bypass	 surgery	 using	 biventricular	

pacing,	 as	opposed	 to	RV	pacing	alone.	 	However,	 it	 is	 important	 to	note	 that	 these	

patients	did	not	have	HF-LVSD.	

	

Cazeau	et	al	(1996)	146	compared	the	virtue	of	different	pacing	configurations	such	as	

RV	apex,	RVOT,	RA	apex-LV	pacing	and	RVOT-LV	pacing	in	a	group	of	8	end-stage	HF-

LVSD	patients	with	 broad	QRSd	 and	NYHA	 class	 III-IV,	who	were	 ineligible,	 for	 heart	

transplantation.	 	 The	 authors	 were	 able	 to	 demonstrate	 a	 significant	 increase	 in	

cardiac	 index	 and	 decrease	 in	 pulmonary	 capillary	 wedge	 pressure	 immediately	

following	 implantation	with	 LV	 and	 biventricular	 pacing	 configurations	 only.	 	 During	

the	 follow-up	 period	 of	 3	 months,	 4	 patients	 died,	 but	 the	 survivors	 showed	 an	

improvement	 in	 functional	 class	 from	 NYHA	 IV	 to	 II,	 demonstrating	 both	 the	 acute	

haemodynamic	and	chronic	functional	benefits	of	the	biventricular	pacemaker.		

	

In	the	following	year,	Blanc	et	al	(1997)147	published	a	study	supporting	the	findings	of	

Cazeau’s	earlier	work,	demonstrating	acute	haemodynamic	benefit	(in	terms	of	systolic	

blood	pressure	or	pulmonary	capillary	wedge	pressure)	for	27	patients	with	end	stage	
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HF-LVSD	and	AV	or	 interV	DS.	 	Again,	this	benefit	was	only	associated	with	LV	or	BiV	

pacing	configurations	and	not	RV	apex	or	RVOT.		

	

Similarly,	 both	 Kass	 et	 al	 (1999)148	 and	 Leclerq	 et	 al	 (1998)149	 demonstrated	 acute	

haemodynamic	 benefits	 (measured	 by	 improvements	 in	 dP/dt	 and	 cardiac	 index	

respectively)	 in	a	total	of	36	end-stage	HF-LVSD	(NYHA	III-IV)	patients	with	significant	

interventricular	dyssynchrony,	when	using	 LV	or	biventricular	but	not	RV	apex	or	RV	

septal	pacing	configurations.	

	

Saxon	et	al	(1998)	150	demonstrated	an	improvement	in	LV	fractional	area	as	measured	

using	intraoperative	transoesophageal	echocardiography	in	patients	with	depressed	LV	

function	post	cardiac	surgery.	Gras	et	al	(1998)151	showed	that	such	a	pacing	modality	

led	to	gains	in	QoL,	NYHA	class	and	6	minute	walk	distance	at	3	month	follow-up	in	the	

preliminary	results	of	the	first	multicentre	observational	study	of	biventricular	pacing	

in	 patients	 with	 end-stage	 HF-LVSD	 (NYHA	 III/IV)	 and	 significant	 interventricular	

dyssynchrony.	 In	 a	 final	 analysis	 of	 this	 study,	 Gras	 et	 al	 (2002)131	 were	 able	 to	

demonstrate	 the	 benefit	 of	 biventricular	 pacing	 in	 the	 same	 patient	 group	 at	 12	

months.	

2.10.2 Randomised	controlled	trials		

To	 date,	 more	 than	 12,000	 HF-LVSD	 patients	 have	 been	 recruited	 to	 randomised	

clinical	 trials	 of	 CRT,	 showing	 that	 CRT	 in	 combination	 with	 OMT	 has	 significant	

benefits	in	terms	of	morbidity	and	mortality	compared	to	OMT	alone,	or	to	OMT	with	

ICD.	 	 The	 majority	 of	 these	 trials	 had	 restrictive	 inclusion	 criteria,	 based	 on	 the	

observational	trials	described	above	or	on	the	established	contemporary	guidelines	at	

the	time	of	 recruitment.	 	Thus	patients	were	required	to	have	symptomatic	HF-LVSD	

(NYHA	class	II-IV),	with	interventricular	conduction	delay	(QRSd	>	120ms),	with	normal	

sinus	 rhythm	and	with/or	without	 an	 indication	 for	 an	 ICD.	 	More	 recent	 trials	 have	

investigated	 patients	 with	 less	 symptomatic	 HF-LVSD,	 and	 those	 with	 AF	 and/or	 a	

shorter	QRSd.	

	

Most	 trials	 relied	 upon	 primary	 endpoints,	 such	 as	 the	 6-minute	 walk	 distance	

(6MWD),	NYHA	 functional	 class	 and	quality	 of	 life	 (QoL)	 assessment.	 	Others	 used	 a	

combination	 of	 metrics,	 such	 as	 the	 clinical	 composite	 score	 (CCS)152,	 based	 on	 a	
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combination	 of	NYHA	 class,	 symptom	 severity	 and	 outcomes	 including	 heart	 failure,	

hospitalisation	and	death.	The	most	recent	 large	trials	use	clinical	composite	primary	

endpoints,	 including	 cardiac	 mortality,	 all-cause	 mortality	 and	 HF	 hospitalisation.		

Secondary	 endpoints	 included	 levels	 of	 neuro-hormonal	 biomarkers	 such	 as	 BNP,	 a	

reduction	in	LV	volume	as	measured	by	2DTTE	and	peak	VO2	measured	during	graded	

exercise	on	a	treadmill	or	bicycle	ergometer.	

	

The	 RCTs	 have	 been	 broadly	 consistent	 in	 terms	 of	 improvements	 in	 the	 primary	

endpoints	 detailed	 above,	 with	 the	 6MWD,	 NYHA	 functional	 class	 and	 QoL	 all	

improving,	with	some	exceptions,	as	will	be	discussed	below.	Similarly,	there	has	been	

consistency	in	improvements	of	secondary	endpoints.	 	 In	the	case	of	peak	VO2,	there	

have	 been	 consistent	 reports	 of	 improvements	 in	 this	 endpoint,	 apart	 from	 in	 the	

recent	RETHINQ	trial.	 	All	trials	have	shown	reductions	in	both	the	degree	of	MR	and	

LV	 volume	 but,	 to	 date,	 only	 CONTAK-CD	 has	 failed	 to	 show	 a	 reduction	 in	 HF	

hospitalisation.	

	
In	 addition	 to	 observational	 trials,	 there	 have	 been	 14	major	 randomised	 controlled	

trials	investigating	the	role	of	CRT.		Each	is	considered	in	turn,	in	the	sections	below.	

2.10.2.1 MUSTIC	SR/MUSTIC	AF	

Cazeau	et	al	(2001)48	conducted	a	single-blind	randomised,	controlled	crossover	study	

(the	 pacemaker	 was	 either	 switched	 off	 initially	 and	 then	 on	 or	 vice	 versa)	 of	 67	

patients	in	sinus	rhythm	but	with	severe	HF-LVSD	(NYHA	class	III),	receiving	OMT,	LVEF	

<	 35%,	 6MWD	 <	 450m,	 and	 with	 a	 QRS	 duration	 of	 >	 150ms.	 	 This	 was	 called	 the	

MUSTIC-SR	 study.	 	 Only	 47	 patients	 completed	 the	 study,	 with	 9	 withdrawn	 before	

randomisation	 and	 10	 failing	 to	 complete	 both	 phases.	 	 It	 was	 shown	 that	 for	 the	

remaining	patients	6MWD	 (primary	endpoint),	MLWHFQ	score	 (assessing	QoL),	peak	

VO2	 and	HF	hospitalisations	 (secondary	 endpoints)	were	 significantly	 improved	at	 24	

weeks	of	follow-up.		The	patients	expressed	preference	for	the	12-week	period	when	

the	CRT	device	was	switched	on,	compared	to	when	it	was	switched	off.		

	

In	 2002,	 the	 AF	 extension	 of	 the	 MUSTIC	 trial,	 called	 MUSTIC-AF153,	 used	 similar	

inclusion	criteria	but	recruited	33	patients	in	persistent	or	permanent	AF,	with	a	QRSd	

>	 200ms	 on	 RV	 pacing,	 demonstrating	 significant	 improvements	 in	 the	 primary	 and	
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secondary	 endpoints,	 excluding	 QoL.	 	 However	 this	 was	 a	 small	 study,	 with	 <	 25%	

female	 participants,	with	 significant	 drop	 out	 at	 50%	 (including	 death	 and	 failure	 to	

pace	the	LV)	and	again	single-blinded,	which	somewhat	weakens	the	results.			

	

These	were	the	first	randomised	trials	assessing	biventricular	pacing	in	man.	

2.10.2.2 PATH-CHF/PATH-CHF	II	

In	the	PATH-CHF	study,	Auricchio	et	al	(2002)130	conducted	a	single	blind,	randomised,	

controlled	 crossover	 study	 on	 41	 patients	 followed	up	over	 12	months.	 	Once	 again	

dropout	rates	were	high	with	only	29	patients	completing	the	study.		The	aim	was	to	

investigate	both	 the	 acute	haemodynamic	 and	 long-term	 clinical	 benefit	 of	 different	

pacing	modalities	such	as	RV,	LV	or	BiV	in	severe	HF-LVSD	patients.	 	 Inclusion	criteria	

included	 severe	 HF-LVSD	 (NYHA	 III-IV),	 OMT,	 QRSd	 >	 120ms	 and	 PRd	 >	 150ms.		

Significant	 improvements	were	 seen	 in	both	 the	primary	 (peak	VO2	and	6MWD)	and	

the	 secondary	 endpoints	 (QoL	 assessed	 by	 MLWHFQ	 and	 NYHA	 functional	 class).		

Furthermore,	 greater	 haemodynamic	 improvement	 was	 observed	 in	 terms	 of	 dP/dt	

and	 pulse	 pressure	with	 LV	 rather	 than	 RV	 pacing.	 	 Unusually	 for	 a	 HF	 clinical	 trial,	

there	was	an	even	gender	split	 (50:50)	 thus	applicability	of	 the	results	 to	 the	 female	

population	is	credible.		However,	as	for	the	MUSTIC	trials,	numbers	were	small,	with	a	

significant	dropout	rate	and	the	trial	was	only	single-blinded.	 	 In	addition	contrary	to	

what	 might	 be	 expected,	 the	 functional	 improvements	 failed	 to	 return	 to	 baseline	

when	the	pacing	was	either	switched	off	or	during	the	wash	out	period	suggesting	that	

there	 might	 be	 a	 placebo	 effect	 e.g.	 the	 mere	 implantation	 of	 the	 device	 led	 to	

patients	feeling	better,	even	when	it	was	turned	off.	

	
The	 PATH-CHF	 II	 trial154,	 was	 a	 similar	 trial	 (single-blinded,	 randomized,	 controlled,	

crossover),	 which	 recruited	 86	 HF-LVSD	 patients,	 in	 sinus	 rhythm,	 NYHA	 functional	

class	>	 II	and	a	QRSd	>	120ms.	The	aim	was	to	assess	 the	effect	of	both	uni-	and	bi-

ventricular	 pacing	 modalities	 on	 acute	 haemodynamic	 and	 chronic	 symptomatic	

outcomes.	 Patients	were	 stratified	 1:1	 according	 to	QRSd,	with	 both	 long	 (>	 150ms)	

and	 short	 (120-149ms)	 groups	 and	 followed	 up	 over	 6	 months,	 with	 3	 months	 of	

inactive	 and	 3	 months	 of	 active	 pacing.	 	 The	 primary	 endpoint	 was	 peak	 VO2	 and	

secondary	 endpoints	 were	 6WMD	 and	 QoL	 assessed	 by	 MLWHFQ.	 A	 significant	

number	of	patients	could	not	be	randomised	(12)	or	did	not	complete	the	study	(17).	
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The	prolonged	QRSd	group	improved	in	terms	of	all	primary	and	secondary	endpoints,	

the	 short	 QRSd	 group	 none.	 	 This	 trial	 was	 pivotal	 in	 influencing	 the	 CRT	 eligibility	

criteria,	 determining	 that	 QRSd	 of	 >	 150ms	 was	 needed	 and	 demonstrating	 that	

patients	with	NYHA	class	of	II	may	benefit	from	CRT;	not	included	in	earlier	trials.	

2.10.2.3 MIRACLE/MIRACLE	ICD/MIRACLE	ICDII	

The	MIRACLE	 trial	 by	 Abraham	et	 al	 (2002)155	was	 the	 first	 CRT	 trial	 conducted	 in	 a	

multi-centre,	 double-blinded,	 parallel	 controlled	 manner	 with	 a	 large	 cohort	 of	

patients	(453).	It	was	also	the	first	trial	to	assess	CRT,	against	OMT	without	crossover,	

in	 patients	with	 severe	HF-LVSD	 (NYHA	 III-IV,	QRSd	>	 130ms,	 LVEF	<	 35%)	 and	 sinus	

rhythm	but	with	no	prior	pacing	indications.		The	primary	endpoint	was	the	6MWD	and	

secondary	endpoints	included	NYHA	functional	class,	QoL	assessed	by	MLWHFQ,	peak	

VO2,	hospital	admissions,	patient	preference	and	mortality.	 	Significant	improvements	

were	seen	in	all	primary	and	secondary	endpoints	with	pacing	compared	to	the	control	

group.		However	it	should	be	noted	that	whilst	>	90%	patients	were	receiving	diuretics	

or	ACE-I,	 less	 than	 two	thirds	were	receiving	β-blockers.	 	 In	addition,	 the	majority	of	

patients	were	white	males	and	follow	up	was	limited	to	6	months.		Ideally,	all	patients	

with	 HF-LVSD	 should	 take	 β-blockers	 (unless	 not	 tolerated	 or	 contra-indicated)	 and	

thus	one	would	expect	that	OMT	would	include	a	much	higher	proportion	e.g.	>	90%	of	

patients	on	β-blockers.		Furthermore,	since	the	cohort	was	mainly	comprised	of	white	

males,	applicability	of	the	results	to	minority	and	female	populations	is	problematic.	

	

The	MIRACLE	 ICD	 trial	 by	 Young	 et	 al	 (2003)49	was	 designed	 in	 a	 similar	way	 to	 the	

MIRACLE	trial	but,	rather	than	studying	CRT	alone,	the	combinations	of	ICD	with	OMT	

versus	CRT-D	with	OMT	were	 investigated.	 Inclusion	criteria	and	endpoints	were	 the	

same,	apart	from	an	indication	for	ICD	for	all	369	patients.		With	the	CRT	switched	on,	

the	 patients	 showed	 significant	 gains	 in	 terms	 of	 QoL,	 functional	 class	 and	 exercise	

capacity	(assessed	by	peak	VO2	rather	than	6MWD).		This	outcome	was	similar	to	that	

reported	 for	 the	 CRT-alone	 group	 in	 the	MIRACLE	 trial.	 	 However,	 it	 is	 important	 to	

note	 that	 the	 duration	 of	 follow-up	 was	 short	 (6	 months)	 and	 the	 study	 was	 not	

powered	to	detect	either	morbidity	or	mortality	benefits	between	the	groups.	

	
In	contrast	to	the	more	symptomatic	HF-LVSD	patients	who	benefited	in	earlier	trials,	

the	MIRACLE	ICD	II	trial156	set	out	to	investigate	the	use	of	CRT	in	a	less	symptomatic	
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patient	 group	 (specifically	 those	 in	 NYHA	 class	 II).	 A	 total	 of	 186	 patients	 were	

recruited,	with	 inclusion	 criteria	based	on	NYHA	class	 II	 alone,	QRS	>	130ms,	 LVEF	<	

35%,	OMT	and	an	ICD	indication.		As	before,	patients	were	randomised	to	either	CRT-D	

with	OMT	or	 ICD	with	OMT.	 	The	primary	endpoint	was	peak	VO2	and	the	secondary	

endpoints	were	QoL,	NYHA	functional	class,	6MWD,	LV	volumes	and	LVEF.		There	was	

no	significant	difference	between	the	control	and	the	intervention	groups	in	terms	of	

peak	VO2,	6MWD	and	NYHA	functional	class.		However	at	6	months	patients	within	the	

intervention	 groups	 showed	 significant	 reductions	 in	 LV	 volumes	 and	 significant	

increases	 in	LVEF	when	compared	with	controls.	 	As	the	authors	note,	 follow-up	was	

relatively	short	and	patients	with	milder	heart	 failure	have	better	preserved	exercise	

tolerance	 than	 those	 with	 severe	 HF-LVSD	 so	 the	 lack	 of	 improvement	 in	

cardiorespiratory	 fitness	 was	 perhaps	 not	 unexpected.	 	 The	 authors	 concluded	 that	

CRT	offered	 important	benefits	 to	patients	with	mildly	 symptomatic	HF-LVSD,	but	 in	

the	absence	of	any	functional	improvement,	and	in	the	light	of	the	not	insignificant	risk	

of	 complications,	 further	 research	 would	 be	 required	 before	 routine	 use	 of	 CRT	 in	

NYHA	II	could	be	recommended.	

2.10.2.4 VENTAK/CONTAK-CD	

Reported	 by	Higgins	 et	 al	 (2003),	 this	was	 a	 randomised,	 controlled,	 double	 blinded	

study	 comparing	 CRT-D	 patients	 with	 pacing	 turned	 on	 or	 off.	 	 This	 was	 a	 parallel	

crossover	design	and	included	patients	with	HF-LVSD,	NYHA	class	II-IV,	EF	<	35%,	QRSd	

>	 120ms	 in	 normal	 sinus	 rhythm133.	 	 The	 study’s	 initial	 intention	 was	 to	 follow	 up	

patients	 for	3	months,	but	 this	was	extended	to	6	months	and	the	primary	endpoint	

was	 changed	 from	peak	VO2	 to	a	 composite	endpoint	of	 a	 reduction	 in	heart	 failure	

events.	 	 This	 was	 presumably	 because	 the	 primary	 endpoint	 was	 not	 reached	 at	 3	

months.	 	 Despite	 the	 large	 number	 of	 patients	 recruited	 (581)	 no	 significant	

improvement	 in	 the	 primary	 endpoint	 was	 observed.	 	 However	 in	 the	 NYHA	 III-IV	

subgroup,	 peak	 VO2,	 6MWD,	 QoL,	 NYHA	 class	 and	 LV	 volumes	 were	 significantly	

improved	in	the	active	pacing	group	but	only	LV	volumes	were	improved	in	the	NYHA	

class	 II	 subgroup.	 	 This	 adds	 further	 weight	 to	 the	 absence	 of	 clinical,	 if	 not	 LV	

remodelling,	 benefit	 in	 these	patients.	 	 Furthermore,	 over	 80%	of	 the	patients	were	

male	 yet	 only	 50%	 were	 taking	 β-blockers,	 despite	 the	 patients	 being	 reported	 as	

receiving	OMT.	 	 This	made	 translation	of	 the	 results	 to	a	 female	population	and	 the	
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influence	of	β	-blockers	in	determining	response	unclear,	as	the	majority	of	other	CRT	

trials	report	that	over	90%	of	patients	received	β-blockers.	

2.10.2.5 COMPANION	

The	COMPANION	trial,	as	reported	by	Bristow	et	al	(2004)6	was	the	largest	trial	of	CRT	

and	compared	OMT	versus	OMT+CRT	versus	OMT+CRT-D	undertaken	at	the	time	with	

more	than	1500	patients	recruited.		Inclusion	criteria	included	HF-LVSD,	NYHA	class	III-

IV,	QRSd	>	120ms,	PRd	>	150ms,	sinus	rhythm	and	no	pre-existing	clinical	indication	for	

a	 pacemaker	 or	 defibrillator.	 The	 trial	 was	 randomised,	 but	 not	 blinded,	 and	 the	

primary	 composite	 endpoint	 was	 a	 combination	 of	 all-cause	 mortality	 and	

hospitalisation.	The	duration	of	 follow	up	was	12	months	 for	 the	OMT	group	and	18	

months	 for	 the	 CRT	 group.	 	 The	 trials	 primary	 endpoint	was	 all-cause	mortality	 and	

hospitalisation	 and	 in	 this	 regard	 it	 achieved	 a	 20%	 reduction	 with	 device	 therapy	

compared	 to	 medication	 alone.	 	 CRT	 reduced	 the	 relative	 risk	 of	 death	 due	 to	 any	

cause	by	24%	and	CRT-D	reduced	this	by	36%.		As	the	authors	highlighted,	the	devices	

implanted	became	commercially	available	during	the	trial;	this	led	to	a	high	number	of	

withdrawals	from	the	OMT-only	group	to	allow	the	clinicians	to	implant	a	CRT	device.		

Such	patients	were	excluded	from	the	primary	endpoint	but	were	re-consented	so	that	

they	could	be	included	in	the	intention	to	treat	analysis.	

2.10.2.6 CARE-HF	

This	 trial	 reported	 by	 Cleland	 et	 al	 (2005)44	 examined	 the	 influence	 of	 CRT	 on	 long-

term	mortality	and	morbidity	in	patients	with	severe	HF-LVSD.		Over	800	patients	were	

recruited	and	followed	up	for	2.5	years.		The	inclusion	criteria	were;	NYHA	III-IV,	EF	<	

35%,	OMT	and	QRSd	of	either	>	150ms	or	120-149ms	but	with	2/3	echocardiographic	

criteria	 of	 dyssynchrony	 (IVMD	 >	 40ms,	 delayed	 activation	 of	 the	 posterolateral	 left	

ventricular	wall	or	aortic	pre-ejection	delay	of	>	140ms).	 	The	trial	was	 international,	

multicentre	and	randomised	to	either	CRT	or	OMT	(stratified	according	to	NYHA	class)	

but	not	blinded.	 	The	majority	of	 the	patients	were	men	 in	NYHA	 III	 class,	with	over	

90%	using	an	ACE-I	and	70%	a	β-blocker.	 	The	primary	outcomes	were	time	to	death	

from	any	cause	or	an	unplanned	hospitalisation	for	a	cardiovascular	event.		Secondary	

outcomes	included	death	from	any	cause	or	unplanned	hospitalisation	with	worsening	

heart	failure.	 	Continuous	outcomes	 included	NYHA	class,	QoL	measured	by	both	the	

MLWFHQ	and	the	European	Quality	of	Life–5	Dimensions	(EuroQoL	EQ-5D)	instrument.		
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The	trial	reached	its	primary	endpoint,	with	the	CRT	group	achieving	a	significant	(p	<	

0.001)	 16%	 absolute	 risk	 reduction.	 	 Fifty-five	 percent	 of	 the	 group	 receiving	 OMT	

alone	 died	 or	 had	 an	 unplanned	 hospitalisation	 for	 a	 cardiac	 event,	 compared	with	

39%	 of	 the	 CRT	 group.	 	 The	 trial	 also	 achieved	 significance	 in	 all	 of	 the	 secondary	

outcomes	 (p	 <	 0.001),	 with	 30%	 of	 the	 OMT	 alone	 group	 suffering	 death	 from	 any	

cause	 compared	 with	 20%	 in	 the	 CRT	 group.	 	 The	 CRT	 group	 also	 had	 significant	

improvements	 (p	 <	 0.001)	 in	 IVMD,	mitral	 regurgitation,	 LV	 volumes,	 LVEF,	 QOL	 (as	

measured	by	MLWHFQ	and	EuroQoL	EQ-5D),	 systolic	BP	and	NT-proBNP.	 	This	 study	

proved	to	be	pivotal	 in	 terms	of	 standard	of	care	 the	UK	and	 in	Europe,	 significantly	

influencing	the	criteria	for	patient	selection	for	CRT	in	clinical	guidelines.	

2.10.2.7 RD-CHF	

This	trial	by	Leclerq	et	al	(2007)157	was	unique	in	that	it	recruited	patients	in	HF-LVSD	

who	 already	 had	 a	 pacemaker	 in	 situ,	 upgrading	 them	 from	 a	 single	 chamber	 RV	

pacemaker	 to	CRT.	 Patients	with	AF,	 previously	 excluded	 from	 such	 trials,	were	 also	

included.		Inclusion	criteria	included	HF-LVSD,	NYHA	III-IV,	LVEF	<	35%,	interventricular	

dyssynchrony	defined	as	IVMD	>	40	ms	and	intraventricular	delay	defined	as	an	aortic	

pre-ejection	time	of	>	180ms,	both	measured	by	2DTTE.	 	The	trial	was	a	randomised	

crossover	design,	comparing	RV	vs.	BiV	pacing,	in	2	separate	3-month	blocks.		Despite	

being	a	multicentre	study,	only	56	patients	were	enrolled,	with	12	patients	dropping	

out	before	randomisation	when	BiV	pacing	was	found	not	to	be	feasible	and	a	further	

12	not	followed	up	after	randomisation	due	to	death,	infection	or	other	reasons.		This	

was	the	first	paper	to	base	inclusion	on	echocardiographic	rather	than	ECG	parameters	

e.g.	 QRSd.	 	More	 than	 90%	 of	 the	 patients	 were	male	 and	 not	 all	 patients	 were	 in	

NYHA	III-IV	despite	this	being	one	of	the	stated	inclusion	criteria.			

	

The	primary	or	secondary	endpoints	are	not	explicitly	stated	 in	the	paper.	 	However,	

there	were	significant	improvements	in	NYHA	class,	6MWD	and	QOL	in	the	BiV	group,	

compared	to	the	RV-only	group	and	no	increase	in	ventricular	arrhythmias	 in	the	BiV	

group.	 	The	authors	concluded	 that	 such	an	upgrade	was	safe	and	 feasible,	but	with	

such	 a	 high	 dropout	 rate,	 their	 findings	 will	 need	 to	 be	 repeated	 on	 a	much	 larger	

patient	group	before	firm	conclusions	can	be	made.	
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2.10.2.8 MADIT	CRT	

This	 trial	 by	 Moss	 et	 al	 (2009)158	 was	 designed	 to	 investigate	 whether	 CRT	 would	

reduce	 the	 risk	 of	 death	 or	 HF	 events	 in	 those	with	mild	 or	 asymptomatic	 HF-LVSD	

(NYHA	class	 I-II).	Over	1800	patients	were	 recruited,	with	 inclusion	criteria	of	 LVEF	<	

30%	and	QRSd	>	130ms	and	followed	up	for	over	2.5	years.	 	Patients	were	randomly	

assigned	to	either	ICD	alone	or	CRT-D	in	a	3:2	ratio.		The	vast	majority	of	patients	were	

white	 (>	 90%)	 males	 (>	 75%)	 with	 NYHA	 II	 symptoms.	 	 Over	 97%	 of	 patients	 were	

receiving	ACE-I	or	ARB	 therapy	and	over	93%	of	patients	were	 receiving	a	β-blocker.		

Whilst	no	mention	is	made	of	whether	OMT	was	an	essential	 inclusion	criteria	this	 is	

one	of	 the	 few	 trials	where	nearly	all	patients	were	 taking	 some	 form	of	OMT.	 	 The	

primary	 endpoint	 was	 death	 from	 any	 cause	 or	 a	 non-fatal	 HF	 event.	 	 The	 primary	

endpoint	was	achieved,	with	a	significantly	lowered	risk	of	death	in	the	CRT-D	group,	

but	 this	 was	 primarily	 restricted	 to	 a	 sub-group	 with	 a	 QRSd	 >	 150ms.	 	 The	 CRT-D	

group	 also	 had	 significantly	 lower	 LV	 volumes	 and	 improved	 LVEF	 at	 follow-up.	 	 No	

measure	 of	 functional	 improvement	 e.g.	 NYHA	 class,	 QOL,	 6MWD	 or	 peak	 VO2	 was	

reported	and,	whilst	 it	 could	be	argued	 that	NYHA	Class	 I	 is	 asymptomatic	making	 it	

difficult	 to	 demonstrate	 improvement,	 this	 could	 have	 been	measured	 using	 a	 QOL	

questionnaire.	 	 It	 would	 also	 have	 been	 interesting	 to	 compare	 functional	 reserve	

between	Classes	(I	and	II)	to	see	what	differences,	if	any,	were	present	at	baseline	or	

follow	up	in	terms	of	peak	VO2	for	example.			

Significantly,	the	outcome	of	this	trial	led	to	an	extension	of	USA	guidelines	to	include	

patients	with	NYHA	functional	class	II	HF-LVSD.	

2.10.2.9 RETHINQ	

This	 trial	 by	 Beshai	 et	 al	 (2007)159	 was	 a	 double-blinded,	 randomised,	 controlled,	

multicentre	 clinical	 trial	 aiming	 to	 answer	 the	question	of	 benefit	 of	 CRT	 in	 patients	

with	 a	 narrow	 QRS	 but	 with	 an	 ICD	 indication.	 	 Inclusion	 criteria	 included	 QRSd	 <	

130ms,	 HF-LVSD,	 LVEF	 <	 35%,	 NYHA	 class	 III	 and	 mechanical	 dyssynchrony	

demonstrated	 on	 2DTTE.	 	 The	 primary	 endpoint	 was	 an	 increase	 in	 peak	 VO2	 >	

1ml/kg/min	at	6	months	post	implantation.			

	

Over	170	patients	were	recruited	and	underwent	subsequent	randomisation,	all	had	a	

CRT-D	 implanted	 and	were	either	 actively	 paced	 (CRT	 group)	 or	 not	 (control	 group).		

Although	no	p-values	are	given,	there	appears	to	be	a	greater	number	of	men	in	the	
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active	pacing	group.		Over	>	90%	of	patients	in	both	groups	were	taking	an	ACE-I	or	β	-

blockers.		At	6	months	there	was	no	significant	difference	between	the	groups	in	peak	

VO2,	or	 indeed	6MWD,	QOL	(measured	by	MLHFQ)	or	LV	volumes	but	the	CRT	group	

did	 have	 a	 significantly	 improved	NYHA	 Functional	 Class	 a	 subjective	 and	 secondary	

endpoint.		There	was	a	high	complication	rate,	of	around	20%,	in	both	groups.			

	

Similar	to	other	studies	using	2DTTE	to	measure	dyssynchrony	(and	hence	eligibility	for	

CRT)	it	is	possible	that	the	choice	this	specific	criterion	rather	than	QRSd	could	account	

for	 the	 lack	 of	 benefit	 since	 the	 authors	 state	 that	 96%	 of	 patients	 in	 their	 study	

qualified	for	inclusion	based	on	tissue	Doppler	measurement	of	an	opposing	wall	delay	

of	>	65ms,	rather	than	the	SPWMD	of	>	130ms	measured	using	M-mode	which	would	

have	included	only	4%	of	their	patient	population.		Clearly,	as	this	was	a	multi-centre	

trial,	it	was	important	to	choose	a	measure	of	dyssynchrony	that	was	both	feasible	and	

reproducible,	 but	 as	 found	 in	 the	 PROSPECT	 trial,	 even	 extensive	 training	 of	

echocardiographers	 cannot	 guarantee	 that	 the	 same	 metric	 is	 being	 measured	

consistently.	 	 This	 is	 further	 evidenced	 by	 the	 fact	 that	 a	 subgroup	 of	 patients	with	

QRSd	 120-130ms	 did	 derive	 benefit,	 reinforcing	 the	 difficulty	 of	 using	 2DTTE	 to	

measure	DS,	the	notion	that	the	QRSd	is	the	best	predictor	of	CRT	response	and	that	a	

prolonged	QRSd	is	necessary	to	derive	benefit.	

2.10.2.10 RAFT	

This	trial	by	Tang	et	al	 (2010)135	aimed	to	discover	 if	the	addition	of	a	defibrillator	to	

CRT	+	OMT	would	 reduce	mortality	and	morbidity,	 in	patients	with	moderate-severe	

HF-LVSD	with	 indications	 for	 an	 ICD.	 	 This	was	 a	 randomised	 controlled	multicentre	

trial,	 but	 not	 blinded,	 1798	 patients	 were	 randomly	 assigned	 to	 CRT-D	 or	 ICD	 with	

inclusion	criteria	of	LVEF	<	30%	and	QRSd	120ms.		Initially,	the	trial	recruited	NYHA	II-III	

patients	but	later,	in	February	2006,	this	was	revised	to	recruit	only	NYHA	II	patients,	

reflecting	emerging	clinical	trial	data	and	guideline	changes.	Patients	were	followed	up	

for	 over	 3	 years.	 	 The	primary	 endpoint	was	death	 from	any	 cause	or	HF	 leading	 to	

hospitalisation.	 The	 majority	 (>	 80%)	 of	 patients	 were	 male	 and	 in	 NYHA	 class	 II.		

Twelve	percent	had	permanent	AF	or	atrial	flutter	and	more	than	90%	were	using	a	β-

blocker	and	96%	an	ACE-I.	There	was	a	significant	reduction	in	the	primary	endpoint	in	

the	CRT-D	group	compared	to	the	ICD	alone	group,	with	a	7%	absolute	risk	reduction. 

Once	again,	subgroup	analysis	demonstrated	that	a	QRSd	>	150ms	was	associated	with	
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increased	 benefit	 from	CRT.	 	 This	 trial	was	 unable	 to	 show	 that	mildly	 symptomatic	

patents	derived	functional	benefit	from	CRT	but,	as	VENTAK/CONTAK	CD	had	failed	to	

show,	and	MADIT-CRT	had	failed	to	investigate,	it	did	show	that	there	was	a	significant	

reduction	 in	 death	 and	 hospitalisation	 for	 this	 patient	 group.	 	 However,	 worryingly,	

more	 than	 15%	 of	 patients	 in	 the	 CRT-D	 group	 developed	 complications	 such	 as	

haematoma,	 infection	 and	 pneumothorax	 before	 30	 days.	 	 So	 whilst	 the	 lives	 of	

patients	 in	NYHA	class	 II	may	be	saved,	they	may	not	necessarily	 feel	any	better	and	

may	have	a	significant	risk	of	complications.			

2.10.2.11 BLOCK-HF	

The	most	recent	CRT	large	trial	to	be	reported	is	that	by	Curtis	et	al	(2013)160.		This	was	

designed	to	answer	a	clinical	question	that	has	troubled	clinicians	for	several	years.		In	

patients	 with	 chronotropic	 incompetence	 and	 a	 corresponding	 indication	 for	 a	

pacemaker	due	to	AV	block,	there	is	good	evidence	that,	whilst	an	adequate	heart	rate	

may	 be	 restored,	 long-term	 RV	 apical	 pacing	 can	 lead	 to	 impairment	 of	 LV	 systolic	

function.		This	begs	the	question	would	using	a	BiV	pacing	strategy	from	the	outset	be	

less	harmful	to	LV	function?			

In	 this	 prospective,	 multicentre,	 randomised,	 double	 blind	 trial	 691	 patients	 were	

implanted	with	a	CRT-P	or	CRT-D	(if	they	also	had	an	indication	for	a	defibrillator)	and	

then	randomly	assigned	to	RV	or	BiV	pacing.	 	 Inclusion	criteria	 included	a	pacemaker	

indication	due	to	AV	block,	NYHA	class	I-III	and	a	LVEF	<	50%.		Exclusion	criteria	are	not	

stated.	 	 The	 primary	 outcome	 recorded	was	 the	 “time	 to	 death	 from	 any	 cause,	 an	

urgent	care	visit	for	heart	failure	that	required	intravenous	therapy,	or	a	15%	or	more	

increase	in	the	left	ventricular	end-systolic	volume	index”.		Patients	were	followed	up	

for	over	3	years	and	 the	primary	outcome	occurred	 in	55.6%	of	patients	assigned	 to	

the	 RV	 compared	 to	 45.8%	 of	 the	 BiV	 pacing	 group	 leading	 the	 investigators	 to	

conclude	that	a	BiV	pacing	strategy	should	be	carried	out	from	the	outset.		There	are,	

however,	 several	 problems	 with	 this	 study;	 23%	 of	 the	 patients	 died	 (this	 is	 high	

compared	 to	 other	 CRT	 studies,	 especially	 given	 the	 mild	 severity	 of	 HF-LVSD),	 the	

population	was	heterogeneous	(LVEF	was	between	40	+/-	8.3%	and	thus	accounts	for	a	

whole	 spectrum	of	 LV	 dysfunction	 from	normal/preserved/reduced)	 and	 the	 sample	

size	 was	 small.	 	 Over	 73%	 of	 the	 patients	 recruited	 were	 male	 with	 an	 average	

participant	 age	of	participant	 in	 the	mid-70s	making	 translation	 to	other	 groups	e.g.	

young	 females,	 difficult.	 	 On	 the	 whole,	 the	 2	 groups	 were	 similar	 but	 there	 is	 no	



								|	Page	88	

statistical	 comparison	 of	medical	 therapies	 included	 in	 the	 study	 e.g.	 percentage	 of	

patients	 on	OMT,	which	 could	 both	 skew	 and	 confound	 the	 results.	 	 Finally,	 23%	of	

patients	 crossed	 over	 from	 the	 RV	 to	 the	 BiV	 pacing	 group.	 	 Although	 there	 is	 no	

accepted	 best	 practice	 for	 dual	 chamber	 devices,	 other	 available	 RV	 target	 pacing	

options	(His	bundle,	for	example)	were	not	investigated	in	this	study.		It	is	possible	that	

these	 alternatives	 could	 lead	 to	 less	 deleterious	 effects	 on	 LV	 function	 and	 thus	 the	

requirement	for	BiV	pacing.		In	summary,	this	initial	study	suggests	that	BiV	pacing	for	

patients	 with	 an	 indication	 for	 a	 pacemaker	 with	 mild-moderate	 HF-LVSD	 leads	 to	

improved	outcomes	when	compared	to	RV	pacing	alone.		

2.11 Response		

2.11.1 Introduction	

Response	to	CRT	can	be	defined	according	to	2	domains:		

• Subjective	(in	terms	of	symptoms);	NYHA	functional	class	and	QOL	assessment.	

• Objective	 (in	 terms	 of	 heart	 function);	 imaging,	 biomarker	 and	 cardiovascular	

performance	assessment.	

	

It	has	become	apparent	that	only	70%	of	patients	implanted	with	CRT	are	thought	to	

derive	benefit	from	the	procedure	and	are	deemed	responders.		A	smaller	percentage	

deriving	maximal	 benefit	 are	 termed	 ’super’	 responders	 and	 the	 remaining	 patients	

may	 either	 not	 respond	 at	 all	 or	 respond	 negatively	 becoming	 worse,	 reflecting	

perhaps	the	inexorable	progression	of	the	disease,	rather	than	as	a	direct	result	of	the	

CRT	device	or	procedure.	

2.11.2 Subjective	

2.11.2.1 NYHA	class	

As	 discussed	 previously,	most	 CRT	 clinical	 trials	 use	 NYHA	 functional	 class	 to	 assess	

patients	 and	 to	 define	 response	 but	 as	 also	 mentioned,	 NYHA	 classification	 is	 not	

without	problems.		Nevertheless	CRT	has	been	shown	to	reduce	NYHA	functional	class	

by	 an	 average	 of	 0.5-0.8	 46-48	 133.	 	 For	 example	 in	 the	 MIRACLE,	 MIRACLE	 ICD	 and	

CONTAK	 CD	 trials,	 68%,	 72%	 and	 63%	 of	 patients	 improved	 by	 one	 or	 more	 class,	

compared	with	38%,	54%	and	48%	of	controls.	 	According	to	Yu	et	al	 (2008)	 in	some	

randomised	 control	 trials	 (RCTs)	 following	 CRT,	 30-50%	 of	 patients	 improved	
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symptomatically,	 despite	 the	 fact	 that	 their	 pacemaker	 was	 not	 turned	 on	 86.	 	 The	

reported	improvement	in	symptoms	in	the	control,	and	perhaps	also	the	intervention,	

group,	maybe	a	result	of	natural	variation	in	end-stage	organ	failure	and/or	a	placebo	

effect	associated	with	having	the	CRT	device	implanted	in	the	first	place.	

2.11.2.2 Quality	of	life	questionnaire	

The	MLWHFQ	 is	 a	 disease-specific	 questionnaire	 designed	 to	measure	 quality	 of	 life	

(QOL)	in	patients	with	HF	(see	appendix).		Similar	tools	include	Quality	of	Life	in	Severe	

Heart	 Failure	 Questionnaire	 (QLQ-SHF)161,	 the	 Chronic	 Heart	 Failure	 Questionnaire	

(CHQ)162,	 the	 Kansas	 City	 Cardiomyopathy	 Questionnaire	 (KCCQ)163	 and	 the	 Left	

Ventricular	 Dysfunction	 Questionnaire	 (LVD-36)	 164.	 First	 developed	 in	 1984	 at	 the	

University	of	Minnesota,	the	MLWHFQ,	has	been	validated	and	is	widely	used	165.		It	is	

designed	to	measure	exactly	how	a	patient’s	HF	 is	 impacting	on	their	day-to-day	 life.		

There	are	21	questions,	all	of	which	start	with	the	same	common	stem	“Did	your	heart	

failure	prevent	you	from	living	as	you	wanted	during	the	past	month	(4	weeks)	by…”	

for	example	question	1	“…causing	swelling	 in	your	ankles	or	 legs?”.	 	Each	question	 is	

given	a	rating	on	a	6-point	Likert	scale	from	0	(no)	to	5	(very	much),	giving	an	overall	

score	out	of	105	(see	appendix).		

	
The	questionnaire	covers	a	wide	range	of	issues	such	as;	the	side	effects	of	treatments,	

hospital	admissions,	symptoms,	mood,	sex	life	and	appetite.		As	it	is	American	in	origin,	

some	 questions,	 such	 as	 the	 cost	 of	 healthcare,	 are	 less	 relevant	 in	 the	 UK.		

Furthermore	as	HF	patients	often	have	a	 large	burden	of	comorbidity,	 they	may	 feel	

unwell	for	a	variety	of	reasons,	wrongly	attribute	this	to	HF,	and	hence	score	highly	on	

the	 questionnaire.	 	Many	would	 argue	 such	 a	 QOL	 assessment,	 asking	 the	 question	

“Does	the	patient	feel	better?”	is	the	most	important	measure	of	response	as	after	all	

that	 is	 why	 we	 develop	 treatments,	 to	 reduce	 morbidity	 and	 also	 mortality.		

Measurement	 may	 be	 also	 influenced	 by	 a	 placebo	 effect,	 as	 simply	 by	 having	 the	

device	fitted	the	patient	may	feel	better	as	evidence	by	NYHA	class	improving	with	the	

pacemaker	switched	off.		Investigator	bias	can	be	an	issue,	particularly	if	the	trial	is	not	

blinded,	 because	 they	 want	 to	 make	 the	 patient	 feel	 better	 or	 to	 influence	 their	

results.	 	Also,	 the	presence	of	a	 spouse	may	have	an	 influence,	as	 if	 the	patient	has	

suggested	 to	 their	 spouse	 that	 they	 feel	 better	 (even	 if	 they	 do	 not),	 they	may	 not	

want	to	suggest	otherwise	on	the	questionnaire.	
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Whilst	 a	 patient	may	 feel	 better	 and	have	 a	 lower	 score	 following	 a	 procedure,	 this	

does	 not	 necessarily	 mean	 that	 they	 will	 have	 physiologically	 benefited	 from	 the	

procedure,	as	evidenced	by	a	worsening	LVEDV,	pVO2	or	6MWD,	for	example.		Also,	as	

discussed	previously,	QoL	may	not	be	able	to	discriminate	between	severities	of	heart	

failure	it	is	simply	the	LVEF	that	determines	this.		There	is	regression	to	the	mean	with	

patients	 scoring	 high	 initially	 but	 lower	 later	 and	 vice	 versa	 and	 the	 presence	 of	

comorbidity,	such	as	IHD	or	COPD,	makes	correct	discrimination	of	symptoms	caused	

by	one	pathology	from	another	difficult	166-168.	

	

The	questionnaire	is	quick	to	complete,	easy	to	administer,	simple	to	understand	and	

there	is	the	capacity	to	obtain	scores	pertaining	both	to	the	physical	and	psychological	

fields.	 	 The	 advantage	 over	 simply	 asking	 a	 patient	 if	 they	 feel	 better	 or	 using	 their	

answer	to	stratify	their	NYHA	group,	is	that	it	is	the	patient	who	rates	their	own	health,	

not	an	interpretation	by	a	clinician.		It	is	a	detailed,	yet	qualitative,	assessment	of	the	

impact	of	HF	on	a	patient’s	day-to-day	life	and	can	be	repeated	at	time	intervals	and	

the	scores	compared.	 	CRT	 leads	to	an	 improvement	 in	MLWHFQ	by	10-30	points	on	

average	 and	 so	 reduction	 in	 MLWHFQ	 score	 by	 10	 points	 (out	 of	 105)	 or	 more	 is	

considered	 a	 significant	 improvement	 and	 thus	 a	 positive	 response	 in	 the	 QOL	

domain46-48	133	169.	

2.11.3 Objective	

2.11.3.1 LV	reverse	remodelling	

Change	in	LV	volumes	and	EF%	are	both	used	to	assess	patients’	response	in	CRT	trials,	

as	 these	 are	 believed	 to	 reflect	 the	 reverse	 remodelling	 of	 the	 LV	 following	 device	

therapy.		On	average,	CRT	increases	EF	by	4-6%	and	reduces	LV	volumes	by	8-15%	6	44	
46	 47	 48	 133	 170.	 	These	are	surrogate	markers	at	best,	as	arguably	 the	main	purpose	of	

CRT	is	to	improve	the	patient’s	symptoms.		Several	trials	have	defined	a	reduction	in	LV	

volume	 by	 more	 than	 10%	 as	 a	 positive	 response	 to	 CRT	 and	 consensus	 opinion	

considers	 a	 reduction	of	 this	magnitude	 to	 be	 a	 significant	 improvement	 and	 thus	 a	

positive	 response	 in	 the	 LV	 reverse	 remodelling	domain	 86.	However,	 the	 correlation	

between	 a	 significant	 reduction	 in	 LV	 volume	 and	 symptomatic	 improvement	 as	

assessed	by	NYHA	class	 is	not	strong.	 	For	example	Bleeker	et	al	(2006)105	found	that	
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whilst	 70%	 of	 CRT	 responders	 improved	 by	 at	 least	 one	NYHA	 functional	 class,	 only	

56%	of	patients	had	>	15%	 reduction	 in	 LVEDV,	with	 just	51%	meeting	both	criteria.	

This	highlights	both	inter-	and	intra-reliability	problems	of	serial	LV	volume	assessment	

using	 2DTTE.	 	 The	 use	 of	 echocardiography	 machines	 and	 probes	 from	 different	

manufacturers,	combined	with	different	operators	and	techniques	in	different	settings	

can	 lead	 to	 the	measurement	 of	 apparent	 volumetric	 differences	which	may	 not	 be	

real.		What	is	required	is	homogeneity	of	all	of	these	factors.		This	is	often	not	feasible	

in	large	trials,	which	take	place	across	multiple	centres,	languages	and	time	domains.			

Ideally,	volume	assessment	should	be	carried	out	using	cMR;	this	is	the	gold	standard	

for	 volume	 measurement	 of	 the	 cardiac	 chambers,	 particularly	 in	 the	 presence	 of	

structural	 heart	 disease.	 	 However,	 safety	 concerns	 prohibit	 the	 use	 of	 cMR	 in	 the	

presence	 of	 existing	 pacemakers,	 due	 to	 the	 risk	 of	 lead	migration	 or	 local	 heating	

effects,	although	cMR	compatible	devices	are	now	available,	they	were	not	at	the	time	

of	this	work.	

2.11.3.2 Cardiorespiratory	Fitness	

2.11.3.2.1 	Cardiopulmonary	Exercise	Testing	(CPET)	

Cardiopulmonary	 exercise	 testing	 (CPET)	 is	 the	 gold	 standard	 for	 the	 assessment	 of	

functional	capacity	and	fitness.	 	This	is	a	non-invasive	and	objective	maximal	exercise	

test	 which	 is	 continued	 to	 exhaustion.	 	 The	 individual	 runs	 or	 cycles	 against	 a	

progressively	 increasing	 resistance,	 with	 heart	 rate,	 ECG,	 O2	 uptake	 (VO2),	 CO2	

production	 (VCO2),	 ventilation	 (VE)	 blood	 pressure	 and	 work	 (watts)	 recorded	

simultaneously.	 	 This	 allows	 for	 the	 analysis	 of	 gas	 exchange	 at	 rest,	 exercise	 and	

recovery.		VO2	is	the	volume	of	oxygen	taken	up,	transported	and	used	by	an	individual	

during	exercise	and	is	measured	in	units	of	ml	(of	O2)	per	kg	(of	body	mass)	per	min	(of	

exercise).		VO2	Max	is	the	highest	attainable	value	of	VO2,	seen	as	a	plateau	of	the	VO2	

trace	or	 defined	by	 Lupton	 and	Hill	 (1923)	 as	 ‘‘the	oxygen	 intake	during	 an	 exercise	

intensity	at	which	actual	oxygen	intake	reaches	a	maximum	beyond	which	no	increase	

in	effort	can	raise	 it”171.	 	Sedentary	 individuals	will	have	a	score	of	30-40	ml/kg/min,	

elite	athletes	around	70-90	ml/kg/min	and	patients	with	end	stage	HF-LVSD	around	10-

20	ml/kg/min.		
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When	 seeking	 to	 assess	patients	with	organ	 failure,	 a	more	pragmatic	 alternative	 to	

VO2	Max	is	peak	VO2,	the	highest	value	of	VO2	attained,	but	not	necessarily	attainable.	

This	 is	a	useful	approach	because	conducting	maximal	exercise	 test	on	patients	with	

end-stage	organ	 failure,	 such	as	HF-LVSD,	 is	dependent	on	both	 the	good	will	of	 the	

patients	and	 their	willingness	 to	attend	 for	 repeated	 testing.	 	To	 insist	on	measuring	

VO2	Max	would	be	unethical,	poorly	tolerated,	potentially	unsafe	with	a	high	dropout	

rate.		Peak	VO2	is	largely	governed	by	the	patient’s	symptoms,	with	encouragement	to	

continue	performance	until	 exhaustion.	 	 A	 score	 <	 15ml/kg/min	or	 less	 than	 50%	of	

their	 age	 predicted	 value,	 is	 of	 prognostic	 significance	 in	 HF-LVSD	 as	 it	 denotes	

increased	 risk	 of	 mortality.	 	 Expert	 opinion	 suggests	 “it	 is	 challenging	 to	 obtain	

complete	datasets	 in	patients	with	repeat	cardiopulmonary	exercise	tests	because	of	

the	acceptance	of	the	study	by	the	patients	or	their	condition	at	the	time	of	follow-up	

study”	 86.	 Patients	with	 HF-LVSD	will	 have	 reduced	 peak	 VO2,	 due	 to	 a	 reduction	 in	

cardiac	output,	 impaired	muscle	metabolism	and	 reduction	 in	O2	 uptake,	 but	with	 a	

positive	response	to	CRT,	cardiac	output	is	found	to	improve,	allowing	the	patients	to	

exercise	more,	improving	muscle	metabolism	and	so	increasing	peak	VO2.	

 
Other	 data	 obtained	 from	 CPET	 includes,	 peak	 wattage,	 anaerobic	 (or	 lactate)	

threshold,	respiratory	exchange	ratio	(RER),	rest	and	maximal	heart	rate	and	rest	and	

maximal	 blood	 pressure.	 	 As	 wattage	 is	 determined	 by	 workload,	 the	 patient	 is	

typically	 limited	 by	 their	 HF-LVSD	 symptoms.	 With	 a	 positive	 response	 to	 CRT	 one	

would	 expect	 this	 to	 increase	 in	 as	 overall	 cardiorespiratory	 fitness	 improves.	 	 The	

anaerobic	or	lactate	threshold	is	the	point	at	which	CO2	production	exceeds	O2	uptake	

and	so	as	the	body	is	in	oxygen	debt,	there	is	switch	to	anaerobic	metabolism	with	the	

production	of	 lactic	acid.	 	This	 level	 can	be	 improved	with	exercise	and	so,	 like	peak	

wattage,	one	would	expect	LT	 to	mirror	any	VO2	peak	 improvement.	 	The	RER	 is	 the	

ratio	between	CO2	exhaled	and	O2	inhaled	in	one	breath.		At	rest	this	is	around	0.8	but	

during	 intense	 exercise	 the	 value	 approaches	 a	 value	 approaching	 or	 above	 1,	

suggesting	 that	 more	 oxygen	 is	 being	 used	 by	 muscles	 leading	 to	 greater	 carbon	

dioxide	production.		Indeed	an	RER		>	1	is	used	as	a	surrogate	endpoint	for	VO2	peak.		

The	 VE/VCO2	 slope	 representing	 the	 ratio	 of	 ventilation	 against	 VCO2	 exhalation	 is	

typically	25	ml/kg/min	in	healthy	adults	but	>	34	ml/kg/min	in	HF-LVSD	and	is	inversely	

related	to	cardiac	output	at	peak	exercise.	
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Subjective	measures	 of	 exertion	 are	 recorded	 immediately	 after	 the	 test	 is	 finished,	

including	 the	 rating	 of	 perceived	 exertion	 (RPE)	 scale	 and	 the	 Borg	 scale	 of	

breathlessness	(BSB).		The	RPE	(see	appendix)	is	a	15-point	Likert	scale	ranging	from	6	

(no	exertion	at	 all)	 to	20	 (maximal	exertion),	which	 correlates	highly	with	heart	 rate	

(RPE	x	10	=	HR	e.g.	6	–	60bpm	and	20	–	200bpm).		Similarly,	the	BSB	(see	appendix)	is	a	

10-point	 Likert	 scale,	 from	 0	 (not	 breathless	 at	 all)	 to	 10	 (maximal	 severity	 of	

breathlessness).		These	allow	the	exercise	physiologist	and	clinician	to	ensure	that	the	

patient	has	performed	a	maximal	test,	as	there	may	be	disparities	between	how	hard	

the	patient	claims	to	have	exercised	and	their	physiological	results.		Furthermore,	one	

can	see	whether	the	patient	might	be	able	try	harder,	as	a	result	of	improved	cardiac	

function,	following	response	to	CRT.	

 

In	the	CRT	trials	48	49	133	155,	peak	VO2	in	responders	has	been	shown	to	increase	by	0.8-

1.2	ml/kg/min,	from	a	baseline	of	10-15ml/kg/min,	representing	a	6-10%	improvement	

at	 6	 months.	 Only	 four	 trials	 have	 specifically	 included	 peak	 VO2	 assessment	 in	

responders	 with	 a	 maximum	 follow	 up	 period	 of	 12	 months.	 	 Currently,	 an	

improvement	 greater	 than	 1ml/kg/min	 in	 peak	 VO2	 is	 considered	 a	 significant	

improvement	 in	 the	CPET172	 and	 thus	 a	 positive	 response	 in	 terms	of	 cardiovascular	

fitness.		

2.11.3.2.2 Six	Minute	Walk	Test	(6MWT)	

First	used	in	the	mid-1980s,	the	6MWT	provides	a	simple,	objective	and	reproducible	

assessment	of	functional	capacity	173. Initially,	a	12-minute	walk	test	was	proposed,	but	

it	was	subsequently	found	that	shortening	its	duration	did	not	reduce	its	utility.		Rather	

than	asking	the	patient	how	far	they	can	walk,	which	is	inherently	problematic	due	to	

over/underestimation	or	recall	bias,	it	measures	the	6-minute	walk	distance	(6MWD).		

The	6MWD	is	the	distance	walked	in	6	minutes	at	a	normal	pace	on	a	flat,	hard,	even	

surface.	 	Patients	can	use	 their	normal	walking	aids	and	are	allowed	 to	 rest,	but	are	

encouraged	to	continue	on	afterwards.		It	is	used	as	a	measure	of	functional	capacity	

in	 HF,	 to	 monitor	 response	 to	 treatment	 and	 also	 as	 a	 predictor	 of	 morbidity	 and	

mortality.		In	a	meta-analysis	Olsson	et	al	(2005)	found	the	average	increase	in	6MWD	

following	 interventions	 such	 as	 ACE-inhibitors,	 β-blockers	 and	 exercise	 training	 was	
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32m	 174.	 	 This	 clearly	 demonstrates	 that	 it	 is	 not	 just	 CRT	 that	 can	 lead	 to	 such	

improvements.		

	
In	a	similar	way	to	CPET,	the	6MWT	evaluates	the	integration	and	performance	of	the	

various	 systems	 required	 for	exercise,	 including	cardiac,	pulmonary,	musculoskeletal,	

haematological,	 vascular	 and	 neurological	 systems.	 However	 whilst	 there	 is	 good	

correlation	between	CPET	 and	6MWT,	 the	6MWT	 is	 not	 a	measure	of	 peak	VO2	nor	

does	it	determine	the	cause	of	exercise	limitation	175.		The	reference	range	for	healthy	

individuals	(571	±	90m)	depends	largely	on	both	age	and	gender	of	the	individual	but	

will	also	be	determined	by	weight	and	height	176.	On	average	an	increase	in	6MWD	by	

10-20%	 is	 observed	 following	 6	 months	 of	 CRT	 and	 thus	 a	 more	 than	 10%	

improvement	in	the	6MWD	is	considered	a	significant	improvement	in	this	metric	and	

a	positive	response	in	terms	of	cardiovascular	fitness	172.	

2.11.4 Other	markers	

Since	 improvements	 in	 LV	 synchrony	 lead	 to	 augmented	 systolic	 performance,	

measures	 of	 dyssynchrony	 such	 as	 MV	 filling	 %	 or	 IVMD	 might	 be	 used	 to	 try	 to	

categorise	 responders.	 	 However,	 improvement	 of	 myocardial	 mechanics	 is	 far	

removed	 from	 improving	patient	 symptoms	and	 there	 is	 often	discordance	between	

symptoms	and	haemodynamic	 improvements	e.g.	dP/dt	or	SV.	 	Similarly,	 it	would	be	

expected	 that	 patients	with	 IVMD	who	 improve,	would	 also	have	 a	 reduction	 in	 the	

QRSd,	denoting	reduced	inter-ventricular	dyssynchrony.		Other	subjective	measures	of	

response	might	 be	 the	 absence	 of	 clinical	 events,	 such	 as	 admission	 with	 acute	 HF	

exacerbation	or	a	reduction	in	pharmacological	requirement	of	diuretics	for	example,	

as	cardiac	function	improves.		However,	if	the	patient	has	an	absence	of	clinical	events	

or	a	reduced	requirement	for	diuretics,	but	feels	no	better,	is	it	still	fair	to	categorise	

them	 as	 a	 responder?	 	 For	 this	 reason,	 neither	 of	 these	 has	 been	 included	 in	many	

clinical	trials	nor	are	they	used	in	this	thesis.	

 

2.12 Failure	of	Response	
Failure	to	respond	to	CRT	may	either	reflect	poor	patient	selection	(inclusion	of	those	

without	significant	dyssynchrony,	for	example)	or	the	limitations	of	how	‘response’	 is	

defined	 (in	 terms	 of	 improvements	 in	 morbidity,	 mortality,	 exercise	 capacity,	 EF	 or	

NYHA	class,	 for	example).	As	response	to	other	therapies,	such	as	oral	medication,	 is	
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not	 uniform;	 being	 influenced	 by	many	 factors	 such	 as	 aetiology,	 “genetics,	 gender,	

age,	 disease	 state,	 environment	 and	 race”,	 perhaps	 the	 degree	 of	 heterogeneity	 of	

response	 to	CRT	 is	 	 not	 surprising	 177	 178.	 Furthermore,	 since	HF-LVSD	 is	 not	 a	 single	

organ	 insult	 but	 a	multi-organ	 syndrome,	 improving	 the	pump	 function	of	 the	 heart	

will	 not	necessarily	 improve	 symptoms,	morbidity	or	mortality,	 as	 it	 is	 not	 the	heart	

alone	that	determines	these.		

	

When	a	patient	fails	to	respond	the	clinician	first	assesses	for	deterioration	in	terms	of	

other	diseases	such	as	renal	failure	or	COPD,	which	could	influence	CRT	response.		For	

example	 for	 many	 CRT	 trials,	 patients	 with	 such	 comorbidities	 were	 excluded	 or	 at	

least	their	presence	was	not	documented,	but	unfortunately	this	does	not	reflect	the	

HF-LVSD	patient	population	as	a	whole	as	many	of	these	diseases	coexist.	

 

Next,	 the	 clinician	determines	whether	optimal	CRT	 is	being	delivered.	 	Optimal	CRT	

delivery	requires	the	patient	to	receive	biventricular	pacing	(BiVP%)	more	than	95%	of	

the	 time,	 any	 less	 than	 this	 and	 it	 is	 likely	 the	 patient	 will	 not	 respond.	 	 Possible	

reasons	 for	 a	 drop	 in	 BiVP%	 include	 the	 development	 of	 atrial	 tachyarrhythmia	 or	

significant	ventricular	ectopy	leading	to	a	drop	in	the	proportion	of	paced	ventricular	

beats.		If	atrial	tachyarrhythmia	accounts	for	the	drop	in	BiVP%,	β-blocker	therapy	can	

be	 up-titrated	 or	 the	 patient	 can	 undergo	AV	 node	 ablation	 (AVNA).	 	 This	 has	 been	

shown	to	 lead	 to	significant	 reduction	 in	mortality	and	morbidity	 in	patients	with	AF	

and	CRT	 compared	 to	CRT	and	OMT	alone	 in	observational	 trials179,	 but	 is	 yet	 to	be	

demonstrated	in	RCTs.	

 

If,	 despite	 optimal	 BiVP%,	 the	 patient	 is	 found	 to	 be	 a	 nonresponder	 and	 if	 other	

comorbidities	remain	stable	they	are	referred	for	echocardiographic-based	CRT	device	

optimisation.		There	are	two	components	to	optimisation,	AV	and	interV	optimisation,	

depending	on	whether	the	patient	has	atrial	fibrillation	and	an	atrial	 lead	(and	hence	

AV	cannot	be	optimised),	or	not.	 	Several	methods	can	be	used	for	CRT	optimisation,	

including	 echocardiography	 (eg	 Ritter),	 aortic	 VTI	 or	 iterative,	 using	 non-invasive	

cardiac	 output	monitoring	 such	 as	 finger	 plethysmography,	 ECG	 and	 finally	 invasive	

haemodynamic	assessment	eg	dP/dt.	
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The	optimisation	process	used	in	Sheffield	is	outlined	below:	

	

AV	optimisation	–		

The	iterative	method	involves	increasing	the	timing	delay	between	the	RA	and	LV	in	a	

stepwise	fashion	(by	approximately	20ms),	during	which	echocardiography	 is	used	to	

image	the	mitral	 inflow	Doppler,	measuring	the	 inflow	 into	the	LV	from	the	LA,	both	

passive	e.g.	 ventricular	diastole	 (E	wave)	and	active	e.g.	atrial	 systole	 (A	wave).	 	 The	

shortest	AV	delay	that	does	not	truncate	the	A	wave	is	chosen,	allowing	for	maximal	LV	

filling	duration.	

	

InterV	optimisation	–		

The	aortic	VTI	method	involves	increasing	the	timing	delay,	between	the	LV	and	RV	in	a	

stepwise	fashion	(by	approximately	20ms),	during	which	echocardiography	 is	used	to	

image	the	LV	outflow	tract	to	measure	the	aortic	VTI,	approximating	to	the	LV	stroke	

volume.		The	timing	corresponding	to	the	largest	aortic	VTI	(averaged	over	3	cycles)	is	

chosen.	 Recently	work	 has	 concentrated	 on	 specific	 subgroups	 that	 have	 previously	

been	excluded	from	clinical	 trials	or	 failed	to	respond	such	as	patients	with	AF	180	or	

milder	HF-LVSD	 135.	 	 It	 is	 apparent,	 that	patients	with	RBBB	perform	 less	well	 in	CRT	

trials	 than	 their	 LBBB	 counterparts.	 The	 reason	 for	 this	 is	 as	 yet	 unknown,	 but	 such	

patients	may	require	multi-site	RV	pacing	for	the	RBBB,	like	the	LBBB	patients	receive	

for	their	LV.	

2.13 Conclusions	
 
In	 this	chapter	 the	rationale	 for	using	CRT	 in	a	pre-specified	patient	cohort	has	been	

outlined	and	the	evidence	base	for	doing	so.	The	challenges	in	predicting	response	to	

CRT	was	also	discussed	and	the	utility	of	optimising	the	device	to	individuals.	Building	

on	Chapters	2	and	3,	Chapter	4	will	then	cover	the	background	to	this	work	on	patients	

with	HF	and	predicting	their	response	to	CRT.	



								|	Page	97	

Chapter	3 Materials	and	methods	

In	this	chapter	the	patient	cohort	studied	in	this	project	is	delineated,	including	what	

tests	and	treatments	they	underwent,	at	what	time	point	and	why.		

3.1 Background	

This	 work	 was	 part	 of	 a	 larger	 multicentre	 centre	 study	 entitled	 “Translating	

biomedical	modelling	into	the	heart	of	the	clinic”	between	the	University	of	Sheffield	

(USFD)/STHT,	 University	 College	 London	 (UCL),	 King’s	 College	 London	 (KCL)	 and	

Imperial	College	London	(ICL)	and	was	funded	by	an	Engineering	and	Physical	Sciences	

Research	Council	(EPSRC)	grant	(R/125661-11-1)	as	part	of	the	“Grand	Challenges”	call;	

“Significant	problems	that	need	a	 long-term,	coordinated	approach	 from	researchers	

to	overcome”	(see	appendix).		The	overarching	aim	was	to	construct	a	robust,	intuitive	

workflow,	which	would	enable	the	creation	of	3D	predictive	cardiac	model,	based	on	

patient-specific	anatomy	and	cardiac	function.		The	four	participating	Universities	each	

provided	 specific,	 complimentary,	 expertise	 (see	 figure	 17),	 encompassing	 image	

acquisition,	processing,	modelling,	data	collection	and	clinical	application.			

3.2 Ethics	

The	 project	 was	 conducted	 in	 compliance	 with	 the	 principles	 of	 the	 Declaration	 of	

Helsinki	October	2008	and	 the	principles	of	Good	Clinical	Practice	 (GCP).	The	project	

was	 approved	by	 the	National	 Research	Ethics	 Service	 (NRES)	number	10/H0802/71.		

The	 study	 was	 undertaken	 under	 the	 auspices	 of	 the	 former	 National	 Institute	 for	

Health	Research,	Cardiovascular	Biomedical	Research	Unit	 (CVBRU)	 in	Sheffield	using	

the	clinical	research	facility	at	the	Northern	General	Hospital	(NGH)	part	of	STHT	and	it	

was	 also	 required	 to	 meet	 local	 requirements	 under	 the	 auspices	 of	 STHT	 local	

governance,	the	CVBRU	patient	panel	and	the	Sheffield	Scientific	and	Advisory	Board	

(SAB).	

3.2.1 Details	

3.2.1.1 Patients	

A	total	of	fifty	patients	selected	for	CRT	were	recruited	to	the	study.		Twenty	patients	

were	 recruited	under	PS	at	 STHT	and	 thirty	were	 recruited	at	Guys	and	St	 Thomas’s	
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NHS	 Trust	 (GST)	 under	 RR.	 	 The	 total	 cohort	 size	 was	 determined	 by	 a	 power	

calculation,	assuming	a	two-thirds	responder	rate	to	CRT	with	95%	confidence	interval	

(±	17%	for	sensitivity	and	±	23%	for	specificity)	predicting	response.		This	also	allowed	

for	a	worst-case	scenario	where	the	computer	models	perform	no	better	than	chance	

(i.e.	 sensitivity	 and	 specificity	 =	 50%)	 at	 predicting	 response.	 	 All	 patients	 were	

assessed	 at	 baseline,	 6	 and	 12	months	 post	 implantation	 (+/-	 2	weeks)	 in	 terms	 of;	

cardiac	structure	and	function,	objective	and	subjective	measures	of	exercise	capacity	

and	levels	of	neurohormonal	biomarkers.			

	

Figure	17:	Grand	Challenge	Modelling	project	workflow	and	division	of	labour	

 
Figure	17	demonstrates	the	division	of	labour,	data	flow,	various	workpackages	(WP)	

and	partners	involved	in	the	Grand	Challenge	modelling	project.	

3.2.1.2 Sheffield	sub-set	of	20	patients		

A	number	of	different	tests	were	selected	for	evaluation	as	potential	novel	predictors	

or	novel	markers	of	response.	A	predictor	would	be	able	to	demonstrate	a	significant	

difference	 at	 baseline	 between	 responders	 and	 nonresponders	 whereas	 a	 marker	
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would	 demonstrate	 a	 significant	 difference	 during	 follow-up	 when	 compared	 to	

baseline.			

Tests	 were	 chosen	 based	 on	 a	 gap	 in	 the	 evidence	 from	 the	 existing	 literature	 on	

predicting	and	measuring	response	to	CRT:		

• Blood	Biochemistry	

o Uric	acid	(UA)	

o High	sensitivity	c-reactive	peptide	(hsCRP)	

o High	sensitivity	Troponin	T	(hsTnT)	

o Parathyroid	hormone	(PTH)	

o Vitamin	D	(VitD)	

• Urinary	Biochemistry	

o Microalbuminuria	(UMA)	

• Endothelial	function	

o Flow	mediated	dilation	(FMD)		

• Skeletal	muscle	function	

o Handgrip	strength	(HGS)	

• Non-invasive	cardiac	haemodynamics	

o Ballistocardiography	(BCG)	

3.2.2 Patient	Selection	

The	inclusion	criteria	for	both	GSTT	and	STHT,	in	terms	of	patients	deemed	suitable	for	

CRT	reflected	the	NICE	(2007)	health	technology	appraisal	134	which,	in	turn,	was	based	

heavily	 on	 evidence	 from	 the	 CARE-HF	 study	 44	 137.	 Patients	 were	 eligible,	 if	 they	

suffered	from	HF-LVSD,	experienced,	or	had	recently	experienced,	symptom	severity	of	

NYHA	 class	 III-IV,	 were	 currently	 on	 optimal	 medical	 therapy	 (OMT)	 e.g.	 maximal	

tolerated	doses	(if	not	contra-indicated)	of	β-blockers	and	ACE-I/ARB	and	had	a	QRSd	

greater	 than	 150	 ms	 or	 120-149	 ms	 with	 a	 positive	 dyssynchrony	 echo	 study	

(demonstrating	 significant	 atrio-,	 inter-	 or	 intraventricular	 delay).	 	 Exclusion	 criteria	

related	mainly	to	contraindications	to	cMR	as	patients	were	required	to	have	a	scan	at	

baseline	in	order	to	create	the	personalised	3D	model.		For	this	reason,	patients	with	a	

pre-existing	pacemaker	(some	patients	are	upgraded	to	CRT	from	a	conventional	dual-

chamber	 device	 already	 in	 situ),	 claustrophobia	 (due	 to	 the	 narrow	 confines	 of	 the	

cMR	 scanner),	 pregnancy	 (due	 to	 concerns	 about	 the	 interaction	 between	magnetic	
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resonance	 and	 pregnancy)	 and	 an	 estimated	 glomerular	 filtration	 rate	 (eGFR)	 <	

25ml/min/1.73	m2	to	avoid	the	risk	of	nephrogenic	systemic	fibrosis	(NSF)	in	patients	

with	 severely	 impaired	 renal	 function	 following	 accumulation	 of	 the	 Gadolinium	

contrast	agent	used	in	cMR.	

3.2.3 Recruitment	of	Sheffield	Patients	

Recruitment	commenced	in	June	2012	and	twenty-one	patients	were	recruited	over	a	

12-month	period.	 	Approval	was	given	to	recruit	an	additional	patient	following	early	

withdrawal	of	one	patient	due	to	failed	LV	lead	implantation.			

	

The	aim	was	to	follow	up	twenty	patients	for	12	months,	with	assessment	at	baseline	

(within	2	weeks	pre-CRT	 implantation),	 echocardiography	guided	optimisation	of	 the	

device	at	6	weeks	post-CRT	implantation	and	assessments	at	6	months	and	12	months	

(±	 2	 weeks)	 post	 implantation	 to	 assess	 clinical	 response	 and	 to	 investigate	 novel	

predictors/markers	of	response.	

	

The	patients	were	mainly	lower/middle	class,	white,	British	men.		As	discussed	in	the	

introduction,	 recruiting	 ethnic	minorities	 and	women	 to	 clinical	 HF	 trials	 is	 difficult.		

Unfortunately	 a	 single	 Afro-Caribbean	 patient	 that	was	 approached	 declined	 to	 join	

the	study	and	no	other	suitable	patients	from	ethnic	minorities	were	identified	during	

the	 12-month	 recruitment	window.	 	 Similarly,	 only	 2	 females	were	 recruited	 to	 the	

study	 and	whilst	 a	 third	 female	 was	 approached	 unfortunately	 she	 died	 before	 she	

could	take	part	in	the	study.		The	patient	cohort	was	homogenous;	being	comprised	of	

predominantly	white	males	in	their	late	60s	and	thus	similar	to	other	CRT	studies,	but	

perhaps	does	not	reflect	the	demographic	make-up	of	South	Yorkshire	as	a	whole.	

	

The	 patients	 came	 from	 a	 variety	 of	 locations	 around	 South	 Yorkshire,	 including	

Sheffield,	 Barnsley,	 Rotherham	 and	 Chesterfield	 and	 areas	 further	 afield	 such	 as	

Nottinghamshire	 and	 Derbyshire.	 	 They	 also	 came	 from	 a	 variety	 of	 employment	

backgrounds	 including	mining,	accountancy,	pharmacy,	nursing,	engineering,	 farming	

and	heavy	goods	driving.		In	terms	of	marital	status,	18	of	the	patients	were	married,	

one	was	single,	one	divorced	and	one	a	widower.	Potential	patients	for	recruitment	to	

the	project	were	identified	in	one	of	several	ways:	

• By	direct	referral	to	PS	either	within	STHT	or	externally	from	another	hospital.	
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• From	a	biweekly	review	of	the	joint	CRT/ICD	waiting	list	by	DW	and	PS.	

• From	 a	 list	 of	 dyssynchrony	 studies	 from	 the	 STHT	 echocardiography	

department.	

• From	a	specialist	nurse	 (JM)	who	pre-assessed	all	patients	referred	for	CRT	 in	

STHT.	

• All	 consultants	 and	 trainees	 in	 STHT	 were	 asked	 and	 reminded	 for	 suitable	

patients.	

Once	 the	 patients	 had	 been	 identified,	 but	 before	 they	 were	 formally	 approached,	

their	hospital	notes	were	reviewed	to	ensure	they	met	all	of	the	inclusion	criteria	and	

none	 of	 the	 exclusion	 criteria.	 	 In	 the	 first	 instance,	 DW	 contacted	 the	 patients	 via	

telephone.	 	 The	 project	 was	 discussed	 briefly	 and	 then	 a	 patient	 information	 sheet	

(PIS)	was	 sent	 (see	 appendix).	 	 The	 patient	was	 contacted	 again	 two	weeks	 later	 by	

phone,	this	ensured	that	they	had	adequate	time	to	read	the	material,	discuss	it	with	

their	partner	or	next	of	kin	and	establish	if	they	had	any	questions.	

 

If	the	patient	did	not	wish	to	take	part,	no	further	questions	were	asked.		If	they	did,	

then	a	date	was	agreed	with	the	patient	for	their	first	appointment.		In	some	cases	this	

was	 the	 cMR	 scan	 and	 in	 others	 a	 baseline	 assessment	 including	 echocardiography,	

exercise	and	blood	tests	was	carried	out.		On	arrival	the	patients	all	gave	their	written	

consent	 to	 take	part	 in	 the	project	 (see	appendix)	 and	any	questions	 they	had	were	

addressed.	 	 A	 letter	 (See	 appendix)	 was	 also	 sent	 to	 their	 general	 practitioner	 (GP)	

informing	them	that	they	would	be	taking	part.	

 

Delays	in	obtaining	ethical	and	R&D	approval	these	centered	around	discussions	over	

the	 research	 protocol	 and	 the	 appropriate	 costing	 of	 tests	 locally	 and	 presented	 a	

challenge	 to	 starting	 recruitment.	 	 Recruitment	 finally	 commenced	 some	10	months	

after	 the	 project	 had	 officially	 started	 and	 was	 finished	 in	 12	months.	 	 In	 total,	 60	

patients	were	 considered	 for	 recruitment,	 20	were	not	 approached	as	 they	 failed	 to	

meet	 the	 inclusion	 criteria,	 despite	 initial	 promise,	 and	 19	 were	 approached	 but	

declined	for	various	reasons,	including	frailty	and	lack	of	time.	

3.2.4 Patients	at	baseline		

Tables	12	and	13	summarises	all	the	patients	at	baseline.	All	the	patients	were	in	NYHA	

class	 III,	 the	majority	of	 the	patients	had	HF-LVSD	of	 ischaemic	aetiology	and	twenty	
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patients	 had	 a	 LBBB	morphology.	 Nearly	 all	 the	 patients	 were	 overweight	 or	 obese	

according	to	their	BMI,	reflecting	the	high	prevalence	of	obesity	in	the	UK,	despite	the	

‘cardiac	 cachexia’	 commonly	 found	 in	patients	with	end-stage	HF-LVSD.	 	 If	 the	QRSd	

was	120-149	ms,	then	the	criteria	for	a	positive	dyssynchrony	echo	included;	mean	AV	

delay	calculated	by	mitral	valve	filling	was	<	40%,	interV	delay	(IVMD)	calculated	by	the	

delay	between	the	aortic	and	pulmonary	pre-ejection	periods	>	40ms	and	intraV	delay,	

using	PW	TDI	to	calculate	the	difference	in	peak	septal-lateral	wall	motion	>	40ms.	The	

majority	of	the	patients	were	taking	β-blockers	and	an	ACE-I	or	ARB	at	the	maximally	

tolerated	dose,	similarly	nearly	all	the	patients	were	taking	a	loop	diuretic	and	over	a	

half	 a	 mineralocorticoid	 receptor	 antagonist	 (MRA).	 For	 the	 patients	 who	 were	 not	

taking	either	a	β-blocker	or	an	ACE-I/ARB,	 it	was	clarified	with	 the	treating	physician	

(PS)	 before	 recruitment	 that	 this	 was	 because	 of	 intolerance	 or	 another	

contraindication.	At	the	time	of	recruitment,	a	variety	of	comorbidities	were	recorded,	

with	a	most	patients	suffering	from	several	conditions	other	than	their	HF-LVSD.	This	

table	demonstrates	that	the	inclusion	criteria	were	met.	

		

Table	12:	Summarising	the	21	patients	recruited	to	the	study	at	baseline	
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6MWD	=	6	minute	walk	distance,	ACEI	=	angiotensin	converting	enzyme	inhibitor,	AF	=	

atrial	fibrillation,	ARB	=	angiotensin	receptor	blocker,	BMI	=	body	mass	index,	CABG	=	

coronary	 artery	 bypass	 grafts,	 CKD	 =	 chronic	 kidney	 disease,	 COPD	 =	 chronic	

obstructive	pulmonary	disease,	EF	=	ejection	fraction,	HTN	=	hypertension,	M	=	male,	

MRA	=	mineralocorticoid	receptor	antagonist,	MLWHFQ	=	Minnesota	living	with	heart	

failure	questionnaire,	NYHA	=	new	york	heart	association,	QRSd	=	QRS	duration.	 
Table	13:	Summarising	scar	position,	device,	manufacturer	and	lead	position.	

Patient	
no	 Scar	position	 CRT	 Manufacturer	

Lead	position	
RA	 RV	 LV	

1	 N/A	 P	 Boston	 RAA	 Apex	 Posterior	vein	
2	 N/A	 D	 Boston	 Mid	RA	 Apex	 Lateral	vein	
3	 N/A		 D	 St	Jude	 RAA	 Apex	 Lateral	vein	
4	 Anteroseptal		 D	 Medtronic	 RAA	 Apex	 Posterior	vein	
5	 Anteroseptal		 P	 Guidant	 RAA	 Apex	 Middle	vein	
6	 N/A	 P	 Boston	 RAA	 Apex	 Lateral	vein	
7	 Anteroapical	 P	 Guidant	 RAA	 Apex	 Lateral	vein	
8	 Septal	 P	 Guidant	 RAA	 Apex	 Epicardial	
9	 	N/A	 P	 St	Jude	 RAA	 Apex	 Lateral	vein	
10	 	N/A	 P	 St	Jude	 N/A	 Apex	 Lateral	vein	
11	 Anterior	 D	 St	Jude	 N/A	 Apex	 Lateral	vein	
12	 N/A		 D	 Boston	 RAA	 Apex	 Lateral	vein	
13	 N/A		 D	 St	Jude	 Low	RA	 Apex	 Lateral	vein	
14	 Anterior	 D	 Boston	 N/A	 Apex	 Lateral	vein	
15	 	N/A	 P	 Boston	 RAA	 Apex	 Lateral	vein	
16	 Anteroseptal		 D	 Boston	 RAA	 Apex	 Lateral	vein	
17	 Anteroseptal		 D	 Boston	 RAA	 Apex	 Lateral	vein	
18	 	N/A	 P	 Guidant	 N/A	 Apex	 Lateral	vein	
19	 	N/A	 D	 Boston	 N/A	 Apex	 Lateral	vein	
20	 	N/A	 D	 Boston	 N/A	 Apex	 Epicardial	
21	 Apex	 D	 St	Jude	 RAA	 Apex	 Posterior	vein	

	

3.2.5 Statistics	
Statistical	analyses	were	performed	using	SPSS	version	18.0	(SPSS,	Inc).		Variables	were	

tested	 for	 normality	 using	 the	 Shapiro-Wilk	 test,	 with	 p	 <	 0.05	 considered	 to	 be	

significant	 and	 indicate	 non-parametric	 distribution.	 	 Values	 are	 expressed	 as	 either	

mean	 ±	 standard	 deviation	 for	 parametric	 data,	 percentages	 for	 nominal	 data	 or	

median	and	 interquartile	 range	for	non-parametric	data,	as	appropriate.	 	Differences	

between	 groups	 were	 compared	 using	 independent	 T-tests	 or	 Mann	 Whitney	 U	

(unpaired	 data)	 and	 Wilcoxon	 Sign	 Rank	 tests	 (paired	 data)	 for	 normally	 and	 non-

normally	distributed	variables	respectively.	For	all	parametric	data,	a	2-tailed	Student’s	

T-test	was	 used	 to	 examine	 statistical	 significance;	 unpaired	 for	 comparing	 between	
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groups	at	baseline.	Comparison	of	data	within	groups	during	follow	up	was	performed	

using	one-way	ANOVA	with	repeated	measures.	Categorical	data	was	analysed	using	a	

two-tailed	 Fisher’s	 exact.	 Pearson’s	 correlation	 coefficient	 was	 used	 to	 examine	 the	

strength	 of	 correlations	 in	 parametric	 data	 and	 Spearman	 Rank,	 for	 non-parametric	

data.	A	p	value	of	<	0.05	was	considered	significant.	

3.3 Conclusions	
 
In	 this	chapter	 the	patient	cohort	who	will	undergo	CRT	and	 then	be	 investigated	as	

part	of	the	Grand	Challenge	project	have	been	identified	at	baseline.	In	the	following	

chapter,	 their	 assessment	 of	 response	 will	 be	 assessed	 following	 CRT	 implantation,	

which	will	be	used	to	inform	Chapters	6	and	7	when	their	response	is	attempted	to	be	

predicted	 using	 computer	 models	 and	 measured	 using	 novel	 biophysical	 and	

biomarker	surrogates.	
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Chapter	4 Assessment	of	Response		
 
In	this	chapter	the	definition	of	a	CRT	responder	is	defined	and	the	Sheffield	cohort	of	

patients	 undergo	 multi-modal	 measures	 of	 response,	 at	 baseline	 and	 at	 6	 and	 12	

months	following	CRT	implantation.	This	definition	and	these	measures	are	then	used	

to	inform	the	modelling,	biomarker	and	biophysical	marker	work.	

4.1 Introduction	

Patients	 were	 assessed	 for	 response	 using	 a	 3	 pronged	 approach,	 namely;	

improvements	in	symptoms,	cardiovascular	fitness	and	LV	function	measured	using	the	

Minnesota	 Living	 with	 Heart	 Failure	 Questionnaire	 (MLWHFQ),	 cardiopulmonary	

exercise	 testing	 (CPET)/	 six	 minute	 walk	 distance	 (6MWD)	 and	 left	 ventricular	 end-

diastolic	volume	(LVEDV)	respectively.		This	evidence-based	approach	was	defined	by:		

	

• Cardiovascular	fitness		

o An	increase	of	1ml/kg/min	or	more	in	peak	VO2
172.	

o An	increase	by	10%	or	more	in	6MWD	86.	

• LV	reverse	remodelling		

o 	A	decrease	in	LVEDV	by	10%	or	more	158.	

• Symptoms		

o A	decrease	in	the	MLWHFQ	score	by	10	points	or	more	169.	

	

Patients	were	classified	as	true	responders	only	if	they	met	all	four	of	the	criteria	and	

therefore	nonresponders	if	they	met	three	or	less,	or	scored	worse	in	any	way,	when	

compared	 to	 their	 baseline	 results,	 at	 the	 6	 and	 12	month	 follow-up	 assessments.	

The	groups	were	mutually	exclusive	and	therefore	one	patient	could	not	belong	to	

both	groups.			

	

In	subsequent	chapters	of	this	thesis	the	terms	‘responder’	and	‘nonresponder’	will	be	

based	 on	 these	 criteria.	 	 These	 are	 based	 on	 widely	 used	 definitions	 for	 assessing	

response	 for	 CRT.	 However,	 whilst	 they	 are	 used	 collectively	 and	 robustly	 when	

assessing	clinical	 response,	when	predicting	 response	 they	are	often	used	selectively	

and	individually.	
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This	approach	was	selected	as	an	objective,	multimodal	and	robust	assessment	of	the	

patient	 and	 their	 response	 to	 CRT,	 rather	 than	 relying	 on	 one	 modality	 alone.		

Furthermore	whilst	 a	 patient	may	 feel	 pressured	 to	 say	 they	 feel	 better	 (due	 to	 the	

presence	of	a	medical	professional	or	relative),	improvement	on	all	4	fronts,	would	be	

less	 likely	 to	 be	 due	 to	 chance	 or	 bias.	 	 This	 was	 the	 first	 time	 that	 such	 a	 robust	

approach	 to	 the	prediction	of	 response	has	been	chosen,	as	 clearly	 the	definition	of	

response	must	be	agreed	a	priori.		

	

Other	possible	surrogate	markers	of	response,	such	as	QRSd,	weight	and	BP	will	also	

be	considered,	to	rule	out	possible	confounding	factors.	

4.1.1 Six	Minute	Walk	Test	

4.1.1.1 Introduction	

The	 6MWT	 is	 an	 objective,	 well-used	 and	 validated	 test	 of	 cardiorespiratory	

performance.	 It	measures	 the	 6MWD,	which	 is	 the	 distance	walked	 (in	metres)	 in	 6	

minutes	at	a	patients	normal	pace	on	a	flat,	hard,	even	surface.	

4.1.1.2 Methods	

The	 test	 was	 administered	 according	 to	 the	 2002	 American	 Thoracic	 Society	 (ATS)	

guidelines	 181.	 A	 corridor,	 meeting	 the	 30m	 required	 length,	 within	 the	 Pulmonary	

Function	Unit	 (PFU)	of	 the	NGH	 in	 Sheffield	was	used.	 	 The	 test	was	 supervised	and	

recorded	by	the	investigator	(DW)	and	TH,	a	senior	respiratory	physiologist.	 	Patients	

were	 asked	 to	wear	 comfortable	 clothes	 and	 footwear,	were	 given	 a	 light	 breakfast	

several	hours	before	and	the	test	was	conducted	at	the	same	time	of	day	(11:30-12:30)	

to	minimise	 potential	 confounding	 factors.	 	 All	 patients	were	 rested	 for	 10	minutes	

prior	to	beginning	the	6MWT	and	a	baseline	assessment	of	breathlessness,	was	taken	

using	the	Borg	scale	(see	appendix).	

	

Once	rested,	patients	were	directed	to	the	start	of	the	walkway	and	asked	to	walk	in	a	

straight	line	to	the	end	of	the	corridor	(and	back),	at	their	normal	walking	pace,	and	to	

repeat	 this	 as	 often	 as	 they	 could	 in	 6	minutes.	 	 The	 6	minutes	was	 timed	 and	 the	

number	of	laps	recorded.		They	were	allowed	to	use	their	normal	walking	aid	(where	

appropriate)	and	were	told	they	could	stop	if	needed	to	rest,	for	whatever	reason,	no	
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encouragement	was	given	other	than	to	continue	on	following	a	rest	or	to	check	that	

they	were	not	in	distress.		There	were	chairs	along	the	corridor	the	patients	could	use	

if	 needed.	 	 Members	 of	 staff	 conducting	 the	 6MWT	 were	 trained	 in	 Advanced	 Life	

Support	(ALS)	and	a	crash-trolley	with	oxygen,	defibrillator	and	medicines	was	kept	to	

hand	should	an	urgent	need	arise.		

	
The	 presence	 of	 a	 relative	 had	 to	 be	 controlled	 for,	 as	 the	 patient’s	 spouse	 often	

accompanied	 them	 to	 the	 assessment	 and	 their	 presence	 may	 have	 influenced	 the	

patients	 to	 walk	 further	 than	 they	 would	 have	 otherwise.	 	 This	 influence	 was	

minimised	where	possible,	by	keeping	the	spouse	away	from	the	6MWT	area.	 	There	

was	a	change	in	the	walk	area	18	months	into	the	project,	which	was	unavoidable	due	

to	 a	 relocation	 of	 the	 PFU	within	 STHT.	 	 This	meant	 there	was	 now	 a	 purpose	 built	

6MWT	 area	 within	 the	 department.	 	 Following	 the	 procedure,	 the	 patients	 were	

offered	a	glass	of	water;	a	 further	assessment	of	breathlessness	was	made	using	the	

Borg	scale	and	then	the	patients	rested	for	10	minutes	before	leaving	the	department.	

4.1.1.3 Results	
	

Table	14:	6MWD	comparing	responders	and	nonresponders	at	baseline	

6MWD	(m)	
Responders	 Nonresponders	 Student's	T-test		
Mean	 SD	 Mean	 SD	 P	value	

Time	(months)	 Baseline	 374.3	 112.8	 337.4	 144.7	 0.23	
	

Table	15:	6MWD	in	responders	comparing	baseline	results	with	follow-up.	

6MWD	(m)	
Responders		 One way ANOVA with repeated measures	
Mean	 SD	 P	value	

Time	(months)	
Baseline	 374.3	 112.8	 Baseline	vs.		

6	 391.0	 108.1	 6	months	 <	0.05	
12	 418.5	 105.3	 12	months	 <	0.05	

	
Table	16:	6MWD	for	nonresponders	at	baseline	and	follow-up	

6MWD	(m)	
Nonresponders		 One way ANOVA with repeated measures	

Mean	 SD	 P	value	

Time	(months)	
Baseline	 337.4	 144.7	 Baseline	vs.		

6	 279.2	 155.5	 6	months	 0.34	
12	 279.6	 113.8	 12	months	
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Figure	18:	6MWD	in	responders	(white)	and	non-responders	black	

 
 
Figure	18	demonstrates	 the	differences	 in	 the	6	minute	walk	duration	 in	 responders	

and	non-responders	at	baseline	and	at	6	and	12	months	 following	CRT	 implantation.	
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Using	 a	 two-tailed	 Student’s	 T-test	 at	 baseline,	 there	 was	 no	 statistically	 significant	

difference	 in	 6MWD	 between	 responders	 and	 nonresponders	 (see	 table	 14).		

Responders	showed	an	improvement	at	both	6	and	12-month	follow-up	(see	table	15	

and	figure	18.	According	to	one	way	ANOVA	with	repeated	measures	and	Greenhouse-

Geisser	correction	determined	this	difference	over	12	months	was	significant	(F(1.93,	

21.03)	 =	 22.67,	 p	 <	 0.01).	 Post-hoc	 analysis	 using	 the	 Bonferroni	 correction	

demonstrated	responders	had	statistically	significant	differences	between	baseline	and	

six	months	 and	baseline	 and	 twelve	months.	 There	was	 a	 decrease	 in	 the	6MWD	 in	

nonresponders	at	6	and	12	months,	but	this	trend	was	not	statistically	significant	(see	

table	16	and	figure	18).	

 

4.1.1.4 Discussion	

Figure	19:	Patient-undergoing	6MWT	with	purpose	built	walkway	

Figure	 19	 demonstrates	 one	 of	 the	

grand	 challenge	 patients	 undertaking	

the	 6	minute	walk	 test	 in	 the	 purpose	

built	walk	way	in	the	lung	function	unit	

at	 the	Northern	General	Hospital,	with	

pulse	oximeter	on	their	right	hand.	

	

	

Of	the	cohort	of	19	patients	followed	up	for	12	months,	15	demonstrated	a	significant	

increase	 (10%)	 in	 the	 6MWD.	 	 Accordingly,	 fourteen	 of	 these	were	 categorised	 as	 a	

responders	and	one	was	categorised	as	a	nonresponder	using	the	criteria	mentioned	

previously.	 	Although	a	difference	was	recorded	between	the	groups	at	baseline,	this	

was	 not	 statistically	 significant,	 suggesting	 that	 the	 groups	 had	 a	 similar	 level	 of	

capability	 in	 terms	 of	 this	 particular	 metric	 before	 CRT	 implantation.	 In	 terms	 of	

responders,	6	demonstrated	>	10%	increase	at	6	months	with	a	further	8	at	12	months.	

The	 non-responder	 demonstrated	 a	 >	 10%	 increase	 at	 6	 months,	 sustained	 at	 12	

months	and	a	further	non-responder	demonstrated	a	<	10%	increase	at	12	months.	

	

Every	effort	was	 taken	 to	ensure	 that	 the	 test	was	performed	 in	a	 standardised	and	

controlled	fashion	but	there	were	some	limitations,	which	should	be	noted	(see	figure	
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19).	 	During	 the	 initial	18	months	of	 the	project,	 the	6MWT	was	carried	out	along	a	

specific	corridor	in	the	PFU	at	the	NGH,	where	similar	clinical	tests	were	carried	out	for	

HF-LVSD	and	COPD.		This	location	was	not	ideal	as	it	was	often	busy	with	clerical	and	

medical	staff	and	other	patients	attending	the	PFU	and	it	had	many	doors	opening	on	

to	it.		Patients	were	told	that	people	would	get	out	of	their	way	and	members	of	staff	

were	 also	 told	 be	 aware	 of	 patients	 using	 the	 corridor	 for	 this	 purpose	 and	 so	

disruption	 was	 kept	 to	 a	 minimum.	 	 However,	 being	 a	 clinical	 environment	 it	 was	

impossible	 to	 predict,	measure,	 or	 avoid	 other	 people	 using	 the	 corridor	 and	 at	 the	

time	there	was	no	alternative	site	at	the	NGH,	which	was	suitable	for	undertaking	the	

test.	As	the	PFU	was	some	10	minutes’	walk	away	from	the	ECG	department	where	the	

other	 tests	 were	 carried	 out,	 whenever	 possible	 the	 patients	 were	 taken	 by	

wheelchair.	This	ensured	they	were	as	 rested	as	possible	before	the	test.	 	To	ensure	

patients	 did	 not	 feel	 patronised,	 their	 decision	 to	walk	 had	 to	 be	 respected	 and	 for	

those	who	walked	every	effort	was	made,	once	they	arrived,	to	ensure	that	they	were	

not	out	of	breath	and	adequately	rested	before	undertaking	the	test.	

	

The	learning	effect	in	6MWT	performance	is	well	known;	healthy	individuals	have	been	

shown	 to	 improve	 when	 assessed	 on	 consecutive	 days,	 an	 improvement	 which	 is	

stable	 at	 2	months	 182.	 However,	 it	 is	 unclear	 whether	 this	 translates	 to	 a	 HF-LVSD	

population	and	furthermore,	whether	this	is	relevant	as	patients	were	assessed	three	

times	over	a	12	month	period,	with	gaps	of	 six	months	 183.	 Indeed,	other	 studies	on	

repeated	 6MWT	 on	 HF-LVSD	 patients	 found	 performance	was	 not	 always	 improved	

and	questioned	the	feasibility	of	repeat	performance	of	6MWT	in	a	clinical	setting	184.		

	

In	 December	 2012,	 the	 PFU	 moved	 to	 a	 new	 building	 with	 a	 purpose	 built	 6MWT	

corridor.	 	 This	was	a	wide	corridor,	with	no	doors,	windows	or	other	 impedances	or	

distractions.	 	 It	 is	 difficult	 to	 say	 what	 influence	 this	 may	 or	 may	 not	 have	 had	 on	

performance	of	the	patients	on	the	6MWT.	 	At	this	point	10	patients	had	completed	

the	 study,	 7	 patients	 were	 awaiting	 12-month	 follow-up	 and	 2	 patients	 had	 yet	 to	

reach	 6-month	 follow-up,	 so	 over	 two-thirds	 of	 the	 assessments	 had	 already	 taken	

place.	 	 There	 was	 certainly	 no	 statistically	 significance	 difference	 in	 the	 6MWD	

recorded	 for	patients	 following	 the	move	 in	 this	 study	or	during	 subsequent	 routine	

clinical	assessments	out	width	this	study	185.	However,	 the	change	 in	venue	this	may	
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limit	 the	 reproducibility	 of	 results	 and	 perhaps	 should	 be	 considered	 an	 extraneous	

variable.	

	

Due	 to	 time,	 financial	 and	 logistical	 constraints,	 the	 6MWT	 was	 performed	 on	 the	

same	day	as	the	peak	VO2	test.	 	Furthermore,	whilst	the	investigator	(DW)	was	always	

present	e.g.	a	constant	influence,	different	members	of	staff	from	the	PFU	(depending	

on	availability)	would	help	perform	the	assessment.	 	However,	all	 staff,	 	 investigator	

included,	were	unaware	of	the	patient’s	previous	6MWT	performance.	

	

Given	 that	 a	 10%	 improvement	 in	 the	 6MWD	 is	 considered	 significant,	 absolute	

improvement	 depends	 upon	 the	 distance	 measured	 at	 baseline;	 for	 example,	 an	

increase	of	40m	will	not	be	significant	 if	 the	baseline	 is	450m	but	will	 if	 the	baseline	

was	200m.	 	 In	 a	meta-analysis	of	HF-LVSD	RCTs	by	Olsson	et	 al	 (2005)	32m	was	 the	

average	increase	in	6MWD	recorded	following	interventions	such	as	ACE-inhibitors,	β-

blockers	and	exercise	 training,	with	a	 significant	 improvement	 following	 intervention	

noted	in	only	9	of	47	trials.	For	this	reason	it	was	concluded	that	it	was	an	insufficiently	

robust	test	for	pharmacological	intervention,	although	it	was	greater	value	in	patients	

with	more	advanced	heart	failure	e.g.	CRT	trials,	where	 it	may	function	as	a	maximal	

exercise	test,	hence	being	used	in	this	study	and	others	174.		

	

Several	 of	 the	 patients	 had	 knee	 or	 hip	 osteoarthritis	 (OA)	 and	 found	 the	 walk	

challenging	due	to	pain	from	their	degenerative	joints.	At	the	time	of	the	test,	all	of	the	

patients	 had	 taken	 their	 daily	medications	 including	 analgesia,	 but	 clearly	OA	was	 a	

limiting	factor	in	their	performance.	Beyond	the	end	of	the	trial,	one	responder	had	a	

replacement	operation.		With	reduced	pain	one	might	expect	them	to	be	able	to	walk	

further	but	as	this	was	outside	the	timeframe	of	the	study	this	was	not	tested.	

	

It	 is	 important	 to	 highlight	 that	 the	 patients	 in	 this	 study	were	 not	 simply	 HF-LVSD	

patients,	many	 of	 them	 had	 other	 chronic	 organ	 diseases,	 such	 as	 renal	 failure	 and	

COPD,	all	of	which	may	have	had	an	impact	on	their	6MWD;	thus	underperformance	

might	not	simply	be	due	to	non-response	to	CRT.	 	As	mentioned	previously,	none	of	

the	previous	CRT	trials	comment	on	other	major	comorbidities	and,	in	this	regard,	it	is	

difficult	to	compare	and	contrast	these	results	with	those.		Most	patients	will	have	HF-
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LVSD	due	to	IHD,	following	cigarette	smoking,	HTN	and/or	DM,	which	will	also	increase	

the	 likelihood	 of	 other	 functionally	 limiting	 diseases	 such	 as	 CKD,	 COPD	 and	 PVD.		

Equally,	mood	and	motivation	vary	on	daily	basis	even	in	healthy	individuals,	and	this	

type	of	measure	of	function,	ignores	such	variables.		Due	to	the	time	constraints	of	the	

project,	 the	patients	 could	not	be	 tested	 repeatedly	or	brought	back	at	other	 times.		

With	patients	in	the	project	having	a	mean	comorbidity	of	5	diseases	it	is	perhaps	not	

surprising	that	they	may	have	been	functionally	limited	due	to	other	reasons.	

	

Patients,	who	 responded	 to	 CRT,	 often	 performed	worse	 on	 repeated	 testing	 of	 the	

6MWD,	 despite	 recording	 a	 higher	 peak	 VO2	 subsequently	 on	 CPET,	 which	 seems	

illogical.	 Clearly	 peak	 VO2	 and	 6MWD	 relate	 to	 different	 aspects	 of	 the	

cardiorespiratory	 fitness,	 thus	one	might	not	 expect	necessarily	 any	 improvement	 in	

peak	VO2	to	be	mirrored	in	6MWD	and	6MWD	is	more	subjective	than	peak	VO2.	Yet	

6MWD	 is	more	 ‘real	world’	 and	 subsequently	 of	 greater	 importance	 to	 the	 patients	

e.g.	“I	can	I	now	walk	to	the	shops	and	back”.	

	

In	the	context	of	data	from	other	trials	(see	table	17),	the	6MWD	at	baseline	in	the	CRT	

trials	 listed	 ranges	 between	 244m	 to	 363m.	 	 The	 lowest	 distance	 is	 from	 the	

COMPANION	trial	and	the	highest	from	the	RAFT	trial,	reflecting	their	inclusion	criteria	

of	NYHA	functional	class	III-IV	and	II-III	respectively.		Our	responder	group	at	baseline	

(average	 394m)	 appear	 somewhat	 fitter	 than	 baseline	 groups	 from	 other	 studies.		

However,	taken	together	as	a	whole,	the	groups	are	similar.	A	394m	walk	in	6	minutes	

along	busy	corridor,	means	the	patients	may	already	at	their	physiological	limit,	with	a	

walking	 speed	 of	 1m/s	 or	 2.5mph,	 not	 dissimilar	 to	 that	 expected	 from	 healthy	

individuals.	 	 The	 12%	 increase	 in	 6MWD	 12	 months	 is	 in	 keeping	 with	 the	 studies	

below,	albeit	 at	6	months	but	at	 the	 time	of	writing	 there	are	no	published	 studies,	

which	report	6WMD	in	CRT	patients	at	12	months. 
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Table	17:	Mean	6MWD	at	baseline	and	at	6	months	in	the	CRT	trials	

 

4.1.1.5 Conclusion	
	
The	6MWT	was	carried	out	to	the	best	of	our	ability,	with	regards	to	standardisation,	

local	protocols	and	national	guidelines.	There	was	no	statistically	significant	difference	

between	 the	 groups	 at	 baseline	 and	 but	 there	 was	 a	 significant	 improvement	 in	

responders,	6	at	12	months	and	14	at	12	months.	There	is	anecdotal	evidence	that	the	

PFU	has	found	the	6MWT	to	be	unreliable	in	clinical	use,	when	compared	to	CPET	and	

derived	measures	such	as	peak	VO2
185.			

	

4.2 Cardiopulmonary	Exercise	Test	

4.2.1.1 Introduction	

The	 cardiopulmonary	 exercise	 test	 (CPET)	 is	 an	 objective	 and	 scientific	 measure	 of	

cardio-respiratory	fitness.		As	mentioned	in	Chapter	3,	the	CPET	is	used	to	record	the	

patient’s	peak	VO2,	this	 is	the	maximal	value	attained,	but	not	necessarily	attainable,	

during	exercise	testing	to	exhaustion.		The	individual	is	asked	to	cycle	(or	run)	against	

an	increasing	load	during	which	gas	exchange,	electrocardiograph,	blood	pressure	and	

work	are	monitored	and	recorded.		Considered	by	some	to	be	the	‘gold	standard’	for	

HF-LVSD	 functional	 assessment,	 others	 regard	 it	 as	 more	 expensive	 and	 time-

consuming	version	of	the	6MWT.	

4.2.1.2 Method	

The	patients	had	a	light	breakfast	several	hours	before	testing	and	were	rested	for	10	

minutes	immediately	before	the	test.	 	The	tests	were	all	conducted	around	the	same	

time	 of	 day,	 between	 12:30-13:30,	 to	minimise	 the	 risk	 of	 any	 confounding	 factors.		

The	tests	were	conducted	by	a	senior	physiologist	(TH).		Both	the	physiologist	and	the	

Trial	
Mean	6MWD	(m)	in	CRT	responder	group	

Baseline	 6	months	 Increase	(%)	
COMPANION	 244	 284	 16.3	
CONTAK	 316	 351	 11.0	
MADIT	 363	 N/A	 N/A	
MIRACLE	 305	 344	 12.7	
MUSTIC	 320	 350	 9.3	
PATH	 342	 386	 12.8	
RAFT	 355	 N/A	 N/A	
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investigator	 were	 trained	 in	 advanced	 life	 support	 and	 a	 crash	 trolley	 containing	

oxygen,	defibrillator	and	emergency	medications	was	kept	in	the	room	during	the	test,	

in	case	of	urgent	clinical	need.	

	

The	 patient’s	 name,	 date	 of	 birth	 and	 hospital	 number,	 height	 and	 weight	 were	

entered	into	the	CPET	workstation	station	(Masterscreen,	Carefusion,	UK).		

	

The	patient	was	 asked	 to	 sit	 in	 a	 chair	 and	ECG	electrodes	were	attached,	 for	 the	4	

limb	leads:	right	arm	(RA),	left	arm	(LA),	right	leg	(N)	and	left	leg	(F).		The	patient	was	

shaved	if	there	was	poor	contact	between	the	electrode	and	skin.		In	order	to	prevent	

entanglement	during	cycling,	 the	2	 limb	electrodes	were	 located	 in	the	right	and	 left	

inguinal	 fossae	and	the	arm	electrodes	 in	the	subclavicular	areas.	 	The	6	chest	 leads,	

from	V1	–	V6	were	then	placed	in	the	usual	manner,	from	4th	 intercostal	space	(right	

parasternal)	to	5th	intercostal	space	(left	mid-axillary).		

	

The	patient	was	then	taken	to	the	bicycle	ergometer	(ViaSprint	150,	Carefusion,	UK),	

the	saddle	height	adjusted	to	ensure	optimum	comfort	and	pedalling	ergonomics,	with	

around	 5	 degrees	 of	 knee	 flexion	 at	 the	 bottom	 end	 of	 the	 pedal	 stroke.	 	 The	

handlebar	 height	was	 adjusted	 for	 comfort;	 neither	 the	 saddle	 nor	 handlebars	were	

adjustable	fore	or	aft.		The	patient’s	feet	were	then	secured	onto	the	pedals	using	toe-

straps.	

	

The	patient	was	connected	to	the	10	ECG	leads,	a	blood	pressure	sphygmomanometer	

and	a	transcutaneous	oxygen	saturation	monitor.	 	The	correct	size	of	breathing	mask	

was	 established	 and	 placed	 over	 the	 patient’s	 mouth,	 ensuring	 a	 tight	 seal.	 	 The	

patient	was	asked	not	to	talk	for	the	duration	of	the	test,	but	to	gesture	by	tapping	the	

handlebar	 if	 they	 felt	 unwell	 and	 to	 shake	 or	 nod	 their	 head	 in	 response	 to	 yes/no	

questions.	

	

Baseline	 data	 (blood	 pressure,	 ECG,	 heart	 rate,	 oxygen	 saturations,	 ventilation	 rate	

(VE),	VO2	and	VCO2	were	collected	over	 several	minutes,	with	 the	patient	at	 rest	and	

breathing	freely.		
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The	patient	cycled	for	5	minutes	against	no	resistance,	to	warm	up	and	to	ensure	that	

resting	 VO2	 had	 plateaued.	 	 Any	 necessary	 adjustments	 to	 the	 recording	 apparatus	

were	 made	 before	 a	 load	 was	 added	 incrementally	 (20	 watts	 per	 minute),	 by	

increasing	the	pedalling	resistance.		The	ECG	was	monitored	continuously	for	signs	of	

cardiac	 ischaemia	 or	 arrhythmia,	 along	 with	 BP	 and	 O2	 saturation	 recordings.	 	 The	

patient	was	asked	intermittently	if	they	were	experiencing	chest	pain	or	dizziness	and	

they	 answered	 by	 nodding	 or	 shaking	 their	 head.	 	 The	 test	was	 continued	 until	 the	

patient	 could	 cycle	 no	more,	 either	 because	 they	 were	 too	 breathless	 or	 their	 legs	

were	 too	 painful,	whilst	 ensuring	 that	 the	 respiratory	 exchange	 ratio	 (RER)	was	 >	 1.		

This	RER	level	indicated	that	the	patient	was	nearing	the	limit	of	their	cardiorespiratory	

capacity.	The	load	was	then	removed	and	the	patient	was	encouraged	to	pedal	gently	

to	allow	them	to	recover	and	to	cool	down.	

	
During	the	cool	down,	monitoring	was	continued	and	the	data	recorded	until	baseline	

levels	were	 re-established.	 	 Finally	 the	patient	was	 assessed	using	 the	Borg	 and	RPE	

scales	 (see	appendix)	 to	 record	how	hard	 they	had	worked	and	how	breathless	 they	

were	at	the	peak	of	the	test.	

	
Specific	criteria	needed	to	be	met	if	the	patient	was	to	be	stopped	from	finishing	the	

test,	 such	as	 significant	 ST	depression	or	 fall	 in	oxygen	 saturations,	 but	 this	was	not	

encountered	during	any	of	 the	57	assessments.	 	The	patient	then	sat	 in	a	chair	 for	a	

further	10	minutes,	until	they	had	fully	recovered,	before	they	were	allowed	to	leave	

the	department	with	DW.	
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4.2.1.3 Results	
 

Table	18:	Baseline	CPET	metrics	in	responders	and	nonresponders.	

Baseline  
Responders Nonresponders Student's T-test 

Mean SD Mean SD P value 

Load W 82.3 16.9 81.1 24.3  = 0.29 

AT ml/kg/min 9.2 1.2 9.2 1.8 = 0.16 

Peak VO2 ml/kg/min 12.5 1.4 13.9 2.7 = 0.12 

Borg 1 - 10 4.4 2.2 4.5 1.0 = 0.76 

RPE 6 - 20 15.6 2.4 15.9 2.7 = 0.46 
	

Table	19:	CPET	metrics	in	responders	at	baseline	and	during	follow-up.	

	

Table	20:	CPET	metrics	in	nonresponders	at	baseline	and	during	follow-up.	

 

Responders  

Time (months) 
One way ANOVA 

with repeated 
measures  

Baseline 6 12 Baseline vs 

Mean SD Mean SD Mean SD 6 
months 

12 
months 

Load W 82.3 16.9 104.0 23.4 101.0 32.5 = 0.06 

AT ml/kg/
min 9.2 1.2 9.3 1.3 8.6 1.9 = 0.74 

Peak 
VO2 

ml/kg/
min 12.5 1.4 14.1 1.6 14.7 1.5 < 0.05 < 0.05 

Borg 1 - 10 4.4 2.2 3.9 0.8 4.0 0.9 = 0.97 

RPE 6 - 20 15.6 2.4 14.3 2.2 14.8 2.0 = 0.26 

Nonresponders 

Time (months) 
One way ANOVA 

with repeated 
measures 

Baseline 6 12 Baseline vs 

Mean SD Mean SD Mean SD 6 
months 

12 
months 

Load W 79.6 24.5 78.5 26.8 68.4 27.8 = 0.45 

AT ml/kg/
min 9.7 1.5 8.1 1.8 8.2 2.2 = 0.42 

Peak 
VO2 

ml/kg/
min 13.9 2.7 11.5 4.4 12.8 3.8 = 0.21 

Borg 1 - 10 5.3 1.7 4.3 1.3 4.8 1.3  = 0.65 

RPE 6 - 20 16.6 2.9 16.0 2.3 15.6 0.9 = 0.22 



								|	Page	117	

Figure	20:	Peak	VO2	in	responders	(white)	and	non-responders	(black)	

	
	
	

	

	

	

	

	

	

	

	

	

	

	Figure	 20	 demonstrates	 the	 differences	 in	 the	 peak	 VO2	 in	 responders	 and	 non-

responders	 at	 baseline	 and	 at	 6	 and	 12	 months	 following	 CRT	 implantation.
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Using	 a	 2-tailed	 Student’s	 T-test,	 there	 were	 no	 statistically	 significant	 differences	

between	responders	and	non-responders	at	baseline	(see	table	18).	

	

A	one-way	ANOVA	with	 repeated	measures	and	Greenhouse-Geisser	correction	used	

to	assess	any	difference	 in	responders	(see	table	19)	over	12	months	found	that	RPE	

(F(1.10,	8.83)	=	1.41,	p	=	0.26),	Borg	score	(F(1.37,	13.70)	=	0.15,	p	=	0.97	or	AT	(F(1.65,	

13.21)	 =	 0.26,	 p	 =	 0.74)	 were	 not	 significantly	 different,	 so	 post	 hoc	 analysis	 with	

pairwise	 comparison	 was	 not	 undertaken	 (see	 table	 19).	 A	 one-way	 ANOVA	 with	

repeated	measures	 that	did	not	 violate	Mauchly’s	 test	of	 sphericity	determined	 that	

workload	 in	responders	approached	statistical	significance	(F(2,	22)	=	4.45,	p	=	0.06).	

Finally,	a	one-way	ANOVA	with	repeated	measures	and	Greenhouse-Geisser	correction	

determined	 that	 peak	VO2	 (F(1.27,	 13.9)	 =	 9.26,	 p	 <	 0.01)	was	 significantly	 different	

over	 the	 12	 months	 (see	 figure	 20)	 and	 post-hoc	 analysis	 using	 the	 Bonferroni	

correction	 demonstrated	 responders	 had	 statistically	 significant	 differences	 between	

baseline	and	six	months	(p	<	0.05)	and	baseline	and	twelve	months	(p	<	0.05).	

	

A	 one-way	 ANOVA	 with	 repeated	 measures	 and	 Greenhouse-Geisser	 correction	

assessed	any	difference	in	non-responders	over	the	12	months	found	that	Load	(F(1.2,	

0.37)	=	0.91,	p	 =	0.45),	AT	 (F(1.26,	3.78)	=	0.91,	p	 =	0.42),	peak	VO2	 (F(1.26,	5.03)	=	

1.89,	p	=	0.21),	Borg	score	(F(1.56,	4.7)	=	0.45,	p	=	0.65)		or	RPE	(F(1.39,	2.78)	2.25,	p	=	

0.22)	were	 not	 significantly	 different,	 so	 post	 hoc	 analysis	with	 pairwise	 comparison	

was	not	undertaken	(see	table	20).		

4.2.1.4 Discussion	
Figure	21:	Patient	undergoing	CPEX	testing	on	bicycle	ergometer	

Figure	 21	 demonstrates	 a	

patient	 undergoing	 CPEX	

testing	on	a	static	ergometer	

bicycle	 in	 the	 pulmonary	

function	 unit,	 connected	 to	

pulse	oximetry,	12	 lead	ECG,	

and	 breathing	 apparatus	 to	

measure	gas	exchange.	
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The	 lack	 of	 statistically	 significant	 differences	 at	 baseline	 in	 CPET	 (see	 figure	 21)	

between	the	responder	and	nonresponder	groups	is	important.		This	suggests	that	the	

groups	were	 similar	 (at	 least	 in	 terms	 of	 cardiorespiratory	 function)	 before	 the	 CRT	

device	 was	 implanted	 and	 thus	 any	 subsequent	 differences	 in	 CPET	metrics	 can	 be	

attributed	to	the	intervention	alone.		

As	 detailed	 previously,	 patients	 were	 classed	 as	 responders	 if	 they	 achieved	 an	

increase	 in	 peak	VO2	of	more	 than	1ml/kg/min	during	 follow-up	 in	 conjunction	with	

significant	 improvements	 in	 2	 other	 areas.	 	 As	 can	 be	 seen,	 14	 patients	 were	

categorised	 as	 responders	 using	 these	 criteria	 and	 the	 group	 achieved	 not	 just	 an	

arbitrary	but,	 rather,	 a	 statistically	 significant	 increase	 in	peak	VO2	 at	 6	months	 (p	<	

0.05),	 which	 was	 sustained	 at	 12	 months	 (p	 <	 0.05).	 	 In	 contrast,	 nonresponders	

showed	deterioration	with	respect	to	peak	VO2	during	follow-up	but	this	change	was	

not	 significant.	 	 This	 demonstrates	 that	 CRT	 leads	 to	 significant	 gains	 in	

cardiorespiratory	fitness;	this	most	likely	due	to	improved	cardio-metabolic	function.	

Table	21:	Baseline	and	6	months	values	of	peak	VO2	in	the	CRT	trials	

	
	

	

	

	

In	terms	of	other	CPET	metrics,	there	was	a	measurable	increase	in	the	maximum	load	

responders	 were	 able	 to	 tolerate	 during	 follow-up	 testing.	 	 A	 fall	 was	 recorded	 for	

nonresponders,	although	this	was	not	statistically	significant.		This	means	that,	for	the	

same	 degree	 of	 breathlessness	 and	 fatigue	 as	measured	 by	 the	 Borg	 and	 RPE	 scale	

respectively,	 responders	 performed	 a	 greater	 level	 of	 work.	 	 In	 terms	 of	 anaerobic	

threshold,	there	was	deterioration	in	the	nonresponders	whilst	responders	seemed	to	

be	 stable	 during	 follow-up,	 this	 makes	 sense	 as	 this	 is	 the	 component	 of	

cardiorespiratory	fitness	that	is	trainable,	in	contrast	to	VO2	Max	which	is	believed	to	

be	largely	genetically	predetermined	and	can	be	influenced	only	slightly	by	training	or	

by	reducing	body	mass.		

	
The	baseline	mean	of	 13.0ml/kg/min	 for	 peak	VO2	 in	 this	 patient	 cohort	 (from	both	

groups)	is	in	agreement	with	the	data	from	other	trials	(table	21)	which	range	between	

Trial	
Mean	Peak	VO2	(ml/kg/min)	in	CRT	group	

Baseline	 6	months	 Increase	(%)	
RETHINQ	 12.4	 12.8	 3.2	
MUSTIC	 13.7	 16.2	 18.2	

MIRACLE	ICD	 13.3	 14.4	 8.2	
MIRACLE	 14.0	 15.1	 7.8	
CONTAK	 12.0	 12.8	 6.6	
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12-14ml/kg/min.		However,	the	trials	do	not	comment	upon	other	metrics	such	as	AT,	

Borg	 or	 RPE	 score.	 	 A	 low	 peak	 VO2	 score	 (<	 15kg/min/ml)	 is	 not	 only	 considered	

(amongst	other	criteria)	to	be	an	indication	for	heart	transplant	but	is	also	associated	

with	 increased	 mortality,	 demonstrating	 that	 this	 is	 a	 very	 unwell	 patient	 group.		

Currently	there	is	no	12	month	CPET	data	in	the	published	literature;	earlier	trials	that	

used	 CPET	 as	 a	 criterion	 appear	 to	 have	 stopped	 follow-up	 at	 6	 months	 whilst	

subsequent	larger	trials	which	continued	follow-up	for	over	2	years	did	not	use	CPET.	

Some	cite	the	patients’	lack	of	acceptance	or	their	condition	at	follow-up	as	deterring	

researchers	from	such	long	term	CPET	follow-up;	it	is	also	possible	that	such	data	may	

exist	but	remains	unpublished.		

	

Average	Borg	 and	RPE	 scores	 of	 4-6	 and	 15-16	 in	 all	 patients	 across	 all	 time	points,	

equates	 to	 “somewhat	 severe-severe	 breathlessness”	 and	 “hard-very	 hard”	 effort	

respectively.	 	 This	 is	 equivalent	 to	 exertion	 at	 around	 the	 anaerobic	 threshold	 and	

means	that	the	patients,	symptomatically	at	least,	considered	this	a	near-maximal	test.		

This	is	 important;	 if	the	patients	scored	poorly	on	one	of	these	then	it	would	suggest	

the	test	was	submaximal.		Furthermore,	values	for	peak	VO2,	AT	and	work	would	have	

questionable	 interpretations	 as	 it	 could	 be	 argued	 that	 the	 patient	 had	 not	 tried	 as	

hard	as	 they	could	and	 the	 limitation	might	be	psychological,	not	physiological.	 	 The	

degree	of	functional	impairment	in	this	patient	group	is	such	that,	even	at	80	watts	the	

mean	workload	achieved	for	the	cohort	as	a	whole,	patients	again	considered	this	to	

be	near	maximal	test.		Cycling	with	a	load	less	than	100	watts	or	16km/h	is	considered	

to	be	light	effort	equivalent	to	5-6	metabolic	equivalents	of	task	(METs)	or	metabolic	

equivalents.		A	MET	is	a	measure	of	the	metabolic	cost	of	exercise	during	a	particular	

physical	 activity	 compared	 to	 a	 reference	 activity,	 with	 1	 MET	 (1	 kcal/	 kg	 x	 hr)	

equivalent	 to	 an	 effort	 of	 3.5ml/kg/min.	 	 This	 is	 a	 further	 demonstration	 of	 the	

functional	limitations	of	this	group.		

	
The	improvement	of	1.6ml/kg/min,	recorded	for	the	responders	at	6	months,	is	higher	

than	 that	 reported	 in	 other	 trials,	 which	 averaged	 1ml/kg/min	 in	 similar	 patient	

groups.	 	 The	 reason	 for	 this	 degree	 of	 benefit	 is	 unclear	 since,	 at	 baseline,	 these	

patients	appear	to	be	similar	to	cohorts	from	other	CRT	trials.		The	improvement	may	

be	due	to	CRT	alone	by	improving	stroke	volume,	cardiac	output	and	cardiorespiratory	
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fitness	or	 it	 is	possible	CRT	allows	patients	 to	exercise	more,	 further	 improving	 their	

skeletal,	 respiratory	 and	 cardiac	 physiology	 and	 adding	 to	 the	 gains	 from	 the	 CRT	

device.		The	12-month	data	is	of	particular	interest,	as	at	the	time	of	writing,	there	is	

no	published	follow-up	data	at	12	months for	peak	VO2.		The	improvements	seen	at	6	

months	were	maintained,	 and	 in	 3	 cases,	 improved	 upon,	 at	 12	months.	 	 Peak	 VO2	

proved	to	be	the	most	powerful	of	all	the	measure	of	response;	if	a	patient	improved	

significantly	 in	 terms	 of	 this	 domain	 then	 they	 improved	 in	 terms	 of	 all	 the	 other	

markers	of	response,	except	the	6MWD.		

	
There	was	only	one	large	change	in	the	other	CPET	metrics	at	follow-up,	bordering	on	

significance,	 namely	 an	 increase	 in	 work	 in	 responders.	 	 This	 makes	 sense	 as,	 with	

improvements	in	cardiac	function,	the	patients	might	be	expected	to	achieve	a	higher	

workload	than	at	baseline.	 	Whilst	the	anaerobic	threshold	is	known	to	improve	with	

training,	 it	 is	 unlikely	 that	 any	 of	 the	 patients	 will	 have	 been	 exercising	 to	 such	 an	

extent	in	their	day-to-day	life	to	improve	this	threshold	and	hence	large	improvements	

would	not	be	expected.	 	The	 lack	of	 significant	difference	 in	 the	Borg	or	RPE	scores,	

suggests	that	the	patients	did	not	feel	they	were	trying	any	harder	following	CRT,	but	

their	 workload	 and	 peak	 VO2	 were	 actually	 higher.	 	 This	 is	 important	 as	 significant	

differences	in	Borg	or	RPE	scores	following	CRT	implantation	might	suggest	that	it	was	

because	 they	 were	 ‘trying’	 more	 e.g.	 the	 difference	 was	 psychological	 rather	 than	

physiological.		For	nonresponders,	there	were	no	statistically	significant	differences	in	

any	of	the	metrics,	suggesting	that	whilst	they	had	not	deteriorated	significantly	during	

the	 follow-up	 period,	 neither	 had	 they	 significantly	 improved.	 	 This	 defines	 a	

nonresponder.	

	

The	intrinsic	difficulty	in	using	a	symptom	limited	(VO2	peak)	rather	than	the	maximal	

test	 (VO2	Max),	 is	 that	 although	patients	 are	encouraged	 to	 continue	once	 they	 feel	

that	 they	have	 reached	 their	 limits	 they	will	 stop,	 regardless	of	whether	or	not	 they	

could	 in	 reality	 continue.	 	 Furthermore	an	 inherent	 issue	 in	 serial	 testing	 is	ensuring	

that	patients	comply,	and	continue,	with	the	research	project.	 	 If	 they	 feel	 that	 their	

health	 is	 being	 negatively	 impacted	 or	 their	 autonomy	 overridden,	 then	 they	 may	

withdraw	jeopardising	the	project.	 	The	 investigator	chose	not	to	encourage	patients	

during	testing	in	case	this	was	deemed	to	be	coercion,	but	the	clinical	staff	encouraged	
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patients	 as	 per	 their	 usual	 practice.	 	 Neither	 the	 investigator,	 clinical	 staff	 nor	 the	

patient	was	allowed	to	know	previous	performance	on	this,	nor	any	other	marker	of	

response,	until	the	assessment	was	completed,	so	as	not	to	influence	outcomes.		

	

The	patients	were	all	very	willing	to	perform	the	CPET	test	and	voiced	no	concerns	or	

complaints.	 	 Occasional	 difficulties	 included;	 erratic	 breathing	 which	 settled	 upon	

adding	resistance,	patients	complaining	of	claustrophobia	when	the	mask	was	placed	

and	 non-compliance	 with	 instructions	 not	 to	 talk	 during	 the	 test	 all	 of	 which	 are	

common	in	CPET	testing	of	HF-LVSD	patients.		Anecdotally,	it	was	the	first	time	many	

of	the	patients	had	been	on	a	bike	for	years.		

	

Peak	VO2	 is	 an	objective	 and	 rigorous	 assessment	of	 a	 patient’s	 physical	 fitness	 in	 a	

more	 controlled	and	 controllable	environment	 than	6MWT.	 	However,	 due	 to	 issues	

such	as	illness,	staffing,	and	clinical	case-load,	there	were	often	different	numbers	and	

members	 of	 staff	 helping	 with	 the	 CPET	 assessment.	 The	 senior	 physiologist	 was	

usually	 TH,	 but	 on	 occasion	 it	 was	 CR	 and	 although	 there	 is	 a	 specific	 protocol	 to	

follow,	such	differences	may	lead	to	alterations	in	the	patients	performance.	

4.2.1.5 Conclusion	

Responders	 to	 CRT	 demonstrated	 a	 significant	 improvement	 in	 peak	 VO2	 and	 work	

measured	during	CPET	at	6	months.		This	is	first	study	to	measure	peak	VO2	in	patients	

at	 12	months	 post-CRT	 and	 this	 improvement	 was	 sustained,	 and	 further	 improved	

upon,	at	12	months.		There	were	no	such	improvements	in	nonresponders	at	6	or	12	

months.		In	the	present	study,	peak	VO2	was	a	powerful	marker	of	response.		Patients	

who	improved	in	terms	of	this	metric	improved	on	all	the	others.		In	comparison	to	the	

6MWT,	 CPET	 may	 be	 considered	 to	 lack	 ecological	 validity	 but,	 within	 the	 current	

study,	 it	 proved	 to	 be	 a	 more	 robust,	 objective	 and	 reproducible	 measure	 of	

cardiorespiratory	fitness	and	response	to	CRT.	

4.2.2 Minnesota	Living	with	Heart	Failure	Questionnaire	

4.2.2.1 Introduction	

 
The	 Minnesota	 Living	 with	 Heart	 Failure	 questionnaire	 (MLWHFQ)	 is	 a	 validated,	

widely	 used	 quality	 of	 life	 (QoL)	 questionnaire,	 developed	 specifically	 for	 HF.	 	 As	
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discussed	 in	chapter	3,	 there	are	21	questions	covering	topics	such	as	side	effects	of	

treatments,	recent	hospital	admissions,	symptoms,	mood,	sex	life	and	appetite.		Each	

question	starts	with	the	same	common	stem	“Did	your	heart	failure	prevent	you	from	

living	as	you	wanted	to	during	the	past	month	(4	weeks)	by…”	for	example	“…causing	

swelling	in	your	ankles	and	legs”	the	answer	to	which	is	then	rated	on	a	6	point	Likert	

scale,	from	0	(no)	to	5	(very	much).		

4.2.2.2 Method	

 
	The	authors	of	the	questionnaire	provide	no	specific	instructions	on	its	administration	

so	a	local	protocol	was	devised.		The	MLWHFQ	(see	appendix)	was	administered	with	

the	patient	sitting	in	a	quiet	room,	with	the	investigator	spending	several	minutes	with	

them,	 explaining	 its	 purpose,	 how	 the	 questions	 are	 structured	 and	 the	 rating	 scale	

used.		This	process	was	repeated	at	each	time	point.		The	patients	were	then	left	to	fill	

out	 the	 21	 questions	 in	 their	 own	 time	with	 the	 investigator	 present	 throughout	 to	

answer	any	questions	that	they	might	have.	

	

The	 patients	 received	 a	 blank	 questionnaire	 on	 each	 occasion.	 	 They	 were	 not	

reminded	how	they	had	scored	last	time,	nor	were	their	previous	scores	checked	prior	

to	reassessment.		The	questionnaire	was	administered	at	08:30,	the	same	time	during	

each	point	of	 assessment	 in	 case	exertion	experienced,	or	medications	administered	

during	testing	might	influence	their	scores.		If	a	relative	accompanied	the	patient,	their	

involvement	 was	 kept	 to	 a	 minimum.	 	 As	 was	 the	 case	 for	 the	 other	 markers	 of	

response,	 the	 patients	 were	 informed	 of	 their	 performance	 only	 at	 the	 end	 of	 the	

assessment	session.		



4.2.2.3 Results	
	
	

Table	22:	MLWHQ	at	baseline	in	responders	and	nonresponders	

MLWHFQ	
Responders		 Nonresponders		 Student's	T-test	
Mean	 SD	 Mean	 SD	 P	value	

Time	(months)	 Baseline	 44.4	 21.9	 52.8	 22.7	 0.33	
	

Table	23:	MLWHQ	in	responders	at	baseline	and	follow-up	

MLWHFQ	
Responders		 One way ANOVA with repeated measures	
Mean	 SD	

Time	(months)	
Baseline	 44.4	 21.9	 Baseline	vs.		

6	 24.4	 19.1	 6	months	 <	0.05	
12	 24.3	 22.3	 12	months	 <	0.05	

	

Table	24:	MLWHFQ	in	nonresponders	at	baseline	and	follow-up	

MLWHFQ	 Nonresponders		 One way ANOVA  
with repeated measures	Mean	 SD	

Time	(months)	
Baseline	 52.8	 22.7	 Baseline	vs.		

6	 37.0	 20.6	 6	months	
=	0.31	12	 36.4	 26.7	 12	months	

	

Figure	22:	MLWHFQ	score	in	responders	(white)	and	nonresponders	(black)	

 
 
Figure	 22	 demonstrates	 the	 differences	 in	 the	 MLWHFQ	 in	 responders	 and	 non-

responders	 at	 baseline	 and	 at	 6	 and	 12	 months	 following	 CRT	 implantation.	
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Using	 a	 2-tailed	 Student’s	 T-test,	 there	 were	 no	 statistically	 significant	 differences	

between	responders	and	non-responders	at	baseline	(see	table	22).	

	

A	 one-way	 ANOVA	 with	 repeated	 measures	 and	 Greenhouse-Geisser	 correction	

determined	 that	 MLWHFQ	 in	 responders	 (F(1.97,	 21.76)	 =	 7.40,	 p	 <	 0.01)	 	 but	 not	

nonresponders	(F(1.8,	7.45)	=	5,82,	p	=	0.31)		was	statistically	different	(see	table	24)	

between	 time	 points	 during	 follow-up.	 Post-hoc	 analysis	 using	 the	 Bonferroni	

correction	 demonstrated	 responders	 (see	 figure	 22	 and	 table	 23)	 had	 statistically	

significant	 differences	 between	baseline	 and	 six	months	 (p	 <	 0.05)	 and	baseline	 and	

twelve	months	in	responders	(p	<	0.05).	

	

	



4.2.2.4 Discussion	

Responders	had	significantly	lower	MLWHFQ	scores	during	follow-up	than	at	baseline.	

However,	almost	all	patients	reported	that	they	felt	better	symptomatically,	whether	

they	 had	 improved	 significantly	 in	 terms	 of	 other	markers	 of	 response	 or	 not.	 	 This	

suggests	 there	may	be	a	 significant	placebo	effect	when	measuring	 response	 to	CRT	

therapy	 by	 the	MLWHFQ.	 Responders	 appeared	 to	 be	 less	 symptomatic	 at	 baseline,	

which	was	also	reflected	in	other	markers	of	response	such	as	6MWT	for	example,	but	

these	differences	were	not	statistically	significant.	

	

There	 is	 a	 notable	 similarity	 between	 the	 cohort	 of	 19	 patients	 (see	 table	 25)	 at	

baseline	and	those	from	the	 large	clinical	 trials,	although	 it	would	appear	that	 in	the	

current	 project,	 responders	 are	 less	 symptomatic	 at	 baseline	 and	 show	 greater	

improvement	at	6	months	when	compared	to	the	trial	data.		This	is	despite	there	being	

no	statistically	significant	difference	at	baseline	 in	this	or	any	other	of	 the	metrics	of	

response.		Unfortunately,	as	mentioned	previously,	similar	comparisons	at	12	months	

cannot	be	made	due	to	a	lack	of	published	data.		Interestingly,	in	CRT	crossover	trials	

such	as	CONTAK	and	MUSTIC,	there	was	a	10-20%	reduction	in	symptoms	following	3	

months	of	inactive	‘pacing’,	again	demonstrating	a	possible	placebo	effect.		This	could	

also	 perhaps	 explain	 the	 symptomatic	 improvement	 in	 the	 nonresponders	 in	 this	

study.		

	

Responders	maintained	their	 improvement	in	terms	of	symptoms	at	12	months,	with	

some	deteriorating	or	improving	slightly.		This	was	not	reflected	in	any	other	marker	of	

response	and	the	slight	deterioration	could	reflect	the	inherent	variability	of	symptoms	

in	 chronic	 disease.	 	 Patients	were	 not	 given	 access	 to	 their	 previous	 scores	 nor	 the	

completed	questionnaire	 itself,	 so	as	not	 to	unduly	 influence	 the	 results.	 	 This	being	

said,	 it	might	have	been	 interesting	 to	allow	this,	 in	order	 for	 them	to	see	how	they	

fared	at	the	previous	assessment	and	so	perhaps	enable	them	to	gauge	more	precisely	

how	they	were	feeling	in	light	of	their	previous	results.		
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Table	25:	Mean	MLWHFQ	score	and	improvement	from	the	CRT	trials	

Trial	
Mean	MLWHFQ	score	in	CRT	group	

Baseline	 6	months	 Decrease	(%)	
COMPANION	 N/A	 N/A	 25	
CONTAK	 56	 49	 31		
MIRACLE	 59	 41	 18	
MUSTIC	 51	 30	 41	
PATH	 49	 24	 51	

	
Three	of	 the	questions	 are	 problematic	when	 it	 is	 used	 in	 the	UK;	 first	 question	 15,	

refers	 to	paying	 for	 treatments,	which	 is	not	 relevant.	 	 Second,	question	8,	 refers	 to	

earning	 a	 living,	 which	 is	 not	 relevant	 as,	 given	 the	 average	 age	 of	 a	 HF	 patient	 at	

diagnosis,	most	have	retired.		Finally,	question	2	refers	to	working	around	the	yard	and	

is	worded	oddly.		The	above	did	lead	to	some	confusion	and/or	a	default	answer	of	0	

and	so	perhaps	the	score	should	not	be	considered	out	of	105	but	rather	99	or	93,	for	

example.	

	

It	 is	 interesting	that	by	12	months	follow-up	both	groups	were	stable	 in	reference	to	

their	 6-month	 score,	 despite	 improvements	 or	 deterioration	 in	 other	 markers	 of	

response	such	as	6MWD	or	VO2	peak.	 	This	suggests	that	perhaps	the	placebo	effect	

was	not	short-lived	and	highlights	the	logic	behind	following	up	patients	for	more	than	

6	 months.	 	 However,	 as	 both	 groups	 had	 improvements	 in	 symptoms,	 albeit	 only	

significantly	in	the	responders,	it	 is	important	to	not	categorise	response	on	patient’s	

symptoms	alone,	otherwise	all	19	patients	would	have	been	classed	as	responders.	

4.2.2.5 Conclusions	

For	 responders,	 as	 recorded	 by	 the	 MLWHFQ,	 symptoms	 improved	 significantly	 by	

over	 45%	 at	 6	 months,	 this	 was	 maintained	 at	 12	 months	 and,	 for	 nonresponders,	

symptoms	improved	by	29%,	increasing	to	31%	by	12	months.		For	nonresponders	this	

was	not	a	statistically	significant	difference	and	this	group	did	not	improve	significantly	

in	any	other	regard.	 	The	responders	had	 less	marked	symptoms	at	baseline	but	 this	

was	not	significant,	suggesting,	that	at	least	according	this	metric,	the	two	groups	were	

very	 similar.	 	 Finally,	 the	 improvement	 in	 the	 MLWHFQ	 score	 in	 nonresponders	

highlights	the	 importance	of	using	a	multi-model	approach	to	assess	response	rather	

than	relying	on	symptoms	alone.	
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4.2.3 Left	Ventricular	Volumes	

4.2.3.1 Introduction	

Assessment	of	 left	 ventricular	 (LV)	 size	 is	 commonly	performed	 to	 assess	 LV	dilation	

secondary	 to	 LVSD	 (as	discussed	 in	 chapter	2).	A	 reduction	 in	 LV	 size	 is	 an	accepted	

surrogate	marker	of	improvement,	providing	evidence	of	reverse	LV	remodelling,	as	a	

result	of	 improved	LV	systolic	 function.	 	Accepted	of	metrics	 include	LV	end	diastolic	

dimension	 (LVEDD),	 LV	 end	 diastolic	 volume	 (LVEDV)	 and	 LV	 end	 systolic	 volume	

(LVESV).	 	 The	 latter,	 as	 used	 in	 this	 study,	 is	 measured	 with	 2D	 transthoracic	

echocardiography	(2DTTE),	and	calculated	using	modified	Simpson’s	biplane	method	of	

discs.	

4.2.3.2 Method	

Data	was	obtained	during	the	routine	echocardiographic	follow-up	assessment.	Images	

were	 acquired	 and	 measured	 by	 either	 DWL	 or	 JA	 who	 were	 both	 senior	

echocardiographers	in	the	echocardiography	department	in	NGH.		

	

Images	 of	 the	 LV	 were	 acquired	 in	 the	 conventional	 manner	 from	 two	 orthogonal	

planes	in	the	apical	view	(4	and	2	chamber)	over	several	cardiac	cycles.		The	volume	of	

the	LV	was	measured	at	end-diastole	(immediately	after	mitral	valve	closure,	when	the	

LV	 chamber	 is	 at	 its	 largest).	 	 The	 edges	 of	 the	 endocardium	were	 traced	 free-hand	

along	 the	endocardial	border,	 from	one	hinge	point	of	 the	mitral	valve	 to	 the	other,	

encapsulating	 the	 black	 LV	 blood	 pool,	 using	 the	 General	 Electric	 (GE	 Healthcare,	

Princeton,	US)	Vivid	7	ultrasound	machine	during	acquisition	of	a	full	study.	

	

The	modified	 Simpson’s	 rule	 for	 calculation	 of	 LV	 volume	 is	 based	 on	 of	 a	 stack	 of	

elliptical	 disks,	 the	 cross	 sectional	 area	 of	 each	 disc	 is	 calculated	 from	 the	 diameter	

obtained	in	both	the	2	and	4	chamber	views	and	the	thickness	of	each	disc	represents	

a	 fraction	 (1/20	 approximately)	 of	 the	 LV	 long	 axis.	 	 The	 accepted	 convention	 is	 to	

exclude	trabeculations	and	papillary	muscles	when	tracing	the	endocardium,	and	this	

methodology	was	followed	throughout	(see	figure	23).	
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Equation	(3)	volume	of	each	disc:	

	𝜋	(D4c	x	D2c)	L/	4n	

D4c	=	internal	diameter	of	left	ventricle	in	4	chamber	view.	

D2c	=	internal	diameter	of	left	ventricle	2	chamber	view.	

L	=	length	of	each	disc.	

	

Equation	(4)	total	ventricular	volume:	

	!
!

 𝐷!!𝑥 𝐷!!  𝑥 𝐿/20!"
! 	

D4c	=	internal	diameter	of	left	ventricle	in	4	chamber	view.	

D2c	=	internal	diameter	of	left	ventricle	2	chamber	view.	

20	=	total	number	of	discs.	

L	=	length	of	each	disc.	

	
Figure	23:	Simpson's	method	using	apical	4	(left)	and	2	chamber	(right)	views	

 
Figure	 23	 demonstrates	 the	 measurement	 of	 the	 left	 ventricular	 volume	 using	

Simpson’s	modified	rule,	with	an	apical	4	chamber	and	apical	2	chamber	view	of	the	

left	ventricle	on	the	left	and	right	respectively.	The	3	green	crosses	indicate	either	side	

of	the	mitral	valve	annulus	and	the	apex	of	the	left	ventricle	and	the	hashed	blue	line	is	

drawn	 around	 the	 internal	 surface	 of	 the	 left	 ventricle,	 which	 following	 calculation,	

results	in	the	LV	volume	as	seen	in	the	top	left	hand	corner.	

 
 



4.2.3.3 Results	
	

Table	26:	LVEF	and	LV	volumes	in	responders	and	nonresponders	

LV	volume	
Responders	 Nonresponders	 Student's	T-test	
Mean	 SD	 Mean	 SD	 P	value	

Baseline	
LVEDV	(ml)	 201.0	 128.4	 153.2	 87.8	 =	0.58	
LVESV	(ml)	 156.7	 114.1	 122.5	 59.9	 =	0.25	
EF	(%)	 25.6	 8.1	 25.8	 8.0	 =	0.96	

 
Table	27:	LVEF	and	LV	volumes	in	responders		

LV	volume	 Time	point	 Responders		 One	way	ANOVA	with	repeated	measures		
Mean	 SD	 P	value	

LVEDV	(ml)	
Baseline	 201.0	 128.4	 Baseline	vs.		
6	months	 181.5	 125.6	 6	months	 <	0.05	
12	months	 173.6	 132.2	 12	months	 <	0.05	

LVESV	(ml)	
Baseline	 156.7	 114.1	 Baseline	vs.		
6	months	 134.1	 108.9	 6	months	 <	0.05	
12	months	 127.2	 111.1	 12	months	 <	0.01	

EF	(%)	
Baseline	 25.6	 8.1	 Baseline	vs.		
6	months	 33.6	 10.0	 6	months	

=	0.07	12	months	 33.0	 8.3	 12	months	
	

Table	28:	LVEF	and	LV	volumes	in	nonresponders		

LV	volume	 Time	
point	

Nonresponders			 One	way	ANOVA	with	repeated	measures		
Mean	 SD	 P	value	

LVEDV	(ml)	
Baseline	 153.2	 87.8	 Baseline	vs.		
6	months	 172.4	 126.2	 6	months	

=	0.63	12	months	 145.2	 88.8	 12	months	

LVESV	(ml)	
Baseline	 122.5	 59.9	 Baseline	vs.		
6	months	 144.4	 117.6	 6	months	

=	0.54	12	months	 118.8	 72.2	 12	months	

EF	(%)	
Baseline	 25.8	 8.8	 Baseline	vs.		
6	months	 34.8	 5.0	 6	months	 =	0.29	
12	months	 34.9	 6.7	 12	months	
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Figure	24:	LVEDV	in	responders	(white)	and	nonresponders	(black)	

	
Figure	 24	 demonstrates	 the	 differences	 in	 the	 MLWHFQ	 in	 responders	 and	 non-

responders	at	baseline	and	at	6	and	12	months	following	CRT	implantation. 	
Figure	25:	LVESV	in	responders	(white)	and	nonresponders	(black)	

	

Figure	 25	 demonstrates	 the	 differences	 in	 the	 MLWHFQ	 in	 responders	 and	 non-

responders	 at	 baseline	 and	 at	 6	 and	 12	 months	 following	 CRT	 implantation.
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Figure	26:	LVEF	in	responders	(white)	and	nonresponders	(black)	

	
	

Figure	 22	 demonstrates	 the	 differences	 in	 the	 MLWHFQ	 in	 responders	 and	 non-

responders	at	baseline	and	at	6	and	12	months	following	CRT	implantation.	

	

Using	 a	 2-tailed	 Student’s	 T-test,	 there	 were	 no	 statistically	 significant	 differences	

between	responders	and	non-responders	at	baseline	(see	table	26	and	figures	24-26).	

	

A	 one-way	 ANOVA	 with	 repeated	 measures	 and	 Greenhouse-Geisser	 correction	

determined	that	LVEDV	(F(1.73,	17.43)	=	6.37,	p	<	0.01),	LVESV	(F(1.59,	17.52)	=	11.92,	

p	 <	 0.01)	 but	 not	 EF	 (F(1.50,	 16.52)	 =	 3.38,	p	 =	 0.07)	 in	 responders	was	 statistically	

different	between	time	points	during	follow-up	(see	table	27).	Post-hoc	analysis	using	

the	 Bonferroni	 correction	 demonstrated	 responders	 had	 statistically	 significant	

differences	between	baseline	and	six	months	for	LVEDV	(p	<	0.05)	and	LVESV	(p	<	0.05)	

and	baseline	and	twelve	months	for	LVEDV	(p	<	0.05)	and	LVESV	(p	<	0.01).	
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4.2.3.4 Discussion	

In	 terms	 of	 responders,	 14	 patients	 demonstrated	 a	 significant	 reduction	 in	 LVEDV	

observed	at	6	months	showing	further	improvement	at	12	months.			

	

At	 the	 time	 of	 defining	 the	 criteria	 determining	 a	 ‘responder’	 in	 the	 context	 of	 this	

study	(prior	to	recruitment)	LVESV	was	not	considered	to	be	significant	marker	a	priori	

but,	 for	 the	 sake	 completion	 it	 is	 included	 in	 the	 results.	 	 Of	 the	 14	 responders,	 all	

demonstrated	 reductions	 in	 LVESV	 at	 6	 and	 12	months	with	 the	majority	 showing	 a	

decrease	of	LVESV	of		>	10%.	The	sustained	reduction	in	LV	volumes	at	12	months,	in	

conjunction	with	improvements	in	the	2	other	markers,	suggests	that	these	14	patients	

were	 true	 CRT	 responders	 and	 the	 results	 are	 not	 a	 result	 of	 chance.	 	 The	 lack	 of	

significant	correlation	with	the	LV	volumes	or	EF	and	other	markers	of	response	is	as	

expected,	 as	 whilst	 a	 reduction	 in	 LV	 size	 is	 related	 to	 clinical	 outcomes,	 e.g.	 to	

morbidity	and	mortality,	it	is	not	related	to	symptomatic	response.		

	

Two	of	the	nonresponder	group	had	>	10%	reductions	in	LVEDV	at	12	months,	others	

had	small,	non-significant	increases	or	reductions	in	LV	volumes	(LVEDV	or	LVESV),	and	

showed	no	significant	 improvement	 in	any	other	marker	of	 response.	 	LV	volumes	 in	

the	nonresponder	group	appear	to	show	a	simple	random	variation	with	regression	to	

the	mean	at	12	months.		The	observed	improvement	in	EF%	in	nonresponders	is	more	

difficult	 to	explain	but	may	be	 related	 to	both	 inter-	and	 intra-operator	variability	 in	

measurement	of	 the	relatively	small	LV	volumes;	 the	smaller	 the	volume	the	greater	

the	impact	of	measurement	error.		

	

Unfortunately,	 for	 logistical	 reasons,	 it	 was	 not	 possible	 to	 have	 the	 same	 patient	

assessed	 by	 the	 same	 echocardiographer	 at	 every	 time	 point.	 	 This	 introduced	

potential	variability	 to	 the	assessment.	 	 Ideally,	each	patient	would	be	assessed	by	a	

single	echocardiographer	or,	 perhaps	preferably,	 by	both	 sonographers	 at	 each	 time	

point	 and	 each	 then	measuring	 the	 LVEDV	 on	 all	 the	 acquired	 images.	 	 This	 would	

produce	 4	 measurements	 of	 volume	 enabling	 a	 mean	 and	 SD	 to	 be	 obtained.		

Unfortunately,	 due	 to	 clinical	 commitments,	 and	 in	 the	 absence	 of	 a	 dedicated	

research	 sonographer,	 this	 did	 not	 prove	 to	 be	 feasible.	 	 In	 addition,	 in	 order	 to	
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minimise	 inconvenience	 to	 the	 patient,	 all	 the	 required	 tests	 were	 scheduled	 for	 a	

single	day;	the	necessary	synchronisation	across	departments	further	constrained	the	

possible	 assessment	 time	 points.	 	 In	 the	 event,	 the	 operator	 depended	 on	 which	

echocardiographer	was	free	on	the	day.			

	

The	 Vivid	 7	 echocardiography	 machine	 and	 3D	 probe	 (Siemens	 GmbH,	 Erlangen,	

Germany)	used	in	Sheffield,	required	multiple	cardiac	cycles	cycle	to	build	a	single	3D	

image,	making	 it	 impractical	 for	 patients	with	 significant	 ectopy	 or	 atrial	 fibrillation,	

hence	 it	 was	 not	 considered	 practical	 after	 consultation	 with	 the	 investigators	 and	

sonographers	to	perform	3DTTE	scans	on	every	patient	at	every	time	point.	As	a	result,	

2DTTE	was	used	for	all	patients	at	all	time	points,	despite	potential	limitations	and	only	

these	 volumes	 recorded	 at	 baseline	 and	 follow-up	 were	 used	 in	 the	 assessment	 of	

response.	 	Newer	scanners	since	can	acquire	a	3D	 image	 from	a	single	cardiac	cycle.		

This	is	ideal	for	patients	with	arrhythmias	as	in	this	study	but,	at	the	time,	this	was	not	

available	in	STHT.		Indeed,	many	of	the	patients	did	not	have	echo	windows	that	were	

considered	 excellent	 and	most	 were	 overweight-obese,	 leading	 to	 poor	 endocardial	

definition	 and	 inadequate	 studies;	 hence	 the	 LV	 volumes	 and	 any	 variation	must	 be	

considered	in	this	light.		

	

To	 avoid	 introducing	 any	 possible	 extraneous	 variables,	 the	 investigators	 played	 no	

part	in	the	acquisition	of	images	or	the	measurement	of	volumes.		In	addition,	to	avoid	

influencing	the	echocardiographers,	they	were	blinded	to	the	results	of	other	tests	or	

markers	of	response.	

	
According	 to	 Lang	 et	 al	 (2006)186	 the	 advantages	 of	 using	 modified	 Simpson’s	 rule	

include	 the	 fact	 that	 it	 allows	 for	 an	 irregularly	 shaped	 LV	 and	 it	 also	 minimises	

mathematical	 assumptions.	 However,	when	 imaging	 the	 LV,	 it	 is	 important	 to	 avoid	

foreshortening	of	the	LV	apex.		This	can	give	an	erroneous	reduction	in	the	measured	

long	axis	and	underestimation	of	the	LV	volume	and	poor	images	with	signal	drop	out	

in	 the	endocardium	can	 result	 in	 inaccuracies	 in	 tracing	 the	endocardial	border.	 	 For	

these	 reasons	 it	 is	 important	 to	 acquire	 good	 images	 on	 axis.	 	 Despite	 these	

considerations	this	technique	remains	the	most	commonly	used	method	for	assessing	
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LV	 volume	 in	 clinical	 practice;	 it	 is	 the	 recommended	 technique	 by	 the	 European	

Society	for	Cardiology	(ESC)	and	the	value/technique	quoted	typically	in	the	literature.	

Whilst	 improvements	 in	 EF%	 are	 common,	 these	 are	 rarely	 quoted	 and	 indeed	 no	

threshold	 for	 improvement	 has	 been	 set	 in	 previous	 trials.	 	 The	 responders	 in	 this	

study	had	a	 statistically	 significant	 increase	 in	EF	of	8%;	a	much	 larger	 increase	 than	

that	 reported	 in	 most	 clinical	 trials	 albeit	 with	 only	 6	 months	 follow-up,	 unlike	 12	

months	here.	 	One	possible	explanation	for	this	 is	 that	some	of	these	 individuals	are	

super	responders,	the	CARE-HF	trial	found	improvements	in	EF%	at	18	months	of	6.9%,	

similar	 to	 this	 patient	 cohort,	 with	 3.7%	 at	 3	 months	 only,	 demonstrating	 further	

improvement	the	longer	the	device	was	in	situ.		Clearly,	this	cohort	of	patients	is	small	

and	the	possibility	of	differences	due	to	chance	and/or	error	cannot	be	excluded.		

	

There	 is	a	 fundamental	difficulty	of	defining	CRT	response,	which	must	be	binary	 for	

clinical	trials	regardless	of	the	metric(s)	used,	even	though	in	reality	it	is	never	as	clear	

cut	as	noted	previously	by	Bleeker	et	(2006)105.	Furthermore,	the	inherent	variability	of	

serial	 LV	 volume	 measurements	 due	 to	 the	 influence	 of	 external	 factors	 such	 as	

equipment	 and	 the	 patient’s	 acoustic	 window	 and	 internal	 factors	 such	 as	 inherent	

inter-operator	 variability	 and	 variability	 due	 to	 experience,	 technique	 and	 time	

pressure	 is	widely	recognised.	 	The	variation	 in	LV	volume	measurements	at	multiple	

time	points	is	in	the	region	of	10%.		This	is	why	a	sustained	reduction	in	LV	volumes	is	

important,	suggesting	that	the	reduction	is	real,	not	erroneous	187.	In	this	study,	limited	

to	 a	 single	 centre,	 using	 one	 echocardiography	 machine	 and	 2	 experienced	

echocardiographers,	 less	 inherent	 variability	 might	 be	 expected	 than	 in	 multicentre	

trials,	 involving	 using	 different	 machines,	 conventions,	 and	 echocardiographers	 of	

varying	 experience.	 	 It	 is	 worth	 noting	 that	 LVEF	 is	 not	 measured	 routinely	 at	 this	

centre,	 instead	 visual	 assessment	 of	 LVSD	 severity	 is	 categorised	 as	

mild/moderate/severe,	 highlighting	 a	 lack	 of	 experience	 with	 this	 measure	 and	

explaining	possible	variation	in	LVEF	in	this	cohort.	

	
As	discussed	in	Chapter	3,	in	most	CRT	trials,	a	reduction	of	10-15%	in	LVEDV	or	LVESV	

during	serial	assessment	 is	 typically	considered	to	be	significant.	However,	 the	 lower	

the	threshold	is	used,	the	more	patients	would	appear	to	be	responders	and	equally,	

the	 higher	 the	 threshold	 used,	 the	 fewer	 patients	will	 be	 deemed	 as	 responders,	 at	
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least	 in	 terms	 of	 this	 metric.	 Yu	 et	 al	 (2008)	 noted	 that	 in	 routine	 clinical	 practice,	

measurement	of	 LV	 volume	 is	not	performed	with	 the	 same	 rigor	 as	 in	 clinical	 trials	

and	so	the	change	in	LV	volume	will	only	be	useful	as	an	indicator	if	it	is	large	86.	It	is	

likely	most	patients	will	have	LV	volumes	unchanged	or	changed	slightly	following	CRT	

and	so	such	differences	must	be	viewed	with	respect	to	the	rigor	and	variability	of	how	

such	a	method	is	performed.		This	is	just	one	method	of	assessing	a	single	element	of	

response	to	CRT;	the	patient	may	have	responded	in	other	ways	hence	the	importance	

of	the	multi-modal	approach	adopted	in	this	work.	

Table	29:	BSE	reference	range	for	LV	volumes	in	men	and	women	

LV	size	 Normal	 Mild	 Moderate	 Severe	

Men	
ml	 67	-	155	 156	-	178	 179	-	201	 	>	202	

ml/m2	 35	-	75	 76	-	86	 87-	96	 >	97	

Women	
ml	 56	-	104	 105	-117	 118	-	130	 >	131	

ml/m2	 35	-	75	 76	-	86	 87-	96	 >	97	
	

Using	the	approach	of	normalisation	to	body	surface	area,	patients	in	this	cohort	had	a	

mean	LVEDV	of	107ml/m2	at	baseline.		This	is	similar	to	value	of	117ml/m2,	reported	at	

baseline	 in	CARE-HF	 for	a	predominantly	European	cohort	 44.	 Indeed,	 comparing	our	

cohort,	in	terms	of	LVEDV	measured	in	both	ml	and	ml/m2	to	the	reference	range	(see	

table	29)	provided	by	 the	British	Echocardiography	Society	 (BSE)	we	 find	 that	all	 the	

patients	in	our	study	had	grossly	abnormal	LV	volumes	188.	

	

Whilst	 other	 studies	 (MUSTIC152,MIRACLE155,	 COMPANION6,	 RD-CHF154	 and	 PATH-

CHF127)	 have	 used	 the	 baseline	 LV	 end-diastolic	 dimension	 (in	mm),	 rather	 than	 the	

LVEDV,	as	a	measure	of	LV	size,	most	did	not	record	the	difference	at	follow-up.	The	

CARE-HF	trial	used	a	LVEDV	volume	index	normalised	to	body	surface	area	at	baseline	

but	again	 failed	to	report	any	changes	during	 follow-up.	 	As	can	be	seen	from	tables	

30,	31	and	32,	CARE-HF44,	MIRACLE6,	MADIT158	and	RETHINQ159	trials	all	demonstrated	

a	relative	reduction	in	LV	volumes	of	between	6	and	30%	and	an	absolute	increase	in	

LVEF%	of	between	1	and	3.7%.			

	

The	patients	in	our	study	appear	to	have	volumes	smaller	than	those	recorded	in	the	

aforementioned	clinical	trials.		The	reason	for	this	is	unclear,	but	it	could	be	related	to	

patient	size,	which	might	become	apparent	if	the	data	was	normalised	for	body	surface	
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area.	 	 Over	 70%	 of	 our	 patients	 were	 below	 average	 height	 for	 the	 UK	 (<	 161cm	

females	 and	 	 <	 175cm	 males)	 and,	 as	 a	 consequence,	 would	 be	 expected	 to	 have	

reduced	LV	size	and	mass.	

Table	30:	LVEDV	at	baseline	and	follow-up	in	the	CRT	trials	

 
	

 
 
	

Table	31:	LVESV	at	baseline	and	follow-up	in	the	CRT	trials	

	

	

 
 
	

Table	32:	EF	at	baseline	and	follow-up	in	the	CRT	trials	

4.2.3.5 Conclusions	

Our	patient	 cohort	had	 similar	 LV	volumes	at	baseline	 to	patients	 from	the	CARE-HF	

and	 when	 compared	 to	 normalised	 values	 from	 the	 BSE,	 LV	 size	 was	 found	 to	 be	

severely	 abnormal.	 At	 6-month	 follow-up,	 responders	 demonstrated	 a	 statistically	

significant	 reduction	 of	 9%	 and	 14%	 in	 LVEDV	 and	 LVESV	 respectively.	 	 This	

improvement	 continued	 to	 be	 seen	 at	 12	months	with	 reductions	 of	 14%	 and	 18%.		

Non-responders,	 demonstrated	 no	 such	 significant	 changes.	 	 This	 reduction	 in	 LV	

volumes	in	responders	was	similar	to	that	reported	by	the	large	CRT	trials.		

Trial	
Mean	LVEDV	(ml)	in	CRT	group	

Baseline	 6	months	 Decrease	(%)	
MIRACLE	ICD	II	 337	 296	 12.1	
MADIT-CRT	 251	 194	 22.7	
MIRACLE	ICD		 322	 302	 6.2	
RETHINQ	 210	 194	 7.6	

Trial	
Mean	LVESV	(ml)	in	CRT	group	

Baseline	 6	months	 Decrease	(%)	
MIRACLE	ICD	II	 275	 225	 18.1	
MADIT-CRT	 175	 123	 29.7	
MIRACLE	ICD		 N/A	 N/A	 N/A	
RETHINQ	 163	 95	 41.7	

Trial	
EF%	in	CRT	group	

Baseline	 6	months	 Increase	
CARE-HF	 25	 28.7	 3.7	

MADIT-CRT	 N/A	 N/A	 1.0	
MIRACLE	ICD		 24	 26.1	 2.1	
RETHINQ	 25	 26.2	 1.2	
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4.2.4 Surrogate	markers	

When	comparing	outcomes	in	two	groups,	it	is	important	to	ensure	they	are	as	similar	

as	 possible	 before	 the	 intervention,	 to	 avoid	 confounding	 variables	 influencing	 the	

results.	 	 Whilst	 the	 other	 markers	 of	 response	 have	 already	 been	 considered,	 it	 is	

important	to	consider	the	physiological	make-up	of	the	cohort	at	baseline	and	during	

follow-up.	 	 To	 this	end,	 surrogate	markers	of	 response	were	compared	between	 the	

groups	at	baseline	and	within	each	group	during	follow-up.	Using	a	Student’s	2	tailed	

T-test	 demonstrates	 that	 there	 was	 no	 significant	 different	 between	 the	 groups	 at	

baseline	(see	table	33).		

	

In	 responders,	 a	 one-way	 ANOVA	 with	 repeated	measures	 and	 Greenhouse-Geisser	

correction	(see	table	34)	was	used	to	analyse	the	difference	over	the	12	months.	There	

was	no	significant	difference	in	systolic	(F(1.40,	15.4)	=	0.47,	p	=	0.56),	diastolic	(F(1.64,	

18.08)	=	0.85,	p	=	0.42),	pulse	(F(1.09,	11.9)	=	1.00,	p	=	0.35)	or	mean	arterial	(F(1.92,	

21.17)	=	0.84,	p	=	0.44)	blood	pressure.	Similarly,	there	was	no	significant	difference	in	

weight	(F(1.92,	21.2)	=	0.03,	p	=	0.97),	QRS	duration	(F(1.66,	16.59)	=	0.07,	p	=	0.88),	

body	mass	index	(F(1.82,	20.06)	=	0.12,	p	=	0.98)	or	percentage	of	biventricular	pacing	

(F(1.33,	13.37)	=	2,72,	p	=	0.11).	

	

The	 same	 test	was	 used	 to	 analyse	 the	 difference	 in	 surrogate	markers	 over	 the	 12	

months	 in	 non-responders	 (see	 table	 35).	 In	 terms	 of	 non-responders	 there	was	 no	

significant	difference	in	systolic	(F(1.07,	4.27)	=	0.82,	p	=	0.47),	diastolic	(F(1.93,	7.73)	=	

0.35,	p	=	0.70),	pulse	(F(1.19,	4.79)	=	0.82,	p	=	0.43)	or	mean	arterial	 (F(1.32,	5.29)	=	

0.32,	p	=	0.65)	pressure.	Similarly,	there	was	no	significant	difference	in	weight	(F(1.42,	

5.70)	=	0.96,	p	=	0.40),	QRS	duration	(F(1.80,	7.21)	=	0.85,	p	=	0.45),	body	mass	index	

(F(1.47,	 5.91)	 =	 1.71,	p	 =	 0.25)	or	percentage	of	biventricular	pacing	 (F(1.07,	 4.27)	 =	

0.82,	p	=	0.45).		

	

The	two	groups	were	largely	similar	before	CRT	implantation	and	the	only	difference	of	

note	was	the	larger	weight	and	subsequent	higher	BMI	of	the	responder	group.		Rather	

than	presenting	with	the	anticipated	cardiac	cachexia,	both	groups	were	overweight-

obese,	with	the	responders	more	so.		This	may	suggest	that	the	group	were	“healthier”	

at	 baseline,	 were	 better	 conditioned	 and	 had	 a	 milder	 form	 of	 HF-LVSD	 syndrome.		
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However,	without	an	assessment	of	 lean-	versus	fat-	mass,	 it	could	be	these	patients	

were	too	breathless	to	exercise	and	so	tended	towards	weight	gain.		Furthermore,	any	

increase	in	weight	during	follow-up,	could	be	due	to	increase	in	lean	mass,	fat	mass	or	

fluctuations	 in	 fluid-balance.	 	 Investigation	 using	 bio-impedance	 methods	 could	

delineate	this	further.	

	

It	was	predicted	that	CRT	would	lead	to	a	reduction	in	QRSd	due	to	more	physiological	

e.g.	 quicker	 interventricular	 conduction	 and	 subsequent	 restoration	 of	 synchrony,	

which	in	turn	would	lead	to	an	increase	in	SV	and	therefore	BP.		However,	there	were	

no	 significant	 changes	 in	 the	 groups	 during	 follow-up	 nor	 any	 trending	 towards	

significance.	 CRT	 trials,	 to	 date,	 have	 used	 various	 surrogate	 markers	 such	 as	 a	

reduction	in	QRS	duration	and	increase	in	systolic	BP	to	assess	CRT	response.		Indeed	

in	 all	 patients	 implanted	 with	 CRT	 versus	 OMT	 the	 CARE-HF44	 and	 COMPANION134	

studies	reported	significant	and	sustained	increases	in	systolic	BP	at	3	months	and	18	

months	 of	 2-6mmHg	 respectively	 and	 the	 MIRACLE155	 study	 reported	 a	 significant	

decrease	 in	 QRSd	 of	 20ms.	 	 Despite	 similarities	 between	 such	 patient	 cohorts	 and	

these,	 this	 finding	 was	 not	 repeated	 in	 this	 work.	 	 However,	 this	 sample	 size	 was	

orders	 of	 magnitude	 smaller	 and	 the	 study	 was	 not	 powered	 to	 detect	 such	 small	

differences.	 	 Finally,	 it	 is	 well	 known	 those	 patients	 who	 receive	 less	 than	 95%	

biventricular	pacing,	are	 less	 likely	 to	derive	clinical	benefit	 from	their	CRT	device189.	

Reductions	in	pacing	may	be	due	to	tachyarrhythmia,	lead	dislodgement	and	loss	of	LV	

capture190.		In	our	study,	whilst	responders	appear	to	have	received	a	lower	%	than	the	

nonresponders	 initially,	both	groups	were	 receiving	over	95%	biventricular	pacing	by	

12	 months.	 	 Whilst	 the	 differences	 are	 not	 statistically	 significant,	 this	 does	

demonstrate	that	the	lack	of	response	was	not	due	to	inadequate	biventricular	pacing.			

	

In	 summary,	 there	 was	 no	 significant	 difference	 at	 baseline	 between	 the	 groups	 or	

during	 follow-up	 within	 the	 groups	 in	 terms	 of	 surrogate	 markers	 of	 response	 or	

possible	confounding	factors.		Finally,	during	the	12	months	follow-up,	there	were	no	

hospital	 admissions	 or	 deaths	 in	 either	 group	 so	 these	 events	 cannot	 be	 used	 as	 a	

marker	of	response	either.	These	results	will	be	used	in	the	following	chapters,	when	

investigating	novel	predictors	and	markers	of	CRT	response,	in	this	patient	cohort.	

	



								|	Page	140	

	
Table	33:	Surrogate	markers	at	baseline	in	responders	and	nonresponders	

Baseline*	 Units	
Responders	 Nonresponders	 Student's	T-

test	
Mean	 SD	 Mean	 SD	 P	value	

Blood	Pressure	

Systolic	 mmHg	 126.8	 12	 126.2	 21.4	 =	0.94	

Diastolic	 mmHg	 73.3	 10.4	 74.6	 6.5	 =	0.89	

PP	 mmHg	 53.5	 14.2	 52.2	 19.4	 =	0.87	

MAP	 mmHg	 91.1	 11.9	 91.3	 9.9	 =	0.97	

Physical	

Weight	 Kg	 92.8	 17.8	 80.6	 20.8	 =	0.20	

Height	 m	 1.74	 0.1	 1.72	 0.1	 =	0.68	

BMI	 Kg/m2	 30.4	 4.2	 27.7	 4.5	 =	0.11	
CRT	 BiVP	 %	 91.1	 13.8	 98.3	 8.8	 =	0.63	

ECG	 QRSd	 ms	 162.3	 23.4	 163	 23.1	 =	0.50	
	

BMI	=	body	mass	index,	BiVP	=	biventricular	pacing,	BP	=	blood	pressure,	CRT	=	cardiac	

resynchronisation	therapy,	ECG	=	electrocardiography.	PP	=	pulse	pressure,	MAP	=	

mean	arterial	pressure,	QRSd	=	QRS	duration.	Baseline	refers	to	pre-CRT	implantation	

other	than	for	BiVP	where	it	refers	to	approximately	6	weeks	post	CRT	implantation.	

	
Table	34:	Surrogate	markers	in	responders	at	baseline	and	follow-up	

	
	
BMI	=	body	mass	index,	BiVP	=	biventricular	pacing,	BP	=	blood	pressure,	CRT	=	cardiac	

resynchronisation	 therapy,	 ECG	 =	 electrocardiography.	 PP	 =	 pulse	 pressure,	 MAP	 =	

Responders	 Units	

Baseline*	 6	months	 12	months	

One	way	
ANOVA	with	
repeated	
measures	

Mea
n	 SD	 Mean	 SD	 Mean	 SD	

Baseline	
vs.		
6		

6		
vs.	
12	

Blood	
Pressure	

Systolic	 mmHg	 126.8	 12.0	 129.9	 18.7	 132.1	 19.8	 	=	0.56	

Diastolic	 mmHg	 73.3	 10.4	 76.4	 11.1	 75.5	 13.7	 =	0.42	

PP	 mmHg	 53.5	 14.2	 53.5	 10.7	 58.3	 16.7	 =	0.34	

MAP	 mmHg	 91.1	 11.9	 94.2	 13.3	 94.9	 14.5	 =	0.44	

Physical	

Weight	 Kg	 92.8	 17.8	 92.8	 16.9	 89.7	 17.5	 =	0.97	

Height	 m	 1.7	 0.1	 1.7	 0.1	 1.7	 0.1	 N/A	

BMI	 Kg/m2	 30.4	 4.2	 32.4	 4.0	 29.4	 4.0	 =	0.98	

CRT	 BiVP	 %	 91.1	 13.8	 94.2	 9.4	 96.2	 6.7	 =	0.11	

ECG	 QRSd	 ms	 162.3	 23.4	 159.8	 27.5	 165.7	 28.8	 =	0.88	
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mean	arterial	pressure,	QRSd	=	QRS	duration.	*Baseline	refers	to	pre-CRT	implantation	

other	than	for	BiVP	where	it	refers	ton	approximately	6	weeks	post	CRT	implantation.	
Table	35:	Surrogate	markers	in	nonresponders	at	baseline	and	follow-up	

Nonresponders	 Units	
Baseline*	 6	months	 12	months	 One	way	ANOVA	with	

repeated	measures	

Mean	 SD	 Mean	 SD	 Mean	 SD	 Baseline	vs	
6		

6	vs	12	

Blood	Pressure	

Systolic	 mmHg	 126.2	 21.4	 119.8	 9.9	 119.4	 9.1	 =	0.74	
Diastolic	 mmHg	 74.6	 6.5	 73.6	 8.0	 76.0	 8.0	 =	0.70	

PP	 mmHg	 52.2	 19.4	 46.2	 3.9	 43.4	 5.4	 =	0.43	
MAP	 mmHg	 91.3	 9.9	 89.0	 8.5	 90.5	 8.0	 =	0.65	

Physical	
Weight	 Kg	 80.6	 20.8	 83.2	 19.6	 81.5	 16.0	 =	0.40	
Height	 m	 1.7	 0.1	 1.7	 0.1	 1.7	 0.1	 N/A	
BMI	 Kg/m2	 27.7	 4.5	 27.8	 4.1	 27.3	 3.2	 =	0.25	

CRT	 BiVP	 %	 98.3	 8.8	 95.0	 5.7	 96.4	 5.3	 =	0.45	
ECG	 QRSd	 ms	 163.0	 23.1	 161.0	 22.9	 166.8	 19.4	 =	0.50	

		

BMI	=	body	mass	index,	BiVP	=	biventricular	pacing,	BP	=	blood	pressure,	CRT	=	cardiac	

resynchronisation	therapy,	ECG	=	electrocardiography.	PP	=	pulse	pressure,	MAP	=	

mean	arterial	pressure,	QRSd	=	QRS	duration.	*Baseline	refers	to	pre-CRT	implantation	

other	than	for	BiVP	where	it	refers	to	approximately	6	weeks	post	CRT	implantation.	

4.3 Discussion	

At	 12	 months,	 out	 of	 the	 21	 patients,	 two	 of	 whom	 were	 unable	 to	 be	 implanted	

conventionally	 and	within	 time	 frame	of	 this	 study	and	 therefore	were	excluded,	14	

were	classified	as	 responders	and	5	as	nonresponders	according	 to	 the	criteria	 set	a	

priori.	 	 However,	 as	 discussed,	 the	 response	 to	 CRT	 is	 not	 binary.	 	 This	 is	 best	

evidenced	 by	 the	 fact	 that	 nearly	 all	 patients	 reported	 that	 they	 had	 improved	

symptomatically	in	terms	of	their	responses	to	the	MLWHFQ,	but	only	16	of	these	did	

so	 in	 conjunction	 to	 any	 degree	with	 any	 other	 parameter,	 albeit	 inconsistently	 and	

not	 meeting	 the	 pre-specified	 thresholds.	 	 In	 particular	 there	 was	 no	 significant	

improvement	 in	 terms	of	any	objective	measure	such	as	LVEDV	or	peak	VO2.	 	This	 is	

consistent	with	the	power	of	the	placebo-effect	of	having	a	CRT	implanted,	as	found	in	

the	earlier	CRT	crossover	trials,	when	CRT	was	 implanted	but	 left	switched	off	and	 it	

could	 be	 argued	 that,	 once	 this	 became	 apparent,	 the	MLWHFQ	 should	 have	 been	

removed	as	marker	of	 response,	as	when	a	metric	 improves	 in	all	patients	MLWHFQ	

then	 its	discriminatory	power	 is	 somewhat	 limited.	 	This	being	 said	 the	difference	 in	

MLWHFQ	was	significant	in	responders	but	not	so	in	nonresponders.	
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Response	a	priori	was	defined	as	an	 increase	of	1ml/kg/min	or	more	 in	peak	VO2,	an	

increase	 by	 10%	 or	 more	 in	 6MWD,	 a	 decrease	 in	 LVEDV	 by	 10%	 or	 more,	 and	 a	

decrease	in	the	MLWHFQ	score	by	10	points.	Responders	were	those	patients	that	met	

all	 four	 of	 the	 criteria	 and	 nonresponders	 those	 that	met	 less	 than	 three,	 or	 scored	

worse	 in	 any	way,	when	 compared	 to	 their	 baseline	 results,	 at	 the	 6	 and	 12	month	

follow-up	assessments.	This	nomenclature	is	used	throughout	the	rest	of	this	body	of	

work.	 	 The	 responder-rate	 in	 this	 study	was	 14/19	 or	 74%.	 	 This	 in	 agreement	with	

figures	 reported	 in	 the	 large	 randomised	 controlled	 trials	 irrespective	 of	 the	 multi-

modal	 and	more	 robust	 approach	 that	 was	 adopted	 to	 defining	 response,	 the	 high	

proportion	(50%)	of	patients	with	AF	who	are	typically	excluded	from	CRT	trials,	or	the	

level	of	comorbidity.	

	

It	is	clear	that	different	criteria	could	have	been	selected	at	the	outset	to	increase	the	

yield	 of	 ‘responders’	 but	 then	 question	 as	 to	 whether	 the	 level	 of	 response	 was	

clinically	meaningful	would	need	to	be	addressed.		It	would	also	have	been	possible	to	

optimise	the	choice	of	criteria	based	on	emerging	trends	as	the	project	progressed;	by	

limiting	the	 judgement	to	single	criterion,	a	reduction	 in	LVEDV,	for	example	but	this	

ignores	the	inherent	variability	of	such	a	measure.	

	

The	strongest	and	only	significant	correlation	between	markers	of	response	occurred	

between	6MWD	and	MLWHFQ,	perhaps	as	these	are	both	real	world	tests	of	how	HF	

influences	an	 individual	on	a	day-to-day	basis	and	so	 it	makes	 sense	 that	 those	with	

the	most	severe	symptoms	can	walk	the	least.	The	correlation	direction	was	negative,	

demonstrating	 that	 the	 further	 an	 individual	 could	 walk,	 the	 less	 severe	 their	

symptoms,	which	 is	 logical.	 The	 lack	 of	 significant	 correlation	with	 other	markers	 of	

response	 (see	 table	 36),	 may	 be	 due	 to	 small	 cohort	 size,	 the	 role	 of	 chance	 and	

variation	in	serial	assessment	of	markers	such	as	LVEDV	or	difficulties	in	6MWD	testing	

as	 reported.	 As	 already	 discussed,	 there	 is	 no	 absolute	 categorisation	 of	 positive	 or	

negative	response	and	it	does	not	necessarily	follow	that	response	in	one	criterion	will	

lead	to	response	in	another.		These	are	all	specific	and	unique	tests	of	an	individual’s	

HF	condition	and	not	interchangeable.		
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Table	36:	Pearson’s	correlation	coefficient	between	markers	of	response	

Correlation PVO2 LVEDV MLWHFQ 
r p r p r p 

PVO2    LVEDV -0.24 0.93 
MLWHFQ -0.24 0.79 0.22 0.71 

6MWD 0.34 0.11 0.11 0.37 -0.42 < 0.01 
	

It	 is	 difficult	 to	 say	 how	 this	 correlation	 fits	 with	 the	 data	 from	 other	 trials	 as	 no	

correlations	 were	 drawn	 between	 different	 markers	 of	 response	 in	 CRT	 studies	 by	

other	authors.	However,	this	correlation	is	well	known	and	has	been	demonstrated	in	

other	HF-LVSD	 trials191.	Any	other	 correlations	 that	did	exist,	 albeit	 non-significantly,	

were	in	the	direction	expected,	for	example	a	positive	correlation	between	peak	VO2	

with	6MWD	and	a	negative	correlation	between	MLWHQ	score	and	LVEDV	e.g.	as	the	

patient’s	 cardiorespiratory	 function	 improves	 as	measured	by	 increased	peak	VO2	 or	

reduced	LVEDV,	the	patient	can	walk	further	and	has	fewer	symptoms.	

 
This	is	the	first	CRT	study	which	reports	follow-up	data	over	12	months,	with	measures	

of	the	cardiorespiratory	performance	such	as	peak	VO2.	 	 Importantly,	 it	demonstrates	

that	gains	made	in	responders	at	6	months	are	maintained	at	12	months.		Responders	

had	 significantly	 improved	 LV	 function,	 symptoms	 and	 cardiorespiratory	 fitness	 and	

thus	are	defined	as	deriving	maximal	benefit	from	their	CRT	device.		Furthermore,	the	

study	demonstrates	that	peak	VO2,	in	addition	to	being	arguably	the	‘gold	standard’	for	

cardiorespiratory	 function	 in	HF-LVSD	assessment,	potentially	has	a	 role	as	 the	 ‘gold	

standard’	 for	 assessing	 response	 since	 only	 those	 patients	 who	 showed	 significant	

improvements	in	VO2	demonstrated	significant	improvements	in	the	remaining	criteria.	

Finally,	the	study	indicates	that	the	potential	placebo	effect	of	CRT	is	not	short-lived,	

with	 most	 nonresponders	 maintaining	 symptomatic	 improvements	 at	 12	 months	

based	 on	 the	 MLWFHQ,	 despite	 no	 significant	 improvement	 in	 other	 markers	 of	

response.	

4.4 Conclusions	

Fourteen	 of	 the	 nineteen	 patients	 have	 been	 classified	 as	 responders,	 the	 following	

chapters	will	 investigate	where	 this	 response	could	have	been	 identified	a	priori	but	

also	whether	there	are	other	ways	in	which	CRT	improves	the	heart	failure	syndrome.	
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Chapter	5 Modelling	

In	this	chapter,	what	a	computational	model	is	and	isn’t	will	be	discussed,	a	number	of	

models	will	 be	 used	 in	 an	 attempt	 to	model	 the	 heart	 as	 it	 fails	 but	 also	 to	 predict	

whether	the	response	of	the	14	patients	to	CRT	could	have	been	identified	at	baseline.	

The	 work	 in	 the	 following	 chapter	 was	 conducted	 in	 collaboration	 with	 others.	

Specifically	 in	 the	 lumped	 parameter	 work	 DW	 ran,	 analysed	 and	 interpreted	 the	

results	 of	 a	 pre-existing	 model	 created	 by	 Dr	 Yubing	 Shi	 and,	 similarly,	 in	 the	 3D	

modelling	work,	DW	created	the	meshes	and	analysed	and	interpreted	the	results	but	

did	 not	 run	 or	 create	 the	 models	 used.	 These	 latter	 aspects	 were	 carried	 out	 by	

members	of	the	group	at	KCL	led	by	Professor	Nic	Smith.		

5.1 Introduction	

There	are	various	types	of	models	used	in	cardiovascular	research	from	in	vitro	models	

of	 the	 myocyte,	 to	 in	 vivo	 animal	 models	 such	 as	 murine	 or	 porcine,	 to	 in	 silico	

computational	 models	 which	 employ	 mathematical	 equations	 to	 represent	 the	

cardiovascular	 system	 and	 complex	 computational	 software	 to	 solve	 them,	 both	 of	

which	can	be	used	to	model	the	human	heart	and	vasculature	in	health	or	in	diseased	

states.	

	

The	purpose	of	a	mathematical	model	is	to	investigate	and	predict	results	of	scientific	

theories.	 	Statistical	analysis	may	reveal	correlation	between	variables,	but	modelling	

can	 provide	 insight	 into	 the	 underlying	mechanisms.	 	 The	 individual	 contribution	 of	

each	component	can	be	manipulated	and	assessed	and	there	are	fewer	problems	with	

ethics,	scale	or	validity.		The	process	is	less	resource	intensive	and	is	not	reliant	upon	

the	 presence	 of	 the	 actual	 item	being	modelled	 e.g.	 the	 failing	 heart.	 	 A	model	 has	

been	defined	as	a	 “a	 simplified	or	 idealised	description	or	 conception	of	a	particular	

system,	 situation,	 or	 process,	 often	 in	mathematical	 terms,	 that	 is	 put	 forward	 as	 a	

basis	for	theoretical	or	empirical	understanding,	or	for	calculations,	predictions,	etc.;	a	

conceptual	or	mental	representation	of	something”	192.		Therefore	it	is	a	simplification,	

rather	 than	an	exact	copy	of	 reality,	and	as	 such	 it	 should	contain	only	 the	essential	

elements	and	not	be	so	complex	that	it	becomes	a	‘replica’.		
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5.1.1 Computational	Cardiovascular	models	

Whilst	a	cardiovascular	model	should	capture	the	‘essence’	of	a	specific	problem	and	

attempt	to	simplify	the	heart	and/or	vasculature	in	a	way	that	 is	easy	to	manipulate,	

understand	and	quantify,	 for	many	years	bioengineers	have	 striven	 to	compete	with	

more	 and	 more	 complex	 models	 but	 it	 has	 become	 increasingly	 clear	 that,	 if	 such	

models	are	going	to	be	used	in	clinical	practice,	they	need	to	be	a	simple	as	possible.	

When	considering	using	a	computational	model	of	physical	process,	the	problem	must	

first	precisely	defined,	secondly	a	mathematical	model	created	and	 finally	 the	model	

used	to	simulate	the	process.	

When	 specifying	 a	 model,	 challenges	 include	 choosing	 what	 specific	 features	 to	

incorporate	 (or	 to	 exclude).	 Simple	 models	 provide	 elegant	 solutions,	 relying	 on	

parsimony	and	adopting	 the	 simplest	assumptions	when	 formulating	a	 theory.	 	 They	

can	aid	understanding	by	allowing	specific	input	parameters	to	be	manipulated	in	real-

time	 (which	might	 be	 impossible	 in	 a	 living	 system),	 for	 example	 if	 total	 peripheral	

resistance	is	increased	by	50%	what	effect	does	this	have	on	the	cardiac	output?		This	

can	 then	 lead	 to	 the	 generation	 of	 new	 hypotheses	 and	 further	 experiments,	 to	

confirm	the	findings.	However,	complex	modelling	techniques	(which	have	been,	more	

often	 than	 not,	 originally	 developed	 to	 address	 complex	 engineering	 problems)	 are	

increasingly	being	applied	to	clinical	problems	and,	whilst	it	is	perhaps	understandable	

that	high	 levels	of	 complexity	are	often	 justified	 in	 the	context	of	providing	a	better	

representation	 of	 reality,	 the	 so	 called	 “personalised	 model”,	 more	 complex	 is	 not	

always	 the	most	useful.	 	 The	ultimate	goal	 is	 to	develop	a	model	which	 is	 tractable;	

input	 data	 required	 to	 run	 the	 model	 (which	 might	 include;	 images,	 physiological	

measurements,	 demographic	 data	 and	 so	 on)	 must	 be	 available	 and	 of	 adequate	

quality	and	models	with	high	levels	of	complexity	are	often	not	easy	or	impossible	to	

validate.		They	may	also	require	significant	time	and	computational	resource	to	run.		

	

There	 are	 various	 issues	 with	 the	 clinical	 deployment	 of	 such	 models	 in	 clinical	

medicine	 and	 to	 a	 large	 degree,	 they	 are	 treated	 with	 a	 degree	 of	 scepticism	 by	

clinicians,	due	to	lack	of	understanding,	concerns	regarding	legal	implications	e.g.	what	

if	it	is	wrong,	time	constraints	and	applicability	to	the	individual	patient.		Critically,	it	is	

imperative	that	the	model	is	validated,	to	ensure	that	it	fits	the	data	well	and	therefore	

provides	robust	answers	to	the	questions	posed.			
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5.1.2 Cardiovascular	models	in	Clinical	Use	

Examples	of	models	currently	in	use	include	the	Seattle	Heart	Failure	Model	(SHFM);	a	

well-validated	model,	which	can	be	used	to	predict	prognosis	of	HF-LVSD.	 	 It	 is	Open	

Source	(www.depts.washington.edu/shfm/)	and	accessible	online.		The	required	input	

parameters	include	patient-	specific	information	such	as	current	clinical	status,	therapy	

and	laboratory	results	53.	There	also	exists	a	validated	prediction	model	to	aid	clinicians	

in	the	diagnosis	of	HF-LVSD	in	the	acute	setting,	with	age,	pre-test	probability	and	NT-

proBNP	as	input	parameters		
193.	 This	 latter	 model	 has	 been	 further	 developed	 by	 using	 a	 statistical	 technique	

known	as	a	support	vector	machine,	utilising	Bayesian	theory	to	fill	in	missing	data	and	

analysing	parameters	 such	 as	Na+,	 BNP	and	EF.	 The	use	of	 the	model	 is	 reported	 to	

improve	diagnostic	accuracy	from	25-50%	to	75%194.	These	examples	give	insight	into	

benefits	that	can	be	gained	from	simplifying	the	critical	elements	of	a	complex	process	

(in	this	case	prognosis	and	diagnosis)	and	representing	them	in	terms	of	a	model.	

5.1.3 Model	dimensionality		
 
Computational	 models	 have	 varying	 degrees	 of	 complexity,	 from	 simple	 zero-

dimensional	 or	 ‘lumped-parameter’	 (LPM)	 models	 to	 sophisticated	 3	 dimensional	

models	(see	figure	27).	 	According	to	Shi	(2011)	LPMs	“assume	a	uniform	distribution	

of	 the	 fundamental	 variables	 (pressure,	 flow	 and	 volume)	 within	 any	 particular	

compartment	(organ,	vessel	or	part	of	vessel)	of	the	model	at	any	instant	in	time”	and	

are	 based	 upon	 ordinary	 differential	 equations	 (ODEs)195.	 	 Other,	 more	 complex,	

distributed	 parameter	 models	 in	 1-,	 2-	 or	 3-D	 recognise	 the	 variation	 of	 these	

parameters	 in	 space	 and	 use	 partial	 differential	 equations	 (PDE)	 to	 describe	 arterial	

pressure	and	flow	196.		Thus	the	different	dimensional	levels	can	be	considered	in	the	

following	way;	a	LPM	can	be	thought	of	as	representing	a	time-dependent	function	as	

a	single	point	in	space,	a	1-D	model	as	a	line	modelling	various	points	along	the	length	

(x	axis)	with	time,	a	2-D	model	as	a	plane	modelling	various	points	along	length	(x	axis)	

and	 width	 (y	 axis)	 with	 time	 and	 the	 3-D	 model	 extends	 across	 all	 three	 planes	

modelling	various	points	along	length	(x),	width	(y)	and	depth	(z	axis).	There	is	also	the	

concept	of	 a	4-D	model,	 this	 is	 a	unable	 to	be	 implanted	3-D	model	with	a	 time	

dimension,	 as	 seen	 for	 example	 during	 the	 contraction	 of	 the	 LV.	 	 However,	 due	 to	

demands	in	terms	of	computer	processing,	such	models	are	very	slow	to	run	and	can	
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take	 hours-weeks	 to	 create	 and	 run.	 	 In	 addition	whilst	 technically	 and	 scientifically	

interesting,	 in	 general,	 they	 are	 of	 limited	 clinical	 use,	 certainly	 in	 the	 acute	 clincial	

setting	when	decisions	need	to	be	made	in	seconds	or	minutes.	

	

There	are	two	different	types	of	multi-scale	model,	referring	to	either	multiple	spatial	

and	temporal	scales	or	multi-dimensions	(i.e.	zero-,	1-,	2-,	or	3-D).		In	the	former,	the	

behaviour	of	a	system	is	predicted	using	information	from	different	spatial	or	temporal	

levels,	 for	example	knowledge	of	 the	cell,	 tissue,	organ	and	 then	 the	system.	 	 In	 the	

latter,	 the	 term	 ‘multi-scale’	 refers	 to	 coupling	 of	 a	 lower	 order	 model	 to	 a	 higher	

order,	 coupling	 a	 3D	 model	 to	 a	 LPM	 model,	 for	 example.	 	 These	 can	 be	 used	 to	

answer	complex	questions	without	the	need	to	model	the	whole	domain	of	interest	in	

3-D.		The	EU	FP7	project,	euHeart	(www.euheart.eu)	is	one	example	of	a	project	which	

employed	this	approach.	

	

Figure	27:	Diagram	showing	increasing	complexity	of	models	from	0-3D	

 
Figure	 27	 demonstrates	 the	 varying	 complexity	 of	 computational	 models	 from	 zero	

dimensions	e.g.	lumped	parameter	model	where	a	time-dependent	function	is	a	single	

point	in	space,	to	three	dimensions,	

P	=	pressure,	Q	=	flow,	V	=	volume,	t	=	time,	x	=	length,	y	=	width	and	z	=	depth.	

	

Here,	 simple	 LPM	models	 were	 used	 to	 represent	 the	 afterload	whilst	 complex	 3-D	

models	 can	 then	be	used	 to	predict	 the	detailed	 fluid	dynamics	within	 the	ventricle,	
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the	 myocardial	 wall	 mechanics	 or	 the	 dynamic	 electrophysiological	 excitation	 map.		

This	combination	of	modelling	techniques	allows	an	area	of	interest	to	be	modelled	in	

detail,	perhaps	based	on	information	from	clinical	images,	leading	to	the	development	

of	patient-specific	models,	whilst	keeping	computing	resources	to	a	minimum.		

5.1.4 Boundary	conditions	
 
When	 modelling	 complex	 physiological	 systems,	 the	 equations	 used	 rarely	 yield	

analytical	solutions	and	so	the	systems	are	discretised	by	sampling	at	points	within	the	

domain	 to	 make	 them	 tractable	 for	 computational	 solution.	 Computer	 models	

required	mathematical	 assumptions	 to	 reduce	 the	 complexity,	 time	 and	 cost	 of	 the	

simulation.	 Thus	 boundary	 conditions	 can	 be	 considered	 pre-specified,	 time	 varying	

values	 of	 displacement,	 velocity,	 pressure	 or	 derived	 properties.	 In	 computational	

biomedicine,	 the	 combination	 of	 material	 properties	 of	 the	 system	 and	 boundary	

conditions	 can	 be	 used	 to	 describe	 the	 unique	 physiological	 conditions	 to	make	 the	

model	patient	specific.	An	example	of	a	boundary	condition	in	CFD	would	be	the	vessel	

wall,	 for	 example.	 The	 argument	 for	 using	 approximated	 values	 e.g.	 population	

averages	for	material	properties	and	boundary	conditions	lies	on	the	ability	to	collect	

more	precise	readings	and	the	level	of	confidence	in	the	measurements.	However,	the	

simulation	 must	 be	 specific	 enough	 to	 truly	 represent	 the	 system	 of	 interest,	 thus	

there	is	inherent	conflict	between	the	desire	to	make	the	model	as	patient-specific	as	

possible	 and	 the	 resulting	 requirement	 to	 make	 an	 ever	 increasing	 number	 of	

measurements	to	achieve	this	end.	

5.2 Pressure-Volume	loops	
 

There	are	 several	ways	of	quantifying	 the	performance	of	 the	LV,	 ranging	 from	non-

invasive	 measurements	 such	 as	 EF	 (%)	 and	 cardiac	 index	 (l/min/m2)	 to	 invasive	

measurements	 such	as	dP/dt	 and	elastance	 (Emax).	Whist	 there	are	advantages	and	

disadvantages	 to	each	method,	when	constructing	a	 cardiovascular	model,	elastance	

acquired	 using	 a	 pressure-volume	 (PV)	 loop	 is	 preferred	 as	 it	 is	 load-independent	

measure	of	LV	performance	where	as	EF%	and	dP/dt	are	dependent	on	several	extra-

cardiac	 e.g.	 preload,	 afterload	 and	 intra-cardiac	 factors	 e.g.	 synchronicity	 of	

contraction	and	heart	 rate.	Whilst	performing	 invasive	measures	 such	as	Emax	 carry	

clinical	 risk,	because	 they	are	 load	and	heart	 rate	dependent	 it	 is	 felt	 they	are	more	
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robust,	reproducible,	specific	and	accurate	measure	of	the	intrinsic	work	of	the	system	

of	interest.	

	

To	 create	 a	PV	 loop	of	 the	 LV,	 a	 cardiac	 catheter	 tipped	with	 a	micro-manometer	 is	

passed	 trans-femorally	 to	 the	 LV	 apex,	 where	 it	 records	 real-time	 pressures.	 The	

volume	of	the	LV	can	be	calculated	with	 left	ventriculography	using	the	conductance	

method	(via	the	same	catheter)	or	by	using	simultaneous	real-time	echocardiography.		

Pressures	and	volumes	 can	be	 sampled	 repeatedly	during	a	 single	 cardiac	 cycle,	 and	

pressures	 plotted	 against	 volumes	 to	 create	 a	 loop	 (figures	 28	 and	 29).	 	 LV	 filling	

conditions	 can	 be	 manipulated	 (using	 caval	 occlusion	 to	 reduce	 the	 pre-load	 or	

adrenaline	to	increase	the	afterload,	for	example)	and	the	resulting	changes	in	the	PV	

loop	mapped,	with	HR	kept	constant	by	the	use	of	a	temporary	pacing	wire.	If	the	data	

points	 acquired	 at	 maximal	 pressure	 and	 minimal	 volume,	 are	 connected	 from	 the	

range	of	loops	described,	they	will	describe	the	end-systolic	pressure-volume	relation	

(ESPVR),	 the	 slope	 of	 which	 is	 the	 end-systolic	 elastance	 which	 represents	 systolic	

contractility.	 	 Similarly	 if	 the	 data	 points	 acquired	 at	minimal	 pressure	 and	maximal	

volume	 are	 connected,	 the	 end	 diastolic	 pressure	 volume	 relation	 (EDPVR)	 is	

described.		The	slope	of	this	is	the	Emin,	representing	diastolic	stiffness.	The	shape	and	

size	 of	 the	 loops	 are	 characteristic	 of	 different	 disease	 states,	 such	 as	 HF,	 LVH	 and	

LVSD,	which	affect	systolic	and	diastolic	function	to	differing	degrees.	

	

Figure	28:	Cardiac	cycle	and	PV	loop	
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Figure	 28	 demonstrates	 a	 schematic	 of	 a	 pressure-volume	 loop	 of	 the	 left	 ventricle,	

demonstrating	 the	 changes	 in	 pressure	 and	 volume	 according	 to	 the	 phase	 of	 the	

cardiac	cycle.	

	

Figure	29:	Measurement	and	formation	of	a	LV	PV	loop	

	
	

Figure	29	demonstrates	how	the	PV	 loop	 is	derived,	on	the	 left,	 from	the	ECG	at	the	

top	 denoting	 the	 phase	 of	 the	 cardiac	 cycle,	 the	 LV	 pressure	 and	 LV	 volume	 below,	

with	time	along	the	x	axis,	which	is	converted	into	a	loop	seen	on	the	right.	

	

PV	loops	are	often	used	in	animal	models	and	in	clinical	heart	failure	experiments	but	

are	not	performed	routinely	in	clinical	practice.		This	is	primarily	due	to	the	preference	

for	EF%,	which	like	Emax	is	a	late-systolic	index	of	LV	performance	but	is	conceptually	

simple,	 non-invasive	 and	 easy	 to	 determine	 and	 reproduce.	 	 Furthermore	 it	 has	

extensively	 documented	 clinical	 utility,	 using	 a	 variety	 of	 imaging	 modalities.	 	 In	

contrast,	 the	PV	 loop	 is	dependent	on	 LV	volume	and	mass	and	 its	use	 is	 limited	by	

age-	and	gender-dependent	variability.	 	Also,	changes	in	RV	filling	pressure	can	affect	

the	position	of	the	interventricular	septum,	altering	LV	diastolic	pressure	and	thus	the	

resulting	PV-relationship.		Despite	these	reservations	the	PV	loop	can	provide	valuable	

insight.		In	engineering	terms	it	describes	the	work	carried	out	by	a	system;	the	case	of	
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the	heart	 the	LV-PV	 loop	describes	the	work	expended	by	the	LV	during	contraction.		

For	this	reason,	the	PV	loop	offers	valuable	insight	into	the	behaviour	of	the	LV	during	

HF-LVSD	and	response	to	treatment	such	as	CRT.	

5.3 Zero-Dimensional	Models	

5.3.1 Introduction	

Blood	flow	in	the	circulation	obeys	the	laws	of	physics,	which	govern	energy,	mass	and	

momentum	 conservation.	 	 LPM	 models	 are	 best	 thought	 of	 in	 terms	 of	 hydraulic-

electrical	analogues;	just	as	in	an	electrical	circuit	the	voltage	gradient	determines	the	

flow	of	 current,	 the	 flow	of	blood	 in	 the	cardiovascular	 system	 is	determined	by	 the	

pressure	 gradient	 and	 so	 such	 LPM	 can	 be	 used	 to	 simulate	 physiology	 and	

pathophysiology	of	the	cardiovascular	system,	furthering	understanding.		

	
Table	37:	Components	of	LPM	models,	their	meaning	and	units	of	measurement	

Symbol	
Meaning	

Units	
Electrical	 Physiological	

C	 Capacitance	 Vessel	compliance	 mmHg/ml	

R	 Resistance	 Frictional	losses	 mmHg*sec/ml	

L	 Inertance	 Blood	rheology	 mmHg*sec/ml	

	

Factors	 influencing	 flow	 in	an	electrical	 circuit	 are	 the	 capacitance	 (C),	 resistance	 (R)	

and	 inertance	 (L);	 and	 the	 corollaries	 of	 these	 in	 the	 human	 circulation	 are	 the	

elasticity	of	the	blood	vessel	wall,	the	frictional	losses	encountered	and	the	rheology	of	

the	blood	respectively	(table	37).	Parameters	of	the	electrical	model	can	be	adjusted	to	

simulate	 various	 pathological	 conditions	 and	 the	 consequences	 of	 such	 adjustments	

can	 be	 explored,	 for	 example	 increasing	 resistance	 and	 reducing	 capacitance	 can	

simulate	 systemic	 hypertension.	 	 As	 in	 an	 electrical	 circuit,	 components	 can	 be	

organised	 in	 series	 or	 in	 parallel,	 which	 will	 influence	 the	 current	 and	 the	 voltage	

measured.	

 

In	 an	 electrical	 circuit,	 a	 capacitor	 typically	 comprises	 2	 electrical	 conductors,	

separated	by	an	 insulator;	 it	 functions	 to	 store	electrical	 energy.	 	 The	 capacitance	 is	

the	 ratio	 of	 the	 charge	 on	 each	 conductor	 (Q)	 to	 the	 voltage	 (V)	 between	 them	
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(Capacitance	 =	Q/V).	 	 In	 a	 vascular	 circuit,	 its	 corollary	 is	 compliance,	which	 can	 be	

defined	 as	 the	 change	 in	 volume	 with	 change	 in	 pressure	 (Compliance	 =	 V/P).		

Compliance	 represents	 the	 elasticity	 of	 the	 large	 central	 arteries.	 	 For	 example,	 the	

aorta	buffers	the	pulsatile	nature	of	the	flow	ejected	the	 left	ventricle	at	systole	and	

then,	during	diastole,	elastic	recoil	of	the	aorta	returns	energy	to	the	blood	to	help	to	

maintain	forward	flow.		Compliance	is	the	reciprocal	of	stiffness.	Thus	the	greater	the	

change	in	volume	mediated	by	a	change	in	pressure,	the	greater	the	compliance	and	

vice	versa.		Elastance	is	represented	in	LPM	by	a	variable	capacitor,	whose	capacity	can	

be	changed	intentionally	and	repeatedly,	representing	the	volume	of	blood	in	a	cardiac	

chamber,	such	as	the	atria	or	ventricles.		

 

In	the	electrical	analogue,	resistance	can	be	described	by	Ohm’s	 law	(I	=	V/R),	where	

resistance	 (R)	 is	 the	 ratio	 of	 the	 voltage	 (V)	 across	 the	 resistor’s	 terminals	 to	 the	

magnitude	of	the	current	(I)	in	an	electrical	circuit.		In	a	vascular	circuit,	the	equivalent	

to	electrical	resistance	is	peripheral	resistance	(PR)	which	is	governed,	primarily,	by	the	

small	distal	arteries	and	arterioles.	 	Together	 these	provide	a	variable	 resistance,	via	

vessel	calibre	change,	to	ensure	the	blood	supply	to	the	periphery	remains	constant.		

PR	 can	 be	 defined	 as	 the	 change	 in	 pressure	 gradient	 across	 the	 vascular	 tree	with	

change	in	flow	(R	=	∆P/Q),	therefore	the	greater	the	change	in	pressure	mediated	by	a	

change	in	flow,	the	greater	the	resistance	and	vice	versa.	

  

Inertance	can	be	defined	as	the	pressure	gradient	in	the	fluid	that	is	needed	to	change	

the	 flow	 rate	with	 time	 (L	 =	P	 x	 l/A),	 determined	by	 the	density	of	 the	 fluid	 (P),	 the	

length	of	the	tube	(l)	and	the	cross	sectional	area	of	the	tube	(A).		In	the	human,	this	

accounts	for	the	inertia	of	the	entire	vascular	tree.		Therefore,	the	greater	the	density	

(of	blood)	and	longer	the	length	of	the	tube	(vascular	tree)	the	greater	the	inertia,	and	

the	greater	the	cross	sectional	area	of	the	tube	(vessel)	the	smaller	the	inertia.		
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Figure	30:	A	2-component	Windkessel	model	

	

Figure	30	demonstrates	a	simple	2	component	“Windkessel”	lumped	parameter	model	

with	 a	 capacitor	 and	 a	 resistor,	 representing	 total	 arterial	 compliance	 and	 systemic	

vascular	resistance	respectively.		

	

Diodes	are	used	as	electrical	analogues	of	valves.	 	A	diode	contains	 two	 leads,	 like	a	

resistor	but	Ohm’s	law	does	not	apply;	the	resistance	is	low	in	one	direction	and	high	

in	the	other.		Similarly,	valves	in	heart,	when	competent,	have	a	very	high	resistance	to	

backward	flow	and	very	low	resistance	to	forward	flow.	

 

Together	all	of	 these	components	can	be	used	to	create	models,	which	are	electrical	

analogues	of	varying	levels	of	complexity	representing	the	cardiovascular	system;	the	

arterial	 system	 is	 thus	comprised	of	capacitors	and	resistors	and	the	heart	chambers	

represented	by	capacitors	and	diodes.	

	

The	earliest	form	this	type	of	model	originates	from	1899	and	is	called	the	‘Windkessel’	

model,	a	term	meaning	‘air	chamber’	in	German.		In	this	model,	Otto	Frank	described	

the	arterial	system	as	a	single	elastic	chamber	(Figure	30),	comprising	two	elements;	a	

capacitor	representing	the	large	arteries,	which	determine	total	arterial	compliance	(C)	

and	 a	 resistor	 representing	 the	 smaller	 vessels,	 which	 determine	 the	 peripheral	

vascular	 resistance	 (R).	 	 These	 factors	 affect	 the	 ingoing	 (i)	 pressure	 and	 flow	 thus	

giving	the	outgoing	(o)	pressure	and	flow.		

 

This	 simple	model	 is	 still	used	 today	with	many	currently-used	models	 still	based	on	

expansion	 of	 the	 simple	 RC	 unit	 with	 the	 addition	 of	 further	 R,	 C	 or,	 indeed,	 L	

components.		Whilst	being	able	to	model	the	basic	behaviour	of	the	arterial	tree,	the	

2-element	 model	 lacks	 accuracy	 in	 terms	 of	 the	 high	 frequency	 behaviour	 of	 the	
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system.	 	 Accuracy	 can	 be	 improved	 by	 adding	 an	 extra	 element	 -	 the	 characteristic	

impedance	 of	 the	 system	 -representing	 the	 proximal	 aorta	 in	 terms	 of	 local	 blood	

inertia	 and	 vessel	 compliance.	 	 Since	 the	 resulting	 3-element	 model	 still	 tends	 to	

overestimate	 C	 and	 R,	 inclusion	 of	 a	 4th	 element,	 the	 inertance,	 was	 proposed	 by	

Segers	et	al	(2008)	197.	

	

A	 large	 number	 of	 LPM	 models	 varying	 levels	 of	 complexity	 can	 be	 found	 in	 the	

literature.	 These	 range	 from	 the	 simple	 single-compartment	RLC	models	 such	as	 the	

Windkessel	 model	 where	 the	 whole	 of	 the	 systemic	 or	 pulmonary	 vasculature	 is	

treated	as	a	single	entity,	to	multi-compartment	models where	the	vascular	system	is	

discretised	 into	 units,	 with	 the	 aorta,	 arteries,	 arterioles,	 capillaries	 and	 veins	 each	

having	their	own	unique	properties.		In	this	way,	the	entire	cardiovascular	system	can	

be	 modelled	 using	 a	 series	 of	 resistances,	 inductances	 and	 compliances	 without	

following	anatomical	convention.			

	

Some	 researchers	have	adopted	an	alternative	 approach	attempting	 to	map	out	 the	

entire	 human	 anatomical	 vascular	 tree	 by	 creating	 a	 multi-branched	 multi-

compartmental	 model.	 	 The	 obvious	 caveat	 here	 is	 that	 increasing	 complexity	

parameters	may	be	accompanied	by	increasing	potential	for	error	198.	Models	can	also	

be	 divided	 into	 those	 which	 are	 open	 loop,	 in	 that	 a	 specified	 pressure	 or	 flow	 is	

applied	 to	 a	 given	 afterload	 and	 the	 results	 recorded,	 or	 closed	 loop	where	 there	 is	

conservation	of	blood	volume	throughout	the	circulation	and	the	output	is	affected	by	

preload	and	afterload. 

5.3.2 Cardiac	models	

LPMs	 can	 be	 further	 sub-divided	 into	 non-pulsatile199	 or	 pulsatile200	models.	 	 In	 the	

former,	Starling’s	Laws	are	used	to	describe	heart	function	but	for	pulsatile	models	the	

heart	 chambers	 are	 based	 on	 a	 time-varying	 elastance	 function	 and,	 as	 mentioned	

above,	the	heart	valves	are	represented	by	diodes.		The	time-varying	elastance	model	

is	simple	to	comprehend	and	use	and	as	a	consequence,	has	been	widely	adopted	by	

the	modelling	community.	
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5.3.3 Gap	in	the	evidence	

Whilst	 LPM	models	 have	 been	 used	 to	 attempt	 to	 understand	 the	 behaviour	 of	 the	

failing	and	 the	 response	 to	 therapy	 (with	 support	 from	an	 LVAD,	 for	example)	 there	

has	 been	 no	 attempt	 to	 triage	 the	 importance	 of	 the	 various	 components	 and	

therefore	understand	precisely	what	impact	the	parameters	have	on	the	output	of	the	

model.	 	 Is	 the	LV	more	 important	 than	 the	R	and	C	 in	determining	LV	output	or	 the	

patient’s	symptoms,	for	example?		Furthermore,	none	have	been	employed	to	model	

response	to	therapy,	such	as	CRT.	

	

Yuexian	et	 al	 (2009),	used	a	 complex	model,	based	on	a	Windkessel	 circulation	with	

embedded	 autonomic	 nervous	 system	 and	 renal	 blood	 volume	 adjustment,	 reduced	

the	contractility	of	the	LV,	modelled	with	a	variable	capacitor,	by	50%	to	simulate	HF-

LVSD	201.	The	rationale	for	this	approach	is	not	clear;	it	is	unlikely	that	a	50%	reduction	

of	LV	contractility	will	be	relevant	to	all	cases	of	HF-LVSD	and	the	authors	fail	to	a	give	

reason,	reference	or	justification	for	such	a	value.		Other	researchers	202	have	tried	to	

model	biventricular	 failure	 in	a	pig	with	a	VAD	device	 in	 situ,	by	 reducing	LV	and	RV	

contractility,	rather	than	that	of	the	LV	alone.	 	This	 is	a	step	forward	but	 ignores	the	

potential	role	of	other	components	such	as	the	LA.	Similarly,	Hsu	et	al	(2008)203	looked	

at	end-stage	HF-LVSD	by	halving	the	LV	contractility	whilst	increasing	the	LV	volumes,	

systemic	and	total	arterial	resistances	but	this	again	ignores	the	potential	role	of	many	

other	components	which	are	known	to	change	in	end-stage	HF-LVSD	such	as	the	RV.		A	

more	 realistic	model	 of	 HF	 would	 encompass	 changes	 in	 all	 these	 components	 and	

more.		For	example,	Di	Molfetta	et	al	(2010)204	used	a	variable	elastance	model	of	the	

ventricles	 including	 the	septum,	which	enabled	 intra-	and	 inter-ventricular	delay	and	

the	 result	 of	 biventricular	 stimulation	 to	 be	 modelled,	 couples	 with	 a	 LPM	 of	 the	

downstream	systemic	vasculature.	 	The	researchers	used	the	model	 in	an	attempt	to	

improve	 biventricular	 synchronisation	 in	 CRT	 and	 “reproduce	 clinical	 data	 and	 also	

estimate	the	trend	of	parameters	which	are	difficult	to	measure”.			

5.3.4 Problems	with	lumped	parameter	cardiovascular	models	

According	 to	 Shi	 et	 al	 (2011),	 once	 a	 reference	 range	 has	 been	 found	 for	 the	

parameters,	the	majority	of	 input	variables	must	be	derived	by	a	process	of	trial	and	

error	 to	 see	 if	 these	 match	 the	 measured	 output	 data	 195.	 	 There	 is	 an	 immediate	

problem	here,	for	whilst	these	may	be	valid	mathematically,	this	does	not	necessarily	
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mean	that	they	will	have	a	clinical	correlate.		In	addition,	this	process	is	long	and	slow	

and	there	is	a	lack	of	consistency	amongst	researchers	when	choosing	parameters	such	

as	LV	elastance,	for	example	205-208.	This	is	a	result	of	difficulties	in	parameter	setting.		

First,	because	of	 the	 invasive	nature	of	measuring	such	values	 in	vivo	many	of	 these	

are	 unknown.	 	 Second,	 individual	 models	 may	 have	more	 than	 one	 combination	 of	

input	variables,	which	give	the	same	desired	output.		And	third,	different	models	may	

use	different	components	and	thus	entirely	different	parameters.		It	is	clear	that	within	

the	 clinical	 community,	 such	 studies	 will	 not	 be	 considered	 valid	 and	 robust	 the	

absence	of	real	(e.g.	in	vivo	measured)	variables	using	data	associated	with	the	specific	

human	heart	being	modelled	rather	than	arbitrary	numbers.		Whilst	there	is	a	general	

paucity	of	data	available	for	healthy	control	subjects,	some	studies	have	attempted	to	

address	 this	 by	 using	 parameters	 taken	 from	 by	 comparing	 simulated	 model	

performance	 with	 in	 vivo	 measurements,	 such	 as	 aortic	 pressure	 recordings	 using	

catheters	 in	 both	 healthy	 normal197	 and	 patients	 with	 HTN209	 	 or	 HF	 206	 210.	 Other	

aspects	of	the	cardiovascular	circulation	with	have	not	been	interrogated	include	the	

influence	of	AV	or	interventricular	dyssynchrony.	From	a	clinical	perspective,	LPMs	are,	

at	 best,	 rudimentary	 but	 they	 have	 the	 advantages	 of	 being	 simple,	 easy	 to	

manipulate,	 quick	 to	 run,	 and	 place	 low	 demands	 on	 computing	 resources.	 	 It	 is	

important	 to	 reiterate	 that	 whilst	 more	 complex	 models	 may	 give	 a	 richer	 set	 of	

results,	they	do	not	necessarily	give	more	accurate	results,	but	rather,	the	model	must	

be	fit	for	the	purpose	for	which	is	it	employed.		

5.3.5 Models	of	the	progression	heart	failure	

 
To	date	no	model	has	systemically	attempted	to	show	the	progression	of	heart	failure	

from	normality,	through	onset	to	end	stage.		However	researchers	have	been	able	to	

show	differences	in	vascular	compliance,	resistance	and	also	left	ventricular	elastance.		

A	single	paper	by	Tsuruta	et	al	 (1994)211	demonstrated	that	 it	 is	possible	 to	simulate	

the	various	stages	of	the	Forrester	classification	of	HF-LVSD,	using	hypothetical	patient	

parameters,	 but	 as	 previously	mentioned,	 this	 represents	 acute	 decompensated	HF-

LVSD	after	MI	and	does	not	describe	other	aetiologies,	such	as	non-ischaemic	disease.	

Arnold	et	al	 (1991)212	used	pulsed	wave	velocity	 (PVW)	 to	demonstrate	 that	brachial	

artery	 diameter	 and	 compliance	 decreased	 as	 HF-LVSD	 symptom	 severity	 increased,	

using	a	propagative	model	derived	from	the	Moens-Korteweg	formula,	used	to	model	
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the	relationship	between	PVW	and	the	compliance	of	 the	arterial	wall.	Furthermore,	

Duprez	 et	 al	 (1998)	 213,	 in	 one	 of	 the	 first	 high	 profile	 uses	 of	 lumped	 parameter	

models	 in	 a	 clinical	 paper,	 showed	 that	 there	 was	 an	 inverse	 relationship	 between	

large	 artery	 compliance	 and	 aldosterone,	 despite	 treatment	 with	 full	 dose	 ACE-

inhibitors	 and	 diuretics.	 	 Unfortunately	 patients	 were	 not	 stratified	 according	 to	 HF	

severity,	but	this	was	proven	to	be	the	case	in	a	similar	study,	albeit	on	patients	with	

HFPEF	214.	

5.4 Lumped	parameter	modelling	of	HF	progression	

5.4.1 Introduction	

In	 2001,	 the	 joint	 AHA/ACC	 taskforce	 guidelines215	 attempted,	 for	 the	 first	 time,	 to	

categorise	 HF	 and	 its	 progression	 in	 terms	 of	 pathophysiology	 (see	 table	 38).	 	 This	

initiative	was	intended	to	“complement”	the	pre-existing	New	York	Heart	Association	

(NYHA)	functional	classification	and	describe	the	development	of	LV	dysfunction	from	

patients	with	 a	 high	 risk	 of	HF	 e.g.	 hypertension	 (Stage	A)	 to	 those	with	 severe	 and	

symptomatic	 HF	 e.g.	 requiring	 transplant	 (Stage	 D).	 However,	 this	 classification	 is	

qualitative;	focusing	on	describing	each	stage	and	open	to	misinterpretation	115.	

	

It	is	clear	that	definition	of	quantitative	measures	for	each	stage	could	be	of	significant	

benefit	 since	 they	 could	 be	 used	 to	 chart	 the	 pathophysiology,	 improve	 risk-

stratification	and	the	prediction	of	response	to	clinical	interventions.	To	date,	attempts	

to	categorise	patients	 into	 individual	stages	have	concentrated	on	 indirect	measures,	

such	as	biomarkers	e.g.	BNP,	which	nonetheless	improve	prognostication	124.		

Table	38:	AHA/ACC	stages	of	HF	

Stage	 Description	 Examples	

O*	 No	risk,	heart	disease	or	symptoms	 Healthy	adults	

A	 Risk	of	HF	but	without	structural	
heart	disease	 Hypertension	

B	 Structural	heart	disease	without	
signs	or	symptoms	of	HF	

Previous	myocardial	
infarction	

C	 Structural	heart	disease	with	prior	
or	current	symptoms	of	HF	

Requiring	routine	HF	
drugs	

D	 Refractory	HF	requiring	specialist	
intervention	 Heart	transplant	
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*O	–	 this	 stage	 is	not	 included	 in	 the	AHA/ACC	classification	but	has	been	added	 for	

completeness.	

	

The	 focus	 of	 the	 current	 study	 is	 the	 population	 of	 patients	 with	 HF-LVSD.	 	 This	

decision	 was	 based	 on	 both	 pragmatic	 and	 therapeutic	 considerations	 since	 only	

patients	 with	 HF-LVSD	 have	 therapeutic	 interventions	 that	 are	 associated	 with	

significant	impact	on	morbidity	and	mortality.		There	have	been	many	studies	looking	

at	LV	PV	loops	in	patients	with	heart	disease,	but	this	is	the	first	attempt	to	collate	and	

compare	these.		

	

When	seeking	to	model	LV	performance,	quantitative	data	is	vital	to	ensure	that	what	

is	being	modelled	is	an	accurate	representation	of	reality.		Previous	attempts	to	model	

the	 heart	 as	 it	 fails,	 and	 the	 effect	 of	 potential	 therapies,	 pre-date	 the	 AHA/ACC	

classification	 and	 apply	 hypothetical	 haemodynamic	 states	 according	 to	 Forrester	

class118	 rather	 than	 actual	 patient	 data211	 216.	 Current	 computational	 models	 of	 HF-

LVSD,	whether	zero-dimensional	or	multi-scale,	choose	arbitrary	parameters	for	the	LV	

such	as	reducing	elastance	by	50%	or	use	boundary	conditions	such	as	resistance	and	

compliance,	which	are	not	directly	based	on	data	from	HF-LVSD	patients.		The	aim	of	

this	work	was	been	to	provide	specific	LV	performance	and	systemic	vascular	data	on	a	

population	basis,	from	a	healthy	to	a	failing	heart.	
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Figure	31:	A	lumped	parameter	model	with	2-element	afterload	

Figure	31	demonstrates	a	closed	loop	lumped	parameter	model	with	diodes	for	aortic	

(CVao)	 and	 mitral	 valves	 (CVmi),	 variable	 capacitors	 for	 left	 ventricle	 (Elv)	 and	 left	

atrium	(Ela)	and	a	capacitor	and	resistor	representing	the	systemic	circulation,	used	in	

this	chapter	to	model	the	left	ventricle	as	it	fails.	

	

This	would	provide	a	quantitative	assessment	of	each	AHA/ACC	stage	of	HF	and,	 for	

the	first	time,	define	risk	and	onset	and	progression	of	HF-LVSD	according	to	changes	

in	 the	 physical	 properties	 of	 the	 left	 ventricle	 as	 represented	 by	 left	 ventricular	

pressure-volume	loops.		The	choice	of	the	pressure-volume	(PV)	loop	in	this	context	is	

based	 on	 its	 direct	 description	 of	 the	 performance	 of	 the	 LV	 in	 real	 time	making	 it	

superior	 to	 the	 blunt	 instrument	 of	 measuring	 systolic	 function	 through	 fractional	

shortening	 or	 ejection	 fraction	 (LVEF).	 	 The	 PV	 loop	 allows	 appropriate	 classification	

and	 understanding	 of	 the	 process	 by	 which	 heart	 failure	 develops,	 irrespective	 of	

whether	it	is	related	to	systolic	or	diastolic	dysfunction.		

5.4.2 Methods	

5.4.2.1 Pressure	Volume	loops	
 
Figure	32:	PV	conductance	catheter	in	the	LV	

Figure	 32	 demonstrates	 the	 PV	

‘pig-tail’	shaped	catheter	in	the	left	

ventricle,	with	manometer	 at	 level	

3	and	multiple	electrodes	along	the	
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catheter	 used	 to	 divide	 the	 LV	 into	 segments	 and	 using	 conductance	 measure	 the	

change	in	volume	of	each	segment.	

	

The	methodology	 for	PV	 loop	acquisition	has	been	described	 in	detail	previously	 217.	

Briefly,	a	catheter	is	inserted	via	the	femoral	artery	to	the	apex	of	the	LV	cavity	under	

fluoroscopy.	 	 Real-time	 measurement	 of	 pressure	 is	 performed	 using	 a	 micro-

manometer	 on	 the	 catheter.	 	 Ventricular	 volume	 is	 recorded	 using	 the	 conductance	

method,	 in	 which	 multiple	 electrodes	 situated	 along	 the	 catheter	 measure	 the	

electrical	conductance	of	arbitrary	segments	within	the	LV	blood	pool;	the	summation	

of	these	represents	the	total	volume	of	the	LV	cavity	(see	figure	32). 	

	

To	collect	data	for	a	meta-analysis	of	PV	loops	from	the	published	literature	an	online	

search	 of	 Pubmed,	Web	 of	 Knowledge,	Medline	 and	Google	 images	was	 conducted,	

using	 the	 search	 term	 “pressure-volume	 loop”.	 	 In	 order	 to	 be	 included	 in	 the	 final	

analysis	the	resulting	references	were	studied	to	check	that	they	met	specific	criteria	

(see	table	39).	

	

5.4.2.2 Inclusion	criteria:	

• Studies	with	complete	LV	PV	loops	in	adult	humans.	

• (and)	Studies	representing	any	AHA/ACC	stage	including	healthy	normal	

subjects.	

• (and)	HF,	if	present,	due	to	LV	systolic	dysfunction	only.	

	

5.4.2.3 Exclusion	criteria:	

• Diastolic	heart	failure	or	HFPEF.	

• HF	secondary	to	an	uncertain	or	uncommon	cause	such	as	Chagas’	disease.	

• An	unclear	past	medical,	symptom	or	drug	history.	

• Absence	of	pictorial	representations	of	entire	loop	e.g.	diastolic	limb	only.	

• Acquisition	during	experimental	treatment	without	baseline	measure.	
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Table	39:	HF	studies	used	in	LV	PV	loop	modelling	

Class	
Author	 Year	

NYHA	 ACC/AHA	

N/A	 O	and	A	
Kelly	 1992	

Redington	 1988	

I	 B	

Magorien	 1983	

Thormann	 1990/91/92	

Thormann	 1990	

Schreuder	 1991	

Kelly	 1992	

Hayward	 2001	

Urheim	 2002	

ten	Brinke	 2010	

II	

C	

Smith	 1974	

Sonntag	 2004	

Thormann	 2008	

Remmelink	 2009/10	

III	

Feldman	 1996	

Macgowan	 1998	

Kim	 1999	

Dekker	 2004	

Steendijk	 2006	

Kashimura	 2007	

IV	 D	

Herrmann	 1987	

Aroney	 1989	

Schreuder	 1995	

Kass	 1995	

Lorusso	 1997	

Hayward	 1999	

Kawaguchi	 2001	

Schreuder	 2005	

Ferrari	 2005	

Tulner	 2006	

ten	Brinke	 2010	
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Of	the	351	papers	identified	only	31217-247	satisfied	all	of	the	inclusion,	and	none	of	the	

exclusion,	criteria	and	were	subsequently	included	in	the	final	analysis.		These	included	

data	from	203	patients.	

	

The	graphical	images	of	PV	loops	captured	from	the	papers	online	using	a	screenshot,	

were	 uploaded	 into	 an	 open	 access	 analysis	 software	 package	 (Engauge	 digitizing	

software	http://digitizer.sourceforge.net/)	and	converted	into	numbers	(see	figure	33)	
248.	

Figure	33:	Screenshot	using	Engauge	software	to	digitize	a	PV	loop	

 
Figure	33	demonstrates	the	use	of	Engage	software	to	digitise	an	existing	PV	loop	from	

a	published	study,	on	the	left	is	a	PV	loop,	the	red	crosses	are	used	to	set	the	axes,	the	

blue	crosses	auto-populate	the	loop	and	this	results	in	the	database	on	the	right.	

 

5.4.2.4 Modelling	the	PV	loops	

As	 discussed	 numerous	 computational	 models	 of	 the	 cardiovascular	 system,	 of	

different	levels	of	complexity,	ranging	from	simple	lumped	parameter	models,	to	more	

complex	 3	 dimensional	 models	 can	 be	 found	 in	 the	 literature.	 	 Lumped	 parameter	

models	 can	 describe	 the	 changes	 in	 pressure,	 volume	 and	 flow	 that	 occur	 over	 the	

cardiac	cycle	as	a	function	of	cardiac	performance	and	systemic	afterload.		This	model	

presents	 the	 numerical	 values	 of	 the	 four	 parameters	 in	 the	 simplest	 possible	

representation	 of	 the	 heart	 and	 systemic	 circulation,	 the	 components	 of	 which	 are	
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described	below.	 	 The	progression	of	 heart	 failure	 is	 thus	 expressed	 in	 terms	of	 the	

evolution	of	these	four	parameters.		Furthermore	it	is	suggested	that	the	values	of	the	

components	 that	 represent	 the	 systemic	 afterload	 might	 be	 used	 to	 determine	

appropriate	 boundary	 conditions	 for	 the	 modeller	 who	 is	 interested	 in	 using	 such	

representations	to	provide	boundary	conditions	for	complex,	anatomically-accurate	3D	

models	of	the	left	ventricle.	

	

For	this	study,	a	LPM	(see	figure	31)	with	a	variable	elastance	LV	and	2	element	(R	and	

C)	Windkessel	afterload	was	chosen	to	model	 the	LV	 in	HF	249.	This	was	downloaded	

from	the	CellML	(http://www.cellml.org/)	model	repository,	(a	free-to-access	store	of	

computer-	 based	 mathematical	 models)	 and	 run	 using	 OpenCell,	 an	 open	 source	

platform	for	working	with	CellML	models	250.	

	

To	model	the	mean	AHA/ACC	PV	loops,	the	Matlab		(The	Mathworks	Inc,	Cambridge,	

UK)	 optimisation	 toolbox	was	 used	 to	 find	 the	 combination	 of	 parameters	 that	 best	

fitted	the	data	of	both	the	mean	and	the	individual	loops.		The	resulting	model	PV	loop	

data	 was	 exported	 to	 an	 excel	 spread	 sheet	 (Microsoft	 Inc,	 Redmond,	 US)	 and	

compared	against	the	mean	PV	loop.	
	Figure	34:	Screenshot	using	OpenCell	to	model	cardiovascular	haemodynamics	

Figure	 34	 demonstrates	 a	 screenshot	 of	Opencell,	with	 different	 components	 of	 the	

model	listed	on	the	left	and	on	the	right,	the	aortic	and	left	ventricular	pressure	in	the	
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top	 frame,	 pulmonary	 and	 aortic	 flow	 in	 the	 middle	 frame	 and	 left	 atrial	 and	 left	

ventricular	volume	in	the	bottom	frame.	

5.4.3 Results		

5.4.3.1 Mean	Pressure	Volume	loops	

The	 majority	 of	 the	 patients	 within	 each	 AHA/ACC	 category	 are	 males	 in	 their	 late	

fifties	 (table	40)	 and	 some	AHA/ACC	HF-LVSD	 stage	groups	have	more	patients	 than	

others.	 	Group	A	 is	dominated	by	patients	with	 ischaemic	heart	disease	(IHD),	 rather	

than	 other	 risk	 factors	 such	 as	 obesity	 or	 diabetes.	 	 However	 there	 is	 a	 balanced	

distribution	of	HF	 aetiologies	 in	 groups	C	 and	D,	with	 both	 ischaemic	 and	 idiopathic	

dilated	cardiomyopathy	(DCM)	accounting	for	approximately	50%	of	cases	in	each.	

Table	40:	Demographics	and	aetiology	of	HF	

HF	Stage	 	 	 O	 A	 B	 C	 D	

Demographics	
Patients	 N	=	 2	 65	 6	 42	 88	
Gender	 %	male	 100	 65	 83	 88	 81	
Age	 mean	 29	 56	 59	 60	 58	

Aetiology	

HTN	 %	

	

7	
	

	 	IHD	 %	 93	
MI	 %	

	

100	
Ischaemic		 %	

	
50	 54	

Non-ischaemic		 %	 50	 46	
	

For	brevity,	raw	and	mean	loops	are	just	shown	for	a	single	stage,	AHA/ACC	D	(figure	

35)	 but	 from	 these,	 it	 is	 evident	 that	 even	 within	 end-stage	 HF,	 there	 is	 significant	

individual	variation,	both	in	terms	of	LV	pressure	and	volume.		
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Table	41:	Comparison	of	data	for	each	HF	stage,	using	2-tailed	Student’s	T-test	

AHA/ACC		
HF	Stage	 Parameter	 Unit	 O	 A	 B	 C	 D	

O	

LVEDV	 (ml)	

		

p	=	0.31	 p	=	0.27	 p	<	0.05	 p	<	0.05	

LVESV	 (ml)	 p	=	0.22	 p	=	0.13	 p	<	0.01	 p	<	0.05	

SV	 (ml)	 p	=	0.49	 p	=	0.13	 p	=	0.11	 p	<	0.001	

EF	 (%)	 p	=	0.19	 p	<	0.05	 p	<	0.001	 p	<	0.001	

A	

LVEDV	 (ml)	

		

p	=	0.37	 p	<	0.001	 p	<	0.001	

LVESV	 (ml)	 p	=	0.05	 p	<	0.001	 p	<	0.001	

SV	 (ml)	 p	<	0.05	 p	<	0.01	 p	<	0.001	

EF	 (%)	 p	<	0.01	 p	<	0.001	 p	<	0.001	

B	

LVEDV	 (ml)	

		

p	<	0.01	 p	<	0.01	

LVESV	 (ml)	 p	<	0.01	 p	<	0.001	

SV	 (ml)	 p	=	0.39	 p	<	0.001	

EF	 (%)	 p	<	0.01	 p	<	0.001	

C	

LVEDV	 (ml)	

		

p	=	0.09	

LVESV	 (ml)	 p	=	0.08	

SV	 (ml)	 p	=	0.40	

EF	 (%)	 p	<	0.05	
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Table	42:	LPM	variables	for	each	model,	compared	using	2-tailed	Student’s	T-test	

AHA/ACC	HF	
Stage	 Parameter	 Unit	 O	 A	 B	 C	 D	

O	

Emax	 (mmhg/ml)	

		

p	=	
0.76	

p	=	
0.81	

p	<	
0.001	

p	<	
0.001	

Emin	 (mmhg/ml)	 p	=	
0.71	

p	=	
0.65	 p	=	0.98	 p	=	0.77	

LV	
Volume	 (ml)	 p	=	

0.76	
p	=	
0.81	 p	=	0.17	 p	<	

0.001	

Resistance	 (mmhg•s/
ml)	

p	=	
0.06	

p	=	
0.25	 p	=	0.48	 p	=	0.37	

Capacitan
ce	 (ml/mmhg)	 p	=	

0.67	
p	=	
0.93	 p	=	0.71	 p	=	0.80	

A	

Emax	 (mmhg/ml)	

		

p	=	
0.63	

p	<	
0.001	

p	<	
0.001	

Emin	 (mmhg/ml)	 p	=	
0.06	 p	<	0.05	 p	<	

0.001	
LV	

Volume	 (ml)	 p	=	
0.27	 p	<	0.05	 p	=	0.53	

Resistance	 (mmhg•s/
ml)	

p	=	
0.36	 p	=	0.21	 p	=	0.08	

Capacitan
ce	 (ml/mmhg)	 p	=	

0.41	 p	=	0.06	 p	=	0.07	

B	

Emax	 (mmhg/ml)	

		

p	<	0.01	 p	<	
0.001	

Emin	 (mmhg/ml)	 p	=	0.16	 p	<	
0.001	

LV	
Volume	 (ml)	 p	=	0.88	 p	=	0.35	

Resistance	 (mmhg•s/
ml)	 p	=	0.88	 p	=	0.35	

Capacitan
ce	 (ml/mmhg)	 p	=	0.63	 p	=	0.35	

C	

Emax	 (mmhg/ml)	

		

p	=	0.43	

Emin	 (mmhg/ml)	 p	=	0.25	

LV	
Volume	 (ml)	 p	=	0.25	

Resistance	 (mmhg•s/
ml)	 p	<	0.05	

Capacitan
ce	 (ml/mmhg)	 p	=	0.9	
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Table	41	demonstrates,	 that	 there	 is	no	statistically	 significance	differences	between	

stages	O	and	A	or	B,	but	together	they	are	significantly	different	from	stages	C	and	D	in	

all	variables.	There	are	no	significant	differences	between	stages	C	and	D.	 	 	Table	42	

demonstrates,	 that	 whilst	 there	 is	 no	 statistically	 significance	 difference	 between	

model	parameters	between	stages	O	and	A	or	B,	they	are	significantly	different	from	

stages	C	and	D	 in	Emax	only.	There	were	no	significant	differences	between	stages	C	

and	D.	

Figure	35:	Mean	(triangles)	and	individual	LV	PV	loops	(lines)	from	Stage	D	

	

Figure	37	demonstrates	 the	pressure	 volume	 loops	of	 all	 the	patients	who	 comprise	

stage	D	in	solid	grey,	with	the	mean	pressure	volume	loop	in	black	triangles.	

	

As	can	be	seen	from	figure	37,	there	is	a	conformational	difference	not	only	between	

all	HF-LVSD	groups	(O,	A,	B,	C,	D)	but	also	between	asymptomatic	and	at	risk	groups	O,	

A,	 B	 and	 those	 in	 symptomatic	 HF	 groups	 C,	 D.	 	 Table	 41	 shows	 that	 as	 a	 patient	

progresses	from	normal	LV	function	to	symptomatic	LVSD-HF,	LV	volumes	and	diastolic	

pressures	 rise,	 and	 stroke	 volume	 (SV),	 ejection	 fraction	 (EF%)	 and	 systolic	 pressure	

fall.		Furthermore,	elastance	and	contractility	of	the	LV	fall	as	HF-LVSD	progresses.	



								|	Page	168	

Figure	36:	Mean	(thick)	and	individual	PV	loops	(thin)	from	all	HF	Stages	

	

Figure	 36	 demonstrates	 the	 individual	 patients	 which	 make	 up	 each	 stage	 and	 are	

colour	 coded	 accordingly	 (thin	 faint	 lines)	 with	 the	mean	 loops	 of	 each	 stage	 (solid	

thick	 line).	Blue	=	Stage	O	(healthy	 individuals),	Red	=	Stage	A	(risk	of	LVSD),	Green	=	

Stage	B	 (asymptomatic	LVSD),	Yellow	=	Stage	C	 (symptomatic	HF-LVSD)	and	Purple	=	

Stage	D	(end	stage	HF-LVSD)	

	

Table	43:	LV	parameters	according	to	each	ACC/AHA	HF	stage,	mean	and	(SD)	

Stage	 	 O	 A	 B	 C	 D	

LV	parameters	

LVESV		
(ml)	

48.2	
(6.4)	

65.9	
(50.3)	

93.5	
(48.1)	

165.6	
(61.4)	

210.3	
(96.1)	

LVEDV		
(ml)	

138.2	
(21.8)	

154.1	
(30.1)	

161.7	
(49.1)	

236.6	
(62.2)	

271.8	
(98.4)	

SV		
(ml)	

89.9	
(143.3)	

88.4	
(29.1)	

68.1	
(23.3)	

70.9	
(21.4)	

68.4	
(30.6)	

EF		
(%)	

0.65	
(0.01)	

0.57	
(0.10)	

0.45	
(0.16)	

0.32	
(0.10)	

0.25	
(0.10)	

Emax	
(mmHg/

ml)	

2.23	
(0.26)	

2.27	
(0.29)	

1.32	
(0.73)	

0.63	
(0.36)	

0.55	
(0.23)	

Emin	
(mmHg/

ml)	

0.17	
(0.01)	

0.09	
(0.06)	

0.10	
(0.03)	

0.06	
(0.04)	

0.08	
(0.04)	

5.4.3.2 Modelled	Pressure	Volume	loops	

For	 the	modelled	PV	 loops	 (see	 figure	37)	on	gross	appearance	 it	 appears	 there	 is	 a	

more	 accurate	 fit,	 in	 terms	 of	 shape	 and	 size,	 for	 the	 loops	 representing	 the	 earlier	
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AHA/ACC	 HF	 stages,	 which	 reduces	 as	 LV	 contraction	 deteriorates	 and	 the	 HF-LVSD	

stage	progresses.		Table	43	shows	how	the	modelled	LV	elastance	falls	from	a	normal	

LV	 to	 end-stage	HF-	 LVSD;	 the	 volume	of	 the	 LV	 increases	whilst	 the	 resistance	 and	

compliance	of	the	systemic	vasculature	remain	unchanged.		

Figure	37:	Modelled	(lines)	and	mean	(shapes)	loops	according	to	HF	stage	

	

Figure	37	demonstrates	the	mean	pressure	volume	loop	from	each	stage	 in	different	

shapes	with	the	modelled	loop	in	solid	black	line.	

	

Finally,	 a	 comparison	was	made	between	 the	area	error	 for	 the	modelled	 loops	and	

the	mean,	 to	give	a	measurement	of	accuracy	 (figure	38).	 	 Since	 the	modelled	 loops	

are	based	on	mean	data,	modelling	 the	area	as	well	 as	 the	 shape	of	 the	PV	 loops	 is	

important.	 	Thus	a	comparison	was	made	between	the	overlapping	area	of	the	mean	

and	modelled	 loops	as	 a	measure	of	 closeness-of-fit	 against	 that	 area	which	did	not	

overlap.	 	 Using	 Matlab,	 the	 area	 error	 for	 each	 mean	 PV	 loop	 versus	 its	 modelled	

counterpart	PV	loop	was	calculated	(see	also	table	44),	this	gave	an	overall	mean	error	

for	all	stages	of	less	than	10%.	In	order	to	gain	insight	into	how	well	the	model	coped	

with	 modelling	 the	 individual	 PV	 loops	 from	 each	 patient,	 the	 individual	 loops	

comprising	 each	 stage	were	 also	modelled,	 using	 the	 same	process	 but	without	 any	

averaging.		
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Table	44:	LPM	input	variables	and	AHA/ACC	stage	of	HF	

	

	

	

	

	

Figure	38:	Calculation	of	error	in	modelling	the	mean	Stage	A	LV	PV	loop	

 
Figure	 38	 demonstrates	 the	 overlap	 between	 the	mean	 and	 the	modelled	 pressure	

volume	loop	from	stage	A,	with	the	overlapping	area	in	grey	e.g.	modelled	correct	and	

the	erroneous	area	in	black	or	white.	

5.4.4 Discussion	

5.4.4.1 Pressure	Volume	loops	from	the	Literature	

This	 study	 shows	 that	 pressure-volume	 data	 reported	 in	 the	 literature	 supports	 the	

physiological	paradigm	for	heart	failure	due	to	left	ventricular	systolic	dysfunction;	as	

the	 left	 ventricle	 fails,	 it	 dilates.	 	 Thus,	 the	 force	 of	 contraction	 is	 impaired	 and	 the	

volume	ejected	with	each	beat	(stroke	volume)	is	reduced.		The	study	also	highlighted	

the	quantitatively	changes	occurring	between	each	AHA/ACC	stage.	 	As	AHA/ACC	HF	

stages	 (particularly	 stages	 C	 and	 D)	 are	 descriptive	 and	 qualitative,	 it	 is	 remarkable	

how	the	AHA/ACC	qualitative	stages	could	be	delineated	quantitatively	in	this	study.	

Windkessel	input	 units	 Stage	of	HF	

	 	 O	 A	 B	 C	 D	
LV	Elastance	 mmhg/ml	 2.50	 2.20	 1.14	 0.55	 0.52	
LV	Stiffness	 mmhg/ml	 0.08	 0.06	 0.15	 0.04	 0.06	

Systemic	Resistance	 mmhg•s/ml	 1.15	 1.51	 1.50	 1.65	 1.58	
Systemic	Compliance	 ml/mmhg	 3.19	 2.90	 5.34	 3.87	 4.33	
Percentage	error	 %	 7.5	 3.0	 7.5	 15.0	 10.6	
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5.4.4.2 Pressure	Volume	loops	modelled	the	LPM	

The	LPM	models	true	in	physiological	sense;	predictably	the	pump	function	of	the	left	

ventricle	deteriorates	as	the	HF-LVSD	progresses;	the	 left	ventricular	chamber	dilates	

and	the	afterload	and	plasma	volume	increase	affecting	both	the	resistance	(R)	and	the	

compliance	(C).		The	pressure-volume	loops	output	from	the	model	capture	each	stage	

as	expected.		Thus:	Stage	O	is	indeed	healthy,	with	normal	left	ventricular	parameters	

as	would	be	expected	from	a	disease-free	population.		For	patients	in	Stage	A,	the	vast	

majority	of	whom	have	IHD,	the	systolic	pressure	rises,	reflecting	increased	afterload,	

and	the	EF%	and	SV	fall.		All	these	parameters	are	still	within	normal	limits.		Following	

a	 (likely)	 ischaemic	 insult	 to	 the	 myocardium	 in	 Stage	 B,	 there	 is	 a	 rise	 in	 LVEDP	

reflecting	 increased	 stiffness	 due	 to	 scar,	 a	 fall	 in	 systolic	 pressure	 due	 to	 impaired	

contractile	 force	 and	 corresponding	 reduction	 in	 both	 the	 ejection	 fraction	 and	 the	

stroke	 volume.	 	What	 is	 somewhat	 surprising	 is	 that,	 whilst	 there	 is	 an	 increase	 in	

volume	from	stage	C	to	D,	both	the	systolic	and	diastolic	pressures	rise.		However	here	

it	is	important	to	remember	that	the	process	of	HF	is	not	a	simple	mechanical	process	

but	 it	 reflects	 the	 contribution	 of	 the	 compensatory	 mechanisms	 driven	 by	 the	

sympathetic	drive	and	by	the	endocrine	responses	driven	by	the	RAAS	as	well	as	the	

sympathetic	nervous	system.	

	

The	patients	in	stages	A-B	are	asymptomatic	from	the	heart	failure	viewpoint	despite	

the	 fact	 that	 relative	to	Stage	O,	 the	systemic	resistance	and	compliance	 increase	by	

over	60%,	and	LV	Emax	falls	by	up	to	60%.		The	remaining	contractile	force	is	sufficient	

to	meet	the	demands	of	the	body.		The	difference	between	the	asymptomatic	patients	

with	structural	heart	disease	(Stage	B)	and	those	with	symptoms	of	HF-LVSD	(Stage	C)	

is	 the	 reduction	 in	LV	Emax	by	a	 further	50%.	 	The	difference	between	symptomatic	

HF-LVSD	and	refractory	HF-LVSD	 is	a	 further	modest	 (13%)	reduction	 in	Emax	 (which	

translates	 into	 an	 absolute	 fall	 of	 75%	 compared	 to	 Stage	 O).	 	 This	 is	 an	 important	

observation	 that	 illustrates	 the	 delicate	 tipping	 point	 between	 physiological	

compensation	and	decompensation.		

	

There	is	wide	distribution	of	PV	loops	within	each	stage,	as	demonstrated	in	figure	34	

(other	stages	are	similar	but	for	brevity	are	not	shown).		This	highlights	the	challenge	
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of	 stratifying	 the	 disease	 condition	 based	 on	 current	measures	 of	 LV	 function.	 	 The	

mean	loops	from	stages	B,	C	also	fit	within	the	range	of	date	for	patients	in	stage	D	and	

the	AHA/ACC	classification,	due	to	the	subjective	nature	of	classification,	 rather	than	

being	based	on	objective	data	of	physiological	variables.	 	But	also	because	 these	are	

different	patients	 at	different	 time	points	on	 their	HF-LVSD	 trajectory,	 not	 the	 same	

patients	 followed	 up	 over	 time.	 The	 potential	 overlap	 amongst	 the	 disease	 stages	

highlights	further	the	importance	of	a	physiologically-based	criterion	for	the	objective	

differentiation	 of	 HF-LVSD	 stages,	 rather	 than	 reliance	 on	 subjective	 assessment	

(although	 the	 latter	 is	 clinically	 important)	 and	 objective	 echocardiographic	

measurements	as	in	current	clinical	practice.		Reproducible,	objective	and	independent	

parameters,	 such	 as	 elastance,	 could	 be	 used	 to	 improve	 patient-stratification	 but	

would	require	validation	 in	clinical	 longitudinal	studies.	 	 In	the	 interim,	this	work	has	

benchmarked	reference	ranges	for	each	AHA/ACC	HF	stage	(see	table	43	and	44),	for	

use	by	clinicians	and	modellers.	

	

It	might	be	argued	that	the	distribution	of	PV	loops	within	each	AHA/ACC	HF	stage	is	

an	indication	of	a	 lack	of	strong	correlation	between	AHA	stage	and	LV	performance.		

However,	 there	 are	 many	 other	 factors	 which	 might	 lead	 to	 the	 level	 of	 variability	

observed,	 including;	 the	 degree	 of	 natural	 variation	 within	 groups,	 involvement	 of	

factors	beyond	the	simple	mechanical	process	of	 impaired	LV	pump	function	such	as	

compensatory	neuroendocrine	 factors,	other	 types	of	heart	 failure	 such	as	HFPEF	or	

HF	 due	 valve	 disease	 or	 arrhythmia.	 	 Moreover,	 in	 this	 study,	 we	 were	 unable	 to	

control	 for	 medication	 or	 patient	 size,	 both	 of	 which	 may	 influence	 volume	 and	

pressure.	 	 To	model	HF	 accurately,	 other	 variables	 such	 as	 right	 ventricular	 function	

and	renal	function	would	need	to	be	considered;	the	current	work	was	confined	to	the	

consideration	 of	 the	 elastance	 and	 volume	 of	 the	 LV	 and	 the	 compliance	 and	

resistance	of	the	systemic	vasculature.	

	

In	 terms	 of	 individual	 PV	 loops,	 the	 calculated	 error	 was	 much	 higher	 due	 to	 the	

difficulty	of	the	model	in	simulating	the	more	unusual	shaped	PV	loops.	This	may	have	

been	 due	 to	 errors	 in	 PV	 loop	 sampling,	 dyssynchrony	 or	 another	 variable.	 	 As	 a	

consequence	 some	 of	 the	 resulting	 individual	 patient	 loops	 had	 ‘non-physiological’	
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shapes	with	marked	 pressure	 fluctuations	 during	 diastole	 and	 non-linear	 decreasing	

volumes	 during	 systole,	 for	 example.	 	 This	 was	 most	 notable	 in	 Stages	 C	 and	 D.		

Perhaps	not	surprisingly,	the	model	is	unable	to	take	account	of	such	aberrations.		It	is	

possible	that	such	variations	might	be	better	fitted	and	errors	reduced	by	adding	more	

elements	to	the	model,	for	example	by	using	a	3-element	afterload	with	inertance,	or	

by	 including	 the	 right	 heart	 and	pulmonary	 circulation,	 but	what	 this	would	 actually	

mean	is	unclear	as	such	variables	were	not	measured	in	these	studies.		

5.4.4.3 Future	work	
 
It	 would	 also	 be	 useful	 to	 compare	 PV	 loops	 from	 patients	 with	 HF	 of	 different	

aetiologies,	such	as	those	with	ischaemic	versus	non-ischaemic	DCM,	and	to	model	the	

effects	of	various	therapies	on	the	different	parameters.		Furthermore,	comparing	PV	

loops	 of	 patients	 with	 different	 isolated	 risk	 factors	 for	 HF	 (obesity	 or	 essential	

hypertension)	or	with	different	structural	heart	diseases	(such	as	asymptomatic	aortic	

stenosis	or	 left	ventricular	hypertrophy,	 for	example)	 to	see	how	they	progress	 from	

symptomless	 risk	 to	 symptomatic	HF	would	also	be	of	 interest.	 	Unfortunately,	 such	

data	 is	not	currently	available.	 	More	PV	loops	are	needed	to	 inform	stages	O	and	B,	

where	 the	mean	 loops,	 and	 therefore	 the	models,	 are	 based	 on	 a	 small	 number	 of	

cases.		However,	it	is	unlikely	that	ethical	approval	for	invasive	PV	loop	analysis	would	

now	be	granted	for	healthy	subjects.		

5.4.4.4 Drawbacks	
 
For	the	majority	data	used	in	this	meta-analysis	the	information	provided	on	patients	

could	not	be	 linked	 to	 a	 specific	 PV	 loop	given	and	 so	 it	 proved	 to	be	 impossible	 to	

control	 for	 age,	 body	mass,	 sex,	medications	 and	other	 relevant	 comorbidities	 (both	

cardiac	such	as	mitral	regurgitation	and	non-cardiac	such	as	renal	failure)	which	might	

have	 an	 impact	 on	 loop	 shape,	 size	 and	 position	with	 respect	 to	 the	 axes	 240.	 Some	

curves	 had	 already	 been	 averaged	 already	 from	 the	 patient	 population	 (hence	 the	

number	of	patients	 represented	 is	greater	 than	 the	number	of	 loops)	and	what	may	

have	been	 classified	 as	AHA	Group	D	 in	 previous	decades,	may	be	 considered	 to	be	

Group	C	today	due	to	advances	in	treatments.	
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It	was	also	impossible	to	control	for	any	differences	in	methodology	across	the	papers	

and	 most	 of	 the	 data	 is	 from	 middle-aged,	 male	 patients,	 reflecting	 the	 fact	 the	

women	are	under-represented	 in	HF	clinical	 trials;	 it	 cannot	be	assumed	that	groups	

who	 are	 not	 represented,	 or	 who	 are	 poorly	 represented,	 will	 have	 the	 same	

characteristics.		As	can	be	seen	from	figures	35	and	36,	the	averaging	process	leads	to	

smoothing	and	loss	of	detail	present	in	the	raw	data;	this	an	individual	patient	in	stage	

D	will	not	necessarily	fit	the	mean,	but	may	fall	within	the	range	of	values	given.			

	

Due	 to	 the	 duration	 of	 time	 (mean	 of	 18	 years)	 that	 has	 passed	 since	 the	 original	

publication	of	many	of	 the	papers,	only	a	small	number	of	authors	were	contactable	

and	only	2	replied	to	a	request	for	access	to	the	raw	data.	Subsequently,	a	digitisation	

process	was	employed	to	allow	access	to	the	data	underlying	each	PV	loop,	but	clearly	

is	not	as	accurate	as	modelling	original	data	itself	and	adds	an	additional	layer	of	error.				

5.4.5 Conclusions	

For	 the	 first	 time,	a	visual	and	quantitative	 representation	of	 the	AHA/ACC	stages	of	

HF-LVSD	 (from	 normal	 to	 end-stage)	 has	 been	 created.	 	 This	 could	 be	 used	 by	

clinicians,	 when	 making	 decisions	 about	 prognosis	 and	 treatment	 of	 patients,	 and	

those	at	 risk	of	developing,	HF-LVSD.	 	 Furthermore,	 the	modelled	PV	 loops	establish	

previously	unknown	physiological	parameters	for	each	AHA/ACC	stage	of	HF-LVSD	and	

set	 the	 precedent	 for	 using	 LV	 elastance	 as	 a	 robust,	 reproducible	 and	 load-

independent	measure	of	 LV	performance	and	 its	deterioration	at	 a	population	 level.		

Such	information	will	enable	cardiovascular	modellers	with	an	interest	in	HF	to	create	

more	 personalised	 models	 of	 the	 LV	 for	 each	 patient	 in	 the	 context	 of	 considering	

essential	 boundary	 conditions	 such	 as	 systemic	 arterial	 compliance	 and	 total	

peripheral	 resistance.	 	 Finally,	 since	 there	was	 no	 consistent	 pattern,	 for	 any	 of	 the	

parameters	modelled,	other	than	for	elastance,	this	means	the	best	afterload	for	more	

complex	 LV	models	 in	HF	 remains	 unclear	 or	 perhaps	 is	 unimportant,	 as	 it	 is	 clearly	

elastance	 that	 drives	 HF-LVSD	 rather	 than	 the	 characteristics	 of	 the	 peripheral	

circulation.	

5.5 Lumped	parameter	modelling	of	response	to	CRT	

5.5.1 Introduction	
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A	key	objective	of	the	Grand	Challenge	modelling	project	was	to	determine	how	data	

from	the	patient’s	existing	clinical	 record	might	be	used	to	 inform	a	personalised	3D	

cardiac	model,	when	choosing	appropriate	boundary	conditions,	for	example.		Invasive	

data,	 such	 as	 the	 pressure-volume	 relationship,	 is	 not	 recorded	 routinely	 in	 HF	

patients,	pre-CRT	or	otherwise.	However,	one	of	the	requirements	of	the	project	was	

to	attempt	to	use	data	that	was	collected	in	the	course	of	routine	clinical	practice	to	

inform	 personalised	 models	 that	 could	 be	 used	 to	 predict	 clinical	 response	 to	 CRT.	

How	 could	 non-invasive	 patient	 data	 from	 those	 recruited	 to	 the	 Grand	 Challenge	

project	 be	 used	 to	 create	 patient	 specific	 simulations?	 In	 this	 regard,	 the	 patient’s	

clinical	 record	 was	 reviewed	 to	 assess	 potential	 input	 variables	 e.g.	 systemic	 blood	

pressure	 for	 the	 LPM	 as	 used	 earlier,	 which	 demonstrated	 utility	 in	 mapping	 the	

progression	of	HF-LVSD	and	were	 simple,	 elegant	 and	quick	 to	 run.	 The	potential	 of	

using	 the	 LPM	 to	model	 these	 changes	 in	 LV	physiology	 following	CRT	 implantation,	

might	 offer	 insight	 into	 the	 boundary	 conditions	 of	 systemic	 vascular	 resistance	 and	

total	 arterial	 compliance	 governing	 the	 cardiovascular	 system	 of	 each	 patient	 and	

therefore	 also	 influence	 their	 response	 to	 CRT.	 	 Furthermore,	 these	 could	 variables	

could	 then	 be	 used	 to	 inform	 personalised	 models,	 for	 example	 creating	 patient	

specific	simulations	using	a	3D	segmentation	of	their	LV	from	cMR	coupled	to	a	LPM	

afterload	modelled	from	derived	from	the	clinical	record,	rather	than	simply	the	same	

arbitrary	afterload	for	all	patients.		

	

Whilst	 invasive	 PV	 loops	 are	 already	 used	 to	 demonstrate	 acute	 and	 chronic	

improvements	 in	 LV	 volume,	 LV	 pressure	 and	 elastance,	 non-invasive	 PV	 loops	 have	

not,	as	yet,	been	used	to	map	the	response	to	CRT,	to	attempt	to	predict	response	nor	

to	 investigate	changes	 in	 systemic	afterload	vs.	elastance	 in	chronic	CRT	 remodelling	
224.	The	output	from	a	lumped	parameter	model	can	be	converted	into	a	PV	loop,	by	

extracting	the	P	and	V	data	 from	a	single	cardiac	cycle.	Chen	et	al	 (2001)	 251	devised	

the	‘non-invasive’	PV	loop,	using	5	parameters;	the	brachial	artery	pressure	measured	

using	 a	 sphygmomanometer,	 LV	 volumes	 measured	 using	 echocardiography	 and	 a	

constant	 (the	 estimated	 normalised	 ventricular	 elastance	 at	 arterial	 end-diastole).		

Together	 these	 were	 used	 to	 create	 the	 4	 points	 of	 a	 non-invasive	 PV	 loop	 and	

calculate	elastance	(E).		It	should	be	noted	that,	in	this	case,	LVESP	was	estimated	using	

systemic	 blood	 pressure	measured	with	 a	 standard	 automated	 sphygmomanometer	
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and	a	formula	(brachial	systolic	pressure	x	0.9),	taken	from	earlier	work	by	Kelly	et	al	

(1992)247.	In	the	aforementioned	work	LVEDP,	was	assumed	to	be	zero	and	so	was	not	

calculated	 nor	 estimated.	 	 However,	 LVEDP	 may	 well	 be	 elevated	 in	 HF-LVSD	

regardless	 of	 the	 aetiology	 and	 a	 value	 for	 LVEDP	 is	 required	 to	 complete	 a	 non-

invasive	LV	PV	loop,	particularly	if	this	is	then	to	be	modelled	using	a	LPM.		A	method	

of	 estimating	 LVEDP	 from	 non-invasive	 2D	 echocardiography	 measurements	 has	

previously	 been	 developed.	 This	 robust,	 validated,	 widely-cited	 and	 widely-used	

method	 by	Nagueh	 et	 al	 (1997)252	 uses	 the	mitral	 Doppler	 E/e’	 ratio	 (ratio	 of	mitral	

inflow	velocity/mitral	annular	velocity).	The	assumption	is	made	that	PCPW	≈	mLAP	≈	

LVEDP	and	that	E/e’	can	be	used	to	estimate	the	LVEDP	according	to	the	equation:	E’	

(average)	=	(E’	lateral	+	E’	septal)	/	2	and	PCWP=	1.24	(mean	E/E’)	+	1.9.	

	

Using	2DTTE	 to	measure	 LVEDV	and	LVESV,	 sphygmomanometry	 to	measure	 systolic	

BP	(thus	giving	the	LVESP)	and	the	E/E’	ratio	the	LVEDP	from	mitral	Doppler	(see	figure	

39),	all	could	be	taken	from	the	patient’s	clinical	record.		By	knowing	such	outputs	for	

each	 patient,	 at	 baseline	 and	 follow-up,	 the	 LPM	 could	 be	 used	 to	model	 PV	 data.		

Thus	each	patient	could	be	represented	at	each	time-point	(baseline,	6	and	12	months	

post-CRT)	to	quantify	any	changes.		Left	ventricular	volumes	might	be	expected	to	fall	

and	pressures	and	elastance	to	increase	over	time	in	responders	to	CRT.			

Figure	39:	PWTDI	measurement	(right	to	left)	of	E,	E'	septal	and	E'	lateral	

 
 
 
 
 
 
 
 
 
 
	

Figure	39	demonstrates	pulsed	wave	Doppler	either	through	the	mitral	valve	(left)	or	

pulsed	wave	tissue	Doppler	of	the	septum	or	lateral	wall	being	used	to	calculate	E	and	

E’respectively.	
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5.5.2 Methods	

The	following	measurements	were	made	for	each	time	point	(at	baseline	(<	2	weeks	

pre-CRT	implantation)	and	at	6	and	12	months	post-CRT	implantation)	in	9	patients.		

Ten	patients	with	AF	were	excluded	as	E/E’	is	not	validated	for	such	patients.		

• BP	data	(recorded	using	a	clinical	automated	sphygmomanometer	BP	machine)	

to	give	the	brachial	systolic	pressure,	which	was	then	multiplied	by	0.9	to	give	

the	LVESP.	

• 2D	echocardiographic	volumes	(LVEDV	and	LVESV)	measured	using	the	

Simpson’s	method	of	discs	from	apical	4	and	2	chamber	views	(see	Chapter	5).	

• E/E’	ratio	measured	using	LV	inflow	and	mitral	annular	tissue	Doppler	from	the	

apical	4	chamber	view,	averaged	over	5	cycles.	

A	 non-invasive	 PV	 loop,	 was	 created	 for	 each	 patient	 using	 the	 above	 parameters.		

Data	were	recorded	 in	an	Excel	spread	sheet	 (Microsoft	 Inc,	Redmond,	USA)	and	the	

changes	plotted	from	baseline	to	12-month	follow-up.		Then,	using	the	LPM	model,	the	

non-invasive	 PV	 loop	 was	 modelled	 using	 an	 optimisation	 function	 in	 Matlab	

(Mathworks	 Inc,	 Cambridge,	 UK).	 	 This	 ran	 the	 model	 repeatedly	 until	 the	 input	

parameters	 e.g.	 elastance,	 R	 &	 C	 created	 a	 PV	 loop	 which	 best	 fitted	 the	 output	

parameters	of	LV	pressure	and	volume.	

5.5.3 Hypotheses	
 

Working	hypotheses	–	

1)	LV	PV	loop	parameters	alter	significantly	in	patients	classed	as	responders	to	CRT	as	

determined	from	a	combination	of	symptoms,	echocardiography	and	CPET	testing.		

	

2)	The	clinical	response	to	CRT	can	be	predicted	from	baseline	non-invasive	LV	PV	loop	

parameters.	

	

Null	hypotheses	–	

1)	 LV	 PV	 loop	 parameters	 do	 not	 alter	 significantly	 in	 patients	 who	 are	 classed	 as	

responders	to	CRT	as	determined	from	a	combination	of	symptoms,	echocardiography	

and	CPET	testing.	
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2)	The	clinical	response	to	CRT	cannot	be	predicted	by	baseline	non-invasive	LV	PV	loop	

parameters.	

	

5.5.4 Results	
	
It	 took	between	5-40	 iterations	of	each	model	 to	create	a	patient	specific	LV	 loop	at	

each	stage.		The	mean	number	of	iterations	was	20.		Whilst	the	process	of	optimisation	

was	 automated	 using	 a	 function	 in	Matlab,	 baseline	 parameters	 had	 to	 be	 chosen.		

This	 choice	was	of	baseline	parameters	were	 informed	 from	modelling	 the	AHA/ACC	

HF	stages.		

Table	45:	Model	input	parameters	at	baseline	and	follow-up	in	responders	

	

Table	46:	Model	input	parameters	at	baseline	and	follow-up	in	nonresponders	

Nonresponders	

Baseline	 6	months	 12	months	

One	way	
ANOVA	with	
repeated	
measures	P	

value	

Mean	 SD	 Mean	 SD	 Mean	 SD	

Base	
line	vs	

6	

Base	
line	vs	
12	

Inputs	

LV	
Emax	 mmHg/ml	 1.18	 0.63	 1.05	 0.86	 0.98	 0.86	 =	0.26	

LV	
Emin	 mmHg/ml	 0.13	 0.07	 0.13	 0.09	 0.12	 0.06	 =	0.84	

R	 mmHg•s/ml	 2.20	 0.91	 1.43	 0.41	 1.63	 0.16	 =	0.24	

C	 ml/mmHg	 3.76	 0.32	 3.81	 0.34	 3.81	 0.34	 =	0.39	

Responders	

Baseline	 6	months	 12	months	

One	way	
ANOVA	with	
repeated	
measures	P	

value	

Mean	 SD	 Mean	 SD	 Mea
n	 SD	

Base	
line	
	vs		
6	

Base
line		
vs	
	12	

Inputs	

LV	
Emax	 mmHg/ml	 1.40	 1.15	 2.02	 1.55	 2.28	 1.70	 =	0.05	

LV	
Emin	 mmHg/ml	 0.17	 0.10	 0.17	 0.11	 0.16	 0.09	 =	0.88	

R	 mmHg•s/
ml	

2.03	 0.78	 2.20	 0.88	 2.29	 0.78	 =	0.49	

C	 ml/mmHg	 3.61	 0.29	 3.56	 0.32	 3.58	 0.30	 =	0.37	
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Table	47:	The	6	model	outputs	in	responders	at	baseline	and	follow-up.	

Responders		
Baseline	 6	months	 12	months	

Mean	 SD	 Mean	 SD	 Mean	 SD	

Outputs	

LVEDP	 mmHg	 23.5	 6.3	 19.2	 2.9	 16.5	 5.9	
LVESP	 mmHg	 114.8	 21.8	 115.0	 20.1	 109.3	 7.1	
LVEDV	 ml	 178.6	 106.8	 160.6	 120.2	 134.0	 89.5	
LVESV	 ml	 132.2	 85.2	 110.4	 96.0	 90.6	 78.6	
SV	 ml	 46.4	 23.4	 50.2	 27.1	 43.4	 14.1	
EF	 %	 0.28	 0.07	 0.37	 0.13	 0.39	 0.13	

 
Table	48:	The	6	model	outputs	in	nonresponders	at	baseline	and	follow-up.	

Nonresponders		
Baseline	 6	months	 12	months	

Mean	 SD	 Mean	 SD	 Mean	 SD	

Outputs	

LVEDP	 mmHg	 19.8	 9.3	 20.0	 6.2	 21.8	 5.0	
LVESP	 mmHg	 106.7	 7.9	 93.5	 8.9	 95.6	 11.1	
LVEDV	 ml	 166.5	 90.4	 186.5	 71.3	 213.8	 114.5	
LVESV	 ml	 123.3	 76.0	 135.5	 72.2	 170.8	 117.6	
SV	 ml	 43.3	 15.6	 51.0	 14.6	 43.0	 5.0	
EF	 %	 0.28	 0.07	 0.31	 0.14	 0.26	 0.16	

	

Table	49:	All	model	outputs	versus	measured	parameters	at	baseline	and	follow-up.	

	

Tables	45	and	46	demonstrate	the	model	outputs	at	baseline	and	during	subsequent	

follow-up.	 In	 responders,	 LVEDP,	 LVESV	 and	 LVEDV	 decreased	 consistently	 during	

follow-up	at	6	and	12	months.	In	non-responders	LVEDP,	LVESV	and	LVEDV	increased	

consistently	during	follow-up.	Table	47	compares	the	mean	modelled	versus	measured	

data	 during	 follow-up	 in	 all	 patients.	 The	mean	 differences	 between	 the	 data	 were	

0.26	 mmHg	 and	 0.20	 ml	 with	 standard	 deviations	 of	 0.23	 mmHg	 and	 0.14	 ml	

respectively	(see	table	49).		

All	
Pre	CRT	 6	months	 12	months	

Patient	 Model	 Patient	 Model	 Patient	 Model	

Outputs	

LVEDP	 mmHg	 21.86	 21.17	 20.39	 20.39	 18.06	 17.98	
LVESP	 mmHg	 111.20	 111.16	 106.40	 105.99	 102.26	 102.04	
LVEDV	 ml	 173.22	 173.11	 184.22	 184.33	 157.33	 157.33	
LVESV	 ml	 128.22	 128.11	 137.22	 136.78	 110.56	 110.22	
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Figure	40:	LV	PV	loop	at	baseline	in	responders	(dashed)	and	nonresponders	(solid)	

 
	

Figure	 40	 demonstrates	 the	 difference	 between	 the	mean	 pressure	 volume	 loop	 of	

responders	(dashed)	and	non-responders	at	baseline	e.g.	prior	to	CRT	implantation.	

Figure	41:	Non-invasive	LV	PV	loops	in	responders	

 
	

Figure	 41	 demonstrates	 the	 difference	 between	 the	mean	 pressure	 volume	 loop	 of	

responders	at	baseline	and	following	CRT	implantation.	
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Figure	42:	Non-invasive	LV	PV	loops	in	nonresponders	

	
	

Figure	 42	 demonstrates	 the	 difference	 between	 the	mean	 pressure	 volume	 loop	 of	

non-responders	at	baseline	and	following	CRT	implantation.	

	

Using	 a	 two-tailed	 Student’s	 T-test,	 model	 output	 parameters	 at	 baseline	 were	 not	

found	 to	 be	 significantly	 different	 between	 responders	 and	 nonresponders,	 with	

respect	to	pressure	(p	=	0.80)	or	volume	(p	=	0.80).	Changes	and	statistical	differences	

in	LV	volumes	and	BP	during	follow-up	as	a	marker	of	CRT	response	have	been	dealt	

with	in	chapter	5	already	and	thus	will	not	be	considered	further	here.	Using	a	2-tailed	

Student’s	 T-test,	 there	 was	 no	 significant	 difference	 between	 responders	 and	

nonresponders	 in	 terms	 of	 model	 input	 parameters	 at	 baseline.	 A	 one-way	 ANOVA	

with	repeated	measures	was	used	to	compare	the	difference	between	the	model	input	

parameters	at	baseline	and	follow-up.	As	can	be	seen	in	table	43,	only	Emax	trended	

towards	 significance	 during	 follow-up	 in	 responders,	with	 no	 significance	 changes	 in	

non-responders.	 There	 was	 no	 significant	 correlation	 between	 any	 of	 the	 input	

parameters,	 such	as	Emax,	Emin,	R	or	C	and	markers	of	 response,	such	as	peak	VO2,	

MLWHFQ	or	6MWD.	Figure	43	using	demonstrates	the	close	fit	between	the	modelled	

and	 measured	 parameters,	 statistically	 significant	 using	 Pearson’s	 correlation	

coefficient.	
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Figure	43:	Correlation	between	measured	and	modelled	LV	PV	data	

	
Figure	 43	 demonstrates	 the	 correlation	 between	 the	 measured	 and	 modelled	 left	

ventricular	pressure	volume	parameters,	all	demonstrating	statistical	significance.	

LVEDP	 =	 left	 ventricular	 end-diastolic	 pressure,	 LVEDV	 =	 left	 ventricular	 end-diastolic	

volume,	 LVESP	 =	 left	 ventricular	 end-systolic	 pressure,	 LVESV	 =	 left	 ventricular	 end	

systolic	volume.	

	

Thus,	 the	 first	working	hypothesis	 -	 that	 ‘LV	PV	 loop	parameters	alter	 significantly	 in	

patients	who	are	classed	as	responders	to	CRT’	can	be	rejected	and	the	null	hypothesis	

is	 therefore	 accepted	 and	 the	 second	working	 hypothesis	 is	 rejected	 and	 hence	 the	

null	 hypothesis,	 that	 clinical	 response	 to	 CRT	 is	 not	 predicted	 by	 non-invasive	 LV	 PV	

loop	parameters	at	baseline	can	be	accepted	

5.5.5 Discussion	
	
For	the	first	time,	non-invasive	pressure	volume	loops	have	been	created	from	patient	

data	at	baseline	and	during	 follow-up	 following	CRT	 implantation.	 	These	 loops	were	

subsequently	modelled	using	a	LPM	using	a	WKM,	allowing	insight	into	the	behaviour	
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of	both	the	patients’	cardiovascular	system	following	CRT	implant	but	also	the	use	of	

personalised	LPM	to	model	such	changes.		

	

This	 study	 demonstrates	 that	mean	 LV	 Emax	 in	 responders,	 which	was	 found	 to	 be	

1.4mmHg/ml	at	baseline,	 increases	by	43%	 to	2.02	at	6	months	and	 then	by	62%	 to	

2.28	at	12	months,	relative	to	baseline	and	trends	towards	significance.		Other	studies,	

using	 specific	 LV	 PV	 catheters,	 with	 P	 measured	 using	 a	 micro-manometer	 and	 V	

measured	using	a	conductance	or	an	angiographic	method	not	2DTTE,	report	baseline	

values	 of	 0.7-0.8mmHg/ml	 for	 LV	 Emax	 increasing	 to	 1.0	 mmHg/ml	 immediately	

following	implantation,	sustained	at	6	months	224	225	253.	There	was	no	such	increase	in	

Emax	 in	 nonresponders,	 indeed	 the	 Emax	 appeared	 to	 fall,	 but	 this	 change	was	 not	

significant.	 	 The	 increase	 in	 Emax	 makes	 physiological	 sense,	 as	 CRT	 improves	

atrioventricular,	inter	and	intraventricular	synchronicity,	leading	to	improved	diastolic	

filling,	reduced	functional	mitral	regurgitation	and	increased	stroke	volume.	 	The	lack	

of	change	 in	Emin	 is	unsurprising,	as	ventricular	stiffness	and	reduced	relaxation	e.g.	

diastolic	dysfunction	 is	 a	different	pathological	process	 to	HF-LVSD	and	other	 similar	

studies	have	failed	to	show	an	impact	of	CRT	on	such	properties.		Furthermore,	whilst	

both	 systolic	 and	 diastolic	 dysfunction	 can	 co-exist	 in	 a	 patient	 with	 HF,	 CRT	 is	 not	

licenced	for	the	treatment	of	HF-PEF	in	insolation.		

	

The	lack	of	significant	difference	in	R	and	C	during	follow-up,	suggests	that	CRT	has	no	

significant	 impact	 on	 ventricular-arterial	 coupling,	 systemic	 vascular	 resistance	 and	

total	arterial	compliance	even	at	12	months	following	implantation.		Whilst	R	did	fall	in	

nonresponders	 (by	 43%),	 this	 difference	 was	 not	 significant	 nor	 was	 it	 seen	 in	

responders.		The	only	published	study	that	could	be	found	that	looked	at	this	property	

followed	 up	 25	 patients	 at	 1	 month	 post-CRT	 implantation	 and	 demonstrated	 a	

significant	 decrease	 in	 R	 but	 did	 not	 comment	 on	 C.	 	 The	methodology	 used	 pulse	

wave	velocity	waveforms	measured	at	the	ascending	aorta	with	a	transfer	function	to	

derive	arterial	elastance	changes	and	so	cannot	be	readily	applied	to	the	19	patients	

studied	 here	 254.	 Improvements	 in	 vascular	 biomechanics	would	 be	 anticipated	with	

CRT	due	 to	 increased	 vessel	wall	 shear	 stress,	 following	 increases	 in	 SV.	 This	 in	 turn	

would	lead	to;	improved	endothelial	function,	inhibition	of	the	RAAS	and	up-regulation	

of	vagal	tone,	resulting	in	relaxation	of	vascular	smooth	muscle.		So	simply,	a	fall	in	R	
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and	a	rise	in	C	would	be	expected	in	patients	following	CRT	implantation,	particularly	in	

responders.	 	 It	 is	possible	 that	 the	population	 in	 this	 study	 is	 simply	 too	 small	 to	be	

able	to	detect	such	changes	or	that	the	LPM	used	was	too	simple	to	demonstrate	such	

nuances.		

	

In	the	modelling	work	on	the	AHA/ACC	stages	of	HF-LVSD,	it	was	demonstrated	that	a	

value	of	LV	Emax	2.5mmHg/ml	was	normal	in	healthy	individuals	but	patients	in	NYHA	

class	III	HF-LVSD	would	be	expected	to	have	a	much	lower	LV	Emax	(0.63mmHg/ml).	In	

this	work	 the	mean	LV	Emax	at	baseline	 for	 the	HF-LVSD	patients,	all	of	whom	were	

NYHA	class	III,	was	1.2	mmHg/ml;	somewhat	higher	than	expected.		It	is	possible	that	

both	systolic	BP	and	LVESV	were	over-	and	under-	estimated	respectively,	resulting	in	a	

falsely	 elevated	 LV	 Emax	 and	 this	 appears	 to	 have	 been	 consistent	 throughout	 this	

work	as	all	the	LV	Emax	values	are	higher	than	might	be	expected.	Furthermore,	 it	 is	

well	 known	 that	 the	 correlation	 between	 LV	 volumes	 measured	 non-invasively	 by	

echocardiography	 and	 invasively	 by	 LV	 angiography	 or	 conductance	 is	 fair	 and	 that	

such	measures	are	not	interchangeable,	which	may	also	account	for	such	differences	in	

Emax	between	the	19	patients	studied	here	and	the	work	in	on	the	ACC/AHA	stages	of	

HF.	Also,	whilst	 it	has	been	demonstrated	that	0.9	x	systemic	systolic	blood	pressure	

measured	 using	 automated	 sphygmomanometry	 is	 significantly	 correlated	 with	

invasively	measured	end-systolic	LV	pressure	(r2	=	0.98,	p	<	0.001,	offset	0.17)	using	a	

conductance	 catheter,	 these	 should	 be	 considered	 different	 measures	 of	 the	 same	

system	and	so	may	not	perhaps	behave	in	the	same	way	247.	

		

The	close	fit	of	patient	measured	(or	derived)	data	and	model	output	parameters	such	

as	 LVEDV,	 LVEDP,	 LVESP	 and	 LVEDP	 demonstrates	 the	 performance	 with	 which	 the	

LPM	was	able	to	model	the	patients.	What	cannot	be	modelled,	unless	an	invasive	LV	

PV	 study	 is	 conducted,	 is	 the	 shape	 of	 the	 loop.	 However,	 it	 is	 the	 4	 points	 that	

comprise	 the	 loop	 which	 are	 of	 significance	 and	 not	 the	 intermediate	 points	 in	

between.			

	

It	 is	disappointing	 that	 there	was	no	correlation	between	measures	of	CRT	 response	

and	the	model	parameters,	particularly	Emax	and	other	measures	of	LV	function	such	

as	 NT-proBNP,	 peak	 VO2.	 Clearly,	 like	 the	 non-invasive	 LV	 PV	 loops,	 these	 are	 all	
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indirect	 measures	 of	 LV	 function,	 which	 are	 influence	 by	 many	 other	 factors,	 not	

simply	the	heart	alone.	Many	of	these	are	too	complex	to	be	modelled	accurately	or	

make	mathematical	assumptions	for	such	as	motivation,	musculoskeletal	function	and	

comorbidities	such	as	respiratory	and	renal	disease.			

	

The	fall	in	LV	Emax	in	nonresponders	despite	CRT	implantation	gives	insight	as	to	why	

such	 patients	 feel	 worse	 during	 follow-up,	 in	 that	 they	 experience	 a	 0.2	 mmHg/ml	

(17%)	 fall	 in	 LV	 contractility	 over	 the	 12-month	 period	 of	 follow-up.	 	 Recalling	 the	

AHA/ACC	stages	HF-LVSD	work,	the	difference	between	symptomatic	HF	(NYHA	III)	and	

end-stage	HF	(NYHA	IV)	was	a	modest	0.08	mmHg/ml	(13%)	reduction	in	Emax.		Whilst	

this	 difference	 was	 not	 statistically	 significant,	 it	 remains	 unclear	 is	 why	 despite	 all	

patients	meeting	 current	 guidelines	 for,	 undergoing	 successful	 implantation	 of,	 CRT,	

that	this	group	of	patients	should	experience	a	deleterious	effect	on	their	LV	function.		

	

There	are	other	possible	measures	of	diastolic	function	such	as	pulmonary	venous	flow	

and	velocity	of	 flow	progression,	but	neither	of	 these	have	the	strong	evidence	base	

associated	with	E/E’.	 	Furthermore,	 there	can	be	technical	 issues	obtaining	a	 reliable	

pulmonary	 venous	 flow	 signal	 (even	 with	 TOE)	 and	 neither	 can	 be	 used	 reliably	 to	

calculate	LVEDP.	

	
Problems	 with	 the	 use	 of	 2DTTE	 and	 Simpson’s	 method	 of	 discs	 to	 calculate	 LV	

volumes	were	considered	in	Chapter	5.	 	 Ideally,	cMR	would	be	employed	to	measure	

LV	volumes	but	there	were	no	cMR-compatible	CRT	devices	on	the	market	at	the	time	

of	this	study;	it	would	not	be	valid	to	measuring	cMR	at	baseline	and	then	use	2DTTE	

to	 follow-up,	 as	 LV	 volumes	 measured	 using	 these	 methodologies	 are	 non-	

interchangeable.		Time	limitations	at	follow-up	resulted	in	patients	having	a	single	BP	

measurement	using	an	automated	sphygmomanometer,	but	this	was	following	10	min	

period	lying	quietly	in	a	dark	room.		In	hindsight,	measuring	the	BP	several	times	and	

using	the	mean	value	could	give	a	more	representative	value	or	perhaps	considering	

the	use	of	a	24-hour	BP	monitor.		

	

There	are	many	ways	to	model	a	single	PV	loop	depending	on	the	parameters	chosen	

and	 a	more	 accurate	 fit	 might	 be	 achieved	 using	 a	more	 sophisticated	 LPM	model,	
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including	the	right	heart	and	pulmonary	vasculature,	but	many	of	the	necessary	input	

variables	 would	 be	 impossible	 to	 be	 measure,	 and	 therefore	 accurately	 model.	 	 In	

addition	for	some,	inertance	for	example,	do	not	have	precise	equivalents	in	terms	of	

physiological	measurement.			

	

The	cohort	size	for	this	particular	sub-study	was	small	due	to	prevalence	of	AF	(>	50%)	

rendering	 measures	 of	 diastolic	 function	 such	 as	 E/E’	 inaccurate	 and	 reducing	 the	

number	 of	 patients	 from	 19	 to	 9.	 	 E/E’	 is	 an	 instantaneous	 measure	 of	 LV	 filling,	

influenced	 by	 preload	 and	 afterload,	 and	may	 change	 over	 time	 thus,	 as	with	 other	

clinical	 and	 haemodynamic	 indices,	 multiple	 measures	 and	 calculation	 of	 the	 mean	

may	have	been	preferable.	 	All	patients	were	fasted	prior	to	their	2DTTE	so	this	may	

mitigate	 some	variation.	 	 The	average	E'	 velocity	obtained	 from	both	 the	 septal	 and	

lateral	sides	of	the	mitral	annulus	was	used	in	this	study	to	calculate	LVEDP	as	is	usual	

practice	and	used	in	the	Nagueh	formula.	Septal	E’	is	usually	lower	than	lateral	E’	and	

so	E/E’	derived	from	a	septal	value,	is	higher	than	E/E’	lateral	and	so	an	average	value	

is	 preferential	 to	mitigate	 for	 this	 variation.	Mitral	 disease	 is	 known	 to	 affect	mitral	

annular	velocity	and	resulting	E’	values,	no	patients	 included	 in	 this	study	had	mitral	

stenosis	 and	 only	 a	minority	 had	 trivial-mild	mitral	 regurgitation,	 common	 in	 such	 a	

population.	 	 According	 to	 Nagueh	 (1997)252	 “annular	 velocities	 vary	with	 the	 site	 of	

sampling,	 and	 thus,	 the	 utility	 of	 this	 method	 is	 dependent	 on	 the	 location	 of	 the	

sample	volume”.	This	raises	the	possibility	of	intra-	and	inter-operator	variability,	since	

2	 echocardiographers	 scanned	 the	 patients	 in	 this	 study.	 	 It	 would	 have	 been	

preferable	for	both	to	scan	all	patients,	but	funding,	time	and	logistics	would	not	allow	

this.		

5.5.6 Conclusions	
 
This	is	the	first	study	to	create	non-invasive	LV	PV	loops,	model	them	in	patients	with	

HF-LVSD	and	 following	CRT	 implantation.	 	As	 there	were	no	significant	differences	 in	

the	non-invasive	PV	loop	or	derived	LPM	model	data	at	baseline	between	responders	

and	nonresponders,	on	the	basis	of	 this	study,	such	parameters	cannot	be	used	as	a	

predictor	of	CRT	response.		In	terms	of	the	derived	input	LPM	parameters,	such	as	E,	R	

and	C,	the	only	difference	that	trended	towards	significance	during	follow-up,	in	either	

group,	was	an	increase	in	Emax	in	responders.		The	lack	of	change	in	R	and	C	suggests	
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that,	 not	 only	 are	 these	 unaffected	 by	 CRT	 (either	 acutely	 or	 chronically)	 but,	more	

importantly,	for	modellers	using	more	complex	multi-level	or	3D	LV	models	with	a	LPM	

afterload,	 the	 exact	 choice	 of	 R	 and	 C	 is	 not	 as	 critical	 as	 previously	 assumed.	 This	

reflects	 the	work	on	 the	AHA/ACC	 stages	of	HF	 showing	 that	 there	 is	no	 statistically	

significant	difference	between	R	and	C	 in	 individuals	with	risk	of	developing	HF-LVSD	

(AHA/ACC	stage	A	or	NYHA	I)	and	those	with	end-stage	HF-LVSD	(AHA/ACC	Stage	A	or	

NYHA	IV),	at	 least	in	terms	of	modelled	parameters.	 	Further	work	on	a	larger	cohort	

will	be	required	in	order	to	investigate	whether	response	can	be	predicted	as	baseline	

and	 whether	 the	 results	 of	 this	 study,	 namely;	 a	 significant	 increase	 in	 LV	 Emax	 in	

responders	 but	 no	 significant	 difference	 in	 any	 other	 variable	 in	 either	 group,	 are	

maintained.		

5.6 3D	Models	

5.6.1 Introduction	
	

The	first	3D	computational	cardiac	models,	developed	in	the	1960’s,	simply	described	

the	 heart	 as	 a	 geometrical	 shape	 e.g.	 an	 ellipsoid.	 In	 the	 1970’s	 more	 detailed	

anatomical	 models	 emerged.	 These	 were	 based,	 typically,	 on	 explanted	 hearts	 or	

pathological	specimens	with	information	from	pro-sections	enabling	the	incorporation	

of	cardiac	 fibre	orientation.	The	development	of	computer	aided	design	 (CAD)	 in	 the	

1990’s	and	the	exponential	rise	in	medical	 imaging	application	such	as	MRI	and	CT	in	

the	 early	 2000’s,	 has	 augmented	 the	 proliferation	 of	 3D	 patient-specific	 cardiac	

models.	The	basis	for	such	a	model	starts	with	extracting	specific	geometrical	data	for	

the	heart	of	interest.		Data	may	include	the	geometrical	descriptions	for	all,	or	some,	

of	the	LV,	RV,	LA,	RA	and	great	vessels.	

	

In	 order	 to	 build	 a	 3-D	 electromechanical	 model	 of	 the	 heart,	 relevant,	 individual	

components	parts	must	be	described.	For	example,	in	addition	to	the	anatomy	of	the	

chambers	 and	 great	 vessels,	 information	 on	 the	 structure	 and	 properties	 of	 the	

myocardium,	 the	 sequence	 of	 electrical	 activation	 and	 the	 resulting	 flow	 of	 blood	

through	 the	 heart	 are	 required	 	 in	 order	 to	 conceptualise	 cardiac	 function	 and	

construct	a	robust	model.		This	approach	employs	anatomy,	physics	and	biochemistry	

to	describe	the	working	action	of	the	heart.		
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3-D	 models	 may	 start	 from	 a	 single	 myocyte,	 detailing	 the	 action	 of	 ion	 channels,	

calcium	handling	or	myofilament	interactions,	building	up	to	the	orthotropic	behaviour	

of	the	cardiac	tissue	and,	then	ultimately,	creating	a	full	heart	model.		But,	as	Hunter	

(2003)	 255	 highlighted,	 our	 understanding	 of	 processes	 such	 as	metabolic	 pathways,	

e.g.	ATP	production,	and	signalling,	e.g.	G-protein	coupled	receptors,	are	still	 in	their	

infancy	and	so	detailed	multi-scale	and	multi-modal	models	remain	some	time	away.	

The	ultimate	 aim	 is	 to	 create	patient-specific	 heart	model	 that	 can	be	 ‘exercised’	 to	

investigate	 the	 interaction	 between	 patient	 variables,	 their	 disease	 profile	 and	

potential	 therapies.	 	 Patients	 with	 HF-LVSD	 and	 dyssynchrony,	 who	 are	 being	

considered	 for	 CRT	where,	 for	 two	 similar	 patients	 one	 responds	 and	 one	 does	 not	

would	be	an	example	of	this	type	of	modelling	application.	However,	it	is	important	to	

note	 that	no	“global	biophysical	model	of	cardiac	electrophysiology	 is	 suitable	 for	all	

the	 clinical	 applications”	 and	 so	 specific	 models	 must	 be	 developed	 for	 a	 specific	

purpose	256.		

	

As	 Hunter	 (2003)255	 stated,	 “models	 are	 all	 derived	 from	 the	 systems	 of	 physical	

equations	underlying	the	heartbeat:	(a)	the	electrical	activation	process,	described	by	

reaction-diffusion	 equations	 with	 current	 sources	 associated	 with	 membrane	 ion	

channels;	(b)	the	soft	tissue	mechanics	described	by	large	deformation	elasticity	theory	

with	orthotropic	passive	tissue	properties	and	actively	generated	myofilament	forces;	

and	 (c)	 ventricular	 and	 coronary	 fluid	mechanics,	 based	 on	 Navier-Stokes	 equations	

and	coupled	to	the	soft	tissue	mechanics	of	myocardium”.		

	

As	discussed	previously,	modelling	is	necessarily	mathematically	based,	typically	using	

both	ordinary	(ODEs)	and	partial	differential	equations	(PDEs),	whereby	the	dependent	

variable	 (or	 unknown	 function)	 is	 expressed	 as	 a	 function	 of	 a	 single	 independent	

variable	 or	 multiple	 independent	 variables	 and	 their	 derivatives.	 	 PDEs	 are	 used	 to	

describe	complex	concepts	such	as	fluid	flow	whereas	ODEs	are	used	to	describe	rates	

of	chemical	 reactions,	where	quantities	are	described	by	the	rate	of	change	of	other	

quantities.	The	equations	are	linear	if	the	unknown	function	and	its	derivatives	appear	

to	 the	 power	 one	 e.g.	 the	 input	 is	 directly	 proportional	 to	 the	 output,	 but	 are	

otherwise	 non-linear.	 As	 the	number	 of	 differential	 equations	 that	 can	be	 solved	by	

explicit	 analytic	 formulae	 is	 small,	 numerical	 approximations	 are	 used	 to	 solve	 such	
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DEs,	 extracting	 meaningful	 answers	 and	 so	 gaining	 an	 understanding	 as	 to	 the	

behaviour	 of	 the	 solutions.	 There	 are	 broadly	 three	 numerical	 approaches,	 namely;	

finite	element,	finite	difference	and	finite	volume	methods.	

	

In	brief:	 finite	element	methods	are	numerical	 techniques	which	can	be	used	to	 find	

approximate	mathematical	 solutions	 to	 boundary	 conditions	 for	 PDEs.	 The	 complex	

mathematical	 problem	 is	 subdivided	 into	 smaller	 tractable	 problems,	 termed	 finite	

elements,	which	are	then	solved	in	relation	to	each	other.		The	implementation	of	this	

method	 is	 known	as	 finite	 element	analysis	 (FEA)	 and	 is	 used	 for	 structural,	 thermal	

and	 electrical	 analysis.	 	 Finite	 difference	 methods	 typically	 employ	 the	 Laplace	 or	

Poisson	 equations.	 	 Finite	 volume	 is	 used	 to	 calculate	 variables	 averaged	 across	 a	

volume,	 but	 differs	 from	 finite	 difference	 in	 that	 a	 structured	 mesh	 is	 not	 strictly	

required.		This	method	is	typically	used	when	modelling	fluid	flow.	Use	of	the	Navier-

Stokes	 equations	 enables	 finite	 element	 techniques	 to	 be	 applied	 to	 study	 fluid	

mechanics;	 this	 technique	 is	 known	 as	 	 computational	 fluid	 dynamics	 or	 more	

frequently,	CFD.		

	

3-D	models	of	 the	heart	 are	 conceptually	 interesting	but	mathematically	 challenging	

and	 computationally	 very	 demanding,	 requiring	 accurate	modelling	 of	 the	 anatomy,	

the	electrophysiology,	fluid	dynamics	and	myocardial	mechanics.		The	3D	architecture	

of	 the	 heart	 is	 complex,	 not	 only	 in	 terms	 of	 geometry,	 but	 also	 in	 the	 context	 of	

muscle	 fibre	 orientation,	 connective	 tissue	 organisation,	 the	 anatomy	 conducting	

system	and	the	coronary	circulation	and	so	on.	Such	models	may	describe	not	only	the	

origin	of	myocardial	activation	from	the	sinoatrial	node,	but	its	propagation	across	the	

myocardium	and	the	roles	of	 the	annulus	 fibrosus,	 the	AV	node	and	the	His-Purkinje	

system.	 	 The	mechanical	 properties	 of	 the	myocardium	govern	motion,	 deformation	

and	 strain	 during	 the	 resulting	 cardiac	 cycle	 and	 modelling	 fluid	 dynamics	 may	

incorporate	 flow	 both	 within	 the	 heart	 chambers	 and	 within	 the	 coronary	 tree.	 	 In	

reality	 of	 course,	 these	 aspects	 are	 interrelated	 and	 even	 the	 most	 complex	 3-D	

models	will	attempt	to	encompass	some,	but	not	all,	of	these	components.	

	

In	the	context	of	this	thesis	a	3D	model	is	defined	as	a	mathematical	representation	of	

a	three	dimensional	anatomical	structure	and	the	related	physiology.	 	 In	this	chapter	
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the	method	of	constructing	a	3D	model	of	the	human	heart,	its	relevance	to	predicting	

response	to	CRT	and	its	role	in	the	Grand	Challenge	(GC)	project	are	discussed.	

	

The	first	step	in	developing	a	personalised	3D	model	of	the	heart	is	the	acquisition	of	

suitable	 image	 data	 from	 the	 individual	 patient	 (see	 figure	 44).	 The	 advent	 of	 cMR,	

coupled	 with	 ECG	 gating,	 respiratory	 navigation	 and	 intravenous	 gadolinium-	 based	

contrast	agents,	 allows	 the	acquisition	of	a	 single	high-resolution	whole	heart	 image	

during	 free	 breathing	 within	 10	 minutes	 or	 so.	 Whilst	 this	 can	 produce	 a	 clear	

depiction	 of	 the	 left	 ventricle,	 similar	 delineation	 of	 the	 atrial	 and	 right	 ventricular	

myocardium	is	relatively	sub-optimal	due	to	the	limits	of	voxel	reconstruction,	which	is	

limited	to	1	mm.	CT	and	3DTTE	can	also	be	used.		CT	is	the	most	accurate	and	robust	

method	due	 to	high	 temporal	 and	 spatial	 resolution	but	 is	 limited	due	 to	 the	use	of	

ionising	 radiation.	 3DTTE	 is	 the	 quickest	 and	 simplest	method	 has	 the	 limitations	 of	

poor	signal	to	noise	ratio	and	variable	field	of	view.		

	

Following	 acquisition	 of	 the	 appropriate	 3D	 whole	 heart	 cMR	 image	 sequence,	 the	

cardiac	 geometry	 must	 be	 segmented	 (i.e.	 extracted	 from	 the	 image)	 to	 give	 the	

personalised	anatomy	required	as	the	foundation	for	the	patient-specific	model.	This	

can	 either	 be	 done	 by	 hand	 (slice	 by	 slice),	 using	 semi-automated	methods	 such	 as	

snakes	 or	 level-	 sets	 (often	 with	 manual	 correction	 after	 the	 process)	 or	 fully	

automated	 by	 combining	 morphological	 operators	 and	 snakes	 (which	 are	 active	

computer	generated	curves	which	seek	out	object	boundaries	in	an	image).	

	

Within	 this	project,	a	 technique	was	used	 for	 rapid	construction	of	a	patient-specific	

model;	the	patient	data	is	fitted	(morphed)	to	a	pre-existing	template	(in	this	body	of	

work,	 the	 ventricles	 only)	 creating	 a	 computational	 mesh.	 	 The	 mesh	 is	 a	

representation	 of	 an	 idealised	 geometry	 (in	 this	 case	 the	 LV.	 This	 then	 provides	 the	

domain	for	solving	the	mathematical	derivation	of	physiological	processes	(see	figure	

45)	257.				

	

Good	 correspondence	 between	 the	 segmentation	 and	 the	 template	 is	 key	 to	 the	

success	of	 this	method.	 In	addition	whilst	 the	segmentation	may	not	be	smooth,	 the	

mesh	is	required	to	be	smooth	with	good	quality	elements	or	the	resulting	simulation	
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may	be	unstable.	Ultimately,	a	trade-off	between	mesh	quality,	surface	smoothing	and	

geometrical	precision	is	often	sought.		

Furthermore,	 if	 the	patient	geometry	 is	extremely	abnormal	there	may	be	significant	

discrepancies	between	the	patient	geometry	and	idealised	anatomy.	If	this	cannot	be	

accounted	 for	within	 the	confines	of	 the	template,	 the	morphing	process	may	 fail	or	

the	resulting	model	may	not	be	representative	of	the	patient.	Alternatively,	statistical	

atlases	which	represent	the	average	anatomy	of	group	of	patients	can	be	used	but,	of	

course,	 these	 are	 not	 specific	 for	 the	 individual	 patient.	 Another	 alternative	 is	

construction	of	a	model	 from	scratch	but	this	 is	extremely	time-consuming	making	 it	

unsuitable	for	routine	clinical	use.			

	

Typically,	 the	 template	 is	 described	 a	 linearly	 interpolated	 tetrahedral	 mesh,	 which	

defines	the	LV,	which	is	curved,	using	linear	polynomials	and	creating	new	data	points	

in	between	known	point.	 These	 types	of	mesh	are	 simple,	 readily	 available	and	well	

characterised	258.	An	alternative	is		to	use	a	cubite	Hermite	mesh,	which	encodes	“not	

only	with	the	3D	Cartesian	coordinates	of	nodes,	but	also	with	the	derivatives	of	shape	

versus	local	finite	element	coordinates.”257.		

	

The	overarching	aim	of	the	GC	project	was	to	create	a	workflow	that	could	be	used	by	

all	 partners	 in	 the	 project	 to	 produce	 a	 standardised	 and	 seamless	 process	 from	

collection	 of	 the	 cMR	 data,	 segmentation,	 meshing,	 solving,	 running	 and	 then	

validation	 of	 the	 model.	 The	 original	 plan	 was	 to	 investigate	 an	 initial	 cohort	 50	

patients,	 long	 with	 the	 collection	 of	 physiological	 information	 on	 response,	 such	 as	

NPs,	VO2	peak,	6MWD	and	MLWHFQ,	before	applying	 the	workflow	to	a	much	 large	

randomised	population.		

Figure	44:	3D	model	workflow	

 
Figure	 44	 demonstrates	 the	 workflow	 used	 in	 the	 project,	 the	 raw	 image,	 filters	 used	 to	

improve	subsequent	endo	and	epicardium	delineation	and	create	the	segmented	myocardium.	
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Figure	45:	Mock-up	3D	LV	models	demonstrating	various	biophysical	properties	

	

Figure	45	represents	a	mock-up	of	various	3D	LV	models,	including	‘Activation’	depicts	

the	 propagation	 of	 the	 depolarising	 wavefront	 through	 the	 heart;	 ‘Geometry’	

demonstrates	 the	 anatomical	 composition	 of	 the	 various	 chambers,	 ‘Mechanics’	 the	

deformation	 of	 the	 myocardium	 during	 the	 cardiac	 cycle	 and	 ‘Microstructure’	 the	

arrangement	of	the	muscular	fascicles	composing	the	cardiac	walls. 

5.6.2 Segmentation	

This	work	was	completed	with	DDS.	

	

As	discussed	in	Chapter	2,	cardiac	MR	(cMR)	is	considered	to	be	the	gold	standard	for	

LV	 and	 RV	 volume	 assessment	 and	 assessing	 the	 anatomy	 of	 the	 heart	 as	 a	 whole	

based	on	its	superior	spatial	resolution,	accuracy,	reliability	and	lack	of	issues	such	as	

optimal	‘windowing’.		

	

At	USFD/STHT,	a	standard	Siemens	1.5	Tesla	Cardiac	MR	scanner	was	used	to	acquire	

3D	whole	heart	steady-state	free	precession	(SSFP)	images.		This	used	true	fast	imaging	

with	steady	state	precession	(TrueFISP)	which,	as	mentioned	previously,	is	a	technique	

that	 is	 optimised	 for	 speed	 and	 contrast	 between	 the	 blood	 pool	 and	myocardium.		

This	 creates	a	 series	of	data	 files	 in	digital	 imaging	and	 communications	 in	medicine	
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(DICOM)	format;	the	standard	file	 format	for	medical	 images.	 	This	series	of	 files	can	

then	 be	 imported	 into	 a	 segmentation	 software	 package	 (e.g.	 GIMAS	 (graphical	

interface	 for	 medical	 image	 analysis	 and	 simulation,	 University	 of	 Pompeu	 Fabra,	

Barcelona,	Spain).		The	term	‘segmentation’	refers	to	the	process	of	determining	which	

pixels	in	an	image	belong	to	which	structure.		This	process	can	be	carried	out	either	by	

hand	where	 the	user	 identifies	 the	 2	 LV	boundaries,	 both	 endocardial	 (between	 the	

blood	 pool	 and	 myocardium)	 and	 epicardial	 (between	 the	 myocardium	 and	

surrounding	 extra-cardiac	 tissue),	 or	 by	 an	 automated	 process.	 	 This	 is	 repeated	 for	

each	 slice	 of	 the	 heart,	 in	 all	 3	 axes	 (axial,	 sagittal	 and	 anteroposterior)	 the	 sum	 of	

which	creates	a	3D	segmentation.		Hand	segmentation	is	time	consuming,	more	than	

100	 slices	may	 be	 included	 in	 each	 axis	 and	 each	will	 need	 to	 be	 assessed	multiple	

times.		However	it	is	considered	the	gold	standard,	as	the	expert	operator	can	choose	

the	correct	surface	where	the	automated	tool	might	struggle	to	discriminate	correctly,	

or	fail	to	discriminate	between	tissues.		

	

Automated	 tools	 are	 usually	 intensity-based	 and	 can	 often	 have	 difficulty	 in	

discriminating	 between	 tissues	 of	 similar	 intensity,	 for	 example	 between	 the	

myocardium	 and	 adjacent	 extra-cardiac	 tissues.	 	 One	 example	 of	 a	 situation	 where	

intensity-based	methods	do	work	well	would	be	at	the	border	between	the	blood	pool	

and	 endocardium	 which,	 even	 without	 contrast	 is	 typically	 well	 defined.		

Consequently,	whilst	 segmenting	by	hand	 is	 the	most	 accurate	method	 it	 is	 also	 the	

most	labour-intensive,	whereas	the	automated	method	is	very	quick	(few	minutes)	but	

potentially	fraught	with	errors,	which,	unless	checked	by	hand,	could	lead	to	problems,	

such	as	errors	in	LV	volumes.		This	is	particularly	important	when	measuring	response	

to	 CRT	 (e.g.	 LVEDV/LVESV)	 or	 indeed	 assessing	 patient	 suitability	 (e.g.	 EF%)	 when	

accurate	volume	assessment	is	key.		

	

The	3D	whole	heart	sequence	cannot	give	a	true	instantaneous	representation	of	the	

heart,	 in	 the	 sense	 that	 the	 image	 is	 built	 up	 over	 many	 heart	 beats,	 with	 images	

acquired	 at	 end-systole.	 	 Artefacts	 due	 to	 breathing,	movement	 or	 arrhythmias	 can	

degrade	images;	the	region	of	interest	may	have	moved	or	acquired	at	the	wrong	time	

in	the	cardiac	cycle.		This	is	particularly	a	problem	in	HF-LVSD,	as	up	to	1/3	of	patients	

will	 have	 coexisting	 atrial	 and	 ventricular	 arrhythmias.	 	 Furthermore,	 20%	 of	 	 may	
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coexist	in	HF-LVSD	patients	and	this,	coupled	with	the	fact	that	the	patients	are	being	

asked	to	 lay	 flat	and	 in	a	confined	space,	means	that	the	 images	produced	are	often	

poor,	increasing	demands	on	the	automated	segmentation	software.		

	

The	automated	segmentation	software	is	optimised	on	healthy	normal	volunteers	who	

can	 hold	 their	 breath	 for	 long	 periods	 and	 who	 have	 “typical”	 cardiac	 anatomy,	 in	

contrast	 to	 patients	 who	 may	 have	 dilated,	 scarred	 and	 morphologically-abnormal	

cardiac	chambers.		As	a	result,	despite	myocardial	nulling,	rather	than	clear	delineation	

between	 the	 blood	 pool	 and	myocardium	 or	 myocardium	 and	mediastinal	 tissue3D	

whole	 heart	 SSFP	 images	 can	 appear	 as	 heterogeneous	 shades	 of	 grey.	 Whilst	 21	

patients	were	 recruited,	 only	 20	had	3D	 SSFP	 images	 as	 one	patient	 became	unwell	

during	scanning.	 	The	3D	SSFP	images	used	a	slice	thickness	was	8mm,	taking	around	

15-20	min	to	capture	a	3D	 image	with	60-100	slices	 in	each	of	 the	axial,	 sagittal	and	

anteroposterior	planes,	depending	on	patient	anatomy	and	cardiac	size	and	shape.		

	

A	key	aim	of	the	project	and	one	role	for	USFD/STHT	was	to	evaluate	the	automated	

software	 used	 by	 partners	 in	 the	 GC	 and	 compare	 it	 to	 the	 gold	 standard	 of	 hand	

segmentation.		If	a	model	is	to	be	used	successfully	to	predict	response	to	CRT	a	priori,	

the	 workflow	 must	 be	 accurate,	 robust	 and	 require	 minimal	 user	 input;	 it	 is	 not	

feasible	 to	 expect	 the	 clinician	 to	 spend	 significant	 time	 learning	 how	 to	 use	 the	

software	and	then	several	hours	segmenting	heart	for	each	patient.		

	

A	 challenge	 of	 the	 project	 was	 using	 the	 segmentation	 tool	 developed	 by	 UCL	 and	

Phillips,	originally	CT	based	and	then	refined	on	optimal	images	acquired	from	healthy	

subjects	at	KCL	using	a	Phillips	MRI	scanner.	Significant	effort	had	to	be	made	to	carry	

out	 similar	 optimisation	 on	 the	 Siemens	 MRI	 scanner	 in	 Sheffield.	 The	 first	 images	

acquired	in	Sheffield	were	not	optimal	and	whilst	they	all	could	be	segmented	by	hand,	

there	 were	 issues	 when	 using	 the	 automated	 segmentation	 tool.	 	 The	 STHT	 cMR	

department	 received	 a	 great	 deal	 of	 input	 from	 KCL	 before	 images	 of	 acceptable	

quality	could	be	acquired.		

	

For	 the	 semi-automated	 segmentation,	 the	 shape	 of	 the	 LV	 was	 often	 found	 to	 be	

quite	accurate	and	the	endocardial	border	clearly	defined	due	to	the	bright	blood	pool	
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and	 nulled	 myocardium,	 but	 the	 epicardial	 border	 was	 often	 poorly	 defined	 and	

generally	 overestimated.	 The	 surrounding	 non-cardiac	 tissue	was	 of	 similar	 intensity	

and	 so	 the	 software	had	difficulty	differentiating	one	 from	another.	 If	 the	epicardial	

border	 is	over-estimated	and	 the	endocardial	border	 is	 accurate,	 the	 LV	volume,	 i.e.	

the	 volume	 of	 blood,	 will	 be	 correct	 but	 LV	 mass	 and	 total	 LV	 volume	 will	 not.	

Furthermore,	the	underlying	model	guarantees	that	the	resulting	mesh	will	 resemble	

the	expected	shape	of	the	four	chambers	regardless	of	the	accuracy	of	the	fit.	

	

Preliminary	work	used	a	 fully	automated	 tool,	developed	 in	GIMIAS	was	 to	 compare	

fully	 automated,	 semi-automated	 and	 manual	 segmentation	 techniques.	 	 This	 tool	

required	 the	user	 to	 load	 the	 cMR	3D	SSFP	 files	 into	 the	 interface	and	 select	 the	 LV	

apex,	MV	 and	AV	 annulus.	 Then	using	 an	 intensity-based	 segmentation	 process,	 the	

tool	differentiated	cardiac	 tissue	and	great	vessels	 from	the	extra-cardiac	 structures.		

However,	this	work	and	the	use	of	this	tool	were	abandoned	since,	as	can	be	seen	in	

figures	 46	 and	 47,	 the	 accuracy	 was	 questionable	 on	 even	 on	 gross,	 qualitative	

analysis.		As	can	be	seen	in	the	figure,	different	shades	should	correspond	to	different	

anatomical	structures.		However,	the	tool	appears	to	have	mistaken	the	position	of	the	

LA	for	the	descending	thoracic	aorta.		This	is	likely	to	be	a	consequence	of	sub-optimal	

cMR	 3D	 SSFP	 images,	 with	 poor	 delineation	 between	 thoracic	 structures,	 atypical	

cardiac	anatomy	that	the	pre-existing	GIMIAS	heart	template	was	unable	to	reconcile	

and	 the	 inability	 to	make	manual	 adjustments	 to	 the	process	of	 segmentation	using	

the	GIMIAS	interface,	despite	it	clearly	segmenting	the	wrong	structures.		

Figure	46:	Automated	cMR	segmentation	(shaded	red)	axial	and	sagittal	
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Figure	46	demonstrates	the	poor	automated	segmentation	with	the	bright	blood	pool	and	grey	

myocardium	from	the	cMR	and	various	shades	of	red	overlaid	from	the	segmentation,	which	

are	not	delineating	the	cardiac	borders	but	overlapping	with	various	extra-cardiac	structures.	

Figure	47:	Automated	segmentation	mesh	(left)	with	actual	cMR	image	(right)	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure		47	demonstrates	on	the	left,	the	resulting	3D	whole	heart	segmentation	from	

created	using	the	automated	segmentation	tool,	versus	what	it	should	look	like	on	the	

right,	 note	 the	 severely	 truncated	 aortic	 arch	 and	 lack	 of	 distinction	 between	 left	

atrium	and	ventricle		

 

5.6.3 Method	

5.6.3.1 Manual	Segmentation	

The	 images	were	 segmented	 by	 first	 loading	 the	 3D	 SSFP	 DICOM	 files	 into	 ITKSnap,	

Open	 Source	 3D	 segmenting	 software	 (http://www.itksnap.org/pmwiki/pmwiki.php).	

The	 endocardial	 surface	 was	 segmented	 initially	 in	 the	 sagittal	 plane	 by	 tracing	 the	

outline	of	the	LV	between	the	blood	pool	and	endocardium.		Once	all	the	segments	in	

the	sagittal	plane	were	outlined,	the	images	and	segmentations	were	reviewed	in	the	

axial	plane	and	 then	 the	anteroposterior	plane,	adjusting	as	necessary	 to	ensure	 the	

best	fit	possible.		This	cycle	was	then	repeated,	until	there	was	a	smooth	rendering	of	

the	LV	endocardial	surface,	which	was	then	used	to	create	a	3D	marching	cubes	mesh.		

A	marching	cubes	mesh	is	polygonal	mesh	of	an	iso-surface	from	a	three-dimensional	

field,	comprised	of	voxels.		Voxels	consist	of	volume	and	pixel,	and	a	pixel	comprises	a	

picture	 and	 an	 element.	 	 A	 marching	 cubes	 mesh	 is	 typically	 used	 for	 visualising	

medical	data	from	MRI	or	CT.		Since	what	might	appear	correct	in	one	plane	was	often	
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incorrect	in	another,	the	3D	mesh	could	be	updated	and	reviewed	contemporaneously	

after	 every	 adjustment,	 the,	 to	 ensure	 that	 best	 fit	 and	 anatomical	 correctness	was	

retained.	 	 Following	 the	 current	 convention,	 papillary	 muscles,	 trabeculations	 and	

valvular	apparatus	were	excluded	from	the	segmentation.		This	method	took	about	2	

hours	 to	 complete	 per	 LV	 surface;	 a	 total	 of	 4	 hours	 per	 patient.	 	 Figure	 48	

demonstrates	the	3D	whole	heart	cMR	DICOM	images	and	figure	49	shows	the	same	

images	 loaded	 into	 segmentation	 software,	 in	 this	 case	 ITKsnap,	 with	 images	 being	

segmented,	in	particular	the	endocardial	surface	seen	as	the	red	shaded	area.		In	figure	

50,	the	end	result	can	be	seen	after	the	3D	endocardial	surface	has	been	segmented	by	

hand.		

Figure	48:	3D	SSFP	cMR	in	3	orthogonal	planes,	sagittal,	axial	and	coronal	

 

Figure	48	demonstrates	 the	3	orthogonal	 views	possible	 following	 a	 3D	whole	heart	

acquisition,	which	can	then	be	used	to	create	a	3D	segmentation	of	the	left	ventricle.	

	

Figure	49:	Process	of	hand	segmentation	of	the	LV	endocardial	surface	
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Figure	 49	 demonstrates	 the	 3	 orthogonal	 views	 seen	 during	 the	 process	 of	 hand	

segmentation	 of	 the	 left	 ventricle,	 with	 the	 areas	 shaded	 in	 red	 denoting	 the	

endocardial	surface	and	volume,	using	ITKsnap.	

	

Figure	50:	Hand-segmented	LV	surface	epicardial	(left)	and	endocardial	(right)	

	

	

	

	

	

	

	

	

	

Figure	 50	 demonstrates	 the	 2	 3D	 surfaces	 created	 by	 hand	 segmenting	 the	 left	

ventricle,	the	epicardial	surface	on	the	left	and	the	endocardial	on	the	right.	Note	the	

large	 number	 of	 ridges	 present	 when	 segmenting	 by	 hand,	 each	 representing	 	 an	

individually	delineated	(shaded)	section,	not	seen	when	using	other	techniques.	

5.6.3.2 Semi-Automated	segmentation	

The	semi-automated	segmentations	were	created	using	a	tool	developed	by	UCL	and	

Philips	259	(see	figure	51	and	52).	 It	was	proposed	that	this	would	be	used	for	the	GC	

workflow	to	ensure	standardisation	across	both	KCL	and	USFD.		The	3D	SSFP	files	were	

loaded	 into	 the	 tool	 and	 the	3	points	 (LV	apex,	MV	and	AV	annulus)	 selected.	Using	

intensity-based	segmentation	process,	the	tool	differentiates	cardiac	from	non-cardiac	

tissue,	the	4	cardiac	chambers	and	great	vessels	and	most	importantly	(for	this	work)	

the	bright	and	white	blood	pool	from	the	nulled	and	dark	myocardium.	 	 Importantly,	

the	segmentation	fit	to	the	3D	whole	heart	cMR	could	be	adjusted	and	re-run	to	create	

a	 best	 fit,	 hence	 the	 description	 ‘semi-automated’.	 	 The	 pre-existing	 template	 is	

“fitted”	to	the	cMR	image.		
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Figure	51:	3D	whole	heart	segmentation	using	the	UCL	tool	

	

Figure	51	demonstrates	a	3D	whole	heart	segmentation	using	the	UCL	semi-automated	

tool,	 with	 left	 ventricle	 in	 dark	 blue,	 right	 ventricle	 in	 white,	 pulmonary	 artery	 in	

brown,	right	atrium	in	light	blue	and	left	atrium	in	orange.	Note	how	much	smoother	

the	surface	is.	

Figure	52:	Outer	(left)	and	inner	(right)	LV	surface	from	using	the	UCL	tool	

Figure	52	demonstrates	the	left	ventricular	surfaces	segmentated	using	the	UCL	semi-

automated	tool,	with	left	ventricle	epicardium	in	dark	blue,	and	endocardium	in	white.	
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5.6.3.3 Comparison	between	Hand	and	Semi-Automated	Segmentation	
	
To	 ensure	 like	 was	 compared	 with	 like,	 for	 both	 the	 semi-automated	 and	 hand-

segmented	 images,	 the	 LV	 segmentations	 were	 divided	 into	 2	 surfaces	 (epi-	 and	

endocardial)	 rather	 than	 a	 single	 LV	 volume.	 	 Code	 was	 developed	 in	 Matlab	 (The	

Mathworks	Inc,	Cambridge,	UK)	from	at	USFD	for	comparing	surfaces.		For	each	of	the	

surfaces	4	points	were	selected	manually,	1	at	 the	LV	apex	and	3	on	 the	LV	base,	 in	

order	 to	 align	 the	 3D	 images	 in	 space,	 using	 a	 coordinate	 system,	 X,	 Y	 and	 Z.	 	 The	

images	had	 to	be	 rotated	and	 then	 translated,	 as	 the	 coordination	 systems	 for	both	

the	UCL	and	ITKsnap	tools	were	slightly	different,	which	meant	they	did	not	completely	

overlay	 in	 3D	 space.	 	 The	 code	 compared	 the	 position	 in	 3D	 space	 of	 each	 voxel,	

comprising	 the	 same	 point	 of	 each	 surface.	 	 This	 calculated	 the	 number	 of	 voxels	

compared	between	each	surface	and	gave	the	mean,	SD	and	maximum	distance	of	the	

voxels	from	each	other.		The	closer	the	voxels,	the	smaller	the	mean,	SD	and	maximum	

distance	 and	 thus	 the	 more	 accurate	 the	 3D	 segmentation	 compared	 to	 the	 gold	

standard	of	hand	segmentation.		

5.6.4 Results	
 
The	3	figures	demonstrate	first	an	example	of	the	overlay	for	corresponding	hand	and	

automated	segmentations	(figure	53),	second	a	heat	map	demonstrating	the	distance	

of	 each	 voxel	 in	 the	 automated	 segmentation	 from	 its	 equivalent	 in	 the	 hand	

segmentation	(figure	54)	and	finally	a	histogram	with	the	number	of	points	along	the	y	

axis	and	distance	along	the	x	axis,	along	with	the	mean	and	median	distance	of	each	

voxel	(figure	55).		Table	50	gives	a	summary	of	all	20	patients,	with	the	mean,	SD	and	

maximum	 distance	 between	 the	 two	 surfaces	 compared,	 demonstrating	 that	 the	

endocardial	surfaces	were	more	closely	matched	than	the	endocardial	surfaces.	The	SD	

is	greater	than	the	mean	 in	some	circumstances,	as	the	distance	between	the	voxels	

could	 be	 positive	 or	 negative	 e.g.	 more	 endocardial	 or	 epicardial.	 Between	 40,000-

70,000	 voxels	 were	 compared	 for	 each	 surface.	 The	 segmentations	 produced	 using	

Philips’s	UCL	 tool	 have	 a	 voxel	 size	 of	 2.0	 by	 2.0	 by	 2.0	mm	and	 the	 segmentations	

produced	 by	 hand	 have	 a	 voxel	 size	 of	 1.5	 by	 0.77	 by	 0.77	 mm.	 Unlike	 the	 semi-

automated	 segmentation,	 the	 hand	 segmented	 surfaces	 did	 not	 consistently	 define	

where	 the	 ventricular	 surface	 ended	 and	 in	 others	 it	 ended	 prematurely.	 For	 this	
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reason,	both	 surfaces	were	 trimmed	arbitrarily	5	mm	from	a	manually	defined	basal	

plane,	 to	ensure	 like	was	 compared	with	 like.	This	 is	 also	 important	as	 the	 template	

mesh	 of	 the	 ventricle	 did	 not	 include	 features	 such	 as	 the	 aortic	 or	 mitral	 valve,	

apparatus	or	valvular	LV	inflow/outflow	continuity.				

	

	Table	50:		Mean,	SD,	maximum	distance	and	number	of	individual	voxels.	

	

	

	

	

Figure	53:	Hand	(green)	and	semi-automated	(red)	LV	surfaces	overlaid	

	

Figure	53	demonstrates	the	segmented	endocardial	left	ventricular	surfaces	overlaid	in	

MatLab,	 with	 the	 hand	 segmented	 surface	 in	 solid	 green	 and	 the	 semi-automated	

surface	in	red	dots.	

 
 
 
 
 
 
 
 
 

Segmentation		 Mean	(mm)	 SD	(mm)	 Max	(mm)	 Number	
Inner	 2.82	 3.51	 14.67	 43141.80	
Outer	 4.79	 3.85	 18.20	 76086.33	
All	 3.80	 3.68	 16.43	 59614.07	
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Figure	54:	LV	surfaces	of	hand	(white)	and	semi-automated	(colour)	segmentation	

	
	
Figure	54	demonstrates	the	segmented	epicardial	 left	ventricular	surfaces	overlaid	 in	

MatLab	and	shown	as	a	heat	map,	with	the	hand	segmented	surface	in	white	and	the	

semi-automated	 surface	 shown	 in	 rainbow	colouration,	 from	blue	 to	 red,	depending	

on	the	proximity	of	the	two	voxels	compared	from	each	surface.	
Figure	55:	Comparing	the	distance	between	corresponding	voxels	in	each	surface	

 
Figure	 55	 demonstrates	 the	 distance	 between	 the	 voxels	 in	 the	 left	 ventricular	

segmented	surfaces,	created	by	hand	or	by	semi-automated	tool.	
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5.6.5 Discussion		
 
The	 aim	 of	 this	 aspect	 of	 the	 project	 was	 to	 compare	 the	 gold	 standard	 of	 hand	

segmentation	with	 the	 semi-automated	 tool	 from	 developed	 and	 used	 by	 UCL	 	 and	

Phillips	to	assess	 its	accuracy.	 	 If	the	GC	was	successful	 in	predicting	response	to	CRT	

with	the	available	cohort	of	50	patients,	then	the	next	stage	would	be	an	RCT	using	the	

segmentation	 tools	 and	 3D	 models	 for	 multiple	 sites	 with	 potentially	 hundreds	 of	

patients.	 For	 the	 workflow	 to	 run	 smoothly	 and	 be	 automated,	 the	 same	 robust,	

standardised	 and	 consistent	 segmentation	process	would	need	 to	be	used	across	 all	

sites.		Whilst	giving	good	results,	the	process	of	hand	segmentation	took	over	a	week	

to	complete	20	cases.	 	This	was	crucial	for	the	development	of	the	tool	but	clearly	 is	

not	 a	 sustainable	 use	 of	 a	 clinician’s	 time.	 Both	 tools	 were	 easy	 to	 use	 but	 the	

automated	 tool	 saved	 many	 hours	 of	 work.	 	 What	 was	 clear	 was	 that	 the	 semi-

automated	tool	was	developed	on	healthy	patients	with	high	quality	cMR	images	and	

normal	LV	geometry.		The	automated	tool	struggled	to	cope	with	dilated	ventricles	and	

where	 the	 geometry	 changed	 from	 half	 an	 ellipse	 to	 a	windsock,	 with	 the	 accuracy	

falling	subjectively	to	the	naked	eye	and	objectively	when	using	the	comparison	tool.	

Furthermore	 it	 is	clear	that	the	mean,	SD	and	maximum	distances	for	comparing	the	

endocardial	surface	were	more	accurate	than	when	comparing	the	epicardial	surface.		

This	 is	 a	 result	 of	 the	 gadolinium-based	 contrast,	which	 clearly	 delineates	 the	 blood	

pool	 from	 the	 myocardium	 and	 thus	 demarcates	 the	 inner	 surface.	 	 For	 the	 outer	

surface	 the	myocardium	had	to	be	distinguished	 from	other	extra-cardiac	structures,	

without	 the	strong	difference	 in	signal	 intensity	 this	was	difficult	with	 the	naked	eye	

even	when	using	3	orthogonal	plains,	and	proved	to	be	extremely	challenging	for	the	

automated	tool.		The	accuracy	of	automatic	segmentation	is	largely	dependent	on	the	

quality	 of	 the	 3D	 images,	 which,	 in	 turn,	 is	 determined	 by	 the	 scanner	 set-up,	 the	

radiographer,	and	the	characteristics	of	the	patient.	This	being	said,	clearly	the	hand-

segmentations	have	a	very	irregular	shape,	being	create	in	a	slice	wise	fashion,	other	

errors	 included	 incomplete	 regions	 and	 unintended	 artefacts.	 Similarly,	 the	 semi-

automated	tool	arbitrarily	divided	the	inter-ventricular	septum	into	two	surfaces,	the	

right	and	left	ventricle,	creating	an	anatomically	incorrect	surface	appearance.				

	

At	 first	 glance,	 the	 mean	 difference	 in	 distance	 between	 the	 voxels	 (2.8-4.79mm)	

seems	 acceptable,	 although	 the	 sample	 is	 small	 making	 statistically	 comparisons	
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unreliable.		However	the	maximum	distance	of	up	to	18.2mm	between	corresponding	

voxels,	 is	 less	 impressive	suggesting	 that	 the	automated	tool	 is	 far	 from	accurate	 for	

this	 purpose.	 From	 gross	 observation,	 it	 was	 the	 shape	 of	 LV	 that	 the	 automated	

software	 had	 greatest	 difficulty	 interpreting,	 rather	 than	 its	 size.	 	 This,	 in	 part	 is	

because	 the	 software	 tries	 to	 fit	 a	 pre-existing	 cardiac	 template	 to	 the	 images	 it	

analyses	and	 thus	 the	boundary	conditions	are	predetermined.	Significant	deviations	

from	this	cannot	be	accommodated	and	subsequently	important	shape	characteristics	

will	be	lost	e.g.	the	windsock	is	forced	into	hemi-ellipse.		Indeed,	normal	LV	thickness	is	

<	12mm	and	in	most	cases,	patients	with	HF-LVSD	have	dilated	and	thinned	hearts;	a	

mean	difference	of	even	2.8	–	4.79mm	could	give	a	23	-	39%	error	in	terms	of	over-	or	

under-	estimating	LV	volume	and	mass.		

	

Both		hand-	and	semi-automated-	segmentation	were	carried	out	by	a	single	operator	

(DRW),	 and	 whilst	 hand	 segmentation	 is	 felt	 to	 be	 the	 gold	 standard,	 this	 too	 will	

depend	largely	on	the	operator-experience	in	reviewing	cardiac	images	(not	just	those	

in	cMR)	and	is	subject	to	both	intra-	and	inter-	observer	variability.		In	this	regard,	DRW	

was	 the	most	experienced	member	of	 the	project	and	 thus	 it	was	 felt	having	a	non-

clinician	attempt	to	segment	the	LV,	especially	by	hand	and	with	poor	images,	would	

not	be	beneficial.		DW	had	also	viewed	the	2D	and	3D	TTE	images	of	the	patients.		In	

the	future,	it	could	be	useful	to	explore	this	by	exposing	the	automated	tool	to	several	

untrained	 operators	 for	 segmenting	 the	 same	 LVs	 and	 comparing	 these	 to	 the	 gold	

standard.	Furthermore,	at	the	time	of	writing,	the	automated	segmentations	have	not	

been	used	to	create	any	meaningful	models,	which,	whilst	not	a	criticism	of	this	work,	

means	that	the	significance	of	such	findings	are	somewhat	limited.		

	

Most	automated	LV	segmentation	algorithms	use	 thresholding,	 region	growing,	edge	

detection,	 and	 clustering,	 based	 on	 short-,	 long-	 or	 multi-axis	 images.	 	 Also,	 the	

majority	of	previous	work	has	been	carried	on	dogs	and	pigs	in	vivo	and	ex	vivo	with	CT	

rather	than	cMR.		As	two	different	applications	used	in	this	study,	ITKsnap	(creating	LV	

2	surfaces,	not	a	single	LV	volume)	and	UCL	(creating	a	3D	volume)	direct	comparisons	

of	ventricular	volume	or	mass	cannot	be	made.	Similar	studies,	albeit	using	different	

methods,	 have	 found	 automated	 tools	 to	 produce	 LV	 segmentations	 with	 60-93%	

accuracy	 compared	 to	 the	 gold	 standard260	 261.	 Studies	 comparing	 hand	 versus	
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semi/fully	 automated	 segmentation	 of	 the	 LV	 are	 on-going	 but,	 as	 yet,	 hand-

segmentation	 retains	 its	 position	 as	 the	 gold	 standard	 with	 few	 studies	 looking	 at	

patient	data,	but	rather,	data	from	healthy	volunteers	with	“normal”	hearts.	The	ideal	

approach	would	be	semi-automated,	whereby	the	operator	chooses	the	initial	areas	of	

interest,	 which	 are	 then	 populated	 by	 the	 tool	 and	 then	 errors	 can	 be	 corrected	

manually	 afterwards.	 This	 would	 combine	 the	 speed	 advantage	 of	 the	 automated	

process	with	the	accuracy	of	the	manual	one.		

	

At	the	time	of	writing	no	cMR	compatible	CRT	devices	exist	and	a	follow-up	cMR	was	

therefore	not	 included	 in	 the	GC	ethics	but	 such	 information	with	accompanying	3D	

segmentation	would	be	fascinating	to	track	exactly	how	the	LV	changes	in	size,	shape	

and	 function.	 	 This	 could	 also	 be	 used	 for	 further	 validation	 of	 the	 automated	

segmentation	process.	 	The	findings	of	this	work	were	fed	back	to	partners	in	the	GC	

project	in	order	to	improve	the	automated	segmentation	process	for	future	patients.		

5.7 Geometrical	model	
	

This	work	was	completed	with	PL.	

5.7.1 Introduction	
	

Cardiac	 anatomical	 remodeling	 is	 one	 of	 the	 main	 clinical	 features	 of	 HF-LVSD.	 	 As	

heart	 disease	 progresses	 into	 HF-LVSD,	 the	 ventricles	 become	 larger	 and	 more	

spherical	 with	 deteriorating	 cardiac	 function	 and	 symptoms	 becoming	 evident.		

Slowing,	or	reversing,	remodelling	is	a	therapeutic	target	in	HF	of	all	aetiologies	and	is	

thus	regarded	as	an	important	sign	by	which	HF-LVSD	can	be	stratified	and	monitored.		

Currently,	 reverse-remodelling	 is	 mainly	 characterised	 through	 changes	 in	 EF	 or	 in	

myocardial	mass.	

	

In	 the	 past,	 technical	 factors	 and	 differences	 of	 interpretation	 have	 led	 to	

inconsistencies	 of	 results	when	 assessing	 ventricular	 size	 and	 shape	 remodelling	 262.		

Recent	 advances	 in	 imaging	 and	 computational	 techniques	 now	 allow	 3D	

reconstruction	and	detailed	 comparison	of	 the	 anatomy	 through	 the	 construction	of	

statistical	 atlases.	 	 More	 specifically,	 cMR	 imaging	 is	 a	 non-invasive	 modality	
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considered	 the	 gold	 standard	 to	 assess	 left	 ventricular	 morphology	 263.	 	 Statistical	

atlases	of	 cardiac	anatomy	built	 from	CMR	studies	have	been	used	 to	analyse	 shape	

differences	within	populations	or	to	assess	inherent	bias	between	acquisition	protocols	
264	 265.	 In	 such	 atlas	 studies,	 a	 3D	 mesh	 represents	 the	 shape	 of	 each	 individual’s	

anatomy,	 and	 it	 becomes	 an	 accurate	 virtual	 reconstruction	 able	 to	 capture	 subtle	

changes	in	the	subject’s	anatomy.		

	

The	aim	of	this	work	was	to	conduct	a	comprehensive	shape	analysis	of	LV	anatomy	in	

a	cohort	of	subjects	that	were	selected	for	CRT	and	to	test	the	existence	of	differences	

in	between	responders	and	nonresponders	on	the	cohort	of	50	patients	(including	the	

20	patients	 from	Sheffield).	 	 Shape	analysis	 is	a	potential	 selection	criterion	 that	has	

not	yet	been	studied,	this	perhaps	surprising	since	left	ventricular	reverse	remodeling	

is	 a	 widely-used	 and	 cited	 for	 assessing	 CRT	 response	 as	 it	 has	 been	 shown	 to	

accurately	predict	long-term	survival	266	267.	

	

5.7.2 Method	
	

A	 statistical	 anatomical	 atlas	 gives	 a	 representation	 of	 an	 average	 shape	 and	 its	

variation	within	a	given	population.		A	robust	and	reproducible	methodology	is	used	to	

extract	 the	 shape	of	 the	LV	 from	clinical	 images,	and	 then	encode	and	describe	 that	

shape	 with	 a	 consistent	 mathematical	 framework.	 In	 this	 study,	 the	 LV	 from	 each	

clinical	 case	 was	 represented	 in	 two	 ways;	 by	 a	 virtual	 3D	 reconstruction	 of	 the	

anatomy	and	by	a	dual	set	of	shape	coefficients.	

	

Segmentation	 of	 the	 LV	 anatomy	 was	 performed	 manually	 as	 described	 previously.		

Subsequently,	 3D	 geometrical	 meshes	 were	 automatically	 fitted	 to	 the	 resulting	

segmented	 masks	 using	 methodology	 described	 in	 Lamata	 et	 al	 (2011)	 257.	 Each	

reconstructed	mesh	consists	of	a	set	of	control	points	that	describe	the	vertices	of	the	

shape	and	the	curvature	between	vertices,	totaling	to	3504	degrees	of	freedom.		The	

control	 points	 that	 describe	 the	 ventricular	 shapes	 of	 the	 population	 were	 then	

collectively	 analysed	 using	Matlab	 2013b	 (The	MathWorks,	 Natick,	 MA)	 to	 create	 a	

computational	 atlas.	 	 In	 order	 to	 identify	 the	 main	 modes	 of	 variation	 in	 the	 left	

ventricular	 shapes,	 a	 complex	 statistical	process,	 called	principal	 component	analysis	
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(PCA)	was	undertaken.		PCA	is	a	statistical	technique	used	to	emphasise	variations	and	

highlighting	any	patterns	in	a	dataset.	PCA	uses	orthogonal	transformation	to	convert	

a	 range	 of	 possibly	 correlated	 variables,	 called	 principle	 components	 into	 a	 set	 of	

values	of	 linearly	uncorrelated	variable.	The	goal	of	PCA	 is	 to	describe	 the	maximum	

amount	 of	 variance	 with	 the	 lowest	 number	 of	 principal	 components.	 Directions	 of	

anatomical	change	that	explain	the	largest	variance	within	the	population	under	study	

were	 extracted.	 	 Each	 geometrical	 mesh	 is	 then	 projected	 into	 these	 axes	 of	

anatomical	 change	 to	 find	 the	 shape	 coefficients	 that	 describe	 the	 anatomy	of	 each	

subject.		

5.7.3 Statistics	

Identification	of	CRT-response,	based	on	either	EDV	or	ESV	rate	changes,	was	used	as	

the	basis	for	patient	stratification.		Fisher’s	linear	discriminant	was	used	to	identify	the	

modes	of	variation	that	provide	the	best	separability	between	the	shape	coefficients	

corresponding	to	the	cohorts	of	responders	and	nonresponders.		The	area	under	of	the	

receiver	operating	characteristic	curve	(AUC)	was	used	to	analyse	the	performance	of	

the	 categorisation	 together	with	 sensitivity	 and	 specificity.	 	 Values	 of	p	 <	 0.05	were	

considered	to	be	statistically	significant.	 

5.7.4 Results	

5.7.4.1 Characteristics	of	the	participants	under	study	

Of	 the	 50	 subjects	 in	 the	 combined	 cohort,	 76%	were	male.	 The	mean age	was	 69	

years	(± 11),	50%	had	HF-LVSD	of	ischaemic	aetiology,	the	mean	QRSd	was	153	ms	(±	

21),	 the	 average	 NYHA	 class	 was	 III	 and	 88%	 had	 LBBB.	 	 28	 patients	 (56%)	 were	

identified	as	responders	and	22	(44%)	as	nonresponders	corresponding	to	a	minimum	

10%	decrease	cut-off	in	the	LVESV,	as	described	by	Yu	et	al	(2005)268.		As	seen	in	table	

51,	Using	 LVEDV	 as	 definition	 of	 response	 for	 the	 same	 volume	 change	 rate	 of	 10%	

there	were	25	responders	(50%)	and	25	nonresponders	(50%).	The	mean	reduction	of	

left	 ventricle	 LVEDV	 for	 responders	 was	 46.92	 ±	 12.0mL	 (p	 <	 0.01)	 and	 their	 LVESV	

decreased	to	45.17	±	13.64	mL	(p	<	0.05).		There	was	no	significant	difference	between	

nonresponders	at	baseline	and	follow-up	when	the	comparison	was	based	on	LVEDV.		

However,	there	was	a	significant	increase	of	LVESV	before	and	after	6	months	of	CRT	

implantation	in	the	nonresponder	group.	
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Table	51:	Characterization	of	cohorts	based	on	left	ventricular	volumes	

	

LVEDV	 LVESV	

Baseline	 6	months	
p	

value	
Baseline	 6	months	

p	

value	

Responders		
183.8	±	

61.2	

139.9	±	

49.2	
<	0.01	

144.5	±	

90.3	

99.3	±	

76.7	
<	0.05	

Nonresponders		
186.6	±	

92.8	

214.9	±	

91.4	
0.30	

130.8	±	

43.6	

164.1	±	

55.0	
<	0.05	

5.7.4.2 Construction	of	the	statistical	atlas	of	left	ventricular	anatomy	
 
 
The	creation	of	 the	cardiac	 statistical	atlas	 involved	 fitting	a	3D	mesh	 to	each	of	 the	

segmented	myocardial	anatomy	cases	(figure	56).	
	

Figure	56:	The	3	stages	of	the	mesh	personalisation	process	

	

Figure	56	demonstrates	the	stages	of	the	mesh	personalization	process,	A	displays	the	

manual	segmentation,	where	3D	interpolation	is	performed	from	a	discrete	set	of	3D	

contours,	B	mesh	template	with	72	elements	and	C	result	of	the	mesh	personalization	

(white	mesh)	overlaid	to	segmentation	(colour-coded	by	fitting	error).	

	

The	resulting	mean	fitting	error	for	the	50	cases	was	0.45mm.		Subsequently,	the	first	

five	modes	 of	 shape	 variation	 of	 the	 left	 ventricle	were	 identified	 by	means	 of	 PCA	
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these	were	mode	1	 and	2	 for	 3D	orientation,	mode	3	 for	 size,	mode	4	 for	 spherical	

remodeling	and	mode	5	for	length.	In	overall,	these	five	modes	accounted	for	72.5%	of	

the	variance	of	left	ventricular	anatomy	in	the	population	(see	figure	56).	

	

Figure	57:	Variances	of	the	modes	of	shape	variation	from	PCA	

 
	

Figure	 57	 demonstrates	 the	 relative	 (left)	 and	 cumulative	 (left)	 explained	 variance	

against	the	mode	of	variation,	demonstrating	how	the	5	modes	could	explain	72.5%	of	

the	variance	in	left	ventricular	shape	between	the	responders	and	non-responders.	

5.7.4.3 Changes	of	left	ventricular	geometry	between	cohorts	
 
 
The	 groups	 of	 responders	 and	 nonresponders,	 as	 determined	 by	 a	 change	 in	 LVEDV	

and	 LVESV,	were	 different	 in	 shape	 by	 the	 fifth	 and	 the	 fourth	mode	 of	 anatomical	

variation,	respectively	(figure	57).	Other	modes	of	anatomical	variation	showed	lower	

statistically	significant	differences	between	groups,	accounting	for	very	small	changes	

and	thus	were	discarded.		
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Figure	58:	Differences	between	responders	and	nonresponders	by	variation	modes	

	

Figure	 58	 demonstrates	 the	 differences	 in	 left	 ventricular	 shape	 variation	 between	

responders	and	non-responders.	The	red	line	indicates	a	significance	of	p	=	0.05.		Left,	

comparison	 between	 cohorts	 using	 end-diastolic	 volume	 rate	 change	 of	 10%	 as	

definition	 of	 response,	 demonstrating	 that	 mode	 of	 variation	 5	 was	 significantly	

different.	 	 Right,	 comparison	 based	 on	 end-systolic	 volume	 rate	 change	 of	 10%	 as	

definition	 of	 response	 where	 mode	 of	 variation	 4	 was	 the	 closest	 mode	 to	 show	

statistically	significant	differences	between	cohorts.		

	
Figure	59:	Mean	LV	shape	(left)	and	overlay	of	responder	and	nonresponder	(right)	

	

Figure	59	demonstrates	the	average	LV	anatomy	of	the	statistical	atlas	on	the	left	(dark	

blue)	 compared	 to	 the	 extreme	 geometry	 of	 the	 responder	 (purple)	 and	
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nonresponders	(gold)	groups,	computed	by	the	linear	discriminant	analysis	combining	

modes	 2	 and	 5.	 	 The	 small	 red	 sphere	 is	 located	 at	 the	 septal	 wall.	 The	 adverse	

remodeling	shows	a	shorter	septal	wall	and	angle	basal	plane	

	

The	geometrical	changes	of	the	left	ventricle	meshes	that	correspond	to	the	fourth	and	

fifth	modes	of	variation	described	earlier.		This	was	visually	assessed	by	overlaying	3D	

models	 that	 represent	±	2	standard	deviations	of	 the	mean	shape	and	colour-coding	

the	 differences	 among	 their	 corresponding	 node	 coordinates	 (see	 figure	 61),	

illustrating	the	subjects	 that	were	 identified	as	responders	and	nonresponders	based	

on	LVEDV	and	end-systolic	volume	(LVESV).	The	fourth	mode	of	variation,	predictor	of	

response	in	ESV,	was	related	to	changes	in	the	sphericity	(height	to	width	ratio	of	the	

left	 ventricle265).	 This	 spherical	 shape	 variation	 can	 be	 noticed	 as	 both	 concentric	

remodeling	 (changes	 in	 endocardium)	 and	 eccentric	 remodeling	 (differences	 in	

epicardium	nodes)	have	a	more	regular	pattern	around	the	mid-ventricular	section	as	

compared	to	mode	5.		

	

Accordingly,	 the	 average	 shapes	 presented	 remarkable	 similarities;	 responders	

generally	presented	thinner	walls	compared	to	nonresponders,	and	this	reduction	was	

more	accentuated	when	ESV	was	used	as	definition	of	response.	

	
Figure	60:	Distribution	of	shape	coefficients	in	PCA	coordinates	4	and	5	

	

Figure	 60	 demonstrates	 the	 large	 overlap	 of	 cases	 corresponding	 to	 responders	 and	

nonresponders	 depending	 on	 the	 EDV	 and	 ESV	 criteria,	 as	 illustrated	 in	 PCA	

coordinates	4	and	5.			
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Figure	61:	Comparison	of	differences	between	statistical	averages	of	LV	shapes	

	

Figure	 61	 demonstrates,	 left,	 the	 overlay	 of	 average	 shapes	 corresponding	 to	

responders	(blue)	and	nonresponders	(green)	and	right,	bull’s	eye	plots	illustrating	the	

differences	 in	wall	 thickness	 between	nonresponders	 and	 responder	 average	 shapes	

(responders	present	thinner	walls).	

	 EDV	 ESV	

EDV	

	 	

ESV	
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Figure	62:	Illustration	of	the	anatomical	changes	encoded	by	Mode	4	and	Mode	5	

 
	

	

	

	

	

	

	

	

	

	

	

Figure	62	illustrates	the	different	anatomical	changes	encoded	by	PCA	modes	4	and	5.	

Specifically,	panels	A	and	B	show	the	average	 left	ventricular	mesh	 in	dark	blue	with	

superimposed	orange	and	purple	meshes	representing	-	2	and	+	2	standard	deviations	

respectively,	 with	 an	 opaque	 endocardial	 surface	 and	 semitransparent	 epicardial	

surface,	 panel	 C	 illustrates	 the	 +	 2	 standard	 deviation	 mesh	 colored	 accordingly	 to	

concentric	 (red)	 and	 eccentric	 (blue)	 remodeling	 (-	 2	 standard	 deviation	 shape	 and	

colors	are	symmetric	and	not	shown)	and	 finally	panel	D	represents	elongation	 (red)	

and	shortening	(green)	changes.	
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5.7.4.4 Classification	performance	by	using	the	power	of	modes	of	variation	
	

The	classification	performance	was	analysed	by	the	discriminant	power	of	the	modes	

of	 variation	 using	 Fisher’s	 linear	 discriminant	 as	 the	 basis	 for	 separability	 between	

responders	 and	 nonresponders.	 	 All	 possible	 combinations	 of	 the	 first	 four	 and	 five	

modes	of	anatomical	variation,	corresponding	to	LVESV	and	LVEDV	respectively,	taking	

1	to	k-1	number	of	modes	at	a	time	(where	k	=	4	for	ESV	and	k	=	5	for	EDV)	for	each	

combination.	As	seen	 in	 figure	63	the	best	performance,	as	measured	by	the	AUC,	 is	

obtained	when	a	combination	of	different	modes	of	variation	is	used	in	Fisher’s	linear	

discrimination	rather	than	a	single	mode.		Using	ESV	as	the	definition	of	response,	the	

best	 combination	 is	 found	 when	modes	 1,	 3	 and	 4	 are	 used	 together	 (AUC	 =	 0.66,	

sensitivity	 =	 0.71	 and	 specificity	 =	 0.63),	 whereas	 the	 best	 combination	 for	 EDV	

comprises	modes	 2,	 3,	 4	 and	 5	 (AUC	 =	 0.73,	 sensitivity	 =	 0.72	 and	 specificity	 0.76).		

Interestingly,	 the	AUC	values	obtained	using	 a	 single	mode	of	 variation	approximate	

the	mean	of	all	the	possible	combinations	using	that	mode	(AUCESV	=	0.64	and	AUCEDV	=	

0.71).	
Figure	63:	Comparison	of	AUC	based	on	combinations	of	PCA	modes	of	variation	

Mode	4	 Mode	5	

	 	

	

Figure	63	demonstrates	principle	component	analysis	mode	4	and	end-systolic	volume	

(left)	 and	 mode	 5	 and	 end-diastolic	 volume	 (right),	 in	 terms	 of	 the	 accumulated	

coordinates	along	the	x	axis	and	then	the	area	under	the	curve	along	the	y	axis.	
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5.7.5 Discussion	
 
Ventricular	 remodeling	 describes	 the	 changes	 occurring	 in	 the	 abnormal	 ventricular	

anatomy,	 including	 the	morphological	 configuration	of	 chambers	and	 their	 increased	

volume	 over	 time	 263.	 Remodeling	 due	 to	HF-LVSD	 is	 the	 result	 of	 a	 combination	 of	

several	 factors	 that	 involve	 restructuring	 of	 myocytes,	 intercellular	 matrix	

components,	 and	 vessels	 in	 response	 to	 physiological	 or	 pathological	 stimuli	 269.		

Depending	 on	 the	 etiology	 of	 HF,	 left	 ventricular	 remodeling	 could	 be	 categorised	

based	on	 the	extent	of	 the	modified	 shape.	 	 For	example,	 the	effects	of	 remodeling	

due	to	hypertension	and	its	prognosis	can	be	classified	in	3	geometric	patterns	based	

on	measurements	 of	mass	 index	 and	 relative	wall	 thickness:	 concentric	 remodeling,	

eccentric	hypertrophy	and	concentric	hypertrophy	270	271.	The	use	of	a	computational	

atlas	enables	an	extremely	detailed	description	of	these	anatomical	changes,	based	on	

a	 solid	 mathematical	 foundation,	 and	 this	 work	 is	 the	 first	 step	 towards	 the	

identification	of	heart	failure	remodeling	patterns.		

	

The	 reduction	 in	LVESV	and	LVEDV	after	CRT	 implantation	was	better	 identified	by	a	

combination	 of	 different	 anatomical	 modes	 rather	 than	 a	 single	 mode	 of	 shape	

variation.		This	may	be	due	to	dependence	on	the	selection	of	the	response	criteria,	in	

which	each	of	the	two	cardiac	phases	encodes	different	pathophysiological	changes.	It	

would	be	expected	that	this	large	overlap	in	the	classification	will	decrease	as	further	

cases	are	studied.		Indeed,	in	a	larger	cohort,	the	presence	of	ischemia	could	be	used	

to	further	sub-divide	the	group	of	subjects.	 	 In	addition,	this	whilst	this	work	focused	

on	a	follow-up	period	of	six	months	a	longer	follow-up	also	demonstrated	many	of	the	

benefits	of	CRT	272.		

	

The	choice	of	the	criterion	to	define	response	is	a	critical	aspect	of	any	study	of	CRT.		In	

this	study,	the	reduction	of	ESV	and	EDV	were	chosen	as	the	defining	criteria,	analysed	

independently	 at	 two	 institutions.	 	 Through	 experimental	 results	 identified	 that	 a	

reduction	 in	 LVESV	of	 10%	 represents	 a	 clinically	 relevant	 reverse	 remodeling	 factor	

and	 in	 this	 work	 significant	 reductions	 in	 both	 LVEDV	 and	 LVESV	 were	 found	 in	

responders;	however,	 changes	 in	 LV	 shape	coefficients	were	 significantly	different	 in	

LVEDV	 268.	 This	 indicates	 that	 the	 selection	 of	 a	 definition	 of	 response	 could	 be	
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considered	as	a	 relative	parameter	and	other	parameters	can	be	used	as	surrogates.		

In	this	study	a	similar	percentage	between	responders	and	nonresponders	to	CRT	using	

either	LVEDV	and	LVESV	as	definitions	of	response	was	identified,	whereas	it	has	been	

documented	 that	 only	 about	 70%	 of	 the	 patients	 which	 have	 undergone	 CRT	 show	

signs	of	a	significant	positive	response	to	the	procedure	172	273	274.	With	respect	to	the	

selection	of	criteria	 in	predicting	response,	ejection	fraction	has	proven	to	be	a	good	

predictor	for	cases	related	to	super-responders	275-278	279.	Nevertheless,	left	ventricular	

volumes	 and	mass	 are	more	 related	 to	 prognosis	 and	 the	 overall	 impact	 of	 therapy	

compared	 to	 ejection	 fraction	 263.	 	 Similarly,	 there	 is	 no	 universal	 agreement	 in	 the	

best	single	criterion	or	combination	of	clinical	and	echocardiographic	criteria	to	use	for	

long-term	prediction	280.	In	this	work,	the	two	factors	that	provide	a	more	meaningful	

understanding	 of	 the	morphological	 changes	 in	 vascular	 remodeling	were	 chosen.	 It	

was	 observed	 that	 the	 fifth	mode	of	 variation	 in	 LVEDV	–	 the	mode	with	 significant	

differences	between	responders	and	nonresponders	–	is	a	mode	capable	of	detecting	

subtle	anatomical	shape	variation	in	a	cohort	of	individuals	following	CRT	therapy.		

5.7.6 Conclusions	
	

This	 work	 presents	 the	 use	 of	 computational	 cardiac	 atlases	 for	 the	 extraction	 of	

potential	 shape	 markers	 of	 response	 to	 CRT.	 	 Recent	 advances	 in	 this	 field	 have	

demonstrated	 the	 ability	 of	 this	 technology	 to	 characterise	 cardiac	 disease	 and	

compare	populations	of	 patients	 264	 265	 281	 282.	 	 Assessment	of	 LV	 shape	prior	 to	CRT	

implantation	as	observed	in	this	study	provided	insight	about	the	remodeling	process	

in	distinct	stages	and	etiologies	of	heart	failure.		The	findings	indicate	that	the	shape	of	

the	left	ventricle	is	a	potential	biomarker	to	characterise	response	to	CRT.	
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5.8 Electrophysiological	model	

This	work	was	completed	with	BB.	

5.8.1 Introduction	

Figure	64:	Type	I	(right)	and	Type	II	(left)	activation	patterns	of	the	LV	

Figure	 64	 demonstrates	

the	 different	 activation	

patterns	 of	 the	 left	

ventricle.	 The	 star	

represents	 the	 septum,	

the	arrow	the	direction	of	

depolarisation	 and	 the	

hashed	 line,	 area	 of	

block.	

 
It	is	believed	that	the	underlying	electrical	activation	pattern	in	the	LV	is	a	determining	

factor	 in	 the	patient’s	 response	 to	CRT	 283.	 Specifically,	 patients	with	 a	 Type	 II	 or	U-

shaped	activation	pattern,	 characterised	by	a	 line	of	conduction	block	show	a	better	

response	 to	 CRT,	 than	 those	 with	 a	 Type	 I	 pattern,	 where	 activation	 begins	 at	 the	

septum	 and	 spreads	 in	 both	 directions	 to	 the	 lateral	 wall.	 	 Patients	 with	 Type	 II	

activation	patterns	are	more	 likely	 to	 respond	 to	CRT	&	are	more	common	amongst	

patients	with	HF-LVSD	 of	 a	 non-ischaemic	 aetiology.	 This	 distinction	 is	 schematically	

seen	 in	 figure	 64.	 	 	 Despite	 the	 relevance	 of	 this	 classification	 extracting	 activation	

patterns	 by	 a	 non-invasive	 means	 that	 is	 compatible	 with	 clinical	 practice	 remains	

challenging.		There	has	been	some	success	using	mechanical	activation	sequences	from	

tagged	 cMR	 as	 a	 surrogate,	 but	 as	 yet,	 these	 remain	 to	 be	 validated	 within	 a	

prospective	 clinical	 trial	 284	 285	 286.	 Furthermore,	 the	 use	 of	 mechanical	 activation	

sequences	remains	controversial	given	the	negative	conclusions	of	the	PROSPECT	and	

echoCRT	trials.		

	

Modelling	offers	a	novel	and	alternative	avenue	to	demarcate	the	different	activation	

patterns,	 taking	 into	 account	 the	 patient’s	 LV	 geometry	 and	 being	 driven	 by	 non-

invasive	clinical	data,	 from	ECG	and	cMR.	 	The	aim	was	to	constrain	the	conductivity	
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parameter	of	a	patient	 specific	electrophysiology	 (EP)	model,	using	 the	QRSd	 from	a	

standard	12	lead	ECG.		The	hypotheses	are	that	the	conductivity	derived	in	this	manner	

is	consistent	with	the	activation	pattern	using	the	methods	described	by	Manav	et	al	

(2013)285	 and	 that	 this	 will	 demonstrate	 predictive	 value	 for	 CRT.	 The	 model	

generation	 process	 is	 described;	 how	 the	 personalised	 geometry	 was	 created,	 the	

details	 of	 the	 model	 necessary	 to	 replicate	 physiological	 behaviour	 and	 how	 to	

determine	the	best	estimate	conductivity	from	the	ECG.		

Only	Sheffield	cases	were	used	for	this	simulation,	and	of	the	Sheffield	cases,	only	10	

simulations	were	found	to	be	stable.			

5.8.2 Methods	

5.8.2.1 Mesh	Construction	

For	 EP	 simulation,	 high	 spatial	 resolution	 tetrahedral	 finite	 element	 meshes	 were	

required.	These	were	generated	in	3	steps,	as	illustrated	in	figure	65:		

	

Figure	 65	 demonstrates	 the	 construction	 of	 the	 mesh,	 on	 the	 right	 first	 the	

myocardium	 was	 segmented	 from	 the	 cMR,	 in	 the	 middle,	 next	 a	 smooth	 low	

resolution	 mesh	 was	 fitted	 to	 the	 segmentation	 and	 finally	 on	 the	 right,	 a	 high	

resolution	mesh	was	created	from	the	smooth	mesh.	

	

A	 semi-automated	 segmentation	 of	 the	myocardium	was	 carried	 on	 the	 anatomical	

MRI	 volumes	 using	 a	 research	 tool	 created	 by	 collaborators	 at	 UCL259.	 This	

segmentation	 was	 compatible	 with	 simulation	 software,	 created	 a	 segmentation	 of	

Figure	65:	Mesh	construction	process 
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both	 ventricles	 (key	 for	 EP	 simulation)	 and	 also	 created	 a	 volume	 not	 a	 series	 of	

surfaces.	 The	 region	of	 interest	 included	both	 the	 left	 and	 right	 ventricles,	 from	 the	

valve	 plane	 to	 the	 apex.	 	 A	 smooth	 hexahedral	 cubic-Hermite	mesh	was	 created	 to	

define	an	internal	coordinate	system	for	the	myocardium.		A	variational	least	squares	

minimisation	 approach	 was	 used	 to	 morph	 a	 template	 mesh	 to	 the	 segmented	

volumes	 from	 each	 patient	 287.	 The	 least	 squares	 is	 an	 approach	 used	 in	 regression	

analysis,	 to	 identify	 an	 approximate	 solution	 to	 problem,	 in	 which	 there	 are	 more	

knowns	than	unknowns,	the	least	squares	referring	to	the	minimisation	of	the	sum	of	

the	squares	of	the	errors	made	in	each	equation.		Subsequently,	commercial	meshing	

software	was	use	to	generate	a	high-resolution	tetrahedral	mesh	spatially	embedded	

within	the	smooth	mesh.		Individual	patient	tetrahedral	meshes	consisted	of	between	

98-280	million	volume	elements.	

	

A	generic	fibre	orientation	based	on	data	from	human	and	canine	histological	studies	

was	 defined	 with	 respect	 to	 the	 cubic	 Hermite	 elements	 and	 mapped	 onto	 the	

tetrahedral	mesh.	 	Late	gadolinium	MR	 images	were	manually	segmented	to	 identify	

areas	of	scar	 in	the	myocardium.	 	These	domains	were	mapped	onto	the	tetrahedral	

mesh	by	transforming	both,	into	the	canonical	cMR	coordinate	system.		

5.8.2.2 Biophysical	model	

The	well-accepted	biophysically-based	pair	of	equations	representing	the	spread	of	an	

action	 potential	 in	 tissues	 are	 the	 biodomain	 equations;	 these	 represent	 the	

conservation	 of	 current	 within	 2	 spatially	 overlapping	 electrical	 potential	 domains	

separated	 by	 a	 permeable	 membrane	 288.	 	 These	 domains	 represent	 the	 intra-	 and	

extra-	 cellular	 spaces.	 	 Under	 an	 assumption	 that	 the	 conductivity	 tensor	 (an	 object	

that	describes	linear	relations	between	geometric	vectors,	scalars	and	other	tensors)	is	

not	uniformly	scaled	and	not	rotated	between	domains,	this	pair	of	equations	reduces	

to	the	mono	domain	equation:	

	

Equation	(5):	

	

∇ ∙ 𝜎∇𝑉𝑚 = 𝐴!(𝐶!
𝜕𝑉!
𝜕𝑡 + 𝐼!"# + 𝐼!""#$%&)	
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Symbol	 Description	 Units	 Rank	

𝑉𝑚	 Membrane	voltage	 V	 0	(scalar)	

𝜎	 Conductivity	 S/m	 2	(tensor)	

𝐴!	 Surface	to	Volume	ratio	 1/m	 0	(scalar)	

𝐶!	 Membrane	Capacitance	 F/m2	 0	(scalar)	

𝐼!""#$%& 	 Transmembrane	Current	 A/m2	 0	(scalar)	

𝐼!"#	 External	Current	 A/m2	 0	(scalar)	

	

The	term	Iion	is	determined	by	the	ten	Tusscher	human	myocardial	cell	model	289.	This	

is	 mathematical	 model	 of	 the	 action	 potential	 of	 human	 ventricular	 cells	 that	 has	

considerable	EP	detail,	but	remains	competitive	in	terms	of	computational	cost,	to	be	

used	 in	 large-scale	 spatial	 simulations	 for	 the	study	of	arrhythmias.	According	 to	 ten	

Tusscher	(2004)289	the	model	uses	experimental	data	on	the	major	ionic	currents:	“the	

fast	 sodium,	L-type	calcium,	 transient	outward,	 rapid	and	slow	delayed	 rectifier,	and	

inward	 rectifier	 currents”	 and	 “basic	 calcium	 dynamics,	 allowing	 for	 the	 realistic	

modeling	 of	 calcium	 transients,	 calcium	 current	 inactivation,	 and	 the	 contraction	

staircase”.	 Finally,	 the	model	 reproduces	 human	 epicardial,	 endocardial,	 and	M	 cell	

action	potentials	and	demonstrates	that	differences	can	be	explained	by	differences	in	

the	transient	outward	and	slow	delayed	rectifier	currents.		

	

The	conductivity	tensor	σ	is	defined	with	respect	to	the	fibre	direction	and	a	fix	ratio	of	

0.35	 between	 the	 primary	 fibre	 direction	 and	 the	 orthogonal	 plane	 (transversely	

isotropic	 e.g.	 the	 same	 properties	 in	 all	 directions),	 resulting	 in	 one	 free	 parameter	

that	 becomes	 the	 target	 of	 personalisation290.	 The	 system	was	 solved	 using	 Cardiac	

Arrhythmia	 Research	 Package	 (CARP)	 (https://carp.medumi-graz.at)	with	 a	 time-step	

of	10ms	and	mesh	resolution	of	250	μm	necessary	to	achieve	acceptable	accuracy	with	

biophysically	detailed	EP	simulations.		
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5.8.2.3 Boundary	Conditions		

 
Figure	66:	Model	pacing	locations	versus	ex-vivo	electrical	mapping	in	human	heart	

Figure	66	shows	the	pacing	sites	

used	 to	 model	 intrinsic	

activation	 in	 this	 study.	 On	 the	

left,	 the	blue	biventricular	mesh	

with	 with	 the	 green	 balls	

demonstrating	 the	pacing	points	

chosen	 in	 the	model	and	on	 the	

right,	 a	 biventricular	 mesh	 on	

with	 heatmap	 demonstrating	

actual	 conduction	 in	 a	 human	

human	 heart	 via	 electrical	

mapping.	

	

Right	 ventricular	 Purkinje	 activation	 is	 replaced	 by	 point	 activation	 in	 the	 RV	 lateral	

wall.	 	 Pacing	 locations	 on	 the	 computational	 model	 were	 chosen	 to	 replicate	 the	

underlying	pathophysiological	state.	 	This	 is	a	good	approximation	due	to	the	 limited	

extent	 of	 the	 Purkinje	 endpoints	 in	 this	 region,	 as	 shown	 in	 Figure	 66	 88.	 	 The	 left	

ventricular	Purkinje	network	has	an	influence	on	a	large	part	of	the	endocardium,	but	

due	to	the	presence	of	LBBB	in	these	patients	we	stimulate	at	the	AV	node,	near	the	

probable	 site	 of	 Purkinje	 network	 failure.	 	 The	 pacing	 locations	 were	 consistent	

between	cases	as	they	were	defined	with	respect	to	the	smooth	cubic-Hermite	mesh.		

The	septal	activation	occurred	10ms	after	the	RV	lateral	wall	site.		

5.8.3 Results	

A	grid	search	was	performed	to	estimate	conductivity:	simulations	were	carried	out	for	

conductivity	values	of	σ	∈	 {0.2,	0.3,	0.4,	0.5,	0.6,	0.7}	and	the	total	activation	time	of	

the	simulation	was	calculated	as	the	time	between	the	first	point	of	activation	(at	the	

RV	pacing	site)	and	the	last	point	of	activation	(see	figure	64).	This	value	was	taken	to	
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be	representative	of	the	QRS	duration	and	the	corresponding	conductivity	that	best	fit	

(seen	 in	bold)	 the	clinically	measure	pre-implant	QRSd	was	calculated	 (see	 table	52).		

Patient	2	required	a	wider	sweep	to	constrain	the	activation	time.  

 
Figure	67:	Correlation	between	measured	and	modelled	QRSd	

	

	

	

	

	

	

	

	

	

Figure	 67	 demonstrates	 the	 correlation	 between	 the	modelled	 QRS	 duration	 in	 the	

electrophysiological	models	 of	 the	 10	 Sheffield	 cases	with	 the	measured	QRSd	 from	

the	same	patients	using	a	12	lead	ECG.	

	

Table	52:	Results	of	sweeps	alongside	clinical	QRSd	for	10	of	the	Sheffield	cases.	

Case	 Scar	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 QRS	 σ	

SHF001	 N	 286.7	 230.4	 198.5	 177.3	 162.1	 150.5	 		 179	 0.49	

SHF002	 N	 276.3	 222.2	 191.8	 171.7	 157.2	 146.1	 130.2	 128	 0.94	

SHF003	 N	 310.1	 262.2	 225.5	 200.9	 183.1	 169.5	 		 171	 0.69	

SHF004	 Y	 262.3	 210.1	 180.6	 161.1	 147.1	 136.3	 		 146	 0.61	

SHF005	 Y	 310.1	 264.3	 226.9	 202.2	 184.4	 170.8	 		 204	 0.49	

SHF006	 N	 310.1	 275.9	 237.1	 211.3	 192.7	 178.6	 		 192	 0.61	

SHF007	 Y	 293.5	 235.4	 202.4	 180.7	 165.1	 153.2	 		 163	 0.62	

SHF008	 Y	 257.1	 206.1	 177.4	 158.4	 144.6	 134.2	 		 175	 0.41	

SHF012	 N	 310.1	 289.7	 248.9	 221.9	 202.5	 187.6	 		 200	 0.62	

SHF018	 N	 310.1	 251.3	 215.7	 192.2	 175.3	 162.6	 		 163	 0.71	
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Figure	68:	Activation	time	(ms)	visualised	on	the	epicardium.	Not	to	scale	

 
Figure	68	demonstrates	the	activation	time	across	both	ventricles	for	each	of	the	10	

modelled	Sheffield	cases,	from	red	(0	milliseconds)	to	dark	blue	(200	milliseconds)	and	

note	the	non-physiological	shape	of	the	right	ventricle	in	many	of	the	cases.	

5.8.4 Discussion	
 
The	conductivity	measurements	derived	in	the	present	study,	are	the	first	conductivity	

values	 reported	 for	 a	 cohort	 of	 human	 cases.	 	 The	 range	 of	 value	 is	 041-0.94	 S/m	

(mean	0.62	S/m,	SD	0.15	S/m).		The	simulations	represent	a	Type	I	activation	pattern;	

activation	 without	 the	 presence	 of	 a	 functional	 block.	 Conduction	 values	 from	 this	

simulation	indicate	a	longer	observed	QRS	than	would	be	expected	with	this	activation	

pattern	given	the	size	of	the	patients’	hearts.		Hence,	it	would	be	expected	cases	with	

low	conductivity	 to	 show	conductivity	 closer	 to	 the	population	after	 the	 inclusion	of	

functional	block.	 	 In	particular	SHF001,	005	and	008	have	conductivity	below	0.5	S/m	

and	 as	 such	 are	 potential	 candidates	 for	 the	 Type	 II	 activation	 pattern.	 	 Sohal	 et	 al	

(2013),	observed	a	rate	of	Type	II	activation	of	48%,	which	 is	consistent	with	at	 least	

the	aforementioned	3/10	cases	being	likely	to	have	Type	II	activation	285.	
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SHF001	and	SHF005	and	were	indeed	responders	to	CRT,	but	unfortunately	case	8	was	

withdrawn	from	the	study	due	to	unsuccessful	LV	lead	implantation.	The	aetiology	of	

cases	1	and	5	was	 ischaemic	and	case	8	non-ischaemic	and	cases	5	and	8	had	septal	

and	anteroseptal	scar	respectively.	There	appears	to	be	no	other	similarities	between	

these	cases.	The	study	was	not	powered	to	predict	response	to	CRT	in	only	10	patients	

and	thus	statistical	analysis	of	these	results	was	not	performed,	however	there	was	a	

close	 fit	 between	 the	 modelled	 and	 measured	 QRSd	 (see	 figure	 67).	 Figure	 68	

demonstrates	the	activation	time	for	each	case,	visualised	on	the	epicardium.		

	

Limited	direct	measurements	of	the	conductivity	exist	for	human	ventricular	tissue	for	

the	purposes	of	 comparison.	However,	 direct	 conductivity	measurements	have	been	

carried	 out	 in	 mammalian	 cardiac	 tissue	 291-293.	 Biodomain	 parameters	 for	 these	

studies	are	seen	in	table	53	following	Roth	(1997)	294.	A	conversion	to	a	monodomain	

equivalent	conductivity,	assuming	that	both	intra	and	extracellular	domains	have	equal	

ratios	of	anisotropy,	was	carried	out	using	the	relation	𝜎 = 𝜎!𝜎! ∕ (𝜎! + 𝜎!)	to	enable	

comparison	to	the	values	in	the	present	study:	

	

Table	53:	Biodomain	parameters	converted	into	monodomain	

	 Clerc	(1976)		 Roberts	(1979)		 Roberts	(1982)		

	 Reported	Biodomain	Parameters	(S/m)	

𝜎!" 	 0.17	 0.28	 0.4	

𝜎!"	 0.019	 0.026	 0.06	

𝜎!" 	 0.62	 0.22	 0.12	

𝜎!"	 0.24	 0.13	 0.08	

	 Calculated	Monodomain	Parameters	(S/m)	

𝜎! 	 0.13	 0.12	 0.092	

𝜎!	 0.018	 0.022	 0.34	

	

Subscripts	 `e',	 `i'	 correspond	to	the	extraceullular,	 intracellular	domains;	 `l',	 `t'	 to	 the	

longitudinal	 and	 transverse	 fibre	 directions.	 	 Mono-domain	 parameters	 were	

converted	 using	 the	 formula 𝜎 = 𝜎!𝜎! ∕ (𝜎! + 𝜎!)	 applied	 to	 each	 direction	
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independently.	 	 Clerc	 (1976)293	 used	 excised	 calf	 trabeculae	 while	 Roberts	 (1979,	

1982)291	292	carried	out	experiments	on	in	situ	canine	ventricles.	

	

The	 conductivity	 parameters	 derived	 in	 this	 study	 fall	 outside	 of	 the	mono-domain-

conductivity	 measurements	 summarised	 in	 table	 51.	 	 The	 lowest	 longitudinal	

conductivity	in	this	study	(0.41)	is	greater	than	the	largest	corresponding	value	(0.13).		

This	 discrepancy	 has	 a	 large	 number	 of	 possible	 causes,	 including;	 differences	 in	

species	human	vs.	bovine/canine;	differences	in	physiological	conditions,	in	vivo	vs.	ex	

vivo/in	 situ;	 differences	 in	 experimental	 measures,	 QRS	 duration	 vs	 local	 electrical	

potential	 and	 conduction	 velocity	 and	 simulation	 errors	 e.g.	 error	 in	 the	 total	

activation	 time	due	 to	mesh	 size.	 	 Since	 conduction	 velocity	 grows	 as	 the	 square	 of	

conductivity	 𝐶!! ∝ 𝜎 ,	 any	 errors	 in	 the	 data	 propagate	 a	 squared	 error	 onto	

conductivity	estimates	295.	

	

This	work	was	 based	 around	 an	 inverse	model	 or	 “electrocardiographic”	 imaging,	 in	

that	the	QRSd	was	taken	as	an	input	into	the	model	and	this	was	used	in	an	attempt	to	

reconstruct	 the	events	that	 led	up	to	 it.	However,	 this	 is	one	signal	 from	the	surface	

ECG	that	is	used	in	an	attempt	to	model	the	behaviour	of	the	2,000,000,000	myocytes	

underlying	it	and	with	such	a	huge	number	of	cells,	there	is	an	almost	infinite	number	

of	 possible	 configurations	 and	 therefore	 sources	 of	 error.	 Since	 the	 1990’s	with	 the	

advent	of	the	mono-	or	bi-domain	models,	it	became	possible	to	make	calculations	on	

the	 whole	 heart,	 by	 coupling	 many	 membrane	 models	 together,	 but	 even	 today,	

dealing	individually	with	each	of	these	myocytes	is	impossible.	Of	course,	this	is	where	

mathematical	 assumptions	 are	 relied	 upon,	 for	 example	 that	 the	 myocardium	 (out	

width	 the	 regions	 of	 scar)	 has	 isotropic	 conductivity	 and	 can	 be	 considered	

homogenous	tissue,	but	is	unable	to	account	for	areas	of	functional	block	for	example.		

	

Further	 simulations,	with	models	 that	 include	 functional	 block	 and	 a	 paced	protocol	

will	allow	corroboration	of	the	high	conductivity	values	obtained	thus	far.	This	will	also	

allow	 insight	 into	 the	 optimum	 AV	 and	 VV	 delays	 for	 each	 patient’s	 anatomy.	 A	

literature	comparison	using	conduction	velocity	instead	of	conductivity	may	also	yield	

more	insight	as	conduction	velocity	is	reported	more	readily.		On-going	simulations	will	

also	 allow	 us	 to	 test	 our	 hypothesis	 that	 underlying	 activation	 patterns	 can	 be	
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predicted	 from	 the	 QRS	 duration	 and	 ventricular	 geometry	 using	 biophysical	

modelling.	 	 It	will	 be	 interesting	 to	 investigate	whether	 retrograde	 activation	 of	 the	

Purkinje	 system	 contributes	 CRT	 response,	 by	 simulating	 LBBB	 with	 and	 without	

retrograde	activation	in	patient	specific	models.	In	the	future,	with	the	use	of	diffusion	

tensor	 cMR,	 electromechanical	 models	 will	 be	 able	 to	 account	 for	 more	 detailed	

structural	 anisotropy	between	patients	 and	what	 influence	 the	presence	of	 scar	 and	

then	CRT	may	have	the	behaviour	of	local	myocytes,	their	laminar	arrays	and	the	heart	

as	 a	whole	 e.g.	 a	 true	 electromechanical	model.	 This	 point	 is	 particularly	 important	

given	the	current	disconnect	between	electrical	and	mechanical	dyssynchrony.	Finally,	

a	 comparison	 of	 these	 non-invasive	 methods	 in	 silico	 with	 invasive	 mapping	 of	

myocardial	conductivity	in	vivo	along	with	assessment	of	the	type	of	activation	pattern	

would	give	added	credibility.	

5.8.5 Conclusions	

This	work	highlights	the	challenges	and	opportunities	of	using	predictive	3D	LV	models.		

Due	to	issues	associated	with	cMR	segmentation,	only	10	cases	(all	from	the	Sheffield	

cohort)	 provided	 data	 of	 the	 quality	 required	 to	 inform	 personalised	 conduction	

models.	 	 Nonetheless,	 from	 amongst	 these,	 the	 simulations	 were	 able	 to	 identify	 3	

cases	with	 a	 type	 II	 conduction	 pattern,	 2	 of	which	were	 subsequently	 identified	 as	

responders.	 	 However,	 the	 simulations	were	 time-consuming	 to	 perform	 and	would	

need	 streamlining	 and	 automating	 before	 introduction	 into	 the	 clinical	 arena.		

Furthermore,	 the	models	were	 non-invasively	 assessing	 the	 conduction	 pattern,	 and	

whilst	pre	CRT	implant	factors	e.g.	QRSd	and	scar	were	considered	post	implant	factors	

e.g.	LV	lead	location	and	how	these	patients	might	therefore	respond	to	CRT	was	not.		

5.9 Discussion	
	
The	 segmentation	 work	 demonstrates	 the	 potential	 problems	 with	 using	 fully-

automated	 segmentation	 software,	 particularly	 the	 absence	 of	 quality	 control	 and	

especially	 as	 part	 of	 the	 planning	 or	 decision-making	 process	 for	 device	 therapy.		

Whilst	 the	 fully-automated	tool	was	rapid,	once	run	there	was	no	option	 for	manual	

adjustments,	 even	 if	 aberrations	 were	 seen.	 	 At	 the	 other	 extreme,	 the	 manual	

segmentation,	takes	considerable	time	to	perform,	but	in	the	hands	of	an	“expert”	e.g.	

cardiologist,	equates	to	the	gold	standard	for	cardiac	segmentation,	which	can	then	be	
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used	to	create	LV	model	that	is	true	both	in	size	and	shape.		In	the	middle,	is	the	semi-

automated	approach;	in	theory	this	may	represent	the	best	of	both	worlds	combining	

accuracy,	speed	and	ability	to	correct	errors.		Indeed,	the	proprietary	semi-automated	

segmentation	 tool	 developed	 by	 UCL	 and	 used	 by	 all	 of	 the	 other	 partners	 in	 this	

project	was	easy	to	use	and	consistent	but	had	difficulty	in	segmenting	the	epicardial	

surface.	 	 At	 KCL	 it	 was	 found	 that	 any	 geometrical	 differences	 observed	 between	

responders	and	nonresponders	at	baseline	from	manual	segmentation	were	lost	when	

the	compared	to	using	the	semi-automated	tool,	thus	for	the	atlas	work,	only	manual	

segmentations	 were	 used.	 	 Clearly	 more	 work	 would	 be	 needed	 before	 such	 an	

automated	 tool	 could	be	used	as	part	of	 a	 randomised	 control	 clinical	 trial,	 but	 also	

factors	 such	 as	 patient	 selection,	 choice	 of	 cMR,	 experience	 of	 cMR	 doctor	 and	

radiographer,	 sequence	 and	 contrast	 agent	would	need	 to	be	 addressed,	 along	with	

and	a	more	 robust	 segmentation	 tool	 for	hearts	of	neither	a	 standard	shape	or	 size.		

The	quality	of	segmentation	is	also	dependant	on	the	quality	of	the	images	available	so	

clearly,	 the	 tool	 cannot	be	 singled	out	at	being	 the	 single	weak	 link	 in	 the	workflow	

process.	 In	 this	 regard,	 the	 tool	 performed	 better	 on	 the	 Sheffield	 3D	 SSFP	 images	

following	 the	 involvement	 of	 TS,	 because	 the	 images	 and	 therefore	 tissue	

differentiation	 upon	which	 the	 intensity	 based	 automated	 tool	 was	 dependent,	 had	

improved.		The	semi-automated	tool	was	certainly	easy	to	use,	and	in	contrast	to	the	

manual	 process,	 was	 able	 to	 segment	 all	 4	 cardiac	 chambers	 and	 great	 vessels	 in	 a	

matter	of	minutes.		This	would	have	taken	many	hours,	if	not	days	to	achieve	by	hand.		

Whilst	 the	 segmentations	 produced	 looked	 convincing	 to	 the	 human	 eye,	

mathematical	comparison	between	semi-automated	and	hand	segmentations	revealed	

significant	 errors.	 	 Nevertheless,	 as	 seen	 above,	 the	 semi-automated	 segmentation	

appeared	grossly	more	realistic	than	that	achieved	by	hand	due	to	a	smoother	cardiac	

contour,	 and	 so	 in	 this	 regard	 could	 be	 useful	 in	 discussing	 patient’s	 and	 planning	

treatments	such	as	CRT,	for	example	coronary	sinus	and	cardiac	veins	for	the	LV	lead.	

	

The	atlas	work	demonstrates	that	the	3D	model	has	merit	in	its	own	right	even	without	

running	a	simulation.	By	accurately	reproducing	the	shape	of	the	LV	a	statistical	atlas	is	

able	 to	 give	 insight	 into	 reverse	 remodelling	 enabling	 this	 to	 be	 correlated	 with	

predictors	 of	 response.	 	 It	makes	 sense	 that	 of	 all	 the	markers	 of	 response,	 it	 is	 LV	

reverse	remodelling,	which	is	predicted	by	such	a	geometrical	study	of	these	HF-LVSD	
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patients.	 	 However,	 as	 discussed	 previously,	 LVEDV/LVESV	 is	 not	 the	 only	marker	 of	

response	and	using	a	single	metric	brings	into	question	how	response	is	defined.	This	

work	also	sheds	further	light	on	the	issues	of	using	segmentation	tools	with	a	degree	

of	automation	and	issues	over	quality	control	of	the	accuracy	of	epicardial	delineation.		

	

The	EP	modelling	work	demonstrates	the	potential	for	personalised	models,	combining	

both	personalised	LV	anatomy	and	QRSd.		However,	the	simulations	took	several	days	

to	run	and	many	were	inherently	unstable.		Ultimately	only	10/21	Sheffield	cases	could	

be	used	and	since	these	did	not	 include	assessment	of	the	biomechanics,	myocardial	

structure	 or	 fluid	 dynamics	 these	 models	 were	 comparatively	 simple.	 	 However,	

through	 the	 types	of	 activation	patterns	 generated	by	 the	models	 it	was	possible	 to	

correctly	 identify	 the	 response	 to	 CRT	 in	 2	 patients	who	 received	 a	 device.	 	Models	

were	 personalised	 to	 the	 patient	 at	 baseline	 with	 no	 attempt	 made	 to	 suggest	 a	

location	for	the	LV	 lead	(the	positioning	of	which	 is	quite	variable)	or	to	 include	a	LV	

reverse	 remodelling	 response	 to	 CRT,	 both	 of	 which	 will	 have	 an	 impact	 on	 the	

resulting	activation	pattern,	QRSd	and	LV	volume.		As	a	consequence	of	this	work	and	

the	 difficulties	 faced,	 the	 group	 have	 returned	 to	 simpler	 models,	 moving	 away	 (at	

least	at	present)	from	the	concept	of	multi-modal	models	and	perhaps	re-emphasising	

that	a	model	 is	not	simply	a	replication,	but	rather,	 is	a	simplification	of	reality.	 	The	

more	complex	and	all-embracing	models	become,	the	more	expense,	time	and	effort	is	

required	to	run	them,	but	without	them	necessarily	being	of	greater	use.	

5.10 Conclusions	
The	 difficulty	 of	 such	multi-modal,	 multicentre	 and	multi-disciplinary	 projects	 is	 the	

challenge	 presented	 to	 the	 group	 to	 maintain	 a	 single	 focus,	 whilst	 simultaneously	

working	on	their	 individual	aspects.	 	 It	 is	also	a	challenge	to	understand	the	needs	of	

others;	 for	 example	 the	 radiologist	 understanding	 the	 needs	 of	 the	 modellers,	 the	

modellers	 understanding	 the	 needs	 of	 the	 cardiologists	 and	 the	 cardiologists	

understanding	the	needs	of	the	IT	experts	etc.		Certainly	following	on	from	this	project	

the	whole	 team	were	much	more	 sensitive	 to	 the	needs	of	 others	 in	 the	 group	and	

regular	 team	meetings	 helped	maintain	 a	 sense	 of	 unity	 and	 focus	 among	 all	 in	 the	

group.	 	 It	 remains	 to	be	seen	how	personalised	models	of	 the	LV	will	be	used	 in	 the	

future.		Regarding	the	aim	to	predict	response	to	CRT,	there	is	much	more	to	be	done.		
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However,	based	on	this	work,	it	appears	that	models,	which	are	complex	and	unwieldy	

(EP	models	 for	 example)	may	 not	 necessarily	 have	 greater	 clinical	 utility	 than	 those	

which	could	be	considered	simple	yet	elegant	(3D	geometrical	models	for	example).		

	

In	summary,	it	has	been	demonstrated	that	simple	computational	models	can	be	used	

to	model	 the	heart	as	 it	 fails	and	as	 it	 responds	 to	a	 therapy	 such	as	CRT,	but	using	

more	complex	models	to	predict	response	to	the	same	therapy	is	far	more	challenging	

and	 whilst	 it	 was	 demonstrated	 by	 using	 statistical	 atlas	 of	 the	 LV	 to	 demonstrate	

response	based	on	volume	change,	this	clearly	is	not	a	multi-dimensional	model	of	the	

LV	 as	 was	 envisaged	 by	 the	 Grand	 Challenge.	 In	 the	 next	 chapter,	 biomarkers	 and	

biophysical	markers	will	be	used	to	 investigate	whether	these	can	be	used	to	predict	

response	or	if	they	offer	any	insight	into	the	HF	syndrome	as	LV	function	improves	and	

whether	this	leads	to	improvements	in	other	organ	systems.		
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Chapter	6 Bio	and	Biophysical	Markers	
	
In	this	chapter,	novel	biomarkers	and	biophysical	markers	of	LV	performance	and	the	

HF	 syndrome,	 are	 used	 to	 investigate	whether	 response	 to	 CRT	 can	 be	 predicted	 at	

baseline,	or	alternatively	whether	improvements	in	the	markers	themselves,	could	be	

used	as	surrogates	for	clinical	response.	

6.1 Biophysical	Markers	

6.1.1 Introduction	

A	biophysical	marker	is	a	mechanical	property	of	a	tissue,	organ	or	animal,	which	can	

be	 measured	 objectively	 and	 imparts	 insight	 into	 the	 processes	 underlying	 health,	

disease	or	treatment.		

6.1.2 Flow	Mediated	Dilatation	(FMD)	

6.1.2.1 Endothelial	Function	

The	 vascular	 endothelium	 is	 a	 monocellular	 layer	 lining	 the	 entire	 cardiovascular	

system,	 which	 has	 a	 number	 of	 important	 functions	 including	 roles	 within	 fluid	

homeostasis,	 blood	pressure	 regulation,	 thrombosis	 and	 fibrinolysis.	 	 Furchgott	 et	 al	

(1980)296	 demonstrated	 that	 the	 rabbit	 aorta	 responded	 to	 a	 vasodilator	 e.g.	

acetylcholine	 (Ach)	 if	 the	 endothelium	 was	 intact,	 but	 not	 if	 removed.	 They	

hypothesised	 that	 the	 endothelium	 produced	 a	 substance,	 which	 they	 called	

endothelium-derived	 relaxation	 factor	 (EDRF)	 in	 response	 to	 the	 Ach	 which	 led	 to	

vasodilation.	 	 Later,	 the	 same	phenomenon	was	 confirmed	 in	humans	 297,	 EDRF	was	

identified	as	nitric	oxide	(NO)	and	found	to	be	released	in	a	response	to	a	given	change	

in	shear	stress	following	increase	in	flow	298	but	NO	was	reduced	by	NO	antagonists	299.	

Reducing	arterial	flow	induces	a	shear	stimulus,	which	leads	to	tissue	ischaemia	distal	

to	 the	 occlusion	 and	 upon	 release	 of	 the	 occlusion	 there	 will	 be	 a	 corresponding	

increase	 in	 flow.	 	 This	 phenomenon,	 ‘reactive	 hyperaemia’,	 is	 due	 to	 a	 build-up	 of	

potent	 vasodilators	 such	 as	 potassium,	 carbon	 monoxide	 and	 adenosine	 phosphate	

(ADP)	distal	 to	 the	occlusion.	 	Upon	 release	of	 the	occlusion,	 there	 is	 an	 increase	 in	

flow	 to	 the	 distal	 tissues,	 a	 concomitant	 increase	 in	 shear	 stress	 stimulating	 the	

endothelium,	which	then	releases	potent	vasodilators,	such	as	NO,	prostaglandins	and	
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endothelium-derived	 hyperpolarising	 factor.	 	 These	 diffuse	 into	 the	 vessel	 wall	 to	

reach	 the	 underlying	 vascular	 smooth	muscle	 cells	 causing	 relaxation	 and	 therefore	

vasodilation.	 	 This	 process	 leads	 to	 a	 reduction	 in	 vascular	 resistance	 and	 thus	

augments	 and	 accommodates	 the	 increase	 in	 flow.	 	 Vascular	 tone,	 vessel	 diameter,	

resistance	and	flow	return	to	normal	as	the	vasodilators	are	swept	away	 in	the	flow.		

According	 to	 Corretti	 et	 al	 (2002)	 300	 this	mechanism	 is	 believed	 to	 be	 a	 function	of	

calcium-activated	 potassium	 channels	 contained	 within	 the	 endothelial	 cell	

membrane.	 	 These	 channels	 open	 in	 response	 to	 shear	 stress,	 leading	 to	 the	

hyperpolarisation	 of	 the	 cell	 and	 increased	 Ca2+	 entry,	 which	 in	 turn	 activates	

endothelial	nitric	oxide	synthase	(eNOS)	generating	NO.		

6.1.2.2 Endothelial	Dysfunction	
	

Derangement	of	the	vascular	endothelium	is	known	as	endothelial	dysfunction	and	is	

instigated	 by	 risk	 factors	 for	 vascular	 disease	 such	 as	 smoking	 and	 diabetes.		

Dysfunction	 refers	 to	 an	 imbalance	 of	 the	 factors	 regulating	 vasodilation	 and	

vasoconstriction,	 specifically	 a	 reduction	 in	 NO,	 which	 leads	 to	 vasoconstriction,	

increased	 PVR	 and	 increased	 LV	 afterload.	 	 In	 a	 pivotal	 paper	 using	 flow	mediated	

dilatation	(FMD),	Celemajer	et	al	(1992)301	demonstrated	that	endothelial	dysfunction	

was	present,	before	any	evidence	of	gross	atherosclerotic	plaque	formation,	in	adults	

who	 smoked	 and	 in	 children	 with	 familial	 hypercholesterolaemia.	 Measurement	 of	

endothelial	 function	 has	 subsequently	 been	 identified	 as	 a	 research	 tool	 in	 the	

investigation	of	 cardiovascular	disease	and	 can	be	measured	by	either	 recording	 the	

change	in	the	size	of	an	artery	using	methods	such	as	FMD	and	plethymsography302	or	

the	measurement	of	biomarkers	produced	by	the	endothelium	such	as	selectins	or	von	

Willebrand’s	factor303.	

6.1.2.3 Flow	mediated	dilation	

FMD	 refers	 to	 “any	 vasodilation	 of	 an	 artery	 following	 an	 increase	 in	 luminal	 blood	

flow	 and	 internal	 wall	 shear	 stress”304.	 	 Celermajer	 et	 al	 (1992)301	 developed	 the	

technique	 for	 the	 measurement	 of	 this,	 briefly	 using	 a	 blood	 pressure	

sphygmomanometer	 cuff	 inflated	 to	 300	 mmHg	 to	 occluded	 the	 forearm	 or	 calf	

arteries	and	then	using	USS	to	measure	the	diameter	of	the	brachial	or	femoral	artery	

before	and	after	the	cuff	 is	released	with	the	resulting	reactive	hyperaemia.	This	was	



232	|	Page	
 

to	 investigate	 impaired	 endothelial	 function	 in	 asymptomatic	 children	 and	 young	

adults	 in	 with	 latent	 atherosclerotic	 risk	 factors.	 The	 difference	 in	 diameter	 of	 the	

artery	from	baseline	to	peak	dilation	following	cuff	released	is	FMD	and	measured	in	

%.	 FMD	 is	 a	 measure	 of	 endothelium-dependent	 and	 thus	 NO-mediated	 arterial	

function.		As	reported	by	Pyke	and	Tschakovsky	(2005)305,	FMD	can	be	thought	of	as	an	

NO	bioavailability	assay.	NO	is	believed	to	be	anti-atherogenic	and	to	have	a	role	in	the	

development	of	cardiovascular	disease;	a	low	FMD	equates	to	poor	NO	bioavailability	

and	a	concomitant	increase	in	cardiovascular	disease.	

 
It	is	believed	that	NO	mediated	FMD	is	a	specific	response	to	a	specific	type	of	stress	

measured	 in	 a	 carefully	 controlled	way.	 	 For	 example,	 the	 sphygmomanometer	 cuff	

used	to	occlude	the	forearm	arteries	must	not	be	inflated	for	more	than	five	minutes	
306,	 the	 hand	must	 be	 resting	 during	 this	 period	 307	 and	 the	 ultrasound	 (USS)	 probe	

must	 be	 positioned	 distal,	 not	 proximal,	 to	 the	 cuff	 308	 (see	 figure	 69).	 If	 not,	 then	

myogenic	and	metabolic	factors	will	influence	the	brachial	artery	reactivity	measured.		

It	 is	 important	 to	 note	 that	 NO	 blockade,	 using	 agents	 such	 as	 N-monomethyl-L-

arginine	 can	 significantly	attenuate	FMD	 309,	despite	 there	being	no	 reduction	 in	 the	

measured	shear	stress.	 	However,	there	is	some	redundancy	in	the	system,	as	during	

blockade	of	NO,	prostanoids	administered	can	cause	a	measurable	FMD	response	310,	

which	 can	 then	 in	 turn	be	blocked	by	non-steroidal	 anti-inflammatory	drugs	 such	as	

indomethacin	306.	This	is	in	turn,	why	being	fasted	before	assessment	is	important,	to	

remove	such	extraneous	variables.	

	

Nitrogen	mediated	dilation	(NMD)	refers	to	the	maximal	dilatory	response	of	an	artery	

to	 a	 NO	 donor,	 such	 as	 glycerine	 tri-nitrate	 (GTN),	 given	 in	 order	 to	 measure	

endothelial	independent	dilation.		This	is	also	commonly,	but	not	always,	performed	in	

endothelial	dysfunction	studies	using	FMD,	as	NMD	reflects	vascular	smooth	muscle,	

not	endothelial	function.		In	FMD	(see	figure	71)	one	is	assessing	how	much	NO	will	be	

released	by	the	endothelium	in	response	to	a	change	in	shear	stress,	NMD	is	assessing	

the	 maximal	 response	 of	 the	 vascular	 smooth	 muscle	 in	 response	 to	 a	 fixed	 and	

administered	quantity	of	NO	(see	figure	72).	
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Figure	69:	FMD	acquisition;	patient,	brachial	USS,	sphygmomanometer	and	arm	jig	

 
Figure	69	demonstrates	on	the	left,	one	of	the	Sheffield	patients	laying	on	a	couch	and	

undergoing	 FMD	 measurement	 and	 on	 the	 right,	 close	 up	 of	 the	 arm	 jig,	

sphygmomanometer,	brachial	ultrasound	and	in	the	background	the	brachial	artery	2D	

ultrasound	image	being	displayed.	

	

Figure	70:	MIA-IIc	brachial	analyser	software	with	B-mode	USS	of	brachial	artery	
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Figure	70	demonstrates	the	MIA-IIc	brachial	analyser	software	in	use,	on	the	left	the	B	

mode	ultrasound	of	 the	brachial	 artery,	 the	 green	box	denoting	 the	 area	of	 interest	

and	the	blue	lines,	the	automatic	endothelium	tracker	and	on	the	right,	the	real	time	

measure	of	the	brachial	artery	diameter,	with	standard	deviation	and	%	confidence.	

 
Figure	71:	FMD	response	following	cuff	deflation	at	frame	1800	(6	minutes)	

	

Figure	71	demonstrates	the	brachial	artery	diameter	measured	in	a	patient,	with	FMD	

response	 due	 to	 reactive	 hyperaemia	 seen	 following	 1800	 approximately,	 leading	 to	

transient	dilation	of	the	brachial	artery.	

 
Figure	72:	NMD	response	following	administration	of	GTN	at	frame	300	(1	minute)	
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Figure	72	demonstrates	the	brachial	artery	diameter	measured	in	a	patient,	with	NMD	

response	due	to	administration	of	sub-lingual	GTN	seen	following	600	approximately,	

leading	to	sustained	dilation	of	the	brachial	artery.	

 

6.1.2.4 Pathophysiology	
 
FMD	 has	 become	 popular	 in	 clinical	 studies,	 providing	 additional	 prognostic	

information	over	and	above	traditional	risk	factors,	and	is	a	reliable	and	reproducible	

way	 of	 quantifying	 endothelial	 function.	 	 Endothelial	 dysfunction	 is	 common	 in	

cardiovascular	 disease,	 and	 as	 a	 result	 there	 will	 be	 a	 reduction	 in	 FMD.	 	 FMD	 is	

approximately	19.8	±	6.2%	in	healthy	adults	and	11.2	±	7.4%	in	patients	with	HF-LVSD,	

although	there	is	large	variation	between	different	studies	for	healthy	individuals	and	

patients	with	HF-LVSD	(see	table	54) 311-315.		This	variation	is	due	to	a	lack	of	consensus	

in	terms	of	both	the	acquisition	and	analysis	of	FMD	313	316.	The	exact	mechanism	for	

the	reduction	of	FMD	in	HF-LVSD	is	unclear,	but	according	to	Katz	et	al	(2005)311	 it	 is	

believed	to	be	due	to	a	combination	of	“decreased	activity	of	L-arginine–NO	synthetic	

pathway,	 increased	 degradation	 of	 NO	 by	 reactive	 oxygen	 species,	 and	 hypo-

responsiveness	in	vascular	smooth	muscle”.	NO-dependent	endothelial	dysfunction	is	

further	impaired	in	HF	patients	during	exercise317.	This	may	relate	to	reduced	nutritive	

flow	 to	 skeletal	 muscle	 and	 contribute	 to	 the	 muscle	 hypothesis	 of	 HF	 symptoms,	

providing	 an	 explanation	 as	 to	why	 such	 patients	 become	 breathless	 on	 exertion	 as	

tissue	demand	exceeds	supply	79.	FMD	is	not	 just	a	physiological	phenomenon;	 it	has	

clinical	 significance	 in	 the	 care	 of	 HF-LVSD	 patients	 as	 FMD	 independently	 predicts	

morbidity	 and	 mortality	 318.	 This	 is	 believed	 to	 be	 because	 endothelial	 dysfunction	

leads	 to	 “increased	 arterial	 stiffness	 and	 reduced	 compliance,	 increase	 ventricular	

afterload	and	left	ventricular	end-diastolic	stress	and	enhance	dilation	and	failure”	and	

FMD	reflects	“impaired	function	of	the	large	epicardial	coronary	arteries,	as	well	as	the	

coronary	microcirculation,	which	may	cause	or	contribute	to	myocardial	 ischemia”313.	

Drugs	 such	 as	 allopurinol319,	 growth	 hormone320	 and	 omega-3	 polyunsaturated	 fatty	

acids321	can	 improve	FMD	and	endothelial	 function,	but	as	yet	such	an	 improvement	

has	not	translated	into	tangible	clinical	benefit.	
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Table	54:	Typical	FMD	values	in	HF	studies	

Author	 Year	 Study	 Category	 FMD	(%)	

Katz	 2005	 Prognosis	 Good		 2.55	±	0.29	
Poor	 	0.47	±	0.60	

Klosinska	 2009	 Aetiology	
Ischaemic	 1.89	±	1.69	

Non-Ischaemic	 3.90	±	1.71	

Meyer	 2005	 NYHA	class	
I	 14.5	
IV	 4.5	

Androne	 2006	 Ethnicity	
African-Americans	 0.77	±	0.43	

Caucasians	 1.86	±	0.24	

Deftereos	 2010	 Exercise	 Before	 6.2	±	0.4	
After	 9.2	±	0.4	

	

6.1.2.5 CRT	
	

FMD	has	been	shown	to	predict	response	to	CRT,	as	measured	by	LVEF,	MLWHFQ	and	

6MWT,	 as	 according	 to	 Akar	 et	 al	 (2008)322	 “every	 1%	 reduction	 in	 baseline	 flow-

mediated	 dilation	 correlated	 with	 an	 approximately	 5%	 increased	 likelihood	 of	

response”.	This	study	was	carried	out	in	33	patients,	19	of	which	were	responders	to	

CRT	with	response	assessed	at	3	months	only.		A	lower	FMD	at	baseline	was	predictive	

of	 response,	 suggesting	 it	 is	 those	 patients	 with	 the	 most	 severe	 endothelial	

dysfunction	who	benefit	from	CRT.		However	this	work	had	several	shortcomings;	GTN	

was	not	administered,	meaning	that	some	of	the	changes	may	have	been	due	to	non-

endothelium	 dependent	mechanisms,	 patients	with	 AF	who	 comprise	 a	 third	 of	 HF-

LVSD	patients	were	excluded,	6MWD	was	used	rather	than	CPET	to	measure	functional	

performance	 and	 finally,	 the	 follow-up	 period	 of	 3	months	was	 very	 short.	 	 As	Akar	

states,	performing	FMD	will	greatly	inform	the	prediction	of	response	as,	in	contrast	to	

EF%	or	NYHA	class,	 it	provides	additional	 information	 independent	of	 symptoms	and	

thus	may	allow	differentiation	of	patients	who	clinically	appear	to	be	very	similar.		An	

earlier	trial	showed	that	improvement	of	FMD	in	response	to	CRT	could	be	augmented	

by	an	exercise	programme	323.	Enomoto	et	al	(2011)324,	using	arterial	tonometry	rather	

than	FMD	to	measure	endothelial	dysfunction,	 found	that	CRT	significantly	 improved	

endothelial	 function,	 noting	 that	 whilst	 there	 was	 a	 significant,	 and	 positive,	

correlation	between	the	improvement	in	endothelial	function	and	cardiac	output	there	

was	no	prediction	of	response		
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6.1.2.6 Hypotheses	
Working	hypotheses	–	

1)	Measures	of	endothelial	function	improve	significantly	in	patients	who	are	classed	as	

responders	to	CRT	as	determined	from	a	combination	of	symptoms,	echocardiography	

and	exercise	testing.		

	

2)	Clinical	response	to	CRT	is	predicted	by	measures	of	endothelial	function	measured	

at	baseline.	

	

Null	hypotheses	–	

1)	Measures	 of	 endothelial	 function	do	not	 improve	 significantly	 in	 patients	who	are	

classed	 as	 responders	 to	 CRT	 as	 determined	 from	 a	 combination	 of	 symptoms,	

echocardiography	and	exercise	testing.	

	

2)	 Clinical	 response	 to	 CRT	 is	 not	 predicted	 by	 measures	 of	 endothelial	 function	

measured	at	baseline.	

6.1.2.7 Measurement	
	

The	methodology	 adopted	was	 based	 on	 the	 recommendations	 of	 the	 International	

Brachial	 Reactivity	 Task	 Force	 (2002)	 300	 and	 written	 in	 conjunction	 with	MB,	 a	 co-

author	of	the	more	recent	(2011)	guidelines	304	on	the	measurement	of	FMD.	

	

A	custom-built	rig	(see	figure	52),	developed	by	the	Clinical	Engineering	Department	at	

STHT,	was	used.		The	rig	supported	the	right	upper	arm	and	forearm,	enabling	the	arm	

to	be	splinted	in	the	anatomical	position	(elbow	extended	and	forearm	supinated),	an	

ultrasound	 (USS)	 probe	 was	 positioned	 proximal	 to	 the	 elbow	 in	 such	 a	 way	 that	

enabled	 adjustments	 to	 be	 made,	 if	 necessary,	 during	 data	 acquisition.	 A	

sphygmomanometer	 cuff	 was	 positioned	 distal	 to	 the	 elbow.	 	 Blood	 pressure	 was	

measured	at	baseline	on	the	ipsilateral	(left)	arm.	The	investigator	recorded	time	and	

operated	 the	 laptop	 and	 sphygmomanometer	 whilst	 a	 sonographer	 (DWL	 or	 JA)	

recorded	USS	images	of	the	right	brachial	artery.		DWL	and	JA	were	both	senior	British	

Society	 of	 Echocardiography	 (BSE)	 accredited	 sonographers,	 experienced	 in	 vascular	
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ultrasound.		Both	had	attended	an	FMD	training	course	and	had	significant	experience	

in	performing	FMD	scans.	

	

A	 Vivid	 7	 ultrasound	 machine	 and	 2D	 Doppler	 probe	 with	 8MHz	 linear	 array	 (GE	

Healthcare,	Buckinghamshire,	UK)	was	used	to	image	the	brachial	artery.		Because	the	

software	for	analysing	FMD	is	not	integral	to	the	Vivid	7	machine,	the	scan	image	was	

captured,	displayed	and	recorded	in	real-time	using	frame-grabber	software	(Epiphan	

Systems,	Palo	Alto,	US)	and	the	data	were	analysed	and	stored	on	an	encrypted	laptop	

computer	(Toshiba	Corporation,	Tokyo,	Japan).		

	
The	 brachial	 artery	 is	 located	 1-2cm	 deep	 to	 the	 skin,	 in	 the	 antecubital	 region,	

typically	 lying	 between	 the	medial	 epicondyle	 and	 the	 biceps	 tendon.	 	 For	 patients	

where	there	was	difficulty	 locating	the	artery	by	palpation,	pulsed	wave	Doppler	was	

used.	

	

FMD	 was	 calculated	 with	 using	 the	 brachial	 analyser	 software	 (Medial	 Imaging	

Applications	llc,	Coraville,	USA)	which	includes	an	automated	edge	detection	algorithm	

for	measurement	of	the	diameter	of	the	brachial	artery,	by	tracking	the	lines	of	Pignoli.		

	

All	patients	arrived	 in	 the	department	between	08:00-08:30,	having	been	specifically	

asked	 both	 in	 their	 appointment	 letter	 several	 weeks	 prior,	 and	 reminded	 by	

telephone	the	day	before,	not	to	consume	any	food,	fluids,	tobacco,	caffeine	or	alcohol	

from	midnight.		Once	the	equipment	was	in	place,	they	were	allowed	to	rest	in	a	quiet,	

dark	and	 temperature-controlled	 room	(22-24°C)	 for	a	period	of	30	minutes	prior	 to	

assessment.	 	 The	 patients	 lay	 supine	 on	 a	 couch	 and	 the	 position	 of	 the	 probe	 and	

distance	from	the	landmark	to	the	probe	was	documented	in	order	to	ensure	that	the	

artery	 was	 scanned	 as	 close	 to	 the	 same	 place	 as	 possible	 at	 each	 of	 the	 3	 visits.		

During	assessment,	the	patients	were	asked	not	to	talk,	move	their	head,	body	and	in	

particular	the	right	arm	or	hand.		They	were	advised	when	the	cuff	was	to	be	inflated	

and	then	deflated.		

	

The	 USS	 image	was	 optimised	 so	 that	 the	 artery	was	 viewed	 longitudinally	 and	 the	

intima	could	be	seen,	with	maximal	contrast	between	the	intima,	the	vessel	lumen	and	
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surrounding	tissue.		The	sonographers	obtained	a	suitable	B-mode	image	of	the	artery	

and	the	image	was	then	checked	on	the	laptop	for	suitability	using	the	image	grabbing	

software	(as	it	often	appeared	different	on	the	monitor)	and	then	recording	began.	

	
FMD	

	

1)	Baseline	recording	

	“Base”	was	typed	on	the	USS	display	to	indicate	the	baseline	period.	 	Recording	was	

started	on	the	frame	grabber	software	capturing	the	B-mode	USS	of	the	brachial	artery	

for	1	minute.		

	

2)	Inflation	phase	

The	 text	on	 the	 screen	was	changed	 to	 “cuff”	and	 the	 sphygmomanometer	 cuff	was	

then	inflated	at	30mmHg	above	systolic	blood	pressure,	for	5	minutes.		

	

3)	Deflation	phase	

The	 text	 on	 the	 screen	 changed	 to	 “defl”,	 the	 cuff	 was	 deflated	 and	 the	 images	

recorded	for	a	further	3	minutes.	

	

The	 patients	 were	 then	 allowed	 a	 20	 minute	 rest	 to	 ensure	 that	 the	 artery	 had	

recovered	sufficiently	before	the	next	test	began.	

	
NMD	

1)	Baseline	recording	

		

“Base”	was	 typed	on	 the	USS	display	 to	 indicate	 the	baseline	period.	Recording	was	

started	simultaneously	on	the	frame	grabber	software	and	B-mode	USS	 image	of	the	

brachial	artery	and	was	recorded	for	1	minute.		

	

2)	GTN	phase	

The	 text	 on	 the	 screen	 was	 changed	 to	 “GTN”	 and	 the	 patient	 was	 given	 800	

micrograms	(2	puffs)	of	sublingual	GTN	and	recording	continued	for	5	minutes.	
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3)	Peak	phase	

The	 text	 on	 the	 screen	 changed	 to	 “peak”,	 and	 the	 images	 recorded	 for	 a	 further	 1	

minute.	

	

Analysis	

The	individual	FMD	and	NMD	files	were	imported	into	the	brachial	analyser	software.	

	

For	FMD	analysis,	the	vertical	axis	was	calibrated	to	ensure	that	the	correct	diameter	

(mm)	was	measured,	a	region	of	interest	encompassing	the	brachial	artery	was	chosen	

and	then	checked	to	ensure	the	intima	was	detected	by	the	edge	detection	software	

(see	 figure	 53).	 	 The	 analysis	was	 then	 run.	 	 This	 created	 a	 series	 of	 diameters	with	

time.		The	data	were	then	exported	into	a	database,	giving	the	diameter	of	the	brachial	

artery	 for	 every	 frame	 (where	detected)	but	only	 the	baseline	 and	deflation	periods	

were	needed.	

	
For	 NMD	 analysis,	 the	 process	 was	 repeated	 but	 this	 time	 only	 peak	 diameter	

following	GTN	administration	was	assessed.	

	

As	the	frame	rate	of	the	USS	was	5	frames	per	second,	with	the	FMD	and	NMD	scans	

taking	 9	 and	 7	minutes	 respectively,	 2100	or	 2700	 frames	were	 captured	per	 study.		

The	 mean	 vessel	 diameter	 over	 the	 baseline	 one	 minute	 was	 measured	 using	 the	

automated	edge-detection	software.		All	frames	determined	by	the	software	to	have	a	

confidence	 interval	 <	 70%	 were	 deleted	 and	 the	 remaining	 frames	 were	 checked	

manually	 for	 accuracy	 e.g.	 to	 ensure	 that	 the	 endothelium	 that	 was	 detected	 and	

measured.	

	

The	following	calculations	were	made:	

• Baseline	diameter	(averaged	over	1	minute)	

• Peak	 diameter	 following	 cuff	 deflation	 or	 GTN	 (averaged	 over	 5	

seconds)	

• FMD%	(baseline	diameter/peak	diameter	following	cuff	deflation	*100)	

• Time	to	peak	(TTP)	(time	from	cuff	deflation	to	peak	diameter)	

• NMD%	(baseline	diameter/peak	diameter	following	GTN*100)	
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6.1.2.8 Results	
 

Table	55:	Baseline	brachial	artery	parameters	in	responders	and	nonresponders	

 

Baseline	
Responders	 Nonresponders	 Student’s	T	test	

Mean	 SD	 Mean	 SD	 p	value	
	Diameter	 mm	 4.43	 0.89	 4.40	 0.55	 =	0.94	

FMD	 %	 2.74	 1.98	 7.43	 3.73	 <	0.05	
NMD	 %	 16.95	 8.96	 17.65	 7.97	 =	0.33	
TTP	 sec	 71.75	 26.09	 66.60	 34.25	 =	0.66	

 
Table	56:	Brachial	artery	parameters	in	responders	

 

Responders	

Time	point	(months)	 One	way	ANOVA	with	
repeated	measures	

Baseline	 6	 12	 p	value	 p	value	

Mean	 SD	 Mean	 SD	 Mean	 SD	 Baseline	
vs.	6	

Baseline	
vs.	12	

Diameter	 mm	 4.43	 0.89	 4.47	 0.54	 4.59	 0.53	 =	0.84	
FMD	 %	 2.91	 1.85	 4.13	 2.03	 3.41	 0.24	 =	0.61	
NMD	 %	 16.95	 8.96	 14.54	 7.12	 15.27	 8.34	 =	0.54	
TTP	 sec	 71.75	 26.09	 70.64	 27.41	 73.82	 33.41	 =	0.99	

	
Table	57:	Brachial	artery	parameters	in	nonresponders	

 

Nonresponders	

Time	point	(months)	 One	way	ANOVA	with	
repeated	measures	

Baseline	 6	 12	 p	value	 p	value	

Mean	 SD	 Mean	 SD	 Mean	 SD	 Baseline	
vs.	6	

Baseline	
vs.	12	

Diameter	 mm	 4.96	 0.55	 4.43	 0.58	 4.71	 0.36	 =	0.68	
FMD	 %	 7.43	 3.73	 6.04	 4.50	 5.81	 1.70	 =	0.51	
NMD	 %	 17.65	 7.97	 15.65	 3.78	 14.91	 7.44	 =	0.18	
TTP	 sec	 66.60	 34.25	 75.28	 25.65	 77.20	 28.94	 =	0.43	
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Figure	73:	FMD	(mean	and	SD)	in	responders	(white)	and	nonresponders	(black)	

	
	
Figure	 73	 demonstrates	 the	 mean	 and	 standard	 deviation	 of	 FMD	 at	 baseline	 and	

during	subsequent	follow-up	in	responders	and	non-responders.	

	
Figure	74:	NMD	(mean	and	SD)	in	responders	(white)	and	nonresponders	(black)	

	
	
Figure	 74	 demonstrates	 the	 mean	 and	 standard	 deviation	 of	 NMD	 at	 baseline	 and	

during	subsequent	follow-up	in	responders	and	non-responders.	
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Figure	75:	Logistic	regression	of	probability	of	CRT	response	and	baseline	FMD	

	
	
Figure	75	demonstrates	the	relationship	by	logistic	regression	of	the	FMD	at	baseline	

and	predicted	probability	of	subsequent	response	to	CRT	during	follow-up.	
	

Figure	76:	FMD	and	NMD	box	plots	at	baseline	in	responders	and	nonresponders	

	
	

Figure	76	demonstrates	box	plots,	on	the	left	the	difference	between	the	baseline	FMD	

and	 in	 responders	 and	non-responders	 and	on	 the	 right	 the	difference	between	 the	

baseline	NMD	in	responders	and	non-responders.		
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No	 statistically	 significant	 difference	was	 evident	 in	 brachial	 artery	 diameter,	 TTP	 or	

NMD	(see	figure	74	and	76)	between	responders	and	nonresponders	at	baseline	(see	

table	 55).	 The	 only	 statistically	 significant	 difference	 found	 between	 the	 groups	 at	

baseline	was	for	FMD	using	a	2-tailed	Student’s	T-test	(see	figure	73	and	76).	Table	56	

and	57	demonstrate	the	changes	in	diameter,	FMD,	NMD	and	TTP	during	follow	up	in	

responders	and	non-responders	respectively.	

	

A	 one-way	 ANOVA	 with	 repeated	 measures	 and	 Greenhouse-Geisser	 correction	

determined	that	there	was	no	significant	difference	during	follow-up	in	responders,	in	

terms	of	brachial	artery	diameter	(F(1.74,	19.42)	=	0.14,	p	=	0.83),	FMD	(F(1.57,	17.23)	

=	0.42,	p	=	0.61),	NMD	(F(1.88,	20.69)	=	0.60,	p	=	0.54)	and	TTP	(F(1.97,	19.76)	=	0.08,	p	

=	 0.99).	 Similarly	 in	 nonresponders,	 there	 was	 no	was	 statistically	 difference	 during	

follow-up	brachial	artery	diameter	(F(1.83,	7.32)	=	0.75,	p	=	0.49),	FMD	(F(1.55,	6.22)	=	

0.66,	p	=	0.51),	NMD	(F(1.83,	7.32)	=	2.13,	p	=	0.18)	and	TTP	(F(1.03,	3.10)	=	0.82,	p	=	

0.43).	

	

As	can	be	seen	by	figure	75,	for	every	1%	reduction	in	baseline	flow-mediated	dilation	

(FMD),	there	was	an	approximate	8%	increase	in	the	likelihood	of	CRT	response.	

	

The	first	working	hypothesis,	that	clinical	response	to	CRT	is	predicted	by	measures	of	

endothelial	 function	measured	at	baseline	can	be	accepted	 thus	 the	null	hypothesis,	

can	be	rejected.		The	second	working	hypothesis	that	measures	of	endothelial	function	

improve	 significantly	 in	 patients	 who	 are	 classed	 as	 responders	 to	 CRT	 determined	

from	a	combination	of	symptoms,	echocardiography	and	CPET	testing	is	rejected,	and	

the	null	hypothesis	that	measures	of	endothelial	function	do	not	improve	significantly	

in	patients	who	are	classed	as	responders	to	CRT	can	be	accepted.	

6.1.2.9 Discussion	
	

These	 results	 demonstrate	 a	 similar	 trend	 to	 that	 reported	 by	 Akar	 et	 al	 (2008)322,	

namely	 that	 FMD	 performed	 at	 baseline	 is	 a	 predictor	 of	 response	 to	 CRT.	 Whilst	

statistical	 significance	 was	 not	 proven,	 FMD	 tended	 to	 improve	 in	 responders	 and	

deteriorate	in	nonresponders	and	trend	was	found	at	both	6	and	12	months	follow-up	
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thus	outside	 the	3	month	 follow-up	period	of	 the	Akar	 study.	 	 Like	Akar’s	work,	 this	

supports	 the	 notion	 that	 FMD	 is	 a	 tool	 that	 can	 be	 used	 to	 differentiate	 clinically	

similar	 patients	 based	 on	 endothelial	 function,	 which	 can	 then	 be	 used	 to	 select	

patients	more	likely	to	respond	and	therefore	derive	benefit	from	CRT.		At	baseline,	all	

19	patients	were	eligible	for	CRT	yet	only	74%	of	these	responded	to	treatment.		It	is	

important	 to	 note	 that	 the	 responders	 could	 all	 be	 predicted	 from	 the	 FMD;	 this	

supports	 the	concept	 that	patients	with	 the	most	 severe	endothelial	dysfunction	are	

more	 likely	 to	 respond.	 	 However	 since	 CRT	 has	 no	 direct	 effect	 on	 peripheral	

endothelial	 function,	 improvement	 in	 FMD	 as	 a	 result	 of	 CRT	 is	 likely	 to	 be	 due	 to	

“endothelium-derived	nitric	oxide	due	to	improved	haemodynamics,	peripheral	shear	

stress,	 cardiac	 loading	 conditions,	 and	neurohormonal	activation.”	According	 to	Akar	

et	al	 (2008)322.	 	 This	 is	 logical	 as	 it	 is	 known	 that	blood	pressure,	 stroke	volume	and	

natriuretic	 peptides	 improve	 in	 responders	 following	 CRT	 implantation.	 	 It	 remains	

uncertain	why	responders	at	baseline	have	a	lower	FMD	than	nonresponders,	as	whilst	

patients	with	ischaemic	cardiomyopathy	often	have	poorer	endothelial	function309,	it	is	

patients	 with	 non-ischaemic	 cardiomyopathy	 who	 often	 demonstrate	 a	 greater	

response	to	CRT	312	325.	Certainly	Akar	et	al	(2008)322	do	not	comment	upon	this.	In	this	

work,	 half	 the	 patients	 had	 HF-LVSD	 of	 an	 ischaemic	 origin,	 but	 there	 was	 no	

significant	difference	in	any	measures	of	endothelial	function	between	the	two	groups	

(data	no	not	shown).		

	

Importantly,	there	was	no	significant	difference	in	the	actual	diameter	of	the	brachial	

artery,	either	at	baseline	between	the	groups	or	during	 follow-up.	 	This	 is	consistent	

with	 Akar’s	 findings.	 	 Any	 difference	 in	 diameter,	 due	 to	 either	 inaccuracy	 in	

measurement	or	to	a	physiological	effect	of	CRT	would	undoubtedly	have	an	influence	

on	the	FMD	and	NMD	recorded.	

	
As	discussed	above,	the	study	by	Akar	et	al	(2008)322	followed	up	patients	at	a	single	

time-point	of	3	months	only.		This	was	shorter	than	for	the	majority	of	large	CRT	trials,	

which	 follow	 patients	 at	 6	 or	 12	 months,	 to	 allow	 time	 for	 a	 clinically	 significant	

response	 to	 occur.	 Furthermore,	 Akar	 et	 al	 (2008)322	 did	 not	 use	 peak	 VO2	 as	 a	

measure	 of	 response	 (arguably	 a	more	 objective	measure	 of	 exercise	 capacity	 than	

6MWD),	a	CRT	optimisation	protocol	for	all	patients	(as	per	current	best	practice)	nor	
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investigate	the	role	of	non-endothelium	dependent	mechanisms	as	they	assumed	the	

difference	was	purely	endothelial-mediated.	 	Whilst	not	previously	 investigated,	Akar	

et	 al	 (2008)322	 were	 correct	 in	 their	 assumption	 that	 prediction	 of	 response	 to	 CRT	

using	FMD,	was	purely	an	endothelium	dependent	mechanism,	as	in	this	work	there	no	

significant	differences	between	the	groups	at	baseline	or	within	the	groups	at	follow-

up	 using	 NMD.	 	 This	 means	 that	 selection	 for	 CRT,	 on	 the	 basis	 of	 impairment	

endothelial	 function	measured	 at	 the	 brachial	 artery,	 is	 a	 function	 of	 disease	 of	 the	

endothelium	alone	(FMD)	and	is	not	influenced	by	the	performance	of	vascular	smooth	

muscle	 (NMD).	 	 A	 more	 recent	 study	 by	 Santini	 et	 al	 (2013)	 followed	 up	 HF-LVSD	

patients	post	CRT-D	for	12	months	and	concluded	that	FMD	did	not	predict	response	

to	 CRT	 at	 baseline	 but	 it	 did	 correlated	 with	 markers	 of	 response	 and	 improved	

markedly,	 from	 4.1%	 ±	 3.8%	 to	 8.8%	 ±	 4.8%	 326.	 However,	 they	 do	 not	 report	 the	

measurement	 of	 the	 brachial	 artery	 diameter	 between	 the	 groups	 as	 a	 possible	

confounder,	 nor	 used	 NMD	 to	 exclude	 the	 possibility	 of	 changes	 in	 smooth	muscle	

tone	corrupting	 their	 findings.	 Furthermore	16/57	patients	were	unable	 to	 complete	

the	6MWT	at	baseline	due	to	being	bedridden,	presumably	with	HF-LVSD	symptoms	or	

osteoarthritis	and	the	authors	 then	classified	subsequently	walking	any	distance	as	a	

positive	 response	 to	CRT.	Also,	 the	exclusive	use	of	CRT-D	devices,	 suggests	 this	was	

sicker	population	and	despite	the	authors	defining	abnormal	FMD	as	>	5%,	the	mean	

FMD	in	all	patients	recorded	was	4.1%	±	3.8%.	

	
FMD	 is	 grossly	 dependent	 on	 patient	 anatomy,	 compliance	 with	 the	 procedure,	

operator-skill	 and	 technique	 (for	 both	 acquisition	 and	 analysis).	 	 It	 is	 strongly	

recommended	that	B-mode	ultrasound	be	used	in	order	to	identify	the	double	lines	of	

Pignoli.	 	 These	 represent	 the	 endothelium	 and	 can	 therefore	 allow	 precise	

measurement	of	the	artery	diameter	by	automated	edge-detection	software.	There	is	

variation	 in	 how	 the	 peak	 post-deflation	 diameter	 is	 measured,	 with	 some	 studies	

choosing	 a	 single	 frame	 at	 60s	 (which	may	miss	 the	 true	 peak	 as	 it	 may	 not	 occur	

precisely	 at	 60s)	 and	 others	 choosing	 mean	 diameters	 over	 periods	 of	 3,	 5	 or	 10	

seconds	 when	 the	 peak	 is	 seen.	 	 Logically	 shorter	 periods	 will	 give	 higher	 peak	

diameters,	and	longer	periods	lower.	 	The	guidelines	recommend	that	an	assessment	

period	 of	 3	minutes	 is	 conducted	 post-deflation,	 as	 for	most	 patients,	 the	 peak	will	
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occur	before	2	minutes	and	 the	peak	 chosen	around	 this,	 this	was	 the	methodology	

chosen	in	this	work	and	the	peak	diameter	averaged	over	a	period	of	5	seconds.		

	
The	time	from	cuff	deflation	to	the	peak	in	measured	artery	diameter,	or	time	to	peak	

diameter	 (TTP)	 is	 the	 time	 during	which	 the	 shear	 stress	 stimulus	 determining	 FMD	

arises.		It	was	initially	hypothesised	that	this	period	might	be	a	useful	measurement	of	

endothelial	 function.	 	 Thijssen	et	 al	 (2011)304	 noted	however,	 that	 despite	 a	 level	 of	

variation	 both	 between	 and	 within	 groups,	 TTP	 does	 not	 appear	 to	 be	 a	 useful	

biomarker	 and	 furthermore	 is	 also	 partially	 NO	 independent	 i.e.	 not	 completely	

endothelial	 dependent	 327.	 The	 lack	 of	 significant	 difference	 in	 TTP,	 either	 between	

groups	at	baseline	or	within	groups	during	follow-up	in	this	study,	suggests	that	TTP	is	

of	limited	importance	and	simply	demonstrates	the	time	for	the	shear	stress	stimulus	

to	produce	maximal	dilation	is	consistent	in	both	groups	at	baseline	and	following	CRT	

implantation.	 	 This	 also	 demonstrates	 that,	 if	 the	 arbitrary	 60s	 had	 been	 chosen	 to	

record	peak	post-cuff	deflation	rather	than	recording	for	a	3-minute	period,	the	actual	

peak	diameter	would	have	been	missed	for	majority	of	patients	as	the	mean	TTP	was	

found	to	be	70s.		This	would	lead	to	inaccuracies	in	the	FMD	measurement,	most	likely	

result	in	an	underestimate	of	FMD.	

	
Whilst	most	patients	improved	symptomatically	irrespective	of	group,	only	responders	

improved	 significantly	 in	 all	 4	 markers	 of	 response	 but	 there	 was	 no	 correlation	

between	functional	performance	data,	such	as	peak	VO2,	6MWT	and	FMD.		Akar	et	al	

(2008)	 found	 a	 positive	 correlation	 between	 FMD	 and	 the	 6MWD,	 but	 not	 in	 other	

markers	 and	 this	 lack	of	 correlation	 in	our	 study	may	be	due	 to	 a	 lack	of	 significant	

improvement	 in	6MWD,	the	 issues	experienced	with	6MWD	measurement	described	

previously	or	perhaps	the	small	sample	size.		

	

Although	our	sample	size	is	small	in	comparison	to	large	CRT	trials,	it	was	a	similar	size	

to	the	study	by	Akar	et	al	(2008)322	and,	most	importantly,	adequately	powered	to	find	

a	difference	between	 the	2	groups	as	per	 the	 recommendations	of	 the	 International	

Brachial	 Reactivity	 Task	 Force	 (2002)300.	 FMD	 studies	 typically	 use	 very	 large	 supra-

systolic	 occlusive	 pressures	 of	 250mmHg	 to	 ensure	 an	 adequate	 shear	 response,	

negating	the	need	to	measure	systolic	BP.		However,	no	issues	were	found	with	using	
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30mmHg	 above	 systolic	 pressure,	 other	 than	 the	 need	 to	 ensure	 that	 an	 accurate	

reading	of	systolic	BP	was	made	at	the	outset	of	the	test.		This	was	more	acceptable	to	

patients	 and	 did	 not	 cause	 any	 undue	 pain	 or	 distress.	 	 The	 sphygmomanometer	

required	 constant	 monitoring	 in	 order	 to	 maintain	 the	 30mmHg	 above	 the	 systolic	

pressure	 and	 adjustment	 of	 the	 USS	 probe	 was	 also	 required	 to	 ensure	 acceptable	

image	quality	with	patient	movement.		Unfortunately,	despite	patients	being	told	to	lie	

still	and	quiet	they	sometimes	moved	during	the	FMD	study	with	both	voluntary	e.g.	

talking,	gesticulating	and	involuntary	e.g.	coughing,	sneezing	movements.	 	This	 led	to	

artefacts,	 inconsistencies	 and	 dropout	 in	 the	 data	 and	 this	 type	 of	 noisy	 data	 was	

removed	during	analysis.			

	

Despite	the	patients	coming	from	South	Yorkshire,	North	Derbyshire,	Nottinghamshire	

and	 Lincolnshire,	 there	 were	 few	 problems	 with	 starting	 the	 FMD	 at	 09:00	 each	

morning,	with	the	patients	always	arriving	fasted	and	with	their	morning	medications	

(to	be	taken	later).	The	mean	time	of	arrival	was	09:11:27	±	16:19	for	all	patients	over	

12	 months,	 with	 over	 80%	 of	 appointments	 on	 time	 and	 no	 significant	 difference	

during	 follow-up	 or	 between	 responders	 and	 nonresponders.	 Some	 patients	 arrived	

earlier	and	some	 later,	often	due	 to	 traffic	or	 taxis	 running	 late,	problems	that	were	

unavoidable.	This	is	important	as	FMD	is	time-dependent	and	as	some	of	the	patients	

suffered	from	were	insulin	dependent	diabetes	mellitus,	they	could	not	remain	fasted	

indefinitely.		

	

Many	 of	 the	 patients	 in	 this	 study	were	 frail	 with	 considerable	 comorbidities,	 all	 of	

which	may	influence	FMD,	and	the	relative	presence,	absence	and	fluctuation	of	these,	

may	 also	 have	 influenced	 CRT	 response	 and	measured	 FMD	 328.	 Previous	 CRT	 trials	

have	 not	 commented	 on	 the	 presence	 of	 comorbidity,	 but	 such	 heterogeneous	

patients	are	common	in	the	real	world.	

	

Despite	concerns	reported	by	Akar	et	al	(2008)322	no	problems	were	encountered	with	

using	 GTN	 to	 investigate	 NMD.	 	 No	 patients	 reported	 symptoms	 of,	 or	measurable,	

hypotension,	despite	often	 low	baseline	blood	pressures	<	120	mmHg	 systolic.	 	GTN	

spray	 was	 used,	 rather	 than	 a	 tablet,	 as	 this	 allowed	 for	 a	 controlled	 and	

contemporaneous	dose	of	NO	 to	be	delivered.	 	As	 stated	 in	 the	methods,	 the	mean	
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time	 of	 starting	 the	 data	 collection	 was	 approximately	 09:00,	 with	 some	 small	

variations	between	groups	at	baseline	and	during	follow-up.		

	

Ideally	a	single	sonographer	would	perform	all	the	FMD	measurements,	however	due	

to	 logistical	 issues	 both	 JPA	 and	 DWL	 performed	 the	 FMD	 studies.	 	 This	 potentially	

creates	an	 issue	with	differing	technique	and	reproducibility,	however	there	were	no	

differences	 in	 the	 time	 started	or	baseline	brachial	diameter,	 so	 the	 influence	whilst	

acknowledged,	 was	 minimised.	 	 Analysis	 was	 always	 performed	 immediately	 after	

acquisition	 and	 before	 any	 assessment	 of	 response	 and	 so	 all	 staff	 blinded	 in	 this	

regard.	 	 Furthermore,	 the	use	of	 the	 automated	edge	detection	 software	minimised	

any	 investigator	 bias	 in	 influencing	 the	 FMD	measured.	 	 Future	 work	 could	 involve	

using	 larger	 populations,	 a	multicentre	 trial	 and	 perhaps	 even	 a	 prospective	 RCT	 on	

patients	 who	 all	 seem	 similarly	 suitable	 for	 CRT.	 	 It	 could	 also	 be	 interesting	 to	

delineate	 further	between	populations	of	HF-LVSD	e.g.	 ischaemic	 and	non-ischaemic	

aetiology.	 	Furthermore	the	role	of	FMD	and	CRT	optimisation	could	be	 investigated,	

correlating	gains	in	aortic	VTI	with	improvement	in	FMD,	for	example.		

6.1.2.10 Conclusion	

FMD	was	the	only	measure	of	endothelial	function	that	predicted	response	to	CRT	at	6	

and	 12	 months.	 	 Whilst	 FMD	 initially	 improved	 during	 follow-up	 in	 responders	 and	

deteriorated	 in	 nonresponders,	 these	 changes	 were	 not	 statistically	 significant.	 	 It	

remains	unclear	as	to	why	responders	have	significantly	worse	endothelial	function	at	

baseline	than	nonresponders.		Further	research	assessing	endothelial	function	in	other	

ways	is	necessary	to	answer	this	question.		Finally,	the	use	of	FMD	could	be	considered	

as	the	patient	selection	criterion	for	a	randomised	control	trial	in	CRT,	but	whether	this	

would	be	approved	ethically	or	by	patients	remains	to	be	seen.	

6.1.3 Ballistocardiography	

6.1.3.1 Introduction	

First	 discovered	 in	 the	 late	 19th	 Century329,	 ballistocardiography	 (BCG)	 or	 cardiac	

ballistics,	 refers	 to	 the	 indirect	 and	 non-invasive	 investigation	 of	 cardiac	

haemodynamics	 by	 measurement	 of	 body	 motion	 during	 cardiac	 systole.	 Various	

methods	 have	 been	described;	 using	 a	 force	 plate,	 an	 accelerometer	 placed	directly	
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upon	the	sternum,	 induction	coils,	electromagnetic	bed,	all	of	which	potentially	have	

the	ability	to	amplify	and	measure	the	small	forces	imparted	on	the	body	by	the	heart.		

	

The	 principle	 underpinning	 BCG	 is	 Newton’s	 second	 and	 third	 laws	 of	 motion.	 The	

heart	accelerates	a	volume	of	blood	by	exerting	a	force	(Newton’s	second	law)	and	the	

surrounding	 tissue	must	 exert	 an	 equal	 and	 opposite	 force	 on	 the	 heart	 (Newton’s	

third	 law).	 This	 leads	 to	 a	 change	 in	 the	 reaction	 force	 between	 the	 body	 and	 its	

surroundings.		The	BCG	signal	produced	is	tracked	in	3	orthogonal	planes,	X,	Y	and	Z.		Z	

represents	 the	axial	 plane	of	 the	body,	 Y	 the	 sagittal	 and	X	 the	anteroposterior,	 the	

dominant	signal	however	is	in	the	Z	direction,	as	this	is	the	main	axis	along	which	blood	

flows	 (e.g.	along	 the	aorta)	 from	cranial	 to	caudal.	 	These	3	signals	can	be	recorded,	

analysed	and	compared	for;	different	populations	e.g.	male/female,	different	disease	

conditions	 e.g.	 healthy/IHD	 or	 before	 and	 after	 intervention	 e.g.	 surgery	 for	 aortic	

stenosis.	 	 According	 to	 the	 key	 work	 by	 Starr	 et	 al	 (1939)330	 who	 first	 studied	 the	

concept	 in	 earnest,	 it	 was	 concluded	 that	 healthy,	 young	 adults	 all	 shared	 a	 similar	

pattern	when	their	BCG	was	recorded	in	the	longitudinal	plane,	with	the	pattern	being	

accepted	as	that	of	the	normal	population	(see	figure	77).		

 
Figure	77:	BCG	and	ECG	data,	from	a	healthy	adult	over	10	minutes	
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Figure	77	demonstrates	 the	 signal	 averaged	BCG	 (top)	 and	ECG	 (bottom)	with	mean	

values	in	blue	and	mean	+/-	2	stand	deviations	in	red,	with	waves	of	the	BCG	and	ECG	

labelled	according	to	their	recognised	alphabetical	terms.	

	

	

As	for	the	PQRST	complex	of	the	ECG,	Starr	attached	arbitrary	letters	to	the	BCG	signal	

corresponding	 to	 specific	 points	 in	 the	 cardiac	 cycle.	 	 These	 are	 HIJKLMN	with	 HIJK	

being	the	systolic	and	LMN	the	diastolic	waves.		According	to	Gubner	et	al	(1953)331,	it	

is	 believed	 the	 small	 positive	 H	 wave	 represents	 the	 end	 of	 ventricular	 diastole,	

specifically	 “forces	 associated	 with	 the	 abrupt	 deceleration	 in	 the	 flow	 of	 blood	

returning	 to	 the	 heart”.	 	 The	 negative	 I	wave	marks	 the	 onset	 of	 ejection,	with	 the	

“footward	 recoil	 of	 the	 body	 from	 the	 acceleration	 of	 the	 blood	 upwards	 in	 the	

pulmonary	 artery	 and	 ascending	 arch	 of	 the	 aorta”331.	 	 The	 subsequent	 J	wave,	 the	

dominant	signal	 in	the	BCG,	then	follows	“with	 impact	on	the	crown	of	the	2	arches,	

the	direction	of	forces	is	abruptly	reversed	and	there	is	a	sharp	recoil	of	the	body	in	a	

headward	 direction”	 this	 together	 with	 I,	 is	 representative	 of	 the	 cardiac	 ejection	

force331.	 The	K	wave	 “is	 caused	by	 the	deceleration	of	blood	 flow	 in	 the	descending	

aorta	as	it	is	slowed	by	the	peripheral	resistance	and	as	the	ejection	velocity	falls	off	at	

the	 end	 of	 systole”331.	 	 LMN	waves	 are	 complex,	 and	 their	 exact	meaning	 has	 been	

debated,	 but	 in	 view	 of	 their	 timing	 shortly	 following	 the	 T	 wave	 e.g.	 ventricular	

repolarisation	they	are	likely	to	represent	ventricular	diastole.		

 
In	normal	healthy	 individuals,	there	 is	a	significant	amount	of	respiratory	variation	 in	

the	 BCG	 signal,	 reflecting	 the	 influence	 of	 respiration	 on	 RV	 filling	 and	 ejection.		

Inspiration	will	 increase	RV	 filling,	 augmenting	 the	BCG	 signal,	 but	 on	 expiration	 the	

signal	is	almost	extinguished,	due	to	the	reduction	in	RV	filling.		LV	filling	and	ejection	is	

influenced	significantly	less	by	respiration	and	so,	as	concluded	by	Starr	at	al	(1950)332	

from	experiments	on	cadavers,	who	were	laid	on	a	ballistocardiograph	whilst	fluid	was	

injected	 into	 pulmonary	 artery	 and	 aorta	 and	 the	 BCG	 recorded,	 the	 RV	 and	 LV	

contribute	equally	to	the	BCG	signal.		

 
Like	the	ECG,	the	BCG	can	be	analysed	quantitatively	or	qualitatively.	 	An	example	of	

quantitative	analysis	in	the	ECG	is	measuring	the	height	of	the	ST	segment	to	diagnose	
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a	 STEMI,	 similarly	 in	 the	 BCG	 the	 amplitude	 or	 timing	 of	 certain	 waves	 could	 be	

measured.	 	 Starr	believed	 that	 changes	 in	 the	BCG	 signal	 could	be	used	 to	diagnose	

diseases	such	as	aortic	stenosis	or	IHD	based	on	the	presence,	absence	or	alteration	in	

the	 BCG	 signal.	 	 However	 BCG	 measures	 the	 force	 of	 ejection	 rather	 than	 cardiac	

output	 and	 thus,	 as	 for	 measurements	 of	 SV	 or	 EF,	 the	 BCG	 signal	 is	 not	 just	

determined	 by	 the	 LV.	 	 Thus	 it	 is	 not	 specific	 to	 diseases	 of	 the	 LV,	 but	 rather	

represents	the	function	of	the	heart	and	indeed	the	arterial	system	as	a	whole.		This	is	

particularly	 important,	 as	 the	 BCG	 signal	 changes	 with	 age	 and	 so	 the	 BCG	 from	 a	

healthy	70	year	old	could	appear	similar	to	a	50	year	old	with	clinical	IHD.	

	

In	 terms	 of	 qualitative	 assessment	 the	 analysis	 can	 be	 carried	 out	 in	 two	ways;	 for	

example	 in	the	ECG	the	absence	of	the	P	wave	can	be	diagnostic	for	AF,	as	we	know	

this	signifies	a	lack	of	organised	atrial	electrical	and	therefore,	mechanical	activity.		It	is	

believed	 that	 the	 BCG	 signal	 can	 be	 interpreted	 in	 a	 similar	 way,	 for	 example	 the	

absence	of	the	K	wave	may	suggest	coarctation	of	the	aorta	and	augmentation	of	the	

same	wave	may	suggest	atherosclerosis,	as	these	are	the	BCG	patterns	found	in	such	

patients.	 	 However,	 unlike	 the	 ECG,	 it	 is	 not	 clear	 whether	 all	 patients	 with	 such	

diseases	will	be	represented	in	such	a	way	or	indeed	if	such	a	BCG	signal	is	caused	by	

those	diseases	alone,	and	so	this	may	be	a	problematic	approach.	

An	 alternative	 qualitative	 approach	 was	 described	 by	 Brown	 et	 al	 (1950)333	 who	

compiled	 a	 four	 stage	 grading	 system	 for	 the	 BCG,	 which	 placed	 primacy	 on	 the	

respiratory	variation	as	follows:	

	
“Grade	1	–	regularity	of	complexes	is	preserved.		Amplitude	in	inspiration	is	normal;	in	

expiration	amplitude	is	decreased	and	varies	in	definitiveness.	

Grade	2-	one	half	or	more	of	 the	complexes	are	abnormal,	mainly	 in	expiration.	The	

inspiratory	amplitude	is	decreased	somewhat	also.	

Grade	3	–	Abnormalities	are	present	 in	 inspiration	and	expiration,	but	the	complexes	

are	still	identifiable.	

Grade	4	–	All	the	waves	are	unidentifiable	and	of	low	amplitude”		

 
Signal-averaging	 is	 a	 signal-processing	 tool,	 applied	 in	 the	 time	 domain,	 which	 is	

employed	to	amplify	a	signal,	contained	within	a	portion	of	data,	relative	to	the	noise.		
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This	 is	done	by	repeatedly	measuring	the	same	signals	 in	the	same	manner	and	then	

using	statistical	analysis	to	extract	the	desired	data.		Signal-averaging	is	already	used	in	

cardiology,	in	particular,	for	signal-averaged	ECG	(SAECG),	which	is	used	to	identify	late	

potentials,	 which	 are	 small	 signals	 occurring	 within	 the	 QRS	 complex,	 as	 these	 are	

associated	 with	 malignant	 tachyarrhythmias	 e.g.	 ventricular	 tachycardia	 (VT).	 	 As	

mentioned	 above,	 one	 of	 the	 problems	 with	 early	 BCG	 work	 was	 the	 unfavourable	

signal-to-noise	(SNR)	ratio,	but	there	are	also	difficulties	in	gating	the	BCG	to	the	ECG.		

Using	modern	 technology,	both	 the	ECG	and	BCG	can	be	gated	and	 signal-averaged;	

which	in	theory	will	remove	issues	such	as	postural	sway,	respiratory	motion,	ectopic	

beats	and	other	artefacts,	which	could	degrade	or	pollute	the	signal.		This	means	that	

Brown’s	 qualitative	 assessment	 of	 the	 BCG	 signal	 will	 be	 made	 redundant	 as	 it	 is	

averaged	over	many	cardiac	cycles	and	so	a	quantitative	assessment	must	be	used	e.g.	

timing	and	amplitude	of	the	various	waves.	

	

Figure	78:	Number	of	publications	in	BCG	and	SHM	over	60	years	

	

Figure	 78	 demonstrates	 the	 number	 of	 publications	 in	 ballistocardiography	 and	

structural	 heart	monitoring	 from	 1950	 to	 2010,	with	 the	 fall	 and	 subsequent	 rise	 in	

ballistocardiography	and	latterly	the	rise	in	structural	health	monitoring.	

	

BCG	technology	went	out	of	favour	in	the	1970s	(see	figure	78)	for	a	variety	of	reasons,	

including	 an	 unfavourable	 signal-to-noise	 ratio	 (SNR),	 the	 advent	 of	 seemingly	more	

sophisticated	 and	 accurate	 imaging	 modalities	 (both	 invasive	 such	 as	 cardiac	

angiography	 and	 non-invasive	 such	 as	 cardiac	 ultrasound),	 the	 large	 variation	 in	

acquisition	techniques,	the	choice	of	signal	and	analysis	and	a	lack	of	agreement	over	

what	 constituted	 BCG	 and	 what	 the	 BCG	 waveform	 actually	 represents.	 	 However,	

whilst	other	 imaging	 techniques	allow	direct	visualisation	of	 the	heart	and	diagnosis,	
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they	 do	 not	 permit	 simple,	 repeatable	 and	 non-invasive	 interrogation	 of	 its	 actual	

force.	 	 The	 corollary	 to	 BCG	 would	 be	 the	 LV	 PV	 loop	 (as	 discussed	 earlier)	 that	 is	

predominantly	 a	 research	 tool,	 invasive	 and	 not	 used	 currently	 in	 clinical	 practice.		

Thus	 applications	 for	 such	 BCG	 technology	 include	 non-invasive	 remote	monitoring,	

along	with	weight	 and	 BP,	 in	 order	 to	 assess	 cardiac	 function	 on	 a	 daily	 basis.	 	 For	

example	if	an	HF-LVSD	patient	feels	unwell,	a	recording	could	either	reassure	if	normal	

(for	 that	 patient)	 or,	 prompt	 early	 admission	 or	 review	 if	 there	 was	 a	 significant	

reduction	 in	 cardiac	 force,	 perhaps	 pre-empting	 a	 clinical	 decompensation	 334.		

Assuming,	 of	 course,	 that	 it	 could	 be	 proved	 that	 such	 a	 reduction	 in	 cardiac	 force,	

measured	 non-invasively,	 was	 clinically	 useful.	 	 In	 engineering	 terms,	 such	

measurement	would	be	termed	structural	health	monitoring	(SHM),	which	essentially	

is	 defined	 as	 a	 damage	 detection	 system	used	 for	monitoring	 the	 performance	 of	 a	

system.		Interestingly,	during	the	time	in	which	BCG	has	become	less	popular,	SHM	has	

increased	 in	 popularity,	 through	 telemedicine	 and	 remote-monitoring	 systems	 in	

medicine.		

 
Phibbs	et	al	(1967)335	used	an	ultra-low	frequency	(ULF)	BCG	to	investigate	individuals	

with	 predominantly	 acute	 cardiomyopathy	 due	 to	 infectious,	 autoimmune	 and	

inflammatory	 aetiology,	 rather	 than	 those	with	 chronic	HF-LVSD,	 of	 an	 idiopathic	 or	

ischaemic	DCM	aetiology.	As	expected,	no	 specific	pattern	was	 identifiable	as	 to	 the	

cause	of	 the	DCM,	but	 the	patient	cohort	all	 shared	a	 similar	alteration	 in	 their	BCG	

signal.	 	 These	 changes,	 although	 not	 present	 in	 all	 cases,	 included	 deep	 K	 wave,	

reduced	 J	 wave,	 deep	 H	 wave	 and	 late/reduced	 I	 wave	 (see	 figure	 79).	 	 It	 was	

interesting	to	note	that	the	peak	changes	recorded	in	the	BCG	signal	mirrored	clinical	

severity,	and	improved	as	the	course	of	the	clinical	condition	improved,	but	there	was	

little	discussion	nor	reasoning	as	to	why	this	might	be	the	case.		Gubner	et	al	(1953)	331	

however	 had	 previously	 delineated	 the	 reasoning	 behind	 such	 changes	 with	 HF;	

hypothesising	 that	 the	 late/reduced	 I	 wave	 and	 reduced/sluggish	 J	 wave	 peak	

reflecting	impaired	contractile	force,	prominent	H	wave	denoting	a	stiff	ventricle,	and	

there	may	also	be	a	large	diastolic	L	wave	reflecting	abnormal	return	flow	to	the	heart.		

	

Giovangrandi	 et	 al	 (2011) 336	 demonstrated	 the	 use	 of	 BCG	 to	 optimise	 the	

interventricular	delay	for	CRT	programming	(see	figure	80),	demonstrating	that	higher	
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J	wave	amplitude	 corresponded	 to	an	optimised	 interventricular	delay	of	 1.5	 vs	1	 in	

controls,	 but	 this	 has	 not	 been	 correlated	 with	 altered	 echocardiographic	 or	

symptomatic	outcomes.	

	

	

Figure	79:	BCG	and	ECG	data,	from	a	HF	failure	patient	and	a	control	

	

Figure	79	demonstrates	simultaneous	ECG	(above)	and	BCG	(below)	traces,	from	a	16	

year	old	female	patient	with	sarcoidosis	leading	to	heart	failure	taken	several	months	

apart	with	changes	in	clinical	state	mirroring	changes	in	BCG	and	a	control	patient	of	

the	same	age	and	gender	without	changes	in	clinical	state	or	BCG.	Note	in	both	cases,	

the	ECG	is	consistent	over	time.		
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Figure	80:	Use	of	BCG	to	optimise	interventricular	delay	in	CRT

	

Figure	80	demonstrates	the	use	of	BCG	to	optimise	CRT	interventricular	delay,	above	

the	signal	averaged	BCG	with	optimal	CRT	settings	 in	blue	and	suboptimal	settings	 in	

red	 (from	a	single	patient)	and	below	the	difference	 in	normalised	 J	wave	amplitude	

from	the	6	subjects	between	optimal	and	sub-optimal	CRT	interventricular	delay.		

	

It	 is	known	that	 the	BCG	signal	 is	 fundamentally	different	 in	patients	with	 IHD	or	HF	

and	 in	 the	 elderly.	 	 However	what	 is	 not	 clear	 is	 how	 the	 BCG	 signal	might	 change	

following	 CRT,	 in	 responders	 and	 nonresponders,	 if	 at	 all.	 	 Equally	 it	 remains	 to	 be	

determined	whether	quantitative	or	qualitative	analysis	of	the	baseline	BCG	signal	can	

lead	to	prediction	of	response	to	CRT.	 	Do	any	of	the	changes	 in	the	BCG	signal	post	

CRT	implantation	correlate	with	cardiac	specific	marker	of	response,	for	example	SV	or	

EF?		Once	again,	 it	should	be	noted	that	whilst	the	BCG	is	not	specifically	a	record	of	

the	 LV,	 if	 systolic	 function	 improves	 one	might	 expect	 this	 to	manifest	 by	 a	 change	

(whether	qualitative	or	quantitative)	in	the	BCG	signal.		
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6.1.3.2 Hypotheses	
 
Working	hypotheses	–	

1) There	will	be	a	conformational	change	in	the	BCG	signal	post-CRT	implantation	

in	those	who	respond.	

2) The	baseline	signal	could	predict	this	response.	

	

Null	hypotheses	–	

1) There	 will	 be	 no	 conformational	 change	 in	 the	 BCG	 signal	 post	 CRT	

implantation.	

2) 	The	baseline	signal	does	not	predict	this	response. 	

 

6.1.3.3 Materials	
 
The	 equipment	 used	 for	 this	 test	 included:	 A	 Kistler	multicomponent	 dynamometer	

(Type	 9257	 B),	 a	 Kistler	multichannel	 charge	 amplifier	 (Type	 5070	 A)	 (Kistler	 Group,	

Winterthur,	 Switzerland),	 a	 bespoke	 metal	 platform	 on	 which	 the	 patients	 stood,	

provided	 by	 the	 Department	 of	 Mechanical	 Engineering	 at	 USFD.	 	 Four	 ECG	 leads	

(right,	 left,	 foot	 and	 neutral),	 four	 white	 sensor	 (solid	 gel)	 electrodes	 (Ambu	 A/S,	

Copehagen,	 Denmark),a	 laptop	 	 (Toshiba,	 Tokyo,	 Japan),	 a	 g.USBamp	 biosignal	

amplifier	(g-tec,	Graz,	Austria)	(figure	81).	
Figure	81:	Kistler	signal	amplifier,	force	plate	and	metal	platform	

	

	

	

	

	

Figure	 81	 demonstrates	 the	 hardware	 used	 to	measure	 BCG,	 the	metal	 platform	on	

which	the	force	plate	was	attached	to	and	then	the	signal	amplifier	which	recorded	the	

BCG	signal	itself.	

6.1.3.4 Methods	
 
Key	 to	 the	whole	 process	was	 the	 use	 of	 the	 gUSB	 biosignal	 amplifier,	 which	 could	

record	BCG	and	ECG	data	 simultaneously,	 producing	a	 real-time	visual	 ECG	and	BCG	



258	|	Page	
 

trace.		This	allowed	the	BCG	signal	to	be	interpreted	in	the	light	of	the	cardiac	cycle	by	

gating	it	to	the	ECG.		The	patient	was	asked	to	stand	still	and	remain	silent	for	a	period	

of	10	minutes	whilst	BCG	data	was	captured-i.e.	for	around	600-800	cardiac	cycles.		

 
1. The	 force	 platform	 was	 placed	 on	 flat	 ground	 and	 checked	 for	 movement	

during	loading	taking	care	to	site	 it	away	from	electrical	appliances,	especially	

mobile	phones	and	laptop	power	supplies,	for	example.	

2. The	laptop	and	g.USBamp	were	connected	and	switched	on.	

3. The	g.Recorder	software	was	started.	File	>	Load	Setup…	and	Grand	Challenge	

configuration	was	chosen	(as	detailed	below).	

	

The	configuration	screens	were	identical	to	those	shown	in	figure	82.	namely;	–	

	

In	individual	channel	settings,	Channel	Number	1.1,	1.3,	1.5,	1.9	and	1.13	were	called	

RA,	 LA,	 LL	BCGX,	BCGY	and	BCGZ.	 	 The	box	 called	 “Acq”	 selected	 for	all	 but	1.4,	 the	

“type”	chosen	as	ECG,	the	sensitivity	range	set	between	-1000	(low)	to	+1000	(high),	

with	0	offset	and	unit	recorded	in	uV.		

	

In	 amplifier	 settings,	 common	 ground	 and	 common	 reference	 Group	 A-D	 were	

selected.	Under	options,	“Master”	was	selected,	under	mode	“Measure”	was	selected	

and	 under	 Analog	 Output,	 “square”	 was	 selected,	 amplitude	 5mV,	 offset	 0	mV	 and	

frequency	10	Hz.		Sampling	rate	set	to	1200	Hz,	channels	1,3,5,9	and	13	selected	and	

finally	 under	 	 “Channel	 settings”	 bipolar	 selected	 at	 channels	 3,	 5	 and	9	 for	 bipolar,	

high	pass,	low	pass	and	notch	0	was	selected	but	for	1	and	3,	bipolar	0	with	high	pass	

0.1Hz,	low	pass	200Hz	and	notch	50	Hz.		
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Figure	82:	Configuration	screens	for	g.Recorder	software	

 
Figure	82	demonstrates	the	configuration	screens	see	when	setting	up	the	gUSB	signal	

biosignal	 amplifier,	 on	 the	 left	 the	 general	 settings	 including	 ground,	 reference,	

channel	 selection,	 output	 and	 sampling	 and	 on	 the	 right	 the	 individual	 settings	 for	

each	channel	used	for	ECG	and	BCG,	including	name,	type,	sensitivity,	offset	and	unit.	

	

6.	 The	 Kistler	 charge	 amplifier	was	 switched	 on	 and	 the	 configuration	matched	 that	

shown	in	figure	83.		

Figure	83:	Configuration	screens	for	Kistler	charge	amplifier.	

	

Figure	83	demonstrates	the	configuration	screens	seen	on	the	Kistler	charge	amplifier,	

channel	1	(X	axis)	set	to	-7.952	pC/N,	channel	2	(Y	axis)	set	to	-7.935	pC/N	and	channel	

3	(Z	axis)	set	to	-3.720	pC/N,	all	with	DC	long,	low	pass	filter	off	and	units	of	100	N/V.		
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Each	channel	was	checked	in	turn,	selecting	the	channel	with	the	blue	dial	(rotated	to	

select	the	‘channel’	indicator,	and	clicked	to	modify,	rotate	and	click	to	reselect,	press	

ESC	button	to	return).	Key	points	for	all	3	channels.	

a.	Channel	=	On	

b.	Direct	current	=	Long	

c.	Low	pass	filter	=	Off	

d.	100	Newtons/Volt	

e.	Channel	1	(X	axis)	=	-7.952,	Channel	2	(Y	axis)	-7.395,	Channel	3	(Z)	-3.720	pC/N	as	

shown	for	each	channel.	

7.	ECG	leads	were	attached	to	the	patient	and	together	with	the	BCG	leads	were	then	

attached	to	the	g.USBamp	as	shown	in	Figure	84.	

Figure	84:	Connection	guide	for	BCG	and	ECG	leads	into	g.USBamp	

 
Figure	 84	 demonstrates	 the	 ECG	 electrode	 placement	 on	 the	 patient	 with	 the	

corresponding	 ECG	 lead	 placement	 and	 also	 the	 BCG	 lead	 placement	 in	 the	 gUSB	

biosignal	amplifier	

	

9.	The	computer	screen	was	check	to	ensure	that	the	ECG	signal	visible..	

10.	The	patient	was	prepared:	shoes	on,	feet	a	shoulder	width	apart,	standing	on	the	

centre	of	the	force	platform.	
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11.	On	g.Recorder,	 File	>	Record	 (or	 the	 red	button)	was	 selected,	 and	 the	patient’s	

identification	number	entered.	

12.	‘Measure’	was	pressed	on	the	Kister	signal	conditioner.	

13.	OK	was	pressed	on	 the	g.Recorder	and	 then	 ‘Recording’	 screen	was	pressed	and	

data	began	to	be	recorded.	

14.	The	Kistler	signal	conditioner	was	monitored	to	ensure	that	the	red	‘overload’	light	

was	not	illuminated.	

15.	 The	 g.Recorder	 screen	 was	 monitored	 to	 check	 that	 the	 BCG	 signal	 (bottom	 of	

screen)	did	not	saturate	(become	flat).	

16.	The	signal	was	recorded	for	a	few	minutes	before	stopping.	

17.	 The	 g.BSanalyze	 software	 was	 loaded.	 	 The	 hdf5	 file	 that	 had	 been	 saved	 was	

loaded	and	then	saved	as	a	.mat	file.		

	

Troubleshooting	configuration;	steps	8-12	were	replaced	as	follows:	

8.	All	loads/weights	were	removed	from	the	force	platform.	

9.	 On	 g.Recorder,	 File	 >	 Record	 (or	 the	 red	 button)	 was	 selected	 and	 the	 filename	

details	entered.	

10.	‘Measure’	was	pressed	on	the	Kister	signal	conditioner.	

11.	‘OK’	was	pressed	on	the	g.Recorder	and	then	‘Recording’	screen	was	pressed.		Data	

recording	then	began.	

12.	A	200g	weight	was	placed	on	 the	 force	platform.	 	 The	BCGZ	channel	 (bottom	of	

screen)	on	g.Recorder	was	observed	 to	ensure	 that	a	step	change	 in	 the	signal	 trace	

was	seen.	

	

Following	 step	15,	 the	 system	was	 returned	 to	 the	Matlab	prompt	 and	 the	 .mat	 file	

was	 loaded	 into	Matlab.	 ‘Plot(P_C_S.data(1,:,5)*100)’	 was	 typed	 in	 response	 to	 the	

Matlab	prompt,	and	the	graph	showed	a	step	from	0N	to	2N	(i.e.	200	grams)	

 
The	data	files	in	.mat	format	were	sent	to	NS	and	PG,	from	the	Mechanical	Engineering	

Department	at	the	USFD.	The	ECG	voltage	signals	were	summed	in	order	to	obtain	a	

single	 waveform	 proportional	 to	 Wilson’s	 central	 terminal.	 Signal-averaging	

techniques,	were	used	to	 identify	the	start	of	a	heartbeat	using	a	trigger	(>	0.2mV	in	

amplitude)	on	the	ECG	and	the	remainder	of	the	QRS	complexes	were	discarded.	Also,	
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beat-to-beat	 variability	 (caused	 by	 factors	 such	 as	 ectopic	 heartbeats	 or	 spurious	

signals)	meant	that	some	triggers	gave	erroneous	heartbeats	with	abnormally	 low	or	

high	 heartbeat	 periods	 were	 removed	 from	 the	 ensemble	 average	 by	 manually	

specifying	a	range	of	admissible	heartbeat	periods	for	each	patient.		

	

The	 ECG	 and	 the	 BCG	 signal	were	 bandpass	 filtered	 using	 a	 Chebyshev	 Type	 II	 filter	

with	pass	band	0.8	to	40	Hz,	stop	band	0.4	to	60Hz,	passband	ripple	1dB,	and	stopband	

attenuation	 20dB.	 This	 removed	 low	 frequency	 transients	 and	 high	 frequency	 noise	

from	 the	 two	 signals.	 The	 ECG	 QRS	 complex	 was	 then	 used	 as	 a	 gate	 or	 trigger	

mechanism,	where	signal	values	increasing	above	0.5	mV	in	the	QR	segment	caused	a	

trigger.	The	trigger	signal	was	then	used	to	determine	heart	rate	and	to	normalise	the	

ECG/BCG	time	domain	so	that	the	signal	morphology	was	 independent	of	heart	rate.	

This	 was	 performed	 by	 separating	 the	 time	 series	 into	 individual	 heart	 beats	

(characterised	 by	 the	 trigger	 signal),	 and	 interpolating	 between	 the	 data	 points	 to	

obtain	 1000	 linearly	 spaced	 signal	 values	 for	 each	 heart	 beat	 period.	 Ensemble	

averages	 of	 the	 resulting	 signals	 were	 then	 compared	 to	 ensemble	 averages	 of	 the	

original	 signals.	The	normalised	cross-correlation	coefficient	of	 the	original	and	time-

normalised	signals	were	 then	obtained	and	compared,	using	 the	 following	approach.	

First,	the	mean	of	the	input	ECG	signal	x	and	force	signal	y	were	removed:	

Equation	(6):	

𝑥 = 𝑥 − 𝑥	

Equation	(7):	

𝑦 = 𝑥 − 𝑦	

The	cross	correlation	coefficient	was	then	obtained:	and	normalised	using	the	number	

of	samples	N,	and	standard	deviations	s(x)	and	s(y).		

Equation	(8):	

 𝑅!" 𝑚 =
𝑥!!!𝑦!∗

!!!!!

!!!

 𝑚 ≥ 0

𝑅!"∗   (−𝑚)          𝑚 < 0

	

	

Finally,	 the	 Fourier	 transform	 of	 the	 time-normalised	 and	 original	 signals	 were	

obtained	and	compared.	
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Equation	(9):	

𝑅!" 𝑚 =  
1

𝑁 𝑠 𝑥 𝑠 (𝑦)  𝑅!" (𝑚)	

	

Files	 were	 returned	 as	 .pdf	 files,	 (see	 figure	 85)	 with	 the	 timing	 and	 force	 of	 the	

HIJKLMN	waves	 extracted.	 	 BCG	 waves	 were	 all	 timed	 against	 the	 start	 of	 the	 QRS	

complex	and,	using	the	standardised	nomenclature,	the	BCG	waveforms	were	labelled	

and	the	peak/trough	force	recorded	for	each.	 	This	was	repeated	for	each	patient	at	

each	 time	 point.	 	 Of	 the	 21	 patients	 recruited	 10	 patients	 had	 BCG	 acquired	 at	

baseline,	6	weeks	(pre	and	post	optimisation)	6	and	12	months	CRT	post-implantation.		

These	 comprised	 9	 responders	 and	 1	 nonresponder	 (see	 Chapter	 5).	 Markers	 of	

response	were	recorded	at	baseline,	6	and	12	months	only.	

Figure	85:	Example	figure	of	SABCG	and	ECG	results	
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Figure	 85	 demonstrates	 the	 signal	 averaged	 BCG	 ‘report’	 created	 for	 each	 patient,	

following	their	simultaneous	BCG	and	ECG	recording.	

 

6.1.3.5 Results	
	

Table	58:	Markers	of	response	in	responders	during	follow-up	

			Marker	 Units	
Baseline*	 6	months	 12	months	

Mean	 SD	 Mean	 SD	 Mean	 SD	
PVO2	 ml/kg/min	 12.59	 1.74	 13.89	 2.57	 14.60	 1.52	
LVEDV	 ml	 200.89	 43.69	 178.33	 38.08	 159.13	 36.63	

MLWHFQ	 /110	 41.78	 15.47	 29.88	 23.97	 23.56	 19.89	
6MWD	 m	 374.22	 84.15	 411.22	 47.09	 413.63	 72.27	

 
PVO2	 –	 peak	 oxygen	 consumption,	 LVEDV	 –	 left	 ventricular	 end-diastolic	 volume,	

MLWHFQ	–	Minnesota	living	with	heart	failure	questionnaire,	6MWD	–	6	minute	walk	

distance.	*Baseline	refers	to	first	pacemaker	clinic	follow-up	post	CRT	implantation.	

	

Table	59:	Parameters	at	which	may	influence	SABCG	

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
	

*Baseline	 refers	 to	pre-CRT	 implantation	 in	all	parameters,	other	 than	BiVP,	where	 it	

refers	to	6	weeks	follow-up.	BiVP	–	biventricular	pacing,	EF	–	ejection	fraction,	MAP	–	

mean	arterial	pressure,	PP	–	pulse	pressure,	QRSd	=	QRS	duration,	SV	=	stroke	volume.	

Parameter	 Units	
Baseline	 6	months	 12	months	

Mean	 SD	 Mean	 SD	 Mean	 SD	

BP	

Systolic	

mmHg	

131.4	 19.2	 133.2	 19.9	 136.3	 22.7	
Diastolic	 73.8	 10.0	 79.6	 10.2	 77.6	 15.7	

PP	 57.7	 12.7	 53.7	 12.9	 58.6	 19.1	
MAP	 93.0	 12.4	 97.4	 12.8	 97.1	 15.9	

Physical	
Weight	 kg	 89.4	 18.0	 89.4	 14.4	 86.5	 18.1	
Height	 m	 1.7	 0.1	 1.7	 0.1	 1.7	 0.1	

Echo	
EF	 %	 27.4	 11.7	 35.0	 15.7	 36.1	 15.9	
SV	 ml	 43.3	 11.6	 53.3	 19.4	 46.6	 22.1	

CRT	 BiVP*	 %	 91.0	 6.6	 94.4	 5.7	 94.7	 2.9	
ECG	 QRSd	 ms	 159.9	 26.9	 160.9	 17.6	 163.1	 20.8	
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Table	60:	SABCG	force	and	time	at	baseline	and	follow-up

	

*Time	=	duration	post	onset	of	QRS	complex.	Note	“Opt”	=	CRT	optimisation.		

Table	61:	Comparing	the	force	and	timing	of	each	SABCG	wave	in	responders	
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Figure	86:	SABCG	from	responders	at	all	time	points	

	
Figure	86	demonstrates	the	normalised	signal	average	BCG	waves	from	all	responders	

during	follow-up,	from	time	zero	(blue)	to	12	months	(yellow).	

Figure	87:	SABCG	from	responders	at	all	timepoints	(II)	

Figure	87	demonstrates	the	normalised	signal	average	BCG	waves	from	all	responders	

during	follow-up,	from	time	zero	(blue)	to	12	months	(yellow),	organised	by	wave.	
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Figure	88:	SABCG	from	responders	pre	and	post	optimisation	of	CRT	device	

Figure	 88	 demonstrates	 the	 normalised	 signal	 average	 BCG	 wave	 from	 responders	

before	(red)	and	after	CRT	optimisation	(green)	to	12	months.	

	

Figures	86	and	87	demonstrate	changes	 in	the	BCG	SA	waveform	over	time	for	the	9	

responders.	 In	 figure	 86,	 the	 waves	 consistently	 arrive	 earlier	 from	 baseline	 to	 12	

months	 and	 in	 figure	 87	 the	 amplitude	 of	 the	 waves	 is	 tempered	 over	 time.	 	 The	

increase	 in	 the	 J	 wave	 following	 optimisation	 seen	 in	 figure	 88	 has	 been	 reported	

previously,	 but	 there	 was	 also	 a	 much	 larger	 increase	 in	 the	 I	 wave	 in	 this	 cohort.		

There	 is	no	 consistent	pattern	 in	 the	nonresponder	during	 follow-up	with	 respect	 to	

the	timing	(figure	89)	or	amplitude	of	the	BCG	signal.		However,	there	appears	to	be	an	

increase	in	the	amplitude	for	all	BCG	waves	following	optimisation.	

	

Comparing	 the	BCG	signal	averaged	data	at	baseline	 (figure	90)	between	 responders	

and	the	nonresponder,	it	can	be	seen	the	responders	have	much	larger	positive	waves	

e.g.	J	and	L,	and	whilst	the	early	negative	wave	(I)	 is	smaller,	the	later	negative	wave	

(M)	 is	 larger.	 	 Finally,	 figure	 91	 demonstrates	 the	 SD	 in	 both	 time	 and	 force	 in	

responders	at	baseline.		
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Figure	89:	BCG	signal	averaged	data	from	the	nonresponder	at	all	time	points	

	
Figure	 86	 demonstrates	 the	 normalised	 signal	 average	 BCG	 waves	 from	 the	 non-

responders	during	follow-up,	from	time	zero	(blue)	to	12	months	(yellow).	

	

Time	zero	(baseline)	is	prior	to	implantation,	pre-	and	post-	refer	to	before	and	after	

optimisation	at	6	weeks	post-implantation,	and	six	and	twelve	refer	to	months	post-

implantation.	
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Figure	90:	SABCG	at	baseline	in	responders	and	nonresponder	

	

Figure	 86	 demonstrates	 the	 normalised	 signal	 average	 BCG	 waves	 from	 responders		

and	single	non-responder	at	baseline,	organised	by	wave.	

Figure	91:	SABCG	at	baseline	in	responders,	demonstrating	SD		

Figure	86	demonstrates	the	normalised	signal	average	BCG	waves	from	all	responders	

in	blue	at	baseline	with	standard	deviation	of	time	and	force.	
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Table	58	demonstrates	markers	of	response	in	the	cohort	of	patients	who	underwent	

SABCG	 testing,	 table	 59	 demonstrates	 other	 possible	 factors	 influencing	 the	 SABCG	

signal	and	table	60	demonstrates	the	mean	and	SD	of	each	SABCG	wave	at	each	time	

point.	 Due	 to	 the	 small	 sample	 size,	 there	 was	 no	 comparison	 made	 between	

responders	and	the	nonresponder	at	baseline.	Using	a	one-way	ANOVA	with	repeated	

measures,	 the	 only	 difference	 between	 the	 BCG	 waveforms	 in	 responders,	 which	

trended	 towards	 significant,	 is	 the	 reduction	 in	 the	 force	 of	 I,	 from	 time	 point	 zero	

(baseline)	 compared	 to	 12	months	 follow-up	 (see	 table	 61).	 Similarly,	 there	was	 no	

statistically	 significant	 change	 in	 the	 timing	of	 the	waves	during	 follow-up	 (see	 table	

61).		Although,	as	was	found	previously,	there	was	an	increase	in	the	J	wave	following	

optimisation,	 this	 was	 not	 statistically	 significant	 in	 either	 responders	 or	 the	

nonresponder.	

	

In	terms	of	correlations	between	the	4	markers	of	response	and	the	7	SABCG	waves,	

the	 largest	 were	 the	 M	 and	 the	 N	 wave	 at	 6	 and	 12	 months.	 	 These	 showed	 a	

significant	 correlation	 with	 LVEDV	 and	 peak	 VO2	 respectively.	 	 There	 were	 other	

correlation	 trends,	 including	 with	 the	 J	 wave,	 but	 none	 of	 these	 reached	 statistical	

significance.	 	 The	 directions	 of	 the	 significant	 correlations	 were	 consistent	 and	 as	

expected	with	M	and	LVEDV	having	a	negative	correlation,	and	N	and	peak	VO2	having	

a	 positive	 correlation.	 	 Figures	 92	 and	 93	 demonstrate	 the	 significant	 correlation	

between	the	M	and	N	waves	at	6	months,	with	LVEDV	and	peak	VO2	respectively.		

	

In	terms	of	relationship	between	the	7	SABCG	waves	and	other	parameters	that	may	

influence	the	BCG	signal,	there	were	significant	correlations	with	pulse	pressure	I	and	J	

wave	at	baseline,	QRS	duration	and	K	wave	at	baseline,	stroke	volume	and	weight	with	

M	wave	at	6	months	and	systolic	blood	pressure	and	I	wave	at	12	months.		In	terms	of	

the	4	markers	of	response	there	were	other	correlations	at	the	various	time	points	but,	

once	again,	these	were	not	statistically	significant.		Figures	94	and	95	demonstrate	the	

significant	correlation	between	the	K	and	I	waves	at	12	months	and	baseline	with	the	

QRSd	and	PP	respectively.		
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Figure	92:	Correlation	between	M	wave	and	LVEDV,	at	6	months,	in	responders	

	

The	correlation	between	the	 force	of	 the	M	wave	 from	BCG	with	 the	 left	ventricular	

end	diastolic	volume	at	6	months,	in	responders.	

	
Figure	93:	Correlation	between	N	wave	and	peak	VO2,	at	6	months,	in	responders	

	

The	 correlation	 between	 the	 force	 of	 the	N	wave	 from	BCG	with	 the	 peak	VO2	 at	 6	

months,	in	responders.	
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Figure	94:	Correlation	between	K	wave	and	QRSd,	at	12	months,	in	responders	

	

	

	

	

	

	

	

	

	

	

	

Figure	94	demonstrates	the	correlation	between	the	signal	average	BCG	K	wave	force	

and	the	QRS	duration	at	12	months	in	responders.	

	

Figure	95:	Correlation	between	I	wave	and	PP,	at	baseline,	in	responders	

Figure	95	demonstrates	the	correlation	between	the	signal	average	BCG	I	wave	force	

and	the	pulse	pressure	at	12	months	in	responders.	
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6.1.3.6 Discussion		
	

This	work	demonstrates,	for	the	first	time,	the	change	in	BCG	signal	during	follow-up.		

SABCG	 was	 remarkably	 stable	 in	 all	 the	 patients	 tested	 over	 time,	 with	 the	 same	

HIJKLMN	 waveform	 pattern	 seen.	 	 Whilst	 there	 was	 no	 statistically	 significant	

difference	 to	 this	 finding,	 the	whole	waveform	 in	 responders	appears	 to	 shift	 to	 the	

left,	appearing	earlier	after	the	QRS	complex	with	each	successive	point	in	time.		This	

seems	 logical	as	CRT	 is	a	device	for	patients	 in	whose	hearts	are	electromechanically	

dyssynchronous	 i.e.	with	 a	 delay	 in	 both	 conduction	 and	 contraction.	 The	work	 also	

appears	to	support	the	earlier	work	of	Giovangrandi	et	al	(2011)336	demonstrating	that	

CRT	optimisation	leads	to	an	increase	in	the	J	wave,	but	the	differences	recorded	did	

not	reach	statistical	significance	nor	sustained	at	6	or	12	months	follow-up.	

	

As	 discussed	 above	 by	 Gubner	 et	 al	 (1953)331	 and	 Phibbs	 et	 al	 (1967)335,	 in	 HF,	 a	

late/reduced	 amplitude	 I	 wave	 and	 reduced/sluggish	 J	 wave	 would	 be	 anticipated,	

reflecting	impaired	contractile	force,	prominent	H	wave	denoting	a	stiff	ventricle	and	a	

large	 L	 wave	 reflecting	 abnormal	 ventricular	 filling.	 Of	 all	 of	 these,	 CRT	 would	 be	

expected	 to	 have	 the	 greatest	 influence	 on	 the	 J	 wave	 as	 this	 best	 represents	 the	

cardiac	force.		Coupled	with	an	increase	in	EF%,	an	increase	in	J	wave	amplitude	might	

be	expected	following	implantation,	following	optimisation	and	also	during	subsequent	

6	and	12	months	follow-up.		Whilst	the	EF%	increased	during	follow-up,	the	recorded	

difference	was	not	significant	and	there	was	no	increase	in	the	SV	either.		In	hindsight,	

measuring	 any	 acute	 increase	 in	 EF%	 and	 SV	 pre	 and	 post-optimisation,	 or	 indeed	

implantation	 (with	 SABCG	 recording	 simultaneously)	 might	 have	 been	 interesting.		

What	 is	 apparent	 is	 a	 decrease	 of	 the	 early	 part	 of	 the	 signal-averaged	 BCG	 signal	

specifically	the	I	wave,	with	the	amplitude	reducing	at	each	successive	time	point.		This	

consistent	pattern	 is	 not	 seen	 for	 any	other	of	 the	waves	but,	 as	 for	 the	 J	wave,	 an	

increase	rather	than	a	reduction	in	the	I	wave	would	be	expected	following	an	increase	

in	cardiac	force	following	CRT	implantation,	and	certainly	following	positive	response.		

Such	 results	may	 be	 a	 consequence	 of	 the	 small	 sample	 size	 and	 regression	 to	 the	

mean,	both	in	terms	of	the	physiological	parameters	and	also	the	SABCG.		There	is	no	

clear	pattern	emerging	for	SABCG	the	nonresponder,	although	as	for	responders,	the	
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early	part	of	the	signal,	both	J	waves	and	I	reduce	over	time.		There	is	however,	a	small	

increase	in	J	wave	amplitude	following	optimisation.		At	baseline	there	appeared	to	be	

a	 significant	 difference	 in	 J	 wave	 amplitude	 between	 responders	 and	 the	

nonresponders.	Thus	both	the	null	hypotheses	can	be	accepted;	there	is	no	significant	

change	 in	 the	BCG	 signal	 in	 responders	 and	 this	 response	 could	not	 be	predicted	 at	

baseline.	 In	 terms	 of	 correlations,	 there	 are	 a	 variety	 of	 relationships	 between	 the	

individual	elements	of	the	signal	averaged	BCG	signal	and	the	4	markers	of	response	

and,	 whilst	 these	 academically	 interesting,	 they	 are	 not	 of	 clinical	 significance,	

particularly	 since	 these	 are	 lacking	 in	 consistency	 in	 terms	 of	 both	 direction	 and	

strength.	Part	of	the	problem	of	interpreting	SABCG,	is	the	variety	of	methods	used	to	

both	record	and	analyse	the	signal;	there	is	no	normal	range	reported	for	the	waves	in	

the	 literature,	 thus	 making	 comparison	 of	 this	 cohort	 to	 others,	 whether	 healthy	

controls	or	HF-LVSD	patients,	challenging		

	

Clearly	statistical	comparisons	are	limited	by	the	small	number	of	patients	recruited	to	

the	 study	 compounded	 by	 the	 disparity	 in	 number	 between	 responders	 and	

nonresponders.		This	being	said,	the	only	other	study	investigating	BCG	in	CRT	patients	

found	a	significant	increase	in	J	wave	in	6	patients	following	VV	optimisation.		However	

this	study	used	seated	BCG	and	no	detail	was	given	for	the	patients	or	for	the	method	

of	 CRT	 optimisation.	 	 The	 study	 described	 here	 predominantly	 looks	 at	 responders,	

whereas	the	6	patients	in	the	previous	study	had	yet	to	have	their	response	assessed.	

Indeed,	 a	 significant	 difference	 before	 and	 after	 optimisation,	 whilst	 scientifically	

interesting,	would	be	clinically	irrelevant	if	the	patients	fail	to	go	onto	respond	to	CRT.	

	

Despite	being	 asked	 to	 stand	 still	 and	 in	 silence	 for	 10	minutes,	 the	patients	 talked,	

moved	 and	 fidgeted	 to	 varying	 degrees.	 	 This	 could	 have	 affected	 the	 overall	 BCG	

signal,	even	with	averaging.		Patients	might	have	had	undiagnosed	aortic	or	peripheral	

artery	 atherosclerosis.	Whilst	 the	 former	 is	 unlikely	 considering	 that	 the	 patients	 all	

had	 transthoracic	echocardiography	and	cMR,	other	comorbidities	 such	as	CKD,	 fluid	

balance	disturbances	or	indeed	diseases	influencing	RV	function,	such	as	PH	or	COPD	

might	influence	the	BCG	signal.		
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A	10	minute	recording	time	was	chosen	as,	even	with	multiple	ectopic	heartbeats,	AF,	

or	irregular	breathing	this	was	assumed	to	provide	an	adequate	sampling	period.		Due	

to	the	configuration	of	the	bespoke	platform,	measurement	with	the	patient	standing	

rather	 than	 sitting	 or	 lying	 was	 found	 to	 be	 most	 appropriate.	 	 A	 seated	 platform	

would	 eliminate	 movement	 artefacts	 from	 both	 intentional	 e.g.	 fidgeting	 and	 also	

unintentional	 movements,	 such	 as	 postural	 sway.	 	 Ten	 minutes	 was	 perhaps,	 in	

hindsight,	 too	 long	 a	 period	 to	 expect	 the	 patient	 to	 remain	 still;	 it	may	 have	 been	

better	 to	 ask	 the	patient	 to	 stand	as	 still	 as	possible	 for	1	min,	 review	 the	data	and	

trying	 again	 if	movement	 artefacts	 were	 seen.	 	 Unfortunately	 this	 was	 not	 possible	

with	the	methodology	used.		

	

Interference	was	 initially	found	to	be	an	issue	for	the	ECG	signal	but	not	for	the	BCG	

signal.		This	was	put	down	to	the	proximity	of	the	ECG	chest	leads	to	a	power	source.		

The	 ECG	 electrodes	 used	 proved	 to	 be	 very	 sensitive	 and	 a	 gel	 type	 electrode	 was	

finally	used	to	good	effect.		

	

The	 force	plate	and	conditioner	were	very	heavy	duty	and	 robust	and,	 coupled	with	

the	 solid	 steel	 platform,	 were	 designed	 for	 general	 engineering	 applications	 rather	

than	for	specific	clinical	use.	 	Nevertheless,	the	system	provided	a	stable	platform	on	

which	the	patient	could	comfortably	stand.		In	retrospect,	more	could	have	been	done	

to	eliminate	movement	 artefacts;	 it	would	have	useful	 to	have	noted	 the	 timings	of	

any	large	movements	so	this	data	could	be	removed	and	the	timing	of	the	respiratory	

cycle	 could	 have	 also	 been	 recorded	 to	 allow	data	 recorded	during	 expiration	 to	 be	

identified	 and	 used	 in	 previous	 studies.	 	 It	 would	 also	 be	 interesting	 to	 perform	

simultaneous	ECG,	BCG	and	cardiac	imaging	recordings	to	ascertain	precisely	what	was	

happening	 during	 the	 cardiac	 cycle,	 perhaps	 with	 the	 force	 plate	 built	 into	 an	

echocardiography	couch.		

	

Ideally	 BCG	 recording	 would	 be	 a	 ‘one-button’	 procedure,	 with	 the	 patient	 being	

connected	to	the	ECG	leads	and	then	the	recording	button	being	pressed.		Indeed	talks	

were	held	with	Boston	Scientific	during	the	project,	to	develop	such	a	device.		As	the	

prototype	technology	used	was	quite	rudimentary,	 it	 required	substantial	 input	 from	

the	 experimenter	 to	 ensure	 that	 both	 ECG	 and	BCG	were	 recorded,	 the	 force	 plate,	
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signal	conditioner	and	g.USBamp	were	set	up	correctly	and	to	encourage	the	patient	

not	to	move	or	talk	 for	the	10	minute	test	period.	 	 It	 took	several	attempts	with	the	

initial	patients	to	fine-tune	the	settings	on	the	g.USBamp	and	the	charge	amplifier,	to	

optimise	 the	 position	 of	 the	 ECG	 leads	 and	 the	 type	 of	 ECG	 electrode,	 to	minimise	

interference,	 optimise	 the	 signal	 and	 ensure	 consistency	 during	 recordings	 and	

between	patients.	 	 As	 a	 result,	 only	 10	 patients	 (9	 responders	 and	 1	 nonresponder)	

underwent	 BCG	 recordings.	 	 This	was	 clearly	 a	 very	 small	 group.	 	 In	 addition,	 there	

were	no	ethnic	minorities	in	this	group	and	only	one	woman.		It	will	clearly	be	essential	

to	replicate	the	results	in	a	much	larger	population	before	any	firm	conclusions	can	be	

drawn.		

	

Future	work	could	include	evaluation	of	whether	the	technology	could	be	incorporated	

into	 the	 scales	 that	 patients	 are	 often	 given,	 along	 with	 an	 automated	

sphygmanometer,	 as	 part	 of	 the	 remote	 monitoring	 package	 from	 CRT	 device	

companies	such	as	Boston	Scientific	and	St	Jude.		Remote	monitoring	and	telemedicine	

is	becoming	increasingly	popular,	with	researchers	 investigating	which	measures	may	

help	to	identify	patients	who	are	likely	to	deteriorate	with	the	aim	of	pre-empting	this	

and	 preventing	 a	 hospital	 admission;	 left	 atrial	 pressure	 (LAP)	 monitors	 are	 one	

example	 of	 technologies	 that	 are	 used	 in	 this	 way.	 	 If	 there	 was	 a	 conformational	

change	in	the	BCG	signal	(due	to	a	reduction	in	cardiac	force,	for	example)	prior	to	a	

significant	deterioration,	then	this	could	alert	the	clinical	HF	failure	team	and	lead	to	

early	assessment	and	 intervention	(perhaps	up-titration	of	diuretics,	 for	example).	 	 It	

would	 have	 been	 interesting	 to	 follow	 a	 longitudinal	measurement	 of	 BCG,	 tracking	

deterioration	 and	 subsequent	 recovery,	 but	 none	 of	 the	 10	 patients	 deteriorated	

clinically	 during	 the	 12	 months	 follow-up	 post	 CRT	 implantation	 nor,	 indeed,	 were	

admitted	to	hospital.		

	

It	would	be	 interesting	 investigate	potential	 differences	 in	BCG	 signals	with	HF-LVSD	

aetiology	 e.g.	 for	 ischaemic	 versus	 non	 ischaemic;	 as	 whilst	 previous	 work	 has	

demonstrated	that	there	was	no	pattern	of	BCG	particular	to	one	cause	of	acute	HF	of	

varying	aetiologies,	 this	might	not	bare	 true	 for	chronic	HF-LVSD.	Furthermore,	what	

changes,	 if	any,	occurred	 in	patients	when	the	CRT	settings	were	altered,	such	as	RV	

only,	LV	only	and	biventricular	pacing	options.		
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The	mean	age	of	patients	with	HF	is	76,	this	cohort	is	no	exception,	and	so	they	have	

“aged"	hearts	and	the	BCG	signal	is	abnormal	in	most	patients	over	the	age	of	60,	most	

typically	 a	 reduction	 in	 the	 I	 and	 J	 wave	 amplitude,	 generally	 believed	 to	 reflect	 a	

reduction	in	contractile	force	of	the	heart,	but	the	problem,	as	mentioned	already,	 is	

that	 these	 are	 also	 identical	 to	 changes	 in	 those	 with	 IHD	 337.	 Does	 this	mean	 that	

everyone	over	the	age	of	60	has	some	degree	of	IHD	or	does	everyone	over	the	age	of	

60	 have	 age-related	 impaired	 contractile	 force	 of	 the	 heart	 that	 mirrors	 the	 BCG	

pattern	of	IHD?	Unfortunately	for	our	patients,	whilst	the	HF-LVSD	may	improve	with	

the	 CRT,	 in	 most	 cases	 it	 will	 not	 fully	 resolve	 and	 by	 implanting	 the	 CRT	 we	 are	

fundamentally	altering	the	electrical	timings	and	mechanical	forces	of	the	heart	and	so	

‘before’	 and	 ‘after’	 BCG	 signals	may	 appear	 completely	 different.	Due	 to	 the	 lack	 of	

data	 available	 it	 is	 difficult	 to	 differentiate	 electrical	 response	 e.g.	 reduction	 in	QRS,	

versus	 mechanical	 e.g.	 increase	 in	 EF%	 against	 symptomatic	 response	 e.g.	

improvement	in	NYHA	and	thus	the	BCGs	influence	in	each.		

	

Another	 potential	 area	 is	 the	 assessment	 of	 patients	 with	 aortic	 stenosis	 (AS);	 this	

patient	group	represent	a	significant	and	as	yet	unresolved	problem	in	contemporary	

cardiology.	 Currently	 patients	 with	 asymptomatic	 AS	 are	 monitored	 by	

echocardiography,	 with	 the	 frequency	 of	 scans	 increasing	 as	 the	 disease	 severity	

progresses.	If	this	could	be	performed	simultaneously	with	BCG	or	alone	by	BCG,	giving	

insight	into	the	contractile	performance	of	the	LV,	this	may	give	insight	into	those	who	

require	 surgical	 intervention,	 despite	 their	 echocardiographic	 parameters	 remaining	

unchanged.	Often	 this	 patient	 group	will	 remain	 stable	 for	many	 years,	with	 annual	

clinical	and	echocardiographic	assessments	but	suddenly	 the	LV	may	deteriorate	and	

symptoms	develop	which	may	render	them	unsuitable	for	surgery.	This	sudden	change	

is	 often	 missed.	 If	 there	 was	 a	 BCG	 marker	 that	 pre-empted	 clinical	 or	

echocardiographic	deterioration,	this	would	be	a	powerful	tool.		

 

6.1.3.7 Conclusions	
	

This	is	the	first	investigation	into	the	changes	in	SABCG	in	patients	implanted	with	CRT,	

both	 responders	 and	 nonresponders.	 Previous	 work	 has	 been	 limited	 to	 the	
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investigation	of	the	BCG	signal	during	optimisation	of	the	CRT	device.		This	work	adds	

to	 the	 existing	 evidence	 base,	 demonstrating	 that	 there	 is	 difference,	 albeit	 not	

significant,	 in	the	BCG	signal	between	responders	and	nonresponders	at	baseline.	 	 In	

addition	the	BCG	signal	appeared	to	change	during	the	12-month	follow-up	period	in	

responders.	 	 Whilst	 again	 this	 was	 not	 significant	 optimisation	 using	 the	 iterative	

method	did	not	lead	to	significant	increase	in	J	wave	as	found	previously.	

6.1.4 Hand	Grip	Strength		

6.1.4.1 Definition	

Hand	grip	strength	(HGS)	is	a	measure	of	the	maximum	force	that	can	be	generated	by	

the	 hand	 and	 forearm	 musculature	 during	 a	 single	 isometric	 contraction.	 	 HGS	

correlates	well	with	overall	body	strength	and	for	this	reason	it	is	used	as	a	marker	of	

exercise	 capacity,	 general	 health,	 and	 nutritional	 status.	 	 HGS	 can	 be	 assessed	

quantitatively	 using	 a	 hand-operated	 dynamometer.	 	 HGS	 deteriorates	 during	 the	

natural	 ageing	process	but	 also	due	 to	 chronic	diseases	affecting	organs	 such	as	 the	

lungs,	kidney	and	heart.		

6.1.4.2 Introduction	

HGS	can	be	used	to	stratify	HF	patients	according	to	their	NYHA	functional	class338	or	

peak	VO2
339	 and	 is	 an	 independent	 predictor	 of	 survival340-342.	 Strong	 correlation	has	

been	identified	between	the	severity	of	HF-LVSD	and,	as	a	consequence,	the	degree	of	

metabolic	 abnormality	within	 skeletal	muscle	 and	 it	 is	 thought	 that	 the	 reduction	 in	

HGS	in	HF-LVSD	patients	is	a	consequence	of	oxidative	stress	and	disuse	due	to	fatigue	

which,	in	turn,	leads	to	skeletal	muscle	atrophy	and	a	vicious	cycle	ensures	343.		

6.1.4.3 Pathophysiology	

Weight	loss	was	first	recognised	as	part	of	the	HF	syndrome,	as	far	back	as	the	time	of	

Hippocrates	(circa	400	BC),	who	noted	that	the	"The	flesh	 is	consumed	and	becomes	

water…	the	feet	and	legs	swell;	the	thighs	melt	away”	344.	However,	it	was	not	until	the	

late	1990s	that	this	weight	 loss	 in	HF,	termed	‘cardiac	cachexia’,	was	 identified	as	an	

independent	risk	 factor	 for	death345.	At	the	same	time,	the	muscle	hypothesis	of	HF-

LVSD	proposed	 that	“exercise	performance	 in	heart	 failure	patients	 is	predominantly	

limited	by	skeletal	muscle	and	less	by	the	performance	of	cardiac	muscle”	346.	As	noted	

previously,	 there	 is	 a	 paucity	 of	 evidence	 to	 suggest	 that	 resting	 measures	 of	 LV	
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function	have	any	correlation	with	functional	capacity	such	as	NYHA	class	347.	Perhaps	

it	is	not	weight	loss	per	se	that	determines	morbidity,	but	rather	sarcopenia,	“defined	

as	 the	age-associated	 loss	of	skeletal	muscle	mass	and	function”348.	 	As	alluded	to	 in	

chapter	 2,	 in	 HF-LVSD	 it	 is	 known	 that	 there	 are	 reductions	 in;	 the	 skeletal	 muscle	

power	of	both	upper	and	 lower	 limbs,	mitochondrial	number,	 the	 surface	density	of	

cristae	 and	 enzyme	 activity	 e.g.	 3-Hydroxyacyl-CoA-dehydrogenase,	 nutritive	 flow	 to	

muscle,	slow	twitch	type	II	fibres	and	aerobic	metabolism,	all	of	which	lead	to	a	loss	of	

skeletal	 muscle	 performance.	 Previous	 trials	 have	 shown	 that	 medications	 such	 as	

ACEi,	help	to	preserve	weight	but	do	not	affect	the	strength	of	skeletal	muscle	349	350	.	

Figure	96:	The	muscle	hypothesis	of	HF	symptoms	

	

Figure	96	demonstrates	the	muscle	hypothesis	of	heart	failure	symptoms,	how	chronic	

left	ventricular	dysfunction,	 leads	 to	stress,	a	catabolic	 state,	myopathy,	 sympathetic	

activation	 and	 then	 feeding	 back	 to	 further	 left	 ventricular	 dysfunction,	 with	

associated	fatigue	and	breathlessness.	

	

As	 the	 prevalence	 of	 sarcopenia	 in	 the	 general	 population	 over	 the	 age	 of	 65	 is	

between	 10-20%	due	 to	 factors	 such	 as	 inactivity	 and	malnutrition,	 a	 young	 patient	

with	 severe	 HF	may	 have	 similar	 grip	 strength	 to	 an	 older	 patient	with	mild	 HF	 351.	

However,	this	also	means	that	it	is	challenging	to	attribute	changes	in	muscle	mass	and	

function	 in	 the	 HF	 population,	 when	 the	 average	 age	 at	 diagnosis	 is	 76	 and	 other	

diseases	often	co-exist.		
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6.1.4.4 Testing	

A	 variety	 of	 different	 types	 of	 apparatus,	 techniques	 and	 protocols	 are	 used	 to	

measure	 HGS.	 	 The	 Jamar	 dynamometer	 (Lafayette	 Instrument	 Company,	 Indiana,	

USA)	 is	 considered	 to	be	 the	gold	standard	and	 the	benchmark	against	which	others	

are	 compared	 according	 to	 the	 American	 Society	 of	 Hand	 Therapists	 352.The	 Jamar	

device	 is	 based	 on	 a	 hydraulic	 system,	 but	 systems	 using	 strain,	 pneumatic	 and	

mechanical	assessment	methods	are	also	available.	 	Unfortunately,	the	results	of	the	

different	types	of	HGS	test	are	not	immediately	interchangeable;	HGS	may	be	reported	

in	 terms	of	different	units	with	 some	measuring	grip	pressure	 rather	 than	 force.	 	As	

reported	by	Roberts	et	al	 (2011)353,	 the	advantages	of	 the	Jamar	device	are	that	 it	 is	

simple	to	operate,	relatively	inexpensive,	small,	portable	and,	since	it	is	widely	used,	a	

large	amount	of	normative	data	is	available	from	the	literature.	However	oil	can	leak	

from	the	hydraulic	system	over	time	leading	to	inaccuracies,	strain	can	be	exerted	on	

the	 small	 joints	 of	 the	 hand	 and	 it	 is	 quite	 heavy	 (approximately	 500g).	 	 The	 Jamar	

device	measures	grip	strength	in	kilograms	(kgf)	or	pounds	(lbf)	of	force.	 	Test–retest	

reliability	is	considered	good	(r	=	0.88	to	0.93)	and	inter-rater	reliability	excellent	(r	=	

0.99)354.	 Measurement	 of	 HGS	 is	 sensitive	 to	 patient	 encouragement,	 time	 of	 day,	

posture355,	the	position	of	the	upper	limb	joints	(shoulder,	elbow,	and	wrist)356-359	and	

even	the	position	of	the	dynamometer	360	handle.	For	these	reasons	it	is	important	to	

adopt	a	standardised	approach	throughout	the	tests.	

6.1.4.5 Reference	Range	

Reference	values	are	available	for	HGS	in	healthy	adults;	32-56kgf	is	considered	normal	

in	men	and	19-30kgf	 in	women.		These	data	were	obtained	from	collation	of	outputs	

from	a	number	of	different	studies,	carried	out	on	over	7000	adults	with	an	age	range	

of	 20–95	 years	 and	 using	 a	 number	 of	 different	 methods	 361-363.	 For	 the	 Jamar	

dynamometer,	 a	 value	 of	 32-45kgf	 is	 considered	 normal	 for	 men	 and	 19–28kgf	 for	

women,	taken	from	data	acquired	from	more	than	700	healthy	adults	364.	The	majority	

of	patients	with	HF-LVSD	will	be	over	60	years	of	age	and	the	range	for	this	age	group	

is	 22-42kgf	 and	 14-24kgf	 for	men	 and	women	 respectively,	 however	 these	 data	 are	

based	on	a	healthy	cohort.	The	patients	might	be	expected	to	achieve	somewhat	lower	

values	(see	table	62)338-340	343	347.		
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6.1.4.6 CRT	

No	 papers	 were	 found	 in	 the	 literature	 investigating	 HGS	 before	 and	 after	 CRT,	 or	

indeed,	for	any	other	therapy	that	 improves	LV	function	e.g.	heart	transplantation	or	

LVAD.		When	considering	the	influence	of	CRT	it	is	difficult	to	predict	whether	baseline	

HGS	might	be	higher	in	nonresponders	or	responders.	

Figure	97:	Picture	of	the	Jamar	hand	dynamometer	

	

	

	

	

	

 
 
 
 
 
Figure	 97	 demonstrates	 the	 Jamar	 hand	dynamometer	 in	 use,	with	 the	 hand	 grip	 in	

position	two	and	the	dial	facing	away	from	the	patient.	

	

Table	62:	HGS	values	from	studies	conducted	on	HF	patients	

Author	 Year	 Study	
Dynamomete

r	
Findings	 HGS	(kg)	

Andews	 1997	 Prognosis	 Not	Stated	
Good	 34.13	

Poor	 33.13	

Senden	 2004	 Gender	 Jamar	
Men	 48.9	±	10.5	

Women	 30.6	±	5.4	

Castillo-

Martinez	
2007	 NYHA	class	 Smedley	

II	 28.4	±	10.7	

III	 24.8	±	10.4	

Izawa	 2009	 Handedness	 Jamar	
Left	 30.3	±	8.0	

Right	 36.3	±	9.2	

Gary	 2011	
Exercise	

Programme	
Jamar	

Before	 43.3	±	12.0	

After	 45.4±	11.3	
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6.1.4.7 Hypotheses	

 
Working	hypotheses	–	

	

1)	 HGS	 improves	 significantly	 in	 patients	 who	 are	 classed	 as	 responders	 to	 CRT,	

determined	from	a	combination	of	symptoms,	echocardiography	and	exercise	testing.		

	

2)	Clinical	response	to	CRT	is	predicted	by	HGS	measured	at	baseline.	

	

Null	hypotheses	–	

1)	HGS	shows	no	significant	improve	in	patients	who	are	classed	as	responders	to	CRT,	

as	 determined	 from	 a	 combination	 of	 symptoms,	 echocardiography	 and	 exercise	

testing.	

	

2)	Clinical	response	to	CRT	is	not	predicted	by	HGS	measured	at	baseline.	

6.1.4.8 Methods	

For	reasons	discussed	above,	care	was	taken	to	establish	and	follow	a	single	protocol	

for	 all	 patients.	 	 HGS	was	measured	 at	 baseline,	 and	 at	 6	 and	 12	months	 follow-up	

post-CRT	implantation,	using	a	Jamar	analogue	dynamometer	(figure	97).		The	patient	

was	asked	to	perform	3	maximal	grips	for	each	hand.		Tests	were	performed	between	

10:00-11:00	 am.	 	 The	 patient	 was	 positioned	 according	 to	 the	 American	 Society	 of	

Hand	 Therapists	 (ASHT)	 guidance	 for	 HGS	 assessment,	 that	 is;	 seated,	 with	 the	

shoulders	adducted	and	neutrally	rotated,	the	wrist	neutral	(at	between	0-30	degrees),	

the	elbow	flexed	at	90	degrees	and	the	forearm	in	a	neutral	position	(halfway	between	

pronation	and	supination)	and	resting	on	flat	surface	352.		

	

The	 dynamometer	 handle	 was	 set	 in	 the	 second	 position,	 comfortable	 for	 most	

individuals.		In	order	to	avoid	any	extraneous	influences	the	dial	was	positioned	facing	

away	 from	 the	 patient	 and	 the	 patient’s	 previous	 performance	 was	 not	 relayed	 to	

them.		Furthermore,	standardised	verbal	 instructions	and	encouragement	were	given	

as	per	Mathiowetz	et	al	(1984)354,	specifically	“I	want	you	to	hold	the	handle	like	this	

and	 squeeze	 as	 hard	 as	 you	 can'.	 	 The	 examiner	 demonstrates	 and	 then	 gives	 the	

dynamometer	 to	 the	 subject.	 	 After	 the	 subject	 is	 positioned	 appropriately,	 the	
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examiner	says,	‘Are	you	ready?		Squeeze	as	hard	as	you	can'.		As	the	subject	begins	to	

squeeze,	the	examiner	says,	‘Harder!	...	Harder!	...	Relax”.		

 

The	patient	was	told	to	stop	after	5	seconds	and	allowed	2.5	minutes	rest.	 	This	test	

was	repeated	3	times	for	each	hand.		Alternate	hands	were	used	in	order	to	minimise	

muscle	fatigue.		The	mean	maximal	value	for	each	hand	was	selected	for	comparison	

across	all	patients	and	during	follow-up.		Medications,	handedness,	weight	and	current	

or	previous	occupation	were	recorded	as	these	might	influence	the	results.		

	

The	maximum	HGS	recorded	for	each	hand	was	recorded	for	each	3	group	of	attempts	

(X,	Y,	Z)	and	the	mean	maximal	HGS	for	each	hand	was	calculated	(R	or	L	=	X+Y+Z/3).		

The	right	hand	was	always	assessed	first	and	then	the	left,	regardless	of	dominance.		

	

Measurement	of	HGS	was	performed	double-blind	with	neither	 the	patient	 knowing	

their	previous	performance	nor	 the	experimenter	having	access	 to	 this	data.	 	Where	

possible	 the	 relatives	 attending	 with	 the	 patient	 were	 kept	 away	 during	 testing	 to	

avoid	any	extraneous	influence.	

6.1.4.9 Results	
 
 

Table	63:	Patient	demographics	at	baseline	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Baseline	
Responders	 Nonresponders	 Student’s	T-test	

Mean	 SD	 Mean	 SD	 p	value	

Age	(years)	 65.4	 10.8	 71.2	 4.4	 =	0.53	

Weight	(kg)	 90.3	 18.5	 81.3	 18.5	 =	0.47	

BMI	(kg/m2)	 30.0	 4.4	 27.7	 4.6	 =	0.18	

Height	(m)	 1.73	 0.10	 1.71	 0.05	 =	0.73	
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Table	64:	Baseline	HGS	of	responders	and	nonresponders	

 
 
 
 
 
 
 
 
 

Table	65:	HGS	of	responders	at	baseline	and	during	follow-up	
	

 

Responder	

Baseline	 6	months	 12	months	

One	way	ANOVA		

with	repeated	measures	

	p	value	

Mean	 SD	 Mean	 SD	 Mean	 SD	 Baseline	vs	

Kgf	 Kgf	 Kgf	 Kgf	 Kgf	 Kgf	 6	months	 12	months	

GS	
L	 34.4	 11.4	 39.7	 10.8	 40.3	 11.3	 <	0.01	 <	0.001	

R	 35.7	 12.5	 39.8	 11.5	 42.2	 11.2	 <	0.01	 <	0.001	

	

Table	66:	HGS	of	nonresponders	at	baseline	and	during	follow-up	

 

 

 

 

 

 

 

 
	

Baseline	

Responders	 Nonresponders	 Student's	T-test	

Mean	 SD	 Mean	 SD	
p	value	

Kgf	 Kgf	 Kgf	 Kgf	

GS	
Left	 34.4	 11.4	 33.0	 5.3	 =	0.42	

Right	 35.7	 12.5	 31.2	 12.2	 =	0.25	

Nonresponder	

Baseline	 6	months	 12	months	

One	way	ANOVA		

with	repeated	measures	

	p	value	

Mean	 SD	 Mean	 SD	 Mean	 SD	 Baseline	vs	

Kgf	 Kgf	 Kgf	 Kgf	 Kgf	 Kgf	 6	months	 12	months	

GS	
L	 33.0	 5.3	 27.6	 8.9	 25.0	 11.7	 =	0.30	

R	 31.2	 12.2	 30.8	 9.9	 29.8	 8.1	 =	0.66	



285	|	Page	
 

Figure	98:	Left	and	right	HGS	in	responders	(grey)	and	non-responders	(black)	

Figure	 98	 demonstrates	 the	 left	 and	 right	 hand	 grip	 strength	 changes	 in	 responders	

(grey)	and	non-responders	(black)	following	CRT	implantation.	

	

There	were	no	statistically	significant	differences	between	the	HGS	of	responders	and	

non-responders	 at	 baseline	 (see	 table	 64).	 Figure	 97	 demonstrates	 changes	 in	 HGS	

during	 follow-up	 with	 standard	 error,	 demonstrating	 a	 clear	 improvement	 in	

responders,	without	any	overlap.	

	

A	 one-way	 ANOVA	 with	 repeated	 measures	 and	 Greenhouse-Geisser	 correction	

determined	mean	HGS	in	responders	was	statistically	different	between	time	points	in	

the	 left	 (F(1.77,	 17.71)	=	21.03,	p	<	0.001)	 and	 the	 right	 (F(1.36,	 13.58)	=	16.03,	p	<	

0.01)	hand.	Post	hoc	tests	using	the	Bonferroni	correction	revealed	that	HGS	increased	

statistically	 significantly	 between	 baseline	 and	 six	 months	 and	 baseline	 and	 twelve	

months	in	both	hands	(see	table	65	and	figure	97).		

	

A	 one-way	 ANOVA	 with	 repeated	 measures	 and	 Greenhouse-Geisser	 correction	

determined	that	there	were	no	statistically	different	between	time	points	in	the	left	(F	

(1.05,	4.22)	=	1.29,	p	=	0.30)	or	right	(F(1.12,	4.49)	=	0.24,	p	=	0.66)	hand	(see	table	66	

and	figure	97)	in	non-responders.		
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Based	 on	 the	 above	 findings	 the	 first	 working	 hypothesis;	 that	 HGS	 improves	

significantly	 in	patients	who	are	 classed	as	 responders	 to	CRT	was	accepted	and	 the	

null	 hypothesis	 rejected.	 	 The	 second	working	 hypothesis	was	 rejected	 and	 the	 null	

hypothesis,	that	the	clinical	response	to	CRT	cannot	be	predicted	by	baseline	HGS,	was	

accepted	

6.1.4.10 Discussion	
	

This	study	suggests	that	HGS	improves	in	patients	who	successfully	respond	to	CRT,	as	

measured	by	significant	 improvements	 in	peak	VO2,	LVEDV	and	MLWHFQ.		These	are	

novel	data	and	this	finding	has	not	been	reported	previously.		This	suggests	that	HGS	is	

a	 potential	 marker	 of	 response,	 as	 with	 MLWHFQ,	 peak	 VO2	 and	 LVEDV,	 HGS	

significantly	 improves	 in	 responders	 with	 no	 such	 improvement	 observed	 in	

nonresponders.	 	 Indeed,	 for	 nonresponders	 HGS	 was	 found	 to	 have	 decreased	 at	

follow-up	but	 this	 change	was	not	 statistically	 significant.	 	 There	was	a	difference	 in	

the	 recorded	 HGS	 at	 baseline	 between	 the	 groups,	 with	 HGS	 being	 higher	 in	

responders	than	nonresponders,	but	the	lack	of	statistical	difference,	means	that	HGS	

cannot	be	used	to	predict	response	based	on	the	findings	from	this	study.		Responders	

were	 also	 younger,	 heavier,	 taller	 and	had	a	higher	BMI	 at	 baseline,	 suggesting	 that	

they	were	more	nutritionally	replete,	but	this	was	not	statistically	significant.	Opasich	

et	al	(1997)75	also	found	height	and	weight	to	be	predictors	of	muscle	strength	in	HF-

LVSD.	Although	there	was	no	direct	measure	of	activity,	these	results	suggest	that,	by	

improving	 cardiac	 function	 in	 responders,	 CRT	 better	 enables	 patients	 to	 perform	

activities	of	daily	living	(ADL)	and	so	regain	strength	in	their	skeletal	muscles.		

	

Compared	to	data	reported	in	other	HF-LVSD	studies	this	cohort	of	patients	all	had	a	

similar	HGS	 and	what	would	 be	 considered	 at	 the	 lower	 end	of	 normal	 in	 a	 healthy	

population.	As	all	the	of	patients	were	classified	as	NYHA	III	this	might	be	expected,	for	

example	Castillo-Martinez	et	al	 (2009)	for	example,	report	a	wider	spread	of	HGS	for	

their	study,	on	patients	with	HF-LVSD	between	NYHA	II-IV		338.	

	

One	might	predict	that	CRT	responders	might	have	a	lower	HGS	than	nonresponders,	

denoting	 a	 more	 severe	 HF-LVSD	 syndrome	 at	 baseline,	 and	 greater	 propensity	 to	
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benefit	 from	 the	 CRT.	 	 Alternatively	 a	 higher	 HGS	 at	 baseline	 may	 indicate	 those	

patients	whose	HF	symptoms	originate	from	cardiac	rather	than	from	skeletal	muscle	

dysfunction	 and	 so	 improving	 the	 pump	 function	 of	 the	 heart	 will	 improve	 their	

symptoms.	 	 In	either	case,	one	might	expect	sustained	or	higher	HGS	at	 follow-up	 in	

responders,	 denoting	 an	 increased	 physical	 activity.	 	 Equally,	 one	 might	 expect	

nonresponders	 to	have	a	 reduced	HGS	at	 follow-up	due	 to	 the	continuing	decline	of	

their	physical	health	and	activity	due	to	HF-LVSD,	although	it	is	important	to	remember	

that	the	decline	in	HF	is	non-linear	365.	

 

Whilst	muscle	mass	does	not	automatically	equate	to	muscle	strength,	a	simple,	cheap	

and	non-invasive	way	to	support	the	findings	from	HGS	testing,	would	be	to	measure	

forearm	 circumference,	 to	 see	 if	 this	 improved	 following	 CRT,	 which	 in	 conjunction	

with	 an	 improvement	 in	HGS,	 could	 demonstrate	 a	 reversal	 in	 sarcopenia342	 366.	 But	

this	would	not	differentiate	lean	from	fat	mass.	Whilst	there	are	studies	demonstrating	

a	 positive	 correlation	 between	 anthropometric	 measures	 and	 HGS,	 these	 are	 in	

healthy	populations	and	not	following	an	intervention	in	individuals	with	HF-LVSD.	The	

main	 limitation	 of	 this	 work	 is	 that	 HGS	 was	 measured	 in	 isolation	 without	

simultaneous	measure	of	lean	body	mass,	due	to	the	absence	of	available	equipment	

locally.	 Thus	 rather	 than	 sarcopenia,	 this	 work	 should	 be	 considered	 a	 measure	 of	

dynapenia	 367.	 	 However,	 there	 can	 be	 gains	 in	 strength	 in	 the	 absence	 of	 muscle	

hypertrophy,	due	to	 increased	recruitment	of	existing	motor	units	and	so	testing	the	

strength	of	other	muscle	 groups	 such	as	 the	quadriceps	 could	also	be	 considered	 to	

confirm	 the	 changes	 from	 the	 upper	 limb	 368.	 Other	 comparative	 non-invasive	

measurements,	equipment,	cost	and	time	permitting,	could	have	been	made	using	bio-

impedance	 scales	 to	 measure	 changes	 in	 lean	 mass	 or	 using	 magnetic	 resonance	

imaging	to	measure	muscle	volume	74.	A	study	has	demonstrated	a	positive	correlation	

between	lean	body	mass	and	grip	strength	in	patients	with	chronic	HF	369	.	

	

Whilst	 there	 was	 a	 difference	 in	 weight	 and	 body	 mass	 index	 (BMI)	 between	 the	

responders	 and	 nonresponders,	 this	 was	 not	 significant,	 and	 furthermore,	 it	 was	

demonstrated	that,	rather	than	suffering	from	cardiac	cachexia	as	might	be	expected	

in	 end-stage	 HF-LVSD,	most	 patients	 were	 overweight.	 	 Perhaps	 this	 represents	 the	

rest	of	the	UK,	with	over	two-thirds	of	the	population	being	overweight	or	obese.		
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Muscle	 biopsy	 can	 be	 used	 to	 confirm	 the	 reversal	 of	 any	 metabolic	 changes	 in	

patients	with	 improved	HGS	but	 repeated	biopsy	might	 be	 unacceptable	 to	 patients	

and	ethically	questionable.	 	HGS	is	a	simple,	non-invasive	and	repeatable	measure	of	

peripheral	muscle	strength	yet,	as	mentioned	earlier,	no	trial	has	been	performed	to	

assess	 the	 effects	 of	 	 treatments	 such	 as	 heart	 transplant,	 LVAD	or	CRT	on	HF-LVSD	

patients.	 	 It	would	be	 interesting	 to	 see,	 as	 reduced	HGS	 is	 associated	with	 increase	

mortality	 and	 morbidity	 in	 HF-LVSD,	 whether	 improvement	 following	 CRT	 was	 also	

associated	with	 reduced	morbidity	 or	mortality.	 	 This	 cannot	 be	 confirmed	with	 our	

study,	due	to	the	short	follow-up	and	small	numbers	of	participants.		A	recent	study	370	

demonstrated	 that	 exercise	 training	 in	 HF-LVSD	 patients	 led	 to	 increases	 in	 muscle	

force	 and	 reductions	 in	 the	 levels	 of	 MuRF-1,	 a	 component	 of	 the	 ubiquitin-

proteasome	system	 involved	 in	muscle	proteolysis,	which	 is	 increased	 in	 the	skeletal	

muscle	of	patients	with	heart	failure.		It	would	be	interesting	to	see	what	impact	CRT	

also	had	on	such	a	biomarker	of	sarcopenia.		

 

Future	 studies	would	 require	 larger	 groups	 of	 patients	 to	 confirm	 these	 preliminary	

findings.	It	would	be	interesting	to	investigate	whether	there	is	a	difference	in	HGS	for	

patients	with	 ischaemic	 and	non-ischaemic	HF-LVSD.	 	 It	would	 also	be	 interesting	 to	

investigate	 what	 other	 components	 of	 peripheral	 muscle	 performance	 such	 as	

endurance	 or	 power	 could	 be	 improved	 by	 CRT.	 The	 only	 similar	 published	 study,	

performed	 in	 a	 similar	 cohort	 of	 patients	 with	 advanced	 HF	 who	 had	 an	 LVAD	

implanted,	demonstrated	an	improvement	in	HGS	of	26%	at	6	months	follow	up	371.		 

 

Many	of	the	patients	in	this	study	suffered	from	concomitant	disease.		Since	patients	

with	chronic	diseases,	such	as	COPD	and	CKD	also	experience	reductions	in	peripheral	

muscle	strength,	it	is	possible	that	those	with	a	greater	number	of	comorbidities	would	

have	 a	 lower	 HGS.	 	 However	 no	 correlation	 was	 found	 between	 the	 extent	 of	

comorbidities	 and	HGS	 in	 this	 study	 372	 373.	 Three	 patients	 scored	 highly	 e.g.	 normal	

HGS;	this	is	likely	because	they	were		15–20	years	younger	than	the	other	patients.		

	

There	was	 certainly	 a	 learning	 curve	 associated	with	 using	 the	 device,	with	 patients	

tending	to	score	higher	on	their	second	or	third	attempt.	For	this	reason	all	attempts	
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were	 included	 and	 then	 the	mean	 of	 the	 three	 attempts	 calculated.	 As	 in	 previous	

studies,	 both	 left	 and	 right	 hands	 were	 assessed,	 but	 there	 was	 no	 significant	

difference	between	the	R	and	L	hands	for	all	patients	assessed.	Only	one	patient	was	

left-handed.	The	 influence	of	handedness	 is	 still	 an	area	of	 contention	as	whilst	one	

might	assume	that	the	dominant	side	would	be	the	stronger	this	is	yet	to	be	born	out	

in	the	evidence.		

	

6.1.4.11 Conclusion	

As	HGS	did	not	differ	significantly	between	responders	and	nonresponders	at	baseline,	

this	work	does	not	support	the	use	of	HGS	as	a	predictive	marker	of	response	to	CRT.		

However	 a	 significant	 increase	 in	 HGS	 was	 recorded	 in	 responders	 at	 follow	 up	

suggesting	 that	 it	could	be	used	as	a	marker	of	 response	and,	moreover,	 is	a	unique	

measure	of	 the	HF	 syndrome,	 not	 covered	 currently	 by	others	markers	 of	 response.		

HGS	negatively	correlates	with	6MWD	and	so	in	this	regard,	demonstrates	similar	level	

of	utility	in	terms	of	providing	a	marker	of	response.			

	

Further	work	 could	 involve	 investigating	 exactly	what	 changes	 occur	 to	 the	 forearm	

musculature,	 whether	 these	 changes	 are	 mirrored	 in	 the	 leg	 and	 whether	 such	

changes	in	HGS	result	in	a	change	in	muscle	volume	or	lean	weight.		As	a	simple,	quick	

and	non-invasive	test,	there	are	few	negatives	to	adopting	routine	use	of	such	HGS	in	

assessing	for	CRT	response.	

6.2 Biomarkers	

6.2.1 Introduction	
A	 biomarker	 is	 "a	 characteristic	 that	 is	 objectively	 measured	 and	 evaluated	 as	 an	

indicator	 of	 normal	 biologic	 processes,	 pathogenic	 processes,	 or	 pharmacologic	

responses	to	a	therapeutic	intervention."	374. 

6.2.2 Uric	acid	

6.2.2.1 Introduction	

Patients	with	 HF-LVSD	 are	 at	 risk	 of	 hyperuricaemia,	 i.e.	 elevated	 levels	 of	 uric	 acid	

(UA).	 	 This	may	 occur	 for	 several	 reasons;	medications	 commonly	 prescribed	 in	 HF-

LVSD	 (such	 as	 aspirin	 and	 diuretics)	 reduce	 renal	 excretion	 of	 UA,	 comorbidities	
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common	 in	 HF	 include	 CKD,	 hyperparathyroidism,	 hypertension,	 diabetes,	

hypercholesterolemia	and	obesity	all	of	which	are	associated	with	a	higher	 incidence	

of	hyperuricaemia	and,	finally,	elevated	UA	is	a	consequence	of	chronic	inflammation	

as	 a	 result	 of	 “activation	 of	 xanthine	 oxidase,	 through	 free	 radical	 release,	 causing	

leukocyte	and	endothelial	cell	activation.”	375.	UA	impairs	nutritive	blood	flow376	and	is	

predictive	 of	 LV	 filling	 pressures	 377,	 haemodynamic	 compromise	 378	 and	 the	

development	 379	 and	 subsequent	 deterioration	 of	 HF-LVSD	 380	 (table	 67).	 	 A	 meta-

analysis	concluded	that	HF-LVSD	mortality	increased	13%	for	every	1	mg/dL	increase	of	

serum	UA	level	381.		

6.2.2.2 Pathophysiology	

An	 increase	 in	 serum	 UA	 is	 a	 physiological	 result	 of	 cell	 breakdown	 in	 a	 hypoxic	

environment;	 deoxyribonucleic	 acid	 (DNA)	 purine	 bases	 such	 as	 adenosine	 are	

converted	into	hypoxanthine,	xanthine	and	finally	uric	acid	by	xanthine	oxidase,	which	

is	 then	excreted	 in	urine.	 	The	normal	 ranges	of	serum	UA	 in	healthy	adult	men	and	

women	 are	 200-430	 and	 140-360umol/l,	 respectively.	 	 Xanthine	 oxidase	 inhibitors	

reduce	UA	and	have	been	shown	to	improve	peripheral	blood	flow382	and	BNP383	in	HF.	

However	a	debate	remains	as	to	whether	elevated	UA	is	a	cause	or	consequence	of	HF.		

Despite	 this	 uncertainty,	 serum	measurement	 of	UA	 is	 incorporated	 into	 the	 Seattle	

heart	 failure	 model	 (figure	 99)	 because	 of	 its	 recognised	 independent	 power	 in	

predicting	 mortality	 in	 HF-LVSD	 53.	 However	 there	 is	 no	 evidence	 to	 suggest	 that	

reducing	UA	levels	in	HF-LVSD,	leads	to	improved	outcomes	384.	

	

Table	67:	UA	levels	in	heart	failure	and	their	significance	

Author	 Year	 UA	level	(umol/l)	 Finding	

Anker	 2003	 >	163	 Predicts	worse	prognosis	

Pascual-Figal	 2007	 >	108	 Predicts	development	

Krishnan	 2009	 >	130	 Predicts	severe	symptoms	
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Figure	99:	Screen	shot	of	the	Seattle	Heart	Failure	Model	

 

6.2.2.3 UA	after	CRT	
There	are	only	 two	trials	 reported	that	specifically	 investigate	UA	and	CRT.	 	The	 first	

was	published	as	an	abstract	by	Dzeja	et	al	(2011)	and	describes	an	assessment	of	the	

metabolic	profile	of	the	heart,	including	serum	UA	concentrations,	before	and	after	10	

minutes	 of	 CRT.	 	 The	 authors	 found	 that	 myocardial	 substrate	 metabolism	 was	

improved	 with	 CRT	 switched	 on	 but	 did	 not	 comment	 on	 UA	 uptake	 by	 the	

myocardium	385.	A	more	recent	paper	by	Rinkuniene	et	al	(2014),	reported	that	lower	

UA	levels	at	baseline	were	associated	with	better	echocardiographic	response	to	CRT	

at	12	months	in	cohort	of	80	patients	386.	

	

Whilst	not	directly	related	to	CRT,	there	is	some	evidence	to	suggest	that	improvement	

of	cardiac	function	may	lead	to	a	meaningful	reduction	in	UA.		This	data	comes	from	a	

study	of	fifty-five	patients	with	end-stage	HF-LVSD.		For	these	patients	UA	levels	were	

found	 to	 drop	 by	 over	 25%	 after	 heart	 transplantation	 with	 the	 greatest	 decrease	

observed	after	12	months;	similar	results	might	be	expected	in	CRT	responders387.	UA	

correlates	 with	 nutritive	 flow	 to	 lower	 limb	 muscles	 as	 measured	 by	
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plethysmography345, FMD	has	been	 identified	 as	 a	predictor	of	 response	 to	CRT	and	

both	these	parameters	are	measures	of	endothelial	function.		One	might	predict	that	

serum	UA	might	mirror	changes	in	FMD	or	even,	given	the	work	described	previously	

by	Akar	et	al	(2008)322,	predict	response	to	CRT.		These	2	papers	suggest	that	UA	levels	

may	change	in	patients	who	have	improved	cardiac	function	and	therefore	respond	to	

CRT.	 	 If	 FMD	 predicts	 response	 and	 is	 lower	 in	 responders	 at	 baseline	 it	 might	 be	

expected	that	responders	will	have	higher	levels	of	serum	UA	at	baseline.		

6.2.2.4 Hypotheses	

Working	hypotheses	–	

1)	 UA	 improves	 significantly	 in	 patients	 who	 are	 classed	 as	 responders	 to	 CRT,	

determined	by	symptoms,	echocardiography	and	exercise	testing.		

	

2)	Clinical	response	to	CRT	is	predicted	by	UA	measured	at	baseline.	

	

Null	hypotheses	–	

1)	UA	does	not	improve	significantly	in	patients	who	are	classed	as	responders	to	CRT,	

determined	by	symptoms,	echocardiography	and	exercise	testing.	

	

2)	The	clinical	response	to	CRT	is	not	predicted	by	UA	measured	at	baseline.	

6.2.2.5 Method	

Clotted	blood	samples	were	taken	at	baseline	(within	2	weeks	pre-CRT	implantation),	

then	6	and	12	months	post-CRT	implantation	(+/-	2	weeks)	and	hand-delivered	to	the	

laboratory.		

	

Serum	 UA	 was	 analysed	 clinical	 chemistry	 department	 at	 STHT	 using	 a	 commercial	

enzymatic	colorimetric	test	(ACN	8700,	Roche,	UK).	 	Laboratory	staff	were	blinded	to	

the	markers	of	response.		The	reaction	on	which	the	test	is	based	is	as	follows;	uricase	

cleaves	 UA	 to	 form	 allantoin	 and	 hydrogen	 peroxide	 and	 then	 hydrogen	 peroxide	

oxidises	 4-aminophenazone	 to	 give	 a	 quinone-diimine	 dye,	 the	 colour	 intensity	 of	

which	is	directly	proportional	to	the	UA	concentration	and	is	determined	by	measuring	

the	increase	in	absorbance	
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In	Sheffield,	test	samples	of 201	and	581umol/l	are	run	with	an	accuracy	of	201	(±	3	

SD,	1.57	CV%)	pg/ml	and	581	(±	10	SD,	1.73	CV%)388.	CV%	is	the	coefficient	of	variation	

and	 equal	 to	 ((STDEV/Mean)*100)	 a	 commonly	 used	 measure	 to	 express	 assay	

performance.		

6.2.2.6 Results	
	

Table	68:	Baseline	characteristics	of	responders	and	nonresponders	

Baseline	

Responder

s	
Nonresponders	 Student’s	T-test	

P-value	
Mean	 SD	 Mean	 SD	

Uric	Acid	 umol/l	 399	 100	 442	 101	 =	0.45	

Creatinine	 mmol/l	 98	 20	 108	 19	 =	0.25	

eGFR	 ml/min/1.73m2	 65	 10	 60	 10	 =	0.49	

Diuretic	dose	(mg)	
Loop	diuretic	eq	 70	 57	 89	 71	 =	0.34	

MRA	eq	 23	 11	 29	 17	 =	0.31	

 

 
Table	69:	UA	and	renal	function	in	responders	at	baseline	and	follow-up	

Responders	

Time	point	(months	

One	way	ANOVA		

with	repeated	

measures		

P	value	

Baseline	 6	 12	 Baseline	vs.	

Mean	 SD	
Mea

n	
SD	 Mean	 SD	

6	

months	

12	

months	

Uric	Acid	 umol/l	 399	
10

0	
427	

13

8	
441	 128	 =	0.11	

Creatinine	 mmol/l	 98	 20	 102	 23	 104	 23	 =	0.28	

eGFR	
ml/min/1.7

3m2	
65	 10	 65	 14	 61	 10	 =	0.57	
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Table	70:	UA	and	renal	function	in	nonresponders	at	baseline	and	follow-up	

	

Figure	100:	UA	in	responders	(white)	and	nonresponders	(black)	

		

Figure	100	demonstrates	the	changes	in	serum	uric	acid	in	responders	(white)	and	non	

responders	(black)	following	CRT	implantation.		

Nonresponders	

Time	point	(months)	

One	way	ANOVA	

with	repeated	

measures	

P	value	

0	 6	 12	 Baseline	vs.	

Mean	 SD	 Mean	 SD	 Mean	 SD	
6	

months	

12	

months	

Uric	

Acid	
umol/l	 442	 101	 472	 141	 484	 163	 =	0.53	

Creatini

ne	
mmol/l	 106	 19	 108	 26	 114	 12	 =	0.34	

eGFR	
ml/min/

1.73m2	
61	 10	 60	 13	 58	 7	 =	0.61	
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There	 was	 no	 statistically	 significant	 difference	 in	 baseline	 values	 of	 UA	 between	

responders	and	nonresponders	(table	68	and	figure	100).		

	

During	subsequent	follow-up,	whilst	there	was	an	 increase	 in	UA	in	both	groups,	this	

was	not	 statistically	 significant.	During	 follow	up,	 renal	 function	deteriorated	 in	both	

groups	 and	 the	 dose	 of	 diuretics	 prescribed	 fell	 in	 responders	 and	 increased	 in	

nonresponders	but	these	differences	were	not	significant	(tables	69	and	70).	

 

6.2.2.7 Discussion		

The	 results	 demonstrate	 that	 serum	 UA	 levels	 measured	 at	 baseline	 did	 not	

differentiate	 between	 responders	 and	 nonresponders	 neither	 did	 UA	 levels	 change	

significantly	 following	 CRT.	 	 For	 these	 reasons,	 both	 the	 null	 hypotheses	 can	 be	

accepted	and	the	working	hypotheses	rejected.		Whilst	lower	baseline	levels	of	serum	

UA	were	 recorded	 for	 responders,	 levels	 of	UA	 rose	 in	 a	 similar	way	 in	 both	 groups	

during	 follow-up.	 	 This	 lack	 of	 interaction	 between	 CRT	 and	 UA	 was	 not	 previously	

known.		

	

UA	 is	 an	 indirect	marker	of	 inflammation,	hypoxia	and	 cell	 death	and	 so	 it	might	be	

reasonable	to	predict	that	improving	stroke	volume	(and	therefore	cardiac	output)	by	

CRT,	 would	 lead	 to	 improvements	 in	 such	 a	 metric	 since,	 as	 found	 following	 heart	

transplant,	 CRT	 can	 bring	 about	 a	 reduction	 in	 myocardial	 oxygen	 demand	 and	

improve	blood	flow	and	therefore	tissue	perfusion.		Similarly,	nonresponders	might	be	

expected	 to	 have	 a	 more	 advanced	 HF-LVSD	 syndrome	 at	 baseline,	 demonstrating	

higher	 levels	 of	 UA,	 and	 so	 differentiating	 themselves	 from	 responders,	 particularly	

since	other	studies	have	demonstrated	that	UA	impairs	nutritive	flow	in	HF-LVSD	and	

since	there	is	a	significant	difference	between	the	endothelial	function	of	responders	

and	nonresponders	at	baseline.		However,	rather	than	having	a	direct	causative	role,	it	

seems	likely	that	the	increasing	level	of	UA	is	a	‘fellow	traveller’	 in	the	advancing	HF-

LVSD	syndrome.		In	any	case,	changes	in	UA	are	likely	to	be	multifactorial.	

	



296	|	Page	
 

All	 patients	 had	 some	degree	of	 chronic	 renal	 impairment,	with	 the	 average	patient	

being	 in	 chronic	 kidney	 disease	 (CKD)	 stage	 2	 and	 with	 an	 estimated	 glomerular	

filtration	 rate	 (eGFR)	 60-65ml/min/1.73m2.	 	Whilst	 renal	 function	 and	 diuretic	 dose	

were	recorded	in	our	cohort	of	patients,	other	factors,	which	could	influence	UA	level	

such	 as	 diet,	 for	 example,	 were	 not	 recorded	 and	 so	 variations	 may	 reflect	 such	

influences.	 	 Other	 authors	 investigating	 HF-LVSD	 and	 UA	 did	 not	 comment	 on	 such	

variables	 either	 but	 simply	measured	weight	 and	 renal	 function.	 	 Asking	 patients	 to	

fast	 from	midnight	 the	day	before	their	assessment	controlled	 for	dietary	 intake	and	

fluid	status.		Importantly,	none	of	the	patients	had	a	history	of	gout	or	were	taking	UA	

lowering	agents.	

	

Arora	 et	 al	 (2009)387,	 demonstrated	 that	 UA	 levels	 dropped	 from	 abnormal	 to	 near	

normal	following	heart	transplant,	with	the	decrease	being	sustained	at	6	years	follow-

up,	and	 levels	 falling	higher	 in	 the	subgroup	of	UA	>	502umol/l	 than	 the	<	502umol.	

These	patients	were	younger	(10-15	years),	had	a	lower	NT-proBNP	(mean	120ng/ml)	

and	were	 likely	 to	have	been	physiologically	 fitter	 than	this	cohort.	 	They	 found	that	

hsCRP	 and	 NT-proBNP	 were	 significantly	 lower	 in	 the	 UA	 group	 <	 502umol/l,	

supporting	their	hypothesis	that	UA	is	a	marker	of	inflammation	and	oxidative	stress,	a	

finding	which	was	not	replicated	in	this	study.		In	contrast	to	the	work	by	Rinkuniene	et	

al	 (2014)386,	 UA	 levels	 at	 baseline	 were	 not	 associated	 with	 echocardiographic	

response,	however	the	cohort	size	was	4	times	larger	and	the	majority	of	patients	had	

HF-LVSD	of	a	non-ischaemic	origin.		

6.2.2.8 Conclusion	

There	 is	 insufficient	 evidence,	 based	 on	 this	 study,	 to	 recommend	 the	 use	 of	UA	 as	

either	 a	 marker	 or	 predictor	 of	 response.	 	 There	 is	 a	 no	 statistically	 significant	

difference	between	serum	UA	levels	at	baseline	in	responders	and	nonresponders	and	

responders	have	lower	levels	of	UA	than	nonresponders.		Serum	UA	levels	increased	in	

both	 groups	 during	 follow	 up	 but	 these	 increases	 were	 not	 significant.	 	 There	 was,	

however,	a	statistically	significant	correlation	between	UA	levels	and	peak	VO2.		Once	

again,	the	study	would	need	to	be	repeated	in	much	larger	and	more	heterogeneous	

HF-LVSD	group	before	the	results	can	be	generalised	to	the	HF-LVSD	population	as	a	

whole.			
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6.2.3 Troponin	T	

6.2.3.1 Introduction	

Elevated	 levels	of	 serum	troponin	 (Tn)	are	common	 in	patients	with	HF-LVSD	389	and	

have	been	shown	to	correlate	with	a	worse	prognosis	390,	more	severe	disease	391	and	

clinical	 outcomes	 such	 as	 cardiac	 transplantation	 392.	 	 Increasing	 levels	 of	 Tn	 also	

correlate	 with	 an	 increasing	 risk	 of	 HF-LVSD	 393,	 with	 HF	 mortality	 394	 and	 adverse	

remodelling/LV	 dilation395.	 Depending	 on	 the	 assay	 used	 and	 population	 sampled,	

approximately	 30%	 of	 HF-LVSD	 patients	 (range	 6-80%)	 have	 detectable	 circulating	

levels	of	Tn	396.		

6.2.3.2 Pathophysiology	

Troponins	 are	 a	 group	of	 proteins	 pivotal	 to	 the	 contraction	of	 striated	muscle	with	

troponin	 I	 (TnI),	 troponin	 C	 (TnC)	 and	 troponin	 T	 (TnT)	 found	 in	 cardiac	 muscle.		

Following	myocardial	 infarction	or	 ischaemia,	myocyte	breakdown	leads	to	release	of	

Tn	into	the	circulation.		Serum	Tn	is	measured	in	routine	clinical	practice	to	detect	such	

myocardial	injury	and	to	diagnose	conditions	such	as	AMI.		Distinct	isoforms	of	TnT	and	

TnI	 exist	 in	 skeletal	 (31	 and	 21kDa	 respectively)	 and	 cardiac	 (37	 and	 24kDa	

respectively)	muscle,	allowing	their	differentiation.		Serum	cardiac	Tn	can	be	elevated	

in	 other	 conditions,	 both	 cardiac-related	 e.g.	 pulmonary	 embolism	 and	 non-cardiac	

e.g.	extreme	exercise.		Therefore	simply	measuring	a	rise	in	Tn	gives	no	insight	into	the	

cause,	as	it	may	be	due	to	an	ischaemic	cardiac	event	e.g.	plaque	thrombosis,	a	cardiac	

but	not	ischaemic	event	e.g.	pulmonary	embolus	or	an	ischaemic	but	not	cardiac	event	

e.g.	acute	blood	loss;	hence	the	importance	of	both	taking	serial	Tn	measurements	and	

also	placing	the	results	in	a	clinical	context.		The	framework	for	the	universal	definition	

of	myocardial	infarction	(table	71)	is	used	for	the	interpretation	of	such	results,	based	

on	work	by	Thygesen	et	al	(2012)	397.	

6.2.3.3 Mechanism	

As	more	 sensitive	 and	 advanced	 assays,	 such	 as	 high	 sensitivity	 (hs)	 TnT,	 have	 been	

developed	 the	 threshold	 of	 detection	 of	 circulating	 Tn	 has	 decreased	 and	 a	 greater	

number	of	HF-LVSD	patients	have	been	found	to	have	detectable	levels	of	circulating	

Tn	 (table	72)	 389-391	 393	 395	 	 	The	mechanism	of	elevated	TN	 in	HF-LVSD	 is	unclear,	but	
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according	to	Kociol	et	al	(2010)396	it	is	related	to	factors	such	as	increased	ventricular	

wall	 shear	 and	oxidative	 stress,	 inflammation,	 neurohormonal	 activation	and	altered	

Ca2+	handling	leading	to	myocyte	necrosis,	apoptosis,	injury	and	hence	release	of	Tn.		

Table	71:	Universal	classification	of	myocardial	infarction	

Category	 Type	
1	 Spontaneous	
2	 Secondary	to	an	ischaemic	imbalance	
3	 Resulting	in	death	when	biomarkers	unavailable	

4	
A	 Related	to	PCI	
B	 Related	to	stent	thrombosis	

5	 Related	to	CABG	

6.2.3.4 CRT	

Aarones	et	al	(2011)398	published	the	first	data	suggesting	that	hsTnT	could	be	used	to	

predict	response	to	CRT,	demonstrating	that	patients	with	a	baseline	value	of	less	than	

15ng/ml	were	more	likely	to	respond.	Patients	were	tested	at	baseline	and	then	3,	6,	

and	 12	 months	 post-CRT	 implantation.	 	 Most	 were	 found	 to	 have	 abnormal	 hsTnT	

levels	at	baseline.		No	comment	was	made	about	optimisation	of	the	devices	and	the	

patients’	 symptoms	were	assessed	by	NYHA	 functional	 class	 alone.	 It	 is	 notable	 that	

elevated	 hsTNT	 was	 more	 common	 in	 patients	 with	 ischaemic	 heart	 disease	 and	

transmural	 scar	 on	 cMR.	 	 The	 authors	 believed	 this	 reflected	 low-grade	 ongoing	

ischaemia	or	microvascular	obstruction,	despite	the	relative	absence	of	symptoms	and	

satisfactory	 revascularisation	 as	 assessed	 by	 pre-procedural	 angiography.	 	 Tn	 levels	

along	with	other	 variables,	 such	 as	 hsCRP,	NYHA	 class,	 creatinine	 and	 red	blood	 cell	

count,	 were	 incorporated	 into	 the	 HF-CRT	 score	 by	 Nauffal	 et	 al	 (2015)399	 who	

demonstrated	that,	on	multivariate	analysis,	patients	with	a	Tn	greater	than	28ng/l	at	

baseline	were	morely	likely	to	die,	required	an	LVAD	or	heart	transplant.	
Table	72:	Tn	levels	in	heart	failure	and	their	significance	

Author	 Year	 Troponin	
Level	

(ng/ml)	
Finding	

Missov	 1997	 TnI	 72.1±15.8	 Raised	Tn	is	common	

Latinin	 2007	 hsTnT	 >	12	 Predicts	severity	

Peacock	 2008	 TnI	 >	100	 Predicts	mortality	

Sundstrom	 2008	 TnI	 >	10	 Predicts	development	

Fertin	 2010	 TnI	 >	50	 Predicts	remodelling	
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6.2.3.5 Hypotheses	

Working	hypotheses	

1)	 hsTnT	 improves	 significantly	 in	 patients	 who	 are	 classed	 as	 responders	 to	 CRT,	

determined	by	symptoms,	echocardiography,	and	exercise	testing.		

	

2)	The	clinical	response	to	CRT	could	be	predicted	by	hsTnT	measured	at	baseline.	

	

Null	hypotheses	

1)	hsTnT	does	not	 improve	 significantly	 in	patients	who	are	 classed	as	 responders	 to	

CRT,	determined	by	symptoms,	echocardiography	and	exercise	testing.	

	

2)	The	clinical	response	to	CRT	could	not	be	predicted	by	hsTnT	measured	at	baseline.	

	

6.2.3.6 Method	

Clotted	 blood	 samples	 were	 taken	 from	 the	 patients	 at	 baseline	 (before	 CRT	

implantation	within	 2	weeks)	 and	 at	 6	 and	 12	months	 post	 CRT	 implantation	 (+/-	 2	

weeks)	and	hand-delivered	to	the	laboratory.		

	

The	 hsTnT	 samples	were	 analysed	 by	 the	 clinical	 chemistry	 department	 at	 the	 STHT	

using	 a	 commercially	 available	 electrochemiluminescence	 immunoassay	 (Elecsys,	

Roche,	 UK).	 	 The	 assay	 employs	 two	 monoclonal	 antibodies	 specifically	 directed	

against	TNT.		The	antibodies	recognise	two	troponin	T	epitopes	at	amino	acid	position	

125-131	and	136-147.		The	hsTnT	calibrators,	contain	recombinant	human	cardiac	TnT,	

isolated	 from	cell	 culture	of	E.	coli	BL21	containing	a	vector	with	human	cardiac	TnT	

isoform	 gene.	 	 After	 fermentation,	 the	 cells	 are	 disrupted	 and	 recombinant	 human	

cardiac	 TnT	 is	 then	 purified	 by	 ion	 exchange	 chromatography.	 	 Western	 blotting,	

immunological	activity	and	protein	content	characterise	purified	recombinant	human	

cardiac	TnT.	

	

In	Sheffield,	hsTnT	test	samples	of 201	and	581ng/ml	are	run	with	an	accuracy	of	201	

(±	3	SD,	1.57	CV%)	pg/ml	and	581	(±	10	SD,	1.73	CV%)	388.	
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6.2.3.7 Results	
 

Table	73:	Baseline	hsTnT	in	responders	and	nonresponders	

Baseline 
Responders Nonresponders Student's T-test 

Mean SD Mean SD p value 

hsTnT ng/l 21.1 4.5 16.0 9.6 = 0.38 
	

Table	74:	hsTnT	in	responders		

Responders 

Time point (months) 

One way ANOVA 
with repeated 

measures 
p value 

Baseline 6 12 Baseline vs. 

Mean SD Mean SD Mean SD 6 
months 

12 
months 

hsTNT ng/l 21.1 4.5 12.9 8.0 15.2 11.8 0.53 

 
Table	75:	hsTnT	in	nonresponders		

Nonresponders 

Time point (months) 

One way ANOVA 
with repeated 

measures 
p value 

Baseline 6 12 Baseline vs 

Mean SD Mean SD Mean SD 6 
months 

12 
months 

hsTNT ng/l 16.0 9.6 24.7 13.8 33.9 4.5 0.25 
	

Figure	101:	hsTnT	in	responders	(white)	and	nonresponders	(black)		
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Figure	 101	 demonstrates	 the	 changes	 in	 high	 sensitivity	 troponin	 T	 in	 responders	

(white)	and	non	responders	(black)	following	CRT	implantation.		

	

There	was	 no	 significant	 statistical	 difference	 between	 the	 groups	 at	 baseline	 (table	

73).		The	decrease	in	serum	hsTNT	recorded	in	responders	and	the	increase	observed	

in	nonresponders	(table	74,	75	and	figure	101)	did	not	reach	statistical	significance.	

6.2.3.8 Discussion	

Based	on	the	results	of	this	study,	there	was	not	sufficient	difference	between	TnT	in	

responders	and	nonresponders	at	baseline	to	warrant	its	consideration	as	a	predictor	

of	CRT	response.		There	is	also	no	merit	in	using	hsTnT	during	follow	up	as	a	marker	of	

response,	 as	 although	 levels	 fell	 in	 CRT	 responders,	 the	 reductions	 were	 not	

statistically	significant.		Whilst	levels	of	hsTnT	improved	over	12	months	in	responders	

they	increased	in	nonresponders.		The	normal	range	hsTnT	is	0-14ng/ml	and	only	50%	

of	the	patient	cohort	(including	three	responders)	had	an	abnormal	hsTnT	at	baseline,	

and	so	from	this	perspective	it	seems	unlikely	that	even	with	larger	cohort	there	would	

be	significant	difference.		For	these	reasons,	both	null	hypotheses	were	accepted	and	

the	working	hypotheses	rejected.	

	

A	significantly	a	larger	study	was	carried	out	by	Aarones	et	al	(2011)398	who	recruited	

over	80	patients.	The	majority	of	this	patient	cohort	had	abnormal	hsTnT	at	baseline	

and	HF-LVSD	of	an	ischaemic	origin.		Interestingly,	in	contrast	to	the	present	study,	the	

responders	were	found	to	have	lower	values	of	hsTnT	at	baseline,	denoting	possibly,	a	

less	severe	HF-LVSD	syndrome.		The	nonresponders	in	that	study	had	a	lower	LVEF	and	

higher	NT-proBNP	at	baseline	suggesting	the	 lack	of	response	might	be	multifactorial	

furthermore	 hsTnT	 levels	 were	 not	 repeated	 to	 what	 influence	 CRT	 had	 on	 cardiac	

remodelling.	 	 The	 authors	 made	 no	 comment	 as	 to	 why	 responders	 had	 lower	

circulating	 levels	 of	 hsTnT	 at	 baseline,	 although	 it	 is	 known	 that	 patients	 with	 non-

ischaemic	 HF-LVSD	 are	 more	 likely	 to	 respond	 to	 CRT.	 Our	 cohort	 comprised	 50%	

patients	with	HF-LVSD	of	ischaemic	origin	but	no	difference	was	observed	between	the	

groups.		
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There	was	no	significant	difference	in	renal	function	or	haemoglobin	and	none	of	the	

patients	 had	 a	 clinical	 decompensation	 or	 myocardial	 infarction	 during	 12	 months	

follow-up,	 which	might	 have	 led	 to	 confounding	 influence.	 As	 there	was	 no	 control	

group	and	there	is	always	the	possibility	that,	because	HF-LVSD	is	a	naturally	fluctuant	

condition	 with	 a	 variable	 course,	 as	 for	 natriuretic	 peptides,	 hsTnT	 may	 vary	

significantly	 even	 without	 intervention	 such	 as	 CRT.	 	 Attempts	 to	 minimise	 this	

included	taking	the	sample	fasted,	pre-medication	and	pre-exercise	at	the	same	time	

each	assessment.	

	

It	 is	 important	to	note	that	none	of	the	patients	with	elevated	hsTnT	had	symptoms,	

signs	or	an	ECG	 indicative	of	AMI	and	all	 completed	CPET	 to	exhaustion	without	any	

sustained	 ill	 effects.	 	None	of	 the	patients	had	an	AMI	or	 clinical	decompensation	 in	

the	 intervening	periods	between	 follow-up	assessments;	 TnT	 levels	 can	 take	days	 to	

fall	and	so	assessment	shortly	after	a	decompensation	could	lead	to	over-estimation	of	

hsTnT.		 

6.2.3.9 Conclusion	

It	 can	 be	 concluded	 that,	 although	 hsTnT	 was	 found	 to	 be	 higher	 at	 baseline	 in	

responders	 and	 improved	 at	 follow	 up	 and	 was	 found	 to	 be	 lower	 at	 baseline	 in	

nonresponders	and	then	deteriorated.		However,	since	the	measured	differences	were	

not	significant	it	would	be	inappropriate	to	advocate	use	of	hsTnT	as	either	a	predictor	

or	a	marker	of	CRT	response.		
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6.2.4 Brain	Natriuretic	Peptide	

6.2.4.1 Introduction	

Brain	 natriuretic	 peptide	 (BNP)	 is	 a	 32	 amino	 acid	 polypeptide,	 which	 is	 primarily	

released	by	the	ventricular	myocardium	in	response	to	stretch.		Increase	wall	stretch	is	

typically	 associated	 volume	 overloaded	 states	 such	 as	 HF-LVSD.	 	 Measurement	 of	

serum	BNP	is	used	in	the	clinical	diagnosis	of	all	causes	of	HF,	particularly	where	there	

is	 limited	 or	 delayed	 access	 to	 echocardiography,	 and	 helps	 the	 clinician	 to	

differentiate	from	other	conditions	that	can	cause	breathlessness,	such	as	pneumonia.		

Normal	levels	are	BNP	<	100pg/ml	and	N-terminal	pro-BNP	(NT	proBNP)	<	400pg/ml.	

6.2.4.2 Pathophysiology	

BNP	acts	to	increase	natriuresis	and	diuresis	and	to	reduce	renin	and	systemic	vascular	

resistance	by	a	 combination	of	 arterial	 and	venous	dilation.	 	 This	 reduces	 circulating	

blood	 volume,	 volume	 overload	 and	 concomitant	 stretch	 on	 the	 poorly	 functioning	

myocardium,	 restoring	 fluid	 homeostasis.	 	 The	 role	 of	 BNP	 in	 the	 diagnosis	 of	 HF	 is	

clear,	but	what	remains	unclear,	is	its	potential	use	in	monitoring	or,	indeed,	predicting	

response	to	therapy.	

6.2.4.3 CRT	

Several	papers	have	investigated	the	relationship	between	CRT	and	BNP,	but	only	one	

has	 specifically	 considered	 prediction	 of	 response	 (see	 table	 76).	 	 Delgado	 et	 al	

(2006)400	 studied	 a	 cohort	 of	 70	 patients,	 assessment	 of	 response	 was	 based	 upon	

symptomatic	 NYHA	 class	 and	 follow-up	 was	 restricted	 to	 3	 months.	 	 This	 study	

demonstrated	 that	 the	 responder	 group	 had	 lower	 mean	 BNP	 at	 baseline	 and	 this	

decreased	 during	 follow-up.	 	 In	 contrast,	 for	 the	 nonresponder	 group,	 BNP	 it	 was	

higher	at	baseline	and	 increased	at	 follow-up.	This	 finding	 is	significant	as	 it	suggests	

that	nonresponders	have	more	severe	heart	failure,	as	higher	 levels	of	BNP	correlate	

with	more	severe	HF-LVSD.		Whilst	patients	can	feel	‘better’	and	have	haemodynamic	

improvements	 immediately	following	CRT	implantation,	the	large	RCTs	have	followed	

up	patients	at	6	or	12	months	looking	for	response	and	used	an	objective	measure	of	

symptoms	 e.g.	 MLWHFQ,	 CPET	 or	 echocardiographic	 evidence	 of	 remodelling.	 	 In	

comparison	the	study	by	Delgado,	using	a	notion	of	‘response’	based	purely	on	NYHA	
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class	at	3	months	is	short-term	and	lacks	rigour.		Kubanek	et	al	(2006)401	after	studying	

a	whole	range	of	biomarkers,	found	that	reduction	in	BNP	at	3	months	post-CRT,	was	

the	 strongest	 predictor	 of	 response	 to	 CRT	 at	 24	 months,	 with	 responders	

demonstrating	 reductions	 in	 BNP	 by	 40%	 as	 opposed	 to	 increasing	 by	 27%	 in	

nonresponders	at	3	months.	More	recently,	a	number	of	studies	have	concluded	that	

BNP	 and	 NT-proBNP	 retain	 their	 prognostic	 significance	 in	 this	 HF-LVSD	 patients	

receiving	CRT	and	 that	 there	 is	 significant	 reduction	 in	 responders,	however	none	of	

these	 investigated	 whether	 a	 baseline	 natriuretic	 peptide	 level	 could	 be	 used	 to	

predict	 response	during	 follow-up	 402-404.	 Elevated	BNP	 (>	440pg/ml),	 in	 combination	

with	detectable	hsTNT,	NHYA	functional	class,	LVEF	and	QRSd	during	multivariate	Cox	

regression,	were	found	by	Shalaby	et	al	(2015)405	to	be	predictive	of	worse	outcomes	

following	CRT-D	implantation	at	12	months.	

6.2.4.4 Mechanism	

It	makes	sense	that	BNP	levels	fall	in	those	who	improve	symptomatically	with	CRT,	as	

this	 denotes	 a	 reduction	 in	 LV	 volume	 overload	 and	 suggests	 that	 some	 degree	 of	

ventricular	 reverse	 remodelling	 has	 occurred.	 	 In	 addition,	 a	 higher	 level	 of	 BNP	 at	

baseline	might	suggest	the	patient	has	more	severe	HF,	with	more	to	gain	from	CRT,	

and	so	is	more	likely	to	respond.		

	
Table	76:	NP’s	in	HF	and	CRT	and	their	significance	

Author	 Year	
Natriuretic	

peptide	

Level	

(pg/ml)	
Finding	

Pitazlis	 2005	 BNP	 >	91.5	
Predicts	morbidity	at	1	

month	

Fruhwald	 2006	 NT-proBNP	 ~537	
Lower	at	18	months	vs	

controls	

El-Saed	 2009	 BNP	 >	492	
Predicts	mortality	at	2	

years	

Berger	 2009	 NT-proBNP	 >	1814	
Predicts	mortality	at	4	

years	
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6.2.4.5 Hypotheses	
 

Working	hypotheses	–	

1)	NT-proBNP	improves	significantly	in	patients	who	are	classed	as	responders	to	CRT,	

determined	by	symptoms,	echocardiography	and	exercise	testing.		

	

2)	The	clinical	response	to	CRT	can	be	predicted	by	baseline	measures	of	NT-proBNP.	

	

Null	hypotheses	–	

	

1)	NT-proBNP	does	not	improve	significantly	in	patients	who	are	classed	as	responders	

to	CRT,	determined	by	symptoms,	echocardiography	and	exercise	testing.	

	

2)	The	clinical	response	to	CRT	cannot	be	predicted	by	baseline	measures	of	NT-proBNP.	

 

6.2.4.6 Methods	

A	blood	sample	was	taken	at	baseline	(before	CRT	implantation	within	2	weeks)	and	at	

6	 and	 12	months	 post	 CRT	 implantation	 (+/-	 2	 weeks)	 and	 using	 a	 tube	 containing	

ethylenediaminetetraacetic	acid	(EDTA)	to	prevent	clotting.	

	

NT-proBNP	 was	 analysed	 in	 the	 clinical	 chemistry	 department	 at	 STHT	 using	 a	

commercially	 available	 electrochemiluminescence	 immunoassay	 (Elecsys	 proBNP	 II,	

Roche,	 UK)	 containing	 2	 monoclonal	 antibodies	 specific	 to	 epitopes	 on	 the	 on	 N-

terminal	 part	 of	 BNP	 (1-76).	 	 In	 Sheffield,	 test	 samples	 of 136.00pg/ml,	 350.03	 and	

3729.93pg/ml	are	run	with	an	accuracy	of	136.00	(±	1.98	SD,	1.54	CV%)	pg/ml,	350.03	

(±	11.02	SD,	3.15	CV%)	pg/ml	and	3729.93(±	72.81,	1.95	CV%)	388.	

	

	

	



306	|	Page	
 

6.2.4.7 Results	
Table	77:	NT-proBNP	level	in	responders	and	nonresponders	

 
 
 

	

	

Table	78:	NT-proBNP	levels	in	responders	

	

Table	79:	NT-proBNP	levels	in	nonresponders	

Non	

responders	

Time	point	(months)	

0	 6	 12	

One	way	ANOVA		

with	repeated	

measures	

p	value	

Mean	 SD	 Mean	 SD	 Mean	 SD	

Baseline	

vs		

6	months	

Baseline	

vs		

12	

months	

NT-

proBN

P	

pg/

ml	

1525.4

0	

312.3

6	

1399.2

0	

783.0

9	

1066.2

0	

426.7

3	
=	0.65	

Responders	

Time	point	(months)	

0	 6	 12	

One	way		

ANOVA	with	

repeated	measures	

p	value	

Mean	 SD	 Mean	 SD	 Mean	 SD	

Baseline		

vs		

6	months	

Baseline		

vs		

12	

months	

NT-

proB

NP	

pg/

ml	

2251.

64	

901.	

25	

1840.

43	

768.	

48	

1732.

08	

976.	

14	
=	0.17	

Baseline	

Responders	 Nonresponders	 	

Student’s	T-test	

P	value	
Mean	 SD	 Mean	 SD	

NT-proBNP	 pg/ml	 2251.64	 901.25	 1525.40	 312.36	 0.54	
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Figure	102:	NT-proBNP	levels	in	responders	(white)	and	nonresponders	(black)	

	
	

Figure	 102	 demonstrates	 the	 changes	 in	 NT-proBNP	 in	 responders	 (white)	 and	 non	

responders	(black)	following	CRT	implantation.		

	

The	difference	in	NT-proBNP	baseline	between	responders	and	nonresponders	was	not	

statistically	significant	(table	77).	

	

During	 follow	up,	 the	 decreases	 in	NT-proBNP	 in	 responders	 at	 6	 and	 at	 12	months	

were	not	statistically	significant	(table	78	and	figure	102).	Likewise,	whilst	levels	of	NT-

proBNP	 for	nonresponders	also	decreased	at	both	6	and	at	12	months,	 this	was	not	

statistically	significant	(table	79	and	figure	102).		

	

From	the	above	data,	 it	 is	clear	that	the	first	working	hypothesis	can	be	rejected	and	

null	 hypothesis	 that	 there	 is	 no	 significant	 difference	 between	 responders	 and	

nonresponders	 to	CRT	 in	NT-proBNP	 levels	 at	 baseline	 can	be	 accepted.	 The	 second	

working	 hypothesis	 can	 be	 rejected	 and	 null	 hypothesis	 that	 NT-proBNP	 does	 not	
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improve	significantly	in	patients	who	are	classed	as	responders	to	CRT,	determined	by	

symptoms,	echocardiography	and	CPET	testing.	

6.2.4.8 Discussion	

The	 results	 show	 that	whilst	 there	 is	not	 a	 sufficient	difference	between	 responders	

and	 nonresponders	 at	 baseline	 to	 warrant	 the	 introduction	 of	 NT-proBNP	 as	 a	

screening	tool	to	predict	CRT	response,	as	indeed	non-responders	appeared	to	have	a	

lower	 NT-proBNP	 than	 responders,	 there	 also	 appears	 to	 be	 no	 merit	 in	 using	 NT-

proBNP	 during	 follow	 up	 as	 a	 marker	 of	 response.	 NT-proBNP	 did	 not	 improve	

statistically	 significantly	 in	 responders.	 	 For	 some	 responders	 it	 took	 12	 months	 to	

achieve	a	change	in	NT-proBNP,	defined	as	>	10%	reduction	but	some	nonresponders	

also	achieved	a	>	10%	reduction	in	NT-proBNP	at	6	months,	which	was	sustained	at	12	

months	 despite	 a	 lack	 of	 improvement	 in	 other	 markers	 of	 response.	 The	 reason	

behind	 such	 a	 reduction,	 albeit	 non-significant	 reduction	 following	 CRT	 implantation	

may	 be	 due	 to	 a	 combination	 of	 acute	 haemodynamic	 improvements	 and	 chronic	

reduction	 in	 functional	mitral	 regurgitation,	 LV	 filling	 pressures	 and	 LV	 volumes	 and	

improved	cardiac	synchrony	and	energetics.	Following	 the	 large	 initial	 reduction	at	6	

months	in	responders,	but	only	a	smaller	reduction	at	12	months,	it	appears	that	the	

reduction	 in	NT-proBNP	maybe	a	measure	of	 the	stimulus	 to	remodel	but	not	of	 the	

remodelling	process	itself	403.		

	

Despite	the	patients	being	a	homogenous	group	with	respect	 to	the	severity	of	 their	

disease	e.g.	NYHA	class	III	and	appearing	similar	in	terms	of	markers	of	response	prior	

to	CRT,	they	had	a	wide	spread	of	NT-proBNP	levels	at	baseline.	Comparing	our	data	to	

that	from	the	large	CRT	trials,	in	the	CARE-HF	study	44,	a	NT-proBNP	level	<	214.5	pg/ml	

were	more	 likely	 to	benefit	 from	CRT,	adding	 to	 the	earlier	notion	 that	 it	 is	patients	

with	milder	HF-LVSD	that	are	more	likely	to	respond	to	CRT.	Importantly,	the	CARE-HF	

trial	used	the	same	inclusion	criteria	as	this	study.	Fruhwald	et	al	(2007)	403	conducted	

an	analysis	of	the	CARE-HF	cohort	and	reported	that	the	mean	level	of	NT-proBNP	at	

baseline	was	approximately	2000	pg/ml	with	a	significant	difference	between	the	CRT	

and	 control	 groups,	with	 the	CRT	group	having	NT-proBNP	 levels	 some	537	and	567	

pg/ml	lower	than	the	controls	at	3	and	18	months,	respectively.		
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In	the	MIRACLE	ICD	trial	49,	patients	implanted	with	CRT	had	a	median	change	in	BNP	

of	68	pg/ml	compared	to	controls	at	6	months,	thus	contradicting	the	findings	of	the	

CARE-HF	 study	 that	 CRT	 leads	 to	 significant	 improvements	 in	 natriuretic	 peptides,	

albeit	in	a	much	smaller	cohort.	However,	no	baseline	value	of	BNP	is	reported	and	the	

difference	 at	 6	 months	 was	 not	 statistically	 different	 to	 that	 found	 after	 medical	

therapy.	Finally	the	MIRACLE	ICD	II	trial	156,	showed	that	patients	suitable	for	CRT	had	

mean	 NT-proBNP	 levels	 of	 approximately	 600pg/ml	 at	 baseline,	 which	 improved	 by	

200pg/ml	in	CRT	group	but	this	change	was	not	statistically	significant.	However,	that	

trial	 included	only	mildly	 symptomatic	HF-LVSD	patients	 albeit	 of	 similar	 ages,	QRSd	

and	 EF%	 as	 the	 patients	 in	 our	 study,	 perhaps	 accounting	 for	 the	 lower	 natriuretic	

peptides	at	baseline.	

	

Another	study,	with	a	similar	cohort	to	our	current	study	(NYHA	III,	QRSd	>150ms,	LVEF	

<	 35%)	 found	 that	 NT-proBNP	 was	 3200	 pg/ml	 in	 all	 patients	 at	 baseline,	 with	 no	

significant	 difference	 between	 either	 group,	 but	 at	 6	months	 following	 CRT	 this	 had	

reduced	to	<	2000	pg/ml	in	responders	but	unchanged	in	nonresponders	406.	

	

Thus	 it	 can	 be	 seen	 that	 our	 data	 fits	with	 the	 literature,	 namely	 that	 there	 are	 no	

significant	 differences	 between	 responders	 and	 nonresponders	 to	 CRT	 at	 baseline	

(although	 there	 is	 a	 trend	 for	 lower	 BNP	 in	 responders,	 not	 found	 in	 this	work)	 but	

there	is	a	reduction	in	BNP	during	follow-up	in	responders,	but	which	in	this	work,	was	

not	statistically	significant.	

	

What	was	not	detailed	in	any	of	these	trials,	is	the	average	time	that	patients	suffered	

from	HF-LVSD	before	receiving	CRT	or,	as	mentioned	already,	the	level	of	comorbidity	

experienced	by	these	patients.		This	cohort	of	19	patients	is	representative	of	HF-LVSD	

patients	in	general	and	each	has	an	average	of	5	comorbidities,	in	addition	to	HF-LVSD.		

The	 question	 remains	 as	 to	 what	 influence	 such	 comorbidity	 has	 on	 natriuretic	

peptides,	 if	 deterioration	 in	 such	 comorbidities	 negates	 any	 gains	 from	 CRT	 as	

measured	by	NT-proBNP	and	whether	such	comorbidity	has	an	additive	effect.	

	

Sinha	 et	 al	 (2003)407	 found	 that	 turning	 CRT	 off	 led	 to	 increases	 in	 BNP	 and	

deterioration	 in	 symptoms.	 This	 was	 rapidly	 reversed	 on	 reinstating	 the	 CRT.		
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Improvements	 in	 BNP	 correlated	 with	 improvements	 in	 LVEDV	 thus	 supporting	 the	

notion	that	BNP	is	a	valid,	albeit	surrogate	marker	of	response	to	CRT	and	can	be	used	

to	monitor	efficacy	of	CRT	post	implantation.		

	

The	half-life	of	NT-proBNP	is	of	the	order	of	hours,	whilst	that	of	BNP	is	around	half	an	

hour,	and	as	HF-LVSD	is	a	naturally	variable	condition,	with	fluid	states	fluctuating,	this	

infers	that	for	patients	with	severe	HF-LVSD	that	even	taking	diuretics	or	having	a	large	

drink	 may	 influence	 NT-proBNP	 levels.	 To	 attempt	 to	 mitigate	 against	 these	

confounders,	 the	 blood	 samples	were	 taken	 first	 thing	 in	 the	morning,	 before	 food,	

fluids,	exertion	or	medications.		

6.2.4.9 Conclusion	

In	general,	this	data	fits	with	the	literature,	in	that	there	was	no	significant	difference	

between	 responders	 and	 nonresponders	 to	 CRT	 at	 baseline	 but	 also	 there	 was	 no	

statisitically	 significant	 reduction	 in	 NT-proBNP	 at	 follow-up	 in	 responders.	 This	

suggests	 that	 NT-proBNP	 shouldn’t,	 be	 used	 as	 a	 marker	 of	 response	 for	 patients	

following	 CRT,	 in	 conjunction	 with	 other	 markers	 such	 as	 peak	 VO2,	 LVEDV	 and	

MLWHFQ,	on	the	basis	of	this	work.	The	lack	of	significant	difference	at	baseline	rules	

out	 the	 use	 of	 NT-proBNP	 as	 a	 predictor	 of	 response	 at	 least	 in	 the	 context	 of	 the	

present	study.			

6.2.5 Parathyroid	Hormone/Vitamin	D	

6.2.5.1 Introduction	

Elevated	levels	of	circulating	parathyroid	hormone	(PTH),	i.e.	hyperparathyroidism,	are	

associated	with	 the	cause	 408,	development	 409	 and	 risk	of	hospitalisation	of	patients	

with	 HF-LVSD	 independent	 of	 conventional	 HF	 risk	 factors	 and	 those	 influencing	

mineral	metabolism,	such	as	Vitamin	D	(VitD).	 	PTH	is	also	an	independent	marker	of	

morbidity	410and	mortality	411	in	HF-LVSD.	Furthermore,	since	there	is	a	significant	and	

positive	correlation	between	PTH	and	peak	VO2	412	and	between	PTH	and	FMD	in	HF-

LVSD	 413,	 PTH	 levels	 might	 be	 expected	 to	 mirror	 improvements	 in	 CPET	 and	 FMD	

following	an	intervention	such	as	CRT.		
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VitD	 deficiency	 (hypovitaminosis	 D	 <	 50nmol/l)	 is	 common	 in	 HF	with	 some	 studies	

indicating	that	over	90%	of	patients	are	VitD	deficient	(in	comparison	to	an	estimated	

15%	of	the	normal	population),	furthermore	VitD	levels	are	negatively	correlated	with	

functional	 class,	 LVEF	 414,	 6MWT	 415	 and	VO2
416	 and	are	predictor	of	mortality	 417	 418	

The	evidence	as	to	whether	VitD	supplementation	improves	morbidity	in	the	presence	

of	 deficiency	 in	 HF-LVSD	 is	 mixed	 419	 420.	 Indeed	 in	 patients	 without	 HF-LVSD,	 VitD	

deficiency	 is	 usually	 accompanied	 by	 a	 reduction	 in	 exercise	 capacity	 and	 muscle	

strength.	

6.2.5.2 Pathophysiology	
 
Parathyroid	hormone	or	parathormone	is	an	84	polypeptide	endocrine	hormone	which	

circulates	 in	 the	 blood	 both	 as	 active,	 intact	 PTH	 and	 as	 inactive	 C	 and	 N	 terminal	

fragments.	 	 PTH	 is	 secreted	by	 the	parathyroid	 glands	 in	 response	 to	 low	circulating	

levels	 of	 either	 Calcium	 (Ca2+)	 or	 Magnesium	 (Mg2+).	 Secretion	 is	 inhibited	 by	 high	

circulating	levels	of	Ca2+	and,	paradoxically,	by	very	low	levels	of	Mg2+.	Release	of	PTH	

indirectly	 stimulates	osteoclasts	within	bone,	which	 in	 turn	 increases	bone	 turnover,	

raising	serum	Ca2+	levels,	which	via	negative	feedback	reduces	secretion	of	PTH.		PTH	

also	 acts	 to	 reduce	 the	 resorption	 of	 phosphate	 (PO4
2-)	 by	 the	 kidney	 in	 the	 distal	

tubules	and	renal	collecting	ducts,	lowering	serum	PO4
2-,	which	increases	the	amount	

of	ionised	serum	Ca2+	as	less	Phosphate	ions	are	available	to	form	water-insoluble	salts	

with	calcium.		PTH	increases	the	activity	of	the	1-α-hydoxylase	enzyme,	which	converts	

25-hydroxycholecalciferol	 (calcidiol)	 from	 the	 liver	 to	 1,25-dihydroxycholecalciferol	

(calcitriol)	 from	 the	 kidney	 to	 the	 active	 form	 of	 VitD,	 which	 amongst	 other	 roles,	

increases	the	absorption	of	Ca2+	by	the	intestine.		

	
The	 normal	 reference	 range	 of	 serum	 PTH	 is	 15-65pg/ml	 with	 elevated	 levels	 (>	

65pg/ml)	 found	 in	 HF-LVSD	 (table	 80)70	 408	 410	 411	 421.	 	 Elevated	 levels	 of	 PTH	 are	

classified	 into	 3	 categories	 as	 detailed	 below,	 based	 on	 the	 underpinning	 pathology	

and	associated	calcium	levels.	

• Primary	–	the	cause	originates	within	the	parathyroid	gland	e.g.	hyperplasia	or	

malignancy	and	so	the	Ca2+	level	will	be	elevated	appropriately.	

• Secondary	 –	 the	 cause	 originates	 outside	 of	 the	 parathyroid	 gland.	 For	

example,	 in	 chronic	 renal	 failure	 (CRF),	 reduced	 calcitriol	 production	 leads	 to	
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chronic	hypocalcaemia.	Typically	Ca2+	 level	 is	normal	(normocalcaemic)	due	to	

appropriately	elevated	PTH.		Secondary	hyperparathyroidism	is	the	form	found	

in	HF-LVSD.	

• Tertiary	 -	prolonged	secondary	hyperparathyroidism	 leads	to	unregulated	and	

excess	 PTH	production,	 typically	 found	 in	 end-stage	CRF	 and	 the	Ca2+	 level	 is	

low.	VitD	is	a	fat-soluble	essential	vitamin	obtained	from	dietary	sources	such	

as	dairy	produce	or	synthesised	from	cholesterol	during	skin	exposure	to	direct	

sunlight	 and	 acts	 as	 a	 steroid	 hormone	 in	 the	 body.	 	 The	 form	 ingested	 or	

synthesised	 is	 termed	cholecalciferol,	 in	 the	 liver	 this	 is	hydroxylated	 into	25-

hydroxycholecalciferol	 (the	 form	of	VitD	measured	by	blood	 tests)	 and	 in	 the	

kidney	 further	 hydroxylated	 to	 1,25-hydroxycholecalciferol	 (the	 biologically	

active	form	of	VitD).	 	This	latter	form	acts	to	increase	uptake	of	Ca2+	from	the	

gut. The	 role	of	VitD	deficiency	 in	HF-LVSD	 remains	unclear,	 although	 several	

mechanisms	 have	 been	 postulated	 including	 gene	 expression,	 cytokine	 up	

regulation	or	activation	of	the	renin-angiotensin-aldosterone	system	(RAAS)	422.	

6.2.5.3 Mechanism	

The	 causal	 link	 between	 PTH	 and	 HF-LVSD	 is	 unclear,	 according	 to	 Hagstrom	 et	 al	

(2006)408,	 the	 interplay	 between	 PTH	 and	 the	 heart	 is	 clear	 was	 it	 “directly	 affects	

cardiac	 function,	 increasing	 heart	 rate	 and	 coronary	 blood	 flow	 and	 altering	 the	

automaticity	of	the	heart”	but	Sugimoto	et	al	(2009)70	suggests	a	more	distinct	role	in	

HF-LVSD,	 as	 PTH	 	 “promote	 vascular	 pathology	 leading	 to	 atherosclerosis	 and	

ischaemic	 HF	 but	 also	 distinct	 cardiac	 pathology,	 such	 as	 myocardial	 calcification,	

fibrosis,	 and	 hypertrophy,	 that	 could	 lead	 to	 non-ischaemic	 HF”.	 Hypothetically,	 it	

could	 also	 be	 related	 to	 the	 cardio-renal	 syndrome	 with	 reduced	 activity	 25-

hydroxyvitamin	D3	1-alpha-hydroxylase,	but	PTH	dysfunction	in	primary	renal	disease	

is	secondary	to	hypocalcaemia	and	not	normocalcaemia.	 	Most	recently,	Sugimoto	et	

al	 (2013)423	 investigated	the	 interrelationship	between	PTH	and	haemodynamic	state	

in	 HF-LVSD,	 finding	 that	 increased	 PCWP	 and	 stroke	 volume	 index	 (SVI)	 correlated,	

positively	 and	 negatively	 respectively	 with	 circulating	 levels	 of	 intact	 PTH.	 By	

extension,	one	might	expect	patients	who	respond	positively	to	CRT	will	be	found	to	

have	lower	PTH	during	follow-up.		
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Table	80:	PTH	levels	found	in	HF	

Author	 Year	 PTH	level	(pg/ml)	 Conclusion	in	HF	

Giannakoulas	 2006	 >	89	 Predicts	reduced	exercise	capacity	

Sugimoto	 2009	 >	47	 Predicts	hospitalisation	

Hagstrom	 2010	 >	5.23	 Predicts	development	

Schierbeck	 2011	 >	5.0	 Predicts	mortality	

Altay	 2011	 >	96.4	 Predicts	severity	

	

6.2.5.4 CRT	

It	might	be	expected	that	in	responders	to	CRT	there	was	a	progressive	improvement	

in	 PTH	 or	 VitD	 levels	 from	 baseline	 to	 the	 onset	 of	 response,	 if	 indeed	 PTH	 or	 VitD	

reflect	exercise	capacity,	endothelial	function	improvement	as	a	consequence	of	CRT.		

6.2.5.5 Hypotheses	

Working	hypotheses	–	

1)	PTH	and/or	VitD	improve	significantly	 in	patients	who	are	classed	as	responders	to	

CRT,	determined	by	symptoms,	echocardiography	and	exercise	testing.		

	

2)	Clinical	response	to	CRT	can	be	predicted	by	baseline	measures	of	PTH	and/or	VitD.	

	

Null	hypotheses	–	

1)	 PTH	 and/or	 VitD	 does	 not	 improve	 significantly	 in	 patients	 who	 are	 classed	 as	

responders	to	CRT,	determined	by	symptoms,	echocardiography	and	exercise	testing.	

	

2)	 Clinical	 response	 to	 CRT	 cannot	 be	 predicted	 by	 baseline	measures	 of	 PTH	and/or	

VitD.	

6.2.5.6 Methods	

All	patients	had	bloods	taken	at	baseline,	in	a	clotted	blood	tube,	for	analysis	of	PTH,	

Ca2+,	Mg2+,	VitD,	albumin,	alkaline	phosphatase	(ALP),	renal	function	(urea,	creatinine,	

sodium,	potassium	and	eGFR)	and	PO4
2-	with	repeat	bloods	taken	at	6	and	12	months	
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post	 CRT	 implantation.	 PTH	 samples	 were	 analysed	 at	 the	 clinical	 chemistry	

department	 at	 the	 NGH,	 using	 an	 electrochemiluminescence	 immunoassay	 (Elecsys,	

Roche,	UK).		The	assay	for	PTH	employs	a	a	monoclonal	antibody	which	reacts	with	the	

N‑terminal	 fragment	and	a	monoclonal	 antibody	 labelled	with	a	 ruthenium	complex	

reacts	 with	 the	 C‑terminal	 fragment	 of	 PTH.	 	 The	 antibodies	 used	 in	 this	 assay	 are	

reactive	 with	 amino	 acid	 epitopes	 on	 the	 PTH	 fragments.	 	 Two	 monoclonal	 PTH‑

specific	 antibodies	 form	 a	 sandwich	 complex,	 after	 addition	 of	 microparticles	 the	

complex	 becomes	 bound	 to	 the	 solid	 phase.	 	 The	 microparticles	 are	 magnetically	

captured	 onto	 the	 surface	 of	 an	 electrode.	 	 Unbound	 substances	 are	 then	 removed	

and	an	applied	voltage	induces	chemiluminescent	emission	which	can	be	measured	by	

a	photomultiplier.		The	lab	analysing	the	results	were	blinded	to	the	outcomes	of	the	

Grand	Challenge	patients,	so	as	not	to	influence	them.	Test	samples	of 22.5,	157	and	

475	pg/ml	are	run	with	an	accuracy	of	22.5	pg/ml	(0.35	 	±	SD,	1.58	CV%),	157	pg/ml	

(1.14		±	SD,	0.73	CV%)	and	475	pg/ml	(3.97	±	SD,	0.84	CV%)	388.	The	VitD	samples	were	

analysed	 according	 to	 a	 commercially	 available	 chemiluminescence	method	 (IS2700,	

immunodiagnosticsystems,	 UK);	 a	 specific	 antibody	 to	 25-hydroxycholecalciferol	

labelled	 with	 acridinium	 is	 added,	 magnetic	 particles	 linked	 to	 25-

hydroxycholecalciferol	 are	 then	 added	 and	 ‘captured’	 using	 a	 magnet.	 	 The	 light	

emitted	by	 the	acridinium	 label	 is	 inversely	proportional	 to	 the	 concentration	of	25-

hydroxycholecalciferol	 in	 the	 sample.	 In	 Sheffield,	 test	 samples	 of 33,	 88	 and	 185	

nmol/l	are	run	with	an	accuracy	of	33	nmol/l	(3.4		±	SD,	10.4	CV%),	88	nmol/l	(7.9		±	

SD,	8.9	CV%)	and	185	nmol/l	(8.2	±	SD,	4.4	CV%)	388.	

6.2.5.7 Results	
 

Table	81:	Calcium	metabolism	of	responders	and	nonresponders	at	baseline	

Calcium	metabolism	at	baseline	

Test	 unit	 Responders	 Nonresponders	 Students	T-Test	
Mean	 SD	 Mean	 SD	 P	value	

Calcium		 mmol/l	 2.32	 0.06	 2.38	 0.13	 =	0.22	
Magnesium	 mmol/l	 0.87	 0.16	 0.87	 0.14	 =	0.25	
Phosphate	 mmol/l	 1.07	 0.06	 0.95	 0.14	 =	0.15	
Albumin	 g/l	 44.3	 3.9	 43.8	 2.9	 =	0.67	
ALP	 IU/l	 68.0	 19.4	 97.6	 66.8	 =	0.21	
PTH	 ng/l	 76.1	 37.4	 73.5	 37.8	 =	0.47	
VitD	 nmol/l	 44.6	 32.6	 51.8	 17.9	 =	0.20	
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Table	82:	Calcium	metabolism	of	responders	at	baseline	and	follow-up	

	
	
	
	

	

	

	

	

	

	

	

	

Table	83:	Calcium	metabolism	of	nonresponders	at	baseline	and	follow-up	

 
	

	

	

	

	

	

	

	

	

	

Responders	 Time	point		
(months)	

One	way	ANOVA		

with	repeated		

measures	p	value	

Test	 unit	
Baseline	 6	 12	 Baseline		

vs	6	
Baseline		
vs	12	

Mean	 SD	 Mean	 SD	 Mean	 SD	 P	value	 P	value	
Calcium		 mmol/l	 2.32	 0.06	 2.29	 0.09	 2.29	 0.07	 =	0.27	

Magnesium	mmol/l	 0.87	 0.16	 0.87	 0.05	 0.88	 0.06	 =	0.88	
Phosphate	mmol/l	 1.07	 0.06	 0.96	 0.17	 1.03	 0.18	 =	0.41	
Albumin	 g/l	 44.3	 3.9	 45.8	 4.6	 43.5	 4.0	 =	0.07	
ALP	 IU/l	 68.0	 19.4	 62.6	 14.7	 59.5	 16.1	 =	0.24	
PTH	 ng/l	 76.1	 37.4	 76.4	 39.3	 97.0	 51.0	 =	0.50	
VitD	 nmol/l	 44.6	 32.6	 70.7	 28.3	 45.7	 20.7	 =	0.45	

Non	
Responders	

Time	point		
(months)	

One	way	ANOVA		

with	repeated		

measures	p	value	

Test	 unit	
Baseline	 6	 12	 Baseline		

vs	6	
Baseline		
vs	12	

Mean	 SD	 Mean	 SD	 Mean	 SD	 P	value	 P	value	
Calcium	 mmol/l	 2.38	 0.13	 2.29	 0.14	 2.35	 0.06	 =	0.78	

Magnesium	mmol/l	 0.87	 0.14	 0.87	 0.21	 0.88	 0.18	 =	0.88	
Phosphate	mmol/l	 0.95	 0.14	 0.89	 0.16	 0.79	 0.13	 =	0.76	
Albumin	 g/l	 43.8	 2.9	 39.9	 2.7	 44.8	 2.5	 =	0.52	
ALP	 IU/l	 97.6	 66.8	 83.7	 55.3	 75.7	 25.0	 =	0.59	
PTH	 ng/l	 73.5	 37.8	 85.6	 41.8	 72.8	 24.1	 =	0.69	
VitD	 nmol/l	 51.8	 17.9	 38.6	 22.2	 40.8	 19.4	 =	0.50	
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Figure	103:	Serum	PTH	in	responders	(white)	and	nonresponders	(black)	

	
	
Figure	103	demonstrates	the	changes	in	PTH	in	responders	(white)	and	non	responders	

(black)	following	CRT	implantation.		

	
Figure	104:	Serum	Vitamin	D	in	responders	(white)	and	nonresponders	(black)	

	

Figure	 104	 demonstrates	 the	 changes	 in	 serum	 vitamin	D	 in	 responders	 (white)	 and	

non	responders	(black)	following	CRT	implantation.		
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There	 was	 no	 significant	 difference	 at	 baseline	 between	 responders	 and	

nonresponders	 with	 respect	 to	 any	 marker	 of	 calcium	 metabolism,	 although	

responders	had	lower	serum	VitD	levels	and	better	renal	and	liver	function	(see	table	

81,	 figure	103	and	104).	 	During	 follow-up,	 the	responders	showed	 increases	 in	PTH,	

ALP,	creatinine	and	VitD,	but	these	were	not	significant	(see	table	82,	figure	103	and	

104).		The	nonresponders	demonstrated	increased	PTH,	creatinine	and	decreased	VitD	

during	 follow-up	 but	 again	 these	 changes	 did	 not	 reach	 statistical	 significance	 (see	

table	83,	figure	103	and	104).		

	

Hence	the	data	collected	does	not	support	the	working	hypotheses	that	PTH	and	VitD	

improve	significantly	in	patients	who	are	classed	as	responders	to	CRT,	determined	by	

symptoms,	echocardiography	and	CPET	testing	or	that	clinical	response	to	CRT	can	be	

predicted	by	baseline	measures	of	PTH	and	VitD	and	so	both	the	null	hypotheses	were	

accepted. 

	

6.2.5.8 Discussion	
 
As	no	significant	differences	were	detected	in	baseline	levels	between	responders	and	

nonresponders	the	current	work	does	not	support	the	use	of	PTH	or	VitD	as	a	predictor	

response	to	CRT.		Moreover,	in	the	absence	of	significant	differences	in	either	PTH	or	

VitD	at	follow	up	they	cannot	be	used	as	markers	of	response.	

	

This	study	demonstrates,	improvement	in	VitD	levels	following	CRT	in	responders	and	

deterioration	 in	 nonresponders	 at	 6	 months,	 which	 then	 appeared	 to	 return	 to	

baseline	at	12	months.		This	suggests	the	possible	influence	of	cardiac	function,	albeit	

indirectly,	upon	endocrine	function	in	a	HF-LVSD	population,	 independent	of	changes	

in	 calcium,	 phosphate	 and	magnesium	and	of	 liver	 and	 renal	 function.	 Furthermore,	

whilst	the	differences	in	VitD	were	not	significant	at	baseline,	those	with	lower	levels	

appeared	more	likely	to	respond.		

	

Patients	were	recruited	over	a	12-month	period	and	analysis	of	recruitment	indicates	

that	25%	of	each	group	were	recruited	in	each	of	the	4	seasons	and	lived	an	average	of	

16	 ±	 14	 miles	 (26	 ±	 22km)	 from	 Sheffield.	 	 This	 rules	 out	 differences	 in	 latitude,	
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weather	or	sun	exposure	in	influencing	VitD	levels.		Liver	function,	renal	function	and	

diuretic	dose	remained	stable	over	the	12-month	period	for	all	patients	and	so	these	

can	 also	 be	 excluded	 as	 possible	 confounding	 factors.	 	 Dietary	 measures	 of	 VitD,	

calcium	or	phosphate	which	may	have	 influenced	 the	blood	 results,	despite	 samples	

being	taken	fasted,	were	not	recorded	(using	a	food	diary,	for	example).		

	

VitD	deficiency	in	HF	is	likely	to	have	a	multifactorial	origin,	due	to	factors	such	as	age,	

inactivity	and	also	chronic	disease.	 	Possible	mechanisms	for	such	differences	 in	VitD	

status	 in	the	two	patient	groups	and	also	subsequent	 improvements,	may	well	relate	

to	increased	outdoor	activity	in	responders	and	deterioration	in	nonresponders.	CRT	is	

known	to	reduce	inflammation	and	so	may	also	modulate	cytokine	release	and	down	

regulate	VitD	metabolism	 424.	 This	 could	provide	a	mechanism	 for	 the	 changes	 seen.		

Last	 but	 not	 least,	 improvement	of	 cardiac	 function	 leads	 to	down-regulation	of	 the	

RAAS	and	since	VitD	is	a	modulator	of	renin,	this	may	also	influence	VitD	metabolism	
423	425.	This	remains	to	be	established	since	none	of	the	papers	cited	above	addressed	

whether	 improved	 cardiac	 function	 leads	 to	 improvement	 in	 impaired	 endocrine	

function.	

	

In	keeping	with	other	trials	 investigating	PTH	and	VitD	in	HF-LVSD,	more	than	50%	of	

this	 cohort	 had	 low	 VitD	 (<	 50nmol/l)	 and	 75%	 had	 abnormally	 high	 PTH	 levels	 (>	

65ng/l)	.Other	non-interventional	trials,	have	demonstrated	that,	for	HF-LVSD	patients,	

VitD	deficiency	is	associated	with	a	poorer	prognosis	at	follow-up.	

	

In	the	present	study,	it	was	perhaps	surprising	that	no	differences	were	found	in	PTH	

levels	between	the	groups	at	baseline,	nor	changes	within	the	groups	during	follow-up.		

Recent	evidence	has	shown	that	PTH	levels,	even	within	the	normal	range,	reflect	the	

haemodynamic	 state	of	 patients	with	HF423,	 according	 to	pulmonary	 capillary	wedge	

pressure	but	in	the	context	of	secondary	hyperparathyroidism	due	to	HF,	it	is	unclear	

what	the	relationship	will	be	between	PTH	and	haemodynamics.		

	

VitD	supplementation	could	be	considered	 in	both	responders	and	nonresponders	to	

CRT	who	were	deficient	to	investigate	whether	this	could	improve	response.		The	fact	

that	 the	 patients	 had	 normal	 Ca2+	 and	 ALP	 levels	 indicates	 that	 the	
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hyperparathyroidism	in	these	patients	is	secondary	to	chronic	disease	and	not	disease	

of	 the	 parathyroid	 gland	per	 se.	 	 It	would	 also	 be	 interesting	 to	 investigate	 patients	

with	 low	 VitD,	 following	 CRT	 to	 see	 if	 any	 in	 VitD	 levels	 are	 met	 with	 increases	 in	

peripheral	muscle	function	or	bone	mass	419.		

6.2.5.9 Conclusion	

There	 was	 no	 significant	 difference	 in	 baseline	 levels	 either	 PTH	 or	 VitD	 between	

responders	 and	 nonresponders	 and,	 hence	 these	 results	 do	 not	 support	 the	 use	 of	

either	PTH	or	VitD	as	a	predictor	of	response.		Similarly,	whilst	there	were	detectable	

changes	during	follow-up,	these	differences	were	neither	sustained	nor	 large	enough	

to	 be	 considered	 as	 markers	 of	 response.	 It	 would	 be	 interesting	 to	 investigate	

whether	 supplementing	 VitD	 in	 nonresponders	 or	 responders	 would	 increase	 either	

the	number	of	responders	or	the	degree	of	clinical	response.	

6.2.6 High	sensitivity	C-Reactive	Peptide	

6.2.6.1 Introduction	
 
C-reactive	 protein	 (CRP)	 is	 elevated	 in	 HF-LVSD	 and	 it	 is	 an	 independent	 prognostic	

marker	 of	 morbidity	 426	 and	 mortality	 427.	 Furthermore	 it	 correlates	 with	 the	

development	428,	functional	class	429,	symptoms	430	and	further	myocardial	injury	in	HF	
431.	

6.2.6.2 Pathophysiology	
 
Any	inflammatory	insult,	such	as	infection,	arthritis,	ischaemia	or	malignancy,	leads	to	

the	recruitment	of	 the	non-specific	and	 innate	 immune	system,	and	this	 is	known	as	

the	acute	phase	response.		At	the	area	local	to	the	insult,	cytokines	such	as	interleukins	

(IL)	 and	 tumour	 necrosis	 factor	 (TNF)	 are	 released	 from	 inflammatory	 cells,	 which	

stimulate	the	liver	to	produce	a	number	of	substances	known	as	acute	phase	reactants	

such	as	fibrinogen,	ferritin,	serum	amyloid	A	and	CRP.		These	have	wide-ranging	effects	

on	coagulation,	vascular	permeability	and	the	immune	system.		In	particular,	CRP	acts	

by	binding	 to	phosphocholine	on	 the	 cell	membrane	of	necrotic	 and	apoptotic	 cells,	

which	 in	 turn	activates	 the	complement	system	via	 the	C1Q	complex,	 facilitating	cell	

opsonisation,	lysis	and	chemotaxis	and	so	facilitating	the	removal	of	the	dying	cells.	
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Clinically	CRP	is	used	as	diagnostic	aid	in	cases	of	uncertainty	(for	unknown	causes	of	

breathlessness,	for	example)	and	for	monitoring	the	response	to	a	treatment	e.g.	anti-

inflammatories.	 	 Other	 commonly	 used,	 but	 indirect	 measures	 of	 the	 acute	 phase	

response	 include	plasma	viscosity	 (PV)	and	the	erythrocyte	sedimentation	rate	 (ESR).		

Increasingly	CRP	has	been	recognised	as	having	a	role	in	IHD	and	latterly	HF	(see	table	

84)83	424	426	430	432.	 	 In	a	seminal	paper	by	Ridker	et	al	(1997)433,	elevated	levels	of	CRP	

were	demonstrated	to	be	predictive	of	the	future	risk	of	MI,	independent	of	lipid	levels	

or	other	risk	factors	such	as	smoking.		

Table	84:	Typical	values	of	CRP	in	HF	

Author	 Year	 CRP	(mg/ml)	 Level	 Conclusion	in	HF	
Alonso-
Martinez	 2002	 hsCRP	 >	5.5	 Predicts	symptoms	

Vasan	 2003	 CRP	 >	5	 Predicts	development	
Yin	 2004	 hsCRP	 >	5.7	 Predicts	morbidity	

Shinohara	 2011	 CRP	 >	7.4	 Predicts	CRT	response	
Johansson	 2011	 CRP	 >	2.4	 Predicts	low	mood	

6.2.6.3 Mechanism	
 
Elevated	 CRP	 levels	 in	 cardiovascular	 disease	 have	 been	 found	 to	 improve	 with	

cholesterol	 lowering	 agents	 e.g.	 Rosuvastatin	 434	 and	 β-blocker	 therapy	 435	 e.g.	

Carvedilol	and	it	is	believed	these	agents	may	have	an	anti-inflammatory	action.	As	HF-

LVSD	 and	 its	 causes,	 such	 as	 atherosclerosis,	 are	 inflammatory	 in	 origin	 and	 thus	 it	

makes	 sense	 that	 a	 treatment	 that	 improves	 HF-LVSD	 may	 improve	 markers	 of	

inflammation.	However	there	are	many	other	markers	of	inflammation	other	than	CRP	

and	many	other	causes	of	an	elevated	CRP	other	than	HF,	also	inflammatory	conditions	

often	 coexist.	 	 CRT	 has	 been	 shown	 to	 improve	 FMD,	 a	 surrogate	 measure	 of	

endothelial	 function	 and	 also	 systemic	 inflammation	 322.	 One	 of	 the	 problems	 with	

early	CRP	research,	alluded	to	by	Yin	et	al	(2004)	83	was	that	“the	mildly	elevated	CRP	

concentrations	 in	 these	 patients	 fall	 well	 within	 the	 range	 in	 healthy	 subjects,	 and	

standard	clinical	assays	for	CRP	lack	sensitivity	within	the	low	reference	range	and	thus	

cannot	be	used	effectively	for	risk	prediction.	Because	inexpensive	commercial	assays	

for	high-sensitivity	CRP	(hsCRP)	are	now	available,	the	potential	for	the	hsCRP	assay	to	

enhance	the	prognostic	and	therapeutic	capabilities	is	of	considerable	interest,	but	its	

value	has	not	been	fully	established”.	
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6.2.6.4 CRT	
 
Preliminary	work	by	Przybyla	et	al	(2011)	436	concluded	that	CRP	levels	did	not	change	

after	 CRT,	 but	 it	 is	 important	 to	 note	 that	 the	 period	 of	 follow-up	was	 limited	 to	 3	

months	and,	 in	addition,	 the	authors	made	no	comment	on	clinical	 response	to	CRT,	

which	may	determine	whether	 there	might	be	a	meaningful	change	 in	CRP	following	

implantation.	 Another	 paper,	 which	 recruited	 exclusively	 non-ischaemic	 HF-LVSD	

patients,	 and	defined	 response	based	upon	echocardiographic	 changes	 at	 6	months,	

reported	 a	 significant	 decrease	 in	 hsCRP	 with	 response	 to	 CRT	 424.	 However,	 for	

reasons	discussed	previously,	reliance	on	a	single	measure	such	as	echocardiographic	

LV	 changes,	 as	 a	 marker	 of	 response	 is	 problematic,	 highlighted	 by	 the	 authors	

themselves.		Finally,	work	by	Kamioka	(2012),	showed	that	baseline	hsCRP	was	able	to	

predict	both	echocardiographic	 response	to	CRT	at	6	months	and	also	risk	of	cardiac	

death	437.	

6.2.6.5 Hypothesis	

Working	hypothesis	–	

1)	 hsCRP	 improves	 significantly	 in	 patients	 who	 are	 classed	 as	 responders	 to	 CRT,	

determined	by	symptoms,	echocardiography	and	exercise	testing.		

	

2)	The	clinical	response	to	CRT	can	be	predicted	by	baseline	measures	of	hsCRP	

	

Null	hypothesis	–	

1)	hsCRP	does	not	 improve	 significantly	 in	patients	who	are	 classed	as	 responders	 to	

CRT,	determined	by	symptoms,	echocardiography	and	exercise	testing.	

	

2)	The	clinical	response	to	CRT	cannot	be	predicted	by	baseline	measures	of	hsCRP.	

6.2.6.6 Methods	

Clotted	 blood	 samples	 for	 serum	 analysis	 were	 taken	 from	 the	 patient	 before	 CRT	

implantation	 (within	 2	 weeks	 of	 the	 procedure)	 and	 at	 6	 and	 12	 months	 post	 CRT	

implantation	(+/-	2	weeks).	
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Serum	hsCRP	was	analysed	using	a	commercially	available	immunonephelometry	assay	

(Cardiophase	 hsCRP,	 Siemens,	 UK).	 	 Polystyrene	 particles	 coated	 with	 monoclonal	

antibodies	specific	to	human	CRP	aggregate	when	mixed	with	samples	containing	CRP.		

These	aggregates	scatter	a	beam	of	light	passed	through	the	sample	and	the	intensity	

of	 the	 scattered	 light	 is	 proportional	 to	 the	 concentration	 of	 CRP.	 The	 result	 is	

evaluated	by	comparison	with	a	standard	of	known	concentration.	

	

In	 Sheffield,	 the	 lowest	 level	 detectable	 is	 0.2mg/l	 and	 test	 samples	 of 2.3,	 4.6	 and	

9.4mg/l	are	 run	with	an	accuracy	of	2.3	 (0.25	±	SD,	11	CV%)	mg/l,	4,6	 (0.36	 	±	SD,	8	

CV%)	mg/l	and	9.4	(0.75	±	SD,	8	CV%)	438.	

6.2.6.7 Results	
	

Table	85:	hsCRP	in	responders	and	nonresponders	at	baseline	

Baseline 
Responders Nonresponders Student's T-test 

Mean SD Mean SD P value 

hsCRP mg/l 8.1 0.8 1.6 1.0 0.41 

	
Table	86:	hsCRP	in	responders	at	baseline	and	follow-up	

Responders 
Time point 

One	way	ANOVA		

with	repeated	measures	

p	value 
Baseline 6 12 Baseline vs 

Mean SD Mean SD Mean SD 6 months 12 months 
hsCRP mg/l 8.1 0.8 3.5 2.3 2.0 1.3 0.11 

 
Table	87:	hsCRP	in	nonresponders	at	baseline	and	follow-up	

Nonresponders 
Time point 

One	way	ANOVA	with		

repeated	measures	

p	value 
Baseline 6 12 Baseline vs 

Mean SD Mean SD Mean SD 6 months 12 months 
hsCRP mg/l 1.6 1.0 4.7 3.2 2.8 2.7 0.34 
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Figure	105:	Serum	hsCRP	in	responders	(white)	and	nonresponders	(black)	

Figure	 105	 demonstrates	 the	 changes	 in	 serum	 high	 sensitivity	 CRP	 in	 responders	

(white)	and	non	responders	(black)	following	CRT	implantation.		

	

There	 was	 no	 statistically	 significant	 difference	 in	 hsCRP	 between	 responders	 and	

nonresponders	 at	 baseline	 (see	 table	 85	 and	 figure	 105).	 	 During	 follow-up,	 the	

responders	demonstrated	a	decrease	in	hsCRP	and	the	nonresponders	demonstrated	a	

non-significant	increase	but	neither	of	these	changes	was	significant	(see	tables	86,	87	

and	figure	105).	

6.2.6.8 Discussion	
 
The	 results	 demonstrate	 that	 whilst	 there	 is	 a	 difference	 between	 responders	 and	

nonresponders	at	baseline,	 this	difference	was	not	of	sufficient	magnitude	for	hsCRP	

to	be	used	to	help	predict	response	to	CRT	at	baseline.		Interestingly,	this	work,	it	was	

those	patients	with	the	higher	levels	of	hsCRP	that	were	more	likely	to	respond	to	CRT,	

suggesting	 that	 patients	who	have	 a	 higher	 level	 of	 systemic	 inflammation	 and	 so	 a	

more	severe	HF-LVSD	may	derive	greater	benefit.	Nonresponders	had	a	lower	baseline	

level	of	hsCRP	but	this	increased	during	follow-up.		Most	likely	this	reflects	continuing	

progression	of	the	disease	rather	than	being	associated	with	CRT	per	se.		

	

Normal	 levels	 of	 hsCRP	 are	 <	 3mg/l;	 the	 majority	 of	 patients	 in	 this	 cohort	 had	

abnormal	hsCRP	levels	both	at	baseline	and	during	subsequent	follow-up.	In	terms	of	
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previous	 studies,	 this	 work	 appears	 to	mirror	 previous	 findings,	 as	 discussed	 in	 the	

introduction,	 with	 patients	 receiving	 CRT	 having	 elevated	 levels	 of	 CRP.	 In	 terms	 of	

changes	in	CRP	during	follow	up,	although	Przybyla	et	al	(2011)	436	found	no	changes	

they	 also	 did	 not	 differentiate	 between	 responders	 and	 nonresponders,	 whilst	

Shinohara	et	al	(2011)	424	did	find	a	reduction	in	hsCRP	after	6	months	in	responders,	

they	 did	 not	 suggest	 a	 possible	 mechanism. Kamioka	 (2012)437	 demonstrated	 that	

responders	 had	 much	 lower	 levels	 of	 hsCRP	 at	 baseline	 (1.4	 vs	 3.3mg/l)	 which	

predicted	response,	but	they	did	not	measure	hsCRP	post-implantation.	Finally,	Cai	et	

al	(2014)	439,	found	that	hsCRP	decreased	in	responders	and	increased	in	responders,	

but	 any	 difference	 at	 baseline	 between	 the	 groups	 was	 not	 given,	 follow-up	 was	

limited	to	6	months	and	response	defined	as	 improvement	>	1	NYHA	functional	class	

and	>	5%	improvement	in	LV	EF%.	Thus	the	heterogeneity	of	studies	makes	it	difficult	

to	 draw	 firm	 conclusions	 of	 the	 role	 of	 CRP	 in	 terms	 of	 predicting	 or	 measuring	

response	to	CRT.		

	

The	 hsCRP	 can	 be	 raised	 for	 many	 reasons	 such	 as	 infection,	 infarction	 and	

inflammation.	 	 Indeed,	 the	 link	between	cardiovascular	and	 infectious	disease	 is	well	

known	440.		However,	throughout	the	project	patients	were	afebrile	and	asymptomatic,	

with	no	significant	changes	in	the	white	cell	count,	suggesting	infection	was	unlikely	to	

have	played	a	 role.	 	 It	 is,	of	 course,	possible	 that	patients	may	have	had	 sub-clinical	

infection,	leading	to	extraneous	elevations	of	hsCRP,	which	then	became	symptomatic	

following	 assessment,	 but	 as	 the	 interval	 between	 assessments	 was	 6	 months,	 this	

would	have	been	difficult	 to	detect.	 	As	has	been	detailed	previously,	 renal	and	 liver	

function	 remained	stable	during	 the	study,	once	again	 ruling	out	 this	as	contributing	

towards	any	elevation	in	hsCRP.			

	

Why	did	 the	 responders	have	a	higher	hsCRP	at	baseline?	 	As	mentioned	previously,	

there	 were	 no	 significant	 differences	 in	 the	 patients	 at	 baseline	 in	 terms	 of	

demographics,	 HF-LVSD	 severity,	markers	 of	 response	 or	 novel	 biomarkers.	 It	would	

also	be	 interesting	 to	measure	other	markers	of	 inflammation	 such	as	TNF	or	 IL,	 for	

example,	 to	 investigate	 what,	 if	 any,	 effect	 CRT	 has	 on	 those	 and	 to	 determine	

whether	 they	mirror	 the	changes	 in	CRP	with	higher	 levels	 in	 responders	at	baseline	

and	 improvement	 during	 follow-up.	 Serum	 hsCRP	 was	 chosen	 over	 ESR,	 another	
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commonly	 used	marker	 of	 systemic	 inflammation,	 since	 ESR	 normally	 rises	with	 age	

and	thus	age	could	confound	the	results.	Some	patients	did	have	comorbidities,	such	

as	COPD	and	malignancy	for	example,	that	could,	 in	isolation,	lead	to	elevated	hsCRP	

but	little	is	known	about	how	the	presence	of	comorbidities	influences	inflammation	in	

HF-LVSD.	

	

According	 to	Yin	et	al	 (2004)83	 “at	 concentrations	known	 to	predict	adverse	vascular	

events,	 CRP	 directly	 quenches	 the	 production	 of	 nitric	 oxide,	which,	 in	 turn,	 inhibits	

angiogenesis,	an	important	compensatory	mechanism	in	chronic	ischemia.	In	so	doing,	

CRP	 may	 facilitate	 the	 development	 and	 worsening	 of	 CHF”	 and	 so	 “risk-reduction	

strategies	designed	to	lower	CRP	and	TNF-α	levels	may	be	effective	by	improving	nitric	

oxide	 bioavailability	 and	 endothelial	 function”.	 As	 FMD	 as	 a	measure	 of	 endothelial	

function,	has	been	shown	to	improve	following	CRT,	this	may	explain	the	reduction	in	

hsCRP	following	response	to	CRT	in	this	cohort.	

	

As	 discussed	 by	 Anand	 (2005)427	 the	 ability	 of	 therapies	 to	 reduce	 CRP	 and	 the	

prognostic	significance	of	this,	requires	further	investigation	and	that	“left	ventricular	

dysfunction,	 hepatic	 or	 renal	 organ	 damage	 induced	 by	 low	 cardiac	 output,	

hypoperfusion,	 hypoxia,	 and	 venous	 congestion	 may	 all	 be	 sources	 of	 increased	

interleukin-6	and	hence	CRP	production”	all	of	which	are	common	in	HF-LVSD.		So	the	

mechanism	remains	unknown	and	levels	remain	similar	in	patients	with	HF-LVSD	of	an	

ischaemic	 and	 non-ischaemic	 origin,	 suggesting	 the	 CRP	 is	 independent	 of	

atherosclerosis.		This	raises	the	question;	is	CRP	merely	an	epiphenomenon	in	HF-LVSD	

or	 does	 it	 actually	 drive	 the	 process?	 	Other	 studies	 found	 that	 a	 higher	 hsCRP	was	

found	 in	 patients	 with	 more	 severe	 HF-LVSD	 syndrome	 e.g.	 significantly	 worse	

symptoms,	 6MWD	 etc	 but	 this	 study	 actually	 demonstrated	 hsCRP	 at	 baseline	 was	

higher	in	responders	who,	as	has	already	been	discussed,	had	less	symptoms	and	were	

able	to	walk	further	at	baseline	441.	

6.2.6.9 Conclusion	
 
There	was	sufficient	difference	at	baseline	between	responders	and	nonresponders,	to	

support	 the	 use	 of	 hsCRP	 as	 predictor	 of	 response.	 	 Similarly,	 whilst	 hsCRP	 levels	

changed	during	follow-up,	these	differences	were	not	significant	and	so	could	not	be	
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proposed	as	a	marker	of	response.	It	would	be	interesting	to	validate	these	findings	by	

the	measurement	of	other	markers	of	inflammation	such	as	TNF	or	IL.	

6.2.7 Proteinuria	

6.2.7.1 Introduction	

The	 presence	 of	 proteinuria,	 i.e.	 abnormal	 levels	 of	 protein	 in	 the	 urine,	 correlates	

with	 the	 development,	 prognosis,	 morbidity442	 	 and	 mortality	 of	 HF-LVSD443,	

independent	of	renal	function,	blood	pressure444	or	diabetic	status	445.	

6.2.7.2 Pathophysiology	

Proteinuria	 is	 a	 measure	 of	 renal	 dysfunction;	 specifically	 the	 permeability	 of	 the	

glomerular	 molecules	 and	 thus	 their	 presence	 over	 a	 threshold	 in	 the	 urine	 is	

pathological.	This	is	referred	to	as	microalbuminuria	or	urinary	microalbumin	(UMA)	if	

the	level	of	protein	released	into	the	urine	is	30-300mg/24	hours	or	macroalbuminuria	

if	 the	 level	 is	 greater	 than	 300mg/24	 hours.	 	 Proteinuria	 (either	 micro-	 or	 macro-

albuminuria)	is	a	marker	of	endothelial	and	microvascular	dysfunction,	arising	typically	

as	 a	 complication	 of	 poorly	 controlled	 or	 untreated	 diseases	 such	 as	 diabetes	 or	

hypertension	and	 leading	to	nephron	 loss	and	eventually	nephropathy.	UMA	may	be	

reduced,	 and	 the	 rate	 of	 nephron	 loss	 interrupted,	 by	 ACEi	 or	 ARB	 therapy	 in	 HF-

LVSD446	 and,	 as	 alluded	 to	 by	 Struthers	 et	 al	 (2007)447,	 is	 a	 marker	 of	 silent	 organ	

damage,	being	present	even	before	serum	markers	of	kidney	 function	are	deranged.	

UMA	correlates	with	NT-proBNP448,	HBa1c449	and	 is	present	 in	approximately	20-30%	

of	 patients	with	 stable	HF-LVSD	 (see	 table	 88),	with	macroalbuminuria	 (>	 300mg/24	

hours)	present	in	a	further	5-10%	450.	

6.2.7.3 Mechanism	
 
Renal	impairment	is	very	common	in	HF-LVSD,	it	follows	the	progression	of	the	disease	

and	 carries	 a	 poorer	 prognosis	 451.	 The	 cardio-renal	 syndrome	 (CRS)	 refers	 to	 the	

simultaneous	failure	of	both	the	heart	and	the	kidney;	often	failure	of	one	precipitates	

the	decline	of	 the	other,	 directly	by	 reduced	perfusion,	 indirectly	by	neurohormonal	

mechanisms	 or	 iatrogenically	 following	 diuretic	 treatment.	 	 There	 are	 5	 subtypes	 of	

CRS	but	type	2	“chronic	HF	leading	to	chronic	renal	failure”	is	the	most	relevant	here	
452. The	 exact	 mechanism	 of	 CRS	 is	 unclear	 and	 equally,	 as	 with	 endothelial	
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dysfunction,	the	role	microalbuminuria	in	HF,	whether	through	a	causal	link	or	simply	

as	 a	 fellow	 traveller,	 remains	 to	 be	 established.	 According	 to	 Jackson	 et	 al	 (2009)	

“increased	 excretion	 might	 be	 a	 marker	 of	 diffuse	 vascular	 injury,	 systemic	

inflammation,	 activation	 of	 the	 renin-angiotensin	 system,	 altered	 glomerular	

haemodynamics,	 or	 abnormal	 tubular	 function.	 	 Many,	 if	 not	 all,	 of	 these	

pathophysiological	abnormalities	also	occur	in	heart	failure”	81. 	

 

 
Table	88:	Levels	of	UMA	in	HF	

Author	 Year	 Measure	
Albuminuria	(%)	

Conclusion	in	HF	
Normal	 Micro	 Macro	

VandeWal	 2005	 UACR	 63	 32	 5	 Common	in	HF	

Jackson	 2009	 UACR	 58	 30	 12	 Predicts	mortality	

Masson	 2009	 UACR	 41	 40	 19	 Predicts	mortality	

Jackson	 2011	 UACR	 65	 28	 7	 Correlates	with	BNP	

Blecker	 2011	 UACR	 93	 6	 1	 Predicts	development	

 

6.2.7.4 CRT	
 
In	normal,	or	mildly	impaired	renal	function,	the	presence	of	proteinuria	(either	micro-	

or	macro-)	has	been	shown	to	pose	an	increased	risk	of	HF-LVSD	and	furthermore,	its	

presence	in	30%	of	HF	patients	means	it	might	represent	a	novel	predictor	of	response	

to	CRT	453.	

	

No	papers	that	specifically	 investigate	CRT	and	UMA	could	be	found	in	the	published	

literature	 and	 it	 is	 not	 known	how	CRT	will	 impact	on	UMA.	 	Whilst	 nephron	 loss	 is	

irreversible,	CRT	may	stabilise	renal	function	and	protect	the	remaining	nephrons.		The	

MIRACLE	 study	 reported	 a	 significant	 improvement	 in	 renal	 function,	 measured	 by	

serum	 creatinine,	was	 found	 following	 CRT,	 suggesting	 that	 it	may	 offer	 some	 renal	

protection	but	UMA	was	not	investigated	454.		Whilst	UMA	is	reduced	and	nephron	loss	

halted	by	therapies	targeted	at	the	renin-angiotensin-aldosterone	system	(RAAS),	the	

only	 paper	 looking	 at	 UMA	 following	 improvement	 of	 myocardial	 performance	 was	

Hartmann	 et	 al	 (1996).	 	 This	 group	measured	UMA	 in	 heart	 transplant	 patients	 and	
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found	 that	 UMA	 actually	 deteriorated	 following	 transplantation	 over	 a	 period	 of	 5	

years	 455.	 However,	 this	 finding	 was	 complicated	 by	 the	 nephrotoxic	 and	 secondary	

hypertensive	 effects	 of	 the	 immunosuppressive	 agents	 used.	 	 Possible	 mechanisms	

include	 improved	 endothelial	 function	 and	 glomerular	 haemodynamics	 and	 reduced	

systemic	 inflammation;	 all	 known	 benefits	 of	 CRT.	 	 Since	 poor	 renal	 function	 is	

associated	with	worse	outcomes	following	CRT	456,	and	has	recently	been	considered	

as	 a	 contra-indication	 to	 implantation	 457,	 this	 also	 suggests,	 by	 extension,	 that	 the	

presence	of	UMA	may	be	associated	with	poorer	outcomes.	

6.2.7.5 Measurement	
 
UMA	can	be	measured	by	one	of	three	ways;	

• a	 single	 sample	of	mid-stream	urine	 (MSU)	 can	be	 taken	 and	 the	quantity	 of	

albumin	present	measured,	

• the	same	sample	can	be	used	to	measure	the	albumin/creatine	ratio	(ACR),	or	

• 	urine	can	be	collected	 for	a	24	hour	period	and	the	total	amount	of	albumin	

measured.		

The	latter	measure	is	considered	the	gold	standard.			

	

Measurement	 of	 UMA	 can	 be	 influenced	 by	 factors	 including	 body	 temperature,	

infection,	activity	and	time	of	day	and	so	is	best	measured	from	the	first	voided	urine.	

	

The	 normal	 range	 for	 UMA	 is	 <	 30mg/l	 of	 urine	 and	 the	 normal	 albumin/creatinine	

ratio	 (UACR)	 is	 <	 3.5	 mg/mmol	 and	 <	 2.5	 mg/mmol	 in	 male	 and	 female	 patients,	

respectively.	 A	 24	 hour	 urine	 collection	 was	 deemed	 not	 to	 be	 feasible	 considering	

how	 infrequently	 the	patients	were	assessed,	 the	distances	 travelled	and	how	much	

they	were	already	undertaking,	so	a	spot	measurement	of	the	ACR	was	chosen	from	a	

first	 void	 MSU	 sample	 taken	 on	 arrival	 to	 the	 research	 facility	 458.	 Accurate	

measurement	of	UMA	depends	on	not	only	the	level	of	albumin	in	the	urine	but	also	

the	concentration	of	the	urine	being	analysed,	hence	in	spot	samples	it	is	necessary	to	

make	a	concurrent	measure	of	the	urinary	creatinine	concentration.	

6.2.7.6 Hypotheses	
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Working	hypotheses	–	

1)	 UMA	 improves	 significantly	 in	 patients	 who	 are	 classed	 as	 responders	 to	 CRT,	

determined	by	symptoms,	echocardiography	and	exercise	testing.		

	

2)	The	clinical	response	to	CRT	can	be	predicted	by	baseline	measures	of	UMA	

Null	hypotheses	–	

1)	 UMA	 does	 not	 improve	 significantly	 in	 patients	who	 are	 classed	 as	 responders	 to	

CRT,	determined	by	symptoms,	echocardiography	and	exercise	testing.	

	

2)	The	clinical	response	to	CRT	cannot	be	predicted	by	baseline	measures	of	UMA.	

6.2.7.7 Methods	
 
Each	patient	was	asked	 to	provide	a	urine	 sample	at	08:30-09:30	on	 the	morning	of	

their	appointment,	prior	to	any	medications,	food,	fluids	or	activity.			

	

The	urinary	albumin	was	measured	by	an	immunoturbidimetric	assay	(ACN	8235	Tina-

quant	Albumin	Gen.2,	Roche,	UK).		Anti-albumin	antibodies	react	albumin	in	the	urine	

to	form	antigen/antibody	complexes	which,	following	agglutination,	can	be	measured	

turbidimetrically.			

	

The	 assay	 used	 to	measure	 urinary	 creatinine	was	 a	 kinetic	 colorimetric	 assay	 (ACN	

8691	 Creatinine	 Jaffé	 Gen.2,	 Roche,	 UK).	 	 When	 placed	 in	 an	 alkaline	 solution,	

creatinine	forms	a	yellow-orange	complex	with	picrate	and	the	rate	of	dye	formation	is	

proportional	to	the	creatinine	concentration.			

	

In	 Sheffield,	 test	 samples	 14.51	 and	 55.75mg/l	 for	 urinary	 albumin	 are	 run	 to	 an	

accuracy	of	the	14.51mg/l		(±	0.94	SD,	6.51	CV%)	and	55.75mg/l	(±1.83	SD,		1.83	CV%).	

For	urinary	creatinine	5.42mmol/l	(±	0.11	SD,	2.00	CV%)	and	11.14mmol/l		(±	0.30	SD,		

2.73	CV%)	according	to	TG	(personal	communication,	2013)	438.	

 

6.2.7.8 Results	
Table	89:	Baseline	UACR	in	responders	and	nonresponders	

Baseline	 Responders	 Nonresponders	 Student's	T-test	
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Mean	 SD	 Mean	 SD	 P	value	
UACR	 mg/mmol	 7.0	 2.8	 2.3	 1.7	 =	0.75	

	
 

Table	90:	UACR	in	responders	at	baseline	and	during	follow-up	

Responders	

Time	point	(months)	

One	way	ANOVA		

with	repeated	measures	

p	value	

Baseline	 6	 12	 Baseline	vs	

Mean	 SD	 Mean	 SD	 Mean	 SD	 6	months	 12	months	

UACR	 mg/mmol	 7.0	 2.8	 8.1	 0.7	 8.8	 1.3	 =	0.56	

	
Table	91:	UACR	in	nonresponders	at	baseline	and	during	follow-up	

Nonresponders	

Time	point	(months)	

One	way	ANOVA		

with	repeated	measures	

	p	value	

Baseline	 6	 12	 Baseline	vs	

Mean	 SD	 Mean	 SD	 Mean	 SD	 6	months	 12	months	

UACR	 mg/mmol	 2.3	 1.7	 1.9	 0.9	 13.3	 0.4	 =	0.50	

	
Figure	106:	UACR	in	responders	(white)	and	nonresponders	(black)	

 
 
	
	

	

	

	

	

	

	

	

	

Figure	 106	 demonstrates	 the	 changes	 in	 the	 urinary	 albumin:creatinine	 ratio	 in	

responders	(white)	and	non	responders	(black)	following	CRT	implantation.	
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Although	 UMA	 appeared	 higher	 in	 responders,	 there	 was	 no	 statistically	 significant	

difference	 in	UMA	at	 between	 responder	 and	nonresponder	 groups	 at	 baseline	 (see	

table	 89	 and	 figure	 106).	 	 During	 follow-up,	 no	 change	 in	 UMA	 was	 recorded	 for	

responders;	 nonresponders	 demonstrated	 increase	 but	 this	 was	 not	 statistically	

significant	(see	tables	90,	91	and	figure	106).	 		

6.2.7.9 Discussion	
 
The	lack	of	significant	difference	between	the	UACR	of	responders	and	nonresponders	

at	baseline	means	 that	 this	 cannot	be	used	at	present	as	 a	predictor	of	 response	 to	

CRT.	 	 Furthermore,	 there	 is	 no	 significant	 difference	 during	 follow-up	 in	 either	

responders	 or	 nonresponders	 for	 this	 biomarker	 to	 be	 considered	 a	 marker	 of	

response.		One	could	argue	that	those	patients	without	UMA	may	derive	more	benefit	

from	CRT	 and	 have	 a	 lower	 likelihood	 of	 non-response	 as	 they	 are	 suffering	 from	 a	

single	organ	disease	such	as	with	idiopathic	dilated	cardiomyopathy	and	have	not	yet	

developed	the	HF-LVSD	syndrome,	affecting	musculoskeletal,	endocrine,	renal	systems	

etc.	

	
As	 mentioned	 in	 the	 introduction,	 UMA	 is	 found	 in	 approximately	 30%	 of	 HF-LVSD	

patients	and	clearly	this	would	limit	its	utility	in	predicting	response	to	CRT	at	baseline.	

In	 the	 present	 study,	 30%	 of	 patients	 had	 UMA	 and	 a	 further	 10%	 had	

macroalbuminuria	at	baseline,	demonstrating	that	this	cohort	is	similar	to	those	from	

other	 HF-LVSD	 trials	 investigating	 UMA.	 A	 significant	 number	 of	 those	 with	 frank	

proteinuria	were	diabetic	and	these	also	comprised	most	of	the	responder	group.		This	

probably	 accounts	 for	 the	 non-significantly	 higher	 level	 of	 proteinuria	 at	 baseline	 in	

responders	than	nonresponders.	

	

As	 discussed	 in	 the	 introduction,	 HF	 therapies	 such	 as	 ARBs	 have	 been	 shown	 to	

protect	the	remaining	nephrons	and	prevent	the	onset	of	proteinuria	but	this	was	not	

found	 to	 be	 the	 case	 after	 CRT	 in	 the	 current	 study;	 where	 UACR	 deteriorated	

regardless	of	ARBs.		It	must	be	mentioned	that	ARBs	have	been	shown	to	prevent	the	

onset	 but	 not	 the	 progression	 of	 proteinuria	 in	 diabetic	 HF-LVSD	 patients	 446. Thus,	

since	the	diabetic	HF-LVSD	patients	in	this	study	already	had	significant	UMA,	the	lack	

of	 a	 significant	 effect	 of	 CRT	 is	 perhaps	 not	 surprising.	 	 Furthermore,	 Jackson	 et	 al	
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(2009)81	 reported	 contradictory	 findings,	 reporting	 that	 in	 their	 study,	 ARBs	 had	 no	

effect	on	proteinuria.	It	must	be	said,	however	that	these	conflicting	results	were	the	

result	 of	post-hoc	analyses	 carried	 out	 on	 data	 from	 large	 studies	 and	 not	 obtained	

from	prospective	RCTs.	 	Similarly,	when	the	present	patient	cohort	is	considered	as	a	

whole,	e.g.	 inclusive	of	both	responders	and	nonresponders,	there	was	no	significant	

difference	 in	 UMA	 following	 CRT.	 Of	 note	 is	 that,	 whilst	 UACR	 deteriorated	 during	

follow-up,	as	did	renal	function,	there	was	no	significant	difference	in	either	group	nor	

was	 there	 a	 significant	 difference	 in	 diuretic	 dose	 during	 follow-up.	 	 Perhaps	 in	 a	

cohort	with	stabilised	or	significantly	improved	renal	function	following	CRT,	a	similarly	

significant	difference	in	UMA	might	be	found.	The	presence	of	UMA	was	no	hindrance	

to	CRT	 response,	but	 the	 lack	of	a	 significant	effect	of	CRT	on	UMA	despite	exerting	

beneficial	effects	on	endothelial	function;	shear	stress	and	systemic	inflammation	may	

simply	suggest	that	the	progression	of	CRS,	like	HF-LVSD	itself,	is	unrelenting.	

	

An	alternative	method	to	UACR	could	have	been	to	use	the	recently	discovered	serum	

biomarker	neutrophil	gelatinase	associated	lipocalin	(NGAL)	as	a	marker	of	renal	injury.		

This	 specific	 renal	 tubular	 protein	 responds	 earlier	 to	 renal	 injury	 than	 other	

biomarkers	and	has	yet	to	be	investigated	in	relation	to	CRT	and	HF-LVSD	459.	

	

Several	 factors	can	 influence	 the	day-to-day	variation	 in	UMA,	 in	 the	 range	between	

31-54%	 and	 so	 ideally	 a	mean	 of	 three	 urine	 collections	 has	 been	 recommended	 to	

determine	 the	 UACR/UMA	 level	 of	 a	 given	 subject	 460	 461.	 However	 this	 was	 not	

deemed	feasible	 in	 this	study	and	furthermore	was	not	carried	out	 in	other	HF-LVSD	

studies.	 	The	urine	was	 taken	at	 the	same	time	of	day	 for	each	patient/visit	and	 the	

patients	 rested	overnight	 in	 order	 to	minimise	 any	 inter-sample	 variation.	 	 Also,	 the	

patients	 were	 all	 asymptomatic,	 afebrile	 and	 without	 neutrophilia,	 ruling	 out	 the	

influence	of	a	urinary	infection	as	a	cause	of	variability	in	UMA.	

6.2.7.10 Conclusion	

The	 lack	of	significant	difference	 in	UACR	between	responders	and	nonresponders	at	

baseline	or	during	follow-up	means	that	by	this	measure	at	least,	UMA	cannot	be	used	

to	predict	or	assess	response	to	CRT.		It	appears	that,	as	with	HF-LVSD	itself,	following	

the	 onset	 of	 UMA	 the	 progression	 is	 unrelenting.	 Future	 work	 could	 involve	 using	
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other	measures	of	UMA	such	as	24hr	urine	collection	or	other	measures	of	renal	injury	

such	as	NGAL.		

6.3 Conclusions	
	
In	 conclusion,	 of	 the	 biophysical	 markers	 investigated,	 FMD	 was	 able	 to	 predict	

response	 at	 baseline	 and	 HGS	was	 used	 to	 demonstrate	 response	 during	 follow-up,	

however	the	BCG	and	non	of	the	biomarkers	were	significantly	different	during	follow-

up	in	responders	nor	at	baseline	between	responders,	ruling	them	out	as	predictors	or	

measures	of	response.	In	the	next	chapter,	the	clinical	utility	of	the	work	in	chapters	6	

and	7	will	be	discussed.	
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Chapter	7 Evaluation	of	Clinical	Relevance	

This	chapter	discusses	the	clinical	relevance	of	the	work	described	in	the	preceding	

chapters,	on	modelling,	biomarkers	and	biophysical	markers.	

7.1 Models	

The	LPM	was	used	to	analyse	existing	LV	PV	data	and	add	tangible	parameters	to	both	

the	AHA/ACC	and	NYHA	classifications	and	to	model	patients	undergoing	CRT	therapy	

with	 the	 aim	 of	 predicting	 and	 assessing	 response.	 The	 LPM	 proved	 invaluable	 in	

gaining	insight	into	the	failing	heart,	from	healthy	normal	to	end-stage	HF-LVSD,	giving	

both	clinically	meaningful	parameters	such	as	elastance	(Emax)	and	EF%,	showing	how	

they	changed	as	 the	LV	 failed	and	also	scientifically	novel	data	 revealing	 for	 the	 first	

time	 that,	 modelled	 in	 this	 way,	 resistance	 (R)	 and	 compliance	 (C)	 did	 not	 change	

during	the	process	of	HF-LVSD.	In	this	work,	the	LPM	was	used	to	analyse	existing	data	

and	perhaps	 the	 “so	what?”	question	 remains	unanswered,	as	 to	model	 the	 LV,	and	

therefore	 the	 patient,	 one	 still	 needs	 to	 perform	 the	 invasive	measures	 in	 the	 first	

instance.	 Ideally	 one	 would	 model	 the	 LV	 without	 invasive	 measures,	 however	 to	

validate,	at	least	initially,	the	model	must	be	based	on	objective	and	robust	measures	

of	 the	 system,	 in	 this	 case	 volume	 and	 pressure.	 This	 of	 course,	 makes	 the	 false	

assumption	 that	 symptoms	 and	 therefore	 HF-LVSD	 class	 is	 purely	 determined	 by	 LV	

function,	when	 there	 are	many	 other	 body	 systems	 intimately	 linked	 to	 the	 LV,	 but	

which	are	challenging	to	model	and	hard	to	quantify.	The	difficulties	in	this	work,	led	

to	 the	 next	 section	 and	 using	 the	 patients	 record,	 to	 attempt	 to	 model	 the	 LV	 in	

patients	 undergoing	 CRT	 implantation,	 without	 invasive	measures.	 This	 was	 in	 itself	

interesting	and	hopefully	would	help	to	further	personalise	the	3D	models	used	in	the	

project.		

	

As	 alluded	 to	 earlier,	 the	 “so	 what?”	 question,	 differentiates	 the	 academically	

interesting	from	the	clinically	useable.	If	using	the	LPM	at	baseline	could	predict	which	

patients	would	respond	to	CRT	this	could	be	both.	However,	how	the	LV	PV	loop,	and	

therefore	 underpinning	 LPM	 parameters,	 changed	 during	 follow-up	 is	 academically	
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interesting	 without	 having	 real	 clinical	 utility.	 The	 lack	 of	 correlation	 between	 the	

model	 parameters	 e.g.	 Emax	 and	 markers	 of	 response	 (established	 or	 novel)	

compounds	this	irrelevance,	as	it	appears	that	the	models’	parameters	lack	real	world	

validity.	Furthermore,	this	LPM	work,	suffered	from	the	same	fate	as	the	3D	modelling,	

that	 in	 the	 real	world,	hearts	 are	difficult	 to	 image	accurately,	 and	 reproducibly	 and	

single	 measures	 of	 physiological	 parameters	 do	 not	 necessarily	 best	 represent	 the	

system.	 As	 a	 result,	 the	model	 represents	 a	 single	 snapshot	 of	 a	 component	 of	 the	

system	rather	 than	 the	working	 system	 in	 its	entirety	and	measurements	acquired	a	

second	before	or	 after	might	 give	 very	different	 results.	 This	 also	 calls	 into	question	

the	 utility	 of	 creating	models	 based	 on	 healthy	 normal	 individuals	 and	 then	 forcing	

these	onto	morbidly	unwell	patients,	with	abnormal	anatomy	and	physiology.		

	

Simply	recruiting	a	patient	to	a	research	study	does	not	mean	they	will	have	excellent	

echo	 “windows”	 with	 beautifully	 delineated	 LV	 endocardium	 enabling	 accurate	

assessment	 of	 LV	 volumes.	 Ideally	 such	 patients	 would	 be	 proactively	 selected,	 but	

then	 this	 creates	 a	 further	 challenges	 for	 recruitment	 e.g.	 more	 patients	 will	 be	

deemed	 unsuitable	 and	 for	 ethical	 approvals	 e.g.	 pre-scan	 all	 possible	 candidates	

(unless	patients	are	already	known).		However,	this	work	has	demonstrated	that	the	LV	

can	be	modelled	non-invasively,	as	patients	respond	the	model	adapts	and	reproduces	

pathophysiology	 (with	 the	available	 information)	 accurately	and	with	a	 larger	 cohort	

this	may	lead	to	identifying	patients	a	priori	who	will	respond	to	CRT	which	would	be	

invaluable,	save	£10k’s	per	year	and	not	expose	patients	to	the	risk	of	implantation	for	

a	device	that	may	not	ultimately	benefit	them.		

	

In	 terms	 of	 appraisal	 of	 the	 3D	 segmentation	 tool,	 it	 became	 apparent	 that	 whilst	

superficially	 the	 3D	 whole	 heart	 segmentation	 looked	 realistic,	 when	 viewed	 in	 the	

context	of	the	cMR	SSFP	original	 image,	the	tool	found	it	difficult	to	differentiate	the	

extra-cardiac	 tissue	 from	 the	 epicardium	 and	 so	 overestimating	 the	 size	 of	 the	 LV.	

Objectively	when	comparing	the	gold	standard	hand	segmentation	to	the	automated	

segementation,	 it	 became	 clear	 that	 significant	 differences	 were	 found	 in	 the	 2	

surfaces.	Although	 the	 tool	performed	better	 in	 segmenting	 the	endocardium	with	a	

bright	blood	pool,	 the	 resulting	 segmentation	was	 far	 from	accurate.	 The	process	of	

hand	segmentation	is	laborious	and	hence	in	clinical	practice	a	semi-automated	tool	is	
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used.	 This	 emphasises	 that	 there	 is	more	work	 to	 be	 done	 before	 the	 heart	 can	 be	

accurately	and	routinely	model	 the	heart	 for	use	 in	clinical	practice	using	automated	

segmentation	 tools.	 This	 is	 especially	 important	 if	 that	 model	 is	 then	 used	 to	

determine	 suitability	 for,	 or	 response	 to,	 a	 therapy.	 This	was,	 arguably	 perhaps,	 the	

most	 clinically	 relevant	aspect	of	 the	whole	GC	project,	namely	 could	 the	process	of	

creating	a	3D	model	be	automated?	And	could	this	3D	model	then	predict	response	to	

the	therapy	delivered?	Whilst	the	second	question	remains	unanswered,	the	answer	to	

the	first	question	remains	a	resounding	no.	Before	such	a	project	could	be	rolled	out	to	

further	centres	as	part	of	an	RCT,	either	the	process	would	need	to	be	automated	or	

funding	would	be	needed	in	each	centre	for	a	clinician	or	researcher	to	hand-segment	

the	 LV.	 Indeed,	 when	 other	 members	 of	 the	 GC	 project	 used	 the	 automated	

segmentations	at	least	in	terms	of	geometry	any	differences	between	responders	and	

nonresponders	 were	 lost,	 hence	 it	 was	 found	 necessary	 to	 default	 back	 to	 hand-

segmented	meshes.		

	

The	3D	modelling	held	the	greatest	potential	 for	clinical	relevance	at	the	start	of	the	

project,	 certainly	 there	 was	 hope	 that	 if	 the	 project	 was	 successful	 the	 multi-scale	

model	 could	 be	 rolled	 out	 to	 other	 centres	 as	 part	 of	 the	 multicentre	 trial.	

Unfortunately,	 no	 such	 model	 was	 realised,	 despite	 the	 promise	 shown	 in	 the	

preliminary	pilot	study.	As	a	consequence,	the	both	the	EP	model	and	statistical	atlas	

were	used	in	an	attempt	to	deconstruct	the	all-	encompassing	complex	model,	into	its	

constituent	 parts	 and	 assess	 the	 potential	 of	 these	 individually.	 Both	 produced	

significant	results,	with	the	EP	model	appearing	to	predict	multimodal	response	to	CRT	

based	on	type	II	activation	pattern	and	the	atlas	demonstrating	that	response	based	on	

LV	reverse	remodelling	alone	could	be	predicted	by	2	modes	of	variation,	in	length	and	

sphericity.	However,	 the	EP	model	was	unable	 to	 simulate	50%	of	 the	patients	 from	

USFD	 and	 100%	of	 patients	 from	GSTT,	 taking	 considerable	 time	 and	 computational	

power	 to	 run	 and	 the	 statistical	 atlas	 required	 complex	mathematical	 algorithms	 to	

prove	response	on	a	single	criterion,	which	 in	 itself	 is	now	rarely	used	 in	 isolation	 in	

large	clinical	trials.	This	suggests	that	there	is	still	much	work	to	be	done,	in	terms	of	

translating	 biomedical	 modelling	 into	 the	 clinical	 setting.	 Whilst	 both	 were	

academically	 interesting	 and	 certainly	 a	 signpost	 for	 future	 work,	 such	 a	 workflow	

would	need	to	be	fully	automated	and	run	in	minutes,	not	days	to	enable	clinicians	to	
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make	 decisions	 in	 real	 time	 on	 their	 patients,	 for	 example	 when	 planning	 complex	

device	therapy	e.g.	CRT.	Furthermore,	it	would	be	unacceptable	for	a	clinical	tool	to	be	

unable	 to	 analyse	 data	 from	 50%	 of	 the	 patients,	 as	 this	would	 be	 unusable	 to	 the	

clinician	and	unsatisfactory	 to	 the	patient.	 In	 this	 regard,	 it	 is	 unsurprising	 that	 such	

modelling	 work	 is	 now	 being	 pared	 down,	 back	 to	 basics,	 to	 allow	 for	 faster	

simulations,	less	computational	demands	and	less	difficulty	in	analysing	data.		

7.2 Biophysical	

With	respect	to	FMD,	this	study	supports	 its	potential	 for	the	pre-assessment	of	CRT	

candidates	 ensuring	 that	 only	 those	 patients	 who	 are	 likely	 to	 respond	 receive	 the	

device	therapy.		This	is	the	second	study	to	confirm	the	utility	of	FMD	but	the	reason	

as	to	why	reduced	endothelial	function	should	be	associated	with	increased	likelihood	

to	derive	benefit	 from	CRT	 remains	unclear.	 	As	a	 test	 that	 in	 the	order	of	about	30	

minutes	provided	that;	the	patient	is	appropriately	prepared,	staff	trained	are	suitably	

prepared	 in	both	 the	acquisition	and	analysis	 and	provision	 is	 can	be	made	 for	 such	

assessment	 within	 routine	 clinical	 practice,	 FMD	 could	 be	 of	 great	 use.	 	 This	 is	

particularly	 the	 case	 in	 view	 of	 a	 climate	 of	 NHS	 cuts,	 austerity	 and	 increasing	

emphasis	 on	 personalised	medicine	 using	 the	 best	 available	 evidence.	 	 At	 a	 cost	 of	

around	 £100	 per	 scan,	 compared	 to	 £10-15k	 per	 CRT-P/D	 device,	 particularly	 if	 the	

scan	avoids	implanting	a	CRT	device	in	a	patient	who	will	derive	none	of	the	benefits	

but	all	of	the	risks,	it	makes	financial	and	clinical	sense	to	first	replicate	these	findings	

in	 a	 larger	 and	more	heterogenous	 population	before	 then	 conducting	 a	 RCT	 to	 see	

whether	such	data	bears	true.		However,	whether	this	would	be	acceptable	to	patients	

or	 indeed	 an	 ethics	 committee	 remains	 to	 be	 seen	 but	 perhaps	 is	 no	 different	 to	

performing	an	ECG	to	measure	QRS	width	prior	to	CRT	implantation.		

	

HGS	elegantly	demonstrates	how	a	HF-LVSD	therapy	which	improves	LV	function,	can	

also	lead	to	secondary	gains	in	other	areas	of	the	HF-LVSD	syndrome,	muscle	function.		

To	 the	 best	 of	 the	 author’s	 knowledge,	 this	 is	 the	 first	 study	 to	 demonstrate	 that	

responders	 to	 CRT	 gain	 improvements	 in	 HGS	 and	 is	 likely	 to	 be	 as	 a	 result	 of	 the	

increase	in	activities	of	daily	living,	walking	to	the	shops,	gardening,	cleaning	etc,	that	a	

positive	 response	 to	 CRT	 allows.	 	 At	 present	 in	 STHT,	 patients	 are	 assessed	 for	

response	 during	 a	 clinic	 appointment	 at	 6	 months	 following	 CRT	 with	 the	 patient	
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simply	being	asked	if	they	‘feel	better’	and	stratifying	their	functional	status	based	on	

their	response	to	the	NYHA	classification.	The	use	of	the	GS	could	be	a	helpful	tool	to	

aid	 more	 accurate	 categorisation	 of	 response	 for	 although	 nearly	 all	 patients	 had	

improved	symptoms	and	functional	capacity	according	to	the	MLWHFQ	and	6MWD	at	

follow-up,	only	responders	had	an	improved	HGS.		To	perform	a	serial	peak	VO2,	2DTTE	

or	 BNP	 assessment	 for	 all	 patients	 to	 assess	 response	 would	 be	 prohibitively	

expensive,	time	consuming	and	fraught	with	confounding	variables	such	as	motivation,	

inter-operator	 variability	 and	 fluid/volume	 status.	 	 There	 was	 also	 quite	 a	 large	

difference	 in	HGS	between	 responders	and	nonresponders	at	baseline,	 although	 this	

was	 not	 significant.	 	Were	 this	 study	 to	 be	 repeated	 in	 a	 much	 large	 cohort	 and	 a	

significant	difference	determined	at	baseline	between	responders	and	nonresponders	

this	 would	 increase	 the	 utility	 of	 HGS,	 in	 terms	 of	 predicting,	 not	 just	 measuring,	

response.		As	HF-LVSD	is	not	simply	a	single	organ	disease,	particularly	at	its	end-stage,	

it	 becomes	 ever	 more	 important	 to	 take	 non-cardiac	 factors	 into	 account	 when	

assessing	suitability	for,	and	response	to,	treatment.	

Finally,	 the	 most	 novel	 of	 this	 work,	 the	 BCG,	 was	 used	 to	 study	 the	 influence	 of	

cardiac	 force	 on	 the	 potential	 response	 to	 CRT	 and,	 following	 the	 implantation	 of	 a	

device,	its	impact	on	cardiac	force.		Unfortunately,	due	to	challenges	in	setting	up	such	

industrial	equipment	 for	 clinical	use,	and	2	patients	 subsequently	dropping	out,	only	

10	 patients	 underwent	 this	 with	 9	 responders	 and	 1	 nonresponder,	 making	

comparisons	between	them	challenging.		

It	 is	 important	to	emphasise	that,	unlike	for	the	ECG,	despite	many	years	of	research	

into	BCG,	 it	 is	still	not	clear	exactly	what	 the	BCG	signal	means	even	with	the	use	of	

signal	averaging.	 	 	 It	would	have	been	useful	to	carry	out	a	simultaneous	2DTTE	with	

ECG	during	BCG	monitoring,	but	that	was	not	feasible	with	the	equipment	used.		This	

would	have	given	greater	insight	as	to	what	each	component	of	the	wave	meant	in	the	

context	of	the	cardiac	cycle,	for	the	composition	of	the	JVP	for	example.		Nevertheless,	

it	 was	 possible	 to	 demonstrate	 that	 real	 time	 ECG	 and	 BCG	 acquisition	 is	 possible.		

Whether	 recruiting	 a	 larger	 group,	 at	 baseline	 and	 comparing	

responders/nonresponders	may	allow	a	clearer	picture	of	 the	role	of	BCG	to	emerge	

remains	to	be	seen.		Unlike	for	FMD	or	HGS,	the	utility	of	BCG	as	a	marker	or	predictor	

of	response	based	on	this	study	alone	remains	unclear.	



339	|	Page	
 

In	 terms	of	biophysical	markers,	 FMD	and	HGS	demonstrated	 their	 clinical	 relevance	

for	assessing	patients	prior	to,	and	following,	CRT	therapy	respectively.	The	true	role	

and	value	of	BCG	is	yet	to	be	realised,	but	showed	promise	in	this	pilot	work.	

7.3 Biomarkers	

A	 range	 of	 putative	 cardiac	 and	 non-cardiac	 biomarkers	 were	 investigated	 in	 this	

project	 but	 none	 were	 shown	 to	 fulfil	 their	 promise	 in	 terms	 of	 significantly	

differentiating	 responders	 from	 nonresponders	 at	 baseline	 or	 showing	 significant	

alteration	 during	 follow-up	 after	 CRT	 in	 either	 responders	 or	 nonresponders.	 	 The	

reasons	for	this	are	multifactorial	and	may	simply	relate	to	the	small	and	homogenous	

patient	cohort,	as	certainly	some	differences	did	exist	at	baseline	and	during	follow-up.		

There	appeared	to	be	3	trends	emerging	from	the	biomarkers	in	responders:	

1) Higher	at	baseline	and	decreasing	after	CRT;	hsTNT,	NT-proBNP	and	hsCRP.	

2) Lower	at	baseline	and	increasing	after	CRT;	UA,	vitamin	D	and	PTH.	

3) Higher	at	baseline	and	increasing	after	CRT;	UMA.	

Despite	providing	assessment	of	the	HF-LVSD	syndrome	in	terms	of	cardiac,	endocrine,	

renal,	endothelial	and	cellular	function,	since	none	of	the	measured	differences	proved	

to	be	statistically	significant	(other	than	NT-proBNP	during	follow-up	in	responders)	it	

is	difficult	to	draw	any	firm	conclusions.		

In	terms	of	clinical	utility,	such	tests	cost	between	£0.40	and	£20	but	until	a	statistically	

significant	difference	is	established,	it	would	be	difficult	to	justify	their	inclusion	in	the	

routine	assessment	of	CRT	patients	at	baseline.		As	the	significant	improvement	in	NT-

proBNP	 became	widely	 known	 during	 the	 project	 and	 so	 the	 positive	 finding	 in	 this	

regard	is	no	longer	surprising	and	furthermore,	this	marker	improved	in	some	patients	

who	were	not	classified	as	responders,	despite	their	 lack	of	response	in	terms	of	any	

other	established	criteria.	

In	order	to	remove	any	influence	on	the	reporting	of	NT-proBNP	levels,	samples	were	

analysed	 by	 staff	 blinded	 to	 the	 patients’	 condition	 and	 the	 investigator	 took	 total	

responsibility	for	taking,	labelling	and	transporting	the	blood	samples.	 	All	markers	of	

response,	such	as	LVEDV,	6MWT,	peak	VO2	and	MLWHFQ	were	recorded	on	the	same	

day	as	the	biomarkers	to	ensure	any	changes	were	contemporaneous;	assessment	on	

different	days	could	have	 led	 to	errors	e.g.	 influenced	by	diet,	activity,	 fluid	balance,	

medication	etc.	



340	|	Page	
 

Responders	 to	 CRT	 appeared	 to	 be	 generally	 ‘fitter’	 at	 baseline;	 in	 terms	 of	 fewer	

symptoms,	 small	 LV	 volumes,	 stronger	 GS,	 and	 greater	 6MWD	 but	 this	 was	 not	

supported	 by	 the	 statistical	 analysis	 and	 furthermore,	 serum	NT-proBNP	 and	 hsTNT	

and	peak	VO2	were	all	lower	in	responders.		This	might	indicate	that,	despite	all	these	

patients	 being	 classed	 as	 NYHA	 III,	 perhaps	 further	 sub-categorisation	 was	 needed,	

even	 in	 seemingly	 such	 a	 homogenous	 group.	 	 In	 principle,	 the	 AHA/ACC	 or	 NYHA	

classification	 could	be	 sub-divided	 further	or	 a	new	classification	 that	better	 reflects	

the	 HF-LVSD	 syndrome	 as	 a	whole	 could	 be	 proposed	 rather	 than	 simply	 limited	 to	

categorisation	of	breathlessness	or	the	aetiology	of	the	HF	124.	

This	aspect	of	the	project	gave	insight	into	the	syndrome	that	is	HF-LVSD,	as	nearly	all	

patients	had	values	 that	would	be	considered	abnormal,	 in	one	or	more	biomarkers,	

despite	not	being	previously	diagnosed	with	such	conditions	e.g.	microalbuminuria	or	

being	 symptomatic	e.g.	gout.	 	This	 finding	highlights	how	much	comorbidity	 remains	

undiagnosed	in	such	patients	but	also	potential	harms	from	over-diagnosis	in	research	

trials.	NT-proBNP,	is	currently	used	in	primary,	but	other	than	for	research	studies,	not	

secondary	 care.	 	 	 This	 is	 due	 to	 the	wide	 availability	 of	 2DTTE	 in	 a	 hospital	 setting,	

which	 is	 considered	 to	 be	 the	 gold	 standard	 for	 diagnosing	 HF-LVSD	 and	 ruling	 out	

other	 causes	 of	 dyspnoea	 (and	 raised	 NPs),	 such	 as	 valve	 disease,	 PE	 or	 HFPEF.		

Assessment	of	NPs	should	be	used	as	part	of	the	assessment	for	patients	following	CRT	

implantation.		This	may	have	distinct	benefits	over	simply	asking	patients	if	they	‘feel	

better’	and	estimating	NYHA	class	based	on	their	symptoms	of	breathlessness.		Used,	

in	 conjunction	 with	 the	 6WMD	 and	 with	 GS,	 NT-proBNP	 might	 allow	 an	 objective	

assessment	of	functional	capacity,	skeletal	muscle	function	and	neurohormonal	status,	

all	or	which	are	key	factors	in	driving	symptoms	and	thus	determining	CRT	response.	

7.4 Conclusions		

The	only	 tests	 that	demonstrated	 real	world	 clinical	 utility	were	 the	HGS,	 as	 a	quick	

and	easy	adjunct	to	 identifying	patients	who	were	CRT	responders	and	the	FMD	as	a	

method	to	identify	patients	pre-implant	who	would	respond,	but	these	findings	would	

need	replicating	in	a	large	and	diverse	cohort,	before	drawing	firm	conclusions.	
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Chapter	8 Discussion,	Conclusions	and	Future	work	
This	chapter	draws	together	all	the	themes	in	order	to	discuss	what	has	been	learned,	

what	this	means	and	what	further	research	needs	to	be	done.	

8.1 Discussion	

The	thesis	has	two	complimentary	themes,	which	run	throughout;	these	are	measuring	

and	 predicting	 response	 to	 cardiac	 resynchronisation.	 In	 the	 former,	 the	 role	 of	

patient-specific	 three-dimensional	 computational	 models	 and	 biophysical	 properties	

are	investigated	as	potential	predictors	of	response,	and,	in	the	latter,	the	influence	of	

cardiac	resynchronisation	on	the	heart	failure	syndrome	using	biomarkers.	

	

The	 overall	 aim	 of	 the	GC	 project	was	 to	 produce	 around	 50	 patient	 specific	 3D	 LV	

models	at	baseline,	 from	cMR	derived	whole	heart	segmentations,	which	were	fitted	

to	meshes	featuring	biomechanical	and	electrophysiological	properties,	and	run	to	see	

if	 such	 simulations	would	 predict	 response	 to	 CRT.	 Despite	 a	 successful	 pilot	 study,	

even	5	years	after	officially	starting	the	project,	this	aim	is	still	to	be	realised,	even	if	

the	 EP	model	 and	 statistical	 analysis	 LV	 shape	 of	 the	 LV	 at	 baseline	 is	 significant	 at	

predicting	 response,	 the	 lack	of	even	a	 single	working	multi-modal	3D	model	proves	

just	how	much	of	challenge	the	GC	project	was.		

	

Mean	 age	 of	 patients	 was	 perhaps	 surprising	 given	 that	 the	 average	 age	 of	 HF	

diagnosis	 is	 76	 but	 the	mean	 age	 of	 patients	 in	 the	 large	 CRT	 trials	was	mid	 to	 late	

sixties.	 	 This	 is	 important	 as	 it	 shows	 that	 the	 inclusion	 criteria	were	 respected,	 the	

results	are	translatable	to	a	HF-LVSD	population	receiving	such	devices	(who	should	all	

be	taking	both	a	β-blocker	and	an	ACE-I/ARB)	and	can	be	compared	against	other	CRT	

trials	 with	 similar	 levels	 of	 OMT.	 Only	 2	 (10%)	 of	 the	 patients	 were	 female,	 as	

compared	to	between	15-30%	in	the	large	CRT	trials.	However,	whilst	the	19	patients	

studied	were	homogenous,	clearly	all	 this	work	would	need	repeating	 in	much	larger	

and	more	diverse	cohorts,	in	terms	of	gender	and	ethnicity,	before	the	results	could	be	

applied	to	either	the	HF-LVSD	population	as	a	whole	and	especially	in	respect	to	those	

groups	 underrepresented	 in	 this	 work.	 Furthermore,	 such	 a	 small	 sample	 size	 lacks	

statistical	power	and	is	at	risk	of	type	II	errors,	and	so	the	results	must	considered	in	

this	light.	
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The	 LPM	work	 gave	 successful	 outcomes,	 firstly	 in	 the	 context	 of	 being	 able	 to	 use	

existing	 data	 in	 the	 public	 domain	 to	 unearth	 new	 parameters	 from	 existing	 PV	 LV	

data.	 	A	broad	spectrum	of	data	from	healthy	normal	 individuals	through	to	patients	

with	 end-stage	HF-LVSD	was	 used.	 	 This	 had	 not	 been	 done	 before	 indeed	 the	 only	

similar	 work	 modelling	 HF-LVSD	 found	 in	 the	 literature	 used	 seemingly	 arbitrary	

measures	 for	 elastance	 and	 boundary	 conditions.	 	 This	 study	 therefore	 allows	

modellers	 to	 choose	 precise	 parameters	 for	 patients	 in	 varying	 degrees	 of	 LV	

dysfunction,	based	on	the	 largest	systematic	review	of	LV	PV	data	to	date	and	in	the	

knowledge	that	it	is	only	elastance,	which	is	important.		This	inspired	the	next	body	of	

work,	exploring	how	such	a	model	could	be	used	in	the	absence	of	invasive	measures.		

This	resulted	in	the	first	non-invasive	PV	loops	being	created	for	patients	with	CRT	and	

then	modelled.	 	 Again,	 it	 was	 demonstrated	 that	 elastance	 was	 the	 only	 important	

parameter,	 mirroring	 the	 earlier	 work,	 but	 also	 demonstrating	 how	 similar	 the	

responders	and	nonresponders	were	at	baseline.		Such	a	model	is	necessarily	reductive	

and	 thus	 a	 representation,	 not	 a	 reproduction,	 of	 reality	 but	 it	 did	 give	 insight	 into	

what	improvements	in	contractility	responders	could	expect	from	CRT.	

	

In	terms	of	measurement	of	response,	as	this	 is	only	the	fifth	published	study	to	use	

peak	VO2	in	patients	before	and	after	CRT,	so	it	certainly	adds	to	the	existing	evidence	

base.	 	 Indeed,	 this	was	 the	 first	 to	 follow-up	 patients	 at	 12	months	 using	 the	 same	

metric,	 and	 demonstrating	 further	 gains	 in	 peak	 VO2	 during	 subsequent	 follow-up	

which	are	mirrored	in	other	metrics.		Indeed,	it	was	the	single	marker	of	response	that	

determined	a	positive	and	significant	change	 in	the	other	markers	e.g.	 if	 there	was	a	

significant	 improvement	 in	peak	VO2,	there	was	improvement	 in	the	other	3	markers	

but	not	vice	versa.		

	

The	lack	of	significant	correlations	between	biomarkers	such	as	UA,	PTH	and	hsCRP	is	

unsurprising	 given	 that	 no	 statistically	 significant	 differences	 were	 found	 either	

between	or	within	groups	for	any	of	these	tests.		More	surprising	however,	is	the	lack	

of	 correlation	 between	NT-proBNP	 and	hsTnT,	 as	 both	 are	markers	 of	 LV	wall	 shear	

stress	and	neurohormonal	activation.	 	Also,	although	hsTnT	was	higher	in	responders	

at	baseline,	NT-proBNP	was	 found	to	be	 lower.	 	However,	as	again	 these	differences	
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did	 not	 achieve	 statistical	 significance,	 it	 is	 difficult	 to	 draw	 any	 meaningful	

conclusions.		

The	small	improvement	in	hsTnT	in	responders	during	follow-up	may	be	accounted	for	

by	 improvements	 in	 LV	wall	 shear	 stress	 and	 neurohormonal	 activation	 due	 to	 CRT.		

The	deterioration	in	nonresponders	suggests	that	they	continue	to	decline	despite	of	

the	influence	of	CRT.		In	terms	of	response,	it	makes	sense	that	hsTNT	correlates	with	

LVEDV,	 as	 according	 to	 Laplace’s	 law,	 decreasing	 LV	diameter	 leads	 to	decreased	 LV	

wall	tension,	a	more	uniform	pattern	of	contraction	and	improved	systolic	function.		As	

with	NT-proBNP,	this,	in	turn,	results	in	reduced	wall	shear	stress	and	so	reduction	in	

hsTnT.	

	

By	using	FMD,	GS	and	serum	biomarkers,	 the	concept	of	 the	HF-LVSD	syndrome	has	

been	further	elucidated,	and	whilst	it	is	acknowledged	that	the	cohort	size	was	small	it	

was	 comprehensively	 assessed.	 	 It	 is	 clear	 how	 common	multi-organ	 dysfunction	 is	

likely	to	be,	it	is	likely	influence	on	response	to	CRT	and	the	potential	influence	of	CRT	

on	 the	 syndrome.	 	 This	 work	 also	 adds	 to	 the	 evidence	 base	 on	 the	 interaction	 of	

cardiac	 specific	 therapy	 and	 its	 wider	 effects	 on	 the	 whole	 patient,	 not	 just	 on	 the	

heart.	 	 Indeed,	 other	 than	 BNP	 and	 FMD,	 none	 of	 the	 other	 markers	 had	 been	

investigated	previously	in	the	context	of	CRT	and	predicting/measuring	response	or	in	

conjunction	with	each	other.	When	considering	the	bio	and	biophysical	marker	result	

in	the	context	of	each	other	and	also	the	markers	of	response,	it	is	perhaps	surprising	

that	 there	was	no	significant	correlation	between	and	UMA	and	other	biomarkers	of	

endothelial	or	microvascular	dysfunction	such	as	UA	or	FMD.	This	might	be	explained	

by	the	small	sample	size	and	lack	of	significant	difference	(other	than	FMD)	between	

markers	of	endothelial	or	microvascular	dysfunction	at	baseline	or	follow-up	in	either	

group.	The	 lack	of	a	 significant	positive	correlation	with	NT-proBNP	and	UMA	 is	also	

intriguing,	as	this	contradicts	earlier	work	462. Parvez	et	al	(2012)463	demonstrated	that	

in	 an	 AMI	 population,	 UMA	 was	 significantly	 higher	 in	 patients	 that	 died	 or	 were	

diagnosed	with	a	STEMI,	compared	to	survivors	or	those	with	a	NSTEMI.	However,	it	is	

unclear	 what	 this	 actually	 tells	 us,	 there	 was	 no	 significant	 difference	 in	 UMA	 at	

baseline	or	following	CRT.	It	may	suggest	that	like	hsTNT,	UMA	is	a	fellow	traveller	in	

the	 HF-LVSD	 syndrome	 and	 so	 as	 LV	 function	 deteriorates	 it	 is	 inevitable	 that	 both	

UMA	 and	 hsTNT	 will	 also	 rise,	 or	 possibly,	 as	 in	 this	 study,	 in	 nonresponders	 only.	
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There	 was	 no	 correlation	 between	 UA	 and	 FMD,	 despite	 previous	 evidence	 of	 a	

correlation	between	UA	levels	and	nutritive	flow	in	lower	limbs	of	HF-LVSD	patients	345. 

However,	correlation	does	not	equate	to	causation	and	brachial	FMD	is	not	the	same	

measure	as	lower	limb	strain	gauge	venous	occlusion	plethysmography	and	patients	in	

the	study	by	Anker	(1997)	comprised	50%	patients	in	NYHA	class	I	or	II	and	so	were	a	

‘fitter‘	 cohort	 in	 this	 respect.	 There	 was	 no	 significant	 correlation	 with	 VitD,	 UACR,	

hsCRP,	 NTproBNP	 or	 hsTNT	 with	 any	 markers	 of	 response	 or	 other	 bio/biophysical	

marker.	 Its	not	immediately	apparent	why	this	was	the	case,	but	presumably	a	result	

of	a	small	sample	size.		

There	 was	 however	 a	 significant	 correlation	 between	 HGS,	 both	 left	 and	 right,	 and	

6MWD	(see	figure	107).	This	correlation	with	6MWD	suggests	that	HGS	is	a	real-world	

assessment	of	 fitness;	 indeed	at	12	months	 follow-up,	every	1.5	 kgf	 increase	 in	HGS	

correlated	with	 a	 10m	 increase	 in	 6WMD.	 This	 could	 be	 used	 in	 addition	 to	 6MWD	

during	follow-up,	as	a	surrogate	measure	of	improvement	for	patients	with	lower	limb	

osteoarthritis	or	indeed	as	a	standalone	test	of	response,	particularly	where	space	is	at	

a	premium	for	the	corridor	test.	There	was	no	significant	correlation	between	UA	and	

other	biomarkers	but	 there	was	a	significant	negative	correlation	between	peak	VO2	

and	 significant	 positive	 correlation	 with	 LVEDV	 suggesting	 that,	 as	 UA	 increases	

cardiorespiratory	 and	 left	 ventricular	 function	 decline	 (see	 figure	 108).	 	 Other	

investigators	have	shown	a	correlation	between	LVEDV	and	UA	levels	 in	a	similar	HF-

LVSD	population	464.			

	

The	BCG	work	remains	something	of	an	unknown	quantity,	by	virtue	of	less	than	half	

of	the	21	patients	recruited	being	assessed	by	this	modality.		Nevertheless,	this	is	the	

first	clinical	trial	to	compare	such	groups	at	baseline	and	follow-up	after	CRT	to	assess	

for	 response.	 	Differences	were	 seen	both	at	baseline	and	during	 follow-up.	 	 If	 such	

findings	are	replicated	in	larger	populations	then	it	could	establish	BCG	as	a	marker	to	

both	measure	and	predict	response	to	CRT.	
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Figure	107:	Correlation	between	6MWD	and	GS	in	the	left	(A)	and	right	(B)	hands	

	
Figure	107	demonstrates	the	correlation	between	the	6	minute	walk	distance	in	both	

groups	and	the	hand	grip	strength	in	the	left	and	right	hands,	at	all	time	points.		

	

Whilst	there	is	much	interest	in	predicting	response	to	CRT,	this	is	largely	driven	by	the	

need	to	 identify	responders	 in	order	to	 implant	more	devices,	 rather	than	to	protect	

nonresponders	 from	 unnecessary	 harm.	 	 The	 scientific	 definition	 of	 response	 is	

necessarily	arbitrary	and	less	clear	than	many	would	believe,	with	grey	(not	black	and	

white)	 being	 the	 norm;	 all	 the	 patients	 reported	 feeling	 better	 following	 CRT	

implantation,	yet	only	70%	fulfilled	responder	criteria	as	defined	a	priori.		This	begs	the	

question	‘what	is	more	important;	the	patient	and	their	symptoms?	Or	their	physiology	

and	 improvements	 in	 functional	 capacity,	 neurohormonal	 status	 and	 LV	 function?’		

Clinically,	 the	assessment	of	 response	 is	still	brief,	subjective	and	unscientific	despite	
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the	 device	 costing	 £10-15k;	 the	 patient	 is	 simply	 asked	 how	 they	 are	 feeling	 and	

dyspnoea	 rated	 on	 NYHA	 to	 assess	 response.	 	 There	 is	 much	 the	 jobbing	 HF	 or	

EP/Devices	 clinician	 can	 learn	 from	 the	 body	 of	 research	 into	 the	 assessment	 of	

response,	 especially	 that	 the	placebo	effect	 is	 strong	and	 real.	 	Whilst,	 as	discussed,	

there	 may	 be	 modifiable	 reasons,	 such	 as	 AF	 or	 BiVP%,	 why	 the	 patient	 fails	 to	

respond,	 in	 reality	 this	 is	uncommon	and	perhaps	we	should	be	having	more	honest	

conversations	 with	 patient	 with	 end-stage	 HF-LVSD,	 especially	 in	 conjunction	 with	

multi-morbidity,	rather	than	doing	something	because	we	can,	and	feel	we	should.	

Figure	108:	Correlation	coefficient	between	UA	and	peak	VO2	and	UA	and	LVEDV	

	

Figure	108	demonstrates	 the	 correlation	between	uric	 acid	 in	both	 groups	 and	peak	

VO2	(above)	and	left	ventricular	end	diastolic	volume	(below)	at	all	time	points.		
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8.2 Conclusions	

The	 question	 “Why	 do	 only	 two	 thirds	 of	 patients	 respond	 to	 CRT?”	 remains	

unanswered.	 	However,	on	 the	basis	of	 this	work,	we	have	greater	understanding	of	

the	 physiology	 behind	 such	 response,	 how	 to	 better	 select	 responders	 a	 priori	 and	

finally	how	to	more	precisely	define	the	concept	of	response.		However,	it	remains	to	

be	seen	whether	multi-level	3D	patient	specific	models	will	enable	further	insight	into	

the	question	posed,	 enable	 researchers	 and	 clinicians	 to	predict	 response	 to	CRT	 in-

silico	and	even	whether	such	a	quest	is	purely	of	academic	interest.	

8.3 Future	Work	

Much	has	been	learned	during	this	project,	both	in	the	conduct	of	clinical	research	but	

also	as	a	consequence	of	the	hypothesis	generating	results,	which	need	replication	in	

larger	and	more	diverse	groups.		

8.3.1 General	

Whilst	some	of	the	results	have	proved	interesting,	many	of	the	differences	recorded	

have	 not	 reached	 statistical	 significance	 and	 the	 influence	 of	 the	 small	 sample	 size	

remains	 to	 be	 established.	 Longer,	 and	 possibly,	 more	 frequent	 follow-up	

appointments	 would	 also	 be	 interesting	 to	 see	 if	 the	 changes	 demonstrated	 at	 12	

months	 continue	 subsequently	 following	 implantation	 and	 to	 identify	 what	 is	 the	

tipping	point	in	response	e.g.	if	a	patient	does	not	respond	by	4	months	then	they	will	

not	respond	at	all.		

A	small	matched	control	group,	to	assess	individual,	chronological	and	learning	effect	

variation	 over	 time	 for	 assessment	 tools	 such	 as	 peak	 VO2,	 natriuretic	 peptides,	 for	

example	 patients	 who	 are	 unable	 to	 have	 a	 CRT	 implanted	 and	 also	 to	 assess	 any	

possible	learning	effect.		

Despite	 what	 was	 written	 in	 the	 introduction,	 with	many	 trials	 struggling	 to	 recruit	

women	and	ethnic	minorities	to	their	studies,	unfortunately	only	two	women	(a	third	

had	 to	 be	 withdrawn)	 and	 no	 ethnic	 minorities	 (one	 patient	 was	 approached	 but	

declined	to	take	part)	were	recruited	to	this	study	and	one	must	not	assume	that	HF-

LVSD	in	women	or	ethnic	minorities	is	the	same	as	in	white	men,	as	it	often	isn’t	and	

one	must	not	assume	that	they	will	respond	to	therapies	as	well	or	in	the	same	way.		
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In	an	ideal	world,	the	cohort	of	patients	would	comprise	50%	with	ischaemic	and	50%	

with	non-ischaemic	HF-LVSD.	Unfortunately,	this	 is	the	real	world	and	risk	factors	for	

HF	 are	 often	 the	 same	 that	 cause	 other	 comorbidities	 e.g.	 smoking,	 diabetes,	

hypertension,	leading	to	chronic	lung,	liver,	kidney	diseases	and	also	malignancy.	Such	

diseases	are	also	common	in	such	deprived	populations	in	South	Yorkshire,	where	the	

patients	were	sampled.	One	of	the	reasons	patients	may	not	“respond”	to	CRT,	is	due	

to	the	presence	of	coexisting	disease,	which	is	actually	the	predominant	causes	of	the	

breathlessness	and	may	deteriorate	subsequent	to	 implantation	and	thus	perhaps	all	

patients	with	COPD	should	be	excluded	or	lung	function	measured	at	each	time	point	

to	mitigate	for	such	variation.		

8.3.2 Modelling	

With	the	advent	of	cMR	compatible	 implantable	pacemaker	devices,	 it	won’t	be	 long	

until	there	are	cMR	compatible	CRT	devices	and	so	using	cMR	in	place	of,	or	alongside,	

2DTTE,	before	and	after	implantation	(for	volumes	to	determine	response	but	also	for	

segmentation)	is	a	possibility.	It	would	be	of	great	interest	as	one	could	accurately	and	

reliably	 assess	 the	 LV	 reverse	 remodelling	 response	 to	 CRT,	 irrespective	 of	 echo	

windows	etc.		

A	 further	 interesting	 avenue	 for	 the	 future	 would	 be	 to	 record	 actual	 LV	 PV	 from	

invasive	catheter	data	and	then	use	these	to	either	create	Zero-D	models	and	model	

the	 response	 of	 the	 patients	 to	 CRT	 or	 validate	 non-invasive	 PV	 loops.	 During	

implantation	and	during	pacing	settings	e.g.	RV,	LV,	BiV	the	PV	loop	could	be	used	to	

generate	novel	data,	seeing	the	effect	it	has	on	LV	function,	LV	elastance	and	thus	the	

PV	 loop.	 Since	 starting	 the	 project	 the	 Siemens	 E9	 echo	machine	 has	 been	 released	

that	can	acquire	a	full	LV	3D	volume	in	one	cardiac	cycle	and	so	negating	the	influence	

of	AF	and	ectopy	which	was	an	issue	even	in	patients	with	good	echo	windows.		

	

8.3.3 Biophysical	

The	ED	work	needs	to	be	repeated	at	6	and	12	months	 in	a	much	 larger	population,	

and	 if	 the	 findings	 are	 still	 positive,	 an	 adequately	 powered	 and	 double	 blind	 RCT	

should	be	carried	out.	This	will	confirm	whether	FMD	can	be	used	to	predict	response	

to	CRT	and	what	influence	CRT	has	on	endothelial	dysfunction	as	measured	by	FMD.		
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In	 terms	 of	 the	 BCG	 signal,	 the	 process	 needs	 further	 refinement	 e.g.	 what	 is	 the	

optimal	 recording	 duration?	 What	 is	 the	 key	 signal	 e.g.	 J	 wave	 in	 predicting	 and	

measuring	 response?	 And	 what	 changes	 can	 we	 expect	 following	 CRT	 in	 terms	 of	

timing?	Further	work	could	involve	the	development	of	a	sitting	force	plate,	utilisation	

of	home	monitoring	for	predicting	deterioration	and	measurement	of	RV,	LV	and	BiV	

pacing	with	simultaneous	2DTTE	and/or	LV	PV	loop	acquisition	would	help	understand	

the	origins	of	the	BCG	signal,	the	role	of	the	RV	and	how	it	correlates	in	other	imaging	

modalities	such	as	EF%	or	elastance.	Also,	whether	different	methods	of	optimisation	

influence	 the	 BCG	 signal	 and	 thus	 lead	 to	 higher	 yield	 of	 response,	 as	 has	 been	

suggested	by	earlier	work	on	CRT	optimisation	and	CRT.	

It	would	have	been	interesting	to	perform	GS	in	a	control	group	of	subjects	to	explore	

variation	over	time	and	also	consider	other	measures	of	sarcopenia	in	conjunction	with	

GS,	 such	 as	 muscle	 mass,	 muscle	 biopsy,	 forearm	 circumference	 or	 knee	

extension/flexion	strength	to	see	if	the	changes	in	the	upper	limb	GS	were	mirrored	in	

these	other	markers.		

8.3.4 Biomarkers	

Diet	and	outdoor	activity	can	all	influence	vitD	levels,	which	in	turn	can	influence	Ca2+	

and	PTH	 levels	 and	whilst	 it	was	not	 recorded	 this	 time	around,	 to	be	 sure	 that	 the	

result	was	solely	as	a	result	of	the	CRT	device,	one	would	also	need	to	record	baseline	

activity,	 particularly	 outdoors	 and	 also	 keep	 a	 food	 diary,	 with	 reference	 to	 dairy	

products.		

Following	 the	 start	 of	 the	 project,	 NGAL	 as	 a	 measure	 of	 kidney	 injury	 became	

established	 and	 so	 it	would	 have	 been	 interesting	 to	measure	 this	 before	 and	 after	

implantation,	 in	 conjunction	 with	 eGFR,	 creatinine	 and	 UMA.	 Whilst	 24	 hour	 urine	

collection	 is	 the	most	accurate	way	to	quantify	proteinuria,	 it	 is	quite	a	commitment	

and	as	the	patients	were	already	giving	up	nearly	6	days	of	their	time	over	1	year,	this	

was	too	much	too	ask.	Plus	logistically,	some	were	coming	from	>	50	miles	away	and	so	

collection	would	be	an	issue.		

Further	work	could	involve	measuring	novel	biomarkers	such	as	mid-regional	ANP,	ST2,	

growth	differentiation	factor	15,	galectin-3,	and	specific	microRNAs	such	as	MiR423-5p	

and	determining	their	role	in	predicting	and	measuring	CRT	response.	 



350	|	Page	
 

Permissions 
 
Figure	1	and	4:	Reproduced	with	permission	from	Morris	et	al	(2015)	465.		

	

Figure	11:	Reproduced	with	permission	from	Knebel	et	al	(2004)	466.		

	

Figure	12:	Reproduced	with	permission	from	Tanaka	et	al	(2010)	102.	

	

Figure	32:	Reproduced	with	permission	from	Steendijk	et	al	(2006)	224.	

	

Figure	44:	Reproduced	with	permission	from	Sermesant	et	al	(2008)	467.		

	

Figure	78:	Reproduced	with	permission	from	Phibbs	et	al	(1967)	335.	 	

	

Figure	79:	Reproduced	with	permission	from	Giogravandi	et	al	(2011)	336.	

	

Figure	96:	Reproduced	with	permission	from	Anker	et	al	(1997)	468.	

	

Figure	99:	Reproduced	with	permission	from	Mozaffarian	et	al	(2007) 53.	
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Appendix	
 

Minnesota	Living	with	Heart	Failure	Questionnaire	
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Borg	Breathlessness	scale	
 

0	-	Nothing	at	all	

1	-	Very	light	

2	-	Fairly	light	

3	-	Moderate	

4	–	Some-what	hard	

5	-	Hard	

6	

7	-	Very	hard	

8	

9	

10	-	Very,	very	hard		
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Borg	Rating	of	Perceived	Exertion	(RPE)	scale	
 
6	-	No	exertion	at	all	

7	-	Extremely	light		

8	

9	-		Very	light	

10	

11	-	Light	

12	

13	-	Somewhat	hard	

14	

15	-	Hard	(heavy)	

16	

17	-	Very	hard	

18	

19	-	Extremely	hard	

20	-	Maximal	exertion	
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Patient	Information	Sheet	
 

 
 
PATIENT	INFORMATION	SHEET	
 
Project:	Grand	Challenge	Modelling	Project	

	

You	 are	 being	 invited	 to	 take	 part	 in	 a	 research	 study.	 	 Before	 you	 decide	 it	 is	

important	 for	 you	 to	 understand	 why	 the	 research	 is	 being	 done	 and	 what	 it	 will	

involve.	 	 Please	 take	 time	 to	 read	 the	 following	 information	 carefully.	 Talk	 to	others	

about	the	study	if	you	wish.		

	

Part	1	tells	you	the	purpose	of	this	study	and	what	will	happen	to	you	if	you	take	part.			

Part	2	gives	you	more	detailed	information	about	the	conduct	of	the	study.		

	

Ask	us	if	there	is	anything	that	is	not	clear	or	if	you	would	like	more	information.		Take	

time	to	decide	whether	or	not	you	wish	to	take	part.	

	

PART	1	

	

Outline	explanation	

It	 has	 been	 recommended	 by	 your	 heart	 doctor	 that	 you	 have	 a	 cardiac	

resynchronisation	therapy	(CRT)	device	implanted.	This	is	a	special	kind	of	pacemaker	

that	usually	consists	of	3	electrical	leads	which	are	placed	in	the	heart	to	improve	the	

way	it	beats.	Although	this	type	of	pacemaker	makes	many	people	feel	better,	around	

a	 third	 of	 patients	 do	 not	 improve	 with	 this	 treatment	 in	 terms	 of	 their	 ability	 to	

exercise	and	quality	of	life.	

	

What	is	the	purpose	of	the	study?		
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At	present	it	is	not	clear	which	patients	will	get	better	after	CRT.	The	aim	of	this	study	

is	 to	 see	 if	 the	 measurements	 we	 take	 during	 heart	 scans	 can	 be	 used	 to	 make	

computer	models	of	the	heart	which	help	us	to	predict	who	will	improve	with	CRT.	

	

Why	have	I	been	chosen?	

You	 have	 been	 chosen	 to	 take	 part	 as	 you	 are	 eligible	 for	 CRT	 on	 the	 basis	 of	 our	

current	guidelines.	

	

Do	I	have	to	take	part?	

No.	It	is	up	to	you	to	decide	whether	or	not	to	take	part.		If	you	do,	you	will	be	given	

this	 information	sheet	to	keep	and	be	asked	to	sign	a	consent	form	at	the	time,	or	 if	

you	prefer	once	you	have	had	chance	to	read	the	information,	we	will	telephone	you	

to	ask	any	questions	and	 then	 see	 if	 you	 still	want	 to	 take	part.	 You	are	 still	 free	 to	

withdraw	at	any	time,	and	do	not	need	to	give	a	reason.		A	decision	to	withdraw	at	any	

time,	or	a	decision	not	to	take	part,	will	not	affect	the	standard	of	care	you	receive.	

	

	

What	will	happen	to	me	if	I	take	part?	

You	will	be	given	a	consent	form	to	sign.	

As	 part	 of	 your	 routine	 care	 before	 having	 CRT,	 you	 will	 be	 seen	 in	 the	 outpatient	

department.	You	will	 fill	 in	a	questionnaire,	have	a	blood	test,	a	urine	test,	a	walking	

test,	 a	 bicycle	 test	 and	 an	ultrasound	 scan	of	 your	 heart	 called	 an	 echo	 scan.	 These	

tests	are	routine	and	take	around	2	hrs	 in	total.	Some	patients	will	be	asked	to	raise	

their	legs	(supported	by	a	cushion)	for	5	minutes	during	the	echo	scan.	

	

On	the	same	day	you	will	also	have	a	scan	called	a	magnetic	resonance	imaging	(MRI)	

scan.	This	gives	us	further	detailed	information	about	the	heart.	The	MRI	scan	involves	

lying	still	in	a	scanner	for	around	an	hour.	The	MRI	does	not	involve	X-rays	and	is	part	

of	the	routine	work-up	for	the	type	of	pacemaker	you	are	having.	

	

Patients	in	Sheffield	will	also	have	the	following	tests	performed:	

1)	 A	 grip	 strength	 test.	 This	 gives	 us	 further	 information	 about	 the	 strength	 of	 your	

peripheral	muscles	e.g.	forearm,	in	relation	to	your	heart	muscle.	This	involves	gripping	
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a	 measuring	 device	 with	 your	 hand	 as	 hard	 as	 possible,	 maintained	 for	 about	 5	

seconds,	 with	 the	 best	 of	 3	 attempts	 recorded.	 There	 will	 be	 a	 rest	 of	 30	 seconds	

between	each	attempt.	Taking	around	5	minutes.	

2)	A	measure	of	the	blood	flow	in	your	brachial	e.g.	arm	artery	will	also	be	recorded,	

this	is	called	flow	mediated	dilatation.	This	is	performed	using	an	ultrasound	probe	e.g.	

without	 X-rays,	 looking	 at	 the	 diameter	 of	 your	 artery	 before	 and	 after	 the	 flow	 is	

stopped	using	a	blood	pressure	cuff	for	a	maximum	of	5	minutes.	This	is	then	repeated	

again	using	a	small	tablet	of	Glyceryl	Tri-Nitrate,	a	medication	commonly	used	to	treat	

angina	attacks.	This	will	be	absorbed	into	your	blood	and	will	relax	your	blood	vessels,	

causing	 them	 to	widen	and	 increasing	 the	blood	 flow	 through	 them.	The	whole	 test	

will	take	around	40	minutes.	

3)	 An	 indirect	measure	 of	 the	 force	 of	 blood	 ejected	 from	 the	 heart,	 using	 a	 device	

called	a	 force	plate.	This	 involves,	 standing,	 sitting	and	 lying	on	a	 fixed	platform,	 the	

force	 is	 recorded	 by	 the	 platform	 and	 requires	 no	 invasive	measurements.	 This	 will	

take	around	5-10	minutes.	During	the	optimisation	of	your	device	only,	the	pacemaker	

settings	will	 be	 altered,	 to	 see	what	 effect	 this	 has	 on	 the	 force	of	 your	 heart	 beat,	

before	being	returned	to	their	optimum.		

Once	your	CRT	is	implanted	we	would	like	to	follow	you	up	at	6	and	12	months	with	a	

repeat	 of	 the	 questionnaire,	 walking	 and	 cycling	 tests	 and	 echo	 scan	 of	 your	 heart.	

Sheffield	patients	will	also	have	repeat	blood	and	urine	tests	at	these	follow-ups.	Some	

St	Thomas’	Hospital	patients	will	have	extra	echo	images	taken	at	their	6	week	and	3	

month	device	checks.	

	

This	information	will	be	used	to	develop	computer	models	that	may	be	helpful	in	the	

future	for	predicting	which	patients	will	get	better	with	CRT.	

	

How	does	this	differ	from	“standard	practice”	i.e.	routine	care	(if	you	were	not	to	take	

part	in	the	study)?	

The	assessment	with	the	blood	test,	questionnaire,	walking	test,	cycling	test	and	echo	

scan	before	the	CRT	 implant	are	all	 routine.	The	MRI	scan	 is	also	part	of	our	 routine	

assessment	for	CRT.	

In	addition	to	routine	care:	

1)	The	echo	scan	before	the	CRT	implant	may	be	10	minutes	longer	than	usual	
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2)	You	will	have	a	repeat	questionnaire,	walking	test,	cycling	test	and	echo	scan	at	6	

and	 12	 months	 after	 the	 CRT	 implant.	 Some	 St	 Thomas	 Hospital	 patients	 will	 have	

extra	echo	images	taken	at	their	6	week	and	3	month	device	checks.	You	would	need	

to	 attend	 at	 these	 times	 even	 if	 you	 were	 not	 in	 a	 study	 to	 have	 your	 CRT	 device	

checked.	Sheffield	patients	will	also	have	repeat	blood	and	urine	tests,	grip,	force	plate	

and	blood	flow	tests	at	these	follow-ups,	

3)	The	MRI	scan	may	take	slightly	longer	than	a	standard	scan.	

	

What	do	I	have	to	do?	

You	will	 need	 to	have	 the	 routine	 tests	which	 include	 the	blood	 test,	 questionnaire,	

walking	test,	cycle	test,	echo	scan	and	MRI	prior	to	your	CRT.	You	will	then	have	your	

CRT	implant.	We	will	need	to	see	you	at	6	weeks	and	3	months	for	a	standard	check	of	

your	CRT	 (this	 is	not	part	of	 the	 research).	We	will	also	see	you	at	6	and	12	months	

after	your	CRT	has	been	implanted	to	repeat	the	initial	assessments	(but	not	the	MRI	

scan).	

	

What	is	the	procedure	that	is	being	tested?	

We	are	looking	at	the	electrical	and	mechanical	function	of	the	heart	using	echo	and	

MRI.	This	allows	us	to	develop	computer	models	of	the	heart	that	we	hope	will	help	us	

to	predict	which	patients	are	likely	to	get	better	with	CRT.	

	

What	are	the	contraindications	of	taking	part?		

If	carried	out	properly,	MRI	 is	harmless.	We	have	safety	procedures	and	well-trained	

staff	to	minimise	any	possible	risks	associated	with	the	procedure.	Because	MRI	uses	a	

strong	magnet,	it	is	not	safe	for	some	people	to	be	scanned.	This	includes	people	who	

have	a	heart	pacemaker	or	some	other	types	of	metal	in	the	body.	You	will	be	asked	to	

fill	in	a	screening	form	to	make	sure	that	you	can	have	a	MRI	scan.	

	

What	are	the	possible	disadvantages	and	risks	of	taking	part?		

The	MRI	scan	may	be	uncomfortable	as	you	need	to	lie	flat	for	around	an	hour.	Most	

people	tolerate	this	procedure	very	well.	

You	may	experience	some	discomfort	such	as	pins	and	needles	in	your	hand	during	the	

inflation	of	the	blood	pressure	cuff	for	the	brachial	artery	measurements,	but	this	will	
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only	be	 short	 lived	and	will	 cease	as	 soon	as	 the	pressure	 is	 released.	 You	may	also	

experience	 some	 light	 headedness	 or	 headaches	 after	 taking	 the	Glyceryl	 Tri-Nitrate	

tablet,	again	this	will	be	short	 lived	and	is	a	common	and	transient	side	effect	of	the	

tablet.	(Sheffield	patients	only).	

	

You	will	be	required	to	have	more	tests	than	usual	at	your	follow-up	appointments.	

	

The	radiation	dose	(26mSv)	from	having	the	CRT	implanted	is	the	same	as	if	you	do	not	

take	 part	 in	 this	 research	 study.	 It	 is	 the	 about	 the	 same	 as	 12	 years	 of	 natural	

background	radiation.	

	

What	are	the	possible	benefits	of	taking	part?	

You	will	also	have	more	detailed	follow-up	following	your	CRT	implant.	

	

You	will	receive	the	benefits	of	cardiovascular	health	screening.	

	

What	happens	when	the	research	study	stops?	

You	will	continue	to	have	normal	follow-up	in	clinic.	

	

What	if	there	is	a	problem?	

Any	 complaint	 about	 the	 way	 you	 have	 been	 dealt	 with	 during	 the	 study	 or	 any	

possible	harm	you	might	suffer	will	be	addressed.	The	detailed	 information	on	this	 is	

given	in	Part	2.	

	

Will	my	taking	part	in	the	study	be	kept	confidential?		

Yes.	All	the	information	about	your	participation	in	this	study	will	be	kept	confidential.		

The	details	are	included	in	Part	2.	

	

Contact	Details:	

St	Thomas’	Hospital	patients:	Prof.	Reza	Razavi.	St	Thomas’	Hospital,	4th	Floor	Lambeth	

Wing.	

Telephone	02071885440	
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Sheffield	patients:	Dr	Paul	Sheridan,	CVBRU,	Northern	General	Hospital,	Sheffield	

Tel:	(0)114	2714950).	

This	completes	Part	1	of	the	Information	Sheet.	

If	 the	 information	 in	Part	1	has	 interested	you	and	you	are	considering	participation,	

please	 continue	 to	 read	 the	 additional	 information	 in	 Part	 2	 before	 making	 any	

decision.	
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PART	2	

 
What	if	relevant	new	information	becomes	available?	

Sometimes	during	the	course	of	a	research	project,	new	information	becomes	

available	about	the	procedure	that	is	being	studied.		If	this	happens,	your	research	

doctor	will	tell	you	about	it	and	discuss	whether	you	want	to	or	should	continue	in	the	

study.	

What	will	happen	if	I	don’t	want	to	carry	on	with	the	study?	

If	you	withdraw	from	the	study,	we	will	need	to	use	the	data	collected	up	to	your	

withdrawal.	We	will	ask	you	to	keep	in	contact	with	us	to	let	us	know	your	progress.	

What	if	there	is	a	problem?	

Complaints:	If	you	have	a	concern	about	any	aspect	of	this	study,	you	should	ask	to	

speak	with	the	researchers	who	will	do	their	best	to	answer	your	questions	(St	

Thomas’	Hospital	patients:	contact	Prof.	Reza	Razavi	on	02071885440	and	Sheffield	

patients:	contact	Dr	Paul	Sheridan	on	(0)114	2714950).	Should	you	wish	to	complain	

formally,	you	can	do	this	through	the	NHS	Complaints	Procedure.	Details	can	be	

obtained	from	the	hospital.	

	

Harm:		In	the	event	that	you	are	harmed	during	the	research	study	there	are	no	special	

compensation	arrangements.		If	you	are	harmed	and	this	is	due	to	someone’s	

negligence	then	you	may	have	grounds	for	a	legal	action	for	compensation	against	

Guy’	&	St.	Thomas’	NHS	Trust	but	you	may	have	to	pay	your	legal	costs.	The	normal	

National	Health	Service	complaints	mechanisms	will	still	be	available	to	you.	

Will	my	taking	part	in	this	study	be	kept	confidential?	

Procedures	for	handling,	processing,	storage	and	destruction	of	your	data	are	

compliant	with	the	Data	Protection	Act	1998.	All	information	which	is	collected	about	

you	during	the	course	of	the	research	will	be	kept	strictly	confidential.		Any	

information	about	you	which	leaves	the	hospital	will	have	your	name	and	address	

removed	so	that	you	cannot	be	recognised	from	it.	Your	data	will	be	collected	from	the	

referral	letter	and	patient	notes,	as	well	from	your	oral	information;	Data	will	be	

automatically	stored	securely,	in	an	encrypted	format;	Authorised	persons	such	as	

researchers,	regulatory	authorities	and	Research	and	Development	(for	monitoring	of	
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the	quality	of	the	research)	will	have	access	to	these	data;	Data	will	be	retained	for	15	

years.	

	

What	will	happen	to	the	results	of	the	research	study?	

We	aim	to	publish	these	in	a	research	paper	so	as	to	advance	the	knowledge	of	echo,	

MRI	and	CRT.	All	patient	identities	are	treated	as	strictly	confidential	and	anonymous	

in	any	publication.	

Who	is	organising	and	funding	the	research?	

The	research	is	organised	by	Prof	Reza	Razavi,	St	Thomas’	Hospital,	London	and	funded	

by	the	EPSRC	Grand	Challenge	Project.	

	

Who	has	reviewed	the	study?	

The	study	has	been	independently	reviewed	by	the	St	Thomas’	Hospital	Ethics	

Committee	(Project	Ref:	10/H0802/71).	

	

A	copy	of	the	information	sheet	and	a	signed	consent	form	to	keep	will	be	given	to	you.	

	

Thank	you	for	considering	taking	part	in	this	study.	
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Protocol	
 
Grand	Challenge	Modelling	Project	

Background	&	Rationale	

 
Heart	 failure	 is	 a	 complex	 condition	 that	 despite	 advances	 in	 diagnosis	 and	

pharmacological	 treatments	 in	 the	 past	 two	 decades,	 continues	 to	 have	 significant	

morbidity	 and	 mortality.	 The	 incidence	 and	 prevalence	 of	 heart	 failure	 increases	

steeply	with	age.	The	average	age	of	first	diagnosis	is	76yrs	in	the	UK.	The	incidence	of	

heart	failure	 in	the	UK	is	140	per	100,000	men	and	120	per	100,000	women.	Around	

3%	 of	 people	 aged	 between	 65-75years	 have	 heart	 failure.	 This	 increases	 to	 7%	 of	

those	 aged	 75-84	 and	 14%	 of	 those	 aged	 over	 85years.	 Heart	 failure	 has	 a	 poor	

prognosis	with	about	40%	of	patients	dying	within	1	year	of	diagnosis	[1].	

	

Cardiac	 resynchronisation	 therapy	 (CRT)	 has	 revolutionised	 the	 treatment	 of	 heart	

failure.	The	aim	of	CRT	is	to	improve	the	heart’s	pumping	efficiency	by	resynchronising	

the	pumping	action	of	the	chambers	of	the	heart.	Disruption	of	the	usual	sequence	of	

ventricular	activation	is	well	recognised	as	a	major	factor	in	the	development	of	heart	

failure	 in	 patients	 with	 both	 ischaemic	 and	 non-ischaemic	 aetiology.	 Delayed	 and	

dyssynchrononous	 left	 ventricular	 (LV)	 contraction	 reduces	 myocardial	 efficiency,	

causes	 abnormal	 diastolic	 interaction	 between	 the	 ventricles	 and	 increases	 mitral	

regurgitation	[2].	CRT	pacing	devices	allow	regulation	of	the	atrioventricular	delay	and	

restoration	of	synchronous	contraction	by	pacing	the	right	atrium	and	both	ventricles.	

	

According	to	National	Institute	of	Clinical	Excellence	(NICE)	guidelines,	patients	should	

be	considered	for	CRT	if	:	

	

i)	 They	 are	 currently	 experiencing	 or	 have	 recently	 experienced	 New	 York	 Heart	

Association	(NYHA)	class	III-IV	symptoms	AND	

	

ii)	They	have	a	QRS	duration	of	greater	than	150ms	on	their	ECG	or	a	QRS	duration	of	

120-149ms	and	mechanical	dyssynchrony	on	echocardiography	AND	
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iii)	They	have	a	LV	ejection	fraction	(LVEF)	less	than	35%	

	

There	 are	 numerous	 randomised	 control	 trials	 that	 show	 morbidity	 and	 mortality	

benefits	 with	 CRT	 (CARE	 HF,	 COMPANION,	 MIRACLE,	 MUSTIC-SR,	 CONTAK-CD).	 A	

recent	 review	 of	 CRT	 [3]	 summarized	 the	 current	 evidence	 base	 of	 the	 efficacy	 and	

safety	 of	 CRT	 in	 patients	with	 LV	 dysfunction.	 This	 review	 found	 that	 CRT	 is	 a	 cost-

effective	 therapy	 for	patients	with	NYHA	class	 III	 and	 IV	heart	 failure	 combined	with	

optimal	 medical	 management.	 CRT	 improves	 ventricular	 function,	 remodelling,	

symptoms,	 and	 exercise	 capacity,	 while	 reducing	 the	 frequency	 of	 heart	 failure	

hospitalization	from	37%	to	22%	[2].		

	

Despite	these	impressive	results	around	30%	of	patients	do	not	derive	clinical	benefit	

from	 CRT	 despite	 meeting	 implant	 criteria	 [4].	 Important	 effects	 on	 the	 functional	

status	of	the	patient	are	difficult	to	quantify	and	very	significant	placebo	effects	can	be	

seen	 with	 this	 type	 of	 intervention.	 Functional	 assessments	 therefore	 need	 to	 be	

performed	 in	 conjunction	 with	 less	 subjective	 measurements	 of	 ventricular	

performance	and	exercise	capacity,	including	serial	echocardiography,	maximal	oxygen	

uptake	(V02	max)	and	six	minute	walk	tests	(6MWT).	

	

Trials	 have	 demonstrated	 an	 overall	mean	 increase	 in	 V02	max	 of	 approximately	 1-

2ml/kg/min,	 in	 exercise	 duration	 of	 30-60	 seconds,	 and	 in	 six	 minute	 walk	 test	

distances	 of	 20-40	 metres	 in	 patients	 undergoing	 CRT	 [5].	 Echocardiographic	 data	

demonstrate	 a	 reduction	 in	 LV	 dimensions	 and	 reduced	 severity	 of	 mitral	

regurgitation.	

	

Variability	 in	 response	 rates	 to	CRT	 is	due	 to	 the	marked	heterogeneity	of	 the	heart	

failure	 population	 as	 well	 as	 methods	 by	 which	 response	 is	 measured.	 Different	

aetiologies	as	well	as	varying	degrees	of	dyssynchrony,	burden	and	location	of	scar	and	

ischaemia,	arrhythmias,	co-morbidity	and	baseline	level	of	function	all	contribute.	

	

The	 response	 to	 CRT	 is	 critically	 dependent	 upon	 pacing	 cardiac	 regions	 which	 can	
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maximally	 reduce	 left	 ventricular	 activation	 time	 and	 induce	 homogeneous	 left	

ventricular	 depolarisation	 [6].	 To	 date,	 one	 of	 the	major	 criteria	 used	 to	 determine	

patient	 suitability	 for	 CRT	 is	 by	 using	 the	 QRS	 duration	 as	 an	 indicator	 of	

dyssyncchrony.	This	does	not	take	into	account	all	of	the	variables	that	decide	whether	

a	patient	will	respond	to	CRT.		

	

Many	methods	have	been	researched	with	the	aim	of	improving	patient	selection	for	

CRT.	 	 It	 is	 important	 to	 identify	 “non-responder”	 patients	 and	 consider	 the	 possible	

underlying	reasons.	In	practice	this	process	will	involve:	

	

Improvements	in	the	assessment	of	patients	prior	to	CRT	

Optimisation	of	pacing	lead	position	

Optimisation	of	device	programming	

	

	

Patient	Selection	for	CRT	

	

Guidelines	 from	 the	 American	 Heart	 [7]	 and	 European	 society	 of	 Cardiology	 [8]	

recommend	 that	 CRT	 is	 indicated	 in	 patients	with	 symptomatic	 heart	 failure	despite	

optimal	 drug	 therapy,	 with	 evidence	 of	 dyssynchrony	 as	 defined	 by	 prolonged	 QRS	

duration	 on	 the	 surface	 ECG	 (>120ms),	 without	 requirement	 for	 echocardiographic	

evidence	of	dyssynchrony.	

	

QRS	 duration	 as	 a	 predictor	 of	 electrical	 evidence	 of	 dyssynchrony	 is	 relatively	

insensitive	 in	 identifying	 patients	who	will	 benefit	 from	CRT	 [9-10].	 The	 surface	 ECG	

provides	 a	 relatively	 crude	 assessment	 of	 myocardial	 activation	 and	 may	 not	 show	

areas	of	localised	delays	which	have	important	mechanical	consequences.		

	

We	plan	 to	 investigate	 the	mechanical,	electrical	and	haemodynamic	 function	of	 the	

LV	 in	 patients	 prior	 to	 their	 CRT	 implant	 by	 using	 echocardiography	 and	 cardiac	

magnetic	resonance	imaging.	Developments	in	the	functional	imaging	of	the	heart,	 in	

particular	with	 respect	 to	 the	measurement	of	 electrical	 activity,	 deformation,	 flows	



365	|	Page	
 

and	 fibre	 orientation	 provide	 data	 that	 can	 be	 used	 to	 develop	 biophysical	models.	

Biophysical	models	are	personalised	computer-generated	simulations	 that	have	been	

developed	 due	 to	 advances	 in	 recent	 years	 in	 imaging,	 image	 processing,	 computer	

hardware	and	simulation	technology.		

	

The	aim	is	that	biophysical	models	can	be	used	for	diagnosis	as	well	as	for	the	planning	

of	 interventions.	While	 the	 scientific	 importance	 and	 enormous	 clinical	 potential	 for	

this	computerised	modelling	have	been	acknowledged	this	has	yet	to	be	implemented	

in	clinical	practice.		

	

Trial	Objectives,	Design	and	Statistics	

	Trial	Objectives	

To	 design	 biophysical	 models	 of	 left	 ventricular	 mechanical,	 electrical	 and	

haemodynamic	 function	 from	 data	 acquired	 from	 echocardiography	 and	 cardiac	

magnetic	 resonance	 imaging	 that	 can	 predict	 the	 mechanical,	 electrical	 and	

haemodynamic	response	to	CRT.	

Trial	Design	

Pre-assessment	

	

Prior	 to	 patients	 having	 a	 CRT	 device	 implanted	 they	 will	 undergo	 a	 number	 of	

investigations	during	a	pre-assessment	clinic:	

i)	 An	 assessment	 of	 symptoms	 with	 a	 Minnesota	 Living	 with	 Heart	 Failure	

Questionnaire	(MLWHFQ)	and	

ii)	6MWT	

iii)	A	cardio-pulmonary	exercise	test	(CPET)	to	assess	VO2	max.	

iv)	Baseline	blood	tests	(FBC,	U&E,	NT-proBNP).	

v)	Echocardiography	

vi)	Cardiac	magnetic	resonance	(CMR)	

These	tests	are	validated	and	give	baseline	information	about	patients’	prior	to	them	

having	their	implant.	They	also	allow	direct	comparison	of	patient	performance	status	

pre	 and	 post	 implant.	 The	 pre-assessment	 with	 MLWHFQ,	 6MWT,	 CPET	 and	

echocardiogram	will	take	around	2hours.	
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The	CMR	will	ideally	performed	on	the	same	day	as	the	other	pre-assessment	tests.	It	

gives	 further	 information	 about	 the	 function	 of	 the	 left	 ventricle.	 It	 also	 allows	

assessment	of	the	left	ventricle	for	scar	tissue	which	may	be	a	cause	for	patients	not	

responding	to	CRT	(6).	The	scan	takes	60	to	90	minutes.		

	

Cardiac	Resynchronisation	Therapy	

The	 CRT	 device	 will	 be	 implanted	 at	 least	 1	 week	 after	 the	 pre-assessment	 tests.	

Implantation	will	be	as	per	standard	clinical	practice.	

	

Pre-discharge	

Patients	will	have	routine	device	checks	prior	to	discharge.	

	

6	week	Check	

Patients	will	undergo	an	echo-guided	optimisation	of	their	device	at	6	weeks.	

	

6	and	12	month	Follow-up		

We	aim	to	follow-up	patients	at	6	months	and	12	months.	The	follow-up	appointments	

will	 involve	 the	 same	 assessments	 as	 the	 initial	 pre-assessment	 with	 a	 MLWHFQ,	

6MWT,	CPET,	blood	tests	and	repeat	echocardiogram.	These	tests	will	be	performed	as	

an	outpatient	and	will	last	around	2	hours.	

	

These	follow-up	assessments	will	be	compared	to	pre-CRT	tests	to	determine	whether	

patients	have	‘responded’.		

	

End	of	Study	

Data	analysis	is	performed	at	the	end	of	the	study.	

Response	to	CRT	will	be	determined	from:	

Echo	parameters	–	change	in	left	end	systolic	volume	(ESV),	change	in	left	ventricular	

ejection	fraction	(LVEF)	and	change	in	dyssynchrony	measures.	

Change	in	VO2	max	and	6MWT	distance	

Change	in	MLWHFQ	score	
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After	12	months,	patients	will	have	standard	cardiology	out-patient	follow-up.	

	

ST	THOMAS	HOSPITAL	ONLY	SUBSETS	

	

Frank	Starling	Law	Subset	

In	a	 subset	of	up	 to	20	patients	we	will	 spend	an	extra	10	minutes	during	 their	pre-

assessment	echocardiogram	determining	each	patient’s	haemodynamic	response	to	a	

passive	leg-raise	(PLR)	test.	This	will	involve	measuring	an	echo	parameter	(Aortic	VTI)	

at	baseline,	5	minutes	after	 raising	 the	patient’s	 legs	 to	a	45°	angle	 to	 the	body	and	

then	again	5	minutes	after	 lowering	their	 legs.	 It	has	been	shown	that	 the	change	 in	

aortic	 VTI	when	 performing	 PLR	 in	 criticially	 ill	 patients	 predicts	 their	 response	 to	 a	

fluid	challenge.	We	hypothesize	that	a	positive	response	to	a	fluid	challenge	requires	

an	intact	Frank	Starling	mechanism.	We	further	hypothesize	that	only	patients	with	an	

intact	Frank	Starling	mechanism	as	determined	by	a	12.5%	increase	 in	stroke	volume	

(measured	using	aortic	VTI)	in	response	to	PLR	will	respond	to	CRT	[11-12].	

	

	

Extra	Imaging	Subset	

In	a	subset	of	up	to	10	patients	we	will	spend	an	extra	5	minutes	during	their	6	week	

optimisation	echo	taking	extra	images.	In	the	same	subset	we	will	also	bring	them	back	

at	 3	months	 post-implant	 to	 repeat	 their	 echocardiogram.	 The	 extra	 echo	 images	 in	

this	subset	will	allow	our	computer	modellers	to	gain	even	more	detailed	data	on	how	

the	heart	remodels	after	CRT.	This	in	turn	should	allow	them	to	predict	with	even	more	

accuracy	how	an	individual	heart	will	respond	to	biventricular	pacing.	

	

	

SHEFFIELD	HOSPITAL	ONLY	SUBSET	

	

In	a	subset	of	20	patients	we	will	be	conducting	several	extra	tests.	

	

In	 addition	 to	 the	 blood	 tests	mentioned	 below,	 at	 Pre-Assessment	 and	 12	months	
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follow-up,	we	will	also	be	analysing	the	same	samples	for	Uric	Acid,	Thyroid	Function,	

Liver	Function,	high	sensitive	CRP,	Troponin	T,	Parathyroid	Function,	Vitamin	D	and	a	

urine	test	for	Microalbumin.	These	have	all	been	identified	as	predictors	of	morbidity	

and	 mortality	 in	 heart	 failure	 and	 thus	 we	 hypothesise	 they	 will	 help	 to	 predict	

response	 to	CRT.	The	blood	 tests	will	be	using	 the	 samples	already	 taken	and	a	 first	

morning	 urine	 will	 be	 collected	 by	 the	 patients	 and	 brought	 to	 the	 clinic,	 at	 pre-

assesment	and	12	months	follow-up,	taking	only	5	minutes.	[13-20]	

	

Patients	with	heart	 failure	have	 impaired	vascular	endothelial	 function,	 this	not	only	

predicts	mortality	but	also	response	to	CRT.	Thus,	we	feel	performing	Flow	Mediated	

Dilatation,	as	a	marker	of	vascular	health,	will	 greatly	 inform	the	model.	This	will	be	

measured	 at	 pre-assessment,	 6	 months	 and	 at	 12	 months	 follow-up	 and	 will	 take	

around	40	minutes.	It	will	involve	the	patient	arriving	fasted	(for	8-12	hours),	kept	in	a	

temperature	 controlled	 room	 for	 10	minutes	 for	 equilibration,	 the	 brachial	 artery	 is	

then	imaged	(non-invasively)	using	an	ultrasound	probe	with	ECG	monitoring	pre	and	

post	occlusion	with	a	pneumatic	tourniquet	for	5	minutes,	at	50mmHg	above	systolic	

(maximum)	blood	pressure.	The	patient	is	then	allowed	to	rest	for	20	minutes	before	

the	 procedure	 is	 repeated	 following	 administration	 of	 sub-lingual	 Glyeryl	 Tri-Nitrate	

[21-24].	

	

Patients	with	end-stage	heart	 failure	develop	cardiac	cachexia,	 it	 is	not	 just	a	 loss	of	

muscle	mass	but	 it	 is	an	alteration	 in	 strength,	 fibre	 type,	metabolism,	mitochondria	

and	 hyperaemia.	We	believe	 that	 once	 grip	 strength	 is	 impaired	 this	may	 indicate	 a	

heart	failure	that	will	not	respond	to	CRT	as	it	 is	advanced	and	thus	measurement	of	

this	prior	to	CRT	will	enable	us	to	predict	response	[25-28].	

	

Ballistocardiography,	 is	 investigation	 of	 cardiac	 haemodynamics	 by	 non-invasive	 and	

indirect	measurements	using	a	force	plate.	This	involves	a	patient	standing,	sitting	and	

lying	 on	 a	 plate,	 calibrated	 to	measure	 small	 forces,	 such	 as	 those	 produced	 by	 the	

resting	heart.	We	propose	that	such	measurement	 is	a	novel	and	useful	adjunct	 into	

predicting	patient	 response	 to	CRT.	These	are	 routine	parameter	changes,	which	are	

safe	and	well	tolerated.		[29]	
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Primary	Endpoint	

Do	the	biophysical	models	created	from	pre-implant	echo	and	CMR	data	predict	who	

will	respond	to	CRT?	Response	to	CRT	will	be	determined	by	change	in	ESV,	LVEF,	VO2	

max,	6MWT	distance	and	MLWHFQ	score.	

	

Trial	Statistics	

Assuming	 a	 65%	 ‘responder’	 rate	 to	 CRT,	 a	 sample	 size	 of	 50	 would	 give	 a	 95%	

confidence	 interval	plus/minus	17%	 for	 sensitivity	and	plus/minus	23%	 for	 specificity	

assuming	a	worst	case	scenario	where	the	computer	models	perform	no	better	 than	

chance	(ie	sensitivity	and	specificity	=	50%)	at	predicting	who	will	‘respond’.	

	Sample	Size	

50	patients	in	the	UK.	

Patients	

Inclusion	Criteria		

>	18	years	of	age	

Patients	that	clinically	require	cardiac	resynchronisation	therapy.		

Heart	failure	with	NYHA	Class	III-IV	symptoms	despite	optimal	medical	therapy	

LVEF	<	35%	

QRS	duration		>	150ms	or	

QRS	duration	120-149ms	with	echocardiographic	evidence	of	dyssynchrony	

Exclusion	Criteria	

Contraindication	to	CMR	scan	

Pregnancy	 	

Claustrophobia	

ICD/Pacemaker	

Severe	Renal	Impairment	(GFR	<	30)	

Ethics	&	Regulatory	Approvals	

The	 trial	 will	 be	 conducted	 in	 compliance	 with	 the	 principles	 of	 the	 Declaration	 of	

Helsinki	 October	 2008,	 the	 principles	 of	 GCP	 and	 all	 of	 the	 applicable	 regulatory	

requirements.	

	Quality	Assurance,	Data	Handling,	Publication	Policy	and	Finance	
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Quality	assurance	will	be	maintained	by	Trust	Clinical	and	Research	Governance.	Data	

protection	 will	 be	maintained	 according	 to	 Trust	 Guidelines.	 The	 Research	 Unit	 will	

comply	 with	 all	 aspects	 of	 the	 Data	 Protection	 Act	 1998.	 All	 information	 collected	

during	the	course	of	the	study	will	be	kept	strictly	confidential.	Information	will	be	held	

securely	on	paper	and	electronically	at	the	Research	Unit,	which	includes	appropriate	

storage,	 restricted	 access	 and	 disposal	 arrangements	 of	 patient	 personal	 clinical	

details.	Electronic	transfer	of	data	will	be	encrypted.	
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Consent	form	
	

Study	Title		
Grand	Challenge	Modeling	Project	

Study	Code		
10/H0802/71																	

Please														initial	box		
I	 confirm	 that	 I	have	 read	and	understand	 the	 information	 sheet	dated	1

st
January	2011	 for	

the	above	study	and	have	had	the	opportunity	to	ask	questions.		

	
	

I	understand	that	my	participation	 is	voluntary	and	that	 I	am	free	to	withdraw	at	any	time,	
without	giving	any	reason,	without	my	medical	care	or	legal	rights	being	affected.		

	

	
	
	

I	 understand	 that	 sections	 of	 any	 of	 my	 medical	 notes	 may	 be	 looked	 at	 by	 responsible	
individuals	 from	 regulatory	 authorities	where	 it	 is	 relevant	 to	my	 taking	 part	 in	 research.	 I	
give	permission	for	these	individuals	to	have	access	to	my	records.	I	have	been	informed	that	
the	data	concerning	me	will	be	computerised	and	that	 I	have	the	right	to	access	these	data	
and	 to	 rectify	 them.	 I	 agree	 to	 the	 anonymised	 data	 collected	 being	 used	 for	 scientific	
communications.		

	

	
	

I	 agree	 to	my	GP	 being	 informed	 of	my	 participation	 in	 this	 study	 and	 to	 any	 feedback	 of	
information	from	my	GP.		

	

	

	
I	agree	to	take	part	in	the	above	study.		
	

	

	

	
_________________________					__________________	 _________________________	
Name	of	patient	 					 	 				Date	(DD/MM/YY)	 	 Signature	

	
_________________________					__________________	 _________________________	
Name	of	person	taking	consent	 				Date	(DD/MM/YY)	 	 Signature	
(if	different	from	investigator)	
	
_________________________					__________________	 _________________________	
Name	of	investigator	 					 				Date	(DD/MM/YY)	 	 Signature	
	
	
3	copies	required:	 	→	one	for	the	patient								→	one	for	the	investigator									→	one	
for	patient	notes	
______________________________________________________	
Grand	Challenge	1st	January	2011.	Version	3.0	 			 	 	 	 	 	 	
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Letter	of	invitation	
 

 
Research Study: 
STH15700  
The Grand Challenge 

Modelling Project 
Professor Rod Hose and Dr Paul J Sheridan 
 

An Invitation on behalf of the Academic Unit of Cardiovascular Medicine 
and Medical Physics 

 
Dear 
 

You have received an appointment to attend the Pre-assessment Clinic before 

you are admitted for Cardiac Resynchronisation Therapy (CRT) with the 

department of cardiology at the Northern General Hospital, Sheffield. This 

department is part of the Sheffield Teaching Hospitals Foundation Trust which 

supports clinical research to enhance the understanding of diseases and 

improve the treatment of patients.  

During your attendance at the pre-assessment clinic you may be asked to 

consider taking part in the previously mentioned clinical study aimed at 

modeling the heart and so predicting response to CRT. I can assure you that 

whether you decide to take part or not will have no affect on your clinical 

treatment or management. Before you decide to take part you will require more 

information about the study and to understand what is involved.  

A consultant cardiologist will be able to explain the research study to you before 

you make a decision.  

 

Yours Sincerely 

 

Dr Paul J Sheridan  MB ChB PhD MRCP      
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GP	letter	
 

 

 

 

Date 

 

Dear Dr 

 

Re: 

 ……………………………………. 

The Grand Challenge Modelling Project STH15700 

 

I am writing to inform you that your patient has been enrolled into the above research 

study. 

 

The purpose of the study is to determine whether we can predict response to CRT 

(cardiac synchronisation therapy) for patients with severe heart failure (NYHA 3-4). As 

such, the patients will all be receiving a more detailed assessment before and after 

CRT implantation, including blood tests, quality of life questionnaire, exercise tests, 

cMR and 3D echo, this will take place over a 12 month period. 

 

We are not testing any new devices or drug therapies, rather using the information 

gathered above to construct a 3D model of the heart in heart failure and then with CRT 

in situ. 

 

We hope this will allow us to more accurately choose patients suitable for CRT. 

 

If you have any questions regarding any of the above, please feel free to contact me on  

0114 2434343 ext 66776. 

 

Yours sincerely 

 

Dr Paul J Sheridan 

Consultant Cardiologist and Electrophysiologist 

South Yorkshire Cardiac Centre 

Northern General Hospital 

Sheffield 
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