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Abstract

In this thesis we present certain spaces of analytic functions on the complex half-plane,
including the Hardy, the Bergman spaces, and their generalisation: Zen spaces. We use
the latter to construct a new type of spaces, which include the Dirichlet and the Hardy—
Sobolev spaces. We show that the Laplace transform defines an isometric map from
the weighted L?(0, co) spaces into these newly-constructed spaces. These spaces are
reproducing kernel Hilbert spaces, and we employ their reproducing kernels to investigate

their features. We compare corresponding spaces on the disk and on the half-plane.

We present the notions of Carleson embeddings and Carleson measures and characterise
them for the spaces introduced earlier, using the reproducing kernels, Carleson squares

and Whitney decomposition of the half-plane into an abstract tree.

We also study multiplication operators for these spaces. We show how the Carleson
measures can be used to test the boundedness of these operators. We show that if
a Hilbert space of complex valued functions is also a Banach algebra with respect to
the pointwise multiplication, then it must be a reproducing kernel Hilbert space and its
kernels are uniformly bounded. We provide examples of such spaces. We examine spectra
and character spaces corresponding to multiplication operators. We study weighted
composition operators and, using the concept of causality, we link the boundedness of
such operators on Zen spaces to Bergman kernels and weighted Bergman spaces. We use
this to show that a composition operator on a Zen space is bounded only if it has a finite

angular derivative at infinity. We also prove that no such operator can be compact.

We present an application of spaces of analytic functions on the half-plane in the study of
linear evolution equations, linking the admissibility criterion for control and observation

operators to the boundedness of Laplace—Carleson embeddings.
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Chapter 1

Introduction

Not thinking about anything is Zen. Once you know this, walking,

standing, sitting, or lying down, everything you do is Zen.

BODHIDHARMA, The Zen Teachings of Bodhidharma

Spaces of analytic functions are not only the cornerstone of functional analysis but
they are also at the very core of modern mathematics (both pure and applied)
as a whole. Thence their role and importance hardly require any introduction or
explanation. Their multitude is a reflection of the multitude of questions that the twentieth
century mathematics aspired to answer. And although many of them are sometimes
tailored to a specific problem, there is an aspect that they persistently seem to share.

That is, the domain of definition of their elements - the unit disk of the complex plane
D:={ze€C : |z] <1}

(and possibly its higher dimensional analogues). This is often imposed by the problem,
which they are employed to solve, itself. But routinely it is also due to the fact that analytic
functions expressed as power series centred at O are particularly nice to manipulate

and effectively produce elegant results. This may give us a false impression that other
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domains are somehow less useful and hence do not deserve much attention. There is
an exception from this unfortunate rule, and it is the case of perhaps the most famous
canonical examples of spaces of analytic functions, that is, the Hardy and the Bergman
spaces. Monographs dedicated to the study of these two types of spaces, apart from
covering extensively the usual unit disk case, also give us some insight to the situation
when the disk is replaced by a complex half-plane. But since this alternative approach is
normally presented as a side-note, exercise or an optional chapter, it may even enhance
the misconception that this version of these spaces is somehow less important, less useful

or even artificial.

This thesis is solely dedicated to spaces of analytic functions on the open right complex

half-plane

Ci:={z€C : Re(z) >0}.

Often in the literature we may see similarly defined spaces of functions, with the right
complex half-plane replaced by the upper complex-half plane (i.e. Im(z) > 0).
This variant is dictated by the techniques used in the relevant proofs or sometimes it
is just a matter of personal taste. The choice of the half-plane as the domain of definition,
however, is far from being arbitrary, and the reasoning behind it, both theoretical and

practical, shall be unveiled in due course.

And finally, the reader should bear in mind that, although this setting provides many
interesting and useful results, the choice of the domain (and in particular the fact that it is
an unbounded domain) causes numerous complications, and the problems, which can be
easily solved in the unit disk case, are either much more difficult to tackle, have a different

answer or still remain to be answered in the half-plane setting.
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1.1 Zen spaces

1.1.1 Foundations

We shall start by considering so-called Zen spaces.

Definition 1.1.1 Let 1 < p < oo, let U be a positive regular Borel measure on [0, o)
(see § 52, p. 223 in [50]) satisfying the following As-condition:

<1 v ([0, 2x)) ~
[0~ (B82)

let \ be the Lebesgue measure on iR, and let v be a positive regular Borel measure on
C, = [0, c0) x iR, given by v := 7 ® \. The Zen space corresponding to p and v is
defined to be the normed vector space

e>0 C+

1
AP = {F :Cy — C, analytic : ||F|| 4 := (sup/ |F(z+¢)P du(z))p < oo}.

These spaces were originally constructed in [S1] and [52] by Zen Harper, and named
after him in [61], where their definition appears in the form given above along with many
fundamental results related to them. They also occur in [22]], [64], [65], [66], [67], [61],
[62] and [87].

The measures satisfying the (Ag)-condition (also known as the doubling condition) have
been studied in the theory of harmonic analysis and partial differential equations (see [97]
for an early reference). If ({0}) > 0, then, by Hardy space theory, every function F' in
AP has a well-defined boundary function £ in L (iR) (see Theorem in Chapter 8, p. 128,

of [56]) and we can give meaning to the expression f@ |F'(2)|P dv(z). Hence we shall

e = ([ iFepa))

Note that this expression also makes sense when 7({0}) = 0, since then F' is still defined

write

v-a.e. on C,. In this case we can of course write C instead of C,.
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The space AP is a Banach space, and if p = 2, it is clearly a Hilbert space
(see Proposition 4.1, p. 61 in [87]). Examples of Zen spaces include Hardy spaces
H?(C..) (when ' = 5-6, where & is the Dirac delta measure in 0) and weighted Bergman
spaces B2(C,), o« > —1 (when di(r) = Lr®dr). Some other examples are discussed

in [51]]. We shall use the convention B”,(C. ) := H?(C,).

1.1.2 Laplace transform isometry

One of the main tools in the analysis of Zen spaces is the fact that the Laplace transform
defines an isometric map (and often we can even say: an isometry) from weighted
L? spaces on the positive real half-line into (or respectively: onto) certain spaces of
analytic functions on the complex plane, which we shall derive from the Zen spaces in
the But first, let us explain in detail what we understand by a weighted

L? space and the Laplace transform.

Let 1 < p < oo and let w be positive measurable function on (0, co). By a weighted
LP (0, co) space we mean the Lebesgue function space LP((0, oo), p), where pu is

a measure on (0, 0o0), given by du(t) = w(t) dt. Or, in other words,
~ 1
Lﬁ&ﬁﬂ?{fﬂ&ﬁﬂ—+C¢HﬂwmmVZ(/ vwwmwﬁ) <w}.
0

Corollary 1.1.2 Let w be a positive measurable function on (0, co). The subspace

L0, 00) N LP (0, o) is dense in LP,(0, 00).

Proof
Let f € L2 (0, co). We define

if L n
JROTER SR (4 € N).

0 otherwise
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pointwise

Clearly, {f,}nen C L'(0, 00) N LP (0, o) and f, " —> f asn —> oo. Thus, by
Lebesgue’s Dominated Convergence Theorem for L? (0, co), with | f| as the dominating
function (1.34 in [90], p. 26), we have

1
. def® .. o »
im [|f — fullz,0,00) = lim (/ \f—fn|pw(t)dt> —0,
n—o00 n—o0

0

proving the claim. O

The Laplace transform (£) is the integral transform

2lf](z) == / " fet (L)

taking a function f of a positive variable ¢ to a function £[f] of a complex variable z
(see [102]). As mentioned before, our considerations will involve mainly functions

belonging to weighted L? spaces on (0, co), for which the integral (I.I) may not

necessarily be convergent. The [previous corollary| allows us, however, to extend

the definition of the Laplace transform in a natural way. Suppose that there exists a Banach

space of analytic functions B such that for each g in L'(0, oo) N L (0, co) we have
gl e B and il < lgllzp 0,00 (1.2)

Given f € L (0, co), we know that there exists a sequence (f,,)>°, of functions lying
in L'(0, o) N LP (0, o) and converging to f in the L? (0, co) norm, and hence we can

define the (extended) Laplace transform to be the linear operator

£:IP(0, 0) — B f— £[f] := lim fa(t)e = dt,
n—oo 0

where the limit is taken with respect to the B norm. This limit exists since, by (1.2),

convergence of (f,,)>, in L'(0, co)NLP (0, co) implies convergence of (£[f,])%, in B.

The is elementary but also crucial for studying certain properties of Zen
spaces and their generalisations. For n = 0 and A2 = H?(C, ) is known as Paley—Wiener

theorem (see Theorem 1.4.1, § 1.4, p. 25 in [21]). It appeared in [61] for Zen spaces and
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n = 0 (Proposition 2.3, p. 795), and earlier for some special cases in [29]] (Theorem 2,
p- 309) [33]] (Theorem 1, p. 460), [51] (Theorem 2.5, p. 119) and [52]. The general case

(n > 0) was stated in [65] and we present its proof below.

Theorem 1.1.3 (Paley—Wiener theorem for £ and Zen spaces - Theorem 1 in [65])

The n™ derivative of the Laplace transform defines an isometric map
e L2 (0, 00) — A2,

where

wy(t) = 27rt2"/ e di(x) (t > 0). (1.3)

[0, 00)

Remark 1.1.4 One of the properties of the Laplace transform, which are immediate from

the definition, is that its n'" derivative can be expressed as

eI = g [ e = [T e o)
forall z € Cand f : (0, 00) —> C such that the above integrals converge. Thus

a corresponding linear map £™ - Lijn((), o00) — A2 can be defined by the density

argument outlined above.

Remark 1.1.5 The (Aj)-condition ensures that the integral in (1.3]) converges for all

t > 0. Indeed, for any k € Ny and x > 0 we have

p([2Fx, 28 a)) = ([0, 25ta)) — ([0, 2Fx))

? (R—1)i([0, 2%2)) (1.4)

(R~ 1)R([0, ).

5

5

where R is as defined in (Ag)). And so

[e.9]

e_%xdﬂ( ) 2k+1t 2k 2k+1))
/. )+3e

k=

< ([0, 1)) <1 +(R-1) iR’“e—Q’““f> :

k=0

(1.5)

&

and the series converges for any t > 0 by the D’Alembert Ratio Test.



1.2. A”(Cy, (vv)N_,) AND A%, SPACES 7

The proof of [Theorem 1.1.3|follows closely the proof of Proposition 2.3 in [61]], using

the elementary relation between the Laplace and the Fourier (§) transforms (see [[13]), and
that the latter defines an isometry (by the Plancherel theorem, see Theorem 1.4.2, § 1.4,
p. 25 in [21]; also see [78]); and Fubini’s Theorem for regular measures (Theorem 8.8,

Chapter 8, p. 164 in [90]).

Proof

Let f € L' N L2 (0,00), go(t) :==t"f(t) and z = x + iy € C,. Then

e>0

Sup /@IS(”)[szH)}zdv(z) = sup /[O’OO) /_: 1O [f](x + iy + )| dA\(y)di()

— sup /[ DL G 2y 1)

e>0

— sup /[ gl 4+ ) AP

e>0

e>0

Sy M GRS

0, co

—swp [ 2]l A7)
0, 00

e>0

Fubin;s Th® Sup/ |gn(t)|2 27T/ e—2(a:+6)t dly(l‘) dt
0 [0, 00)

e>0

© / O walt) dt,

and the result follows by the density of L' N L2 (0, 00) in L2 (0, 00). O

1.2 AP(Cy, (v)i,) and A7 | spaces

1.2.1 Definitions

[I’heorem 1.1.3| suggests a generalisation of Zen spaces. Namely, let 1 < p < oo,

m € Ny U {occ}, and let (,)™ , be a sequence of positive regular Borel measures on
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[0, 00), each of which satisfies the (Ay)-condition. We then have a sequence of Zen

m

spaces (AP ), where each v, = 7, ® A, and we can define a normed space
AP(Cy, (vn)iy) == F: C4 — C,analytic : ||F|| := (Z HF(")HZT, > < 00
These spaces were introduced in [65]. They also appear [64] and [66]].

Corollary 1.2.1 (Theorem 1 in [65] and [64]) Let w(,) be a self-map on the set of

positive real numbers given by

m

Wiy (1) = an(t) < 00, where wy(t) = 27rt2”4) )e’m dvy,(x) (Vt > 0).
(1.6)

n=0
Then the Laplace transform defines an isometric map

£ L2 (07 OO) — A2(C+7 (VH)ZL:O)'

W(m)

Proof

Let f € qu(m)((), 00), and let F' := £[f]. By |[Theorem 1.1.3|we have

def“ VLS (1K)
IF 1y, oy ZHF %z Z”fHLQ (0, 00) ||f||L 00)

The following lemma was proved in [67]] for m = 0, but we can easily adapt its proof to

include other values of m.

Lemma 1.2.2 (Lemma 3 in [67] for m = 0) Let m € Ny. There exists C > 2 such that

W(m) (%) < Cw(m) (t) (Vt > 0). (1.7)
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Proof

We want to show that for each 0 < n < m there exists ¢,, > 2 such that

/ e " d,(r) < cn/ e 2 dp, (z), (1.8)
[0,00)

[0, 00)

or equivalently
/ e (1 — cpe ™) dir, () < 0.
[0, 00)

Consider the graph below.

_Cn

It is clear that we need to have

_/[ n) e~ t® (1 — cne’m) dv, (z) > /[1 ) et (1 - cne’t”) dv,,(z).
0, hin S, 00

Let R, be the supremum we get from the (As)-condition for 7, for all 0 < n < m.

Observe that for ¢,, > 2 we have

In2¢, Inc,
< — t ) 1.
57 = 3 (Vt > 0) (1.9)

Thus

@ 1 2 n n2cp
_ et (1 — cne*t:r) din,(r) > oy, |0, n2c (cnefln%" _ eJT>
[0, M) o7

@) (1
e |

2 2¢c,
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Notice that we also have

1 In 2 0y [0, B3¢
5, {0, nc”) 2 {o, 1 C") @ [0 ) (1.10)

SO

1 Inc, In2c,
/ o to (1 _Cneftx) din(r) < — i [ nc | n2c )
[ln cn In2cp ) 4C7L t t

_ 1 (% [07 1n20n) _a [07 lncn>>
4c,, t t

- In2¢ In2¢ N .
S Zﬁn |:2k n7 2k+1 n) 6_2 In 2¢y, (1 o Cn€_2 ln2cn>

t t
k=0
() In2c,\ — R* Cn
< (R, — 1), |0, n_(q_
= (B2 [ : )Z 2cn>2k< <2cn>2'f)

In2c,\ 1 <= /R, b
< (R, —1)i, |0, ==} Tt
< (= 0. 22 ) -3 (52

k=0
R,—1 _ 0 In 2¢,
— 7, |0, ——— | .
2¢, — R, t

Putting these inequalities together, we get

n R,—1 +Rn—1 <1 1
"\2¢,— R, 4R,c, ) ~ 2  /2¢,

which holds for sufficiently large c,, since the LHS approaches 0 and the RHS approaches

1/2 as ¢, goes ad infinitum. So if we choose such ¢,, then the inequality in is
satisfied, and letting C' := maxo<,<m{c,} gives us the desired result. O

Note that[Lemma 1.2.2|does not remain true if m = oco. Take for example vy = g—fr and v,

such that di, (z) = 20 Gn=bl 301 g for all n € N. Then W) = D poot ™ /nl=e€"",

n!

and w(s)(t/2) < Cw(se)(t) would mean that there exists C' > 2 such thatt —InC' > ¢/2,

which is clearly absurd.
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And finally, by the space A%m we shall denote the image of L? (0,00) under

wom (
the Laplace transform, equipped with A?(C,, (v,)™,) norm. An important example
of a space of analytic functions on the complex half-plane, which is not a Zen space but
1s an A%m) space, is the Dirichlet space D(C, ), which corresponds to the weight 1 + ¢ on

the positive real half-line.

1.2.2 Reproducing kernels

Definition 1.2.3 Let X be a set, let K be a field (real or complex) and let H be a Hilbert
space whose elements are K-valued functions on X. We say that H is a reproducing

kernel Hilbert space (RKHS) if for every x € X the evaluation functional
E,:H—K [ Eu(f) = f(z) (VfeH)

is bounded. By the Riesz—Fréchet representation theorem (Theorem 6.8 in [105], § 6.1,
p. 62) this is equivalent to the condition that for each x € X there exists a vector kIt € H

(which we call the reproducing kernel at x) such that

fla) = (f, k'), (Vf eH).

The theory of reproducing kernels was originally laid out by Nachman Aronszajn in [9]],
and it is still a good reference on the subject. Another valuable source, which was recently

published, is [84]. We can easily deduce from the definition that
[K2]]5, < (k2 K, K (@) (Vz € X), (1.11)
def11 deft /o 4\ deft T
(ka's k') = (R K5 = R (a) (Vz,y € X),
and if, for some z in X, [’ is also a reproducing kernel of , then

Py) (0 K, S (kI 0, R (@) = k() (Vy € X).

x
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The last property is sometimes called the uniqueness property of reproducing kernels and
is often included in the definition, as it is also implied by the Riesz—Fréchet representation

theorem.

The and its proof were sketched in [65] and we present its extended version

below.

Theorem 1.2.4 The A%m) space is a RKHS with reproducing kernels given by

K00 () / Ry (¥z, ¢ € Cy) (1.12)
» = Z, . .
0 Wm(t) i

Proof

First, let us note that for each z € C, k: ™ belongs to A2 - Indeed,

A?m) 2 2tRe(z)
k. —dt
a2 m)(t)
00 —2t Re(z)
9 / ¢ gt (1.13)
o 27y ([0 T Re(z))) emtRe(2)

~ 27 Re(z ([0,%Re )’
which is finite, since, by the A,-condition, 7 ([0, % Re(z )) > (0, forany z € C,.

Next, we observe that, given I in A7, ), there exists f in L'(0, oo) N L, (0, 0c) such

that for any z € C, we have

F(z) =& def“/ F(t)e = dt = /f
def“< >
W(m) L3, (0.9)
e %
~ (22| )
W(m) A2
e <F e <m)>
AL

m)

<m>(t) dt

(1.14)
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And by the Cauchy—Schwarz inequality

A? A?
W@W@<EmW> e )

R S
Alm) Alm)

so the evaluation functional FE, is bounded on the dense subset

L(LY0,00) N L7 (0, 00)) of AZ , for all z € C,. So it is also bounded on

W(m)

A7,y In particular, A7 1 is a RKHS, and its kernels are of the form (T.T2), which follows

from (I.14) and the uniqueness property of reproducing kernels. O

Remark 1.2.5 The equality

(L), 2o, = 9,0 (Vf, g € L2, (0, 0))

is a consequence of polarization identity, i.e.
o 2 2 . . 2 . . 2
Az, vz = llz +ylz — llz = yliz +ille + iyl — ille — ayllz,

which holds for all x, y in any inner product space I (Theorem 1.14 in [105]], § 1.1, p. 9).

Remark 1.2.6 By Proposition 4.1 from [87] (p. 61) we know that the evaluation
functional is bounded on Zen spaces, and thus it must also be bounded
on AP(C, (vn)™,) spaces.  In particular, A*(C,, (v,)™,) is a RKHS. If

P A%(Cy, (vp)™,) — A%m) is the orthogonal projection, then

A?m) AZ((C (V )m )
ko 0 = PEA*C+ )i (Vz € C,).

The following lemma appears in [67] for Zen spaces A2 (assuming that the Laplace

transform is a surjective map £ : L2 (0, co) — A2, where wy is as given in (I.3)),

but it is easy to see that, by the virtue of [Lemma 1.2.2} it also holds for A%m) spaces,

provided that m is finite.
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Lemma 1.2.7 (Lemma 4 in [65]) Let m € Ny. The normalised reproducing kernels

A2 A2
k. [ ||k, "™ || tend to 0 weakly as z approaches infinity.
Proof
Let ¢ € C,.. First, we consider pointwise limits. By|[Lemma 1.2.2| we have
A2 A2 m oo —t(Re(z)—i—Re(C)) A2
lim |k Wg)’ / sz ) < lim ‘ e ()
Re(z)—00 Re(z)—o0 Jq w(m) (t) A% :
—tRe(z
< lim T k. Ao
Re(z)—o0 J w(m) % :
—2t Re(z)
= lim (m)
Re(z)—o0 Jq w(m) 2t <2 :
@7 oo —2tRe(z)
< lim C  ay ( kA2
Re(z)— 0 w(m) (t) ?m)
2 2 A2
. H | ||gAe
Re(z)—o0 A% ) A% |
AQ
= lim [|k.™
Re(z)—o00 A2
(m)
oo ,—2tRe(z) 2
CILED (/ ‘ dt) =0
Re(z)—o0 0 w(m) (t)
(1.15)
Let 0 < a < oo. Then
2 —2t Re(z) 0o —2at
A2
‘kz (m) (1), @)/ —dt 2/ € k. (m) 7 (116)
a2 Wom) (1) 0o Wom () a2
whenever Re(z) < a. Also,
@ —t¢ oo _—2tRe(C)/2 A2
W(m) (t) 0 W(m) (t) 2 Az

so e </ Wmy(+) is in L'(0, 00), for all ¢ € C,. Therefore, by the Riemann-Lebesgue
Lemma for the Laplace transform (Theorem 1, p. 3 in [13])), we get
A2 —'Z A2
lim & (¢) & lim ¢ [e—] (2)=0 =  lim Kk ™(C)=0. (L17)
w(

Z—r00 Z—r00 . Im(z)— o0
m)( ) 0<Re(z)<a
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And thus
A2 A2 m A2 -1 A2
lim |k <m>(<)‘/sz m < Hk’a(’”) im |k )| Do,
Im(z)— o0 A2 A2 Im(z)— o0 A2
0<Re(z)<a (m) (m) 0<Re(z)<a (m)
(1.18)

Now suppose, for contradiction, that the normalised reproducing kernels of A?m) do not
converge to 0 pointwise. Then there exists 6 > 0 and a sequence of complex numbers

(2n)52, such that Re(z) > 0, lim,, . 2, = oo and

k:iw >6>0 (Vn € Np).

o <<>\ /

2
Alm)

But since lim, o 2, = 00, there exists a subsequence (z,, )5, of (2,)32, such that

limy,_, Re(z,,) = 0o or Re(z,, ) < a, for some a > 0, and

2
k:A(m)

an

>6>0 (Vk‘ENQ),

e (@)\ /

2
Alm)

which contradicts either (I.13]) or (I.18]). So we must have

Al
lim —kz (©)

Z—00 ‘

=0 (V¢ € Cy). (1.19)
A2
k?z (m)

2
Al

A2
Now, let ' =" k:cj(m) € A%m), for some {(;}7_, C C,, n € Ny. Then

Al - kA%m)(Cj)
lim ( k. , F =lim » — =0,
im / - § im

2
k:‘(m

z2—00 2—00 £

A2
=0 ||k, "™

(m)

2
Alm)

and the result follows, since the linear span of reproducing kernels is dense in A%m) (see

Lemma 2.2., § 2.1, p. 17 in [84]). O

Example 1.2.8 The reproducing kernels of the Hardy space H*(C, ) are given by

ke () B2 zic (Vz, C € Cy),
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while the reproducing kernels of the weighted Bergman spaces B2(C.), o > —1, are of

the form

R ) T % (V2, C€Cy),

Definition 1.2.9 For a > —1, the normalised kernels

1

K,(C, z) = GZroFe

(VZ7C S C-‘r)

are sometimes called the Bergman kernels for the open right complex half-plane.

Lemma 1.2.10 If m € Ny, then there exists o > —1 such that for all z € C, and

a>d, Ky(-2)isin AP(Cy, (1)) -

Proof
For each 0 < n < m, let R,, be the (A)-condition supremum for ,,. Choose ¢ > 0 such
that

29> sup R,.

0<n<m

Define g : [0,00) — (0, 00) to be a step function given by

") Re(z)71, it0<r<l,
g(r) ==
(2% + Re(2)) 7, if r € [2F, 2F1) Vk € N,.
Then
i ey 10, 1) | S (2,2
/[0,00)9( Jdn(r) = Rty *; (2" + Re(2))¢
3 7, ([0, 1)) N ([0, 29)
= TRty TV LRy .

= 1,([0, 1)) (Rezz)q + 2612((]1%_” _R:)
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forall 0 < n < m. Let w, be as given in (L.6)), and let & > o' := (¢ — 3)/2. Tt follows

that

/ |t e~ w, (t) dt = 2 / / e e TR d din (x)
0 [0,00) JO

_ 7ml'(2a +2n + 3) / dv,(z)
- 22a+2n+2 0, 00) (:U 4 Re(z>)2a+2n+3

7' (200 + 2n + 3) _
< 90045 0),

which is finite for all 0 < n < m, by (1.20). Here
I(2) ::/ Flet dy (V2 € C\ (=00, 0])
0

is the gamma function (see Chapter 6 in [1]).

Consequently, by we have
toc-f—le—tz 1 A2 A2 .
Mo+ = Groems = Kal6 2) € Ay € AUCs (va)io).

The general result for 1 < p < oo follows, because

o
(z+0)°

2 p
€A — @+QMMGAV

To see that|Lemma 1.2.10|{does not hold for m = oo, let 7,, = %, for all n € Ny. Then

W) (t) = € and evidently t**'e~ ¢ L2 (0, o), for any choice of a > —1 and

W(eo)

Z€C+.
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1.3 Comparison of D and C

1.3.1 The weighted Hardy and Bergman spaces

It is easy to verify that if f(s) = > ° ja,s" and g(s) = >~ b,s™ are analytic functions
lying in H? (the (Hilbert) Hardy space on the disk), then

2 00
def? v 7— deft
, = su re re?) — = a,b, = (a, b
o™ o [ e a0 50 =3 b (e B

and

171l —<su /Qﬂl( Fde) ZI K de‘“HaH
n 0<r£)1 0 tin ¢

where a = (a,)3%, and b = (b,)5°,. More generally, if these functions are both in B2

(the weighted (Hilbert) Bergman space on the disk), for some o > —1, then

def? d - T def?
(o [ FOEI0 = 16707 = D aalBlnt 11+ ) (o bl
and
1 0 3
def® ds\? . 2 def?
1 fllsz = !f PA=1sP)*=) =D lal’Bn+1,14+0a)| = ale, .
n=0
where

1

o] 2
2= Sw = ) ¢ ella, = (Z\WB(HL 1+a>) <o

n=0

and B(-, -) is the beta function, that is
B(z, w) := ——+——= (Vz, w e C\ (—o0, 0]).

(see § 6.2, p. 258 in [1]]).

The Hardy spaces are discussed for example in [32], [56] and [75]; the weighted Bergman
spaces in [34]] and [53].
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Therefore, in Hilbertian setting, we can associate the weighted Bergman spaces on
the disk (including the Hardy space, which, again, we identify with B2, ) with weighted

sequence spaces /2. Similarly, using the Laplace transform and its isometric properties

given in [Theorem 1.1.3| we can establish a connection between B2(C,), o > —1, and

weighted L? spaces on (0, co). Namely, let f, g € Lt -« (0, 00), for some o > —1, and
let ' = £[f], G = £[g]. Then

(F. Chgpe /@ F(2)G) (Re(2))” & WL / F(0)ge DL gy

ifa > —1, and

(F, G) e, ef sup/ F(z +iy)G(x + iy)

>0

[ )30 a

otherwise. We can also observe an analogy between their respective reproducing kernels

(cf. Example T-28), as

k() = = (s0)" (¥s, s € D)
n=0
and
2 l—i—oz
kBa v D —1).
") = (1 —5¢)2+e ZBn—i—l 1+ a) (vs, ¢ €Dy o> —1)

(see Proposition 1.4 in [53], § 1.1, p. 5). So we can view the weighted Bergman spaces
defined on the unit disk/complex half-plane as discrete/continuous counterparts. We shall

go one step further.

Definition 1.3.1 Let H be a Hilbert space whose vectors are functions analytic on the unit
disk of the complex plane. If the monomials 1, s, s%, ... form a complete orthogonal set

of non-zero vectors in ‘H, then H is called a weighted Hardy space.

Remark 1.3.2 These spaces are discussed in [27], p. 14. The condition that

{1, s, s, ...} is a complete orthogonal set of non-zero vectors in H is equivalent to
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the density of polynomials in H. It is often assumed that ||1||3 = 1. In this case we write

H = H%(B), where 3 := (8,)>, and 3, := ||2"||5. Orthogonality implies that

11728 = D lan|?2 <Vf = aps" € H2(5)>
n=0 n=0
and
(f, 9>12112(ﬁ) = Z anaﬂi,
n=0

for all f(s) = > 0" ans™, g(s) = >.o"b,s" € H. Conversely, given a positive
sequence 3 = (B,)°%, with By = 1 and liminf,_,.(8,)"/" > 1, we can construct

a corresponding weighted Hardy space.

So, given that certain conditions are satisfied, a weighted Hardy space has a parallel

weighted sequence space, revealing its structure, and vice versa.

Moving from the discrete unit disk case to the continuous half-plane setting, we replace
the variable s, |s| < 1, by e™*, |e~*| < 1; the power series with a discrete index variable
n € Ny by an integral over the positive real half-line with respect to a continuous variable
t > 0; and a sequence a lying in some weighted sequence space /2 by a function f lying

in some weighted L? space on (0, co). In this way we get

F(z)= /OOO f(t)e " dt (Re(z) > 0),

that is the Laplace transform of f. It conspicuous that Zen spaces enjoy the same

relation with weighted Lebesgue spaces on the positive real half-line (by [Theorem 1.1.3)

as the weighted Hardy spaces do with weighted sequence spaces /2. Yet, it would
be false to claim that weighted Hardy spaces and Zen spaces are discrete/continuous
counterparts, and even call the latter: the weighted Hardy spaces on the half-plane. Notice
that the weight wy (defined in (T.3)) corresponding to a Zen space A2 is always non-
increasing, while in case of weighted Hardy spaces, we do allow the sequence weights
to be increasing. An important example of a weighted Hardy space with an increasing

weight is the Dirichlet space.
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1.3.2 The Dirichlet spaces

The (classical) Dirichlet space D is defined to be the vector space of functions analytic
on the unit disk of the complex plane with derivatives lying in the (unweighted) Bergman

space B2 := B2 . Or in other words

:{f:D—>Canalytic: D(f) = |If']% d“/|f |2 <oo}

The Dirichlet space is discussed for example in [/] and [35]. It is easy to show that

if f = Y07 ans", then D(f) = Y oo nla,|?, and hence D is contained in H?
(Theorem 1.1.2 and Corollary 1.1.3 in [35]], § 1.1, pp. 1-2). We can define a semi-inner
product on D by
- [ ro7e ¢ (¥Vf.q € D).
D T

Clearly D(f, f) = D(f), and D(-)*/? is a seminorm on D. It is not a norm, since
D(f) = 0, whenever f is a constant function. The inner product and the norm on
D are usually defined by

(f. 9)p =l 9= +D(f, 9) (Vf,9 € D)
and

N

Ifllo = (If 17+ D(f))* =

(Z(n + 1)|an|2> (Vf(S) = ans" € D) :

n=0

Therefore D is a RKHS with the kernel

kS (s) = L log ( ! _> => (3)" (V(s, 5) € D?)

5 1—g53 :0n+1

(2.3, p. 51in [7]), and also a weighted Hardy space H?(3), where 3 = ((n + 1)'/2)>
Alternatively, we may define a norm on D by

1

I1£1ll> = (IF(O0)* +D(f)) (Iaol +Z|anl2>

=
N
<C
\
©

o0
= Z a,s" € D) ,
n=0
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and it is equivalent to || - |[p. In a similar way (for « > —1) we define the weighted

Dirichlet spaces
D, = {f :D — Canalytic : Du(f) = [ /'3 < oo} ,

and

1llp. = (IFO) + Do) * = (Iaol2 + Y n’laa*B(n, 1+a)> )

n=1
for all f(s) = D07 a,s" € D,. Itis easy to see that B2 = Dy, (up to equivalent

norms).

Our aim now is to define the Dirichlet spaces on the complex half-plane in such a way
that they mirror the properties of the classical Dirichlet spaces listed above. We start by

considering the Dirichlet integral on C, :

d
PG
Cy m

for some function F' analytic on C, . Itis a seminorm on the vector space of functions with
derivatives lying in the (unweighted) Bergman space B%(C, ) := B2(C.) , again, because
it equals zero for all constant functions. The problem is that the constant functions do not
belong to H?(C, ), so in order to define the Dirichlet space with the usual choice of norm

we need an extra condition, that is
D(Cy):={F € H*(C,) : F' € B}Cy)}

with norm given by

1

2
1Flloes = (IF e, + 1 Mee,) )

Clearly, D(C,) = A*(Cy, (w, 1)), where oy = 3-8y and din(r) = Lrdr. This is
a RKHS, with kernels given by

0o ,—t(z+¢) _
ki’(C+)(C)@/ €1+t dt = T (0,2 +¢) (Vz, ¢ € Cy),
0
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where I'(-, -) is the upper incomplete gamma function (§ 6.5, p. 260 in [1]]).

Alternatively, we can also define
D'(C,):={F:C, — Canalytic : F' € B*C,)}

with

Jun

2

IFllcy = (IFOF + 1) ) (VF € D'(Cy)).

And more generally, for « > —1,
D, (Cy4):={F:C; — Canalytic : F' € B2(C,)}

with
1Pl = (IFOE + 1 B, ) (VF € D'(C4)).

The following theorem appeared in [64] for o« = 0 (salvo errore et omissione of including
the factor 1/7 in the kernel expression instead of the Bergman norm). Below we extend

it to @« > —1 and furnish it with a complete (and corrected) proof.

Theorem 1.3.3 The space D.,(C.), o > —1, is a RKHS and its kernels are given by

E+OmE+)-EFE+1)InE+1) -1+ m(1+¢) +nd+1, ifa=-1,

0 = dm1+2) ~ Iz + O + (1 +¢) — 2+ 1, fo=0,

2¢ 1 1 1 a—1 ;
o ((z+<>a T GFDe C aEoe T T) otherwise,
(1.21)

forall z, ( € C,. Here by In(z) we mean flz %, for any path of integration between 1
and z within C, (see 4.1.1, p. 61 in [I]).

Proof
Firstly, we prove that that D/ (C, ) is complete. If (F,)>2, is a Cauchy sequence in

D! (C,), then for every € > 0 there exists N € Ny such that

def?

3
|F=Fulloyen  (IE.(0) = Fa(D + 1Fa = Fullipe,) < (¥m,n>N).
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Thus (F},(1))2, and (F},)>, are Cauchy sequences, in C and B2 (C, ) respectively. Since

both these spaces are complete with respect to their norms, we can define

n—oo

F) = [ Jim FLQdC+ i F(1) (V2 €Cy),

which clearly belongs to D/ (C,) and is the limit of (F},)2%,. So D/ (C,) is a Hilbert

space.

Secondly, we show that functions given in (I.21)) lie in D/ (C ), foralla > 1, z, ¢ € C,.
Note that, by L’Hopital’s Rule, we have

lim M def* 1. e 2t — 2¢~t(1+Re2) cog(¢Tm z) 4 e~ 2t Re =

t—1>0+ t2 a t—1>0+ 2

= lim e — etHRe) [(1 + Re(z)) cos(tIm(z)) + Im(z) sin(¢ Im(z))] + Re(z)e= % Re(2)

0+ —t

= 1i%1+ (26—% _ ¢ t(1+Re(2)) cos(tIm(z)) [(1 + Re(z))2 _ Im(z)z] + 2Re(z)26—2tRe(z))
t—

=2— (1 +Re(2))* +Im(z)? + 2Re(z)?

= (Re(z) — 1)? + Im(2)?,
forall z € C4, so
t* et —e 2 = O(1) as t— 0%,

and hence t*(e™t — e7tRe()) € L2 (0, o0), forall @« > —1 and z € C,. It follows

from [Theorem [.1.3[that

% (K 70) =z + )~ (1 + )

:/ e_tc/ e S de, dt
0 I
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and if o > —1, then

JZQWCWQ>ZT(G+BHQ‘@+BHJ

2% af, — -z 2
= mﬂ () (e —e )] (¢) € BL(Cy).

Therefore k2>“*) belongs to D! (C,),forall z € C,.

And finally, if F' € D/ (C, ), then, by the Fundamental Theorem of Complex Calculus
(Theorem 3.13, § 3.3, p. 95 in [18]])

(P, KP2() )+ <F (kD’ ©) >
D&(C-&-) BQ(C+)

as required. O

Because D'(C.) contains constant functions, it cannot be represented as either
A*(Cy, (vn)ip) or A7), for any choice of measures (%,);2, and thus we shall adopt
a convention that by the (unweighted) Dirichlet space we mean D(C, ), as it suits better
our discrete/continuous-disk/half-plane framework. We also define the weighted Dirichlet
by

Do(Cy):={F € H*(Cy) : F' € Bi(Cy)},

with
1
2
1Flpac = (1F I, + 1F 1)
The motivation for this definition is as follows. Notice that, by Stirling’s formula

(6.1.37, p. 257 in [1), B(n, 1 + a) ~ T'(1 + a)n 7%, so D, = H?*(B), where
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B = V14 nl—o (in fact, this is sometimes the definition of the weighted Dirichlet spaces,
see for example [63] or [98]). So if we want D, (C_ ) to be a continuous version of D,,
weletwny = 1 + t17°T(1 + ) /2 to get, via the Laplace transform, A*(C, (v, 11))
precisely as above. In this case, however, we do not get any equality between B2(C )
and Dy (C,). If « = —1, then D_{(C,) = H"?(C, ), the Hardy-Sobolev space on

the complex half-plane .

1.3.3 Hardy-Sobolev spaces

We can use the identity given in [Remark 1.1.4|to define a fractional Laplace transform.

Namely, for r» > 0, we let

£OUf(e) = 2l (Y AL [T e pege

for all z € C, and f such that the last integral converges. For some Banach spaces we

can also use the density argument outlined in Subsection 1.1.2|to define a linear operator

£(") Note that the statement and the proof of Theorem 1.1.3{remain valid for non-integer

values of n > 0.

Let 1 < p, ¢ < oo, and let w and w’ be measurable self-maps on (0, co). Suppose that
there exist Banach spaces B and B’, whose vectors are functions analytic on C,, such

that £ and £(") are well-defined maps

£:LF(0, 00) — B,

£ 190, 00) — B’

If Fe £(LF (0, 0)) C Band £'F € LI ,(0, 00), then we will write

d'l’

T F(z):= F(z) := g0 [£7'[F]] (2) (Vz € Cy),

and call it the fractional derivative of F of degree r.
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Let 1 < p < oo, let pu be a positive regular Borel measure supported on some subset M
of non-negative real numbers, which contains 0, let { A? },c); be a family of Zen spaces

such that, for some weights {w, },eas on (0, 00), each pair (A? , AP ) is, with respect to

vo?

the pair of weights (wg, w,), like (B, B’) above. Then we define
AP(Cy, (r)rem) = {F € £(L%,(0,00)) C A - VreM £7'F]elLk (0,00)},

and equip it with a norm

T ( [ 1Fe, >)

Observe that the space A7, is a special case of A2(Cy, (1,),em), corresponding to

p=y_""_ d,, where ¢, is the Dirac measure in n .

We can also set

1= 2n /M 2 /[0 L ) dut) (¥t > 0).

It follows from Theorem 1.1.3|(for n € [0, 0o0)) that the Laplace transform is an isometry
between L7, (0, 00) and A%(Cy, (v)renr), and that the latter is a RKHS with kernels

given by

2 0 (Z+¢)
AZ(Cy, (vr)rem) € 2
k" ¢ :——/ dt V(z, () e CL).

( ) 0 w#(t) ( ( ) +)

These two facts are proved in the same way as [Corollary 1.2.1| and [Theorem 1.2.4]

replacing Y " - with [} - dpu(r).

Definition 1.3.4 Let 1 < p < oo and let r > 0. The Hardy—Sobolev space on the open
right complex half-plane is defined to be

H™P(C,):={F € H?(Cy) : F" € H?(C,)}

with

=

IFlrsey = (1F W,y + [ F e,y (VF € H'?(C,))
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Example 1.3.5 Let 1 < p < oo, r >0, = g+ 0,, and let vy = 1} = 3—;. Then
an((c-i-) = AZ(C+7 (Vl’ V2>>’
and if p = 2, then H™P(C, ) is a RKHS with reproducing kernels given by

FETHED(0) = /OO
0

In the |previous subsection|it was said that D_,(C,) = H**(C,.), but in fact, if we allow

e—t(E—l-C)

L+ 2

equivalent norms, we have D(C, ), o, = H**(C,), whenever 0 < o < 1.

Hardy—-Sobolev spaces on the open unit disk of the complex plane are defined in
the similar way, using partial derivatives or sequence spaces. They are discussed for

example in [2].

In the remaining part of this thesis, we shall present our results mostly in terms of A%m)
spaces, to keep the notation as simple as possible. But it is discernible that they normally

remain valid for A”(C,, (.)rcnr) spaces too.

We summarise this chapter with tableaux containing all the spaces of functions analytic

on the open right complex half-plane discussed so far, along with their basic properties.
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1.4 Résumé of spaces of analytic functions on C_

Zen spaces AP

AP = {F : €4 — C, analytic : sup..g [ [F(z +

)P dv(z) < oo}

[un

1Fllag = (Jo IF ()P oz V
(F, G)gp = fc (2)G(2) dv(2)
B wﬂ—(hlfﬂP > i)’
(£[f], £ = o~ f(t)g(t)w(t)dt
2] H%—«L\f|%%<>ﬁﬁ
(20 f], Ol > = [ f)g(t)t2rw(t) dt
27rf e 2 dp(x)
Hardy spaces H?(C,)
P(Cy) = {F : C; — C, analytic : sup,.q [ .|

(z +iy)P & < oo}
1

| F[ e (cy) = (f |F(z +iy)|? dy>p

(F, G)HQ(C+) = SUp,- f_oo F(x +1iy)G(z + iy) g—fr

12 e, = (2 172 dt)?
(€], Ll e, = S F(E)g(D) dt

1S e,y = U™ 1£0) |2t2n dtﬁ
(EWf, ) o,y = S5~ F(OgO)E" dt
/CH2((C+)(€) - gig

Weighted Bergman spaces 52 (C, ), a > —1
{F : C; — C, analytic : [~ [(F|F(z + iy)’pxa dody oo}
1| 82y (f fo |F(z + iy) [Pz d”ly)

(F, GBQ(C f fo (x +1iy)G(z + 1y)x adz—wdy

|m[m@@+:(k o F“ﬂdﬁi

Bi(Cy) ==

Jo¢1Ta
(&S], LMsac,y = Jo~ FO9(D) gopira dt 1
1€l e = (fo £ (1) |2t2” 1-al4a) dt)
(O 2y e,y = Jo FOgO) T HGE dt
l{:BQ (@)(O _ 2&(1+a)

Conventions: B?(C, ) := B{(C,), B”

1(C4) = HP(Cy).
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AP(Cy, (vn)52,) spaces (m € Ny U {o0})

AP(Cy, (vp)iy) =={F €A :V0<n<mF®™eA }

1
T AN L (ZZLO f

p P
AD

(F, G) o, ) 7= 2omeo (P GW)

A7) spaces

a2, =2 (12 (0, 00)) C AT, (o))

Wy (£) 1= 2 30000 82 [l ooy €72 din(2)

1FlL, = 1 FlLees oo

(F, G)azgmy = (Fs G) p2cy, oy o),
lelf ||Agn> (5= 1 ¢ t>|2 <> 1)
(Clf). Llaae | = Jo~ F(Dg(Ehwen (t) dt
g <c> = J i(ij?fi dt

Weighted Dirichlet spaces D, (C, ), a > —1

Do(Cy) = {F € H*(C,) : F' € B(C4)}

1

2
1FIpacs) = (IF e + 1 I e
+) +)

(F, Gpeny = (B G ooy + (', G o)

B (fo If 12 s 11 "T(1+a)) &)

(F, G) pa(@ = g(t) (2% + t1°T(1 + ) o
KD (¢ —zafo Frrarra dt

K2E(¢) = e (0,7 +¢)

Conventions: D(C,) := Dy(C, ), D_,(C,) := H"*(C,) (see below)

Variant weighted Dirichlet spaces D/ (C, ), a > —1

D/ (Cy):={F:C, — C, analytic : F’ € B2(Cy)}

IFllon e = (IFOP+ 1 I c,)
(F, G>Dg(c+) = F(1)G(1) + (F, G/>B§(<C+)

Convention: D’'(C;.) := D[ (C;)
) =m(1+2) - @+ +In(1+¢) —n2+1

KO =+ 0mE+0) - GE+D)GE+1) - (1+O)n(l+¢) +Ind+1

D, (Cy) _ 2 1 1 a 1
kz + (C) - E ((g_i_c)a - (5_;'_1)0( - (1+C) + > 9 « E (—17 O) U

(0, 0)
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AL(Cy, (1)) ear) spaces

L0(Ly, (000)) C Ap, 1L Iz, < 1|z, 000
AP(Cy, (vr)rem) = {F € £ (L%, CAr :VreMEF]e Lk (0,00)}

1

0))
IFlLagcs tenn) (fM IFOIy du(r))’
(F, C)agcy unrenn) = o (FO) G<’“>> du(r)

1Lz (s e = (Jo 1F(D) ) t)?
(L] Clabaze,. e = o f wy(t) dit
k u((c+ VT)TEJVI)(Q—) — 000 e:utiz(:)o dt

wy(t) =2m [, f[o, o0) e 2 dp,(z), du(r)

Hardy-Sobolev spaces H"?(C, )

H™(Cy):={F € H?(Cy) : F") € H?(C,)}

1Fllrae = (118, + 1O e, )”
<F7 G)H"“AQ Cy) = <F G>H2((C + <F( ") G(T)>
1€l a2y = (Jy \f 1+t2r)dt)

(L[f], Llg]) Hr2(Cy) fo (1 + ) dt
R0 = f°° e t

0 14427

H™(Cy) = D;_2,(Cy), 0 <r <1 (up to equivalent norms)
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Chapter 2

Carleson Embeddings and Carleson

Measures

I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is of
a meagre and unsatisfactory kind; it may be the beginning of knowledge,
but you have scarcely, in your thoughts, advanced to the stage of science,

whatever the matter may be.

WILLIAM THOMSON, 1st Baron Kelvin, Lecture on ”Electrical Units of
Measurement”, Popular Lectures and Addresses Vol. I Constitution of

Matter

Definition 2.0.1 Let 1 < q < oo, let pu be a positive Borel measure on C ., and let X be

either A*(C.., (v,)i,) or A?m). If there exists C(u) > 0, depending on  only, such
that

1

( / mw)“ < Ol flx (VF € X), e
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then we will call the embedding
X — LYCy, p) (2.2)

a Carleson embedding, and the expression in (2.1)) will be called the Carleson criterion.
Ifp=q(orq=2for X = A%m) ) and the embedding [2.2)) is bounded, then we will say
that p is a Carleson measure for X. The set of Carleson measures for X will be denoted

by CM(X) and we can define a positive function || - ||car(x) on it by

|12l carxy = inf C'(p) (Yu e CM(X)),

where the infimum is taken over all constants C(u) for which the Carleson criterion is

satisfied. The values of p and q are normally explicitly given in the context.

The notion of a Carleson measure was introduced by Lennart Carleson in his proof of
the Corona Theorem for H> (the Hardy space of bounded holomorphic functions on
the open unit disk, equipped with the supremum norm) in [19]. Carleson characterised
there these measures for Hardy spaces H” on the open unit disk of the complex plane. Lars
Hormander extended Carleson’s result to the open unit ball of C" in [38]; Joseph Cima
and Warren Wogen in [24] and David Luecking in [73] characterised Carleson measures
for the weighted Bergman spaces on the unit ball of C"; and, in [94]], David Stegenga
characterised them for the weighted Dirichlet spaces on ). Carleson measures for Zen
spaces have been described in [61] and we will partially extend this description to A%m)

and AP(C,, (vn)M,) spaces in this thesis. For now, we can immediately say that

CM(AP)) C CM(AP(Cy, (va)ig)) € CM(AP(Cy, (va)iy)),
whenever m’ > m, because
AP(C, (va)ily) C AP(Cy, (v)iy) C AT

and

1FlLag, < IFlarces. o) < WFlLasges, gy (VF € A7(Cy. (n)o)).
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For the same reason we also have
CM(42,) € CM(A2,,)) € CM(A(C,., (1)) (v’ > m).

Note that we assume that p in the definition of a Carleson embedding is the same as in
the definition of the Zen space A? and related spaces, since A? C LP(C,, 1) (in the set

sense).

The popularity of this research is a result of wide range of applications of this concept.
In particular, in this thesis we will show how Carleson measures can be used to determine
the boundedness of multiplication operators and weighted composition operators. We will
also explain how the boundedness of Carleson embeddings can be employed in testing
weighted infinite-time admissibility of control and observation operators. The results

presented in this chapter have been published in [64] and [66].

2.1 Carleson embeddings

Before examining Carleson measures, we are going to consider Carleson embeddings

in sensu lato, that is for general 1 < p, ¢ < oo.

2.1.1 Carleson squares

We start by introducing the following notion.

Definition 2.1.1 Let a € C,. A Carleson square centred at a is defined to be the subset
Qa) :={z€C; : 0 <Re(z) <2Re(a), Re(a) <Im(z) —Im(a) < Re(a)} (2.3)

of the open right complex half-plane.
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Im(a) + Re(a)

Im(a) f--------- .

Im(a) — Re(a)

>

Re(2)

A related family of sets can also be defined for other domains, but they are seldom of

rectangular shape, so very often they are referred to as Carleson boxes.

Theorem 2.1.2 (Theorem 3 in [66]) Let 1 < p, q < oo and m € Ny. If the embedding

AP (T, (va)g) = LU(Cs, p)
is bounded, then there exists a constant C'(u) > 0, such that

aconk
u(Q(a)) < C(p) ZW :

n=0

for each Carleson square Q(a).

Proof

Let a € C,. Note that for all z € Q(a) we have

|z +a o v/ (Re(z) + Re(a))? + (Im(2) — Im(a))? @ V10 Re(a).

(2.4)

(2.5)

(2.6)
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Choose 7 > supy<,<,,(logy(R,) — np + 1)/p, where R,, denotes the supremum from
the (A,))-condition for each 7,, 0 < n < m. Then

p(QW)  _ [ du(2)
(VIORe(@)? ~ Je, [z aP

2.7

On the other hand

|z +a| > v/Re(a)? = Re(a) > Re2(a) (Vz € Q(a)).

Additionally, given k € Ny, for all z € Q(28"! Re(a) +iIm(a)) \ Q(2*(Re) + i Im(a)),
with 0 < Re(z) < 2! Re(a), we have

|z +a| > v/Re(a)? + (2¢ Re(a))? > 2" Re(a),

and if 281 Re(a) < Re(z) < 22 Re(a), then we also have

|z +a| > /(281 Re(a) + Re(a))? > 2 Re(a).

And
Vo (Q(2"' Re(a) + iIm(a)) \ Q(2*(Re) + iIm(a)))
< v (Q(2"" Re(a) + i 1m(a)))
< i, ([0, 2" Re(a))) - 2**! Re(a) (2.8)
za k1
< (2Rn)"" 7 ([0, 2Re(a))) - 2Re(a)
< (2R v, (Q(a))
Hence

\ A

dvy,(z (r+n)p
su a
up /(c P ) __ (Re - ) o Q@)

i vn (Q(2¥ 1 Re(a) + iIm(a)) \ Q(2%(Re(a)) + i Im(a)))
(2k Re(a))(vtmp

_l’_

k=
@3 9 (v+n)p > (2Rn)k+1
= Re(a)> n (Q(a)) (1 + Z 2(k+1)(y+n)p

(2.9)
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and the sum converges for all 0 < n < m. Now, if the embedding is bounded, with

a constant C’ (1) > 0 say, then

Q) 2 Vioreye [ MO
2 ) (VIOR(@)Y 1Ky 2, )i oy

hSES]

= ) (VIO Re(a) | Yosup [T

—oen>0JTy [(Z+€n+a)v}(n)

o[ ({lo 1) s 2]

n=0 \I=1 n>0JCy
Z9) M VUp (Q(a)) ’
= o AT
= U 2 Refayy

where

m e’} R k
. oq(n+3v/2)=vq/2 _ o m
Clu) =2 g [(H(W + 1)> 0<nsm — (2(v+n)p1)

=0

q
P

' (),

(and we adopted the convention that the product [[(y + [ — 1) is defined to be 1,

if the lower limit is a bigger number than the upper limit). O

Remark 2.1.3 This theorem was initially proved for Carleson measures for Zen spaces
(i.e. p=qand m = 0)in [61] (Theorem 2.1, p. 787), in which case it is necessary as well
as sufficient. That is, a positive Borel measure (i is a Carleson measure for a Zen space

AP if and only if there exists a constant C (1) > 0 such that

#(Q(a)) < C(u) v (Qa)) (Va € Cy).

The version for Carleson measures for A*(C., (v,)™,) (ie. p = q = 2 and

m € Ny) was proved in [64] (Theorem 2, p. 482), using a proof, very similar to
the proof of in this thesis. Note that the estimates in ([2.9) are essentially
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an alternative proof of The theorem and its proof in the form presented

above (i.e. 1 < p,q < ocoandm € Ny) were obtained in [66l] (Theorem 3). Observe
that the reason why the LHS of (2.3) involves a Carleson square, while the RHS comprises
its closure, is due to the fact that i is only defined on C., whereas the proof relies on
the (Aj)-condition, which requires the intervals to be left-closed. This was overlooked in

[61l] and [606]].

2.1.2 Carleson embeddings and trees

To find a sufficient condition for the Carleson criterion to be satisfied, we are going to use
techniques involving abstract trees developed by Nicola Arcozzi, Richard Rochberg and
Eric Sawyer to classify Carleson measures for analytic Besov spaces on D in [3]], and for

Drury—Arveson Hardy space and other Besov—Sobolev spaces on complex n-balls in [6].

Definition 2.1.4 A tree is an undirected graph in which any two vertices are connected
by exactly one path. We call the vertices of a tree leaves. If T is a tree with a partial
order relation ”<” defined on the set of its leaves, we will write v € T' to denote that v
is a leaf of T, and in general associate T" with the set of its leaves, viewing its edges only
as the structure underlying its ordering. Let x, y be two distinct leaves of T'. If for all
c € T suchthaty < c < x we have x = c or y = c, then we call y the predecessor of x
and write y :== x~ . Forany p : T — C we define the primitive J of @ at x € T to be
Jp(x) ==Y p(y).
y<z

And finally, the shadow of x is defined to be

S(z)={yeT : x<y} and S(—o0):=T.

Trees and related concepts are discussed for example in [15] (§ 1.2, pp. 8-14) and [31]
(§ 1.5, pp. 13-16).
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The next two lemmata and the |ensuing theorem| concerning rootless trees and

decomposition of C, appeared in [64] and [66], and are adaptations of results initially

proved in [5] for a tree with a root and the Whitney decomposition of the open unit disk

of the complex plane (see Appendix J, p. 463 in [47]). In the proof of the
as well as in other places throughout this thesis, we reserve the symbol y g to denote

the characteristic function on a set F.

Lemma 2.1.5 (Lemma 3, p. 488 in [64]) Let T" be a tree with a partial order defined on
the set of its leaves, let 1 < p < q < oo, andletp = p/(p—1), ¢ = q/(q¢— 1) be
the conjugate indices of p and q. Let also w be a weight on T, and . be a non-negative

function on T If there exists a constant C'(u, w) > 0 such that for all v € T'U {—o0},

/ 4

p P

oD ww | w@) | <0 w) Y ), (2.10)

zeS(r) \yeS(z) z€S(r)

then there exists a constant C'(u, w) > 0 such that for all ¢ : T — C,

(ZI3¢<m>IqM(x>>q<C’u, (Z!so )Pw( ) 2.11)

xzeT zeT

Proof

We can define /1 and @ to be measures on the Borel algebra over 7' by
p{r}) = plx) and w({z}) == w(x) (Vo eT).
Let g € LP(T, @). To prove this lemma we only need to show that if (2.10)) holds, then
199 Lo,y < € (1, W)llgll e, ),

for all g > 0, in which case Jg is non-decreasing with respect to the order relation on 7.
Let
O :={xeT : Ig(x)>2"} =0} (Vk € Z),
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where {7"?7 €T : j=1, ...} isthe set of minimal points in 2}, with respect to the partial

order on 7', if such points exist. Otherwise we define r’f := —00, and then

def® def?

Qp:={zeT : Jg> Qk}de:ﬂS(rlf) = S(—o00) =T.

Let Ef = S(r¥) N (Qp41 \ Qus2). Then for z € E} we get

Ixsenyg)(@) = Y gly) =Tg(x) = Tg((rf)) = 2 —2F =25, (2.12)
rh<y<z
J
where we adopt a convention that Jg((r¥)~) := 0, whenever r¥ = —co. Thus we have,

() E 20 ()

k
IGE]-

Y 39 @)

k
xEE].

k k
yeSs(ry) TELY, x>y

= Y 9®) Y xp(@)u(x)

k >
yes(rk) x>y

= > 9¥) > xpr(@)u(x)

yeS(r?)ﬂ(Qi+2UQk+2) ny

= 9(y) Y xpr(@)p(e) + 9(y) Y xpr(@)u(e)

J
yeS(rhnQs  , z2y yeS(rh)NQy 1o r2y

J/

-~

=0

= 9y) > xpr(@)u(x)

yes(rhnQg ., 2y

(2.13)
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where (2}, denotes the complement of €25 in T". Now,

> gl tu(z) <Y 209 ({w e T ¢ 25 < Jg(x) < 2612}

xzeT keZ

220N M (Qr \ Q)

keZ

< 9% Z okay, (U (S(rF) 0 (g \ ka+2)))

keZ j

<2 ) 2A(E)

keZ,j

=22 N Mu(EN) + > 2MuEL) ||

(k,j)eE (k,j)eF

where

E:={(k,j) : p(E}) < Ba(S(r))}, (2.14)
Fi={(k,j) : a(E}) > Bp(S(r)}, (2.15)

forsome 0 < < 1—277 Let {z}} rn & T be acollection of distinct leaves of this tree
such that |, {#F} = Qi \ Q1. forall k € Z \ {0}. Then

o0

ST k(S (k) =Y 2k ()

(k,j) k=1 k=1

ﬂ (% \ Q1) qu
k—
Y 9(k=)q
7 (Lnj{xn}> > 016

> u(ah) [3g (=) [* Z 27
> [3g(x) | p(x)

zeT

WK TTMg

k

K

B
Il

<

1
1—2-¢
def?
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Similarly,

> 2M(S(r)) = Y 2M(y)

(k7J)1k<1 k=—o00

1 k —k
( o)+ St (U{xn )
j n
1 0\ |~ 0\ |49 —k ~ —k
- (S o) +kzzu<{xn D otz
J =1 n
< 2 J q
< > [39(@)"u()
z€eT
det 1
L 13001,
(2.17)
So
. 213, 218, 2D 22qu2
2% N (Ef)2M < B39 a1, - (2.18)
(k.j)eFE
For the sum indexed by F' we have
q
k\okq 1 q
S e LS g Y o) Y @)
(k,j)eF (k,j)eF yES(rf)ﬂQk+2 >y
q
@
< Z 9y) > xpr(@)p(z)
yes(rh)nQg 2y
Holder Z
(kj)er
, 4 q
p P P
Yo Do xe @) wm)'? > s wly)
yeS(r )N, x>y yES(rf)ﬁQk+2
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1—q

<y Y @)

(k.g)eF xeS(rf)

i
~
b
il
RS2

Yool D e | wyt > g w(y)

a:GS(T;?) yeS(z) yGS(T?)ﬂQi+2

Lpice o[ e

(k.3) \yeS(rhnQg .,

L e [0S e)Pel) (2.19)

(k.3) yeS(rk)nQs

=B W) DD > e w(y)

keZ ye2,NQy o

= B0, W) DD D e w(y)

kEZ yeQy, \Qk+2

SAS

SIS

hSES]

g

< 2078190 (u, w (Z lg(a )

zeT

df"
= 208710 (1, ) gl 7. -

Therefore we can conclude that

em). a1 22q+2
1390 ar =

—B1390 70 + 278 71C gl iy

and since

1—-27¢
S

we get the desired result. O
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Consider the following (Whitney) decomposition of the open right complex half-plane.
Given ¢ € C,, for any (k,[) € Z* let

Ry (€) == {z eC, : 2'< ?28 < 9k ok < Im(z)R;;m(o <2kl + 1)} .
Im(z) 4 - R(1.2)(€)
? R30)(C)
5ﬁ R(1,1y(¢)
? R2,0)(C)
fﬁ R(1,0)(¢)
K
: R _1)(¢C
? R2,-1)(C)
? R3,-1)(C)
:ﬁ R(1,—3)(¢

We can view each element of the set of rectangles { R)(¢) : (k, ) € Z*} as a vertex of
an abstract graph. If we have that z, y € {R(,)(¢) : (k, 1) € Z*} and T N7 is a vertical
segment in C_, then we can say there is an edge between x and y. With this convention,
these vertices and edges form an abstract tree, which we shall denote by 7'(¢). Let A(+)
be a positive function on the set leaves of 7'(() assigning to each of them the area of

the corresponding rectangle from { R () : (k, [) € Z*}. We can define a partial order
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on 7'(¢) by considering the unique path between each pair x, y € T'((); if for each leaf ¢
lying on this path, A(z) > A(c) > A(y), then z < y.

Definition 2.1.6 A positive weight w : C, — (0, 00) is called regular if for all ¢ > 0
there exists § > 0 such that w(z,) < dw(zy), whenever z, and zy are within (Poincaré)

hyperbolic right half-plane distance ¢, i.e. when

deff 4 (Re(z1) — Re(z2))* + (Im(z1) — Tm(z5))?
dy(z1, z9) = cosh <1 + 2 Re(2)) Re(zy) ) <e.

Lemma 2.1.7 (Lemma 4, p. 492 in [64]) Ler w : C;, — (0, 00) be regular, let 1 be
a positive Borel measure on C... If there exists a constant C(u,w) > 0, such that for all

a € Cy we have

/
/

p/

MR NQR)” iy w a
</Q<a) (Re(z))? w(z) d) < C(p, w)n(Q(a)), (2.20)

then there exists a constant C' (1, w) > 0 such that

/
; %,

Z(Zu(v)) BB < C'pw)Y u(B),

Bza \v=p Bz

forall o € T(C). Here () is defined to be w(zg), for some fixed z5 € 3 C C,, for each
B eT(0)

Proof

Let a € C,. We can choose ¢ € C, such that there exists « € T'(() for which we have

Q) =|JB and Q) =>_ up). 2.21)

Bzo Bz

Given 3 > o, let (k, [) € Z* be such that 5 = R, ;)(¢) and let

<2k

UB) = {z cC, : 21 <

Im(z) — Im(¢) — 2% <l + ;) Re(()’ < Re(z) — 2’“} .
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Now

U~ cek,
2B
whenever z € U(5) C 8 > «, and also

U7 S Q@nQ). (2.22)

=B

We also have that for any z; and 25 in 3

—1 _ 1
dy(z1, z2) < cosh (1 + —mz ) = cosh (5) ,

which does not depend on the choice of 5 € T'((), so there exists 6 > 0 such that

Clp. w) > 1(8) B O, w)n(Q(a))

@)(/ (M(Q((c;{))(ﬂ)?(z))p’ / )g,
Q(a) e(2))?

Bzo v=8
= o1/ (Z (Z u(v)) W(ﬁ)”") :
B> \v=p

as required. O

Theorem 2.1.8 Let 1 < p < q < oo and let . be a positive Borel measure on C. If w is

a regular weight such that

/ —2
/C FEI R o2) bz < IF . gy (2.23)
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forall F € AP(Cy, (vn),) and there exists a constant C'(u, w) > 0 such that

/

(/Q< ) HOU QG v dZ)p, < C(p Q@) (YaeCy), (224)

(Re(z2))?
then the embedding
AP(C-H (Vn)nmzo) — Lq(C+, NJ)
is bounded.
Proof

Given I’ € AP(C,, (vn)), foreach o € T'(C) let diam(«v) denote the diameter of « (as
arectangle in C, ), and let w,, z, € @ C C, be such that

Zo = sup{|F(2)|} and We := sup{|F'(w)|}.

zEQ wew

Define weights ji and @ on 7'(¢) by

ji(a) == p(a) and () 1= w(za),

for all & € T'(¢). Denote the open unit ball with radius 7, and centred at w,, by B, (w,).
Note that Jp = ®. This is because if F'is in AP(C, (v,)",), then it is in the Zen space
AP, and hence in the Hardy space H”(C,) (or its shifted version, see [87], p. 61), and
hence

lim |F(zy)] = lim [|F(z)|=0.

a—>—00 Re(z)—00
Since (2.24) holds, we can apply Lemmata [2.1.5] and 2.1.7] to ¢, u and w, and by
the Fundamental Theorem of Calculus, Mean-Value Property (Theorem 1.6 in [10], p. 6)
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and Holder’s inequality we get

IRGEEDY / P d

a€eT(¢

§Z|<I>

a€T(C)

> lp(@)Pe(a

a€eT(¢)

1Y (e(e) - (a7 Pa(a)

aeT(Q)

hSES

QN

RS2

Fundamental Thm
of Calculus

=

€T (C)

RIS

QN

> diam(a)?(|F(wa)| + | F'(ws- )| (a)

a€T(¢)
g

S Z diam ()P | F (wq)|P@ ()

a€T(¢)
q
Property 1 » :
S dlam / F/(Z) dz C:}(Ct)
CME; 7Tr2 BTa(wa)
q
g
Holder dlam( a) P / i
SN X ot [ PG )
a€T'(¢) @ Bry (wa)
é Z dlam p 2/ ]F/(Z)\pdz(b(a)
a€T(C) User(c) : BnBrg (wa)#2
SN
| PP =2 e
~ —
a€T'(C) User () : 8nBrg (wa)2o (Re(z)) P
IPCEAY
w(z
< /
2 Z /|F (Re(2))> 7 dz

a€eT(()

<N, o

hSES]
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as required. O

2.2 Carleson measures for Hilbert spaces

Let us now look at the Carleson measures for the Hilbert spaces that we have discussed in

That is, we assume that p = ¢ = 2 throughout this section.

2.2.1 Kernel criteria

The Hilbert spaces introduced in the [previous chapter are all reproducing kernel Hilbert

spaces. This gives us the advantage of being able to test the Carleson criterion on a set
of functions which has particularly nice properties. In fact, it is possible to give a simple
and complete characterisation of Carleson measures for any RKHS of Z? functions, using
just the reproducing kernels. The following result has been obtained by Nicola Arcozzi,

Richard Rochberg and Eric Sawyer in [6]].

Lemma 2.2.1 (Lemma 24, p. 1145 in [6]) Let H be a reproducing kernel Hilbert space
of functions on X, with reproducing kernels {k*}.cx. A positive Borel measure Ji is

a Carleson measure for H if and only if the linear map

f() — /X Re (K4()) £(z) du(z)

is bounded on L*(X, p).

In the definition of the A%m) spaces we require that both a function and its derivative(s) lie
in some specific space(s). This is clearly a generalisation of the idea behind the definition
of the Dirichlet space (on the disk or otherwise), therefore we can use the techniques

which were successful for the Dirichlet space case in order to examine the properties
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of A?m) spaces and related structures. For example, the following two results, which
appeared in [64], are adaptations of Theorem 5.2.2 and Theorem 5.2.3 from [35] (pp. 76-
77).

Lemma 2.2.2 (Lemma 1, p. 479 in [64]) Let 11 be a positive Borel measure on C ., then

/c /C K200 () GOGE) dia(Q) du(=)]
(2.25)

sup / F (=) du(z) =

£ 42 <1
(m)

HGHL2(C #)_

Proof
First, let us assume that the LHS of (2.25)) is finite (i.e.  is a Carleson measure for A%m)).
Let

L A%m) — L*(Cy, p) and L LA(Cy, ) — A%m)

denote respectively the inclusion map and its adjoint. The LHS of (2.25)) is evidently

equal to the square of the norm of ¢. Furthermore, for each g € L?(C, p), we have

'G(z) = </,*G, sz(m)>
A2

(m)

=<G, kf?’">> = / G(OKE™ (¢) du(C),
L2(Cy, ) Ct
(2.26)

and thus

|Gl S (G, G

def“< *G G)
) /C /@ K2 (0) G(OGTE) din(C) dia(2),

so the expression (2.23) is equivalent to ||¢||* =
the LHS of (2.25) it is not finite, we let

2 hence it must be true. Now, if

S | =

QT::{xﬂ‘ye&: <z <, |y|§r}cC+ (r=1).
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Then, by the Cauchy—Schwarz inequality, we get

/C FP dule, < u(Q,) sup |F(2)?
+

2€Q,
2

A2
= p(Q,) sup <F k- ("”>
A2

2€Q,
(m) (2.27)
< (@) sup ||KX|| 172
ZEQ’I‘ (m)
e a2 1 e
D () |k | 1,

for all F' in A%m). This means that u|qg, (i.e. the restriction of u to €2,) is a Carleson
measure for A%m), so we can use the first part of the proof (that is, we know that (2.23)

holds for p|q), to get

sup |F(2)]? dula, (2) = sup
”FHA?m)Sl Cy HGHL2(‘C+«M)S1

/@ A K2 () GO G(R) dula, (2) dula, (€)]

where the RHS is at most equal to the RHS of (2.25]) and the LHS tends to infinity as r
approaches infinity, so the RHS of (2.23) must not be finite. O

Proposition 2.2.3 (Proposition 1, p. 480 in [64]) If

sup /
zeCy C+

then v is a Carleson measure for A%m).

K ?m)@)] d(¢) < oo, (228)

Proof
Let

M= s [ k??wo' au(Q). (2.29)
zeCq C+
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Then for all G € L*(C,, u)

1
2

A(nL

/ k2 (0) G(OGTR) da(=) dia(Q)
c, Joy

(]
(L1

G(O)F du(= )(M(C))

1
2

el <<>] 1G(2) 2 du(2) du(C))

(o)
< M||G||%2((C+,u)'
(2.30)
Therefore
2
H(z

/ LY gy < sup | IFGIPdut
cr \IH42 | 1Pl <1/cy

ihi / / G(O)G() dulz) dp(C)

\\Gum wstles Jey
2.30
D

forall H € A%m), as required. O

Remark 2.2.4 It is an elementary observation that these two results can be applied to
more general RKHS of functions on some set (), provided that ) can be written as a union
of sets
Q:UQT, Q, C Q' (Vr <7r's r, 1 € ECR),
reE
on which the reproducing kernels are uniformly bounded, so that estimates similar to

those in (2.27) can be obtained.

2.2.2 Carleson measures for Dirichlet spaces

We are now going to turn our attention to the Dirichlet spaces. The study of the Dirichlet

space on the unit disk of the complex plane can be dated back to at least Arne Beurling’s
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doctoral thesis from 1933 (see [12]), and many of the methods developed for this type of
space can be successful employed to spaces like A%m). Nevertheless there are limitations.
For example, David Stegenga’s elegant characterisation of Carleson measures for D in
terms of so-called logarithmic capacity (see [94]) relies on the fact that D is a bounded
domain and that D can be equipped with two equivalent norms, which on the half-plane,
as we have seen in|Chapter 1] give rise to two distinct spaces of functions. Instead, we can
use the results presented above to describe the Carleson measures for the Dirichlet spaces
on the complex half-plane, although we should bear in mind that they can only provide

a partial characterisation of Carleson measures in this instance.

We can immediately state the following.

Proposition 2.2.5 Let i1 be a positive Borel measure on C,.

1. Iffor eacha € C,
1(Q(a)) = O(Re(a)), (2.31)

then y is a Carleson measure for D, (C, ).
2. If pis a Carleson measure for D, (C..), then
#(Q(a)) = O(Re(a) + Re(a)**?),

forall a € C,.

Proof
If (2.31)) holds for every a € C, then, by i is a Carleson measure for

H?*(C,), so it must also be a Carleson measure for D,(C,). Part 2. follows from

[Theorem 2.1.21 O
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Observe that, if f € L'(0, co) N L% _,(0, 00), then
1S9 2 00
(e = | [ £ | + [ s
Schwarz oo ) L
< [P e
0

~[1€[flp,c,) -

so CM(D.(Cy)) € CM(D,(C,)), for all @« > —1. This inclusion is proper, since

whenever p is a Carleson measure for D/ (C, ), we must have

Q) < / 1[2dp < COIIE, ., = 1),
+

for every @ C C, and some C(u) > 0, not depending on 2. In other words, p is
a bounded measure on C,, whereas 0y ® A is clearly an unbounded measure on C,,

which belongs to C'M (D, (C.)).

Theorem 2.2.6 Let i1 be a positive Borel measure on C .

1. The measure p is a Carleson measure for D' (C,) if and only if there exists
a constant A(p) > 0 such that

(e}
sup/
>0 —00

2

dy

/C G(¢) In(z + iy + ¢) — In(z + iy + 1)] du(C)

2

Y

< A /C IG(O)? du(¢) -

forall G € L*(Cy, p).

/@ G(¢) du(C)

2. The measure i is a Carleson measure for D! (C.), a > —1 if and only if there

exists a constant B(u) > 0 such that

I

2

GO [(=+ )™ = (= + 1) du(C)| Re(z)*dz

Cy

< B(y) /C GO du(C) -

2

G(C) dpu(C)

Ct

Y

forall G € L*(Cy, p).
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3. The measure v is a Carleson measure for D(C.) if and only if there exists
a constant C(u) > 0 such that
G(¢
/ / ( zdu(C )
cy 1Jeg 2+ ¢
forall G € L*(Cy, p).

2
dz 9
2Re(2) < C(p) /C+ |G| dp,

Proof
To prove part 1., note that y is a Carleson measure for D’ | (C, ) if and only if the adjoint
of the inclusion map «* : L*(C,, u) < D’ ,(C,) is bounded, that is, there exists
A(p) > 0 such that

0GBy ey < AWIG e, 0, 232

forall G € L*(Cy, p). Also

() <L*G, kf’*l(‘c+)> deft <G, kfil(c+)> (2.33)
DL, (Cy) L2(Cy,p)
forall z € C, and G € L*(C,, u). And so
* *
AICI 2y = GO+ (G ey
2
[ 6@t
Ct+
2y

+ sup / —
>0 — 00

as required. The proof of part 2. is analogous. And similarly, for part 3, we have

/C G(O) [z + iy + C) — In(z + iy + 1)] dp(C)

2

BIGIs(c,0 2 ||(G. KPE)
-]
-

1 o o d
— = 2/ e~ 2D gy = 27T/ g2t 2T (Vt > 0),
+1 0 0

LQ(C%M)HD(C”

00 e_T(ZJ'-Z)
[ oo G deu(C)] 0

2 dt

1+t

2
(14t)dt

2—1

/ G(¢)eC dpu(¢)
Cy

Now,
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and the measure 7 on C, given by di(x) = e **dz /7 satisfies the (A)-condition:

[0, 2x) 0 e 2" dr 1 —e i 5
Sup — :su——su =sup(l+e =) =2,
IL‘>18 V[O, LL’) £E>% fO e2r dr :Jc>13 1 —e 2 1‘>Ig< )
hence by Theorem .13
2
DGl e, G(Q)e™ dpu()e di| —ae
L2(Cy,p) = K —o2Re(z)
Cy e
2
dz
_/ /W+< Q| —re

Theorem 2.2.7 Let 1 be a positive Borel measure on C,. If there exists a constant

C(p) > 0 such that for all a € C, we have

[ (MODALEN) o < e

then p is a Carleson measure for D(C,). Conversely, if u is a Carleson measure for

D(C..), then there exists a constant C' (1) > 0 such that for all a € C, we have

(5 ffﬁf))) 4z < C Q@)

Proof

The first part is essentially applied with p = ¢ = 2 and w = 1. The second

part follows from the [previous theorem|applied to G = X (). In this case we get

du(Q) " dz
>
wQ(a)) z/@ o) z_i_z e2Re(2)”
Now
Re ( 1 _> _ Re(z) + Re(() >0, (2.34)
z+¢ |z +¢[?
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so forany z € C,,

ez (250

3%
>

@3
>

Re(z) + Re(Q)
) (Re(2) +Re(¢))? + [ Im(2) — Im(()
~ Re(»)
/ ot T0(Re(z))2 4
w(Qla) N Q(2))
10Re(z)

ot B du(C)

and the result follows. O
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Chapter 3

Weighted composition operators

Never compose anything unless the not composing of it becomes

a positive nuisance to you.

GUSTAVUS THEODORE VON HOLST, cited in Imogen Clare Holst’s

The Music of Gustav Holst

Let V be a vector space over a field K (real or complex), consisting of all K-valued
functions on a set {2, let U C V be another K-linear space, let  be a self map of €2 and
let h : © — K. The weighted composition operator, corresponding to h and ¢, is
defined to be the linear map W), , € Z(U, V) (i.e. the space of all linear maps from U
to V'), given by

u— Wy ou:=h-(uoyp) (Vu € U).

If ¢ = Idg (the identity map on (), then we will write M, := W}, 14, and call it
the multiplication operator on U corresponding to h. If M, (U) C U, then we will call h

a multiplier of U and define the algebra of multipliers of U to be

MU):={h:Q—K : YueU Mu)eU}



60 3. WEIGHTED COMPOSITION OPERATORS

If U is a Banach space and M), € Z(U) (i.e. the space of bounded linear operators on

U), then we may equip the algebra of multipliers of U with the norm

def®

1PlLaw) = [|Mhllsw) = S [hully (Vh e .2 (U)).
Ullus
If h = 1, then we will write C, := W, , and call it the composition operator on U

corresponding to . If U is a RKHS, then we immediately get the following well-known

lemma.

Lemma 3.0.8 Let W), , be a bounded weighted composition operator on a RKHS H of

functions defined on a set S0, with a reproducing kernel k¢, for all x € Q. Then

Wi kX (y) = h(x)kD ) (y) (Vz, y € Q).

o(x)

Proof

For all © € ‘H we have

(1, Wi k) = (Wi KY) = h(z)u(o() = (u. Bkl ) .

In this chapter we are going to discuss multiplication operators, composition operators
and weighted composition operators for Banach spaces of analytic functions on the open
complex half-plane. It is self-evident that if 11}, , is a bounded operator on some of these
spaces then & must be analytic and ¢ must also be analytic, given that / is not a zero

function. The results presented below were published in [65] and [67]].
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3.1 Multiplication operators

3.1.1 Multipliers

The following lemma is standard and well-known for general reproducing kernel Hilbert

spaces. The A%m) version appeared in [65] (Lemma 2).

Lemma 3.1.1 If h is a multiplier of a RKHS H of functions defined on a set 2, then h is
bounded and

sup [h(z)| < ||Bl] ) -
€N

Proof
Let h € .#(H). Then M; is a bounded operator on H, so its eigenvalues are bounded,

and of modulus no bigger than || My|| 4. So, by |Lemma 3.0.8] the values of h are

bounded and of modulus no more than [|2|| ;. O

In the remaining part of this section we assume that ¢ = Idc, and that b : C, — Cis

a holomorphic map.

Multipliers of the Hardy or weighted Bergman spaces on the disk are the bounded
holomorphic functions on the open unit disk (see for example Proposition 1.13, p. 19
in [3]). Multipliers of the Dirichlet space on the disk can be characterised in terms of
Carleson measures for D (see Theorem 5.1.7, p. 74 in [35]]). It appears that the multipliers
of the corresponding spaces on the half-plane can be classified in an analogous way.
The relevant statement, concerning A?m) spaces, and its proof have been published in

[65] (Theorem 2). Below we extend it to A?(C, (v,)"_,) spaces.
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Theorem 3.1.2

1. M (AYy) = M (AL) = H®(Cy) (the Hardy space of analytic functions bounded

onC, ), and

1Placaz,) = PlLacazc,. o,y = Ihlla=cy) (Vh € H®(C,)).

. Suppose that 1,({0}) = 0, foralln € No, n < m. Ifforall0 <k <n <m, fi, 1,

given by du,, k(z) := }h(k) ’p dvy, is a Carleson measure for AL, and
m ]{ P
k+1)P “n < 00, 3.1
2 (5 ) Pl <o 3.0

then h € M (AP(Cy, (vn)y))-

. h € MA*Cy, (vn)™)) if and only if h is bounded on C, and there exists
a sequence (c,) € (' such that for all F € A*(C, (v,)™,) and all 1 < n < m,

we have

n

s [ >

k=1

2
dl/n < ‘Cnl HFHAQ((C+,(

Vn)po) ©
(3.2)
In particular, if m = 1 and 1,({0}) = 0, then h € #(A*(C,, (v, 11))) if and

(Z) WO +e) PPz 4e)

only if |I'(2)|* dvy is a Carleson measure for A%(C_., (v, 1))

Proof

1. Suppose first that 4 is bounded on C . Then, for all F' € A2, we have

sup /C h(z+)F(z + ) dv < 1w e | FI7.
+

e>0

so h is a multiplier of A2, and hence it is also a multiplier of A%o)- The converse is

proved in The norm expression of i in .# (A2) or (equivalently) in
A (A,,) can be easily deduced.
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2. Let ' € AP(C, (vy))- Then

m

def? n) |P
8 e D [ 1) v,
+

n=0

p
Lelbmz rule k) F(n k) d]/n
L)
S () Lo
n=0 k=0
gznﬂp (ymmmﬁﬁw oI,
n=0 =0

I
3
L[]
/_\
/\
w
o~

HF‘|ZP(C+, (Vn)pso)”

3. Suppose that (3.2) holds for some h. Then

n) (K + )Pl gt k—nll az, ) HF() Z

2
2 def“
”hFHA2(C+7(Vn)n ZES:L%/ dzn (h(z +en)F(2 +en))| dv(2)
m n 2
<> [ 3 (n) A0 (z 4 ) O (z 4 2,)| v (2)
n— o€”>O cr [z \F

= o ,
< 2 E (HhHHoo /c ‘F( )‘ dvp + || ’|F”A2(<c+,(un);n=0))
+

n=0

2 2
=2 (1hll .+ el ) 1F e, )

Thus £ is a multiplier of A%(C,, (v,)™,).
Conversely, suppose that h € #(A*(Cy, (v,)™,)). Then

Vn—k
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Sup/
e>0 C4+

= sup/ !(hF)(")(z +&)—hFM(z +5)‘2 dv,
Ct

n 2

Z (Z) A®) (2 4+ ) (2 4 ¢)

k=1

dv,,

e>0

2 2 2
<2 (I0F e, ) + 1lleeic, 1P, )

2 2 2
< 2 (Il + 1Al ey ) IF Wece, o) -

Remark 3.1.3 [f1,({0}) # 0, for some n, then the condition in part 2. of the theorem,

saying that pu, i has to be a Carleson measure for AL, can be replaced by

sup/ ‘h(k)(z + s)F(”_k)(Z + 8)‘p dv(z) 5 ||F(”_k)||7;‘,, ,
e>0 C+ n—k
forall F € AP(Cy, (v,)i,), provided that the inequality constants satisfy an estimate

similar to this in (3.1). It is a trivial observation than the statement of part 3. remains

valid if we replace A*(C,., (v,)™,) by A?m).

3.1.2 Banach algebras

Although the descriptions of the multipliers of the three classical spaces of analytic
functions - Hardy, Bergman and Dirichlet - are virtually the same in the disk and the half-
plane settings, there is one major difference between them. If H is a RKHS, then
A (H) is a unital Banach subalgebra of Z(7#), which is closed in the weak operator
topology (Corollary 5.24, p. 79 in [84]). Since 1 lies in each weighted Hardy space
H?*(83), h - 1 must also lie in H*(3), for all h € .# (H?(3)). That is, the unital Banach
algebra .4 (H?*(3)) is a subset of H%(3). A comparable inclusion can never be stated

for AP(C,, (vp),) or A%m) spaces, because they do not contain constant functions,
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which are clearly their multipliers. But maybe the reverse inclusion could be true,
eg. A7, C #(A7,))? This would imply that the space A?  is a complete normed
algebra (although it may not necessarily be a Banach algebra, and it certainly cannot be

unital). We shall verify this possibility in this subsection.

Theorem 3.1.4 (Theorem 3 in [64]) Let H be a Hilbert space of complex-valued
functions defined on a set §). Suppose that H is also a Banach algebra with respect
to pointwise multiplication. Then ‘H is a RKHS, and if k, is the reproducing kernel of H
at x € (), then

sup ||kz 5 < 1, (3.3)
e

and consequently all elements of H are bounded.

Proof

First, note that the evaluation functional £, : H — C, f 2N f(z) is bounded for every
x € €, since it is a multiplicative functional on a Banach algebra H and hence || E,|| < 1
(see [16]], § 16, Proposition 3, p. 77), so H is a RKHS. Let k, denote the reproducing

kernel of H at x € 2. Then we have

kol = [ko(2)] < sup [k (4)] (3.4)

ye

Also, by the Cauchy—Schwarz inequality and the fact that H is a Banach algebra, we get

o) 5, = P9k )]
= |(kuky, ky)s|
< [Kakylly, 1Ryl
< Nkl Ry 3
and since it holds for all z,y € (2, after cancelling ||k;y||i and taking the supremum, we

get
sup [k ()] < [[kally, (3.5)
yeQ
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From (3.4)) and (3.5)) we get

Ga (e8]
IKellz < sup ks ()] < 1Kallyy (3.6)
yeN
and consequently
6o
lkally <1, (3.7)

for all x € €). And for any f € H we also have

6D
sup | f(z)| = sup [(f, kz)| < [[f]l5-
e e

Theorem 3.1.5 (Theorem 4 in [65]) If A%m) is a Banach algebra, then

gt
<1, 3.8
/0 Wiy (t) ~ ©G:8)

and therefore

L2 (0, 00) € L'(0, o0) and Al C (A7) N HX(CL) NGo(iR),

W(m)

where 6(iR) is the space of functions continuous on iR and vanishing at infinity.

Conversely, if for all t > 0

1 1 1
1) < , 3.9
(ww ’ w(m)) ) < W) () G:2)

then A%m) is a Banach algebra. Here x denotes the convolution operation.

Proof

Suppose that A%m) is a Banach algebra, then, by the tprevious theorem|,

0o dt oo —2Re(z)t
/ = sup / e—alt €. o sup
0 0

W) () zec Wy (1) 2€Cy

A?>2
kzm

G3
< 1. (3.10)
Al
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By Schwarz’ inequality we also get

2l = det\ [Ti01a 2 ( [k vamna)

forall F = £[f] € S(Ll(O o) N L2 (0, 00)) and z € C,. On the boundary we have

W(m)

Fliy) = /0 F()e=™ dt € Gy(iR),

by the Riemann-Lebesgue Lemma. The converse follows from the fact that pointwise

multiplication in A% is equivalent to convolution () in L2 (0, co), (via the Laplace

W(m)
transform) for which the sufficient condition to be a Banach algebra was given in [[80] and

in [17] (Lemma 8.11, p. 42), and the proof is quoted here. Suppose that (3.9) holds for all
t > 0. Using Schwarz’ inequality and that (L'(0, c0), *) is a Banach algebra (see [28]],
§4.7, p. 518), we get

2

det—
||f*g||Lgu( )( 00) / W(m)( )dt

/ / )P i (7) 9t — 7) 2w (¢ — 7)

/ W) (T ) W) (t — T) Wom (1)
-/ (|f|2w<m>*|g|2w<m>)(t)( L 1 )<t>w<m><t>dt
2P w

def®
= ||f||L2 1 (0.59) gz,

g(t—7)dr

(m)HLl 0, 00) H’g’zw(m)HLl(O:m)
0 my (020)

forall f, gin Lfv(m) (0, o), and hence A?m) is a Banach algebra. O

This theorem shows that no Zen space A2 can be a Banach algebra, since the weight

w(t) " 2 /[O o (vt > 0)

is never increasing. It is not clear which weights w,,) (if any) satisfy (3.9), so we are

now going to investigate Banach algebras contained in A%m) spaces in order to produce
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an alternative sufficient condition for an A%m) space to be a Banach algebra. The next
theorem was proved in [65] for p = 2 (Theorem 5) and we present its generalised version

below.

Theorem 3.1.6 Let 1 < p < oo.

1. AL N H>(C,) is a Banach algebra with respect to the norm given by

IE N azmmee oy = IF e oy + I1F 14z (VE € AJ N H®(Cy)).

2. Suppose that forall 1 < k <n <m — 1 < oo the embedding
LY([0, 00), p_) = L'([0, 00), ) (3.11)

is bounded with norm 1. Then

m—1
b= ({F € A}, : F™ e H*(C,)}

n=0

is a Banach algebra with respect to the norm given by

met |[FO) m |[F0
|Flly, =Y, —— ey (VF € ).
n=0 ’ n=0 ’

Proof
Those are clearly Banach spaces. For all F'and G in A? N H>*(C, ) we have

def?
IFG g ey = IFGl oo ey + I1FGl 4z

SNF oo ey 1G ooy T 1 ooy 1G] az

< (1P ey + 1F1Lag ) (161 e e,y + 161

def?
= 1 Fllagnr o) |G agrar=(c,)
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proving 1. To prove 2., let /" and G be in <7F, and let

F®)
fn= ” }leoo((c for0<n<m and fm =0,
f/ gn
Gm
n ” [LI'{ C+) for0<n<m and Gm = 0,
, et
In = n!

By (3.11)) we have

FO=RP gy, < / FORP gy,
o

Cr
and thus
m—1 (n) m (n)
aen = |FG) e, (G|,
7G55 TR P

Minkowsklsm_1 1 n n e
=S DFD 91 (] [l PR IS P
k=0

n=0 k
1
"1l < /n P
+ = Fr=Rag®I|? 4 n)
S () (Lteeveor ar
Em el [P ||H°°((C )HG(k)HHW((C )
< > k)l = o = A F g, G e ey
n=0 k=0
m in—l ) G(k)
+D - | a6 ey
n=1 k=0
1
+30 I e, G
n=1
m—1 n m n—1
e Z kgk+f090+22fn k9k+fozgn
n=0 k=0 n=1 k=0

< Z (fa—kgk + fr_k9k + fo—ikds + [r_1s)
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def®

n=0

ST (fat 1)
n=0
def“

= |I1F]

P
sz

as required. O

Remark 3.1.7 The algebras in [Theorem 3.1.6| are modelled after A.2.4., p. 300,
Jfrom [88].

Theorem 3.1.8 (Theorem 6 in [65]) Let m € N, and, for all 0 < n < m, let w,, be as in
(1.6). Assume that the embedding

LY([0, 00), D) < L*([0, 00), )

is bounded forall1 <k <n<m—11If

S dt
<1 3.12
/0 w6+ w0 = (3.12)

then there exists a constant C > 0 such that ( oy C I a2, > is a Banach algebra.

Proof

Given 0 < n < m, let
Wiy (£) 7= 21 ) wi(t) (Vt > 0),

and let
2 o 2
Bl i= (L3 (0.)),
that is, B(Qm_n) 1s a truncated A?m) space, with first n weights/measures removed. So if

F e A%m), then (™ lies in B(szn), for all 0 < n < m; and for all z € C, we have

P = (0, i)

||F - || /oo e—QtRe( ) "
Bl ) wo(t) + .+ wy(t)
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so clearly

(n) 2 (n) 2 S 6—2tRe(z) G1) )
ey < NN s [ s at P, L 613

forall 0 < n < m —1. Now let F, G € A? , and let dv;, := (n!)?dv,. Then for any

0 < k < m we have

ml ( m [[(FG) ™| a2
®)||2 [(FG) ™ N o= (e
(GO, < o D
n=0 n=0
m—1 n m (n)
s IF || e, Z”F Lz,
- — n! — n!

n=0 n=0
m—1 2 m m
1 n n
<(1+55) (S ) (Sievne,
n=0 n=0 n=0

SIFIE IGIE: |

summing the above expression over all £ between 0 and m and taking the square root
proves the claim. Or, to be precise, by multiplying the weights by appropriate constants,

we can assure that A%m) is a Banach algebra. O

Corollary 3.1.9 (Corollary 1 in [65]) A%l) is a Banach algebra (after possibly adjusting
its norm/weights) if and only if

Proof

It follows from Theorems[3.1.5land 3.1.8] O
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Example 3.1.10 The integral

/°° dt -
P oo
o L+tie

if and only if o < 0, so D, (C.) is a Banach algebra (after re-normalisation) if and only

if—1<a<0.

Thus the question that we have asked at the beginning of this subsection has an affirmative
answer, i.e. there exist spaces A%m) which are (Banach algebras) contained within the set

of their multipliers. A statement for weighted Dirichlet spaces on the disk, similar to this

in[Example 3.1.10} appeared in [98]], and because weighted Hardy spaces always contain

their set of multipliers, we then have the equality .# (D, ) = D,, —1 < a < 0.

Hilbert spaces which are also Banach algebras are rarae aves of function spaces, and
hence they are seldom studied in much detail. For an early deliberation on this concept

see [4].

3.1.3 Spectra of multipliers

Definition 3.1.11 Ler A be an algebra over the field of complex numbers. The spectrum

of an element a € A is the set
(A, a) :=={ceC : (a—c)isnotinvertible in A}
if A is unital, and
0(A, a)={0}U{ceC :at+cb—ab#0, Vbe A}.

otherwise. The resolvent set p(A, a) of a is defined to be the complement of o(A, a) in
C. If the choice of algebra A is unambiguous, we will write simply o(a) and p(a), for all

a € A. The spectral radius, r(a), of a is defined by

r(a) :=sup{c€ a(A, a)}.
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If A is a Banach algebra, then the spectral radius formula (or Gel’fand’s formula) states

that

r(a) = lim fa"|{" (Va € 4)

(see Proposition 8, § 2, p. 11 and Theorem 8, § 5, p. 23 in [16l]). If A is a commutative
Banach algebra, then the maximal ideal space (or the character space, or the carrier
space), denoted by IMM(A) is the set of all multiplicative linear functionals (non-zero

algebra homomorphisms/characters) on A. We then have that

r(a) = sup |¢(a)l (Va € A) (3.14)
PEM(A)

(see Theorem 5, § 17, p. 83 in [16]).

Theorem 3.1.12 (Theorem 7 in [65]) Ifh € .# (A?m)), then

with equality at least for m < 1.

Proof

Let h € #(A*(Cy, (v,)™,)). We have that (h — ¢)~' € H*>(C,), for some ¢ € C,
if and only if inf.cc, |h(2) —¢| > 0, and consequently o(H*>(Cy), h) = h(Cy). If
c € o(H®(C,), h), then (h — ¢)™' ¢ H>®(Cy) D M (A*(Cy, (vn)™,)), so clearly

hCy) = o(H*(Cy), h) C o (A (A*(Cy, (va)ily)), h).

For the reverse inclusion, when m < 1, recall that .# (A%(C,, (v,)™,)) = H>(C,),

and also observe thatif h=! € H>(C,) = .#(AZ), then
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2

/u <%) e /u

<A e ( /C|F'|2du1 . /C|h'F|2 dul)
+ +

()
= Hhilu%qoo(m) (1+ HhilH%M(m)) HFHi2(C+,(VO,V1))7

2

F' WF
dVl

h k%

thatis, h=' € 4 (A*(Cy, (v, 11))). O

Theorem 3.1.13 (Theorem 8 in [65]) Suppose that A%m) is a Banach algebra and that
for each a > 0 there exists K(a) > 0 such that wg,(t) < K(a)e®, for allt > 0. Let

T im(//[(A%m))) — D (the closed unit disk of the complex plane) be given by

wo) = (152) (6 € MLA(AL)

(that is,  is the Gel fand transform of the function (1 — z)/(1 + z), see Chapter V, § 1,
p. 184 in [45]]). Then

1. T is surjective.
2. Ifm<1lorforalll <k <n<m-—1< oo the embedding
LY([0, 00), p_) = L'([0, 00), )

is bounded, then T is injective over the open unit disk D and (7|°)~! (that is,

the inverse of the restriction of m to D in its image) maps 1D homeomorphically

onto an open subset A C IN(.H (A%m))).

Proof

First, note that, foralla € C, (z + a)'isin A%m), since

/ ‘e_“t‘z Wy (1) dt < K(a)/ etRe@) gy — R
0 0



3.1. MULTIPLICATION OPERATORS 75

soe e L2 (0, ), and hence

W(m)
1—2z 2
— —1e€A?  +CC.#(A% ).
1+2z 14z € Ay +C S A (A
We know that o (. (43,,), 4:2) D o (H®(C,), 12). 1 (12 — ) € H(C,), for

some ¢ € C, then

12 - 1+ 2 1 2 1—c\7!
—c] = - - 2 — 1
1+2 l—c—z2(14¢) 14c| 14c 1+c

- 7

~~
2
EA(m)

is a multiplier of A%m). So we actually have

and thus

1—=2 G139 11—z
(@< sup 'w( ) 2 ( ):1
pem(a(az,n | \1+2 1+2

Because the evaluation homomorphisms are in 9t(.Z (A%m))), every point of the open
unit disk is in the image of 7. Also, I (.# (A%m))) is a compact Hausdorft space (see
Theorem 2.5, Chapter I, § 2, p. 4 in [43]), so its image under = must also be compact

(Theorem 2.10, p. 38 in [90]]), and thus 7 is surjective.

For the second part, let |¢| < 1 and suppose that 7(¢) = c. Then for any F' € A?m)
vanishing at k = }T’i € C4, we have F' = 222G, with G € H>(C,) (see [75], p. 293).

Let B, (k) be the closed ball, centred at , with radius » > 0. Choose r small enough to

get B,(k) C C,, then

/|G<z>|2 dvolz) = / G dvy + /
Cr B (k) C\Br(x)

The first integral is finite, since G is bounded on C, and B, (k) is compact. The second

2

Gl dvg(z).

Z— K

F(z)

integral is also finite, since % is bounded on C, \ B, (). Let
Z—K

24+ K

Z— K

C:= sup

26C4\Br (k)
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Then we have

/ G diy :/ G din +/ F() 2 pe) 2R )
oy B0 TH\B () Z— K (z = K)
< [ jaP v+ 20 P,
r (%) 7
din(z) |
2 2 2 1
QO Re(6) 1Flpeic) ||| #(9

‘ 2

which is also finite, since |G’|” is continuous, B, (k) is compact and (z + %)™ € A%m)

implies (z + )2 € A2 . If n > 1, then
/ }G(n)}Z v, = / |G(n)|2 dv,
o B
n N (B) |2
Lol )0 ()
TAB() |y \F Z— K

n—1
= G dy, + Fo=R)|?
o e [l

I F ey G+ < o0,

dvy,(2)

Therefore, in either case, G € A%m). Let

(1+2)(1+k)
2(z+R)

-~

e (A?,))

Then
1—=2
w(F)=s0<1+Z—C) ¢(H) = 0. (3.15)

Let h € .#(A?,,)) be such that h(x) = 0. Then (2)/(z + 1) lies in A? ) and vanishes at

K, SO

0@%0(211) :*“h)*”(liz) - SO?QDGIEH) = (h) o,

so ¢ must in fact be the evaluation homomorphism, proving injectivity. For the remaining

part, let A := (7|?)~*(D). Then 7 maps A homeomorphically onto D, since the topology
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of A is the weak topology defined by Gel’fand transforms of functions from .# (A%m)),
and the topology of D is the weak topology defined by bounded functions in .#Z (A%m)).
|

This theorem shows the existence of an analytic disk in 9(.# (A%m))) It is a natural
question to ask whether this disk is dense therein, or in other words, does the Corona
Theorem hold in this setting. Dictatum erat, Lennart Carleson had proved the Corona
Theorem for M(H>) = M (4 (B2)), o > —1. The Corona Theorem is valid for .# (D)

too (see [100]), but whether it is also the case for .# (A%m)) still remains to be established.

3.2 Weighted composition operators

Weighted composition operators for Hardy spaces H” have been discussed for example
in [26] and [42], for weighted Bergman spaces Bi, o« > —1 in [41] and [68]], for
the Dirichlet space D in [23] and for weighted Hardy spaces H(3) in [22]]. This last
reference also includes a discussion on weighted composition operators for Zen spaces,
which was continued in [67], and we present some of the results from that paper here and

in the We also outline some minor, partial extensions to AP(C,, (1,)%%,)

space, which have not been published yet.

Throughout this section we assume that h : C, — C and ¢ : C, — C, are analytic

functions.
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3.2.1 Bergman Kkernels, Carleson measures and boundedness of

weighted composition operators

In [26] M. D. Contreras and A. G. Herndndez-Diaz gave a necessary and sufficient
condition for a weighted composition operator W}, ., to be bounded on H?. We modify
their proof to show that a similar condition also characterises the boundedness of weighted

composition operators for Zen spaces.

Lemma 3.2.1 Let v be a positive Borel measure on C, and let g be a non-negative

measurable function on C . Then
/ g iy, b, p,p = / |h[P(g o) dv, (3.16)
o o
where (i, 1, p IS gIven by

fo, by, p(E) = / |h|P dv, (3.17)
e~ 1(E)

for each Borel set E C C,.

Proof
Let (E;); be a countable collection of disjoint Borel subsets of C.. such that | J, E; = C,.

and suppose that g(z) = >, cix g, (#) is a simple non-negative measurable function. Then
/ g d,U/V, h,p,p — Z Cilby, b, cp,p(Ei)
Cy p
Z Ci / |h|P dv
i P H(E)
=Y ai [ e d
i Ct
= [ Y e o
Cy r

— [ wptgos)a
Cy
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If g is not simple, then we can find a sequence of simple functions such that
0<go(2) <qi(z) <...<gu(2) < ... (Vz e Cy),

which converges to g pointwise for each z € C,, and thus, by Lebesgue’s Monotone

Convergence Theorem (1.26, p. 21 in [90])

n—oo

lim Gn Afly b, o.p = / g dpiy, h, g, p-
C+ Ct

And similarly, (|2(z)["(gn © ¢)(2))52, is a non-decreasing sequence of non-negative
measurable functions converging pointwise to |h(z)[P(g o ¢)(z), for each z € C,, such

that
lim |hw@no¢ww::/°|mwgow>ma
+ Ct

n—oo C

from which the desired result follows easily. O

For the rest of this section we assume that 7({0}) = 7({0}) = 7, ({0}) = 0.

Theorem 3.2.2 The weighted composition operator W}, , is bounded on a Zen space AP,

if and only if i, 1, p is a Carleson measure for A?.

Proof

Given F' € AP, by the [previous lemmal (applied with g = |F'|P), we get

(/\h«FowwwVﬁﬁ
Cy

(for some C' > 0, not depending on F'), if and only if s, 1, ,, , is a Carleson measure for

FIP dp oy < o/ FIP dv

o Cy

AP, or equivalently if and only if W}, ,, is bounded on A. O

An analogous condition in case when 7({0}) > 0 is given in Theorem 2.2, p. 227 in [26]].

From|Lemma 3.2.1| we can also deduce a partial result for A?(C, (v, 11)).
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Corollary 3.2.3 If piyy h,.p and (i, .o, p, are both Carleson measures for A? , and

Vo’

v, he', o, p 1S @ Carleson measure for AL, then W), , is bounded on AP(C.., (v, 11)).

vy’

Proof

It follows from the fact that

HWh"’DFHi”(C+7(Vo,V1)) :/ ’h'(FOQO)‘pdVO—i_/ ’h/'(FOQD)_Fth/'(F/OSO)‘pdVl
(o Cy

< / FP djtng o+ 2 / FP ity i
Cs (o

Lo /@ F'P djtny o
+

A similar statement can also be given for AP(C., (v,)" ), for 1 < m < oo, using

the general Leibniz rule and Faa di Bruno’s formula (see [40]).

Theorem 3.2.4 The weighted composition operator Wi, , is bounded on a Zen space A,

if and only if there exists o > —1 such that

A(a) := sup Hh (kgi(m) 090)’

2
2€C HkZBa(C+)

4D < 0. (3.18)

AD

Proof

By we know that there exists & > —1 such that kfg‘(c” is in AP, for all
z € Cy4, and if W}, , is bounded on A%, then A(a) must be finite. Conversely, if A(«)
is finite, for some o > —1, then, by Theorem 2.1, p. 787 from [61], 1ty 1, ,,, Must be

a Carleson measure for A?, and hence, by [Lemma 3.2.1, W)}, , must be bounded on A?.
(]
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Remark 3.2.5 If p > 1 and A? = B2 (C,.) for some a > —1, then, by estimate (2.9), we

have

» ) (2+a)p o0 91+ k
|rKa<-z>uBg(@+)s(Re—<Z)) ”<Q(Z>),;O(W) < o,

and hence we can substitute this index « into the equation (3.18). In this case we have

that Wy, , is bounded on BE(C..) if and only if
Hh' (kfz(m o 90>

2€C. ”k53(0+)

B&(Cy)

(3.19)

BE(Cy)
In particular, if p = 2, then (3.19) is equivalent to

up [h(:)] (%) <oo,

zeCy Re(@(’z
by 0.8

3.2.2 Causality

Definition 3.2.6 Let w be a positive measurable function on (0, co). We say that
A : L%(0,00) — L2(0, c0) is a causal operator (or a lower-triangular operator), if
for each T > 0 the closed subspace L2 (T, 0o) is invariant for A. If there exists o > 0

such AL (T, oo) C L2 (T + «, 00), for all T > 0, then we say that A is strictly causal.

The following lemma was proved in [22]] (Theorem 3.2, p. 1091) for unweighted and
in [66] for weighted L? spaces on (0, o)

Lemma 3.2.7 (Lemma 2 in [67]) Let w be a positive, non-increasing, measurable
function on (0, 00). Suppose that A : L2 (0,00) — L2 (0, o) is a causal operator
and D is the operator of multiplication by a strictly positive, monotonically increasing
function d. Then
-1
DT AD|[ 12 00y < 1Al L2 0, 00) - (3.20)
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Proof
First, suppose that A is strictly causal for some o > 0. For z € C, define
Q(z) = D *AD?, where D* is the operator of multiplication by the complex function

d?. For each N € N such that N > log, o let
XN = span{ek = X(k’/2N,(k+1)/2N) c ke€Z and 1 < k < 22N}

be a subspace of LZ (0, oo). Clearly, Un>10g, « X is a dense subspace of L2 (0, 00). Let
Py : L2 (0, 0o) — Xy denote the orthogonal projection and define Qx (2) = Q(2)P,.

Forall 1 < k < 2%V, Qx(2) maps each e, to d~*Ad*e;, and

k —Re(2)
|d*Ad?e,|| < (d (2—N + a)) | Ad?ey||

k - —Re(2) k+1 Re(z)
<(a(ge+2)) nan(a(55)) tal

< (1Al llexll;

since d is increasing and A is strictly causal (i.e. Ad®ey, is supported on [k/2Y + «, ©00)).
Xy is finite dimensional, so y(z) is bounded independently of =z, because
125 (2)]] < ||€2(2)|xy |- By the maximum principle (also known as Phragmén—Lindelof

Principle, see 6.2, p. 117 in [89]) we also have that

Qv < sup [[Qn(2)] < sup [[Q(2)]| = [| Al
Re(z)>0 Re(z)=0

and the result holds on L2 (0, o), since | J N>log, o XN 18 @ dense set therein.

If A is not strictly causal, then let S, denote the right shift by «. In this case the operator

S, A is strictly causal and, by the above, we have
D™ Sa AD|| < ||SaAll = || Al

Let d,(t) = d(a +t). Then for each f € L2(0, co) we have | D~ 1S,|| = |ld;*f]],
and |d;'f\/w| increases to |d~'fy/w| almost everywhere as o — 0, because

the monotonically decreasing function d~! is continuous almost everywhere, and hence
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the result follows from Lebesgue’s Monotone Convergence Theorem. O

We will say that an operator B : A%m) — A%m) is causal if the the corresponding

isometric operator £7'BE : LY, (0, 00) — L, (0, 00) is causal on Ly, (0, o0)

m) W(m) W(m)

L2/(0, 00) 25 12 (0, o0)

R

A? A?

Theorem 3.2.8 Suppose that the weighted composition operator Wy, ,, is bounded and
causal on A%o)- Then there exists o/ > 0 such that for each o« > o/ W), , is bounded on

the weighted Bergman space B2(C ), and

||Wh,<p”3§(<c+) < ||Wh,<p||,4?0) . (3.21)

Proof

The first part of this proof is conducted in essentially the same manner as the proof
of [Lemma 1.2.2| Let L (0, 00), L7 (0, 00) be the spaces corresponding to A%
and B2(C,) respectively (i.e. v,(t) = 27°T(a + 1)t7*"!). We want to show that

wo(t)/va(t) is an increasing function, that is, we must have

wo(t)va(t) 2 wo(t)v(t)

r 1 r 2
0, 00) 20ge+t [0, 00) 204042

1
/[ )6_%1 (:U - oz;; ) dvy(z) < 0.
0, 00
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Consider the graph:

We clearly need to have

1 1
[0, %) 2t (2L o0) 2t

Observe that for a > 0 we have

o+ 2 < oz+1'

3.22
4 - 2t (3-22)

Let R be defined for 7 as in (Ag). Then we have

a+2
—9xt a+1 N N o+ 2 e 2
— — d > 0
/[7%_&1)6 (az o ) vo(x) > 1y ({ T a—y

and

ot a+1\ _ _([a+1 a+2\) e @
— d <
/[‘CH—IVM)e (x 21 ) Po(w) < 0({ ot 2 21
a+2 67(a+2)
:~0 07
(o)) =
5 0 Oé+1 e—(a+2)
“n (] *5))
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because

1 > 2 2
/ 2 (x—o‘+ ) dip(z) < ﬁo<[2"a+ gnr1 @ ))
[oﬂr27 ) 2t -0 2t 2t

n=

_ <€—2"(a+2) 2"(a+2) —a— 1)

2t

)) (R . 1)(0[ + 2)6—(04-1—2)

2t
Z <2R6 (a+2) )
n=0
Ca(0.5) a2
- o (R Le 1 — 2Re—(@+2)

Collecting these inequalities we get

a;2R—1(1 R(a 4+ 2) )<1,

¢ a 1= 2Re (a+2)

which is true for all & > o/, for some ' sufficiently large. Now, let A be an operator on
L2 (0, oo) induced by W), ,, acting on B2(C. ), and let D be the isometric operator from
L2 (0, 00) to L2 (0, o) of multiplication by /wy(t)/va(t). Consider the following
commutative diagram:

2,0, 50) 2~ L2, (0, o0)
|

DiAD 13
D1
L?UO(O, 00) hL?;a (0, o0)

Therefore, by we have

G20
||Wh,<p||33(<c+) = ||A||L%a(0700) = ”D_lAD”L?UO(o =

141z, 0,000 = Wyl a2,

as required. O

Using essentially the same strategy we can prove a similar statement for A%m) spaces, for

m > 0.
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Theorem 3.2.9 Suppose that W), , is causal. If W, , is bounded on A%m) and for some

a > —1 we have
(14 @)w(my () + tw(,, (1) >0 (Vt > 0), (3.23)
then it is also bounded on B2(C. ), and
Whellsz e,y < IWhollaz - (3.24)
Conversely, if there exists o > —1 such that Wy, , is bounded on B%(C.) and
QW) () + 1w, (t) <0 (Vt > 0), (3.25)
then Wi, ,, is bounded on A7, and
HWh,eoHA%m) < ||Wh,<p||33((c+)~ (3.26)

Proof
If there exists v > —1 such that (3.23)) holds, then w,,) (t)t”o‘ is increasing, and we get

(3:24). Conversely, if (3-23)) holds, then (w(,,)(t)t't*) ! is increasing, and we get (3.26).
Then the result follows from O

Let a > 0. We define a holomorphic map ¢, : C; — C, by 1,(z) = az, forall z € C,.

Proposition 3.2.10 (Corollary 3.4, p. 1094 in [22]) Let a > 0. If W), , is bounded on
H 2(C+), then it is also bounded on each A?o)’ and

IWh,ollaz, < 1Cyallaz) 1Coy 2 [Whiell2ccy)- (3.27)

We can use [Theorem 3.2.8|to state an inverted version of the above proposition.

Corollary 3.2.11 (Corollary 2 in [67]) Let a > 0. If W), , is bounded on some A?o)

space, then there exists o/ > 0 such that for all o« > o/, we have

Wi ollsz ey < I1Cua szl Conyollaz, IWa ol
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3.3 Composition operators

In this section we assume that ¢ is an analytic self-map of C . The study of composition
operators goes back to a paper [81] of Eric Nordgren. Composition operators for spaces
of analytic functions on the disk are discussed extensively in [27]. In particular, as
a consequence of the Littlewood subordination principle, every composition operator is
bounded on Hardy spaces H? on the disk (see Theorem 8.3.2 in [21], p. 220). This
is not the case for Hardy spaces on the complex half-plane. A description of bounded
composition operators for H?(C, ) corresponding to a rational symbol ¢ was given in
[36]. In [77] Valentin Matache has shown that a composition operator C,, is bounded on
H?(C,) if and only if ¢ has a finite angular derivative at infinity. In [38]] Samuel Elliott
and Michael Jury have simplified Matache’s proof and extended the result to H?(C_),
also showing that if C,, is bounded on H?(C.) then the norm of C, equals the p™
root of the angular derivative of ¢ at infinity. In [37] Sam Elliott and Andrew Wynn
have shown that the condition for C,, to be bounded on B2(C,), @ > —1 is the same
as in the Hardy space case, and derived the expression for its norm. Recently, Riikka
Schroderus has characterised spectra of fractional composition operators on the Hardy

and weighted Bergman spaces of the half-plane (see [92]).

3.3.1 Boundedness

In this section we will cite boundedness conditions from [37]] and [38]], and will use

the results from the previous section|and [22] to show that this conditions remain the same

if we replace weighted Bergman spaces with A%o) spaces.

Definition 3.3.1 A sequence of points z, = x,, + 1y, € C. is said to approach co non-
tangentially if lim,_, . x, = 00 and sup,cy |Yn|/xn < o0. We also say that ¢ fixes

infinity non-tangentially if ¢(z,) — oo whenever z, — 0o non-tangentially, and write
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©(00) = oo. If it is the case and also the non-tangential limit

lim —— (3.28)
== o(2)

exists and is finite, then we say that @ has a finite angular derivative at infinity and denote

the above limit by ¢'(00).

Proposition 3.3.2 (Julia—Carathéodory Theorem in C, - Proposition 2.2, p. 491 in [38]])

Let ¢ be an analytic self-map on C.. The following are equivalent:

1. ¢(00) and ¢'(c0) exist;

Re(z
2. Supz€C+ = W((Z))) < 00
3. lim SUP, 00 = RS(QT(&ZZ))) < 00

Moreover, the quantities in 2. and 3. are both equal to ' (00).

Theorem 3.3.3 (Theorem 3.1, p. 492 in [38] and Theorem 3.4, p. 377 in [37])
The composition operator C, is bounded on B2(C.), « > —1, if and only if ¢
has finite angular derivative at infinity, in which case

24«

1Cell = (¢/(00)) ="

Note that the above boundedness condition can also be deduced from [Remark 3.2.5| if

a > —1.

Proposition 3.3.4 (Proposition 3.5, p. 1094 in [22]) Let a > 0 and let 1,(2) = az.

Then
wo(at)

>0 awp(t)

1Coall a2, = (3.29)
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In the remaining part of this section we will use the Nevanlinna representation of

a holomorphic function ¢ : C;, — C;:

, 1 it , 1+itz du(t)
= b du(t) = b _— 3.30
plz) = az 41 +/R<it+z+l—|—t2) pll) = az +i +/R itz 14 O

where a > 0, b € R and p is a non-negative Borel measure measure on R satisfying

du(t)
/RIHQ < oo

a= lim —gp(Re(z)).
Re(z)—o0 RG(Z)

the following growth condition:

(see 5.3 in [89], p. 84). Clearly

Theorem 3.3.5 (Theorem 4 in [67]) The composition operator C,, is bounded on A?o) if
and only if ¢ has a finite angular derivative at infinity. If C, is bounded, then

wo(?) wo(t/ ' (50))
I8 (o ooy = 1l < ¢f(o0)sup == =

Proof

Suppose, for contradiction, that C, is bounded on A%O), but ¢ does not have a finite angular

derivative at infinity. By [Proposition 3.3.2| we know that for each n > 1 there must exist

2, € C, such that

Re(zy,)
— > . 3.31
Re(d(z0)) " 53D
Now,
2
‘kA(%O)) (¢(2n)) (zn)/
©(2Zn [o'e) e—QtRe @(zn o) e—2tRe zZn)/n
o s A @D f M ED o aw
|| (pH - A2 2 - fe'e) 672tRe(zn) d — [e’e) 672tRe(zn) d ( ° )
i L b mm
A2

(0)
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Since wy, qua definitione, is non-increasing, we have that wq(nt) < wq(t), for all n > 1,
and consequently

00 ¢—2tRe(zn) 00 ¢—2tRe(zn)
639 fo “wo(nt) ndt S nfo wo (1) dt _

||C:7||2 Z 00 o—2tRe(zn) — 00 p—2tRe(zn) -
fO . ’wo(t) dt fO . wo(t) dt

for all n > 1, which is absurd, as it contradicts the boundedness of C,. So, if C, is

bounded, then ¢ has a finite angular derivative at infinity and

Re(z) —1

)de:tn lim S lim ————
z—00 QO(Z) Re(z)—o0 SO(RG(Z))

nontangentially

¢ (00 =

Y

where 0 < a < oo is defined as in (3.30). Conversely, if ¢ has a finite angular derivative

at infinity, then, by [Theorem 3.3.3| C,, is bounded on the Hardy space H*(C, ), and, by

Proposition 3.2.10|, we get that it is also bounded on A?o) with

1Ce |l 42

o < Cullaz, 1o e I Coll e,

where 1),(z) = az. We can evaluate the RHS of this inequality using [Theorem 3.3.3|and
[Proposition 3.3.4{to get

2 wo(at) ) , wo(t/¢'(00))
2 < . . —= _—
\|C¢||A(O)_stl>113 and) " ¢'(00) w(w)igg wol)

By |Corollary 3.2.1 1| we also know that if C,, is bounded on A?O), then there exists o > 0

such that

1Ce |l 42

) =z HC%|’3<21((C+)||Cw1/a“A(?O)”C@HA?O)--

Again, we can evaluate the RHS of this inequality using [Theorem 3.3.3| and

[Proposition 3.3.4|to get

t)
2 > a+2 a+1‘fL: ! inf ———.
||C<P||A(O) > ¢'(00)*a e wo (¢! (00)?) #'(0) 150 wo (@' (00)t)
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3.3.2 Compactness

In [[76] Valentin Matache has shown that there exist no compact composition operator on
H?(C, ). This result was also obtained in [38]] and extended to weighted Bergman spaces
on the half-plane in [37]. In this subsection we will show that this is also the case for

general A% spaces.

Definition 3.3.6 The essential norm of an operator, denoted || - ||. is the distance in

the operator norm from the set of compact operators (see [lL1]]).
Theorem 3.3.7 (Theorem S in [67]) There is no compact composition operator on A%o)-

Proof
Let C, be a bounded operator on A%o)- For any 6 > 0 we can choose a compact operator

A2 A2
@ such that ||C, ||+ > ||C, — Q||. By|Lemma 1.2.7, the sequence k- /||k= || tends

A2 A
to 0 weakly, as z approaches infinity, so Q* (kz @ /k> @] | — 0, and consequently

HccpHe +0 > HCso - QH

AQO
H(C‘P o Q)*kz( )

> lim sup
Z—> 00

(0)




92 3. WEIGHTED COMPOSITION OPERATORS

Suppose, for contradiction, that C, is compact, then the last quantity above must be equal
A2 A2
to 0, and hence the limit of ||k:<p((2; /1K= || exists and is also equal to 0. That is, for each

€ > 0 there exists zg € C such that

k (0)
w(z) A2 @ o 00 e—2tRe(p(z ))dt
o T T <& (3.33)
‘ ke © 0w O
Al
for all z € C with |z| > |z|. Since C,, is bounded and
Re(2)
'(00) = limsup ————,
#'(00) = limsup Re(p(2))
forany 0 < xk < ¢(00), there exists a sequence (z;)>
such that
Re(z) -

m > R, (VZ € {Zj}jzl) (3.34)
Leti(z) = kz. If z € {2;} 2, then

2

"‘?2(%0)( ) (#(2)) (=)
p(z —2tk Re(p(z —2Re(z
) 2 o Tww U D L w6 1
HC%ZJ“ > 2 - "2t Re(
5 0 e e(p(z)) dt fOO e—2t Re(p(2)) dt 827
L © fo wo (L) Cwo(t)
e ||,

which is absurd. So ||C,,||c > 0, and consequently C., is not compact. OJ
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Chapter 4

Laplace—Carleson embeddings and

weighted infinite-time admissibility

Nous devons donc envisager 1’état présent de 1’univers comme 1’effet
de son état antérieur et comme la cause de celui qui va suivre.
Une intelligence qui, pour un instant donné, connaitrait toutes les forces dont
la nature est animée, et la situation respective des étres qui la composent,
si d’ailleurs elle était assez vaste pour soumettre ces données a 1’Analyse,
embrasserait dans la méme formule les mouvements des plus grands corps
de I'univers et ceux du plus léger atome: rien ne serait incertain pour elle

et I’avenir, comme le passé serait présent a ses yeux[]

PIERRE-SIMON DE LAPLACE, 1* marquis de Laplace, Essai philosophique

sur les probabilités

"We may regard the present state of the universe as the effect of its past and the cause of its future.
An intellect which at a certain moment would know all forces that set nature in motion, and all positions
of all items of which nature is composed, if this intellect were also vast enough to submit these data to
analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and
those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past

would be present before its eyes
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As it was hinted at the very beginning of this thesis, the spaces of analytic functions,
which we portrayed in previous chapters, apart from undeniably interesting theoretical
aspects, also possess an important practical attribute. Videlicet, they can be used to test

admissibility of observation and control operators for linear evolution equation systems.

The results presented in this chapter have been published in [66].

4.1 Control and observation operators for semigroups of

linear operators

4.1.1 Semigroups

Definition 4.1.1 Let X be a Banach space, let {T;};>0 C AB(X), and let I denote
the identity operator on X. If

® TtTT = Tt+7— (Vt, T Z O),

then forms {T:};>0 a (one parameter) semigroup with respect to the operation of

composition of operators. If we additionally have that
o lim; o+ Tyx = x (Vo € X),
then we call {T;}:>o a strongly continuous semigroup (or Cy-semigroup) on X.

Semigroups of linear operators were informally considered for the first time by Joseph-

Louis Lagrange in [69] by considering the expression

il B (t%) f).

n=0
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before the theory of linear operators was even invented. Another source of this notion
could be found in Augustin-Louis Cauchy’s Cours d’Analyse [20], Chapitre V, pp. 103-

122, where he considered a functional equation

p(r+y) = o) - o(y).

And last but not least, in the context which is closest to the linear evolution equations
that we consider later, we can also find it in Giuseppe Peano’s solution to the system of

ordinary differential equations with constant coefficients

dxq(t
() =a1121(t) + -+ appzn(t)
dt ) ’
dw;t<t) - an,lxl(t) + e + an,nmn(t)

in [86]], where the solution was found to be

where

xl(t) a1 o O

and, as Peano proved, the series is convergent. In the modern setting, the theory
of semigroups arose from works of Jacques Hadamard [49] and Marshall Stone [96].
The contemporary codification of semigroups can be found for example in [39]], [30],

[46] and [85].

Definition 4.1.2 Let {T,};>¢ be a semigroup on a Banach space X over the field of

complex numbers. The linear operator A, defined by

T,z —
D(A) = {x €X ¢ lim —— 7 exists}
t—0+ t
Tyx —x

Az = lim
t—0+ t

(Ve € D(A)),
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is called the infinitesimal generator of the semigroup T; and D(A) is the domain of A.

Infinitesimal generators for one-parameter semigroups were introduced by Carl Einar

Hille in [[54]] and Kosaku Yosida in [[104].

Example 4.1.3 If A € B(X), then we can define

T, := e := Z (tA)" (Yt > 0). 4.1)

n!
n=0

Certainly, this infinite series converges and
||etAH < et (Vt > 0),
50 {T}+>0 is a Cy-semigroup. We also have that
IT: = 1] = ¢]| Al (4.2)

and
T, — 1

—AH < AT, - 1],

so A is the infinitesimal generator for {T;}i>o. Semigroups which satisfy @.2) are called
uniformly continuous semigroups. It can be proved that the only uniformly continuous

semigroups are those defined by (see [91]], p. 359).

4.1.2 Linear evolution equations

Let A be the infinitesimal generator of a strongly continuous semigroup {T;};> and let

X, Y and U be Banach spaces. Consider the following linear system

;

#(t) = Az(t) + Bu(t)
2(0) = o 4.3)

y(t) = Cu(),

\
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where z : [0,00) — X,y : [0,00) — Y, u : [0, 00) — U are maps; and
B : U — X, C : X — Y are (unbounded) operators. The spaces X, V
and U are called the state, the output and the input spaces respectively, and x(t), y(t) and

u(t) are the state, the output and the input at time ¢, correspondingly.

Time and change are unquestionably amongst the oldest philosophical conceptions,
which, in Western tradition, can be traced at least to the Presocratics (see [59]). The first
to distinguish between time and change was probably Aristotle in his Physics, Book IV,
Chapters 10-14 (see [8] and [25]). We obviously owe the mathematical foundations of
time-change related concepts to Sir Isaac Newton (see [79]). And even the shortest
description of later developments in this area would certainly be beyond the scope of
this thesis. Observe that if B = 0, then the semigroup property of {T; },>( forces systems
described by (@.3)) to be entirely deterministic (justifying the choice of the quotation at
the beginning of this chapter); something that Newton would surely reject. Without going
into any argument on how realistic this setting is, we would like to point out that even
a professedly probabilistic model such as the unitary time evolution of the individual state

following Schrodinger’s equation

W(t) = %H\If(t),

where 7/ is the Planck constant and H is a Hamiltonian (see [70], § 1.5, p. 15), evolves
deterministically in the absence of measurement. The modern theory of linear evolution

equations is discussed for example in [93]] and [101]].

A common minimal assumption is that B € ZA(U, X_1(A)) (i.e. the Banach space
of bounded linear functionals from U into X_;(A)) and C € HAB(X;(A), Y), where
X;(A) denotes D(A) equipped with the graph norm (see [83], p. 19) and X_;(X) is

the completion of X with respect to the norm given by
]l x_y ) o= ||(BT = A) '], (Vz € X),

for some fixed 3 € p(A) (see § 2.10, pp. 59-65 in [101]).
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The solution to the system (4.3)) has a formal representation

(x(t), y(t)) = (Tta:o + /t T, Bu(t) dr, CTxo + C/Ot T;_,Bu(r) dT)

0

(see Proposition 2.6, p. 73 in [[74]), which leads us to the notion of admissibility.

4.1.3 Admissibility

In this subsection we assume that A, B, C, D(A), {T;}>ou, U, x, X, X_1, X1, 9, Y

are defined as in the [previous subsection|

Definition 4.1.4 Let 1 < p < oo, and let B € B(U, X_1(A)). The control operator B

is said to be finite-time L? admissible for {T;}:>o if and only if for some t > 0 we have
t
/ T, . Bu(r)dr € X (Va(t) € L7((0, 00), U)),
0

and consequently there exists a constant my > 0 such that

t o0 %
/ T, Bu(r)dr|| < myljullre(o, 0),0) == 10 </ [kaCallis dT)
0 0

b's
for all u(t) € U. If the constant m, can be chosen independently of t > 0, then we say
that B is (infinite-time) LP-admissible for {T;}>o, in this case there exists a constant

m > 0 such that

The notion of admissibility for control operators was introduced in [55]]. Since then it

< ml|uf e (o, 50), ) (Vu(t) € LP(]0, 00),U)).
X

0

has appeared in omnifarious contexts in various publications. Particularly valuable and

concise treaties on this matter are [60] and Chapter 4 in [101]].

Definition 4.1.5 Ler 1 < p < oo, let C € (X1(A),Y), and assume that B = 0.

The observation operator C' is said to be finite-time LP-admissible for {T;};>¢ if and
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only if for some t > 0 there exists a constant k; > 0 such that

t P
(/ |CT o1} dT) < kyl|zol|x (Vzo € D(A)).
0

If k; can be chosen independently of t > 0, then we say that C' is (infinite-time) L”-

admissible. In this case, clearly, there exists m > 0 such that

ICT 20|l 1o((0. 009, v1 = (/ |CT o2 dt) < kljzo|x (Vo € D(A)).
0

It is clear from these definitions that there is a duality between the admissibility of control
and observation operators. Namely, if X and Y are reflexive Banach spaces (see [72],
p. 219), then B is an LP-admissible control operator for a semigroup {T; };>¢ if and only if
B*is an L” -admissible observation for the adjoint semigroup {T;},>¢. This is presented
in [101] (Theorem 4.4.4 in § 4.4, p. 127) for X being a Hilbert space and p = 2, and in
[93] (§ 10.2, pp. 572-576) for general case.

The above definitions can be amended, replacing L” norms with weighted L” norms. That
is, the control operator B € A (U, X_1(A)) is said to be (infinite-time) LE -admissible for

{T:}+>o if and only if there exists a constant A/ > 0 such that

< Mllullzg 0,001 = ( / ||u<t>||@w<t>dt) |
0

/ T, Bu(t) dt
0

X

for all  in U. And similarly, the observation operator C' € (X;(A), Y) is said to be
(infinite-time) LP -admissible for {T,};>¢ if and only if if there exists a constant K > 0

such that

CTanlmomm = ([ 1CTalfud) < Klalx (€ D).
0

Weighted infinite-time admissibility is debated in [48]], [103]], [62] and [66].
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4.1.4 Laplace—Carleson embeddings and weighted infinite-time

admissibility

Definition 4.1.6 Letr 1 < g < oo, and let X be a Banach space over a field K (real or
complex). A sequence (¢,,)5%, of vectors in X is called a Schauder basis for X if for all

x € X there exists a unique sequence of scalars (o) in K such that

(o)
T = E by,
n=0

with the series converging in the norm of X (see Definition 2.5.5, p. 72 in [82]). If there

exist constants 0 < ¢ < C' < oo such that for any sequence of scalars (3,,)°2, € (1 we

C<Z|5n|"> <13 Butn s0<2|6n\q) ,
n=0 n=0 X n=0

then we say that ()2, is a q-Riesz basis for X.

have

For the remaining part of this thesis we assume that A is an infinitesimal generator of
a strongly continuous semigroup {T;}:>o on a Banach space X, with a ¢-Riesz basis
(hn)22 ), consisting of eigenvectors of A, with corresponding eigenvalues ()52, each

n=0>

of which lies in the open left complex half-plane
C_:={z€C : Re(z) <0}.
This means that

thbn = eATLtgbna

(Lemma 1.9, Chapter II, p. 55 in [39]), and that we can identify X with the sequence

space ¢9. We shall also assume that U =Y = C.

The following two theorems, proved in [62], link admissibility of control and observation
operators with Laplace—Carleson embeddings (that is, Carleson embeddings induced by

the Laplace transform). These results were presented there for weighted L? spaces and
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unweighted LP spaces on (0, 0o), but the proofs remain valid for weighted L? spaces too.

Theorem 4.1.7 (Theorem 2.1, p. 1301 in [62]) Let 1 < p,q < oo. Let w be
a measurable self-map on (0, 00), and let B be a bounded linear map from C to X_1(A)
corresponding to the sequence (by)5>,. The control operator B is LP -admissible for

{T:}i>0, that is, there exists a constant m > 0 such that

1
< deft R ’
< mllullig 0,000 = M [u(®)Pw(t)dt |

0

0

X

forallu € L? (0, o), if and only if the Laplace transform induces a continuous mapping

from L? (0, 0o) into LY(Cy., w), where 1 is the measure given by > "7~ | |bg|90_»,.

Note that for 1 < p < oo and X a reflexive Banach space, we can associate the dual space

of L2 (0, co) with Lgfp,/p(O, o0) via the pairing

(. g) = / " Fg(t) di (J € 15,0, ), g € ¥, (0, )

Weighted admissibility and duality is presented in [48] (Remark 1.4, p. 2097). The duality
argument there is given in terms of w(t) = ¢, but it is easy to see that it remains true for

any weight w.

Theorem 4.1.8 (Theorem 2.2, p. 1301 in [62]) Let C' be a bounded linear map from
Xi1(A) to C. The observation operator C' is LP -admissible for {T;};>o, that is, there

exists a constant K > 0 such that

S 1/p
def*
IOl ([ ICTatOPu @) < Klally (v € D),
0
if and only if the Laplace transform induces a continuous mapping from Lg (0, 00)
into LY (C., j1), where y is the measure given by > v |ck|70_»,, ¢ = C¢y, for all

k€N, and ¢’ == q/(q — 1) is the conjugate index of q.
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4.2 Laplace-Carleson embeddings

4.2.1 Carleson measures for Hilbert spaces and weighted

admissibility

The notion of admissibility was originally coined for the state space being a Hilbert

space and p = ¢ = 2 ([55]) . We know (by Theorems [1.1.3| and {.1.7) that testing

the admissibility criterion in this case is equivalent to testing the Carleson criterion
for the Hardy space H?(C,). In this subsection we will generalise it to weighted L?-

admissibility, using the results from Chapter 2.

Proposition 4.2.1 (Proposition 1 and Corollary 1 in [66]) Ler B € A(C, X_1(A)) be

a control operator corresponding to a sequence ().

1. The control operator B is qu(m -admissible if and only if the linear map

Re t()\k+)\l
(a1)iZo (Z akbk/ )dt)

o0

=0

is bounded on (2.

2. If

o0 o0 2
SN < 00, (4.4)

k=0 1=0
then B is L?U(m) -admissible.

t()\k-i-)\z)
by / Re(c"™»)
0 W) (t)

3. IfBis qu(m) -admissible, then there exists a constant C' > 0 such that

(/\IvJF/\l )
biby / Re(c™™) 4
W) (1)

>0

kel leE

< OZ |bk|2

keE

forall E C Ny.
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Proof

1. This is just Theorem 4.1.7 and [Lemma 2.2.1| applied to H = A%m),

X = Ciandpu = Y7, |bkl?0-y,. Note that f € L*(C,, p) if and only if

(F(=2)bk))p2 = (ar)iZy, for some (ax ), € €.
2. Let (ax)2, € (. By Cauchy’s inequality we have
> % Re(etCrtAn) 2
Z anby, / L> dt
p 0 Wem(t)

— 2
00 t(AktAr)
by / Mdt
o Wan(t)

> lbl
=0

Cauchy

< @)l Y o>

=0 k=0

Y

so by part 1. we get that B is Lfv(m -admissible.

3. This is part 1. applied to x k.

In Chapter 3 we have shown that there exist weights w,,) such that the corresponding
spaces A%m) are Banach algebras with respect to pointwise multiplication (or, equivalently,
qu(m) (0, co) are Banach algebras with respect to the convolution operation). Thus we can

state the following.

2
W(m)

Proposition 4.2.2 (Proposition 2 in [66]) Suppose that L. (0, c0) is a Banach
algebra with respect to convolution. If (b.)3>, € (% then the control operator B is

ng( : -admissible.
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Proof

Using [Thieorem 3.1 we et

— 2
> > © Re(etCr+A)
S5 fn [ R

0

k=0 1=0 U)(m) (t>

0o ptOiir) |
biby / dt
o wWm)(t)

2
Schwarz > o0 o2t Re(Ar)
< by 2 / Y
(,; 0 Wen)(t)

and the result follows by part 2. of the [previous propositionl O

4.2.2 Laplace-Carleson embeddings for sectorial measures

Testing the boundedness of a Laplace—Carleson embedding for arbitrary 1 < p, ¢ < oo
is generally very difficult. Nonetheless, we can obtain some partial results, if we impose

some conditions on the support of the measure we are testing.

Proposition 4.2.3 (Proposition 3in [66]) Let 1 < p < 00,1 < q < oo, let w be
a measurable self-map on (0, o), and suppose that |1 be a positive Borel measure

supported on (0, o). If the Laplace—Carleson embedding
£: L0, 00) = LYCy., p)

is well-defined and bounded, then there exists C'(u) > 0 such that

oo oIyt 4
mnsow<A W;®w) ,

for all intervals I = (0, |I|], provided that the integral on the right exists.
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Proof

Let 0 < x < |I]| and a > 0. Then

e W
=

oo —t(a+|I]) 4 —a
WS ([T —a) [l | @
0 wrI(t) I wr(+)
oo o—t(atl) \ 7
< / S / I
0 wr(t) (ot
o p—tlatlr)) \ !
¢ / el—dt>
0 wr(t) 14,(0, 00)
o —tlatIl) \ ¢ [ poo —apt 3
/ £t / w(t)dt
0 wrI(t) o wr(t)

g

0o p—tlatll) \ 1 [ oo —apt v
/ o / c_ar)
0o wr1(t) 0 wri(t)

wr (1) wr1(t)

And hence

wi i ()

% pmtlata) 0 g-tlatI)

def? € e

e / > / c 4.5)
0 0

where C' > 0 is the constant from the Laplace—Carleson embedding. Choosing

a =|I|/(p— 1) gives us the desired result. O

Theorem 4.2.4 (Theorem 5 in [[66]) Given 0 < a < b < o0, let
Sy ={2€Cy : a<Re(z) <b}.
If there exists a partition
P:0<..<z_,<.. <z 1<z <1 <...<z,<... (n € N)

of (0, 00) and a sequence (c,,) € U}, (the (* sequence space indexed with Z) such that

4
7

o0 e—p’t:vn P
H(S(xn:xn-kl]) S |Cn| / 1 dt (Vn - Z),
0

wr1(t)
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then the Laplace—Carleson embedding
£: L0, 00) = LYCy., p)
is well-defined and bounded.

Proof

For anyz € S, 4,., and f € L% (0, co) we have

1

o . Holder oo e_P/mn o
£(2)] < / et | ()] di < (/ s dt) 1 lnom,  46)
0 0

wr=1 (1)
SO
0 o ,—p'ten o
[ resira T > < [ = n dt) WSt )
< el llf 1% 0
(Il

Definition 4.2.5 Let 1 < p < oo, and let f € LP(R). We define the maximal function of
f to be
1
M f(z) := sup — |f(z —y)ldy.

>0 21 ly|<r

The maximal function of f is finite almost everywhere (Theorem 1, § 3.1 in [95]]). This

theorem also states that

1M fllLr0,00) = 111220, 0) (Vf € LP(R)). 4.7

Lemma 4.2.6 (Lemma 1in [66]) Let 1 < p < oo, and let f € L2 (0, 0o). Then for all

x > 0 and any partition

P:0<... <t <...<tp=1<t;<...<t <... (k € Np)
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of (0, 00), with infyent_y = 0, we have

| el < op v aig(o)
0
where
W), it 0
g(t) =
0 ift <0,
g € LP(R), and
—1 e—th © ot
@(P,U),SC)ZQ Z i (1_tk>+z i (tk+1_]‘) ’
koo W7 (1) h—o WP (t;x)
where each t;, is such that
et et
T > T (Vt S (tk, tk+1)).
wr(tizr)  we(tr)

Proof

Let rj, := max {|1 — tg|, |1 — tx41]}, for each k. Given x > 0, we have

| etrla=. /Oooe-t|f<m>|dt9§j < /tk“|g<tas>|dt

we (trx) Ju,

k=—oc0
o et (1—tx)z

D / l9(x —y)|dy

oo WP (tr) J(1~tiy1)z

e % rpx

< T -~ lg(x —y)| dy

b oo WP (tj2) TR Sy <y

et
<2 T ri| tMg(x).
k=—00 WP (tzx)

To get the required result, note that if £ < —1, then 3,y < ¢ty = 1, and hence

L=t > 1 -t >0 = rp=|l—ty] =1—t

(4.8)
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otherwise t;1 > 1, so t; > 1, and thus

OZl—tk21—tk+1 — T‘k:|1—tk+1|:tk+1—1.

The following theorem has been proved in [61]] (Theorem 3.3, p. 801) for the unweighted

LP(0, co) case and in [66] for the weighted case.

Theorem 4.2.7 (Theorem 6 in [66]) Let 1 < p < q < oo, let p be a positive Borel

measure on C supported only inside the sector
S0) :={z€C, : |arg(z)| < 6},
for some 0 < 0 < 7/2, andlet « < p — 1. For an interval I = (0, |I|) C R we define
Ap:={2€8(0) : Re(z) <|I|}.
The Laplace—Carleson embedding
£: Lia(0, 00) = LU(Cy, pr)
is well-defined and bounded if and only if there exists a constant C'(u) > 0 such that

n(Ag) < C(u)I|» ), 4.9)

for all intervals I = (0, |I]) C R.

Proof
Suppose first that (4.9) holds. Let

T, = {z €8() : 2" < Re(z) < 2”} C A, 2m) (n € Z),
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and let also z,, = 27" "1, Clearly

&3 — 4 (1--a
S(0) = U T, and () < 1(Ag,omy) < Clu)an” (1-5%1)
neZ
By the jprevious lemmal we have that
<+ &3
£ (2)] S/ e |f(O)]dt < O(Pt*, zn)x, Mg(zn), (4.10)
0

for all z € T;, (© and g are defined as in[Lemma 4.2.6). Note that the choice of ¢ does

not depend on x,,, since

—t’,; —t ( ) e—tz €_t ( )
& = = Yt € tk, (R} < = > — Yt € tk, trhat ,
(trea)? — (tz,)? ’ (t)s ~ tr "

e

and there exists a partition P of (0, co), for which O(P, t*, z,,) converges (since o < p),
so, fixing P, we can set Dg := Tk O(P, t*, x,), which, by the definition of O, is a constant
depending on P and « only. Thus we have

G109 - -2 q
/3(0) 1£f9dp < Do > (a:n Mg(%)) 1(Tn)

n=—oo

< C(N)D@ Z xi(lf%)fﬁ(lfﬁ)Mg(xn)q

n=—oo

ASES]

:C(M)Dg Z (;chg(xn)p)

n=—oo

< C()De < > ngg(:rn)p>

n=—00
ED
=

B

||9||qu(0700)

- Hf”qua(o,oo) .

Now suppose that the converse is true. For each z € A; we have |z| < |I]sec(6), so

P R RN i) L =),

= e+ ] sec(®)7FT T (2] sec(8)FT
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And therefore we have

(1_L> 67|I|sec(0)t
u(an) £ 1100 [ el | )] dut2)
S(0) tr-t
—|I]sec()t ||4
< |70 | S
tr-1 L%, (0,00)

00 ,—[Ilpsec(d)t \ 7
= 1)70=5%) (/ e—adt>
0 tr-1
< 712052 15 (%)
— 7|7 (=5%),

as required. O

Corollary 4.2.8 (Corollary 2in [66]) Let 1 < p < q < oo, let pu be a positive Borel

measure on C. supported only inside the sector S(0), 0 < 0 < /2. Suppose that

tOé
Ssu
o w(t)

for some a < p — 1. If, for some family of intervals (I,)ncz, = ((0, 2"|Iy|))nez, there

< 00,

exists a constant C'(u) > 0 such that
p(A,) < (1D ) (¥n € Z),
then the Laplace—Carleson embedding
£:LP (0, 00) — LY(Cy, p)

is well-defined and bounded.

Proof

By the previous theorem| we get that

to[
Sflldu < 1 < —
[ e u,vufu%(o,oo)_(iggw(t)) T
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Corollary 4.2.9 (Corollary 3 in [66]) Let B and 11 be defined as in let

1 <p<qg<ooanda < p—1, and suppose that there exists 0 < 0 < /2 such that
Im(—Ax) < Re(—A\g) tané (VE € N).

Then the control operator B is LY.-admissible if and only if there exists a constant

C(un) > 0 such that

S [bel" < Cl) rpax [Re(~ )] (%) (VE C N).

keE

Example 4.2.10 Consider the following one-dimensional heat PDE on the interval [0, 1]:

(

B¢ 1) =25(¢ 1)
5(0,t)=0
Ge(1,t) = u(t)
2(¢,0) = z0(¢)

¢e(0,1),t>0.

\

According to Example 3.6 in [62]], this system can be expressed in the form (4.3) with

X = (2, Ae, = —n’n’e, (where (e,) is the canonical basis for (), and b, = 1, for

eachn € N. For 1 < p < 2and o < p — 1, by the |previous corollary, we know that B is

LYw-admissible if and only if p > 3(c + 1).

4.2.3 Sectorial Carleson measures for A%m) spaces

Using methods similar to those used in the [previous subsection, we could find a sufficient

condition for a sectorial measure to be Carleson for an A%m) space.

Theorem 4.2.11 (Theorem 7 in [66]) Let i1 be a positive Borel measure supported only

in the sector S(0), 0 < 0 < m/2. If there exists an interval I C iR, centred at 0, and
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a constant C () > 0 such that

19 —2

p QM) < Clu) | (v (QE2F(1)))) (Z 2k|]2| LQ))) , (411)

n=

forall k € Z, then i is a Carleson measure for A%m)

Proof

For all ¢, z > 0 we have

Wy (L) et 271'2 (tx)? / e 2" di, (1)

T\ 2n 1
> 9 t2n22n (_) —t ~n 0. —
= ”nz; 2) ¢ Yo
> 2 tQTL (_) —t ) x ,
> anzo 3) TR

where each R, is the supremum obtained from the (Aj))-condition, corresponding to 7,.

Clearly, we have that

7 [0, 3)
Wiy (tz) > 2me™ R (Vt,z > 0),
Ry
and
m o, [0, 2
w(m)(tx)z%rg(g) et%, (Vo >0,t>1).
Let
P:0=..=t_,=..=t1<ty=1<t; <...<t,; <..., (k?GN),

be a partition of [0, 0o), and let z;, = 27**1|71, k € Z. Then

[e.9]

€_t*1 Z e_tl (
—F—t ————(li1
VW) (E7k) = /Wy (8 k)

\/7 D o€ 2tl+1
2n Un|0 12
\/ ’ xk \/Zn 0 Tk n%

(P, w(m),!L"k:)de:fn2 [ —1)
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And by we get that for any z € T},

2 e’Et
1£f(2)] < \/; L ZH[ 5 xpMg(zy)
2n Vn 7?
WVO , xk \/Zn 0 —k
2 R t
_ .|z 0 Zl 0€ 2 I+1 \/x_kMg(zk)
" \/—l/o ) ,% Z 0 xk n—1 V"[;’ E)

< [t s (S0 | v

soforany £f = F' € A7 ) we have

| FPau= [ iePdns Y oM@l S W1 0 = I,
Cqt S(6) (m) (m)

k=—o0

as required. O
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Appendix

A Index of notation

—: - the LHS is defined to be the RHS

o
I

L _ the equality between the LHS and the RHS follows from the definition
P
L / < - the equality/inequality follows from the property P
< - the LHS is less than or equal to the RHS up to a constant factor, not depending on

variables on either side of the inequality

N - set of positive integers; counting numbers, i.e. {1, 2, 3, ...}

Ny - set of non-negative integers; natural numbers, i.e. {0, 1, 2, ...}
Z - set of integers; whole numbers, i.e. {..., —1,0, 1, ...}

R - set of real numbers; real line

C - set of complex numbers; complex plane

AP - Zen space, pp. 3] 30]
AP(Cy, (va)ito) - pp-[8L 3]
AP(C—H Vr rEM - Pp. ..
5 - p-68]

B(-, -) - beta function, p.
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B,.(z) - open ball in C, centred at z, with radius r > 0, p.

T(z) - closed ball in C, centred at z, with radius r > 0, p.

B? - (unweighted Hilbert) Bergman space on the open unit disk of the complex plane,
.

B2 - weighted (Hilbert) Bergman space on the open unit disk of the complex plane, p.
B?(C,) - (unweighted Hilbert) Bergman space on the open right complex half-plane,
pp-22 30

B2 (C. ) - weighted Bergman space on the open right complex half-plane, pp.

% (U) - Banach algebra of bounded linear operators on a Banach space U, p.
A(X,Y) - Banach space of bounded linear functionals from a Banach space X to
a Banach space Y, p.

Cp-semigroup - strongly continuous semigroup, p.

C,, - composition operator corresponding to symbol ¢, p. 2?

C'M(B) - set of Carleson measures for a Banach space B, p.

I lleas) - p-B4

%o(iR) - vector space of functions continuous on iR and vanishing at infinity, p.

C - open right complex half-plane, p.[2]

Cs-p.

X(E) - characteristic function of a set F, p.

dp(z1, z2) - (Poincaré) hyperbolic right half-plane distance, p.

D(A) - domain of an infinitesimal generator A, p.

D(-) - Dirichlet integral on the open unit disk of the complex plane, p.

D(-, -) - Dirichlet semi-inner product, p.

D - (classical) Dirichlet space on the open unit disk of the complex plane, p. 2]

D, - weighted Dirichlet space on the open unit disk of the complex plane, p.

D(C,) - (unweighted) Dirichlet space on the open right complex half-plane, pp.
D,(C,) - weighted Dirichlet space on the open right complex half-plane, pp.

D'(C,) - (unweighted) variant Dirichlet space on the open right complex half-plane,
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pp- 23} B1]

D! (C,) - weighted variant Dirichlet space on the open right complex half-plane,
pp- 23 B1]

D - open unit disk of the complex plane, p.

D - closed unit disk of the complex plane, p.

0n, - Dirac delta measure in n, pp.

Ay -p.3

Ar-p. || - ||« - essential norm of a bounded operator, p.

E,, - evaluation functional at x, p.

§ - Fourier transform, p.

¢'(00) - finite angular derivative of ¢ at infinity, p.

I'(+) - gamma function, p.

['(-, -) - upper incomplete gamma function, p.

H? - (Hilbert) Hardy space on the open unit disk of the complex plane, p.

H?(3) - weighted Hardy space, p.

HP(C,) - Hardy space on the open right complex half-plane, pp.

H"P(C, ) - Hardy—Sobolev space on the open right complex half-plane, pp.
H* - Hardy space of bounded holomorphic functions on the open unit disk of
the complex plane, p.

H*>(C,) - Hardy space of analytic functions bounded on C,, p.

Idg, - identity map on a set 2, p.

J - primitive functional, p.

K pp.

AT e

K, (-, -) - Bergman kernels, p.

kS . reproducing kernel of the weighted Bergman space on the open unit disk of
the complex plane, p.

kf‘%(c” - reproducing kernel of the weighted Bergman space on the open right complex
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half-plane, pp.[I5] [30]

kP - reproducing kernel of the Dirichlet space on the open unit disk of the complex plane,

p-21]

] DCH) reproducing kernel of the Dirichlet space on the open right complex half-plane,

pp- 22 31]

Jo Do C) reproducing kernel of the weighted variant Dirichlet space on the open right

complex half-plane, pp. 23] [31]

kH ’ reproducing kernel of the Hardy space on the open unit disk of the complex plane,

p.

k:fQ(C*) - reproducing kernel of the Hardy space on the open right complex half-plane,
pp-[15,30)

k:fr’z((c” - reproducing kernel of the Hardy—Sobolev space on the open right complex

half-plane, pp.

k7t - reproducing kernel, p.

LP (0, oo) - weighted Lebesgue function space on the positive real half-line, p.
L#([0, o0), U) - p.[o§

¢}, - the (' sequence space indexed with Z, p.

Z (U, V) - vector space of all linear maps between vector spaces U and V', p.
£ - Laplace (integral) transform; Laplace transform induced linear mapping, p. [5]
£ - pp.fe}

A - Lebesgue measure on iR, p.

M f - maximal function of f € LP(R), p.[106]

M, - multiplication operator corresponding to symbol h, i.e. Wj, 14, p.[59]

A (U) - algebra of multipliers of a vector space U, p.

| - |.#-(v) - multiplier norm, p.[60]

9M(A) - maximal ideal space/character space/carrier space of a commutative algebra A,

i.e. the set of all multiplicative linear functionals/non-zero homomorphisms/characters

on A, p.[73]
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My b o,p - p,|7_g|

p’, ¢’ - conjugate indices of p, ¢ € (1, 00),ie.p' :=1/(p—1), ¢ :=1/(qg— 1), p. 0|
¢a - p- @

(Q)(a) - Carleson square (or Carleson box) centred at a € C, p.
r(a) - spectral radius of a, p.

RKHS - reproducing kernel Hilbert space, p. [11]

Ry (€) - p-

p(A, a) - resolvent set of an element a of and algebra A, p.
S(-) - shadow set, p.

S(a, b - P- I@]

S(0) - p.

o(A, a) - spectrum of an element a of an algebra A, p.

T(C) - p.

{T\}+>0 - (one parameter) semigroup of linear operators, p.
O(P,w, z) - p.[107]

Wi, , - weighted composition operator corresponding to symbols 4 and ¢, p. @
w(m) - pP- [} BT]

wy - pp-27 32

wy, - pp-[6L[8

x~ - predecessor of a vertex x in some ordered tree, p.

X_1(A) - p.

X1(4) -p.
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