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Abstract
In this thesis we present certain spaces of analytic functions on the complex half-plane,

including the Hardy, the Bergman spaces, and their generalisation: Zen spaces. We use

the latter to construct a new type of spaces, which include the Dirichlet and the Hardy–

Sobolev spaces. We show that the Laplace transform defines an isometric map from

the weighted L2(0, ∞) spaces into these newly-constructed spaces. These spaces are

reproducing kernel Hilbert spaces, and we employ their reproducing kernels to investigate

their features. We compare corresponding spaces on the disk and on the half-plane.

We present the notions of Carleson embeddings and Carleson measures and characterise

them for the spaces introduced earlier, using the reproducing kernels, Carleson squares

and Whitney decomposition of the half-plane into an abstract tree.

We also study multiplication operators for these spaces. We show how the Carleson

measures can be used to test the boundedness of these operators. We show that if

a Hilbert space of complex valued functions is also a Banach algebra with respect to

the pointwise multiplication, then it must be a reproducing kernel Hilbert space and its

kernels are uniformly bounded. We provide examples of such spaces. We examine spectra

and character spaces corresponding to multiplication operators. We study weighted

composition operators and, using the concept of causality, we link the boundedness of

such operators on Zen spaces to Bergman kernels and weighted Bergman spaces. We use

this to show that a composition operator on a Zen space is bounded only if it has a finite

angular derivative at infinity. We also prove that no such operator can be compact.

We present an application of spaces of analytic functions on the half-plane in the study of

linear evolution equations, linking the admissibility criterion for control and observation

operators to the boundedness of Laplace–Carleson embeddings.
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Chapter 1

Introduction

Not thinking about anything is Zen. Once you know this, walking,

standing, sitting, or lying down, everything you do is Zen.

BODHIDHARMA, The Zen Teachings of Bodhidharma

Spaces of analytic functions are not only the cornerstone of functional analysis but

they are also at the very core of modern mathematics (both pure and applied)

as a whole. Thence their rôle and importance hardly require any introduction or

explanation. Their multitude is a reflection of the multitude of questions that the twentieth

century mathematics aspired to answer. And although many of them are sometimes

tailored to a specific problem, there is an aspect that they persistently seem to share.

That is, the domain of definition of their elements - the unit disk of the complex plane

D := {z ∈ C : |z| < 1}

(and possibly its higher dimensional analogues). This is often imposed by the problem,

which they are employed to solve, itself. But routinely it is also due to the fact that analytic

functions expressed as power series centred at 0 are particularly nice to manipulate

and effectively produce elegant results. This may give us a false impression that other
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domains are somehow less useful and hence do not deserve much attention. There is

an exception from this unfortunate rule, and it is the case of perhaps the most famous

canonical examples of spaces of analytic functions, that is, the Hardy and the Bergman

spaces. Monographs dedicated to the study of these two types of spaces, apart from

covering extensively the usual unit disk case, also give us some insight to the situation

when the disk is replaced by a complex half-plane. But since this alternative approach is

normally presented as a side-note, exercise or an optional chapter, it may even enhance

the misconception that this version of these spaces is somehow less important, less useful

or even artificial.

This thesis is solely dedicated to spaces of analytic functions on the open right complex

half-plane

C+ := {z ∈ C : Re(z) > 0} .

Often in the literature we may see similarly defined spaces of functions, with the right

complex half-plane replaced by the upper complex-half plane (i.e. Im(z) > 0).

This variant is dictated by the techniques used in the relevant proofs or sometimes it

is just a matter of personal taste. The choice of the half-plane as the domain of definition,

however, is far from being arbitrary, and the reasoning behind it, both theoretical and

practical, shall be unveiled in due course.

And finally, the reader should bear in mind that, although this setting provides many

interesting and useful results, the choice of the domain (and in particular the fact that it is

an unbounded domain) causes numerous complications, and the problems, which can be

easily solved in the unit disk case, are either much more difficult to tackle, have a different

answer or still remain to be answered in the half-plane setting.
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1.1 Zen spaces

1.1.1 Foundations

We shall start by considering so-called Zen spaces.

Definition 1.1.1 Let 1 ≤ p < ∞, let ν̃ be a positive regular Borel measure on [0, ∞)

(see § 52, p. 223 in [50]) satisfying the following ∆2-condition:

sup
x>0

ν̃ ([0, 2x))

ν̃ ([0, x))
<∞, (∆2)

let λ be the Lebesgue measure on iR, and let ν be a positive regular Borel measure on

C+ := [0, ∞) × iR, given by ν := ν̃ ⊗ λ. The Zen space corresponding to p and ν is

defined to be the normed vector space

Apν :=

{
F : C+ −→ C, analytic : ‖F‖Apν :=

(
sup
ε>0

∫
C+

|F (z + ε)|p dν(z)

) 1
p

<∞

}
.

These spaces were originally constructed in [51] and [52] by Zen Harper, and named

after him in [61], where their definition appears in the form given above along with many

fundamental results related to them. They also occur in [22], [64], [65], [66], [67], [61],

[62] and [87].

The measures satisfying the (∆2)-condition (also known as the doubling condition) have

been studied in the theory of harmonic analysis and partial differential equations (see [97]

for an early reference). If ν̃({0}) > 0, then, by Hardy space theory, every function F in

Apν has a well-defined boundary function F̃ in Lp(iR) (see Theorem in Chapter 8, p. 128,

of [56]) and we can give meaning to the expression
∫
C+
|F (z)|p dν(z). Hence we shall

write

‖F‖Apν =

(∫
C+

|F (z)|p dν(z)

) 1
p

.

Note that this expression also makes sense when ν̃({0}) = 0, since then F is still defined

ν-a.e. on C+. In this case we can of course write C+ instead of C+.
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The space Apν is a Banach space, and if p = 2, it is clearly a Hilbert space

(see Proposition 4.1, p. 61 in [87]). Examples of Zen spaces include Hardy spaces

Hp(C+) (when ν̃ = 1
2π
δ0, where δ0 is the Dirac delta measure in 0) and weighted Bergman

spaces Bpα(C+), α > −1 (when dν̃(r) = 1
π
rα dr). Some other examples are discussed

in [51]. We shall use the convention Bp−1(C+) := Hp(C+).

1.1.2 Laplace transform isometry

One of the main tools in the analysis of Zen spaces is the fact that the Laplace transform

defines an isometric map (and often we can even say: an isometry) from weighted

L2 spaces on the positive real half-line into (or respectively: onto) certain spaces of

analytic functions on the complex plane, which we shall derive from the Zen spaces in

the next section. But first, let us explain in detail what we understand by a weighted

L2 space and the Laplace transform.

Let 1 ≤ p < ∞ and let w be positive measurable function on (0, ∞). By a weighted

Lpw(0, ∞) space we mean the Lebesgue function space Lp((0, ∞), µ), where µ is

a measure on (0, ∞), given by dµ(t) = w(t) dt. Or, in other words,

Lpw(0, ∞) :=

{
f : (0, ∞) −→ C : ‖f‖Lpw(0,∞) :=

(∫ ∞
0

|f(t)|pw(t) dt

) 1
p

<∞

}
.

Corollary 1.1.2 Let w be a positive measurable function on (0, ∞). The subspace

L1(0, ∞) ∩ Lpw(0, ∞) is dense in Lpw(0, ∞).

Proof

Let f ∈ Lpw(0, ∞). We define

fn(t) :=

f(t) if 1
n
≤ t ≤ n,

0 otherwise
(∀n ∈ N).
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Clearly, {fn}n∈N ⊂ L1(0, ∞) ∩ Lpw(0, ∞) and fn
pointwise−→ f as n −→ ∞. Thus, by

Lebesgue’s Dominated Convergence Theorem for Lpw(0, ∞), with |f | as the dominating

function (1.34 in [90], p. 26), we have

lim
n→∞

‖f − fn‖Lpw(0,∞)
defn

= lim
n→∞

(∫ ∞
0

|f − fn|pw(t) dt

) 1
p

= 0,

proving the claim. 2

The Laplace transform (L) is the integral transform

L[f ](z) :=

∫ ∞
0

f(t)e−tz dt, (1.1)

taking a function f of a positive variable t to a function L[f ] of a complex variable z

(see [102]). As mentioned before, our considerations will involve mainly functions

belonging to weighted L2 spaces on (0, ∞), for which the integral (1.1) may not

necessarily be convergent. The previous corollary allows us, however, to extend

the definition of the Laplace transform in a natural way. Suppose that there exists a Banach

space of analytic functions B such that for each g in L1(0, ∞) ∩ Lpw(0, ∞) we have

L[g] ∈ B and ‖L[g]‖B ≤ ‖g‖Lpw(0,∞). (1.2)

Given f ∈ Lpw(0, ∞), we know that there exists a sequence (fn)∞n=0 of functions lying

in L1(0, ∞) ∩ Lpw(0, ∞) and converging to f in the Lpw(0, ∞) norm, and hence we can

define the (extended) Laplace transform to be the linear operator

L : Lpw(0, ∞) −→ B f 7−→ L[f ] := lim
n→∞

∫ ∞
0

fn(t)e−tz dt,

where the limit is taken with respect to the B norm. This limit exists since, by (1.2),

convergence of (fn)∞n=0 in L1(0, ∞)∩Lpw(0, ∞) implies convergence of (L[fn])∞n=0 inB.

The next theorem is elementary but also crucial for studying certain properties of Zen

spaces and their generalisations. For n = 0 and A2
ν = H2(C+) is known as Paley–Wiener

theorem (see Theorem 1.4.1, § 1.4, p. 25 in [21]). It appeared in [61] for Zen spaces and
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n = 0 (Proposition 2.3, p. 795), and earlier for some special cases in [29] (Theorem 2,

p. 309) [33] (Theorem 1, p. 460), [51] (Theorem 2.5, p. 119) and [52]. The general case

(n ≥ 0) was stated in [65] and we present its proof below.

Theorem 1.1.3 (Paley–Wiener theorem for L(n) and Zen spaces - Theorem 1 in [65])

The nth derivative of the Laplace transform defines an isometric map

L(n) : L2
wn(0, ∞) −→ A2

ν ,

where

wn(t) := 2πt2n
∫

[0,∞)

e−2tx dν̃(x) (t > 0). (1.3)

Remark 1.1.4 One of the properties of the Laplace transform, which are immediate from

the definition, is that its nth derivative can be expressed as

L(n)[f ](z) :=
dn

dzn

∫ ∞
0

f(t)e−tz dt =

∫ ∞
0

(−t)nf(t)e−tz dt
defn
= L[(−·)nf ](z),

for all z ∈ C and f : (0, ∞) −→ C such that the above integrals converge. Thus

a corresponding linear map L(n) : L2
wn(0,∞) −→ A2

ν can be defined by the density

argument outlined above.

Remark 1.1.5 The (∆2)-condition ensures that the integral in (1.3) converges for all

t > 0. Indeed, for any k ∈ N0 and x ≥ 0 we have

ν̃([2kx, 2k+1x)) = ν̃([0, 2k+1x))− ν̃([0, 2kx))

(∆2)
≤ (R− 1)ν̃([0, 2kx))

(∆2)
≤ (R− 1)Rkν̃([0, x)),

(1.4)

where R is as defined in (∆2). And so∫
[0,∞)

e−2tx dν̃(x) ≤ ν̃([0, 1)) +
∞∑
k=0

e−2k+1tν̃([2k, 2k+1))

(1.4)
≤ ν̃([0, 1))

(
1 + (R− 1)

∞∑
k=0

Rke−2k+1t

)
,

(1.5)

and the series converges for any t > 0 by the D’Alembert Ratio Test.
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The proof of Theorem 1.1.3 follows closely the proof of Proposition 2.3 in [61], using

the elementary relation between the Laplace and the Fourier (F) transforms (see [13]), and

that the latter defines an isometry (by the Plancherel theorem, see Theorem 1.4.2, § 1.4,

p. 25 in [21]; also see [78]); and Fubini’s Theorem for regular measures (Theorem 8.8,

Chapter 8, p. 164 in [90]).

Proof

Let f ∈ L1 ∩ L2
wn(0,∞), gn(t) := tnf(t) and z = x+ iy ∈ C+. Then

sup
ε>0

∫
C+

∣∣L(n)[f ](z + ε)
∣∣2 dν(z) = sup

ε>0

∫
[0,∞)

∫ ∞
−∞

∣∣L(n)[f ](x+ iy + ε)
∣∣2 dλ(y)dν̃(x)

= sup
ε>0

∫
[0,∞)

‖(−1)nL[tnf ](x+ ·+ ε)‖2
L2(iR) dν̃(x)

= sup
ε>0

∫
[0,∞)

‖L[gn](x+ ·+ ε)‖2
L2(iR) dν̃(x)

= sup
ε>0

∫
[0,∞)

∥∥F [e−(x+ε)·gn
]∥∥2

L2(R)
dν̃(x)

= sup
ε>0

∫
[0,∞)

2π
∥∥e−(x+ε)·gn

∥∥2

L2(0,∞)
dν̃(x)

Fubini’s Thm

= sup
ε>0

∫ ∞
0

|gn(t)|2 2π

∫
[0,∞)

e−2(x+ε)t dν̃(x) dt

(1.3)
=

∫ ∞
0

|f(t)|2wn(t) dt,

and the result follows by the density of L1 ∩ L2
wn(0,∞) in L2

wn(0,∞). 2

1.2 Ap(C+, (νn)
m
n=0) and A2

(m) spaces

1.2.1 Definitions

Theorem 1.1.3 suggests a generalisation of Zen spaces. Namely, let 1 ≤ p < ∞,

m ∈ N0 ∪ {∞}, and let (ν̃n)mn=0 be a sequence of positive regular Borel measures on
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[0, ∞), each of which satisfies the (∆2)-condition. We then have a sequence of Zen

spaces (Apνn)mn=0, where each νn = ν̃n ⊗ λ, and we can define a normed space

Ap(C+, (νn)mn=0) :=

F : C+ −→ C, analytic : ‖F‖ :=

(
m∑
n=0

∥∥F (n)
∥∥p
Apνn

) 1
p

<∞

 .

These spaces were introduced in [65]. They also appear [64] and [66].

Corollary 1.2.1 (Theorem 1 in [65] and [64]) Let w(m) be a self-map on the set of

positive real numbers given by

w(m)(t) :=
m∑
n=0

wn(t) <∞, where wn(t) := 2πt2n
∫

[0,∞)

e−2tx dν̃n(x) (∀t > 0).

(1.6)

Then the Laplace transform defines an isometric map

L : L2
w(m)

(0, ∞) −→ A2(C+, (νn)mn=0).

Proof

Let f ∈ L2
w(m)

(0, ∞), and let F := L[f ]. By Theorem 1.1.3 we have

‖F‖2
A2(C+, (νn)mn=0)

defn

=
m∑
n=0

‖F (n)‖2
A2
νn

Thm1.1.3
=

m∑
n=0

‖f‖2
L2
wn

(0,∞)

(1.6)
= ‖f‖2

L2
w(m)

(0,∞).

2

The following lemma was proved in [67] for m = 0, but we can easily adapt its proof to

include other values of m.

Lemma 1.2.2 (Lemma 3 in [67] for m = 0) Let m ∈ N0. There exists C ≥ 2 such that

w(m)

(
t

2

)
≤ Cw(m)(t) (∀t > 0). (1.7)
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Proof

We want to show that for each 0 ≤ n ≤ m there exists cn ≥ 2 such that∫
[0,∞)

e−tx dν̃n(x) ≤ cn

∫
[0,∞)

e−2tx dν̃n(x), (1.8)

or equivalently ∫
[0,∞)

e−tx(1− cne−tx) dν̃n(x) ≤ 0.

Consider the graph below.

-

6

x

gn(x)

gn(x) = e−tx (1− cne−tx)

1− cn

ln cn
t

ln 2cn
t

1
4cn

It is clear that we need to have

−
∫

[0, ln cn
t )

e−tx
(
1− cne−tx

)
dν̃n(x) ≥

∫
[ ln cn

t
,∞)

e−tx
(
1− cne−tx

)
dν̃n(x).

Let Rn be the supremum we get from the (∆2)-condition for ν̃n, for all 0 ≤ n ≤ m.

Observe that for cn ≥ 2 we have

ln 2cn
2t
≤ ln cn

t
(∀t > 0). (1.9)

Thus

−
∫

[0, ln cn
t )

e−tx
(
1− cne−tx

)
dν̃n(r)

(1.9)
≥ ν̃n

[
0,

ln 2cn
2t

)(
cne
− ln 2cn − e−

ln 2cn
2

)
(∆2)
≥

ν̃
[
0, ln 2cn

t

)
Rn

(
1

2
− 1√

2cn

)
.
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Notice that we also have

−ν̃n
[
0,

ln cn
t

)
(1.9)
≤ −ν̃n

[
0,

ln 2cn
2t

)
(∆2)
≤ −

ν̃n
[
0, ln 2cn

t

)
Rn

, (1.10)

so ∫
[ ln cn

t
, ln 2cn

t )
e−tx

(
1− cne−tx

)
dν̃n(r) ≤ 1

4cn
ν̃n

[
ln cn
t
,

ln 2cn
t

)
=

1

4cn

(
ν̃n

[
0,

ln 2cn
t

)
− ν̃n

[
0,

ln cn
t

))
(1.10)
≤ Rn − 1

4Rncn
ν̃n

[
0,

ln 2cn
t

)
.

If cn > Rn/2, then we have∫
[ ln 2cn

t
,∞)

e−xt
(
1− cne−xt

)
dν̃n(r)

≤
∞∑
k=0

ν̃n

[
2k

ln 2cn
t

, 2k+1 ln 2cn
t

)
e−2k ln 2cn

(
1− cne−2k ln 2cn

)
(1.4)
≤ (Rn − 1)ν̃n

[
0,

ln 2cn
t

) ∞∑
k=0

Rk
n

(2cn)2k

(
1− cn

(2cn)2k

)

≤ (Rn − 1)ν̃n

[
0,

ln 2cn
t

)
1

2cn

∞∑
k=0

(
Rn

2cn

)k
=

Rn − 1

2cn −Rn

ν̃n

[
0,

ln 2cn
t

)
.

Putting these inequalities together, we get

Rn

(
Rn − 1

2cn −Rn

+
Rn − 1

4Rncn

)
≤ 1

2
− 1√

2cn
,

which holds for sufficiently large cn, since the LHS approaches 0 and the RHS approaches

1/2 as cn goes ad infinitum. So if we choose such cn, then the inequality in (1.8) is

satisfied, and letting C := max0≤n≤m{cn} gives us the desired result. 2

Note that Lemma 1.2.2 does not remain true if m =∞. Take for example ν̃0 = δ0
2π

and ν̃n

such that dν̃n(x) = 23n−1(3n−1)!
n!

x3n−1 dx for all n ∈ N. Then w(∞) =
∑∞

n=0 t
−n/n! = e−t,

and w(∞)(t/2) ≤ Cw(∞)(t) would mean that there exists C ≥ 2 such that t− lnC ≥ t/2,

which is clearly absurd.
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And finally, by the space A2
(m) we shall denote the image of L2

w(m)
(0,∞) under

the Laplace transform, equipped with A2(C+, (νn)mn=0) norm. An important example

of a space of analytic functions on the complex half-plane, which is not a Zen space but

is an A2
(m) space, is the Dirichlet space D(C+), which corresponds to the weight 1 + t on

the positive real half-line.

1.2.2 Reproducing kernels

Definition 1.2.3 Let X be a set, let K be a field (real or complex) and letH be a Hilbert

space whose elements are K-valued functions on X . We say that H is a reproducing

kernel Hilbert space (RKHS) if for every x ∈ X the evaluation functional

Ex : H −→ K f 7−→ Ex(f) = f(x) (∀f ∈ H)

is bounded. By the Riesz–Fréchet representation theorem (Theorem 6.8 in [105], § 6.1,

p. 62) this is equivalent to the condition that for each x ∈ X there exists a vector kHx ∈ H

(which we call the reproducing kernel at x) such that

f(x) =
〈
f, kHx

〉
H (∀f ∈ H).

The theory of reproducing kernels was originally laid out by Nachman Aronszajn in [9],

and it is still a good reference on the subject. Another valuable source, which was recently

published, is [84]. We can easily deduce from the definition that

∥∥kHx ∥∥2

H
defn

=
〈
kHx , k

H
x

〉
H

defn

= kHx (x) (∀x ∈ X), (1.11)

kHx (y)
defn

=
〈
kHx , k

H
y

〉
H

defn

=
〈
kHy , k

H
x

〉
H

defn

= kHy (x) (∀x, y ∈ X),

and if, for some x in X , lHx is also a reproducing kernel ofH, then

lHx (y)
defn

=
〈
lHx , k

H
y

〉
H

defn

=
〈
kHy , l

H
x

〉
H

defn

= kHy (x) = kHx (y) (∀y ∈ X).
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The last property is sometimes called the uniqueness property of reproducing kernels and

is often included in the definition, as it is also implied by the Riesz–Fréchet representation

theorem.

The next theorem and its proof were sketched in [65] and we present its extended version

below.

Theorem 1.2.4 The A2
(m) space is a RKHS with reproducing kernels given by

k
A2

(m)
z (ζ) :=

∫ ∞
0

e−t(z+ζ)

w(m)(t)
dt (∀z, ζ ∈ C+). (1.12)

Proof

First, let us note that for each z ∈ C+, k
A2

(m)
z belongs to A2

(m). Indeed,∥∥∥∥kA2
(m)

z

∥∥∥∥2

A2
(m)

Cor. 1.2.1
=

∫ ∞
0

e−2tRe(z)

w(m)(t)
dt

(1.6)
≤
∫ ∞

0

e−2tRe(z)

2πν̃0

([
0, 1

2
Re(z)

))
e−tRe(z)

dt

=
1

2πRe(z)ν̃0

([
0, 1

2
Re(z)

)) ,
(1.13)

which is finite, since, by the ∆2-condition, ν̃0

([
0, 1

2
Re(z)

))
> 0, for any z ∈ C+.

Next, we observe that, given F in A2
(m), there exists f in L1(0, ∞) ∩ L2

w(m)
(0, ∞) such

that for any z ∈ C+ we have

F (z) = L[f ](z)
defn

=

∫ ∞
0

f(t)e−tz dt =

∫ ∞
0

f(t)
e−tz

w(m)(t)
w(m)(t) dt

defn

=

〈
f,

e−·z

w(m)

〉
L2
w(m)

(0,∞)

=

〈
L[f ], L

[
e−·z

w(m)

]〉
A2

(m)

defn

=

〈
F, k

A2
(m)

z

〉
A2

(m)

.

(1.14)
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And by the Cauchy–Schwarz inequality

|F (z)| (1.14)
=

〈
F, k

A2
(m)

z

〉
A2

(m)

≤ ‖F‖A2
(m)

∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

(1.13)
< ∞,

so the evaluation functional Ez is bounded on the dense subset

L(L1(0, ∞) ∩ L2
w(m)

(0, ∞)) of A2
(m), for all z ∈ C+. So it is also bounded on

A2
(m). In particular, A2

(m) is a RKHS, and its kernels are of the form (1.12), which follows

from (1.14) and the uniqueness property of reproducing kernels. 2

Remark 1.2.5 The equality

〈L[f ], L[g]〉A2
(m)

= 〈f, g〉L2
w(m)

(0,∞) (∀f, g ∈ L2
w(m)

(0, ∞))

is a consequence of polarization identity, i.e.

4 〈x, y〉I = ‖x+ y‖2
I − ‖x− y‖2

I + i‖x+ iy‖2
I − i‖x− iy‖2

I ,

which holds for all x, y in any inner product space I (Theorem 1.14 in [105], § 1.1, p. 9).

Remark 1.2.6 By Proposition 4.1 from [87] (p. 61) we know that the evaluation

functional is bounded on Zen spaces, and thus it must also be bounded

on Ap(C+, (νn)mn=0) spaces. In particular, A2(C+, (νn)mn=0) is a RKHS. If

P : A2(C+, (νn)mn=0) −→ A2
(m) is the orthogonal projection, then

k
A2

(m)
z = PkA

2(C+, (νn)mn=0)
z (∀z ∈ C+).

The following lemma appears in [67] for Zen spaces A2
ν (assuming that the Laplace

transform is a surjective map L : L2
w0

(0, ∞) −→ A2
ν , where w0 is as given in (1.3)),

but it is easy to see that, by the virtue of Lemma 1.2.2, it also holds for A2
(m) spaces,

provided that m is finite.
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Lemma 1.2.7 (Lemma 4 in [65]) Let m ∈ N0. The normalised reproducing kernels

k
A2

(m)
z /

∥∥∥∥kA2
(m)

z

∥∥∥∥ tend to 0 weakly as z approaches infinity.

Proof

Let ζ ∈ C+. First, we consider pointwise limits. By Lemma 1.2.2 we have

lim
Re(z)→∞

∣∣∣∣kA2
(m)

z (ζ)

∣∣∣∣ / ∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

(1.12)
≤ lim

Re(z)→∞

∫ ∞
0

e−t(Re(z)+Re(ζ))

w(m)(t)
dt/

∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

≤ lim
Re(z)→∞

∫ ∞
0

e−tRe(z)

w(m)(t)
dt/

∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

= 2 lim
Re(z)→∞

∫ ∞
0

e−2tRe(z)

w(m)(2t)
dt/

∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

(1.7)
/ lim

Re(z)→∞

∫ ∞
0

e−2tRe(z)

w(m)(t)
dt/
∥∥∥kA2

ν
z

∥∥∥
A2

(m)

(1.11), (1.12)
= lim

Re(z)→∞

∥∥∥∥kA2
(m)

z

∥∥∥∥2

A2
(m)

/

∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

= lim
Re(z)→∞

∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

(1.11), (1.12)
= lim

Re(z)→∞

(∫ ∞
0

e−2tRe(z)

w(m)(t)
dt

) 1
2

= 0.

(1.15)

Let 0 < a <∞. Then∥∥∥∥kA2
(m)

z

∥∥∥∥2

A2
(m)

(1.11), (1.12)
=

∫ ∞
0

e−2tRe(z)

w(m)(t)
dt ≥

∫ ∞
0

e−2at

w(m)(t)

(1.11), (1.12)
=

∥∥∥∥kA2
(m)

a

∥∥∥∥2

A2
(m)

, (1.16)

whenever Re(z) ≤ a. Also,∣∣∣∣kA2
(m)

z (ζ)

∣∣∣∣ (1.12)
≤
∫ ∞

0

∣∣∣∣∣ e−tζ

w(m)(t)

∣∣∣∣∣ dt =

∫ ∞
0

e−2tRe(ζ)/2

w(m)(t)
dt

(1.11), (1.12)
=

∥∥∥∥kA2
(m)

ζ
2

∥∥∥∥2

A2
(m)

<∞,

so e−·ζ/w(m)(·) is in L1(0, ∞), for all ζ ∈ C+. Therefore, by the Riemann–Lebesgue

Lemma for the Laplace transform (Theorem 1, p. 3 in [13]), we get

lim
z→∞

k
A2

(m)
z (ζ)

(1.12)
= lim

z→∞
L

[
e−·ζ

w(m)(·)

]
(z) = 0 =⇒ lim

Im(z)−→∞
0<Re(z)<a

k
A2

(m)
z (ζ) = 0. (1.17)
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And thus

lim
Im(z)−→∞

0<Re(z)<a

∣∣∣∣kA2
(m)

z (ζ)

∣∣∣∣ / ∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

(1.16)
≤
∥∥∥∥kA2

(m)
a

∥∥∥∥−1

A2
(m)

lim
Im(z)−→∞

0<Re(z)<a

∣∣∣∣kA2
(m)

z (ζ)

∣∣∣∣
A2

(m)

(1.17)
= 0.

(1.18)

Now suppose, for contradiction, that the normalised reproducing kernels of A2
(m) do not

converge to 0 pointwise. Then there exists δ > 0 and a sequence of complex numbers

(zn)∞n=0 such that Re(z) > 0, limn→∞ zn =∞ and∣∣∣∣kA2
(m)

zn (ζ)

∣∣∣∣ /∥∥∥∥kA2
(m)

zn

∥∥∥∥
A2

(m)

≥ δ > 0 (∀n ∈ N0).

But since limn→∞ zn = ∞, there exists a subsequence (znk)
∞
k=0 of (zn)∞n=0 such that

limk→∞Re(znk) =∞ or Re(znk) ≤ a, for some a > 0, and∣∣∣∣kA2
(m)

znk
(ζ)

∣∣∣∣ /∥∥∥∥kA2
(m)

znk

∥∥∥∥
A2

(m)

≥ δ > 0 (∀k ∈ N0),

which contradicts either (1.15) or (1.18). So we must have

lim
z→∞

k
A2

(m)
z (ζ)∥∥∥∥kA2

(m)
z

∥∥∥∥
A2

(m)

= 0 (∀ζ ∈ C+). (1.19)

Now, let F =
∑n

j=0 k
A2

(m)

ζj
∈ A2

(m), for some {ζj}nj=0 ⊂ C+, n ∈ N0. Then

lim
z→∞

〈
k
A2

(m)
z /

∥∥∥∥kA2
(m)

z

∥∥∥∥
A2

(m)

, F

〉
A2

(m)

= lim
z→∞

n∑
j=0

k
A2

(m)
z (ζj)∥∥∥∥kA2

(m)
z

∥∥∥∥
A2

(m)

= 0,

and the result follows, since the linear span of reproducing kernels is dense in A2
(m) (see

Lemma 2.2., § 2.1, p. 17 in [84]). 2

Example 1.2.8 The reproducing kernels of the Hardy space H2(C+) are given by

kH
2(C+)

z (ζ)
(1.12)
=

1

z + ζ
(∀z, ζ ∈ C+),



16 1. INTRODUCTION

while the reproducing kernels of the weighted Bergman spaces B2
α(C+), α > −1, are of

the form

kB
2
α(C+)

z (ζ)
(1.12)
=

2α(1 + α)

(z + ζ)2+α
(∀z, ζ ∈ C+).

Definition 1.2.9 For α ≥ −1, the normalised kernels

Kα(ζ, z) :=
1

(z + ζ)2+α
(∀z, ζ ∈ C+)

are sometimes called the Bergman kernels for the open right complex half-plane.

Lemma 1.2.10 If m ∈ N0, then there exists α′ ≥ −1 such that for all z ∈ C+ and

α ≥ α′, Kα(·, z) is in Ap(C+, (νn)∞n=0) .

Proof

For each 0 ≤ n ≤ m, let Rn be the (∆2)-condition supremum for ν̃n. Choose q > 0 such

that

2q > sup
0≤n≤m

Rn.

Define g : [0,∞) −→ (0,∞) to be a step function given by

g(r) :=

Re(z)−q, if 0 ≤ r < 1,

(2k + Re(z))−q, if r ∈ [2k, 2k+1), ∀k ∈ N0.

Then ∫
[0,∞)

g(r) dν̃n(r)
defn

=
ν̃n ([0, 1))

Re(z)q
+
∞∑
k=0

ν̃n
(
[2k, 2k+1)

)
(2k + Re(z))q

(1.4)
≤ ν̃n([0, 1))

Re(z)q
+ (Rn − 1)

∞∑
k=0

ν̃n([0, 2k))

(2k + Re(z))q

(∆2)
≤ ν̃n([0, 1))

(
1

Re(z)q
+ (Rn − 1)

∞∑
k=0

(
Rn

2q

)k)

= ν̃n([0, 1))

(
1

Re(z)q
+

2q(Rn − 1)

2q −Rn

)
(1.20)
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for all 0 ≤ n ≤ m. Let wn be as given in (1.6), and let α ≥ α′ := (q − 3)/2. It follows

that

∫ ∞
0

∣∣tα+1e−tz
∣∣2wn(t) dt = 2π

∫
[0,∞)

∫ ∞
0

t2(α+n+1)e−2t(x+Re(z)) dt dν̃n(x)

=
πΓ(2α + 2n+ 3)

22α+2n+2

∫
[0,∞)

dν̃n(x)

(x+ Re(z))2α+2n+3

≤ πΓ(2α + 2n+ 3)

22α+2n+2

∫
[0,∞)

g(r) dν̃n(r),

which is finite for all 0 ≤ n ≤ m, by (1.20). Here

Γ(z) :=

∫ ∞
0

tz−1e−t dt (∀z ∈ C \ (−∞, 0])

is the gamma function (see Chapter 6 in [1]).

Consequently, by Theorem 1.1.3, we have

L

[
tα+1e−tz

Γ(α + 2)

]
(ζ) =

1

(z + ζ)α+2
= Kα(ζ, z) ∈ A2

(m) ⊆ A2(C+, (νn)mn=0).

The general result for 1 ≤ p <∞ follows, because

1

(z + ζ)β
∈ A2

ν ⇐⇒ 1

(z + ζ)βp/2
∈ Apν .

2

To see that Lemma 1.2.10 does not hold for m = ∞, let ν̃n = δ0
2πn!

, for all n ∈ N0. Then

w(∞)(t) = et
2 and evidently tα+1e−tz /∈ L2

w(∞)
(0, ∞), for any choice of α ≥ −1 and

z ∈ C+.
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1.3 Comparison of D and C+

1.3.1 The weighted Hardy and Bergman spaces

It is easy to verify that if f(s) =
∑∞

n=0 ans
n and g(s) =

∑∞
n=0 bns

n are analytic functions

lying in H2 (the (Hilbert) Hardy space on the disk), then

〈f, g〉H2

defn

= sup
0<r<1

∫ 2π

0

f(reiθ)g(reiθ)
dθ

2π
=
∞∑
n=0

anbn
defn

= 〈a, b〉`2

and

‖f‖H2
defn

=

(
sup

0<r<1

∫ 2π

0

|f(reiθ)|2 dθ
2π

) 1
2

=

(
∞∑
n=0

|an|2
) 1

2

defn

= ‖a‖`2 ,

where a = (an)∞n=0 and b = (bn)∞n=0. More generally, if these functions are both in B2
α

(the weighted (Hilbert) Bergman space on the disk), for some α > −1, then

〈f, g〉B2
α

defn

=

∫
D
f(s)g(s)(1− |s|2)α

ds

π
=
∞∑
n=0

anbnB(n+ 1, 1 + α)
defn

= 〈a, b〉`2wα

and

‖f‖B2
α

defn

=

(∫
D
|f(s)|2(1− |s|2)α

ds

π

) 1
2

=

(
∞∑
n=0

|an|2B(n+ 1, 1 + α)

) 1
2

defn

= ‖a‖`2wα ,

where

`2
wα :=

x = (xn)∞n=0 : ‖x‖`2wα :=

(
∞∑
n=0

|xn|2B(n+ 1, 1 + α)

) 1
2

<∞


and B(·, ·) is the beta function, that is

B(z, w) :=
Γ(z)Γ(w)

Γ(z + w)
(∀z, w ∈ C \ (−∞, 0]).

(see § 6.2, p. 258 in [1]).

The Hardy spaces are discussed for example in [32], [56] and [75]; the weighted Bergman

spaces in [34] and [53].
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Therefore, in Hilbertian setting, we can associate the weighted Bergman spaces on

the disk (including the Hardy space, which, again, we identify with B2
−1 ) with weighted

sequence spaces `2. Similarly, using the Laplace transform and its isometric properties

given in Theorem 1.1.3, we can establish a connection between B2
α(C+), α ≥ −1, and

weighted L2 spaces on (0, ∞). Namely, let f, g ∈ L2
t−1−α(0, ∞), for some α ≥ −1, and

let F = L[f ], G = L[g]. Then

〈F, G〉B2
α(C+)

defn

=

∫
C+

F (z)G(z)(Re(z))α
dz

π
Thm 1.1.3

=

∫ ∞
0

f(t)g(t)
Γ(1 + α)

2αt1+α
dt,

if α > −1, and

〈F, G〉H2(C+)

defn

= sup
x>0

∫ ∞
−∞

F (x+ iy)G(x+ iy)
dy

2π
Thm 1.1.3

=

∫ ∞
0

f(t)g(t) dt

otherwise. We can also observe an analogy between their respective reproducing kernels

(cf. Example 1.2.8), as

kH
2

s (ς) =
1

1− sς
=
∞∑
n=0

(sς)n (∀s, ς ∈ D)

and

kB
2
α

s (ς) =
1 + α

(1− sς)2+α
=
∞∑
n=0

(sς)n

B(n+ 1, 1 + α)
(∀s, ς ∈ D, α > −1).

(see Proposition 1.4 in [53], § 1.1, p. 5). So we can view the weighted Bergman spaces

defined on the unit disk/complex half-plane as discrete/continuous counterparts. We shall

go one step further.

Definition 1.3.1 LetH be a Hilbert space whose vectors are functions analytic on the unit

disk of the complex plane. If the monomials 1, s, s2, . . . form a complete orthogonal set

of non-zero vectors inH, thenH is called a weighted Hardy space.

Remark 1.3.2 These spaces are discussed in [27], p. 14. The condition that

{1, s, s2, . . .} is a complete orthogonal set of non-zero vectors in H is equivalent to
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the density of polynomials in H. It is often assumed that ‖1‖H = 1. In this case we write

H = H2(β), where β := (βn)∞n=0 and βn := ‖zn‖H. Orthogonality implies that

‖f‖2
H2(β) =

∞∑
n=0

|an|2β2
n

(
∀f =

∞∑
n=0

ans
n ∈ H2(β)

)
and

〈f, g〉2H2(β) =
∞∑
n=0

anbnβ
2
n,

for all f(s) =
∑∞

n=0 ans
n, g(s) =

∑∞
n=0 bns

n ∈ H. Conversely, given a positive

sequence β = (βn)∞n=0 with β0 = 1 and lim infn→∞(βn)1/n ≥ 1, we can construct

a corresponding weighted Hardy space.

So, given that certain conditions are satisfied, a weighted Hardy space has a parallel

weighted sequence space, revealing its structure, and vice versa.

Moving from the discrete unit disk case to the continuous half-plane setting, we replace

the variable s, |s| < 1, by e−z, |e−z| < 1; the power series with a discrete index variable

n ∈ N0 by an integral over the positive real half-line with respect to a continuous variable

t > 0; and a sequence a lying in some weighted sequence space `2 by a function f lying

in some weighted L2 space on (0, ∞). In this way we get

F (z) =

∫ ∞
0

f(t)e−tz dt (Re(z) > 0),

that is the Laplace transform of f . It conspicuous that Zen spaces enjoy the same

relation with weighted Lebesgue spaces on the positive real half-line (by Theorem 1.1.3)

as the weighted Hardy spaces do with weighted sequence spaces `2. Yet, it would

be false to claim that weighted Hardy spaces and Zen spaces are discrete/continuous

counterparts, and even call the latter: the weighted Hardy spaces on the half-plane. Notice

that the weight w0 (defined in (1.3)) corresponding to a Zen space A2
ν is always non-

increasing, while in case of weighted Hardy spaces, we do allow the sequence weights

to be increasing. An important example of a weighted Hardy space with an increasing

weight is the Dirichlet space.
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1.3.2 The Dirichlet spaces

The (classical) Dirichlet space D is defined to be the vector space of functions analytic

on the unit disk of the complex plane with derivatives lying in the (unweighted) Bergman

space B2 := B2
0 . Or in other words

D :=

{
f : D −→ C analytic : D(f) := ‖f ′‖2

B2

defn

=

∫
D
|f ′(s)|2 ds

π
<∞

}
.

The Dirichlet space is discussed for example in [7] and [35]. It is easy to show that

if f =
∑∞

n=0 ans
n, then D(f) =

∑∞
n=1 n|an|2, and hence D is contained in H2

(Theorem 1.1.2 and Corollary 1.1.3 in [35], § 1.1, pp. 1-2). We can define a semi-inner

product on D by

D(f, g) :=

∫
D
f ′(s)g′(s)

ds

π
(∀f, g ∈ D).

Clearly D(f, f) = D(f), and D(·)1/2 is a seminorm on D. It is not a norm, since

D(f) = 0, whenever f is a constant function. The inner product and the norm on

D are usually defined by

〈f, g〉D := 〈f, g〉H2 +D(f, g) (∀f, g ∈ D)

and

‖f‖D =
(
‖f‖2

H2 +D(f)
) 1

2 =

(
∞∑
n=0

(n+ 1)|an|2
) 1

2
(
∀f(s) =

∞∑
n=0

ans
n ∈ D

)
.

Therefore D is a RKHS with the kernel

kDs (ς) =
1

ςs
log

(
1

1− ςs

)
=
∞∑
n=0

(ςs)n

n+ 1
(∀(s, ς) ∈ D2)

(2.3, p. 51 in [7]), and also a weighted Hardy space H2(β), where β = ((n + 1)1/2)∞n=0.

Alternatively, we may define a norm on D by

‖|f |‖D :=
(
|f(0)|2 +D(f)

) 1
2 =

(
|a0|2 +

∞∑
n=1

|an|2
) 1

2
(
∀f(s) =

∞∑
n=0

ans
n ∈ D

)
,
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and it is equivalent to ‖ · ‖D. In a similar way (for α ≥ −1) we define the weighted

Dirichlet spaces

Dα :=
{
f : D −→ C analytic : Dα(f) := ‖f ′‖2

B2
α
<∞

}
,

and

‖f‖Dα :=
(
|f(0)|2 +Dα(f)

) 1
2 =

(
|a0|2 +

∞∑
n=1

n2|an|2B(n, 1 + α)

) 1
2

,

for all f(s) =
∑∞

n=0 ans
n ∈ Dα. It is easy to see that B2

α = D2+α (up to equivalent

norms).

Our aim now is to define the Dirichlet spaces on the complex half-plane in such a way

that they mirror the properties of the classical Dirichlet spaces listed above. We start by

considering the Dirichlet integral on C+:∫
C+

|F ′(z)|2 dz
π
,

for some function F analytic on C+. It is a seminorm on the vector space of functions with

derivatives lying in the (unweighted) Bergman space B2(C+) := B2
0(C+) , again, because

it equals zero for all constant functions. The problem is that the constant functions do not

belong to H2(C+), so in order to define the Dirichlet space with the usual choice of norm

we need an extra condition, that is

D(C+) :=
{
F ∈ H2(C+) : F ′ ∈ B2(C+)

}
with norm given by

‖F‖D(C+) :=
(
‖F‖2

H2(C+) + ‖F ′‖2
B2(C+)

) 1
2

Clearly, D(C+) = A2(C+, (ν0, ν1)), where ν̃0 = 1
2π
δ0 and dν̃1(r) = 1

π
r dr. This is

a RKHS, with kernels given by

kD(C+)
z (ζ)

(1.12)
=

∫ ∞
0

e−t(z+ζ)

1 + t
dt = ez+ζΓ (0, z + ζ) (∀z, ζ ∈ C+),
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where Γ(·, ·) is the upper incomplete gamma function (§ 6.5, p. 260 in [1]).

Alternatively, we can also define

D′(C+) :=
{
F : C+ −→ C analytic : F ′ ∈ B2(C+)

}
with

‖F‖D′(C+) :=
(
|F (1)|2 + ‖F ′‖2

B2(C+)

) 1
2

(∀F ∈ D′(C+)).

And more generally, for α ≥ −1,

D′α(C+) :=
{
F : C+ −→ C analytic : F ′ ∈ B2

α(C+)
}

with

‖F‖D′(C+) :=
(
|F (1)|2 + ‖F ′‖2

B2(C+)

) 1
2

(∀F ∈ D′(C+)).

The following theorem appeared in [64] for α = 0 (salvo errore et omissione of including

the factor 1/π in the kernel expression instead of the Bergman norm). Below we extend

it to α ≥ −1 and furnish it with a complete (and corrected) proof.

Theorem 1.3.3 The space D′α(C+), α ≥ −1, is a RKHS and its kernels are given by

k
D′α(C+)
z (ζ) =


(z + ζ) ln(z + ζ)− (z + 1) ln(z + 1)− (1 + ζ) ln(1 + ζ) + ln 4 + 1, if α = −1,

ln(1 + z)− ln(z + ζ) + ln(1 + ζ)− ln 2 + 1, if α = 0,

2α

α

(
1

(z+ζ)α −
1

(z+1)α −
1

(1+ζ)α + α−1
2α

)
otherwise,

(1.21)

for all z, ζ ∈ C+. Here by ln(z) we mean
∫ z

1
dξ
ξ

, for any path of integration between 1

and z within C+ (see 4.1.1, p. 61 in [1]).

Proof

Firstly, we prove that that D′α(C+) is complete. If (Fn)∞n=0 is a Cauchy sequence in

D′α(C+), then for every ε > 0 there exists N ∈ N0 such that

‖Fn−Fm‖D′α(C+)
defn

=
(
|Fn(1)− Fm(1)|+ ‖Fn − Fm‖2

B2
α(C+)

) 1
2
< ε (∀m, n ≥ N).



24 1. INTRODUCTION

Thus (Fn(1))∞n=0 and (Fn)∞n=0 are Cauchy sequences, in C andB2
α(C+) respectively. Since

both these spaces are complete with respect to their norms, we can define

F (z) =

∫ z

1

lim
n→∞

F ′n(ζ) dζ + lim
n→∞

Fn(1) (∀z ∈ C+),

which clearly belongs to D′α(C+) and is the limit of (Fn)∞n=0. So D′α(C+) is a Hilbert

space.

Secondly, we show that functions given in (1.21) lie inD′α(C+), for all α ≥ 1, z, ζ ∈ C+.

Note that, by L’Hôpital’s Rule, we have

lim
t→0+

|e−t − e−tz|2

t2
defn
= lim

t→0+

e−2t − 2e−t(1+Re z) cos(t Im z) + e−2tRe z

t2

= lim
t→0+

e−2t − e−t(1+Re(z)) [(1 + Re(z)) cos(t Im(z)) + Im(z) sin(t Im(z))] + Re(z)e−2tRe(z)

−t

= lim
t→0+

(
2e−2t − e−t(1+Re(z)) cos(t Im(z))

[
(1 + Re(z))2 − Im(z)2

]
+ 2Re(z)2e−2tRe(z)

)
= 2− (1 + Re(z))2 + Im(z)2 + 2Re(z)2

= (Re(z)− 1)2 + Im(z)2,

for all z ∈ C+, so

tα−1|e−t − e−tz|2 = O(1) as t −→ 0+,

and hence tα(e−t − e−tRe(z)) ∈ L2
t−α−1(0, ∞), for all α ≥ −1 and z ∈ C+. It follows

from Theorem 1.1.3 that

d

dζ

(
k
D′−1(C+)
z (ζ)

)
= ln(z + ζ)− ln(1 + ζ)

defn

=

∫ z

1

dξ

ξ + ζ

=

∫ z

1

∫ ∞
0

e−t(ξ+ζ) dt dξ

=

∫ ∞
0

e−tζ
∫ z

1

e−tξ dξ, dt

=

∫ ∞
0

e−t − e−tz

t
e−tζ dt

defn

= L

[
e−· − e−·z

·

]
(ζ) ∈ B2

−1(C+),
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and if α > −1, then

d

dζ

(
kD
′
α(C+)

z (ζ)
)

= 2α
(

1

(1 + ζ)1+α
− 1

(z + ζ)1+α

)
=

2α

Γ(1 + α)
L
[
(·)α(e−· − e−·z)

]
(ζ) ∈ B2

α(C+).

Therefore kD
′
α(C+)

z belongs to D′α(C+), for all z ∈ C+.

And finally, if F ∈ D′α(C+), then, by the Fundamental Theorem of Complex Calculus

(Theorem 3.13, § 3.3, p. 95 in [18])〈
F, kD

′
α(C+)

z

〉
D′α(C+)

defn

= F (1) +

〈
F ′,

(
kD
′
α(C+)

z

)′〉
B2
α(C+)

= F (1) +

〈
F ′,

∫ z

1

k
B2
α(C+)

ξ dξ

〉
B2
α(C+)

= F (1) +

∫ z

1

〈
F ′, k

B2
α(C+)

ξ

〉
B2
α(C+)

dξ

= F (1) +

∫ z

1

F ′(ξ) dξ

= F (z),

as required. 2

Because D′(C+) contains constant functions, it cannot be represented as either

A2(C+, (νn)mn=0) or A2
(m), for any choice of measures (ν̃n)∞n=0, and thus we shall adopt

a convention that by the (unweighted) Dirichlet space we mean D(C+), as it suits better

our discrete/continuous-disk/half-plane framework. We also define the weighted Dirichlet

by

Dα(C+) :=
{
F ∈ H2(C+) : F ′ ∈ B2

α(C+)
}
,

with

‖F‖Dα(C+) :=
(
‖F‖2

H2(C+) + ‖F ′‖2
B2
α(C+)

) 1
2
,

The motivation for this definition is as follows. Notice that, by Stirling’s formula

(6.1.37, p. 257 in [1]), B(n, 1 + α) ≈ Γ(1 + α)n−1−α, so Dα = H2(β), where



26 1. INTRODUCTION

β =
√

1 + n1−α (in fact, this is sometimes the definition of the weighted Dirichlet spaces,

see for example [63] or [98]). So if we want Dα(C+) to be a continuous version of Dα,

we let w(1) = 1 + t1−αΓ(1 +α)/2α to get, via the Laplace transform, A2(C+, (ν0, ν1))

precisely as above. In this case, however, we do not get any equality between B2
α(C+)

and D2+α(C+). If α = −1, then D−1(C+) = H1,2(C+), the Hardy–Sobolev space on

the complex half-plane .

1.3.3 Hardy–Sobolev spaces

We can use the identity given in Remark 1.1.4 to define a fractional Laplace transform.

Namely, for r ≥ 0, we let

L(r)[f ](z) := L[eiπr(·)rf ](z)
defn

=

∫ ∞
0

eiπrtrf(t)e−tz dt,

for all z ∈ C+ and f such that the last integral converges. For some Banach spaces we

can also use the density argument outlined in Subsection 1.1.2 to define a linear operator

L(r). Note that the statement and the proof of Theorem 1.1.3 remain valid for non-integer

values of n ≥ 0.

Let 1 ≤ p, q < ∞, and let w and w′ be measurable self-maps on (0, ∞). Suppose that

there exist Banach spaces B and B′, whose vectors are functions analytic on C+, such

that L and L(r) are well-defined maps

L :Lpw(0, ∞) −→ B,

L(r) :Lqw′(0, ∞) −→ B′.

If F ∈ L (Lpw(0, ∞)) ⊆ B and L−1F ∈ Lqw′(0, ∞), then we will write

dr

dzr
F (z) := F (r)(z) := L(r)

[
L−1[F ]

]
(z) (∀z ∈ C+),

and call it the fractional derivative of F of degree r.
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Let 1 ≤ p < ∞, let µ be a positive regular Borel measure supported on some subset M

of non-negative real numbers, which contains 0, let {Apνr}r∈M be a family of Zen spaces

such that, for some weights {wr}r∈M on (0, ∞), each pair (Apν0
, Apνr) is, with respect to

the pair of weights (w0, wr), like (B, B′) above. Then we define

Apµ(C+, (νr)r∈M) :=
{
F ∈ L

(
Lpw0

(0, ∞)
)
⊆ Apν0

: ∀r ∈M L−1[F ] ∈ Lpwr(0, ∞)
}
,

and equip it with a norm

‖F‖Apµ(C+, (νr)r∈M ) :=

(∫
M

‖F (r)‖p
Apνr

dµ(r)

) 1
p

.

Observe that the space A2
(m) is a special case of A2

µ(C+, (νr)r∈M), corresponding to

µ=
∑m

n=0 δn, where δn is the Dirac measure in n .

We can also set

wµ(t) := 2π

∫
M

t2r
∫

[0,∞)

e−2xt dνr(x) dµ(r) (∀t > 0).

It follows from Theorem 1.1.3 (for n ∈ [0, ∞)) that the Laplace transform is an isometry

between L2
wµ(0, ∞) and A2

µ(C+, (νr)r∈M), and that the latter is a RKHS with kernels

given by

k
A2
µ(C+, (νr)r∈M )

z (ζ) :=

∫ ∞
0

e−t(z+ζ)

wµ(t)
dt (∀(z, ζ) ∈ C2

+).

These two facts are proved in the same way as Corollary 1.2.1 and Theorem 1.2.4,

replacing
∑m

n=0 · with
∫
M
· dµ(r).

Definition 1.3.4 Let 1 ≤ p < ∞ and let r > 0. The Hardy–Sobolev space on the open

right complex half-plane is defined to be

Hr,p(C+) :=
{
F ∈ Hp(C+) : F (r) ∈ Hp(C+)

}
with

‖F‖Hr,p(C+) :=
(
‖F‖pHp(C+) +

∥∥F (r)
∥∥p
Hp(C+)

) 1
p

(∀F ∈ Hr,p(C+)).
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Example 1.3.5 Let 1 ≤ p <∞, r > 0, µ = δ0 + δr, and let ν̃0 = ν̃1 = δ0
2π

. Then

Hr,p(C+) = Apµ(C+, (ν1, ν2)),

and if p = 2, then Hr,p(C+) is a RKHS with reproducing kernels given by

kH
r,2(C+)

z (ζ) =

∫ ∞
0

e−t(z+ζ)

1 + t2r
dt.

In the previous subsection it was said that D−1(C+) = H2,2(C+), but in fact, if we allow

equivalent norms, we have D(C+)1−2α = Hα,2(C+), whenever 0 < α ≤ 1.

Hardy–Sobolev spaces on the open unit disk of the complex plane are defined in

the similar way, using partial derivatives or sequence spaces. They are discussed for

example in [2].

In the remaining part of this thesis, we shall present our results mostly in terms of A2
(m)

spaces, to keep the notation as simple as possible. But it is discernible that they normally

remain valid for A2
µ(C+, (νr)r∈M) spaces too.

We summarise this chapter with tableaux containing all the spaces of functions analytic

on the open right complex half-plane discussed so far, along with their basic properties.
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1.4 Résumé of spaces of analytic functions on C+

Zen spaces Apν
Apν :=

{
F : C+ → C, analytic : supε>0

∫
C+
|F (z + ε)|p dν(z) <∞

}
‖F‖Apν :=

(∫
C+
|F (z)|p dν(z)

) 1
p

〈F, G〉A2
ν

:=
∫
C+
F (z)G(z) dν(z)

‖L[f ]‖A2
ν

=
(∫∞

0
|f(t)|2w(t) dt

) 1
2

〈L[f ], L[g]〉A2
ν

=
∫∞

0
f(t)g(t)w(t) dt∥∥L(n)[f ]

∥∥
A2
ν

=
(∫∞

0
|f(t)|2t2nw(t) dt

) 1
2〈

L(n)[f ], L(n)[g]
〉
A2
ν

=
∫∞

0
f(t)g(t)t2nw(t) dt

w(t) := 2π
∫

[0,∞)
e−2tx dν̃(x)

Hardy spaces Hp(C+)

Hp(C+) :=
{
F : C+ → C, analytic : supx>0

∫∞
−∞ |F (x+ iy)|p dy

2π
<∞

}
‖F‖Hp(C+) :=

(∫∞
−∞ |F (x+ iy)|p dy

2π

) 1
p

〈F, G〉H2(C+) := supx>0

∫∞
−∞ F (x+ iy)G(x+ iy) dy

2π

‖L[f ]‖H2(C+) =
(∫∞

0
|f(t)|2 dt

) 1
2

〈L[f ], L[g]〉H2(C+) =
∫∞

0
f(t)g(t) dt∥∥L(n)[f ]

∥∥
H2(C+)

=
(∫∞

0
|f(t)|2t2n dt

) 1
2〈

L(n)[f ], L(n)[g]
〉
H2(C+)

=
∫∞

0
f(t)g(t)t2n dt

k
H2(C+)
z (ζ) = 1

z+ζ

Weighted Bergman spaces Bpα(C+), α > −1

Bpα(C+) :=
{
F : C+ → C, analytic :

∫∞
−∞

∫∞
0
|F (x+ iy)|pxα dx dy

π
<∞

}
‖F‖Bpα(C+) :=

(∫∞
−∞

∫∞
0
|F (x+ iy)|pxα dx dy

π

) 1
p

〈F, G〉B2
α(C+) :=

∫∞
−∞

∫∞
0
F (x+ iy)G(x+ iy)xα dx dy

π

‖L[f ]‖B2
α(C+) =

(∫∞
0
|f(t)|2 Γ(1+α)

2αt1+α dt
) 1

2

〈L[f ], L[g]〉B2
α(C+) =

∫∞
0
f(t)g(t) Γ(1+α)

2αt1+α dt∥∥L(n)[f ]
∥∥
B2
α(C+)

=
(∫∞

0
|f(t)|2t2n−1−α Γ(1+α)

2α
dt
) 1

2〈
L(n)[f ], L(n)[g]

〉
B2
α(C+)

=
∫∞

0
f(t)g(t)t2n−1−α Γ(1+α)

2α
dt

k
B2
α(C+)

z (ζ) = 2α(1+α)
(z+ζ)2+α

Conventions: Bp(C+) := Bp0(C+), Bp−1(C+) := Hp(C+).
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Ap(C+, (νn)∞n=0) spaces (m ∈ N0 ∪ {∞})

Ap(C+, (νn)mn=0) :=
{
F ∈ Apν0

: ∀0 ≤ n ≤ mF (n) ∈ Apνn
}

‖F‖Ap(C+, (νn)mn=0) :=
(∑m

n=0

∥∥F (n)
∥∥p
Apνn

) 1
p

〈F, G〉A2(C+, (νn)mn=0) :=
∑m

n=0

〈
F (n), G(n)

〉
A2
νn

A2
(m) spaces

A2
(m) := L

(
L2
w(m)

(0, ∞)
)
⊆ A2(C+, (νn)mn=0)

w(m)(t) := 2π
∑m

n=0 t
2n
∫

[0,∞)
e−2tx dν̃n(x)

‖F‖A2
(m)

:= ‖F‖A2(C+, (νn)mn=0)

〈F, G〉A2(m) := 〈F, G〉A2(C+, (νn)mn=0)

‖L[f ]‖A2
(m)

=
(∫∞

0
|f(t)|2w(m)(t) dt

) 1
2

〈L[f ], L[g]〉A2
(m)

=
∫∞

0
f(t)g(t)w(m)(t) dt

k
A2

(m)
z (ζ) =

∫∞
0

e−t(z+ζ)

w(m)(t)
dt

Weighted Dirichlet spaces Dα(C+), α ≥ −1

Dα(C+) := {F ∈ H2(C+) : F ′ ∈ B2
α(C+)}

‖F‖Dα(C+) :=
(
‖F‖2

H2(C+) + ‖F ′‖2
B2
α(C+)

) 1
2

〈F, G〉Dα(C+) := 〈F, G〉H2(C+) + 〈F ′, G′〉B2
α(C+)

‖L[f ]‖Dα(C+) =
(∫∞

0
|f(t)|2 (2α + t1−αΓ(1 + α)) dt

2α

) 1
2

〈F, G〉Dα(C+) =
∫∞

0
f(t)g(t) (2α + t1−αΓ(1 + α)) dt

2α

k
Dα(C+)
z (ζ) = 2α

∫∞
0

e−t(z+ζ)

2α+t1−αΓ(1+α)
dt

Conventions: D(C+) := D0(C+), D−1(C+) := H1,2(C+) (see below)

k
D(C+)
z (ζ) = ez+ζΓ (0, z + ζ)

Variant weighted Dirichlet spaces D′α(C+), α > −1

D′α(C+) := {F : C+ → C, analytic : F ′ ∈ B2
α(C+)}

‖F‖D′α(C+) :=
(
|F (1)|2 + ‖F ′‖2

B2
α(C+)

) 1
2

〈F, G〉D′α(C+) := F (1)G(1) + 〈F ′, G′〉B2
α(C+)

k
D′−1(C+)
z (ζ) = (z + ζ) ln(z + ζ)− (z + 1) ln(z + 1)− (1 + ζ) ln(1 + ζ) + ln 4 + 1

k
D′α(C+)
z (ζ) = 2α

α

(
1

(z+ζ)α
− 1

(z+1)α
− 1

(1+ζ)α
+ α−1

2α

)
, α ∈ (−1, 0) ∪ (0, ∞)

Convention: D′(C+) := D′0(C+)

k
D′(C+)
z (ζ) = ln(1 + z)− (z + ζ) + ln(1 + ζ)− ln 2 + 1



32 1. INTRODUCTION

Apµ(C+, (νr)r∈M) spaces

L(r)(Lpwr(0∞)) ⊆ Ap(νr), ‖L(r)[f ]‖Apνr ≤ ‖f‖Lpwr (0∞)

Apµ(C+, (νr)r∈M) :=
{
F ∈ L

(
Lpw0

(0, ∞)
)
⊆ Apν0

: ∀r ∈M L−1[F ] ∈ Lpwr(0, ∞)
}

‖F‖Apµ(C+, (νr)r∈M ) :=
(∫

M
‖F (r)‖p

Apνr
dµ(r)

) 1
p

〈F, G〉A2
µ(C+, (νr)r∈M ) :=

∫
M

〈
F (r), G(r)

〉
A2
νr

dµ(r)

‖L[f ]‖A2
µ(C+, (νr)r∈M ) =

(∫∞
0
|f(t)|2wµ(t) dt

) 1
2

〈L[f ], L[g]〉A2
µ(C+, (νr)r∈M ) =

∫∞
0
f(t)g(t)wµ(t) dt

k
A2
µ(C+, (νr)r∈M )

z (ζ) =
∫∞

0
e−t(z+ζ)

wµ(t)
dt

wµ(t) := 2π
∫
r∈M t2r

∫
[0,∞)

e−2tx dν̃r(x), dµ(r)

Hardy–Sobolev spaces Hr,p(C+)

Hr,p(C+) :=
{
F ∈ Hp(C+) : F (r) ∈ Hp(C+)

}
‖F‖Hr,p(C+) :=

(
‖F‖pHp(C+) + ‖F (r)‖pHp(C+)

) 1
p

〈F, G〉Hr,2(C+) := 〈F, G〉H2(C+) +
〈
F (r), G(r)

〉
H2(C+)

‖L[f ]‖Hr,2(C+) :=
(∫∞

0
|f(t)|2(1 + t2r) dt

) 1
2

〈L[f ], L[g]〉Hr,2(C+) =
∫∞

0
f(t)g(t)(1 + t2r) dt

k
Hr,2(C+)
z (ζ) =

∫∞
0

e−t(z+ζ)

1+t2r
dt

Hr,2(C+) = D1−2r(C+), 0 < r ≤ 1 (up to equivalent norms)
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Chapter 2

Carleson Embeddings and Carleson

Measures

I often say that when you can measure what you are speaking about, and

express it in numbers, you know something about it; but when you cannot

measure it, when you cannot express it in numbers, your knowledge is of

a meagre and unsatisfactory kind; it may be the beginning of knowledge,

but you have scarcely, in your thoughts, advanced to the stage of science,

whatever the matter may be.

WILLIAM THOMSON, 1st Baron Kelvin, Lecture on ”Electrical Units of

Measurement”, Popular Lectures and Addresses Vol. I Constitution of

Matter

Definition 2.0.1 Let 1 ≤ q < ∞, let µ be a positive Borel measure on C+, and let X be

either Ap(C+, (νn)mn=0) or A2
(m). If there exists C(µ) > 0, depending on µ only, such

that (∫
C+

|f |q dµ
) 1

q

≤ C(µ)‖f‖X (∀f ∈ X), (2.1)
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then we will call the embedding

X ↪→ Lq(C+, µ) (2.2)

a Carleson embedding, and the expression in (2.1) will be called the Carleson criterion.

If p = q (or q = 2 for X = A2
(m)) and the embedding (2.2) is bounded, then we will say

that µ is a Carleson measure for X . The set of Carleson measures for X will be denoted

by CM(X) and we can define a positive function ‖ · ‖CM(X) on it by

‖µ‖CM(X) := inf C(µ) (∀µ ∈ CM(X)),

where the infimum is taken over all constants C(µ) for which the Carleson criterion is

satisfied. The values of p and q are normally explicitly given in the context.

The notion of a Carleson measure was introduced by Lennart Carleson in his proof of

the Corona Theorem for H∞ (the Hardy space of bounded holomorphic functions on

the open unit disk, equipped with the supremum norm) in [19]. Carleson characterised

there these measures for Hardy spacesHp on the open unit disk of the complex plane. Lars

Hörmander extended Carleson’s result to the open unit ball of Cn in [58]; Joseph Cima

and Warren Wogen in [24] and David Luecking in [73] characterised Carleson measures

for the weighted Bergman spaces on the unit ball of Cn; and, in [94], David Stegenga

characterised them for the weighted Dirichlet spaces on D. Carleson measures for Zen

spaces have been described in [61] and we will partially extend this description to A2
(m)

and Ap(C+, (νn)mn=0) spaces in this thesis. For now, we can immediately say that

CM(Apν0
) ⊆ CM(Ap(C+, (νn)mn=0)) ⊆ CM(Ap(C+, (νn)m

′

n=0)),

whenever m′ ≥ m, because

Ap(C+, (νn)m
′

n=0) ⊆ Ap(C+, (νn)mn=0) ⊆ Apν0

and

‖F‖Apν0 ≤ ‖F‖Ap(C+, (νn)mn=0) ≤ ‖F‖Ap(C+, (νn)m
′

n=0) (∀F ∈ Ap(C+, (νn)m
′

n=0)).
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For the same reason we also have

CM(A2
(m)) ⊆ CM(A2

(m′)) ⊆ CM(A2(C+, (νn)m
′

n=0)) (∀m′ ≥ m).

Note that we assume that p in the definition of a Carleson embedding is the same as in

the definition of the Zen space Apν0
and related spaces, since Apν0

⊂ Lp(C+, ν0) (in the set

sense).

The popularity of this research is a result of wide range of applications of this concept.

In particular, in this thesis we will show how Carleson measures can be used to determine

the boundedness of multiplication operators and weighted composition operators. We will

also explain how the boundedness of Carleson embeddings can be employed in testing

weighted infinite-time admissibility of control and observation operators. The results

presented in this chapter have been published in [64] and [66].

2.1 Carleson embeddings

Before examining Carleson measures, we are going to consider Carleson embeddings

in sensu lato, that is for general 1 ≤ p, q <∞.

2.1.1 Carleson squares

We start by introducing the following notion.

Definition 2.1.1 Let a ∈ C+. A Carleson square centred at a is defined to be the subset

Q(a) := {z ∈ C+ : 0 < Re(z) ≤ 2 Re(a), Re(a) ≤ Im(z)− Im(a) < Re(a)} (2.3)

of the open right complex half-plane.
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6Im(z)

-

Re(z)

r
a

Q(a)

Im(a) + Re(a)

Im(a)− Re(a)

Im(a)

Re(a) 2 Re(a)

A related family of sets can also be defined for other domains, but they are seldom of

rectangular shape, so very often they are referred to as Carleson boxes.

Theorem 2.1.2 (Theorem 3 in [66]) Let 1 ≤ p, q <∞ and m ∈ N0. If the embedding

Ap(C+, (νn)mn=0) ↪→ Lq(C+, µ) (2.4)

is bounded, then there exists a constant C(µ) > 0, such that

µ(Q(a)) ≤ C(µ)

 m∑
n=0

νn

(
Q(a)

)
(Re(a))np


q
p

, (2.5)

for each Carleson square Q(a).

Proof

Let a ∈ C+. Note that for all z ∈ Q(a) we have

|z + a| defn

=
√

(Re(z) + Re(a))2 + (Im(z)− Im(a))2
(2.3)
≤
√

10 Re(a). (2.6)
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Choose γ > sup0≤n≤m(log2(Rn) − np + 1)/p, where Rn denotes the supremum from

the (∆2)-condition for each ν̃n, 0 ≤ n ≤ m. Then

µ (Q(a))

(
√

10 Re(a))γq
≤
∫
C+

dµ(z)

|z + a|γq
. (2.7)

On the other hand

|z + a| ≥
√

Re(a)2 = Re(a) >
Re(a)

2
(∀z ∈ Q(a)).

Additionally, given k ∈ N0, for all z ∈ Q(2k+1 Re(a) + i Im(a)) \Q(2k(Re) + i Im(a)),

with 0 < Re(z) ≤ 2k+1 Re(a), we have

|z + a| ≥
√

Re(a)2 + (2k Re(a))2 ≥ 2k Re(a),

and if 2k+1 Re(a) < Re(z) ≤ 2k+2 Re(a), then we also have

|z + a| ≥
√

(2k+1 Re(a) + Re(a))2 ≥ 2k Re(a).

And

νn
(
Q(2k+1 Re(a) + i Im(a)) \Q(2k(Re) + i Im(a))

)
≤ νn

(
Q(2k+1 Re(a) + i Im(a))

)
≤ ν̃n

([
0, 2k+2 Re(a)

))
· 2k+1 Re(a)

(∆2)
≤ (2Rn)k+1 ν̃n ([0, 2 Re(a))) · 2 Re(a)

≤ (2Rn)k+1 νn

(
Q(a)

)
.

(2.8)

Hence

sup
ε>0

∫
C+

dνn(z)

|z + ε+ a|(γ+n)p
≤
(

2

Re(a)

)(γ+n)p

νn (Q(a))

+

∞∑
k=0

νn
(
Q(2k+1 Re(a) + i Im(a)) \Q(2k(Re(a)) + i Im(a))

)
(2k Re(a))(γ+n)p

(2.8)
≤
(

2

Re(a)

)(γ+n)p

νn

(
Q(a)

)(
1 +

∞∑
k=0

(2Rn)
k+1

2(k+1)(γ+n)p

)

≤
(

2

Re(a)

)(γ+n)p

νn

(
Q(a)

) ∞∑
k=0

(
Rn

2(γ+n)p−1

)k
(2.9)
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and the sum converges for all 0 ≤ n ≤ m. Now, if the embedding is bounded, with

a constant C ′(µ) > 0 say, then

µ(Q(a))
(2.7)
≤ (
√

10 Re(a))γq
∫
C+

dµ(z)

|z + a|γq

(2.4)
≤ C ′(µ)(

√
10 Re(a))γq ‖Kγ−2(·, a)‖qAp(C+, (νn)mn=0)

defn

= C ′(µ)(
√

10 Re(a))γq

 m∑
n=0

sup
εn>0

∫
C+

dνn(z)∣∣∣[(z + εn + a)γ]
(n)
∣∣∣p

q
p

≤ C ′(µ)(
√

10 Re(a))γq

[
m∑
n=0

(
n∏
l=1

(γ + l − 1)

)
sup
εn>0

∫
C+

dνn(z)

|z + εn + a|(γ+n)p

] q
p

(2.9)
≤ C(µ)

 m∑
n=0

νn

(
Q(a)

)
(Re(a))np


q
p

,

where

C(µ) := 2q(n+3γ/2)5γq/2

[(
m∏
l=0

(γ + l − 1)

)
max

0≤n≤m

∞∑
k=0

(
Rn

2(γ+n)p−1

)k] qp
C ′(µ),

(and we adopted the convention that the product
∏

(γ + l − 1) is defined to be 1,

if the lower limit is a bigger number than the upper limit). 2

Remark 2.1.3 This theorem was initially proved for Carleson measures for Zen spaces

(i.e. p = q and m = 0) in [61] (Theorem 2.1, p. 787), in which case it is necessary as well

as sufficient. That is, a positive Borel measure µ is a Carleson measure for a Zen space

Apν if and only if there exists a constant C(µ) > 0 such that

µ(Q(a)) ≤ C(µ) ν
(
Q(a)

)
(∀a ∈ C+).

The version for Carleson measures for A2(C+, (νn)mn=0) (i.e. p = q = 2 and

m ∈ N0) was proved in [64] (Theorem 2, p. 482), using a proof, very similar to

the proof of Lemma 1.2.10 in this thesis. Note that the estimates in (2.9) are essentially
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an alternative proof of Lemma 1.2.10. The theorem and its proof in the form presented

above (i.e. 1 ≤ p, q < ∞ and m ∈ N0) were obtained in [66] (Theorem 3). Observe

that the reason why the LHS of (2.5) involves a Carleson square, while the RHS comprises

its closure, is due to the fact that µ is only defined on C+, whereas the proof relies on

the (∆2)-condition, which requires the intervals to be left-closed. This was overlooked in

[61] and [66].

2.1.2 Carleson embeddings and trees

To find a sufficient condition for the Carleson criterion to be satisfied, we are going to use

techniques involving abstract trees developed by Nicola Arcozzi, Richard Rochberg and

Eric Sawyer to classify Carleson measures for analytic Besov spaces on D in [5], and for

Drury–Arveson Hardy space and other Besov–Sobolev spaces on complex n-balls in [6].

Definition 2.1.4 A tree is an undirected graph in which any two vertices are connected

by exactly one path. We call the vertices of a tree leaves. If T is a tree with a partial

order relation ”≤” defined on the set of its leaves, we will write v ∈ T to denote that v

is a leaf of T , and in general associate T with the set of its leaves, viewing its edges only

as the structure underlying its ordering. Let x, y be two distinct leaves of T . If for all

c ∈ T such that y ≤ c ≤ x we have x = c or y = c, then we call y the predecessor of x

and write y := x− . For any ϕ : T −→ C we define the primitive I of ϕ at x ∈ T to be

Iϕ(x) :=
∑
y≤x

ϕ(y).

And finally, the shadow of x is defined to be

S(x) := {y ∈ T : x ≤ y} and S(−∞) := T.

Trees and related concepts are discussed for example in [15] (§ I.2, pp. 8-14) and [31]

(§ 1.5, pp. 13-16).
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The next two lemmata and the ensuing theorem, concerning rootless trees and

decomposition of C+, appeared in [64] and [66], and are adaptations of results initially

proved in [5] for a tree with a root and the Whitney decomposition of the open unit disk

of the complex plane (see Appendix J, p. 463 in [47]). In the proof of the next lemma,

as well as in other places throughout this thesis, we reserve the symbol χE to denote

the characteristic function on a set E.

Lemma 2.1.5 (Lemma 3, p. 488 in [64]) Let T be a tree with a partial order defined on

the set of its leaves, let 1 < p ≤ q < ∞, and let p′ = p/(p − 1), q′ := q/(q − 1) be

the conjugate indices of p and q. Let also ω be a weight on T , and µ be a non-negative

function on T . If there exists a constant C(µ, ω) > 0 such that for all r ∈ T ∪ {−∞}, ∑
x∈S(r)

 ∑
y∈S(x)

µ(y)

p′

ω(x)1−p′


q′
p′

≤ C(µ, ω)
∑
x∈S(r)

µ(x), (2.10)

then there exists a constant C ′(µ, ω) > 0 such that for all ϕ : T −→ C,(∑
x∈T

|Iϕ(x)|qµ(x)

) 1
q

≤ C ′(µ, ω)

(∑
x∈T

|ϕ(x)|pω(x)

) 1
p

. (2.11)

Proof

We can define µ̃ and ω̃ to be measures on the Borel algebra over T by

µ̃({x}) := µ(x) and ω̃({x}) := ω(x) (∀x ∈ T ).

Let g ∈ Lp(T, ω̃). To prove this lemma we only need to show that if (2.10) holds, then

‖Ig‖Lq(T, µ̃) ≤ C ′(µ, ω)‖g‖Lp(T, ω̃),

for all g ≥ 0, in which case Ig is non-decreasing with respect to the order relation on T .

Let

Ωk :=
{
x ∈ T : Ig(x) > 2k

}
=
⋃
j

S(rkj ) (∀k ∈ Z),
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where {rkj ∈ T : j = 1, . . . } is the set of minimal points in Ωk with respect to the partial

order on T , if such points exist. Otherwise we define rk1 := −∞, and then

Ωk :=
{
x ∈ T : Ig > 2k

} defn

= S(rk1)
defn

= S(−∞)
defn

= T.

Let Ek
j = S(rkj ) ∩ (Ωk+1 \ Ωk+2). Then for x ∈ Ek

j we get

I(χS(rkj )g)(x) =
∑

rkj≤y≤x

g(y) = Ig(x)− Ig((rkj )
−) ≥ 2k+1 − 2k = 2k, (2.12)

where we adopt a convention that Ig((rkj )
−) := 0, whenever rkj = −∞. Thus we have,

2kµ̃(Ek
j )

defn

= 2k
∑
x∈Ekj

µ(x)

(2.12)
≤

∑
x∈Ekj

I(χS(rkj )g)(x)µ(x)

=
∑

y∈S(rkj )

g(y)
∑

x∈Ekj , x≥y

µ(x)

=
∑

y∈S(rkj )

g(y)
∑
x≥y

χEkj (x)µ(x)

=
∑

y∈S(rkj )∩(Ωck+2∪Ωk+2)

g(y)
∑
x≥y

χEkj (x)µ(x)

=
∑

y∈S(rkj )∩Ωck+2

g(y)
∑
x≥y

χEkj (x)µ(x) +
∑

y∈S(rkj )∩Ωk+2

g(y)
∑
x≥y

χEkj (x)µ(x)︸ ︷︷ ︸
=0

=
∑

y∈S(rkj )∩Ωck+2

g(y)
∑
x≥y

χEkj (x)µ(x)

(2.13)
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where Ωc
k+2 denotes the complement of Ωk+2 in T . Now,

∑
x∈T

|Ig(x)|qµ(x) ≤
∑
k∈Z

2(k+2)qµ̃
({
x ∈ T : 2k+1 < Ig(x) ≤ 2k+2

})
defn

= 22q
∑
k∈Z

2kqµ̃ (Ωk+1 \ Ωk+2)

≤ 22q
∑
k∈Z

2kqµ

(⋃
j

(
S(rkj ) ∩ (Ωk+1 \ Ωk+2)

))

≤ 22q
∑
k∈Z, j

2kqµ̃(Ek
j )

= 22q

 ∑
(k,j)∈E

2kqµ̃(Ek
j ) +

∑
(k,j)∈F

2kqµ̃(Ek
j )

 ,

where

E :=
{

(k, j) : µ̃(Ek
j ) ≤ βµ̃(S(rjk))

}
, (2.14)

F :=
{

(k, j) : µ̃(Ek
j ) > βµ̃(S(rjk))

}
, (2.15)

for some 0 < β < 1− 2−q. Let {xnk}k,n ⊆ T be a collection of distinct leaves of this tree

such that
⋃
n

{
xkn
}

= Ωk \ Ωk+1, for all k ∈ Z \ {0}. Then

∑
(k,j),k≥1

2kqµ̃(S(rkj ))
defn

=
∞∑
k=1

2kqµ̃(Ωk)

=
∞∑
k=1

µ̃(Ωk \ Ωk+1)
k∑
l=1

2lq

=
∞∑
k=0

µ̃

(⋃
n

{xkn}

)
k−1∑
l=0

2(k−l)q

≤
∞∑
k=0

∑
n

µ(xkn)
∣∣Ig (xkn)∣∣q k−1∑

l=0

2−lq

≤ 1

1− 2−q

∑
x∈T

|Ig(x)|qµ(x)

defn

=
1

1− 2−q
‖Ig‖qLq(T, µ̃).

(2.16)
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Similarly,

∑
(k,j),k<1

2kqµ̃(S(rjk)) =
0∑

k=−∞

2kqµ̃(Ωk)

=

(
∞∑
l=0

2−lq

)(
µ̃(Ω0) +

∞∑
k=1

2−kqµ̃(Ω−k \ Ω−k+1)

)

≤ 1

1− 2−q

(∑
j

µ(r0
j )
∣∣Ig (r0

j

)∣∣q +
∞∑
k=1

2−kqµ

(⋃
n

{
x−kn
}))

=
1

1− 2−q

(∑
j

µ(r0
j )
∣∣Ig (r0

j

)∣∣q +
∞∑
k=1

∑
n

µ
({
x−kn
})
|Ig(x−kn )|q

)

≤ 2

1− 2−q

∑
x∈T

|Ig(x)|qµ(x)

defn

=
1

1− 2−q
‖Ig‖qLq(T, µ̃).

(2.17)

So

22q
∑

(k,j)∈E

µ̃(Ek
j )2kq

(2.14), (2.16), (2.17)
≤ 22q+2

1− 2−q
β‖Ig‖qLq(T, µ). (2.18)

For the sum indexed by F we have

∑
(k,j)∈F

µ̃(Ek
j )2kq

(2.13)
≤

∑
(k,j)∈F

µ̃(Ek
j )1−q

∣∣∣∣∣∣
∑

y∈S(rkj )∩Ωck+2

g(y)
∑
x≥y

χEkj (x)µ(x)

∣∣∣∣∣∣
q

(2.15)
≤ β1−q

∑
(k,j)∈F

µ̃(S(rkj ))
1−q

∣∣∣∣∣∣
∑

y∈S(rkj )∩Ωck+2

g(y)
∑
x≥y

χEkj (x)µ(x)

∣∣∣∣∣∣
q

Hölder
≤ β1−q

∑
(k,j)∈F

µ̃(S(rkj ))
1−q

·

 ∑
y∈S(rkj )∩Ωck+2

∣∣∣∣∣∑
x≥y

χEkj (y)µ(y)

∣∣∣∣∣
p′

ω(y)1−p′


q
p′
 ∑
y∈S(rkj )∩Ωck+2

|g(y)|p ω(y)


q
p
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≤ β1−q
∑

(k,j)∈F

 ∑
x∈S(rkj )

µ(x)

1−q

·

 ∑
x∈S(rkj )

 ∑
y∈S(x)

µ(y)

p′

ω(y)1−p′


q′(q−1)

p′  ∑
y∈S(rkj )∩Ωck+2

|g(y)|p ω(y)


q
p

(2.10)
≤ β1−qC(µ, ω)q−1

∑
(k,j)

 ∑
y∈S(rkj )∩Ωck+2

|g(y)|p ω(y)


q
p

q≥p
≤ β1−qC(µ, ω)q−1

∑
(k,j)

∑
y∈S(rkj )∩Ωck+2

|g(y)|p ω(y)


q
p

= β1−qC(µ, ω)q−1

∑
k∈Z

∑
y∈Ωk∩Ωck+2

|g(y)|p ω(y)


q
p

= β1−qC(µ, ω)q−1

∑
k∈Z

∑
y∈Ωk\Ωk+2

|g(y)|p ω(y)


q
p

≤ 2q/pβ1−qC(µ, ω)q−1

(∑
x∈T

|g(x)|p ω(y)

) q
p

defn

= 2q/pβ1−qC(µ, ω)q−1‖g‖qLp(T, ω̃).

(2.19)

Therefore we can conclude that

‖Ig‖qLq(T, µ)

(2.18), (2.19)
≤ 22q+2

1− 2−q
β‖Ig‖qLq(µ) + 2q/pβ1−qCq−1‖g‖qLp(T (ζ)),

and since

β <
1− 2−q

22q+2
,

we get the desired result. 2
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Consider the following (Whitney) decomposition of the open right complex half-plane.

Given ζ ∈ C+, for any (k, l) ∈ Z2 let

R(k,l)(ζ) :=

{
z ∈ C+ : 2k−1 <

Re(z)

Re(ζ)
≤ 2k, 2kl ≤ Im(z)− Im(ζ)

Re ζ
< 2k(l + 1)

}
.

6Im(z)

r
ζ

R(3,−1)(ζ)

R(3,0)(ζ)

R(2,−1)(ζ)

R(2,0)(ζ)

R(1,−3)(ζ)

R(1,−2)(ζ)

R(1,−1)(ζ)

R(1,0)(ζ)

R(1,1)(ζ)

R(1,2)(ζ)

We can view each element of the set of rectangles {R(k,l)(ζ) : (k, l) ∈ Z2} as a vertex of

an abstract graph. If we have that x, y ∈ {R(k,l)(ζ) : (k, l) ∈ Z2} and x ∩ y is a vertical

segment in C+, then we can say there is an edge between x and y. With this convention,

these vertices and edges form an abstract tree, which we shall denote by T (ζ). Let A(·)

be a positive function on the set leaves of T (ζ) assigning to each of them the area of

the corresponding rectangle from {R(k,l)(ζ) : (k, l) ∈ Z2}. We can define a partial order
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on T (ζ) by considering the unique path between each pair x, y ∈ T (ζ); if for each leaf c

lying on this path, A(x) ≥ A(c) ≥ A(y), then x ≤ y.

Definition 2.1.6 A positive weight ω : C+ −→ (0, ∞) is called regular if for all ε > 0

there exists δ > 0 such that ω(z1) ≤ δω(z2), whenever z1 and z2 are within (Poincaré)

hyperbolic right half-plane distance ε, i.e. when

dH(z1, z2)
defn
= cosh−1

(
1 +

(Re(z1)− Re(z2))2 + (Im(z1)− Im(z2))2

2 Re(z1) Re(z2)

)
≤ ε.

Lemma 2.1.7 (Lemma 4, p. 492 in [64]) Let ω : C+ −→ (0, ∞) be regular, let µ be

a positive Borel measure on C+. If there exists a constant C(µ, ω) > 0, such that for all

a ∈ C+ we have

(∫
Q(a)

µ(Q(a) ∩Q(z))p
′

(Re(z))2
ω(z)1−p′ dz

) q′
p′

≤ C(µ, ω)µ(Q(a)), (2.20)

then there exists a constant C ′(µ, ω) > 0 such that

∑
β≥α

(∑
γ≥β

µ(γ)

)p′

ω̃(β)1−p′


q′
p′

≤ C ′(µ, ω)
∑
β≥α

µ(β),

for all α ∈ T (ζ). Here ω̃(β) is defined to be ω(zβ), for some fixed zβ ∈ β ⊂ C+, for each

β ∈ T (ζ).

Proof

Let a ∈ C+. We can choose ζ ∈ C+ such that there exists α ∈ T (ζ) for which we have

Q(a) =
⋃
β≥α

β and µ(Q(a)) =
∑
β≥α

µ(β). (2.21)

Given β ≥ α, let (k, l) ∈ Z2 be such that β = R(k, l)(ζ) and let

U(β) :=

{
z ∈ C+ : 2k−1 <

Re(z)

Re(ζ)
≤ 2k,

∣∣∣∣Im(z)− Im(ζ)− 2k
(
l +

1

2

)
Re(ζ)

∣∣∣∣ < Re(z)− 2k−1

}
.
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Now ⋃
γ≥β

γ ⊆ Q(z),

whenever z ∈ U(β) ⊂ β ≥ α, and also⋃
γ≥β

γ ⊆ Q(a) ∩Q(z). (2.22)

We also have that for any z1 and z2 in β

dH(z1, z2) ≤ cosh−1

(
1 +

22k−2 + 22k

22k−2

)
= cosh−1

(
7

2

)
,

which does not depend on the choice of β ∈ T (ζ), so there exists δ > 0 such that

C(µ, ω)
∑
β≥α

µ(β)
(2.21)
= C(µ, ω)µ(Q(a))

(2.20)
≥
(∫

Q(a)

(µ(Q(a)) ∩Q(z))p
′

(Re(z))2
ω(z)1−p′ dz

) q′
p′

(2.21)
≥ δq

′/p

(∑
β≥α

ω(β)1−p′
∫
β

(µ(Q(a) ∩Q(z)))p
′

(Re(z))2
dz

) q′
p′

≥ δq
′/p

(∑
β≥α

ω(β)1−p′
∫
U(β)

(µ(Q(a) ∩Q(z)))p
′

(Re(z))2
dz

) q′
p′

(2.22)
≥ δq

′/p

(∑
β≥α

ω(β)1−p′(µ(
⋃
γ≥β

γ))p
′

) q′
p′

= δq
′/p

∑
β≥α

(∑
γ≥β

µ(γ)

)p′

ω(β)1−p′


q′
p′

,

as required. 2

Theorem 2.1.8 Let 1 < p ≤ q <∞ and let µ be a positive Borel measure on C+. If ω is

a regular weight such that∫
C+

|F ′(z)|p(Re(z))p−2ω(z) dz ≤ ‖F‖pAp(C+, (νn)mn=0), (2.23)
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for all F ∈ Ap(C+, (νn)mn=0) and there exists a constant C(µ, ω) > 0 such that

(∫
Q(a)

µ(Q(a) ∩Q(z))p
′

(Re(z))2
ω(z)1−p′ dz

) q′
p′

≤ C(µ, ω)µ(Q(a)) (∀a ∈ C+), (2.24)

then the embedding

Ap(C+, (νn)mn=0) ↪→ Lq(C+, µ)

is bounded.

Proof

Given F ∈ Ap(C+, (νn)mn=0), for each α ∈ T (ζ) let diam(α) denote the diameter of α (as

a rectangle in C+), and let wα, zα ∈ α ⊂ C+ be such that

zα := sup
z∈α
{|F (z)|} and wα := sup

w∈α
{|F ′(w)|}.

Define weights µ̃ and ω̃ on T (ζ) by

µ̃(α) := µ(α) and ω̃(α) := ω(zα),

for all α ∈ T (ζ). Let also

rα := Re(wα)/4,

Φ(α) := F (zα),

ϕ(α) := Φ(α)− Φ(α−),

for all α ∈ T (ζ). Denote the open unit ball with radius rα and centred at wα by Brα(wα).

Note that Iϕ = Φ. This is because if F is in Ap(C+, (νn)mn=0), then it is in the Zen space

Apν0
, and hence in the Hardy space Hp(C+) (or its shifted version, see [87], p. 61), and

hence

lim
α→−∞

|F (zα)| = lim
Re(z)→∞

|F (z)| = 0.

Since (2.24) holds, we can apply Lemmata 2.1.5 and 2.1.7 to ϕ, µ and ω, and by

the Fundamental Theorem of Calculus, Mean-Value Property (Theorem 1.6 in [10], p. 6)
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and Hölder’s inequality we get∫
C+

|F |q dµ =
∑
α∈T (ζ)

∫
α

|F |q dµ

≤
∑
α∈T (ζ)

|Φ(α)|qµ̃(α)

/

 ∑
α∈T (ζ)

|ϕ(α)|pω̃(α)


q
p

defn

=

 ∑
α∈T (ζ)

|Φ(α)− Φ(α−)|pω̃(α)


q
p

Fundamental Thm
of Calculus
≤

 ∑
α∈T (ζ)

∣∣∣∣∣
∫ zα

zα−

F ′(w) dw

∣∣∣∣∣
p

ω̃(α)


q
p

/

 ∑
α∈T (ζ)

diam(α)p(|F ′(wα)|+ |F ′(wα−)|)pω̃(α)


q
p

/

 ∑
α∈T (ζ)

diam(α)p|F ′(wα)|pω̃(α)


q
p

Mean-Value
Property
≤

 ∑
α∈T (ζ)

diam(α)p
∣∣∣∣ 1

πr2
α

∫
Brα (wα)

F ′(z) dz

∣∣∣∣p ω̃(α)


q
p

Hölder
≤

 ∑
α∈T (ζ)

diam(α)p

(πr2
α)p(1−1/p′)

∫
Brα (wα)

|F ′(z)|p dzω̃(α)


q
p

/

 ∑
α∈T (ζ)

diam(α)p−2

∫
⋃
β∈T (ζ) : β∩Brα (wα)6=∅

|F ′(z)|p dz ω̃(α)


q
p

/

 ∑
α∈T (ζ)

∫
⋃
β∈T (ζ) : β∩Brα (wα)6=∅

|F ′(z)|p ω(z)

(Re(z))2−p dz


q
p

/

 ∑
α∈T (ζ)

∫
α

|F ′(z)|p ω(z)

(Re(z))2−p dz


q
p

≤ ‖F‖qAp(C+, (νn)mn=0),
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as required. 2

2.2 Carleson measures for Hilbert spaces

Let us now look at the Carleson measures for the Hilbert spaces that we have discussed in

Chapter 1. That is, we assume that p = q = 2 throughout this section.

2.2.1 Kernel criteria

The Hilbert spaces introduced in the previous chapter are all reproducing kernel Hilbert

spaces. This gives us the advantage of being able to test the Carleson criterion on a set

of functions which has particularly nice properties. In fact, it is possible to give a simple

and complete characterisation of Carleson measures for any RKHS of L2 functions, using

just the reproducing kernels. The following result has been obtained by Nicola Arcozzi,

Richard Rochberg and Eric Sawyer in [6].

Lemma 2.2.1 (Lemma 24, p. 1145 in [6]) Let H be a reproducing kernel Hilbert space

of functions on X , with reproducing kernels {kHx }x∈X . A positive Borel measure µ is

a Carleson measure forH if and only if the linear map

f(·) 7−→
∫
X

Re
(
kHx (·)

)
f(x) dµ(x)

is bounded on L2(X, µ).

In the definition of the A2
(m) spaces we require that both a function and its derivative(s) lie

in some specific space(s). This is clearly a generalisation of the idea behind the definition

of the Dirichlet space (on the disk or otherwise), therefore we can use the techniques

which were successful for the Dirichlet space case in order to examine the properties
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of A2
(m) spaces and related structures. For example, the following two results, which

appeared in [64], are adaptations of Theorem 5.2.2 and Theorem 5.2.3 from [35] (pp. 76-

77).

Lemma 2.2.2 (Lemma 1, p. 479 in [64]) Let µ be a positive Borel measure on C+, then

sup
‖F‖

A2
(m)
≤1

∫
C+

|F (z)|2 dµ(z) = sup
‖G‖L2(C+, µ)≤1

∣∣∣∣∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ(ζ) dµ(z)

∣∣∣∣ .
(2.25)

Proof

First, let us assume that the LHS of (2.25) is finite (i.e. µ is a Carleson measure for A2
(m)).

Let

ι : A2
(m) −→ L2(C+, µ) and ι∗ : L2(C+, µ) −→ A2

(m)

denote respectively the inclusion map and its adjoint. The LHS of (2.25) is evidently

equal to the square of the norm of ι. Furthermore, for each g ∈ L2(C+, µ), we have

ι∗G(z) =

〈
ι∗G, k

A2
(m)

z

〉
A2

(m)

=

〈
G, k

A2
(m)

ζ

〉
L2(C+, µ)

defn

=

∫
C+

G(ζ)k
A2

(m)
z (ζ) dµ(ζ),

(2.26)

and thus

‖ι∗G‖2
A2

(m)

defn

= 〈ι∗G, ι∗G〉A2
(m)

defn

= 〈ιι∗G, G〉A2
(m)

(2.26)
=

∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ(ζ) dµ(z),

so the expression (2.25) is equivalent to ‖ι‖2 = ‖ι∗‖2, hence it must be true. Now, if

the LHS of (2.25) it is not finite, we let

Ωr :=

{
x+ iy ∈ C+ :

1

r
≤ x ≤ r, |y| ≤ r

}
⊂ C+ (r ≥ 1).
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Then, by the Cauchy–Schwarz inequality, we get∫
C+

|F |2 dµ|Ωr ≤ µ(Ωr) sup
z∈Ωr

|F (z)|2

= µ(Ωr) sup
z∈Ωr

∣∣∣∣∣
〈
F, k

A2
(m)

z

〉
A2

(m)

∣∣∣∣∣
2

≤ µ(Ωr) sup
z∈Ωr

∥∥∥∥kA2
(m)

z

∥∥∥∥2

‖F‖2
A2

(m)

(1.12)
= µ(Ωr)

∥∥∥∥kA2
(m)

1/r

∥∥∥∥2

‖F‖2
A2

(m)
,

(2.27)

for all F in A2
(m). This means that µ|Ωr (i.e. the restriction of µ to Ωr) is a Carleson

measure for A2
(m), so we can use the first part of the proof (that is, we know that (2.25)

holds for µ|Ω), to get

sup
‖F‖

A2
(m)
≤1

∫
C+

|F (z)|2 dµ|Ωr (z) = sup
‖G‖L2(C+, µ)

≤1

∣∣∣∣∣
∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ|Ωr (z) dµ|Ωr (ζ)

∣∣∣∣∣ ,
where the RHS is at most equal to the RHS of (2.25) and the LHS tends to infinity as r

approaches infinity, so the RHS of (2.25) must not be finite. 2

Proposition 2.2.3 (Proposition 1, p. 480 in [64]) If

sup
z∈C+

∫
C+

∣∣∣∣kA2
(m)

z (ζ)

∣∣∣∣ dµ(ζ) <∞, (2.28)

then µ is a Carleson measure for A2
(m).

Proof

Let

M := sup
z∈C+

∫
C+

∣∣∣∣kA2
(m)

z (ζ)

∣∣∣∣ dµ(ζ). (2.29)
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Then for all G ∈ L2(C+, µ)∣∣∣∣∣
∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ(z) dµ(ζ)

∣∣∣∣∣ Schwarz
≤

(∫
C+

∫
C+

∣∣∣∣kA2
(m)

ζ (z)

∣∣∣∣ |G(ζ)|2 dµ(z) dµ(ζ)
) 1

2

×

(∫
C+

∫
C+

∣∣∣∣kA2
(m)

z (ζ)

∣∣∣∣ |G(z)|2 dµ(z) dµ(ζ)
) 1

2

(2.29)
≤ M‖G‖2L2(C+, µ).

(2.30)

Therefore∫
C+

(
|H(z)|
‖H‖A2

(m)

)2

dµ(z) ≤ sup
‖F‖

A2
(m)
≤1

∫
C+

|F (z)|2 dµ(z)

(2.25)
= sup

‖G‖L2(C+, µ)≤1

∣∣∣∣∫
C+

∫
C+

k
A2

(m)
z (ζ)G(ζ)G(z) dµ(z) dµ(ζ)

∣∣∣∣
(2.30)
≤ M,

for all H ∈ A2
(m), as required. 2

Remark 2.2.4 It is an elementary observation that these two results can be applied to

more general RKHS of functions on some set Ω, provided that Ω can be written as a union

of sets

Ω =
⋃
r∈E

Ωr, Ωr ⊆ Ωr′ (∀r ≤ r′; r, r′ ∈ E ⊆ R),

on which the reproducing kernels are uniformly bounded, so that estimates similar to

those in (2.27) can be obtained.

2.2.2 Carleson measures for Dirichlet spaces

We are now going to turn our attention to the Dirichlet spaces. The study of the Dirichlet

space on the unit disk of the complex plane can be dated back to at least Arne Beurling’s
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doctoral thesis from 1933 (see [12]), and many of the methods developed for this type of

space can be successful employed to spaces like A2
(m). Nevertheless there are limitations.

For example, David Stegenga’s elegant characterisation of Carleson measures for D in

terms of so-called logarithmic capacity (see [94]) relies on the fact that D is a bounded

domain and that D can be equipped with two equivalent norms, which on the half-plane,

as we have seen in Chapter 1, give rise to two distinct spaces of functions. Instead, we can

use the results presented above to describe the Carleson measures for the Dirichlet spaces

on the complex half-plane, although we should bear in mind that they can only provide

a partial characterisation of Carleson measures in this instance.

We can immediately state the following.

Proposition 2.2.5 Let µ be a positive Borel measure on C+.

1. If for each a ∈ C+

µ(Q(a)) = O(Re(a)), (2.31)

then µ is a Carleson measure for Dα(C+).

2. If µ is a Carleson measure for Dα(C+), then

µ(Q(a)) = O(Re(a) + Re(a)α+2),

for all a ∈ C+.

Proof

If (2.31) holds for every a ∈ C+, then, by Remark 2.1.3, µ is a Carleson measure for

H2(C+), so it must also be a Carleson measure for Dα(C+). Part 2. follows from

Theorem 2.1.2. 2
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Observe that, if f ∈ L1(0, ∞) ∩ L2
t1−α(0, ∞), then

‖L[f ]‖2
D′α(C+) =

∣∣∣∣∫ ∞
0

f(t)e−t dt

∣∣∣∣2 +

∫ ∞
0

|f(t)|2t1−α dt

Schwarz
≤

∫ ∞
0

|f(t)|2(1 + t1−α)

≈ ‖L[f ]‖2
Dα(C+) ,

so CM(D′α(C+)) ⊆ CM(Dα(C+)), for all α ≥ −1. This inclusion is proper, since

whenever µ is a Carleson measure for D′α(C+), we must have

µ(Ω) ≤
∫
C+

|1|2 dµ ≤ C(µ)‖1‖2
D′α(C+) = C(µ),

for every Ω ⊂ C+ and some C(µ) > 0, not depending on Ω. In other words, µ is

a bounded measure on C+, whereas δ0 ⊗ λ is clearly an unbounded measure on C+,

which belongs to CM(Dα(C+)).

Theorem 2.2.6 Let µ be a positive Borel measure on C+.

1. The measure µ is a Carleson measure for D′−1(C+) if and only if there exists

a constant A(µ) > 0 such that

sup
x>0

∫ ∞
−∞

∣∣∣∣∫
C+

G(ζ)
[
ln(x+ iy + ζ)− ln(x+ iy + 1)

]
dµ(ζ)

∣∣∣∣2 dy
≤ A(µ)

∫
C+

|G(ζ)|2 dµ(ζ)−
∣∣∣∣∫

C+

G(ζ) dµ(ζ)

∣∣∣∣2 ,
for all G ∈ L2(C+, µ).

2. The measure µ is a Carleson measure for D′α(C+), α > −1 if and only if there

exists a constant B(µ) > 0 such that∫
C+

∣∣∣∣∫
C+

G(ζ)
[
(z + ζ)−α−1 − (z + 1)−α−1

]
dµ(ζ)

∣∣∣∣2 Re(z)α dz

≤ B(µ)

∫
C+

|G(ζ)|2 dµ(ζ)−
∣∣∣∣∫

C+

G(ζ) dµ(ζ)

∣∣∣∣2 ,
for all G ∈ L2(C+, µ).
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3. The measure µ is a Carleson measure for D(C+) if and only if there exists

a constant C(µ) > 0 such that∫
C+

∣∣∣∣∫
C+

G(ζ)

z + ζ
dµ(ζ)

∣∣∣∣2 dz

e2 Re(z)
≤ C(µ)

∫
C+

|G|2 dµ,

for all G ∈ L2(C+, µ).

Proof

To prove part 1., note that µ is a Carleson measure for D′−1(C+) if and only if the adjoint

of the inclusion map ι∗ : L2(C+, µ) ↪→ D′−1(C+) is bounded, that is, there exists

A(µ) > 0 such that

‖ι∗G‖2
D′α(C+) ≤ A(µ)‖G‖2

L2(C+, µ), (2.32)

for all G ∈ L2(C+, µ). Also

ι∗G(z)
defn

=
〈
ι∗G, k

D′−1(C+)
z

〉
D′−1(C+)

defn

=
〈
G, k

D′−1(C+)
z

〉
L2(C+, µ)

(2.33)

for all z ∈ C+ and G ∈ L2(C+, µ). And so

A(µ)‖G‖2
L2(C+, µ)

(2.32)
≥ |ι∗G(1)|2 + ‖(ι∗G)′‖2

H2(C+)

(2.33)
=

∣∣∣∣∫
C+

G(ζ) dµ(z)

∣∣∣∣2
+ sup

x>0

∫ ∞
−∞

∣∣∣∣∫
C+

G(ζ)
[
ln(x+ iy + ζ)− ln(x+ iy + 1)

]
dµ(ζ)

∣∣∣∣2 dyπ
as required. The proof of part 2. is analogous. And similarly, for part 3, we have

B(µ)‖G‖2
L2(C+, µ) ≥

∥∥∥〈G, kD(C+)
·

〉
L2(C+, µ)

∥∥∥2

D(C+)

=

∫ ∞
0

∣∣∣∣∣L−1

[∫
C+

G(ζ)

∫ ∞
0

e−τ(z+ζ)

1 + τ
dτ dµ(ζ)

]
(t)

∣∣∣∣∣
2

(1 + t) dt

=

∫ ∞
0

∣∣∣∣∫
C+

G(ζ)e−tζ dµ(ζ)

∣∣∣∣2 dt

1 + t
.

Now,

1

1 + t
= 2

∫ ∞
0

e−2x(t+1) dx = 2π

∫ ∞
0

e−2xt dx

πe2x
(∀t > 0),
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and the measure ν̃ on C+, given by dν̃(x) = e−2xdx/π satisfies the (∆2)-condition:

sup
x>0

ν̃[0, 2x)

ν̃[0, x)
= sup

x>0

∫ 2x

0
e−2r dr∫ x

0
e−2r dr

= sup
x>0

1− e−4x

1− e−2x
= sup

x>0
(1 + e−2x) = 2,

hence by Theorem 1.1.3

D‖G‖2
L2(C+, µ) ≥

∫
C+

∣∣∣∣∫ ∞
0

∫
C+

G(ζ)e−tζ dµ(ζ)e−tz dt

∣∣∣∣2 dz

πe2 Re(z)

=

∫
C+

∣∣∣∣∫
C+

G(ζ)

z + ζ
dµ(ζ)

∣∣∣∣2 dz

πe2 Re(z)
.

2

Theorem 2.2.7 Let µ be a positive Borel measure on C+. If there exists a constant

C(µ) > 0 such that for all a ∈ C+ we have∫
C+

(
µ(Q(a) ∩Q(z))

Re(z)

)2

dz ≤ C(µ)µ(Q(a)),

then µ is a Carleson measure for D(C+). Conversely, if µ is a Carleson measure for

D(C+), then there exists a constant C ′(µ) > 0 such that for all a ∈ C+ we have∫
C+

(
µ(Q(a) ∩Q(z))

eRe(z) Re(z)

)2

dz ≤ C ′(µ)µ(Q(a)).

Proof

The first part is essentially Theorem 2.1.8 applied with p = q = 2 and ω ≡ 1. The second

part follows from the previous theorem applied to G = χQ(a). In this case we get

µ(Q(a)) '
∫
C+

∣∣∣∣∫
Q(a)

dµ(ζ)

z + ζ

∣∣∣∣2 dz

e2 Re(z)
.

Now

Re

(
1

z + ζ

)
=

Re(z) + Re(ζ)

|z + ζ|2
≥ 0, (2.34)
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so for any z ∈ C+,∣∣∣∣∫
Q(a)

dµ(ζ)

z + ζ

∣∣∣∣ ≥ Re

(∫
Q(a)

dµ(ζ)

z + ζ

)
(2.34)
≥
∫
Q(a)∩Q(z)

Re(z) + Re(ζ)

(Re(z) + Re(ζ))2 + | Im(z)− Im(ζ)|2
dµ(ζ)

(2.3)
≥
∫
Q(a)∩Q(z)

Re(z)

10(Re(z))2
dµ(ζ)

=
µ(Q(a) ∩Q(z))

10 Re(z)
,

and the result follows. 2
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Chapter 3

Weighted composition operators

Never compose anything unless the not composing of it becomes

a positive nuisance to you.

GUSTAVUS THEODORE VON HOLST, cited in Imogen Clare Holst’s

The Music of Gustav Holst

Let V be a vector space over a field K (real or complex), consisting of all K-valued

functions on a set Ω, let U ⊆ V be another K-linear space, let ϕ be a self map of Ω and

let h : Ω −→ K. The weighted composition operator, corresponding to h and ϕ, is

defined to be the linear map Wh, ϕ ∈ L (U, V ) (i.e. the space of all linear maps from U

to V ), given by

u 7−→ Wh, ϕu := h · (u ◦ ϕ) (∀u ∈ U).

If ϕ = IdΩ (the identity map on Ω), then we will write Mh := Wh, IdΩ
and call it

the multiplication operator on U corresponding to h. If Mh(U) ⊆ U , then we will call h

a multiplier of U and define the algebra of multipliers of U to be

M (U) := {h : Ω −→ K : ∀u ∈ U Mh(u) ∈ U}
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If U is a Banach space and Mh ∈ B(U) (i.e. the space of bounded linear operators on

U ), then we may equip the algebra of multipliers of U with the norm

‖h‖M (U) := ‖Mh‖B(U)
defn

= sup
‖u‖U≤1

‖hu‖U (∀h ∈M (U)).

If h ≡ 1, then we will write Cϕ := W1, ϕ and call it the composition operator on U

corresponding to ϕ. If U is a RKHS, then we immediately get the following well-known

lemma.

Lemma 3.0.8 Let Wh, ϕ be a bounded weighted composition operator on a RKHS H of

functions defined on a set Ω, with a reproducing kernel kHx , for all x ∈ Ω. Then

W ∗
h, ϕk

H
x (y) = h(x)kHϕ(x)(y) (∀x, y ∈ Ω).

Proof

For all u ∈ H we have

〈
u, W ∗

h, ϕk
H
x

〉
H =

〈
Wh, ϕu, k

H
x

〉
= h(x)u(ϕ(x)) =

〈
u, h(x)kHϕ(x)

〉
H
.

2

In this chapter we are going to discuss multiplication operators, composition operators

and weighted composition operators for Banach spaces of analytic functions on the open

complex half-plane. It is self-evident that if Wh, ϕ is a bounded operator on some of these

spaces then h must be analytic and ϕ must also be analytic, given that h is not a zero

function. The results presented below were published in [65] and [67].
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3.1 Multiplication operators

3.1.1 Multipliers

The following lemma is standard and well-known for general reproducing kernel Hilbert

spaces. The A2
(m) version appeared in [65] (Lemma 2).

Lemma 3.1.1 If h is a multiplier of a RKHS H of functions defined on a set Ω, then h is

bounded and

sup
x∈Ω
|h(x)| ≤ ‖h‖M (H) .

Proof

Let h ∈ M (H). Then M∗
h is a bounded operator on H, so its eigenvalues are bounded,

and of modulus no bigger than ‖Mh‖B(H). So, by Lemma 3.0.8, the values of h are

bounded and of modulus no more than ‖h‖M (H). 2

In the remaining part of this section we assume that ϕ = IdC+ and that h : C+ −→ C is

a holomorphic map.

Multipliers of the Hardy or weighted Bergman spaces on the disk are the bounded

holomorphic functions on the open unit disk (see for example Proposition 1.13, p. 19

in [3]). Multipliers of the Dirichlet space on the disk can be characterised in terms of

Carleson measures forD (see Theorem 5.1.7, p. 74 in [35]). It appears that the multipliers

of the corresponding spaces on the half-plane can be classified in an analogous way.

The relevant statement, concerning A2
(m) spaces, and its proof have been published in

[65] (Theorem 2). Below we extend it to Ap(C+, (νn)mn=0) spaces.
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Theorem 3.1.2

1. M (A2
(0)) = M (Apν) = H∞(C+) (the Hardy space of analytic functions bounded

on C+), and

‖h‖M (A2
(0)

) = ‖h‖M (A2(C+, (ν)mn=0)) = ‖h‖H∞(C+) (∀h ∈ H∞(C+)).

2. Suppose that ν̃n({0}) = 0, for all n ∈ N0, n ≤ m. If for all 0 ≤ k ≤ n ≤ m, µn, k,

given by dµn, k(z) :=
∣∣h(k)

∣∣p dνn, is a Carleson measure for Apνn−k , and

sup
0≤n≤m

m∑
k=n

(
k

k − n

)p
(k + 1)p‖µk, k−n‖Apνn <∞, (3.1)

then h ∈M (Ap(C+, (νn)mn=0)).

3. h ∈ M (A2(C+, (νn)mn=0)) if and only if h is bounded on C+ and there exists

a sequence (cn) ∈ `1 such that for all F ∈ A2(C+, (νn)mn=0) and all 1 ≤ n ≤ m,

we have

sup
ε>0

∫
C+

∣∣∣∣∣
n∑
k=1

(
n

k

)
h(k)(z + ε)F (n−k)(z + ε)

∣∣∣∣∣
2

dνn ≤ |cn| ‖F‖2
A2(C+, (νn)mn=0) .

(3.2)

In particular, if m = 1 and ν̃1({0}) = 0, then h ∈ M (A2(C+, (ν0, ν1))) if and

only if |h′(z)|2 dν1 is a Carleson measure for A2(C+, (ν0, ν1)).

Proof

1. Suppose first that h is bounded on C+. Then, for all F ∈ A2
ν , we have

sup
ε>0

∫
C+

|h(z + ε)F (z + ε)|2 dν ≤ ‖h‖pH∞(C+)‖F‖
p
Apν
,

so h is a multiplier of A2
ν , and hence it is also a multiplier of A2

(0). The converse is

proved in Lemma 3.1.1. The norm expression of h in M (A2
ν) or (equivalently) in

M (A2
(m)) can be easily deduced.
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2. Let F ∈ Ap(C+, (νn)mn=0). Then

‖MhF‖pAp(C+, (νn)mn=0)

defn

=
m∑
n=0

∫
C+

∣∣(hF )(n)
∣∣p dνn

Leibniz rule
=

m∑
n=0

∫
C+

∣∣∣∣∣
n∑
k=0

(
n

k

)
h(k)F (n−k)

∣∣∣∣∣
p

dνn

≤
m∑
n=0

(n+ 1)p
n∑
k=0

(
n

k

)p ∫
C+

∣∣F (n−k)
∣∣p ∣∣h(k)

∣∣p dνn
≤

m∑
n=0

(n+ 1)p
n∑
k=0

(
n

k

)p
‖µn, k‖CM(Apνn−k )

∥∥F (n−k)
∥∥p
Apνn−k

=
m∑
n=0

(
m∑
k=n

(
k

k − n

)p
(k + 1)p‖µk, k−n‖Apνn

)∥∥F (n)
∥∥p
Apνn

(3.1)
/ ‖F‖pAp(C+, (νn)mn=0).

3. Suppose that (3.2) holds for some h. Then

‖hF‖2
A2(C+, (νn)mn=0)

defn

=
m∑
n=0

sup
εn>0

∫
C+

∣∣∣∣ dndzn (h(z + εn)F (z + εn))

∣∣∣∣2 dνn(z)

≤
m∑
n=0

sup
εn>0

∫
C+

∣∣∣∣∣
n∑
k=0

(
n

k

)
h(k)(z + εn)F (n−k)(z + εn)

∣∣∣∣∣
2

dνn(z)

(3.2)
≤ 2

m∑
n=0

(
‖h‖2

H∞(C+)

∫
C+

∣∣F (n)
∣∣2 dνn + |cn| ‖F‖2

A2(C+, (νn)mn=0)

)
= 2

(
‖h‖2

H∞(C+) + ‖(cn)‖`1
)
‖F‖2

A2(C+, (νn)mn=0) .

Thus h is a multiplier of A2(C+, (νn)mn=0).

Conversely, suppose that h ∈ M (A2(C+, (νn)mn=0)). Then
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sup
ε>0

∫
C+

∣∣∣∣∣
n∑
k=1

(
n

k

)
h(k)(z + ε)F (n−k)(z + ε)

∣∣∣∣∣
2

dνn

= sup
ε>0

∫
C+

∣∣(hF )(n)(z + ε)− hF (n)(z + ε)
∣∣2 dνn

≤ 2
(
‖hF‖2

A2(C+, (νn)mn=0) + ‖h‖2
H∞(C+) ‖F‖

2
A2
ν0

)
≤ 2

(
‖Mh‖2 + ‖h‖2

H∞(C+)

)
‖F‖2

A2(C+, (νn)mn=0) .

2

Remark 3.1.3 If ν̃n({0}) 6= 0, for some n, then the condition in part 2. of the theorem,

saying that µn, k has to be a Carleson measure for Apνn−k , can be replaced by

sup
ε>0

∫
C+

∣∣h(k)(z + ε)F (n−k)(z + ε)
∣∣p dν(z) / ‖F (n−k)‖p

Apn−k
,

for all F ∈ Ap(C+, (νn)mn=0), provided that the inequality constants satisfy an estimate

similar to this in (3.1). It is a trivial observation than the statement of part 3. remains

valid if we replace A2(C+, (νn)mn=0) by A2
(m).

3.1.2 Banach algebras

Although the descriptions of the multipliers of the three classical spaces of analytic

functions - Hardy, Bergman and Dirichlet - are virtually the same in the disk and the half-

plane settings, there is one major difference between them. If H is a RKHS, then

M (H) is a unital Banach subalgebra of B(H), which is closed in the weak operator

topology (Corollary 5.24, p. 79 in [84]). Since 1 lies in each weighted Hardy space

H2(β), h · 1 must also lie in H2(β), for all h ∈ M (H2(β)). That is, the unital Banach

algebra M (H2(β)) is a subset of H2(β). A comparable inclusion can never be stated

for Ap(C+, (νn)mn=0) or A2
(m) spaces, because they do not contain constant functions,
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which are clearly their multipliers. But maybe the reverse inclusion could be true,

e.g. A2
(m) ⊆ M (A2

(m))? This would imply that the space A2
(m) is a complete normed

algebra (although it may not necessarily be a Banach algebra, and it certainly cannot be

unital). We shall verify this possibility in this subsection.

Theorem 3.1.4 (Theorem 3 in [64]) Let H be a Hilbert space of complex-valued

functions defined on a set Ω. Suppose that H is also a Banach algebra with respect

to pointwise multiplication. Then H is a RKHS, and if kx is the reproducing kernel of H

at x ∈ Ω, then

sup
x∈Ω
‖kx‖H ≤ 1, (3.3)

and consequently all elements ofH are bounded.

Proof

First, note that the evaluation functional Ex : H −→ C, f Ex7−→ f(x) is bounded for every

x ∈ Ω, since it is a multiplicative functional on a Banach algebraH and hence ‖Ex‖ ≤ 1

(see [16], § 16, Proposition 3, p. 77), so H is a RKHS. Let kx denote the reproducing

kernel ofH at x ∈ Ω. Then we have

‖kx‖2
H = |kx(x)| ≤ sup

y∈Ω
|kx(y)| . (3.4)

Also, by the Cauchy–Schwarz inequality and the fact thatH is a Banach algebra, we get

|kx(y)| ‖ky‖2
H

(1.11)
= |kx(y)ky(y)|

=
∣∣〈kxky, ky〉H∣∣

≤ ‖kxky‖H ‖ky‖H

≤ ‖kx‖H ‖ky‖
2
H ,

and since it holds for all x, y ∈ Ω, after cancelling ‖ky‖2
H and taking the supremum, we

get

sup
y∈Ω
|kx(y)| ≤ ‖kx‖H . (3.5)
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From (3.4) and (3.5) we get

‖kx‖2
H

(3.4)
≤ sup

y∈Ω
|kx(y)|

(3.5)
≤ ‖kx‖H (3.6)

and consequently

‖kx‖H
(3.6)
≤ 1, (3.7)

for all x ∈ Ω. And for any f ∈ H we also have

sup
x∈Ω
|f(x)| = sup

x∈Ω
|〈f, kx〉|

(3.7)
≤ ‖f‖H .

2

Theorem 3.1.5 (Theorem 4 in [65]) If A2
(m) is a Banach algebra, then∫ ∞

0

dt

w(m)(t)
≤ 1, (3.8)

and therefore

L2
w(m)

(0, ∞) ⊆ L1(0, ∞) and A2
(m) ⊆M (A2

(m)) ∩H∞(C+) ∩ C0(iR),

where C0(iR) is the space of functions continuous on iR and vanishing at infinity.

Conversely, if for all t > 0 (
1

w(m)

∗ 1

w(m)

)
(t) ≤ 1

w(m)(t)
, (3.9)

then A2
(m) is a Banach algebra. Here ∗ denotes the convolution operation.

Proof

Suppose that A2
(m) is a Banach algebra, then, by the previous theorem,∫ ∞

0

dt

w(m)(t)
= sup

z∈C+

∫ ∞
0

e−2 Re(z)t

w(m)(t)
dt

(1.11), (1.12)
= sup

z∈C+

∥∥∥∥kA2
(m)

z

∥∥∥∥2

A2
(m)

(3.3)
≤ 1. (3.10)
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By Schwarz’ inequality we also get

|F (z)| =
∣∣∣∣∫ ∞

0

f(t)e−tz dt

∣∣∣∣ ≤ ∫ ∞
0

|f(t)| dt
(3.10)
≤
(∫ ∞

0

|f(t)|2w(m)(t) dt

) 1
2

,

for all F = L[f ] ∈ L(L1(0, ∞) ∩ L2
w(m)

(0, ∞)) and z ∈ C+. On the boundary we have

F (iy) =

∫ ∞
0

f(t)e−ity dt ∈ C0(iR),

by the Riemann–Lebesgue Lemma. The converse follows from the fact that pointwise

multiplication in A2
(m) is equivalent to convolution (∗) in L2

w(m)
(0, ∞), (via the Laplace

transform) for which the sufficient condition to be a Banach algebra was given in [80] and

in [17] (Lemma 8.11, p. 42), and the proof is quoted here. Suppose that (3.9) holds for all

t > 0. Using Schwarz’ inequality and that (L1(0,∞), ∗) is a Banach algebra (see [28],

§ 4.7, p. 518), we get

‖f ∗ g‖2
L2
w(m)

(0,∞)

defn

=

∫ ∞
0

∣∣∣∣∫ t

0

f(τ)g(t− τ) dτ

∣∣∣∣2w(m)(t) dt

≤
∫ ∞

0

∫ t

0

|f(τ)|2w(m)(τ) |g(t− τ)|2w(m)(t− τ) dτ

×
∫ t

0

dτ

w(m)(τ)w(m)(t− τ)
w(m)(t) dt

=

∫ ∞
0

(|f |2w(m) ∗ |g|2w(m))(t)

(
1

w(m)

∗ 1

w(m)

)
(t)w(m)(t) dt

(3.9)
≤
∥∥|f |2w(m)

∥∥
L1(0,∞)

∥∥|g|2w(m)

∥∥
L1(0,∞)

defn

= ‖f‖2
L2
w(m)

(0,∞) ‖g‖
2
L2
w(m)

(0,∞)

for all f, g in L2
w(m)

(0, ∞), and hence A2
(m) is a Banach algebra. 2

This theorem shows that no Zen space A2
ν can be a Banach algebra, since the weight

w(t)
defn

= 2π

∫
[0,∞)

e−2xt ν̃(x) (∀t > 0)

is never increasing. It is not clear which weights w(m) (if any) satisfy (3.9), so we are

now going to investigate Banach algebras contained in A2
(m) spaces in order to produce
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an alternative sufficient condition for an A2
(m) space to be a Banach algebra. The next

theorem was proved in [65] for p = 2 (Theorem 5) and we present its generalised version

below.

Theorem 3.1.6 Let 1 ≤ p <∞.

1. Apν ∩H∞(C+) is a Banach algebra with respect to the norm given by

‖F‖Apν∩H∞(C+) := ‖F‖H∞(C+) + ‖F‖Apν (∀F ∈ Apν ∩H∞(C+)).

2. Suppose that for all 1 ≤ k < n ≤ m− 1 <∞ the embedding

L1([0, ∞), ν̃n−k) ↪→ L1([0, ∞), ν̃n) (3.11)

is bounded with norm 1. Then

A p
m :=

m−1⋂
n=0

{
F ∈ A2

(m) : F (n) ∈ H∞(C+)
}

is a Banach algebra with respect to the norm given by

‖F‖Am :=
m−1∑
n=0

∥∥F (n)
∥∥
H∞(C+)

n!
+

m∑
n=0

∥∥F (n)
∥∥
A2
νn

n!
(∀F ∈ Am).

Proof

Those are clearly Banach spaces. For all F and G in Apν ∩H∞(C+) we have

‖FG‖Apν∩H∞(C+)

defn

= ‖FG‖H∞(C+) + ‖FG‖Apν
≤ ‖F‖H∞(C+) ‖G‖H∞(C+) + ‖F‖H∞(C+) ‖G‖Apν
≤
(
‖F‖H∞(C+) + ‖F‖Apν

)(
‖G‖H∞(C+) + ‖G‖Apν

)
defn

= ‖F‖Apν∩H∞(C+) ‖G‖Apν∩H∞(C+) ,
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proving 1. To prove 2., let F and G be in A p
m, and let

fn =

∥∥F (n)
∥∥
H∞(C+)

n!
for 0 ≤ n < m and fm = 0,

f ′n =

∥∥F (n)
∥∥
Apνn

n!
,

gn =

∥∥G(n)
∥∥
H∞(C+)

n!
for 0 ≤ n < m and gm = 0,

g′n =

∥∥G(n)
∥∥
Apνn

n!
.

By (3.11) we have ∫
C+

|F (n−k)|p dνn /
∫
C+

|F (n−k)|p dνn−k,

and thus

‖FG‖A p
m

defn

=
m−1∑
n=0

∥∥(FG)(n)
∥∥
H∞(C+)

n!
+

m∑
n=0

∥∥(FG)(n)
∥∥
Apνn

n!

Minkowski’s
≤

m−1∑
n=0

1

n!

n∑
k=0

(
n

k

)∥∥F (n−k)
∥∥
H∞(C+)

∥∥G(k)
∥∥
H∞(C+)

+
m∑
n=0

1

n!

n∑
k=0

(
n

k

)(∫
C+

∣∣F (n−k)G(k)
∣∣p dνn) 1

p

(3.11)
≤

m−1∑
n=0

n∑
k=0

∥∥F (n−k)
∥∥
H∞(C+)

(n− k)!

∥∥G(k)
∥∥
H∞(C+)

k!
+ ‖F‖Apν0 ‖G‖H∞(C+)

+
m∑
n=1

1

n!

n−1∑
k=0

(
n

k

)∥∥F (n−k)
∥∥
Apνn−k

∥∥G(k)
∥∥
H∞(C+)

+
m∑
n=1

1

n!
‖F‖H∞(C+)

∥∥G(n)
∥∥
Apνn

defn

=
m−1∑
n=0

n∑
k=0

fn−kgk + f ′0g0 +
m∑
n=1

n−1∑
k=0

f ′n−kgk + f0

m∑
n=1

g′n

≤
m∑
n=0

n∑
k=0

(fn−kgk + f ′n−kgk + fn−kg
′
k + f ′n−kg

′
k)
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defn

=

[
m∑
n=0

(fn + f ′n)

][
m∑
n=0

(gn + g′n)

]
defn

= ‖F‖A p
m
‖G‖A p

m
,

as required. 2

Remark 3.1.7 The algebras in Theorem 3.1.6 are modelled after A.2.4., p. 300,

from [88].

Theorem 3.1.8 (Theorem 6 in [65]) Let m ∈ N, and, for all 0 ≤ n ≤ m, let wn be as in

(1.6). Assume that the embedding

L1([0, ∞), ν̃n−k) ↪→ L1([0, ∞), ν̃n)

is bounded for all 1 ≤ k < n ≤ m− 1. If∫ ∞
0

dt

wm−1(t) + wm(t)
≤ 1, (3.12)

then there exists a constant C > 0 such that
(
A2

(m), C ‖·‖A2
(m)

)
is a Banach algebra.

Proof

Given 0 ≤ n ≤ m, let

w′(m−n)(t) := 2π
m∑
k=n

wk(t) (∀t > 0),

and let

B2
(m−n) := L

(
L2
w′

(m−n)
(0, ∞)

)
,

that is, B2
(m−n) is a truncated A2

(m) space, with first n weights/measures removed. So if

F ∈ A2
(m), then F (n) lies in B2

(m−n), for all 0 ≤ n ≤ m; and for all z ∈ C+ we have

∣∣F (n)(z)
∣∣2 =

∣∣∣∣〈F (n), k
B2

(m−n)
z

〉∣∣∣∣2 (1.11), (1.12)
≤

∥∥F (n)
∥∥2

B2
(m−n)

∫ ∞
0

e−2tRe(z)

wn(t) + . . .+ wm(t)
dt,
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so clearly

∥∥F (n)
∥∥2

H∞(C+)
≤
∥∥F (n)

∥∥2

B2
(m−n)

sup
z∈C+

∫ ∞
0

e−2tRe(z)

wm−1(t) + wm(t)
dt

(3.12)
≤ ‖F‖2

A2
(m)

, (3.13)

for all 0 ≤ n ≤ m − 1. Now let F, G ∈ A2
(m) and let dν ′n := (n!)2dνn. Then for any

0 ≤ k ≤ m we have

∥∥(FG)(k)
∥∥2

A2
νk

≤
m−1∑
n=0

‖(FG)(n)‖H∞(C+)

n!
+

m∑
n=0

‖(FG)(n)‖A2
ν′n

n!

Thm 3.1.6

≤

m−1∑
n=0

‖F (n)‖H∞(C+)

n!
+

m∑
n=0

‖F (n)‖A2
ν′n

n!


·

m−1∑
n=0

‖G(n)‖H∞(C+)

n!
+

m∑
n=0

‖G(n)‖A2
ν′n

n!


≤

(
1 +

m−1∑
n=0

1

n!

)2( m∑
n=0

‖F (n)‖A2
νn

)(
m∑
n=0

‖G(n)‖A2
νn

)
/ ‖F‖2

A2
(m)
‖G‖2

A2
(m)
,

summing the above expression over all k between 0 and m and taking the square root

proves the claim. Or, to be precise, by multiplying the weights by appropriate constants,

we can assure that A2
(m) is a Banach algebra. 2

Corollary 3.1.9 (Corollary 1 in [65]) A2
(1) is a Banach algebra (after possibly adjusting

its norm/weights) if and only if ∫ ∞
0

dt

w(1)(t)
<∞.

Proof

It follows from Theorems 3.1.5 and 3.1.8. 2
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Example 3.1.10 The integral ∫ ∞
0

dt

1 + t1−α
<∞

if and only if α < 0, so Dα(C+) is a Banach algebra (after re-normalisation) if and only

if −1 ≤ α < 0.

Thus the question that we have asked at the beginning of this subsection has an affirmative

answer, i.e. there exist spaces A2
(m) which are (Banach algebras) contained within the set

of their multipliers. A statement for weighted Dirichlet spaces on the disk, similar to this

in Example 3.1.10, appeared in [98], and because weighted Hardy spaces always contain

their set of multipliers, we then have the equality M (Dα) = Dα, −1 ≤ α < 0.

Hilbert spaces which are also Banach algebras are rarae aves of function spaces, and

hence they are seldom studied in much detail. For an early deliberation on this concept

see [4].

3.1.3 Spectra of multipliers

Definition 3.1.11 Let A be an algebra over the field of complex numbers. The spectrum

of an element a ∈ A is the set

σ(A, a) := {c ∈ C : (a− c) is not invertible in A}

if A is unital, and

σ(A, a) := {0} ∪ {c ∈ C : a+ cb− ab 6= 0, ∀b ∈ A} .

otherwise. The resolvent set ρ(A, a) of a is defined to be the complement of σ(A, a) in

C. If the choice of algebra A is unambiguous, we will write simply σ(a) and ρ(a), for all

a ∈ A. The spectral radius, r(a), of a is defined by

r(a) := sup {c ∈ σ(A, a)} .
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If A is a Banach algebra, then the spectral radius formula (or Gel’fand’s formula) states

that

r(a) = lim
n→∞

‖an‖1/n
A (∀a ∈ A)

(see Proposition 8, § 2, p. 11 and Theorem 8, § 5, p. 23 in [16]). If A is a commutative

Banach algebra, then the maximal ideal space (or the character space, or the carrier

space), denoted by M(A) is the set of all multiplicative linear functionals (non-zero

algebra homomorphisms/characters) on A. We then have that

r(a) = sup
ϕ∈M(A)

|φ(a)| (∀a ∈ A) (3.14)

(see Theorem 5, § 17, p. 83 in [16]).

Theorem 3.1.12 (Theorem 7 in [65]) If h ∈M (A2
(m)), then

h(C+) ⊆ σ(M (A2
(m)), h),

with equality at least for m ≤ 1.

Proof

Let h ∈ M (A2(C+, (νn)mn=0)). We have that (h − c)−1 ∈ H∞(C+), for some c ∈ C,

if and only if infz∈C+ |h(z)− c| > 0, and consequently σ(H∞(C+), h) = h(C+). If

c ∈ σ(H∞(C+), h), then (h − c)−1 /∈ H∞(C+) ⊇ M (A2(C+, (νn)mn=0)), so clearly

h(C+) = σ(H∞(C+), h) ⊆ σ(M (A2(C+, (νn)mn=0)), h).

For the reverse inclusion, when m ≤ 1, recall that M (A2(C+, (νn)mn=0)) = H∞(C+),

and also observe that if h−1 ∈ H∞(C+) = M (A2
ν0

), then
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∫
C+

∣∣∣∣(Fh
)′∣∣∣∣2 dν1 =

∫
C+

∣∣∣∣F ′h − h′F

h2

∣∣∣∣2 dν1

≤ 2‖h−1‖2
H∞(C+)

(∫
C+

|F ′|2 dν1 + ‖h−1‖2
H∞(C+)

∫
C+

|h′F |2 dν1

)
(3.2)
/ ‖h−1‖2

H∞(C+)

(
1 + ‖h−1‖2

H∞(C+)

)
‖F‖2

A2(C+, (ν0, ν1)),

that is, h−1 ∈M (A2(C+, (ν0, ν1))). 2

Theorem 3.1.13 (Theorem 8 in [65]) Suppose that A2
(m) is a Banach algebra and that

for each a > 0 there exists K(a) > 0 such that w(m)(t) ≤ K(a)eat, for all t > 0. Let

π : M(M (A2
(m))) −→ D (the closed unit disk of the complex plane) be given by

π(ϕ) = ϕ

(
1− z
1 + z

)
(ϕ ∈M(M (A2

(m))))

(that is, π is the Gel’fand transform of the function (1 − z)/(1 + z), see Chapter V, § 1,

p. 184 in [45]). Then

1. π is surjective.

2. If m ≤ 1 or for all 1 ≤ k < n ≤ m− 1 <∞ the embedding

L1([0, ∞), ν̃n−k) ↪→ L1([0, ∞), ν̃n)

is bounded, then π is injective over the open unit disk D and (π|D)−1 (that is,

the inverse of the restriction of π to D in its image) maps D homeomorphically

onto an open subset ∆ ⊂M(M (A2
(m))).

Proof

First, note that, for all a ∈ C+, (z + a)−1 is in A2
(m), since∫ ∞

0

∣∣e−at∣∣2w(m)(t) dt ≤ K(a)

∫ ∞
0

e−tRe(a) dt =
K(a)

Re(a)
,
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so e−at ∈ L2
w(m)

(0, ∞), and hence

1− z
1 + z

=
2

1 + z
− 1 ∈ A2

(m) + C ⊆M (A2
(m)).

We know that σ
(
M (A2

(m)),
1−z
1+z

)
⊇ σ

(
H∞(C+), 1−z

1+z

)
. If
(

1−z
1+z
− c
)−1 ∈ H∞(C+), for

some c ∈ C, then

(
1− z
1 + z

− c
)−1

=
1 + z

1− c− z(1 + c)
=

1

1 + c

− 2

1 + c

(
z − 1− c

1 + c

)−1

︸ ︷︷ ︸
∈A2

(m)

−1


is a multiplier of A2

(m). So we actually have

σ

(
M (A2

(m)),
1− z
1 + z

)
= σ

(
H∞(C+),

1− z
1 + z

)
,

and thus

|π(ϕ)| ≤ sup
ϕ∈M(M (A2

(m)
))

∣∣∣∣ϕ(1− z
1 + z

)∣∣∣∣ (3.14)
= r

(
1− z
1 + z

)
= 1.

Because the evaluation homomorphisms are in M(M (A2
(m))), every point of the open

unit disk is in the image of π. Also, M(M (A2
(m))) is a compact Hausdorff space (see

Theorem 2.5, Chapter I, § 2, p. 4 in [43]), so its image under π must also be compact

(Theorem 2.10, p. 38 in [90]), and thus π is surjective.

For the second part, let |c| < 1 and suppose that π(ϕ) = c. Then for any F ∈ A2
(m)

vanishing at κ = 1−c
1+c
∈ C+, we have F = z−κ

z+κ
G, with G ∈ H∞(C+) (see [75], p. 293).

Let Br(κ) be the closed ball, centred at κ, with radius r > 0. Choose r small enough to

get Br(κ) ⊂ C+, then∫
C+

|G(z)|2 dν0(z) =

∫
Br(κ)

|G(z)|2 dν0 +

∫
C+\Br(κ)

∣∣∣∣z + κ

z − κ
F (z)

∣∣∣∣2 dν0(z).

The first integral is finite, since G is bounded on C+ and Br(κ) is compact. The second

integral is also finite, since z+κ
z−κ is bounded on C+ \Br(κ). Let

C := sup
z∈C+\Br(κ)

∣∣∣∣z + κ

z − κ

∣∣∣∣ .
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Then we have∫
C+

|G′|2 dν1 =

∫
Br(κ)

|G′|2 dν1 +

∫
C+\Br(κ)

∣∣∣∣F ′(z)
z + κ

z − κ
− F (z)

2 Reκ

(z − κ)2

∣∣∣∣2 dν1(z)

≤
∫
Br(κ)

|G′|2 dν1 + 2C2 ‖F ′‖2
A2
ν1

+ (2C2 Re(κ))2 ‖F‖2
H∞(C+)

∫
C+

∣∣∣∣ dν1(z)

(z + κ)2

∣∣∣∣2 dν1(z)

which is also finite, since |G′|2 is continuous, Br(κ) is compact and (z + κ)−1 ∈ A2
(m)

implies (z + κ)−2 ∈ A2
ν1

. If n > 1, then∫
C+

∣∣G(n)
∣∣2 dνn =

∫
Br(κ)

∣∣G(n)
∣∣2 dνn

+

∫
C+\Br(κ)

∣∣∣∣∣
n∑
k=0

(
n

k

)
F (n−k)(z)

(
z + κ

z − κ

)(k)
∣∣∣∣∣
2

dνn(z)

/
∫
Br(κ)

∣∣G(n)
∣∣2 dνn +

n−1∑
k=1

∥∥F (n−k)
∥∥2

A2
νn−k

+ ‖F‖2
H∞(C+)

∥∥(z + κ)−n
∥∥2

A2
νn

<∞.

Therefore, in either case, G ∈ A2
(m). Let

H := −(1 + z)(1 + κ)

2(z + κ)︸ ︷︷ ︸
∈M (A2

(m)
)

G ∈ A2
(m).

Then

ϕ(F ) = ϕ

(
1− z
1 + z

− c
)
ϕ(H) = 0. (3.15)

Let h ∈M (A2
(m)) be such that h(κ) = 0. Then h(z)/(z + 1) lies in A2

(m) and vanishes at

κ, so

0
(3.15)
= ϕ

(
h

z + 1

)
= ϕ(h)ϕ

(
1

1 + z

)
=
ϕ(h)

2
ϕ

(
1− z
1 + z

+ 1

)
= ϕ(h)

c+ 1

2
,

so ϕ must in fact be the evaluation homomorphism, proving injectivity. For the remaining

part, let ∆ := (π|D)−1(D). Then π maps ∆ homeomorphically onto D, since the topology
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of ∆ is the weak topology defined by Gel’fand transforms of functions from M (A2
(m)),

and the topology of D is the weak topology defined by bounded functions in M (A2
(m)).

2

This theorem shows the existence of an analytic disk in M(M (A2
(m))). It is a natural

question to ask whether this disk is dense therein, or in other words, does the Corona

Theorem hold in this setting. Dictatum erat, Lennart Carleson had proved the Corona

Theorem for M(H∞) = M(M (B2
α)), α ≥ −1. The Corona Theorem is valid for M (D)

too (see [100]), but whether it is also the case for M (A2
(m)) still remains to be established.

3.2 Weighted composition operators

Weighted composition operators for Hardy spaces Hp have been discussed for example

in [26] and [42], for weighted Bergman spaces B2
α, α ≥ −1 in [41] and [68], for

the Dirichlet space D in [23] and for weighted Hardy spaces H(β) in [22]. This last

reference also includes a discussion on weighted composition operators for Zen spaces,

which was continued in [67], and we present some of the results from that paper here and

in the next section. We also outline some minor, partial extensions to Ap(C+, (νn)∞n=0)

space, which have not been published yet.

Throughout this section we assume that h : C+ −→ C and ϕ : C+ −→ C+ are analytic

functions.
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3.2.1 Bergman kernels, Carleson measures and boundedness of

weighted composition operators

In [26] M. D. Contreras and A. G. Hernández-Dı́az gave a necessary and sufficient

condition for a weighted composition operator Wh,ϕ to be bounded on Hp. We modify

their proof to show that a similar condition also characterises the boundedness of weighted

composition operators for Zen spaces.

Lemma 3.2.1 Let ν be a positive Borel measure on C+ and let g be a non-negative

measurable function on C+. Then∫
C+

g dµν, h, ϕ, p =

∫
C+

|h|p(g ◦ ϕ) dν, (3.16)

where µν, h, ϕ, p is given by

µν, h, ϕ, p(E) =

∫
ϕ−1(E)

|h|p dν, (3.17)

for each Borel set E ⊆ C+.

Proof

Let (Ei)i be a countable collection of disjoint Borel subsets of C+ such that
⋃
iEi = C+

and suppose that g(z) =
∑

i ciχEi(z) is a simple non-negative measurable function. Then∫
C+

g dµν, h, ϕ, p =
∑
i

ciµν, h, ϕ, p(Ei)

(3.17)
=
∑
i

ci

∫
ϕ−1(Ei)

|h|p dν

=
∑
i

ci

∫
C+

|h|pχϕ−1(Ei) dν

=

∫
C+

|h|p
∑
i

ciχϕ−1(Ei) dν

=

∫
C+

|h|p(g ◦ ϕ) dν.
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If g is not simple, then we can find a sequence of simple functions such that

0 ≤ g0(z) ≤ g1(z) ≤ . . . ≤ gn(z) ≤ . . . (∀z ∈ C+),

which converges to g pointwise for each z ∈ C+, and thus, by Lebesgue’s Monotone

Convergence Theorem (1.26, p. 21 in [90])

lim
n→∞

∫
C+

gn dµν, h, ϕ, p =

∫
C+

g dµν, h, ϕ, p.

And similarly, (|h(z)|p(gn ◦ ϕ)(z))∞n=0 is a non-decreasing sequence of non-negative

measurable functions converging pointwise to |h(z)|p(g ◦ ϕ)(z), for each z ∈ C+, such

that

lim
n→∞

∫
C+

|h|p(gn ◦ ϕ) dν =

∫
C+

|h|p(g ◦ ϕ) dν,

from which the desired result follows easily. 2

For the rest of this section we assume that ν̃({0}) = ν̃0({0}) = ν̃1({0}) = 0.

Theorem 3.2.2 The weighted composition operator Wh, ϕ is bounded on a Zen space Apν

if and only if µν, h, ϕ, p is a Carleson measure for Apν .

Proof

Given F ∈ Apν , by the previous lemma (applied with g = |F |p), we get∫
C+

|h · (F ◦ ϕ)|p dν (3.16)
=

∫
C+

|F |p dµν, h, ϕ, p ≤ C

∫
C+

|F |p dν

(for some C > 0, not depending on F ), if and only if µν, h, ϕ, p is a Carleson measure for

Apν , or equivalently if and only if Wh, ϕ is bounded on Apν . 2

An analogous condition in case when ν̃({0}) > 0 is given in Theorem 2.2, p. 227 in [26].

From Lemma 3.2.1 we can also deduce a partial result for Ap(C+, (ν0, ν1)).
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Corollary 3.2.3 If µν0, h, ϕ, p and µν1, h′, ϕ, p are both Carleson measures for Apν0
, and

µν1, hϕ′, ϕ, p is a Carleson measure for Apν1
, then Wh, ϕ is bounded on Ap(C+, (ν0, ν1)).

Proof

It follows from the fact that

‖Wh, ϕF‖pAp(C+, (ν0, ν1)) =

∫
C+

|h · (F ◦ ϕ)|p dν0 +

∫
C+

|h′ · (F ◦ ϕ) + hϕ′ · (F ′ ◦ ϕ)|p dν1

≤
∫
C+

|F |p dµν0, h, ϕ, p + 2p−1

∫
C+

|F |p dµν1, h′, ϕ, p

+ 2p−1

∫
C+

|F ′|p dµν1, hϕ′, ϕ, p.

2

A similar statement can also be given for Ap(C+, (νn)mn=0), for 1 < m < ∞, using

the general Leibniz rule and Faà di Bruno’s formula (see [40]).

Theorem 3.2.4 The weighted composition operator Wh,ϕ is bounded on a Zen space Apν

if and only if there exists α ≥ −1 such that

Λ(α) := sup
z∈C+

∥∥∥h · (kB2
α(C+)

z ◦ ϕ
)∥∥∥

Apν∥∥∥kB2
α(C+)

z

∥∥∥
Apν

<∞. (3.18)

Proof

By Lemma 1.2.10 we know that there exists α ≥ −1 such that kB
2
α(C+)

z is in Apν , for all

z ∈ C+, and if Wh, ϕ is bounded on Apν , then Λ(α) must be finite. Conversely, if Λ(α)

is finite, for some α ≥ −1, then, by Theorem 2.1, p. 787 from [61], µν, h, ϕ, p must be

a Carleson measure for Apν , and hence, by Lemma 3.2.1, Wh, ϕ must be bounded on Apν .

2
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Remark 3.2.5 If p > 1 and Apν = Bpα(C+) for some α > −1, then, by estimate (2.9), we

have

‖Kα(· z)‖pB2
α(C+) ≤

(
2

Re(z)

)(2+α)p

ν
(
Q(z)

) ∞∑
k=0

(
21+α

2(2+α)p−1

)k
<∞,

and hence we can substitute this index α into the equation (3.18). In this case we have

that Wh, ϕ is bounded on Bp
α(C+) if and only if

sup
z∈C+

∥∥∥h · (kB2
α(C+)

z ◦ ϕ
)∥∥∥
Bpα(C+)∥∥∥kB2

α(C+)
z

∥∥∥
Bpα(C+)

<∞. (3.19)

In particular, if p = 2, then (3.19) is equivalent to

sup
z∈C+

|h(z)|
(

Re(z)

Re(ϕ(z))

)α+2

<∞,

by Lemma 3.0.8.

3.2.2 Causality

Definition 3.2.6 Let w be a positive measurable function on (0, ∞). We say that

A : L2
w(0,∞) −→ L2

w(0, ∞) is a causal operator (or a lower-triangular operator), if

for each T > 0 the closed subspace L2
w(T, ∞) is invariant for A. If there exists α > 0

such AL2
w(T, ∞) ⊆ L2

w(T + α, ∞), for all T > 0, then we say that A is strictly causal.

The following lemma was proved in [22] (Theorem 3.2, p. 1091) for unweighted and

in [66] for weighted L2 spaces on (0, ∞)

Lemma 3.2.7 (Lemma 2 in [67]) Let w be a positive, non-increasing, measurable

function on (0, ∞). Suppose that A : L2
w(0,∞) −→ L2

w(0, ∞) is a causal operator

and D is the operator of multiplication by a strictly positive, monotonically increasing

function d. Then ∥∥D−1AD
∥∥
L2
w(0,∞)

≤ ‖A‖L2
w(0,∞) . (3.20)
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Proof

First, suppose that A is strictly causal for some α > 0. For z ∈ C+ define

Ω(z) = D−zADz, where Dz is the operator of multiplication by the complex function

dz. For each N ∈ N such that N ≥ log2 α let

XN := span
{
ek := χ(k/2N , (k+1)/2N ) : k ∈ Z and 1 ≤ k ≤ 22N

}
be a subspace of L2

w(0, ∞). Clearly,
⋃
N≥log2 α

XN is a dense subspace of L2
w(0, ∞). Let

PN : L2
w(0, ∞) −→ XN denote the orthogonal projection and define ΩN(z) = Ω(z)Pn.

For all 1 ≤ k ≤ 22N , ΩN(z) maps each ek to d−zAdzek and

∥∥d−zAdzek∥∥ ≤ (d( k

2N
+ α

))−Re(z)

‖Adzek‖

≤
(
d

(
k

2N
+ 2−N

))−Re(z)

‖A‖
(
d

(
k + 1

2N

))Re(z)

‖ek‖

≤ ‖A‖‖ek‖,

since d is increasing andA is strictly causal (i.e. Adzek is supported on [k/2N + α, ∞)).

XN is finite dimensional, so ΩN(z) is bounded independently of z, because

‖ΩN(z)‖ ≤ ‖Ω(z)|XN‖. By the maximum principle (also known as Phragmén–Lindelöf

Principle, see 6.2, p. 117 in [89]) we also have that

‖ΩN(1)‖ ≤ sup
Re(z)≥0

‖ΩN(z)‖ ≤ sup
Re(z)=0

‖Ω(z)‖ = ‖A‖,

and the result holds on L2
w(0, ∞), since

⋃
N≥log2 α

XN is a dense set therein.

If A is not strictly causal, then let Sα denote the right shift by α. In this case the operator

SαA is strictly causal and, by the above, we have

‖D−1SαAD‖ ≤ ‖SαA‖ = ‖A‖.

Let dα(t) = d(α + t). Then for each f ∈ L2
w(0, ∞) we have ‖D−1Sα‖ = ‖d−1

α f‖,

and |d−1
α f
√
w| increases to |d−1f

√
w| almost everywhere as α −→ 0, because

the monotonically decreasing function d−1 is continuous almost everywhere, and hence



3.2. WEIGHTED COMPOSITION OPERATORS 83

the result follows from Lebesgue’s Monotone Convergence Theorem. 2

We will say that an operator B : A2
(m) −→ A2

(m) is causal if the the corresponding

isometric operator L−1BL : L2
w(m)

(0, ∞) −→ L2
w(m)

(0, ∞) is causal on L2
w(m)

(0, ∞)

L2
w(0, ∞)L−1BL//

L
��

L2
w(0, ∞)

A2
ν B

// A2
ν

L−1

OO

Theorem 3.2.8 Suppose that the weighted composition operator Wh, ϕ is bounded and

causal on A2
(0). Then there exists α′ ≥ 0 such that for each α ≥ α′ Wh, ϕ is bounded on

the weighted Bergman space B2
α(C+), and

‖Wh, ϕ‖B2
α(C+) ≤ ‖Wh, ϕ‖A2

(0)
. (3.21)

Proof

The first part of this proof is conducted in essentially the same manner as the proof

of Lemma 1.2.2. Let L2
w0

(0, ∞), L2
vα(0, ∞) be the spaces corresponding to A2

(0)

and B2
α(C+) respectively (i.e. vα(t) = 2−αΓ(α + 1)t−α−1). We want to show that√

w0(t)/vα(t) is an increasing function, that is, we must have

w′0(t)vα(t) ≥ w0(t)v′α(t)

−2π

∫
[0,∞)

2xe−2tx dν̃0(x) · Γ(α + 1)

2αtα+1
≥ −2π

∫
[0,∞)

e−2tx dν̃0(x) · Γ(α + 2)

2αtα+2∫
[0,∞)

e−2tx

(
x− α + 1

2t

)
dν̃0(x) ≤ 0.
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Consider the graph:

-

6

x

g(x)

g(x) := e−2xt
(
x− α+1

2t

)

−α+1
2t

α+1
2t

α+2
2t

e−(α+2)

2t

We clearly need to have

−
∫

[0, α+1
2t

)

e−2xt

(
x− α + 1

2t

)
dν̃0(x) ≥

∫
[α+1

2t
,∞)

e−2tx

(
x− α + 1

2t

)
dν̃0(x).

Observe that for α ≥ 0 we have

α + 2

4t
≤ α + 1

2t
. (3.22)

Let R be defined for ν̃0 as in (∆2). Then we have

−
∫

[0, α+1
2t

)

e−2xt

(
x− α + 1

2t

)
dν̃0(x) ≥ ν̃0

([
0,
α + 2

4t

))
α
e−

α+2
2

2t

(∆2)
≥

ν̃0

([
0, α+2

2t

))
2Rt

αe−
α+2

2 ,

and ∫
[α+1

2t
, α+2

2t
)

e−2tx

(
x− α + 1

2t

)
dν̃0(x) ≤ ν̃0

([
α + 1

2t
,
α + 2

2t

))
e−(α+2)

2t

= ν̃0

([
0,
α + 2

2t

))
e−(α+2)

2t

− ν̃0

([
0,
α + 1

2t

))
e−(α+2)

2t

≤
ν̃0

([
0, α+2

2t

))
2Rt

(R− 1)e−(α+2),
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because

−ν̃0

([
0,
α + 1

2t

))
(3.22)
≤ −ν̃0

([
0,
α + 2

4t

))
(∆2)
≤ −

ν̃0

([
0, α+2

2t

))
R

.

And∫
[α+2

2t
,∞)

e−2tx

(
x− α + 1

2t

)
dν̃0(x) ≤

∞∑
n=0

ν̃0

([
2n
α + 2

2t
, 2n+1α + 2

2t

))
·
(
e−2n(α+2) 2n(α + 2)− α− 1

2t

)
(∆2)
≤

ν̃0

([
0, α+2

2t

))
2t

(R− 1)(α + 2)e−(α+2)

·
∞∑
n=0

(
2Re−(α+2)

)n
=
ν̃0

([
0, α+2

2t

))
2t

(R− 1)e−(α+2) α + 2

1− 2Re−(α+2)
.

Collecting these inequalities we get

e−
α+2

2
R− 1

α

(
1 +

R(α + 2)

1− 2Re−(α+2)

)
≤ 1,

which is true for all α ≥ α′, for some α′ sufficiently large. Now, let A be an operator on

L2
vα(0, ∞) induced by Wh, ϕ acting on B2

α(C+), and let D be the isometric operator from

L2
w0

(0, ∞) to L2
vα(0, ∞) of multiplication by

√
w0(t)/vα(t). Consider the following

commutative diagram:

L2
w0

(0, ∞) D //

D−1AD
��

L2
vα(0, ∞)

A
��

L2
w0

(0, ∞) L2
vα(0, ∞)D−1

oo

Therefore, by Lemma 3.2.7, we have

‖Wh, ϕ‖B2
α(C+) = ‖A‖L2

vα (0,∞) =
∥∥D−1AD

∥∥
L2
w0

(0,∞)

(3.20)
≤ ‖A‖L2

w0
(0,∞) = ‖Wh, ϕ‖A2

(0)
,

as required. 2

Using essentially the same strategy we can prove a similar statement for A2
(m) spaces, for

m > 0.
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Theorem 3.2.9 Suppose that Wh, ϕ is causal. If Wh, ϕ is bounded on A2
(m) and for some

α ≥ −1 we have

(1 + α)w(m)(t) + tw′(m)(t) ≥ 0 (∀t > 0), (3.23)

then it is also bounded on B2
α(C+), and

‖Wh, ϕ‖B2
α(C+) ≤ ‖Wh, ϕ‖A2

(m)
. (3.24)

Conversely, if there exists α ≥ −1 such that Wh, ϕ is bounded on B2
α(C+) and

αw(m)(t) + tw′(m)(t) ≤ 0 (∀t > 0), (3.25)

then Wh, ϕ is bounded on A2
(m) and

‖Wh, ϕ‖A2
(m)
≤ ‖Wh, ϕ‖B2

α(C+) . (3.26)

Proof

If there exists α ≥ −1 such that (3.23) holds, then w(m)(t)t
1+α is increasing, and we get

(3.24). Conversely, if (3.25) holds, then (w(m)(t)t
1+α)−1 is increasing, and we get (3.26).

Then the result follows from Lemma 3.2.7. 2

Let a > 0. We define a holomorphic map ψa : C+ −→ C+ by ψa(z) = az, for all z ∈ C+.

Proposition 3.2.10 (Corollary 3.4, p. 1094 in [22]) Let a > 0. If Wh, ϕ is bounded on

H2(C+), then it is also bounded on each A2
(0), and

‖Wh, ϕ‖A2
(0)
≤ ‖Cψa‖A2

(0)
‖Cψ1/a

‖H2(C+)‖Wh,ϕ‖H2(C+). (3.27)

We can use Theorem 3.2.8 to state an inverted version of the above proposition.

Corollary 3.2.11 (Corollary 2 in [67]) Let a > 0. If Wh, ϕ is bounded on some A2
(0)

space, then there exists α′ ≥ 0 such that for all α ≥ α′, we have

‖Wh, ϕ‖B2
α(C+) ≤ ‖Cψa‖B2

α(C+)‖Cψ1/a
‖A2

(0)
‖Wh, ϕ‖A2

(0)
.
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3.3 Composition operators

In this section we assume that ϕ is an analytic self-map of C+. The study of composition

operators goes back to a paper [81] of Eric Nordgren. Composition operators for spaces

of analytic functions on the disk are discussed extensively in [27]. In particular, as

a consequence of the Littlewood subordination principle, every composition operator is

bounded on Hardy spaces H2 on the disk (see Theorem 8.3.2 in [21], p. 220). This

is not the case for Hardy spaces on the complex half-plane. A description of bounded

composition operators for H2(C+) corresponding to a rational symbol ϕ was given in

[36]. In [77] Valentin Matache has shown that a composition operator Cϕ is bounded on

H2(C+) if and only if ϕ has a finite angular derivative at infinity. In [38] Samuel Elliott

and Michael Jury have simplified Matache’s proof and extended the result to Hp(C+),

also showing that if Cϕ is bounded on Hp(C+) then the norm of Cϕ equals the pth

root of the angular derivative of ϕ at infinity. In [37] Sam Elliott and Andrew Wynn

have shown that the condition for Cϕ to be bounded on B2
α(C+), α ≥ −1 is the same

as in the Hardy space case, and derived the expression for its norm. Recently, Riikka

Schroderus has characterised spectra of fractional composition operators on the Hardy

and weighted Bergman spaces of the half-plane (see [92]).

3.3.1 Boundedness

In this section we will cite boundedness conditions from [37] and [38], and will use

the results from the previous section and [22] to show that this conditions remain the same

if we replace weighted Bergman spaces with A2
(0) spaces.

Definition 3.3.1 A sequence of points zn = xn + iyn ∈ C+ is said to approach∞ non-

tangentially if limn−→∞ xn = ∞ and supn∈N |yn|/xn < ∞. We also say that ϕ fixes

infinity non-tangentially if ϕ(zn) −→∞ whenever zn −→∞ non-tangentially, and write
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ϕ(∞) =∞. If it is the case and also the non-tangential limit

lim
z→∞

z

ϕ(z)
(3.28)

exists and is finite, then we say that ϕ has a finite angular derivative at infinity and denote

the above limit by ϕ′(∞).

Proposition 3.3.2 (Julia–Carathéodory Theorem in C+ - Proposition 2.2, p. 491 in [38])

Let ϕ be an analytic self-map on C+. The following are equivalent:

1. ϕ(∞) and ϕ′(∞) exist;

2. supz∈C+
= Re(z)

Re(ϕ(z))
<∞;

3. lim supz→∞ = Re(z)
Re(ϕ(z))

<∞.

Moreover, the quantities in 2. and 3. are both equal to ϕ′(∞).

Theorem 3.3.3 (Theorem 3.1, p. 492 in [38] and Theorem 3.4, p. 377 in [37])

The composition operator Cϕ is bounded on B2
α(C+), α ≥ −1, if and only if ϕ

has finite angular derivative at infinity, in which case

‖Cϕ‖ = (ϕ′(∞))
2+α

2 .

Note that the above boundedness condition can also be deduced from Remark 3.2.5 if

α > −1.

Proposition 3.3.4 (Proposition 3.5, p. 1094 in [22]) Let a > 0 and let ψa(z) = az.

Then

‖Cψa‖A2
(0)

=

√
sup
t>0

w0(at)

aw0(t)
. (3.29)
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In the remaining part of this section we will use the Nevanlinna representation of

a holomorphic function ϕ : C+ −→ C+:

ϕ(z) = az + ib+

∫
R

(
1

it+ z
+

it

1 + t2

)
dµ(t) = az + ib+

∫
R

1 + itz

it+ z

dµ(t)

1 + t2
, (3.30)

where a ≥ 0, b ∈ R and µ is a non-negative Borel measure measure on R satisfying

the following growth condition: ∫
R

dµ(t)

1 + t2
<∞

(see 5.3 in [89], p. 84). Clearly

a = lim
Re(z)→∞

ϕ(Re(z))

Re(z)
.

Theorem 3.3.5 (Theorem 4 in [67]) The composition operator Cϕ is bounded on A2
(0) if

and only if ϕ has a finite angular derivative at infinity. If Cϕ is bounded, then

ϕ′(∞) inf
t>0

w0(t)

w0(ϕ′(∞)t)
≤ ‖Cϕ‖2

A2
(0)
≤ ϕ′(∞) sup

t>0

w0(t/ϕ′(∞))

w0(t)
.

Proof

Suppose, for contradiction, thatCϕ is bounded onA2
(0), but ϕ does not have a finite angular

derivative at infinity. By Proposition 3.3.2 we know that for each n ≥ 1 there must exist

zn ∈ C+ such that
Re(zn)

Re(φ(zn))
> n. (3.31)

Now,

‖C∗ϕ‖2 ≥

∥∥∥∥kA2
(0)

ϕ(zn)

∥∥∥∥2

A2
(0)∥∥∥∥kA2

(0)
zn

∥∥∥∥2

A2
(0)

(1.11), (1.12)
=

∫∞
0

e−2tRe(ϕ(zn))

w0(t)
dt∫∞

0
e−2tRe(zn)

w0(t)
dt

(3.31)
≥
∫∞

0
e−2tRe(zn)/n

w0(t)
dt∫∞

0
e−2tRe(zn)

w0(t)
dt

. (3.32)
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Since w0, qua definitione, is non-increasing, we have that w0(nt) ≤ w0(t), for all n ≥ 1,

and consequently

‖C∗ϕ‖2
(3.32)
≥
∫∞

0
e−2tRe(zn)

w0(nt)
n dt∫∞

0
e−2tRe(zn)

w0(t)
dt
≥ n

∫∞
0

e−2tRe(zn)

w0(t)
dt∫∞

0
e−2tRe(zn)

w0(t)
dt

= n,

for all n ≥ 1, which is absurd, as it contradicts the boundedness of Cϕ. So, if Cϕ is

bounded, then ϕ has a finite angular derivative at infinity and

ϕ′(∞)
defn

= lim
z−→∞

nontangentially

z

ϕ(z)
= lim

Re(z)→∞

Re(z)

ϕ(Re(z))
= a−1,

where 0 < a < ∞ is defined as in (3.30). Conversely, if ϕ has a finite angular derivative

at infinity, then, by Theorem 3.3.3, Cϕ is bounded on the Hardy space H2(C+), and, by

Proposition 3.2.10, we get that it is also bounded on A2
(0) with

‖Cϕ‖A2
(0)
≤ ‖Cψa‖A2

(0)
‖Cψ1/a

‖H2(C+)‖Cϕ‖H2(C+),

where ψa(z) = az. We can evaluate the RHS of this inequality using Theorem 3.3.3 and

Proposition 3.3.4 to get

‖Cϕ‖2
A2

(0)
≤ sup

t>0

w0(at)

aw0(t)
· a · ϕ′(∞) = ϕ′(∞) sup

t>0

w0(t/ϕ′(∞))

w0(t)
.

By Corollary 3.2.11 we also know that if Cϕ is bounded on A2
(0), then there exists α > 0

such that

‖Cϕ‖A2
(0)
≥ ‖Cψa‖B2

α(C+)‖Cψ1/a
‖A2

(0)
‖Cϕ‖A2

(0)
..

Again, we can evaluate the RHS of this inequality using Theorem 3.3.3 and

Proposition 3.3.4 to get

‖Cϕ‖2
A2

(0)
≥ ϕ′(∞)α+2aα+1 inf

t>0

w0(t)

w0(ϕ′(∞)t)
= ϕ′(∞) inf

t>0

w0(t)

w0(ϕ′(∞)t)
.

2
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3.3.2 Compactness

In [76] Valentin Matache has shown that there exist no compact composition operator on

H2(C+). This result was also obtained in [38] and extended to weighted Bergman spaces

on the half-plane in [37]. In this subsection we will show that this is also the case for

general A2
(0) spaces.

Definition 3.3.6 The essential norm of an operator, denoted ‖ · ‖e is the distance in

the operator norm from the set of compact operators (see [11]).

Theorem 3.3.7 (Theorem 5 in [67]) There is no compact composition operator on A2
(0).

Proof

Let Cϕ be a bounded operator on A2
(0). For any δ > 0 we can choose a compact operator

Q such that ‖Cϕ‖e + δ ≥ ‖Cϕ −Q‖. By Lemma 1.2.7, the sequence k
A2

(0)
z /‖k

A2
(0)

z ‖ tends

to 0 weakly, as z approaches infinity, so Q∗
(
k
A2

(0)
z /‖k

A2
(0)

z ‖
)
−→ 0, and consequently

‖Cϕ‖e + δ ≥ ‖Cϕ −Q‖

≥ lim sup
z−→∞

∥∥∥∥(Cϕ −Q)∗k
A2

(0)
z

∥∥∥∥
A2

(0)∥∥∥∥kA2
(0)

z

∥∥∥∥
A2

(0)

= lim sup
z−→∞

∥∥∥∥C∗ϕkA2
(0)

z

∥∥∥∥
A2

(0)∥∥∥∥kA2
(0)

z

∥∥∥∥
A2

(0)

= lim sup
z−→∞

∥∥∥∥kA2
(0)

ϕ(z)

∥∥∥∥
A2

(0)∥∥∥∥kA2
(0)

z

∥∥∥∥
A2

(0)

.
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Suppose, for contradiction, that Cϕ is compact, then the last quantity above must be equal

to 0, and hence the limit of ‖k
A2

(0)

ϕ(z)‖/‖k
A2

(0)
z ‖ exists and is also equal to 0. That is, for each

ε > 0 there exists z0 ∈ C+ such that∥∥∥∥kA2
(0)

ϕ(z)

∥∥∥∥
A2

(0)∥∥∥∥kA2
(0)

z

∥∥∥∥
A2

(0)

(1.11), (1.12)
=

√√√√∫∞0 e−2tRe(ϕ(z))

w0(t)
dt∫∞

0
e−2tRe(z)

w0(t)
dt

< ε, (3.33)

for all z ∈ C+ with |z| ≥ |z0|. Since Cϕ is bounded and

ϕ′(∞) = lim sup
z−→∞

Re(z)

Re(ϕ(z))
,

for any 0 < κ < ϕ′(∞), there exists a sequence (zj)
∞
j=1 with |zj| ≥ |z0|, for all j ≥ 0,

such that
Re(z)

Re(ϕ(z))
> κ,

(
∀z ∈ {zj}∞j=1

)
(3.34)

Let ψ(z) = κz. If z ∈ {zj}∞j=1, then

‖Cψ‖2 ≥

∥∥∥∥kA2
(0)

ψ(ϕ(z))

∥∥∥∥2

A2
(0)∥∥∥∥kA2

(0)

ϕ(z)

∥∥∥∥2

A2
(0)

(1.11), (1.12)
=

∫∞
0

e−2tκRe(ϕ(z))

w0(t)
dt∫∞

0
e−2tRe(ϕ(z))

w0(t)
dt

(3.34)
≥

∫∞
0

e−2 Re(z)

w0(t)
dt∫∞

0
e−2tRe(ϕ(z))

w0(t)
dt

(3.33)
>

1

ε2
,

which is absurd. So ‖Cϕ‖e > 0, and consequently Cϕ is not compact. 2
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Chapter 4

Laplace–Carleson embeddings and

weighted infinite-time admissibility

Nous devons donc envisager l’état présent de l’univers comme l’effet

de son état antérieur et comme la cause de celui qui va suivre.

Une intelligence qui, pour un instant donné, connaı̂trait toutes les forces dont

la nature est animée, et la situation respective des êtres qui la composent,

si d’ailleurs elle était assez vaste pour soumettre ces données à l’Analyse,

embrasserait dans la même formule les mouvements des plus grands corps

de l’univers et ceux du plus léger atome: rien ne serait incertain pour elle

et l’avenir, comme le passé serait présent à ses yeux.1

PIERRE-SIMON DE LAPLACE, 1er marquis de Laplace, Essai philosophique

sur les probabilités
1We may regard the present state of the universe as the effect of its past and the cause of its future.

An intellect which at a certain moment would know all forces that set nature in motion, and all positions

of all items of which nature is composed, if this intellect were also vast enough to submit these data to

analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and

those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past

would be present before its eyes
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As it was hinted at the very beginning of this thesis, the spaces of analytic functions,

which we portrayed in previous chapters, apart from undeniably interesting theoretical

aspects, also possess an important practical attribute. Videlicet, they can be used to test

admissibility of observation and control operators for linear evolution equation systems.

The results presented in this chapter have been published in [66].

4.1 Control and observation operators for semigroups of

linear operators

4.1.1 Semigroups

Definition 4.1.1 Let X be a Banach space, let {Tt}t≥0 ⊆ B(X), and let I denote

the identity operator on X . If

• T0 = I ,

• TtTτ = Tt+τ (∀t, τ ≥ 0),

then forms {Tt}t≥0 a (one parameter) semigroup with respect to the operation of

composition of operators. If we additionally have that

• limt→0+ Ttx = x (∀x ∈ X),

then we call {Tt}t≥0 a strongly continuous semigroup (or C0-semigroup) on X .

Semigroups of linear operators were informally considered for the first time by Joseph-

Louis Lagrange in [69] by considering the expression
∞∑
n=0

tnf (n)(x)

n!
= exp

(
t
d

dt

)
f(x),
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before the theory of linear operators was even invented. Another source of this notion

could be found in Augustin-Louis Cauchy’s Cours d’Analyse [20], Chapitre V, pp. 103-

122, where he considered a functional equation

ϕ(x+ y) = ϕ(x) · ϕ(y).

And last but not least, in the context which is closest to the linear evolution equations

that we consider later, we can also find it in Giuseppe Peano’s solution to the system of

ordinary differential equations with constant coefficients

dx1(t)

dt
= α1,1x1(t) + · · ·+ α1,nxn(t)

...
...

...

dxn(t)

dt
= αn,1x1(t) + · · ·+ αn,nxn(t)

in [86], where the solution was found to be

x(t) = etαx(0),

where

x(t) :=


x1(t)

...

xn(t)

 , α :=


α1,1 · · · α1,n

... . . . ...

αn,1 · · · αn,n

 and etα :=
∞∑
n=0

αntn

n!
,

and, as Peano proved, the series is convergent. In the modern setting, the theory

of semigroups arose from works of Jacques Hadamard [49] and Marshall Stone [96].

The contemporary codification of semigroups can be found for example in [39], [30],

[46] and [85].

Definition 4.1.2 Let {Tt}t≥0 be a semigroup on a Banach space X over the field of

complex numbers. The linear operator A, defined by

D(A) :=

{
x ∈ X : lim

t→0+

Ttx− x
t

exists
}

Ax := lim
t→0+

Ttx− x
t

(∀x ∈ D(A)),
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is called the infinitesimal generator of the semigroup Tt and D(A) is the domain of A.

Infinitesimal generators for one-parameter semigroups were introduced by Carl Einar

Hille in [54] and Kōsaku Yosida in [104].

Example 4.1.3 If A ∈ B(X), then we can define

Tt := etA :=
∞∑
n=0

(tA)n

n!
(∀t ≥ 0). (4.1)

Certainly, this infinite series converges and∥∥etA∥∥ ≤ et‖A‖ (∀t ≥ 0),

so {Tt}t≥0 is a C0-semigroup. We also have that

‖Tt − I‖ = t‖A‖et‖A‖ (4.2)

and ∥∥∥∥Tt − It
− A

∥∥∥∥ ≤ ‖A‖‖Tt − I‖,
so A is the infinitesimal generator for {Tt}t≥0. Semigroups which satisfy (4.2) are called

uniformly continuous semigroups. It can be proved that the only uniformly continuous

semigroups are those defined by (4.1) (see [91], p. 359).

4.1.2 Linear evolution equations

Let A be the infinitesimal generator of a strongly continuous semigroup {Tt}t≥0 and let

X, Y and U be Banach spaces. Consider the following linear system
ẋ(t) = Ax(t) +Bu(t)

x(0) = x0

y(t) = Cx(t),

(4.3)
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where x : [0, ∞) −→ X, y : [0, ∞) −→ Y, u : [0, ∞) −→ U are maps; and

B : U −→ X, C : X −→ Y are (unbounded) operators. The spaces X, Y

and U are called the state, the output and the input spaces respectively, and x(t), y(t) and

u(t) are the state, the output and the input at time t, correspondingly.

Time and change are unquestionably amongst the oldest philosophical conceptions,

which, in Western tradition, can be traced at least to the Presocratics (see [59]). The first

to distinguish between time and change was probably Aristotle in his Physics, Book IV,

Chapters 10-14 (see [8] and [25]). We obviously owe the mathematical foundations of

time-change related concepts to Sir Isaac Newton (see [79]). And even the shortest

description of later developments in this area would certainly be beyond the scope of

this thesis. Observe that if B ≡ 0, then the semigroup property of {Tt}t≥0 forces systems

described by (4.3) to be entirely deterministic (justifying the choice of the quotation at

the beginning of this chapter); something that Newton would surely reject. Without going

into any argument on how realistic this setting is, we would like to point out that even

a professedly probabilistic model such as the unitary time evolution of the individual state

following Schrödinger’s equation

Ψ̇(t) =
−i
~
HΨ(t),

where ~ is the Planck constant and H is a Hamiltonian (see [70], § 1.5, p. 15), evolves

deterministically in the absence of measurement. The modern theory of linear evolution

equations is discussed for example in [93] and [101].

A common minimal assumption is that B ∈ B(U, X−1(A)) (i.e. the Banach space

of bounded linear functionals from U into X−1(A)) and C ∈ B(X1(A), Y ), where

X1(A) denotes D(A) equipped with the graph norm (see [83], p. 19) and X−1(X) is

the completion of X with respect to the norm given by

‖x‖X−1(A) :=
∥∥(βI − A)−1x

∥∥
X
, (∀x ∈ X),

for some fixed β ∈ ρ(A) (see § 2.10, pp. 59-65 in [101]).
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The solution to the system (4.3) has a formal representation

(x(t), y(t)) =

(
Ttx0 +

∫ t

0

Tt−τBu(τ) dτ, CTtx0 + C

∫ t

0

Tt−τBu(τ) dτ

)
(see Proposition 2.6, p. 73 in [74]), which leads us to the notion of admissibility.

4.1.3 Admissibility

In this subsection we assume that A, B, C, D(A), {Tt}t≥0 u, U, x, X, X−1, X1, y, Y

are defined as in the previous subsection.

Definition 4.1.4 Let 1 ≤ p < ∞, and let B ∈ B(U, X−1(A)). The control operator B

is said to be finite-time Lp admissible for {Tt}t≥0 if and only if for some t > 0 we have∫ t

0

Tt−τBu(τ) dτ ∈ X (∀u(t) ∈ Lp([0, ∞), U)),

and consequently there exists a constant mt > 0 such that∥∥∥∥∫ t

0

Tt−τBu(τ) dτ

∥∥∥∥
X

≤ mt‖u‖Lp([0,∞), U) := mt

(∫ ∞
0

‖u(τ)‖pU dτ
) 1

p

for all u(t) ∈ U . If the constant mt can be chosen independently of t > 0, then we say

that B is (infinite-time) Lp-admissible for {Tt}t≥0, in this case there exists a constant

m > 0 such that∥∥∥∥∫ ∞
0

TtBu(t) dt

∥∥∥∥
X

≤ m‖u‖Lp([0,∞), U) (∀u(t) ∈ Lp([0, ∞), U)).

The notion of admissibility for control operators was introduced in [55]. Since then it

has appeared in omnifarious contexts in various publications. Particularly valuable and

concise treaties on this matter are [60] and Chapter 4 in [101].

Definition 4.1.5 Let 1 ≤ p < ∞, let C ∈ (X1(A), Y ), and assume that B = 0.

The observation operator C is said to be finite-time Lp-admissible for {Tt}t≥0 if and
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only if for some t > 0 there exists a constant kt > 0 such that

(∫ t

0

‖CTτx0‖pY dτ
) 1

p

≤ kt‖x0‖X (∀x0 ∈ D(A)).

If kt can be chosen independently of t > 0, then we say that C is (infinite-time) Lp-

admissible. In this case, clearly, there exists m > 0 such that

‖CT·x0‖Lp[(0,∞), Y ] :=

(∫ ∞
0

‖CTtx0‖pY dt
) 1

p

≤ k‖x0‖X (∀x0 ∈ D(A)).

It is clear from these definitions that there is a duality between the admissibility of control

and observation operators. Namely, if X and Y are reflexive Banach spaces (see [72],

p. 219), thenB is an Lp-admissible control operator for a semigroup {Tt}t≥0 if and only if

B∗ is an Lp′-admissible observation for the adjoint semigroup {T∗t}t≥0. This is presented

in [101] (Theorem 4.4.4 in § 4.4, p. 127) for X being a Hilbert space and p = 2, and in

[93] (§ 10.2, pp. 572-576) for general case.

The above definitions can be amended, replacing Lp norms with weighted Lp norms. That

is, the control operator B ∈ B(U, X−1(A)) is said to be (infinite-time) Lpw-admissible for

{Tt}t≥0 if and only if there exists a constant M > 0 such that

∥∥∥∥∫ ∞
0

TtBu(t) dt

∥∥∥∥
X

≤M‖u‖Lpw[(0,∞), U ] :=

(∫ ∞
0

‖u(t)‖pUw(t) dt

) 1
p

,

for all u in U . And similarly, the observation operator C ∈ (X1(A), Y ) is said to be

(infinite-time) Lpw-admissible for {Tt}t≥0 if and only if if there exists a constant K > 0

such that

‖CT·x0‖Lpw[(0,∞), Y ] :=

(∫ ∞
0

‖CTtx0‖pYw(t) dt

) 1
p

≤ K‖x0‖X (∀x0 ∈ D(A)).

Weighted infinite-time admissibility is debated in [48], [103], [62] and [66].
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4.1.4 Laplace–Carleson embeddings and weighted infinite-time

admissibility

Definition 4.1.6 Let 1 ≤ q < ∞, and let X be a Banach space over a field K (real or

complex). A sequence (φn)∞n=0 of vectors in X is called a Schauder basis for X if for all

x ∈ X there exists a unique sequence of scalars (αn)∞n=0 in K such that

x =
∞∑
n=0

αnbn,

with the series converging in the norm of X (see Definition 2.5.5, p. 72 in [82]). If there

exist constants 0 < c ≤ C < ∞ such that for any sequence of scalars (βn)∞n=0 ∈ `q we

have

c

(
∞∑
n=0

|βn|q
) 1

q

≤

∥∥∥∥∥
∞∑
n=0

βnφn

∥∥∥∥∥
X

≤ C

(
∞∑
n=0

|βn|q
) 1

q

,

then we say that (φn)∞n=0 is a q-Riesz basis for X .

For the remaining part of this thesis we assume that A is an infinitesimal generator of

a strongly continuous semigroup {Tt}t≥0 on a Banach space X , with a q-Riesz basis

(φn)∞n=0, consisting of eigenvectors of A, with corresponding eigenvalues (λn)∞n=0, each

of which lies in the open left complex half-plane

C− := {z ∈ C : Re(z) < 0}.

This means that

Ttφn = eλntφn,

(Lemma 1.9, Chapter II, p. 55 in [39]), and that we can identify X with the sequence

space `q. We shall also assume that U = Y = C.

The following two theorems, proved in [62], link admissibility of control and observation

operators with Laplace–Carleson embeddings (that is, Carleson embeddings induced by

the Laplace transform). These results were presented there for weighted L2 spaces and
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unweighted Lp spaces on (0, ∞), but the proofs remain valid for weighted Lp spaces too.

Theorem 4.1.7 (Theorem 2.1, p. 1301 in [62]) Let 1 ≤ p, q < ∞. Let w be

a measurable self-map on (0, ∞), and let B be a bounded linear map from C to X−1(A)

corresponding to the sequence (bk)
∞
k=0. The control operator B is Lpw-admissible for

{Tt}t≥0, that is, there exists a constant m > 0 such that∥∥∥∥∫ ∞
0

TtBu(t) dt

∥∥∥∥
X

≤ m‖u‖Lpw(0,∞)
defn
= m

(∫ ∞
0

|u(t)|pw(t) dt

) 1
p

,

for all u ∈ Lpw(0, ∞), if and only if the Laplace transform induces a continuous mapping

from Lpw(0, ∞) into Lq(C+, µ), where µ is the measure given by
∑∞

k=1 |bk|qδ−λk .

Note that for 1 < p <∞ andX a reflexive Banach space, we can associate the dual space

of Lpw(0, ∞) with Lp
′

w−p′/p
(0, ∞) via the pairing

〈f, g〉 =

∫ ∞
0

f(t)g(t) dt (f ∈ Lpw(0, ∞), g ∈ Lp
′

w−p′/p
(0, ∞)).

Weighted admissibility and duality is presented in [48] (Remark 1.4, p. 2097). The duality

argument there is given in terms of w(t) = tα, but it is easy to see that it remains true for

any weight w.

Theorem 4.1.8 (Theorem 2.2, p. 1301 in [62]) Let C be a bounded linear map from

X1(A) to C. The observation operator C is Lpw-admissible for {Tt}t≥0, that is, there

exists a constant K > 0 such that

‖CT.x‖Lpw(0,∞)

defn
=

(∫ ∞
0

|CTtx(t)|pw(t) dt

)1/p

≤ K‖x‖X (∀x ∈ D(A)),

if and only if the Laplace transform induces a continuous mapping from Lp
′

w−p′/p
(0, ∞)

into Lq
′
(C+, µ), where µ is the measure given by

∑∞
k=1 |ck|q

′
δ−λk , ck := Cφk, for all

k ∈ N, and q′ := q/(q − 1) is the conjugate index of q.
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4.2 Laplace–Carleson embeddings

4.2.1 Carleson measures for Hilbert spaces and weighted

admissibility

The notion of admissibility was originally coined for the state space being a Hilbert

space and p = q = 2 ([55]) . We know (by Theorems 1.1.3 and 4.1.7) that testing

the admissibility criterion in this case is equivalent to testing the Carleson criterion

for the Hardy space H2(C+). In this subsection we will generalise it to weighted L2-

admissibility, using the results from Chapter 2.

Proposition 4.2.1 (Proposition 1 and Corollary 1 in [66]) Let B ∈ B(C, X−1(A)) be

a control operator corresponding to a sequence (bn)∞n=0.

1. The control operator B is L2
w(m)

-admissible if and only if the linear map

(al)
∞
l=0 7−→

(
∞∑
k=0

akbk

∫ ∞
0

Re(et(λk+λl))

w(m)(t)
dt

)∞
l=0

is bounded on `2.

2. If
∞∑
k=0

∞∑
l=0

∣∣∣∣∣bkbl
∫ ∞

0

Re(et(λk+λl))

w(m)(t)
dt

∣∣∣∣∣
2

<∞, (4.4)

then B is L2
w(m)

-admissible.

3. If B is L2
w(m)

-admissible, then there exists a constant C > 0 such that

∑
k∈E

∑
l∈E

∣∣∣∣∣bkbl
∫ ∞

0

Re(et(λk+λl))

w(m)(t)
dt

∣∣∣∣∣
2

≤ C
∑
k∈E

|bk|2,

for all E ⊆ N0.
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Proof

1. This is just Theorem 4.1.7 and Lemma 2.2.1 applied to H = A2
(m),

X = C+ and µ =
∑∞

k=0 |bk|2δ−λk . Note that f ∈ L2(C+, µ) if and only if

(f(−λk)|bk|)∞k=0 = (ak)
∞
k=0, for some (ak)

∞
k=0 ∈ `2.

2. Let (ak)
∞
k=0 ∈ `2. By Cauchy’s inequality we have

∞∑
l=0

|bl|2
∣∣∣∣∣
∞∑
k=0

akbk

∫ ∞
0

Re(et(λk+λl))

w(m)(t)
dt

∣∣∣∣∣
2

Cauchy
≤ ‖(ak)∞k=0‖2

∞∑
l=0

∞∑
k=0

∣∣∣∣∣bkbl
∫ ∞

0

Re(et(λk+λl))

w(m)(t)
dt

∣∣∣∣∣
2

,

so by part 1. we get that B is L2
w(m)

-admissible.

3. This is part 1. applied to χE .

2

In Chapter 3 we have shown that there exist weights w(m) such that the corresponding

spacesA2
(m) are Banach algebras with respect to pointwise multiplication (or, equivalently,

L2
w(m)

(0, ∞) are Banach algebras with respect to the convolution operation). Thus we can

state the following.

Proposition 4.2.2 (Proposition 2 in [66]) Suppose that L2
w(m)

(0, ∞) is a Banach

algebra with respect to convolution. If (bk)
∞
k=0 ∈ `2, then the control operator B is

L2
w(m)

-admissible.
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Proof

Using Theorem 3.1.5 we get

∞∑
k=0

∞∑
l=0

∣∣∣∣∣bkbl
∫ ∞

0

Re(et(λk+λl))

w(m)(t)
dt

∣∣∣∣∣
2

≤
∞∑
k=0

∞∑
l=0

∣∣∣∣∣bkbl
∫ ∞

0

et(λk+λl)

w(m)(t)
dt

∣∣∣∣∣
2

Schwarz
≤

(
∞∑
k=0

|bk|2
∫ ∞

0

e2tRe(λk)

w(m)(t)
dt

)2

(3.8)
≤ ‖(bk)∞k=0‖4

`2 <∞,

and the result follows by part 2. of the previous proposition. 2

4.2.2 Laplace–Carleson embeddings for sectorial measures

Testing the boundedness of a Laplace–Carleson embedding for arbitrary 1 ≤ p, q < ∞

is generally very difficult. Nonetheless, we can obtain some partial results, if we impose

some conditions on the support of the measure we are testing.

Proposition 4.2.3 (Proposition 3 in [66]) Let 1 < p < ∞, 1 ≤ q < ∞, let w be

a measurable self-map on (0, ∞), and suppose that µ be a positive Borel measure

supported on (0, ∞). If the Laplace–Carleson embedding

L : Lpw(0, ∞) ↪→ Lq(C+, µ)

is well-defined and bounded, then there exists C(µ) > 0 such that

µ(I) ≤ C(µ)

(∫ ∞
0

e−|I|p
′t

w
1
p−1 (t)

dt

)− q
p′

,

for all intervals I = (0, |I|], provided that the integral on the right exists.
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Proof

Let 0 < x ≤ |I| and a > 0. Then∣∣∣∣∣L
[

e−·a

w
1
p−1 (·)

]
(x)

∣∣∣∣∣ defn

=

∫ ∞
0

e−t(a+x)

w
1
p−1 (t)

dt ≥
∫ ∞

0

e−t(a+|I|)

w
1
p−1 (t)

dt. (4.5)

And hence

µ(I)
(4.5)
≤

(∫ ∞
0

e−t(a+|I|)

w
1
p−1 (t)

dt

)−q ∫
I

∣∣∣∣∣L
[

e−·a

w
1
p−1 (·)

]
(x)

∣∣∣∣∣
q

dµ(x)

≤

(∫ ∞
0

e−t(a+|I|)

w
1
p−1 (t)

dt

)−q ∫
C+

∣∣∣∣∣L
[

e−·a

w
1
p−1 (·)

]
(x)

∣∣∣∣∣
q

dµ(x)

≤ C

(∫ ∞
0

e−t(a+|I|)

w
1
p−1 (t)

dt

)−q ∥∥∥∥∥ e−·a

w
1
p−1 (·)

∥∥∥∥∥
q

Lpw(0,∞)

= C

(∫ ∞
0

e−t(a+|I|)

w
1
p−1 (t)

dt

)−q(∫ ∞
0

e−apt

w
p
p−1 (t)

w(t) dt

) q
p

= C

(∫ ∞
0

e−t(a+|I|)

w
1
p−1 (t)

dt

)−q(∫ ∞
0

e−apt

w
1
p−1 (t)

dt

) q
p

,

where C > 0 is the constant from the Laplace–Carleson embedding. Choosing

a = |I|/(p− 1) gives us the desired result. 2

Theorem 4.2.4 (Theorem 5 in [66]) Given 0 < a ≤ b <∞, let

S(a, b] := {z ∈ C+ : a < Re(z) ≤ b}.

If there exists a partition

P : 0 < . . . ≤ x−n ≤ . . . ≤ x−1 ≤ x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . (n ∈ N)

of (0, ∞) and a sequence (cn) ∈ `1
Z (the `1 sequence space indexed with Z) such that

µ(S(xn, xn+1]) ≤ |cn|

(∫ ∞
0

e−p
′txn

w
1
p−1 (t)

dt

)− q
p′

(∀n ∈ Z),
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then the Laplace–Carleson embedding

L : Lpw(0, ∞) ↪→ Lq(C+, µ)

is well-defined and bounded.

Proof

For anyz ∈ S(xk, xk+1] and f ∈ Lpw(0, ∞) we have

|Lf(z)| ≤
∫ ∞

0

e−txn|f(t)| dt
Hölder
≤

(∫ ∞
0

e−p
′txn

w
1
p−1 (t)

dt

) 1
p′

‖f‖Lpw(0,∞), (4.6)

so ∫
C+

|Lf |q dµ
(4.6)
≤ ‖f‖q

Lpw(0,∞)

∞∑
n=−∞

(∫ ∞
0

e−p
′txn

w
1
p−1 (t)

dt

) q
p′

µ(S(xn, xn+1])

≤ ‖(cn)‖`1Z‖f‖
q
Lpw(0,∞)

.

2

Definition 4.2.5 Let 1 ≤ p ≤ ∞, and let f ∈ Lp(R). We define the maximal function of

f to be

Mf(x) := sup
r>0

1

2r

∫
|y|≤r
|f(x− y)| dy.

The maximal function of f is finite almost everywhere (Theorem 1, § 3.1 in [95]). This

theorem also states that

‖Mf‖Lp(0,∞) / ‖f‖Lp(0,∞) (∀f ∈ Lp(R)). (4.7)

Lemma 4.2.6 (Lemma 1 in [66]) Let 1 ≤ p < ∞, and let f ∈ Lpw(0, ∞). Then for all

x > 0 and any partition

P : 0 ≤ . . . ≤ t−k ≤ . . . ≤ t0 = 1 ≤ t1 ≤ . . . ≤ tk ≤ . . . (k ∈ N0)
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of (0, ∞), with infk∈N t−k = 0, we have∫ ∞
0

e−
t
x |f(t)| dt ≤ Θ(P,w, x)xMg(x), (4.8)

where

g(t) =

w
1/p(t)f(t), if t > 0

0 if t ≤ 0,

g ∈ Lp(R), and

Θ(P,w, x) = 2

[
−1∑

k=−∞

e−t
∗
k

w
1
p (t∗kx)

(1− tk) +
∞∑
k=0

e−t
∗
k

w
1
p (t∗kx)

(tk+1 − 1)

]
,

where each t∗k is such that

e−t
∗
k

w
1
p (t∗kx)

≥ e−t

w
1
p (tx)

(∀t ∈ (tk, tk+1)).

Proof

Let rk := max {|1− tk|, |1− tk+1|}, for each k. Given x > 0, we have∫ ∞
0

e−
t
x |f(t)| dt = x

∫ ∞
0

e−t|f(tx)| dt ≤ x
∞∑

k=−∞

e−t
∗
k

w
1
p (t∗kx)

∫ tk+1

tk

|g(tx)| dt

=
∞∑

k=−∞

e−t
∗
k

w
1
p (t∗kx)

∫ (1−tk)x

(1−tk+1)x

|g(x− y)| dy

≤
∞∑

k=−∞

e−t
∗
k

w
1
p (t∗kx)

rkx

rkx

∫
|y|≤rkx

|g(x− y)| dy

≤ 2

[
∞∑

k=−∞

e−t
∗
k

w
1
p (t∗kx)

rk

]
xMg(x).

To get the required result, note that if k ≤ −1, then tk+1 ≤ t0 = 1, and hence

1− tk ≥ 1− tk+1 ≥ 0 =⇒ rk = |1− tk| = 1− tk,
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otherwise tk+1 > 1, so tk ≥ 1, and thus

0 ≥ 1− tk ≥ 1− tk+1 =⇒ rk = |1− tk+1| = tk+1 − 1.

2

The following theorem has been proved in [61] (Theorem 3.3, p. 801) for the unweighted

Lp(0, ∞) case and in [66] for the weighted case.

Theorem 4.2.7 (Theorem 6 in [66]) Let 1 < p ≤ q < ∞, let µ be a positive Borel

measure on C+ supported only inside the sector

S(θ) := {z ∈ C+ : | arg(z)| < θ},

for some 0 ≤ θ < π/2, and let α < p− 1. For an interval I = (0, |I|) ⊂ R we define

∆I := {z ∈ S(θ) : Re(z) ≤ |I|} .

The Laplace–Carleson embedding

L : Lptα(0, ∞) ↪→ Lq(C+, µ)

is well-defined and bounded if and only if there exists a constant C(µ) > 0 such that

µ(∆I) ≤ C(µ)|I|
q
p′ (1− α

p−1), (4.9)

for all intervals I = (0, |I|) ⊂ R.

Proof

Suppose first that (4.9) holds. Let

Tn :=
{
z ∈ S(θ) : 2n−1 < Re(z) ≤ 2n

}
⊂ ∆(0, 2n) (n ∈ Z),
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and let also xn = 2−n+1. Clearly

S(θ) =
⋃
n∈Z

Tn and µ(Tn) ≤ µ(∆(0, 2n))
(4.9)
≤ C(µ)x

− q
p′ (1− α

p−1)
n .

By the previous lemma we have that

|Lf(z)| ≤
∫ ∞

0

e−
t
xn |f(t)| dt

(4.8)
≤ Θ(P, tα, xn)xnMg(xn), (4.10)

for all z ∈ Tn (Θ and g are defined as in Lemma 4.2.6). Note that the choice of t∗k does

not depend on xn, since

e−t
∗
k

(t∗kxn)
α
p

≥ e−t

(txn)
α
p

∀t ∈ (tk, tk+1) ⇐⇒ e−t
∗
k

(t∗k)
α
p

≥ e−t

t
α
p

∀t ∈ (tk, tk+1),

and there exists a partition P of (0, ∞), for which Θ(P, tα, xn) converges (since α < p),

so, fixing P , we can setDΘ := x
α
p
n Θ(P, tα, xn), which, by the definition of Θ, is a constant

depending on P and α only. Thus we have∫
S(θ)

|Lf |q dµ
(4.10)
≤ DΘ

∞∑
n=−∞

(
x

1−α
p

n Mg(xn)
)q
µ(Tn)

≤ C(µ)DΘ

∞∑
n=−∞

x
q(1−α

p )− q
p′ (1− α

p−1)
n Mg(xn)q

= C(µ)DΘ

∞∑
n=−∞

x
q
(

1−α
p
− 1
p′+

α
p

)
n Mg(xn)q

= C(µ)DΘ

∞∑
n=−∞

(xnMg(xn)p)
q
p

≤ C(µ)DΘ

(
∞∑

n=−∞

xnMg(xn)p

) q
p

(4.7)
/ ‖g‖qLp(0,∞)

= ‖f‖q
Lptα (0,∞)

.

Now suppose that the converse is true. For each z ∈ ∆I we have |z| ≤ |I| sec(θ), so∣∣∣∣L [e−|I| sec(θ)t

t
α
p−1

]
(z)

∣∣∣∣ =
Γ
(

1− α
p−1

)
|z + |I| sec(θ)|1−

α
p−1

≥
Γ
(

1− α
p−1

)
(2|I| sec(θ))1− α

p−1

.
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And therefore we have

µ(∆I) / |I|q(1− α
p−1)

∫
S(θ)

∣∣∣∣L [e−|I| sec(θ)t

t
α
p−1

]
(z)

∣∣∣∣q dµ(z)

/ |I|q(1− α
p−1)

∥∥∥∥e−|I| sec(θ)t

t
α
p−1

∥∥∥∥q
Lptα (0,∞)

= |I|q(1− α
p−1)

(∫ ∞
0

e−|I|p sec(θ)t

t
α
p−1

dt

) q
p

/ |I|q(1− α
p−1)|I|−

q
p(1− α

p−1)

= |I|
q
p′ (1− α

p−1),

as required. 2

Corollary 4.2.8 (Corollary 2 in [66]) Let 1 < p ≤ q < ∞, let µ be a positive Borel

measure on C+ supported only inside the sector S(θ), 0 ≤ θ < π/2. Suppose that

sup
t>0

tα

w(t)
<∞,

for some α < p − 1. If, for some family of intervals (In)n∈Z = ((0, 2n|I0|))n∈Z, there

exists a constant C(µ) > 0 such that

µ(∆In) ≤ C(µ)(|In|)
q
p′ (1− α

p−1) (∀n ∈ Z),

then the Laplace–Carleson embedding

L : Lpw(0, ∞) −→ Lq(C+, µ)

is well-defined and bounded.

Proof

By the previous theorem we get that∫
S(θ)

|Lf |q dµ / ‖f‖q
Lptα (0,∞)

≤
(

sup
t>0

tα

w(t)

) q
p

‖f‖q
Lpw(0,∞)

.

2
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Corollary 4.2.9 (Corollary 3 in [66]) Let B and µ be defined as in Theorem 4.1.7, let

1 < p ≤ q <∞ and α < p− 1, and suppose that there exists 0 < θ < π/2 such that

Im(−λk) < Re(−λk) tan θ (∀k ∈ N).

Then the control operator B is Lptα-admissible if and only if there exists a constant

C(µ) > 0 such that

∑
k∈E

|bk|q ≤ C(µ) max
k∈E

[Re(−λk)]
q
p′ (1− α

p−1) (∀E ⊆ N).

Example 4.2.10 Consider the following one-dimensional heat PDE on the interval [0, 1]:

∂z
∂t

(ζ, t) = ∂2z
∂ζ2 (ζ, t)

∂z
∂ζ

(0, t) = 0

∂z
∂ζ

(1, t) = u(t)

z(ζ, 0) = z0(ζ)

ζ ∈ (0, 1), t ≥ 0.

According to Example 3.6 in [62], this system can be expressed in the form (4.3) with

X = `2, Aen = −n2π2en (where (en) is the canonical basis for `2), and bn = 1, for

each n ∈ N. For 1 < p ≤ 2 and α < p− 1, by the previous corollary, we know that B is

Lptα-admissible if and only if p ≥ 4
3
(α + 1).

4.2.3 Sectorial Carleson measures for A2
(m) spaces

Using methods similar to those used in the previous subsection, we could find a sufficient

condition for a sectorial measure to be Carleson for an A2
(m) space.

Theorem 4.2.11 (Theorem 7 in [66]) Let µ be a positive Borel measure supported only

in the sector S(θ), 0 < θ < π/2. If there exists an interval I ⊂ iR, centred at 0, and
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a constant C(µ) > 0 such that

µ
(
Q(2k|I|)

)
≤ C(µ)

(ν0

(
Q(2k|I|)

))− 1
2 +

(
m∑
n=0

νn
(
Q(2k|I|)

)
(2k|I|)2n

)− 1
2

−2

, (4.11)

for all k ∈ Z, then µ is a Carleson measure for A2
(m).

Proof

For all t, x > 0 we have

w(m)(tx)
defn

= 2π
m∑
n=0

(tx)2n

∫ ∞
0

e−2rtx dν̃n(r)

≥ 2π
m∑
n=0

t2n22n
(x

2

)2n

e−tν̃n

[
0,

1

2x

)
≥ 2π

m∑
n=0

t2n
(x

2

)2n

e−t
ν̃n
[
0, 2

x

)
R2
n

,

where each Rn is the supremum obtained from the (∆2)-condition, corresponding to ν̃n.

Clearly, we have that

w(m)(tx) ≥ 2πe−t
ν̃0

[
0, 2

x

)
R2

0

, (∀t, x > 0),

and

w(m)(tx) ≥ 2π
m∑
n=0

(x
2

)2n

e−t
ν̃n
[
0, 2

x

)
R2
n

, (∀x > 0, t ≥ 1).

Let

P : 0 = . . . = t−k = . . . = t−1 < t0 = 1 ≤ t1 ≤ . . . ≤ tk ≤ . . . , (k ∈ N),

be a partition of [0, ∞), and let xk = 2−k+1|I|−1, k ∈ Z. Then

Θ(P, w(m), xk)
defn

= 2

[
e−t

∗
−1√

w(m)(t∗−1xk)
+
∞∑
l=0

e−t
∗
l√

w(m)(t∗l xk)
(tl+1 − 1)

]

≤
√

2

π

 R0√
ν̃0

[
0, 2

xk

) +

∑∞
l=0 e

− tl
2 tl+1√∑m

n=0

(
xk
2

)2n ν̃n
[
0, 2
xk

)
R2
n

 .
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And by Lemma 4.2.6 we get that for any z ∈ Tk

|Lf(z)| ≤
√

2

π

 R0√
ν̃0

[
0, 2

xk

) +

∑∞
l=0 e

− tl
2 tl+1√∑m

n=0

(
xk
2

)2n ν̃n
[
0, 2
xk

)
R2
n

xkMg(xk)

=

√
2

π

 R0√
1
xk
ν̃0

[
0, 2

xk

) +

∑∞
l=0 e

− tl
2 tl+1√∑m

n=0

(
xk
2

)2n−1 ν̃n
[
0, 2
xk

)
R2
n

√xkMg(xk)

/

(ν0

(
Q(2k|I|)

))− 1
2 +

(
m∑
n=0

νn
(
Q(2k|I|)

)
(2k|I|)2n

)− 1
2

√xkMg(x),

so for any Lf = F ∈ A2
(m) we have∫

C+

|F |2 dµ =

∫
S(θ)

|Lf |2 dµ /
∞∑

k=−∞

xk(Mg(xk))
2 / ‖f‖2

L2
w(m)

(0,∞) = ‖F‖2
A2

(m)
,

as required. 2
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Appendix

A Index of notation

=: - the LHS is defined to be the RHS
defn

= - the equality between the LHS and the RHS follows from the definition
P
= /

P

≤ - the equality/inequality follows from the property P

/ - the LHS is less than or equal to the RHS up to a constant factor, not depending on

variables on either side of the inequality

N - set of positive integers; counting numbers, i.e. {1, 2, 3, . . .}

N0 - set of non-negative integers; natural numbers, i.e. {0, 1, 2, . . .}

Z - set of integers; whole numbers, i.e. {. . . , −1, 0, 1, . . .}

R - set of real numbers; real line

C - set of complex numbers; complex plane

A2
(m) - pp. 11, 31

Apν - Zen space, pp. 3, 30

Ap(C+, (νn)mn=0) - pp. 8, 31

Apµ(C+, (νr)r∈M) - pp. 27, 32

A p
m - p. 68

B(·, ·) - beta function, p. 18
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Br(z) - open ball in C, centred at z, with radius r > 0, p. 48

Br(z) - closed ball in C, centred at z, with radius r > 0, p. 75

B2 - (unweighted Hilbert) Bergman space on the open unit disk of the complex plane,

p. 21

B2
α - weighted (Hilbert) Bergman space on the open unit disk of the complex plane, p. 18

B2(C+) - (unweighted Hilbert) Bergman space on the open right complex half-plane,

pp. 22, 30

Bpα(C+) - weighted Bergman space on the open right complex half-plane, pp. 3, 30

B(U) - Banach algebra of bounded linear operators on a Banach space U , p. 60

B(X, Y ) - Banach space of bounded linear functionals from a Banach space X to

a Banach space Y , p. 97

C0-semigroup - strongly continuous semigroup, p. 94

Cϕ - composition operator corresponding to symbol ϕ, p. ??

CM(B) - set of Carleson measures for a Banach space B, p. 34

‖ · ‖CM(B) - p. 34

C0(iR) - vector space of functions continuous on iR and vanishing at infinity, p. 66

C+ - open right complex half-plane, p. 2

C+ - p. 3

χ(E) - characteristic function of a set E, p. 40

dH(z1, z2) - (Poincaré) hyperbolic right half-plane distance, p. 46

D(A) - domain of an infinitesimal generator A, p. 95

D(·) - Dirichlet integral on the open unit disk of the complex plane, p. 21

D(·, ·) - Dirichlet semi-inner product, p. 21

D - (classical) Dirichlet space on the open unit disk of the complex plane, p. 21

Dα - weighted Dirichlet space on the open unit disk of the complex plane, p. 22

D(C+) - (unweighted) Dirichlet space on the open right complex half-plane, pp. 11, 22, 31

Dα(C+) - weighted Dirichlet space on the open right complex half-plane, pp. 25, 31

D′(C+) - (unweighted) variant Dirichlet space on the open right complex half-plane,



A. INDEX OF NOTATION 117

pp. 23, 31

D′α(C+) - weighted variant Dirichlet space on the open right complex half-plane,

pp. 23, 31

D - open unit disk of the complex plane, p. 1

D - closed unit disk of the complex plane, p. 74

δn - Dirac delta measure in n, pp. 3, 27

∆2 - p. 3

∆I - p. 108 ‖ · ‖e - essential norm of a bounded operator, p. 91

Ex - evaluation functional at x, p. 11

F - Fourier transform, p. 7

ϕ′(∞) - finite angular derivative of ϕ at infinity, p. 88

Γ(·) - gamma function, p. 17

Γ(·, ·) - upper incomplete gamma function, p. 22

H2 - (Hilbert) Hardy space on the open unit disk of the complex plane, p. 18

H2(β) - weighted Hardy space, p. 19

Hp(C+) - Hardy space on the open right complex half-plane, pp. 3, 30

Hr,p(C+) - Hardy–Sobolev space on the open right complex half-plane, pp. 26, 27, 32

H∞ - Hardy space of bounded holomorphic functions on the open unit disk of

the complex plane, p. 34

H∞(C+) - Hardy space of analytic functions bounded on C+, p. 62

IdΩ - identity map on a set Ω, p. 59

I - primitive functional, p. 39

k
A2

(m)
z - pp. 12, 31

k
A2
µ(C+, (νr)r∈M )

z - pp. 27, 32

Kα(·, ·) - Bergman kernels, p. 16

k
B2
α

s - reproducing kernel of the weighted Bergman space on the open unit disk of

the complex plane, p. 19

k
B2
α(C+)

z - reproducing kernel of the weighted Bergman space on the open right complex
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half-plane, pp. 15, 30

kDs - reproducing kernel of the Dirichlet space on the open unit disk of the complex plane,

p. 21

k
D(C+)
z - reproducing kernel of the Dirichlet space on the open right complex half-plane,

pp. 22, 31

k
D′α(C+)
z - reproducing kernel of the weighted variant Dirichlet space on the open right

complex half-plane, pp. 23, 31

kH
2

s - reproducing kernel of the Hardy space on the open unit disk of the complex plane,

p. 19

k
H2(C+)
z - reproducing kernel of the Hardy space on the open right complex half-plane,

pp. 15, 30

k
Hr,2(C+)
z - reproducing kernel of the Hardy–Sobolev space on the open right complex

half-plane, pp. 28, 32

kHx - reproducing kernel, p. 11

Lpw(0, ∞) - weighted Lebesgue function space on the positive real half-line, p. 4

Lp([0, ∞), U) - p. 98

`1
Z - the `1 sequence space indexed with Z, p. 105

L (U, V ) - vector space of all linear maps between vector spaces U and V , p. 59

L - Laplace (integral) transform; Laplace transform induced linear mapping, p. 5

L(n) - pp. 6, 26

λ - Lebesgue measure on iR, p. 3

Mf - maximal function of f ∈ Lp(R), p. 106

Mh - multiplication operator corresponding to symbol h, i.e. Wh,IdΩ
, p. 59

M (U) - algebra of multipliers of a vector space U , p. 59

‖ · ‖M (U) - multiplier norm, p. 60

M(A) - maximal ideal space/character space/carrier space of a commutative algebra A,

i.e. the set of all multiplicative linear functionals/non-zero homomorphisms/characters

on A, p. 73



A. INDEX OF NOTATION 119

µν, h, ϕ, p - p. 78

p′, q′ - conjugate indices of p, q ∈ (1, ∞), i.e. p′ := 1/(p− 1), q′ := 1/(q − 1), p. 40

ψa - p. 86

Q(a) - Carleson square (or Carleson box) centred at a ∈ C+, p. 35

r(a) - spectral radius of a, p. 72

RKHS - reproducing kernel Hilbert space, p. 11

R(k,l)(ζ) - p. 45

ρ(A, a) - resolvent set of an element a of and algebra A, p. 72

S(·) - shadow set, p. 39

S(a, b] - p. 105

S(θ) - p. 108

σ(A, a) - spectrum of an element a of an algebra A, p. 72

T (ζ) - p. 45

{Tt}t≥0 - (one parameter) semigroup of linear operators, p. 94

Θ(P,w, x) - p. 107

Wh, ϕ - weighted composition operator corresponding to symbols h and ϕ, p. 59

w(m) - pp. 8, 31

wµ - pp. 27, 32

wn - pp. 6, 8

x− - predecessor of a vertex x in some ordered tree, p. 39

X−1(A) - p. 97

X1(A) - p. 97
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[58] L. V. HÖRMANDER, Lp Estimates for (Pluri-) Subharmonic Functions,

Mathematica Scandinavica 20, (1967), pp. 65-78.

[59] E. HUSSEY, The Presocratics, Bristol Classical Press (2010).

[60] B. JACOB, J. R. PARTINGTON, Admissibility of Control and Observation Operators

for Semigroups: A Survey, Current Trends in Operator Theory and its Applications,

Operator Theory: Advances and Applications 149, pp. 199-221.



BIBLIOGRAPHY 127

[61] B. JACOB, J. R. PARTINGTON, S. POTT, On Laplace–Carleson embedding

theorems, Journal of Functional Analysis 264 (3), (2013), pp. 783-814.

[62] B. JACOB, J. R. PARTINGTON, S. POTT, Applications of Laplace–Carleson

Embeddings to Admissibility and Controllability, SIAM Journal on Control and

Optimization 52 (2), Society for Industrial and Applied Mathematics (2014),

pp. 1299-1313.

[63] R. KERMAN, E. SAWYER, Carleson measures and multipliers of the Dirichlet-type

spaces, Transactions of the American Mathematical Society 309 (1), (1988), pp. 87-

98.

[64] A. S. KUCIK, Carleson measures for Hilbert spaces of analytic functions on

the complex half-plane, Journal of Mathematical Analysis and Applications 445 (1),

Elsevier (2017), pp. 476-497.

[65] A. S. KUCIK, Multipliers of Hilbert Spaces of Analytic Functions on the Complex

Half-Plane, Operators and Matrices 11 (2), Ele-Math (2017), pp. 435-453.

[66] A. S. KUCIK, Laplace–Carleson embeddings and weighted infinite-time

admissibility, Mathematics of Control, Signals, and Systems (in press), Springer

(2017), available at https://arxiv.org/abs/1606.05479.

[67] A. S. KUCIK, Weighted composition operators on spaces of analytic functions on

the complex half-plane, Complex Analysis and Operator Theory (in press), Springer

(2017), available at http://rdcu.be/s48T.

[68] R. KUMAR, J. R. PARTINGTON, Weighted Composition Operators on Hardy and

Bergman Spaces, Operator Theory - Advances and Applications 153, Birkhäuser
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