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A B S T R A C T

Spinal cord injury (SCI) is characterised by permanent loss of motor

and sensory function. The primary damage from the initial mechan-

ical insult is exacerbated by the secondary patho-physiological cas-

cade. Research into neuroprotective interventions to preserve tissue

and reduce the damage caused by the secondary injury is hampered,

in part, due to a lack of understanding of the link between the biome-

chanics of the primary traumatic injury and the subsequent evolution

of the secondary injury. Hence, there is a need to better understand

the biomechanics of SCI, the distinct injury patterns produced, and

how these affect the evolution of the secondary cascade.

Computational models using finite element methods (FEM) have

been established as a useful tool for investigating SCI biomechanics.

These may be used to obtain data that is difficult or impossible to

capture through in vivo and in vitro experiments, in particular; stress

and strain fields within the neural tissue. However, the complexity of

these models is limited by difficulties. These include: problems cop-

ing with large deformations over short periods of time due to mesh

tangling, difficulties in incorporating the fluid structure interactions,

and scalability issues when attempting to make use of high perfor-

mance computing facilities, utilising large numbers of processors.

This work has involved the creation of a computational spinal cord

injury using the Material Point Method (MPM) and MPMICE (MPM

for Implicit, Continuous Fluid, Eulerian), alternative computational

methods that overcome these limitations. The model incorporates the

neural spinal cord tissue, the dura mater, and the cerebrospinal fluid.

This model has been validated against equivalent experimental and

FEM results. MPM/MPMICE was found to be a viable alternative to

FEM for modelling SCI computationally, with the potential to enable

more complex and anatomically detailed models through the utilisa-

tion of increased parallel computation.
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1
I N T R O D U C T I O N A N D L I T E R AT U R E R E V I E W

1.1 incidence of spinal cord injury

The annual incidence of traumatic spinal cord injury (SCI) ranges

from 11.5 to 53.4 per million population for developed countries [1].

In the South of England the recorded incidence of spinal trauma with

risk of SCI is approximately 16 per million population per year (ap-

proximately 480 people per year based on the current population),

with actual spinal damage occurring in 10-12 people per million per

year (approximately 300-360) [2]. The primary cause of this type of in-

jury is road traffic accidents, followed by occupational and sporting

activities, then by acts of violence (Table 1). Young males comprise the

majority of the victims, the male to female ratio is typically around

4:1, two thirds of victims are below the age of 30 [1]. While this type

of injury affects a relatively small number of people, the effect is on

patients is catastrophic, resulting in permanent loss of motor and sen-

sory function [3]. SCI patients go on to suffer from secondary med-

ical complications, most commonly; pressure ulcers, autonomic dys-

reflexia, pneumonia and atelectasis [4]. The average lifetime medical

expenses incurred by an individual suffering from SCI ranges from

between US$500,000 and US$2,000,000, dependent on the severity of

the injury and subsequent disability [5]. Note that these figures were

published in 1997, the present costs are likely to be higher.

Traumatic spinal injuries often result in damage to the spinal cord

and a complete or partial neurological deficit. Vertebral dislocation

is the most widely observed form of spinal injury, with a prevalence

1



1.1 incidence of spinal cord injury 2

Cause of Injury Incidence (%)

Traffic accidents (motor vehicle, bicycle, pedestrian) 40 – 50
Work 10 – 25
Sports and recreation 10 – 25
Falls 20
Violence 10 – 25

Table 1: Etiology of Adult SCI [1]. These are general figures, causes of SCI
are affected by underlying cultural issues and vary substantially
between countries.

of approximately 45% [6, 7], where the spinal cord is sheared be-

tween adjacent vertebral segments. Vertebral burst fractures, where

bone fragments are forced into the spinal canal, result in initial ax-

ial contusion to the cord, followed by chronic cord compression. This

type of injury is prevalent in between 30-48% of spinal injury cases

in developed countries [7]. Flexion distraction or extension distrac-

tion of vertebrae stretches the spinal cord, subjecting it to excessive

tensile stress. The cord may also be subjected to axial tension result-

ing from distraction injuries. Cord tethering, where the cord is pulled

after becoming tethered to an immobile part of the lower spine, can

contribute to SCI [6]. Transection of the cord may also occur, although

catastrophic, complete transection occurs very rarely [8]. Of these in-

juries, the burst fracture has been the subject of a majority of the

studies using in vitro and computational techniques, as it is a well de-

fined injury and readily recreated experimentally [9–11]. In addition

SCI may also occur as the result of non-traumatic lesions that cause

chronic mechanical compression. Examples include congenital and

developmental disorders such as spinal bifida, rheumatologic and de-

generative conditions such as spondylosis, ossification of the poste-

rior longitudinal ligament, and tumours [12, 13].

The mechanical behaviour of the spinal cord is yet to be fully un-

derstood, particularly where traumatic loading is concerned. In vitro
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studies have utilised human, animal, and synthetic materials that are

mechanically representative of human spinal cord tissues. There is ev-

idence showing significant correlation between the mechanics of the

initial injury and the resultant neurological damage [6, 7, 14–19].

1.2 spinal anatomy

1.2.1 Spinal Vertebral Column

The vertebral column extends from the cranium to the apex of the

coccyx. It is the main component of the axial skeleton, and supports

the weight of the human body superior to the pelvis. The column is

comprised of 33 spinal vertebrae and is subdivided into 5 regions: 7

cervical, 12 thoratic, 5 lumbar, 5 sacral, and 4 coccygeal. Of these, the

upper 33 vertebrae (cervical, thoracic, and lumbar) are articulating

whilst the lower 9 vertebrae (sacral and coccygeal) are fused. Signifi-

cant motion only occurs in the upper 24 vertebrae, movement in the

pre-sacral column is facilitated by semi flexible intervertebral discs,

which join the articulating vertebrae. The sacrum transfers weight

from the vertebral column to the pelvic girdle via the sacroiliac joints.

In addition to its structural role, the vertebral column helps to protect

nerves and the spinal cord [20–22].

The morphology of the spinal vertebrae varies between levels, with

structural differences relating to the load supported. Vertebrae in-

crease in size towards the bottom, reaching maximum size before

the sacrum. A typical vertebrae consists of a vertebral body, vertebral

arch, and seven spinal processes, Figure 1. The vertebral body (ante-

rior) provides strength and supports the spinal cord and the weight

carried by it. The vertebral arch is anchored to the posterior surface

of the vertebral body by two pedicles, forming the lateral pillars, the



1.2 spinal anatomy 4

Figure 1: Illustration showing the anatomy of a human vertebra [23].

roof of the arch is formed by the left and right laminae, which fuse at

the midline. The arches align to form the lateral and posterior walls

of the vertebral foramen, the succession of which form the vertebral

canal, containing the spinal cord, meninges, nerve roots and vessels.

The epidural space, formed between the walls of the vertebral canal

and the the dura mater, which envelops the spinal cord, is filled with

fat and a venous plexus [20–22].

One median spinous process projects posteriorly from the verte-

bral arch, where the laminae meet the pedicle, these typically overlap

with the inferior vertebrae. Two transverse processes extend laterally

from the junctions between the two pedicles and laminae. The me-

dian and transverse processes provide attachment sites for ligaments

and muscle and serve as levers for the action of the muscles against

the vertebrae. Four articular processes also arise from the junction

between the pedicles and the laminae, two superior and two inferior,

these provide articulation sites (facets) with the adjacent vertebrae.

The interlocking of the adjacent articular processes helps to keep the

vertebrae aligned and determines the range of movements permitted

between the neighbouring vertebrae of each region [20–22].
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Figure 2: Diagram showing a transverse section of the medulla spinalis and
its membranes [25].

1.2.2 Meninges

The meninges are a system of protective membranes that envelop

the CNS, consisting of three layers: the pia mater (innermost layer),

arachnoid mater, and dura mater (outermost layer), Figure 2. The pia

mater is a thin layer of fibrous tissue that adheres to the surface of the

spinal cord. Arachnoid mater is a cobweb-like material, interposed

between the pia and dura, it attaches to the inner surface of the dura.

The arachnoid trabeculae, delicate fibres of connective tissue, span

the subarachnoid space and connect the adjacent arachnoid mater

and pia mater. The dura is the tough, fibrous, outermost meningeal

layer, that encloses the brain and spinal cord, it forms a thick tube

around the cord. The subarachnoid space is filled with cerebrospinal

fluid. The cord is suspended within the dural sheath by denticulate

ligaments, running downwards longitudonally, arranged in pairs on

either side. These ligaments are comprised of fibrous sheets of pia

mater, they extend between the anterior and posterior nerve roots,

attaching to the internal surface of the dural sac. The dura and the

cord are anchored to the spinal column via the spinal nerves, two

nerves project from each side of the cord at each level [20, 21, 24].
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1.2.3 Cerebrospinal fluid

Cerebrospinal fluid (CSF) is a clear, colourless, slightly alkaline fluid

with a low specific gravity. Its composition differs from that of blood

plasma, CSF contains no blood cells and, by comparison, there is a

very low concentration of proteins. CSF is continually secreted by the

choroid plexus, a structure of ventricles in the brain, it flows into

the subarachnoid space though the median and lateral apertures of

the fourth ventricle, surrounding the brain and spinal cord, and is

reabsorbed through granulations and specialised villi on the arach-

noid membrane, which project out from the arachnoid membrane.

The CSF provides buoyancy to the brain, reducing its weight and re-

ducing the pressure on nerves and blood vessels. In addition, it has

been shown to protect the brain and spinal cord during impacts [14,

26]. Further to physical protection, the CSF also provides chemical

protection, regulating the extracellular environment for neurons, it

exchanges solutes with the interstitial fluid and removes waste prod-

ucts. Ions and nutrients are transported from the blood to the CSF via

specialised regions in the walls of the ventricles, the osmotic gradient

draws across water along with solutes [20, 22, 24, 27].

1.2.4 Blood brain barrier

The blood brain barrier (BBB) is a functional barrier between the inter-

stitial CNS fluid and the blood. It is not a literal barrier, rather it refers

to the selective permeability of CNS capillaries, which shelter it from

toxins and fluctuations in ion, hormone, and neauroactive substance

levels. The CNS tissue itself effectively creates the BBB, CNS capil-

laries are less permeable than other capillaries. In other epitheliums

the anchoring junctions between endothelial cells leave pores through
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which certain molecules can pass. In the BBB tight junction formation

between endothelial cells of CNS vessels is induced via paracrines

from adjacent astrocytes; astrocytic foot processes surround the cap-

illary. Selected carriers transport materials over the barrier, if a water

soluble molecule is unable to be transported across by a carrier then

it is unable to cross the the BBB. Small lipid soluble molecules (such

as oxygen, carbon dioxide, and ethanol) are able to diffuse through

lipid bilayers, and can cross the BBB. The BBB is lacking in some

small regions, known as the circumventricular organs, including the

posterior pituitary and the medulla oblongata vomiting centre, whose

autonomic regulatory functions require a blood supply in absence of

the BBB [20, 27].

1.2.5 Spinal cord

The central nervous system (CNS) comprises of the spinal cord and

the brain, some classifications also include the optic, auditory, and

olfactory systems. The CNS conducts and interprets signals and pro-

vides excitatory signals to the peripheral nervous system (PNS). The

PNS includes the cranial nerves originating from the brain and from

the spinal cord, and the sensory nerve bodies. The PNS innervates

muscles and transmits signals to and from the spinal cord [28]. Housed

and protected within the spinal vertebral column, the spinal cord is

the primary pathway through which the brain is connected to the

rest of body. The spinal cord begins as an extension of the medulla

oblongata in the brain and extends longitudonally in the cranialcau-

dal direction. The spine is divided into sections, Figure 3, from top

to bottom these are the Cervical, Thoracic, Lumbar, Sacral, and Coxal

sections. Nerves project symmetrically in pairs from each side of the

cord at each level (C.8, T.12, L.5, S.5, Co.1) [24], to innervate each
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side of the body these subdivide into ventral and dorsal roots. Ven-

tral roots conduct motor signals to muscles, glands, etc. from the

spinal cord. Dorsal roots transmit incoming sensory information to

the spinal cord [22]. The spinal cord is composed mainly of dendrites,

axons, and cell bodies, organised into longitudinally oriented tracts of

grey and white matter, Figure 3. The grey matter at the centre of the

cord mostly consists of the cell bodies of excitatory cells, glial cells,

and blood vessels. It is surrounded by white matter, which helps in

insulating and protecting the spinal cord. White matter consists of ax-

ons, astrocytes, dendrocytes, and microglia. The astrocytes contribute

to the blood-nerve barrier that separates the CNS from blood proteins

and cells. Fascicles of axons project from the white matter, through

the bone casing, to the PNS-CNS interface [22, 29]. The cross sectional

area of white matter decreases caudally as there are fewer descend-

ing fibres, more having branched off at the superior levels.The cross

sectional area of grey matter is indicative of the number of neurons

at a spinal level, it is greatest at the levels responsible for supplying

signals to and from the limbs.[20–22, 24, 27, 28].

On a cellular level, the nervous system is comprised of two main

cell types, neurons and neuroglia. Neurons are the main structural

elements and are comprised of the cell body (soma) and its exten-

sions (axons and dendrites). Dendrites transmit electrical signals to

the soma, while axons conduct impulses away. Neuroglia (glial cells)

are support cells that aid the function of neurons, and are more abun-

dant than neurons. In the PNS the auxiliary cells are Schwann cells,

and in the CNS they are astrocytes and myelinating oligodendrocytes.

Axons in the CNS are surrounded by an insulating myelin sheath, cre-

ated by dense wrappings of oligodendrocytes. Myelin plays a crucial

role in nerve function, it increases the propagation velocity of neural

impulses in the axons, which is particularly important for long axons

[24, 27, 29].
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Figure 3: Anatomy of the Human Central System including the brain and
spinal cord, divided into the Cervical, Thoracic, Lumbar, Sacral,
and Coxal sections. Adapted from Human Anatomy Chart [30].

1.3 spinal cord injury

Nerves have a poor capacity for regeneration, as neurons do not

undergo mitosis; however, they are capable of forming new exten-

sions and regenerate severed sections under certain circumstances

[31]. Axon regeneration in the CNS following injury is limited, and

poor at restoring function. Glycoproteins in the extracellular environ-

ment, such as myelin, inhibit axon growth. In the PNS, macrophages,

Schwann cells, and monocytes all work together to promote regener-

ation by removing debris, and leading new axons to their synaptic

targets. In the CNS macrophages infiltrate the site of the injury much

more slowly, inhibited by the blood-spine barrier delaying the clean-

up of myelin debris [32, 33]. In the PNS cell adhesion molecules in the

distant end of the nerve are upregulated, this does not occur in the

CNS and macrophage recruitment is reduced. Astrocytes proliferate

following the injury, becoming reactive astrocytes which contribute
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(a) PNS

(b) CNS

Figure 4: Responses to axotomy (severing of an axon) in the PNS and the
CNS (spinal cord), adapted from [31, 36]. The leftmost diagrams
show the uninjured nerve configurations, the rightmost diagrams
show the post healing nerve configurations. Note that in the CNS
the axon is unable to reach its synaptic target due to the formation
of a glial scar.

to the formation of a glial scar, partially made up from myelin and

cell debris, Figure 4. The neurons that survive the initial injury will

attempt to regenerate axons, but these will be blocked from reaching

their synaptic targets by the glial scar, which inhibits axon growth

and myelination [33, 34]. The formation of cavities and cysts within

the spinal cord can interrupt ascending and descending axonal tracts,

blocking the transmission of neural signals [35].
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1.3.1 Primary and Secondary Injury

Traumatic SCI may be divided into two phases, the primary injury

triggers a secondary pathophysiological cascade. The primary injury

concerns direct injury of neural elements from an initial mechanical

trauma [37]. The spinal cord tissue is subjected to damaging traction

and compressive forces, which may come as a result of displaced

bone and disc material. The initial mechanical insult causes neuron

death, axon and blood vessel damage, and micro-haemorrhaging in

the grey matter. Toxins are released from disrupted cell membranes.

The spinal cord experiences swelling to the limits of the spinal canal,

enacting additional compressive force on the spinal tissue. Ischemia

occurs when the pressure exceeds venous blood pressure, restrict-

ing bloodflow to the affected tissue. Electrolyte shifts, in combination

with toxins from damaged cells, and ischemia, trigger the secondary

injury [13, 38].

The secondary injury occurs over the hours and weeks following

the primary injury. Acute peripheral circulatory failure, hyperperfu-

sion, develops in the grey matter and then spreads to the surrounding

white matter [39], acting to slow or stop axon propagation [13]. The

toxins released during the primary injury damage more cells around

the injury site. Glutamate, in particular, is highly disruptive. It plays

a key role in excitotoxicity, binding in high quantities to receptors

on target neurons leading to excessive neurotransmitter stimulation

inducing an influx of calcium ions, killing the cells [38]. In addition

to furthering neuron death, excitotoxicity has also been found to kill

oligodendrocytes, leading to the demyelination of axons, disrupting

their function [40, 41]. Haemorrhage and calcium ion influx have been

linked to numerous degenerative processes and poor functional out-

comes [6]. In addition to necrosis, studies have also suggested that
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apoptosis occurs on a significant scale, compounding the damage to

CNS tissue. A study in rats found evidence of spinal cord cell apopto-

sis following chronic mechanical cord compression, concluding that

apoptosis may play a role in the pathogenesis of motor paresis re-

sulting from the destruction of spinal cord tissue [12]. Another study

in rats and monkeys found apoptotic cells from 6 hours to 3 weeks,

after the initial time of injury, particularly in the white matter [42].

Oligodendrocyte apoptosis may occur as far as four spinal segments

away from the initial point of injury. Chronic demyelination of axonal

tracts appears to result in part from apoptosis during the secondary

injury phase. CNS injury therefore appears to share some common

features with degenerative diseases such as multiple sclerosis [42].

1.3.2 Investigating SCI biomechanics

Biomechanics is the application of engineering principles in the con-

text of biological systems, commonly the human body [43]. In rela-

tion to SCI biomechanical studies have focussed on the mechanical

aspects of the injury and the effects these have. Treatment strategies

for SCI have largely focus on mitigating the secondary pathological

cascade. There may be a short time window following the infliction

of the primary injury for therapies to reduce the neurological dam-

age resulting from the secondary injury [6, 44]. Most strategies to

date focus on specific pathways of damage in grey and white matter.

Axon disruption in white matter is thought to be the most signifi-

cant contributor to the eventual clinical deficits [18, 45, 46]. While a

wide range of neuroprotective strategies have been investigated, the

clinical translation of these strategies has not significantly improved

patient outcomes [44, 47, 48]. The mechanical behaviour of the spinal

cord is yet to be fully understood, particularly where traumatic load-
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ing is concerned [14]. Progress in SCI treatment is hindered by a lack

of understanding about the biomechanics of spinal cord injuries, the

distinct injury patterns produced, and how these injury patterns af-

fect the evolution of the secondary cascade. There is, therefore, a need

for further investigation into the biomechanics of traumatic SCI.

Different modes of injury have been shown to produce distinctly

different injury patterns. There is evidence showing significant corre-

lation between the initial mechanical injury and the resultant neuro-

logical damage[14]. In vitro cell culture experiments have found trau-

matic neuronal injury is influenced by the loading pattern [49]. In

vitro studies have also utilised human, animal, and synthetic mate-

rials that are mechanically representative of human spinal cord tis-

sues [9, 14]. In vivo injury models using rats have shown distinct

and varied patterns of neural tissue damage for different mecha-

nisms of injury [6, 7, 15, 16, 19]. The pathology of the secondary

injury is extremely complex, and it is likely that successful treat-

ments will require a series of interventions [48]. Bunge and Pearse

recommend that after preventing secondary tissue loss, through the

use of anti-inflammatory and immunomodulatory interventions, re-

generation strategies should focus on the following factors: reduc-

tion of scar formation, diminishing the accumulation of proteogly-

can molecules inhibitory to axonal growth; overcoming additional

inhibitory molecules, including myelin, that can prevent axonal ex-

tension; stimulating damaged nerve cells to regenerate axons; provid-

ing sustenance to the nerve cells separated from their targets; facili-

tating and guiding axonal growth across the site of injury; enabling

formation of new connections and, finally, retraining the nervous sys-

tem to use the therapeutic interventions [48]. While a wide range of

neuroprotective strategies have been investigated [44, 48], the clinical

translation of these strategies has not significantly improved patient

outcomes. Animal models do not represent the full spectrum of SCI
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in humans, additional models are needed to aid the development and

evaluation of new preclinical strategies [6, 50]. Computational mod-

els complement animal and in vitro studies, and allow the capture of

data that is not easily measurable using lab based techniques. Finite

element methods (FEM) of the human spine and spinal cord have

been used to measure stress and strain patterns within the cord itself

[14, 51, 52]. Distinctly different stress and strain patterns in the cord

tissue in response to varying biomechanical injury mechanisms have

been demonstrated [14, 18, 53, 54].

1.3.2.1 Cell Culture Models

Cell culture models have been used to investigate certain aspects of

the biological and mechanical mechanisms involved in traumatic neu-

ronal injury in vitro, this is relevant to both SCI and traumatic brain

injury. Cell culture models have been used to simplify injury mechan-

ics in order to investigate specific cell interactions under specific phys-

iological conditions. Geddes-Klein et al. [49] investigated the cellular

response of CNS tissue to the mechanical injury, using cultured pri-

mary cortical rat neurons [49]. The neurons were cultured in 2D on

an elastic substrate, the substrate was then subjected to uniaxial and

biaxial stretches (of 0, 10, 30, and 50%), imparting a mechanical insult

to the cells. The different loading mechanisms resulted in different re-

sponses in the secondary excitotoxic injury mechanisms, while Ca2+

ion increases were observed in both cases, the increase was substan-

tially larger in the case of biaxial stretch. In the case of the uniaxially

stretched neurons, Ca2+ ion transients were blocked by specific chan-

nel antagonists, whereas a significant Ca2+ ion transient remained

following biaxial stretch. The authors suggested that this increased

Ca2+ ion influx may be due to pores/tears forming in the cell mem-

branes of the biaxially stretched neurons as these cells showed signif-
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icant carboxyfluorescein uptake, a molecule that is usually unable to

penetrate the cell membrane.

Cullen and LaPlaca studied the response of both 2D and 3D cell

culture configurations to high rate mechanical deformation [55]. Pri-

mary cortical rat neurons were cultured in a 3D bioactive matrix, cells

homogeneously dispersed throughout the matrix, and in a monolayer,

sandwiched between two layers of bioactive matrix, a 3D cell shearing

device was then used to apply mechanical deformation. Greater lev-

els of cell death were observed in the 3D culture than the 2D culture.

Computer simulations were used to predict the local cellular strains.

In the 3D culture a heterogeneous strain field was observed, compris-

ing of compressive, shear, and tensile strains. A simpler strain pattern

was observed in the 2D culture, comprised mostly of shear strain. The

results suggest that the susceptibility of neurons to mechanical load-

ing differs between 2D and 3D culture configurations, potentially due

to differences in local cellular strain.

Tissue engineering models can be used to bridge the gap between

cell culture models and animal models [56]. Type-I collagen is the

preferable 3D cell culture material, as it is a major component in the

natural tissues and supports the survival of most cell types [57]. East

et al. developed a 3D tissue model using type-I collagen hydrogels,

which allows cell interactions within the gel to be studied and pro-

vides a tool for investigating astroglial scar response [58]. Phillips

and Brown described a range of techniques using 3D cell seeded

type-I collagen gels, in which the mechanical cues imparted to the

cells can be controlled and manipulated [57]. Key parameters includ-

ing alignment, density, stiffness, and strain, can be controlled, making

it possible to predict and understand the role of mechanical cues on

cell behaviour. These approaches may be used for exploring a wide

range of cellular responses, including those relating to SCI.
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1.3.2.2 In vivo Animal Models

The most widely used contusion method for the experimental study

of SCI to date is based on a technique pioneered by Allen in 1911

[59]. This involves the use of a mechanical device to drop a weight

from height onto the exposed spinal cord dorsal surface of a rat, sim-

ulating a crush injury to the spinal column. The cord is exposed by

performing a laminectomy of the vertebrae corresponding to the sec-

tion of the cord that is to be tested. The height and drop-weight

properties are controlled variables that produce a predicable force,

quantifying the dynamics of the injury, allowing reproducible injuries

to the spinal cord to be produced experimentally [16, 59]. However,

post traumatic neurological examination of animals injured in this

way have shown substantial variation in their results, which appears

to be caused by variation in uncontrolled parameters in the Allen

model [16]. Certain biomechanical parameters have been established

as having significant influence on acute and chronic experimental SCI.

These include the contact surface area of the impactor, the contact sur-

face between the cord and the impounding mass, the degree of cord

compression, stroke, and duration of impact [60, 61]. Contact veloc-

ity and the degree of cord compression are also significant due to the

viscoelastic mechanical properties of the cord [6, 16, 62]. Furthermore,

this method is only suited to experimentally modelling one mode of

injury, resulting in contusion lesions. In order to investigate differ-

ent modes of injury more sophisticated experimental methodologies

were required to be developed, with greater control over these me-

chanical parameters.

Using a vertebral dislocation injury mechanism, Fiford et al. [16]

extended the Allen method to develop a new model of SCI in rats,

allowing for greater control over the biomechanical parameters. This

model utilised an experimental device that causes lateral displace-
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ment of one vertebra in relation to the adjacent vertebrae. This in-

cludes the rupture of surrounding ligaments, which has been shown

to occur in equivalent injuries in humans [63]. Immunohistochemistry

was used to quantify the extent of the resultant axonal and vascular

damage. Increased axonal injury was observed in regions of high ax-

ial strain and haemorrhaging was lateralized within the grey matter

[16].

Choo et al. [6] further investigated SCI mechanisms in rats using

a multi-mechanism device based on a linear actuator capable of sim-

ulating contusion, fracture dislocation (anterior), and flexion distrac-

tion injuries. Haemorrhage and cellular membrane compromise were

used as the indicators of primary damage, given their significant in-

fluence in initiating the secondary injury events. Results indicated

distinctly different injury patterns for each of the injury mechanisms,

with distinct distributions of membrane compromise along the an-

teroposterior axis in both grey and white matter. Contusion injuries

showed local increases in membrane compromise, whereas fracture

dislocation and flexion distraction injuries showed an asymmetrical

distribution with increased damage at the anterior end, consistent

with the direction of the mechanical insult. The extent of haemor-

rhage was similar between contusion and fracture dislocation injuries,

no haemorrhage was observed following distraction.

Clinical studies have shown that anterior fracture dislocation in-

juries often produces a greater neurological deficit than lateral frac-

ture dislocation [64]. Clarke and Bilston [15] investigated fracture

dislocation injuries in the rat thoracolumbar spine comparing both

the anterior-posterior and lateral loading directions. Anterior tho-

racolumbar injuries were produced using the system developed by

Choo et al. [6], and lateral injuries were produced using the system

developed by Fiford et al. [16]. Significantly different spatial distribu-

tions of axonal damage, neuron damage, and haemorrhaging were
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observed using relevant histological techniques. The neuropathology

of anterior fracture dislocation injuries was observed to be more se-

vere than lateral fracture dislocation injuries. This finding is in agree-

ment with the trends observed in clinical studies, this highlights the

significance of loading direction in the progression of SCI.

1.3.2.3 Ex vivo Experimental Models

The Allen model has been widely extended and adapted to recre-

ate burst fractures in ex vivo vertebral column specimens, rather than

simply impacting the cord surface directly [10, 11, 65–70]. The occlu-

sion of the spinal canal by impeding bone fragments was considered

in these studies. Panjabi et al. [68] conducted experiments using 15

fresh human cadaveric thoracolumbar spine specimens (between T11-

L1), of which burst fractures were successfully created in 9 specimens.

Panjabi et al. noted that different impact energies produced different

fractures, end plate fractures, wedge fractures, and burst fractures

were observed, with burst fractures being the most common when

impact energy was 84J or higher. The weight of the impactor was in-

crementally increased to create impacts of increasing energy until a

fracture was achieved. It is possible that this approach affected the

morphology and mechanical properties of the specimen prior to the

induction of a fracture, potentially confounding the results. Wilcox

et al. [10, 11], employed a similar approach using calf thoracolumbar

spines, the energy of the impact was varied by adjusting the magni-

tude of the impactor mass, this approach reliably produced a burst

fracture in every specimen. Impact energy was varied between 20J

and 140J. Denis type C fractures (fracture of the inferior endplate)

were observed for impacts up to 60J, above this Denis type A fracture

(fracture of both endplates) were observed. An earlier study by Tran

et al. reported the same extent of canal occlusion resulting from the

experimental fractures observed by Wilcox et al., but at lower energy
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impacts [69]. The difference in results may be due to differences in

equipment and variations in the age of the spine specimens [14]. Tran

et al. also used calf thoracolumbar spines, a drop weight impactor

was used for high energy fractures, resulting in burst fractures, and a

materials testing rig was used to induce low energy fractures, result-

ing in compressive fractures with lower degrees of canal occlusion

[69].

There are issues associated with these experimental techniques, the

incremental increasing of impact energy by Panjabi et al. is not truly

representative of SCI. Chang et al. [66], Tran et al. [69], and Carter

et al. [65] produced the burst fractures in a single test, occlusion was

measured using an indirect method, by placing a plastic tube filled

with water into the canal such that fluid pressure could be correlated

to canal occlusion. Wilcox et al. used a high speed video camera to

record the results, while this is a direct method of measuring canal

occlusion it requires the removal of the cord from the spinal canal,

consequently other spinal soft tissues were excluded from the exper-

iments. Despite these difficulties these experimental studies support

the link between neurological damage and the biomechanics of the

primary injury. Impact energy, velocity, and weight, will influence

the nature of the fracture during injury [71]. These combined studies

show that transient occlusion is greater than final canal occlusion, the

final resting place of the bone fragments in the spinal canal following

a burst fracture does not indicate the full extent of the injury. This

supports the hypothesis of Limb et al. “that neurological damage oc-

curs at the moment of injury when the anatomy is most distorted,

and is not due to impingement in the resting positions observed af-

terwards” [72]. This may account for the poor correlation between

canal encroachment, assessed in patients through post-trauma radio-

graphs or tomography scans, and the overall neurological deficit in

those patients [68].
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1.3.2.4 The importance of cerebrospinal fluid

A number of recent studies have elucidated that the CSF and the dura

mater act to protect the spinal cord, cushioning impacts [14]. Exper-

iments by Persson et al. investigated the biomechanical influence of

CSF on the spinal cord, analysing the response to impacts from a

simulated bone fragment, mimicking a burst fracture [26]. This study

used a computational FEM model, this was validated against an in

vitro transverse impact test using bovine tissue, using a method de-

veloped by Hall et al. for experimentally reproducing burst fractures

[9]. A burst fracture was simulated by propelling the bone fragment,

with similar magnitude and velocity to that observed in the burst

fracture process, through a tube to transversely impact the surface

of the bovine spinal cord. Three pellet sizes of equal mass but vary-

ing impact surface area were used, specimens were tested in three

states, with dura and CSF, with dura only, and without dura. A high

speed video camera was used to record the impact, and image analy-

sis was used to determine the deformation magnitude and duration.

The results were used to validate the computational model. It was

found that the presence of the CSF had a significant effect on the

biomechanics of SCI and the patterns of deformation within the cord.

The CSF and the dura were found to reduce the compression, stresses

and strains following the impact. These results have compounded the

findings of earlier studies by Persson and by Jones et al., showing the

importance of the incorporating CSF into biomechanical models in

order to gain an accurate understanding of the deformation of the

spinal cord [73–75]. Jones et al. later developed a drop weight im-

pactor experiment using a synthetic spinal cord specimen, an inverse

relationship between the thickness of the CSF layer and cord defor-

mation was observed, these results further support the conclusions

of the earlier studies, that the CSF has a protective role in SCI [76].
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To date, many computational models have not incorporated the

CSF, or have included it in a simplified form, in doing so these mod-

els are limited in the extent to which they can simulate human SCI.

This stems from the high computational expense of modelling the

fluid and fluid structure interaction, this is discussed further in sec-

tions 1.4.2 and 1.5. In ex vivo tissue studies the incorporation of the

CSF presents an additional challenge, as the fluid is generally lost

when the specimen is removed from the body. This may be overcome

through the use of a suitable CSF substitute for biomechanical exper-

iments. A saline solution (0.9% NaCl) is an acceptable pseudo-CSF

[14], as both are Newtonian fluids and have a similar viscosity. While

the levels of blood cells and proteins present in CSF do affect the vis-

cosity, it is not thought that high cell and protein concentrations affect

it significantly [77]. The relative viscosity of CSF to saline is 1.02 at

both room (20 ◦C) and body (37 ◦C) temperatures [78]. The maximum

difference in density is 0.1% [14, 79, 80].

Animal tissue has frequently been used as a substitute for human

tissue in creating in vitro and in vivo models of spinal cord biome-

chanics. Bovine and rodent samples are commonly used. Bovine tis-

sue in particular is very close to human in terms of anatomy and

its mechanical behaviour [81–83]. The CSF layer in humans is sig-

nificantly thicker, in relative terms, than that found in bovine and

rodent species [26]. Having established the importance of the CSF

on the biomechanics of traumatic spinal cord injury, there is a need

to study the effects of the varying the thickness of the CSF layer in

order to translate the results of animal models to human physiology.

Different animals, with differing CSF layers, may experience different

neurological deficits in response to the same injuries [26].
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1.4 computational models of sci

1.4.1 Modelling using finite element methods

Finite element analysis (FEA) is a widely used technique for mod-

elling a wide range of scientific and engineering problems. The basic

principle is to divide the structure of interest into a finite number of

smaller sub-structures (elements), joined together at nodes. Based on

assumptions and real world observations, mathematical equations of

motion are then defined in order to approximate the behaviour of

each element [14, 84]. The nodes are essentially points within the de-

fined coordinate system, and are generally positioned at the corners

and edges of elements. FEA typically consists of creating a mathemat-

ical formulation of a physical process and then performing numerical

analysis of the mathematical model. The creation of the initial math-

ematical model is reliant on background knowledge of the subject

area. The numerical analysis requires knowledge and assumptions

about how the process works, such as the mechanical properties of

spinal cord materials [84].

There are a wide range of approaches and algorithms available for

creating finite element models, as well as commercial software pack-

ages to aid researchers. The general approach may be divided into

three stages: pre-processing, solution, and post processing. In the pre-

processing phase the geometry of the specimen, for example a sub-

section of human spinal cord, is divided into discrete elements. This

typically means creating a mesh of elements, although it should be

noted that meshless FEM techniques may also be used [84, 85]. In this

stage the properties of the elements are defined mathematically and

conditions are set, such as boundary conditions. Next the FEA solver

will derive the matrix equations, assemble the elements and solve the
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system of equations. Finally, the post-processing phase involves ex-

tracting the results (e.g. stresses, displacement) and the derivation of

additional quantities such as errors and specialised measures of stress

(e.g. von Mises stress) [84].

1.4.2 SCI Studies Using FEM

Numerous studies have also applied FEM in calculating internal tis-

sue stress and strain fields and investigating various aspects of SCI.

Such models have been utilised to capture data that is not obtainable

through in vivo and in vitro experiments. Studies investigating the

properties of spinal cord tissue have used FE models to compliment

their experiments, in order to analyse internal stress and strain pat-

terns within the sample [51, 86–88]. Obtaining this sort of data is only

really possible using a computational model, as it is not feasible to

implant sensors within the tissue sample itself. FE models have sub-

sequently become an key tool in the biomechanical investigations, a

number of more complex FE models have been created to investigate

various facets of SCI.

1.4.2.1 3D model of the human cervical spine

Greaves et al. developed a three-dimensional finite element model of

a section of human cervical spinal cord, including 60mm of the spinal

cord and three spinal vertebrae (C4-C6) [18]. This model was used to

investigate three clinically relevant modes of injury: transverse contu-

sion (consistent with a burst fracture), distraction (as caused by dis-

traction/distortion of the spinal column), and dislocation (as would

result from a fracture dislocation injury). The geometry of the verte-

brae and the cord was based on transverse 1mm cryosection images.

The geometry of other components, including ligaments, dura, and
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attachments, was based on geometries reported in the literature. Lig-

aments were modelled as two-node link elements with linear shape

functions, reactive to tensile load only. The tissues were assigned lin-

ear elastic properties based on values from published experiments.

Spinal cord tissue has been demonstrated to exhibit linear elastic be-

haviour for quasi-static axial strains of up to 5% [89–91], as the axial

strains of the model reached maximums of between 8–13% this was

deemed an acceptable simplification within the scope of the study.

Grey and white matter were modelled as a contiguous single mate-

rial, on the basis that the mechanical properties of grey and white

matter have yet to be fully characterised. Contact elements were cre-

ated for groups of contacting elements; the dura, CSF, and spinal cord.

For each simulation normal stiffness was approximated for the con-

tact elements to account for the effect of CSF and fat in connecting

spaces. The CSF was included indirectly, as a pure slip interface be-

tween the spinal cord and the dura. This simplification omits the pro-

tective effect of the CSF and the full mechanics of the fluid structure

interaction. Nerve roots and rootlets were excluded from the model,

as previous studies have shown that they transmit load to the cord

through dura mater and denticulate ligaments rather than via the

rootlets themselves [92]. To validate the model simulations were set

up to match published in vivo experiments [6], allowing for compar-

ison between the numerical and experimental results. In vivo experi-

ments were used wherever possible, in some cases parameters were

scaled up from small animal in vivo experiments to closer match that

of humans. The Young’s Modulus was used to measure the mean

average response of the nodes, the authors stated that future work

would include more complex material models. Von Mises strain was

used as an indicator of spinal cord damage. Overall the results of the

simulations demonstrated distinctly different strain fields for each

mode of injury.
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1.4.2.2 Models with distinct materials for grey and white matter

Maikos et al. [93] created a three-dimensional FE model of a rat spine,

including the cord, CSF, dura, and spinal vertebrae, this model was

used to simulate impactor drop weight tests, based on the Multicentre

Animal Spinal Cord Injury Study (MASCIS) impactor model of spinal

cord contusion developed by Young [94]. Spinal cord geometry was

obtained based on 4-Tesla MRI images of a rat, this rat was sacrificed

and the spinal column excised for further imaging. The spinal col-

umn was imaged using 2-Tesla weighted spin echo MRI, these images

were used to manually extract the boundaries between the grey and

white matter. In creating the FE model the cord tissue was partitioned

into elements with a more uniform geometry, independent element

sets were defined for grey and white matter. Tethering structures, in-

cluding ligaments, blood vessels, and nerve roots, were omitted from

the model. The CSF and dura were included by expanding the outer

boundary of the spinal cord by 3% and 5% respectively, based on the

mean average diameter of the MRI images. Both the dura and the

CSF were 50− 80 µm in length, and one element thick in FE model.

The geometry of the vertebral column was gathered from micro-CT

imaging of a rat spinal cord, a T9/T10 laminectomy was performed

to match the drop weight experiments. The material properties of the

cord tissue were based on results published by Fiford [17], which

characterised the behaviour of rat spinal cord tissue in vivo, but only

up to strains of 5%. Although the strains in this experiment exceed

5%, no other data was available at the time of the study. The data from

the Fiford study was fitted with an Ogden hyperelastic strain energy

density function, this function has been used previously to model

both spinal cord and brain tissue, a Prony series exponential decay

was used for the viscoelastic portion. Maikos et al. [95] characterised

the hyperelastic-viscoelastic properties of rat dura mater in response
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to uni-axial tension at low and high strain rates. Dura was modelled

as a one-term Ogden hyperelastic function with the four-term Prony

series. CSF was modelled with fluid like behaviour, using solid ele-

ments with a low shear-to-bulk modulus and Mooney-Rivlin hypere-

lastic material properties. Pia mater was excluded in this model.

The material properties were tweaked, following calibration and

sensitivity analysis, to more closely resemble the condition of the

drop weight experiment [93]. The model was validated and refined

against a parallel impactor drop weight experimental study. Anal-

ysis of displacement measurements provided spatial and temporal

displacement profiles of the mechanical response to the mechanical

insult for comparison with the FE model. Overall this model com-

pared well with the in vivo experimental results in terms of the injury

patterns produced. A parametric sensitivity analysis was performed

using the homogeneous model with a 12.5 mm drop height. It was

found that altering the instantaneous shear modulus produced the

largest changes in impactor trajectory and injury patterns. Changes

to the quasi-static shear modulus and Prony series viscoelastic con-

stants produced proportionally smaller changes. The model was not

sensitive to changes in the α Ogden material parameter or to the co-

efficient of friction and mechanical properties of the dura and CSF.

The authors suggest that with some refinement, development, and

further validation it may be used to establish tissue level thresholds

for SCI in the future. Parametric testing found that shear properties

have a strong influence on tissue displacement, in addition to the

magnitude and distribution of stress and strain. The model was re-

stricted to a short segment of the overall spine, this was done to re-

duce the computational complexity, however, it was found that alter-

ing the length of the spinal segment did not significantly impact the

results for this type of injury simulation [93]. The material properties

of the white and grey mater are significant, the authors noted that to
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achieve greater fidelity to experimental results it would be necessary

to further characterise the mechanical properties of both grey and

white matter, beyond the findings of Fiford [17].

Li and Dai [53] used FEM to investigate hyperextension injuries

to the spinal cord in three dimensions. The geometry of their FEM

model was adapted from a physical specimen. During the autopsy

of a healthy human cervical spinal cord cross sectional images were

captured. Image analysis was used to extract the outlines of the white

and grey matter, key points on the external and internal contours of

the cervical cord were also obtained. This geometry was used to build

the finite element model, by feeding the data into the pre-processor

of a commercial FEM software package. A number of assumptions

were made to simplify the model construction, for example the spinal

segment length was set to 1.5 cm (a value based on statistic data of

post-mortem measurements). This length was used for all segments,

assuming they are all equal in length, in reality there is some varia-

tion. Whereas Greaves et al. [18] assumed a homogeneous material,

this model incorporated two materials with differing properties, the

white and grey matter of the spinal cord. The mechanical properties

of these materials were defined based on a review of the available

literature, the elastic moduli and Poisson’s ratios for white and grey

matter elements were set accordingly. All materials were modelled

as a linear elastic continuum, exhibiting isotropic properties. This

is a simplification, as in reality the spinal cord is anisotropic and

exhibits viscoelastic behaviour under deformation [96]. The model,

both white and grey matter, was meshed using 10-node tetrahedral

elements (quadratic tetrahedrons). A convergence test is used to ver-

ify the numerical accuracy of a finite element solution, it can give

an indication of how many elements are needed in order to be trust

the solution. In this example, the test was implemented by applying

longitudinal load from the top of the spinal segment, with the base
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constrained. The stiffness calculated by dividing the top loading force

by the longitudinal displacement of the cord at the loading point.

This was repeated using varying numbers of elements. The model

was considered to be converged when the cervical cord stiffness of

the denser model differed by less than 3%, compared to the previ-

ous model [53]. The model created by Li and Dai was used to sim-

ulate a hyperextension injury. The extension forces involved in this

injury type can be divided into axial and anteroposterior distraction

forces, applied to the nodes on the surface of the cord. The simula-

tions were repeated using varying forces, comparable to those used

in other published experiments. Following the simulated injury, the

authors analysed the strain distributions and extracted the von Mises

stress for nine relevant regions of the spinal cross sections. The model

was validated against published experimental studies, the force dis-

placement response was compared to a study by Hung et al. [97],

results for axial tension injury were compared to a study by Maiman

et al. [98]. These experimental studies characterised the mechnical re-

sponse of cord tissue. In both cases the FE results showed the same

trends in comparison to the experimental results, indicating that this

FE model accurately represents the biomechanics of CNS tissue [53].

Hyperextension injury was found to apply high stress at the anterior

and posterior horn in the grey matter. It was suggested that this may

account for loss of hand movement ability in patients with central

spinal cord injuries [53].

1.4.2.3 Model to investigate the biomechanical significance of CSF

Persson et al. [26] used a FE model to investigate the significance of

the CSF in spinal trauma models, looking specifically at contusion in-

juries, this model was validated against a parallel in vitro study using

bovine tissue. Previous models have either excluded the CSF entirely,

or included in a highly simplified form, this was the first model to



1.4 computational models of sci 29

include the fluid structure interactions due to presence of the CSF.

The FEM software used for this study (Version 8.5; ADINA R&D Inc.,

Watertown, MA) allowed for simultaneous fluid and solid solution,

and implicit solution of the dynamic FSI [99]. Results were presented

in terms of axial strain and Von Mises stress, these have been shown

previously to correlate to to neurological damage [17, 88]. The exper-

iments involved propelling a simulated bone fragment against the

posterior surface of the spinal cord to simulate a contusion injury

representative of a burst fracture. The spinal cord geometry for the

FE model was based on measurements obtained from previous ex-

periments [73, 74, 100]. Three versions of the model were created: the

spinal cord only, the spinal cord and dura mater, and the CSF, dura,

and cord together. The dura was positioned 1mm from the spinal

cord and was assumed to be frictionless. Denticulate ligaments and

nerve roots were excluded. The cord was not divided into pia mater,

grey and white matter, rather it was assumed to be homogeneous for

the purposes of the model. This assumption has been made in pre-

vious studies and was deemed acceptable for the purposes of a base

model [17, 18, 100], use of a homogeneous model reduces computa-

tional expense. The cord was later divided into these sub-materials in

order to perform a sensitivity analysis for these parameters. The cord

material properties were based on a previous study into the mechani-

cal responses of cat spinal cord tissue to static loading by Hung et al.,

this experiment was performed using a low strain rate (0.002mm/sec)

[97]. Although this strain rate is much lower than would occur in typ-

ical SCI, this is the only data available on spinal cord under compres-

sion available at the current time. Previous studies have shown that

the effect of strain rate on the mechanical properties is minimal, the

use of this data was therefore deemed acceptable [96, 101]. Studies

have also shown that there are no significant differences in the me-

chanical properties between species at similar strain rates [81, 83, 89].



1.4 computational models of sci 30

The data was fitted to a hyperelastic Ogden model, (Table 2). A par-

allel study by Persson et al. [96] characterised the properties of the

spinal dura mater at high strains. A constant single modulus for the

dura in this model, based on the tangent modulus, was derived from

this data, using only the straight section of the stress-strain curve

to represent the mechanical properties. This is a simplification that

has been used in a number of earlier studies and helps to reduce

computational complexity. The computational model was validated

against the experimental study, and overall the computation results

compared well [26].

Previous experiments had assumed that deformation of the cord

did not occur prior to subdural collapse, until all of the CSF had been

pushed out of the way by the impacting fragment [73, 74], however,

the results of this study demonstrated significantly different patterns

of displacement with the inclusion of the FSI. In the computational

model instantaneous cord deformation was observed, as pressure was

transferred, through the incompressible fluid, from the dura to the

cord. Furthermore it was found that differently sized impacting frag-

ments could produce different displacement patterns in addition to

different magnitude of deformation. Earlier studies by Jones et al.

and by Persson indicated that the CSF had a protective effect [73, 74].

This FSI model confirms this, demonstrating that the CSF has a sig-

nificant protective effect in contusion injuries, reducing compression,

and promoting the longitudinal distribution of stress and strain along

the spinal cord. This longitudinal distribution falls in line with clini-

cal observations [102, 103] and animal experiments [6, 104]. Persson

[73] observed a direct protective effect of the dura mater, in terms of

reduced maximum compression, although this was not always statis-

tically significant, the effect of the CSF being greater. The sensitivity

analysis portion of this study indicated that the pia mater had a sig-

nificant effect of spinal cord deformation in response to contusion in-
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juries, it was found to create concentration stresses within the centre

of the cord when included in the model. The division of the cord tis-

sue into grey and white matter resulted in small variations in stresses

or strains, likely due to the very similar stiffness of the two materials.

The authors note that the division of the cord into grey and white

matter may be important for evaluating strain fields within the cord.

However, for this comparative study, concerned with cord deforma-

tion and bone fragment trajectory, these variations were not found to

be significant. An implication of this study is that neurological dam-

age may differ between species due to variations in morphology in

relation to the CSF. Rodent in vivo models are often used to investi-

gate SCI [6, 15–17, 93, 104–108], however, the CSF layer in rodents is

significantly thinner than in humans or bovine subjects. In humans

lying prone has been shown to reduce the thickness of the posterior

CSF layer and increase the thickness of the anterior CSF layer [82].

Testing on animals in the prone position may also decrease the thick-

ness of the posterior CSF layer, potentially an additional source of

error in experimental SCI.

1.4.2.4 Model of a rat cervical spine with CSF modelled using SPH

Russell et al. [54] created a three dimensional FE model of the rat cer-

vical spine, which was used to investigate contusion and dislocation

injuries. In contrast to many other models that have omitted the CSF,

or included it only as an abstract and simplified motion, Russell et al.

modelled the CSF behaviour using Smooth Particle Hydrodynamics

(SPH) [109], which they propose as an efficient means of incorporat-

ing the fluid structure interactions. This method is discussed further

in section 1.5.4. SPH functionality is available in PAM-CRASH (ESI

Group, Paris, France), the software package used for this study. This

method was used to incorporate the interactions between the cord,

CSF, and dura in the impact simulations.
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The model included four spinal vertebrae (C3-C6), selected to cor-

respond with earlier experiments by Choo et al. [6]. Restricting the

model in this way was done to reduce computational complexity, ear-

lier experiments by Maikos et al. [93] have shown that changing the

model length had only a minimal impact on the results, due to the

localised nature of drop weight method for simulating contusion in-

juries. In the case of dislocation injuries, Choo et al. [6] demonstrated

that the axial injury extends up to 3mm away from the epicentre of

the injury, this falls within the length of the C3-C6 model. High reso-

lution 7-T magnetic resonance imaging was used to scan a rat cervical

spinal cord, in-plane and through-plane scans were combined to cre-

ate a fused pixel image from which the geometry was extracted for

the FE model. This process was semi-automated through the use of

image analysis software. The dura mater could not be reliably ex-

tracted from the MRI image, therefore the dura was created by ex-

panding the surface of the cord based on the outline of the CSF based

on MRI images provided by Choo et al. [6]. The dura was assigned

a thickness of 90µm. Ligaments were modelled using manually de-

fined two-dimensional elements, similar to Greaves et al. [18]. The

computational experiments were validated against previous rat ex-

periments. Cellular permeability to fluorescein-dextran was used as

an indicator of neural tissue damage, as a link has been established

to neuronal pathology [110–113]. The experimental data was corre-

lated to the maximum principal strain in the computational model.

The spinal cord was assigned hyper-viscoelastic Ogden and Prony

material properties based on experiments by Maikos et al. [93], and

hyperelastic properties based on experiments by Fiford [17] combined

with viscoelastic brain tissue properties [114], calibrated by Maikos et

al. [93] to match their drop weight experiments (Table 2). Dura mater

properties were assigned based on values reported by Maikos et al.

[95]. Spinal ligaments were modelled in a simplified form, using non-
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linear tension bar with linear elastic properties. Properties for the

cross sectional areas were scaled down from the human model cre-

ated by Greaves et al. [18] to fit the rat model. Maximum strains were

based on values reported in the literature [115–117]. For the interver-

tebral discs the annulus fibrosus were included, the nucleus pulposus

was omitted to reduce computational complexity. Linear elastic prop-

erties of the C4/C5 disc were based on the properties used previously

by Greaves et al. Endplate connection was simulated using spot welds

and calibrated to match the behaviour observed in previous rat exper-

iments by Choo et al.

1.4.3 Material properties

The material properties used in published finite element SCI studies

are listed in Table 2. From 2005 onwards many of these studies have

based the material properties of the spinal cord tissue on results pub-

lished by Fiford [17], adapting and scaling them as necessary. This

study investigated the response of freshly excised rat spinal cord spec-

imens to uniaxial tension, finding a non-linear viscoelastic response.

Fiford tested the tissue with strain rates between 0.0002s and 0.2s,

strains ranging from 2% to 5%. These strains and strain rates are be-

low that experienced by the cord tissue in the computational models

and in traumatic SCI, while the authors acknowledge this, there is

currently no more data available characterising the mechanical prop-

erties of spinal cord tissue, suggesting that further experimentation is

required. Models of the human spinal cord generally rely on this data

obtained for the rat cord, although the tissue properties are assumed

to be similar, rat tissue cannot be fully representative of human tissue.

Furthermore, there is lack of data regarding the individual mechani-

cal properties of white and grey matter, while it is generally accepted
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that the difference is small, as models become more detailed this dif-

ference may become more significant. The difficulty in characterising

the mechanical properties of the tissue is compounded by confound-

ing factors, notably age, and the time between subject death and test-

ing.

Study Component Material
Models

Parameters ν Software

Bilston [51] Spinal Cord Linear elas-
tic
Hyperelastic
(Ogden)
Viscoelastic

E = 1.2MPa
G = 100kPa,
α = 25
G∞ = 100kPa,
α = 25,
G1 = 154kPa,
G2 = 179kPa,
G3 = 559kPa,
τ1 = 4.38s,
τ2 = 0.554s,
τ3 = 234.4s

0.4 N/A

Ichihara
et al. [87]

Spinal cord
White mat-
ter
Grey matter

Viscoelastic
model
(Standard
linear solid
model with
nonlinear
component)

Ee = 0.28MPa,
Ec = 0.15MPa,
C1 = 6.1× 105,
C2 = 1.9× 104.
Ee = 0.66MPa,
Ec = 0.36MPa,
C1 = 2.2× 106,
C2 = −1.6× 104.

0.4

0.4

N/A

Oakland
[100]

Spinal cord
Dura Mater

Linear elas-
tic
Linear elas-
tic

E = 1.25MPa
E = 1.44MPa

0.49
0.49

LS-Dyna;
Livermore
Software
Technology,
CA, USA

Wilcox et al.
[118]

Spinal cord
Dura Mater

Linear elas-
tic
Anisotropic
elastic

E = 1.3MPa
Err = 142MPa,
Eθθ = 142MPa,
Ezz = 0.7MPa

0.35
N/A

LS-Dyna;
Livermore
Software
Technology,
CA, USA

Fiford and
Bilston [119]

Spinal cord Hyperelastic
(Ogden)

G = 176kPa
α = 47

N/A N/A

Galle et al.
[86]

Spinal cord
white mat-
ter

Hyperelastic
(Mooney-
Rivlin)

C10 = 592Pa

C01 = 249Pa
N/A COMSOL

3.2 with
Matlab,
COMSOL,
Inc., Burling-
ton, MA

Ouyang
et al. [88]

Spinal cord
white mat-
ter

Hyperelastic
(Mooney-
Rivlin)

C10 = 592Pa

C01 = 249Pa
N/A COMSOL

3.2 with
Matlab,
COMSOL,
Inc., Burling-
ton, MA
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Greaves
et al. [18]

Spinal cord
Dura mater

Linear elas-
tic
Linear elas-
tic

E = 0.26MPa
E = 5MPa

0.49
0.45

Ansys 7.1,
Ansys Inc.,
PA, USA

Maikos et al.
[93]

Spinal cord Hyperelastic
(Ogden)
combined
with vis-
coelastic
(two-term
Prony series
decay)

G∞ = 32kPa,
α = 4.7
G1 = 99.4kPa,
G2 = 56.8kPa,
τ1 = 8ms,
τ2 = 150ms

0.45 Ansys soft-
ware, Ansys
Inc., PA,
USA

Dura mater As above
but four-
term Prony
series decay

G∞ = 1205kPa,
α = 16.2
G1 = 1069kPa,
G2 = 416kPa,
G3 = 335kPa,
G4 = 335kP,
τ1 = 9ms,
τ2 = 81ms,
τ3 = 0.564s,
τ4 = 4.69s

0.45

CSF Hyper-
elastic
(Mooney-
Rivlin)

G = 134Pa
C01 = 33.5Pa
C10 = 33.5Pa

N/A

Sparrey et al.
[120]

Spinal cord
white mat-
ter

Hyperelastic,
Linear elas-
tic*

E = 0.065, 0.09,
0.115, 0.14 and
0.165MPa

N/A Not speci-
fied

Spinal cord
grey matter

Hyperelastic,
Linear elas-
tic*

(as for white
matter)

N/A

Pia mater Linear elas-
tic

E = 0.06, 1.2, 1.8,
2.4 and 3.0MPa

N/A

Li and Dai
[53]

Spinal cord
white mat-
ter

Linear elas-
tic

E = 0.277MPa 0.4 Ansys soft-
ware, Ansys
Inc., PA,
USA

Spinal cord
grey matter

Linear elas-
tic

E = 0.656MPa 0.4

Persson
2009 [73]
and 2011
[26]

Spinal cord Hyperelastic
(Ogden)

G = 9kPa,
α = 9

0.4 ADINA
Version 8.5;
ADINA
R&D Inc.,
Watertown,
MA

Dura mater Linear elas-
tic

E = 80MPa 0.4

CSF Newtonian η = 0.001Pas 0.49
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Russell et al.
[54]

Spinal cord Hyperelastic
(Ogden)
combined
with vis-
coelastic
(two-term
Prony series
decay)**

µ = 40.04kPa,
α = 4.7
g1 = 0.5282,
g2 = 0.3018,
τ1 = 8ms,
τ2 = 150ms

0.45 PAM-
CRASH,
ESI Group,
Paris,
France

Dura mater As above
but four-
term Prony
series de-
cay**

µ = 40.04kPa,
α = 4.7
g1 = 0.3182,
g2 = 0.1238,
g3 = 0.0997,
g4 = 0.0997,
τ1 = 9ms,
τ2 = 81ms,
τ3 = 0.564s,
τ4 = 4.69s

0.45

CSF Murnaghan
Equation of
State model

β = 200MPa,
P0 =
0.001g/mm3

N/A

Table 2: Material models used for computational studies of spinal cord in-
jury (adapted from Persson et al. [14]). E is the elastic modulus. C1
and C2 are viscous coefficients. C01 and C10 are Mooney-Rivlin
constants. For the hyperelastic Ogden models, G and α are the Og-
den material constants.
*Linear elastic models with different tangent moduli used. Hyper-
elastic models with parameters based on the fit of a third-order
hyperelastic Ogden model to the linear elastic tangent modulus.
**Adapted from Maikos et al. [93], converted due do differences in
notation between ABACUS (AB) and PAM-CRASH (PC) software:
µ(PC) = G

(AB)
0 /α(AB), g(PC)

i = G
(AB)
i /G

(AB)
0 .

1.4.4 Assumptions and simplifications

The models used in these studies share a number of common lim-

itations, the foremost being the computational expense and subse-

quently long processing times incurred by the models, which restricts

the level of detail. Researchers have had to think carefully about

which parts of the model require high numbers of elements, and

which parts can be simplified while minimising the loss of biofidelity.
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In all cases only a subsection of the spinal cord was modelled, offer-

ing substantial reductions in the elements required for the model and

the computational complexity. These short sections were sufficient

for these experiments and the parameters used. In the future longer

sections may be required, to investigate the effects of injury further

away for the point of impact, and to investigate the effects of multiple

injuries to the spinal cord at different locations.

The study by Persson et al. highlighted the significance of the CSF,

forces may be transferred from the dura, through the CSF, to the cord

tissue. While previous experimental studies have taken the assump-

tion that cord deformation does not occur prior to subdural collapse,

there is evidence to suggest this is not the case [26]. Forces may be

transferred from the dura, through the CSF, to the cord tissue. Unfor-

tunately it is not possible to verify this experimentally, future investi-

gations will likely need to be computational, the inability to validate

the computational results against experimental data remains an issue.

1.5 alternatives to fem

Finite element models have been established as a useful tool for mod-

elling SCI, but the required complexity is currently restricting due to

a number of limiting factors. In order to further investigate the rela-

tionship between cord deformation and the resultant biological dam-

age in the future, it will be necessary to create more complex models.

These will be more closely representative of SCI in humans, eventu-

ally incorporating the complex structure of spinal sub-components,

including cells, fibres, and fluid [14].
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Key limitations with FEM are difficulty in implementing the fluid-

structure interaction between the cord and the surrounding CSF, the

inability of FEM to cope with large deformations, and poor amenabil-

ity to implementation on parallelised computing systems. As a re-

sult, simplifications must be made to the models. For example, stud-

ies have simplified the properties of spinal cord tissue into a homo-

geneous material, and assumed linear elastic behaviour [18]. Other

studies divide the cord material into grey and white matter, assign-

ing appropriate mechanical properties to each [53].

The effect of the CSF on the biomechanics of SCI is significant, as

discussed in section 1.3.2.4, this warrants the inclusion of CSF into

SCI models [26]. To incorporate the CSF it is necessary to capture the

fluid structure interactions. Incorporating the fluid dynamics of the

fluid and its interaction with the solid phases adds greatly to the com-

putational cost. The computational expense of implementing the FSI

is generally the first limiting factor, restricting the complexity of the

FEM model. A simple approach is to eliminate one field, fluid or solid,

and abstract away the eliminated field to a specific motion or force at

the interface between solid and fluid [84]. A partitioned approach

may be used, whereby the solid and fluid mechanics are solved sep-

arately, with algebraic constraints on the boundary between the two.

Alternatively, a monolithic approach can be taken, treating the solid,

fluid and the interactive boundary as one system of equations [14].

In either case simplifications must be made within the confines of

computational processing power.

SCI simulations often involve large material deformations, over

very short time spans, requiring a high number of time steps. Fre-

quent computationally complex remeshing operations are consequently
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required, this again increases computation time required and can in-

troduce additional error into the results if suboptimal (but more sta-

ble) element types are used. This issue is even more prevalent when

the CSF is incorporated into the model, and FEM methods struggle

to cope with large deformations and dislocations [14, 85].

Modern high powered computer systems achieve improved per-

formance using multiple processors running in parallel, rather than

increasing the speed of a single processor, which is restricted by tech-

nical hardware limitations. Traditional FEM is difficult to implement

for parallel computing, generally these simulations can only run on a

single processing core, subsequently, FEM techniques remain limited

in their complexity. This justifies the investigation of alternative al-

gorithms for modelling SCI computationally, which are amenable to

parallelisation and better placed for creating more complex models.

The basic principle of FEM is to divide the structure of interest into

a finite number of smaller sub-structures (elements), joined together

at nodes. This creates a deformable mesh of linked elements, tradi-

tional FEM is considered a mesh based technique. Alternative mesh-

free techniques use a different approach; although a mesh is defined,

it does not move, it acts as a frame of reference against which the

movement of material points can be described [121]. Mesh-free tech-

niques have the key advantage of being easily implemented for highly

parallelised computing, and are inherently suited to handling large

deformations [122]. The Material Point Method (MPM) and Lattice

Boltzmann Method (LBM) are mesh-free algorithms that have been

identified as having the potential for modelling SCI in the future. Al-

though not yet applied to spinal biomechanics, these techniques have

been successfully applied in other engineering applications[123, 124].
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MPM has already been used to model multicellular tissue constructs

[125], as well as in larger scale models of soft tissue failure [122, 126].

It should, therefore, be possible to apply this technique to neural tis-

sue.

1.5.1 The Material Point Method

MPM is a numerical technique based on particle in cell (PIC) meth-

ods. PIC methods were originally developed for modelling fluid dy-

namics and dealing with highly distorted flows, they evolved from

the work of Harlow in 1963 [127]. PIC methods were later adapted

into the Fluid-Implicit-Particle (FLIP) method for application to com-

putational solid mechanics problems, from which the MPM method

was derived by Sulsky [128, 129]. Despite its roots in fluid dynamics,

MPM has also been successfully applied to solid mechanics problems

[130].

In MPM a grid (or mesh) overlay is used to discretize complex ma-

terial shapes into a finite set of material points that hold all attributes

and constitutive state response variables. This is typically a regular

grid, defined on the basis of computational convenience. Points are

generated at positions lying within the given body, the points can

interpolated using the overlying mesh. MPM may be classed as a

meshless technique. Although a mesh is defined, it does not move, it

acts as a frame of reference against which the movement of material

points can be described [130].

MPM is an Arbitrary Lagrangian-Eulerian (ALE) method. Most al-

gorithms in continuum mechanics make use of one of two classical

descriptions of motion: Lagrangian and Eulerian. In Lagrangian al-
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gorithms each node of the computational mesh follows the associ-

ated material particles. This description is well suited to tracking free

surfaces and interfaces between differing materials. However, it is

less suitable for tracking large distortions, which requires frequent

remeshing operations. Most mesh based FEM methods, including

those discussed in section 1.4.2, use the Lagrangian description. In

Eulerian algorithms the mesh is fixed, and the continuum moves in

relation to the grid. In this description it is easy to track large dis-

tortions, however, this comes at the expense of precise interface def-

inition and high resolution flow details. This description is widely

used in fluid dynamics. Table 3 summarises the relative strength and

weaknesses of both descriptions. Using ALE algorithms, nodes of the

mesh may be moved with the continuum in the Lagrangian fashion,

or be held fixed in an Eulerian manner, or be moved in some arbitrar-

ily defined way. The ALE description combines the two descriptions,

aiming to incorporate the strengths of both, without the drawbacks

[131–133]. Table 4 compares the relative strengths and weaknesses of

MPM (an ALE method) vs FE (a Lagrangian method).

1.5.1.1 The MPM Algorithm

Figures 5 outlines the steps in a single MPM cycle. Lagrangian point

masses (the material points) move in relation to an Eulerian back-

ground mesh. At each convective step in the cycle the material points

are projected onto the grid nodes, the following equations are solved

using the grid. The material points are then updated and the grid

is reset. The following is an explanation of the steps in each cycle

of the MPM algorithm, adapted from Chen and Brannon [130]. This

description assumed that the continuum body has already been dis-
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Lagrangian Eulerian

Grid Attached on the
moving material

Fixed in space

Tracking Movement of any point
on materials

Mass, momentum, and
energy flux across grid
nodes and mesh cell
boundary

Time history Easy to obtain
time-history data at a
point attached on
materials

Difficult to obtain
time-history data at a
point attached on
materials

Moving
boundary
and interface

Easy to track Difficult to track

Irregular
Geometry

Easy to model Difficult to model with
high accuracy

Large
deformation

Difficult to handle Easy to handle

Table 3: Comparison of Eulerian and Lagrangian methods, adapted from
Liu and Liu [133].

MPM FE

Easy to generate initial point
cloud

Defining initial geometry
requires work and skill

First order accuracy Second order accuracy
More computationally
expensive per timestep

Less computationally
expensive per timestep

Scales well for parallel
computation

Scales poorly for parallel
computation

No mesh tangling/element
inversion

Prone to mesh
tangling/element inversion

Good for high rate of strain
problems

Good for low rate of strain
problems

Averaged FSI when using
MPMICE

Monolithic FSI with
partitioned phases

Arbitrary Lagrangian-Eulerian
mesh

Lagrangian mesh

Table 4: Relative strength and weaknesses of MPM versus FE
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Figure 5: Illustration of the steps in the MPM algorithm from top–left to
bottom–right: (1) A regular grid is defined (2) Four material points
occupying (filled circles) overlaid on single cell of the background
grid (solid lines). Arrows represent displacement vectors. (3) The
material point state vectors (mass, volume, velocity, etc.) are pro-
jected onto the nodes of the computational grid. (4) The discrete
form of the equations of motion is solved on the computational
grid, the results are used to update the velocities and positions
grid nodes. (5) The updated nodal kinematics are interpolated
back to the material points, and their state is updated. (6) The
computational grid is reset to its original configuration, and the
process repeats.
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cretized into a set of material points and that all state variables have

been initialised.

The masses of the particles in each cell are mapped to the nodes of

the cell containing those particles:

mti =

Np∑
p=1

MpNi(x
t
p) (1)

where mti is the mass at node i time t, Mp is the mass of the particle,

and Ni is the shape function associated with node i, xtp is a vector

giving the location of the particle (in a Cartesian coordinate system)

at time t.

The momentum of the particles is mapped to the appropriate nodes

in the same way:

(mv)ti =

Np∑
p=1

(Mv)tpNi(x
t
p) (2)

where (mv)ti is the nodal momentum of node i at time t, and (Mv)tp

is the particle momentum at time t.

The internal force vectors for the grid nodes can be found using:

(Fti)
int =

Np∑
p=1

Gi(x
t
p) · stp

Mp

ρtp
(3)

where Gi(xtp) is the gradient of the shape function for node i eval-

uated at xtp, stp is the particle stress tensor at time t, and ρtp is the

particle mass density at time t.
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Essential and natural boundary conditions are applied to the grid

nodes and the nodal force vectors computed as follows:

(Fti) = (Fti)
int + (Fti)

ext (4)

where (Fti)
ext represents the external nodal force vector. Essential (or

geometric) boundary conditions are imposed on the primary vari-

able, e.g. displacements, whereas natural (or force) boundary condi-

tions are imposed on the secondary variable, e.g. forces and tractions.

Essential boundary conditions remove degrees of freedom from the

domain boundary, while natural boundary conditions do not.

The momenta of the grid nodes is updated:

(mv)t+∆ti = (mv)ti + F
t
i∆t (5)

The mapping operation, from the nodes of the cell containing a

particle to the particle itself, is now performed for each particle.

Nodal accelerations are mapped back the the particles:

atp =

Nn∑
i=1

fti
mti
Ni(x

t
p) (6)

Current nodal velocities are mapped back to the particles:

v−t+∆tp =

Nn∑
i=1

(mv)t+∆ti

mti
Ni(x

t
p) (7)
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Compute the current particle velocity for strain calculations:

vt+∆tp = vtp +a
t
p∆t (8)

Compute the current position for the particle (this equation repre-

sents a reverse integration):

xt+∆tp = xtp + v
−t+∆t
p ∆t (9)

Compute the displacement vector:

ut+∆tp = xt+∆tp − x0p (10)

Nodal shape functions are used to continuously map the nodal ve-

locity interior to the interior of the cell, equations (7) and (9), this

allows the positions of the particles to be updated by moving them

in a single-valued continuous velocity field. Using v−t+∆tp instead of

vt+∆tp to update the particle position reduces numerical error within

the system, and interpenetration between material bodies is prevented.

This is a feature of MPM that allows it to handle penetration and

impact scenarios without the need for specialist contact algorithms

[130].
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The updated particle momenta is now mapped back to the nodes

of the cell containing those particles:

(mv)t+∆ti =

Np∑
p=1

(Mv)t+∆tp Ni(x
t
p) (11)

Find the updated nodal velocities:

vt+∆ti =
(mv)t+∆ti

mti
(12)

Essential boundary conditions are now applied to the grid nodes of

cells containing boundary particles, consistent with the weak form of

the governing equations; wti are assumed to be zero on the essential

boundary.

If needed for a constitutive model, find the current gradient of par-

ticle velocity:

Lt+∆tp =

Nn∑
i=1

vt+∆ti Gi(x
t
p) (13)

the particle strain increment:

∆ep = (symLt+∆tp )∆t (14)
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where, symLt+∆tp denotes the symmetric product applied to the gradi-

ent of the particle velocity. The updated deformation gradient tensor:

Ft+∆tp =

Nn∑
i=1

xt+∆ti pGi(x
t
p) · Ftp (15)

then find the stress increment from the constitutive model for the

given strain increment and use it to update the particle stress tensor:

st+∆tp = stp +∆s (16)

Finally the cells to which each of the particles now belong to are

identified, and the natural coordinates of the particles updated. This

is the convective phase for the next increment, the process now re-

peats until a predefined termination time is reached.

Note that the numerical solution would break if mti is close to zero,

i.e. no particles exist in the support domain of Ni. Therefore, when

implemented in code, equations (7), (9), and (12) are not calculated if

mti is less than a specified value [130].

1.5.1.2 Explicit and implicit MPM

Standard MPM used an explicit time integration method. The com-

putational grid is convected with the material points during the de-

formations that take place during each time-step. The grid is reset

at the end of each time-step. Conditional stability of the backward

Euler integration method limits the size of the time-step, Equation 9.

In some scenarios this can necessitate prohibitively small time-steps.

Guilkey and Weiss sought to address this limitation by introducing
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an implicit version of MPM: IMPM [124]. IMPM was based on the ob-

servation that calculations on the computational grid were carried out

in the same way as for finite element calculations, the material points

act as integration points for the assembly. The authors exploited this

to develop an implicit time integration strategy allowing for larger

time-steps and a reduction in computational run-time. In IMPM the

computational grid is not reset at the end of each time-step, and is in-

stead allowed to move with the particles, retaining optimum particle

distribution in relation to the grid, Figure 5. IMPM is more efficient

for low rates of loading (with respect to the wavespeed of the mate-

rial), for faster loading rates explicit MPM is more computationally

efficient [125].

1.5.2 MPMICE

Material Point Method Implicit Continuous Fluid Eulerian (MPMICE)

is an extension of MPM to incorperate the ICE (Implicit Continuous

Fluid Eulerian) method, facilitating FSI modelling. ICE is a CFD for-

mulation with full Navier-Stokes representation of fluids using an

Eulerian grid, with the capability for including chemical and phys-

ical transformations between phases, such as fuel combustion. The

multi-material MPMICE algorithm was developed at Los Alamos Na-

tional Laboratory (NM, USA) for simulating explosions of energetic

devices, where there was a need for an approach capable of handling

very large material deformations over a short time involving both

solid and fluid phases [134]. A detailed description of this algorithm

is given is Chapter 4, Section 4.2.1.
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1.5.3 Lattice Boltzmann Method

Lattice Boltzmann methods (LBM) evolved out of Lattice-Gas Cellu-

lar Automata (LGCA), statistical models based on the kinetic theory

of gases [121, 135]. LBM is now considered a computational fluid dy-

namics (CFD) method and has been widely applied to hydrodynamic

fluid flow simulations. It may be used to model single phase and mul-

tiphase flows [136]. LBM is based on the principle that macroscopic

fluid behaviour is the result of the collective behaviour of microscopic

particles, but is not sensitive to the underlying details of those parti-

cles. It involves building simplified kinetic models that incorporate

the physics of microscopic and microscopic models in such a way

that their averaged properties conform to the desired macroscopic

equations. The velocity space is discretized, particle velocities are re-

stricted to a finite set of orientations, and particles move in relation to

an overlying lattice (mesh), Figure 6, greatly simplifying Boltzmann’s

original conceptual view. The lattice is comprised of a set of con-

nected nodes, with state variables set at each node. The model utilises

composite update rule based on collision and streaming is used, Fig-

ure 7. At each time step, particles stream in their relative directions. If

more than one particle enters a site then the collision rule is applied,

redistributing particles such that conservation laws are satisfied. Al-

though theoretically simple, this method models fluid like behaviours

in good agreement with experimental results and other numerical

techniques [121, 137]. LBM has been successful in applications involv-

ing modelling interfacial dynamics and complex boundaries [123]. It

is a technique with the potential to be used for modelling CSF in

SCI simulations. LBM can produce clear physical pictures; boundary
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conditions are easily implemented and in addition to being compu-

tationally efficient, it is also well suited for implementation of highly

parallelised computing systems [123].

Figure 6: Discretization of velocities for a D2Q9 lattice, two dimensions, 8
discrete velocities (1-8) plus particle at rest (0) [138].

1.5.3.1 The LBM Algorithm

The notation used to define the underlying lattice is DαQβ, where α

denotes space dimensionality and β denotes the number of discrete

velocities, Figure 6. The following is a description of the LBM algo-

rithm, using a D2Q9lattice for simplicity, adapted from Begum and

Basit [137] and Chirila [139].

In non-equilibrium statistical mechanics the Boltzmann Equation

gives a statistical description of the movement of fluids that are not

in thermodynamic equilibrium, the equation is given as:

∂f

∂t
+∇vf = Q (17)

where f is the distribution function andQ is the collision integral. The

distribution function, f, depends on space, velocity, and time: f(x, v, t).
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(a) Streaming

(b) Collision

Figure 7: LBM Streaming and Collision process on a D2Q9 lattice. (a)
Streaming: The magnitude of the particle distribution functions do
not change, but they move to neighbouring nodes based on their
direction. (b) Collision: Local density and velocity are conserved,
but the distribution functions change according to the collision
rules [138, 139]

For LBM the BGK (Bhatnagar Gross Krook) approximation is used for

the collision operator [135, 140], giving:

∂f

∂t
+∇vf = −τ−1(f− feq) (18)

where τ is the collision time and feq is the equilibrium distribution

function. The velocity space v is discretized into a finite set of i dis-
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crete velocities: vi, the associated distribution function is governed by

the following equation:

∂fi
∂t

+∇vfi = −τ−1(fi − f
eq
i ) (19)

Macroscopic fluid density is given by:

ρ =

β−1∑
i=0

fi (20)

Macroscopic velocity, u, is the average of the microscopic velocities,

ci, and the directional densities:

u =
1

p

β−1∑
i=0

fici (21)

The two basic steps in LBM are streaming and collision, the distribu-

tion functions at each lattice point may be updated using the follow-

ing equation, the left hand side is the streaming part, and the right

hand side is the collision term:

fi(x+ c∆t, t+∆t) = (1−w)fi(x, t) +wfeqi (x, t) (22)

where w = ∆ tτ is the relaxation frequency, which is related to the

fluid viscosity. Although they can be combined in a single statement

the streaming and collision steps are often separated into two steps in

actual numerical implementations, Figure 7 [139]. This is because the

combined equation (22) works for lattice points within the fluid do-
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main, but does not work for the domain boundaries, where boundary

conditions must be used to compensate for the insufficient number

of distribution functions. In the streaming step the distribution func-

tions are translated to their neighbouring lattice points based on their

respective discrete velocities. In the collision step the distribution

functions are redistributed towards the local discretized Maxwellian

equilibrium distribution functions in such a way that local mass and

momentum is conserved, collision of fluid particles is considered a re-

laxation towards local equilibrium [137]. The equilibrium distribution

functions can be obtained from the local Maxwell-Boltzmann proba-

bility density function [141]:

f
eq
i (x) = wiρ(x)[1+ 3

ci.u
c2

+
9

2

(ci.u)2

c4
−
3

2

u2

c2
] (23)

where c is the propagation speed on the lattice (lattice units per time

step), normally taken to be 1 [139]. For a D2Q9 lattice this gives the

weights:

wi =



4
9 , i = 0

1
9 , 1 6 i 6 4

1
36 , 5 6 i 6 8

(24)

The weights are artificial, they are used to recover the macroscopic

properties of density and momentum per unit volume. Through ap-
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plication of multi-scale technique it is possible to recover the incom-

pressible Navier-Stokes equations:

∇.u = 0 (25)

ρ∂tu+ ρu∇.u = −∇P+ ρv∇2u (26)

where P is pressure.

Initialize ρ,u, and feq

Initialize f ← feq

Stream f → f∗

Compute ρ and u from f∗

Compute feq using ρ and u

Collide f = feq − w(f∗ − feq)

Figure 8: LBM algorithm for a D2Q9 lattice [137].
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1.5.4 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a mesh free particle method

initially developed by Gingold and Monaghan [142] and Lucy [143]

in 1977, for studying astrophysics. It is well suited to computational

fluid dynamics [133], and may used to model fluid flows such as the

movement of the CSF during SCI. SPH was recently been adapted by

Hoover for simulating solid mechanics problems, dubbed smoothed

particle applied mechanics (SPAM) [144]. These techniques are well

suited to parallelisation. Fluid is divided into a discrete number of

particles (elements). SPH makes use of a smoothing function that is

applied to smooth the particle properties, each of which has an associ-

ated smoothing distance. The physical quantities of an arbitrary par-

ticle can be obtained based on the sum of the surrounding particles

within range of the smoothing distance. By assigning each particle its

own individual smoothing length, the resolution of the overall model

can be made to self adapt to loading conditions. A key advantage

of this approach is that there is no need to track boundaries, a free

surface for interacting fluids is generated directly [109, 133, 144].

1.5.5 Mesh vs. Mesh-free Methods

Both mesh based and mesh free methods for computational mod-

elling have various strengths and weaknesses, some of which are sum-

marised in Table 5. Mesh-free methods are well suited to problems

that involve large localised deformations, separation of continuum,

or the propagation of cracks, which are very difficult to model using

conventional mesh based techniques [145]. MPM is able to avoid the



1.5 alternatives to fem 57

Table 5: Relative strengths and weaknesses of mesh based and mesh free
methods [138].

Mesh Meshless

Mature technique, wide range
of commercial software

Lacks numerical maturity,
incorporated by few software
packages

Advanced numerical
techniques, stable and accurate

First order accuracy

Established method for
modelling SCI

Not widely used for SCI, but
successful in other engineering
applications

Less computationally
expensive

More computationally
expensive

Scales poorly for parallel
computation

Easily parallelised

Mesh tangling occurs with
large deformations

Can handle large deformations

Unable to handle break-up
and coalescence

Can model more complex
physics, break-up and
coalescence

issue of mesh tangling, which often occurs using FEM for large lo-

cal deformations, through the process by which material points are

mapped to grid nodes and grid nodes mapped to material points at

each timestep in the simulation [130]. Mesh-free Methods also have a

key advantage in that they are easily implemented for highly paral-

lelised computing. Modern high powered computer systems achieve

improved performance using multiple processors running in paral-

lel, rather than increasing the speed of a single processor, which is

restricted by technical hardware limitations. The use of GPUs pro-

vides a low cost hardware platform for parallel computing. Going

forward, algorithms amenable to computational parallelisation are

better placed for creating more complex models.
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1.5.6 Material Point Method for Modelling Soft Tissues

Modelling soft tissue constructs using FE methods is highly challeng-

ing due to the complex geometry, material properties, boundary con-

ditions, especially in cases where cells embedded within an extracel-

lular matrix are to be modelled. A key difficulty in the application of

FE modelling to this kind of problem lies in the meshing process, cre-

ating an unstructured FE mesh representative of the highly complex

geometry of the sample is often tedious and very time consuming

[146], despite the availability of imaging techniques and image pro-

cessing software. Boundaries and contacts between structure must

be explicitly defined with FE contact algorithms, and mesh entan-

glement can occur, especially for large deformations [125]. The lim-

itations encountered with FEM led Guilkey et al. and Ionescu et al.

to investigate an alternative approach to modelling soft tissue con-

structs using the MPM [122, 125, 126]. These authors made use of

the UINTAH computational framework, a parallel computing prob-

lem solving environment, developed at the University of Utah [147].

UINTAH provides software implementations of MPM, and is freely

available to researchers.

Ionescu et al. used MPM to investigate penetrating trauma of soft

tissues, specifically bullet and knife wounds [122, 126]. The aim of

the study was to develop a realistic computational soft tissue model,

which could be subjected to finite deformation and failure, and used

to simulate various types of injury, elucidating the failure mecha-

nisms of the tissue in response to the complex loading patterns of

the injury. A slab of myocardium was modelled, the muscular middle

layer of the heart wall, composed primarily of spontaneously contract-
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ing cardiac fibres. The tissue was represented as a composite matrix

of collagen fibres, with different strain failures defined for each. Fibre

directions varied throughout the layers of tissue to match the struc-

ture of myocardial tissue. MPM was selected for this work because

it simplifies the modelling of complex geometries, and can handle

large deformations and fragmentation, features which are typical of

penetrating trauma such as bullet and knife wounds. Explicit time in-

tegration was used. Bullet penetration simulations of the myocardial

slab were performed, two modes of failure were defined: matrix fail-

ure (shear strain over 50%) and fibre failure (tensile strain over 40%),

upon failure the contribution of the failed component to the stress

was set to zero. Following the injury simulation the material points

were separated into groupings of failed matrix, failed fibre, and intact

points for analysis [122, 126].

The aim of this study by Guilkey et al. was to apply MPM mod-

elling to a vascularised tissue construct, adapting the MPM algorithm

to better handle quasi-static large deformation mechanics, using a

discretization technique based on the input from confocal imaging of

the sample [125]. The standard explicit MPM algorithm was modified

to allow the background computational grid to remain fixed with re-

spect to the spatial distribution of the material points during the anal-

ysis, an implicit version of MPM. Using explicit time integration, the

state of the system at a later time is calculated from the state of the

system at the current time. Using implicit time integration, a solution

is found to an equation involving both the current state of the sys-

tem and the later state of the system. Implicit methods can be more

difficult to implement and incur additional computational expense.

Implicit methods are more suitable in situations where an explicit
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method would require impractically small timesteps, in such cases it

may require less computation to achieve a certain level of accuracy,

by using larger timesteps. In this case, implicit MPM is more efficient

for low load rates in relation to the wavespeed of the material, while

explicit MPM is superior for faster load rates [125, 128].

Microvascular constructs were grown in a collagen gel, the mod-

ified algorithm was used to investigate the biomechanics of the 3D

vascularised scaffold under tension. Stress distributions and reaction

forces were analysed. The reaction force was found to be highly sensi-

tive to the modulus of the micro vessels embedded in the construct. It

would be possible to estimate a suitable modulus through the simu-

lations, using a parameter estimation scheme. Reaction force was far

less sensitive to the Poisson’s ratio of the entire sample. The overall

model consisted of 13.6 million material points and the implemen-

tation scaled well for up to 200 processors working in parallel. The

modified algorithm was found to be more robust and accurate for this

application than the traditional algorithm, although the authors warn

that modifying MPM to not reset the grid could potentially result in

a severely distorted mesh, one of the problems MPM was developed

to avoid. The process of spatial discretization was shown to be easy

relative to FEM equivalents.

The advantages demonstrated by these studies, would also make

MPM suitable for modelling neural tissue in the case of SCI. Although

the problem of modelling the spine is complicated further by the need

to model the surrounding CSF in addition the the solid tissue, this

technique appears to be a strong candidate for SCI modelling, and

could potentially be combined with other techniques, such as LBM

(described in section 1.5.3), to handle the fluid phases.
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1.6 conclusions

The spinal cord is an extremely complex structure, modelling it ac-

curately poses significant challenges. Different mechanisms of injury

result in different injury patterns, in turn affecting the evolution of

the secondary pathological cascade. For the development of effective

medical interventions for reducing the severity of secondary injury, it

is necessary to better understand the mechanics of the primary injury

and how the cord interacts with the spinal column and surrounding

CSF. Mesh based FEM techniques are a useful tool in investigating

the biomechanics of SCI, in compliment to laboratory based studies.

However, they are currently held back by computational limitations,

as the number of operations required to simulate injury quickly be-

comes too high. The complexity is further increased when the inter-

action of the spinal cord with the surrounding cerebrospinal fluid is

considered. Computational expense, difficulty in coping with large

material deformations, difficultly in implementing the FSI, coupled

with poor potential for parallelisation warrant the investigation of al-

ternative computational approaches. Mesh-free techniques, such as

MPM, LBM, SPH and SPAM are in some cases more computation-

ally intensive. However, these techniques are well suited for handling

large local material deformations and separation of continuums. Fur-

thermore, they are highly amenable to parallelisation, the computa-

tional limitations encountered by traditional FEM techniques may be

overcome using high powered parallel computing.
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1.7 aims and objectives

This project aims to generate a validated spinal cord model for simu-

lating SCI that overcomes the limitations of FEM spinal cord models,

as discussed in section 1.7.1.The model will use the MPM/MPMICE

methods, allowing execution on highly parallelised high-powered com-

puting systems. The key project milestones are as follows

• Development of MPM SCI model with a simple representation

of the cord using a single, homogeneous, isotropic material,

which crudely mimics the cord in geometry and material prop-

erties

• Implementation of an Ogden constitutive material model for

MPM/MPMICE

• Evaluation of the solid models against existing conventional

FEM models and experimental studies

• Incorporation of the CSF and the FSI between phases using MP-

MICE

• Evaluation of the FSI models against existing conventional FEM

models and experimental studies

• Further validation and model refinement.

1.7.1 Project Rationale

Due to limitations with FEM models of SCI, simplifications must be

made. For example, commonly the properties of spinal cord tissue

are simplified into a homogeneous, isotropic material, the geometry
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of the model is highly simplified, and the fluid structure interaction

involving the CSF is excluded [14]. Key limitations with FEM are as

follows

• Inability to cope with large deformations over very short times

• Poor amenability to implementation on parallelised computing

systems

• Difficulty in implementing the fluid-structure interaction between

the cord and the surrounding CSF

1.7.1.1 Large deformations

SCI simulations often involve large material deformations, over very

short time spans, requiring a high number of time steps. Frequent

computationally complex remeshing operations are consequently re-

quired. This again increases computation time required and can intro-

duce additional error into the results. This issue is even more preva-

lent when the CSF is incorporated into the model, and FEM methods

struggle to cope with large deformations and dislocations [14, 85].

1.7.1.2 Parallelisation

Modern high powered computer systems achieve improved perfor-

mance using multiple processors running in parallel, rather than in-

creasing the speed of a single processor, which is restricted by tech-

nical hardware limitations. Traditional FEM is difficult to implement

for parallel computing, generally these simulations can only run on a

single processing core, subsequently, FEM techniques remain limited

in their complexity. While difficult, parallelisation of FEM is possi-

ble and commercial software that can do this is available, however
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the scalability may be lacking, particularly when the additional com-

plexity of the FSI is included. Investigation is justified into alternative

algorithms for modelling SCI computationally, which are amenable to

parallelisation and better placed for creating more complex models.

The basic principle of FEM is to divide the structure of interest into

a finite number of smaller sub-structures (elements), joined together

at nodes. This creates a deformable mesh of linked elements, tradi-

tional FEM is considered a mesh based technique. Alternative mesh-

free techniques use a different approach; although a mesh is defined,

it does not move, it acts as a frame of reference against which the

movement of material points can be described [121]. Meshless tech-

niques have the key advantage of being easily implemented for highly

parallelised computing, and are inherently suited to handling large

deformations [122]. The Material Point Method (MPM) and Lattice

Boltzmann Method (LBM) are mesh-free algorithms that have been

identified as having the potential for modelling SCI in the future. Al-

though not yet applied to spinal biomechanics, these techniques have

been successfully applied in other engineering applications [123, 124].

1.7.1.3 Fluid-structure interaction

The effect of the CSF on the biomechanics of SCI is significant, this

warrants the inclusion of CSF into SCI models [26]. To incorporate the

CSF into a model it is necessary to capture the fluid structure inter-

actions. Incorporating the fluid dynamics of the fluid and its interac-

tion with the solid phases adds greatly to the number of calculations

required. The computational expense of implementing the FSI is gen-

erally the first limiting factor, restricting the complexity of the FEM

model. A simple approach is to eliminate one field, fluid or solid,
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and abstract away the eliminated field to a specific motion or force

at the interface between solid and fluid [84]. A partitioned approach

may be used, whereby the solid and fluid mechanics are solved sep-

arately, with algebraic constraints on the boundary between the two.

Alternatively, a monolithic approach can be taken, treating the solid,

fluid and the interactive boundary as one system of equations [14].

In either case simplifications must be made within the confines of

computational processing power. FEM is advantageous in that it is

amenable to monolithic solvers for the FSI, however it is restricted

due to the difficulty in scaling such models for parallel computation.

The use of alternative techniques, such as the MPM coupled with

LBM, have the potential to more accurately model the FSI, exploiting

parallel computing to allow for greater levels of detail.

In summary, the level of detail achievable using FEM computa-

tional models is limited by its inability to cope with large material

deformations, the difficulty in implementing the fluid structure in-

teraction, and poor suitability to parallel computation. It should be

noted that MPM models are often more computationally expensive

than the equivalent FEM models, however, MPM scales well when

parallelised. This will allow an MPM simulation to be processed more

quickly, using parallel processing, than a comparable FEM simulation,

even though the MPM simulation requires more calculations.

1.7.2 Outcomes

This project is expected to produce a model that will demonstrate the

feasibility of using MPM/MPMICE for modelling spinal cord injury

biomechanics. Once developed this model will allow a greater level
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of anatomical accuracy to be incorporated compared to existing FE

models. The sensitivity of the model to the inclusion of the dura and

the inclusion of both the dura and CSF combined will be established

by comparing results to the base model, consisting of the spinal cord

tissue only. The results of the analysis will be validated against ex-

isting FE and experimental models. The eventual goal is to develop

a full FSI spinal cord model, more complex, with anatomically accu-

rate geometry, allowing a virtual model of the thoracolumbar region

of the spinal cord to be constructed. The process of development,

validation, and refinement will be an on-going cycle throughout the

project, not simply an iterative process. The models developed for

this project will provide an insight into the biomechanics of SCI, the

relationship between the primary injury, the distributions of strain in

the cord, and (in the longer-term) the possible neurological deficit. In

addition to the model itself and code preparations, this project aims

to output research publications that will be of interest to the scientific

community. Research findings will be made available through confer-

ence papers for dissemination to patient groups and the wider public

interest.



2
C O N S T I T U T I V E M AT E R I A L M O D E L S

2.1 overview

The hyperelastic constitutive models available within the Uintah Com-

putational Framework (UCF) implementation of the Material Point

Method (MPM) were a neo–Hookean model and a Mooney–Rivlin

model. Neither of these provided a good fit to the experimental data

to which these models were being fitted (Section 2.2); therefore, a hy-

perelastic compressible Ogden model was implemented in C++ and

integrated into the UCF implementation of MPM. Several versions of

the Ogden model were implemented, while all of these are based on

the same equation, the compressibility components differ. The math-

ematics behind these models is described in Section 2.5.

Numerous issues were encountered during the implementation of

the Ogden model, early versions of the code gave rise to non-physical

behaviour, which was observed when running the Colliding Disks

problem (Section 2.3). A process of elimination was used to debug

the code and identify the source of the problems. Where possible

mathematics software (Maple Version 17, Maplesoft, Waterloo, On-

tario, Canada) was used to generate the code for the given equations,

in addition to working manually, as the process is complex with wide

scope for human error.

A test case was created to test models during the development

phase, described in Section 2.3. Using this example it was easy to

determine whether an error existed in the implementation as the vi-

sualised results would display non physical behaviour (assuming that

67
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the simulation did not crash first). Checks were also added within the

code, throwing an error on the detection of non–physical behaviour.

However, these were not able to catch all potential issues.

The check was simple in the case of the Eigenvectors, it made use of

the mathematical relationship described in Section 2.5.2. In the case of

the principal stretches, the compressible Mooney-Rivlin Model was

re-written in terms of the principal stretches rather than the invari-

ants, as described in Section 2.5.2. Equivalent behaviour to the orig-

inal model showed that the principal stretch calculation was correct

in accordance with the underlying equations.

Having checked the dependent functionality, the cause of the Og-

den model issues was discovered to lie within the compressibility

component of the Ogden strain energy density function (not the cod-

ing thereof). The variants of the compressibility component are de-

scribed in Section 2.5.1. With the Ogden model complete a linear elas-

tic model was also implemented, this was more straightforward and

is described in Section 2.6. Eventually suitable constitutive models

were successfully implemented for all of the component materials in

the SCI simulation using MPM.

2.2 fitting data to hyperelastic models

The constitutive material model gives a mathematical description of

how a material responds to mechanical loading. As with the FE model

(Section 3.4.2) the mechanical properties of the neural tissue were

based on stress–strain mechanical spinal cord testing data reported

by Hung et al. [97].This was mechanical testing data based on com-

pression testing of cat spinal cord tissue at traumatic loading rates.

The data reported by Hung et al. was extracted from the graphs us-

ing Engage Digitizer (Version 5.1, SourceForge Inc.).
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Curve fitting was performed using the lsqcurvefit function in

MATLAB (R2012b, Mathworks, Inc.), to fit this experimental data to

commonly used hyperelastic constitutive material models. Material

constants were calculated for neo-Hookean, Mooney-Rivlin, and Og-

den models, the uniaxial stress–strain curves for which are shown in

Figure 9. In the case of the neo-Hookean and Mooney-Rivlin models

a poor fit was achieved and the material constants calculated for these

models did not produce the equivalent hyperelastic behaviour seen in

the experimental data, Figure 9. The Ogden model provided a close

approximation of the experimental results, demonstrating the appro-

priate hyperelastic curve. The Ogden model was selected as being

best suited for modelling the spinal cord tissue, a decision supported

by previous studies [19, 26, 54].
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Figure 9: Experimental data reported by Hung et al. fitted to the hypere-
lastic models models [91]. The Ogden model provides a good fit,
the other models failed to accurately capture the hyperelastic be-
haviour of the spinal cord.

No implementation of the Ogden model was available in the UCF

(version 1.6.0). The available hyperelastic models were a compress-

ible Mooney-Rivlin model, and a compressible neo-Hookean model.
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(a) t0, T = 0.00013 s (b) t15, T = 0.07500 s (c) t20, T = 0.10012 s

(d) t25, T = 0.12512 s (e) t30, T = 0.15006 s (f) t40, T = 0.20006 s

Figure 10: Test problem: two hyperelastic disks, each move towards each
other at 2 ms−1, collide, and recoil. Particles are coloured by
equivalent stress (Pa).

However, these were not suitable. Being unable to accurately fit the

available experimental stress–strain data to the available models the

decision was taken to implement a compressible Ogden model and

integrate it into the UCF implementation of MPM.

2.3 test problem - colliding disks

A simple test case was created to help evaluate the behaviour of the

material model whilst it was under development. This was adapted

from an example that appeared in Sulsky’s paper on MPM [128].

Two hyperelastic disks are given an initial velocity (2 ms−1), move

towards each other, collide, deform, and recoil. Figure 10 shows a vi-

sualisation of the results, the distribution of stress through the disks is

as expected. A compressible Mooney-Rivlin material model comp_mooney_rivlin

was used (C1 = 100, 000, C2 = 20, 000, ν = 0.49) in this example.
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2.4 hyperelastic material stress calculation

The Cauchy stress tensor for a hyperelastic material can be derived

from the strain energy density function W(F)

σ =
1

J

∂W

∂F
· FT (27)

where F is the deformation gradient and J is the Jacobian of the de-

formation gradient (the determinant of F).

J = |F| (28)

If the material is incompressible then J = 1, this effectively switches

off the compressibility components of the constitutive models. The

appropriate strain energy density function,W, can be substituted into

Equation 27 to calculate the Cauchy stress tensor according to that

model. To accommodate this Equation 27 may we rewritten a number

of ways depending on the form of W. It may be more convenient to

use the invariants of the unimodular component of the left Cauchy–

Green deformation tensor B.

B = F · FT (29)

The invariants of B (I1, I2, and I3) are defined as follows

I1 = tr(B) = Bkk (30)
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I2 =
1

2
(I21 −B : B) =

1

2
(I21 −BikBki) (31)

I3 = |B| = J2 (32)

where |B| denotes the determinant of B. With the strain energy den-

sity function in the form of W(I1, I2, I3), Equation 27 can be rewritten

as

σ =
2√
I3

[(
∂W

∂I1
+ I1

∂W

∂I2
)B−

∂W

∂I2
B ·B] + 2

√
I3
∂W

∂I3
1 (33)

where 1 is the identity matrix or Kronecker Delta.

Some constitutive models, such as the classic Mooney–Rivlin model,

express the strain energy density function in terms of Ī1, Ī2, and J,

these are used in compressible models where J 6= 1.

Ī1 = J
− 2
3 I1 (34)

Ī2 = J
− 4
3 I2 (35)
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With the strain energy density function in the form of W(Ī1, Ī2, J),

Equation 27 can be rewritten as

σ =
2

J
[(
∂W

∂Ī1
+ Ī1

∂W

∂Ī2
)B−

∂W

∂Ī2
B ·B]

+[
∂W

∂J
−
2

3J
(Ī1
∂W

∂Ī1
+ 2Ī2

∂W

∂Ī2
)]1

(36)

The Ogden model is typically expressed in terms of the principal

stretches (λ1, λ2, and λ3), which are related to the invariants as fol-

lows

I1 = tr(B) = λ
2
1 + λ

2
2 + λ

2
3 (37)

I2 =
1

2
(I21 −B : B) = λ21λ

2
2 + λ

2
2λ
2
3 + λ

2
3λ
2
1 (38)

I3 = |B| = J2 = λ21λ
2
2λ
2
3 (39)

Ī1 = J
− 2
3 I1 = J

− 2
3 (λ21 + λ

2
2 + λ

2
3) (40)

Ī2 = J
− 4
3 I2 = J

− 4
3 (λ21λ

2
2 + λ

2
2λ
2
3 + λ

2
3λ
2
1) (41)
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J is equal to the product of the three principal stretches, which is

equal to 1 if the material is incompressible.

J = λ1λ2λ3 (42)

The Ogden strain energy density function is of the formW(λ1, λ2, λ3),

Equation 27 may be expressed in terms of the principal stretches

using a spectral decomposition for B in terms of its Eigenvalues

(λ21, λ22, λ23) and Eigenvectors (n1,n2,n3), which define the principal

stretches and their directions.

σ =
1

λ1λ2λ3
[λ1
∂W

∂λ1
n1⊗n1+ λ2

∂W

∂λ2
n2⊗n2+ λ3

∂W

∂λ3
n3⊗n3] (43)

where ⊗ denotes the dyadic product, which produces a second order

tensor, a 3 × 3 matrix in the practical terms of the implementation.

This equation was used to calculate the Cauchy stress tensor in the

implementation of the Ogden model for MPM. The left Cauchy-Green

deformation tensor, B, may be expressed in terms of its eigenvalues

and eigenvectors

B = λ21n1 ⊗n1 + λ22n2 ⊗n2 + λ23n3 ⊗n3 (44)

where n1, n2, and n3 are mutually perpendicular unit eigenvectors

of B. As B is a symmetric matrix, the eigenvectors will always be

mutually perpendicular unless two or more of the eigenvalues are

the same. In this case the eigenvectors are not uniquely defined and
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it is possible to use any set of mutually perpendicular eigenvectors

[148].

n⊗n = nnT (45)

2.5 ogden hyperelastic model

The strain energy density for the standard incompressible Ogden ma-

terial model is shown in Equation 46[149].

W =

N∑
n=1

µn

αn
(λαn1 + λαn2 + λαn3 − 3) (46)

whereN, α, and µ are the Ogden material constants. For a single term

Ogden model (N = 1) this is simply

W =
µ

α
(λα1 + λα2 + λα3 − 3) (47)

As this is an incompressible material model the condition J = λ1λ2λ3 =

1 applies. For a compressible version of the Ogden model it is neces-

sary to remove this condition and add the volumetric strain energy

density WV to the deviatoric strain energy density, such that

W =WD +WV (48)

where WD is the incompressible Ogden strain energy density shown

in Equation 47. The compressibility component of the Ogden model

can be achieved in a number of ways. Several variants were imple-



2.5 ogden hyperelastic model 76

mented, these are described in Section 2.5.1. For the purpose of the

detailed description in this section; the following is used

W =

N∑
i=1

(
µi
αi

[λ̄αi1 + λ̄αi2 + λ̄αi3 − 3]) +
κ1
2
(J− 1)2 (49)

where α and µ are the Ogden material constants, and κ is the bulk

modulus, and λ̄i denote the reduced principal stretches.

λ̄i = λiJ
− 1
3 (50)

In the case of the a single term (N = 1), Equation 49 becomes

W =
µ

α
(λ̄α1 + λ̄α2 + λ̄α3 − 3) +

κ

2
(J− 1)2 (51)

For small strains, the bulk modulus, κ, equates to the equivalent Pois-

son’s ratio, ν, as follows

κ =
E

3(1− 2ν)
(52)

where

E =
3

2
µα (53)

The Ogden strain energy density function (Equation 51) was substi-

tuted into Equation 43 to obtain the equation to calculate the Cauchy

stress tensor for this constitutive model. This requires some lengthy

algebra, which is shown in Appendix A.3. To minimise the chance of
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error this equation was worked out both by hand and using math-

ematics software (Maple Version 17, Maplesoft, Waterloo, Ontario,

Canada). With both workings in agreement, Maple was used to gen-

erate corresponding C code. Table 6 shows the error checks used to

validate various aspects of the Ogden model implementation and the

process of debugging.

To solve Equation 43 it is also necessary to calculate the outer prod-

uct (also referred to as the tensor product) of the eigenvectors of B,

ni ⊗ni. This results in a 3× 3 matrix, each of which is scaled accord-

ing to the strain energy density function. The result is the Cauchy

stress tensor, σ, which is also a 3× 3 matrix as far as the C++ imple-

mentation is concerned.

Component Check

Deformation gradient Checked that Jacobian is
greater than zero at each
timestep (Section 2.5.4)

Eigenvectors Checked using Equation 66
(Section 2.5.3)

Principal Stretches Checked using modified
version of Mooney–Rivlin
model (Section 2.5.2)

Strain energy density function Worked out Cauchy stress by
hand and by using Maple
mathematics software

Overall material behaviour Multiple versions of Ogden
model implemented, checked
using colliding disks test
(Section 2.3)

Table 6: Table showing the error checks used to develop and debug the Og-
den model implementation in C++

.
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2.5.1 Ogden variants

Several variants of a compressible Ogden model were implemented

in c++ and integrated into the UCF software. Each was implemented

using the same approach described in Section 2.5. However, the strain

energy density functions all differ, these are shown in this section. The

following is the variant available in the ADINA FE software (ADINA

R & D, Inc., 71 Elton Avenue, Watertown, MA 02472 USA) [150]

W =

N∑
i=1

(
µi
αi

[λ̄αi1 + λ̄αi2 + λ̄αi3 − 3]) +
κ1
2
(J− 1)2 (54)

where α and µ are the Ogden material constants, κ is the bulk mod-

ulus, and λ̄i denote the reduced principal stretches. This was used to

model the spinal cord tissue in the MPM model.

The strain energy density function for the compressible Ogden

model available in ABAQUS (SIMULIA, Providence, RI, USA) is [151]

W =

N∑
n=1

2µn

α2n
(λαn1 + λαn2 + λαn3 − 3+

J−αnβ − 1

β
) (55)

where

β =
ν

1− 2ν
G =

N∑
n=1

µn (56)

This variant is also known as the Ogden-Storakers hyperelastic model.

This was used to model the dura mater in the MPM model
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The strain energy density function for the compressible Ogden

model available in FeBio (University of Utah, Salt Lake City, UT, USA)

is as follows [151, 152]

W =

N∑
n=1

[
µn

α2n
(λαn1 + λαn2 + λαn3 − 3−αn ln J)] +

µ ′

2
(J− 1)2 (57)

where

µ ′ =
2Gν

1− 2ν
G =

1

2

N∑
n=1

µn (58)

This model was not used in the MPM model after 2D test simulations

using it gave results that were further from the experimental mean

pellet trajectory compared to the other Ogden variants.

The following was the first variant of a compressible Ogden model

to be implemented

W =

N∑
i=1

(
2µi

α2i
[λ̄αi1 + λ̄αi2 + λ̄αi3 − 3]) +

κ1
2
(J− 1)2 (59)

which appeared in the book Applied Mechanics of Solids by Bower

[148]. Despite a number of attempts this was never successfully imple-

mented, always giving rise to non physical–behaviour. Development

was abandoned in favour of the other strain energy density functions

shown in this section.

2.5.2 Principal stretches

The principal stretches (λi) may be calculated from the eigenvalues of

the right or the left stretch tensor (U and V respectively). These may
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also be calculated from the square roots of the eigenvalues of the right

or the left Cauchy-Green deformation tensor (C and B respectively)

[148]. In this implementation, the principal stretches were calculated

from the square roots of the eigenvalues of B

λ1 =
√
e1, λ2 =

√
e2, λ3 =

√
e3 (60)

A test was created to test that the principal stretches were being cor-

rectly calculated in the software implementation. The existing UCF

implementation of a compressible Mooney-Rivlin model was modi-

fied such that the first invariants were calculated using

I1 = λ
2
1 + λ

2
2 + λ

2
3 I2 = λ

2
1λ
2
2 + λ

2
2λ
2
3 + λ

2
3λ
2
1 (61)

instead of using

I1 = tr(B) I2 =
1

2
(I21 −B : B) (62)

hence rewriting W as

W = C1(J
− 2
3 (λ21 + λ

2
2 + λ

2
3) − 3)

+C2(J
− 4
3 (λ21λ

2
2 + λ

2
2λ
2
3 + λ

2
3λ
2
1) − 3)

+D(J− 1)2

(63)

instead of

W = C1(Ī1 − 3) +C2(Ī2 − 3) +D(J− 1)2 (64)
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which may be substituted into Equation 43 to determine the Cauchy

stress. This requires some lengthy algebra, a full working is shown in

Appendix A.4.

The modified Mooney-Rivlin model, where the first invariants were

calculated using the principal stretches, was compared to the stan-

dard Mooney-Rivlin model, where the first invariants are calculated

from B. The colliding disks test problem (described in Section 2.3)

was run using both the original and the modified constitutive model.

The von Mises stress for each particle in the first simulation was com-

pared to that of the corresponding particle in the second simulation.

The sum of squared errors (SSE) was calculated for all particles for

each timestep. The von Mises stress (or equivalent stress), in terms of

Cauchy stress components, is given by

√
σvm =

1

2
[(σ11 − σ22)

2 + (σ22 − σ33)
2+

(σ33 − σ11)
2 + 6(σ212 + σ

2
23 + σ

2
31)]

(65)

Figure 11 shows a comparison equivalent stress over time for a sin-

gle particle. It shows very strong agreement between the original

Mooney-Rivlin model using and the modified version using princi-

pal stretches calculated from the square roots of the eigenvalues of

B. This confirms that the principal stretches are being calculated cor-

rectly. Table 7 shows the results of this comparison over all particles,

the error is minute and can be attributed to rounding accuracy. From

this it is possible to conclude that the code for calculating the princi-

pal stretches works correctly.
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Figure 11: Equivalent (von Mises) stress over time for a single selected par-
ticle in the colliding disks simulation.

SSE Original vs Modified

Mean Average 0.034072
Total 110.666
Minimum 4.51118× 10−45
Maximum 40.8123

Table 7: Comparison of the Original vs Modified Mooney–Rivlin models.
Sum of Squared Errors summed over every particle over the entire
duration of the colliding disks simulation.
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2.5.3 Eigenvectors

The principal stretches were calculated from the square roots of the

eigenvalues of B, to solve Equation 43 and the calculate Cauchy stress

the corresponding eigenvectors must also be calculated. These relate

to B as follows

B = FFT = λ21n1 ⊗n1 + λ22n2 ⊗n2 + λ23n3 ⊗n3 (66)

This relationship was used to check that the Eigenvectors were be-

ing calculated correctly. B was constructed in both ways (from the

deformation gradient, and from the eigenvalues and eigenvectors)

and compared at each timestep, for each particle. A check was imple-

mented to throw an error if the difference between these two forms

exceeded 1× 10−12. In this way it was verified that the eigenvectors

(and eigenvalues) were being calculated correctly.

2.5.4 Jacobian of deformation gradient

The Jacobian of the deformation gradient, J, provides a measure of

volume change caused by a deformation. J is equal to the product of

the principal stretches, the determinant of F, and the square root of

the determinant of B

J = λ1λ2λ3 = |F| =
√
|B| (67)
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Note that

ρ =
ρ0
J

(68)

where ρ is mass density and ρ0 is the undeformed mass density [148].

For an incompressible material J = 1 as volume remains constant.

For a compressible material J must satisfy the condition J > 0. If J is

smaller than or equal to zero then this is indicative of non–physical

behaviour. This check was implemented at each timestep, if J does

not meet this condition then an error is thrown and the simulation is

halted to prevent it continuing unnecessarily and producing results

that are not physically admissible.

2.6 linear elastic model

A compressible linear elastic model was implemented and integrated

into the UCF. For an isotropic linear elastic material, ignoring the

thermal expansion coefficient, the Cauchy stress may be calculated as

follows [148]

σ =
E

1+ ν
(εij +

ν

1− 2ν
εkk1) (69)

where ν is the Poisson’s Ratio, E is the elastic modulus, εij is the

infinitesimal strain tensor, and 1 is the identity matrix

εij = (
∂ui
∂xj

+
∂uj

∂xi
)/2 (70)

Note that εkk is shorthand notation for
∑
k εkkδij using Einstein sum-

mation convention, in practice this constitutes the infinitesimal strain
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tensor multiplied by a 3× 3 identity matrix. Use of the infinitesimal

strain tensor is only appropriate if the solid only experiences very

small deformations. This linear elastic model is required to handle

large deformations, the infinitesimal strain tensor in Equation 69 is

therefore replaced by the Lagrangian finite strain tensor (also referred

to as the Green-Lagrangian strain tensor or as the Green–St–Venant

strain tensor). The Lagrangian finite strain tensor, E, is suitable for

large deformations and may be calculated as follows

E =
1

2
(FTF− 1) (71)

where F is the deformation gradient, FT is the transpose of the de-

formation gradient, and 1 is the identity matrix. This material model

was used to model the impactors and the backplate.

2.7 mooney-rivlin model

As part of the debugging process an incompressible Mooney–Rivlin

model was implemented, a compressible version of the Mooney–Rivlin

model was then also implemented. These were not used for the SCI

model (in favour of the Ogden model), but were useful for prelim-

inary tests and for debugging purposes. A compressible Mooney–

Rivlin did also exist within the UCF, the details of which were un-

documented. The code was reverse engineered to recover the strain

energy density function. The compressible Mooney–Rvilin model im-

plemented here differs from the existing one by its compressibility

component, the existing Mooney–Rivlin model was restrictive in that

it would fail if either C1 or C2 were set below zero.

Having a working Mooney–Rivlin model was useful in the devel-

opment of the Ogden model. Much of the code was the same for both
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models, transplanting sections of code was performed to test specific

areas of functionality. In particular, the calculation of the principal

stretches, the calculation of the Eigenvectors, and the implementation

of the general equation for calculating Cauchy Stress (in terms of prin-

cipal stretches) in a hyperelastic material (Equation 43). Both incom-

pressible a compressible Mooney-Rivlin models were implemented

and integrated into the UCF software. The strain energy for a com-

pressible Mooney–Rivlin hyper material is given by

W = C1(Ī1 − 3) +C2(Ī2 − 3) +D(J− 1)2 (72)

where

∂W

∂Ī1
= C1,

∂W

∂Ī2
= C2,

∂W

∂J
= −2D(J− 1) (73)

The bulk and shear moduli relate to the constants as follows

κ = 2D (74)

µ = 2(C1 +C2) (75)

Using this in conjunction with Equation 36 the Cauchy stress is given

by

σ =
2

J
[
1

J
2
3

(C1 + Ī1C2)B−
1

J
4
3

C2B ·B]

+[2D(J− 1) −
2

3J
(C1Ī1 + 2C2Ī2)]1

(76)
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If the material is incompressible then J = 1 and Equation 72 becomes

simply

W = C1(Ī1 − 3) +C2(Ī2 − 3) (77)

and the Cauchy stress is then given by

σ = 2(C1 + Ī1C2)B− 2C2B ·B−
2

3
(C1Ī1 + 2C2Ī2)1 (78)

2.8 automatic timestepping

To reduce computation time the software attempts to use the largest

allowable timestep whilst maintaining stability. The size of the timestep

depends on the computational cell dimensions, the particle velocity,

and the dilational wave speed, Cdil, in the materials. The size of the

timestep is therefore calculated within the constitutive material mod-

els, when there are multiple materials present then each calculates its

maximum allowable timestep and the smallest of these is used. How

the dilatational wavespeed is calculated depends on the nature of the

constitutive model, for the single term Ogden model it is calculated

using

Cdil =

√
µ(αλα−11 +

1

2
αλ

− 1
2α−1

1 )/ρ (79)
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where λ1 is the first principal stretch, and α and µ are the Ogden

material constants, and ρ is the density [149]. For the Linear elastic

model Cdil is given by the Newton-Laplace equation

Cdil =
√
κ/ρ (80)

where κ is the bulk modulus and ρ is the density.

Dilational wavespeed is calculated within the constitutive material

models, thus the implementations of the material models described

in this chapter contain this functionality. A timestep multiplier is

also specified within the input file, which roughly corresponds to

the Courant-Friedrichs-Lewy (CFL) number. This provides some ad-

ditional control over the timestepping, and was set below zero to

scale down the size of the timesteps and increase stability. The CFL

condition, in one dimension, is given as

C =
µ∆t

∆x
6 Cmax (81)

where C is the Courant number, which is dimensionless, µ is the

magnitude of the velocity, ∆t is the size of the timestep, and ∆x is the

length interval. The CFL condition must be met in the solving of par-

tial differential equations and dictates the maximum allowable size

of the timestep for the simulation to provide physically permissible

results.

2.9 conclusions

The constitutive models are essential in defining the mechanical be-

haviour of the materials used in the MPM SCI model. Hyperelastic
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compressible Ogden models were implemented to model the spinal

cord tissue and dura mater. A compressible linear elastic model was

implemented for the purposes of modelling the impactors and back-

plate. Numerous issues were encountered during the Ogden model

development, a process of elimination was used to debug the code

and ensure the necessary calculations were being performed correctly.

Variable timestep size calculation was also implemented for these

models, reducing overall computation time.



3
S O L I D M O D E L D E V E L O P M E N T

3.1 overview

This section discusses the development of the solid base model (i.e.

excluding the cerebrospinal fluid, which is included later). Initially

this was a bare cord model (spinal cord tissue only excluding the

surrounding layers), the dura mater is also added once the bare cord

model was completed. The aim was to reproduce an experimental SCI

model computationally, using the Material Point Method (MPM) in-

stead of the traditional approach using Finite Element Analysis (FEA).

The MPM software used for this work, the Uintah Computational

Framework (UCF), is introduced in Section 3.2. The experimental con-

figuration on which the MPM model was based is described in Sec-

tion 3.4.1, a complimentary FE model based on these experiments is

described is Section 3.4.2.

Initial work focussed on creating a computational geometry equiv-

alent to this configuration, this is described in Section 3.5. Having

established this, the focus moved on to determining and selecting

other parameters, including parallelisation (Section 3.11), contact al-

gorithms (Section 3.9), and boundary conditions (Section 3.8).

With the basic problem set–up in place the next step was to define

material behaviour using suitable constitutive material models and

parameters. The spinal cord exhibits hyperelastic material behaviour,

unfortunately an appropriate hyperelastic constitutive model was not

available within the UCF; therefore, additional constitutive models

were implemented in C++ and integrated into the UCF software. These

90
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models and the equations on which they are based are described in

detail in Chapter 2.

With this new capability it was possible to create the bare cord

SCI simulation using MPM, this was then refined and optimised for

performance. This solid model, with and without the dura mater, was

validated against the existing experimental models

3.2 computational model

The software selected for this research is the Uintah Computational

Framework (UCF), which is a parallel computing problem solving en-

vironment developed at the University of Utah [147]. The UCF was

chosen as it provides a sophisticated implementation of the Mate-

rial Point Method (MPM) algorithm, and the source code may be ob-

tained freely and modified under the an open source software license

(MIT Licence).

The UCF includes an implementation of MPM that has been demon-

strated to scale well over thousands of processors working in paral-

lel [153, 154]. This allows MPM simulations to make use of parallel

computing to enable computationally expensive modelling within a

reasonable time frame. Data visualisation can be achieved using VisIt,

an open source data visualisation tool suited to large scale data sets.

A VisIt plug-in is available that allows the software to interpret UCF

output data (Uintah Data Archive format).

3.3 the material point method

The general MPM algorithm was described in Chapter 1 Section 1.5.1,

the UCF specific version of MPM will be detailed here, the descrip-

tion is based on the UCF documentation and the literature [128, 129,
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155, 156]. As described previously, initially the materials in the MPM

simulation are discretised into a finite number of material points, i.e.

generation of the point cloud. Each particle carries all of its own state

variables, which (at the least) include position (xp), mass (mp), vol-

ume (υp), velocity (vp), stress (σp), and deformation gradient (Fp).

Mass typically remains constant throughout. The following charts

the progression of a single timestep. Initially the particle states are

mapped to the grid nodes (individually referred to as p and i respec-

tively) using the shape function, Sip (the shape function of node i

evaluated at the position of particle p). The choice of the shape func-

tion is significant, this is discussed in Section 3.3.1.

mi =
∑
p

Sipmp (82)

vi =

∑
p
Sipmpvp

mi
(83)

Fexti =
∑
p

SipF
ext
p (84)

Following these operations, Fint is calculated using the volume inte-

gral of the divergence of stress on the particles.

Fint =
∑
p

Gipυp (85)

where Gip is the gradient of the shape function, Sip (the shape func-

tion of node i evaluated at the position of particle p), Fint is a second
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order tensor obtained from the dyadic product of Gip and υp. It is

then possible to calculate the acceleration as follows

ai =
Fexti − Finti

mi
(86)

The time advanced grid velocity, vLi , is calculated using an explicit

forward Euler method for time integration,

vLi = vi +ai∆t (87)

this is then used to compute a velocity gradient for each particle.

∇vp =
∑
i

Gipv
L
i (88)

where ∇vp is a second order tensor. The particle velocity gradient is

used to calculate an incremental particle deformation gradient,

dFn+1p = I+∇vp∆t (89)

which is in turn used to calculate the particle volume, υn+1p , and

particle deformation gradient, Fn+1p , at timestep n+ 1.

υn+1p = Det(dFn+1p )υnp (90)

Fn+1p = dFn+1p Fnp (91)
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Where Det() denotes the determinant. The time advanced stress cal-

culation is performed by the relevant constitutive material model,

based on either the velocity gradient or deformation gradient (in this

case the deformation gradient). The constitutive models used for the

SCI model are the subject of Chapter 2.

σn+1p = σp(F
n+1
p ) (92)

Finally, the particle velocities and positions are explicitly updated.

vp(t+∆t) = vp(t) +
∑
i

Sipai∆t (93)

xp(t+∆t) = xp(t) +
∑
i

Sipv
L
i∆t (94)

Thus concludes the progression of a single timestep, with all of the

state variables having been updated (except for mass, which remained

constant). Conceptually, in the description of MPM, the grid deforms

and is reset to its original position at the end of each timestep. In

practice this is not necessary as the the movement of particles is com-

puted using Equation 94, the computational grid serves only as a

frame of reference. Contact between materials is handled by contact

algorithms, this is discussed in Section 3.9.

3.3.1 Shape Function

In MPM, the shape function, or interpolation function, handles the in-

teraction between the particles and the underlying grid, the choice of
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shape function is significant. Typically linear functions are used (tri-

linear in the case of three dimensional simulations). However, a gen-

eralisation of MPM, referred to as Generalized Interpolation Material

Point Method (GIMP), has been reported by Bardenhagen and Kober

and offers a more stable and accurate approach [157]. MPM being

considered a subset of the GIMP family of methods, in these meth-

ods the particles are represented by a characteristic function, xp, and

the grid nodes using a shape function, Si. The differences between

the GIMP approach versus the traditional approach is described here.

A convolution of xp and Si gives the effective shape function, S̄ip,

shown in Equation (95).

S̄ip(xp) =
1

Vp

∫
Ωp∩Ω

χp(x− xp)Si(x)dx. (95)

In MPM, Si is typically given by

Si (x) =



1+ (x− xi) /h −h < x− xi 6 0

1− (x− xi) /h 0 < x− xi 6 h

0 otherwise,

(96)

where xi is the vertex location and h is the cell width. For simplic-

ity, Equation (96) the descriptions in this section are limited to one

dimension, multi-dimensional versions can be obtained using the ten-

sor product of the one dimensional equations in the orthogonal direc-

tions. Traditional MPM is recovered when the Dirac delta function is

selected as the characteristic function,

χp(x) = δ(x− xp)Vp (97)
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where xp is the particle position, and Vp is the particle volume. The

effective shape function is then still that given by Equation (96). The

gradient of this effective shape function is given by

Gi (x) =



1/h −h < x− xi 6 0

−1/h 0 < x− xi 6 h

0 otherwise,

(98)

Figures 12 13 show plots of Equations (96) and (98), note the sharp

discontinuity in the gradient seen in Figure 13. This gives rise to nu-

merical artifact noise which can result in poor accuracy and stability.

The noise occurs due to the discontinuity in the gradient of the linear

interpolation function, arising when material points cross the bound-

aries on the computational cells comprising the underlying grid. This

affects the evaluation of the constitutive response and results in non-

physical local variations at the material points [157].

−h 0 h
0

0.2

0.4

0.6

0.8

1

xp

S i (x
p)

Figure 12: Effective shape function when using traditional MPM [156].

The GIMP method addresses the issue of numerical artifact noise us-

ing an effective shape function with smoother gradient. When using

GIMP, the linear shape function (Equation (96)) is typically used in
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Figure 13: Gradient of the effective shape function when using traditional
MPM [156].

conjunction with a top hat characteristic function, in one dimension

this is given by

χp(x) = H(x− (xp − lp)) −H(x− (xp + lp)) (99)

where H(x) is the Heaviside function (H(x) = 0 if x < 0 and H(x) = 1

if x > 0) and lp is the particle half-length, which is given by

lnp = Fnpl
0
p (100)

where Fnp is the particle deformation gradient at time n. A fixed par-

ticle size is assumed here as it is in the UCF implementation of MPM,

although the method does permit variable particle sizes. The convolu-
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tion shown in Equation (95) is performed on Equations (96) and (95)

to obtain a closed form effective shape function,

Si (xp) =



(h+lp+(xp−xi))
2

4hlp
−h− lp < xp − xi 6 −h+ lp

1+
(xp−xi)
h −h+ lp < xp − xi 6 −lp

1−
(xp−xi)

2+l2p
2hlp

−lp < xp − xi 6 lp

1−
(xp−xi)
h lp < xp − xi 6 h− lp

(h+lp−(xp−xi))
2

4hlp
h− lp < xp − xi 6 h+ lp

0 otherwise,

(101)

the gradient of which is

Gi(xp) =



h+lp+(xp−xi)
2hlp

−h− lp < xp − xi 6 −h+ lp

1
h −h+ lp < xp − xi 6 −lp

−
(xp−xi)
hlp

−lp < xp − xi 6 lp

− 1h lp < xp − xi 6 h− lp

−
h+lp−(xp−xi)

2hlp
h− lp < xp − xi 6 h+ lp

0 otherwise,

(102)

Figures 14 15 show plots of Equations (101) and (102), note that the

discontinuity seen in Figure 13 is not present, the gradient is much

smoother. This continuity of the gradient reduces the noise making

the method more accurate and robust. In this way GIMP makes MPM

viable for problems in which strength is a significant component, and

becomes increasingly vital for large deformation problems. For these
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Figure 14: Effective shape function when using GIMP [156].
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Figure 15: Gradient of the effective shape function when using GIMP [156].

reasons the GIMP approach was highly preferable to linear interpola-

tion for the SCI model.

3.4 existing models

3.4.1 Experimental Model

The MPM model was validated against existing experimental and

FEA models. Vertebral burst fracture models have been reported by

Persson [71, 73]. The experimental model involved the simulation
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of a transverse contusion injury representative of a vertebral burst

fracture, where 140mm sections of thoracolumbar bovine spinal cord

were positioned in front of a steel backplate, representing the poste-

rior element of the spinal canal, each end fixed with clamps.

A simulated bone fragment (pellet/impactor), moving at 4.5m/s,

transversely impacted the surface of the spinal cord specimens. These

pellets were crafted from TUFNOL Grade 6F/45, a cotton fabric based

epoxy laminate with mechanical properties similar to bone [71, 158].

Three pellets with different morphologies were used, the dimensions

of which are shown in Figure 16. Circular pellet faces were used to

avoid end effects, the area of the impact face of Pellet 2 is 50% of

P1, while P3 is 25% of P1 (Table 8). The mass of all the pellets is

equal, hence the impact energy or each pellet is equal, assuming the

same impact velocity (Equation 103). The experimental burst fracture

model, using these pellet dimensions, found that a decreasing the

area of the impact face lead to an increase in maximum spinal cord

deformation [71].

E =
1

2
mv2 (103)

Each spinal cord specimen was tested in three configurations: the

bare spinal cord (dura mater and fluid removed), the cord with dura

mater (CSF drained), the cord with both the dura mater and CSF (the

CSF filling the subdural space). Each configuration was tested with

each of the 3 impactors, with each specimen receiving 9 impacts in

total. 16 specimens were tested in total [71, 73]. The deformation of

the cord was measured by tracking the leading face of the impactor

using a high speed camera placed at a right angle to the axis of im-

pact. The trajectory of the pellet, from first impact to the point at

which the impactor recoils (leaving contact with the surface), gives a
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Natural bone
fragment

P1 P2 P3

Density
(kg/m3)

1.84(±0.33)× 103 1.36× 103 1.36× 103 1.36× 103

Mass (g) 5.8(±1.7) 7 7 7
Impact
area
(mm2)

unknown 314 156 78

Table 8: Bone fragment properties [73].

Figure 16: The dimensions of the 3 simulated bone fragments used by Pers-
son [73]. Referred to as P1, P2, and P3 (from left to right).

reliable indication of the mechanical response of the spinal cord spec-

imen in response to the traumatic impact. The results were plotted as

deformation over time curves. These curves were used to validate the

computational models.

3.4.2 Finite Element Model

Persson et al. also created a FEA model, to compliment the experimen-

tal model, as part of an investigation into the effect of the thickness of

the CSF subdural layer on the spinal cord deformation [26, 73]. The

model was created using ADINA (Version 8.5, ADINA R&D Inc., Wa-

tertown, MA), a FE based monolithic FSI modelling software package.

The geometry mimics the experimental model described in Section

3.4.1. The constitutive material models used in this FEA model and

their relevant parameters are shown in Table 9.
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Material Constitutive model Density
(kg/m3)

Poisson’s
ratio
(ν)

Cord Tissue Ogden µ = 2kPa, α = 9 1050 0.4
Dura Mater Linear E = 80MPa 1000 0.49
Impactor Linear E = 6.5GPa 1360 0.3
Backplate Linear E = 193GPa 8000 0.3

Table 9: Material models and parameters used in the FEA model [73].

3.5 model geometry

3.5.1 Spinal Cord

To generate the initial geometry for the simulation, it is possible to

specify geometric objects from which the point cloud could be gen-

erated. The spinal cord was represented as an elliptical cylinder, di-

ameter ranging from 10 mm to 15 mm, spanning the length of the

computational domain from top to bottom (z+ to z−). The initial ge-

ometry of the cord was generated using an ellipsoid geometric object,

the software does not provide the option for an elliptical cylinder. An

ellipsoid with an extremely long length in the z direction (1× 1012m),

the areas of the ellipsoid that exceeded the boundaries of the compu-

tational domain were truncated, leaving the elliptical cylinder with

the desired dimensions. The spinal cord construct was positioned im-

mediately in front of the backplate, which simulates the posterior

element.

3.5.2 Impactors

The pellets modelled here are representative of the bone fragments

that are propelled into the spinal canal during a vertebral burst frac-
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ture. Pellet geometries were created according to the dimensions shown

in Figure 16. It is possible to create more complex geometries though

the union of geometric objects, the impactors were comprised of two

or more cylinders combined. Pellet 1 was used throughout the devel-

opment phase, once the initial model had been established the simu-

lation was re–run using pellets 2 and 3. The pellets were positioned

facing the centre point of the spinal cord specimen and given an ini-

tial velocity of 4.5m/s along the y axis, causing them to approach and

transversely impact the surface.

3.5.3 Posterior element

The steel backplate represents the posterior element of the spinal

canal, the spinal cord construct is pressed against this by the impactor

during the injury simulation. A study by Oakland found no signifi-

cant difference in deformation when using a flat posterior element

when compared to a more anatomically correct one [100]. The back-

plate was modelled using a rectangular box geometry, forming a wall

on the y− face of the domain, on the opposite side of the spinal cord

to the impactor. The thickness of the plate was set to that of one com-

putational cell (0.5mm). This constitutes a reduction in thickness from

the 5mm seen in the experimental and FE models. This was done to

reduce the overall number of particles, reducing computational time.

As the backplate undergoes negligible deformation, this change was

considered not to significantly affect the results.

As the backplate is effectively a wall, removing it entirely was con-

sidered. The backplate was removed and instead a Dirichlet bound-

ary condition imposed on the y− face of the computational domain

(Velocity= [0, 0, 0]; particles that hit the face have their velocities re-

duced to 0). However, this produced a different behaviour to the
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physical observation, particles that hit the back wall were effectively

frozen in place. This caused the cord construct to stick to the back

wall, rather than bouncing back from the backplate as the pellet re-

coiled. For this reason the backplate was retained, albeit with a re-

duced thickness. Interactions between other materials and the back-

plate are handled by the contact algorithm, and interactions between

these particles and the domain boundary conditions are avoided. This

allows the cord construct the collide with, slide against, and bounce

back from the backplate, rather than becoming effectively adhered to

the face of the computational domain due to the Dirichlet boundary.

3.5.4 Dura Mater

The dura mater was modelled as an elliptical tube, 0.5mm thick, en-

circling the spinal cord and spanning the length of the computational

domain from top to bottom (z+ to z−). The inner surface of the dura

mater was positioned 0.1mm from the surface of the cord in the direc-

tion of impact (y axis). This reflects an observation in the experimen-

tal model; that the draining of the CSF brought the dura closer to the

surface of the cord. The geometry was generated in a similar way to

the cord itself (Section 3.5.1). It is possible to subtract one geometry

piece from another. An inner elliptical cylinder with diameter rang-

ing from 14mm to 11.2mm, was subtracted from an outer elliptical

cylinder, which had a diameter ranging from 14.5mm to 11.7mm, re-

sulting in the tube structure. The spinal cord construct, now including

the dura mater, was positioned immediately in front of the backplate.
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Material Constitutive model Density
(kg/m3)

Cord Tissue Ogden µ = 2kPa, α = 9, κ = 45× 103 1050
Dura Mater Ogden µ = 322kPa, α = 19, ν = 0.4 1000
Impactor Linear E = 6.5GPa, ν = 0.3 1360
Backplate Linear E = 193GPa, ν = 0.3 8000

Table 10: Material models and parameters used in the MPM model.

3.6 constitutive material models

The constitutive models used for each of the solid materials, along

with their parameters, are shown in Table 10. A detailed description

of these models is given in Chapter 2.

3.6.1 Spinal Cord

The spinal cord tissue was modelled using a single term compressible

hyperelastic Ogden model with the parameters µ = 2kPa, α = 9,

κ = 45× 103kg/m3. The bulk modulus, κ, equates to an equivalent

Poisson’s ratio of ν = 0.4 using Equation 104.

κ =
E

3(1− 2ν)
(104)

where

E =
3

2
µα (105)
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3.6.2 Impactors

The impactors, or simulated bone fragments, were modelled using a

linear elastic constitutive model with the parameters E = 6.5GPa, ν =

0.3. The parameters produce a material behaviour roughly equivalent

to that of bone. The same constitutive model and parameters were

used for all 3 impactors.

3.6.3 Posterior Element

The stainless steel backplate, representative of the posterior element

of the spinal canal, was modelled using a linear elastic constitutive

model the with parameters: 193GPa,ν = 0.3.

3.6.4 Dura Mater

The dura mater was initially modelled using a linear elastic model

(E = 80MPa,ν = 0.49), consistent with the FE model (Table 9). These

early simulations all failed with a negative Jacobian of the deforma-

tion gradient being detected at particles in the dura mater, indicative

of non-physical behaviour. It appeared to be the case that the linear

mode, as implemented for MPM, used was unable to handle such a

large deformation over a short timespan. Rather than continue using

the linear model an Ogden model was used instead, which was better

able to capture the hyperelastic behaviour of the dura mater.

The lsqcurvefit function in Matlab (R20212b, The MathWorks,

Inc., Natick, MA, United States) was used to generate Ogden ma-

terial constants producing an almost linear stress–strain response,

equivalent to that of the linear model. This eliminated the issue. Hav-

ing moved to using a hyperelastic model for the dura and incur-
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ring the additional computational cost associated with doing so, it

seemed prudent to apply some more anatomically relevant material

properties. The dura mater was therefore modelled using a single

term compressible hyperelastic Ogden model with material constants:

µ = 322kPa,α = 19,ν = 0.4 [149, 159]. These values were based on

published results from mechanical testing of bovine dura mater [96].

3.7 resolution

The domain resolution was set to 0.5× 0.5× 0.5mm, defining an un-

derlying grid of 18mm
3 cubes. The material resolution for the spinal

cord and dura mater was set to 2× 2× 2, therefore; at the start of

the simulation each cell contained 8 material points for those mate-

rials. The material resolution for the impactor and backplate was set

to 1× 1× 1, each cell containing 1 material point for those materials.

2× 2× 2 is the ideal material resolution for a 3D simulation. How-

ever, the reduction in detail had little effect on the rigid materials,

whilst reducing the overall number of particles and hence reducing

computational expense.

3.8 boundary conditions

Boundary conditions were specified on the boundaries of the domain

only. Due to the nature of the MPM it is not necessary to track ma-

terial boundaries or to apply explicit conditions to the boundaries

between materials. Interaction between materials was handled by the

friction contact algorithm, which is discussed in Section 3.9.

Symmetric boundary conditions were applied to exploit the sym-

metry of the model geometry and reduce computational expense.

Symmetric boundaries were specified on the x+ and z+ faces of the



3.9 material contact 108

computational domain, effectively quartering the model. A Dirichlet

boundary condition was specified on the z− face. The velocity on the

face was set to zero effectively fixing the end of the cord in place at

the domain boundary. A Dirichlet boundary was also specified on

the y− face, fixing the backplate in place also. A Neumann boundary

condition, which allows particles to advect freely past it and out of

the domain, was specified on the y+ face. This allowed the pellet to

advect freely out of the domain after recoiling, having impacted the

cord. A Neumann boundary was also specified on the x− face, no

particles came into contact with this boundary during the simulation.

3.9 material contact

In MPM the material boundaries within the computational domain

are not explicitly tracked. Each particle holds all of its own state vari-

ables (velocity, acceleration, temperature, etc.), the underlying com-

putational mesh serves only as a point of reference. Contact models

are therefore required to handle the interactions between materials

on the grid, without these the materials would simply behave as if

each were alone in its own computational domain.

The standard contact algorithm for MPM is referred to as single

velocity within the UCF. This provides a no–slip, no–penetration

model for contact between materials, and works on the assumption

that all particle data communicates with a single field on the under-

lying grid [156]. The UCF provides an extended version of this con-

tact algorithm referred to as friction, based on the work of Barden-

hagen et al. [160]. The single velocity contact model is limited in

that particles will be effectively stuck together, forming a single body,

if they are initially positioned next to one another. The friction con-

tact model allows frictional sliding, based on the coefficient of friction
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(specified as an input) and the normal force, it overcomes this issue

by adding an additional check to allow free separation of materials.

The check applies to whether a particle is approaching or departing

a given grid node. If it is approaching then contact is applied. If it

is departing then a secondary check is performed to find whether

the particle is in tension or compression. If it is in compression then

the particle is still rebounding and contact is applied, if it is in ten-

sion then the particle is allowed to move away. This contact algorithm

(friction) was selected for the SCI model and the coefficient of fric-

tion set to zero, effectively allowing free-slip between all materials.

There does not seem to be any data in the literature regarding the

coefficient between spinal cord or meningeal tissues and bone. In the

FE model a coefficient of 0.1 was used, however the application of

this (versus zero) was found to have very little effect on the overall

deformation of the spinal cord construct (< 0.1%) [73]. It was there-

fore assumed that this simplification was acceptable and would have

little effect on the results of the MPM model.

3.10 time integration scheme

An explicit time integration scheme, available with the UCF imple-

mentation of MPM, was used [128, 147]. This is the standard variant

of MPM, an implicit version of MPM is also available, in which the

mesh is not reset at the end of each timestep [124]. This variant was

developed for low rate of strain problems to avoid the restrictions

stemming from the use of an explicit time integration scheme [124].

Implicit MPM was not selected for this SCI model as it may have

given rise to mesh tangling issues (traumatic SCI is a high rate of

strain problem), which was one of the key drivers behind using MPM
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rather than FEA. This issue is described in detail in Chapter 1 Section

1.7.1.

3.11 parallelisation

The UCF software was built and installed for the ARC2 High Per-

formance Computing facility at the University of Leeds. The system

comprises of 190 HP BL460 blade servers, each housing one node.

Each node was a dual socketed with 8–core Intel E5-2670(2.6GHz)

processors. There were 16 cores per node; 380 CPUs delivering a total

of 3040 cores. The computational domain for the solid model was di-

vided into 320 rectangular patches, the patch layout remaining static

throughout the simulation. Each patch was computed on a single core,

with 320 cores being utilised in total. The patch layout was specified

at 8× 1× 160 in the x, y, and z directions respectively. This gave a

reasonably even distribution of particles per patch, however; due to

the geometry of the model and the static nature of the patches, some

cores were inevitably underutilised.

Dynamic Load Balancing (DLB) is a scheme that attempts to opti-

mise the distribution of the computational load to improve efficiency

and maximise throughput. In the static scheme described above each

patch, containing a portion of the computational workload, is as-

signed to a single processor, a computational resource. Due to the

model geometry, the workload is not distributed evenly across the

patches; some patches contain more particles than others. This results

in an underutilisation of the computational resource as each proces-

sor must wait until all the calculations for a given timestep for all

patches are complete before moving on to the next timestep. Progress

is limited by the time taken to resolve the most computationally ex-

pensive (i.e. slowest) patch, processors need to remain idle while they
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wait for the completion of the slowest patch. This inefficiency can

be mitigated by ensuring that each patch incurs roughly the same

computational expense meaning that each processor will complete

its tasks at around the same time, thus reducing the time processors

spend idling. However, even if the distribution of the workload is

even at the start of the simulation it is likely to change as it pro-

gresses and the materials move and deform. DLB addresses this by

dynamically reassessing the distribution of the workload across the

processors continuously throughout the simulation in order to main-

tain and even distribution. This can be done by rearranging the layout

of the patches aiming to keep the computational cost for each as close

to even as is possible.

A DLB scheme exists within the UCF, but this was not suitable for

the SCI model and offered no performance gains. The DLB scheme

presently available within the UCF does not alter the patch layout,

which remains fixed throughout. Instead multiple patches are as-

signed to a single processor with the aim of maintaining an even

workload. The uneven distribution of particles over the computa-

tional domain combined with the additional overheads incurred by

single processors handling multiple patches (rather than the one patch

per processor layout) meant that this approach was unsuitable for im-

proving performance in the SCI model. A superior DLB approach

would be to recompute the patch layout to maintain an even particle

distribution whilst retaining the one patch per processor distribution,

however; this approach is not presently implemented within the UCF.

This is a limitation of the software and there is no reason that such a

scheme could not be implemented for MPM.
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3.12 validation

Figures 17-19 show the deformation over time for the bare cord model

for each of the three impactors (P1-P3), comparing the MPM, FE, and

Experimental (mean average of 16 bovine specimens) models. Figures

20-22 show the same for the cord/dura model. Tables 11 and 12 show

the maximum deformation (MD) and time to maximum deformation

(TTMD). The FE results each show a dip, more visible for the cord/-

dura models (e.g. Figure 20 at 1.20ms). This is due to a small gap

between the cord and backplate, not present in the MPM model and

too slight to record in the experiments. At a certain point (e.g. Fig-

ure 20 at 1.40ms) the inertia is overcome, the construct then begins to

move backwards.

Figures 17-19 show results for the bare cord models, both of the

computational results show a close agreement in terms of both MD

and TTMD. For all three impactor shapes the MD is very similar,

with the MPM model being slightly lower than FE (by 0.18, 0.17,

and 0.36mm for pellets 1–3 respectively), meaning that the MPM is

slightly closer to the experimental compared against FE. In the cases

of P1 and P2 the MPM result overestimates the maximum deforma-

tion (by 0.87mm and 0.65mm respectively), which is consistent with

the FE result. Both fall above the experimental standard deviation.

For P3 the MPM model underestimates the MD by 0.58 mm, again

this is consistent with the FE model, both fall within the experimen-

tal standard deviation. Similarly, the TTMD for both computational

results also show close agreement. TTMD for the MPM model was

slightly lower compared to FE (by 0.1, 0.1, and 0.15 ms for pellets 1–3

respectively), this reflects the lower MD compared to FE. Similarly to

the FE model, the MPM model significantly underestimates TTMD

compared to the experimental mean (by 0.85, 1.56, and 2.34 ms for
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pellets 1–3 respectively). This may be due to increased tissue com-

pliance due to degradation and repeated testing, this is discussed in

Chapter 6 Section 6.4.2.

In the case of the cord/dura models using P1, all of the models

show a close agreement in terms of MD. In the case of P2 the MPM

result overestimates the maximum deformation (by 0.44 mm) whilst

the FE result is closer to the experimental mean. In the case of P3

the MPM MD is very close to the experimental mean, while the FE

model underestimates the maximum deformation (by 0.91 mm). In

all three cases the MD for both computational models fell within the

experimental standard deviation. As with the bare cord MPM model,

the cord/dura MPM model underestimates TTMD compared to the

experimental mean (by 0.58, 0.83, and 0.85ms for pellets 1–3 respec-

tively), albeit not to the same extent. Overall the cord/dura MPM

model shows a closer agreement with the experimental model than

the bare cord MPM model does. The same is true of the FE model,

suggesting that this difference is not due to the use of MPM as both

computational results were very similar.
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Figure 17: Pellet 1, bare cord model
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Figure 18: Pellet2, bare cord model

3.13 conclusions

A burst fracture spinal cord injury model was created using the Ma-

terial Point Method (MPM) implementation within the Uintah Com-

putational Framework, this solid material SCI model served as the

base for the full FSI model using MPMPICE. The model consisted of

a simulated bone fragment transversely impacting the surface of the

spinal cord in two configurations; with and without the dura mater

(both excluding the CSF). Three impactors with different geometries

were tested.

The MPM model was validated against existing FE and experimen-

tal results by comparing the deformation over time curves, maximum

deformation, and time to maximum deformation. For the bare cord

configuration the MPM results were extremely close to the equivalent

FE results. Both the FE and MPM models overestimated the maxi-

mum deformation when compared to the experimental results, this
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Figure 19: Pellet 3, bare cord model
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Figure 20: Pellet 1, cord/dura model
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Figure 21: Pellet2, cord/dura model
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Figure 22: Pellet 3, cord/dura model
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MD (mm) TTMD (ms)

P1
Exp. 5.90 (±0.20) 3.21 (±0.12)
FE 6.95 2.46
MPM 6.77 2.36

P2
Exp. 6.69 (±0.27) 3.92 (±0.18)
FE 7.51 2.46
MPM 7.34 2.36

P3
Exp. 8.46 (±0.29) 4.65 (±0.20)
FE 8.24 2.46
MPM 7.88 2.31

Table 11: Maximum Deformation (MD) and Time to Maximum Deformation
(TTMD) for the 3 pellet types (P1-P3) in the experimental, FE, and
MPM models, bare cord excluding the dura mater.

MD (mm) TTMD (ms)

P1
Exp. 5.70 (±0.21) 2.97 (±0.11)
FE 5.58 2.46
MPM 5.67 2.39

P2
Exp. 6.25 (±0.23) 3.36 (±0.23)
FE 6.15 2.56
MPM 6.69 2.53

P3
Exp. 7.53 (±0.27) 3.43 (±0.13)
FE 6.62 2.76
MPM 7.45 2.58

Table 12: Maximum Deformation (MD) and Time to Maximum Deformation
(TTMD) for the 3 pellet types (P1-P3) in the experimental, FE, and
MPM models, including the cord and dura mater.
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Figure 23: Visualisation of the SCI model including the cord and dura mater.
The impactor is coloured by velocity, red indicates high velocity
(maximum 4.5m/s), blue indicates low velocity (minimum 0m/s).
The cord tissue is coloured by equivalent stress, red indicates high
stress (maximum 1× 105Pa), blue indicates low stress (minimum
0Pa). Time is shown in seconds.
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may have been caused increased compliance of the tissue used in the

experiments due to repeated impacts. The fact that both computa-

tional results are very similar suggests that this disparity is due to

the experimental methodology and not an issue inherent to MPM or

FE. In the case of the cord/dura configurations the MPM, FE, and ex-

perimental results were all in close agreement and the overestimation

observed for the bare cord model did not occur.

MPM is more computationally expensive per timestep than FE due

to the additional steps required in interpolating between the parti-

cles and the computational grid nodes. However, MPM offers greatly

superior parallel scaling compared to FE, with up to 320 parallel pro-

cessors being utilised for the solid SCI model. MPM is also less ac-

curate than FE (first order versus second order accuracy) and offers

less clearly defined material boundaries as a result of the GIMP inter-

polation scheme. This can be mitigated by increasing the resolution

of the underlying material grid, which reduces the error but also in-

creases the number of particles and hence the computational expense.

This increase may in turn be overcome by utilising additional parallel

processors to reduce computation time.



4
F L U I D M O D E L D E V E L O P M E N T

4.1 overview

Having created a solid material Spinal Cord Injury (SCI) model using

the Material Point Method (MPM), including the spinal cord and the

dura mater, the next stage in the development of the model was to

incorporate the cerebrospinal fluid (CSF). Once again, the aim was

to create an computational Fluid–Structure interaction (FSI) model

comparable to the existing experimental model, using the Material

Point Method (MPM) instead of of the traditional approach using Fi-

nite Element Analysis (FEA). Two attempts were made to incorporate

the CSF using MPM only (Section 4.3), using a Mooney–Rivlin fluid

approximation for the fluid and using a water constitutive model.

Neither of these was successful, which was unsurprising, MPM alone

was not suited to modelling both fluid and solid phases.

The FSI model, including the cord, dura mater, and CSF, was achieved

using MPMICE (Material Point Method Implicit Continuous Fluid

Eulerian), this is a multi–material algorithm that utilises MPM for

solid materials but also integrates Eulerian fluid dynamics using the

same underlying computational grid. It is capable of simulating strong

interactions between solid and fluid phases and, like MPM, an imple-

mentation is available within the Uintah Computational Framework

(UCF). This method and its relationship with MPM is described in

detail in Section 4.2. Solid material stresses are still calculated us-

ing the constitutive material models, fluid behaviour is governed by

equations of state (EOS), described in Section 4.5. Existing equations

120
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of state within the UCF were used for the fluid phases, the air was

modelled using the ideal gas law (Section 4.5.2), and the CSF using

a water model referred to as THWater (Section 4.5.1). This utilises a

Gibbs free energy function to determine water fluid behaviour.

A constraint of MPMICE is that there cannot be empty space within

the computational domain, hence the empty space in the MPM model

was filled with air (Section 4.4.1), the motion of which was simulated

but is of no interest. In turn the boundary conditions on the faces of

the domain had to be adjusted, Neumann boundaries were changed

to Dirichlet boundaries (Section 4.6), this prevented the surrounding

air from escaping the domain, which would soon result in a failed

simulation. As with MPM, no boundary conditions need be specified

between materials as the are handled by the contact algorithm. In ad-

dition, MPMICE requires momentum and heat exchange coefficients

to be specified between each material to determine the rates at which

these quantities are transferred between materials 4.10.

A constraint of the THWater EOS was that it would fail if the pres-

sure in the fluid fell below 1 atmosphere in any area. To work around

this the pressure in the domain was increased and the densities of the

materials adjusted accordingly (Section 4.7). Initially the pressure was

increased to 20 atmospheres and once a working model had been cre-

ated this was reduced to 3 atmospheres, which was determined to be

the lowest pressure achievable whilst avoiding the constraint imposed

by the THWater EOS. This situation is sub–optimal, however; imple-

mentation of an alternative approach was not possible within a feasi-

ble time–frame, and the model produced accurate fluid behaviour so

long as the condition was met.

The completed FSI SCI model using MPMICE, including the cord,

dura, and CSF was validated against the existing experimental model

and FE computational model. A parametric study was then performed
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to determine the sensitivity of the model to the thickness of the CSF

layer, this is discussed in Section 4.13.

4.2 mpmice

Material Point Method Implicit Continuous Fluid Eulerian (MPMICE)

is a multi-material algorithm initially developed at Los Alamos Na-

tional Laboratory (NM, USA) for simulating explosions of energetic

devices, where there was a need for an approach capable of handling

very large material deformations over a short time involving both

solid and fluid phases [134]. This is a full physics formulation, i.e.

incorporating strong interactions between solid and fluid phases in

terms of both temperature and velocity. As the name suggests, MP-

MICE incorporates MPM and a CFD approach named ICE (Implicit

Continuous Eulerian) for the fluid dynamics. ICE is a CFD formula-

tion with full Navier-Stokes representation of fluids using an Eulerian

grid, with the capability for including chemical and physical transfor-

mations between phases, e.g. fuel combustion.

It is essential for the solid material deformation history to be trans-

ported through the Eulerian grid, MPMICE achieves this through

the incorporation of MPM, as the Lagrangian computational grid in

MPM is effectively reset at the end of each timestep. MPM is consid-

ered to be an Arbitrary Lagrangian Eulerian (ALE) technique; it is

possible to use the same underlying grid for MPM and to serve as

the Eulerian grid for the ICE component. FE based FSI may utilise

either a monolithic or partitioned approach, monolithic FSI models

use a single stiffness matrix incorporating both phases with a single

solver. Partitioned FSI models use separate solvers for the different

phase, which are coupled with a interface algorithm (e.g. the Im-

mersed Boundary Method) to give the overall solution. The FE model
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using ADINA (ADINA R&D Inc., Watertown, MA), against which the

MPMICE model was validated, used a monolithic approach.

MPMICE is an averaged FSI solution, allowing any material to ex-

ist at any point in space at any time. There is no need to track mate-

rial interfaces as this is handled inherently by the MPMICE method.

An implementation of MPMICE using an explicit time integration

scheme is available in the UCF. Section 4.2.1 describes the underlying

theory, Section 4.2.2 describes the integration of this approach with

MPM, which was discussed previously in Chapter 3 Section 3.3).

4.2.1 Theory

The material derivative, DF
Dt , describes the rate of change of a material

element in response to a time dependent macroscopic velocity field.

In the Lagrangian frame this is simply given by

Du

Dt
=
∂u

∂t
(106)

where u is the velocity gradient and t is time. In the Eulerian frame

the material derivative is given by

Du

Dt
=
∂u

∂t
+ (u · ∇)u (107)

whereas for Arbitrary Lagrangian Eulerian

Du

Dt
=
∂u

∂t
+ (u− ẋ) · ∇u (108)

note that if (u− ẋ) · ∇u is equal to zero then the frame is fully La-

grangian and Equation 106 is recovered. For an Eulerian grid ẋ = 0,



4.2 mpmice 124

for a Lagrangian grid ẋ = ur, and in the case of ALE ẋ 6= ur. MP-

MICE is an ALE method.

Consider a arbitrary finite volume of space V(x, t) containing N ar-

bitrary materials, denoted by subscript r = 1, 2...N. The material state

vector [Mr,ur, er, Tr,υr, θr,σr,p] gives the averaged physical state for

a given material. M is the material mass, u is the velocity, e is the en-

ergy, T is the temperature, υ is the specific volume, θ is the volume

fraction, σ is stress, and p is the equilibration pressure. The averaged

density for a given material is ρ = Mr/V . Equations 109-111 are the

averaged model equations for mass, momentum, and energy, which

give the rate of change in the state in a volume moving with the veloc-

ity of the given material. In the following equations σ is taken to be

the isotropic mean mixture stress (mixture of solid and fluid phases),

such that σ = −p1 in terms of the hydrodynamic pressure, where 1

is the identity matrix.

1

V

DrMr

Dt
=

N∑
s=1

Γrs (109)

1

V

Dr(Mrur)

Dt
= θr∇ ·σ+∇ · θr(σr −σ) + prg+

N∑
s=1

frs +

N∑
s=1

u+
rsΓrs

(110)

In Equation 110,
∑N
s=1 frs signifies the model for momentum ex-

change between materials, a function of the relative velocity between
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materials at the given point. This is derived from the deviation of the

material specific field stress from the mean stress.

1

V

Dr(Mrer)

Dt
= ρrρ

Drυr

Dt
+ θrτr : ∇ur −∇ · jr+

N∑
s=1

qrs +

N∑
s=1

h+rsΓrs

(111)

Here τr is the viscous stress tensor, where σr = −p1+ τr, the term

θrτr : ∇ur is the viscous heating component. Similarly to Equation

110, in Equation 111,
∑N
s=1 qrs signifies a model for heat exchange

between materials. Heat flux is denoted by jr, according to Fick’s

first law

jr = −prbr∇Tr (112)

where br is the thermal diffusion coefficient, which includes molec-

ular and turbulent effects. The term
∑N
s=1 h

+
rsΓrs is the rate of mass

conversion from material s into material r, due to phase change or

chemical reaction, such as the burning of a solid reactant into gaseous

products or the evaporation of a liquid into a gas. In Equations 110-

111, u+
rs is the velocity of the reactant material s undergoing trans-

formation into resultant material r, while h+rs is the enthalpy. A solid

reaction model governs the rate at which this occurs, as there is no

combustion involved in the SCI model (no reaction model was in-

cluded) this feature will not be described in detail here. The material

masses (Equation 109) will remain constant throughout the SCI sim-

ulations.
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Temperature Tr, specific volume υr, volume fraction θr, and equili-

bration pressure p relate to material mass and material mass density,

ρr, via equations of state.

er = er(υr, Tr) (113)

υr = υr(p, Tr) (114)

Equations 113 and 114 are the caloric equation of state, which speci-

fies the dependence of the energy, er, on the specific volume, υr and

temperature, Tr, and the thermal equation of state, which specifies

the volumetric reaction of the material to changes in temperature.

θr = pυr (115)

0 = 1−

N∑
s=1

ρsυs (116)

Equation 115, which is the volume fraction, is defined as the volume

of a given material (labelled by subscript r) divided by the total vol-

ume of all the materials. As such, Equation 116 is the multi material

equation of state, this defines the values of hydrodynamic pressure.

This is required to calculate the equilibrium pressure and to calculate

the specific volumes to allow any arbitrary mass to fill the the volume,

V , identically. This pressure is referred to as equilibration pressure.

A closure relation is required to calculate the material stress. For

solid materials Cauchy stress is used, this is computed by the relevant
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solid constitutive material model, in the case of the SCI model an

Ogden constitutive model is used, this is discussed in Chapter 2. In

the case of fluids

σr = −p1+ τr (117)

Having obtained equations for all of the elements of the state vector

it is now possible to calculate these for any volume of space moving

with any material velocity. The frame of reference used is that best

suited to the individual material. Lagrangian in the case of the solid

materials, achieved using MPM, and Eulerian for fluid materials. It

is possible that the volumes will remain consistent as different ma-

terials can be defined in different frames of reference. It is therefore

necessary to treat the specific volume as a dynamic variable of the

material state and to integrate it forward in time with each timestep

as the simulation advances

Vt =

N∑
r=1

Mrυr (118)

subsequently, the volume fraction for a material is given by

θr =Mrυr/Vt (119)

The sum of the volume fractions for all of the materials being equal

to 1. i.e.
∑N
r=1 θr = 1. An evolution equation for the specific volumes,
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which defines how the specific volumes of the materials evolve as

time advances, was developed by Kashiwa [161]

1

V

Dr(Mrυr)

Dt
= fθr∇ ·u+

[
υrΓr − f

θ
r

N∑
s=1

υsΓs

]

+

[
θrβr

DrTr

Dt
− fθr

N∑
s=1

θsβs
DsTs

Dt

] (120)

where β is the constant pressure thermal expansivity, κ is the bulk

modulus, and

fθr =
θrκr∑N
s=1 θsκs

(121)

4.2.2 Integration with MPM

The following description shows the advancement of a single MP-

MICE timestep, from time t to time t+ ∆t, and is based on the de-

scription given by Guilkey et al. [134]. Figure 24 shows a flow chart

of the algorithm.

Step 1, projection of the particle states to to the underlying compu-

tational grid, the implementation described here uses a regular carte-

sian grid, N = 8,wij = 1
8 . Particle state data is projected onto the grid

nodes. In the case of velocity, this is given by

uj =

∑N
i=1wijmiui∑N
i=1wijmi

(122)

where mi is the mass on the grid nodes.

Step 2, computation of equilibration pressure. As mentioned pre-

viously in Section 4.2.1 The volume of a material occupying a cell is
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1 Initialize

2 Project particle states to underlying grid

3 Compute equilibration pressure

4 Compute cell face–centred
velocities for Eulerian phases

5 Compute phase changes
using reaction model

6 Estimate time advanced pressure

7 Compute cell face–centred pressures

8 Compute material stresses
using constitutive models

9 Accumulate mass, momen-
tum, and energy at cell centres

10 Compute quantities
for Lagrangian phases

11 Compute momentum and
heat exchange between materials

12 Compute updated specific volumes

13 Perform advection of fluid materials

14 Update solid material
quantities on grid nodes

15 Perform advection of solid materials

Figure 24: Evolution of a single timestep using the MPMICE algorithm.
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not necessarily equal to the volume of the cell as different phases are

computed using different frames of reference. As such, it is necessary

to track the evolution of material volume using Equation 120. Having

obtained the material masses and specific volumes it is possible to

compute the material volumes Vr = Mrυr, which are then summed

to obtain the total volume across all materials. With this the volume

fractions θr are calculated. The multi-material equation of state (Equa-

tion 116) can now be solved at each cell using the Newton-Raphson

method [162], resulting in updated values for equilibrium pressure

peq, volume fraction θr, and specific volume υr.

Step 3, computation of face centred velocities for Eulerian advec-

tion. The face centred velocities u∗r are calculated based on adjacent

values using the Equation 123 below. This uses a time advanced es-

timate for the cell centred velocities using the method developed by

Kashiwa et al. [161, 163].

u∗r =
ρrLurL + ρrRurR

ρrL + ρrR
−

(
2υrLυrR∆t

υrL + υrR

)(
peqR − peqL

∆x

)
+g∆t (123)

where g∆t is the acceleration due to gravity.

The first term of Equation 123 is a mass weighted average of the

left and right cell-centred velocities, denoted by subscripts L and R.

The second term is a pressure accelerated gradient. The third term

is the acceleration in relation to gravity in the face normal direction.

Momentum exchange also occurs at the cell face centres, handled

using the same methodology as described later in Step 10.

Step 4, multiphase chemistry. A solid reaction model is used to

calculate sources of Mass, Γr, momentum, urΓr, internal energy, erΓr,

and specific volume, υrΓr, for each material. The way in which this

occurs, which determines the calculation of Γr, is model dependent.
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Mass, momentum, and energy are conserved according to Newton’s

laws.

Step 5, Computation of an estimated time advanced pressure. An

estimate of time advanced pressure p is computed based on the vol-

ume of material added to or subtracted from a cell. The pressure

increment is calculated using

∆p = ∆t

∑N
r=1 υΓr −

∑N
r=1∇ · (θ∗ru∗r)∑N

r=1 θrκr
(124)

where the first term in the numerator signifies the volume change

during a reaction. The second term represents the net change in vol-

ume of materials moving in to and out of a cell. The denominator

is effectively a mean average of the compressibility of the materials

occupying the cell. Having found the incremental pressure the esti-

mated time advanced pressure is calculated using

p = peq +∆p (125)

where peq is the equilibration pressure which was calculated in Step

2 [163].

Step 6, computation of face centred pressures. The face centred

pressure p∗ is calculated using the updated pressure obtained in the

previous step

p∗ =

(
pL
ρL

+ pR
ρR

)
(
1
ρL

+ 1
ρR

) (126)

where L and R denote left or right centred values and ρ is the sum

density of all the materials in the cell.
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Step 7, Computation of material stresses. For solid materials, the

particle stresses are calculated by a constitutive material model, de-

scribed in detail in Chapter 2. For fluid materials, stresses are calcu-

lated on the cell faces using the cell centred velocities.

Step 8, Accumulation of mass, momentum, and energy sources at

the cell centres. Mass is accumulated using,

∆(m)r = ∆tV

N∑
s=1,s6=r

Γs (127)

where V is the total volume. Momentum is accumulated using

∆(mu)r = −∆tV

[
θr∇p∗ +∇ · θr(σr −σ) +

N∑
s=1,s6=r

usΓs

]
(128)

and energy is accumulated using

∆(me)r = −∆tV

[
fθrp+

N∑
s=1

∇ · (θ∗ru∗r) +
N∑

s=1,s6=r
esΓs

]
(129)

Only the energy resulting from flow is included here, it is also possi-

ble to include other terms such as heat conduction.

Step 9, Computation of Lagrangian phase quantities. Using the in-

crements calculated during the previous step the Lagrangian phase

quantities are updated by adding the increment to the value from the

previous timestep, denoted by superscript t. Here the superscript L

indicates that all physical processes for this parameter have been ac-

counted for in the Lagrangian frame for the current timestep, i.e. on

the deformable mesh that is reset at the end of each timestep. The su-

perscript L− indicates that all physical processes have been accounted
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for with the exception of the transfer of heat and momentum between

materials, which is dealt with in Step 10. Mass is updated using

(m)Lr = (m)tr +∆(m)r (130)

momentum is updated using

(mu)L−r = (mu)tr +∆(mu)r (131)

and energy is updated using

(me)L−r = (me)tr +∆(me)r (132)

The superscript L indicates that all physical processes for these quan-

tities have been accounted for in the Lagrangian frame, with the ex-

ception of material momentum and heat exchange.

Step 10, Momentum and heat exchange. The following equations

are evaluated in an implicit pointwise manner allowing the arbitrarily

large transfer of momentum between materials,

(mu)Lr = (mu)L−r +∆tmr

N∑
s=1

θrθsKrs(u
L
s −u

L
r ) (133)

(me)Lr = (me)L−r +∆tmrcυr

N∑
s=1

θrθsHrs(T
L
s − TLr ) (134)

where Krs is the momentum exchange tensor coefficient and Hrs is

the heat exchange tensor coefficient, both of which are second order
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tensors. These are discussed further in Section 4.10. This operation

is also performed at the end of Step 3 to compute the face centred

velocities.

Step 11, Evolution of specific volume. As mentioned in Step 2, it is

necessary to track the evolution of specific volume for each material

in order to compute the volume fractions and equilibrium pressures.

Taking into account volume changes due to changes in temperature,

pressure, and phase conversion, the specific volumes are computed

using

∆(mυ)r = ∆tV

[
υrΓr+ f

θ
r∇·

N∑
s=1

θ∗su
∗
s+θrβrT̄r− f

θ
r

N∑
s=1

θsβsṪs

]
(135)

(mυ)Lr = (mυ)tr +∆(mv)r (136)

where β is constant pressure thermal expansivity and Ṫr is the rate

of temperature change for each material calculated in the Lagrangian

frame.

Ṫ =
TL − Tt

∆t
(137)

where TL is the updated temperature for the current timestep and Tt

is the temperature at the previous timestep.

Step 12, Advection of fluid materials. For the fluid phases, mass,

momentum, energy, and specific volume are transported. The specific

volume is converted to material volume for the purpose of advection

and is then reconstituted into specific volume for use in the subse-

quent timestep.
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Step 13, Update of solid material nodal quantities. Changes in mass,

momentum, energy, and specific volume were previously computed

at the cell centres, in this step these are interpolated to the grid nodes

as field quantities. Changes in momentum can now be expressed as

accelerations on the grid nodes.

Step 14, Solid materials advection. The time advanced grid velocity

and acceleration is now interpolated back to the material points using

shape functions and the material point velocities and positions are

then updated, as discussed in Chapter 3 Section 3.3.1. This concludes

the execution of a single timestep using MPMICE.

4.3 adding the csf

4.3.1 Mooney-Rivlin fluid approximation

The FE model created by Maikos et al. modelled the CSF using solid

elements [95]. A hyperelastic Mooney-Rivlin constitutive model was

used with the shear modulus set very low in relation to the bulk

modulus, which approximates a fluid like behaviour. Adaptive mesh-

ing was used to maintain a regular mesh for the CSF, enabling flow

between elements.

This approach was attempted using MPM only (not MPMICE). A

Mooney-Rivlin constitutive model was used, the Poisson’s Ratio was

set to 0.49 (equivalent to a very high bulk modulus), both C1 and C2

were set to 33.5. The nature of MPM, whereby the mesh is reset at the

end of each timestep, means that the CSF can flow between compu-

tational cells. This is handled inherently by MPM and no additional

work is required to achieve this, in contrast to the FE model.

This approach was not successful using MPM, the simulation failed

early on due to a negative Jacobian of the deformation gradient in-
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dicative of non-physical behaviour (recall Chapter 2 Section 2.5.4).

The timestep was lowered as far as was feasible in an attempt to over-

come this, but without success. This approach was abandoned at this

point, it was a crude approach to incorporating the CSF, inferior to

the full FSI approach achievable using MPMICE.

4.3.2 Water constitutive model

A water constitutive model was available, this model offers water-like

behaviour for an MPM material without using MPMICE. However,

the SCI model failed (negative Jacobian of deformation gradient), the

water constitutive model was unable to cope with such a large de-

formation over a short time at a feasible resolution and timestep size.

MPM is designed for solid material problems, while simulating fluid

flows is possible in MPM it is not what the method was intended for.

As the SCI simulation involves substantial fluid deformation an MPM

only approach is not optimal, necessitating the use of MPMICE.

4.4 geometry

As with the solid model (Chapter3, Section 3.5.4), the dura mater

was modelled as an elliptical tube, 0.5mm thick, encircling the spinal

cord and spanning the length of the computational domain from top

to bottom (z+ to z−). However, the inner surface of the dura mater

was positioned 1.5mm out from the surface of the cord. The subdural

space, the space between the cord surface and the inner surface of

the dura, was filled with CSF. The geometry for the CSF was again

generated using an elliptical cylinder.
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4.4.1 Surrounding Air

In the solid model, which used MPM only, the areas of the compu-

tational domain not containing the solid materials (cord, dura, back-

plate, and impactor) were filled with empty space. This was not possi-

ble using MPMICE, the pressure equilibration will fail in the presence

of empty space as the volume fractions will not sum to 1. It was neces-

sary to fill this space, therefore; air was added to surround the other

materials and fill the domain. The surrounding air was modelled us-

ing the Ideal Gas equation of state.

4.5 equations of state

4.5.1 Thomsen-Hartka Water

This model for the thermodynamic behaviour of water was origi-

nally reported by Thomsen and Hartka [164], it uses a Gibbs function,

which is given as follows

g =
1

2
b(T − T0)

2 + (T − T0)(c0 + bT0)

+(P−
1

2
k0P

2)v0 + P(
1

3
a2P2 + aP(T − T0)

+(T − T0)
2)λv0 + T(−c0 − bT0)log(

T

T0
)

(138)

where P is pressure, and T is temperature. The units for these vari-

ables are given in Table 13
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Parameter Unit

v0 m3kg−1

λ K−2

T0 K

a KPa−1

k0 Pa−1

c0 Jkg−1K−1

b Jkg−1K−2

Table 13: Units for the Gibbs function parameters

4.5.2 Ideal Gas

The Ideal Gas law describes the behaviour of a hypothetically ideal

gas

PV = nRT (139)

where P is pressure, V is volume, n is the quantity of gas in moles,

R is the ideal gas constant, and T is temperature. Based on this, the

equation of state for an ideal gas is given as

p = (γ− 1)cvρT (140)

where cv is the isochoric specific heat capacity, and γ is the ratio of

specific heats.

4.6 boundary conditions

As is the case with MPM, in MPMICE boundary conditions need only

be specified on the boundaries of the domain. Interaction between
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Figure 25: Computational domain with boundary conditions, symmetric
boundary conditions were specified on the x+ and z− faces to
exploit the symmetry of the geometry and reduce computational
expense. The domain measures 15.2× 50× 40mm.

materials is handled by the friction contact algorithm, as discussed

in Chapter3 Section 3.9. The Fluid-structure interaction is handled

inherently by the method. Symmetric boundaries are again specified

on the x+ and z+ faces of the computational domain, effectively quar-

tering the model to exploit the symmetry of the model geometry and

reducing computational expense. Dirichlet boundary conditions were

specified on all other faces, this effectively closed the domain with no

materials entering or leaving. Neumann boundary conditions are not

appropriate for the MPMICE model as they allowed the surrounding

air to escape leading to a loss of pressure that would ultimately cause

the simulation to fail.
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4.7 material density

The Thomson-Hartka water equation of state, as implemented in the

UCF, will fail if the pressure in the fluid falls below 1 atmosphere

(101,325 Pa). To work around this the reference pressure needs to be

set much higher (20 atmospheres, 2,026,500 Pa). The pressure for indi-

vidual materials is set indirectly, via the density, making it necessary

to adjust the density for the component materials accordingly. It was

therefore important that the density be set accurately, even tough the

density of the solids varied only slightly at the increased pressure.

Failure to account for this would mean that the pressure in the com-

putational domain was not in equilibrium resulting in pressure waves

emanating from the material boundaries as the pressure began to sta-

bilise. This would cause unwanted interference in the simulations and

in some case could cause them to fail. The densities for each of the

materials at 20 atmospheres pressure are shown in Table 14. As the

simulations are highly sensitive to density, these were calculated to

16 decimal places.

Material Density (kg/m3)

Cord 1092.7816666666667516
Dura 1000.0000012811723309
Impactor 1360.0003554169231847
Backplate 8000.0000119699998322
CSF 991.9896293640560998
Air 22.7617247826178648

Table 14: Densities for each of the materials at 20 atmospheres (2,026,500 Pa)
pressure, 310.15 K temperature

Once a functioning model was achieved at 20 atmospheres the pres-

sure was then reduced to 3 atmospheres, the material densities for

which are shown in Table 15. Note that the density of the backplate
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has been reduced to be equal to that of the impactor, the density of

which is similar to bone. The reason for this change was that the high

density of the steel was a limiting factor in determining the size of

the timesteps, the lower density allowed for larger timesteps reducing

overall computation time. As the backplate undergoes negligible de-

formation this change does not significantly affect the results. Ideally

the pressure would be set at 1 atmosphere, however; the limitations

of the available equation of state for the fluid prevented this, and the

simulations failed when the pressure was set below this.

Material Density (kg/m3)

Cord 1054.5033333333333303
Dura 1000.0000001348602154
Impactor 1360.0000374123076199
Backplate 1360.0000374123076199
CSF 991.3235777144317353
Air 3.4142587173926797

Table 15: Densities for each of the materials at 3 atmospheres (303,975 Pa)
pressure, 310.15 K temperature

4.7.1 Solid Materials

For the solid materials, the density at 20 atmospheres was calculated

as follows. The bulk modulus, κ, may be defined as:

κ = −V
dP

dV
(141)

where κ > 0, P is pressure, and V is volume. Equivalently:

κ = ρ
dP

dρ
(142)
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where ρ is density. Knowing both the bulk modulus of the material

and its density at 1 atmosphere (101,325 Pa), it is possible to use this

relationship to calculate the density at any given pressure, assuming

it is an isotropic material at a constant temperature.

dP

dρ
=
κ

ρ
⇒

∫
dρ =

∫
κdρ⇒ ρ =

√
2ρ

κ
+C (143)

Knowing the density for the material at 1 atmosphere, it is possible to

calculate C and subsequently calculate the density at 20 atmospheres,

assuming a constant temperature.

4.7.2 Air

The density of the surrounding air was calculated according to the

Ideal Gas law

ρ = P/(RdT) (144)

where P is the atmospheric pressure, set at 2,026,500 Pa, T is temper-

ature, set at 310.15 K, and Rd is the universal gas constant for dry air,

Rd = 287.058.

4.7.3 CSF

The density of the CSF was calculated according to to Thomsen-Hartka

Gibbs function, described in Section 4.5.1, using Equation 145.

ρ = ((1− k0 ∗ P+ (a ∗ P+ T − T0)2 ∗ L) ∗ v0)−1 (145)
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4.8 resolution

The resolution of the underlying computational grid was set to 0.4×

0.4×0.4mm, giving each cubic computational cell a volume of 0.4mm3.

The initial material resolution, which only affects the number of par-

ticles comprising the initial material geometry was set to x = 2,y =

2, z = 1 meaning that each cell initially contained up to 4 parti-

cles. This is a reduction in the overall number of particles compared

to the solid model, where the initial material resolution was set to

x = 2,y = 2, z = 2 (up to 8 particles per cell). This was done to reduce

the computational expense, as the impact occurs transversely in the

y direction reducing the number of particles in the z direction was

considered to be acceptable and did not appear to significantly affect

the results in terms of the maximum deformation.

4.9 parallelisation

4.10 exchange coefficients

The exchange coefficients determine the rate at which heat and mo-

mentum are transferred between materials, recall Step 10 in Section

4.2.2. The heat exchange coefficient between all materials was set to

0, effectively disabling heat exchange. Heat is not of interest in the

SCI model and disabling heat exchange increases computational ef-

ficiency as the calculations facilitating this are no longer performed.

The momentum exchange coefficients between all materials was set

to 1× 1010.6 with the exception of the coefficient of the dura mater

and the surrounding air, which was set to 1. The simulations were

found to be stable at 1× 1010, increasing this to 1× 1010.6 offset the

reduction of the dura–air coefficient to 1. The dura–air coefficient was
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reduced to mitigate the formation of a pocket of high pressure be-

tween the dura and the impactor resulting from trapped air, which

is an artefact of the simulation and not physically relevant. Reducing

the impactor–air coefficient resulted in simulation failure, likely due

to the extent to which air is displaced by the fast moving impactor.

4.11 heat parameters

MPMICE requires that the isochoric specific heat capacity, cv, be set

for all materials. In addition, the ratio of specific heats, γ, which is the

ratio of isobaric heat capacity to isochoric heat capacity, must be set

for the fluid materials. Heat is not a significant factor in the SCI simu-

lation and heat exchange between materials is disabled meaning that

these values have no effect on the mechanics of the SCI simulation,

nevertheless it is necessary to set these values within an appropriate

range to avoid the MPMICE simulation failing. For the tissues the

isochoric specific heat of water at 3 atmospheres and 300 kelvin was

used. For the impactor the value was based on the TUFNOL manu-

facturer’s data, the same value was used for the backplate. For the

CSF, the values were calculated based on the Gibbs function (Section

4.5.1) to be consistent with the other parameters. The values used are

shown in Table 16.

Material cv γ

Cord 4130 N/A
Dura 4130 N/A
Impactor 1500 N/A
Backplate 1500 N/A
CSF 4117.84 1.000039
Air 719.1 1.4

Table 16: Values for isochoric specific heat capacity, cv, and ratio of specific
heats, γ, used in the SCI model
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4.12 validation

The FSI SCI model using MPMICE was validated by comparing the

pellet trajectories against the existing experimental and finite element

models. Figures 27-28 show the deformation over time for the bare

cord model for two types of impactor (P1-P2), comparing the MPM,

FE, and Experimental (mean average of 16 bovine specimens) models.

Table 17 shows the maximum deformation (MD) and time to maxi-

mum deformation (TTMD). Due to time limitations on computational

resource it was not possible to simulate P3.

The MPMICE results for P1 and P2 show a close agreement with

the experimental results, falling within the standard deviation of the

experimental results in both cases. The MPMICE results also show a

close agreement with the FE results, although there is a slight differ-

ence in the maximum deformation (0.53mm for P1 and 0.56mm for

P2), this appears to be due to the gap between the back of the cord

construct and the backplate. As mentioned previously in Chapter 3,

the FE trajectories each show a dip, this is due to a small gap between

the cord and backplate, not present in the MPM model and too slight

to record in the experiments. At a certain point the inertia is over-

come, the construct then begins to move backwards, due the the way

the MD is calculated this has a noticeable effect when comparing the

MPMICE and FE results.

4.13 parametric study – csf thickness

In the experimental study the measured thickness of the CSF layer

in the bovine specimens varied between animals from a minimum of

0.6mm to a maximum of 2.8mm with a mean thickness of 1.5mm.

The CSF is known to have a protective effect on the spinal cord, a
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Figure 26: Visualisation of the SCI model including the cord, dura mater,
and CSF. The impactor is coloured by velocity, red indicates high
velocity (maximum 4.5m/s), blue indicates low velocity (mini-
mum 0m/s). The cord tissue is coloured by equivalent stress, red
indicates high stress (maximum 1 × 105Pa), blue indicates low
stress (minimum 0Pa). Time is shown in seconds.
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Figure 27: Pellet 1, cord/dura/CSF model
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Figure 28: Pellet 2, cord/dura/CSF
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MD (mm) TTMD (ms)

P1
Exp. 6.34 (±0.17) 3.096 (±0.15)
FE 5.87 3.15
MPM 6.4 2.5

P2
Exp. 6.85 (±0.28) 3.78 (±0.18)
FE 6.96 3.36
MPM 7.52 2.70

Table 17: Maximum Deformation (MD) and Time to Maximum Deformation
(TTMD) for the 3 pellet types (P1-P2) in the experimental, FE, and
MPM models, FSI model including the cord, dura mater, and CSF.

preliminary parametric study was conducted to assess the impact of

varying the thickness of the CSF layer on the internal deformation of

the spinal cord. This study looked at deformation of the spianl cord

only, not the entire cord construct including the dura mater. Three

simulations were run with thickness of the CSF layer set to 0.6mm

(thin), 1.5mm (base), and 2.8mm (thick), due to limitations on the

available computational resource these were conducted in 2D.
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Figure 29: Deformation over time of the spinal cord, within the CSF and
dura mater, for varying thickness of the CSF layer.
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CSF (mm) MD (mm): TTMD (ms)

0.6 6.48 2.5
1.5 6.82 2.76
2.8 5.29 2.6

Table 18: Table showing the internal Maximum deformation (MD) and Time
to Maximum Deformation (TTMD) of the spinal cord, within the
CSF and dura mater, for varying thickness of the CSF layer.

Figure 29 shows the deformation over time curves for each of the

simulations, the Maximum deformation (MD) and Time to Maximum

Deformation (TTMD) is shown in Table 18. The thick layer resulted

in a 22.4% reduction in maximum cord deformation compared to the

base layer. The thin layer resulted in a 5% reduction in the maximum

cord deformation compared to the base layer. The result for the thin

layer is unexpected as a thinner layer of CSF is thought to absorb

less energy and therefore offer less protection to the cord. It is likely

that this unexpected result is due to the fact that these tests were

conducted in 2D. It is not possible for the fluid to be displaced in the

z direction in the 2D simulations, therefore the protective effect of the

fluid is diminished. In order to properly ascertain the sensitivity of

the model to the thickness of the CSF layer these experiments will

need to be repeated in 3D.

4.14 stress patterns

Figure 30 shows the deformation of the spinal cord construct at vari-

ous time points. The white space between the cord and dura is filed

with CSF. The impactor, travelling at 4.5m/s, strikes the outer surface

of the spinal dura mater and slows down to 0m/s as the cord con-

struct deforms to the point of maximum deformation, the impactor

then begins to recoil. Internally, the cord begins to deform immedi-
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ately after the impactor strikes the outer surface of the dura, energy

of the impact is transferred through the dura mater and the CSF into

the cord tissue. Following the impact a wave of high stress propagates

from the area of impact through the spinal cord tissue in the trans-

verse direction until it hits the rear of the construct, at which point

it bounces back creating an area of high pressure behind the site of

the impact. The pressure wave also propagates in the longitudinal

direction both up and down the length of the cord. This wave trav-

els through both the solid and fluid phases, as the impactor moves

towards the cord construct the CSF is displaced upwards and down-

wards, reducing the stresses in the spinal cord. A pocket of CSF re-

mains behind the cord throughout the deformation. The maximum

stress within the cord tissue occurs at the point of maximum defor-

mation.
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(a) 0 ms (b) 1 ms

(c) 2 ms (d) 3 ms

(e) 4 ms (f) 5 ms

(g) 6 ms (h) Scale bars

Figure 30: Deformation of the spinal cord construct at various time points.
The dura mater is coloured purple, the spinal cord is coloured
blue for areas low stress (0Pa) to red for areas of high stress
(1× 105Pa). The impactor is coloured by velocity, red for high ve-
locity (4.5m/s) and blue for low velocity (0m/s). The white space
between the cord and dura is filed with CSF.
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4.15 conclusions

A burst fracture spinal cord injury model was created using the MP-

MICE implementation within the Uintah Computational Framework,

this is an FSI model incorporating both solid and fluid material phases

and the physical interaction between the two. The model consisted of

a simulated bone fragment transversely impacting the surface of the

spinal cord construct, which included the cord, dura, and CSF to fill

the subdural space. Two impactors with different geometries were

tested.

The MPMICE FSI model was validated against existing FE and ex-

perimental results by comparing the deformation over time curves,

maximum deformation, and time to maximum deformation. MPM is

more computationally expensive per timestep than FE, this is because

there are additional steps required to interpolate between the parti-

cles and the computational grid nodes. MPMICE further adds to the

computational expense as the interactions between phases must also

be accounted for. However, like MPM, MPMICE is highly suited to

parallel computation and the increase in computational expense can

be overcome by utilising additional processors working in parallel.

The validation has shown that MPMICE is a viable alternative to FE

for computationally modelling SCI.



5
M E C H A N I C A L C H A R A C T E R I S AT I O N O F T H E P I A

M AT E R

5.1 introduction

The pia mater, the innermost meningeal layer, is a thin and delicate

layer of fibrous tissue that adheres to the surface of the spinal cord

and brain, separating them from the cerebrospinal fluid that occupies

the subdural space [21]. Computational models of traumatic spinal

cord injury are often used in conjunction with animal studies to in-

vestigate the biomechanics of the primary injury and the subsequent

physiological effects [14]. Material behaviour in these computational

models is determined by constitutive material models, knowledge of

the mechanical properties are essential in determining the appropri-

ate material parameters for these models. The mechanical properties

of spinal cord pia mater are relatively uncharacterised, the aim of this

preliminary study characterise the mechanical properties and to de-

termine and refine a suitable method for doing so. The mechanical

testing results were used to determine Ogden hyperelastic material

model constants, which may be used to replicate the mechanical be-

haviour of the tissue in computational biomechanical models.

5.2 methodology

Samples of bovine spinal cord pia mater were obtained from 3 fresh

sections of bovine spine, obtained from a local abattoir. Between tests

153
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the spinal cords were kept refrigerated in a hermetically sealed con-

tainer. Table 19 details the sample dimensions and the time from

slaughter to testing for each sample.

The process of preparing the pia mater samples for testing was

difficult, the delicate tissue was easily damaged during the process of

isolating it from the other spinal cord tissues.

Sample Length Width Specimen Time since slaughter

# (mm) (mm) # (days)

1 12.5 11 1 2
4 18.9 8.3 1 8
6 16.6 8.8 2 1
7 10.8 14.6 2 1
8 10.19 6.4 2 1
10 29.8 8.45 2 1
11 39.8 5.2 3 2
12 38.9 3.8 3 2

13A 19 15 3 3
13B 13.1 17 3 3

Table 19: Pia mater samples. Sample 13A slipped in the clamps at the start
of the test, as it had barely deformed it was clamped again and
re-tested (Sample 13B).

Section 5.3.1 describes the methodology used to prepare the sam-

ples and Section 5.3.2 describes the testing. Numerous issues were en-

countered over the course of the study, this gave way to refinements

to the methodology which were carried forward, these are discussed

in the Section 5.3. In addition to the Shimadzu tensile testing machine,

stereo Digital Speckle Photography (DSP) was used to calculate the

strain fields in the samples. This required the samples to be speckled

with paint to provide points for the cameras to track.



5.3 method refinement 155

5.3 method refinement

5.3.1 Initial sample preparation

An initial attempt was to isolate the pia from a section of bovine

spine, obtained from an abattoir. This specimen had been used pre-

viously for unrelated testing, and was frozen. This is likely to have

significantly affected the material properties of the tissue, although

this specimen may not be suitable for testing it was possible to use it

to practice and refine the pia removal process. During the butchering

process the cow was bisected along the median plane, in turn bisect-

ing the spinal column and the spinal cord within. The spinal cord

was removed from the spinal canal, the bisection made it easier to re-

move the dura mater, leaving the cord itself (predominately grey and

white mater) still attached to the innermost meningeal layer: the pia

mater. Initially, tweezers were used to grip one corner of the pia and

a scalpel to cut and scrape away the underlying neural tissue. This

approach was not optimal, as the pia was easily torn or punctured.

Aimedieu and Grebe outlined a method for isolating sections of

pia mater from bovine brains [165]. Sections of paper are placed onto

the brain, The moisture in the tissue causes the pia to adhere to the

underlying paper. These sections are cut around using a scalpel to

extract a small section of brain. The neural tissue is then scraped

away, leaving the pia mater still adhered to the paper. The authors

report that this is possible due to the high viscosity of the neural

tissue in comparison to the pia. The sample may then be clamped

into a testing rig with the paper still attached. The paper, weakened

by the moisture, is then peeled away leaving only the pia mater in

the test machine. This technique was adapted to remove the spinal

pia mater.
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A second bovine spinal was obtained, this one from an animal

slaughtered the same morning. The spinal cord seemed to have avoided

the saw and a whole section was removed intact. A small piece was

then cut off and the remainder stored for later use. The dura was

removed and the cord opened up by slicing along the anterior me-

dian fissure. The specimen was placed on a sheet of paper, pia fac-

ing downwards and in contact with the paper. Incisions were then

made in the neural tissue to allow the cord to unfurl over the paper,

such that all of the pia was in contact with it. Tweezers were used

to grip a corner of the pia, and the neural tissue was scraped away

with the reverse of the scalpel blade. As reported by Aimedieu and

Grebe, the viscosity of the neural tissue allows it to be peeled back

from the stiffer pia mater underneath. In this way it was possible to

isolate a small section of pia mater, a small amount of neural tissue

remained, although not ideal it was felt that attempting to remove it

would damage the sample beyond use. The sample, still adhered to

the paper, was placed in a sealed container alongside some moistened

paper towels and kept in the the fridge until testing. Unfortunately,

due to to equipment availability, it was not possible to test this first

sample on the day it was prepared.

5.3.2 Initial sample testing

Prior to testing the sample was removed from its container, still ad-

hered to the paper. Acrylic spray paint, both black and white for

contrast, was sprayed onto the sample to give it the speckle pattern

necessary for DSP. It was important at this stage that no large drops

of paint fall upon the sample, as this would form a skin that would

confound the tensile testing results, this issue was identified in previ-

ous experiments using the same technique. The sample was clamped
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at both ends, and placed in the tensile testing machine, the paper

was then peeled off. Unfortunately during the preparation the sam-

ple and paper had dried out and was difficult to remove, but it was

possible by rehydrating the sample with distilled water. This is likely

to have had a significant affect on the material properties. The type of

paper used was not optimal, once the sample was clamped in place

it was very difficult to remove. The paper had a tendency to tear and

break off in small clumps, making the removal process slow and te-

dious, which was detrimental to the quality of the sample. Despite

these issues a section of pia mater was successfully loaded into the

tensile testing rig. The sample was preconditioned immediately prior

to testing, five cycles of 0.5 mm extension at 100 mm/minute, the

sample was then strained until the point of rupture at 1 mm/min.

It was possible to calculate the strain field in the sample using DSP,

however; parts of the sample were not recognised, this may have been

caused by suboptimal coverage of the paint speckled exacerbated by

the drying out and re-moistening of the tissue.

Overall the experiment was a partial success, the test was carried

out demonstrating that the methodology is viable. However, sub-

stantial refinement of the process was required for the results to be

anatomically relevant. Several key points were identified. The choice

of paper is important, in terms of how it affects the initial isolation

of the pia, and then the removal of the paper once the sample is

in the clamps. All neural tissue should be completely removed. The

sample should be kept hydrated throughout the process, and should

be excised immediately prior to testing to prevent it drying out or

otherwise degrading further. Finally, it was decided that a spray bot-

tle filled with a saline solution should be used to periodically spray

the sample to prevent dehydration, as a humidity chamber for the

test rig was not available. As the tissue sample is very thin, it was
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assumed that it had warmed to room temperature during the prepa-

ration phase, warming it to body temperature was not feasible.

5.3.3 Sample preparation

When removing the neural tissue from the pia, fingertips work best.

Tweezers risk puncturing or tearing the pia. Once the neural tissue

has been peeled away, a section of pia remains adhered to the un-

derlying substrate. Some holes in the pia are unavoidable due to the

protrusion of the nerve roots, which must be severed to remove the

spinal cord from the spinal canal. It is preferable to cut the sample

into the desired shape using scissors. For the purposes of the prelim-

inary study, a roughly rectangular shape was used. When cutting the

sample to shape it is preferable to remove any larger blood vessels,

which may confound the results. While it is not feasible to completely

remove the vasculature, the longer thicker blood vessels running lon-

gitudinally along the spinal cord should be removed if possible oth-

erwise it may be that the test results better reflect the mechanical

properties of the blood vessel rather than those of the pia. Finally the

samples were sprayed with a speckle pattern of acrylic paint, being

careful not to apply too much paint, ruining the sample. Spraying

alternately with both white and black paint, twice with each colour,

provided the best results. The speckle pattern on the earlier samples

was poor and the DSP did not work well, the patterns on the later

samples were much improved and the DSP worked well.

5.3.4 Backing paper

The purpose of the paper is twofold: firstly, it assists in separating

the pia mater from the adjoining neural tissue. Secondly, it allows
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(a) Spinal cord removed from ver-
tebral canal (dura mater also
removed)

(b) Small section of spinal cord re-
moved from larger specimen

(c) Cord section cut and unfurled,
pia mater facing down

(d) Pia mater on substrate with
neural tissue scraped away,
sprayed with black and white
paint speckles

(e) Pia sample in clamps ready for
tensile testing

(f) Cameras configured for digital
speckle photography (DSP)

Figure 31: Preperation of bovine spinal cord pia mater for mechanical test-
ing.
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the sample to be placed into the clamps as a sheet, without it curling

up or tearing. The properties of the paper are important, the initial

paper used was not rigid enough to aid much in scraping away the

neural tissue and was also difficult to peel away from the sample once

clamped, resulting in some damage. Numerous varieties of paper

were experimented with, after some practice the most difficult part

of the procedure became getting the sample into the clamps rather

than removing the pia from the neural tissue. The most effective sub-

strate was found to be a thin sheet of polypropylene, obtained from

a plastic CD sleeve. This material offers less friction than paper, mak-

ing peeling away the neural tissue a slightly more difficult task, but

making the removal of the substrate significantly easier once the sam-

ple was in the clamps. The polypropylene sheet does not tear, instead

tweezers were used to gently separate the pia from the sheet near

the lower clamp, which was then cut with scissors, peeled back, and

cut again near the upper clamp. For earlier samples one end of the

tissue was clamped and the other left hanging, before being clamped.

It was found that clamping both ends before removing the backing

sheet was more effective.

5.3.5 Hydration

Once removed from the surrounding tissues, the pia mater dries out

quickly. To prevent this the sample was sprayed every 1 minute with

a fine mist of distilled water, sprayed from an atomiser. Once the

sample had been clamped and the backing sheet removed this was

increased to every 30 seconds, as the pia then has twice as much

surface area through which moisture may be lost.
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5.3.6 Clamps

The samples all either failed at the clamps, rather than in the middle,

or started slipping. With this delicate tissue there is a very small win-

dow between too loose (resulting in slippage) and too tight (resulting

in breakage at the clamps). This issue may be helped by padding the

clamps with paper to act as a buffer. Scissors were used to cut the

samples shape whilst still adhered to the substrate.

5.3.7 Preconditioning and Loading

Samples were preconditioned with 5 strokes at 50 mm/min, each ex-

tending the samples by approximately 10% strain. From sample 11

onwards this was reduced to 5% strain based on analysis of previ-

ous results. Following preconditioning samples were extended at 2

mm/min to failure.

5.4 results

The pia mater is a thin and delicate membrane, adhered to the un-

derlying neural tissue, removing it intact is challenging, furthermore;

sections of pia that were removed would curl inwards in a manner

that made it very difficult to obtain a rectangular section for testing

without further damaging the tissue. The quality of the samples im-

proved over the course of the experiments, reflective of practice at

removing the tissue. A usable sample could not be obtained with the

approach described in Section 5.3.1, usable samples were obtained us-

ing a backing sheet, as described in Section 5.3.4. The pia mater was

observed to be an extremely thin, transparent tissue with a degree of
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elasticity. The underlying neural tissue was observed to be soft and

viscous, white/beige in colour.

The tensile testing results for the bovine pia mater samples is shown

in Figure 32, the pia mater exhibits a hyperelastic response to loading.

It was not possible to test all of the samples as some were damaged

during preparation and loading into the test machine. The mean re-

sult (taken from the platen separation) is shown in Figure 33, the

variance between experimental runs was substantial, the high stan-

dard error reflects this. The samples all broke near to the clamps, a

small number began slipping in the clamps. Subsequently there is

only valid stress-strain curves for small strains. It was not possible to

determine the strength. The mean curve was fitted to a single term

hyperelastic Ogden model, yielding the Ogden constants: µ = 0.020

α = 47.93. These are used in the Ogden strain energy density func-

tion:

W =
µ

α
(λα1 + λα2 + λα3 − 3) (146)

In addition to the stress strain curves the mean average stress in

the direction of loading was calculated. The DSP provided a strain

field over the whole tissue sample, although for many of the samples

the system did not recognise the speckle pattern. The middle 50%

of the tissue was analysed, the tissue near the clamps was excluded.

Figure 34 shows the resultant stress strain curve. Overall the DSP

results seem to be more robust that those obtained from the DIC.

Unfortunately few of the samples worked well with the DSP, in many

cases the speckle was not recognisable enough.

The tensile testing results for the bovine pia mater samples is shown

in Figure 35. The pia exhibited hyperelastic material behaviour, the

variance between experimental runs was substantial, the high stan-
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Figure 32: Stress strain curves obtained though tensile testing of pia mater
samples. Strain calculated based on distance between the platen.
Curves have been trimmed at the point of material failure.
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Figure 33: Mean stress strain curve for the pia mater samples with the stan-
dard error of the mean and the standard deviation.
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Figure 34: Mean average strain in the direction of loading for sample #11,
calculated using DSP.
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Figure 35: The mean stress vs strain for the bovine spinal pia compared to
published mean result for bovine cranial pia mater [165].

dard error reflects this. The samples all broke near to the clamps, a

small number began slipping in the clamps. Subsequently there is

only valid stress-strain curves for small strains. It was not possible

to determine the strength. The mean stress vs strain (taken from the

platen separation) was compared to published results for bovine cra-

nial pia mater [165]. For the portion of the curve available no statisti-

cally significant difference was observed between the two.

5.5 ogden material parameters

The mean stress–strain curve was fitted to an Ogden hyperelastic

model to determine the parameters, these may be used to recreate

the mechanical behaviour of the pia in computational SCI models.

These are shown in Table 20. A single term Ogden model was used

and a good fit, however; the high α values may be computationally

expensive due to the number of pow() operations required. If this is



5.6 discussion 166

an issue then a two term Ogden model may be able to achieve similar

behaviour with lower α values.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·10−2

0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

Strain

St
re

ss
Ogden (mean)
Ogden (sem)

Figure 36: Mean stress strain curve fitted to the Ogden constitutive model.
Curve fitting was also applied to the mean curve plus and mi-
nus the standard error of the mean. The corresponding material
constants are shown in Table 20.

5.6 discussion

Mechanically characterising the pia mater is challenging, due in large

part to the delicate nature of the tissue. Using a method adapted from

Aimedieu and Grebe it was possible to mechanically test number of

samples. The results of this preliminary study are of very limited use.

The quality of the samples improved greatly over the course of the

study due partly to improved human skills preparing the pia for test-

ing, partly due to refinements to the method, described in Section 5.3.
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Ogden material constants

-sem µ = 0.0031, α = 73.7509
mean µ = 0.0049, α = 70.9881
+sem µ = 0.0066, α = 69.5055

Table 20: Ogden material constants determined from experimental data, cor-
responding curves shown in Figure 36.

Switching to a plastic backing sheet led to significant improvements,

as this made the process of removing the backing sheet much easier

once the sample was clamped, this is the stage at which the most sam-

ples were accidentally damaged. It was not possible to determine the

material strength from these results as all the samples failed at the

clamps. However, the methodology has been sufficiently improved to

avoid this issue in future studies.

When clamped in place, even the best samples were not entirely

flat, this was unavoidable. Small creases and folds in the tissue meant

that the load was not distributed evenly over the width of the sam-

ples. This likely contributed a great deal to the samples failing at

the clamps, and is also likely responsible for the partial failures visi-

ble in Figure 32. Going forward the samples should be cut into a dog

bone shape to reduce the number of samples that break in the clamps.

This was not done in this preliminary study due to the difficulty in-

curred when extracting the samples. However, this should now be

possible with a more practised hand and refined technique. Small ar-

eas of creased tissue start out bearing the majority of the load, these

sections fail and the load is then picked up by the surrounding tis-

sue, which had been experiencing low strain up until that point. This

issue may be overcome in part by cutting the samples into the dog-

bone shape, and padding the clamps to avoid slippage and tearing.

It may also be overcome using the DSP. The use of DSP proved chal-

lenging, however towards the end of the study the speckle pattern on
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the samples was being fully recognised. This was one of the aspects

of the methodology that simply improved with practice. The use of

DSP made it possible to exclude the tissue around the clamps and

focus only on the middle section. More results are needed, but these

preliminary results hint that the DSP results may be more robust than

the readouts from the DIC.

5.7 conclusion and future work

A preliminary study was performed to attempt to characterise the

mechanical response of bovine spinal cord pia mater to uniaxial load-

ing, with a view to using the results to calculate material constants

for hyperelastic constitutive material models. The pia is a thin and

delicate tissue, extracting and testing it proved very challenging. The

results of this study are of limited use due to the high variability be-

tween the samples, small number of samples, and sample breakage at

the clamps. Despite this the experimental methodology was refined

considerably. With the improved methodology, detailed here, and in-

creased experience it will be possible to conduct further experiments

with greater control over the parameters.



6
D I S C U S S I O N

6.1 introduction

The Material Point Method and MPMICE, in their Uintah implemen-

tation, were initially developed to meet the needs of simulating explo-

sions of energetic devices [134, 156]. This work sought to apply this

method in modelling Spinal Cord Injury, in particular in creating a

spinal burst fracture injury simulation to be validated against exist-

ing experimental studies and computational studies using an Finite

Element Modelling approach. The motivation for doing this stemmed

from inherent limitations of FE modelling for tackling this particular

class of problem, involving large material deformations over a very

short time in the presence of a fluid structure interaction. FSI is re-

quired due to the presence of the CSF occupying the subdural space.

These limitations are compounded by the additional burden of requir-

ing complex material geometries.

In large deformation problems FE can be susceptible to mesh tan-

gling, also known as element inversion, which occurs when elements

become inverted, overlap with adjacent elements, or due to hour-

glassing (twisting of the elements into an hourglass shape). This must

be addressed by recreating the Lagrangian mesh and/or lowering the

size of the timestep. Lowering the timestep is costly in terms of in-

creased computational expense, increasing the number of timesteps

required to complete the simulation. Remeshing is costly in terms of

the time, effort, and expertise required to establish the initial geome-

try based on the geometric parameters of the given problem, in this

169
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case the structure and dimensions of the spinal cord tissues. Mesh

tangling can be particularly frustrating as the issue may not become

apparent until after many hours of computation. Incorporation of the

CSF is also challenging, the Lagrangian mesh requires the tracking

of boundaries between materials, at fluid-solid boundaries additional

computational operations are required to facilitate the FSI. Solid ma-

terials are best suited to modelling using the Lagrangian frame of

reference, whereas fluids are best suitable to the Eulerian frame. The

phases are typically separated with interactions being handled by al-

gorithms operating at the phase boundary. Due to these complexities

many past studies have chosen to exclude the CSF altogether [18, 19,

53, 118], or to include it in a simplified form using either a solid ma-

terial approximation [93] or by using an implied FSI [54] that omits

the true, full physics, FSI.

In FE, the computational mesh defines the constitutive elements

this is necessary to maintain material separation at the material bound-

aries. As such, handling material fracture and coalescence is not inher-

ently suited to the FE method. These challenges are compounded by

the need to include the complex geometry reflective of the spinal cord

anatomy. FE studies of SCI to date have therefore utilised a highly

simplified geometry, the model presented in this work also uses a

simplified geometry, representing the spinal cord and surrounding

tissue as elliptical cylinders. As the characteristics of SCI progresses,

however; there will be a need for ever increasing levels of detail, per-

haps ultimately down to a cellular level and beyond. All of effectively

comes down to an issue of computational expense, and subsequently

the time required to compute the solutions.

For computational SCI models to be an effective research tool it is

necessary to be able to run the models to completion within a feasi-

ble timeframe. Computational expense many be met with increased

computation resource, however; high performance computation facil-
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ities typically rely on a high level of parallelisation. In order to bene-

fit from such resources the methodology selected must be suited for

parallel computation, with the ability to suitably divide the compu-

tational domain accordingly. Unfortunately, this is difficult using typ-

ical FE formulations due to the irregularity of the Lagrangian mesh

combined with the need to track the material boundaries over the

entire domain. The computation overheads requires for division and

recombination quickly begin to offset the performance gained as the

number of processors increases. While an explosion simulation may

bear little resemblance to an SCI simulation, both involve high de-

formations over short timespans in the presence of both solid and

fluid phases. The arbitrary Lagrangian-Eulerian approach employed

by MPM and MPMICE overcomes these issues, with the benefit of

also being highly amenable to parallelisation. The scalability of MPM

and MPMICE for parallelisation was the key driver in selecting these

methods for this work, the Uintah release used here is capable of

running on up to 100,000 parallel cores [153, 154, 156].

6.2 mpmice for sci modelling

6.2.1 An ALE Approach

For efficient parallelisation an Eulerian grid is preferable, the use of

a regular computational grid makes it substantially simpler to divide

the computational domain across processors. FE formulations gener-

ally utilise a Lagrangian grid. The reason for this is that the use of

an Eulerian gird is problematic for solid materials where the constitu-

tive material models are dependent on time history dependent vari-

ables, such as deformation, velocity, and temperature gradients. For

example, the Ogden model used in this work, described in Chapter
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2, was dependent on the deformation gradient for the stress calcula-

tions. The need to transport deformation history through an Eulerian

mesh is problematic, the lack thereof can lead to diffusion at material

boundaries and non-physical stresses. MPM overcomes this issue by

introducing particles and interpolating between these and the under-

lying grid [128, 134]. In effect, MPM facilitates solid material defor-

mations on a regular Eulerian mesh using what the authors termed a

"computational scratchpad" to advance the solution. This is based on

the idea of the deformable mesh that resets to the original position

at the end of each timestep, as discussed in Chapter 3. This also facil-

itates the MPMICE FSI integration, discussed in Chapter 4. MPM is

described as an Arbitrary Lagrangian Eulerian (ALE) approach, incor-

porating the benefits from both frames of reference whilst avoiding

the drawbacks.

6.2.2 Advantages

The use of MPMICE for this SCI model offered numerous advantages

beyond parallel scaling. The particles (material points) replace the

polyhedral elements used in FE, the particles exist at a single point in

space and can be thought of as Dirac Delta functions. All solid mate-

rials, no matter their mechanical properties, are represented through

the particles and their state vectors (carried on the particles them-

selves). The introduction of the particles with their ability to move

freely between the regular grid cells makes the method highly re-

silient to mesh tangling. This is most likely to occur due to a large

deformation over a short time, making this a significant issue for SCI

simulations. In this regard the use of MPM/MPMICE was highly ben-

eficial, demonstrating its suitability for high-rate-of-deformation dy-

namic loading problems.
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The particles negate the need for differently shaped elements to

comprise the material geometry. In addition to the benefits of avoid-

ing mesh tangling, this greatly simplifies the process of defining the

initial material geometry. Generation of a Lagrangian mesh for FEM

requires the selection of element types (e.g. tetrahedral, quadrahe-

dral, etc.) based on the desired arrangement and properties of the

materials being modelled. This complicates the generation of the ini-

tial mesh and greatly increases the complexity of automating the pro-

cess for generation of the initial geometry from image data, such as

from spinal computerised tomography (CT) scans or magnetic reso-

nance imaging (MRI) scans. This is particularly useful for generating

parametric models from specimens, and makes it feasible to image a

specimen prior to experimental testing for the creation of a compli-

mentary computational model. Furthermore, the boundaries between

materials need to be explicitly identified and defined. In contrast the

initial point cloud generation in MPM is trivially simple, all materials

are represented through the particles and there is no need to define

material boundaries (except on the boundaries of the domain) as this

is handled inherently by the method.

A simplified spinal cord geometry based on geometric shapes was

used for the MPM SCI model, although it is also possible to gen-

erate arbitrarily complex geometries from image data. This can be

achieved using a simple thresholding algorithm to generate material

points based on pixel values that correspond to the relevant materials.

While this greatly simplifies the process of creating the point cloud

equivalent to the FE mesh, the drawback is that it does not permit the

use of coarser or finer elements to facilitate a reduction in the over-

all number of elements. The underlying grid is regular, this can lead

to a surplus of particles that needlessly increase the computational

cost. This is mitigated by the ability to specify a material resolution,

which fine tunes the placement of particles within a computational
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cell. The issue will be solved almost entirely through the implementa-

tion of adaptive mesh refinement (AMR), discussed further in Section

6.2.4.1. With this in mind, MPM/MPMICE is highly advantageous in

that it facilitates the rapid and straightforward generation of complex

geometries, reducing the overall time and effort required to design

and run a computational SCI model. As research into SCI progresses,

increasingly complex geometries and increased numbers of materials

will be required. As this happens the value of the MPM approach

in simplifying the generation of the initial point cloud (mesh) will

further increase.

The MPMICE method proved to be an effective means of incor-

porating the FSI between the CSF and the adjacent tissues. It enables

full physics (involving strong physical interactions between solid and

fluid phases) FSI, with a full Navier–Stokes representation of fluids

[134]. The averaged approach means that there is no need to spec-

ify conditions on the boundaries between the solid and fluid phases,

with their interaction being handled inherently by the method. As is

the case with MPM, this is advantageous in simplifying the process

of creating the initial problem set-up, in addition to facilitating excel-

lent parallel scalability. MPMICE also allows the inclusion of multiple

fluids with different material properties with no additional work re-

quired to handle their interaction. This may be useful for any studies

that seek to include the effects of bleeding into the subdural space,

where blood becomes mixed with the CSF.

6.2.3 Disadvantages

The absence of inter–material boundary conditions is one of the key

strengths of MPM/MPMICE, however; this comes at the cost of a

slightly fuzzy boundaries between materials. In FE the boundaries
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can be defined exactly on the element faces that divide materials, the

boundaries are less clear in the case of the particles used in MPM,

although they are still limited to just a few cells. The GIMP shape

function (discussed in Chapter 3, Section 3.3.1) spans more than two

cells, the effective interface between two adjacent materials is some-

where between the two. This issue becomes decreasingly apparent as

the grid resolution is increased as the effect is limited to just a few

cells (Section 3.3.1).

Tracking of material boundaries is straightforward in FE as the ele-

ment faces between two materials in contact are clearly defined. In the

case of MPM/MPMICE tracking the position of the material bound-

aries is more difficult as none of the particles are explicitly defined

as being part of a material boundary as this is not required for the

method. Calculating the deformation for the whole spinal cord con-

struct, and for the internal deformation of the spinal cord tissue only,

required the tracking of the material boundaries. This was achieved

using Matlab post processing scripts, which identified the particles

of interest on the boundaries based on knowledge of the model ge-

ometry and then tracked the movement of these particles using the

particle IDs. While suitable post processing scripts overcame this is-

sue, the difficulty and extra processing required for tracking bound-

aries (especially in the case of complex geometries) is a drawback of

MPM/MPMICE compared to FE.

6.2.4 Material Behaviour

The single term Ogden models accurately captured the hyperelastic

behaviour of the spinal cord and dura mater, the linear elastic model

was adequate for the impactor and backplate as these components

experienced negligible deformation. These models were successfully
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implemented in C++ and integrated into the UCF. The particle based

approach negated the need to calculate a stiffness matrix via the

constitutive models, which simplified the implementation somewhat.

The lack of readily available constitutive models within the UCF was

a drawback compared to commercial FEM software packages that

typically include an extensive range. This reflects the fact that the

methodology and software are still being developed.

All materials, including the dura mater, were modelled using isotropic

material properties, this is a simplification, in reality the tissues ex-

hibit an anisotropic response to loading. In particular, the dura mater

is known to be significantly stronger and more deformable under

longitudinal loading than horizontal, likely due to the longitudinal

orientation of the fibres within the tissue [96]. The isotropic mate-

rial properties may also mean that the model is overestimating stress

in some regions on the tissue. While the model showed close agree-

ment with experimental results, these experiments only involved a

transverse impact. The use of anisotropic constitutive models for the

tissues likely increased the compliance as the increased stiffness in

the longitudinal direction was not reflected. It is possible to incorpo-

rate transverse anisotropy into the MPM model through the use of

differently oriented fibres and the mechanical failure of these in re-

sponse to traumatic loading could also be implemented [122]. This

would require substantial development to the isotropic Ogden model

used.

Grey and white matter were homogenised into a single material,

in reality these are distinct regions of the spinal cord with different

material properties, although they are similar [120]. The slight differ-

ence in mechanical properties meant that this simplification did not

prevent the model from achieving convergence with the experimental

results in terms of deformation over time. The difference may have a

more significant effect on the internal distribution of stress. There is
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evidence showing that grey matter is slightly stiffer than white mat-

ter, with greater stresses observed in grey matter during injury, grey

matter may be more susceptible to damage than white matter [6, 18,

87, 104, 108]. For these reasons, a more detailed SCI model may seek

to include disctinct regions of grey and white matter in the future.

Viscoelastic material properties were not used, future models may

benefit from the incorporation of a viscoelastic component to the rel-

ative constitutive models. A published study by Sparrey and Keav-

eny suggest that a single term Ogden model (such as that used here)

combined with a 3-term Prony series expansion would be suitable

for this [166]. The time from first impact to maximum deformation

is of greater interest as this is the time in which the majority of the

neurological damage is inflicted and the recoil observed in these ex-

periments does not occur to this extent in vivo, as the bone fragments

remain lodged in the spinal canal [7, 11]. However, the omission of

viscoelastic material properties suggest that the model may be over-

estimating the stresses within some regions of the tissue, this may

also be due in part to the isotropic material models used. Aligning

the model to better meet the recoil portion of the trajectory curves

would indicate that the viscoelastic tissue properties were properly

reflected in the model, this is a consideration for future iterations of

the computational model.

The mechanical properties were based on compression testing of

cat spinal cords [91], while the properties of the dura mater were

based on tensile testing of bovine dura mater [96]. The properties of

the animal tissues will be different to human due to the physiolog-

ical differences between species. In general there is a lack of avail-

able data in the literature on the mechanical properties of the spinal

cord, particularly in humans and where traumatic compressive load-

ing is concerned. As such it is difficult the difference between the ex

vivo animal properties used here and the ex vivo or in vivo human
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properties. Human tissue testing is difficult for ethical and regulatory

reasons, limiting the available data for computational modelling. The

model would benefit from data for compressive loading at high rates

of strain for a large animal such as bovine or porcine. Nonetheless

the validation of the model against the experiments suggests that the

properties used are reasonably representative of the natural tissue

properties.

The behaviour of the CSF was governed according to an equation

of state based on a Gibbs function reported by Thomsen and Hartka

[164], this was selected as it is readily available within the UCF re-

lease. This accurately captured the behaviour of the CSF; however,

a limitation of this implementation caused it to fail if the pressure

dropeed below 1 atmosphere (101,325 Pa). To work around this the

pressure of the computational domain and all the materials had to

be increased to prevent the simulation from failing. The lowest stable

pressure for the SCI model was found to be 3 atmospheres (303,975

Pa), while this did not seem to significantly affect the deformation

and deformation time of the cord construct this is still suboptimal. A

future iteration of the model would benefit from the implementation

of an equation of state for MPMICE that is stable at 1 atmosphere.

6.2.4.1 Performance

The solid material SCI model using MPM was run using 320 cores.

Convergence with experimental and FE results was achieved using

a grid resolution of 0.5mm3. These simulations ran to completion in

less than 48 hours, which is a feasible timeframe. The FSI model using

MPMICE was run using 400 cores, convergence was achieved using

a grid resolution of 0.4mm3, these simulations ran to completion in

around 96 hours. This is a feasible timeframe, although limitations

in the MPMICE implementation resulted in substantial inefficiency,
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Material Characteristics Model

Cord Isotropic compressible
hyperelastic solid

Ogden

Dura Isotropic compressible
hyperelastic solid

Ogden Storakers

CSF Almost incompressible
Low viscosity fluid

Gibbs function
(THWater)

Impactor Isotropic compressible
solid

Linear

Backplate Isotropic compressible
solid

Linear

Air fluid Ideal Gas

Table 21: Mechanical characteristics of spinal cord tissues as defined in the
MPM/MPMICE SCI models.

there is significant scope to improve performance and achieve the

same results with less computational time and resource.

The introduction of the particles and the interpolation steps be-

tween these and the grid nodes means that MPM is more computa-

tionally expensive per timestep than FEM. Furthermore, MPM is cur-

rently offers only first order accuracy, with second order accuracy or

higher being typical of FE methods. To overcome this the resolution

must be increased to obtain equivalent accuracy, further increasing

computational expense. Performance gains, in terms of the wall clock

time required to run the simulations to completion, must result from

parallelisation. In this regard MPM compares extremely favourably

to FEM, however; there are some issues with the MPM model in its

current form that negatively impact efficiency.

The computational domain was rectangular, this could be divided

evenly into computational patches by defining a divider in the x,

y, and z directions. It was not possible to include differently sized

patches. This was problematic given the geometry of the SCI model.

For optimum efficiency it is desirable for the particles to be divided
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as evenly as possible across the patches. Due to this restriction on the

patch payout a number of the patches saw no particles at throughout

the simulation, which resulted in substantial wasted computational

resource. This is a restriction of the Uintah implementation of MPM

and not the MPM methodology itself, which may theoretically work

with any patch layout. It should be noted that this software is still be-

ing developed and refined, future iterations will likely improve this

situation.

The lack of adaptive mesh refinement (AMR) capability also hin-

ders the performance of the model in its current form. Ideally it

would be possible to improve efficiency by using a coarser mesh in

the areas of the domain that see little change, such as the backplate

and empty spaces, and a finer mesh in the areas of interest, such as

the tissues in the impact zone. Presently, an increase in the fineness

of the mesh to accommodate one area of the simulation must also

increase the fineness in all other areas, including those where it is not

needed, resulting in surplus particles and incurring additional com-

putational cost. Again this is a limitation of the Uintah software and

not the MPM method itself. The software already contains a work-

ing AMR implementation for ICE and an early prototype for AMR

for MPM and MPMICE, full AMR capability is under development

planned for a future release [153, 154, 156]. Incorporation of AMR in

the future, when this functionality becomes available, would improve

the efficiency of the model.

The Uintah software contains some capability for applying dynamic

load balancing (DLB), while this was investigated it was not utilised

for the SCI model. The DLB implementations in Uintah do not vary

the patch layout to maintain an even distribution of particles (and

therefore computational load), instead the patch layout remains fixed

and the balancer attempts to balance the load by assessing the compu-

tational cost of each patch and distributing them amongst the cores
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in an even manner according to this [156]. This assumes that each

core will potentially be handling more than one patch, however, one

patch per core proved to be the optimum distribution. Computation

time per timestep dropped significantly when the cores were required

to handle multiple patches. This approach is likely more effective

for ICE simulations, where the fluid materials are more evenly dis-

tributed across the domain. For problems involving solid deforma-

tions, such as this, an approach whereby patch size and layout was

varied to maintain an even distribution of particles (using one core

per patch) would be more effective. Again this is not prohibited by

MPM or MPMICE and may appear in a future iteration of the soft-

ware.

Issue Cause Solution

Fuzzy Boundaries MPM Inherent Increase resolution
First Order Accurate MPM Inherent Increase resolution
Increased
computational
expense

MPM Inherent More parallel cores

Some patches
underfilled/empty

UCF
Implementation

Further UCF
Development

No AMR for MPM UCF
Implementation

Further UCF
Development

Suboptimal load
balancing

UCF
Implementation

Further UCF
Development

Table 22: Performance Issues affecting the MPMICE SCI model

6.2.5 Explicit vs Implicit

MPM and MPMICE use an explicit time integration scheme, the au-

thors note that these version of the algorithms is best suited for high-

rate-of-deformation problems and dynamic loading problems. This

is suitable for the SCI model, however; problems involving quasi-



6.3 pia mater 182

static loading would benefit more from an implicit integration scheme

which could better handle the propagation of stress waves through

solid materials [134]. Implicit versions of MPM/MPMICE have been

developed and implemented in the UCF [124, 156]. This involves an

alternative MPM formulation whereby the computational grid is not

reset at the end of each timestep, though interpolation between the

particles and the grid nodes still occurs. This improves the fidelity

of the stress fields for quasi static low-rate-of-deformation problems,

though this makes the approach more prone to mesh tangling and

hence less suited for high-rate-of-deformation problems. Neverthe-

less, the inclusion of the particles, which can move between cells,

makes the implicit MPM more resilient to mesh tangling than equiva-

lent FE formulations [124]. As the mesh is not reset at the end of each

timestep it is necessary to calculate the stiffness matrix via the solid

material constitutive models.

6.3 pia mater

A future iteration of this SCI model would seek to include the pia

mater as a separate material to the spinal cord. In order to include

the pia in a computational model it is necessary to determine the

mechanical properties and calculate the material constants for the rel-

evant constitutive material model. The lack of available data in the

literature regarding the mechanical properties of pia mater prompted

this investigation using tensile testing of bovine spinal pia mater. The

methodology was adapted from a study of bovine cranial pia mater

[165]. The methodology was partially successful, however the a num-

ber of refinements are required to the approach used in this prelimi-

nary study in order to more fully characterise the pia.
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The method of adhering the exposed surface of the pia to a paper

substrate was effective in allowing the grey and white matter to be

peeled away leaving an isolated sheet of pia mater for testing. This

also allowed the sample to be cut to shape using scissors. This method

still required patience and practice to avoid damaging the delicate

tissue. The pia was observed to be a thin, delicate transparent tissue

with visible vasculature. The pia was noticeably stiffer than the soft

and viscous grey and white matter contained within.

The process of transferring the pia samples, adhered to paper via

the moisture present in the tissue, to the clamps whilst keeping them

intact was extremely difficult. The initial method involved peeling

the paper away once the sample was clamped in place. It was hoped

that the paper, weakened by the moisture, would peel away easily,

in reality removing the paper was very difficult and a number of

samples were damaged beyond use in the process. This issue was

overcome by switching the paper with plastic, which could be more

easily peeled back from the tissue and then cut using scissors leaving

the sample in the clamps.

All of the samples broke at the clamps, as a result it was not pos-

sible to test the samples to failure. This issue was largely due to the

clamps themselves, the 10 N clamps used were the smallest avail-

able clamps for the machine but were nevertheless too heavy. This

issue is indicative of the clamps being too tight, however when the

clamps were loosened the samples slid out, it was not possible to

find a point whereby the samples would neither slide nor break at

the clamps. Two refinements to the method were suggested to ad-

dress this. Firstly, longer samples should be cut to allow more of the

sample to be clamped and reduce the risk of sliding. Secondly, the

clamps should be padded to reduce and spread the pressure on the

samples from the clamps whilst maintaining sufficient grip. Smaller,

lighter, padded custom made clamps may improve the situation.
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The pia exhibited hyperelastic material behaviour. The mean stress

vs strain was compared to the published results for bovine cranial

pia mater [165]. For the portion of the curve available no statistically

significant difference was observed between the two. The standard

deviation was large, this reflects the difficulty in isolating the samples

and positioning them in the clamps. It is hoped that the refinements

to the method discussed here combined with further testing using a

larger number of samples will increase the confidence in the results.

6.4 validation

6.4.1 Validation against FE

The bare cord MPM models were in close agreement with the FE mod-

els for each of the three pellet types. For all pellet types the MPM

model gave a slightly lower maximum deformation and a slightly

lower time to maximum deformation. This small difference may be

attributed to differences in the way the Ogden constitutive models

used for the spinal cord tissue were implemented, a different imple-

mentation for the particle based MPM method was required com-

pared to that for FE. The difference may also be in part due to the

fuzzy boundaries in MPM, discussed in Section 6.2.3. It should also

be noted that MPM is first order accurate and the FE method used

for the comparison is second order accurate.

The pellet trajectories for the MPM cord/dura models gave a slightly

higher maximum deformation compared to the FE model. This differ-

ence was most likely due the use of an Ogden model for the dura

mater rather than the linear elastic model used in the FE model.

The hyperelasticity enabled by the Ogden model would have allowed

greater deformation of the dura and in turn the spinal cord construct.
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The impact of this difference would have been further affected by the

varying areas of the pellet faces. The dura mater is known to exhibit

hyperelastic material behaviour and the Ogden model appears well

suited to serve as the constitutive model.

The FE cord/dura trajectories each show a dip in deformation, this

is also present in the bare cord trajectories but is difficult to see. This is

due to a small gap between the cord and backplate in the FE model,

this not present in the MPM model where the cord construct was posi-

tioned directly in front of the backplate. At a certain point, following

the initial impact, the inertia is overcome and the whole construct

then begins to move backwards. This also accounts for some of the

differences in maximum deformation and time to maximum defor-

mation between the MPM and FE results.

6.4.2 Validation Against Experimental

The MPM bare cord computational model overestimated the maxi-

mum deformation compared to the experimental model for all pellet

types, this was also the case with the FE model. This may be the due

to an increased compliance in the bovine spinal cord tissue following

repeated impacts. Each impact will have damaged the extracellular

matrix of the tissues, weakening the structure and reducing the abil-

ity of the tissue to withstand further impacts. In the experiments the

specimens were first tested with the dura and CSF present, then with

the CSF drained but the dura mater remaining, then with the dura

mater removed also. As a result the specimens would have sustained

between 6 and 8 impacts prior to the bare cord impact tests. Inter-

animal variance and tissue degradation due to the increased time

between animal slaughter and testing may have also contributed to

this discrepancy.
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The cord/dura MPM model showed a close agreement with both the

experimental pellet trajectory curves, the overestimation of the maxi-

mum deformation observed in the bare cord model was not present

here. In the case of Pellet 1 the maximum deformation aligned almost

exactly with experimental mean, and very slightly higher than that

of the FE model. For Pellet 2, the MPM model slightly overestimated

the maximum deformation, although this difference was not statisti-

cally significant. In the case of Pellet 3, the peaks for the MPM model

aligned very closely with the experimental mean. From this valida-

tion it is possible to state that the solid MPM model is accurately

capturing the mechanical response of the spinal cord tissue and that

the results are comparable to that achievable using FE modelling.

The recoil time, the time from the point of maximum deformation

to the point at which the pellet leaves contact with the cord surface, is

shorter for both the MPM result when compared to the experimental

results for all three pellet types and all three configurations. Again,

this was also the case for the FE model. The longer recoil time ob-

served in the experiments is most likely due to the viscoelastic prop-

erties of the spinal cord tissues [14]. Some of the energy absorbed

by the cord from the pellet would not have been transferred back to

the pellet upon recoil due to the viscoelasticity, reducing the pellet

recoil velocity. This did not occur in the computational models as vis-

coelastic material behaviour was omitted. The also accounts for the

faster time from first impact to maximum deformation observed in

the computational models relative to the experimental model.

6.5 beneficiaries

The beneficiaries of this research will include academics, both those

with an interest in SCI biomechanics and those with an interest in
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high-end computational modelling. The clinical community and pa-

tient groups will also benefit from an increased understanding of the

spinal cord biomechanics, which will hopefully be useful in investi-

gating SCI treatment strategies. Additionally, animal experimentation

may be reduced, by refining existing models, replacing some experi-

ments computationally, and providing information to guide the better

design of animal tests in the future.



7
C O N C L U S I O N S A N D F U T U R E W O R K

7.1 conclusions

An burst fracture Spinal Cord Injury (SCI) simulation was created us-

ing the Material Point Method (MPM) and the Material Point Method

Implicit Continuous Fluid Eulerian (MPMICE) multi phase variant.

This model was validated against existing experimental and Finite El-

ement (FE) studies.The MPMICE model produced equivalent results

to FE, and achieved convergence with experimental results. Hyper-

elastic Ogden models were implemented for MPM and these accu-

rately captured the hyperelastic material behaviour of the spinal tis-

sues. MPM/MPMICE was demonstrated to be a viable alternative to

FE for modelling SCI biomechanics. MPMICE demonstrates excellent

parallel scalability, 560 parallel processors were used for the model

and the potential exists to use many more (up to 100,000 and be-

yond). This parallel scalabilty is the key advantage over FE based ap-

proaches and facilitates the use of additional computational resource,

enabling the development of more complex and detailed models go-

ing forward. MPMICE is less accurate (first order) than FE (typically

second order), this can be overcome by increasing the grid resolu-

tion. The subsequent increase in computational requirement can be

overcome by using more parallel processors. MPMICE is also more

computationally expensive per timestep than FE, again this can be

overcome by using more parallel processors to shorten the real time

required to run the simulations. Future work will focus on taking the

model further, incorporating greater anatomical detail, more types of

188
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injury, and utilising greater numbers of parallel processors to reduce

computation time. To summarize the key conclusions of this study

are:

• The complexity of FE models of SCI is limited by poor scalabil-

ity for parallel computing, mesh entanglement, and difficulties

in incorporating the FSI between the CSF and the surrounding

tissues

• MPMICE is a newer alternative method to FE that can overcome

these limitations

• MPM is a viable alternative to FE for computationally mod-

elling SCI where only solid phases are included

• MPMICE is a viable alternative to FE for computationally mod-

elling SCI including the FSI

• MPM/MPMICE scale extremely well for parallel computation,

offering greatly superior parallel scalability than FE

• MPM/MPMICE is a relatively new technique compared to FE,

which is well established with a variety of software packages

available

• Aspects the UCF implementation of MPM/MPMICE, which is

the most sophisticated implementation currently available, re-

strict the performance gains of increased parallelisation. How-

ever, there is no reason these could not be overcome with further

development of the software.

• MPM/MPMICE has the potential to enable more complex, de-

tailed, anatomically relevant models of SCI in the future, over-

coming the limitations of FE.
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7.2 future work

Having established the model in its current form, future work will

focus primarily on creating a parametric model and simulating addi-

tional injury types to the burst fracture. The creation of the parametric

model is discussed in Section 7.2.1. The addition of spinal vertebrae

to the model is necessary to simulate more injury types such as frac-

ture dislocations, which is discussed in Section 7.2.2. For this reason

it is logical that the parametric model be completed prior to adapting

the model to simulate other kinds of injury to the burst fracture.

7.2.1 Parametric Model

Having established the model in its current form, a parametric model

will be created based on human measurements, with greater anatom-

ical detail, and at higher resolution than the current model. This is

a logical next step in developing the model, as the characterisation

of SCI continues increasing levels of detail will be required from

computational models. The increase in resolution is necessary to cap-

ture smaller details, such as the thin meningeal layers. The initial

model geometry will be generated from computerised tomography

(CT) scan image data, suitable images are freely available from the

Visible Human Project (United States National Library of Medicine,

Bethesda, MD, USA). While the process of generating a material point

cloud from an image is straightforward, some preprocessing will

likely be required to limit the number of visible materials in the im-

age to those to be included in the model. This preprocessing will

be performed using commercially available software; Matlab (The

MathWorks Inc., Natick, MA, USA), Photoshop (Adobe Systems Inc.,
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Mountain View, CA, USA, or Simpleware (Synopsys, Inc., Mountain

View, CA, USA) would all be suitable.

7.2.2 Other Injury Types

With the burst fracture injury simulation completed, the model can

now be altered to simulate other types of injury also. In particular

fracture dislocation injuries, both anterior and lateral, could be simu-

lated. This would require the addition of at least two simulated ver-

tebrae instead of the impactor, the upper section will move shearing

the cord between the simulated vertebrae.

7.2.3 Further Validation

Further validation will be carried out against published experimental

and computational SCI studies. More types of injury will be simu-

lated in addition to the burst fracture, these will include other com-

mon types of spinal cord injury, most notably fracture dislocation in-

juries. In particular the MPMICE SCI model may be validated against

an experimental rat contusion injury model reported by Lam et al.

and the complimentary FE study reported by Russell et al., which

also simulated dislocation injuries in addition to contusion [54, 167].

Altering the MPMICE model geometry to rat spinal dimensions is

straightforward as the dimensions are known and the point cloud

generation in MPM is simple. Russell et al. used a hyperelastic Og-

den for the cord and dura and reported the values used, these can be

used to easily alter parameters of the MPMICE to reflect the rat tissue

mechanical properties.

A porcine animal model using Yucatan miniature pigs has been

reported by Lee et al., this study also analysed contusion injuries
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induced via a weight drop device [168]. As this is one of few ani-

mal models using larger animals it would be worthwhile to recreate

this computationally using MPMICE. Again, the generation of the

porcine spinal cord geometry is straightforward, however; the me-

chanical properties are not fully characterised. Compression testing

data for porcine spinal white matter is available [166], the properties

of the porcine grey matter are likely to be similar to this. Tensile test-

ing results for porcine dura mater have been reported by Mazgajczyk

et al., which may be used to calculate appropriate Ogden constants

for porcine dura [169]. The benefits of creating comparable models

to these studies, beyond further demonstrating the viability of the

method, is that it will allow correlations to be drawn between the in-

ternal stress and strain fields observed in the MPMICE model to the

biological tissue damage observed in the animal studies [54, 167, 168].

This is useful in establishing damage thresholds and increasing the

characterisation and understanding of the injuries.

7.2.4 Distinct Tissues

Increasing the level of anatomical detail included in the SCI model

will require the inclusion of some distinct tissues not presently in-

cluded. The spinal cord tissue will be broken down into distinct re-

gions of grey and white matter. These tissues have slightly different

material properties [120], while both would still be represented with

an Ogden model, the parameters will be adjusted to account for this

difference. A parametric study will may also be required to quantify

the effects of this difference and to fine tune the material parameters.

The pia mater will also be incorporated as a distinct tissue using an

Ogden model. The material parameters will be based on mechanical

characterisation of bovine tissue described in Chapter 5.
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7.2.5 Constitutive Model Development

The model in its current form uses isotropic, hyperelastic, non-viscoelastic

constitutive models for the spinal cord tissues, these have been suit-

able thus far. However, as the model is further developed it would

be beneficial to extend these models to more closely capture the

biomechanical properties of the tissues and improve anatomical ac-

curacy. Viscoelasticity will be incorporated into the Ogden constitu-

tive models using a Prony series expansion, the literature suggests

that this will be suitable to incorperate the viscoelastic response [19,

120]. Transverse anisotropy can be achieved through the integration

of fibre mechanics into the constitutive models, a method for imple-

menting this has been reported by [126], where layers of differently or-

dered fibres were used to achieve an anisotropic material response to

transverse penetrating impacts [122, 126]. The dura mater is a tissue

containing many longitudinal fibres and exhibits anisotropic proper-

ties [95, 96, 169]. The integration of fibres into the constitutive mod-

els would also facilitate dynamic fibre failures, whereby fibres break

when a certain threshold is exceeded during the simulation and sub-

sequently cease bearing load. Finally, the single term Ogden model

implementation may be expanded into multi term Ogden model with

up to 9 terms. While a single term Ogden model was suitable for the

model in its current form a multi term model is capable of capturing

more detail in the stress–strain response of the materials [149, 159].

This may not be required and would only be developed based on the

needs of a specific study.
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7.2.6 Characterisation of Spinal Pia Mater

The preliminary study, which attempted to characterize the material

properties of the pia via tensile testing, was partially successful but

the refinements to the method discussed in Chapter 6 Section 6.3 are

required to avoid the samples breaking in the clamps and to reduce

the variability between samples. Using the refined method it will be

necessary to test a greater number of samples, and to test subsets of

samples in both the horizontal and longitudinal directions. The fibre

orientation in the tissue likely means that the mechanical response

differs based on the direction of loading, and this the fibre structure

is likely to be different to that of cranial pia mater. Following further

testing using the refined method the Ogden material constants can

once again be calculated in the same manner as before, and these

may be used to include the pia mater as a distinct tissue in the SCI

model.



AA P P E N D I C E S

a.1 input files

a.1.1 Bare Cord P1

%[caption=dev2.9.1_ogadina.ups]
<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<!−− with dura −−>
<!−− with additional plane of symmetry −−>
<!−− non linear ogden parameters for dura −−>
<!−− adina based ogden model −−>

<Uintah_specification>

<SimulationComponent type = "mpm"/>

<Time>
<maxTime>6e−3</maxTime>
<initTime>0</initTime>
<delt_min>1.0e−12</delt_min>
<delt_max>100.0e−3</delt_max>
<delt_init>100.0e−3</delt_init>
<timestep_multiplier>0.1</timestep_multiplier>

</Time>

<Grid>
<BoundaryConditions>

<Face side = "x−">
<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0.0,0.0,0.0] </value>
</BCType>

</Face>
<Face side = "x+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>
<Face side = "y−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "y+">

<BCType id = "all" var = "Neumann" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z+">
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<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>

</BoundaryConditions>

<Level>
<Box label = "Domain">

<lower>[0,0,0]</lower>
<upper>[13e−3,45e−3,40e−3]</upper>
<extraCells>[1,1,1]</extraCells>
<patches>[4,1,80]</patches>
<!−−<patches>[1,1,16]</patches>−−>

</Box>
<spacing>[0.5e−3, 0.5e−3, 0.5e−3]</spacing>

</Level>
</Grid>

<DataArchiver>
<filebase>/nobackup/mnsg/uintah_dev5_1/output/dev2.9.1_ogadina.uda</

filebase>
<!−−<filebase>/usr/not−backed−up/mnsg−usr/UCF_Output/dev2.9.1

_ogadina.uda</filebase>−−>
<outputInterval>0.05e−3</outputInterval>

<save label = "p.particleID"/>
<save label = "p.x"/>
<save label = "p.velocity"/>
<save label = "p.stress"/>
<save label = "p.color"/>
<checkpoint cycle = "2" interval = "0.0001"/>

</DataArchiver>

<MPM>
<time_integrator>explicit</time_integrator>
<interpolator>gimp</interpolator>
<withColor>true</withColor>
<DoPressureStabilization>false</DoPressureStabilization>

</MPM>

<PhysicalConstants>
<gravity>[0,0,0]</gravity>

</PhysicalConstants>

<MaterialProperties>
<MPM>

<material name="cord_tissue">
<!−−density of SC tissue from Persson−−>
<density>1050</density>
<!−−thermal conductivity for water at 25 celcius is 0.58 W/(m.K)−−>
<thermal_conductivity>1</thermal_conductivity>
<!−−specific heat capacity for water is 4.1855 J/(g.K)−−>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus>45e3</bulk_modulus>
<mu_1>2000</mu_1>
<alpha_1>9</alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>

</constitutive_model>

<geom_object>
<!−−elliptical cord, dimensions from Persson et al. 2011 −−>
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<ellipsoid label = "cord">
<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz><!−−effectively creates an elliptical tube within the

domain, 140mm long−−>
</ellipsoid>

<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>20</color>

</geom_object>
</material>

<material name="impactor">
<!−−density of tufnol composite, from Persson et al. 2011−−>
<density>1360</density>
<thermal_conductivity>1</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
<E>6.5e9</E>
<v>0.3</v>

</constitutive_model>

<geom_object>
<!−− dimensions of pellet 1, from Persson et al. 2011−−>
<union>
<cylinder>

<bottom> [13e−3, 13e−3, 40e−3] </bottom>
<top> [13e−3, 43e−3, 40e−3] </top>
<radius> 6.00e−3 </radius>

</cylinder>
<cylinder>

<bottom> [13e−3, 13e−3, 40e−3] </bottom>
<top> [13e−3, 23e−3, 40e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
</union>

<res>[2,2,2]</res>
<!−− Speed from from Persson et al. 2011−−>
<velocity>[0,−4.5,0]</velocity>
<temperature>310.15</temperature>
<color>40</color>

</geom_object>
</material>

<material name="steel_posterior_plate">
<!−−From CP thesis−−>
<density>8000</density>
<!−−thermal conductivity for 1% carbon steel at 25 celcius is 43 W/(m.K)

−−>
<thermal_conductivity>1</thermal_conductivity>
<!−−specific heat capacity for steel is 0.466 J/(g.K)−−>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
<E>193e9</E>
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<v>0.3</v>
</constitutive_model>

<geom_object>
<box>

<min>[0,0,0]</min>
<max>[13e−3,1e−3,80e−3]</max>

</box>
<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>60</color>

</geom_object>
</material>

<material name = "dura_mater">
<density>1000</density>
<thermal_conductivity>1</thermal_conductivity>
<specific_heat>1</specific_heat>

<!−−
<constitutive_model type = "comp_linear">

<E>80e6</E>
<v>0.49</v>

</constitutive_model>

<constitutive_model type = "comp_ogden_storakers">
<PR>0.49</PR>
<mu_1>322e3</mu_1>
<alpha_1>19</alpha_1>

</constitutive_model>

−−>

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus>152950e3</bulk_modulus>
<mu_1>322e3</mu_1>
<alpha_1>19</alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>

</constitutive_model>

<geom_object>
<difference>

<ellipsoid label = "outer_dura">
<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 9.5e−3 </rx>
<ry> 5.6e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
<ellipsoid label = "inner_dura">

<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 9e−3 </rx>
<ry> 5.1e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
</difference>

<res>[2,2,2]</res>
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<velocity>[0,0,0]</velocity>
<temperature>310.15</temperature>
<color>80</color>

</geom_object>
</material>

<contact>
<type>friction</type>
<materials>[0,1,2,3]</materials>
<mu>0.0</mu>

</contact>

</MPM>
</MaterialProperties>

</Uintah_specification>

a.1.2 Bare Cord P2

%[caption=cord_v1_p2.ups]
<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<Uintah_specification>

<Meta>
<title>bare cord model, pellet 2</title>

</Meta>

<SimulationComponent type = "mpm"/>

<Time>
<maxTime> 6e−3 </maxTime>
<initTime> 0 </initTime>
<delt_min> 1.0e−12 </delt_min>
<delt_max> 100.0e−3 </delt_max>
<delt_init> 100.0e−3 </delt_init>
<timestep_multiplier> 0.1 </timestep_multiplier>

</Time>

<MPM>
<time_integrator> explicit </time_integrator>
<interpolator> gimp </interpolator>
<withColor> true </withColor>
<DoPressureStabilization> false </DoPressureStabilization>

</MPM>

<PhysicalConstants>
<gravity> [0, 0, 0] </gravity>

</PhysicalConstants>

<MaterialProperties>
<MPM>

<material name="cord_tissue">

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus> 45e3 </bulk_modulus>
<mu_1> 2000 </mu_1>
<alpha_1> 9 </alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>
<useModifiedEOS> true </useModifiedEOS>

</constitutive_model>
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<density> 1050 </density>
<thermal_conductivity> 1 </thermal_conductivity>
<specific_heat> 1 </specific_heat>

<geom_object>
<ellipsoid label = "cord">

<origin> [13e−3, 6e−3, 7e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>

<res> [2, 2, 2] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<temperature> 310.15 </temperature>
<color> 20 </color>

</geom_object>
</material>

<material name="tufnol">

<constitutive_model type = "comp_linear">
<E> 6.5e9 </E>
<v> 0.3 </v>
<equation_of_state type="default_hyper"></equation_of_state>
<useModifiedEOS> true </useModifiedEOS>

</constitutive_model>

<density> 1360 </density>
<thermal_conductivity> 1 </thermal_conductivity>
<specific_heat> 1 </specific_heat>

<geom_object>
<union>

<cylinder label = "impactor_tail">
<bottom> [13e−3, 12e−3, 40e−3] </bottom>
<top> [13e−3, 34e−3, 40e−3] </top>
<radius> 7.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_mid">

<bottom> [13e−3, 24e−3, 40e−3] </bottom>
<top> [13e−3, 34e−3, 40e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_head">

<bottom> [13e−3, 34e−3, 40e−3] </bottom>
<top> [13e−3, 37e−3, 40e−3] </top>
<radius> 6.00e−3 </radius>

</cylinder>
</union>

<res> [1, 1, 1] </res>
<velocity> [0, −4.5, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 40 </color>

</geom_object>
</material>

<material name="steel">
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<constitutive_model type = "comp_linear">
<E> 193e9 </E>
<v> 0.3 </v>
<equation_of_state type="default_hyper"></equation_of_state>
<useModifiedEOS> true </useModifiedEOS>

</constitutive_model>

<density> 8000 </density>
<thermal_conductivity> 1 </thermal_conductivity>
<specific_heat> 1 </specific_heat>

<geom_object>
<box label = "backplate">

<min> [0, 0, 0] </min>
<max> [13e−3, 1e−3, 80e−3] </max>

</box>
<res> [1, 1, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<temperature> 310.15 </temperature>
<color> 60 </color>

</geom_object>
</material>

<contact>
<type> friction </type>
<materials> [0, 1, 2] </materials>
<mu> 0.0 </mu>

</contact>

</MPM>
</MaterialProperties>

<Grid>
<BoundaryConditions>

<Face side = "x−">
<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0, 0, 0] </value>
</BCType>

</Face>
<Face side = "x+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>
<Face side = "y−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0, 0, 0] </value>

</BCType>
</Face>
<Face side = "y+">

<BCType id = "all" var = "Neumann" label = "Velocity">
<value> [0, 0, 0] </value>

</BCType>
</Face>
<Face side = "z−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0, 0, 0] </value>

</BCType>
</Face>
<Face side = "z+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
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</Face>
</BoundaryConditions>

<Level>
<Box label = "Domain">
<lower> [0, 0, 0] </lower>
<upper> [13e−3, 45e−3, 40e−3] </upper>
<extraCells> [1, 1, 1] </extraCells>
<patches> [8, 1, 40] </patches>
<!−−<patches> [1, 1, 16] </patches>−−>
</Box>
<spacing> [0.5e−3, 0.5e−3, 0.5e−3] </spacing>

</Level>
</Grid>

<DataArchiver>
<filebase>/nobackup/mnsg/uintah_dev5_1/output/cord_v1_p2.uda</

filebase>
<!−−<filebase>/usr/not−backed−up/UCF_output/cord_v1_p2.uda</filebase

>−−>
<outputInterval>0.05e−3</outputInterval>

<save label = "p.particleID"/>
<save label = "p.x"/>
<save label = "p.velocity"/>
<save label = "p.stress"/>
<save label = "p.color"/>
<checkpoint cycle = "2" interval = "0.0001"/>

</DataArchiver>

</Uintah_specification>

a.1.3 Bare Cord P3

%[caption=cord_v1_p3.ups]
<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<Uintah_specification>

<Meta>
<title>bare cord model, pellet 3</title>

</Meta>

<SimulationComponent type = "mpm"/>

<Time>
<maxTime> 6e−3 </maxTime>
<initTime> 0 </initTime>
<delt_min> 1.0e−12 </delt_min>
<delt_max> 100.0e−3 </delt_max>
<delt_init> 100.0e−3 </delt_init>
<timestep_multiplier> 0.1 </timestep_multiplier>

</Time>

<MPM>
<time_integrator> explicit </time_integrator>
<interpolator> gimp </interpolator>
<withColor> true </withColor>
<DoPressureStabilization> false </DoPressureStabilization>

</MPM>
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<PhysicalConstants>
<gravity> [0, 0, 0] </gravity>

</PhysicalConstants>

<MaterialProperties>
<MPM>

<material name="cord_tissue">

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus> 45e3 </bulk_modulus>
<mu_1> 2000 </mu_1>
<alpha_1> 9 </alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>
<useModifiedEOS> true </useModifiedEOS>

</constitutive_model>

<density> 1050 </density>
<thermal_conductivity> 1 </thermal_conductivity>
<specific_heat> 1 </specific_heat>

<geom_object>
<ellipsoid label = "cord">

<origin> [13e−3, 6e−3, 7e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>

<res> [2, 2, 2] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<temperature> 310.15 </temperature>
<color> 20 </color>

</geom_object>
</material>

<material name="tufnol">

<constitutive_model type = "comp_linear">
<E> 6.5e9 </E>
<v> 0.3 </v>
<equation_of_state type="default_hyper"></equation_of_state>
<useModifiedEOS> true </useModifiedEOS>

</constitutive_model>

<density> 1360 </density>
<thermal_conductivity> 1 </thermal_conductivity>
<specific_heat> 1 </specific_heat>

<geom_object>
<union>

<cylinder label = "impactor_tail">
<bottom> [13e−3, 12e−3, 40e−3] </bottom>
<top> [13e−3, 27e−3, 40e−3] </top>
<radius> 5.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_mid">

<bottom> [13e−3, 27e−3, 40e−3] </bottom>
<top> [13e−3, 39e−3, 40e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
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<cylinder label = "impactor_head">
<bottom> [13e−3, 39e−3, 40e−3] </bottom>
<top> [13e−3, 42e−3, 40e−3] </top>
<radius> 6.00e−3 </radius>

</cylinder>
</union>

<res> [1, 1, 1] </res>
<velocity> [0, −4.5, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 40 </color>

</geom_object>
</material>

<material name="steel">

<constitutive_model type = "comp_linear">
<E> 193e9 </E>
<v> 0.3 </v>
<equation_of_state type="default_hyper"></equation_of_state>
<useModifiedEOS> true </useModifiedEOS>

</constitutive_model>

<density> 8000 </density>
<thermal_conductivity> 1 </thermal_conductivity>
<specific_heat> 1 </specific_heat>

<geom_object>
<box label = "backplate">

<min> [0, 0, 0] </min>
<max> [13e−3, 1e−3, 80e−3] </max>

</box>
<res> [1, 1, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<temperature> 310.15 </temperature>
<color> 60 </color>

</geom_object>
</material>

<contact>
<type> friction </type>
<materials> [0, 1, 2] </materials>
<mu> 0.0 </mu>

</contact>

</MPM>
</MaterialProperties>

<Grid>
<BoundaryConditions>

<Face side = "x−">
<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0, 0, 0] </value>
</BCType>

</Face>
<Face side = "x+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>
<Face side = "y−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
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<value> [0, 0, 0] </value>
</BCType>

</Face>
<Face side = "y+">

<BCType id = "all" var = "Neumann" label = "Velocity">
<value> [0, 0, 0] </value>

</BCType>
</Face>
<Face side = "z−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0, 0, 0] </value>

</BCType>
</Face>
<Face side = "z+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>

</BoundaryConditions>

<Level>
<Box label = "Domain">
<lower> [0, 0, 0] </lower>
<upper> [13e−3, 45e−3, 40e−3] </upper>
<extraCells> [1, 1, 1] </extraCells>
<patches> [8, 1, 40] </patches>
<!−−<patches> [1, 1, 16] </patches>−−>
</Box>
<spacing> [0.5e−3, 0.5e−3, 0.5e−3] </spacing>

</Level>
</Grid>

<DataArchiver>
<filebase>/nobackup/mnsg/uintah_dev5_1/output/cord_v1_p3.uda</

filebase>
<!−−<filebase>/usr/not−backed−up/UCF_output/cord_v1_p3.uda</filebase

>−−>
<outputInterval>0.05e−3</outputInterval>

<save label = "p.particleID"/>
<save label = "p.x"/>
<save label = "p.velocity"/>
<save label = "p.stress"/>
<save label = "p.color"/>
<checkpoint cycle = "2" interval = "0.0001"/>

</DataArchiver>

</Uintah_specification>

a.1.4 Cord/Dura P1

%[caption=dura_v3_pr0.4.ups]
<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<!−− with dura −−>
<!−− with additional plane of symmetry −−>
<!−− non linear ogden parameters for dura −−>
<!−− linear to rigid −−>
<!−− dura back to ogden_storakers from ogden_standard −−>
<!−− reduced PR of dura to .3 −−>
<!−− increased PR of dura to .4 −−>

<Uintah_specification>
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<SimulationComponent type = "mpm"/>

<Time>
<maxTime>7e−3</maxTime>
<initTime>0</initTime>
<delt_min>1.0e−12</delt_min>
<delt_max>100.0e−3</delt_max>
<delt_init>100.0e−3</delt_init>
<timestep_multiplier>0.1</timestep_multiplier>

</Time>

<Grid>
<BoundaryConditions>

<Face side = "x−">
<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0.0,0.0,0.0] </value>
</BCType>

</Face>
<Face side = "x+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>
<Face side = "y−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "y+">

<BCType id = "all" var = "Neumann" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>

</BoundaryConditions>

<Level>
<Box label = "Domain">

<lower>[0,0,0]</lower>
<upper>[13e−3,45e−3,40e−3]</upper>
<extraCells>[1,1,1]</extraCells>
<patches>[4,1,80]</patches>
<!−−<patches>[1,1,16]</patches>−−>

</Box>
<spacing>[0.5e−3, 0.5e−3, 0.5e−3]</spacing>

</Level>
</Grid>

<DataArchiver>
<filebase>/nobackup/mnsg/uintah_dev5_1/output/dura_v3_pr0.4.uda</

filebase>
<!−−<filebase>/usr/not−backed−up/UCF_output/dura_v3.uda</filebase>

−−>
<outputInterval>0.05e−3</outputInterval>
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<save label = "p.particleID"/>
<save label = "p.x"/>
<save label = "p.velocity"/>
<save label = "p.stress"/>
<save label = "p.color"/>
<checkpoint cycle = "2" interval = "0.0001"/>

</DataArchiver>

<MPM>
<time_integrator>explicit</time_integrator>
<interpolator>gimp</interpolator>
<withColor>true</withColor>
<DoPressureStabilization>false</DoPressureStabilization>

</MPM>

<PhysicalConstants>
<gravity>[0,0,0]</gravity>

</PhysicalConstants>

<MaterialProperties>
<MPM>

<material name="cord_tissue">
<!−−density of SC tissue from Persson−−>
<density>1050</density>
<!−−thermal conductivity for water at 25 celcius is 0.58 W/(m.K)−−>
<thermal_conductivity>1</thermal_conductivity>
<!−−specific heat capacity for water is 4.1855 J/(g.K)−−>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus>45e3</bulk_modulus>
<mu_1>2000</mu_1>
<alpha_1>9</alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>

</constitutive_model>

<geom_object>
<!−−elliptical cord, dimensions from Persson et al. 2011 −−>
<ellipsoid label = "cord">

<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz><!−−effectively creates an elliptical tube within the

domain, 140mm long−−>
</ellipsoid>

<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>20</color>

</geom_object>
</material>

<material name="impactor">
<!−−density of tufnol composite, from Persson et al. 2011−−>
<density>1360</density>
<thermal_conductivity>1</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
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<E>6.5e9</E>
<v>0.3</v>

</constitutive_model>
<!−−

<constitutive_model type = "rigid"></constitutive_model>
−−>

<geom_object>
<!−− dimensions of pellet 1, from Persson et al. 2011−−>
<union>
<cylinder>

<bottom> [13e−3, 13e−3, 40e−3] </bottom>
<top> [13e−3, 43e−3, 40e−3] </top>
<radius> 6.00e−3 </radius>

</cylinder>
<cylinder>

<bottom> [13e−3, 13e−3, 40e−3] </bottom>
<top> [13e−3, 23e−3, 40e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
</union>

<res>[2,2,2]</res>
<!−− Speed from from Persson et al. 2011−−>
<velocity>[0,−4.5,0]</velocity>
<temperature>310.15</temperature>
<color>40</color>

</geom_object>
</material>

<material name="steel_posterior_plate">
<!−−From CP thesis−−>
<density>8000</density>
<!−−thermal conductivity for 1% carbon steel at 25 celcius is 43 W/(m.K)

−−>
<thermal_conductivity>1</thermal_conductivity>
<!−−specific heat capacity for steel is 0.466 J/(g.K)−−>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
<E>193e9</E>
<v>0.3</v>

</constitutive_model>
<!−−

<constitutive_model type = "rigid"></constitutive_model>
−−>

<geom_object>
<box>

<min>[0,0,0]</min>
<max>[13e−3,1e−3,80e−3]</max>

</box>
<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>60</color>

</geom_object>
</material>

<material name = "dura_mater">
<density>1000</density>
<thermal_conductivity>1</thermal_conductivity>
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<specific_heat>1</specific_heat>

<!−−
<constitutive_model type = "comp_linear">

<E>80e6</E>
<v>0.49</v>

</constitutive_model>
−−>

<constitutive_model type = "comp_ogden_storakers">
<PR>0.4</PR>
<mu_1>322e3</mu_1>
<alpha_1>19</alpha_1>

</constitutive_model>

<!−−
<constitutive_model type = "comp_ogden_standard">

<bulk_modulus>152950e3</bulk_modulus>
<mu_1>322e3</mu_1>
<alpha_1>19</alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>

</constitutive_model>
−−>

<geom_object>
<difference>

<ellipsoid label = "outer_dura">
<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 9e−3 </rx>
<ry> 5.6e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
<ellipsoid label = "inner_dura">

<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 8.5e−3 </rx>
<ry> 5.1e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
</difference>

<res>[2,2,2]</res>
<velocity>[0,0,0]</velocity>
<temperature>310.15</temperature>
<color>80</color>

</geom_object>
</material>

<contact>
<type>friction</type>
<materials>[0,1,2,3]</materials>
<mu>0.0</mu>

</contact>

</MPM>
</MaterialProperties>

</Uintah_specification>

a.1.5 Cord/Dura P2
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%[caption=dura_v3_p2.ups]
<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<Uintah_specification>

<SimulationComponent type = "mpm"/>

<Time>
<maxTime>7e−3</maxTime>
<initTime>0</initTime>
<delt_min>1.0e−12</delt_min>
<delt_max>100.0e−3</delt_max>
<delt_init>100.0e−3</delt_init>
<timestep_multiplier>0.1</timestep_multiplier>

</Time>

<Grid>
<BoundaryConditions>

<Face side = "x−">
<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0.0,0.0,0.0] </value>
</BCType>

</Face>
<Face side = "x+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>
<Face side = "y−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "y+">

<BCType id = "all" var = "Neumann" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>

</BoundaryConditions>

<Level>
<Box label = "Domain">

<lower>[0,0,0]</lower>
<upper>[13e−3,45e−3,40e−3]</upper>
<extraCells>[1,1,1]</extraCells>
<patches>[4,1,80]</patches>
<!−−<patches>[1,1,16]</patches>−−>

</Box>
<spacing>[0.5e−3, 0.5e−3, 0.5e−3]</spacing>

</Level>
</Grid>

<DataArchiver>
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<filebase>/nobackup/mnsg/uintah_dev5_1/output/dura_v3_p2.uda</
filebase>

<!−−<filebase>/usr/not−backed−up/UCF_output/dura_v3_p2.uda</filebase
>−−>

<outputInterval>0.05e−3</outputInterval>
<save label = "p.particleID"/>
<save label = "p.x"/>
<save label = "p.velocity"/>
<save label = "p.stress"/>
<save label = "p.color"/>
<checkpoint cycle = "2" interval = "0.0001"/>

</DataArchiver>

<MPM>
<time_integrator>explicit</time_integrator>
<interpolator>gimp</interpolator>
<withColor>true</withColor>
<DoPressureStabilization>false</DoPressureStabilization>

</MPM>

<PhysicalConstants>
<gravity>[0,0,0]</gravity>

</PhysicalConstants>

<MaterialProperties>
<MPM>

<material name="cord_tissue">
<density>1050</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus>45e3</bulk_modulus>
<mu_1>2000</mu_1>
<alpha_1>9</alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>

</constitutive_model>

<geom_object>
<ellipsoid label = "cord">

<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>

<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>20</color>

</geom_object>
</material>

<material name="impactor">
<density>1360</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
<E>6.5e9</E>
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<v>0.3</v>
</constitutive_model>
<geom_object>

<union>
<cylinder label = "impactor_tail">

<bottom> [13e−3, 13.5e−3, 40e−3] </bottom>
<top> [13e−3, 35.5e−3, 40e−3] </top>
<radius> 7.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_mid">

<bottom> [13e−3, 25.5e−3, 40e−3] </bottom>
<top> [13e−3, 35.5e−3, 40e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_head">

<bottom> [13e−3, 35.5e−3, 40e−3] </bottom>
<top> [13e−3, 38.5e−3, 40e−3] </top>
<radius> 6.00e−3 </radius>

</cylinder>
</union>

<res>[2,2,2]</res>
<velocity>[0,−4.5,0]</velocity>
<temperature>310.15</temperature>
<color>40</color>

</geom_object>
</material>

<material name="steel_posterior_plate">
<density>8000</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
<E>193e9</E>
<v>0.3</v>

</constitutive_model>

<geom_object>
<box>

<min>[0,0,0]</min>
<max>[13e−3,1e−3,80e−3]</max>

</box>
<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>60</color>

</geom_object>
</material>

<material name = "dura_mater">
<density>1000</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_ogden_storakers">
<PR>0.4</PR>
<mu_1>322e3</mu_1>
<alpha_1>19</alpha_1>

</constitutive_model>
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<geom_object>
<difference>

<ellipsoid label = "outer_dura">
<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 9e−3 </rx>
<ry> 5.6e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
<ellipsoid label = "inner_dura">

<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 8.5e−3 </rx>
<ry> 5.1e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
</difference>

<res>[2,2,2]</res>
<velocity>[0,0,0]</velocity>
<temperature>310.15</temperature>
<color>80</color>

</geom_object>
</material>

<contact>
<type>friction</type>
<materials>[0,1,2,3]</materials>
<mu>0.0</mu>

</contact>

</MPM>
</MaterialProperties>

</Uintah_specification>

a.1.6 Cord/Dura P3

%[caption=dura_v3_p2.ups]
<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<Uintah_specification>

<SimulationComponent type = "mpm"/>

<Time>
<maxTime>7e−3</maxTime>
<initTime>0</initTime>
<delt_min>1.0e−12</delt_min>
<delt_max>100.0e−3</delt_max>
<delt_init>100.0e−3</delt_init>
<timestep_multiplier>0.1</timestep_multiplier>

</Time>

<Grid>
<BoundaryConditions>

<Face side = "x−">
<BCType id = "all" var = "Neumann" label = "Velocity">

<value> [0.0,0.0,0.0] </value>
</BCType>

</Face>
<Face side = "x+">
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<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>
<Face side = "y−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "y+">

<BCType id = "all" var = "Neumann" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z−">

<BCType id = "all" var = "Dirichlet" label = "Velocity">
<value> [0.0,0.0,0.0] </value>

</BCType>
</Face>
<Face side = "z+">

<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
</Face>

</BoundaryConditions>

<Level>
<Box label = "Domain">

<lower>[0,0,0]</lower>
<upper>[13e−3,45e−3,40e−3]</upper>
<extraCells>[1,1,1]</extraCells>
<patches>[4,1,80]</patches>
<!−−<patches>[1,1,16]</patches>−−>

</Box>
<spacing>[0.5e−3, 0.5e−3, 0.5e−3]</spacing>

</Level>
</Grid>

<DataArchiver>
<filebase>/nobackup/mnsg/uintah_dev5_1/output/dura_v3_p3.uda</

filebase>
<!−−<filebase>/usr/not−backed−up/UCF_output/dura_v3_p3.uda</filebase

>−−>
<outputInterval>0.05e−3</outputInterval>

<save label = "p.particleID"/>
<save label = "p.x"/>
<save label = "p.velocity"/>
<save label = "p.stress"/>
<save label = "p.color"/>
<save label = "p.scalefactor"/>
<checkpoint cycle = "2" interval = "0.0001"/>

</DataArchiver>

<MPM>
<time_integrator>explicit</time_integrator>
<interpolator>gimp</interpolator>
<withColor>true</withColor>
<DoPressureStabilization>false</DoPressureStabilization>

</MPM>

<PhysicalConstants>
<gravity>[0,0,0]</gravity>

</PhysicalConstants>
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<MaterialProperties>
<MPM>

<material name="cord_tissue">
<density>1050</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus>45e3</bulk_modulus>
<mu_1>2000</mu_1>
<alpha_1>9</alpha_1>
<equation_of_state type="default_hyper"></equation_of_state>

</constitutive_model>

<geom_object>
<ellipsoid label = "cord">

<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>

<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>20</color>

</geom_object>
</material>

<material name="impactor">
<density>1360</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
<E>6.5e9</E>
<v>0.3</v>

</constitutive_model>
<geom_object>

<union>
<cylinder label = "impactor_head">

<bottom> [13e−3, 13.5e−3, 40e−3] </bottom>
<top> [13e−3, 28.5e−3, 40e−3] </top>
<radius> 5.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_mid">

<bottom> [13e−3, 28.5e−3, 40e−3] </bottom>
<top> [13e−3, 40.5e−3, 40e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_tail">

<bottom> [13e−3, 40.5e−3, 40e−3] </bottom>
<top> [13e−3, 43.5e−3, 40e−3] </top>
<radius> 6.00e−3 </radius>

</cylinder>
</union>

<res>[2,2,2]</res>
<velocity>[0,−4.5,0]</velocity>
<temperature>310.15</temperature>
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<color>40</color>
</geom_object>

</material>

<material name="steel_posterior_plate">
<density>8000</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_linear">
<E>193e9</E>
<v>0.3</v>

</constitutive_model>

<geom_object>
<box>

<min>[0,0,0]</min>
<max>[13e−3,1e−3,80e−3]</max>

</box>
<res>[2,2,2]</res>
<velocity>[0.0,0.0,0.0]</velocity>
<temperature>310.15</temperature>
<color>60</color>

</geom_object>
</material>

<material name = "dura_mater">
<density>1000</density>
<thermal_conductivity>0</thermal_conductivity>
<specific_heat>1</specific_heat>

<constitutive_model type = "comp_ogden_storakers">
<PR>0.4</PR>
<mu_1>322e3</mu_1>
<alpha_1>19</alpha_1>

</constitutive_model>

<geom_object>
<difference>

<ellipsoid label = "outer_dura">
<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 9e−3 </rx>
<ry> 5.6e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
<ellipsoid label = "inner_dura">

<origin> [13e−3, 6.6e−3, 7e−3] </origin>
<rx> 8.5e−3 </rx>
<ry> 5.1e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
</difference>

<res>[2,2,2]</res>
<velocity>[0,0,0]</velocity>
<temperature>310.15</temperature>
<color>80</color>

</geom_object>
</material>
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<contact>
<type>friction</type>
<materials>[0,1,2,3]</materials>
<mu>0.0</mu>

</contact>

</MPM>
</MaterialProperties>

</Uintah_specification>

a.1.7 Cord/Dura/CSF P1

<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<Uintah_specification>

<Meta>
<title>CSF SCI</title>

</Meta>

<SimulationComponent type="mpmice" />

<Time>
<maxTime> 8e−3 </maxTime>
<initTime> 0.0 </initTime>
<delt_min> 1e−12 </delt_min>
<delt_max> 1.0 </delt_max>
<max_delt_increase> 1.0 </max_delt_increase>
<timestep_multiplier> 0.2 </timestep_multiplier>

</Time>

<DataArchiver>

<filebase>/nobackup/mnsg/udev5_3/output/csf1.7.1_3D_3ATM.uda</
filebase>

<!−−
<filebase>/usr/not−backed−up/UCF_output1/csf1.7.1_3D_3ATM.uda</

filebase>
−−>
<outputInterval>0.02e−3</outputInterval>
<checkpoint cycle = "2" interval = "0.02e−3"/>
<!−− MPM −−>
<save label="p.x"/>
<save label="p.velocity"/>
<save label="p.volume"/>
<save label="p.size"/>
<save label="p.temperature"/>

<save label="p.deformationMeasure"/>
<save label="p.stress"/>
<save label="p.color"/>
<save label="p.scalefactor"/>
<save label="p.particleID"/>
<save label="g.mass"/>
<save label="g.velocity"/>
<save label="g.velocity_star"/>
<!−− ICE −−>
<save label="press_equil_CC"/>
<save label="vol_frac_CC"/>
<save label="sp_vol_CC"/>
<save label="speedSound_CC"/>
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<save label="vel_CC"/>
<save label="rho_CC"/>
<save label="temp_CC"/>
<save label="mom_source_CC"/>

</DataArchiver>

<PhysicalConstants>
<gravity> [0, 0, 0] </gravity>
<reference_pressure> 303975 </reference_pressure>

</PhysicalConstants>

<MPM>
<time_integrator> explicit </time_integrator>
<testForNegTemps_mpm> false </testForNegTemps_mpm>
<interpolator> gimp </interpolator>

<withColor> true </withColor>
</MPM>

<CFD>
<cfl>0.1</cfl>
<ICE>

<advection type = "SecondOrder" />
<TimeStepControl>

<Scheme_for_delT_calc> aggressive </Scheme_for_delT_calc>
<knob_for_speedSound> 1 </knob_for_speedSound>

</TimeStepControl>

<applyHydrostaticPressure> false </applyHydrostaticPressure>
<ClampSpecificVolume> true </ClampSpecificVolume>

<!−−
<ImplicitSolver>

<max_outer_iterations> 10 </max_outer_iterations>
<outer_iteration_tolerance> 1e−8 </outer_iteration_tolerance>
<iters_before_timestep_restart> 10 </iters_before_timestep_restart>

<Parameters variable="implicitPressure">
<tolerance> 1.e−20 </tolerance>
<solver> cg </solver>
<preconditioner> pfmg </preconditioner>
<maxiterations> 7500 </maxiterations>
<npre> 1 </npre>
<npost> 1 </npost>
<skip> 1 </skip>
<jump> 0 </jump>
<relax_type> 2 </relax_type>

</Parameters>
</ImplicitSolver>

−−>
</ICE>

</CFD>

<MaterialProperties>
<MPM>

<material name="cord_tissue">

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus> 45e3 </bulk_modulus>
<mu_1> 2000 </mu_1>
<alpha_1> 9 </alpha_1>
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<useModifiedEOS> false </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>
<density> 1054.5033333333333303 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<!−− isochoric specific heat of water at 20atm 300 kelvin −−>
<specific_heat> 4129 </specific_heat>

<geom_object>
<ellipsoid label = "cord">

<origin> [15.2e−3, 7.2e−3, 40.4e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>

<res> [2, 2, 1] </res>
<velocity> [0, 0, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 20 </color>

</geom_object>
</material>

<material name = "dura_mater">

<constitutive_model type = "comp_ogden_storakers">
<PR> 0.4 </PR>
<mu_1> 322e3 </mu_1>
<alpha_1> 19 </alpha_1>
<useModifiedEOS> false </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>

<density> 1000.0000001348602154 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<specific_heat> 4129 </specific_heat>

<geom_object>
<difference>

<ellipsoid label = "outer_dura">
<origin> [15.2e−3, 7.2e−3, 40.4e−3] </origin>
<rx> 9.5e−3 </rx>
<ry> 7e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
<ellipsoid label = "inner_dura">

<origin> [15.28e−3, 7.2e−3, 40.4e−3] </origin>
<rx> 9e−3 </rx>
<ry> 6.5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
</difference>

<res> [2, 2, 1] </res>
<velocity> [0, 0, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 80 </color>

</geom_object>
</material>
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<material name="tufnol">

<constitutive_model type = "comp_linear">
<E> 6.5e9 </E>
<v> 0.3 </v>
<useModifiedEOS> true </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>

<density> 1360.0000374123076199 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<specific_heat> 1500 </specific_heat>

<geom_object>
<!−−
<cylinder label = "short_impactor">

<bottom> [14e−3, 15e−3, 40.4e−3] </bottom>
<top> [14e−3, 25e−3, 40.4e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
−−>

<union>
<cylinder label = "impactor_tail">

<bottom> [15.2e−3, 16.4e−3, 0e−3] </bottom>
<top> [15.2e−3, 46.4e−3, 0e−3] </top>
<radius> 6.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_head">

<bottom> [15.2e−3, 16.4e−3, 0e−3] </bottom>
<top> [15.28e−3, 26.4e−3, 0e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
</union>

<res> [2, 2, 1] </res>
<velocity> [0, −4.5, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 40 </color>

</geom_object>
</material>

<material name="backplate">

<constitutive_model type = "comp_linear">
<E> 193e9 </E>
<v> 0.3 </v>
<useModifiedEOS> true </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>

<!−−<density> 8000.0000025199997253 </density>−−>
<density> 1360.0000374123076199 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<!−−<specific_heat> 4130 </specific_heat>−−>
<specific_heat> 1500 </specific_heat>

<geom_object>
<box label = "backplate">

<min> [0, 0, 0] </min>
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<max> [15.2e−3, 0.2e−3, 40e−3] </max>
</box>
<res> [2, 2, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<temperature> 300 </temperature>
<color> 60 </color>

</geom_object>
</material>

<contact>
<type> friction </type>
<materials> [0, 1, 2, 3] </materials>
<mu> 0.0 </mu>

</contact>
</MPM>

<ICE>

<material name = "air">
<EOS type = "ideal_gas"> </EOS>
<dynamic_viscosity> 0.0 </dynamic_viscosity>
<thermal_conductivity> 0 </thermal_conductivity>
<!−− isochoric specific heat of air at 310.15K at 5 atm pressure −−>
<!−−<specific_heat> 719.6 </specific_heat>−−>
<!−− isochoric specific heat of air at 310.15K at 3 atm pressure −−>
<specific_heat> 719.1 </specific_heat>
<gamma> 1.4 </gamma>

<geom_object>
<difference>

<box label="whole_domain">
<min> [0e−3, 0e−3, 0e−3] </min>
<max> [15.2e−3, 50e−3, 40e−3] </max>
<!−−<max>[13.94e−3, 46.92e−3, 0.34e−3]</max>−−>

</box>
<union>

<box label = "backplate"></box>
<cylinder label = "impactor_tail"></cylinder>
<cylinder label = "impactor_head"></cylinder>
<ellipsoid label = "outer_dura"></ellipsoid>

</union>
</difference>

<res> [2, 2, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<temperature> 310.15 </temperature>

<!−−<density> 5.6749715055 </density> −−>
<!−− density at 3 atm −−>
<density> 3.4142587173926797 </density>

<pressure> 0 </pressure>
</geom_object>

</material>

<material name = "csf">

<EOS type="Thomsen_Hartka_water">
<a> 2.0e−7 </a>
<b> 2.6 </b>
<co> 4205.7 </co>
<ko> 5.0e−10 </ko>
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<To> 277.0 </To>
<L> 8.0e−6 </L>
<vo> 1.00008e−3 </vo>

</EOS>

<dynamic_viscosity> 0.000 </dynamic_viscosity>
<!−− THWAter Script 3 atm −−>

<gamma> 1.0000392285636475 </gamma>
<thermal_conductivity> 0 </thermal_conductivity>
<!−− THWAter Script 3 atm −−>
<specific_heat> 4117.8398968398732904 </specific_heat>

<geom_object>

<difference>
<ellipsoid label = "inner_dura"></ellipsoid>
<ellipsoid label = "cord"></ellipsoid>

</difference>
<res> [2, 2, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<!−− THWAter Script 3 atm −−>
<density> 991.3235777144317353 </density>
<pressure> 0 </pressure>
<temperature> 310.15 </temperature>
<color> 100 </color>

</geom_object>
</material>

</ICE>

<exchange_properties>
<exchange_coefficients>

<!−−
0) cord_tissue
1) dura_mater
2) tufnol
3) backplate
4) air
5) csf

0−>1, 0−>2, 0−>3, 0−>4, 0−>5,
1−>2, 1−>3, 1−>4, 1−>5,

2−>3, 2−>4, 2−>5,
3−>4, 3−>5,

4−>5,

0−>1, 0−>2, 0−>3, 0−>4, 0−>5, 1−>2, 1−>3, 1−>4, 1−>5, 2−>3,
2−>4, 2−>5, 3−>4, 3−>5, 4−>5,

−−>
<momentum> [1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e1,

1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6] </
momentum>

<!−−<momentum> [1e10.6, 0, 0, 0, 1e10.6, 1e10.6, 1e10.6, 1e1, 1e10
.6, 0, 1e10.6, 0, 1e1, 0, 0] </momentum>−−>

<heat> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] </heat
>

</exchange_coefficients>
</exchange_properties>

</MaterialProperties>
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<Grid>
<BoundaryConditions>

<Face side = "x−">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>

<Face side = "x+">
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
<!−−<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>
−−>

</Face>

<Face side = "y−">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>

<Face side = "y+">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>

<BCType id = "all" label = "Velocity" var = "Dirichlet">
<value> [0, 0, 0] </value>

</BCType>
<!−−
<BCType id = "all" label = "Velocity" var = "Neumann">

<value> [0, 0, 0] </value>
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</BCType> −−>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>

<Face side = "z−">
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>

</Face>

<Face side = "z+">
<!−−
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
−−>
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>
</BoundaryConditions>

<Level>
<!−−
<Box label = "Domain">

<lower> [0e−3, 0e−3, 0e−3] </lower>
<upper> [13.94e−3, 46.92e−3, 0.34e−3] </upper>
<extraCells> [1, 1, 1] </extraCells>
<patches> [12, 1, 1] </patches>

</Box>
<spacing> [0.34e−3, 0.34e−3, 0.34e−3] </spacing>
−−>
<Box label = "Domain">

<lower> [0e−3, 0e−3, 0e−3] </lower>
<upper> [15.2e−3, 50e−3, 40e−3] </upper>
<extraCells> [1, 1, 1] </extraCells>
<patches> [10, 1, 40] </patches>

</Box>
<spacing> [0.4e−3, 0.4e−3, 0.4e−3] </spacing>

</Level>
</Grid>

</Uintah_specification>

<!−−
mpirun −np 12 /usr/not−backed−up/udev5_3/opt/StandAlone/sus −mpi /usr/

not−backed−up/csf1.7.1_3D_3ATM.ups 2>&1 | tee /usr/not−backed−up/
csf1.7.1_3D_3ATM.txt

−−>
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a.1.8 Cord/Dura/CSF P2

<?xml version=’1.0’ encoding=’ISO−8859−1’ ?>

<Uintah_specification>

<Meta>
<title>CSF SCI</title>

</Meta>

<SimulationComponent type="mpmice" />

<Time>
<maxTime> 8e−3 </maxTime>
<initTime> 0.0 </initTime>
<delt_min> 1e−12 </delt_min>
<delt_max> 1.0 </delt_max>
<max_delt_increase> 1.0 </max_delt_increase>
<timestep_multiplier> 0.2 </timestep_multiplier>

</Time>

<DataArchiver>

<filebase>/nobackup/mnsg/udev5_3/output/csf1.7.1_3D_3ATM_P2.uda</
filebase>

<!−−
<filebase>/usr/not−backed−up/UCF_output1/csf1.7.1_3D_3ATM_P2.uda</

filebase>
−−>
<outputInterval>0.05e−3</outputInterval>
<checkpoint cycle = "2" interval = "0.02e−3"/>
<!−− MPM −−>
<save label="p.x"/>
<save label="p.velocity"/>
<save label="p.volume"/>
<save label="p.size"/>
<save label="p.temperature"/>

<save label="p.deformationMeasure"/>
<save label="p.stress"/>
<save label="p.color"/>
<save label="p.scalefactor"/>
<save label="p.particleID"/>
<save label="g.mass"/>
<save label="g.velocity"/>
<save label="g.velocity_star"/>
<!−− ICE −−>
<save label="press_equil_CC"/>
<save label="vol_frac_CC"/>
<save label="sp_vol_CC"/>
<save label="speedSound_CC"/>
<save label="vel_CC"/>
<save label="rho_CC"/>
<save label="temp_CC"/>
<save label="mom_source_CC"/>

</DataArchiver>

<PhysicalConstants>
<gravity> [0, 0, 0] </gravity>
<reference_pressure> 303975 </reference_pressure>
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</PhysicalConstants>

<MPM>
<time_integrator> explicit </time_integrator>
<testForNegTemps_mpm> false </testForNegTemps_mpm>
<interpolator> gimp </interpolator>

<withColor> true </withColor>
</MPM>

<CFD>
<cfl>0.1</cfl>
<ICE>

<advection type = "SecondOrder" />
<TimeStepControl>

<Scheme_for_delT_calc> aggressive </Scheme_for_delT_calc>
<knob_for_speedSound> 1 </knob_for_speedSound>

</TimeStepControl>

<applyHydrostaticPressure> false </applyHydrostaticPressure>
<ClampSpecificVolume> true </ClampSpecificVolume>

<!−−
<ImplicitSolver>

<max_outer_iterations> 10 </max_outer_iterations>
<outer_iteration_tolerance> 1e−8 </outer_iteration_tolerance>
<iters_before_timestep_restart> 10 </iters_before_timestep_restart>

<Parameters variable="implicitPressure">
<tolerance> 1.e−20 </tolerance>
<solver> cg </solver>
<preconditioner> pfmg </preconditioner>
<maxiterations> 7500 </maxiterations>
<npre> 1 </npre>
<npost> 1 </npost>
<skip> 1 </skip>
<jump> 0 </jump>
<relax_type> 2 </relax_type>

</Parameters>
</ImplicitSolver>

−−>
</ICE>

</CFD>

<MaterialProperties>
<MPM>

<material name="cord_tissue">

<constitutive_model type = "comp_ogden_standard">
<bulk_modulus> 45e3 </bulk_modulus>
<mu_1> 2000 </mu_1>
<alpha_1> 9 </alpha_1>
<useModifiedEOS> false </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>
<density> 1054.5033333333333303 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<!−− isochoric specific heat of water at 20atm 300 kelvin −−>
<specific_heat> 4129 </specific_heat>

<geom_object>
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<ellipsoid label = "cord">
<origin> [12.8e−3, 7.2e−3, 40.4e−3] </origin>
<rx> 7.5e−3 </rx>
<ry> 5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>

<res> [2, 2, 1] </res>
<velocity> [0, 0, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 20 </color>

</geom_object>
</material>

<material name = "dura_mater">

<constitutive_model type = "comp_ogden_storakers">
<PR> 0.4 </PR>
<mu_1> 322e3 </mu_1>
<alpha_1> 19 </alpha_1>
<useModifiedEOS> false </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>

<density> 1000.0000001348602154 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<specific_heat> 4129 </specific_heat>

<geom_object>
<difference>

<ellipsoid label = "outer_dura">
<origin> [12.8e−3, 7.2e−3, 40.4e−3] </origin>
<rx> 9.5e−3 </rx>
<ry> 7e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
<ellipsoid label = "inner_dura">

<origin> [12.8e−3, 7.2e−3, 40.4e−3] </origin>
<rx> 9e−3 </rx>
<ry> 6.5e−3 </ry>
<rz> 1e12 </rz>

</ellipsoid>
</difference>

<res> [2, 2, 1] </res>
<velocity> [0, 0, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 80 </color>

</geom_object>
</material>

<material name="tufnol">

<constitutive_model type = "comp_linear">
<E> 6.5e9 </E>
<v> 0.3 </v>
<useModifiedEOS> true </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>
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<density> 1360.0000374123076199 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<specific_heat> 1500 </specific_heat>

<geom_object>
<!−−
<cylinder label = "short_impactor">

<bottom> [14e−3, 15e−3, 40.4e−3] </bottom>
<top> [14e−3, 25e−3, 40.4e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
−−>

<union>
<cylinder label = "impactor_tail">

<bottom> [12.8e−3, 28.4e−3, 0e−3] </bottom>
<top> [12.8e−3, 40.4e−3, 0e−3] </top>
<radius> 7e−3 </radius>

</cylinder>
<cylinder label = "impactor_mid">

<bottom> [12.8e−3, 18.4e−3, 0e−3] </bottom>
<top> [12.8e−3, 28.4e−3, 0e−3] </top>
<radius> 10.00e−3 </radius>

</cylinder>
<cylinder label = "impactor_head">

<bottom> [12.8e−3, 15.4e−3, 0e−3] </bottom>
<top> [12.8e−3, 18.4e−3, 0e−3] </top>
<radius> 6e−3 </radius>

</cylinder>
</union>

<res> [2, 2, 1] </res>
<velocity> [0, −4.5, 0] </velocity>
<temperature> 310.15 </temperature>
<color> 40 </color>

</geom_object>
</material>

<material name="backplate">

<constitutive_model type = "comp_linear">
<E> 193e9 </E>
<v> 0.3 </v>
<useModifiedEOS> true </useModifiedEOS>
<equation_of_state type="default_hyper"> </equation_of_state>

</constitutive_model>

<!−−<density> 8000.0000025199997253 </density>−−>
<density> 1360.0000374123076199 </density>
<thermal_conductivity> 0 </thermal_conductivity>
<!−−<specific_heat> 4130 </specific_heat>−−>
<specific_heat> 1500 </specific_heat>

<geom_object>
<box label = "backplate">

<min> [0, 0, 0] </min>
<max> [12.8e−3, 0.2e−3, 40e−3] </max>

</box>
<res> [2, 2, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
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<temperature> 300 </temperature>
<color> 60 </color>

</geom_object>
</material>

<contact>
<type> friction </type>
<materials> [0, 1, 2, 3] </materials>
<mu> 0.0 </mu>

</contact>
</MPM>

<ICE>

<material name = "air">
<EOS type = "ideal_gas"> </EOS>
<dynamic_viscosity> 0.0 </dynamic_viscosity>
<thermal_conductivity> 0 </thermal_conductivity>
<!−− isochoric specific heat of air at 310.15K at 5 atm pressure −−>
<!−−<specific_heat> 719.6 </specific_heat>−−>
<!−− isochoric specific heat of air at 310.15K at 3 atm pressure −−>
<specific_heat> 719.1 </specific_heat>
<gamma> 1.4 </gamma>

<geom_object>
<difference>

<box label="whole_domain">
<min> [0e−3, 0e−3, 0e−3] </min>
<max> [12.8e−3, 50e−3, 40e−3] </max>
<!−−<max>[13.94e−3, 46.92e−3, 0.34e−3]</max>−−>

</box>
<union>

<box label = "backplate"></box>
<cylinder label = "impactor_tail"></cylinder>
<cylinder label = "impactor_head"></cylinder>
<cylinder label = "impactor_mid"></cylinder>
<ellipsoid label = "outer_dura"></ellipsoid>

</union>
</difference>

<res> [2, 2, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<temperature> 310.15 </temperature>

<!−−<density> 5.6749715055 </density> −−>
<!−− density at 3 atm −−>
<density> 3.4142587173926797 </density>

<pressure> 0 </pressure>
</geom_object>

</material>

<material name = "csf">

<EOS type="Thomsen_Hartka_water">
<a> 2.0e−7 </a>
<b> 2.6 </b>
<co> 4205.7 </co>
<ko> 5.0e−10 </ko>
<To> 277.0 </To>
<L> 8.0e−6 </L>
<vo> 1.00008e−3 </vo>
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</EOS>

<dynamic_viscosity> 0.000 </dynamic_viscosity>
<!−− THWAter Script 3 atm −−>

<gamma> 1.0000392285636475 </gamma>
<thermal_conductivity> 0 </thermal_conductivity>
<!−− THWAter Script 3 atm −−>
<specific_heat> 4117.8398968398732904 </specific_heat>

<geom_object>

<difference>
<ellipsoid label = "inner_dura"></ellipsoid>
<ellipsoid label = "cord"></ellipsoid>

</difference>
<res> [2, 2, 1] </res>
<velocity> [0.0, 0.0, 0.0] </velocity>
<!−− THWAter Script 3 atm −−>
<density> 991.3235777144317353 </density>
<pressure> 0 </pressure>
<temperature> 310.15 </temperature>
<color> 100 </color>

</geom_object>
</material>

</ICE>

<exchange_properties>
<exchange_coefficients>

<!−−
0) cord_tissue
1) dura_mater
2) tufnol
3) backplate
4) air
5) csf

0−>1, 0−>2, 0−>3, 0−>4, 0−>5,
1−>2, 1−>3, 1−>4, 1−>5,

2−>3, 2−>4, 2−>5,
3−>4, 3−>5,

4−>5,

0−>1, 0−>2, 0−>3, 0−>4, 0−>5, 1−>2, 1−>3, 1−>4, 1−>5, 2−>3,
2−>4, 2−>5, 3−>4, 3−>5, 4−>5,

−−>
<momentum> [1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e1,

1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6, 1e10.6] </
momentum>

<!−−<momentum> [1e10.6, 0, 0, 0, 1e10.6, 1e10.6, 1e10.6, 1e1, 1e10
.6, 0, 1e10.6, 0, 1e1, 0, 0] </momentum>−−>

<heat> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] </heat
>

</exchange_coefficients>
</exchange_properties>

</MaterialProperties>

<Grid>
<BoundaryConditions>

<Face side = "x−">



A.1 input files 231

<BCType id = "0" label = "Pressure" var = "Neumann">
<value> 0.0 </value>

</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>

<Face side = "x+">
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
<!−−<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>
−−>

</Face>

<Face side = "y−">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>

<Face side = "y+">
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>

<BCType id = "all" label = "Velocity" var = "Dirichlet">
<value> [0, 0, 0] </value>

</BCType>
<!−−
<BCType id = "all" label = "Velocity" var = "Neumann">

<value> [0, 0, 0] </value>
</BCType> −−>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
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</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>

<Face side = "z−">
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>

</Face>

<Face side = "z+">
<!−−
<BCType id = "all" var = "symmetry" label = "Symmetric"> </BCType>
−−>
<BCType id = "0" label = "Pressure" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Velocity" var = "Dirichlet">

<value> [0, 0, 0] </value>
</BCType>
<BCType id = "all" label = "Temperature" var = "Neumann">

<value> 0.0 </value>
</BCType>
<BCType id = "all" label = "Density" var = "Neumann">

<value> 0.0 </value>
</BCType>

</Face>
</BoundaryConditions>

<Level>
<!−−
<Box label = "Domain">

<lower> [0e−3, 0e−3, 0e−3] </lower>
<upper> [13.94e−3, 46.92e−3, 0.34e−3] </upper>
<extraCells> [1, 1, 1] </extraCells>
<patches> [12, 1, 1] </patches>

</Box>
<spacing> [0.34e−3, 0.34e−3, 0.34e−3] </spacing>
−−>
<Box label = "Domain">

<lower> [0e−3, 0e−3, 0e−3] </lower>
<upper> [12.8e−3, 44e−3, 40e−3] </upper>
<extraCells> [1, 1, 1] </extraCells>
<patches> [16, 1, 40] </patches>

</Box>
<spacing> [0.4e−3, 0.4e−3, 0.4e−3] </spacing>

</Level>
</Grid>

</Uintah_specification>

<!−−
mpirun −np 12 /usr/not−backed−up/udev5_3/opt/StandAlone/sus −mpi /usr/

not−backed−up/csf1.7.1_3D_3ATM_P2.ups 2>&1 | tee /usr/not−backed−up
/csf1.7.1_3D_3ATM_P2.txt

−−>
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a.2 constitutive material model code

a.2.1 Ogden Model (Cord)

Listing 1: CompOgdenStandard.h

#ifndef __COMP_OGDEN_STANDARD_CONSTITUTIVE_MODEL_H__
#define __COMP_OGDEN_STANDARD_CONSTITUTIVE_MODEL_H__

#include <CCA/Components/MPM/ConstitutiveModel/ConstitutiveModel.h>
#include "../PlasticityModels/MPMEquationOfState.h"
#include <Core/Math/Matrix3.h>
#include <Core/ProblemSpec/ProblemSpecP.h>
#include <CCA/Ports/DataWarehouseP.h>

#include <cmath>

namespace Uintah {

class MPMLabel;
class MPMFlags;

class CompOgdenStandard : public ConstitutiveModel {

private:

bool d_useModifiedEOS; // use modified equation of state

protected:

bool d_useInitialStress; // Initial stress state
double d_init_pressure; // Initial pressure

MPMEquationOfState* d_eos; // Equation of State factory

public:

struct CMData {
double K; // Bulk Modulus
double alpha; // material constant
double mu; // material constant

};

const VarLabel* bElBarLabel;
const VarLabel* bElBarLabel_preReloc;

private:

CMData d_initialData;

// Prevent copying of this class
CompOgdenStandard& operator=(const CompOgdenStandard &cm);

// Calculate the bulk modulus based on the Ogden material constants
double CalculateBulkModulus();

public:
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// Constructor
CompOgdenStandard(ProblemSpecP& ps, MPMFlags* flag);

// Copy constructor
CompOgdenStandard(const CompOgdenStandard* cm);

// Destructor
virtual ~CompOgdenStandard();

// Clone
CompOgdenStandard* clone();

virtual void outputProblemSpec(ProblemSpecP& ps,bool output_cm_tag =
true);

// initialize each particle’s constitutive model data
virtual void initializeCMData(const Patch* patch, const MPMMaterial* matl,

DataWarehouse* new_dw);

// Keeps track of the particles and the related variables as particles move
from patch to patch

virtual void addParticleState(std::vector<const VarLabel*>& from, std::vector
<const VarLabel*>& to);

// Tells the scheduler what data needs to be available at the time
computeStressTensor(...) is called

virtual void addComputesAndRequires(Task* task, const MPMMaterial* matl
, const PatchSet* patches) const;

virtual void addComputesAndRequires(Task* task, const MPMMaterial* matl
, const PatchSet* patches, const bool recurse, const bool SchedParent)
const;

virtual void addInitialComputesAndRequires(Task* task, const MPMMaterial
* matl, const PatchSet*) const;

// Carry forward constitutive model data for RigidMPM
virtual void carryForward(const PatchSubset* patches, const MPMMaterial*

matl, DataWarehouse* old_dw, DataWarehouse* new_dw);

// Calculate the initial timestep, after this the timestep (dT) will be
calculated by computeStressTensor(...)

virtual void computeStableTimestep(const Patch* patch, const MPMMaterial*
matl, DataWarehouse* new_dw);

// Compute cauchy stress for each particle in the patch
virtual void computeStressTensor(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse*
new_dw);

virtual double computeRhoMicroCM(double pressure, const double p_ref,
const MPMMaterial* matl, double temperature, double rho_guess);

virtual void computePressEOSCM(double rho_m, double& press_eos, double
p_ref, double& dp_drho, double& ss_new, const MPMMaterial* matl,

double temperature);

virtual double getCompressibility();
};

} // End namespace Uintah
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#endif // __COMP_OGDEN_STANDARD_CONSTITUTIVE_MODEL_H__

Listing 2: CompOgdenStandard.cc

/*
* The MIT License
*
* Copyright (c) 1997−2012 The University of Utah
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS
* IN THE SOFTWARE.
*/

#include <CCA/Components/MPM/ConstitutiveModel/UoL/
CompOgdenStandard.h>

#include <CCA/Components/MPM/ConstitutiveModel/MPMMaterial.h>
#include <CCA/Components/MPM/ConstitutiveModel/PlasticityModels/

MPMEquationOfStateFactory.h>
#include <CCA/Components/MPM/MPMFlags.h>
#include <Core/Math/Matrix3.h>
#include <CCA/Ports/DataWarehouse.h>
#include <Core/Grid/Variables/VarLabel.h>
#include <Core/Grid/Variables/ParticleVariable.h>
#include <Core/Grid/Variables/NCVariable.h>
#include <Core/Grid/Patch.h>
#include <Core/Grid/Variables/VarTypes.h>
#include <Core/Labels/MPMLabel.h>
#include <Core/Math/FastMatrix.h>
#include <Core/Exceptions/ParameterNotFound.h>
#include <Core/Exceptions/InvalidValue.h>
#include <Core/Exceptions/ConvergenceFailure.h>
#include <Core/Malloc/Allocator.h>
#include <cmath>
#include <iostream>
#include <stdio.h>
#include <iomanip>

using namespace Uintah;
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using namespace std;

CompOgdenStandard::CompOgdenStandard(ProblemSpecP& ps, MPMFlags*
Mflag) : ConstitutiveModel(Mflag)

{
// required − material parameters for the constitutive model
ps−>require("bulk_modulus", d_initialData.K);
ps−>require("alpha_1", d_initialData.alpha);
ps−>require("mu_1", d_initialData.mu);

// optional − use modified equation of state (off by default)
d_useModifiedEOS = false;
ps−>get("useModifiedEOS",d_useModifiedEOS); // no negative pressure for

solids

// Initial stress
// Fix: Need to make it more general. Add gravity turn−on option and
// read from file option etc.
ps−>getWithDefault("useInitialStress", d_useInitialStress, false);
d_init_pressure = 0.0;
if (d_useInitialStress) {

ps−>getWithDefault("initial_pressure", d_init_pressure, 0.0);
}

// Equation of state factory for pressure (default is DefaultHyperEOS)
d_eos = MPMEquationOfStateFactory::create(ps);

d_eos−>setBulkModulus(d_initialData.K);

if(!d_eos){
ostringstream desc;
desc << "An error occured in the MPM EquationOfStateFactory that has \n"
<< " slipped through the existing bullet proofing. Please check and correct." <<

endl;
throw ParameterNotFound(desc.str(), __FILE__, __LINE__);

}

// Universal Labels
bElBarLabel = VarLabel::create("p.bElBar", ParticleVariable<Matrix3>::

getTypeDescription());
bElBarLabel_preReloc = VarLabel::create("p.bElBar+", ParticleVariable<Matrix3>::

getTypeDescription());

}

CompOgdenStandard::CompOgdenStandard(const CompOgdenStandard* cm) :
ConstitutiveModel(cm)

{
d_initialData.K = cm−>d_initialData.K;
d_initialData.alpha = cm−>d_initialData.alpha;
d_initialData.mu = cm−>d_initialData.mu;
d_useModifiedEOS = cm−>d_useModifiedEOS;

// Initial stress
d_useInitialStress = cm−>d_useInitialStress;
if (d_useInitialStress) {

d_init_pressure = cm−>d_init_pressure;
}

// Equation of state factory for pressure (default is DefaultHyperEOS)
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d_eos = MPMEquationOfStateFactory::createCopy(cm−>d_eos);

d_eos−>setBulkModulus(d_initialData.K);

if(!d_eos){
ostringstream desc;
desc << "An error occured in the MPM EquationOfStateFactory that has \n"
<< " slipped through the existing bullet proofing. Please check and correct." <<

endl;
throw ParameterNotFound(desc.str(), __FILE__, __LINE__);

}

// Universal Labels
bElBarLabel = VarLabel::create("p.bElBar", ParticleVariable<Matrix3>::

getTypeDescription());
bElBarLabel_preReloc = VarLabel::create("p.bElBar+", ParticleVariable<Matrix3>::

getTypeDescription());
}

CompOgdenStandard::~CompOgdenStandard()
{

// Universal Deletes
VarLabel::destroy(bElBarLabel);
VarLabel::destroy(bElBarLabel_preReloc);

}

CompOgdenStandard* CompOgdenStandard::clone()
{

return scinew CompOgdenStandard(*this);
}

void CompOgdenStandard::outputProblemSpec(ProblemSpecP& ps, bool
output_cm_tag)

{
ProblemSpecP cm_ps = ps;
if (output_cm_tag) {

cm_ps = ps−>appendChild("constitutive_model");
cm_ps−>setAttribute("type","comp_ogden_standard");

}
cm_ps−>appendElement("bulk_modulus", d_initialData.K);
cm_ps−>appendElement("alpha_1", d_initialData.alpha);
cm_ps−>appendElement("mu_1", d_initialData.mu);
cm_ps−>appendElement("useModifiedEOS", d_useModifiedEOS);

}

void CompOgdenStandard::initializeCMData(const Patch* patch, const
MPMMaterial* matl, DataWarehouse* new_dw)

{
// Put stuff in here to initialize each particle’s
// constitutive model parameters and deformationMeasure
Matrix3 Identity;
Identity.Identity();
Matrix3 zero(0.0);

ParticleSubset* pset = new_dw−>getParticleSubset(matl−>getDWIndex(), patch);

ParticleSubset::iterator iterUniv = pset−>begin();

// Initialize the variables shared by all constitutive models
// This method is defined in the ConstitutiveModel base class.
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initSharedDataForExplicit(patch, matl, new_dw);

// calcualte the initial timestep, after this the timestep will be calculated by
computeStressTensor

computeStableTimestep(patch, matl, new_dw);

// Universal
ParticleVariable<Matrix3> deformationGradient, pstress, bElBar;

new_dw−>allocateAndPut(bElBar, bElBarLabel, pset);

for(;iterUniv != pset−>end(); iterUniv++){
bElBar[*iterUniv] = Identity;
}

}

void CompOgdenStandard::addParticleState(std::vector<const VarLabel*>& from,
std::vector<const VarLabel*>& to)

{
// Keeps track of the particles and the related variables as particles move from

patch to patch (each CM adds its own state variables, e.g. failure, damage,
plasticity, etc.)

// Universal
from.push_back(bElBarLabel);
to.push_back(bElBarLabel_preReloc);

}

void CompOgdenStandard::addInitialComputesAndRequires(Task* task, const
MPMMaterial* matl, const PatchSet*) const

{
const MaterialSubset* matlset = matl−>thisMaterial();
// Universal
task−>computes(bElBarLabel, matlset);

}

// Tells the scheduler what data needs to be available at the time
computeStressTensor(...) is called

void CompOgdenStandard::addComputesAndRequires(Task* task, const
MPMMaterial* matl, const PatchSet* patches) const

{
const MaterialSubset* matlset = matl−>thisMaterial();

// Add the computes and requires that are common to all explicit constitutive
models.

// This method is defined in the ConstitutiveModel base class.
addSharedCRForExplicit(task, matlset, patches);

// Other constitutive model and input dependent computes and requires
Ghost::GhostType gnone = Ghost::None;

task−>requires(Task::OldDW, lb−>pParticleIDLabel, matlset, gnone);

if(flag−>d_with_color) {
task−>requires(Task::OldDW, lb−>pColorLabel, Ghost::None);

}

// Universal
task−>requires(Task::OldDW, bElBarLabel, matlset, gnone);
task−>computes(bElBarLabel_preReloc, matlset);
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}

void CompOgdenStandard::addComputesAndRequires(Task* task, const
MPMMaterial* matl, const PatchSet* patches, const bool recurse, const bool
SchedParent) const

{
const MaterialSubset* matlset = matl−>thisMaterial();

Ghost::GhostType gnone = Ghost::None;

if(SchedParent){
task−>requires(Task::ParentOldDW, bElBarLabel, matlset, gnone);

}
else{

task−>requires(Task::OldDW, bElBarLabel, matlset, gnone);
}

}

// Carry forward CM data for RigidMPM
void CompOgdenStandard::carryForward(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse* new_dw)
{
#if 0

for(int p=0; p<patches−>size(); p++){
const Patch* patch = patches−>get(p);
int dwi = matl−>getDWIndex();
ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);

// Carry forward the data common to all constitutive models when using
RigidMPM.

// This method is defined in the ConstitutiveModel base class.
carryForwardSharedData(pset, old_dw, new_dw, matl);

// Carry forward the data local to this constitutive model
new_dw−>put(delt_vartype(1.e10), lb−>delTLabel, patch−>getLevel());
if (flag−>d_reductionVars−>accStrainEnergy || flag−>d_reductionVars−>

strainEnergy) {
new_dw−>put(sum_vartype(0.0), lb−>StrainEnergyLabel);

}
}

#endif
for(int p=0;p<patches−>size();p++){

const Patch* patch = patches−>get(p);
int dwi = matl−>getDWIndex();
ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);

// Carry forward the data common to all constitutive models
// when using RigidMPM.
// This method is defined in the ConstitutiveModel base class.
carryForwardSharedData(pset, old_dw, new_dw, matl);

// Carry forward the data local to this constitutive model
// Universal
ParticleVariable<Matrix3> bElBar_new;
constParticleVariable<Matrix3> bElBar;
old_dw−>get(bElBar, bElBarLabel, pset);
new_dw−>allocateAndPut(bElBar_new, bElBarLabel_preReloc, pset);
for(ParticleSubset::iterator iter = pset−>begin();

iter != pset−>end(); iter++){
particleIndex idx = *iter;
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bElBar_new[idx] = bElBar[idx];
}
new_dw−>put(delt_vartype(1.e10), lb−>delTLabel, patch−>getLevel());
if (flag−>d_reductionVars−>accStrainEnergy ||

flag−>d_reductionVars−>strainEnergy) {
new_dw−>put(sum_vartype(0.), lb−>StrainEnergyLabel);

}
} // End Particle Loop

}

// Calculate the initial timestep, after this the timestep (dT) will be calculated by
computeStressTensor(...)

// The size of the timestep depends on cell spacing, velocity of the particle, and
the material wavespeed (c_dil) at each particle

// A reduction over all dTs from every patch is performed, the smallest dT is used
void CompOgdenStandard::computeStableTimestep(const Patch* patch, const

MPMMaterial* matl, DataWarehouse* new_dw)
{

Vector dx = patch−>dCell();
int dwi = matl−>getDWIndex();

// Retrieve the array of constitutive parameters
ParticleSubset* pset = new_dw−>getParticleSubset(dwi, patch);
constParticleVariable<double> pmass, pvolume;
constParticleVariable<Vector> pvelocity;

new_dw−>get(pmass, lb−>pMassLabel, pset);
new_dw−>get(pvolume, lb−>pVolumeLabel, pset);
new_dw−>get(pvelocity, lb−>pVelocityLabel, pset);

double c_dil = 0.0; // local speed of sound
Matrix3 F; // Deformation gradient
Matrix3 B; // Left Cauchy Green deformation tensor
Matrix3 Identity;
Identity.Identity(); // 3x3 Identity matrix
Vector WaveSpeed(1.e−12, 1.e−12, 1.e−12);
Vector eVals(0, 0, 0); // Eigenvalues
Matrix3 eVecs; // Eigenvectors
double a = d_initialData.alpha; // Ogden material constant
double mu = d_initialData.mu; // Ogden material constant
double l1; // first principal stretch

// Assuming a stress free reference configuration F = Identity
F = Identity;

// Compute the left Cauchy−Green deformation tensor
B = F*F.Transpose();

// The principal stretches can be calculated from the square roots of the
Eigenvlaues of B

B.eigen(eVals, eVecs);

// Only the first principal stretch (the biggest) is needed
l1 = sqrt(eVals.x());

// Compute wave speed at each particle, store the maximum
for(ParticleSubset::iterator iter = pset−>begin(); iter != pset−>end(); iter++){

particleIndex idx = *iter;
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// Compute c_dil, the local speed of sound
c_dil = sqrt(

mu*(a * pow(l1, a − 1.0) + 0.5 * a * pow(l1, − 0.5 * a − 1.0))/(pmass[idx]/
pvolume[idx])

);

// Compute wave speed + particle velocity at each particle, then store the
maximum

WaveSpeed=Vector(Max(c_dil+fabs(pvelocity[idx].x()), WaveSpeed.x()),
Max(c_dil+fabs(pvelocity[idx].y()), WaveSpeed.y()),

Max(c_dil+fabs(pvelocity[idx].z()), WaveSpeed.z()));
}

WaveSpeed = dx/WaveSpeed;
double delT_new = WaveSpeed.minComponent();
new_dw−>put(delt_vartype(delT_new), lb−>delTLabel, patch−>getLevel());

}

// Computes the Cauchy stress for each particle for the given material
// Called once per timestep (for each material)
void CompOgdenStandard::computeStressTensor(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse* new_dw)
{

// Loop over each patch
for(int patch_idx = 0; patch_idx < patches−>size(); patch_idx++){

const Patch* patch = patches−>get(patch_idx);

Matrix3 F; // Deformation gradient
Matrix3 B; // Left Cauchy Green deformation tensor
Matrix3 Identity; Identity.Identity(); // 3x3 Identity matrix
Vector WaveSpeed(1.e−12, 1.e−12, 1.e−12);
Vector eVals(0, 0, 0); // Eigenvalues
Matrix3 eVecs; // Eigenvectors
Matrix3 n1, n2, n3; // Outer product of Eigenvectors
double c_dil = 0.0; // Local speed of sound
double se = 0.0; // Accumulated strain energy for all particles
double J; // Jacobian of deformation gradient
double l1, l2, l3; // The princiapl stretches, lambda_1, lambda_2, lambda_3
double a = 0.0; // Ogden material constant
double mu = 0.0; // Ogden material constant
double K; // Bulk modulus (material constant)
double rho_current; // Current density
double rho_orig; // Original density
double athird, pow_l1l2_athird, pow_l1l3_athird, pow_l2l3_athird; // Temp

variables for stress calculation

Matrix3 bElBarTrial(0.0), pDefGradInc(0.0), fBar(0.0); ///
double Jinc = 0.0;

ParticleInterpolator* interpolator = flag−>d_interpolator−>clone(patch);
vector<IntVector> ni(interpolator−>size());
vector<Vector> d_S(interpolator−>size());
vector<double> S(interpolator−>size());

Vector dx = patch−>dCell();

// DataWarehouse index
int dwi = matl−>getDWIndex();

// Create array for the particle position
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ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);
constParticleVariable<Point> px;
constParticleVariable<Matrix3> deformationGradient_new;
constParticleVariable<Matrix3> deformationGradient;
ParticleVariable<Matrix3> pstress;
constParticleVariable<double> pmass;
constParticleVariable<double> pvolume_new;
constParticleVariable<Vector> pvelocity;
constParticleVariable<Matrix3> velGrad;
constParticleVariable<Matrix3> psize;
ParticleVariable<double> pdTdt,p_q;

constParticleVariable<Matrix3> pDefGrad, bElBar; ///
ParticleVariable<Matrix3> pStress, bElBar_new; ///

delt_vartype delT;
old_dw−>get(delT, lb−>delTLabel, getLevel(patches));
old_dw−>get(pvelocity, lb−>pVelocityLabel, pset);
old_dw−>get(deformationGradient, lb−>pDeformationMeasureLabel, pset);
old_dw−>get(bElBar, bElBarLabel, pset); ///

new_dw−>allocateAndPut(pstress, lb−>pStressLabel_preReloc, pset);
new_dw−>allocateAndPut(pdTdt, lb−>pdTdtLabel, pset);
new_dw−>allocateAndPut(p_q, lb−>p_qLabel_preReloc, pset);

new_dw−>get(pvolume_new, lb−>pVolumeLabel_preReloc, pset);
new_dw−>get(velGrad, lb−>pVelGradLabel_preReloc, pset);
new_dw−>get(deformationGradient_new, lb−>

pDeformationMeasureLabel_preReloc, pset);

new_dw−>allocateAndPut(bElBar_new, bElBarLabel_preReloc, pset); ///

// Get initial data
a = d_initialData.alpha;
mu = d_initialData.mu;
K = d_initialData.K;
rho_orig = matl−>getInitialDensity();
athird = 0.33333333333333333 * a;

for(ParticleSubset::iterator iter = pset−>begin();iter!=pset−>end();iter++){
particleIndex idx = *iter;

// Assign zero internal heating by default − modify if necessary.
pdTdt[idx] = 0.0;

// Get deformation gradient
F = deformationGradient_new[idx];

///
// Calculate bElBar (needed for interaction with RigidMPM)
pDefGradInc = deformationGradient_new[idx]*deformationGradient[idx].

Inverse();
Jinc = pDefGradInc.Determinant();

// Get the volume preserving part of the deformation gradient increment
fBar = pDefGradInc/cbrt(Jinc);

// Compute the elastic part of the volume preserving
// part of the left Cauchy−Green deformation tensor
bElBar_new[idx] = fBar*bElBar[idx]*fBar.Transpose();
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// get the original volumetric part of the deformation
J = F.Determinant();

// Compute the left Cauchy−Green deformation tensor
B = F*F.Transpose();

// Error checking
if (J < 0.0) {

throw InvalidValue("Negative Jacobian of deformation gradient", __FILE__,
__LINE__);

}

// The Ogden model is typically expressed in terms of the principal
stretches rather than the invariants

// The principal stretches can be calculated from the square roots of the
Eigenvlaues of B

B.eigen(eVals, eVecs);

// Calcualte the principal stretches
l1 = sqrt(eVals.x());
l2 = sqrt(eVals.y());
l3 = sqrt(eVals.z());

// Put the Eigenvectors in matrix form for convenience
n1.set(0,0,eVecs(0,0));
n1.set(1,0,eVecs(1,0));
n1.set(2,0,eVecs(2,0));
n1.set(0,1,0);
n1.set(1,1,0);
n1.set(2,1,0);
n1.set(0,2,0);
n1.set(1,2,0);
n1.set(2,2,0);
n2.set(0,0,eVecs(0,1));
n2.set(1,0,eVecs(1,1));
n2.set(2,0,eVecs(2,1));
n2.set(0,1,0);
n2.set(1,1,0);
n2.set(2,1,0);
n2.set(0,2,0);
n2.set(1,2,0);
n2.set(2,2,0);
n3.set(0,0,eVecs(0,2));
n3.set(1,0,eVecs(1,2));
n3.set(2,0,eVecs(2,2));
n3.set(0,1,0);
n3.set(1,1,0);
n3.set(2,1,0);
n3.set(0,2,0);
n3.set(1,2,0);
n3.set(2,2,0);

// Calculate the outer product of the Eigenvectors, results in a 3x3 matrix
Matrix3 N1 = n1*n1.Transpose();
Matrix3 N2 = n2*n2.Transpose();
Matrix3 N3 = n3*n3.Transpose();

/*
double dW_dl1, dW_dl2, dW_dl3; // The strain energy function partially

differentiated by lambda_1, lambda_2, lambda_3
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double scalar1, scalar2, scalar3;
double J1_3 = pow(J, −0.1e1 / 0.3e1);
double J4_3 = pow(J, −0.4e1 / 0.3e1);
dW_dl1 = mu / a * (pow(l1 * J1_3, a) * a * (J1_3 − l1 * J4_3 * l2 * l3 / 0.3e1) /

l1 * pow(J, 0.1e1 / 0.3e1) − pow(l2 * J1_3, a) * a / l1 / 0.3e1 − pow(l3 *
J1_3, a) * a / l1 / 0.3e1) + K * (J − 0.1e1) * l2 * l3;

dW_dl2 = mu / a * (−pow(l1 * J1_3, a) * a / l2 / 0.3e1 + pow(l2 * J1_3, a) * a
* (J1_3 − l1 * J4_3 * l2 * l3 / 0.3e1) / l2 * pow(J, 0.1e1 / 0.3e1) − pow(l3 *
J1_3, a) * a / l2 / 0.3e1) + K * (J − 0.1e1) * l1 * l3;

dW_dl3 = mu / a * (−pow(l1 * J1_3, a) * a / l3 / 0.3e1 − pow(l2 * J1_3, a) * a
/ l3 / 0.3e1 + pow(l3 * J1_3, a) * a * (J1_3 − l1 * J4_3 * l2 * l3 / 0.3e1) / l3
* pow(J, 0.1e1 / 0.3e1)) + K * (J − 0.1e1) * l1 * l2;

scalar1 = (l1 / J) * dW_dl1;
scalar2 = (l2 / J) * dW_dl2;
scalar3 = (l3 / J) * dW_dl3;
// Calculate Cauchy stress for particle
pstress[idx] = scalar1*N1 + scalar2*N2 + scalar3*N3;

*/

// Calculate Cauchy stress for particle
// Better optimised for performance
pow_l1l2_athird = pow(l1/l2,athird);
pow_l1l3_athird = pow(l1/l3,athird);
pow_l2l3_athird = pow_l1l3_athird/pow_l1l2_athird;
pstress[idx] = mu/(3.0*J)*( (N1+N1−N2−N3)* pow_l1l2_athird*

pow_l1l3_athird
+ (N2+N2−N3−N1)* pow_l2l3_athird/pow_l1l2_athird
+ (N3+N3−N1−N2)/(pow_l1l3_athird*pow_l2l3_athird))
+ K*(J−1.0)*(N1+N2+N3);

// Calculate total strain energy over all particles
//se = mu / a * (pow(l1 * pow(J, 0.1e1 / 0.3e1), a) + pow(l2 * pow(J, 0.1e1 /

0.3e1), a) + pow(l3 * pow(J, 0.1e1 / 0.3e1), a) − 0.3e1) + K * pow(J − 0.1
e1, 0.2e1) / 0.2e1;

se = 0;

// Get the current density
rho_current = rho_orig/J;

// Compute c_dil, the local speed of sound, this came from Ogden’s book:
Non−Linear Elastic Deformations

c_dil = sqrt(
mu*(a * pow(l1, a − 1.0) + 0.5 * a * pow(l1, − 0.5 * a − 1.0))/rho_current

);

// Compute wave speed + particle velocity at each particle, then store the
maximum

WaveSpeed=Vector(Max(c_dil+fabs(pvelocity[idx].x()), WaveSpeed.x()),
Max(c_dil+fabs(pvelocity[idx].y()), WaveSpeed.y()),

Max(c_dil+fabs(pvelocity[idx].z()), WaveSpeed.z()));

// Compute artificial viscosity term
if (flag−>d_artificial_viscosity) {

throw InvalidValue("Artificial viscosity has not been implemented for this
constitutive model", __FILE__, __LINE__);

// To be added later
}
else{

p_q[idx] = 0.0;
}
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} // end loop over particles

WaveSpeed = dx/WaveSpeed;
double delT_new = WaveSpeed.minComponent();

new_dw−>put(delt_vartype(delT_new), lb−>delTLabel, patch−>getLevel());

if (flag−>d_reductionVars−>accStrainEnergy || flag−>d_reductionVars−>
strainEnergy) {

new_dw−>put(sum_vartype(se), lb−>StrainEnergyLabel);
}
delete interpolator;

}
}

double CompOgdenStandard::computeRhoMicroCM(double pressure, const
double p_ref, const MPMMaterial* matl, double temperature, double
rho_guess)

{
double p_gauge = pressure − p_ref;
double rho_orig = matl−>getInitialDensity();
double rho_cur = −1.0;
bool error = false;

if (d_useModifiedEOS && p_gauge < 0.0) { // Modified EOS

double K = d_initialData.K;
double A = p_ref;
double n = p_ref/K;
rho_cur = rho_orig*pow(pressure/A,n);

} else { // Standard EOS

try {
rho_cur = d_eos−>computeDensity(rho_orig, −p_gauge);

} catch (ConvergenceFailure& e) {
cout << e.message() << endl;
error = true;

}
if (error || rho_cur < 0.0 || isnan(rho_cur)) {

ostringstream desc;
desc << "rho_cur = " << rho_cur << " pressure = " << −p_gauge

<< " p_ref = " << p_ref << " 1/sp_vol_CC = " << rho_guess << endl;
throw InvalidValue(desc.str(), __FILE__, __LINE__);

}
}

return rho_cur;
}

void CompOgdenStandard::computePressEOSCM(const double rho_cur,double&
pressure, const double p_ref, double& dp_drho, double& cSquared, const
MPMMaterial* matl, double temperature)

{
double rho_orig = matl−>getInitialDensity();

if (d_useModifiedEOS && rho_cur < rho_orig) { // Modified EOS

double K = d_initialData.K;
double A = p_ref;
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double n = K/p_ref;
double rho_rat_to_the_n = pow(rho_cur/rho_orig,n);
pressure = A*rho_rat_to_the_n;
dp_drho = (K/rho_cur)*rho_rat_to_the_n;
cSquared = dp_drho; // Speed of sound squared

} else { // Standard EOS

double p = 0.0;
d_eos−>computePressure(rho_orig, rho_cur, p, dp_drho, cSquared);
pressure = −p + p_ref;
dp_drho = −dp_drho;

}

}

double CompOgdenStandard::getCompressibility()
{

return 1.0/d_initialData.K;
}

a.2.2 Ogden Model (Dura)

Listing 3: CompOgdenStorakers.h

#ifndef __COMP_OGDEN_STORAKERS_CONSTITUTIVE_MODEL_H__
#define __COMP_OGDEN_STORAKERS_CONSTITUTIVE_MODEL_H__

#include <CCA/Components/MPM/ConstitutiveModel/ConstitutiveModel.h>
#include "../PlasticityModels/MPMEquationOfState.h"
#include <Core/Math/Matrix3.h>
#include <Core/ProblemSpec/ProblemSpecP.h>
#include <CCA/Ports/DataWarehouseP.h>

#include <cmath>

namespace Uintah {

class MPMLabel;
class MPMFlags;

class CompOgdenStorakers : public ConstitutiveModel {

private:

bool d_useModifiedEOS; // use modified equation of state

protected:

bool d_useInitialStress; // Initial stress state
double d_init_pressure; // Initial pressure

MPMEquationOfState* d_eos; // Equation of State factory

public:

struct CMData {
double PR; //Poisson’s Ratio
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double alpha; // material constant
double mu; // material constant

};

const VarLabel* bElBarLabel;
const VarLabel* bElBarLabel_preReloc;

private:

CMData d_initialData;

// Prevent copying of this class
CompOgdenStorakers& operator=(const CompOgdenStorakers &cm);

// Calculate the bulk modulus based on the Ogden material constants
double CalculateBulkModulus();

public:

// Constructor
CompOgdenStorakers(ProblemSpecP& ps, MPMFlags* flag);

// Copy constructor
CompOgdenStorakers(const CompOgdenStorakers* cm);

// Destructor
virtual ~CompOgdenStorakers();

// Clone
CompOgdenStorakers* clone();

virtual void outputProblemSpec(ProblemSpecP& ps,bool output_cm_tag =
true);

// initialize each particle’s constitutive model data
virtual void initializeCMData(const Patch* patch, const MPMMaterial* matl,

DataWarehouse* new_dw);

// Keeps track of the particles and the related variables as particles move
from patch to patch

virtual void addParticleState(std::vector<const VarLabel*>& from, std::vector
<const VarLabel*>& to);

// Tells the scheduler what data needs to be available at the time
computeStressTensor(...) is called

virtual void addComputesAndRequires(Task* task, const MPMMaterial* matl
, const PatchSet* patches) const;

virtual void addComputesAndRequires(Task* task, const MPMMaterial* matl
, const PatchSet* patches, const bool recurse, const bool SchedParent)
const;

virtual void addInitialComputesAndRequires(Task* task, const MPMMaterial
* matl, const PatchSet*) const;

// Carry forward constitutive model data for RigidMPM
virtual void carryForward(const PatchSubset* patches, const MPMMaterial*

matl, DataWarehouse* old_dw, DataWarehouse* new_dw);
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// Calculate the initial timestep, after this the timestep (dT) will be
calculated by computeStressTensor(...)

virtual void computeStableTimestep(const Patch* patch, const MPMMaterial*
matl, DataWarehouse* new_dw);

// Compute cauchy stress for each particle in the patch
virtual void computeStressTensor(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse*
new_dw);

virtual double computeRhoMicroCM(double pressure, const double p_ref,
const MPMMaterial* matl, double temperature, double rho_guess);

virtual void computePressEOSCM(double rho_m, double& press_eos, double
p_ref, double& dp_drho, double& ss_new, const MPMMaterial* matl,

double temperature);

virtual double getCompressibility();

};
} // End namespace Uintah

#endif // __COMP_OGDEN_STORAKERS_CONSTITUTIVE_MODEL_H__

Listing 4: CompOgdenStorakers.cc

/*
* The MIT License
*
* Copyright (c) 1997−2012 The University of Utah
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS
* IN THE SOFTWARE.
*/

#include <CCA/Components/MPM/ConstitutiveModel/UoL/
CompOgdenStorakers.h>

#include <CCA/Components/MPM/ConstitutiveModel/MPMMaterial.h>
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#include <CCA/Components/MPM/ConstitutiveModel/PlasticityModels/
MPMEquationOfStateFactory.h>

#include <CCA/Components/MPM/MPMFlags.h>
#include <Core/Math/Matrix3.h>
#include <CCA/Ports/DataWarehouse.h>
#include <Core/Grid/Variables/VarLabel.h>
#include <Core/Grid/Variables/ParticleVariable.h>
#include <Core/Grid/Variables/NCVariable.h>
#include <Core/Grid/Patch.h>
#include <Core/Grid/Variables/VarTypes.h>
#include <Core/Labels/MPMLabel.h>
#include <Core/Math/FastMatrix.h>
#include <Core/Exceptions/ParameterNotFound.h>
#include <Core/Exceptions/InvalidValue.h>
#include <Core/Exceptions/ConvergenceFailure.h>
#include <Core/Malloc/Allocator.h>
#include <cmath>
#include <iostream>
#include <stdio.h>
#include <iomanip>

using namespace Uintah;
using namespace std;

CompOgdenStorakers::CompOgdenStorakers(ProblemSpecP& ps, MPMFlags*
Mflag) : ConstitutiveModel(Mflag)

{
// required − material parameters for the constitutive model
ps−>require("PR", d_initialData.PR);
ps−>require("alpha_1", d_initialData.alpha);
ps−>require("mu_1", d_initialData.mu);

// optional − use modified equation of state (off by default)
d_useModifiedEOS = false;
ps−>get("useModifiedEOS",d_useModifiedEOS); // no negative pressure for

solids

// Initial stress
// Fix: Need to make it more general. Add gravity turn−on option and
// read from file option etc.
ps−>getWithDefault("useInitialStress", d_useInitialStress, false);
d_init_pressure = 0.0;
if (d_useInitialStress) {

ps−>getWithDefault("initial_pressure", d_init_pressure, 0.0);
}

// Equation of state factory for pressure (default is DefaultHyperEOS)
d_eos = MPMEquationOfStateFactory::create(ps);

d_eos−>setBulkModulus(CalculateBulkModulus());

if(!d_eos){
ostringstream desc;
desc << "An error occured in the MPM EquationOfStateFactory that has \n"
<< " slipped through the existing bullet proofing. Please check and correct." <<

endl;
throw ParameterNotFound(desc.str(), __FILE__, __LINE__);

}

// Universal Labels
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bElBarLabel = VarLabel::create("p.bElBar", ParticleVariable<Matrix3>::
getTypeDescription());

bElBarLabel_preReloc = VarLabel::create("p.bElBar+", ParticleVariable<Matrix3>::
getTypeDescription());

}

CompOgdenStorakers::CompOgdenStorakers(const CompOgdenStorakers* cm) :
ConstitutiveModel(cm)

{
d_initialData.PR = cm−>d_initialData.PR;
d_initialData.alpha = cm−>d_initialData.alpha;
d_initialData.mu = cm−>d_initialData.mu;
d_useModifiedEOS = cm−>d_useModifiedEOS;

// Initial stress
d_useInitialStress = cm−>d_useInitialStress;
if (d_useInitialStress) {

d_init_pressure = cm−>d_init_pressure;
}

// Equation of state factory for pressure (default is DefaultHyperEOS)
d_eos = MPMEquationOfStateFactory::createCopy(cm−>d_eos);

d_eos−>setBulkModulus(CalculateBulkModulus());

if(!d_eos){
ostringstream desc;
desc << "An error occured in the MPM EquationOfStateFactory that has \n"
<< " slipped through the existing bullet proofing. Please check and correct." <<

endl;
throw ParameterNotFound(desc.str(), __FILE__, __LINE__);

}

// Universal Labels
bElBarLabel = VarLabel::create("p.bElBar", ParticleVariable<Matrix3>::

getTypeDescription());
bElBarLabel_preReloc = VarLabel::create("p.bElBar+", ParticleVariable<Matrix3>::

getTypeDescription());
}

CompOgdenStorakers::~CompOgdenStorakers()
{

// Universal Deletes
VarLabel::destroy(bElBarLabel);
VarLabel::destroy(bElBarLabel_preReloc);

}

CompOgdenStorakers* CompOgdenStorakers::clone()
{

return scinew CompOgdenStorakers(*this);
}

void CompOgdenStorakers::outputProblemSpec(ProblemSpecP& ps, bool
output_cm_tag)

{
ProblemSpecP cm_ps = ps;
if (output_cm_tag) {

cm_ps = ps−>appendChild("constitutive_model");
cm_ps−>setAttribute("type","comp_ogden_storakers");

}
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cm_ps−>appendElement("PR", d_initialData.PR);
cm_ps−>appendElement("alpha_1", d_initialData.alpha);
cm_ps−>appendElement("mu_1", d_initialData.mu);
cm_ps−>appendElement("useModifiedEOS",d_useModifiedEOS);

}

void CompOgdenStorakers::initializeCMData(const Patch* patch, const
MPMMaterial* matl, DataWarehouse* new_dw)

{
// Put stuff in here to initialize each particle’s
// constitutive model parameters and deformationMeasure
Matrix3 Identity;
Identity.Identity();
Matrix3 zero(0.0);

ParticleSubset* pset = new_dw−>getParticleSubset(matl−>getDWIndex(), patch);

ParticleSubset::iterator iterUniv = pset−>begin();

// Initialize the variables shared by all constitutive models
// This method is defined in the ConstitutiveModel base class.
initSharedDataForExplicit(patch, matl, new_dw);

// calcualte the initial timestep, after this the timestep will be calculated by
computeStressTensor

computeStableTimestep(patch, matl, new_dw);

// Universal
ParticleVariable<Matrix3> deformationGradient, pstress, bElBar;

new_dw−>allocateAndPut(bElBar, bElBarLabel, pset);

for(;iterUniv != pset−>end(); iterUniv++){
bElBar[*iterUniv] = Identity;

}
}

void CompOgdenStorakers::addParticleState(std::vector<const VarLabel*>& from,
std::vector<const VarLabel*>& to)

{
// Keeps track of the particles and the related variables as particles move from

patch to patch (each CM adds its own state variables, e.g. failure, damage,
plasticity, etc.)

// Universal
from.push_back(bElBarLabel);
to.push_back(bElBarLabel_preReloc);

}

void CompOgdenStorakers::addInitialComputesAndRequires(Task* task, const
MPMMaterial* matl, const PatchSet*) const

{
const MaterialSubset* matlset = matl−>thisMaterial();
// Universal
task−>computes(bElBarLabel, matlset);

}

// Tells the scheduler what data needs to be available at the time
computeStressTensor(...) is called

void CompOgdenStorakers::addComputesAndRequires(Task* task, const
MPMMaterial* matl, const PatchSet* patches) const
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{
const MaterialSubset* matlset = matl−>thisMaterial();

// Add the computes and requires that are common to all explicit constitutive
models.

// This method is defined in the ConstitutiveModel base class.
addSharedCRForExplicit(task, matlset, patches);

// Other constitutive model and input dependent computes and requires
Ghost::GhostType gnone = Ghost::None;

task−>requires(Task::OldDW, lb−>pParticleIDLabel, matlset, gnone);

if(flag−>d_with_color) {
task−>requires(Task::OldDW, lb−>pColorLabel, Ghost::None);

}

// Universal
task−>requires(Task::OldDW, bElBarLabel, matlset, gnone);
task−>computes(bElBarLabel_preReloc, matlset);

}

void CompOgdenStorakers::addComputesAndRequires(Task* task, const
MPMMaterial* matl, const PatchSet* patches, const bool recurse, const bool
SchedParent) const

{
const MaterialSubset* matlset = matl−>thisMaterial();

Ghost::GhostType gnone = Ghost::None;

if(SchedParent){
task−>requires(Task::ParentOldDW, bElBarLabel, matlset, gnone);

}
else{

task−>requires(Task::OldDW, bElBarLabel, matlset, gnone);
}

}

// Carry forward CM data for RigidMPM
void CompOgdenStorakers::carryForward(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse* new_dw)
{
#if 0

for(int p=0; p<patches−>size(); p++){
const Patch* patch = patches−>get(p);
int dwi = matl−>getDWIndex();
ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);

// Carry forward the data common to all constitutive models when using
RigidMPM.

// This method is defined in the ConstitutiveModel base class.
carryForwardSharedData(pset, old_dw, new_dw, matl);

// Carry forward the data local to this constitutive model
new_dw−>put(delt_vartype(1.e10), lb−>delTLabel, patch−>getLevel());
if (flag−>d_reductionVars−>accStrainEnergy || flag−>d_reductionVars−>

strainEnergy) {
new_dw−>put(sum_vartype(0.0), lb−>StrainEnergyLabel);

}
}



A.2 constitutive material model code 253

#endif
for(int p=0;p<patches−>size();p++){

const Patch* patch = patches−>get(p);
int dwi = matl−>getDWIndex();
ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);

// Carry forward the data common to all constitutive models
// when using RigidMPM.
// This method is defined in the ConstitutiveModel base class.
carryForwardSharedData(pset, old_dw, new_dw, matl);

// Carry forward the data local to this constitutive model
// Universal
ParticleVariable<Matrix3> bElBar_new;
constParticleVariable<Matrix3> bElBar;
old_dw−>get(bElBar, bElBarLabel, pset);
new_dw−>allocateAndPut(bElBar_new, bElBarLabel_preReloc, pset);
for(ParticleSubset::iterator iter = pset−>begin();

iter != pset−>end(); iter++){
particleIndex idx = *iter;
bElBar_new[idx] = bElBar[idx];

}
new_dw−>put(delt_vartype(1.e10), lb−>delTLabel, patch−>getLevel());
if (flag−>d_reductionVars−>accStrainEnergy ||

flag−>d_reductionVars−>strainEnergy) {
new_dw−>put(sum_vartype(0.), lb−>StrainEnergyLabel);

}
} // End Particle Loop

}

// Calculate the initial timestep, after this the timestep (dT) will be calculated by
computeStressTensor(...)

// The size of the timestep depends on cell spacing, velocity of the particle, and
the material wavespeed (c_dil) at each particle

// A reduction over all dTs from every patch is performed, the smallest dT is used
void CompOgdenStorakers::computeStableTimestep(const Patch* patch, const

MPMMaterial* matl, DataWarehouse* new_dw)
{

Vector dx = patch−>dCell();
int dwi = matl−>getDWIndex();

// Retrieve the array of constitutive parameters
ParticleSubset* pset = new_dw−>getParticleSubset(dwi, patch);
constParticleVariable<double> pmass, pvolume;
constParticleVariable<Vector> pvelocity;

new_dw−>get(pmass, lb−>pMassLabel, pset);
new_dw−>get(pvolume, lb−>pVolumeLabel, pset);
new_dw−>get(pvelocity, lb−>pVelocityLabel, pset);

double c_dil = 0.0; // local speed of sound
Matrix3 F; // Deformation gradient
Matrix3 B; // Left Cauchy Green deformation tensor
Matrix3 Identity;
Identity.Identity(); // 3x3 Identity matrix
Vector WaveSpeed(1.e−12, 1.e−12, 1.e−12);
Vector eVals(0, 0, 0); // Eigenvalues
Matrix3 eVecs; // Eigenvectors
double a = d_initialData.alpha; // Ogden material constant
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double mu = d_initialData.mu; // Ogden material constant
double l1; // first principal stretch

// Assuming a stress free reference configuration F = Identity
F = Identity;

// Compute the left Cauchy−Green deformation tensor
B = F*F.Transpose();

// The principal stretches can be calculated from the square roots of the
Eigenvlaues of B

B.eigen(eVals, eVecs);

// Only the first principal stretch (the biggest) is needed
l1 = sqrt(eVals.x());

// Compute wave speed at each particle, store the maximum
for(ParticleSubset::iterator iter = pset−>begin(); iter != pset−>end(); iter++){

particleIndex idx = *iter;

// Compute c_dil, the local speed of sound
c_dil = sqrt(

mu*(a * pow(l1, a − 1.0) + 0.5 * a * pow(l1, − 0.5 * a − 1.0))/(pmass[idx]/
pvolume[idx])

);

// Compute wave speed + particle velocity at each particle, then store the
maximum

WaveSpeed=Vector(Max(c_dil+fabs(pvelocity[idx].x()), WaveSpeed.x()),
Max(c_dil+fabs(pvelocity[idx].y()), WaveSpeed.y()),

Max(c_dil+fabs(pvelocity[idx].z()), WaveSpeed.z()));
}

WaveSpeed = dx/WaveSpeed;
double delT_new = WaveSpeed.minComponent();
new_dw−>put(delt_vartype(delT_new), lb−>delTLabel, patch−>getLevel());

}

// Computes the Cauchy stress for each particle for the given material
// Called once per timestep (for each material)
void CompOgdenStorakers::computeStressTensor(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse* new_dw)
{

// Loop over each patch
for(int patch_idx = 0; patch_idx < patches−>size(); patch_idx++){

const Patch* patch = patches−>get(patch_idx);

Matrix3 F; // Deformation gradient
Matrix3 B; // Left Cauchy Green deformation tensor
Matrix3 Identity; Identity.Identity(); // 3x3 Identity matrix
Vector WaveSpeed(1.e−12, 1.e−12, 1.e−12);
Vector eVals(0, 0, 0); // Eigenvalues
Matrix3 eVecs; // Eigenvectors
Matrix3 n1, n2, n3; // Outer product of Eigenvectors
double c_dil = 0.0; // Local speed of sound
double se = 0.0; // Accumulated strain energy for all particles
double J; // Jacobian of deformation gradient
double l1, l2, l3; // The princiapl stretches, lambda_1, lambda_2, lambda_3
double dW_dl1, dW_dl2, dW_dl3; // The strain energy function partially

differentiated by lambda_1, lambda_2, lambda_3
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double scalar1, scalar2, scalar3;
double a = 0.0; // Ogden material constant
double mu = 0.0; // Ogden material constant
double v; // Poisson’s ratio (material constant)
double rho_current; // Current density
double rho_orig; // Original density

Matrix3 bElBarTrial(0.0), pDefGradInc(0.0), fBar(0.0); ///
double Jinc = 0.0;

ParticleInterpolator* interpolator = flag−>d_interpolator−>clone(patch);
vector<IntVector> ni(interpolator−>size());
vector<Vector> d_S(interpolator−>size());
vector<double> S(interpolator−>size());

Vector dx = patch−>dCell();

// DataWarehouse index
int dwi = matl−>getDWIndex();

// Create array for the particle position
ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);
constParticleVariable<Point> px;
constParticleVariable<Matrix3> deformationGradient_new;
constParticleVariable<Matrix3> deformationGradient;
ParticleVariable<Matrix3> pstress;
constParticleVariable<double> pmass;
constParticleVariable<double> pvolume_new;
constParticleVariable<Vector> pvelocity;
constParticleVariable<Matrix3> velGrad;
constParticleVariable<Matrix3> psize;
ParticleVariable<double> pdTdt,p_q;

constParticleVariable<Matrix3> pDefGrad, bElBar; ///
ParticleVariable<Matrix3> pStress, bElBar_new; ///

delt_vartype delT;
old_dw−>get(delT, lb−>delTLabel, getLevel(patches));
old_dw−>get(pvelocity, lb−>pVelocityLabel, pset);
old_dw−>get(deformationGradient, lb−>pDeformationMeasureLabel, pset);
old_dw−>get(bElBar, bElBarLabel, pset); ///

new_dw−>allocateAndPut(pstress, lb−>pStressLabel_preReloc, pset);
new_dw−>allocateAndPut(pdTdt, lb−>pdTdtLabel, pset);
new_dw−>allocateAndPut(p_q, lb−>p_qLabel_preReloc, pset);

new_dw−>get(pvolume_new, lb−>pVolumeLabel_preReloc, pset);
new_dw−>get(velGrad, lb−>pVelGradLabel_preReloc, pset);
new_dw−>get(deformationGradient_new, lb−>

pDeformationMeasureLabel_preReloc, pset);

new_dw−>allocateAndPut(bElBar_new, bElBarLabel_preReloc, pset); ///

// Get initial data
a = d_initialData.alpha;
mu = d_initialData.mu;
v = d_initialData.PR;
rho_orig = matl−>getInitialDensity();

for(ParticleSubset::iterator iter = pset−>begin();iter!=pset−>end();iter++){
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particleIndex idx = *iter;

// Assign zero internal heating by default − modify if necessary.
pdTdt[idx] = 0.0;

// Get deformation gradient
F = deformationGradient_new[idx];

///
// Calculate bElBar (needed for interaction with RigidMPM)
pDefGradInc = deformationGradient_new[idx]*deformationGradient[idx].

Inverse();
Jinc = pDefGradInc.Determinant();

// Get the volume preserving part of the deformation gradient increment
fBar = pDefGradInc/cbrt(Jinc);

// Compute the elastic part of the volume preserving
// part of the left Cauchy−Green deformation tensor
bElBar_new[idx] = fBar*bElBar[idx]*fBar.Transpose();

// Compute the left Cauchy−Green deformation tensor
B = F*F.Transpose();

// get the original volumetric part of the deformation
J = F.Determinant();

// Error checking
if (J < 0.0) {

throw InvalidValue("Negative Jacobian of deformation gradient", __FILE__,
__LINE__);

}

// The Ogden model is typically expressed in terms of the principal
stretches rather than the invariants

// The principal stretches can be calculated from the square roots of the
Eigenvlaues of B

B.eigen(eVals, eVecs);

// Calcualte the principal stretches
l1 = sqrt(eVals.x());
l2 = sqrt(eVals.y());
l3 = sqrt(eVals.z());

// Put the Eigenvectors in matrix form for convenience
n1.set(0,0,eVecs(0,0));
n1.set(1,0,eVecs(1,0));
n1.set(2,0,eVecs(2,0));
n1.set(0,1,0);
n1.set(1,1,0);
n1.set(2,1,0);
n1.set(0,2,0);
n1.set(1,2,0);
n1.set(2,2,0);
n2.set(0,0,eVecs(0,1));
n2.set(1,0,eVecs(1,1));
n2.set(2,0,eVecs(2,1));
n2.set(0,1,0);
n2.set(1,1,0);
n2.set(2,1,0);
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n2.set(0,2,0);
n2.set(1,2,0);
n2.set(2,2,0);
n3.set(0,0,eVecs(0,2));
n3.set(1,0,eVecs(1,2));
n3.set(2,0,eVecs(2,2));
n3.set(0,1,0);
n3.set(1,1,0);
n3.set(2,1,0);
n3.set(0,2,0);
n3.set(1,2,0);
n3.set(2,2,0);

// Calculate the outer product of the Eigenvectors, results in a 3x3 matrix
n1 = n1*n1.Transpose();
n2 = n2*n2.Transpose();
n3 = n3*n3.Transpose();

// Calculate scalars based on Ogden strain energy density function
dW_dl1 = 2.0 * mu * (pow(l1, a) * a / l1 − pow(J, −a * (double) v / (double)

(1.0 − 2.0 * v)) * a / l1) * pow(a, −2.0);
dW_dl2 = 2.0 * mu * (pow(l2, a) * a / l2 − pow(J, −a * (double) v / (double)

(1.0 − 2.0 * v)) * a / l2) * pow(a, −2.0);
dW_dl3 = 2.0 * mu * (pow(l3, a) * a / l3 − pow(J, −a * (double) v / (double)

(1.0 − 2.0 * v)) * a / l3) * pow(a, −2.0);
scalar1 = (l1 / J) * dW_dl1;
scalar2 = (l2 / J) * dW_dl2;
scalar3 = (l3 / J) * dW_dl3;

// Calculate Cauchy stress for particle
pstress[idx] = scalar1*n1 + scalar2*n2 + scalar3*n3;

// Calculate total strain energy over all particles
se += 2.0 * mu * (pow(l1, a) + pow(l2, a) + pow(l3, a) − 3.0 + (pow(J, −a * (

double) v / (double) (1.0 − 2.0 * v)) − 1.0) / (double) v * (double) (1.0 −
2.0 * v)) * pow(a, −2.0);

// Get the current density
rho_current = rho_orig/J;

// Compute c_dil, the local speed of sound, this came from Ogden’s book (
Non−Linear Elastic Deformations)

c_dil = sqrt(
mu*(a * pow(l1, a − 1.0) + 0.5 * a * pow(l1, − 0.5 * a − 1.0))/rho_current

);

// Compute wave speed + particle velocity at each particle, then store the
maximum

WaveSpeed=Vector(Max(c_dil+fabs(pvelocity[idx].x()), WaveSpeed.x()),
Max(c_dil+fabs(pvelocity[idx].y()), WaveSpeed.y()),

Max(c_dil+fabs(pvelocity[idx].z()), WaveSpeed.z()));

// Compute artificial viscosity term
if (flag−>d_artificial_viscosity) {

throw InvalidValue("Artificial viscosity has not been implemented for this
constitutive model", __FILE__, __LINE__);

// To be added later
}
else{

p_q[idx] = 0.0;
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}
} // end loop over particles

WaveSpeed = dx/WaveSpeed;
double delT_new = WaveSpeed.minComponent();

new_dw−>put(delt_vartype(delT_new), lb−>delTLabel, patch−>getLevel());

if (flag−>d_reductionVars−>accStrainEnergy || flag−>d_reductionVars−>
strainEnergy) {

new_dw−>put(sum_vartype(se), lb−>StrainEnergyLabel);
}
delete interpolator;

}
}

double CompOgdenStorakers::computeRhoMicroCM(double pressure, const
double p_ref, const MPMMaterial* matl, double temperature, double
rho_guess)

{
double p_gauge = pressure − p_ref;
double rho_orig = matl−>getInitialDensity();
double rho_cur = −1.0;
bool error = false;

if (d_useModifiedEOS && p_gauge < 0.0) { // Modified EOS

double K = CalculateBulkModulus();
double A = p_ref;
double n = p_ref/K;
rho_cur = rho_orig*pow(pressure/A,n);

} else { // Standard EOS

try {
rho_cur = d_eos−>computeDensity(rho_orig, −p_gauge);

} catch (ConvergenceFailure& e) {
cout << e.message() << endl;
error = true;

}
if (error || rho_cur < 0.0 || isnan(rho_cur)) {

ostringstream desc;
desc << "rho_cur = " << rho_cur << " pressure = " << −p_gauge

<< " p_ref = " << p_ref << " 1/sp_vol_CC = " << rho_guess << endl;
throw InvalidValue(desc.str(), __FILE__, __LINE__);

}
}

return rho_cur;
}

void CompOgdenStorakers::computePressEOSCM(const double rho_cur,double&
pressure, const double p_ref, double& dp_drho, double& cSquared, const
MPMMaterial* matl, double temperature)

{
double rho_orig = matl−>getInitialDensity();

if (d_useModifiedEOS && rho_cur < rho_orig) { // Modified EOS

double K = CalculateBulkModulus();
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double A = p_ref;
double n = K/p_ref;
double rho_rat_to_the_n = pow(rho_cur/rho_orig,n);
pressure = A*rho_rat_to_the_n;
dp_drho = (K/rho_cur)*rho_rat_to_the_n;
cSquared = dp_drho; // Speed of sound squared

} else { // Standard EOS

double p = 0.0;
d_eos−>computePressure(rho_orig, rho_cur, p, dp_drho, cSquared);
pressure = −p + p_ref;
dp_drho = −dp_drho;

}

}

double CompOgdenStorakers::getCompressibility()
{

return 1.0/CalculateBulkModulus();
}

double CompOgdenStorakers::CalculateBulkModulus()
{

double K; // Bulk modulus
//double E; // Elastic modulus

// Get initial data
//double a = d_initialData.alpha;
double mu = d_initialData.mu;
double v = d_initialData.PR;

// Calculate elastic modulus
//E = (3.0/2.0)*mu*a;

// Calculate bulk modulus
//K = E/(3.0*(1.0 − 2.0*v));
K = 2.0 * mu * ((double) (v / (1.0 − 2.0 * v)) + 1.0 / 3.0);

return K;
}

a.2.3 Linear Model (Impactor/Backplate)

Listing 5: CompLinear.h

#ifndef __COMP_OGDEN_STORAKERS_CONSTITUTIVE_MODEL_H__
#define __COMP_OGDEN_STORAKERS_CONSTITUTIVE_MODEL_H__

#include <CCA/Components/MPM/ConstitutiveModel/ConstitutiveModel.h>
#include "../PlasticityModels/MPMEquationOfState.h"
#include <Core/Math/Matrix3.h>
#include <Core/ProblemSpec/ProblemSpecP.h>
#include <CCA/Ports/DataWarehouseP.h>

#include <cmath>

namespace Uintah {
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class MPMLabel;
class MPMFlags;

class CompOgdenStorakers : public ConstitutiveModel {

private:

bool d_useModifiedEOS; // use modified equation of state

protected:

bool d_useInitialStress; // Initial stress state
double d_init_pressure; // Initial pressure

MPMEquationOfState* d_eos; // Equation of State factory

public:

struct CMData {
double PR; //Poisson’s Ratio
double alpha; // material constant
double mu; // material constant

};

const VarLabel* bElBarLabel;
const VarLabel* bElBarLabel_preReloc;

private:

CMData d_initialData;

// Prevent copying of this class
CompOgdenStorakers& operator=(const CompOgdenStorakers &cm);

// Calculate the bulk modulus based on the Ogden material constants
double CalculateBulkModulus();

public:

// Constructor
CompOgdenStorakers(ProblemSpecP& ps, MPMFlags* flag);

// Copy constructor
CompOgdenStorakers(const CompOgdenStorakers* cm);

// Destructor
virtual ~CompOgdenStorakers();

// Clone
CompOgdenStorakers* clone();

virtual void outputProblemSpec(ProblemSpecP& ps,bool output_cm_tag =
true);

// initialize each particle’s constitutive model data
virtual void initializeCMData(const Patch* patch, const MPMMaterial* matl,

DataWarehouse* new_dw);
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// Keeps track of the particles and the related variables as particles move
from patch to patch

virtual void addParticleState(std::vector<const VarLabel*>& from, std::vector
<const VarLabel*>& to);

// Tells the scheduler what data needs to be available at the time
computeStressTensor(...) is called

virtual void addComputesAndRequires(Task* task, const MPMMaterial* matl
, const PatchSet* patches) const;

virtual void addComputesAndRequires(Task* task, const MPMMaterial* matl
, const PatchSet* patches, const bool recurse, const bool SchedParent)
const;

virtual void addInitialComputesAndRequires(Task* task, const MPMMaterial
* matl, const PatchSet*) const;

// Carry forward constitutive model data for RigidMPM
virtual void carryForward(const PatchSubset* patches, const MPMMaterial*

matl, DataWarehouse* old_dw, DataWarehouse* new_dw);

// Calculate the initial timestep, after this the timestep (dT) will be
calculated by computeStressTensor(...)

virtual void computeStableTimestep(const Patch* patch, const MPMMaterial*
matl, DataWarehouse* new_dw);

// Compute cauchy stress for each particle in the patch
virtual void computeStressTensor(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse*
new_dw);

virtual double computeRhoMicroCM(double pressure, const double p_ref,
const MPMMaterial* matl, double temperature, double rho_guess);

virtual void computePressEOSCM(double rho_m, double& press_eos, double
p_ref, double& dp_drho, double& ss_new, const MPMMaterial* matl,

double temperature);

virtual double getCompressibility();

};
} // End namespace Uintah

#endif // __COMP_OGDEN_STORAKERS_CONSTITUTIVE_MODEL_H__

Listing 6: CompLinear.cc

/*
* The MIT License
*
* Copyright (c) 1997−2012 The University of Utah
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
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* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS
* IN THE SOFTWARE.
*/

#include <CCA/Components/MPM/ConstitutiveModel/UoL/CompLinear.h>
#include <CCA/Components/MPM/ConstitutiveModel/MPMMaterial.h>
#include <CCA/Components/MPM/ConstitutiveModel/PlasticityModels/

MPMEquationOfStateFactory.h>
#include <CCA/Components/MPM/MPMFlags.h>
#include <Core/Math/Matrix3.h>
#include <CCA/Ports/DataWarehouse.h>
#include <Core/Grid/Variables/VarLabel.h>
#include <Core/Grid/Variables/ParticleVariable.h>
#include <Core/Grid/Variables/NCVariable.h>
#include <Core/Grid/Patch.h>
#include <Core/Grid/Variables/VarTypes.h>
#include <Core/Labels/MPMLabel.h>
#include <Core/Math/FastMatrix.h>
#include <Core/Exceptions/ParameterNotFound.h>
#include <Core/Exceptions/InvalidValue.h>
#include <Core/Exceptions/ConvergenceFailure.h>
#include <Core/Malloc/Allocator.h>
#include <cmath>
#include <iostream>
#include <stdio.h>
#include <iomanip>

using namespace Uintah;
using namespace std;

CompLinear::CompLinear(ProblemSpecP& ps, MPMFlags* Mflag) :
ConstitutiveModel(Mflag)

{
// required − material parameters for the constitutive model
ps−>require("E", d_initialData.E);
ps−>require("v", d_initialData.v);

// optional − use modified equation of state (off by default)
d_useModifiedEOS = false;
ps−>get("useModifiedEOS",d_useModifiedEOS); // no negative pressure for

solids

// Initial stress
// Fix: Need to make it more general. Add gravity turn−on option and
// read from file option etc.
ps−>getWithDefault("useInitialStress", d_useInitialStress, false);
d_init_pressure = 0.0;
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if (d_useInitialStress) {
ps−>getWithDefault("initial_pressure", d_init_pressure, 0.0);

}

// Equation of state factory for pressure (default is DefaultHyperEOS)
d_eos = MPMEquationOfStateFactory::create(ps);

d_eos−>setBulkModulus(CalculateBulkModulus());

if(!d_eos){
ostringstream desc;
desc << "An error occured in the MPM EquationOfStateFactory that has \n"
<< " slipped through the existing bullet proofing. Please check and correct." <<

endl;
throw ParameterNotFound(desc.str(), __FILE__, __LINE__);

}
}

CompLinear::CompLinear(const CompLinear* cm) : ConstitutiveModel(cm)
{

d_initialData.E = cm−>d_initialData.E;
d_initialData.v = cm−>d_initialData.v;
d_useModifiedEOS = cm−>d_useModifiedEOS;

// Initial stress
d_useInitialStress = cm−>d_useInitialStress;
if (d_useInitialStress) {

d_init_pressure = cm−>d_init_pressure;
}

// Equation of state factory for pressure (default is DefaultHyperEOS)
d_eos = MPMEquationOfStateFactory::createCopy(cm−>d_eos);

d_eos−>setBulkModulus(CalculateBulkModulus());

if(!d_eos){
ostringstream desc;
desc << "An error occured in the MPM EquationOfStateFactory that has \n"
<< " slipped through the existing bullet proofing. Please check and correct." <<

endl;
throw ParameterNotFound(desc.str(), __FILE__, __LINE__);

}
}

CompLinear::~CompLinear()
{
}

CompLinear* CompLinear::clone()
{

return scinew CompLinear(*this);
}

void CompLinear::outputProblemSpec(ProblemSpecP& ps, bool output_cm_tag)
{

ProblemSpecP cm_ps = ps;
if (output_cm_tag) {

cm_ps = ps−>appendChild("constitutive_model");
cm_ps−>setAttribute("type","comp_linear");

}
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cm_ps−>appendElement("E", d_initialData.E);
cm_ps−>appendElement("v", d_initialData.v);
cm_ps−>appendElement("useModifiedEOS",d_useModifiedEOS);

}

void CompLinear::initializeCMData(const Patch* patch, const MPMMaterial* matl,
DataWarehouse* new_dw)

{
// Initialize the variables shared by all constitutive models
// This method is defined in the ConstitutiveModel base class.
initSharedDataForExplicit(patch, matl, new_dw);

// calcualte the initial timestep, after this the timestep will be calculated by
computeStressTensor

computeStableTimestep(patch, matl, new_dw);
}

void CompLinear::addParticleState(std::vector<const VarLabel*>& from, std::vector
<const VarLabel*>& to)

{
// Keeps track of the particles and the related variables as particles move from

patch to patch (each CM adds its own state variables, e.g. failure, damage,
plasticity, etc.)

// Nothing to do for this CM
}

// Tells the scheduler what data needs to be available at the time
computeStressTensor(...) is called

void CompLinear::addComputesAndRequires(Task* task, const MPMMaterial*
matl, const PatchSet* patches) const

{
const MaterialSubset* matlset = matl−>thisMaterial();

// Add the computes and requires that are common to all explicit constitutive
models.

// This method is defined in the ConstitutiveModel base class.
addSharedCRForExplicit(task, matlset, patches);

}

void CompLinear::addComputesAndRequires(Task*, const MPMMaterial*, const
PatchSet*, const bool) const

{
// Nothing to do for this CM

}

// Carry forward CM data for RigidMPM − RigidMPM contains a very reduced
level of functionality, and is used solely in conjunction with the MPMArches
component.

void CompLinear::carryForward(const PatchSubset* patches, const MPMMaterial*
matl, DataWarehouse* old_dw, DataWarehouse* new_dw)

{
for(int p=0; p<patches−>size(); p++){

const Patch* patch = patches−>get(p);
int dwi = matl−>getDWIndex();
ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);

// Carry forward the data common to all constitutive models when using
RigidMPM.

// This method is defined in the ConstitutiveModel base class.
carryForwardSharedData(pset, old_dw, new_dw, matl);
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// Carry forward the data local to this constitutive model
new_dw−>put(delt_vartype(1.e10), lb−>delTLabel, patch−>getLevel());
if (flag−>d_reductionVars−>accStrainEnergy || flag−>d_reductionVars−>

strainEnergy) {
new_dw−>put(sum_vartype(0.0), lb−>StrainEnergyLabel);

}
}

}

// Calculate the initial timestep, after this the timestep (dT) will be calculated by
computeStressTensor(...)

// The size of the timestep depends on cell spacing, velocity of the particle, and
the material wavespeed (c_dil) at each particle

// A reduction over all dTs from every patch is performed, the smallest dT is used
void CompLinear::computeStableTimestep(const Patch* patch, const MPMMaterial*

matl, DataWarehouse* new_dw)
{

Vector dx = patch−>dCell();
int dwi = matl−>getDWIndex();

// Retrieve the array of constitutive parameters
ParticleSubset* pset = new_dw−>getParticleSubset(dwi, patch);
constParticleVariable<double> pmass;
constParticleVariable<Vector> pvelocity;

new_dw−>get(pmass, lb−>pMassLabel, pset);
new_dw−>get(pvelocity, lb−>pVelocityLabel, pset);

Matrix3 F; // Deformation gradient
Matrix3 Identity;
Identity.Identity(); // 3x3 Identity matrix
Vector WaveSpeed(1.e−12, 1.e−12, 1.e−12);
double c_dil = 0.0; // Local speed of sound
double J; // Jacobian of deformation gradient
double E; // Elastic modulus
double v; // Poisson’s ratio
double k; // Bulk modulus
double rho_current; // Current density
double rho_orig; // Original density

// Get initial data
E = d_initialData.E;
v = d_initialData.v;
rho_orig = matl−>getInitialDensity();

// Assuming a stress free reference configuration F = Identity
F = Identity;
J = F.Determinant();

// Compute wave speed at each particle, store the maximum
for(ParticleSubset::iterator iter = pset−>begin(); iter != pset−>end(); iter++){

particleIndex idx = *iter;

//Compute c_dil, the local speed of sound
k = E / (3.0 * (1.0 − 2.0 * v));
rho_current = rho_orig/J;
c_dil = sqrt(k/rho_current); // Newton Laplace equation
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// Compute wave speed + particle velocity at each particle, then store the
maximum

WaveSpeed=Vector(Max(c_dil+fabs(pvelocity[idx].x()), WaveSpeed.x()),
Max(c_dil+fabs(pvelocity[idx].y()), WaveSpeed.y()),

Max(c_dil+fabs(pvelocity[idx].z()), WaveSpeed.z()));
}

WaveSpeed = dx/WaveSpeed;
double delT_new = WaveSpeed.minComponent();
new_dw−>put(delt_vartype(delT_new), lb−>delTLabel, patch−>getLevel());

}

// Computes the Cauchy stress for each particle for the given material
// Called once per timestep (for each material)
void CompLinear::computeStressTensor(const PatchSubset* patches, const

MPMMaterial* matl, DataWarehouse* old_dw, DataWarehouse* new_dw)
{

// Loop over each patch
for(int patch_idx = 0; patch_idx < patches−>size(); patch_idx++){

const Patch* patch = patches−>get(patch_idx);

Matrix3 F; // Deformation gradient
Matrix3 Identity; Identity.Identity(); // 3x3 Identity matrix
Vector WaveSpeed(1.e−12, 1.e−12, 1.e−12);
Matrix3 LST; // Lagrange strain tensor
double c_dil = 0.0; // Local speed of sound
double se= 0.0; // Accumulated strain energy for all particles
double J; // Jacobian of deformation gradient
double E; // Elastic modulus
double v; // Poisson’s ratio
double k; // Bulk modulus
double rho_current; // Current density
double rho_orig; // Original density

ParticleInterpolator* interpolator = flag−>d_interpolator−>clone(patch);
vector<IntVector> ni(interpolator−>size());
vector<Vector> d_S(interpolator−>size());
vector<double> S(interpolator−>size());

Vector dx = patch−>dCell();

// DataWarehouse index
int dwi = matl−>getDWIndex();

// Create array for the particle position
ParticleSubset* pset = old_dw−>getParticleSubset(dwi, patch);
constParticleVariable<Point> px;
constParticleVariable<Matrix3> deformationGradient_new;
constParticleVariable<Matrix3> deformationGradient;
ParticleVariable<Matrix3> pstress;
constParticleVariable<double> pmass;
constParticleVariable<double> pvolume_new;
constParticleVariable<Vector> pvelocity;
constParticleVariable<Matrix3> velGrad;
constParticleVariable<Matrix3> psize;
ParticleVariable<double> pdTdt,p_q;

delt_vartype delT;
old_dw−>get(delT, lb−>delTLabel, getLevel(patches));
old_dw−>get(pvelocity, lb−>pVelocityLabel, pset);
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old_dw−>get(deformationGradient, lb−>pDeformationMeasureLabel, pset);

new_dw−>allocateAndPut(pstress, lb−>pStressLabel_preReloc, pset);
new_dw−>allocateAndPut(pdTdt, lb−>pdTdtLabel, pset);
new_dw−>allocateAndPut(p_q, lb−>p_qLabel_preReloc, pset);
new_dw−>get(pvolume_new, lb−>pVolumeLabel_preReloc, pset);
new_dw−>get(velGrad, lb−>pVelGradLabel_preReloc, pset);
new_dw−>get(deformationGradient_new, lb−>

pDeformationMeasureLabel_preReloc, pset);

// Get initial data
E = d_initialData.E;
v = d_initialData.v;
rho_orig = matl−>getInitialDensity();

for(ParticleSubset::iterator iter = pset−>begin();iter!=pset−>end();iter++){
particleIndex idx = *iter;

// Assign zero internal heating by default − modify if necessary.
pdTdt[idx] = 0.0;

// Get deformation gradient
F = deformationGradient_new[idx];

// get the original volumetric part of the deformation
J = F.Determinant();

// Error checking
if (J < 0.0) {

throw InvalidValue("Negative Jacobian of deformation gradient", __FILE__,
__LINE__);

}

// Calculate the Lagrange strain tensor
//LST = F.Transpose() * F − Identity;
//LST = LST / 2.0;

// Calculate Cauchy stress for particle
//pstress[idx] = LST + (v / (1.0 − 2.0 * v)) * (LST(0,0) + LST(1,1) + LST(2,2))

* Identity;
//pstress[idx] = pstress[idx] * (E / 1.0 + v);

//nope
//Matrix3 L1, L2;
//L1 = 0.5 * (F.Transpose() + F + F.Transpose() * F);
//L2 = (L1(0,0) + L1(1,1) + L1(2,2)) * Identity;
//pstress[idx] = E / (1.0 + v) * (L1 + v / (1.0 − 2.0 * v) * L2);

//nope
//LST = 0.5 * (F.Transpose() + F + F.Transpose() * F);
//pstress[idx] = E / (1.0 + v) * (LST + v / (1.0 − 2.0 * v) * (LST(0,0) + LST

(1,1) + LST(2,2)) * Identity);

LST = F.Transpose() * F − Identity;
LST = LST / 2.0;
pstress[idx] = (E / (1.0 + v)) * (LST + (v / (1.0 − 2.0 * v)) * (LST(0,0) + LST

(1,1) + LST(2,2)) * Identity);

//ok
//LST = F.Transpose() * F − Identity;
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//LST = LST / 2.0;
//pstress[idx] = LST + (v / (1.0 − 2.0 * v)) * (LST(0,0) + LST(1,1) + LST(2,2))

* Identity;
//pstress[idx] = pstress[idx] * (E / 1.0 + v);

// Update the total strain energy for all of the particles
// todo − how do you calculate linear strain energy in three dimensions?
se += 0;

//Compute c_dil, the local speed of sound
k = E / (3.0 * (1.0 − 2.0 * v));
rho_current = rho_orig/J;
c_dil = sqrt(k/rho_current); // Newton Laplace equation

// Compute wave speed + particle velocity at each particle, then store the
maximum

WaveSpeed=Vector(Max(c_dil+fabs(pvelocity[idx].x()), WaveSpeed.x()),
Max(c_dil+fabs(pvelocity[idx].y()), WaveSpeed.y()),

Max(c_dil+fabs(pvelocity[idx].z()), WaveSpeed.z()));

// Compute artificial viscosity term
if (flag−>d_artificial_viscosity) {

throw InvalidValue("Artificial viscosity has not been implemented for this
constitutive model", __FILE__, __LINE__);

// To be added later
}
else{

p_q[idx] = 0.0;
}

} // end loop over particles

WaveSpeed = dx/WaveSpeed;
double delT_new = WaveSpeed.minComponent();

new_dw−>put(delt_vartype(delT_new), lb−>delTLabel, patch−>getLevel());

if (flag−>d_reductionVars−>accStrainEnergy || flag−>d_reductionVars−>
strainEnergy) {

new_dw−>put(sum_vartype(se), lb−>StrainEnergyLabel);
}
delete interpolator;

}
}

double CompLinear::computeRhoMicroCM(double pressure, const double p_ref,
const MPMMaterial* matl, double temperature, double rho_guess)

{
double p_gauge = pressure − p_ref;
double rho_orig = matl−>getInitialDensity();
double rho_cur = −1.0;
bool error = false;

if (d_useModifiedEOS && p_gauge < 0.0) { // Modified EOS

double K = CalculateBulkModulus();
double A = p_ref;
double n = p_ref/K;
rho_cur = rho_orig*pow(pressure/A,n);

} else { // Standard EOS
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try {
rho_cur = d_eos−>computeDensity(rho_orig, −p_gauge);

} catch (ConvergenceFailure& e) {
cout << e.message() << endl;
error = true;

}
if (error || rho_cur < 0.0 || isnan(rho_cur)) {

ostringstream desc;
desc << "rho_cur = " << rho_cur << " pressure = " << −p_gauge

<< " p_ref = " << p_ref << " 1/sp_vol_CC = " << rho_guess << endl;
throw InvalidValue(desc.str(), __FILE__, __LINE__);

}
}

return rho_cur;
}

void CompLinear::computePressEOSCM(const double rho_cur,double& pressure,
const double p_ref, double& dp_drho, double& cSquared, const MPMMaterial
* matl, double temperature)

{
double rho_orig = matl−>getInitialDensity();

if (d_useModifiedEOS && rho_cur < rho_orig) { // Modified EOS

double K = CalculateBulkModulus();
double A = p_ref;
double n = K/p_ref;
double rho_rat_to_the_n = pow(rho_cur/rho_orig,n);
pressure = A*rho_rat_to_the_n;
dp_drho = (K/rho_cur)*rho_rat_to_the_n;
cSquared = dp_drho; // Speed of sound squared

} else { // Standard EOS

double p = 0.0;
d_eos−>computePressure(rho_orig, rho_cur, p, dp_drho, cSquared);
pressure = −p + p_ref;
dp_drho = −dp_drho;

}
}

double CompLinear::getCompressibility()
{

return 1.0/CalculateBulkModulus();
}

double CompLinear::CalculateBulkModulus()
{

// Get initial data
double E = d_initialData.E;
double v = d_initialData.v;

// Calculate bulk modulus
double K = E/(3*(1 − 2*v));

return K;
}
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a.3 ogden model algebra

Bower provides the following strain energy function for a compress-
ible Ogden model [148]:

W =
2µ

α2
(λ̄α1 + λ̄α2 + λ̄α3 − 3) +

1

2
k(J− 1)2 (147)

where

λ̄i = λiJ
1
3 (148)

This is similar to that used in ADINA, this function was again used
to obtain an equation for Cauchy stress. Given that:

J = λ1λ2λ3 (149)

Equation (147) may be written as:
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The Cauchy stress may then be calculated as follows:
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∂W

∂λ3
=
2µ

3α
λ
4
3α

1 λ
1
3α

2 λ
− 2
3α

3 +
2µ

3α
λ
1
3α

1 λ
4
3α

2 λ
− 2
3α

3 +
8µ

3α
λ
1
3α

1 λ
1
3α

2 λ
1
3α

3 + κ(λ1λ2λ3 − 1)λ1λ2

=
2µ

3α
λ
4
3α

1 λ
1
3α

2 λ
− 2
3α

3 +
2µ

3α
λ
1
3α

1 λ
4
3α

2 λ
− 2
3α

3 +
8µ

3α
J
1
3α + κ(J− 1)λ1λ2

(154)

σ =
1

λ1λ2λ3
[λ1(

8µ

3α
J
1
3α +

2µ

3α
λ
− 2
3α

1 λ
4
3α

2 λ
1
3α

3 +
2µ

3α
λ
− 2
3α

1 λ
1
3α

2 λ
4
3α

3 + κ(J− 1)λ2λ3)n1 ⊗ n1

+λ2(
2µ

3α
λ
4
3α

1 λ
− 2
3α

2 λ
1
3α

3 +
8µ

3α
J
1
3α +

2µ

3α
λ
1
3α

1 λ
− 2
3α

2 λ
4
3α

3 + κ(J− 1)λ1λ3)n2 ⊗ n2

+λ3(
2µ

3α
λ
4
3α

1 λ
1
3α

2 λ
− 2
3α

3 +
2µ

3α
λ
1
3α

1 λ
4
3α

2 λ
− 2
3α

3 +
8µ

3α
J
1
3α + κ(J− 1)λ1λ2)n3 ⊗ n3]

(155)

a.4 mooney–rivlin using principal stretches

Having determined that the principal stretches, principal directions,
and Jacobian were all being correctly calculated; two versions of a
standard compressible Mooney-Rivlin model were implemented. The
first was in terms of the invariants and the second was implemented
in terms of the principal stretches, which is atypical. The Mooney-
Rivlin model using the principal stretches was implmented in a way
very similar to the Ogden model described previously. The only dif-
ferences were the inputs for the material constants and the strain en-
ergy density function used. The colliding disks test was run for both
versions, the results are equivalent. Both versions worked correctly,
the unusual pulsating behaviour observed with the Ogden model was
not observed here. At this point, having systematically rules out all
alternatives, it was possible to conclude that the problem must lie
with the Ogden strain energy density function itself.

The strain energy for a compressible Mooney-Rivlin hyperelastic
model is given by:

W = C1(Ī1 − 3) +C2(Ī2 − 3) +D(J− 1)2 (156)

where:

∂W

∂Ī1
= C1,

∂W

∂Ī2
= C2,

∂W

∂J
= −2D(J− 1) (157)

The bulk and shear moduli relate to the constants as follows:

κ = 2D (158)
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µ = 2(C1 +C2) (159)

The Cauchy stress is given by:
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The Mooney-Rivlin model is typically expressed in terms of the in-
variants, although it is also possible to write it in terms of the princi-
pal stretches. Given that:

Ī1 = J
− 2
3 I1 = J

− 2
3 (λ21 + λ

2
2 + λ

2
3) (161)
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it is possible to rewrite the strain energy as:
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which may be rewritten as:
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Cauchy stress may then again be determined
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