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Abstract 
 

Alkali-activated binders, produced through the chemical reaction between an 

aluminosilicate precursor and an alkali activator, are gaining interest as a sustainable and 

technically sound alternative to traditional Portland cement for production of concretes. This 

study aimed to determine factors controlling microstructural features of these materials, so 

alkali-activated slag cements with improved durability and sustainability can be tailored for 

specific performance requirements. 

 

Prediction of the performance of alkali-activated slag (AAS) is challenging due to the lack 

of detailed understanding of the existing relationship between the curing conditions adopted 

and the physico-chemical properties of the anhydrous slag, and the type and concentration of 

the alkali activator used. Among these, the nature of the alkaline activator strongly influences 

the environmental impact associated with its production, and the most widely used alkaline 

activators (e.g. sodium metasilicates and/or hydroxides) contribute the majority of the 

environmental footprint assigned to alkali-activated cements. The fact that these activators 

can be corrosive is of concern, and their handling and utilisation require skilled personnel for 

the safe production of alkali-activated cements, which is not always available in construction 

sites.  

 

In search for more cost-effective and user-friendly alkali sources for production of AAS 

cements, the use of the near-neutral activator sodium carbonate was investigated. The use of 

sodium carbonate as an activator has been limited by the prolonged setting and delayed 

strength development identified in some binders produced with this salt, compared with those 

produced with sodium silicate or hydroxide activators. In this study, the correlation between 

slag chemistry, reaction kinetics and phase assemblage of sodium carbonate-activated slag 

cements was determined.  

 

The reaction mechanism of sodium carbonate activated slag cements was elucidated, 

where the consumption process of free carbonate ions and formation of carbonate bearing 
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phases in these binders are controlled by the formation of layered double hydroxides (LDHs). 

It was demonstrated that sodium carbonate activated slag cements do not always present 

delayed setting times, and this is strongly dependent on the slag chemistry.  Considering this, 

the effectiveness in controlling reaction kinetics and phase assemblage evolution of adding a 

smart mineral addition (a calcined layered double hydroxide (CLDH)), resembling LDHs 

forming in high MgO content slags, was assessed. The prolonged setting time of sodium 

carbonate activated slag cements was significantly shortened with the addition of CLDH, 

along with an increase in the compressive strength and reduction in the permeability of the 

specimens.  

 

Chloride-induced pit corrosion is one of the main causes leading to degradation of steel 

reinforced concrete structures. The resistance of structural concrete to external chloride attack 

is largely depending on the penetration rate of the external chloride. This closely relates to the 

water transport and chloride ionic interaction taking place in the cementitious matrix. The 

ionic binding capacity of chlorides in alkali-activated cements, therefore is crucial for 

predicting the long term performance of AAS as a structural construction material.  

 

For a better understanding of the chloride binding behaviour of AAS cements, synthetic 

sodium substituted calcium aluminosilicate hydrate (C-(N)-A-S-H) type gels, a hydrotalcite-

like phase, and strätlingite were produced, and their interaction with chloride were studied 

individually. Chemical substitution (ion-exchange) and surface adsorption are the two major 

mechanisms of chloride ions binding onto hydrated phases forming in AAS binders. This 

interaction significantly reduces the free chloride concentration in AAS pore solution. It was 

elucidated in this study that C-(N)-A-S-H gel and hydrotalcite-like phase mainly bind 

chlorides in the diffuse layer through a surface adsorption mechanism, while strätlingite binds 

chloride through substitution of interlayer species via ion-exchange.  

 

Therefore, the chloride binding capacity of AAS cements is strongly dependent on the mix 

design of these materials, which governs the formation of specific hydrated phases. When 

using sodium carbonate as alkali activator a reduced chloride binding capacity was observed, 

compared with pastes produced with a commercial sodium silicate, associated with the 
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differences in phase assemblage between these two cementitious systems. However, the 

inclusion of 5 wt.% of the CLDH mineral addition modified the chloride binding capacity of 

these materials, so that AAS produced with sodium carbonate showed higher chloride 

binding capacity than that of sodium silicate activated samples. This is consistent with the 

higher compressive strength, reduced permeability and lower chloride migration coefficients 

identified in CLDH modified specimens.  

 

This study established the fundamental relationships between slag chemistry and reaction 

kinetics of sodium carbonate-activated slag. The application of the smart chemical addition 

CLDH for sodium carbonate-activated slag based on the understanding of slag chemistry, has 

not only made the sodium carbonate activator a plausible option for implementation, but 

more of a better option with performance advantages. The knowledge developed in this study 

about the ionic interaction between chlorides and individual reaction product filled in gaps in 

literature, and becomes a useful tool whose usage is not limited to tailing of sodium 

carbonate-activated slag, but also for optimising mix design of all types of AAS for achieving 

better performance. 
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Chapter 1.  
1                                                                                                                                                                   1 

INTRODUCTION  
 

Alkali-activated materials are derived from the chemical reaction of an aluminosilicate 

powder referred to as the ‘precursor’, and a highly alkaline solution referred to as the 

‘activator’, and have become the object of much study in the past decades. These materials 

have gained interest as an alternative to traditional Portland cement for production of 

concrete, and are now produced on an industrial scale and commercialised in several 

countries. Among all the aluminosilicate sources used in alkali-activation, blast furnace slag 

derived from the iron making process is one of the most widely used precursors, and can 

yield high performance materials. Sodium hydroxide and sodium silicate are two activators 

commonly used for producing alkali-activated slag (AAS) cements. However, the high 

alkalinity and environmental impact associated with the use of those two activators poses 

technical and sustainability challenges in the industrial scale production of these materials.  

 

Despite the technical and environmental advantages associated with AAS as an alternative 

cementitious material for structural and non-structural applications, these materials do not yet 

have a long in-service track record, and the understanding of factors controlling their 

potential long-term performance is quite limited. In the particular case of chloride-induced pit 

corrosion of embedded steel, which is one of the main causes of degradation of steel 

reinforced concrete, it remains unknown how chloride ions interact with the hydrated phases 

comprising AAS, and whether the mobility of chloride within these cements can be hindered 

via binding mechanisms.  

 

The aim of this study was to evaluate the effectiveness of a near-neutral salt, sodium 

carbonate, as an activator for blast furnace slags, as a function of the chemistry of the slag 

used. Specifically, this study investigates the effect of adding to these cements mineral 

additions resembling the hydrated phases formed upon activation in AAS. A calcined layered 

double hydroxide (CLDH) mineral additive was used in designing Na2CO3-activated AAS 
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cements which are intended to be more cost-effective and more durable than AAS produced 

with commercial sodium silicate activators. The interactions between free chlorides and 

synthetic phases resembling those forming in AAS cement were assessed in high alkalinity 

simulated pore solutions, underpinning a new conceptual mechanistic description of the 

factors controlling durability of these materials in service.  

 

Chapter 2 presents a literature review about phase assemblage formation in alkali-

activated slag cements, and the possible interactions between chloride and AAS cement paste. 

The pore solution chemistry and the phase assemblage of AAS cement, mainly consisting of 

C-(N)-A-S-H gel, layered double hydroxides (LDHs), and amorphous N-(A)-S-H gel, are 

governed jointly by the slag chemistry and the type of activators used. The possible 

interaction between chlorides and individual reaction products under similar aqueous 

conditions to pore solutions are discussed. Correlations between microstructure, pore network, 

and durability performance are also discussed. 

 

Chapter 3 provides information regarding the materials used in this study, including the 

physical and chemical properties of the anhydrous slags, and the grades and sources of the 

chemical reagents used. Methods for preparing samples in this study have been described. 

Technical details of the characterisation methods applied are also given in this chapter.  

 

In the work described in Chapter 4, Na2CO3-activated slag cements were produced from 

four different blast furnace slags, each blended with a calcined layered double hydroxide 

(CLDH) derived from thermally treated hydrotalcite. The aim of this mix design was to 

expedite the reaction kinetics of these cements, which would otherwise react and harden very 

slowly. The inclusion of CLDH in these Na2CO3-activated cements accelerates their reaction, 

and promotes hardening within 24 h. The MgO content of the slag also defines the reaction 

kinetics, associated with the formation of hydrotalcite-type LDH as a reaction product. The 

effectiveness of the CLDH is associated with removal of dissolved CO3
2− from the fresh 

cement, yielding a significant rise in the pH, and also potential seeding effects. The key factor 

controlling the reaction kinetics of Na2CO3-activated slag cements is the activator functional 
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group, and therefore these cements can be designed to react more rapidly by controlling the 

slag chemistry and/or including reactive additives. 

 

In Chapter 5, three types of synthetic phases (Mg-Al hydrotalcite-like phase, AFm 

structure (strätlingite), and C-(N)-A-S-H gel) were produced and investigated to better 

understand the ionic interactions taking place between chlorides, carbonates, and the 

individual solid phases in AAS, using simulated pore solution environments. Surface 

adsorption and interlayer ion-exchange of chlorides occurred in both the Mg-Al and AFm 

type LDH phases; however, chloride uptake in hydrotalcite-group structures is governed by 

surface adsorption, while strätlingite shows the formation of a hydrocalumite-like phase and 

ion exchange. Only surface adsorption was identified for C-(N)-A-S-H gels with different 

compositions, but changes in lattice parameters were also observed.  For both Ca-Al and Mg-

Al LDHs, decreased chloride uptake levels were observed from solutions with increased 

[CO3
2-]/[OH-] ratios, due to the formation of carbonate-containing hydrotalcite and 

decomposition of AFm phases, respectively.  

 

The work described in Chapter 6 evaluates the chloride binding capacity of AAS cement 

pastes, and the chloride transport in AAS mortars, prepared using two different types of 

activators: sodium silicate and sodium carbonate. Sodium carbonate activated paste with 5% 

CLDH modification was also prepared for evaluation of the effect of CLDH on chloride 

binding capacities of the AAS paste, and on chloride transport  in AAS mortar. The benefit of 

using chloride-rich simulated pore solutions for evaluating the chloride binding capacity of 

AAS has been investigated by comparing with the results from using neutral sodium chloride 

solutions. The mineralogy of the studied AAS paste after exposure to chloride-rich simulated 

pore solutions is analysed using the knowledge built up from the preceding chapters. The 

chloride transport  within the three studied formulations is evaluated, correlating their 

chloride binding capacity and microstructures. The improved performance of CLDH 

modified sodium carbonate activated slag mortars is credited to the higher degree of reaction, 

higher chloride binding capacity, as well as the refined pore structures achieved in these 

materials.  
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Finally, Chapter 7 contains conclusions and some recommendations for future work on 

developing near-neutral salt activation, and predicting the life-time performance of AAS 

concrete when exposed to chlorides. 
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LITERATURE REVIEW  

  

Note: Some sections in this chapter are derived from the paper “Controlling the 

reaction kinetics of sodium carbonate-activated slag cements using calcined layered 

double hydroxides”, by X. Ke, S. A. Bernal, J. L. Provis, published in Cement and 

Concrete Research, 2016, 81, pp. 24-37, and from “Uptake of chloride and carbonate 

by Mg-Al and Ca-Al layered double hydroxides in simulated alkali-activated slag 

cement pore solutions”, by X. Ke, S. A. Bernal, J. L. Provis, 100, 1-13. 

 

2.1. Introduction 

2.1.1. Alkali-activation of blast furnace slags 

An alkali-activated material is a cementitious material formed by the reaction between an 

aluminosilicate precursor and an alkaline activator H. Blast furnace slag is an industrial by-

product derived from the iron making industry, that mainly consists of CaO, SiO, Al2O3, and 

MgO in a glassy or poorly crystalline structure (Demoulian et al., 1980, Lothenbach et al., 

2011, Osborn et al., 1969, Scott  et al., 1986). The earliest record of using alkali-activated 

slag for synthesising cementitious material has been traced back to a patent awarded to 

Whiting in 1895 (Whiting, 1895); however, it was not until recent decades that the use of 

alkali-activated slag has become the object of much study, gaining interest as an alternative to 

traditional Portland cement to produce concretes, which are now produced on an industrial 

scale and commercialised in several countries (Provis, 2014a, Provis et al., 2014, van 

Deventer et al., 2010). Alkali-activated cement has demonstrated, in many aspects, 

comparable performance to blended Portland cement (Bernal et al., 2011a, Bernal et al., 2014a, 

Shi, 1996). Some of the standing concrete buildings made using alkali-activated slag cement 

have proven to have high durability after 30-60 years of service life (Buchwald et al., 2015, 

Provis et al., 2014). 
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The performance of alkali-activated slag materials cannot easily be predicted simply from 

the chemistry of the slag, as there are many additional factors that can modify their 

microstructure and transport properties, such as the fineness, composition, mineralogy and 

thermal history of the slag used, the type and concentration of the alkali activator, the mixing 

time, and the curing conditions (Fernández-Jiménez and Puertas, 2003a, Song et al., 2000, 

Wang et al., 1994, Winnefeld et al., 2015).  

 

The chemical compositions and physical properties (including particle size distribution, 

fineness etc.) of blast furnace slag are most closely related to the type of iron ores used, the 

steel making process, as well as their cooling process, all of which might vary from different 

source of supplier and different locations (Demoulian et al., 1980, Lothenbach et al., 2011, 

Osborn et al., 1969, Scott  et al., 1986, Shi et al., 2006). The chemistry and physical 

properties of the slag used in preparing alkali-activated slag cement influence the rheology 

and workability of the paste (Kashani et al., 2014, Wu et al., 1990), the kinetics of reaction at 

early age (Ben Haha et al., 2011, 2012, Bernal et al., 2014c, Shi and Day, 1996), as well as 

the nature and amount of reaction products formed (also known as the ‘phase assemblage’) 

(Ben Haha et al., 2012, Bernal et al., 2014c, Hong and Glasser, 2002, L’Hôpital et al., 2015, 

Lothenbach and Gruskovnjak, 2007).  

 

A variety of alkaline solutions are used as activators for producing AAS, the most 

commonly used alkali-activators are highly alkaline solutions, such as sodium hydroxide 

and/or sodium silicates (Bernal et al., 2015a, Duran Atiş et al., 2009, Escalante-García et al., 

2003, Shi and Day, 1996). Potassium hydroxide or potassium silicates have also been studied, 

but less often used for large scale production due to the higher cost of potassium than sodium 

(Kashani et al., 2014). The dose and composition of the activator used upon activation of 

blast furnace slags will influence the initial dissolution mechanism and rate, the kinetics of 

reaction, and the phase evolution (Krizan and Zivanovic, 2002). Consequently, it will 

influence the physical and mechanical properties of the hardened alkali-activated materials.  
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The selection of the type of activator strongly influences the microstructural features and 

consequently the physico-mechanical properties of AAS (Bernal et al., 2015a, Duran Atiş et 

al., 2009, Fernández-Jiménez and Puertas, 2001), as well as the environmental impacts 

associated with the production of these materials (Habert et al., 2011, Habert and Ouellet-

Plamondon, 2016, Provis, 2014b). Although AAS binders have much lower global warming 

potentials than Portland cement (Habert and Ouellet-Plamondon, 2016), the use of strong 

alkalis (solution pH higher than 12) such as sodium hydroxide and sodium silicate as 

activators brings higher environmental impact than PC in aspects including human toxicity, 

fresh water and marine ecotoxicity. In the search for more cost-effective, user-friendly and 

environmentally friendly alternatives, the use of near-neutral salts (solution pH lower than 12) 

such as sodium carbonate (solution pH around 11) and/or sodium sulphate (solution pH 

around 7) as activators for blast furnace slag has attracted the attention of academia and 

industry (Bernal et al., 2014b, Bernal et al., 2015a, Glukhovsky et al., 1983, Jin and Al-

Tabbaa, 2015, Kovtun et al., 2015, Provis, 2014b, Shi and Day, 1996, Xu et al., 2008). The 

industrial production of sodium silicate is also an energy intensive process, and the 

commonly used furnace process requires reacting soda ash (Na2CO3) and sand (SiO2) at a 

melting temperature of around 1100 °C-1200 °C (Fawer et al., 1999). As for production of 

sodium carbonate chemicals, thought the industrial synthesis process could also be energy 

consuming, around a quarter of the world soda ash are produced from natural deposits 

(Kostick, 2012), the process of which leads to significantly lower greenhouse gases emission 

(Office of Air and Radiation, 2009). To replace sodium silicate with sodium carbonate, 

refined soda ash, as alternative alkali-activator would bring down the environmental impact 

of alkali-activated slag, especially in regions where there are abundant geological storage of 

soda ashes (or Trona) mining (Sharma, 1991). However, as a non-conventional type of 

activator, the utilisation of sodium carbonate as activator is still facing challenges before 

being carried out for industrial production. The challenges and possible solutions for 

implementation of sodium carbonate as activator will be discussed in detail in section 2.3. 
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2.1.2. Phase assemblage of alkali-activated slag binders 

 

The cementitious properties of alkali-activated binders depend on the bulk chemical 

composition and mineralogy of the raw material used, the fineness of the particles, and the 

type and amount of the activator used (Lothenbach and Gruskovnjak, 2007, Provis, 2014a, 

Provis and Bernal, 2014). Nevertheless, (Al,Na)-substituted calcium silicate hydrate (C-(N)-

A-S-H1) type gels and layered double hydroxides (LDHs), are two main groups of phases that  

commonly identified in alkali-activated blast furnace slag systems, as illustrated in Figure 2-1 

(Provis and Bernal, 2014).  

 

The main hydration product forming in alkali-activated slag cements, independent of the 

type of slag or activator used, is C-(N)-A-S-H type gel, which has a disordered tobermorite-

like structure (Fernández-Jiménez et al., 2003, Myers et al., 2013, Puertas et al., 2011). The 

commonly identified secondary phases include LDHs such as hydrotalcite-like and 

monocarboaluminate (AFm)-like phases, which may also be significantly disordered. A 

hydrotalcite-like phase, an Mg-Al layered double hydroxide), has been identified when the 

MgO content in the alkali-activated slag system is higher than 5-7% (Bernal et al., 2014c, 

Provis and Bernal, 2014, Song and Jennings, 1999). The AFm phase is not always identifiable 

by X-ray diffraction analysis; however, it has been suggested that its formation is taking place 

in these binders, and AFm-like layers are closely intermixed into the C-(A)-S-H structure on 

a nano-scale (Bernal et al., 2013, Wang and Scrivener, 1995). When high calcium (CaO > 30 

wt.%), low magnesium (MgO < 5 wt.%) blast furnace slags are activated, instead of 

observable hydrotalcite, crystalline zeolites such as gismondine, heulandite and garronite 

have been identified (Bernal et al., 2011b, Bernal et al., 2014c). 

                                                           
1 Cement chemistry notation is used throughout this study, with A=Al2O3, C=CaO, F=Fe2O3, H=H2O, M=MgO, 

N=Na2O, S=SiO2. 
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Figure 2-1 Process and reaction products of alkaline activation of a solid aluminosilicate 

precursor. High-calcium systems react according to the left-hand (blue) pathway, with the 

nature of secondary products determined by Mg content, whereas low-calcium systems react 

according to the right-hand (green) pathway. Adapted from (Provis and Bernal, 2014) 
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2.1.2.1. C-(N)-A-S-H type gels 

 

The C-(N)-A-S-H type gels typically identified in hardened alkali-activated slag cement, 

have a disordered tobermorite-like structure, with a bulk Ca/(Al+Si) ratio ranging from 0.7-

1.3 (Faucon et al., 1999, Fernández-Jiménez et al., 2003, L’Hôpital et al., 2015, Myers et al., 

2013, Puertas et al., 2011, Richardson et al., 1994, Schneider et al., 2001). The chemistry and 

local structure of these type of gels is strongly influenced by the slag chemistry, nature of the 

activator used, as well as the curing temperature (Ben Haha et al., 2012, Fernández-Jiménez 

et al., 2003, L’Hôpital et al., 2015, Myers et al., 2013, Myers et al., 2015a, Puertas et al., 

2011, Schneider et al., 2001). These C-(N)-A-S-H type gels have a higher amount of Na+ 

balancing the charges of end of chain Q1(I) silica sites (-Si-O-Na+) compared to those formed 

in Portland cement (PC), or PC/slag blends, as a result of the sodium rich environment (Hong 

and Glasser, 2002, Myers et al., 2014). The use of sodium metasilicate as activator favours 

the formation of highly cross-linked structures, with a higher percentage of Q2 and Q3 silica 

sites in the silica chains, while using sodium hydroxide as activator would result in lower 

cross-linking density in the silica sites (Fernández-Jiménez et al., 2003). 

 

 

Figure 2-2 Schematic representation of cross-linked and non-cross-linked chain structures of 

C-(N)-A-S-H gels. The red tetrahedra represent the aluminate species, and the white 

tetrahedra represent the silicate species. Adapted from (Myers et al., 2014). 

 

The Al/Si ratio in C-(N)-A-S-H type gel generally increases as the availability of Al2O3 in 

the slag used increases (Ben Haha et al., 2012, L’Hôpital et al., 2015, Schneider et al., 2001), 
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or when the availability of MgO in the slag used decreases (Ben Haha et al., 2011, Bernal et 

al., 2014c). When using non-silicate activators, such as sodium hydroxide, a higher alkalinity 

of the solution would often result in a higher Al/Si ratio as it promotes the dissolution of 

aluminium in the aqueous phase (L’Hôpital et al., 2015). While when using silica-based 

activators, such as sodium silicate, with the same alkali content (e.g. equivalent Na2O 

content), a lower overall Al/Si ratio in the C-(N)-A-S-H type gel could be achieved, as the 

addition of silica controls the pH of the solution and provides an additional silica source as 

well (Ben Haha et al., 2012, Fernández-Jiménez and Puertas, 2003b). However, since only 

Al[IV] exists in the C-(N)-A-S-H chain structure (Richardson et al., 1993, Schneider et al., 

2001, Wang and Scrivener, 2003), the Al-O-Al structure is ruled out from the chain structure 

based on Loewenstein’s law (Loewenstein, 1954). Therefore, the highest possible Al-

substitution in the C-(N)-S-H gel is limited to between 0.1 to 0.167 by its cross-linked 

structure, as shown in Figure 2-2 (L’Hôpital et al., 2015, Myers et al., 2013). However, the 

bulk Al/Si ratio could be higher as interlayer charge balancing Al[V] species might also exist 

(Andersen et al., 2006, Sun et al., 2006). The excess Al provided by the slag will promote 

formation of secondary reaction products such as layered double hydroxides, as a function of 

the type of activator used. 

 

2.1.2.2. Layered double hydroxides (LDHs) 

 

The family of layered double hydroxides (LDHs) is a group of minerals derived from the 

basic brucite-like, Mg(OH)2, lattice structure (hexagonal close-packed lattice structure) (Catti 

et al., 1995, Gastuche et al., 1967). The partial substitution of divalent cations in the brucite-

like structure by trivalent cations leads to a positively charged layered structure (Duan and 

Evans, 2006, Miyata, 1975, Sato et al., 1988). And since both the divalent cations and 

substitute trivalent cations can involve different elements, the general formula of LDHs can 

be concluded as [MII
1–xM

III
x(OH)2]

x+[Am–]x/m·nH2O (Duan and Evans, 2006, Marchi and 

Apesteguı́a, 1998, Miyata, 1975).  
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LDHs and their thermally treated forms (calcined LDH, or CLDH) have the capacity of 

removing anions from aqueous solution, which is influenced by the chemical composition of 

the brucite-like layer, including the element types of both MII (e.g. Cu, Zn, Ca, Mg) and MIII 

(e.g. Fe, Al), the MII/MIII ratios, as well as the anions initially occupying the interlayer 

(Miyata, 1983, Morimoto et al., 2012, Theiss et al., 2014, Wan et al., 2015).  

 

 

Figure 2-3 A polyhedral representation of the LDH structure showing the metal hydroxide 

octahedra stacked along the crystallographic c axis. Water and anions are present in the 

interlayer region. Each hydroxyl group (small dark blue dot connected with large red sphere 

representing H and O respectively) is oriented toward the interlayer region and may be 

hydrogen-bonded to the interlayer anions and water (Sideris et al., 2008). 

 

There are two types of layered double hydroxides (LDHs) commonly identified as reaction 

products in AAS cements: Mg-Al-LDHs (hydrotalcite-like phases) and Ca-Al-LDHs (calcium 

aluminate monosulfate, named AFm) with a hydrocalumite-like structure (e.g. 
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hemicarboaluminate, monocarboaluminate or monosulfoaluminate)), the physico-chemical 

properties of which are influenced by the slag chemistry and the type of activator used (Ben 

Haha et al., 2011, 2012, Bernal et al., 2014b, Bernal et al., 2014c, Provis and Bernal, 2014, 

Richardson et al., 1994).  

 

Mg-Al hydrotalcite-like phase 

 

Hydrotalcite-like phases share the general formula [Mg1–xAlx(OH)2]
x+[Am–]x/m·nH2O, 

where Am- is often Cl-, CO3
2- or NO3

-, and (1-x)/x is generally between 2 and 3. (Mills et al., 

2012, Miyata, 1975). Hydrotalcite-like phases are commonly identified in AAS systems, as 

secondary reaction products, when the MgO content in the raw material is higher than 5 

wt.%, in conjunction with the C-(A)-S-H gel which dominates the binder structure (Provis 

and Bernal, 2014) 

 

Hydrotalcite-like phases are often identified when slags with moderate to high MgO 

content ( 5 wt.%) are used to produce AAS, particularly when sodium silicate, hydroxide or 

carbonate are used as alkali activators (Ben Haha et al., 2011, Bernal et al., 2014c). An Mg/Al 

molar ratio between 2 to 3 generally characterises hydrotalcite-group minerals (Mills et al., 

2012, Miyata, 1975); Mg/Al~2.1 has been observed in long-term cured AAS samples (Ben 

Haha et al., 2011a, 2011b, Bernal et al., 2015a, Richardson, 2013a), and also predicted 

through thermodynamic modelling (Myers et al., 2015b). More ordered hydrotalcite-likes 

phase are identified in sodium hydroxide and sodium carbonate-activated slag cement, while 

less structural ordering was identified in sodium silicate-activated slag paste (Ben Haha et al., 

2011, Puertas et al., 2004). A carbonate-containing hydrotalcite-like phase is commonly 

inferred from experimental data (Ben Haha et al., 2011, Bernal et al., 2014c, Bernal et al., 

2015a), although formation of fully hydroxylated meixnerite-like phases (with only hydroxyl 

groups as interlayer species, seen Table 2-1) is predicted from thermodynamic modelling 

(Myers et al., 2015b). 
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Table 2-1 Chemical formulae and mineral names of hydrotalcite-like phase with Mg/Al ratios 

2 and 3 (Miyata, 1975, Theiss et al., 2015, Tongamp et al., 2007). 

Interlayer 

species 

Mg/Al=2 Mg/Al=3 

Chemical formula Mineral name Chemical formula Mineral name 

OH- only “M4AH13” 
no assigned 

mineral name 
Mg6Al2(OH)18•4H2O Meixnerite 

CO3
2- and 

OH- 

Mg4Al2(OH)12(OH, 

CO3)⋅3H2O 
Quintinite 

 

Mg6Al2(OH)16 (OH,CO3) 

•4(H2O) 

Hydrotalcite 

 

Ca-Al AFm phase 

 

Several different types of AFm-like Ca-Al LDH phases have been identified in AAS 

cements, generally with a Ca/Al ratio of around 2 and the same basic positively charged 

layered structure of Ca2Al(OH)6
+, but with different interlayer species including anions like 

OH-, CO3
2-, SO4

2-, and aluminosilicate groups, and some neutral water molecules. (Ben Haha 

et al., 2012, Bernal et al., 2014b, Matschei et al., 2007a, Schneider et al., 2001). Table 2-2 

summarises the chemical formulae and mineral names (as well as common names) of the 

AFm phases commonly identified in different AAS cements.  

 

The type of activator chosen for preparing AAS cement has a decisive influence on the 

mineralogy of AFm-type phase formed (Bernal et al., 2013, Myers et al., 2015b, Wang and 

Scrivener, 1995, 2003); and the chemical composition of the slag used, especially the Al2O3 

content has a strong influence on the content of AFm formed in AAS cement (Ben Haha et 

al., 2012, Myers et al., 2015b, Winnefeld et al., 2015). In sodium hydroxide and sodium 

silicate-activated slag cements, the AFm type phase strätlingite, with an aluminosilicate 

interlayer anion, has been identified (Wang and Scrivener, 2003). This mostly appears to be 

present in AAS in disordered forms that are difficult to detect by X-ray diffraction. However, 

this phase has been identified with combined chemical element analysis (SEM-EDX plots) 

and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy 

(Bernal et al., 2013, Wang and Scrivener, 1995) and been predicted from thermodynamic 

modelling (Myers et al., 2015b). Conversely, in sodium carbonate-activated slag cement, the 
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crystalline AFm phase  calcium hemicarboaluminate was identified in some early age 

samples, which converted to calcium monocarboaluminate (“monocarbonate”) gradually over 

the time of curing (Bernal et al., 2014b), consistent with the thermodynamic modelling 

predictions reported by Myers et al. (Myers et al., 2015b).  

 

Table 2-2 Chemical formulae and mineral names/common names of AFm phases that are 

often identified in AAS cement (Damidot et al., 1994, Matschei et al., 2007a, Rinaldi et al., 

1990, Wang and Scrivener, 2003). 

Interlayer species 

Ca/Al=2 

Chemical formula 
Mineral name/ 

Common name 

OH- only Ca2Al(OH)7⋅nH2O Hydroxy-AFm 

CO3
2- and OH- Ca2Al(OH)6(OH)x(CO3)(1-x)/2⋅nH2O 

Hemicarboaluminate (x=0.5) 

Monocarboaluminate (x=0) 

SO4
2-  Ca2Al(OH)6(SO4)0.5⋅nH2O Kuzelite/Monosulfoaluminate 

Aluminosilicate groups 

[AlSi(O8H8)0.25H2O]- 
Ca2Al(AlSi)O2(OH)10⋅2.25H2O Strätlingite 

 

2.2. Chloride induced damage in concrete 

 

The durability of a concrete is related to the longevity of both the cement matrix and the 

steel reinforcement in the concrete structure (Tuutti, 1982). Chloride induced pit corrosion is 

one of the major cause of structural failure in steel reinforced concretes, which is often 

induced by an increase in free chloride concentration in the pore solution at the interface 

between the steel surface and the cement matrix (Ann and Song, 2007, Tuutti, 1982, Yuan et 

al., 2009).  

 

In general, there are two types of chloride source which are important in concrete 

durability: the internal chloride supplied from the mix components or contaminated water for 

mixing, and external chloride, which is commonly supplied by de-icing salts or sea water 
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(Thunqvist, 2004). The internal chloride content should be controlled by the manufacture of 

the raw material; which in the case of PC the chloride content is restrained to less than 0.2 to 

0.4% by the mass of the cement for producing concrete with reinforcements, according to EN 

206:2013 (British Standards Institute, 2013). Also the mixing water should meet the standard 

by (British Standards Institute, 2002).  Therefore, the durability of a structural concrete 

produced using binder material that meets this standard is more likely to be subject to the 

attack from the external chlorides.  

The resistance of structural concretes to external chloride attack is largely dependent on 

the penetration rate of the external chloride (Andrade et al., 2000, Glasser et al., 2008, 

Samson et al., 2003), which reflects the reduction of chloride concentrations in pore solutions 

as a function of time and distance towards the surface. There are many factors that influence 

the penetration rate of chlorides, including the concentration of the external chlorides, the 

porosity and tortuosity of the binder materials, the chemical composition in its pore solution, 

the interaction between chlorides and the binder phases, and the weathering conditions under 

which the surface of the structural concretes are exposed (Andrade et al., 2000, Glasser et al., 

2008, Martı́n-Pérez et al., 2000, Samson et al., 2003, Song et al., 2008a).  

 

Alkali-activated slag (AAS) cements are often reported to exhibit low chloride 

permeability compared with Portland cement2 (Ismail et al., 2013, Ma et al., 2015, Shi, 1996). 

This has been partially attributed to the low capillarity identified in these materials (Bernal et 

al., 2011a, Shi, 2004). The potentially high3 chloride binding capacity of the AAS cement 

binder postulated in some studies might also contribute to the higher resistance to chloride 

ingress (Ismail et al., 2013, Ma et al., 2015), and this will be tested in detail in this thesis.  

 

                                                           
2 The chloride migration coefficient of cement mortars prepared using CEM I (according to BS EN 197-1:2011), 

with w/c ratio around 0.4 and sand fraction around 33%, are normally around 8±1 x10-12 m2/s (Elfmarkova et 

al., 2015, Halamickova et al., 1995, Yang et al., 2015) 
3 The chloride binding capacity of PC cement paste is normally below 20 mg/g (Delagrave et al., 1997, Luping 

and Nilsson, 1993). 
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The diffusivity of chlorides in cementitious materials is normally determined by 

standardized testing methods built from Fick’s 2nd law (Tang and Nilsson, 1992), which do 

not always take account the binding of free chloride in the cement matrix (Samson et al., 

2003). The retention of chlorides in alkali-activated slag binders by chemical binding is 

expected to delay the ionic transport of chlorides through the concrete, thus reducing the 

chloride migration rate (Martı́n-Pérez et al., 2000). For a more accurate prediction of the 

long–term performance of alkali-activated slag cement, understanding the ionic binding 

behavior (rates and capacities) of chlorides within a cementitious matrix is crucial in 

determining the rate of chloride transport through a cement or concrete sample (Angst et al., 

2009, Martı́n-Pérez et al., 2000).  

 

2.2.1. Chloride binding in AAS cements 

 

The interactions between chloride ions and binder materials take place mainly through 

surface adsorption and/or chemical reaction (including ion-exchange and lattice substitution). 

Previous studies have demonstrated that the chemistry of the pore solution and the phase 

assemblage of the binder materials are the main factors that control the chloride binding 

behaviour in cementitious materials (Arya et al., 1990, Delagrave et al., 1997, Dhir et al., 

1996, Ramachandran, 1971, Tritthart, 1989, Yuan et al., 2009).  

 

It is expected that the chloride binding capacity of AAS cements will be largely dependent 

on the chloride binding capacities of the individual phases forming in these systems, as the 

total binding capacity of the cement overall will be the sum of the capacities of the 

constituent phases.  

 

To understand the ionic interactions between chlorides and AAS binder, and to be able to 

appropriately estimate the binding capacities of these binder materials in service, it is 
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therefore important that the chloride binding behaviour of individual reaction products can be 

studied under chemical environment that resembles the pore solution in AAS. However, this 

knowledge is not available currently from the literature. It will be valuable to generate these 

data as a starting point for understanding the chloride induced-damage in AAS concrete. 

 

2.2.1.1. Pore solution chemistry of AAS 

 

Previous studies on blended Portland cement showed that the physico-chemical properties 

of the chloride-rich aqueous solution, including pH, temperature, and the existence of other 

cations and competitive ions, dominate the chloride up-take capacity of the cement binder 

(Arya et al., 1990, Saillio et al., 2014, Song et al., 2008b, Tritthart, 1989). Similarly, the 

chemistry of pore solution of AAS cement will influence the chloride binding behaviour of 

the binding gels forming in alkali-activated materials (Zhu et al., 2012). 

 

The water in a cement can be classified into four categories based on where it is present 

and its difficulty to be removed from the matrix: capillary water (including free water in large 

pores connected to the capillary pores), adsorbed water, interlayer water, and chemically 

bonded water (Feldman and Sereda, 1970, Jennings, 2008, Muller et al., 2013). The capillary 

water, existing in the capillary pores and connected large pores, with a diameter of around (or 

larger than) 50 nm, accounts for the major part of water content in cement after the setting of 

the cement. It is also generally referred to as pore solution (Barneyback and Diamond, 1981, 

Mehta and Monteiro, 2006, Page and Vennesland, 1983).  

 

Currently, most of the pore solution composition data available in the literature are for PC 

or PC-blended cement (Andersson et al., 1989, Vollpracht et al., 2016). Studies evaluating the 

pore solution chemistry of AAS system are, by comparison, limited. There are many factors 

that might influence the chemical composition and pH of the pore solution. Apart from the 
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properties of the raw material, the type of activator and the water/binder ratio used during the 

activation reaction, and the curing conditions, would all be expected to influence the 

chemistry of the pore solution (Lloyd et al., 2010, Puertas et al., 2004, Shi, 1996, Song and 

Jennings, 1999).  

 

Song & Jennings (Song and Jennings, 1999) studied the chemistry of the pore solution of 

AAS binders, and the influence of slag grind fineness and the concentration of the alkali 

activator on the pH and concentration of different cations (Si, Al, Ca, Mg), as a function of 

hydration time. This study showed that the slag fineness does not have a significant influence 

on the pH of the pore solution or the concentrations of the cations, except for Ca2+. A higher 

concentration of the alkali activator resulted in a higher pH and higher concentration of 

soluble Si and Al, but it does not increase the dissolved concentration of Ca2+. The main 

conclusion of that study was that the solubility of these cations is pH-dependent, which can 

also be explained by the solubility of the different species dissolving from the slag (Song and 

Jennings, 1999).  

 

Puertas et al. (Puertas et al., 2004) studied the influence of different activators on the pH 

and concentration of cations including Si, Al, Ca, Mg and Na, in the pore solution of alkali-

activated slag binders. For slag activated with sodium hydroxide, the availability of Si and Al 

is significantly higher than that activated by sodium silicate, which is attributed to the higher 

pH reached when using NaOH as the activator. Regardless of the type of activator, the free 

Na concentration observed in that study was always around 2000 mmol/L and the pH 

between 13.5-14. 

 

Myers et al. (Myers et al., 2015b) predicted the pore solution chemical compositions of 

sodium silicate-activated slag cement using thermodynamic modelling, which matches with 

experimental observations, shown in Figure 2-4. As slag reacts over time, the concentrations 
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of Na+ and OH- each approach 1000 mmol/L, and other ions co-exist in the pore solutions at 

concentrations at least one or two orders of magnitude lower than Na+ and OH-. The 

modelling data correlate well with previous studies using slags with similar chemical 

compositions (Gruskovnjak et al., 2006). 

 

 

Figure 2-4 Simulated pore solution chemical compositions of sodium silicate-activated slag 

cement (in lines). Symbols in the figure above represent the sodium silicate-activated slag 

pore solution data reported by (Gruskovnjak et al., 2006). Adapted from (Myers et al., 2015b) 

 

In summary, the pore solution of alkali-activated cement mostly consists of around 500 to 

3000 mmol/L Na with traces of Mg, Ca and Al (Gruskovnjak et al., 2006, Lloyd et al., 2010, 

Myers et al., 2015b, Puertas et al., 2004, Song and Jennings, 1999, Vollpracht et al., 2016). 

The concentration of Si is variable, depending on the type of activator used during the alkali-

activation reaction. The pH of the pore solution after 28 days of curing was about 13 to 14. 

Based on this, it is reasonable to synthesise simulated pore solution for the purpose of 

chloride binding experiments using 0.1-1.0 M NaOH solutions (Myers et al., 2015b, Yang et 
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al., 2014). The high OH- concentration in the pore solutions is expected to change the surface 

charging density (Trefalt et al., 2016), and therefore influence the interaction of chloride with 

binder gels through surface adsorption. The excess OH- anions might also act as competitors 

to Cl- for available ion-exchange sites (Birnin-Yauri and Glasser, 1998).  

 

Co-ions and counter-ions (effect of Na+, Ca2+, and OH-) 

 

Atmospheric carbonation of AAS leads to a reduction in alkalinity and an increase in the 

concentration of dissolved carbonates in the pore solution (Bernal et al., 2012, Fernández 

Bertos et al., 2004). Carbonate ions may also play important roles in altering chloride uptake 

by the solid phases present in in AAS cement; CO3
2- can be taken by LDH interlayers to form 

stable mineral phases (Morimoto et al., 2012). However, there has not been previous 

investigation of the stability of the chloride-bearing LDHs in the presence of carbonate ions, 

in simulated pore solutions relevant to AAS cements.  

 

The presence of divalent anions (e.g. Ca2+ and Mg2+) in the pore solution will favour 

chloride binding compared with monovalent anions (e.g. Na+ and K+) (Zhu et al., 2012). Goñi 

and Andrade (Goñi and Andrade, 1990) used synthetic pore solutions to investigate the 

chloride resistance of PC in presence of different cations (Na, K and Ca) and pH values. 

Kirkpatrick et al (Kirkpatrick et al., 2001) observed that the presence of Ca2+ in the pore 

solution/aqueous system promoted the uptake of chloride, as the Ca2+ forms ion couples with 

Cl-, also described as the ion couple mechanism (Eq.2-1 and Eq.2-2),  

 

-Si-OH ↔ -Si-O- + H+ Eq.2-1 

-Si-O- + Ca2+ + Cl- ↔ -Si-OCaCl Eq.2-2 

 

Consistent with this, Kameda et al. (Kameda et al., 2003) studied the influence of different 
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cations on the adsorption behaviour of hydrotalcite, demonstrating that the same amount of 

hydrotalcite-like phase could take up more chloride from CaCl2 solution than from a NaCl 

solution. The same trend was further highlighted by the same researcher in a later study 

(Kameda et al., 2005).  

 

2.2.1.2. Interaction between C-(N)-A-S-H and Cl- 

 

Beaudoin et al. (Beaudoin et al., 1990) studied the interaction between chloride and 

synthetic C-S-H gel, and found that the chloride interacting with C-S-H gel could be 

classified into two catalogues: “alcohol-insoluble chloride” (water leachable) and “tightly 

held chloride” which is not even leachable by water. These two chloride binding states are 

distinguished by their different binding energies, and could also be interpreted as 

chemisorption and lattice-substitution respectively. The binding capacity of C-S-H through 

chemisorption is dependent on the H2O/Si and Ca/Si ratios of the C-S-H paste; however, the 

total amount of lattice substituted chloride appeared to be independent to the properties of the 

C-S-H gel (Beaudoin et al., 1990). However, the definitions given for the states of chloride in 

this early research are too vague for use in detailed interpretation of binding environments, 

and no further characterisation results were provided for more accurate chemical 

explanations.  

 

Molecular dynamics modeling of chloride binding to the surfaces of calcium silicate 

phases (tobermorite) showed no surface bound Cl- ions, which proved the low chloride 

binding capacity of this type of phase (Kalinichev and Kirkpatrick, 2002). Solid-state 35Cl 

NMR showed that in general, Cl- is coordinated primarily by network-modifying alkali or 

alkaline earth cations. No evidence for Al-Cl bonding was identified (Stebbins and Du, 2002). 

It is widely accepted that the interactions between Cl- ions and C-(A)-S-H gel in portlandite 

saturated PC/blend cementitious binders are mainly governed by surface adsorption due to an 
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ionic pairing effect (≡Si-O-Ca-Cl), as expressed in Eq.2-1 and Eq.2-2. (Elakneswaran et al., 

2009). The binding capacity of the C-S-H phase through electrochemical processes depends 

on the availability of Ca2+ and pH. In Portland cement [CaOH]+ dissociated from portlandite 

has also been reported to have adsorption capacity (Eq.2-3), which could also be interpreted 

as an ion-exchange process (Eq.2-4).  

 

[CaOH]+ + Cl- ↔ CaOHCl Eq.2-3 

Ca(OH)2+ Cl- ↔ CaOHCl + OH-   Eq.2-4 

 

In the case of AAS systems, C-(N)-A-S-H gel will precipitate before forming portlandite, 

consuming the free Ca2+ in the pore solution (Chen et al., 2004, Lothenbach and 

Gruskovnjak, 2007). Therefore, the above reactions (Eq.2-3 and Eq.2-4,) are less likely to 

take place in AAS cement. The overcharging4 properties of C-S-H were observed by Labbez 

et al. (Labbez et al., 2007), and therefore the adsorption of Cl- onto the diffuse layer of the 

positively charged C-(A)-S-H gel surface is more plausible. For C-(N)-A-S-H type gels, it 

was observed that the alkali binding is higher when the Ca/Si ratio is reduced (Hong and 

Glasser, 1999), and Al/Si ratio is increased (Hong and Glasser, 2002). However, with Al-

substitution of the Si sites, the surface charge of C-(A)-S-H is reduced, and this might lead to 

lower capacity to physically bind chloride. 

 

2.2.1.3. Interaction between Mg-Al hydrotalcite-like phase and Cl- 

 

The chloride binding/ion-exchange behaviour of Mg-Al hydrotalcite-like phase has been 

studied in the past decades as these phases are effective adsorbents for purifying water (Lv et 

al., 2006a, Lv et al., 2006b). Earlier studies showed that Mg-Al hydrotalcite-like phase could 

be intercalated by Cl- ions (Boclair and Braterman, 1999, Constantino and Pinnavaia, 1995, 

                                                           
4An inversion of the effective surface charge of colloidal particles during electrokinetic measurements such as 

electrophoresis.  
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Miyata, 1975), although hydrotalcite-like phase with difference basal spacings were 

observed. Latter studies of surface complexation reactions of inorganic anions on 

hydrotalcite-like compounds (Constantino and Pinnavaia, 1995, Morimoto et al., 2012) 

showed that chloride ions would only be adsorbed/bound in the outer sphere of the 

hydrotalcite-like phase. The molecular dynamics model of chloride-bearing hydrotalcite 

based on experimental far infrared spectroscopy results predicted that, the interlayer Cl- ions  

are partially bonded to the positively charged interlayer through hydrogen bonds, as shown in 

Figure 2-5 (Wang et al., 2003). 

 

 

Figure 2-5 A fragment of the model Cl-bearing hydrotalcite crystal illustrating the 

instantaneous structure of the hydrogen-bonding network in the interlayer. The balls are Cl– 

ions and V-shaped moieties are water molecules. The dashed lines represent hydrogen bonds. 

The main hydroxide layer is represented by Mg/Al octahedra and OH sticks (Wang et al., 

2003). 

 

Although hydrotalcite has the exhibited the potential capability to bind free Cl present in 

the pore solution of cementitious systems, the binding capacity and stability of the chloride-

bearing hydrotalcite-like phase, especially in high alkali solutions (pH>13) is still yet to be 
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discovered. Also, the concentration of CO3
2- ions in pore solutions would increase as a result 

of natural carbonation process of the sample (Anstice et al., 2005, Bernal et al., 2012, Puertas 

et al., 2006). Carbonate ions could also be taken by hydrotalcite-like phase as interlayer 

species (Allada et al., 2005, Brindley and Kikkawa, 1979, 1980). For hydrotalcite-like phase, 

divalent ions like CO3
2- would be able to be bound in the inner sphere of the phase 

(Constantino and Pinnavaia, 1995, Morimoto et al., 2012). The thermodynamic properties of 

hydrotalcite-like phases with various interlayer species showed that the carbonated 

hydrotalcite-like phase showed the lowest the solubility comparing with those with halides 

(Cl- and I-) as interlayer species (Allada et al., 2005). This suggested that the chloride-bearing 

hydrotalcite-like phases in AAS cement can be unstable when carbonation occurred, and the 

bonded chlorides might readily be replaced by carbonate ions.  

 

2.2.1.4. Interaction between AFm phases and Cl- 

 

Similar to the Mg-Al hydrotalcite-like phase, the interaction between chloride and AFm 

phase, which also belongs to the LDHs group, would depend on the type of pre-existing 

interlayer ions in the AFm phase, and the chemistry of the aqueous solutions (Balonis et al., 

2010, Goñi et al., 2013, Mesbah et al., 2011a, Mesbah et al., 2012). Figure 2-6 summarises 

the different chloride-bearing AFm phases.  

 

Friedel’s salt (Ca4Al2(OH)6Cl2·2H2O) is commonly identified as the chloride ion-

exchanged product of calcium monosulfoaluminate hydrate (AFm). With limited Cl- in the 

system, Kuzel's salt Ca4Al2(SO4)0.5(Cl)(OH)12·6H2O would also form as a chloride–bearing 

AFm phase (Balonis et al., 2010). For calcium monocarboaluminate, when immersed at 

different Cl- concentrations, a Friedel’s salt type AFm(CO3,Cl) solid solution could be formed 

(Goñi et al., 2013, Mesbah et al., 2011a). Similar solid solutions were identified in 

hydrocalumite, AFm(OH,Cl) (Birnin-Yauri and Glasser, 1998). However, the interaction of 
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chloride ions with strätlingite has not yet been characterised in detail.  

 

 

Figure 2-6 Diagram of AFm phases with interlayer species, CO3
2- and OH- (Fischer and 

Kuzel, 1982, François et al., 1998, Kuzel and Pöllmann, 1991), Cl- and CO3
2- (Goñi et al., 

2013, Mesbah et al., 2011a), Cl- and OH- (Birnin-Yauri and Glasser, 1998, Renaudin et al., 

1999), Cl- and SO4
2- (Balonis et al., 2010, Mesbah et al., 2011b).  

 

 

2.2.2. Chloride diffusion in AAS cements 

 

There are commonly three means by which ion penetration occurs in concrete: capillary 

absorption, permeation, and diffusion (Goto and Roy, 1981, Page et al., 1981). Absorption is 

driven by moisture gradients, which usually happens on the surface of the material where the 

wetting and drying cycles take place (Tong and Gjørv, 2001, Zhang and Gjørv, 1996). 

Permeation requires a pressure gradient, an applied hydraulic head, so that the solution would 

be forced to penetrate through the matrix. Diffusion requires a concentration gradient of the 

chloride ion, which normally occurs when exposed to outer environments of chloride-bearing 

conditions. Of all these three processes, the main driving force to push chloride ions through 

saturated concrete is diffusion. The other two methods mainly influence the transportation of 
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water, and so may carry chloride along with the moving water (Goto and Roy, 1981, Yu and 

Page, 1991, Zhang and Gjørv, 1996). 

 

The chloride diffusion under steady-state follows Fick’s First Law, the one-dimensional 

situation of which is normally described as Eq.2-5 (Tang and Nilsson, 1992). For non-steady 

conditions Fick’s Second Law is applied, Eq.2-6 (Tang and Nilsson, 1992). In theory, Deff and 

Dnss should be the same, but in reality the values measured are often different (Tang and 

Sørensen, 2001). The diffusion coefficient is related to the microstructure of the concrete 

matrix, mostly the tortuosity in the pore network of the binders (Samson et al., 2003). 

 

J = - Deff 
𝒅𝑪

𝒅𝒙
 Eq.2-5 

𝝏𝑪

𝝏𝒕
 = Dnss 

𝝏𝟐𝑪

𝝏𝟐𝒙
 Eq.2-6 

J - flux of chloride ions, 

Deff – effective diffusion coefficient under steady-state conditions,  

C - concentration of chloride 

x - distance from the surface. 

Dnss - diffusion coefficient under non-steady-state conditions,  

 

 

The chloride diffusion coefficients are considered as critical parameters that reflect the 

mass transport of chloride ions in concrete (Tang and Nilsson, 1992). The chloride diffusion 

coefficients of cementitious materials are often determined by diffusion cells (Page et al., 

1981) under steady state diffusion tests, or/and by immersing samples in solutions for non-

steady state diffusion test (ASTM International, 2016, McGrath and Hooton, 1999, Nordtest 

Method, 1995). However, these test methods often require long test durations and might not 

always be suitable for engineering testing, for example the NordTest method NT BUILD 443 

would take at least 35 days (Nordtest Method, 1995). For being able to evaluate the concrete 

structure within a much shorter time, rapid test methods were developed based on electrically 

driven migration tests (ASTM International, 2012a, NordTest Method, 1999, Tang and 

Nilsson, 1992). 
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Between the existing test methods, the chloride ponding tests (NordTest method NT 

BUILD 443 and/or ASTM C-1543-10a) are proven to be the most precise method, however 

the NT BUILD 492 test is often preferred as a rapid but relatively precise method (NordTest 

Method, 1999, Tang, 1996, Tang and Sørensen, 2001). Figure 2-7 explains the test setup and 

the function of each part of the apparatus. An initial current of the tested sample at 30 V is 

taken for determining the appropriate testing voltage (between 30 V to 60 V) and duration 

(from 6 h to 96 h), according to the recommendations given by the standard.  

            

Figure 2-7 NT BUILD 492 setup (NordTest Method, 1999). 

 

2.3. Tailoring sodium carbonate-activated slag 

 

2.3.1. Challenges in using sodium carbonate as activator 

 

As discussed in section 2.1.1., the use of near neutral salt as activator has the potential 

benefits of lower environmental impact. However, it also faces challenges in aspects like pro-

longed setting and delayed strength development.  
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It is well known that alkali-activation of slags is achievable using mild alkaline solutions 

based on sodium carbonate (Bai et al., 2011, Escalante-García et al., 2003, Fernández-

Jiménez and Puertas, 2001, Glukhovsky et al., 1983, Provis and Bernal, 2014, Shi et al., 

2006). However, the alkali-activation of slags using near neutral salts has received relatively 

little attention in the past decades, as the binders produced usually takes longer time to harden 

than is commercially required for concrete production, and then present a delayed 

compressive strength development (Bernal et al., 2014a, Fernández-Jiménez and Puertas, 

2003b, Wang et al., 1994). Sodium carbonate-activated slag pastes often require up to 5 days 

to harden in some cases (Bernal et al., 2014b, Fernández-Jiménez and Puertas, 2001, 2003b, 

Shi and Day, 1996). The prolonged hardening process is related to the slow development of 

the alkalinity required to initiate the dissolution of the slag. In the alkali-activation process, 

Ca2+ released from the dissolved slag must react with CO3
2- from the activator to form 

carbonate salts such as calcite and gaylussite, to increase the pH through the release of 

hydroxide ions (Bernal et al., 2014b). This takes place prior to the precipitation of C-(A)-S-H 

gel, consuming the Ca2+ released by the slag, and as the initial pH of the sodium carbonate 

activator is below 12, the dissolution of silicate species is slow. With surplus CO3
2- ions 

present in the system, the pH of the liquid phase increases only slowly due to the 

unfavourable protonation process of the anhydrous slag (Bernal et al., 2014b, Fernández-

Jiménez and Puertas, 2001). After the CO3
2- ions have been exhausted, the later stage reaction 

mechanism is comparable to that of an NaOH-activated slag (Bernal et al., 2014b).  

 

The formation of these carbonate salts and carbonated LDHs, which appear to have close 

connection with the reaction kinetics of sodium carbonate-activated slag, is closely related to 

the chemistry of slag used. Slag chemistry particularly influences the formation of secondary 

reaction phases such as layered double hydroxides and/or zeolites (Ben Haha et al., 2011, 

2012, Bernal et al., 2014c, Provis and Bernal, 2014, Sakulich et al., 2010, Winnefeld et al., 

2015), consequently affecting the performance and durability of alkali-activated slag 

cements. Systematic studies of the influence of slag chemistry on sodium carbonate-activated 

slag have not previously been published, but the work which is available for silicate and 
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hydroxide activators shows that the different oxides present in the slag, such as MgO and 

Al2O3, control the kinetics of reaction and the phase assemblage (Ben Haha et al., 2011, 2012, 

Bernal et al., 2014c, Ehrenberg, 2015, Sakulich et al., 2010, Winnefeld et al., 2015). In most 

studies, where slags with moderate MgO content (5.3 wt.% to 11.8 wt.%) were used, the 

Na2CO3-activated slag paste required a longer time to set than when using equivalent doses of 

Na2SiO3 or NaOH activator (Bernal et al., 2014b, Fernández-Jiménez and Puertas, 2001, 

Fernández-Jiménez and Puertas, 2003b, Sakulich et al., 2009). Conversely, Shi and Day (Shi 

and Day, 1995) used a basic slag with high MgO content (14.6 wt.%), and identified that 

upon activation with sodium carbonate the samples set within 24 hours, which was faster than 

when using an equivalent dose of sodium silicate activator. This shows that the slag 

chemistry plays a significant role in defining the kinetics of reaction when using sodium 

carbonate as alkali activator, and higher MgO content favours a shorter setting time. 

 

2.3.2. The possibility of using CLDH as a smart addition 

 

The MgO content of slag influences the reaction kinetics, microstructure and strength 

development of sodium silicate- or hydroxide-activated slag cements, constrained by the 

availability of Al. This has been mainly related to the formation of layered double hydroxides 

with a hydrotalcite-like structure, and potential changes in the composition of C-(N)-A-S-H 

type gels forming in these binders as a function of MgO content (Ben Haha et al., 2011, 

Bernal et al., 2014c, Winnefeld et al., 2015). Hydrotalcite-like phases have also been seen to 

increase the resistance to carbonation of alkali silicate-activated slag (Bernal et al., 2014c); 

the high CO2 uptake capacity and selectivity of these Mg-Al layered double hydroxides make 

them effective as in-situ carbonate binding agents. 

 

Thermally treated LDHs, also described as calcined layered double hydroxides (CLDH), 

can re-crystallise to produce LDHs in an aqueous environment, and the chemical composition 

and structure of CLDH derived from hydrotalcite are related to the nature of the untreated 
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LDHs and the thermal activation conditions (Hibino et al., 1995, Mourad et al., 2011). CLDH 

has been widely used over the past decades as adsorbents for water purification (Lv et al., 

2006a, Lv et al., 2006b) and as a catalyst for organic synthesis (León et al., 2011, Tichit et al., 

1998). Recently, hydrotalcite and its modified forms have attracted the attention of the 

cement industry as additions to increase the amount of LDH phases forming in cements to 

improve the ionic binding of chlorides, and therefore the durability of steel-reinforced 

concretes (Yang et al., 2014, Yoon et al., 2014b).  

 

 

Figure 2-8 Schematic diagram of the decomposition of Mg-Al hydrotalcite into Mg-Al 

CLDH after calcination at 500 °C for 3 h (step 1), and recrystallisation of reformed 

hydrotalcite in electrolyte solution (step 2). 

 

Modified LDHs have emerged as a new type of ‘smart’ addition that is intended to 

improve the durability of concretes (Kayali et al., 2012, Yang et al., 2012, Yang et al., 2013b, 

Yoon et al., 2014b). Modified Ca-Al-LDH (Yang et al., 2012, Yang et al., 2013b, 2014) as 

well as modified Mg-Al-LDH (Yang et al., 2012, 2013a) in their pure form have showed 

significant chloride binding capacities in chloride-rich solutions. Similar to hydrotalcite-like 

phases, Ca-Al AFm phases could potentially also be used as chemical additions in 

cementitious materials. The modified Ca-Al AFm phases (intercalated with nitrate and amino 

benzonate anions) in alkaline aqueous environment (simulated pore solution, 0.1 M NaOH, 

that could resemble that of AAS system) forms a Ca-Al-Cl type phase that has a crystal 
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structure very close to that of Friedel’s salt (Birnin-Yauri and Glasser, 1998), which proved 

their chloride binding/ion-exchange capacity (Yang et al., 2012, Yang et al., 2013b, 2014). 

The use of CLDH in PC as a chemical addition to improve chloride binding capacity has been 

studied (Yoon et al., 2014b), and an improved chloride binding capacity has been observed in 

CLDH modified samples using chloride binding isotherms and X-ray fluorescence mapping. 

However, the binding of chloride onto recrystallised CLDH in the PC paste seemed to be 

restricted to physisorption (i.e. the chloride stayed in diffuse layers). The modified 

hydrotalcite-like phases (intercalated with nitrate and amino benzonate anions) were added to 

Portland cement based mortars and concretes to improve their performance against chloride 

penetration (Yang et al., 2015). Lower chloride migration coefficients (measured by NT 

BUILD 492) were measured from hydrotalcite-like phase modified sample, possibly 

associated with the lower porosity exhibited by those specimens. The addition of modified 

hydrotalcite for improving the performance of PC mortars is an innovative approach to 

improve durability of these materials. However, the influence of adding modified hydrotalcite 

at a microstructural level has not been discussed yet.  

 

The addition of CLDH, or modified hydrotalcite-like phase into alkali-activated slag 

cement has not been studied so far. Based on its behaviour in aqueous solutions and in PC 

cement, it is possible that it will continue performing as effective ion binding phase, taking 

Cl- and/or CO3
2- as interlayer species. Although the production of CLDH will also have its 

own environmental impact, only a small fraction of CLDH incorporation might be needed to 

achieve potentially significantly higher performance and durability. However, as  a promising 

candidate for tailoring the sodium carbonate-activated slag cement, systematic study of its 

role on sodium carbonate-activated slag cement is necessary. 
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2.4. Conclusions 

 

In summary, there has been emerging interest from both academic and industry in 

optimising the production of alkali-activated slag cement, to achieve AAS cement products 

not only with low global warming potential but also with minimised environmental impacts 

in other categories, without having to sacrifice significantly its cost, mechanical performance 

and longevity. Replacing the highly alkaline activators, including sodium hydroxide and 

sodium silicate, completely with near-neutral salts such as study sodium carbonate, could 

significantly reduce the overall environmental impact for countries/regions with significant 

geological reserves of soda ash minerals. However, based on the current state of art, efforts 

will be needed to improve the setting behaviour, the strength and the durability performance 

of sodium carbonate-activated slag cement. The limited information available in the literature 

discussing chloride interactions with alkali-activated binder materials has also added 

difficulties for understanding the chloride-induced damage to steel in this type of novel 

cement.  

 

This study is devoted to fill those knowledge gaps in the literature, and to provide a 

feasible solution to guarantee the performance of the sodium carbonate-activated slag cement 

while keeping its sustainability, by incorporating into the mix design a small amount of 

CLDH minerals as smart additions. In the following chapters, the role of CLDH in 

controlling the kinetics of reaction and development of desirable microstructures in sodium 

carbonate-activated slag cement will be discussed. The ionic interactions between potentially 

corrosive ions and individual reaction products in AAS cement in highly alkaline solutions 

have been studied in detail, to provide significant advances in understanding the durability of 

CLDH modified sodium carbonate-activated slag cement.  
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MATERIALS AND METHODS  

 

3.1. Materials 

3.1.1. Blast furnace slags 

 

Four commercial slags were used in this study, whose chemical composition is listed in 

Table 3-1. The slag M01 was a granulated blast furnace slag from the factory Acerías Paz del 

Ríow in Columbia, the slag M05 was supplied by Zeobond Pty Ltd., Australia, the slag M06 

was donated by Ecocem France, and the slag M14 was donated by Prof. Joseé Duchesne from 

Université Laval, Canada. The Blaine fineness, and the average particle size d50 determined 

using laser diffraction, of each slag are reported in Table 3-2. Slag IDs are assigned according 

to the MgO content of each of the materials. All four slags were used in Chapter 4, and only 

slag M06 was used in Chapter 6 and Chapter 7. 

 

Table 3-1 Chemical composition of anhydrous slags, determined by X-ray fluorescence 

(XRF). LOI corresponds to the loss on ignition at 1000°C. All elements are represented on an 

oxide basis regardless of their oxidation state in the slag 

Slag CaO SiO2 Al2O3 MgO SO3 Fe2O3 TiO2 MnO K2O Others LOI 

M01 42.9 31.6 14.6 1.2 2.0 1.1 0.4 0.3 0.3 0.2 2.0 

M05 42.3 32.3 13.3 5.2 2.9 0.6 0.5 0.2 0.3 0.0 -0.5 

M06 41.3 36.0 11.3 6.5 0.7 0.3 0.5 0.3 0.4 0.3 2.0 

M14 33.9 37.4 9.0 14.3 0.7 0.4 0.4 1.0 0.5 0.4 1.9 

 

Table 3-2 Physical properties of the anhydrous blast furnace slags 

Slag 
Blaine Fineness 

 (cm2/g)+ 
d50 (𝛍m) ++ 

M01 4012  49 14.8 

M05 4435  109 13.8 

M06 5056  22 11.2 

M14 4794  44 14.3 
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+ Conducted according to ASTM C204-11; quoted uncertainties are the standard deviation of four replicate 

determinations 

++Determined by laser diffraction using a dry dispersion unit, at least 4 measurements were taken for each slag, 

with standard deviation ±0.1 𝛍m. 

3.1.2. Alkali activators 

Two types of activators, a commercial sodium silicate and sodium carbonate were used in 

this research. The activators were prepared by pre-dissolving analytical grade sodium 

metasilicate powder (Sigma Aldrich, Na2SiO3 ≥ 99.5%) and sodium carbonate powder 

(Sigma Aldrich, Na2CO3 ≥ 99.5%) into distilled water. 

 

3.1.3. Calcined layered double hydroxides (CLDHs) 

 

CLDH was produced by thermally treating a synthetic hydrotalcite (Sigma Aldrich) at 

500°C at a heating rate of 5°C/min, and with a hold time of 3 h, then allowing the material to 

cool naturally inside the furnace to 105°C before it was moved to a sealed centrifuge tube and 

kept in a desiccator under vacuum. This is aiming for preventing the contamination of CLDH 

by water and/or CO2 from the atmosphere. The MgO and Al2O3 contents of the hydrotalcite 

prior to thermal treatment were determined by XRF. CO2 and H2O contents (approximately 

add up to 45.5 wt.% according to Figure 3-1) were not detectable using XRF, and therefore 

determined using a CHNS Analyser (Perkin Elmer 2400). 

 

Table 3-3 Chemical compositions of commercial hydrotalcite, determined by X-ray 

fluorescence (XRF), the mass percent is balanced by the release of H2O and CO2 during 

heating up 
Compound 

(%) 
MgO Al2O3 SiO2 P2O5 SO3 CaO Mn3O4 ZnO SrO ZrO2 Sum 

Hydrotalcite 34.97 18.98 0.01 0.06 0.18 0.30 0.01 0.01 0.01 0.01 54.53 

 

Figure 3-1 shows simultaneous thermogravimetry-mass spectrometry (TG-MS) data for 

the commercial synthetic hydrotalcite used in this study. The chemical compositions yielded 

a charge-balanced chemical composition of Mg0.7Al0.3(OH)2(CO3)0.15∙0.63H2O. The thermal 

treatment conditions adopted in this study were selected based on the experimental results 
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discussed previously by Hibino et al. (Hibino et al., 1995). The thermal behaviour of 

synthetic hydrotalcite can be divided into three major steps: 

 

 

Figure 3-1 TG-MS curve of commercial hydrotalcite, obtained using a Perkin Elmer TGA 

4000 instrument coupled with a Hiden mass spectrometer, heating from room temperature to 

1000°C at 5°/min.  

 

22°C - 243°C: removal of free water and combined water   

Mg0.7Al0.3(OH)2(CO3)0.15∙0.63H2O → Mg0.7Al0.3(OH)2(CO3)0.15 + 0.63H2O    Eq.3-1 

243°C - 358°C: partial dehydroxylation   

Mg0.7Al0.3(OH)2(CO3)0.15 → Mg0.7Al0.3(O2-n/2H2-n) (CO3)0.15 + n/2H2O  Eq.3-2 

358°C - 500°C: full dehydroxylation and decarbonation  

Mg0.7Al0.3(O2-n/2H2-n) (CO3)0.15 → Mg0.7Al0.3O1.15  (CLDH) + (2-n)H2O + 0.15CO2 Eq.3-3 
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The CLDH used in this study (calcined at 500°C for 3h) was the product of dehydration, 

dehydroxylation and decarbonation of synthetic hydrotalcite. The CLDH produced in this 

study has a chemical composition of Mg0.7Al0.3O1.15, as determined by XRF given the fact 

that during calcination only CO2 and H2O are released from solids, and after calcination Mg 

is in oxidation status Mg2+ and Al in Al3+ (Hibino et al., 1995).  

3.2. Sample preparation 

3.2.1. Synthetic gels 

 

Three types of synthetic cementitious phases were prepared in this study: C-(N)-A-S-H 

type gel, a Mg-Al hydrotalcite-like phase, and the Ca-Al AFm phase strätlingite, for studying 

the interactions with chloride rich pore solutions. The methods for preparing these synthetic 

cementitious phases are described in detail in Chapter 5. 

 

3.2.2. Alkali activated slag pastes 

 

Sodium carbonate-activated slag pastes with the addition of different amounts of CLDH 

were produced using each of the slags studied. Sodium metasilicate-activated slag paste was 

prepared using only slag M06. The formulations of the pastes produced are shown in Table 3-

4. For mix design purposes, the CLDH added to these cements was considered as an additive, 

and the amount of activator and water added to each unit mass of slag were kept constant (the 

effect of CLDH on consuming free water was also evaluated with additional samples, see 

Chapter 4, section 4.2. for more details). All the pastes were cast in centrifuge tubes, then 

sealed and stored at room temperature (20  3 C) until testing. 
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Table 3-4 Formulations of the pastes produced using different slags. The pH values of the 

activator solutions were determined using a digital pH meter (Oakton Acorn Series). 

+ Sample 

ID 

Slag 

(g) 

Na2CO3 

(g) 

H2O 

(g) 

Chemical 

additive 

CLDH(g) 

%CLDH 

(wt.%) 

%Na2CO3 

(wt.%) 

pH of 

activator 

++w/b 

P-NC-0 10 0.8 4.32 none 0 8.00 11.70 0.40 

- 10 0.8 4.32 0.2 2 8.00 11.70 0.40 

P-NC-1 10 0.8 4.32 0.5 5 8.00 11.70 0.4 

- 10 0.8 4.32 1.0 10 8.00 11.70 0.40 

 
Slag 

(g) 

Na2SiO3 

(g) 

H2O 

(g) 

Chemical 

additive (g) 

%CLDH 

(wt.%) 

%Na2SiO3 

(wt.%) 

+++pH of 

activator 
w/b* 

P-NS-0 10 0.7 4.28 none 0 7.00 >13 0.40 

+ Sample ID used in Chapter 6 and Chapter 7. 

++w/b = water/binder mass ratio (where binder is defined as slag + mass of solid sodium carbonate) 

+++ When measured using the pH meter the reading was always above 13, however since the sodium silicate 

solution under measurement was a gel-type viscous solution, a fully stabilised reading was not able to be 

achieved. 

In Chapter 4, four different slags were used and only sodium carbonate-activated slag 

pastes were studied. The samples prepared without CLDH addition are referred to as 0 wt.%, 

while samples prepared with 2 wt.% and 10 wt.% of CLDH (by mass of anhydrous slag) are 

described as modified samples. 

 

In Chapter 6, only slag M06 was studied, and both sodium carbonate-activated slag paste, 

with 0 wt.% and 5 wt.% CLDH and sodium metasilicate-activated slag paste, were prepared. 

The sample IDs are assigned as shown in Table 3-4. The activator dose (mass percent of 

either alkali activator solid with respect the to the mass of the slag used) of 7 wt.% for 

sodium silicate-activated slag paste was chosen as it was the maximum activator dose to 

achieve setting of the paste within 24 hours, a suitable workable time for implementation. 

The sodium silicate-activated slag paste with an activator dose of 8 wt.% was observed to 

require a longer time to set.  
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3.2.3. Alkali activated slag mortars 

 

The three mix designs of alkali-activated slag mortars studied in Chapter 6 are shown in 

Table 3-5. Only slag M06 was used for preparing alkali activated slag mortars. Both sodium 

carbonate activator and sodium metasilicate activator were studied. A sand to slag ratio of 3:1 

was applied to all samples. Standard sand (following BS EN 196-1:2005) was used for 

preparing the mortar specimens. 

 

Table 3-5 Mix design of the mortar samples assessed in this study  

Sample 

I.D. 

Activator 

type 

Mass of the 

activator (g) 
CLDH (g) 

Anhydrous 

slag (g) 

Water 

(g) 
Sand (g) +w/b 

M-NC-0 
Na2CO3 

8 0 100 43.2 300 0.4 

M-NC-1 8 5 100 43.2 300 0.4 

M-NS-0 Na2SiO3 7 0 100 42.8 300 0.4 

+w/b = water/binder mass ratio (where binder is defined as slag + mass of activator) 

 

Sodium silicate activated slag mortar specimens were prepared as a reference for 

evaluation of sodium carbonate activated slag mortar, with and without CLDH modification. 

Mortars were moulded in two types of moulds, 50 mm cubic moulds and ∅100 mm×200 mm 

cylinder moulds. All specimens were demoulded after 2 days of casting, kept in firmly sealed 

plastic bags and stored at 20 ± 3 °C. Both monoliths (50 mm×50 mm×50 mm), and thick 

discs (∅ 100mm×50 mm) were prepared for different tests. 

 

3.3. Test methods 

 

Kinetics of reaction of fresh slag pastes/ mortars were evaluated by isothermal calorimetry. 

In Chapter 4, alkali-activated slag paste samples cured for 28, 90 and 180 days were crushed 

and immediately treated with acetone to arrest reaction. The powdered specimens were then 
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dried in a desiccator for 24 h to remove the solvent, and then analysed by X-ray diffraction 

(XRD), thermogravimetric analysis, and 27Al and 29Si MAS NMR.  

 

For solid samples analysed in Chapter 5 and Chapter 6, the separated solids were dried in a 

vacuum desiccator at a controlled relative humidity at 30 ± 3% (reached using saturated 

CaCl2 salt) for 4 days before further analysis. 

 

3.3.1. Isothermal calorimetry 

 

Isothermal calorimetry can directly measure the heat flow released from the freshly mixed 

cement paste, and have been  used widely for studying the kinetics of reaction of 

cementitious materials, including alkali-activated slag cement (Alonso and Palomo, 2001, Shi 

and Day, 1995). 

 

For this study, all isothermal calorimetry experiments were conducted using a TAM Air 

isothermal calorimeter at a base temperature of 25 ± 0.02°C. The fresh slag cement mix was 

prepared by external hand-mixing for 3 minutes, weighed into an ampoule, and immediately 

placed in the calorimeter to record heat flow. For fresh pastes, approximately 20 g of freshly 

mixed samples were used, and heat flow during the first 300 h of reaction was recorded. For 

fresh mortars, about 30 g of samples were used, and the heat flows were recorded for the first 

100 h. All results were normalised by the total mass of sample put in, either paste or mortar. 

 

3.3.2. X-ray diffraction (XRD) 

 

Alkali-activated binders are known to be X-ray amorphous, consistent with the formation of 

poorly ordered reaction products. The diffractograms of these materials usually show a hump 

associated with the glassy component of the raw materials, which varies in position 
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depending on the chemistry of the precursor used. Taking slag and fly ash as examples for 

high-Ca and low-Ca binders, the anhydrous slag usually shows a hump between 2θ=25°-30°, 

while fly ash shows a wider hump at 2θ=15°-35° (Ismail et al., 2014).  

 

The main hydration products forming upon alkali-activation of high-Ca or low-Ca 

precursor, C-(A)-S-H and N-A-S-(H) type gels, are difficult to identify by XRD analysis as 

these type of gels present a poorly crystalline structure. The crystalline phases that are usually 

identified from the XRD results are secondary products forming in these binders (e.g. 

hydrotalcite-like phase, AFm phases, zeolites, carbonates among others), and the non-reactive 

phases present in the raw materials (Bernal et al., 2013, Burciaga-Díaz and Escalante-García, 

2013, Ismail et al., 2014).  

 

In this study, a Bruker D2 Phaser instrument with Cu-Kα radiation and a nickel filter was 

used to carry out XRD analysis. A step size of 0.02° and a counting time of 3 s/step was used 

for all measurements. For samples studied in Chapter 4, diffraction patterns from 5° to 55° 

(2θ) were recorded.  In Chapter 6, diffraction patterns from 5° to 25° (2θ) were recorded. 

 

For the synthetic cementitious phases produced and evaluated in Chapter 5, the same 

diffractometer and step size was used, but a counting time of 0.5 s/ step was applied. This is 

because the synthetic gels prepared in Chapter 5 were crystallised and/or semi-crystallised, 

therefore a counting time of 0.5 s/step was sufficient for obtaining high quality XRD results. 

And for C-(N)-A-S-H gel and strätlingite, diffraction patterns from 5° to 50° (2θ) were 

recorded, and for hydrotalcite-like phase, from 5° to 70° (2θ) was recorded.  

 

3.3.3. Thermogravimetry analysis 

 

Thermogravimetric analysis (TGA) of all samples studied in this research was carried out 

in a Perkin Elmer TGA 4000 instrument coupled with a Hiden mass spectrometer. 20 mg of 



Chapter 3. 

43 

sample was tested from 30°C to 1000°C at a heating rate of 3°C/min. Commercial-grade 

nitrogen was used as protective gas at a flow rate of 20 mL/min. 

 

3.3.4. Scanning electron microscopy 

 

Environmental scanning electron microscopy and energy dispersive X-ray spectroscopy 

(SEM-EDX) were conducted, using a Hitachi benchtop ESEM TM3030 coupled with a 

Bruker Quantax 70 X-ray microanalysis detector. An acceleration voltage of 15 kV and a 

working distance of 1 mm were applied, and the acceleration voltage used in this study 

implies a hemispherical interaction volume with maximum penetration depth of around 1.5 

μm - 2.5 μm (Wong and Buenfeld, 2006)Polished but uncoated samples were used for both 

backscattered electron imaging and EDX analysis under charge-up reduction mode. For per 

sample at each age and formulation, over 60 points (EDX spots) were randomly taken from 5 

to 6 SEM images with a magnification factor of 4000. Between each data point taken from 

each image there was a minimum distance of 6 μm.  

 

3.3.5. 27Al and 29Si MAS NMR 

 

Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is a 

powerful technique that can provide structural information for amorphous and poorly 

crystalline materials. In alkali-activated binder systems, 29Si MAS NMR has been used to 

determine the extent of the reaction, the polymerisation degree of the aluminium-silicate 

chains and the extent of incorporation of Al into the C-S-H (Schneider et al., 2001, Wang and 

Scrivener, 2003). 27Al MAS NMR is used to identify the Al environments, either tetrahedral 

or octahedral coordinated, present in C-(A)-S-H type gels and in other secondary hydration 

phases (Fig. 3) forming in alkali-activated cements (Bernal et al., 2014c, Sun et al., 2006). 

 

For this study, solid-state 27Al MAS NMR spectra were acquired at 104.20 MHz, on a 

Varian  VNMRS 400 (9.4 T)  spectrometer and a probe for 4 mm o.d. zirconia rotors, a 
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spinning speed of 12-14 kHz with a pulse duration of 1 µs (approximately 25°), a relaxation 

delay of 0.2 s, and a minimum of 7000 repetitions. 29Si MAS NMR spectra were collected at 

79.4 MHz on the same spectrometer using a probe for 6.0 mm o.d. zirconia rotors, and a 

spinning speed of 6 kHz. The 29Si MAS NMR were collected with a 90° pulse duration of 4.5 

or 6.4 µs, a relaxation delay of 5 s, and between 6000 and 17000 repetitions. 29Si and 27Al 

chemical shifts are referenced to external samples of tetramethylsilane (TMS) and a 1.0 M 

aqueous solution of Al(NO3)3, respectively.  

 

3.3.6. Ion selective electrode (ISE) 

 

The chloride concentration in the supernatant separated from various samples, discussed in 

Chapter 5 and Chapter 6, was obtained using an ion selective electrode (Cole-Parmer Epoxy 

solid-state chloride electrode, accuracy ± 2%) according to the standard test method for 

chloride ions in water (ASTM D512 – 12 (ASTM International, 2012b)). 

 

 

 

 

 

 

 

 

xxxxxxxxxxxxx 
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Chapter 4.  
1                                                                                                                                                                   1 

CONTROLLING THE REACTION 

KINETICS OF SODIUM CARBONATE-

ACTIVATED SLAG CEMENTS USING 

CALCINED LAYERED DOUBLE 

HYDROXIDES 

 

Note: This chapter is based primarily on the paper “Controlling the reaction kinetics of 

sodium carbonate-activated slag cements using calcined layered double hydroxides”, 

by X. Ke, S. A. Bernal, J. L. Provis, published in Cement and Concrete Research, 

2016, 81, pp. 24-37.  

 

4.1. Introduction 

 

In sodium carbonate activated slags, a prolonged induction period of up to 5 days has been 

observed (Bernal et al., 2014b, Fernández-Jiménez and Puertas, 2001, Fernández-Jiménez 

and Puertas, 2003b, Shi and Day, 1996). This was initially attributed to the reduced pH 

provided by this activator solution, compared with a sodium silicate or hydroxide 

(Fernández-Jiménez and Puertas, 2001, Shi and Day, 1995), as a limited dissolution rate of 

calcium aluminosilicate glasses is observed at moderate pH (11) (Snellings, 2015). However, 

in recent years it has been proposed that the delayed setting is mainly an effect of the 

preferential reaction of the functional group present in the activator (CO3
2-), with the calcium 

dissolving from the slag, to form calcite and mixed sodium-calcium carbonates prior to C-

(A)-S-H formation (Bernal et al., 2014b).  Bernal et al. (2014b) proposed that after the CO3
2- 

ions in the liquid phase are consumed, as formation of carbonate salts takes place, the 
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alkalinity of the pore solution is likely to increase. This speeds up the dissolution process of 

the slag, so that reaction proceeds similarly to NaOH-activation of the slag. Understanding 

the mechanism of reaction of these binders has allowed identification of strategies for 

controlling and modifying the hydration kinetics of slags activated by sodium carbonate, and 

accelerating the strength development of these materials. One of the potential alternatives is 

to promote a reaction mechanism that consumes the CO3
2- from the activator at the early 

stages.  

 

Layered double hydroxides (LDHs) are minerals with positively charged brucite-like 

layered structures, which allow the incorporation/ion-exchange of anion species between the 

positive layers (Miyata, 1975). Thermally treated hydrotalcite, which is normally described as 

calcined layered double hydroxide (CLDH), is the product of dehydration, dehydroxylation 

and decarbonation processes of LDHs (Hibino et al., 1995). It has been widely used in the 

past decades as an adsorbent for water purification, as it has a high capacity for uptake of 

negative ions from the solution through ion-exchange (Lv et al., 2006b). CLDHs can also 

react with CO3
2- ions to form hydrotalcite-like phases, corresponding to those that are 

commonly identified as secondary reaction phases in alkali-activated slag systems when the 

MgO content in the raw material is higher than 5 wt.% (Morimoto et al., 2012, Provis and 

Bernal, 2014). Therefore, CLDH could be a promising candidate to perform as a carbonate 

binding agent to expedite the reaction kinetics of sodium carbonate activated slags without 

introducing foreign components into the binder. 

 

In this chapter, four commercial slags with different chemical compositions were used to 

produce Na2CO3-activated slag cements. The relationships between slag chemistry and 

sodium carbonate activation are discussed, covering both kinetics of reaction and phase 

assemblage evolution. CLDH was added as a carbonate binding agent in four different 

Na2CO3-activated slag systems, and its effects on the reaction rate, setting time and phase 

assemblage evolution were evaluated.  
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4.2. Materials and methods 

 

Four different source of slag with different chemical compositions were used in this 

chapter. Sodium carbonate activated slag pastes with different doses of CLDH addition were 

prepared, as described in Chapter 3. To aid in understanding the effect of addition of CLDH 

to the activated system, the recrystallisation of pure CLDH in sodium carbonate solution was 

investigated, as well as two alkali-activated slag paste samples as reference samples prepared 

according to Table 4-2.  

 

The recrystallisation of CLDH in sodium carbonate solution was investigated using the 

mix design shown in Table 4-1. The same sodium carbonate activator was used here, and the 

ratio of CLDH to activator solution was equivalent to that used in the 2 wt.% and 10 wt.% 

CLDH modified samples (but without the addition of any slag).  

 

Table 4-1 Mix designs used for studying the recrystallisation of CLDH 

Sample ID CLDH (g) 
Activating Solution 

Na2CO3 (g) H2O (g) 

2% CLDH 0.40 1.60 8.64 

10% CLDH 2.00 1.60 8.64 

 

Four parallel samples were prepared for each mixture in 15 mL centrifuge tubes. All the 

samples were kept in a roller mixer continuously for the first 3 days, and after this they were 

kept in the roller mixer for 8 hours per day (to avoid a fire hazard caused by overheating of 

the roller mixer during out-of-work hours). For each mix, the slurry was centrifuged and 

separated after 30 min, 1 h, 24 h and 7 days of reaction. The pH of the separated solution was 

measured using a pH electrode. The solid was dried in a drying oven at 40 °C for 24 hours 
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before XRD measurement, under the same instrument operating conditions as described in 

Chapter 3. 

Two reference alkali-activated slag paste samples were prepared according to Table 4-2. 

Only slag M06 was used in this part of the study.  

 For sample Ref-1, synthetic hydrotalcite (Sigma Aldrich) was used instead of CLDH, 

with the aim of evaluating potential seeding effects related to LDH addition.  

 For sample Ref-2, a water to binder (anhydrous slag + anhydrous activator) ratio of 

0.35 was used instead of 0.40, and no CLDH was added. The w/b ratio 0.35 was 

calculated by subtracting the amount of water consumed by CLDH from the total 

water content of the paste. This sample was designed with the aim of identifying any 

changes the in kinetics of reaction due to the water consumed during the re-hydration 

of the CLDH; this will be discussed in detail in section 4.4.2.  

 

Table 4-2 Formulations of the additional pastes produced using slag M06. 

No. Slag (g) 
Na2CO3  

(g) 

H2O 

(g) 

Chemical 

additive (g) 

%Na2CO3 

(wt.%) 

pH of 

activator 
w/b* 

Ref-1 10 (M06) 0.80 4.32 1.0 HT 8.0 11.70 0.40 

Ref-2 10 (M06) 0.80 3.78 none 8.0 11.89 0.35 

*w/b = water/binder mass ratio (where binder is defined as slag + mass of sodium carbonate) 

 

4.3. Results  

4.3.1. Kinetics of reaction 

 

Figure 4-1 shows the heat flow from the four different slags studied, during activation with 

a sodium carbonate solution (Table 4-3), with addition of 0, 2 and 10 wt.% of CLDH. In all 

samples it is observed that the reaction takes place in two stages. The first occurs within the 

first 10 h of reaction (insets on each part of Figure 4-1), except for the case of the lowest-

MgO slag (M01), where a low heat release was detected due to the low level of precipitation 
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of reaction products in the first hours of reaction. The first stage of the reaction is followed by 

a dormant or induction period, where a very low rate of heat release was detected. The 

duration of the pre-induction period is strongly dependent on the slag composition and the 

level of CLDH addition. In the second stage of heat release, the nucleation, growth and 

precipitation of a large amount of reaction products takes place, which is associated with a 

high heat release. This takes place between 25 h and 300 h after the start of the reaction, 

depending on the slag composition and the addition of CLDH. Samples prepared without 

CLDH addition show a very long delay in the appearance of this peak, consistent with the 

known slow setting of Na2CO3-activated slag binders, although the MgO content of the slag 

is seen to have a significant influence on the time at which this peak appears. 

 

In the first stage of the reaction, a pre-induction band composed of two distinctive peaks 

was observed in all the samples, except for slag M01. The pre-induction peaks are associated 

with the formation of calcite and gaylussite, which have been reported as the initial reaction 

products forming in Na2CO3-activated slag binders (Bernal et al., 2014b, Fernández-Jiménez 

and Puertas, 2001). As slag dissolution progresses, even at low rates within the first hours of 

reaction, the formation of the reaction product phases such as calcium silicate hydrates (C-S-

H) and secondary aluminate-containing reaction products has been observed (Bernal et al., 

2014b, Fernández-Jiménez and Puertas, 2001, Fernández-Jiménez and Puertas, 2003b, Shi 

and Day, 1996), corresponding to the second peak identified within the pre-induction period 

(insets of each part of Figure 4-1). 

 

For the slag M01 in the absence of CLDH, the initial precipitation of reaction products was 

observed after 25.7 h, and the peak was low and broad. The slowly evolving pre-induction 

period was followed by a prolonged dormant period that lasted for 90.1 h before the 

acceleration period started. The acceleration and deceleration period evolved slowly, with the 

slowest rate of acceleration among all of the samples studied. The addition of 2 wt.% and 10 

wt.% CLDH shortened the dormant period to 32.0 h and 6.7 h (Table 4-3), respectively, and 
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the onset time of the acceleration period was thus shifted significantly earlier. The heat flow 

curve during the acceleration-deceleration period became less broad and more intense with 

the increasing addition of CLDH. The total heat release shown in Table 4-3 for M01 with 2 

wt.% CLDH is significantly higher than M01 with 10 wt.% CLDH, this is likely due to 

missing the initial heat release during the external sample mixing process (Fernández-

Jiménez and Puertas, 1997). However, this effect was minimized in the rest of the samples 

assessed in this part of the study where the increase in the total heat release was consistent 

with the expedited heat release flow.   
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Figure 4-1 Isothermal calorimetry data for Na2CO3-activated slag cements, produced with 

slags (A) M01, (B) M05, (C) M06 and (D) M14, as a function of the percentage of CLDH 

addition. All curves are normalised by the total mass of the paste tested. 
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Table 4-3 Summary of the heat release curves shown in Figure 4-1 

Slag 

CLDH 

addition 

(wt. %) 

Pre-induction period 

(h) 

+Duration of  

induction period 

(h) 

Acceleration-deceleration 

period  

++Total 

heat 

release 

(J/g) 

Peak 

time (h) 

+Duration 

(h) 

+Onset time 

(h) 

Peak time 

(h) 

M01 

0 25.7 74.9 90.1 165.0 210 87.8 

2 4.6 56.3 32.0 88.3 120 172 

10 2.7 20.7 6.7 27.4 43.2 128 

M05 

0 3.2 62.2 79.6 151.4 170 98.2 

2 2.7 15.3 15.3 36.5 46.7 104 

10 1.7 2.1 2.1 11.4 17.6 142 

M06 

0 3.7 30.4 30.4 40.3 50.6 102 

2 2.0 14.7 14.7 24.3 33.1 119 

10 1.3 0.7 0.7 9.1 14.0 158 

M14 

0 0.87 2.48 2.48 13.0 22.3 135 

2 2.5 1.21 1.21 11.5 19.0 142 

10 1.1 0.42 0.42 5.56 10.8 189 

+ The duration of the induction period is determined using the first derivative of its heat flow rate. The start of 

the induction period (and correspondingly the end of the pre-induction period) is defined as when its first 

derivative increased from a negative value to greater than -5×10-5 mW/g∙h. The end of the induction period is 

identified when its first derivative started to increase above 5×10-5 mW/g∙h. The first derivative during the 

induction period is within the range 0±5×10-5 mW/g∙h. 

++ The total heat release here is the integrated reaction heat, from the start of the reaction to the long-term period 

where the heat flow is lower than 30 μW/g. The results were normalised by the mass of the paste.  

 

The activated slag M05 paste without CLDH addition (Figure 4-1B) also presented a 

prolonged induction period; however, a secondary peak associated with precipitation of 

reaction products was identified in the pre-induction period after 3.2 h of reaction (Table 4-3). 

The acceleration period started after 151 h, and showed a much steeper acceleration than the 

slag M01, indicating that the growth of reaction products was much more rapid in the higher-

MgO system once nucleation did take place. The deceleration period then evolved slowly, but 

showed two distinct humps that are likely to be indicating the precipitation of different types 

of reaction products at different times. With 2 wt.% CLDH addition, the induction period was 

shortened to 15.3 h, and the acceleration period started after 36.5 hours of activation, with the 

double-peak structure of the acceleration-deceleration period again notable. When the CLDH 
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addition was increased to 10 wt.%, all the stages of the reaction occurred within the first 24 

hours after mixing. A negligible induction period was observed for this cement, and a single 

narrow peak with a rapid acceleration up to a maximum heat evolution at 18 h was identified. 

In the pre-induction period (insert Figure 4-1B), it is notable that the intensity of the 

secondary peak increased with the addition of higher contents of CLDH, and in the case of 10 

wt.% of CLDH addition, the peak shifted towards shorter times of reaction.  

 

For Na2CO3 activated M06 (Figure 4-1C) and M14 (Figure 4-1D) slags, the CLDH 

addition has a similar effect in modifying the kinetics of reaction of these cements, to the 

observations for M01 and M05 based pastes. The M06 and M14 activated slags without 

CLDH addition react significantly faster than samples prepared with slags M01 and M05 

(Figure 4-1A, 1B), indicating that the slag chemistry has a significant effect on the kinetics of 

reaction of Na2CO3-activated cements. Each of the stages of the reaction processes becomes 

significantly more rapid with CLDH addition, and the peak heat evolution rates of both the 

pre-induction and the acceleration/deceleration peaks are also consistently increased. In 

contrast to the observations for Na2CO3-activated M01 and M05 slags, a much shorter 

dormant period is observed when using M06 and M14, with and without CLDH addition, and 

consequently the main peak is identified within the first 24 h of reaction for each of these 

slags. This suggests that the precipitation of the different reaction products forming when 

using high MgO content slags (6 wt.%) is not significantly delayed when using a Na2CO3 

solution as sole alkali activator, unlike the situation for lower-MgO slags.  
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4.3.2. XRD 

 

Effects of slag chemistry and addition of CLDH on the phase assemblage of Na2CO3-

activated cements 

 

The X-ray diffraction patterns of the sodium activated slag cements after 28 days of 

reaction (Figure 4-2) show the formation of three types of crystalline phases in all the 

cements assessed: carbonates, LDHs, and tobermorite-like C-(A)-S-H gels, whose 

composition and features are strongly dependent on the slag chemistry and CLDH content. 

 

Gaylussite (Na2Ca(CO3)2·5H2O, PDF #00-021-0343) and calcite (PDF #01-086-0174) 

were the major carbonates identified in all samples, independent of the slag composition and 

the content of CLDH. The intensities of the gaylussite reflections are similar in all the 0 wt.% 

CLDH pastes after 28 days of curing. In samples modified by 2 wt.% CLDH, the intensities 

of the peaks assigned to gaylussite decrease compared to the 0 wt.% formulations, and this 

phase could barely be identified in the 10 wt.% CLDH modified samples. Additional 

metastable polymorphs of calcium carbonate including vaterite (CaCO3, PDF #01-072-0506) 

and aragonite (CaCO3, PDF #00-041-1475) were also observed in most slag pastes. The 

reflections assigned to calcite, vaterite and aragonite remained almost unchanged in the 

CLDH modified samples compared to the respective 0 wt.% samples. It is notable that higher 

intensity reflections of gaylussite are observed (Figure 4-2.D) in the specimens produced with 

the slag (M14) with higher MgO content and the higher CLDH addition. This might indicate 

the limited phase modification capacity of CLDH in MgO-rich slag cement. 
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Figure 4-2 X-ray diffraction patterns of 28 day-cured sodium carbonate activated slag 

cements produced with slags: (A) M01, (B) M05, (C) M06, and (D) M14, with 0, 2 and 10 

wt.% of CLDH added as marked. Data for each anhydrous slag are also shown in the plots. 
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Two types of LDH phases were identified in the Na2CO3 activated 0 wt.% samples: 

calcium hemicarboaluminate hydrate (C4Ac0.5H12, PDF #00-036-0129), which is a member of 

the AFm (hydrocalumite-like) group and known in cement chemistry as ‘hemicarbonate’, and 

a hydrotalcite-like phase (Mg4Al2(OH)12CO3∙3H2O, PDF #00-014-0525). The relative 

concentrations of these two types of LDH phase in each sample are directly related to the 

chemical composition of the slags, and the dose of CLDH added. A higher content of MgO in 

the slag precursor favoured the formation of Mg-Al type LDH phases to consume aluminium. 

However, with low MgO content but high Al2O3 content, there is not sufficient MgO to 

consume the excess aluminium, and therefore the hemicarbonate phase may form (Matschei 

et al., 2007a, Whittaker et al., 2014). Thus, in the paste with the lowest MgO content (Figure 

4-2 (A), M01_0% CLDH), this was the only LDH phase identified. In the slags with 

moderate MgO content, M05 and M06, both types of LDH phases were present after 28 days 

of curing. When the anhydrous slag precursor contains a high MgO content, as in the case of 

M14, only the Mg-Al type of LDH (the hydrotalcite-like phase) was identified. The same 

trends are observed in the samples modified by 2 wt.% and 10 wt.% of CLDH, along with an 

increase in the content of the hydrotalcite-like phase in all the CLDH modified samples 

attributed to the recrystallisation of the CLDH (Mascolo and Mascolo, 2015, Morimoto et al., 

2012, Rocha et al., 1999). However, the hydrotalcite-like phase derived from the 

recrystallisation of the CLDH cannot be distinguished by XRD from the additional 

hydrotalcite-like phase forming through activation of the slags.   

 

It is worth noting that hemicarbonate has not been widely reported as a reaction product in 

sodium silicate-activated slag systems, but has been observed in Portland cement/slag 

blended systems when the Al2O3 content in the slag is high and calcite is present in the 

system, as such conditions favour the formation of AFm type phases, and the presence of 

carbonate stabilises the hemicarbonate member of this family (Damidot et al., 1994, Ipavec et 

al., 2011, Matschei et al., 2007a, Matschei et al., 2007b, Whittaker et al., 2014). A mixture of 

AFm and hydrotalcite-like phases has also been identified in NaOH-activated slag pastes 

cured for up to 15 months (Escalante-García et al., 2003, Wang and Scrivener, 1995). The 
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formation of mixed LDH phases in sodium carbonate-activated slag might have followed the 

same mechanism, as the reaction mechanism becomes comparable to NaOH-activation of the 

slag once the CO3
2- is exhausted (Bernal et al., 2014b).   

 

The C-(A)-S-H phases identified in all the samples are close to an aluminium substituted 

tobermorite-like phase (Ca5Si5Al(OH)O17∙5H2O, PDF #00-019-0052; tobermorite-14Å, PDF 

#00-029-0331) (Myers et al., 2015a). The C-(A)-S-H phases formed in each of the slag 

systems cannot be distinguished solely via XRD, due to the poorly crystalline nature of this 

reaction product. However, the presence of a broad hump at around 6.4° 2θ in the sample 

M06_2% CLDH (Figure 4-2C), and the disappearance of the high intensity hump at 7.1° 2θ 

in the sample M14_10% CLDH (Figure 4-2D), suggest changes in either the composition or 

the structure of the C-(A)-S-H phase. This will be further assessed in the following sections 

via scanning electron microscopy and solid-state nuclear magnetic resonance spectroscopy. 

 

Phase evolution over the time of curing 

 

All of the main crystalline phases identified in the Na2CO3-activated slag cement, being 

gaylussite, LDH phases and C-(A)-S-H gel, present major diffraction peaks between 5° and 

15° 2θ. For a clear and direct comparison across all the samples over the time of curing, XRD 

patterns in this angular range are presented in Figure 4-3 as a function of sample age.  
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Figure 4-3 X-ray diffraction patterns of Na2CO3 activated slag M01 with (A) 0 wt.% and (B) 

10 wt.% CLDH; slag M06 with (C) 0 wt.% and (D) 10 wt.% CLDH; and slag M14 with (E) 0 

wt.% and (F) 10 wt.% CLDH, as a function of the time of curing. Phases marked are:  

HT – hydrotalcite-like, Hc – hemicarbonate, Mc – monocarbonate,  

Ga – gaylussite, CS – C-(A)-S-H. 
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It can be seen (Figure 4-3) that gaylussite disappeared from all samples over the time of 

curing, and it is present only in very small quantities in the M1, M05 and M06 samples 

containing CLDH. Gaylussite is a transient phase in sodium carbonate activated slag cement, 

and its consumption is associated with the formation of more stable carbonates. This will be 

discussed in detail in section 4.4.1. The hemicarbonate phase identified in the activated M01 

slag with (Figure 4-3B) and without (Figure 4-3A) CLDH addition decreased over time, and 

the calcium monocarboaluminate (C4AcH11, PDF#00-036-0377, ‘monocarbonate’) phase 

starts to form (Fischer and Kuzel, 1982, Lothenbach et al., 2008, Matschei et al., 2007b, 

Whittaker et al., 2014), predicted to be the stable AFm product in thermodynamic modelling 

of slag activation by Na2CO3 (Myers et al., 2015b). In Figure 4-3B, the basal reflection peak 

of hemicarbonate shifted towards higher angle, and became wider over time of curing, as a 

result of partial replacement of OH- by CO3
2- in hemicarbonate and the consequent formation 

of a poorly crystalline AFm-(OH-,CO3
2-) solid solution.  

 

The basal reflection peak of monocarbonate is around 11.7° 2θ, which in some cases might 

overlap with that of the hydrotalcite-like phase, 11.2-11.6° 2θ (marked at 11.4° in Figure 4-3). 

However, in the M01-0% CLDH system (Figure 4-3A), the formation of monocarbonate is 

clearly identifiable, as no hydrotalcite-like phase is forming. In samples with moderate MgO 

content (Figure 4-3C, Figure 4-3E), monocarbonate could not be distinguished via distinct 

reflection peaks, but the broad peak centred at around 11.4° 2θ shows an asymmetric increase 

in intensity over time. This increasing asymmetry suggests the formation of a component 

peak at around 11.7° 2θ, most likely due to monocarbonate. Samples prepared using the high 

MgO slag M14 do not show reflections indicative of the formation of AFm phases, and thus 

the peak at around 11.4° 2θ for this formulation, whose intensity increases over the time of 

curing, is solely assigned to a hydrotalcite-like phase.  

 

Similar trends are identified in the CLDH modified samples, where the high intensity peak 

of hydrotalcite overlaps with those assigned to hemicarbonate and monocarbonate, 
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obstructing their clear identification. Negligible structural changes are identified in the 

reaction products of the slag with intermediate content of MgO (Figure 4-3D) with the 

addition of CLDH. In the activated M14 samples with CLDH addition (Figure 4-3F), changes 

in the LDH phase were almost identical to those observed without CLDH addition (Figure 4-

3E). However, the addition of CLDH seems to modify the structure of the C-A-S-H forming 

in these systems. This will be further evaluated in the following sections. 

 

In sodium carbonate activated slag systems, hemicarbonate is formed at earlier age (i.e. 

during the first 28 days) when using slags with low to medium MgO content (M01, M05 and 

M06). The formation of hemicarbonate is reduced when a higher content of MgO is present, 

where a higher content of hydrotalcite-like phases is instead formed. In cements based on the 

high-MgO slag (M14), only the hydrotalcite-like phase was identified. In general, the 

addition of CLDH increases the formation of hydrotalcite-like phases, and seems also to 

accelerate the transformation from hemicarbonate to monocarbonate.  

 

In the sodium carbonate activated slag system, the free carbonate ion content in the 

aqueous phase is reduced as the reaction evolves. Although the formation of monocarbonate 

from hemicarbonate under such circumstances seems unlikely as the conversion requires 

additional carbonate, the experimental results suggest that the previously carbonated 

hydrotalcite-like phase might be able to supply this carbonate. This is in line with recent 

thermodynamic modelling results for sodium carbonate activated slag, which revealed that 

monocarbonate is a thermodynamically stable phase in this system, together with a non-

carbonated hydrotalcite-like phase (Myers et al., 2015b). The transformation between these 

two phases could also be associated with the availability of additional carbonate due to the 

reaction of precipitated CaCO3, which drives the equilibrium towards the monocarbonate 

phase (Glasser et al., 1999, Lothenbach et al., 2008, Whittaker et al., 2014).  
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As seen in Figure 4-3, the positions of the basal reflection peaks of the hydrotalcite-like 

phase vary slightly in different samples with different ages. The basal reflection peak reflects 

the composition of the mixed metal oxide/hydroxide sheets, the type of interlayer species and 

the amount of chemically bound water (Duan and Evans, 2006, Gastuche et al., 1967). The 

shifts observed here could be caused either by formation of HT-(OH-, CO3
2-) solid solutions, 

or changes in the Mg/Al ratio, as more Al incorporation into a hydrotalcite-like phase leads to 

a decrease in the angle at which its basal reflection peak is observed (Gastuche et al., 1967).  

 

4.3.3. SEM-EDX 

 

Figure 4-4 shows backscattered electron (BSE) images of sodium carbonate activated slag 

pastes without and with 10 wt.% CLDH, after 180 days of curing. The light grey particles in 

the micrographs correspond to the unreacted slag particles remaining in the samples, while 

the grey regions between the remnant slag particles correspond to the main binding phase, 

consisting mainly of C-(A)-S-H gel and additional reaction product phases such as LDHs and 

carbonates, as identified by XRD (Figures 4-2 and 4-3). Regions darker in greyscale intensity 

than the general matrix, which were more numerous and clearly identifiable in moderate to 

high MgO activated slags (M06 (not shown) and M14) than in samples produced with slags 

with low MgO content (M01) samples, correspond to fully reacted slag grains and inner 

reaction product rims rich in Mg (with the hydrotalcite as a dominant phase) (Famy et al., 

2002, San Nicolas et al., 2014). In Figure 4-4A, irregular dark grey areas are identified 

between the slag grains. These are most likely to be sodium-calcium carbonate phases (e.g. 

gaylussite), as identified from XRD (Figure 4-2). Similar features with a chemical 

composition comparable to that double salt have been observed in sodium carbonate/silicate 

activated slag cements (Bernal et al., 2015a), and the dark greyscale values are consistent 

with the low mean elemental number of hydrous carbonates.  

 



Chapter 4. 

63 

  

  

Figure 4-4 BSE images of pastes cured for 180 days: slag M01 with (A) 0 wt.% and 

(B) 10 wt.% CLDH; and slag M14 with (C) 0 wt.% and (D) 10 wt.% CLDH 

 

Figure 4-5 shows atomic ratio correlation plots generated from EDX spot analyses of the 

samples prepared using different slags with 0 wt.% and 10 wt.% of CLDH addition. More 

than 60 data points were taken from each sample formulation following sampling methods as 

specified in Chapter 3 (section 3.3.4.). Locations near (<2 μm) unreacted slag grains and 

crystalline phase from raw materials, such as calcium and quartz in M01, were avoided for 

sampling (except for inner product from M14, where a minimum distance to unreacted slag 

grain of 2 μm was not achievable ). The spots taken from outer reaction products are referred 

to as the general matrix in Table 4-4, excluding large recrystallised hydrotalcite gel clusters 

that were not well dispersed during the mixing of the paste. Inner product EDX spots were 
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only taken from slag M14, where clear inner rims were identified. The data presented here 

show the atomic ratios of the reaction product between the slag grains, which consists of C-

(A)-S-H gel and intermixed LDHs. The dashed lines in Figure 4-5 showing the ratios 

Mg/Al=2 and Ca/Al=2 are given to clarify the existence of hydrotalcite-like phases and AFm 

phases (Matschei et al., 2007a). Data points with Al/Si ratios below 0.8 (shown) were chosen 

for investigation of the chemical composition of the hydrotalcite-like phase and C-(A)-S-H 

gel, to rule out any interference from well-crystallised AFm phases. 

 

Without addition of CLDH, the MgO and Al2O3 content of the slag will control the 

chemistry of LDH phases formed as reaction products. With the highest Al2O3 content and 

very low MgO content, slag M01 formed a significant amount of AFm phases to consume 

excess Al. In slag M06, which has a slightly lower Al2O3 content but a much higher MgO 

content, the hydrotalcite-like phase was identified as the main LDH with traces of intermixed 

AFm phases, consistent with the XRD data presented above. This shows that in the presence 

of MgO, the excess Al present is more likely to form hydrotalcite-like phases than AFm 

phases, consistent with the fact that no AFm phase was identified in samples prepared using 

slag M14. However, the absence of AFm phases from samples based on slag M14 could also 

be related to the fact that it contains the lowest Al2O3 content and the highest MgO content. 

The additional CLDH contributed to the increased formation of hydrotalcite-like phase in 

samples based on all three slags. It also reduced the crystallinity of the AFm phases formed 

through reaction of slags M01 and M06, by forming disordered intermixed LDH phases. This 

corresponds to the XRD results shown in Figure 4-3. 

 

The Al/Si ratio of the C-(A)-S-H gel in each alkali-activated slag sample was calculated 

using the method of Ben Haha et al. (2011), Table 4-4. These values demonstrate a close 

relationship between the Al2O3 content of the slag and the Al/Si ratio in C-(A)-S-H gel, 

where a higher bulk Al2O3 content results in a higher Al/Si ratio in the C-(A)-S-H gel (0.2 in 

slag M06 and 0.06 in slag M14, all with 0 wt.% CLDH addition). The Al/Si ratio of slag M01 
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calculated using the same method was higher than the maximum possible degree of Al 

substitution in C-(A)-S-H, due to the presence of intimately intermixed AFm and/or N-A-S-H 

phases (L’Hôpital et al., 2015, Myers et al., 2014). The Al2O3 content of the slag controls the 

degree to which aluminium is able to dissolve and be made available for through-solution 

reaction processes, and thus defines the Al/Si ratio in the C-(A)-S-H gel (L’Hôpital et al., 

2015). This would also explain the observation that in 10 wt.% CLDH modified samples, the 

Al/Si ratio calculated by this method is slightly higher than that of the samples without 

CLDH samples. The recrystallisation of CLDH into hydrotalcite-like phases leads to an 

increase in pH (proven in detail in section 4.4.2), favouring the dissolution of aluminium and 

thus resulting in a higher Al/Si ratio in the C-(A)-S-H.  

 

The Ca/Si ratio in the C-(A)-S-H gel did not change significantly with changes in slag 

chemistry, with all data points for all samples falling between ratios of 0.8 and 1.6. Those 

values are higher than the Ca/Si ratios identified in sodium hydroxide-activated or sodium 

silicate-activated slag cements where slags with similar chemical compositions were used 

(Ben Haha et al., 2011, 2012, Bernal et al., 2014c). This may be related to the lower alkalinity 

of the sodium carbonate activator, which brings a lower capacity to dissolve silicate species 

from the slag glass (Snellings, 2015). However, no systematic change in Ca/Si ratio was 

observed in the CLDH modified samples compared to the unmodified cements.  
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Figure 4-5 Atomic ratios calculated from EDX data for Na2CO3 activated samples 

with 0 wt.% (A-1 and A-2) and 10 wt.% (B-1 and B-2) of CLDH addition, all after 

180 days of curing. (A-1) and (B-1) plotted as Mg/Si vs Al/Si and (A-2) and (B-2) 

plotted as Ca/Si vs Al/Si. 
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Table 4-4 Average atomic ratios (Ca/Si and Mg/Al) of Na2CO3-activated slag pastes cured 

for 180 days, using data points shown in the inset plots in Figure 4-5 (where Al/Si <0.8), 

obtained using EDX analyses of 60 spots per sample (uncertainty in each reported value 

±0.02). 

Slag  
0 wt.% CDLH 10 wt.% CDLH 

Ca/Si Al/Si aMg/Al Ca/Si Al/Si aMg/Al 

M01 
General 

matrix 

1.22 <0.33 b - 1.26 <0.33 1.91 

M06 1.20 0.20 1.61 1.26 0.21 2.04 

M14 1.05 0.06 2.09 1.04 0.06 2.16 

M14 Inner rim 0.86 0.02 1.86 0.92 0.01 1.84 

a. Mg/Al value is the slope of the line of best fit in a plot of Mg/Si vs Al/Si ratios. 

b. The Mg/Al ratio of the sample M01_0wt.% could not be determined due to the low content of MgO in 

the anhydrous slag. 

 

The chemical compositions of the inner and outer products of samples prepared using slag 

M14 were analysed separately using EDX (shown also in Table 4-4). The Ca/Si ratio of the 

inner product is distinctly lower than that of the outer product, suggesting that there might be 

other Ca containing phases forming in the outer product. This is also likely to be caused by 

existing of intermixed N-A-S-H gel in the inner product (Myers et al., 2015b, Provis and 

Bernal, 2014). 

 

To obtain further insight into the chemistry and structure of the C-(A)-S-H gel in sodium 

carbonate activated slag cement, analysis by solid-state NMR is required, and is presented 

below. 

 

4.3.4.  27Al and 29Si MAS NMR 

 

The 29Si MAS NMR spectra of the anhydrous slags shown in Figure 4-6 are in good 

agreement with the literature for a melilite-type glass (Kirkpatrick, 1988, Wang and Scrivener, 

2003). For the sodium carbonate activated paste samples, three distinct bands at -79 ppm, -82 
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ppm and -85 ppm were identified in the main region of the 29Si MAS NMR spectra, which 

are assigned to a Q1 site (denoted Q1(II) for consistency with the literature (Myers et al., 

2014)), Q2(1Al) and Q2, respectively (Richardson et al., 1993, Schneider et al., 2001, Wang 

and Scrivener, 2003). The residual signal downfield of the -79 ppm band is assigned to Q0 

and Q1(I) sites (Myers et al., 2014). The low intensity, but non-zero, component of the signal 

which lies upfield of -85 ppm is composed of two bands centred at -88 ppm and -92 ppm 

respectively, and assigned to highly crosslinked Si sites (Engelhardt and Michel, 1987). The 

bands in these two positions could be assigned to either Q4(4Al) and Q4(3Al) sites in N-A-S-

H gel, and/or Q3(1Al) and Q3 sites in C-(A)-S-H gel, according to the findings reported by 

Myers et al. (2014) for sodium metasilicate activated slag cements.  
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Figure 4-6 29Si MAS NMR spectra of slag pastes prepared using slags M01, M06 and M14, 

with 0 wt.% and 10 wt.% CLDH, cured for 28 and 180 days. 
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Table 4-5 shows the results of deconvolution of the 29Si MAS NMR spectra using 

Gaussian curve fitting (carried out using Excel spread sheet, as exemplified in Figure 4-7), 

where the chemical shifts were fixed (±0.4 ppm) and by changing the peak height and width 

at half height of each fitted curve, to reach a minimised sum of squared residuals (using 

Solver add-in, Excel software). The unreacted slag, M01, M06, and M14, are first fitted with 

Gaussians centred at -72ppm, -85ppm, -77ppm and -64ppm to fit a melilite-type glass 

(Kirkpatrick, 1988, Wang and Scrivener, 2003). For consistency, the deconvolutions were 

conducted assuming that the anhydrous slag was dissolving congruently, as in sodium silicate 

or sodium hydroxide activation (Ben Haha et al., 2012, Bernal et al., 2014c, Myers et al., 

2013). Therefore the signals contributed by the unreacted slag in the reacted paste sample 

were fitted by proportionally scaling down the peak heights fitting the anhydrous slag. This is 

generally correct when dissolving calcium aluminosilicate glasses in solutions at a pH above 

12.5 (Snellings, 2015). The initial pH of the sodium carbonate activator used in this study 

was 11.7, which is expected to increase once the CO3
2- in the pore solution is exhausted, 

either by formation of solid carbonate phases or removal by reaction with the CLDH additive. 

Therefore, incongruent dissolution of the slag might occur in the early stage of reaction, but it 

is not expected as the activation reaction progresses, as the chemistry becomes more 

comparable to that of NaOH-activation of slag as discussed above. Nonetheless, this must be 

considered as a potential source of error. 
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Figure 4-7 Deconvoluted 29Si MAS NMR spectrum of slag M06_0% CLDH cured for 28 

days. The dark grey band represents the contribution of the remnant slag, which is directly 

scaled from the spectrum collected for the unreacted slag using the assumption of congruent 

dissolution. 

Table 4-5 Deconvolution results for 29Si MAS NMR spectra of the sodium carbonate 

activated slag pastes. Estimated uncertainty in absolute site percentages is ± 2%. 

   Reaction products 

  
Total unreacted 

slag (%)* 

Q0 Q1(I) Q1(II) Q2(1Al) Q2 
Q3(1Al) 

/Q4(4Al) 
Q3/Q4(3Al) 

 
Samples -74 ppm -76 ppm -79 ppm -82 ppm -85 ppm -88 ppm -92 ppm 

M01 

0% 28 d 64 0 2 7 12 10 2 2 

0% 180 d 64 0 3 5 14 9 3 2 

10% 28 d 64 0 3 5 14 7 4 3 

10% 180 d 62 0 3 6 16 7 3 3 

M06 

0% 28 d 54 3 1 11 13 12 3 3 

0% 180 d 50 3 2 15 13 11 4 3 

10% 28 d 49 5 1 14 14 10 3 3 

10% 180 d 48 6 2 14 12 12 3 3 

M14 

0% 28 d 41 4 2 14 12 17 8 4 

0% 180 d 37 3 3 14 13 18 9 4 

10% 28 d 32 5 3 12 14 16 12 6 

10% 180 d 30 6 1 20 15 17 7 3 



Chapter 4. 

73 

*The actual total unreacted slag (%) might be higher than the calculated value shown here if the dissolution of 

the glassy slag is incongruent, but this cannot be accurately determined in the absence of a reliable method for 

the selective dissolution of reaction products in these alkali-activated binder systems. 

 

From Figure 4-8, it is evident that a higher extent of slag reaction (as observed by the 

lower residual slag fraction and much higher C-A-S-H reaction product content) has been 

reached in mixes based on slags with higher MgO content and lower Al2O3 content. Both 

MgO content and Al2O3 content play important roles in defining the intrinsic reactivity of the 

slag glass, and this is also influenced by the formation of LDH phases which remove the 

dissolved Mg and Al from solution and provide a further driving force for glass dissolution. 

This is supported by the fact that the addition of 10 wt.% CLDH is seen to increase the total 

extent of slag reaction up to 180 days of curing, compared with samples with 0 wt.% CLDH 

based on the same slags. This shows that the influence of the CLDH is not simply a kinetic 

effect which accelerates the reaction at early age (as observed by calorimetry); the fact that 

the CLDH addition induces a higher extent of reaction even up to 180 days indicates that its 

seeding effect which enhances nucleation and growth of hydrotalcite-group phases is 

additionally important in defining binder chemistry in the long term.  

However, comparing the line shapes of the 29Si MAS NMR spectra of slag pastes prepared 

using different slags with and without CLDH addition, it is clear that the structure and 

composition of C-(A)-S-H gel is dominated by effects related to the slag chemistry over the 

effects of CLDH addition. The intensities of the Q1(II) and Q2 sites were higher in pastes 

prepared using the slag with the highest MgO content (M14), while the intensities of the 

Q2(1Al) sites decreased. The increased intensity of Q1(II) suggests an increase in the content 

of chain-end sites charge balanced by strongly positively charged cations such as Ca2+ 

(Myers et al., 2014), while the increased intensity of Q2 sites suggests a higher mean chain 

length. The decrease in the intensities of Q2(1Al) sites, associated with reduced Al uptake by 

the C-(A)-S-H gel, is due to the lower Al2O3 contents in slags M06 and M14 compared with 

slag M01, and also the formation of a higher content of LDH phases which consume Al, 

corresponding to the results of EDX analysis.  
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In Figure 4-8, three distinct Al environments are observable in each of the cement samples 

by 27Al MAS NMR spectroscopy. The spectrum of the unreacted slag is observed as a broad 

hump centred at around 59 ppm representing the distribution of Al sites in the unreacted slag; 

a contribution from the remnant slag particles is also observed underlying the spectra of the 

reacted pastes. In the spectra of the pastes, the Al[VI] resonances at chemical shift values 

below 20 ppm are assigned to the Al sites in the two types of LDH structures (Mg-Al and 

AFm), and bands at around 60-80 ppm correspond to Al[IV] and are assigned to the 

tetrahedral Al environments in C-(A)-S-H gel (Engelhardt and Michel, 1987, Jones et al., 

2003, Myers et al., 2014, Wang and Scrivener, 2003), and when Al[IV] substituted a Q2 silica 

site, it is normally noted as q2, and likewise Al[IV] in Q3 silica site as q3. 

 

Significant reductions in the intensities of the broad slag peak centred around 59 ppm, 

along with an increase in the Al[IV] resonance at 64-80 ppm, take place from 28 to 180 days 

of curing, which is associated with an increased degree of reaction as the slag continues to be 

consumed and hydration products form. Unmodified slag pastes with different chemical 

compositions showed different line shapes between 64-80 ppm, which reflect different Al 

coordination environments in the C-(A)-S-H gel, the q2 bridging sites within the higher 

chemical shift part of this region and the q3 crosslinking sites at lower chemical shift. 

Compared with the unmodified samples, the further shift from 59 ppm towards higher 

chemical shift in 10 wt.% CLDH modified samples represent an increased degree of reaction, 

corresponding to the analysis presented above.  

 

The peaks centred at 9 ppm in Figure 4-8 are attributed to overlapping contributions from 

the Ca-Al LDH type phases and the hydrotalcite-like phase (Jones et al., 2003, Rocha et al., 

1999), and increased slightly in intensity from 28 to 180 days. Comparing binders produced 

with different slag sources, the relative intensity of Al[VI] sites compared to Al[IV] sites 

increased as the MgO content of the slag increased, consistent with the increased formation 

of LDH phases in the presence of more Mg. Since the slags tested here with higher MgO 
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content also had lower Al2O3 content, the total amount of Al incorporated into the C-(A)-S-H 

gel derived from high MgO content slag is much lower in low-MgO content slag pastes. This 

corresponds to the differences between the Al/Si ratios calculated in SEM-EDX analysis 

(Table 4-4), and the 29Si MAS NMR analysis (Table 4-5). 

 

Addition of 10 wt.% CLDH led to an increased intensity of the peak assigned to the 

hydrotalcite-like phase, as a consequence of the recrystallisation of the CLDH to form 

crystalline Mg-Al LDH. However, as the CLDH addition increased the total aluminium 

content in the paste, the 27Al MAS NMR spectra do not display a clear trend in the total Al 

content in the C-(A)-S-H gel before and after CLDH modification. 
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Figure 4-8 27Al MAS NMR spectra of slag pastes prepared using (A) slag M01, (B) slag M06 

and (C) slag M14, with 0 wt.% and 10 wt.% CLDH, cured for 28 and 180 days. 

 



Chapter 4. 

77 

4.4. Discussion 

4.4.1. The importance of slag chemistry in Na2CO3 activated cements 

 

The hardening time of sodium carbonate activated slag pastes is strongly dependent on the 

slag chemistry. Significantly more rapid kinetics of reaction, and therefore faster setting, have 

been identified for slags with lower Al2O3 but much higher MgO contents, as a consequence 

of the formation of a high content of LDH phases), consistent with previous studies using 

sodium silicate as the activator (Ben Haha et al., 2011, 2012, Bernal et al., 2014c).  

 

Figure 4-9 illustrates a conceptual model which is presented to describe the importance of 

the carbonate consumption process in sodium carbonate activation of slag. The black line 

represents the carbonate route in samples prepared without CLDH addition, while the grey 

line shows the influence of the CLDH.  

 

 

Figure 4-9 Simplified schematic diagram of the process of carbonate consumption through 

binding in mineral carbonates in the absence of CLDH (black), and the extra pathways 

introduced by CLDH addition, in an Na2CO3-activated slag cement. 
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Gaylussite is often formed at early age in the sodium carbonate activated paste prior to the 

formation of C-(A)-S-H (Bernal et al., 2014b, Fernández-Jiménez and Puertas, 2001). This is 

due to the fact that the breakage of O-Ca bonds and O-Mg bonds to release these species 

from the slag is able to take place at lower alkalinity than the breakage of O-Al and O-Si 

bonds (Shi and Day, 1995). Therefore, the aqueous phase reaches saturation with respect to 

gaylussite before other phases due to the high activator Na concentration, as shown in Figure 

4-9. When the LDH phases and C-(A)-S-H gel start to precipitate, the gaylussite dissolves as 

a result of the decreased CO3
2- ion concentration in the aqueous phase (Bernal et al., 2014b), 

with the carbonate reprecipitating rapidly as CaCO3 polymorphs (e.g. the aragonite observed 

here) as shown in Eq.4-2 (Bischoff et al., 1991). This explains the formation of aragonite in 

most of the samples here.  

 

5H2O + 2Na+ + Ca2+ + 2CO3
2- → Na2Ca(CO3)2∙5H2O (gaylussite) Eq.4-1 

Na2Ca(CO3)2∙5H2O → CaCO3 (aragonite) + 2Na+ + CO3
2- + 5H2O Eq.4-2 

 

Both the hydrotalcite-like and AFm phases can be stable carbonate-bearing phases in 

cementitious binders (Bernal et al., 2014c, Matschei et al., 2007a). The dissolution of 

gaylussite would be accelerated if the dissolved CO3
2- ions are taken by the LDH phases and 

removed from the pore solution. This explains the effect of the slag composition on the rate 

of reaction, where a higher degree of LDH phase formation accelerates the kinetics of 

reaction when using a sodium carbonate activator. Upon alkali activation of the slags, LDH 

phases form as a secondary reaction product, especially the hydrotalcite-like phase, and these 

phases can act as in-situ carbonate binding agents, promoting the carbonate removal process 

from the activator to solid phases and consequently accelerating the setting and hardening 

reaction sequence (Figure 4-9). 

 

4.4.2. Recrystallisation of CLDH in sodium carbonate activator solution 
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Figure 4-10 shows the change of pH in the separated supernatant solution after reaction 

with CLDH. The pH in the supernatant increased dramatically after 1 hour of reaction, and 

increased slowly during the following 7 days. Sample “10% CLDH” results in a higher pH 

than “2% CLDH”, which can be attributed to the higher content of CLDH. This proves that 

incorporation of CLDH in sodium carbonate activated slag could increase the pH of the 

activator significantly within the first hour after mixing. 

 

 

Figure 4-10 Change of pH in the separated supernatant solution as a function of time and 

dosage of CLDH added, results of triplicate samples. 

 

Figure 4-11 shows the X-ray diffraction pattern of the synthetic hydrotalcite-type phase, 

consistent with the powder diffraction file (Mg4Al2(OH)12CO3∙3H2O, PDF# 01-070-2151), 

and the pattern of the CLDH, where the crystalline reflections of the synthetic hydrotalcite 

are no longer observed. Instead, two broad humps centred at 43° and 63° 2θ are identified in 

the diffractogram of the CLDH. This demonstrates that the thermal treatment adopted in this 

study is effectively modifying the structure of the CLDH.  
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Upon hydration, a distinctive ordered crystal structure is observed in the hydrated CLDH 

sample after 30 min of mixing, resembling the diffraction pattern of the synthetic hydrotalcite. 

The intensities of the reflections observed in the hydrated samples increased at longer times 

of reaction, indicating the transformation of CLDH to a crystalline LDH phase. Along with a 

hydrotalcite-like phase, sodium carbonate (Na2CO3, PDF#01-077-2082) and its monohydrate 

(thermonatrite, Na2CO3∙H2O, PDF#00-008-0448) which precipitated from the residual 

solution (not removed by centrifugation) during the drying process, were also identified.  

 

Figure 4-11 X-ray diffraction patterns of synthetic hydrotalcite (HT_Ori), anhydrous CLDH, 

and rehydrated CLDH, as a function of the mixing time of the CLDH with the Na2CO3 

activating solution 

 

4.4.3. Carbonate binding and reaction acceleration by CLDH 

 

The kinetics of reaction of four different slags have all been expedited by the addition of 

CLDH (Figure 4-1), showing that the effectiveness of this addition is not dependent on the 

type of slag used. The added CLDH will react directly with the activator in aqueous solution, 

remove carbonate ions from the solution and form hydrotalcite-like phases. This is a shortcut 

for consumption of carbonate compared with the samples prepared without CLDH, and it also 
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favours the decomposition of gaylussite. However, CLDH does not only act as a carbonate 

binding agent, as the recrystallisation mechanism of CLDH in an aqueous environment will 

also modify the chemistry of the system, and this raises the need for further investigation to 

isolate the exact mechanisms taking place. 

 

The recrystallisation processes of CLDH starts with its surface hydroxylation. As the 

surface oxygen ions of mixed metal oxides are undercoordinated with respect to metal ions, 

they are highly active in the presence of water and prone to be protonated to hydroxyl groups, 

as shown in Eq.4-3 (Tamura et al., 2001). When there is sufficient water to react, the mixed 

metal oxides behave as a Lewis base, forming a conjugate acid ([Mg0.7Al0.3(OH)2]
0.3+) and a 

conjugate base (OH-) as shown in Eq.4-4, and a material resembling the original brucite-like 

Mg-Al layered structure can recrystallise. As a result, the pH of the sodium carbonate 

solution is increased, as represented in Figure 4-10. The sites of conjugate bases are ion-

exchangeable with other negatively charged ions (Tamura et al., 2001). When free CO3
2- ions 

are available, they will be incorporated into the brucite-like layered structure, forming 

hydrotalcite as a stable ion-exchanged LDH phase, Eq.4-5 (Morimoto et al., 2012).  

 

-O2- + H2O → -OH-+ OH- Eq.4-3 

Mg0.7Al0.3O1.15 + 1.15H2O → [Mg0.7Al0.3(OH)2]
0.3+ + 0.3OH- Eq.4-4 

[Mg0.7Al0.3(OH)2]
0.3+ + 0.15 CO3

2- + nH2O  

→ Mg0.7Al0.3(OH)2(CO3)0.15∙nH2O 
Eq.4-5 

 

As shown in Eq.4-4 and Eq.4-5, the recrystallisation processes of the CLDH in sodium 

carbonate solution produced OH- and consumed CO3
2- during the initial stage of the reaction 

(within the first hour), leading to the increase in pH (Figure 4-10), which accelerates the 

reaction.  
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In addition to this chemical acceleration, the nucleation seeding effects of recrystallised 

hydrotalcite and the reduced w/b ratio due to the water consumption of CLDH also have the 

potential to alter the kinetics of reaction. The hydrotalcite-like phase produced by the 

recrystallisation of CLDH upon reaction with the activator solution (Figure 4-11) is very 

similar in nature to the Mg-Al LDH which forms as a reaction product in these alkali-

activated slag systems, therefore the particle surface of the hydrotalcite-like phase could be 

amenable to precipitation and growth of slag reaction products, including both C-(A)-S-H gel 

and LDHs. It can be assumed that this would play a similar role in alkali-activated slag 

systems, acting as a nucleation seed. To investigate the influence of this seeding effect, the 

sample Ref-1 (Figure 4-12) was designed to reflect the seeding effects of the recrystallised 

hydrotalcite, by replacing CLDH with commercial hydrotalcite. The commercial hydrotalcite 

is already in its carbonated and hydrated form, and so would not further consume carbonate 

in the solution or undergo surface hydroxylation.  

 

It is seen from Figure 4-12 that the onset time of the acceleration period of sample Ref-1 

fell in between those of the plain paste and the 10 wt.% CLDH modified paste. The shift in 

the acceleration peak towards shorter times demonstrates the seeding effect of the 

incorporated commercial hydrotalcite, suggesting that the reformed hydrotalcite-like phase 

which is generated from CLDH upon reaction with the activating solution might also play a 

similar role in nucleation seeding during the alkali activation process. 
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Figure 4-12 Isothermal calorimetry data for sodium carbonate activation of slag M06, with (a) 

a w/b ratio of 0.4, with 10 wt.% CLDH added; (b) a w/b ratio of 0.4 and 10 wt.% commercial 

hydrotalcite as additive (sample Ref-1); (c) a w/b ratio of 0.35 (sample Ref-2); (d) a w/b ratio 

of 0.4, without CLDH addition (all results normalised by the mass of slag) 

However, these effects may also be convoluted by the effects of the change in w/b ratio 

induced by the uptake of water by the CLDH. Sample Ref-2 (Figure 4-12), which has a w/b 

ratio of 0.35 to correspond to the calculated potential water uptake by the CLDH (calculated 

according to Eq.4-4), thus aids in isolating any effect of reduced w/b ratio. In the alkali-

activated slag system, there might be an optimum w/b ratio at which the hydration kinetics 

develop faster and the total hydration heat release is higher than at any other w/b ratio (Bernal 

et al., 2015b). For slag M06, w/b = 0.35 appeared to be more closely approaching the 

optimum w/b ratio than 0.4, which might explain the change of reaction kinetics.  However, 

the workability of the pastes produced at this w/b ratio was more challenging than was the 

case at the higher w/b ratio used for the other pastes in this study, as the water consumption 

by the CLDH is gradual and so enables the pastes to be more fluid in the fresh state than is 

the case for a simple reduction in w/b ratio. 
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In summary, the incorporation of CLDH expedites the hardening process of sodium 

carbonate activated slags via several mechanisms, including:  

- increasing the pH of the activator, as observed in Figure 4-10 

- accelerated consumption of carbonate ions, and  

- hydrotalcite nucleation seeding.  

 

Controlling the reaction kinetics of sodium carbonate-activated slag paste to set within 24 

hours is desirable for its adoption and implementation by the construction industry. 

Acceleration of the kinetics of reaction is promoted by expediting the removal of the 

carbonate supplied by the alkali activator, leaving the slag to react in a NaOH-rich 

environment (Bernal et al., 2015a). Incorporation of a carbonate binding agent that is more 

prone than Ca2+ to react with the CO3
2- supplied by the sodium carbonate could thus be 

considered as a feasible approach to accelerate the kinetics of reaction.  

 

4.5. Conclusions 

 

Control of the kinetics of reaction of sodium carbonate-activated slag has been achieved in 

this study by adding CLDH as a carbonate binding agent, based on the understanding of the 

relationship between slag chemistry and the role of the functional group of the activator when 

producing activated slag cements. The relationships between the various Mg-Al 

(hydrotalcite-like) and Ca-Al (AFm) layered double hydroxides are essential in determining 

the overall characteristics of the binder system, as the uptake of Al by these phases restricts 

its availability for incorporation into C-A-S-H.  

 

In a sodium carbonate-activated binder system, slags containing higher concentrations of 

MgO are seen to react much more rapidly, and to a greater extent within 180 days of curing. 

The MgO content of the slag controls the formation of a hydrotalcite-like phase with Mg/Al ~ 
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2, and drives the removal of carbonate species from the pore solution. The process of removal 

of carbonate from the aqueous phase dominates the kinetics of reaction of sodium carbonate 

activated slag binders. A higher MgO content in the slag leads to faster dissolution and also 

results in formation of more hydrotalcite, which promotes the consumption of the carbonate 

species from solution, and accelerates the kinetics of reaction.   

 

Incorporation of up to 10 wt.% CLDH in sodium carbonate activated slag pastes 

significantly accelerates the kinetics of reaction, enabling the slag pastes to set within 24 

hours. The incorporated CLDH accelerates the consumption of carbonate, increasing the pH 

and driving the slag dissolution, and also reduces the effective water/binder ratio through 

uptake of water as it rehydrates. The hydrotalcite-like phase formed via recrystallisation was 

dispersed relatively homogeneously in the outer product region of the paste and acted as a 

nucleation seed, which benefited the precipitation of the gel product. CLDH addition has 

therefore been demonstrated to be an effective method by which the sodium carbonate 

activation of blast furnace slag can be used to produce a cementitious binder with an 

acceptably fast setting and hardening process for engineering purposes. This is particularly 

the case when the mix is prepared with a slag containing a high concentration of MgO.  

 

However, although kinetically favouring the setting of the paste, whether the addition of 

CLDH would strengthen the mechanical and durability performance of sodium carbonate-

activated slag cement is yet to be discovered. Before evaluating the durability performance of 

sodium carbonate-activated slag cement using current test methods, understanding of the 

ionic interactions between potentially corrosive ions (e.g. Cl-, CO3
2-) and binder phases in 

high alkaline pore solutions will be needed, which are investigated and discussed explicitly in 

the following Chapter. 
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Chapter 5.  
1                                                                                                                                                                   1 

CHEMICAL INTERACTION OF 

CHLORIDES WITH CEMENTITIOUS 

PHASES PRESENT IN ALKALI-

ACTIVATED SLAG CEMENTS 

 

Note: This chapter is primarily based on the paper “Uptake of chloride and carbonate 

by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-

activated slag cements”, by X. Ke, S. A. Bernal, J. L. Provis, 100, 1-13. 

 

5.1. Introduction 

 

Alkali-activated slag (AAS) cements often exhibit low chloride permeability compared 

with Portland cement (Ismail et al., 2013, Ma et al., 2015, Shi, 1996). This has been partially 

attributed to the reduced capillarity identified in these materials (Bernal et al., 2011a, Shi, 

2004), and the high concentration of free ions (including Na+ and OH-) present in the pore 

solution may also generate an osmotic gradient to counteract migration of Cl-. The potentially 

high chloride binding capacity of the AAS cement binder postulated in some studies might 

also contribute to the higher resistance to chloride ingress (Ismail et al., 2013, Ma et al., 

2015), and this is the core question to be examined in this Chapter. The retention of chlorides 

in the alkali-activation reaction products by chemical binding, when taking place, will delay 

the ionic transport of chlorides through the concrete, thus reducing the chloride migration rate 

(Yuan et al., 2009).  

 

It can be expected that the chloride binding capacity of AAS cements is largely dependent 

on the chloride binding capacities of the individual phases forming in these systems. As 
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discussed in the preceding chapters, these phases include Mg-Al hydrotalcite-like layered 

double hydroxide (LDH) phases, Ca-Al AFm LDH phases such as strätlingite, and (Al,Na)-

substituted calcium silicate hydrate (C-(N)-A-S-H) type gels, whose type and relative 

concentrations are governed by the chemistry of both the slag (Ben Haha et al., 2011, Bernal 

et al., 2014c) and the alkali-activator (Chapter 4). However, detailed assessment interlinking 

the phase assemblage of AAS cements and their potential chloride binding capacity has never 

been presented before. Understanding the ionic binding capacity of chlorides of each 

individual phase forming in cementitious matrices is crucial for determining the rate of 

chloride transport, as this underpins the correctly prediction of the long term performance of 

concretes based on these cements (Andrade et al., 2013, Arya et al., 1990, Yuan et al., 2009).  

 

Chloride-bearing equivalents of each of the phases typically identified in AAS cements,  

i.e. both types of LDH phases and the C-(N)-A-S-H type gel, have been evaluated within the 

context of Portland blended systems, using external sources of chlorides (Beaudoin et al., 

1990, Birnin-Yauri and Glasser, 1998, Kayali et al., 2012, 2013, Mesbah et al., 2011a, 2012, 

Yang et al., 2012). Previous studies (Châtelet et al., 1996, Morimoto et al., 2012) showed that 

chloride ions are mostly identified in the diffuse layer at the external surface of hydrotalcite-

like phases, pairing with Na+. The formation of a chloride-exchanged hydrotalcite-like phase 

with interlayer anion substitution has been claimed (Khan et al., 2016, Yoon et al., 2014b), 

however there is not yet sufficient information to fully describe its mineralogy. For AFm-

phases, although the AFm(SO4,Cl) (Mesbah et al., 2012), AFm(CO3,Cl) (Mesbah et al., 

2011a, 2012) and AFm(OH,Cl) (Birnin-Yauri and Glasser, 1998) solid solutions have been 

evaluated, the interaction of chloride ions with strätlingite has not yet been characterised in 

detail. The interactions between Cl- ions and C-(A)-S-H type gel (usually evaluated under 

portlandite saturated conditions) are mainly through surface adsorption by ionic pairing 

effects (≡Si-O-Ca-Cl) (Elakneswaran et al., 2009). Adsorption of Cl- onto the diffuse layer of 

a positively charged C-(A)-S-H gel surface is also a possible approach to binding chloride 

ions (Labbez et al., 2007).  
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The interactions controlled by surface adsorption (physical sorption) on the LDH phases 

studied here have been evaluated in the literature only to a limited degree. Chloride uptake 

can take place through surface adsorption in the diffuse electrical double layer (EDL) outside 

the positively charged LDH surface (Duan and Evans, 2006, Morimoto et al., 2012, Prasanna 

and Kamath, 2009). Also, given that the surfaces of LDHs are hydroxylated, the pH in the 

solution may affect the surface adsorption process by influencing the charge density of the 

surface (Morimoto et al., 2012, Shaw, 1992). Florea and Brouwers (2012) studied the 

physical sorption of NaCl onto Friedel’s salt in Portland cement based systems, but found no 

significant effect. In AAS cements, the pore solution is of high alkalinity, approximately 1.0 

mol/L NaOH (Myers et al., 2015b, Song and Jennings, 1999) and high ionic strength, thus 

greater surface adsorption on both types of LDH phase could be expected. Higher ionic 

strength could lead to higher surface adsorption (Trefalt et al., 2016), however the higher 

ionic strength in AAS pore solution is mostly contributed by a higher OH- and Na+ 

concentration (Myers et al., 2015b, Song and Jennings, 1999), and the OH- might act as 

competitive anions with chlorides and reduce the chloride binding capacities. 

 

Atmospheric carbonation of AAS cements leads to a reduction in alkalinity and an 

increase in the concentration of dissolved carbonates in the pore solution (Bernal et al., 2012, 

Fernández Bertos et al., 2004). Carbonate ions may also play important roles in determining 

chloride uptake by the solid phases present in in AAS cement; CO3
2- can be consumed by 

LDH interlayers to form stable mineral phases (Morimoto et al., 2012). However, there has 

not been previous investigation of the stability of the chloride-bearing LDHs in presence of 

carbonate ions, in simulated pore solutions relevant to AAS cements. 

 

In order to create a database which can be used in determining the chloride binding 

capacity of AAS paste as a whole, this study focuses on determination of the chloride binding 

capacities of a synthetic hydrotalcite-like phase, strätlingite, and three types of synthetic C-

(N)-A-S-H gel (with Ca/Si ratios 1.0 and 1.4, the former at Al/Si ratios 0 and 0.1, and the 
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latter at Al/Si=0.1). This was carried out in chloride-rich simulated pore solutions with 

varying [Cl-]/[OH-] ratios. LDH phases were also exposed to solutions with different [CO3
2-

]/[OH-] ratios. Changes in chemistry and mineralogy of the synthetic phases studied here 

were determined using X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and 

thermogravimetry coupled with mass spectrometry (TG-MS). The respective contributions of 

surface adsorption and interlayer incorporation have also been determined.  

 

5.2.  Experimental method 

5.2.1. Synthetic phases preparation 

 

5.2.1.1. Mg-Al hydrotalcite-like phase 

 

A calcined layered double hydroxide (CLDH) was produced from thermally treated 

synthetic hydrotalcite (Mg0.7Al0.3(OH)2(CO3)0.15∙0.63H2O, Sigma-Aldrich), following the 

method described in Chapter 3, with an Mg/Al ratio of 2.0 to 2.3, and residual carbonate 

content lower than 0.1 wt.%. The CLDH is used for studying the ion-exchange capacity of 

hydrotalcite-like phases. 

 

5.2.1.2. Strätlingite   

 

Strätlingite (Ca2Al(AlSi)O2(OH)10∙2.25H2O) was prepared according to the method 

described by Matschei et al. (Matschei et al., 2007b). Initially, stoichiometric quantities of 

CaO (obtained by calcining CaCO3 (Sigma-Aldrich) at 1000C for 12 hours), Na2SiO3·9H2O 

(Sigma-Aldrich, ≥98%), and NaAlO2 (Sigma-Aldrich), were separately suspended in Milli-Q 

water, at 20 ± 3 °C. Then, the sodium aluminate slurry was added to the portlandite 

suspension formed by hydration of CaO. After shaking for 1 min, the sodium silicate solution 

was added into the mixture, which was sealed in HDPE bottles with Parafilm. The HDPE 

bottles were kept at 20 ± 3 °C and agitated daily for 6 weeks. Preparation of the synthetic 
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strätlingite was carried out in a nitrogen filled glove box to minimise any potential for 

carbonation.  

 

5.2.1.3. (Sodium,Aluminium)-containing Calcium Silicate Hydrate (C-(N)-A-S-H) type 

gels 

 

CaO was obtained from calcined calcium carbonate (CaCO3, Sigma-Aldrich, ≥ 99.0%, 

powder) at 1000 °C for 12 hours. Fumed silica, AEROSIL® 200, with BET surface area of 

200 ±25 m2/g was used as the silica source. CaO∙Al2O3 (CA) was chosen as the aluminium 

source due to its high reactivity (Taylor, 1997). The CA used in this research was synthesised 

by heating homogenised CaCO3 and Al2O3 (L’Hôpital et al., 2015) following the sintering 

schedule shown in Figure 5-1. 

 

 

Figure 5-1 Sintering schedule applied for synthesis of CaO∙Al2O3 (CA). 

 

The C-(N)-A-S-H samples were prepared according to the procedure described by 

L’Hôpital et al. (2015), mixing 2 g of CaO, CA and SiO2 powder mixtures with 100 mL of 

1.0 mol/L sodium hydroxide in 125 mL HDPE bottles. C-(A)-S-H samples with different 

Ca/Si and Al/Si ratios were produced according to the formulations shown in Table 5-1. The 



Chapter 6 

92 

synthesis processes of all samples were conducted in nitrogen filled glovebox to minimized 

possible CO2 contamination. All the HDPE bottles were stored in an environmental chamber 

at 60 °C, regularly shaken (kept in rolling mixer for 1 hour at a time) twice a week for 10 

weeks. Then the HDPE bottles were moved to an environmental chamber at 20°C for three 

days, until reaching room temperature prior to separation.  

Table 5-1 Formulation of C-(N)-A-S-H gel-forming mixes for each batch prepared. 

Sample ID 

Molar ratio Mass (g) 

Ca/Si Al/Si 
CaO 

(40 g/mol) 

CaO-Al2O3  

(142 g/mol) 

SiO2 

(60 g/mol) 

0.5 M 

NaOH 

(1.02 g/mL) 

CNASH-A 1.0 0 0.800 0.000 1.200 100.0 

CNASH-B 1.0 0.1 0.723 0.135 1.142 100.0 

CNASH-C 1.4 0.1 0.892 0.117 0.991 100.0 

 

5.2.2. Chloride-rich simulated pore solution 

 

Two groups of chloride rich simulated pore solutions were prepared: carbonate-free 

solutions and carbonated solutions (compositions shown in Table 5-2). Four carbonate-free 

solutions were produced, with a constant total Na+ concentration and total ionic strength, but 

with varying [Cl-]/[OH-] ratios. Two carbonated simulated pore solutions were designed: 

solution CH-3-1 has the same total Na+ concentration as the carbonate-free solutions, but 

with hydroxides partially replaced by carbonate ions, resembling the natural carbonation 

process (Eq. 5-1) (Bernal et al., 2012). Solution CH-3-2 was designed for investigating the 

effect of hydroxide concentration on chloride binding in the presence of carbonate, therefore 

the chloride concentration and carbonate concentration were matched to CH-3-1, but with a 

much lower hydroxide concentration. 

 

2OH- + CO2 → H2O + CO3
2- Eq. 5-1 
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To study the interaction of chloride-rich simulated pore solution with the synthetic LDHs 

and C-(N)-A-S-H type gels, 40 g of pre-prepared solutions (Table 5-2) were weighed in 50 

mL centrifuge tubes, and 0.4 g of solids (either CLDH, strätlingite, or C-(N)-A-S-H gel) were 

added to each tube, under a nitrogen atmosphere in a glove box. Each formulation was 

prepared in duplicate. All tubes were sealed with Parafilm to minimise water evaporation and 

sample carbonation, stored at 20 ± 3 °C, and were manually shaken for 3 min every day until 

the mixtures reached equilibrium. For C-(N)-A-S-H type gels, only carbonate-free solutions 

were used. 

  

Table 5-2 Stoichiometric compositions of the simulated chloride-rich pore solutions studied 

Carbonate-free 

solutions 

Concentration (mol/L) 

[Cl-]/[OH-] 

Total ionic 

strength, I 

(mol/L) 
NaCl NaOH Na2CO3 

Total 

Na+ 

CH-1 0.10 0.90 0 1.00 0.1 1.00 

CH-2 0.25 0.75 0 1.00 0.3 1.00 

CH-3 0.50 0.50 0 1.00 1.0 1.00 

CH-4 0.75 0.25 0 1.00 3.0 1.00 

Carbonated 

solutions 
NaCl NaOH Na2CO3 

Total 

Na+ 
[Cl-]/[OH-] 

Total ionic 

strength, I 

(mol/L) 

CH3-1 0.50 0.30 0.10 1.00 1.7 1.10 

CH3-2 0.50 0.10 0.10 0.80 5.0 0.90 

 

5.2.3. Separation methods 

 

After reaching equilibrium, which took 7 days for CLDH (Chapter 4), 3 weeks for 

strätlingite (Okoronkwo and Glasser, 2016b), and 4 months for C-(N)-A-S-H gel (at 60 °C, 

cooled at 20 °C for 3 days prior to separation) (L’Hôpital et al., 2015), the solids that had 

been mixed and reacted with the different Cl-rich pore solutions were separated from the 

chloride-rich solution using a centrifuge (Heraeus Biofuge Primo, at 4000 rpm for 6 min). 

Prior to analysis, the separated supernatant solutions were filtered through 0.45 μm PVDF 

filter membranes. The pH values of the supernatants were determined using a digital pH 

meter (Oakton Acorn Series). The chloride ion concentration was obtained using an ion 
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selective electrode (Cole-Parmer Epoxy solid-state chloride electrode, accuracy ± 2%) 

according to ASTM D512–12 (ASTM International, 2012b). The chloride binding capacity of 

CLDH was calculated using Eq. 5-2.  

 

Qe= (C0-Ce)∙V/minput 
Eq. 5-2 

Qe - Chloride binding capacity of solid, mg/g (by dry mass of initial solid). 

Ce - Chloride concentration of the supernatant solution, mol/L. 

C0 - Initial chloride concentration, mol/L. 

V - Volume of solution, mL. 

minput - Initial mass of solid, g. 

 

After chloride immersion, two sets of solid LDH samples were conditioned. The first 

group of samples were dried in a vacuum desiccator at a controlled relative humidity at 30 ± 

3% (reached using saturated CaCl2 salt) for 4 days, immediately after the first filtration. 

These samples are referred to as “first filtration samples” throughout this chapter. The second 

group of LDH samples were washed with Milli-Q water, following the RILEM 

recommendations for analysis of water soluble chloride content in concrete (RILEM TC 178-

TMC, 2002), centrifuged and separated again. The solids were then dried under the same 

conditions as described for the first filtration samples. These samples are referred to as 

“second filtration samples”. For C-(N)-A-S-H type gels reacting with chloride-rich pore 

solutions, only one filtration was conducted. 

 

5.3. Results and discussion 

5.3.1. Aqueous equilibrium  

5.3.1.1.  Mg-Al hydrotalcite-like phase 

 

The initial and equilibrium chloride and hydroxide concentration values of two groups of 

the Cl-rich solution prior and after addition of CLDH solids were measured. The chloride 

binding capacity (Qe) of the CLDH in each environment tested was calculated according to 
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Eq. 5-2, and results are reported in Figure 5-2A. The [Cl-]/[OH-] ratios at equilibrium in the 

measured solutions are reported as a function of their initial [Cl-]/[OH-] ratios (Figure 5-2B). 

These values represent the total amount of free chloride removed from the bulk solution per 

unit of CLDH solid, via both ion-exchange and surface adsorption in the solid CLDH, under 

various aqueous conditions. The rehydration of the CLDH increased the alkalinity of the 

supernatant at equilibrium, even in these already highly alkaline solutions. 

 

 

 

A 
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Figure 5-2 (A) Chloride binding capacities of the Mg-Al LDH (calculated with respect to the 

mass of the CLDH used) in various chloride-rich simulated pore solutions. The error bars 

correspond to one standard deviation among three replicates; (B) Correlation of the [Cl-

]/[OH-] ratios at equilibrium as a function of their initial values in each solution 

 

For the carbonate-free systems, where the equilibrium chloride concentrations ranged from 

0 to 0.8 mol/L, the Qe value increased significantly at increased [Cl-]/[OH-] ratios, reaching a 

plateau above 0.5 mol/L initial chloride concentration (equivalent to [Cl-]/[OH-]=1) at around 

250 mg Cl/g CLDH. Carbonated solutions CH-3-1 and CH-3-2 contained the same initial 

chloride concentration as solution CH-3; however, the equilibrium chloride concentrations in 

these two solutions are much lower than that of solution CH-3. This indicates a reduction in 

chloride binding capacities in the solid phase when carbonate is present. Between the two 

carbonated samples, the chloride binding capacity in solution CH-3-2 is lower than that of 

solution CH-3-1.  

 

B 
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The reaction between CLDH and chloride rich solutions through exchange of interlayer 

species could be conceptualised as a two-step process: (i) hydrolysis of the dehydrated CLDH 

to form a hydroxylated structure similar to meixnerite (Eq. 5-3) (Tamura et al., 1999), 

followed by (ii) ion-exchange between interlayer OH- ions and anions in the liquid phase (Eq. 

5-4) (Miyata, 1983). Therefore, the availability of different types and concentrations of ions 

in the aqueous solution has an important effect on the solid phase at equilibrium. In reality 

these processes will not necessarily be consecutive, as it is possible for some chloride to act 

directly in the re-formation of the LDH structure from the anhydrous material, but 

conceptualisation in this way does assist in assigning the potential contributions of different 

binding mechanisms. A higher initial [Cl-]/[OH-] ratio and the absence of carbonate favour 

the uptake of chloride ions over hydroxide ions via the law of mass action, leading to 

determination of a higher Qe value at higher chloride content. The plateau at high aqueous 

chloride concentration represents saturation of the available sites in the LDH material 

(interlayer and external surface) with chloride ions. 

 

Mg1-xAlxO(1+x/2) + (1+x/2) H2O → [Mg1-xAlx(OH)2]
x+ + x OH- Eq. 5-3 

[Mg1-xAlx(OH)2]
x+ + (a-2) OH-+ b Cl-+ c CO3

2- + nH2O  

                                                            → Mg1-xAlx(OH)a(Cl)b(CO3)c∙n H2O 

Where in Eq. 5-4, (a-2)+b+2c=x 

Eq. 5-4 

 

In carbonated solutions, since the positively charged metal oxide sheets have stronger 

affinity for multivalent ions than monovalent ions (Miyata, 1983, Morimoto et al., 2012), the 

carbonate ion is more competitive than both chloride and hydroxide ions as interlayer species. 

The incorporation of carbonate in hydrotalcite-like phase reduces the available chloride 

binding sites, resulting in lower Qe values even at the same initial chloride concentration and 

higher initial [Cl-]/[OH-] ratio. This suggests that the greatly reduced chloride binding 

capacity observed in solution CH-3-2 could be caused by the incorporation of carbonate ions 

into the interlayers due to a reduced hydroxide concentration. 
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The chloride uptake capacity of the Mg-Al LDH via surface adsorption is clearly 

important, as a mass balance calculation shows that the mass of chloride taken up by the 

LDH structure exceeds the quantity which could realistically be accommodated in interlayer 

sites. However, quantification of the partitioning of chlorides between the interlayer and the 

surface requires determination of the chemical composition of the solid phase after chloride 

binding, which will be discussed in detail in the following sections.   

 

5.3.1.2. Strätlingite  

 

Figure 5-3 shows the chloride uptake of strätlingite immersed in solutions with different 

chloride concentrations, and the [Cl-]/[OH-] ratio in equilibrium solution in comparison with 

initial [Cl-]/[OH-] ratios. The chloride uptake capacities of strätlingite under different aqueous 

conditions were also calculated using Eq. 5-2. 

 

 

 

A 
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Figure 5-3 (A) Chloride binding capacity of strätlingite in various chloride rich simulated 

pore solutions. Qe calculated using Eq. 5-2. The error bars indicate one standard deviation 

among three replicates. (B) Correlation of the [Cl-]/[OH-] ratios measured at equilibrium as a 

function of their initial values 

 

Similar to the trends identified for the Mg-Al LDH, for carbonate-free solutions the total 

chloride uptake capacity of the AFm phase rises as the [Cl-]/[OH-] ratio increases. The 

chloride binding capacity of strätlingite is higher than that of Mg-Al LDH at lower initial [Cl-

]/[OH-] ratio (<0.3), but lower at higher initial [Cl-]/[OH-] ratios (>0.3). The maximum 

chloride binding capacity achieved was about 204 mg/g, at an initial [Cl-]/[OH-] ratio of 3.  

 

The differences in chloride binding isotherm for strätlingite, compared with that of Mg-Al 

LDH, suggest that the interaction between chloride ions and strätlingite might involve 

different binding mechanisms, most likely a lattice substitution (Balonis et al., 2010, Mesbah 

et al., 2011a). The decrease in chloride uptake by strätlingite induced by increased [CO3
2-

B 
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]/[OH-] ratio is similar to that identified for the hydrotalcite-like phase, although less 

significant changes were observed in the chloride uptake from solutions CH-3-1* and CH-3-

2* compared with the sample CH-3* in strätlingite compared to that identified for Mg-Al 

LDH. It is possible that the decreased chloride binding capacity of strätlingite in carbonated 

solutions is due to the formation of carbonate-rich AFm phases, such as hemicarbonate or 

monocarbonate (Mesbah et al., 2011a). This will be examined in detail in the following 

sections.  

 

5.3.1.3. C-(N)-A-S-H type gels 

 

The total chloride uptake in chloride-rich pore solutions with different [Cl-]/[OH-] ratios 

was measured and calculated using a similar method to that described for synthetic LDHs 

(e.g. hydrotalcite and strätlingite), and the results are shown in Figure 5-4. The chloride 

binding capacities of C-(N)-A-S-H with different Al/Si ratios increase when exposed to 

solutions with higher [Cl-]/[OH-] ratios. However, the increase in Qe values for each type of 

C-(N)-A-S-H assessed were not significant when the initial [Cl-]/[OH-] ratios were lower than 

1.0. Instead, the chemistry of the synthetic C-(N)-A-S-H type gel appears to be the main 

factor governing the overall chloride uptake. The C-(N)-A-S-H type gel ‘C’ with a Ca/Si ratio 

around 1.4, and Al/Si=0.1, showed the lowest chloride uptake at lower [Cl-]/[OH-] ratios 

(<1.0), but the highest chloride uptake when immersed in a [Cl-]/[OH-] ratio around 3.0. C-

(N)-A-S-H type gel ‘B’, with a bulk Ca/Si ratio of 1.0 and the same Al substitution 

(Al/Si=0.1) as C-(N)-A-S-H gel ‘C’, showed the highest chloride uptake at a low [Cl-]/[OH-] 

ratio, but lowest at highest [Cl-]/[OH-] ratios.  

 

The uptake of chloride ions by C-(A)-S-H type gels mostly takes place in the diffuse 

layers surrounding the gel surface, and no significant chemical binding has been observed 

between chloride ions and C-(A)-S-H phases (Beaudoin et al., 1990, Plusquellec and Nonat, 

2016, Yoon et al., 2014a). The C-(N)-A-S-H type gels present a positively charged surface in 

calcium-rich alkaline solutions (Labbez et al., 2007), and a more positively charged surface 
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will most likely result in a higher uptake of counter-ions, including both OH- and Cl-. A 

higher bulk Ca/Si ratio increases the positive charge density at the C-(N)-A-S-H type gel 

surface (Labbez et al., 2007, Yoon et al., 2014a), while increased Al-substitution (higher 

Al/Si ratio) decreases the overall surface charge density (Schneider et al., 2001, Sun et al., 

2006). The presence of excess Na+ might also balance the charge of substituted Al in the C-

(N)-A-S-H gel (Hong and Glasser, 2002, Myers et al., 2014). However, only when chloride 

ions are the dominant anions (i.e. the initial [Cl-]/[OH-] ratio>1), less OH- is competing with 

Cl-, therefore the overall chloride uptake by C-(N)-A-S-H gels is positively correlated with its 

positive surface charge density.  
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Figure 5-4 (A) Chloride binding capacity of three types of synthetic C-(N)-A-S-H type gels in 

various chloride rich simulated pore solutions. Qe calculated using Eq. 5-2. The error in the 

measurement is lower than 1.0%. (B) Correlation of the [Cl-]/[OH-] ratios measured at 

equilibrium as a function of their initial values 
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5.3.2. Mineralogy of solid phases 

5.3.2.1. Mg-Al hydrotalcite-like phase 

 

Chemical analysis of the solid Mg-Al LDH products 

 

The elemental analysis of the solid material obtained after the first and second filtrations is 

reported in Table 5-3. In solid samples after the second filtration, the detected percentages of 

sodium and chloride were much lower than the values obtained after the first filtration, by as 

much as a factor of 10 for chloride in particular.  

 

Table 5-3 XRF results for solids after first and second filtration. Carbon is not detectable by 

the instrument used here. Data presented as elemental mass percentage 

Elements 
1st filtration 2nd filtration 

CH-1 CH-2 CH-3 CH-4 CH-1 CH-2 CH-3 CH-4  CH-3-1 CH-3-2 

Na 17.8 17.6 12.9 40.1 9.0 6.7 2.2 1.0  1.0 0.5 

Cl 9.1 11.2 9.5 53.5 0.2 0.5 0.7 1.2  0.4 0.3 

Mg 14.8 16.9 18.4 3.7 20.9 21.2 22.1 19.1  20.8 20.6 

Al 8.2 8.8 9.1 2.6 11.5 10.9 11.8 9.5  11.0 10.5 

O 50.1 45.4 50.1 *n.d. 58.4 60.7 63.2 69.1  66.8 68.2 

Atomic 

ratio 
        

 
  

Mg/Al 2.0 2.1 2.3 null 2.0 2.2 2.1 2.3  2.1 2.2 

*n.d. represents “not detected” 

 

Mg/Al ratios of the recrystallised LDH ranged from 2.0 to 2.3 (Table 5-3), similar to that 

of the original CLDH, except for the Mg/Al ratio detected from sample CH-4 after the first 

filtration, which is lower than the lowest acceptable Mg/Al ratio in the hydrotalcite-like phase 

family (Gastuche et al., 1967), and so is reported as a null measurement. A very high 

percentage of intermixed NaCl crystals (as is evidently the case here from the Na and Cl 

contents) would make the calculation of Mg/Al ratio in hydrotalcite-like phase less reliable. 
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In the diffuse layer, both Cl- and OH- can act as counter-ions. When the initial [Cl-]/[OH-] 

is lower than 1, OH- is the dominant anion in the solution, resulting in a significant amount of 

OH- retention in diffuse layers as well. Since OH- cannot be detected by XRF, the amount of 

Na detected would be much higher than the amount of Cl. This explains why all samples, 

except CH-4, presented a Na content significantly higher than that of the stoichiometric 

composition of NaCl. 

 

X-ray diffraction analysis of the recrystallised Mg-Al LDH 

 

Figure 5-5 shows the XRD patterns of recrystallised LDH after the first (Figure 5-2A) and 

second (Figure 5-2B) filtration. A hydrotalcite-like phase, and crystallised NaCl (Powder 

Diffraction File (PDF) # 01-078-0751), were identified after the first filtration. The intensities 

of NaCl reflections in Figure 5-5A increased with increasing chloride concentration in the 

bulk solution. However, NaCl crystals are not identified in any of the samples after the 

second filtration, and only the hydrotalcite-like phase was observed in solids after the second 

filtration (Figure 5-5B). 

 

The basal peak position of the hydrotalcite-like phase after the first filtration was centred 

at 11.6°, although the intensities and widths of this peak vary for the hydrotalcite-like phases 

which recrystallised in solutions with different chloride concentrations. This is most likely 

associated with changes in the amount of bound chlorides interrupting the regularity of the 

layered structure (Figure 5-5A). In carbonate-free solutions, the basal peak of the 

hydrotalcite-like phase was broader and less intense after chloride exposure compared to the 

material obtained by recrystallising the same CLDH in water (marked CLDH-H2O in Figure 

5-5B). This was more notable in solutions with high chloride concentrations. Changes in the 

basal peak shape but not its position indicate that the average interlayer spacing in chloride-

exchanged hydrotalcite-like phases remain largely unchanged on average, but variation 

between different unit cells becomes more marked with a higher chloride loading.  
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In the carbonate-containing samples CH-3-1, the basal reflection peak of the CLDH is 

even more diffuse than that of the samples with the highest chloride loadings in carbonate-

free systems. This suggests that the incorporation of carbonate ions in the interlayer might 

induce a greater degree of local disorder in the hydrotalcite-like phase compared with 

chloride ions. After the second filtration, Figure 5-5B, the basal peak reflections shifted 

slightly towards lower angle, while the peak shape stayed relatively unchanged. The shift in 

the basal peak reflection is attributed to either changes in the Mg/Al ratios (Table 5-3), or 

different combinations of interlayer species (Miyata, 1975, 1983). However, since the Mg/Al 

ratios in those samples were around 2.0 to 2.3, and the lattice parameters are rather 

insensitive to Mg/Al ratio in this range (Richardson, 2013a, b), it is expected that this is at 

most a secondary effect. Thus, the variation of interlayer species mainly defines the changes 

in crystal structures. 
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Figure 5-5 XRD patterns of recrystallised LDH in chloride-rich simulated pore solutions, (A) 

after the first filtration, with the pattern of the original CLDH; (B) after the second filtration, 

with the pattern of the CLDH recrystallised in distilled water (CLDH-H2O) 
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The solid phase obtained after the first filtration contains chloride chemically or 

electrostatically bound in the interlayer, as well as chloride adsorbed to the diffuse electrical 

double layer (EDL) through surface adsorption. For ions retained in the diffuse layer, the total 

ion uptake is proportional to the capacity of the EDL (CEDL, Eq. 5-5), and closely related to 

the total ionic strength (I, Eq. 5-7) in the solution (via Debye length λD,, Eq. 5-6) (Butt et al., 

2003, Trefalt et al., 2016).  

 

Eq. 5-5 

 

Eq. 5-6 

 

Eq. 5-7 

ε - dielectric constant (relative permittivity), C/V∙m 

ε0 - permittivity of free space, C/V∙m 

k - Boltzmann’s constant, J/K 

T - temperature, K 

NA - Avogadro’s number, mol-1 

e - elementary charge, C 

Ci - concentration of the ith ion, mol/L 

Zi - valence of the ith ion 

 

 

It was previously identified (Châtelet et al., 1996, Morimoto et al., 2012) that chloride ions 

tend to become sorbed in the diffuse layer at the external surface of hydrotalcite-like phases, 

pairing with Na+. A higher chloride concentration coupled with a lower hydroxide 

concentration will increase the thickness of the diffuse layer (i.e. the Debye length) on the 

outer surface of the hydrotalcite-like phase, increasing the capacity of the electrical double 

layer (Eq. 5-5), and promoting the uptake of both sodium and chloride ions from the bulk 

solution (Trefalt et al., 2016). For the samples obtained after the first filtration, the Na+-Cl- 

ion pairs in the diffuse layers crystallise to form NaCl upon drying (Figure 5-5A). After the 

second filtration, the diffuse layer was diluted by the milli-Q water (ionic strength 

approaching 10-7 mol/L), so that the amount of chloride bound in the diffuse layer should 

become negligible. The remaining chloride identified in the solid phase by XRF (Table 5-3), 

should thus be considered to be interlayer species bound to the metal hydroxide layers.  
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In contrast to chloride ions, carbonate ions are linked to the metal hydroxyl layer of 

hydrotalcite-group minerals via H-bonding (Cavani et al., 1991, Constantino and Pinnavaia, 

1995). Binding of carbonate ions neutralises the interlayer acid hydroxyl groups, lowers the 

charge density of the surface (and so reduces the thickness of the diffuse layer), and thus 

limits the chloride uptake (Morimoto et al., 2012, Trefalt et al., 2016). Hydroxide also bonds 

to the interlayer through H-bonding, and so there is direct competition between these ions; 

the relative bound concentrations will thus depend on the hydroxide concentration of the 

aqueous solution. A higher degree of carbonate ion-exchange in the interlayers leads to 

further reduction in surface charge density (Morimoto et al., 2012), and a reduced chloride 

uptake in the diffuse layer as a result. This is demonstrated by the low intensities of the 

reflections of NaCl crystals identified in Figure 5-5A, for the carbonate-containing sample 

CH-3-1and CH-3-2. 

 

Thermogravimetric analysis of the solid CLDHs 

 

Figure 5-6 shows the TG-MS data for the solid phase after second filtration. The weight 

loss between room temperature and 228°C is assigned to loss of chemically bound water 

(interlayer water molecules), and weight loss between 228 to 550°C is due to both 

dehydroxylation of metal hydroxyl layers, and decarbonation of carbonate ions bonded to the 

metal hydroxyl layers present in a hydrotalcite-like structure (Hibino et al., 1995, Zhang et 

al., 2016).  
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Figure 5-6 Thermogravimetry curves (A); and mass spectra of (B) H2O (m/z=18), and (C) 

CO2 (m/z=44), of recrystallised MgAl LDH immersed in various chloride rich simulated pore 

solutions, after the second filtration. Reference data for the thermally treated hydrotalcite 

(CLDH) immersed in milli-Q water (CLDH-H2O) are also reported 
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The loss of chemically bound water from recrystallised Mg-Al LDH is a multi-step 

process. In carbonate-free systems, two water loss peaks appear: an intense and sharp peak at 

centred at 161 °C, the sharpness of which decreases with increased chloride concentrations in 

the solution, followed by a small peak centred at 208 °C, the intensity of which stays 

relatively unchanged across the samples immersed in solutions with different chloride 

concentrations. In samples immersed in the carbonate-containing solution CH-3-1, only a 

small shoulder at around 161 °C is observed, along with a high intensity peak at 208 °C.  

 

The interlayer water molecules are also bound to the LDH structure through H-bonding, 

although with a binding energy lower than those of carbonate and hydroxide ions. In the 

carbonate- and chloride-free sample (Figure 5-6; CLDH-H2O), the only interlayer species are 

hydroxide and water, as well as traces of carbonates. The H-bonding environment 

surrounding the interlayer water molecules in this sample (CLDH-H2O) is more ordered 

(Zhang et al., 2016); therefore, a sharp and strong water loss peak was identified at 161 °C. It 

is likely that an increased chloride concentration in the LDH interlayer induces an increase in 

the average H-bonding energy for water molecules, as the chloride ions add attraction to 

water molecules through H-bonding (Wang et al., 2003). With a higher content of interlayer 

carbonate, as in CH-3-1, the H-bonding network would be more complex, thus a higher 

temperature is required for the interlayer water to be removed (Zhang et al., 2016), as shown 

in Figure 5-5A. This is consistent with the XRD results (Figure 5-5), where broader basal 

reflections were identified in samples with more complex interlayer species. 

 

In Figure 5-6C, a single CO2 release peak was identified in all samples between 373 to 

400 °C. In samples where carbonate ions were not added to the solution, the CO2 release peak 

indicates some CO2 contamination, probably caused during the sample separation or drying 

process. However, the amounts of carbonate which became incorporated in these samples 

without added carbonate samples were comparable across all samples.  
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Figure 5-7 shows the mass spectra of all the chlorine-containing gases released during the 

thermal analysis process. The identification of loss of chlorine during thermogravimetric 

analysis is complicated by its low content in the solid phase, as well as the presence of 

different Cl isotopes (Lv et al., 2006b). However, Figure 5-6 indicates that the weight loss 

contributed by release of chlorine from the solid phase takes place above 600 °C. 

 

 

Figure 5-7 Mass spectra of all Cl-containing gases released during thermogravimetric 

analysis of sample CH-3 after the second filtration 

 

Table 5-4 summarises the chemical formulae of the hydrotalcite-group solids obtained 

after the second filtration from each solution studied, showing the compositions of interlayer 

species (OH-, Cl-, and CO3
2-), calculated based on the XRF results and TG-MS data. The 

determination of chemical formulae was carried out assuming that the loss of chemical 

bounded water took place only between room temperature and 228 °C, the loss of hydroxyl 

groups and interlayer carbonates between 228 °C and 550°C, and the loss of chlorine-

containing gases above 600 °C.  
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Table 5-4 Chemical compositions of recrystallised Mg-Al LDH after the second filtration, 

after equilibration under different conditions 

 

General formulation: 

MgxAly(OH)a(Cl)b(CO3)c∙nH2O 

x+y=1 

Q*
e-Cl 

mg/g  

(CLDH) 

Qe - Q*
e-Cl  

mg/g 

(CLDH) 

CH-1 Mg0.672Al0.328(OH)2.272(Cl)0.004(CO3)0.026∙0.985H2O 3.3 25.4 

CH-2 Mg0.687Al0.313(OH)2.262(Cl)0.011(CO3)0.020∙0.929H2O 9.0 149.6 

CH-3 Mg0.679Al0.321(OH)2.265(Cl)0.014(CO3)0.021∙0.888H2O 11.4 237.6 

CH-4 Mg0.693Al0.307(OH)2.233(Cl)0.031(CO3)0.022∙0.855H2O 25.3 236.2 

CH-3-1 Mg0.679Al0.321(OH)2.100(Cl)0.010(CO3)0.105∙0.819H2O 8.2 115.9 

CH-3-2 Mg0.688Al0.312(OH)2.071(Cl)0.007(CO3)0.117∙0.826H2O 5.7 41.7 

* Qe*-Cl values were calculated using the chemical formulas based on the mass of CLDH. 

 

The reduction in interlayer hydroxyl groups with increased interlayer chloride and 

carbonate ions is consistent with the discussion in section 5.3.1.1 regarding the ion-exchange 

mechanism. In sample CH-4, where a maximum chloride uptake (from the bulk solution) of 

262 mg/g was calculated, the interlayer chloride occupies only 10% of the available anion 

sites. Reduced interlayer chloride contents were identified in samples that were immersed in 

carbonated solutions (CH-3-1 and CH-3-2). The carbonate contamination in all non-

carbonate added samples is almost constant, about 12% of the maximum carbonate uptake by 

the LDH. In samples with 0.1 mol/L carbonate ions added to the bulk solution, the interlayer 

carbonate ions reached about 73% of the maximum carbonate capacities. 

 

The Q*
e-Cl values shown in Table 5-4 correspond to the weight percentage of interlayer 

chloride in the hydrotalcite-like phase, which are 5-10% of the Qe values reported in Figure 

5-2A. The amount of chloride taken up by the rehydrated CLDH via surface adsorption, 

corresponding to the final column in Table 5-4, is calculated by subtracting Q*
e-Cl calculated 

from the solid phase from Qe calculated from the aqueous solutions. Chloride uptake by Mg-

Al LDH phase via surface adsorption is influenced by the chemical binding capacity of the 

diffuse electrical double layer in each sample.  
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5.3.2.2. Strätlingite  

 

X-ray diffraction analysis of the strätlingite 

 

Figure 5-8 shows the XRD patterns of strätlingite after being immersed in chloride-rich 

solutions. Distinctive peaks assigned to crystallised NaCl were identified in the solid phase 

after the first filtration, where the Na+ and Cl- ions are still retained in the diffuse layer. 

Similar to the case identified for the hydrotalcite-like phase (Figure 5-5), the intensities of the 

NaCl reflections in Figure 5-8 decrease with a reduced initial [Cl-]/[OH-] ratio. Minor traces 

of NaCl are identified in sample CH-1* (Figure 5-8A). As discussed above, the reduced [Cl-

]/[OH-] ratio (lower chloride concentration but higher NaOH content) results in a lower 

surface charge density and probably a thinner diffuse layer (Trefalt et al., 2016), reducing the 

amount of chloride retained in the diffuse layer upon filtration.  

 

A chloride-bearing AFm phase (AFm-Cl), with a crystal structure resembling the Cl-

substituted hydrocalumite-type phase Friedel’s salt (Ca2Al(OH)6Cl∙2H2O, PDF# 01-078-

1219), was identified in samples immersed in the non-carbonated chloride rich solutions. 

Only part of the strätlingite converted to Friedel’s salt though ion-exchange, as residual 

strätlingite reflections were identified along with the chloride-bearing AFm phase, and the 

correspondence between the XRD data here and the reference PDF pattern for a pure 

Friedel’s salt is not exact. This indicates some degree of ionic substitution or disorder in this 

phase. Although the positively charged layers in strätlingite, CaAl2(OH)6
+, are the same as in 

all the other AFm phases (Okoronkwo and Glasser, 2016b, Rinaldi et al., 1990), the amount 

of ion-exchangeable hydroxyl sites bound to the mixed metal sheets in strätlingite is much 

more limited (Okoronkwo and Glasser, 2016b). Also, for full replacement of the complex 

interlayer aluminosilicate ion species, [AlSi(O8H8)∙0.25H2O]-, a higher chloride concentration 

or ionic strength might be required.  
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Figure 5-8 XRD pattern of strätlingite after interaction with chloride rich simulated pore 

solutions, (A) after first filtration; (B) after second filtration. Insets in each case show 

expansions of the regions highlighted with rectangles 
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In the strätlingite immersed in the carbonate-free solutions, the chloride-bearing AFm 

phase formed has a d(002) spacing ranging from 7.88 Å to 7.98 Å (inset in Figure 5-8). The 

shift of the basal peak position in hydrocalumite-like AFm phases is correlated to the 

composition of the interlayer anions, as well as interlayer water (Balonis et al., 2010). 

However, the intensities of hydrocalumite basal peaks are not linearly related to the Cl 

content in the interlayers. 

 

In samples immersed in carbonated solutions, calcite (CaCO3, PDF# 00-005-0586) was 

identified as a reaction product. Chloride-bearing AFm phases were not observed in these 

specimens. This is probably associated with the decomposition of the hydrocalumite-like 

phase upon carbonation, as proposed by Anstice et al. (Anstice et al., 2005). However, the 

existence of a disordered (‘X-ray amorphous’) AFm(CO3, Cl) solid solution is also plausible 

(Mesbah et al., 2011a). When keeping the chloride concentration and carbonate 

concentrations constant, but decreasing the OH- concentration from 0.3 mol/L to 0.1 mol/L 

(i.e. moving from system CH3-1* to CH3-2*), the amount of calcite increased significantly, 

indicating that more extraction of the calcium from strätlingite to form calcite in the presence 

of dissolved carbonate will occur at lower OH- concentrations, consistent with the data 

reported by Okoronkwo and Glasser (2016b).  

 

Thermogravimetric analysis of the solid strätlingite 

 

Figure 5-9 shows the TG-MS data obtained for solid AFm samples after the second 

filtration, in comparison with the synthetic strätlingite. For the synthetic strätlingite, the 

chemically bound interlayer water was lost at around 145 °C, and the structural hydroxyl 

groups were decomposed before 250 °C (Kwan et al., 1995, Okoronkwo and Glasser, 2016a). 

There are two small CO2 release peaks observed in the CO2 mass spectra (Figure 5-9C), 

centred at 400 °C and 800 °C, respectively. This is consistent with the decarbonation of minor 

interlayer carbonate ions in strätlingite, and/or decomposition of sodium carbonate (Kaufhold 
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et al., 2013). The formation of these carbonate-containing phases is attributed to CO2 

contamination during the sample preparation process. It has been reported (Okoronkwo and 

Glasser, 2016b) that strätlingite accommodates a small amount of carbonate ions as interlayer 

species without significant changes in its crystal structure. Combining the MS data for CO2 

(Figure 5-9C) with the TG data (Figure 5-9A), a total CO2 contamination in the input 

strätlingite of less than 1.0 wt.% was calculated.   

 

The mixture of strätlingite and hydrocalumite-like phases in the solid samples after the 

second filtration makes the interpretation of the thermogravimetric results challenging. No 

significant changes in samples immersed in chloride-rich solutions are observable from the 

TG-MS results, apart from minor shifts in the dehydroxylation peaks at around 202 °C and 

weight loss peaks at around 830 °C. For samples prepared in carbonate-free solutions, less 

intense dehydroxylation peaks were observed for samples with lower chloride content. In 

contrast to the trends identified for Mg-Al LDH (Figure 5-6), there is not a clear trend of 

changes in the dehydration/dehydroxylation peak intensity and/or width in chloride bearing 

strätlingite. This is possibly due to its more complex interlayer structure. The weight loss at 

around 830 °C seems to relate to the release of chlorine-containing gases, as the intensity of 

the weight loss peak rises with increased chloride content in the solids.  

 

Quantification of the amount of chloride bounded to the strätlingite via lattice substitution 

is complicated, considering the intimate intermixture of strätlingite with the newly-formed 

Friedel’s salt-like phase, after immersion in chloride-rich simulated pore solutions. However, 

in aiming to enable estimation of chloride binding capacity for known phase assemblages in 

alkali-activated binders, this study has provided very valuable information regarding 

estimation of chloride uptake by strätlingite, as shown in Figure 5-3. The amount of chloride 

taken up through surface adsorption would be more sensitive to changes in the aqueous 

environment, while the formation of the chloride-AFm solid solution is relatively more stable 

as the chloride bearing phase.  
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Figure 5-9 Thermogravimetry curves (A) and mass spectra of (B) H2O (m/z=18), and (C) 

CO2 (m/z=44), for strätlingite immersed in various chloride rich simulated pore solution, after 

the second filtration. Reference results for the synthesised strätlingite are also reported. 
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5.3.2.3. C-(N)-A-S-H 

 

X-ray diffraction analysis of the C-(N)-A-S-H gels 

 

Figure 5-10 shows the XRD patterns of C-(N)-A-S-H type gels with varying compositions 

after immersion in chloride-rich solutions. Similar to the results for LDH phases as described 

above, crystallised NaCl was identified in the solid phase after the first filtration, as a result 

of the retention of Na+ and Cl- ions in the diffuse layer. Reduced intensities of the NaCl 

reflections were seen in samples exposed to solutions at lower initial [Cl-]/[OH-] ratio. As 

discussed above, the reduced [Cl-]/[OH-] ratio (lower chloride concentration but higher 

NaOH content) results in a lower surface charge density and probably a thinner diffuse layer 

(Trefalt et al., 2016), reducing the amount of chloride retained in the diffuse layer upon 

filtration.  
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Figure 5-10 XRD patterns of C-(N)-A-S-H type gels after interaction with chloride-rich 

simulated pore solutions, (A) Ca/Si=1, Al/Si=0, (B) Ca/Si=1, Al/Si=0.1, (C) Ca/Si =1.4, 

Al/Si=0.1. In each case, the inset shows the basal peak observed at low angle, with the peak 

positions marked in terms of degrees 2θ, as well as a conversion to Å to present d-spacing 

values via Bragg’s law. 
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It is worthwhile to note that the d002 peak of C-(N)-A-S-H type gels ‘A’ and ‘B’ shifted to 

higher diffraction angles (shorter d-spacings) after interacting with sodium chloride, while the 

d002 peak in C-(N)-A-S-H type gel ‘C’ stayed unchanged even after binding of chloride. The 

d002 peak at higher diffraction angel correlates to lower basal spacing. The results shown here 

are contrary to the outcomes of studies using pH-neutral NaCl solution as chloride source 

(Yoon et al., 2014a). The presence of excess Na+ and the high alkalinity in the aqueous phase 

might be responsible for the differences, however further analysis is needed before coming to 

a definitive conclusion.  

 

5.4. Implications of chloride interactions with cementitious phases in 

alkali-activated slag cements 

 

Figure 5-11 illustrates the different factors which contribute to controlling the rate of the 

transport of chloride permeability of in alkali-activated slag materials. In the first instance, 

the phase assemblage of these materials and the chloride binding capacity of each of the 

individual phases forming will play a key role in the mitigation of chloride penetration. 

 

The pH value of the pore solution in alkali-activated slag cement is expected to change 

during exposure to a near-neutral external chloride source, such as sea water or de-icing salt 

solutions, due to alkali leaching from the pore network. The [Cl-]/[OH-] ratios will also be 

influenced by this characteristic, and this may in fact give both buffering and additional 

binding capacity for chloride, as the hydroxide bound in the LDH phases formed during the 

hydration of the binder can be released and replaced by incoming chloride.  
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Figure 5-11 Illustration of some of the factors which control chloride transport in AAS 

 

The results presented in this Chapter show that the binding capacities of LDHs and C-(N)-

A-S-H type gels change as a function of the [Cl-]/[OH-] ratios, implying that the chloride 

binding capacities of these phases will differ at different depths of chloride penetration into a 

hardened monolithic specimen. The [Cl-]/[OH-] ratio in the pore solution is likely to increase 

over time, resulting in high chloride uptake, until the LDHs and the C-(N)-A-S-H type gels 

reach their maximum chloride uptake capacity. This process is expected to significantly 

retard the ingress of chloride, and is a key factor underlying the observed slow movement of 

chloride through alkali-activated concretes compared to Portland cement concretes of 

comparable total pore volume (Ismail et al., 2013, Ma et al., 2015, Shi, 1996). From Figure 5-

2A and Figure 5-3A, it can be estimated that the maximum chloride uptake capacities of the 

hydrotalcite-like phase and strätlingite are about 250 mg/g and 200 mg/g, respectively, even 

at [Cl-]/[OH-] ratios higher than 3. The maximum chloride uptake of C-(N)-A-S-H gel varies 

with its chemical composition, and could potentially reach much higher values (compared 
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with the maximum uptake shown in Figure 5-4) when the [Cl-]/[OH-] ratio in the solution is 

higher. 

 

Hydrotalcite-group minerals are well known as effective chloride binding phases, 

contributing to the low chloride penetration rate of cementitious materials containing slag as 

a main binder material (Baroghel-Bouny et al., 2012, Kayali et al., 2012). This study has 

illustrated that, in chloride-rich simulated alkali-activated slag pore solutions, most of the 

chlorides are taken up by hydrotalcite-like phases through surface adsorption in the diffuse 

layer rather than through direct ion-exchange. However, since the mobility of chloride in the 

diffuse layer is much slower than that in the bulk solution, a high contribution from surface 

adsorption may effectively slow down the ingress of free chloride in the cement matrix 

(Friedmann et al., 2008, He et al., 2016). Similarly, the binding of chloride in the AFm 

phases which can form within alkali-activated slag binders also offers significant scope for 

restriction of chloride movement. 

 

5.5. Conclusions 

 

This chapter reports for the first time the chloride binding capacities, under high alkalinity 

conditions, of the hydrotalcite-like (Mg-Al), strätlingite (AFm) layered double hydroxides, 

and C-(N)-A-S-H type gels, which are identified as reaction products in many Portland 

blended cements and alkali-activated slag cements. It has been demonstrated that this 

hydrotalcite-like phase and strätlingite can effectively take up chloride from highly alkaline 

solutions with different initial [Cl-]/[OH-] ratios. For a hydrotalcite-like phase, surface 

adsorption is the main binding mechanism, responsible for around 90% of the total chloride 

uptake, with around 10% contribution from ion exchange. For strätlingite, surface adsorption 

of chlorides is less dominant, and lattice substitution of chloride also takes place. The overall 

chloride binding capacities of C-(N)-A-S-H gels are much lower than that of LDHs.  
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The presence of carbonates in the pore solution, along with a decrease in the alkalinity of 

the system, significantly decreases the chloride uptake by both LDH minerals assessed. 

Carbonate in hydrotalcite-like phases will occupy the chloride-exchangeable interlayer 

hydroxyl sites and reduce surface adsorption, while in strätlingite it can participate in ion 

exchange, but also (when the aqueous environment is poor in aluminium) leads to partial 

decomposition of the AFm phase, inducing the precipitation of calcite instead.  

 

The modification in the chloride binding capacities of hydrotalcite-like phase, strätlingite, 

and C-(N)-A-S-H type gels with different chemical composition as a function of [Cl-]/[OH-] 

ratio, should be taken into consideration when building up a detailed model for prediction of 

chloride penetration profiles, as different chloride binding capacities will need to be applied 

when considering the changes in the pore fluid composition depending on depth from the 

surface of the sample. In the following chapter, the chloride binding capacities of AAS pastes 

with different phase assemblages are tested and analysed according to the results discussed 

above, which then provides valuable perspective for understanding the  chloride transport  in 

the sodium carbonate-activated slag mortars. 
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Chapter 6.  
1                                                                                                                                                                   1 

CHLORIDE BINDING AND MOBILITY 

IN SODIUM CARBONATE-ACTIVATED 

SLAG PASTES AND MORTARS  

 

6.1. Introduction 

 

The interactions of chloride with cementitious materials are governed by physico-chemical 

phenomena associated with its transport property into the hardened solid cement or concrete 

through its pore network, and its ability to chemically bind to the hydrated phases present in 

the matrix. There are two main aspects to be taken into account when studying the chloride 

binding capacities of alkali-activated slag cement: the chemistry of the aqueous environment 

studied (e.g. pH, ionic concentration), and the phase assemblage of the cementitious matrix 

(Dhir et al., 1996, Florea and Brouwers, 2014, Yuan et al., 2009). The aqueous environment 

under which the chloride binding capacity is determined has to be comparable to that of the 

pore solution chemistry present in hardened samples, so that the results are sufficiently 

representative. Nonetheless, chloride binding capacities of cementitious materials are 

normally measured in neutral chloride solutions (Dhir et al., 1996, Thomas et al., 2012). This, 

in theory, might lead to overestimation of the chloride binding capacity, as a very high initial 

[Cl-]/[OH-] ratio will favour the binding of chlorides in the solid phases, either through ion-

exchange or surface adsorption (Trefalt et al., 2016). The use of chloride and alkalis-rich 

simulated pore solution mitigates this preferential effect. 

 

The phase assemblages of AAS binders are mainly controlled by the chemistry of the slags 

and activators used (Provis and Bernal, 2014, Winnefeld et al., 2015). Slags activated using 
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either sodium carbonate or sodium silicate could potentially have different chloride binding 

capacities, due to the differences in phase assemblage between these two AAS binders 

(Bernal et al., 2014b). Chapters 4 and 5 discussed the role of CLDH in controlling the 

kinetics of reaction, and the chloride binding capacities of different layered double hydroxide 

(LDH) type phases typically identified in alkali-activated slag paste. Although LDHs can 

chemically bind chlorides, their potential role in the mechanical and durability performance 

of alkali-activated slag cement is yet to be investigated and understood.  

 

The properties of AAS binders, including mechanical and durability aspects of AAS 

binders are strongly dependent on the chemical and physical properties of slag, the type and 

dose of activators, as well as the water to binder ratio (Fernández-Jiménez et al., 1999, Shi, 

1996, Wang et al., 1994). Among these factors, the type of activator used seems to be the 

most important factor when using slags with the same chemical composition (Fernández-

Jiménez et al., 1999, Shi, 1996). When a given slag is activated with a similar alkali dose and 

cured under the same conditions, but different activators, the properties change. Samples 

activated with sodium silicate normally develop the highest compressive strength compared 

with using sodium hydroxide or sodium carbonate activators (Fernández-Jiménez et al., 1999, 

Shi, 1996). This is mostly attributed to the development of a dense and homogeneous 

microstructure in sodium silicate activated slag cements/mortars (Brough and Atkinson, 2002, 

Fernández-Jiménez et al., 1999).  

 

As discussed in the preceding chapters, the durability performance of AAS binders is 

closely correlated to the microstructural features of the binder, as well as the chemical 

reactions taking place between the reaction products present in the binder and the different 

chemical species present in the service environment (Collins and Sanjayan, 2000, Cui and 

Cahyadi, 2001, Halamickova et al., 1995, Schlegel et al., 2015, Shi, 1996). The overall 

porosity and pore size distribution, as well as the interconnectivity of pores, are important 

factors controlling the transport property of potentially damaging chemical species (e.g. 
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chloride, sulphate or CO2) within cementitious materials (Cui and Cahyadi, 2001, 

Halamickova et al., 1995).  

 

The chloride transport  in a cementitious binder is often evaluated by measuring its 

diffusion and/or migration coefficients. The NordTest method NT BUILD 492 measures the 

chloride migration coefficient in hardened concrete specimens using a non-steady-state 

experiment, showing the resistance of the tested material to chloride penetration (NordTest 

Method, 1999, Tang and Sørensen, 2001). It has also been proven to be a rapid and precise 

method to determine the chloride diffusion coefficient in cementitious materials (Tang and 

Sørensen, 2001).  

 

In this chapter, chemical binding capacities of AAS binders were determined using two 

chloride-rich solution systems: a neutral NaCl salt solution, and simulated chloride-rich pore 

solutions. Sodium carbonate-activated slag pastes with 0 wt.% and 5 wt.% CLDH addition 

were studied. A sodium metasilicate-activated slag paste was also produced and tested under 

the same condition, as a reference sample for comparison of the performance of the sodium 

carbonate activated slag cements. Chloride binding isotherms of all samples in these two 

solution systems were calculated. The changes in phase assemblage after exposure to 

chloride-rich simulated pore solutions have been characterised using XRD and SEM-EDX.   

 

Mortar specimens with equivalent compositions to the Na2CO3 and Na2SiO3-activated slag 

pastes as previously described were prepared, and tested according to NT Build 492 as a 

function of curing time and mix design. Compressive strengths of mortars at different curing 

durations, and pore size distributions of selected samples according to MIP, were also 

determined; and together with the chloride binding isotherms determined using paste samples, 

which indicate the amount of chloride ions retained in the paste section, the migration 

coefficients measured from accelerated test methods were assessed.  
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6.2. Experimental method 

6.2.1. Alkali-activated slag pastes 

 

The paste samples studied in this Chapter were prepared according to the procedures 

described in Chapter 3, section 3.2.2. After 28 days of curing, slag pastes produced with 

sodium carbonate activators without CLDH (i.e. P-NC-0) and with CLDH addition (i.e. P-

NC-1), or sodium metasilicate activator without CLDH addition (i.e. P-NS-0), were crushed 

with a hammer in sealed plastic bags, and sieved using sieves of 0.25 mm and 0.6 mm 

aperture size, to obtain particulate samples with particle sizes ranging from 0.25 mm to 

0.6mm. 

 

Immediately after crushing, the sieved paste powders were added to chloride-rich 

solutions to prepare suspensions with a solid/liquid mass ratio of 1/7 (2 g solid/14 g liquid) in 

15 mL centrifuge tubes. Two groups of chloride-rich solutions were prepared using Milli-Q 

water, according to Table 6-1 and Table 6-2. The centrifuge tubes containing suspension 

samples were sealed with Parafilm, and stored at 23±2 °C for 2 months to allow them to 

reach reaction equilibrium. To achieve homogeneous reaction in all particles, the centrifuge 

tubes were rotated in a roller mixer for 1 hour once per week.  

 

Table 6-1 Chemical compositions and pH values of the neutral chloride-rich solutions studied 

in this chapter 

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

N-1 6.80 1.0×10-7 0.001 1.2×104 

N-2 6.80 1.0×10-7 0.516 5.2×106 

N-3 6.80 1.0×10-7 1.085 1.1×107 

N-4 6.80 1.0×10-7 2.797 2.8×107 
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Table 6-2 Chemical compositions and pH values of the chloride-rich simulated pore solutions 

studied in this chapter 

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

CH-1 13.98 0.953 0.099 0.1 

CH-2 13.87 0.740 0.242 0.3 

CH-3 13.70 0.500 0.497 1.0 

CH-4 13.42 0.262 0.759 2.9 

 

After two months, all the samples were separated using a centrifuge (Heraeus Biofuge 

Primo, at 4000 rpm for 6 min). The supernatants were collected for calculation of chloride 

binding capacity. The chloride concentrations and pH of the supernatant were measured using 

chloride ion-selective electrode (Cole-Parmer Epoxy solid-state chloride electrode, accuracy 

± 2%) and pH meter (Oakton Acorn Series). 

 

The remaining solids separated from chloride-rich simulated pore solutions were washed 

using Milli-Q water according to the recommendations of RILEM TC 178-TMC (2002), and 

then dried in a desiccator with relative humidity controlled (30±3%) by saturated CaCl2 salt 

prior to further analysis, the same procedure as described in Chapter 5 for samples after the 

2nd filtration. The dried solids were separated into two parts, one part was embedded in epoxy 

resin and polished for SEM-EDX analysis; the other part was powdered and analysed via 

XRD and TG-MS. All the solid samples exposed to chloride-rich simulated pore solutions 

were analysed through XRD, and only samples exposed to the solution CH-3 were analysed 

by TG-MS and SEM-EDX, as a representative condition for comparison between the three 

binders studied.  

 

6.2.2. Alkali-activated slag mortars 

 

The monoliths studied in this chapter were prepared according to the procedure described 

in Chapter 3, section 3.2.3, and their mix designs are presented in Table 3-5 of that Chapter. 
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Three types of mortars were prepared, namely sodium carbonate-activated mortars without 

CLDH (i.e. M-NC-0) and with CLDH addition (i.e. M-NC-1), and sodium metasilicate-

activated mortars without CLDH addition (i.e. M-NS-0). All samples were cured in tightly 

sealed plastic bags for up to 180 days.  

 

Mercury intrusion porosity (MIP) was measured according to the test methods 

recommended by Ma (2014). Samples were sectioned from cubic specimens using a slow saw, 

with dimensions of no less than 5 mm each side. About 3 g of mortar samples were used in 

each measurement to get representative results. The sectioned mortar samples were immersed 

in isopropanol for 24 hours, followed by vacuum drying for 3 days for complete removal of 

pore water. The MIP tests were then conducted using a Micromeritics Autopore 9600 

Mercury Porosimeter, with an intrusion angle of 130° and an extrusion angle of 104° for each 

measurement.  

 

Compressive strength was determined using an automatic compressive strength testing 

machine Controls Automax5, with a loading speed of 0.25 MPa/s. Mortar cubes with 

dimensions of 50×50×50 mm were used for testing compressive strength. Triplicate samples 

were measured per formulation per curing age. 

 

Non-steady state chloride migration coefficients of mortars were determined following the 

NordTest method, NT BUILD 492 (NordTest Method, 1999). Mortar cylinder discs (∅100 × 

50 mm) were used, and duplicate samples were prepared per formulation per curing age. 

Prior to the accelerated chloride migration test, each of the cylinder discs was immersed in 

1.0 M NaOH solutions under vacuum to obtain pore water-saturated samples; the immersion 

fluid was selected with a comparable composition to those predicted for the cements assessed 

by thermodynamic modelling (Myers et al., 2015b). At the end of the test, the disc sample 

was split, and immediately sprayed with 0.1 M silver nitrate (AgNO3) to obtain the chloride 



Chapter 6 

131 

ingress profile (He et al., 2012). After spraying with AgNO3 agent, the samples were left in a 

cupboard (to avoid direct light exposure) for 15 minutes to allow a full reaction between 

AgNO3 agent and free chloride, as suggested in the NordTest method, NT BUILD 492 

(NordTest Method, 1999). Directly after 15 minutes, the chloride ingress profile was marked 

down using a marker pen.  

 

The non-steady-state migration was coefficient calculated from (NordTest Method, 1999), 

the symbols used in Eq. 6-1 to Eq. 6-3 are in SI base units: 

 
Eq. 6-1 

 
Eq. 6-2 

 
Eq. 6-3 

Dnssm: non-steady-state migration coefficient, m2/s; 

z: absolute value of ion valence; for chloride, z = 1 

F: Faraday constant, F= 9.648 ×104 J/(V·mol); 

U: absolute value of the applied voltage, V; 

R: gas constant, R= 8.314 J/(K·mol); 

T: average value of the initial and final temperatures in the anolyte solution, K; 

L: thickness of the specimen, m; 

xd: value of the penetration depths, m;  

ts: test duration, seconds; 

erf–1: inverse of error function; 

Cd: chloride concentration at which the colour changes, Cd ≈ 0.16 N for alkali-

activated mortars (Yuan et al., 2008); 

C0: chloride concentration in the catholyte solution, C0 ≈ 2 N. 

 

 

The highest and lowest chloride penetration depths were recorded for each sample tested, 

measured using a calliper from the marked down chloride profile as described previously, 

representing the worst and best case scenarios respectively. Figure 6-1 shows an example of 
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the data recorded using the colorimetry methods. Since erf−1(1 - 
2×0.16

2
) = 0.84, Eq. 6-1 can 

be simplified, and the highest and lowest possible chloride migration coefficients were 

calculated as Eq. 6-4 and Eq. 6-5, where symbols have been converted to units that could be 

directly measured during the experiments . 

 

Figure 6-1 Illustration mortar sprayed with silver nitrate showing the highest and lowest 

chloride penetration depths for a sodium carbonate activated slag mortar with 28d of curing  

 

 

Eq. 6-4 

 

Eq. 6-5 

DL: lowest possible non-steady-state migration coefficient, ×10–12 m2/s; 

DH: highest possible non-steady-state migration coefficient, ×10–12 m2/s; 

U: absolute value of the applied voltage, V; 

T: average value of the initial and final temperatures in the anolyte solution, °C; 

L: thickness of the specimen, mm 

xLow: lowest value of the penetration depths, mm;  

xHigh: highest value of the penetration depths, mm 

t: test duration, hours 
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6.3. Results and discussion 

 

6.3.1. Chloride binding capacity of alkali-activated slag pastes 

 

For the specimens assessed, the pH and chloride concentration in the supernatant at 

equilibrium were measured, and so the hydroxyl concentration and [Cl-]/[OH-] ratios in the 

supernatant were calculated. The chloride binding capacity (Qe) of the slag pastes under 

various aqueous environments was calculated using Eq. 5-2 (Chapter 5). The results for 

neutral NaCl systems and simulated pore solutions are shown in Table 6-3 and Table 6-4. The 

corresponding binding isotherms are presented in Figure 6-2. 

 

Table 6-3 pH, Ce(OH-), Ce(Cl-), and [Cl-]/[OH-] in supernatant solutions at equilibrium, and 

Qe calculated using Eq. 5-2(Chapter 5), when using neutral NaCl solutions 

 

P-NC-0-28d     

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

Qe 

(mg/g) 

N-1 12.52 0.0331 0 0 0 

N-2 12.25 0.0178 0.454 25.5 15.5 

N-3 12.06 0.0115 0.984 85.7 24.8 

N-4 11.84 0.0069 2.593 375 50.3 

 

P-NC-1-28d     

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

Qe 

(mg/g) 

N-1 12.72 0.0525 0 0 0 

N-2 12.42 0.0263 0.453 17.2 15.6 

N-3 12.24 0.0174 0.971 55.9 28.2 

N-4 11.95 0.0089 2.572 289 55.7 

 

P-NS-0-28d     

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

Qe 

(mg/g) 

N-1 12.69 0.0490 0 0 0 

N-2 12.36 0.0229 0.467 20.4 12.4 

N-3 12.20 0.0158 0.993 62.7 22.6 

N-4 11.96 0.0091 2.671 293 40.2 
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Table 6-4 pH, Ce(OH-), Ce(Cl-), and [Cl-]/[OH-] in supernatant solutions at equilibrium, and 

Qe calculated using Eq. 5-2 (Chapter 5), when using simulated chloride-rich pore solutions 

 

P-NC-0-28d     

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

Qe 

(mg/g) 

CH-1 14.20 1.581 0.095 0.060 1.1 

CH-2 14.14 1.377 0.226 0.164 4.1 

CH-3 13.99 0.975 0.468 0.480 7.3 

CH-4 13.75 0.561 0.693 1.235 16.6 

 

P-NC-1-28d     

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

Qe 

(mg/g) 

CH-1 14.25 1.774 0.097 0.055 0.6 

CH-2 14.03 1.069 0.206 0.192 9.0 

CH-3 14.00 0.998 0.417 0.418 19.7 

CH-4 13.83 0.674 0.607 0.901 37.6 

 

P-NS-0-28d     

 pH 
[OH-] 

(mol/L) 

[Cl-] 

(mol/L) 
[Cl-]/[OH-] 

Qe 

(mg/g) 

CH-1 14.30 1.990 0.090 0.045 2.2 

CH-2 14.13 1.346 0.221 0.164 5.3 

CH-3 14.06 1.145 0.433 0.378 15.9 

CH-4 13.72 0.5246 0.654 1.249 26.2 

 

Figure 6-2A shows the chloride binding capacity of the pastes studied in neutral solutions 

up to 3.0 mol/L NaCl. A higher initial chloride concentration increased the total bound 

chloride. The sodium carbonate activated samples (P-NC-0) consistently showed higher 

chloride binding capacity compared with sodium silicate activated samples (P-NS-0) under 

the same exposure conditions. The addition of 5 wt.% CLDH in sodium carbonate activated 

slag pastes improves the chloride binding capacity of these cements. This is more notable as 

the chloride concentration increases, especially above 0.5 mol/L NaCl. At the highest 

concentration studied (3.0 mol/L NaCl), the chloride binding capacity of the CLDH modified 

sodium carbonate slag pastes is up to 11% higher than that determined for the same sample 

without CLDH addition (P-NC-0).  
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Figure 6-2B shows the chloride binding capacities of the slag pastes studied in the 

simulated chloride-rich pore solutions, as a function of the [Cl-]/[OH-] ratio in the solution. 

Conversely to the observations when using neutral NaCl solutions (Figure 6-2A), the chloride 

binding capacity of sodium carbonate activated slag paste is much lower than that of sodium 

silicate activated slag paste. It seems that a highly alkaline aqueous environment (higher than 

pH 13) does not favour the binding of chlorides in the sodium carbonate activated slag paste, 

most likely due to the competition between hydroxyl ions and chlorides for potential binding 

sites. However, the alkaline environment seems to favour chloride binding in CLDH 

modified sodium carbonate-activated paste. Similar to the results shown in Figure 6-2A, the 

chloride binding capacity of sample P-NC-1 is higher than both sample P-NC-0 and P-NS-0. 

The differences in chloride binding capacity between samples P-NC-0 to P-NC-1 are much 

higher than those shown in Figure 6-2A. 

 

For the three activated slag pastes studied here, the [Cl-]/[OH-] ratios remaining in the 

alkaline solutions after chloride binding decrease (Table 6-4), as a combined effect of the 

reduction in Cl- concentration and the increase in the pH. The differences in the [Cl-]/[OH-] 

ratio between the supernatant solutions of the three alkali-activated slag pastes are small, 

even though different chloride binding capacities were observed.  
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Figure 6-2 Chloride binding capacities of 28-day cured alkali-activated slag pastes 

determined in (A) neutral NaCl solutions or (B) in chloride-rich simulated pore solutions. 
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As discussed in Chapter 4, the incorporation of CLDH in sodium carbonate-activated slag 

cements increases the content of hydrotalcite-like phase in the binder. Although the content 

of AFm phases would decrease, the overall content of LDHs (hydrotalcite-like phase + AFm 

phases) in the AAS binder will still be higher compared with AAS paste without CLDH 

modification (Chapter 4). Also, a higher degree of reaction has been observed in CLDH 

modified sodium carbonate-activated slag paste, suggesting that there will be a higher portion 

of reaction products available for binding chlorides (Chapter 4). Both hydrotalcite-like phases 

and (hemi-)carbonate AFm are effective chloride binding phases, as discussed in Chapter 5 

and in (Mesbah et al., 2011a). The main reaction product C-(N)-A-S-H gel, can also bind 

chlorides, but with a much lower binding capacity compared with LDHs. The increased 

chloride binding capacity in CLDH modified AAS pastes is most likely attributed to the 

higher overall LDH contents. 

 

Figure 6-3 shows the comparison between experimental and theoretical prediction of 

chloride binding isotherms as a function of initial chloride concentrations, using sample P-

NS-0 as an example. The theoretical predictions were calculated using binding isotherms of 

individual reaction products presented in Chapter 5, and the phase assemblage in sample P-

NS-0 was quantified using the thermodynamic modelling given in (Myers et al., 2015b). The 

theoretical chloride binding capacity shown here is about 3 to 6 times higher than that 

measured experimentally. The lower crystallinity of individual reaction phases presented in 

AAS paste, in comparison with the synthetic phases studied in Chapter 5, could be 

responsible for the lower experimental value shown in Figure 6-3. However, for better 

understanding of the changes in the mineralogy of AAS binders after exposed to external 

chlorides, it is essential to study the solid samples after exposure to chloride-rich simulated 

pore solutions. 
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Figure 6-3 Comparison of chloride binding isotherms of sample P-NS-0, between 

experimental data and theoretical prediction using binding isotherms presented in Chapter 5. 

The phase assemblage in sample P-NS-0 was quantified using thermodynamic modelling 

given in (Myers et al., 2015b), according to the chemical composition shown in Table 3-1 

(Chapter 3). The phase densities used for calculation were: pore solution 1.04 g/cm3, C-(N)-

A-S-H gel 2.6 g/cm3, hydrotalcite-like phase 2.02 g/cm3, strätlingite 1.79 g/cm3, anhydrous 

slag 2.8 g/cm3 (Matschei et al., 2007b, Myers et al., 2015b, Richardson, 2013a). 

 

6.3.2. Mineralogy of alkali-activated slag pastes after exposure to chloride-rich 

simulated pore solutions 

6.3.2.1. X-ray diffraction (XRD) 

 

Figure 6-4 shows the XRD patterns in selected angle ranges to highlight the changes in 

LDH phases with chloride uptake. In both sodium carbonate-activated samples, with or 

without CLDH addition, the intensity of the main reflection peak assigned to monocarbonate 

decreases as the chloride binding increases. Two polymorphs of Friedel’s salt are observed in 

these specimens, RAFm-(CO3
2-,Cl-) which is close to the rhombohedral hydrocalumite 
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(Ca2Al(OH)6Cl•2H2O, PDF# 00-035-0105), and MAFm-(CO3
2-,Cl-) which is close to the 

monoclinic hydrocalumite (Ca2Al(OH)6Cl•2H2O, PDF# 00-019-0202), but has a lower basal 

peak position (Mesbah et al., 2011c). The hydrocalumite-type phases formed in sodium 

carbonate activated samples were transformed from monocarboaluminate to Friedel’s salt 

type phases, most likely by replacement of some of the interlayer CO3
2- ions with Cl- ions, as 

has been proposed by Mesbah et al. (Mesbah et al., 2011a, 2011c). The transformation 

between these two polymorphs of Friedel’s salt is described in the literature to be mainly 

temperature controlled, and between RAFm-(CO3
2-, Cl-) and MAFm-( CO3

2-, Cl-), the 

formation of the rhombohedral structure is preferred at higher temperature (above 35° C) 

(Andersen et al., 2002, Mesbah et al., 2011a, Renaudin et al., 1999). The differences in 

interlayer species might affect the transition temperature, however there has not been any 

evidence directly correlating the transition between the two polymorphs with changes in 

interlayer chloride content. 

 

The main reflection peak of a CO2-containing hydrotalcite-like phase with basal spacing 

7.67 Å is shown in Figure 6-4, as a guideline for identifying hydrotalcite-like phases. In 

sodium carbonate activated slag pastes (P-NC-0) the interlayer species in the hydrotalcite-like 

phase can be a mixture of Cl-, OH- and CO3
2-, considering the chemical composition of the 

aqueous phase at equilibrium before separation. The intensities of reflections assigned to 

AFm-(CO3, Cl) are much higher in samples without CLDH (Figure 6-4B) compared to those 

in CLDH-added specimens (Figure 6-4A). This most likely relates to the fact that less AFm 

phase was formed in sodium carbonate-activated slag pastes with added CLDH (P-NC-1), as 

observed in Chapter 4, reducing the amount of monocarbonate available to chemically bind 

chlorides. This emphasises the role of CLDH in increasing the chloride binding capacity of 

alkali-activated slag cements, as its inclusion modifies the phase assemblage of these cements, 

impacting how chloride binding occurs in these systems. 
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Figure 6-4 XRD patterns of 28-day cured sodium carbonate activated slag pastes (A) without 

CLDH (P-NC-0), and (B) with CLDH (P-NC-1) addition; and (C) sodium metasilicate 

activated slag paste without CLDH (P-NS-0), at chloride binding equilibrium in different 

simulated pore solutions. C-Calcite (PDF# 00-005-0586) 

 

In sodium silicate activated samples (P-NS-0), the poorly crystalline AFm phase 

(strätlingite-like) transformed into a Friedel’s salt-like phase after exposure to a chloride-rich 

solution. Two polymorphs of chloro-carboaluminate phases were again identified after 

chloride binding in this specimen. The intensities of basal peaks assigned to both phases 

increase as the external [Cl-]/[OH-] ratio rises. This is associated with an increased formation 

of chloride bearing AFm type phases, although in specimens exposed to solutions with the 

higher [Cl-]/[OH-] ratio (CH-4), peaks corresponding to chloride bearing AFm phases were 

not clearly identified. As discussed in Chapter 5, any Friedel’s salt-like phases formed 

through the uptake of chlorides by strätlingite will decompose even in alkaline solution (pH 

around 13.6) in the presence of carbonate ions. It is possible that according to such a 
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mechanism, a Friedel’s salt-like phase was originally formed in this paste, but decomposed 

during sample processing, since sample P-NS-0 in solution CH-4 has the lowest pH at 

equilibrium (Table 6-4).  

 

6.3.2.2. Thermogravimetric analysis–mass spectrometry (TG–MS) 

 

As shown in Figure 6-5A, the main mass loss peaks centred at around 70 °C (below 

200 °C) are observed in all three samples. These peaks are associated with the loss of loosely 

bound water and some of the chemically bonded water in reaction products, mostly likely 

related to the loss of water of the C-(N)-A-S-H  type gel (Ben Haha et al., 2011, Bernal et al., 

2013, L’Hôpital et al., 2015). The small shoulder observed at around 138 °C in sample P-NC-

1 is attributed to the dehydration of a hydrotalcite-like phase (Chapter 5). The mass loss at 

around 315 °C is assigned to the decomposition of structural hydroxyl ions and interlayer 

carbonate ions during present in the hydrotalcite-like phase (Hibino et al., 1995, Zhang et al., 

2016), correlating with the high intensity peaks identified in the mass spectra of water and 

carbon dioxide shown in Figure 6-5B and Figure 6-5C, respectively. The positions of these 

two mass loss peaks for the chloride-bearing hydrotalcite-like phase present in AAS paste are 

observed at a slightly lower temperature compared with the results from a pure hydrotalcite-

like phase, as shown in Chapter 5. More intense mass loss peaks were observed in sample P-

NC-1 compared with the other paste samples, due to a higher hydrotalcite-like phase content 

in this paste, as a result of incorporation of CLDH (Chapter 4).  

 

The small hump at around 450 °C and the sharp mass loss peak at 600 °C are related to the 

decarbonation of monocarbonate and calcite (Mesbah et al., 2011c, Wieczorek-ciurowa et al., 

1980), which have been observed in sodium carbonate-activated samples only (Chapter 4). 

The relative mass losses due to these two phases suggest that sample P-NC-0 contains a 

slightly higher amount of monocarbonate phase and a relatively similar amount of calcite, 
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consistent with the results reported in Chapter 4. The mass loss peak at around 800 °C 

observed in all three samples is likely associated with loss of chloride-bearing gases, similar 

to that observed in chloride-bearing LDH phases (Chapter 5).  

 

Figure 6-5 Thermogravimetric analysis results of three paste samples after exposure to 

solution CH-3: (A) TG and DTG; mass spectra of escaped gases (B) H2O (m/z = 18) and (C) 

CO2 (m/z = 44). 
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6.3.2.3. Scanning electron microscopy (SEM-EDX) 

 

Figure 6-6 shows the atomic ratios calculated from EDX data for alkali-activated slag 

pastes embedded in epoxy resin, after exposure to the chloride-rich solution CH-3. More than 

60 data points were randomly (however a minimum distance to unreacted slag grain of 2 μm 

was kept) taken from each sample, following the method specified in section 3.3.4. (Chapter 

3). The dashed lines in Figure 6-6A and Figure 6-6B showing the ratios Ca/Al=2 and 

Mg/Al=2 are included to visualise the composition regions where AFm and/or hydrotalcite-

like phases have been reported (Matschei et al., 2007a). The dashed lines of different Cl/Al 

ratios in Figure 6-6C were given as a guideline for evaluating the Cl content of the reaction 

products. The maximum Cl/Al ratio possible in an AFm phase is around 1.0, Friedel’s salt 

(Birnin-Yauri and Glasser, 1998), while the highest Cl/Al ratio in a hydrotalcite-like phase 

measured in simulated pore solutions was around 0.1, as calculated in Chapter 5. The results 

discussed in this section do not directly link to the binding isotherms shown in section 6.3.1., 

simply because the SEM sample processing procedures have excluded the adsorbed chlorides 

at the sample surface. However, the results discussed in this section would contribute to 

understanding of the distribution of chlorides among different reaction phases.  

 

The EDX plots for chloride-bearing sodium carbonate-activated samples, shown in Figure 

6-6A and Figure 6-6B, are generally similar to those of sodium carbonate activated samples 

without exposure to chlorides (as discussed in Chapter 4). The data points in Figure 6-6A 

with Al/Si ratios higher than 0.8 and Ca/Si ratios around Ca/Al=2 suggest the formation of 

crystallised AFm phases in both of the sodium carbonate activated slag pastes, with and 

without inclusion of CLDH (P-NC-0 and P-NC-1). Between these two samples, the Mg/Si 

atomic ratio in sample P-NC-1 is higher than that in P-NC-0 (Figure 6-6B), consistent with 

the addition of CLDH in this paste. These results also indicate the existence of intermixed 

hydrotalcite-like phase with crystallised AFm phases in sample P-NC-1 (Chapter 4). 

However, the Cl/Al ratios in data points collected from regions mainly consisting of 

hydrotalcite-like and AFm (Al/Si>0.8) phases seem to be similar between sample P-NC-0-
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28d and P-NC-1 (Figure 6-6C). It seems that the bulk Cl/Al ratios in the Friedel’s salt-like 

AFm-(CO3
2-,Cl-) phase and chloride-bearing hydrotalcite-like phase are similar, at around 

Cl/Al=0.3.  

 

The crystallised AFm type phase was not observed in sample P-NS-0 after exposure to 

solution CH-3, even though a Friedel’s salt-like phase was identified though XRD (Figure 6-

4). This could possibly be explained by the fact that the AFm phase in sodium silicate-

activated slag paste is intimately intermixed with C-(N)-A-S-H gel (Bernal et al., 2013, Wang 

and Scrivener, 1995), and therefore it is not distinguishable by SEM-EDX.  

 

The inset plots in Figure 6-6 show data points with Al/Si ratios between 0.1 and 0.8, 

representing data collected from locations where the C-(N)-A-S-H type gel is the dominant 

phase, most likely from the outer product with intermixed hydrotalcite-like phase and AFm 

phase as well (Bernal et al., 2014c, Famy et al., 2002, San Nicolas et al., 2014). From the 

inset plot in Figure 6-6A, the Ca/Si ratios in sodium carbonate-activated samples with and 

without CLDH addition are similar to each other, and slightly higher than in sodium silicate 

activated slag paste, in accordance with the observations in Chapter 4. Negligible differences 

between these three samples were observed from the inset plot in Figure 6-6B. Comparing 

with sample P-NC-0, the overall Al/Si ratio is lower in sample P-NS-0 and higher in sample 

P-NC-1, due to an additional supply of Si from the activator (sodium silicate) and Al from the 

smart addition CLDH respectively. In the Figure 6-6C inset plot, the Cl/Al ratio is higher in 

sample P-NS-0, mostly attributed to the intermixed Friedel’s salt-like phase, as observed from 

XRD patterns (Figure 6-4C). It seems that sample P-NC-0 has a higher Cl/Al ratio than P-

NC-1, however, this could be attributed to a higher Al content in P-NC-1 (due to addition of 

CLDH) rather than higher Cl content in P-NC-0. According to the results discussed in 

Chapter 5, the differences in Ca/Si ratio and Al/Si ratios of C-(N)-A-S-H type gels would lead 

to different chloride binding capacities. However, because of the intermixing with the LDH 

phases, it would be difficult to distinguish the contribution of C-(N)-A-S-H type phases in 

chloride binding from the EDX plots.  
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Figure 6-6 Atomic ratios calculated from EDX data for 28-day cured alkali-activated slag 

pastes after exposure to solution CH-3 (A) and (A-1) plotted as Ca/Si vs Al/Si, (B) and (B-1) 

plotted as Mg/Si vs Al/Si, (C) and (C-1) plotted as Cl/Si vs Al/Si.  

 

6.3.3. Factors controlling mobility of chlorides in alkali-activated slag mortars 

6.3.3.1. Pore structure (MIP) 

 

For cementitious materials, mercury porosimetry can effectively measure pores that are 

directly connected to the sample surface, or through large pores (Cook and Hover, 1999). 

Small pores with narrow openings, like the ink-bottle effect, and enclosed/isolated pores are 

not detectable by this technique (Moro and Böhni, 2002). In mortar sample, the overlapped 

transition zones between the aggregate and paste contain higher porosity and/or larger 

connected pores, also referred as percolating porosity (Winslow et al., 1994). However in 
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both paste and mortar samples, the overall intrudable porosity measured using MIP could 

reflect the pore entry size, directly related to the water permeability and thus, ionic transport 

properties in cementitious materials (Aït-Mokhtar et al., 2002, Gallé, 2001, Halamickova et 

al., 1995).  

 

Figure 6-7 shows the pore structures of mortar samples after 180 days of curing as 

measured by MIP. Sample M-NC-0-180d has the highest overall intrudable porosity, while 

sample M-NS-0-180d has the lowest overall intrudable porosity. The CLDH modified sample, 

M-NC-1-180d, showed much lower overall intrudable porosity than the unmodified sample 

M-NC-0-180d, and only slightly higher than that of the sodium silicate-activated mortar 

sample. Table 6-5 shows the fraction of pores smaller than 10 nm, where the mobility of free 

ions is restrained and has little effect on ionic transporting properties (Cui and Cahyadi, 

2001), within the total intrudable porosities. Based on the results reported in Figure 6-7A and 

Table 6-5, it is observed that the lower overall intrudable porosity of the CLDH modified 

sample (M-NC-1-180d) than the unmodified sample (M-NC-0-180d) is mainly due to the 

existence of less pores smaller than 10 nm. The absolute value of the fraction of pores larger 

than 10 nm in these two samples is almost the same. Compared with sodium silicate-activated 

mortars, sodium carbonate-activated mortars exhibit a higher overall intrudable porosity as 

well as a higher percentage of pores smaller than 10 nm, while CLDH modified sodium 

carbonate-activated mortar has a lower percentage of pores smaller than 10 nm despite its 

slightly higher overall intrudable porosity.  

 

The critical pore diameters derived from MIP measurement represents the maximum 

continuous pore diameters (Katz and Thompson, 1986), and a larger critical pore diameter 

often relates to higher water diffusivity and ion mobility in cementitious materials (Cui and 

Cahyadi, 2001, Halamickova et al., 1995, Ye et al., 2006). As shown in Table 6-5, sample M-

NC-0-180d has the highest critical pore diameter among the three samples tested, while 

sample M-NS-0-180d shown the lowest critical pore diameters. Smaller critical pore 
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diameters are often observed in mortar samples compromising a lower fraction of aggregates, 

higher content of fine fillers (e.g. silica fume), or samples with lower degree of reaction in the 

paste section (Halamickova et al., 1995, Winslow et al., 1994). In this study, the sand 

fractions were kept constant in all samples. The lowest critical pore diameter observed in 

sodium silicate activated mortar likely relates to both the nature of the activator and a higher 

degree of reaction (comparing with near neutral salt activation at the same age of curing).  

 

 

Figure 6-7 (A) cumulative pore volume and (B) differential pore volume distributions of 

mortar samples NC-0, NC-1, and NS-0 at 180 days of curing. 

 

Table 6-5 Summary of intrudable porosities, critical pore diameters and apparent bulk 

densities of mortar samples. 

 
Intrudable porosity (%)   

 Total (<0.01 μm) (>0.01 μm) 

Critical pore 

diameter 

+Bulk 

density 

 
(𝛍m) (g/mL) 

M-NC-0-180d 11.94 6.98 4.96 0.763 2.2 

M-NC-1-180d 9.93 5.18 4.75 0.532 2.3 

M-NS-0-180d 9.37 5.95 3.42 0.209 2.3 
+ Measured at 2.27 kPa 

 

Previous studies proved that CLDH incorporated in sodium carbonate-activated slag paste 

consumes free water and increases the degree of reaction of slag, as CLDH particles act as 
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nucleation seeding points (Chapter 4). Between sample M-NC-0-180d and M-NC-1-180d, the 

addition of CLDH extends the degree of reaction in sodium carbonate-activated slag cement 

and at the same time performs partially as a filler (Chapter 4), both of which explain the 

lower critical pore diameter observed in sample M-NC-180d. The denser microstructure in 

the paste section (between the unreacted slag grains) in CLDH modified sodium carbonate-

activated slag paste contributes to lower overall porosity of mortars produced with these 

additions as well. 

 

6.3.3.2. Compressive strength 

 

Figure 6-8 shows that at the different curing ages tested here, between the three alkali-

activated systems studied, the compressive strength was higher in M-NS-0 than M-NC-1, 

which was in turn stronger than M-NC-0. The addition of 5 wt.% of CLDH to sodium 

carbonate-activated slag mortar promoted a significantly increased compressive strength, 

compared with that obtained for sodium carbonate-activated slag mortars without CLDH, by 

at least 12%.  
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Figure 6-8 Compressive strength of M-NC-0, M-NC-1, and M-NS-0 mortar cubes at 7, 28, 90, 

and 180 days of curing. The results displayed are average values and standard deviation of 

three replicates. The 28 day compressive strength of M-NC-1 and M-NS-0 are comparable 

with high strength CEM I cement, whose minimal 28 day compressive strength is about 52.5 

MPa (British standard, BS EN 197-1-2011). 

The lower strength development of sodium carbonate activated slag cement in comparison 

with sodium metasilicate-activated slag cement (under similar activation conditions) has been 

reported in the literature (Duran Atiş et al., 2009, Fernández-Jiménez et al., 1999, Shi, 1996, 

Wang et al., 1994), and is associated with the differences in phase assemblage and 

permeability developed in activated slag systems when using different activators. A higher 

overall intrudable porosity of the binders would likely lead to lower compressive strength 

(Shi, 1996). The 180 days intrudable porosity of the three types of mortar studied (shown in 

Figure 6-7) correlates well with the 180 day compressive strength (shown in Figure 6-8), 

suggesting that differences in the porosity might be one of the main factors that controls the 

strength differences in these mortars. 

 

Also, it is worthwhile to note that, when CLDH was blended with sulphoaluminate cement, 

changes in sample strength were insignificant (Duan et al., 2013); when blended into Portland 

cement, decreases in sample strength were observed (Yang et al., 2015, Yoon et al., 2014b). 

In those cementitious systems the hydrotalcite-like phase is not an intrinsic reaction product; 

therefore the recrystallised CLDH in those systems performs most likely just as a filler. The 

promotion of higher compressive strength in CLDH modified samples here emphasised the 

unique benefit of CLDH for tailoring sodium carbonate-activated slag cement.  

6.3.3.3. Non-steady state chloride migration coefficient (NT BUILD 492) 

 

The NordTest accelerated migration test results for the three mortar mixes assessed are 

reported in Table 6-6, Table 6-7, and Table 6-8. The lowest and highest possible chloride 
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migration coefficients of these samples have been calculated according to Eq. 6-4 and Eq. 6-5, 

based on the maximum and minimum points of chloride ingress into the samples tested. 

 

 

Table 6-6  NordTest BUILD 492 results for sodium carbonate activated slag mortars as a 

function of the curing age 

 

Temperature 

(°C) Voltage 

 (V) 

xLow 

(mm) 

xHigh 

(mm) 

Duration 

(h) 

 
Initial End 

M-NC-0-28 

19 21 40 2.1 4.7 24 

19 16* 60 4.3 7.0 24 

19 17* 40 3.5 6.1 27 

M-NC-0-90 
18 24 60 2.0 4.4 24 

19 22 60 2.9 4.8 24 

M-NC-0-180 
21 23 40 1.7 3.3 24 

21 22 40 2.6 4.9 39 

*Decrease in temperature at the end of the experiment was due to decrease in ambient 

temperature during the overnight experiment. 

 

 

Table 6-7 NordTest BUILD 492 results for sodium carbonate activated slag mortars, with 5% 

CLDH addition, as a function of the curing age 

 

Temperature 

(°C) Voltage 

 (V) 

xLow 

(mm) 

xHigh 

(mm) 

Duration 

(h) 

 
Initial End 

M-NC-1-28 
20 15* 60 1.8 4.2 23 

19 22 60 1.9 5.3 24 

M-NC-1-90 
19 22 50 1.9 2.7 24 

19 22 50 1.1 2.9 24 

M-NC-1-180 
24 29 50 1.9 3.1 27 

24 28 50 1.9 3.1 26 

*Decrease in temperature at the end of the experiment was due to decrease in ambient 

temperature during the overnight experiment. 
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Table 6-8 NordTest BUILD 492 results for sodium silicate activated slag mortars, as a 

function of the curing age 

 

Temperature 

(°C) Voltage 

 (V) 

xLow 

(mm) 

xHigh 

(mm) 

Duration 

(h) 

 
Initial End 

NS-0-28 
18 19 50 2.2 4.1 29 

19 20 50 1.6 2.6 17.5 

NS-0-90 
16 19 60 2.0 4.2 28 

18 21 60 4.0 7.0 46 

NS-0-180 
21 23 60 1.9 3.4 24 

19 21 50 1.5 3.3 26 

 

For sodium carbonate-activated samples, shown in Figure 6-9A and Figure 6-9B, from 28 

days to 90 days of curing, both the highest possible chloride migration coefficients and the 

differences between the average highest and the lowest possible migration coefficients 

decrease significantly. From 90 days till 180 days of curing, changes in the average highest 

and the lowest possible migration coefficients in these two samples (M-NC-0 and M-NC-1) 

are almost negligible. Between sample M-NC-0 and M-NC-1, CLDH modified samples cover 

a lower range of possible chloride migration coefficient values at all ages of curing. For 

sodium silicate activated samples, the differences between the average highest and the lowest 

possible migration coefficients stayed relatively unchanged, while the highest possible 

chloride migration coefficients decreases slightly up to 180 days of curing 

 

The differences between the average highest and the lowest possible migration coefficients 

represent the range of values that the chloride migration coefficient could possibly fall into, 

and a smaller difference indicates a narrower range of variability. The results in Figure 6-9 

suggest sodium carbonate-activated mortars without CLDH (M-NC-0) have significantly 

higher chloride migration coefficients compared with sodium silicate activated slag, even at 

extended curing times. While the CLDH modified sodium carbonate-activated slag mortar 

(M-NC-1) has higher Dnssm values than M-NS-0 up to 90 days of curing, the possible Dnssm 

ranges correspond more closely at 180 days of curing.  
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Figure 6-9 Chloride migration coefficient (according to NT BUILD 492) of (A) M-NC-0, (B) 

M-NC-1, and (C) M-NS-0 mortar at 28, 90, and 180 days of curing. The results displayed are 

average values and standard deviation calculated from the highest (upper limit) and lowest 

(lower limit) chloride ingression depth of duplicate tests. 

 

The non-steady state migration coefficients Dnssm are determined in part by the material 

microstructure, where a decrease in the critical pore size, as well as in total intrudable 

porosity (as determined by MIP), could result in lower mobility of chlorides through the 
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samples (Ravikumar and Neithalath, 2013, Yang et al., 2015). The mobility of ionic species 

in pores smaller than 10 nm is much slower than that in mesopores/macropores, and often 

considered insignificant for influencing the permeability of gas molecules and ionic species 

through the samples (Cui and Cahyadi, 2001, Halamickova et al., 1995). A higher percentage 

of pores larger than 10 nm could result in higher chloride transport parameters (Neithalath 

and Jain, 2010). However, considering the short duration of this accelerated chloride test, the 

chemical interactions between chlorides and the gel binders would mostly take place locally 

in pores larger than 10 nm, as it takes much longer time for ionic species to mobilise into the 

pores smaller than 10 nm (Friedmann et al., 2008, He et al., 2016).  

 

Combining the chloride binding capacity (Figure 6-2B) and MIP results (Table 6-5) shown 

in previous sections, it seems that the higher chloride migration coefficient of sample M-NC-

0 compared with M-NS-0 even at 180 days of curing is most likely caused by a combination 

effect of higher permeable porosity and lower chloride binding capacity. As for CLDH 

modified sodium carbonate-activated mortar M-NC-1-180d, even though it has lower 

permeable porosity than M-NS-0-180d, its stronger capacity to bind free chloride (compared 

with M-NS-0-180d), might be the reason that similar chloride coefficients have been 

observed for both samples at 180 days of curing. Between these two factors, chloride binding 

capacity and the permeable porosity of the binders, it seems that the latter might be the 

dominant factor that controls the chloride migration coefficient under the currently tested 

methods. However, the NordTest method NT 492 was carried out under non-steady state and 

with a short test duration (up to 48 hours), while the chloride binding capacities were 

measured after 2 months of reaction, at equilibrium. The effect of chloride binding in such an 

accelerated test method could be underestimated or undermined.  
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6.4. Conclusions 

 

Using neutral chloride-rich solutions for measuring the chloride binding capacity of alkali-

activated slag cement, results in overestimated values. Using chloride-rich simulated pore 

solutions is a more suitable approach, as it takes into consideration the effects of competition 

between Cl- and OH-.  

 

Sodium carbonate-activated slag paste has a lower chloride binding capacity than with 

sodium silicate-activated slag paste. The incorporation of 5 wt.% CLDH in the sodium 

carbonate-activated slag leads to an increased chloride binding capacity by up to 120%, 

resulting in higher binding capacities than those of sodium silicate-activated slag pastes under 

the same testing conditions.  

 

Sodium carbonate activated samples have higher total intrudable porosity (MIP), lower 

compressive strength, and higher chloride migration coefficient, compared with sodium 

silicate slag materials at equivalent times of curing. However, with the incorporation of 5 wt.% 

CLDH into sodium carbonate-activated slag mortar, the overall intrudable porosity of the 

sample has been effectively reduced, promoting a more refined pore structure. The effect of 

CLDH on densifying the microstructure, as well as increasing the chloride binding capacity 

of sodium carbonate-activated slag cement, results in higher compressive strength and lower 

chloride migration coefficient, the values of which are almost comparable5 to those of sodium 

silicate-activated slag mortars produced under similar activation conditions.  

 

 

                                                           
5 As explained previously,  compressive strength performance of M-NC-1 and M-NS-0 are comparable with 

high strength CEM I cement, therefore their compressive strengths are comparable as they could both be 

classified as high strength cement. 
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Chapter 7.  
1                                                                                                                                                                   1 

CONCLUSIONS AND FUTURE WORK 
1          

7.1. Conclusions 

 

The results discussed in the preceding chapters have shown that the near-neutral salt 

sodium carbonate can be used effectively to prepare alkali-activated slag (AAS) cements with 

desirable performance, if slags with specific chemical compositions (e.g. MgO content 5 

wt.%) are used. However, when a small amount of calcined layered double hydroxide (CLDH) 

is incorporated into sodium carbonate activated slag cement as a chemical addition, the 

performance of these cements can be tailored considering the chemistry of the slag utilised, 

and properties in the fresh and hardened states that are targeted. Therefore, AAS cement 

products with improved sustainability can be produced using sodium carbonate as the sole 

alkali activator, without having to compromise mechanical performance and long-term 

stability. 

 

7.1.1. The influence of slag chemistry on its reactivity with sodium carbonate 

 

There is a strong correlation between slag chemistry, especially its MgO content, and the 

kinetics of reaction and phase assemblage of sodium carbonate-activated binder system.  

 

In general, two types of LDHs are formed in sodium carbonate-activated slag binders. 

Slags with higher MgO and lower Al2O3 contents yield higher contents of hydrotalcite-like 

phases as secondary reaction products, and a lower content of carbonated Ca-Al AFm-type 
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phases, due to the limited availability of Al. The relationships between the Mg-Al 

(hydrotalcite-like) and Ca-Al (AFm) layered double hydroxides are also essential in 

determining the overall characteristics of the binder system, as the uptake of Al by these 

phases restricts its availability for incorporation into C-(N)-A-S-H type gel. 

 

When preparing sodium carbonate-activated slag binders, slags containing higher contents 

of MgO and less Al2O3 react much more rapidly, compared with those with lower MgO 

content but higher Al2O3 content. The process of removal of carbonate, supplied by the 

activator, from the aqueous phase dominates the kinetics of reaction of sodium carbonate 

activated slag binders. A higher MgO content in the slag leads to its faster dissolution and 

also results in formation of more hydrotalcite type phases, which promotes the consumption 

of the carbonate species from solution, and accelerates the kinetics of reaction. A higher 

extent of slag reaction, as observed by the lower residual slag fraction and much higher C-

(N)-A-S-H reaction product content, has been reached in mixes prepared using slags with 

higher MgO content and lower Al2O3 content. 

 

7.1.2. Interaction of chlorides with cementitious phases at high alkalinity 

 

The use of neutral chloride-rich solutions in measuring the chloride binding capacity of 

alkali-activated slag cement, as is commonly done in the literature, leads to overestimation of 

binding. The use of high alkalinity chloride-rich simulated pore solutions is a more suitable 

approach, as it takes into consideration the effects of competition between Cl- and OH-. 

 

Under highly alkaline solutions with different initial [Cl-]/[OH-] ratios, both surface 

adsorption and ion exchange (evidenced by changes in basal spacings) of chlorides were 
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observed in the three main reaction products in AAS cement: the hydrotalcite-like (Mg-Al) 

and strätlingite (AFm) layered double hydroxides, and C-(N)-A-S-H type gels.  

 

Hydrotalcite-like phases and strätlingite are effective chloride binding phases, while the C-

(N)-A-S-H type gels, regardless of the variations in chemical compositions assessed in this 

study, have much lower overall chloride binding capacities than that of LDHs. Surface 

adsorption is the main binding mechanism between chloride and hydrotalcite-like phases, 

responsible for approximately 90% of the total chloride uptake. As for strätlingite, surface 

adsorption of chloride is less dominant, and lattice substitution of chloride also takes place. 

 

The presence of carbonates in the pore solution, along with a decrease in the alkalinity of 

the system, significantly decreases the chloride uptake by both LDH minerals assessed, 

however through different underlying mechanisms. In hydrotalcite-like phases, the carbonate 

ions occupy the chloride-exchangeable interlayer hydroxyl sites and reduce surface 

adsorption, while in strätlingite although it can also participate in ion exchange, exposure to 

chloride mostly (when the aqueous environment is poor in aluminium) leads to partial 

decomposition of the AFm phase, inducing the precipitation of calcite instead.  

 

7.1.3. CLDH as a smart addition in sodium carbonate-activated slag cement 

 

7.1.3.1. Controlling the kinetics of reaction 

 

It has been demonstrated that the incorporation of CLDH effectively expedites the 

hardening process of sodium carbonate activated slags to achieve an acceptably fast setting 

and hardening process for engineering purposes. The added CLDH promotes the kinetics of 

reaction in sodium carbonate-activated slag mixes via several mechanisms, including:  
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- Increasing the pH of the activator. The recrystallisation process of CLDH involves 

protonation of surface oxygens in mixed metal oxides to form hydroxyl groups, which 

increases the pH in activator solutions and therefore drives the slag dissolution. The 

reduction of the effective water/binder ratio through uptake of water during the 

protonation process also contributes to speed up the reaction. 

- Accelerating consumption of carbonate ions. The incorporated CLDH accelerates 

the consumption of carbonate by direct formation of a stable carbonated hydrotalcite-

like phase, instead of calcium-containing carbonate minerals like gaylussite, calcite 

and carbonated AFm phases. The consumption of calcium in the initial stages of 

reaction delays the precipitation of the strength-giving C-(N)-A-S-H type gel. 

- Hydrotalcite nucleation seeding. The hydrotalcite-like phase formed via 

recrystallisation is dispersed relatively homogeneously in the outer product region of 

the paste and acts as a nucleation seed, which benefits the precipitation of the gel 

products. 

 

7.1.3.2. Modification of phase assemblage and refinement of microstructure 

 

The addition of CLDH increases the formation of hydrotalcite-like phases in sodium 

carbonate-activated slag cement, while reducing the crystallinity of the carbonate AFm 

phases formed.  

 

The addition of up to 10 wt.% CLDH increases the total extent of slag reaction for at least 

180 days of curing, compared with samples without addition of CLDH. The seeding effect of 

recrystallised CLDH enhances the nucleation and growth of hydrotalcite-group phases, which 

is important in defining the binder phase assemblage in the long term. 
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Compared with sodium carbonate-activated slag paste without CLDH addition, the 

incorporation of 5 wt.% CLDH in the sodium carbonate-activated slag leads to a significant 

increase in chloride binding capacity, by up to 120%. The higher chloride binding capacity in 

CLDH modified samples is attributed to additional formation of hydrotalcite-like phases. 

 

The addition of 5 wt.% CLDH into sodium carbonate-activated slag mortars effectively 

reduced the overall intrudable porosity (MIP) at equivalent times of curing, comparing with 

slag mortars prepared and tested under the same conditions but without CLDH modification. 

This indicates the formation of a more refined pore structure and more densified 

microstructure in the CLDH modified mortar samples. 

 

7.1.3.3. Strength and durability of sodium carbonate-activated slag mortars 

 

Higher compressive strengths and lower chloride migration coefficients were achieved by 

sodium carbonate-activated slag mortar with the addition of 5 wt.% CLDH, the values of 

which are almost comparable to sodium silicate-activated slag mortars produced under 

similar activation conditions. The effects of CLDH on densifying the microstructure, as well 

as increasing the chloride binding capacity of sodium carbonate-activated slag cement, 

contribute to the improved compressive strength and durability performance of these 

materials. 

 

7.2. Directions for future work 

 

The work presented in this study has provided a feasible solution for producing alkali-

activated slag cement with potentially reduced environmental impact compared to that of 

sodium hydroxide/silicate activated slag systems, as near-neutral salts can be mined or 
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obtained from other industrial processes. Discussions regarding the interactions between free 

chlorides and synthetic phases resembling those forming in AAS cement, assessed in high 

alkalinity simulated pore solutions, have also underpinned a new conceptual mechanistic 

description of the factors controlling durability of these materials in service. 

 

For optimising the production of alkali-activated slag cement as a green and sustainable 

alternative to PC, and for developing deeper and more thorough understanding of the 

durability performance of alkali-activated slag cement in service, there are still a number of 

open questions that need to be investigated: 

- The use of other near neutral salts such as sodium sulfate as alternative activators 

might also have the merits of low environmental impact. Based on the knowledge 

obtained from this study, it would be important to emphasise the importance of 

chemical compositions of precursors when investigating different activators.  

 

- Changes in lattice parameters (basal spacing) in C-(N)-A-S-H type gels after 

binding of chloride have been observed, however more evidence is required to 

elucidate if the changes in basal spacing were caused by replacement of hydroxyl 

sites by chlorides. It will be valuable to investigate the arrangements of the 

interlayer species in chloride-bearing C-(N)-A-S-H type gel using other advanced 

test methods in addition to those utilised in this study. 

 

- With the data for chloride binding capacities of individual reaction products in 

contact with highly alkaline simulated pore solutions presented in this study, a 

model could be developed to predict the chloride binding capacity of AAS paste 

considering the phase assemblage developed for these materials as a function of 

the slag composition, activator types and degree of reaction.  

 

- Similar to the results described for chloride binding, CLDH can effectively bind 
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carbonate ions as well. It will be interesting to assess if the inclusion of CLDHs 

will improve the materials’ resistance to carbonation. 

 

- As discussed previously, the high concentration of free ions (including Na+ and 

OH-) present in the pore solution may also generate an osmotic gradient to 

counteract migration of Cl-. This factor might particularly be influential when 

applying test methods involving external electrical fields for determining the 

chloride migration coefficient. It would be beneficial to measure the chloride 

diffusion coefficients of sample with comparable formulation, tested under non-

accelerated conditions, or through bulk diffusion tests such as NordTest Build 443.  

 

In summary, this study pioneered the use of CLDH as a smart addition for tailoring 

sodium carbonate activated slag cements. However, there are still lines of work to be 

followed, and questions to be answered, before achieving massive production of sodium 

carbonate-activated slag concrete with guaranteed in-service performance. The results 

concluded from this research have indeed unveiled a bright future, and hopefully inspired 

increased interest, for studying the utilisation of near-neutral salts as alternative activators. 
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