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Abstract

The spinal facet joints are known to be an important component in the
kinematics of the spine and play a role in the load transmission through the spinal
vertebrae. Due to the high level of mobility and the large forces influencing the facet
joint, it can develop significant degenerative changes which lead to the back pain
problems in the human spine. However, the technical difficulties, limitations, ethical
concerns and cost involved in experimental studies of human facet joints have
driven the use of computational modelling studies. The aim of this study was to
characterise the anatomical and biomechanical behaviour of the spinal facet joints
and evaluate the use of an ovine facet joint model as a representation of the human

facet joint.

In the present study, ovine spines were used in order to investigate an animal
model to represent the human spine in the facet joint studies. Morphological studies
were carried out to determine the facet articular radius and facet orientation angle
using an improved method based on micro-computed tomography scan images.
Subsequently, the biomechanical properties of the cartilage in the ovine facet joint
were characterised using a combination of experimental and computational methods.
The similarities of the results obtained between the ovine and human results indicate
that the ovine spine would be a good model to represent the human spine in facet

joint studies.

A novel specimen-specific modelling approach was implemented to model the
cartilage specimen since the model could replicate the actua curvature of the
cartilage surface and the trabecular architecture of the subchondral bone. The
specimen-specific model demonstrated that the cartilage curvature, the elastic
modulus of the subchondral bone and trabecular architecture of the subchondral
bone, influenced the characterisation of the biphasic properties of the cartilage. The
methodologies developed were then applied in a pilot study in human facet joint

specimens and recommendations made for future work in this area.
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Chapter 1: Literature Review

1.1 Introduction

Low back pain (LBP) has a lifetime prevalence of about 60% to 80% and is a
leading cause of disability (Frymoyer et al., 1983, Linton et al., 1998, Friedrich et
al., 2007, Strine and Hootman, 2007, Schmidt et al., 2007a). In the United
Kingdom, the total cost of LBP treatments in 1993 exceeded £8 billion and in the
United States, the total cost reached to $200 billion in 2005 (Rosen, 1994, Katz,
2006). There is aso a high cost in terms of lost working hours associated with such
pain.

There are various structures in the low back region that can cause severe LBP.
One of the sources of LBP is the facet joints, also known as zygapophysia joints,
which have been implicated in chronic LBP (Helbig and Lee, 1988, Dreyer and
Dreyfuss, 1996, Manchikanti et al., 1999). The fact that pain can originate from the
facet joints is widely accepted in the radiologic and orthopaedic literature (Mooney
and Robertson, 1976, Carrera et a., 1980, Lewinnek and Warfield, 1986, Cavanaugh
et a., 1996, Manchikanti et al., 1999, Kalichman and Hunter, 2007).

This chapter reviews the background of LBP and the characterisation of the
human spinal facet joints. The experimental methods and the development of finite
element models of the facet joints are also outlined while highlighting the need for
further research. Throughout this thesis, the anatomic directions of human body are

expressed according to the clinical terms shown in Figure 1.1.
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Figure 1.1. Anatomic reference directions. Adapted from Kurtz and Edidin (2006).

1.2 Structure and Anatomy of the Spine

1.2.1 Introduction

The human spine is a complex structure that provides both mobility and
stability, and aso protects the spinal cord. The normal spine has three natural
curves, the cervical (neck) curve, the thoracic (middle back) curve, and the lumbar
(lower back) curve as shown in Figure 1.2. There is aso a fourth curve in the fused
sacral region of the spine. The cervical and lumbar sections curve forward (lordosis),
while the thoracic section curves backward (kyphosis). This curvature allows even

distribution of weight and the withstanding of the applied loads.

The spine is divided into cervica, thoracic, lumbar and sacra regions. The
cervical spine is the top seven vertebrae (C1-C7) in the neck area which starts just
below the skull. These are smaller bones that allow the head to turn freely, while the
rest of the back remains stationary. The thoracic spine is made up of the twelve
vertebrae (T1-T12) in the middle back, and each thoracic vertebra is attached to a
rib. The lower back, which is called the lumbar spine, is made up of the next five
vertebrae (L1-L5). Finally, below the lumbar region are five fused vertebrae (S1-S5)

of the sacrum and the bone of the coccyx referred as the tail bone.
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Figure 1.2. The human spine. Adapted from Netter (2006).

Therea flexibility of the spine results from complex kinematic motions of the
structure. However in human spine studies, it is well accepted that the motion can be
simplified into extension, flexion, lateral bending and axial rotation as shown in
Figure 1.3. As well as the rotation motions, the spine will also be subjected to axial

displacement with the application of traction and compression motions.

Figure 1.3. The kinematic motions of the spine. Adapted from Kurtz and Edidin (2006).
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Even though the lower portion of the spine holds most of the body's weight,
each segment relies upon the strength of the others to function properly. This
interdependence among all sections of the spine, and the requirement to serve the
demands of both mobility and stability, make the spine vulnerable to injury and
deterioration due to aging.

1.2.2 Vertebra

The vertebrae are irregular shaped bones consisting of various components.
The anterior part of the vertebra is alarge block of bone called the vertebral body,
and the posterior part of the vertebra is connected to it via the pedicles. Projecting
posteriorly from the pedicles, the bone structures extend and develop into
specialised masses of bone called the superior articular process, the inferior articular

process, the transverse process, and the spinous process, as shown in Figure 1.4.

Superior articular
process and facet

Vertebral body

Transverse process

Spinous process

Inferior articular process
and facet

Figure 1.4. Lateral view of thoracic vertebra T12. Adapted from Netter (2006).

The vertebral body comprises of a strong outer layer of cortical bone and a
hollow cavity which is reinforced by vertical and horizontal struts called trabecular
(cancellous) bone. Cortical bone is avery dense material that provides high stiffness
and strength in a relatively thin compact structure, while the trabecular bone is a
porous and sponge-like network of bone materia. However in some cases, the
cortical bone of the vertebrae is more like dense trabecular bone (Mosekilde, 1993,
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Silva et al., 1994). Table 1.1 shows previous experimental studies that have been
conducted to determine the mechanical properties of the trabecular bone in the
vertebral body.

Table 1.1. The compressive modulus and ultimate stress of trabecular bonein vertebral body.

Compressive Modulus  Ultimate Stress

Reference Age Vertebra (MPa) (MPa)
Mosekilde, 1987 15-87 L1 67+ 45 24+16
Hansson, 1987 71-84 L1-L4 228+ 155 155+1.11
Kopperdahl, 1998 32-65 T1-L4 291+ 113 2.23+0.95

1.2.3 Vertebral Joints and Ligaments

There are a number of connections between the vertebrae including the
intervertebral disc, ligamentous structures and facet joints. In addition, the vertebrae
a the thoracic region articulate with the ribs that are attached at the costal facets.
The intervertebral discs lie between the adjacent superior and inferior surfaces of the
vertebral bodies from C2 to S1 with the shape of the discs varying according to the
dimensions of the vertebral bodies. The inferior and superior articular processes of
each vertebra are joined by a facet joint and covered by a facet capsulary ligament

known as the facet capsule.

The spinal ligaments are important structures for maintaining the stability of
the spine because they provide the mechanical constraint to prevent overextension.
There are two primary ligament systems in the spine, the intrasegmental and
intersegmental systems. The intrasegmental System connects adjacent vertebrae
individually, and includes the ligamentum flavum, interspinous ligament,
intertransverse ligament, and facet capsulary ligament as shown in Figure 1.5. While
the intersegmental system, consisting of the anterior longitudinal ligament, posterior
longitudina ligament, and supraspinous ligament, holds the vertebrae along the

thoracolumbar spine.
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Ligamentum flavum

Intertransverse ligament

Facet capsulary ligament
(Facet joint)
Posterior longitudinal
ligament

I nterspinous ligament

Intervertebral disc

Supraspinous ligament Anterior longitudinal

ligament

Figure 1.5. Vertebral jointsat lumbar region. Adapted from www.spineuniver se.com.

1.2.3.1 Intervertebral Disc

The intervertebral disc consists of an annulus fibrosus, surrounding the nucleus
pulposus, and covered by the endplates at the top and bottom surfaces as shown in
Figure 1.6. The discs alow complex movement between vertebrae without
mechanical disadvantages of the opposing vertebra surfaces. It resists spinal
compression while permitting limited bending, twisting, and diding between
vertebral bodies. These motions are resisted by the easticity and tensile forces
developed in the collagen fibres of the annulus fibrosus (Adams et al., 2002).
Another function of the disc is to distribute the loads applied to the spine evenly on
the vertebral bodies. Each disc forms a cartilaginous joint to stabilise the spine and

maintain its alignment by anchoring adjacent vertebral bodies to each other.

Endplate
Posterior

Anterior

Endplate
Coronal section Transverse section
Figure 1.6. Thebasic structure of intervertebral disc. Adapted from Adams et al. (2002).




i. Nucleus Pulposus

The nucleus pulposus is a gelatinous semi-solid structure consisting of a
random network of collagens and proteoglycans, which bind water. Water
constitutes about 70% to 80% of total nucleus pulposus weight and type Il collagen
dominates about 80% of the total collagen content (Guerin and Elliot, 2006). It has
been reported that the swelling pressure of healthy nucleus pulposus tissue is 0.1 to
0.2 MPain alying position, 0.3 to 1 MPain sitting and standing positions, and may
reach as high as 3 MPawhen in alifting position (Wilke et al., 1999).

ii. Annulus Fibrosus

The annulus fibrosusis aring of highly organised angle-ply laminate structures
that forms the outer boundary of the intervertebral disc and surrounds the nucleus
pulposus. It consists of 15 to 25 distinct layers where the fibres are organised in an
aternating layout at an angle of between 20 and 45 degrees with respect to the
transverse axis (Cassidy et al., 1989, Marchand and Ahmed, 1990). The annulus is
composed of collagen type | and type Il fibres embedded in a proteoglycan matrix
(Adamset al., 2002, Guerin and Elliot, 2006).

Under compression loading of the intervertebral disc, the inner annulus is
exposed to axial compression stresses and the bulging of the nucleus pulposus
resultsin radial compressive and circumferential tensile stresses in the outer annulus
(Adams et al., 2002). However in bending or torsion loading conditions, the fibres
may be loaded directly in tension at some point around the circumference of the

annulus fibrosus.

iii. Endplates

The vertebral endplate consists of hyaline cartilage that forms a structural
boundary between the intervertebral disc and the cancellous core of the vertebra
body. It comprises of a gel of hydrated proteoglycan molecules reinforced by a
network of collagen fibrils (Moore, 2006) and the thickness ranges from 0.26 to 1.08
mm, with a mean value of 0.58 + 0.35 mm); the thickness has been observed to be
greater in the lumbar vertebrae in comparison to the thoracic vertebrae (Edwards et
al., 2001).
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The principal functions of the endplate are to prevent extrusion of the disc into
the porous vertebral body, and to evenly distribute load to the vertebral body. The
endplate is aso important for load transfer and the overall structural integrity of the
vertebra. This has been experimentally studied where a significant reduction in the
local structural properties of the vertebral body was found following partial endplate
removal (Oxland et al., 2003).

1.2.3.2 Ligaments

The ligaments are comprised primarily of type | collagen fibres embedded in a
hydrated extracellular matrix (Guerin and Elliot, 2006). Generally the ligaments will
be stretched and withstand the tension during the movements of the spine. The
stiffness of the ligaments have been measured experimentally and it has been found
that the facet capsulary ligament has the highest stiffness, as shown in Table 1.2
(Pintar et al., 1992). However, the ligament stiffness may vary strongly from
specimen to specimen, depending on age, gender, body height, body weight,
physical fitness, genetic influences, and the preparation of the investigated

specimen.

Table 1.2. The stiffness of human lumbar ligaments* (Pintar et al., 1992).

Ligament T12-L1 L1-L2 L2-13 L3-L4 L4-L5 L5-S1 N(Imims)[)
ALL 3294209 3244130 20.8+14.0 39.5+20.3 40.5+143  132+10.2  33.0+15.7
PLL 10.0+¢5.5 17.1+9.6 36.6+15.2 10.6+8.5 25.8+158 21.8+16.0 20.4+11.9

CL 31.7+7.9 42.5+0.8 33.9+£19.2 32.3£3.3 30.6£1.5 29.9+22.0  33.9+10.7
LF 24.2+3.6 23.0+7.8 25.1+10.9 34.5+6.2 27.2£12.2 20.2+8.4 27.249.2
I1SL 12.1+2.6 10.0+£5.0 9.6+4.8 18.1+15.9 8.7+6.5 16.3+15.0 11.5+6.6
SSL 15.1+6.9 23.0+£17.3 248145  34.8+11.7 18.0+6.9 17.8+3.8 23.7£10.9

*ALL: Anterior longitudinal ligament; PLL: Posterior longitudinal ligament; CL: Facet capsulary
ligament; LF: Ligamentum flavum; ISL: Interspinous ligament; SSL: Supraspinous ligament.



1.3 Low Back Pain

1.3.1 Introduction

LBP is defined ‘as pain occurring between the costal margins and the gluteal
folds (Friedrich et al., 2007). Linton et al. (1998) estimated the prevalence of spinal
pain in the genera population as 66%, with 56% of patients reporting pain in the
lumbar region, 44% in the cervical region, and 15% in the thoracic region. Another
study on spina pain patients reported that the pain occurrence of 79% in lumbar
region, 47% in cervical region, and 22% in thoracic region, where multilevel regions
of pain were found for some of the patients (Manchikanti and Pampati, 2002).
Although the prevaence percentage varied between these studies, similar trends
were found along the spine regions, with the lumbar region having the highest

preval ence percentage of LBP.

Lumbar facet joints were first recognised as a potential source of back pain in
1911 by Goldthwait and the term “facet syndrome” was coined by Ghormley in
1933 (Goldthwait, 1911, Ghormley, 1933). Research by Manchikanti et al. (1999)
demonstrated that the facet joint is a source of pain in 45% of the patients suffering
with chronic low back pain. In another study, 500 consecutive patients with chronic,
non-specific spine pain were evaluated (Manchikanti et al., 2004). Out of the
patients, cervical facet joint pain was seen in 140 patients (28%), thoracic facet joint
pain in 30 patients (6%), and lumbar facet joint pain in 124 patients (25%). This
indicates that more than half of the chronic low back pain patients were caused by
the facet joints and the spread between cervical (28%) and lumbar (25%) is much

more even when all cases of back pain are taken into account.

1.3.2 Causes

LBP may originate from many spina structures, including the ligaments, facet
joints, vertebral periosteum, paravertebral musculature and fascia, blood vessels,
annulus fibrosus, and the spinal nerve roots. In many instances, the exact cause of
LBP cannot be determined despite thorough evaluation of the patient by capable
clinician due to this wide range of causes. Furthermore, clinical studies have found

that the correlation between clinical symptoms and imaging results is weak (Sarzi-
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Puttini et al. 2004, Deyo and Weinstein, 2001). Thus, nonspecific terms, such as

strain, sprain, or degenerative processes, are commonly used.

However, the most common causes of LBP are musculoligamentous injuries
and age-related degenerative processes in the intervertebral discs and facet joints
(Deyo and Weinstein, 2001). It was also reported that spinal stenosis and disc
herniation were among the common source of LBP (Sarzi-Puttini et al. 2004,
Arnoldi et al., 1976). Spinal stenosis is narrowing of the central spina canal that
produces pressure on the nerve roots typicaly from degenerative changes in spinal

structures.

1.3.3 Diagnosis

Various diagnostic tests are employed in the evaluation of low back pain.
Clinically, the first stage of the LBP diagnosis is observation of the medical history
and physica examination of the patient. If potential serious conditions are
suspected, imaging diagnostics are performed using imaging techniques such as
plain radiography, computed tomography (CT) scanning and magnetic resonance
imaging (MRI). However, the diagnostic tests may vary for children, pregnant
women and older patients (Chou et al., 2007).

Plain radiography is normally performed on patients with clinical findings
suggesting systemic disease or trauma, while for CT or MRI are used for patients
whom there is a strong clinical suggestion of underlying infection, cancer, or
persistent neurologic deficit (Deyo and Weinstein, 2001, Chou et al., 2007). Imaging
diagnostic tests are also used for diagnosing the degenerative facet disease studies as
shown in Figure 1.7 (Carrera et al., 1980, Fujiwara et al., 1999, Weishaupt et al.,
1999). However, imaging studies only provide anatomic information and are unable

to determine the particular painful structure (Dreyer 1996).
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a b. C.

Figure 1.7. Examples of images of the facet joints a. CT scan b. MRI c. Oblique radiograph.
Adapted from Kalichman and Hunter (2007).

1.3.4 Treatment

The treatments for low back pain are selected after the diagnosis of the
problem, whether it is chronic or acute. In general, supervised exercise therapy and
spinal manipulation are used in the first stage of treatments (Chou et al., 2007).
However, the effects of these physical treatments have been contradictory, with one
study reporting them to help to restore function, improve mobility, relieve pain and
prevent physical disabilities of patients suffering from back pain (Maul et al., 2005),
whilst others found the effects were limited (Andersson et al., 1999, Geisser et al.,
2005).

The pan is aso treated by medications such as non-steroidal anti-
inflammatory drugs, muscle-relaxants, antidepressants and analgesics in the later
stage of the treatment (Deyo and Weinstein, 2001, Mens, 2005, Chou et al., 2007).
Surgical intervention is only performed when one of the following is observed:
herniated intervertebral discs with persistent sciatica, spinal stenosis with
progressive or severe neurologic deficit, and spondylolisthesis with progressive or
severe neurologic deficit (Deyo and Weinstein, 2001, Sarzi-Puttini et al., 2004).

For the back pain which is suspected from the facet joints, history and physical
examination is observed after the patients have received treatment with intraarticular
facet injections of local anaesthetic agents, such as lidocaine and bupivacaine
(Manchikanti et al., 1999, Young et al., 2003, Manchikanti et al., 2004, Ladlett et
al., 2006). Studies have shown that injection of steroids into the facet joints can help
relieve the low back pain for intermediate and long term periods (Lilius et al., 1989,
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Marks et al., 1992). Alternatively, radiofrequency denervation treatment has also
been used to relieve the pain (van Kleef et al., 1999, Leclaire et al., 2001). Surgery
such as arthrodesis (fusion) is only occasionally performed to treat facet arthropathy
because of discouraging results and the potential to cause traumatic dislocation
(Cohen and Raja, 2007). However, facet implants such as interspinous process
gpacers and anatomic facet replacement systems may improve the results of the
surgical intervention but as yet, long term studies have not been carried out, so the

outcomes are not yet fully known.

1.4 Facet Joint

1.4.1 Introduction

The facet joints are categorised as synovial (diarthrodial) joints and are located
at the posterior side of the spine column, connecting the superior and inferior
processes of neighbouring vertebrae. The articular surfaces are coated with cartilage
and covered with capsules as shown in Figure 1.8. The joint is nourished and
lubricated by synovia fluid which is produced from the connective tissue of the

capsule in order to alow thejoints to articulate smoothly.

Posterior view Transver seview

Figure 1.8. Thelumbar L3-L4 facet joint. Adapted from Bogduk (2005).

*C: Joint capsule; AC: Articular cartilage; S: Superior articular process; |: Inferior articular process.

The spinal facet joints have been recognised as an important component in the
kinematics of the spine (Miyazaki et al., 2010). The main function of the facet joint
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is to limit excessive intervertebral shear and torsion motions of the intervertebral
segment (Stokes, 1988, Mow and Huiskes, 2005). They also play an important role
in load transmission through the vertebrae, where the normal facets carry 3% to 25%
of the load applied at the vertebra and potentially as high as 47% if the facet joint is
arthritic (Adams and Hutton, 1980, Yang and King, 1984). Because of their high
level of mobility and the large forces influencing the facet joints, especially in the
lumbar area, the joints can develop significant degenerative changes which lead to
pain and disability.

1.4.2 Anatomy

Throughout the spinal column, the size and shape of the articular facets differ
in order to accommodate the function of a particular spinal region. The shape is
associated with the amount of stress on the vertebral column and the kinematics
related to motion segments in the spine (Masharawi et al., 2005). Generally the
articular facets morphology vary from a flat shape to a curved shape with the
appearance of a“C” or “J’ curve (Bogduk, 2005).

1.4.2.1 Linear Dimensions

The first mgjor effort to create a database of the facet sizes was conducted by
Panjabi et al. (1993) where the linear dimensions of articular facets for human spine
were measured from cervical C2 vertebra to lumbar L5 vertebra as illustrated in
Figure 1.9. The width, height, and area of the articular facets were found to range
from 9.5 mm to 16.8 mm, 10.2 mm to 18.4 mm, and 72.3 mm? to 211.9 mm?
respectively. In addition, similar measurements were aso carried out from another
study to evaluate the facet dimensions from thoracic T1 vertebra to lumbar L5
vertebra (Masharawi et al., 2005). The facet dimensions from both studies are
comparable.
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Figure 1.9. Linear and areal dimensions of facets measur ed*. Adapted from Panjabi et al.
(1993).

1.4.2.2 Facet Orientation

In previous studies, the facet orientation was characterised using either the
facet joint diameter or facet angle using various measurement methods such as CT
scan images (Hagg and Wallner, 1990, van Schaik et al., 1997), a modified
protractor (Tulsi and Hermanis, 1993) and a three-dimensional (3D) coordinate
measurement system (Panjabi et al., 1993, Masharawi et al., 2004). Van Schaik et
al. (1997) determined the facet joint orientation based on a diameter measured from
the transverse plane of CT scan images. A circle, known as facet orientation circle
(FOC), was formed through three edge points of the left and right facet joints as
shown in Figure 1.10.

3

a.

Figure 1.10. Reference points used to determine the FOC a. Right facet b. L eft facet. Adapted
from van Schaik et al. (1997).

However, most of the facet orientation studies used angles as the reference
parameter. The facet orientation angle has been assessed from two-dimensional
transverse plane either on the dissected vertebrae or the CT scan images. In both

cases, the angle was measured from the facet line constructed on two extremities
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points of the superior articular facet, to the reference line created through the
spinous process and midpoint of the vertebral body as shown in Figure 1.11 (Ahmed
et al., 1990, Hagg and Wallner, 1990, Tulsi and Hermanis, 1993). In addition, the
facet orientation angles were also measured in three dimensions based on the
longitudinal facet angle (Panjabi et al., 1993, Masharawi et al., 2004).

Figure 1.11. M easurements of facet orientation angle a. Hagg and Wallner (1990), b. Tulsi and
Her manis (1993), c. M asharawi et al. (2004).

Figure 1.12 shows comparisons of the facet angle measured from the previous
studies. Based on the results, no definite trend with respect to the vertebral level can
be seen due to the inconsistency of the results. Although substantial measurement
variations were obtained by Masharawi et al. (2004), results from the other studies
seem to be around this range. The large number of samples (n=240) used by
Masharawi et al. (2004) perhaps better represent the variation across the population
and so could be the most useful for making comparison to future studies.

B Tulsi 1993 (n=112)
B Panjabi 1993 (n=12)
b Masharawi 2004 (n=240)
L2 L5

L4

70 +

60 -

50 -

40 A

30 -

20 -

Facet Orientation Angle, °

10 A

L1

L3
Vertebral Level

Figure 1.12. Comparison of facet orientation angle measured from previous studies.
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1.4.2.3 Facet Articular Radius

The facet joint curvature was probably first quantified by Hagg and Wallner
(1990) by using CT scan images. The scans were performed on patients with no
degenerative changes of the facet joints as observed on the CT scan. The curvature
was measured at the superior articular facet by approximating a set of circles with
different radius of 0.5 cm, 1.0 cm, 2.0 cm, and 5.0 cm. The measurement method
was then improved in another study where a circle known as the facet curvature
circle (FCC) was constructed from the CT scan images, based on three reference
points aong the edge of the superior articular facet as shown in Figure 1.13 (van
Schaik and van Pinxteren, 1999).

Figure 1.13. CT scan image with FCC drawn through reference points. Adapted from van
Schaik and van Pinxteren (1999).

The facet curvature has also been quantified directly using cadaveric
specimens where a fine ductile wire was used to mould the midfacet surface
(McLain et al., 2002). A contact radiograph was performed on the wire and
transferred to an image analysis system where a best-fit circular outline was applied

to each facet curvature.

A comparison of the measured radius between the different studies is
outlined in Table 1.3. A similar range of values of facet radius was found from both

measurement methods.
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Table 1.3. Comparisons of the human superior facet radius measured by van Schaik and
Pinxteren (1999), and M cL ain et al. (2004).

Reference Method Vertebra Facet Radius (mm)
MclLain, 2002 | Directmeasurement | , 2 20.0
using ductile wire

_ 13.6+6.0 (right)

L4 (n=67) 13.8+7.6 (Ieft)
van Schaik, 1999 CT scan

_ 16.8+9.0 (right)

L5 (n=71) 18.4+8.4 (Ieft)

1.4.3 Characterisation of Load Bearing in the Facet Joint

Since the spinal facet joints play arole in load transmission through the spine,
the characterisation of the load bearing of the facet joints is important in order to
understand the normal function and provide mechanical understanding of the joint.
Methods of measuring the load in facet joints can be divided into direct and indirect
methods. Direct methods, such as pressure-sensitive film and pressure transducer
techniques, employ sensors adjacent to the surfaces which are under load. Indirect
methods such as strain gauge techniques, deduce the joint loads by measuring the
related parameters of the joints subjected to loading. Although a few other
measuring techniques have been utilised (Adams and Hutton, 1980, Y ang and King,
1984, El-Bohy et al., 1989, Hedman, 1992), the strain gauge, pressure-sensitive
film, and pressure transducer measuring techniques are the most widely used to

measure the loads transmitted through the facet joints.

1.4.3.1 Strain Gauge

A strain gauge is a device that measures the deformations of the material to
which it is attached. Early work in biomechanics that utilised the strain gauge was to

quantify in vivo bone strains (Lanyon, 1972).

Strain gauges were first used in human spine studies to examine mechanical
response of the lumbar intervertebral joint under physiological loading (Lin et al.,
1978). The gauges were mounted on the surface of the vertebral body and also near

to the articular process of the vertebra. During extension loading, the strain gauges
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at the articular process were activated indicating that there was a second load path
through the superior and inferior articular processes. This was supported by
Schendel et al. (1993) using the same technique. Here, the strain gauges were
attached at the inferior articular process rather than the superior articular process, as
shown in Figure 1.14, because the human superior articular process contains more
bone mass which prevents the effectiveness of the strain gauge measurement. The
facets were found to carry large loads during extension, torsion, and lateral bending,
but none in flexion. Strain gauges have also been used in the canine lumbar spine to
determine the facet |oads where combinations of three or more gauges were attached
a the bony surface of articular process (Kahmann et al., 1990, Buttermann et al.,
1992, Luo et al., 1996).

Strain gauges

Figure 1.14. Posterior view of LI vertebral body illustrating strain gauge placement on the
inferior articular process. Adapted from Schendel et al. (1993).

However, to ensure that the strain gauges remain functional and attached to the
bone during the testing and calibration in high humidity environments is a difficult
task (Schendel et al., 1993). Furthermore, strain gauge methods deduced facet joint
loads by measuring the related parameters of the joints subjected to loading. It has
also been reported that the strain gauges are highly sensitive to the placement and
number of strain gauges used (Buttermann et al., 1992, Luo et al., 1996).

1.4.3.2 Pressure-Sensitive Film

The common type of sensor used to measure the contact area and planar
pressure in synovia joints is Fuji Prescale pressure-sensitive film. Fuji Prescale
measurement consists of pressure-sensitive film, a densitometer, and pressure
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reader. The films are supplied according to the pressure range starting from 0.05
MPato 300 MPa. When pressure is applied to the film, a red colour impression is
formed in varying density according to the amount of pressure and pressure
distribution. The densitometer is used to read the colour density on the film and
convert it into digital data. Finally the pressure value is determined using an image

processing method.

Fuji Prescale film has been widely used in contact biomechanics studies of
synovial joints. The applications of the film range from the qualitative assessment of
contact stress pattern (Lorenz et al., 1983, Dunlop et al., 1984, Huberti and Hayes,
1988, Warner et al., 1998) to quantitative analysis of the contact pressure in synovial
joints using digital image techniques (Brown et al., 1988, Wagner et al., 1992, Clark
et al., 2002).

Lorenz et al. (1983) and Dunlop et al. (1984) utilised the Fuji Prescale film to
guantify directly the peak pressures, contact areas, and facet loads of the human
facet joints subjected to compression load. The film was sealed in moisture proof
packets (Lorenz et al., 1983) or Sellotape (Dunlop et al., 1984), in order to prevent
the film damage from the moisture, and then inserted between the articulating
surfaces of the two facet joints prior applying the loads. The results of the peak
pressure from both measurements for neutral and extension vertebral segments
positions are shown in Figure 1.15 and Figure 1.16. Although it is not appropriate to
compare the results because of the difference in the test set-up, the outcomes
demonstrate the sensitivity of the load bearing characterisation for the facet joint
because the specimen preparation, loading set-up and type of Fuji film were
different between the two studies.
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Figure 1.15. Peak pressuresin neutral position a. L2-L 3 segmentsb. L4-L 5 segments (L orenz et
al., 1983, Dunlop et al., 1984).
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Figure 1.16. Peak pressuresin extension position (6°to 8° a. L 2-L 3 segments b. L4-L 5 segments
(Lorenzetal., 1983, Dunlop et al., 1984).

The measurement error of Fuji film for biomechanical use was reported to be
between 10% to 28% (Wu et al., 1998). However, the accuracy of the measurement
can be increased by incorporating more than one range of film into experimental
studies (Atkinson et al., 1998). The main concern of using the Fuji Prescale film is
that the measurement of the pressure and contact area can only be carried out a one

cycle of the experiment and only measures the maximum pressure.
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1.4.3.3 Pressure Transducer

The pressure transducers used in the facet joint studies have normally been
fabricated according to the particular interest of the studies. The technique is a
combination of other measurement techniques such as Fuji Prescale film and force
sensing resistor (Hedman, 1992) and a diaphragm instrumented with a foil-type
strain gauge (El-Bohy et al., 1989). However, Tekscan (South Boston, USA)
introduced a commercia pressure transducer measurement system which could
measure the contact area, force, and pressure in the synovial joints.

The Tekscan computerised measurement system consists of a sensor, computer
interface, and software. The sensor is made from a thin and flexible resistive sensor
that uses patterns of electrical conductors which produce a grid of sensing elements.
It connects to a standard personal computer with specialised interface hardware.
This system includes software for calibration, recording and analysing data, and
converting the measured resistances into estimates of resultant force, mean and

maximum pressure, contact area, and centre of pressure.

Experimental studies have been carried out to examine the measurement
accuracy of the Tekscan system by comparing to the Fuji Prescale films (Harris et
al., 1999, Wilson et al., 2003). The contact areas measured using the Tekscan
system were found to be more accurate, while comparable results in terms of the
contact force and contact pressure were observed in the experiments. In addition,

consistent and repeatable measurements were achieved using the Tekscan system.

The Tekscan system has been applied to measure the facet |oad directly where
the sensor was inserted in the facet joint as shown in Figure 1.17 (Wilson et al.,
2006). Consistent and repeatable results were achieved for different loads and
loading types. However, the accuracy depends on the calibration method and the
applied load level with the range of sensor’s measurement (Wilson et al., 2006,
Ramruttun et al., 2008).



Figure 1.17. M easurement of facet joint load using Tekscan system a. Tekscan sensor inserted
into facet joint b. Testing set-up. Taken from Wilson et al. (2006).

1.4.4 Discussion

An extensive database of the facet height, width, area, and orientation angle of
the facet joints have been established (Panjabi et al., 1993, Masharawi et al., 2004,
Masharawi et al., 2005). However, the measurements were made based on the linear
dimensions which were unable to include the curvature of the articular facets. The
curvatures of the articular facets have been reported to be an important aspect in
computational method particularly in contact stress analysis (Holzapfel and Stadler,
2006). Despite the importance of the curvatures in spinal mechanics, it appears that
little attention has been paid to the facet curvature characterisation and many of the
morphological studies of the facet joints were focused more on the facet orientation.
However, the variation of the measured facet orientation angles shown in Figure
1.12 indicates that the characterisation of the angle has yet to be fully refined, as
various methods were used to quantify the angle. Furthermore, thereis still a lack of
facet curvature data due to the low number of studies and lack of sophistication in
the methods used.

Various methods have been used in the experimental studies in order to
characterise the load bearing of the facet joints. The obvious advantage of using the
strain gauge is that the facet joints are not disturbed and remain intact while the
measurements are made. However, this indirect measurement method i< limited to
capture only the deformation of the material at the point at which it was attached and
is unable to assess the area of load distribution within the joint. Furthermore, the
method requires intensive setup and needs disarticulation of the joint for calibration.



-23-

Most importantly, every indirect method must be vaidated with a direct

measurement to be useful (Buttermann et al., 1992).

Pressure sensitive film is probably the easiest method to set up and has been
used to measure the pressure in the facet joints. The concerns of using this method
are that the measurements are made only at the peak contact pressure over one cycle
of the experiment and are unable to alow real-time analysis of data. Furthermore,
the consistency of the measurement has aso be a problem for the film, as illustrated
in Figure 1.15 and Figure 1.16 where notable differences of the contact pressures
were shown between the left and right facet joints. Apart from the crinkle problem
of the film, the experimental result was also reported to be very sensitive to the
choice of the film (Harris et al., 1999).

The use of Tekscan measurement system overcomes many of the problems of
pressure sensitive film. Specifically, it allows continuous measurements of changing
loads, and electronic recording of results. The system also provides real-time, more
reliable and repeatable measurement, and has been proved to be more accurate
compared to Fuji Prescale film (Harris et al., 1999, Wilson et al., 2003, Wilson et
al., 2006). However, there appear to be limited studies which have employed the
Tekscan system in the facet joints to evaluate the reliability of the system.

1.5 Articular Cartilage

1.5.1 Introduction

Articular cartilage is a common type of hyaline cartilage. It is a smooth and
glistening bluish-white tissue which covers the opposing articular margins of the
synovial joints including the spinal facet joints. The main functions of articular
cartilage in synovial joints are to transmit loads between the opposing joint surfaces,
to distribute the stresses over the subchondral bones, and to provide a low-friction
articulation (Mow and Huiskes, 2005). These functions are achieved from the
unique material properties possessed by the cartilage. Experiments on articular
cartilage are commonly performed to characterise the biomechanical and
biochemical properties. The properties are used to enhance tissue engineering

developments for cartilage repair and as an input for computational modelling.
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1.5.2 Composition and Structure

Articular cartilage consists of two distinct phases which are the fluid and solid
phases. The fluid phase is composed of 60-85% water while the solid phase is
composed of 15-22% collagens, and 4-7% aggrecan by wet weight (Mow and
Huiskes, 2005). The tissue contains four different zones with respect to depth, which
from the surface to the subchondral bone are the superficial, middle, deep and
calcified zones as shown in Figure 1.18. This composition makes the articular
cartilage structure inhomogeneous, and possesses anisotropic and nonlinear

properties both in compression and tension.

Articular surface
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Figure 1.18. Schematic diagram of articular cartilage zones. Adapted from Mow et al. (1992).

Collagen is dominated by type Il collagen, which makes up 90-95% of the
total collagen, and smaller amounts of typel, V, VI, IX, and XI (Eyre, 1991, Hu and
Athanasiou, 2003, Mow and Huiskes, 2005). Aggrecan constitutes 80-90%
proteoglycans in articular cartilage. Proteoglycans consist of core chan of
hyaluronic acid attached with a protein core which contains glycosaminoglycan
(GAG) side-chains, mostly keratan sulphate and chondroitin sulphate (Mow and
Huiskes, 2005). Aggrecans are elastic macromolecules that give the ability to resist

compression and contribute to the durability of the tissue.

The collagens and proteoglycans crosslink together in a network and form the
extracellular matrix (ECM) framework as illustrated in Figure 1.19. The negatively
charged proteoglycans are tightly bound with the positive charge groups aong the
collagen fibrils and hyauronates of the aggregate. In order to maintain the
electroneutrality in the cartilage, the total ion concentration inside the cartilage must
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be higher than the ion concentration in the surrounding synovial fluid. This
imbalance of ions creates an osmotic pressure difference that causes fluid to flow
into the cartilage structure to maintain osmotic equilibrium which leads to a swelling
pressure. The ability of articular cartilage to perform its physiological functions
depends on the structure, the composition, and the integrity of its ECM as the matrix
generates the tensile and compressive stiffness of the cartilage (van der Rest and
Mayne, 1988, Franz et a., 2001, Mow and Huiskes, 2005).

\ @\% | __ Aggrecan
1an i, A

Interstitial fluid

Collagen fibril

Il | Attached aggrecan

Figure 1.19. A schematic diagram indicating the collagen-proteoglycan matrix in cartilage.
Adapted from M ow and Huiskes (2005).

1.5.3 Properties Characterisation

1.5.3.1 Constitutive Modelling

Various constitutive models have been used to describe cartilage from single-
phase to biphasic and multiphasic models. The earliest models assumed the cartilage
to be single-phase isotropic and linearly elastic (ElImore et al., 1963, Kempson et al.,
1971, Hori and Mockros, 1976). This model could describe the mechanical
behaviour of the cartilage under static, instantaneous and equilibrium conditions but
was unable to describe the time-dependent creep and stress-relaxation behaviours of
the cartilage. Then, viscoelastic models were introduced to account for the creep and
stress-relaxation behaviour of the cartilage (Hayes and Mockros, 1971, Parsons and
Black, 1977, Hayes and Bodine, 1978). However, these models were unable to

describe the effect of fluid present in the cartilage.
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As the result, a biphasic model was developed to describe the nature of the
cartilage in solid and fluid phases (Mow et al., 1980). Both the phases were
individually immiscible and incompressible. The solid phase was porous and
permeable to fluid flow, which is subsequently responsible for the compressive
behaviour of the cartilage. Due to the very low permeability of the cartilage, large
drag forces are generated from the fluid flow which maintained the high fluid

pressure over along period of time (Mow and Huiskes, 2005).

With infinitesimal strain and constant permeability, this theory is known as the
linear biphasic theory. However, cartilage deformation is non-linear with finite
strains and its permeability is dependent on compression. Because of the generality
of the formulation, the biphasic model has been expanded to incorporate strain-
dependent permeability (Lai and Mow, 1980, La et al., 1981, Mow et al., 1984,
Holmes, 1985, Holmes et al., 1985, Holmes, 1986), flow-dependent viscoel asticity
(Hayes and Bodine, 1978), the intrinsic viscoelasticity of the solid matrix in the
biphasic poroviscoel astic theory (Mak et al., 1987) and non-linear finite deformation
(Kwan et al., 1984, Holmes, 1986, Holmes and Mow, 1990, Kwan €t al., 1990).

In addition, multiphasic models consider the charged nature of the tissue to
describe the physiochemical and electrochemical behaviour. The el ectromechancial
theory combines the laws for linear electrokinetic transduction in ionized mediawith
the biphasic theory (Frank and Grodzinsky, 1987). Subsequently, the triphasic
theory was developed to incorporate the ion phase in addition to the solid and fluid
phase of the biphasic theory (Lai et al., 1991). However, the multiphasic models are

rarely used to analyse experimental data because of their complexity.

1.5.3.2 Specimen Preparation

The preparation of articular cartilage specimens depends on the type of test
which will be performed in order to characterise the cartilage properties. For
compression tests using an indenter, the cartilage specimens have been extracted
from the articular surface of the synovia joint that included the underlying bone
(Korhonen et al., 2002). However for confined and unconfined compression tests,
the full thickness of the cartilage layer was separated from the subchondral bone and
then cut according to the size of the confined chamber (Korhonen et al., 2002).

Compression tests using an indenter were also performed using in situ specimens



-27 -

where the indentations were performed at different sides of the articular cartilage
surface of the synovial joint (Swann and Seedhom, 1989, Athanasiou et al., 1991).

Storage is also an important part of the specimen preparation, especially when
the test cannot be performed immediately after the specimen extraction. Generally,
cartilage specimens have been kept frozen either at -20 °C (Kempson et al., 1968,
Korhonen et al., 2002, Jin and Lewis, 2004) or -80 °C (Athanasiou et al., 1991,
Roemhildt et al., 2006). There are conflicting opinions about the effect of freezing
on the cartilage biomechanical properties. Hori and Mockros (1976) conducted
compression test using an indenter on human articular cartilage at two different
storage temperatures, -20 °C and 4 °C, and found differences in shear and bulk
modulus. This is supported by another study where freezing at -20 °C altered the
biomechanical properties due to the damage to the extracellular matrix and cells
(Willet et al., 2005). However in another study, cartilage that was frozen at -80 °C
did not have different material properties as compared to fresh cartilage (Athanasiou
et al., 1991). Although testing fresh cartilage will avoid all the storage artefacts, it is
inevitable that storage is necessary for some experimental studies of cartilage.

1.5.3.3 Thickness

The thickness of the cartilage varies in different synovial joints in the human
body, which could be due to the degree of dynamic loading of the joints. It has also
been reported that articular cartilage is distributed inhomogeneously and yields a
variable thickness within the mgor synovia joints of the human (Adam et al.,
1998).

Generally, two types of method have been employed to determine the
thickness of articular cartilage, which are direct methods such as compression
testing, and indirect methods such as imaging techniques. Imaging techniques have
been used extensively because the scans were mostly performed without dissecting
the cartilage in the scanning process and, more importantly, it can be used clinically.
Magnetic resonance imaging (MRI) uses a strong magnetic field and high-frequency
radio waves to produce images of organs and structures inside the body (Eckstein et
al., 1995, Vanwanseele et al., 2004, Millington et al., 2007), while computed
tomography (CT) scanning uses ionising radiation (X-rays) to generate detailed

images of structures inside the body (Yoganandan et al., 2003). The accuracy of
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both CT and MRI images depends on the magnification and resolution of the
equipment. However, MRI is more sensitive than CT scan for the assessment of
cartilage since it can detect the fluid content (Eckstein et al., 1998), whereas the CT
scan is better at imaging harder tissues such as bone.

Other indirect methods used to measure the cartilage thickness are
stereophotogrammetry (Ateshian et al., 1991) and ultrasound (Rushfeldt et al., 1981,
Modest et al., 1989). The ultrasound method utilises a pulse-echo ultrasound
controlled by a computer, which reflects the boundaries where material density
changes. The cartilage thickness is determined by performing a time based
correlation of the reflections. The stereophotogrammetry uses prepared specimens
where the object is recorded and measured in a two-dimensional photographic
image. The thickness is determined from the mathematical computations using both

perspective and projective geometry.

The cartilage thickness can also be determined directly using compression
testing, where a needle indenter tip is used to penetrate the cartilage until a
significant increase in the measured load is obtained indicating that the needle is in
contact the subchondral bone (Swann and Seedhom, 1989, Schenck et al., 1994,
Athanasiou et al., 1998). The thickness of the cartilage is determined by the
difference between the position of the needle when it contacts the cartilage surface
and the subchondra bone. Other direct methods have utilised measurement
instruments such as the micrometer (Ziv et al., 1993). However, these methods

require either the joint capsule or even the articular cartilage layer to be damaged.

Table 1.4 demonstrates the dissimilarity of norma articular cartilage
thicknesses both across different synovia joints of the human body and using
different measurement methods. The difference was aso observed in the facet
cartilage between the cervical and lumbar facet joints, and may indicate that the

thickness of the facet cartilage varies aong the length of the spine.
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Table 1.4. Thickness of normal articular cartilage in human synovial joints.

Reference M ethod Cartilage Thickness (mm)
Athesian, 1991 Stereophotogrammetry  Knee - Patella 3.33+0.39
- Femur 1.99+0.12
- Tibial plateau 2.92+0.52
Athanasiou, 1991 Compression test Knee - Femoral condyle (lateral) 2.31+0.53
using an indenter -Femoral condyle (medial) 2.21+0.59
- Patella groove 357+1.12
Eckstein, 1995 MRI Knee - Patella 2.80-3.16
Hall, 1980 Radiography Knee - Femoral condyle (lateral) 3.7+08
-Femora condyle (medial) 40+0.8
Athanasiou, 1994 Compression test Hip - Femoral head 1.03-1.84
using an indenter - Acetabulum 1.06-1.83
Nakanishi, 2001 MRI Hip - Femoral head 1.14-284
Rushfelt, 1981 Ultrasound Hip - Acetabulum 1.0-20
Eckstein, 1997 Ultrasound Hip - Femoral head/Acetabulum 0.7-36
Solowsky, 1992 Stereophotogrammetry  Shoulder - Humeral head 1.44+0.30
- Glenoid 2.16+0.55
Vanwanseele, 1997 MRI Shoulder - Humeral head 1.30+0.06
Graichen, 2000 MRI Elbow - Humerus 1.35
- Radius 1.20
- Ulna dorsal 1.23
- Ulna ventral 0.99
Schenck, 1994 Compression test Elbow - Radia head 0.87-1.17
using an indenter - Capitellum 1.02-142
Athanasiou, 1995 Compression test Ankle - Tibial 0.95-1.30
using an indenter - Talar 1.01-145
Millington, 2007 MRI Ankle - Talus 1.34+0.14
- Tibia 1.21+0.14
- Fibula 0.91 £ 0.08
Ziv, 1993 Micrometer Facet - Superior lumbar spine 1.45+0.27
- Inferior lumbar spine 112+ 0.25
Y oganandan, 2003 CT scan Facet - Upper cervica spine 0.73+0.07
- Lower cervical spine 0.47 £ 0.02
Y oshioka, 2007 MRI Wrist - Ulnar head 0.80+0.23
- Lunate 1.10£0.24
Athanasiou, 1998 Compression test Toe - First metatarsophalangeal
X . 0.75+0.21
using an indenter
Al-Ali, 2002 MRI Foot - Taocrura joint 0.86+0.17
- Taotarsal joint 0.72+0.09
- Intertarsal joint 0.64+0.18
Koff, 2003 Stereophotogrammetry  Thumb - Trapezium 0.8+0.2
- Metacarpal 0.7+0.2
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1.5.3.4 Biomechanical Properties

Tensile test and compression test methods are commonly used to determine the
biomechanical properties of the cartilage such as elastic modulus (E), Poisson’ s ratio
(v), and permeability (k). Tensile tests have been utilised to obtain single-phase
cartilage properties such as elastic modulus, ultimate tensile stress, fracture stress
and tensile fatigue properties (Kempson et al., 1968, Kempson et al., 1973,
Weightman et al., 1978, Akizuki et al., 1986, Kempson, 1991). They have aso been
used to determine the Poisson’ sratio of the cartilagein tension (Elliott et al., 2002).

Compression tests are the most frequent method used to determine the biphasic
properties of cartilage such as aggregate modulus (H) and permeability. This is
because the test set-up can alow the cartilage to be submerged in the fluid during
the test. There are three types of compression tests commonly used which are
unconfined compression, confined compression, and compression tests using an
indenter, as illustrated in Figure 1.20. The confined compression test compresses a
disk-like cartilage sample in a confined chamber with a solid platform surface and a
water permeable porous loading platen (Hori and Mockros, 1976, Korhonen et al.,
2002), while the unconfined test compresses the specimen in between two solid
platens (Korhonen et al., 2002). For the compression test using an indenter, the
surface of a cartilage sample is compressed using a flat or a spherical indenter (Hori
and Mockros, 1976, Athanasiou et al., 1991, Korhonen et al., 2002).

Load Load Load

o l\ permeable /l\ l

piston _7 Indenter s
‘”'\I\II,\ Y ‘|" | i f h‘l L T‘ ‘l_‘|." [ (\I\I R
Ao A o Cartilage TR Cartilage _.r T ) 7 |||'|Il ||)
| 1 = i | | i i | S | | |
A VIR S sample === | L Lyl S =
— DEENESE
Impermeable Confining Subchondral
plate chamber bone
a b. C.

Figure 1.20. Commonly used mechanical testing configurations a. Unconfined compression, b.
Confined compression c. Compression test using an indenter. Adapted from Knecht et al.
(2006).
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Extensive experimental studies have been carried out to characterise the linear
biphasic properties of the cartilage in human synovial joints as shown in Table 1.5.
Although most of the experiments deduced the Poisson’s ratio, aggregate modulus
and permeability, the elastic modulus is linearly related to Poisson’s ratio and
aggregate modulus by expression [1] (Mow and Huiskes, 2005),

El-v)
H:m .................................... [1].

The biomechanical properties of articular cartilage were found to vary between
different synovia joints of human body. This could be due to the location of
synovial joints being subjected to different loading conditions and having different
cartilage contours. The mechanical properties of human facet articular cartilage have
yet to be characterised.



Table 1.5. Linear biphasic biomechanical properties of articular cartilage in human synovial joints.

. , Aggregate Elastic .
Reference M ethod Cartilage P:);f?gn s modulus, modulus, zerlg]ga(br;:lms;
v H, (MPa) E, (MPa)
Armstrong, 1982 gonfmed , Knee - patella - - 0.79+0.36 -
ompression
Jurvelin. 2003 Confined/Unconfined | Knee - femoral (parallel) 0.158 + 0.148 0.845+ 0.383 0.581 + 0.168 1.75+1.82
' Compression - femoral (tangent) 0.180 + 0.046 1.237 + 0.486 0.854 + 0.348 1.26+0.76
Compression test Knee - femoral condyle (lat.) 0.098 + 0.069 0.701 £ 0.228 - 1.182 + 0.207
Athanasiou, 1991 uSin pan indenter - femoral condyle (med.) 0.074 + 0.084 0.588+ 0.114 - 1.137+0.160
9 - patellagroove - 0.530 £ 0.094 - 2173+ 0.730
Athanasiou. 1994 Compression test Hip - femoral head 0.013-0.058 0.679 - 1.816 - 0.781-1.101
' using an indenter - acetabulum 0.011 - 0.097 1.072-1.424 - 0.710-1.133
Athanasiou. 1995 Compression test Ankle - tibial 0.02-0.08 0.94-134 ) 0.93-1.79
' using an indenter - talar 0.02-0.06 0.92-1.25 0.80-1.64
Schenck. 1994 Compression test Elbow - radial head 0.039-0.105 0.624 - 0.899 ) 0.904 - 1.975
' using an indenter - capitellum 0.044 - 0.105 0.723-0.821 1.082-1.531
Athanasiou, 1998 | Compression test Toe- first metatarsophalangeal |  0.07+ 0.07 0.98+ 0.50 - 202+ 147

using an indenter

_ZS_
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1.5.3.5 Biochemical Composition

Biochemical analyses are performed in order to quantify the biochemical
composition in the cartilage such as content of water, collagen and proteoglycan.
Generally the water content of the cartilage is assessed by measuring the wet weight
(ww) percentage of the total cartilage weight (DiSilvestro and Suh, 2002). This was
caculated by the percentage difference between the wet and dry weights as a
proportion of the wet weight. In vitro measurement method using MRI were also
utilised to quantify the water content (Lusse et al., 2000). Table 1.6 tabulates the
cartilage water content in the human synovial joints that have been characterised in
previous studies. Although the percentage of the cartilage wet weight measured using

the MRI was dlightly lower, the water content was observed to be in asimilar range.

Table 1.6. Water content of articular cartilage in the human synovial joints.

Reference M ethod Cartilage Water, ww %
Armstrong, 1982 Weight measurement Knee - patella 78.6+ 3.9
Treppo, 2000 Weight measurement Knee - tibial plateau 79.0

- distal femur 77.0
Ankle - talar 75.0
Fetter, 2006 Weight measurement Knee - femoral condyle 75.2
Ankle - talar 725
Lusse, 2000 MRI Knee - tibial plateau 705+ 22
- femoral condyle 712+11

The collagen and proteoglycan content can be analysed by qualitative and
quantitative methods by using staining techniques. Histology is a qualitative method
that studies the tissues by utilising the staining techniques under a light microscope.
Hematoxylin and eosin (H&E) staining is the basic and most common histology
procedure for cartilage to assess the presence of chondrocytes in the matrix as well as
overal organisation (An and Martin, 2003). Histological analysis has aso been used
to assess the presence of proteoglycans, particularly aggrecan, using safranin O,
toluidine blue, and alcian blue to stain the GAG side chains (Franz et al., 2001, An
and Martin, 2003). Another qualitative method is immunohistochemistry which

allows for the visualisation of the tissue distribution of specific antigens through



-34-

antigen-antibody interactions. These interactions allow specific cartilage structure to
be visualised such as collagen I, collagen 1I, collagen Il or chondroitin sulphate
(Paulsen and Tillmann, 1999).

In order to analyse the matrix content quantitatively, biochemical assays are
performed where the proportions of biochemical tissue components can be
determined. The total proteoglycan content is determined by measuring the amount
of sulphated GAG using dimethylmethylene blue assay (Farndale et al., 1986,
Treppo et al., 2000, Fetter et al., 2006), while the hydroxyproline assay is used to
obtain the total collagen content in the cartilage (Schwartz et al., 1985, Treppo et al.,
2000). It has been reported that the highest content of collagen was found in the
superficial zone and the highest concentration GAG was in the deegp zone of the
cartilage (Fetter et al., 2006).

From previous studies, it appears that limited investigation has been carried out
to characterise the biochemical composition of the facet cartilage. The collagen
content of human facet cartilage was found to be between 54% and 62% of the total
cartilage dry weight depending of the age of the subject (Ziv et al., 1993), whilst the
canine facet cartilage was found to be approximately 65% (Elder et al., 2009). In
addition, Elder et al. (2009) determined the GAG content in the canine facet cartilage
and found it to be approximately 15% of the total cartilage dry weight.

1.5.4 Discussion

Experimental tests have been carried out in order to characterise the material
properties of cartilage. In cartilage research, it is typically necessary for some period
of storage particularly between the harvesting and testing of the cartilage. As well as
testing fresh tissue, the cartilage specimens are commonly kept frozen at -20 °C and
-80 °C prior to testing. There are conflicting opinions about the effect of freezing on
the biomechanica properties of the cartilage. To date, it appears that no specific
protocol for the storage of cartilage has been widely accepted.

Methods for measuring cartilage thickness such as pulse echo ultrasound,
needle probe testing and stereophotogrammetry require either the joint capsule or
even the cartilage layer to be destroyed. CT scan and MRI imaging techniques
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overcome the problems where the assessment of cartilage thickness can be
undertaken in vitro. Previous studies have shown that MRI provides better cartilage
measurement accuracy compared to a CT scan (Eckstein et al., 1998). However,
advances have been made in CT scanning techniques which now produce more
accurate scans of cartilage (El-Khoury et al., 2004). For direct measurement methods
such as compression tests using a needle indenter, validation against imaging is
essential to ensure the needle pierces through the calcified cartilage, since it has been
reported that the calcified zone is the stiffest cartilage zone as it forms a transitional
zone of intermediate stiffness between the cartilage and the subchondral bone (Mente
and Lewis, 1994).

Cartilage exhibits biphasic biomechanical properties, with the frictional drag
force of interstitial fluid flow being the dominant factor controlling compressive
creep and stress-relaxation behaviours. The biphasic theories developed by Mow and
co-workers have been widely accepted to represent the biphasic nature of the
cartilage compressive behaviour. Although multiphasic models have been
introduced, the biphasic model describes the most efficient and idealised of the

stress-strain and interstitial fluid flow compressive cartilage behaviour.

For the characterisation of the biomechanical biphasic properties, the
compression test using an indenter is preferred compared to confined and unconfined
compression tests. This is because of the ease at which the small tissue samples
required can be prepared, and speed with which compression test can be carried out.
The method has aso been advanced to micro-compression testing for small cartilage
samples (Li et al., 2007). The same principle was also applied in the development of
arthroscopic measurement of cartilage stiffness (Lyyra et al., 1995). In contrast, the
confined and unconfined compression tests require the cartilage to be isolated from
the subchondral bone which could possibly damage the cartilage. Furthermore, the
calcified cartilage is highly integrated with the subchondral bone and cannot be
cleanly separated to permit its independent study (Mente and Lewis, 1994).

The aggregate modulus and permeability of normal cartilage are 0.5 to 2.0 MPa
and 0.5 to 4.0 x 10 m*/Ns, respectively. However, the cartilage condition such as
age, cartilage degeneration and disease are the important factors in the
characterisation of the cartilage properties and could produce significant differences

in the properties (Armstrong and Gardner, 1977, Lane and Bullough, 1980, Burstein
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et al., 2000, Eckstein et al., 2006). Although compressive stiffness is obtained in an
compression test using an indenter, computational methods have been incorporated
to simulate the compression test in order to characterise the tensile properties (Mow
et al., 2000).

As demonstrated in Table 1.4 and Table 1.5, cartilage biomechanical properties
are different in the different synovia joints of the human body. Although some
studies have been carried out to characterise the facet cartilage behaviour such as
thickness (Ziv et al., 1993, Y oganandan et al., 2003), hydration (Ziv et al., 1993) and
swelling (Tobias et al., 1992), there is limited information of the facet articular
cartilage properties. Therefore, it is crucia to obtain the mechanical properties of

facet articular cartilage in order to develop computational models of the facet joint.

1.6 Computational Method

1.6.1 Introduction

The technical difficulties, limitations, and cost involved in in vitro and in vivo
experimental studies as well as ethical concerns have prompted the use of computer
modelling studies in various branches of orthopaedic biomechanics. Finite element
analysis (FEA) has become a widely used tool in this field. It is a computer method
suitable for determining stresses and strains at any given point inside a structure of
arbitrary geometric and material complexity. A finite element (FE) models rely on
accurate constitutive representation of material characteristics, geometric data,

loading characteristics, and boundary and interfacial conditions.

FEA was first introduced to orthopaedic biomechanics in 1972 to evaluate
stresses in human bones (Brekelmans et al., 1972). The continuous evolution and
availability of affordable powerful computers has increased the complexity of the
models under investigation in musculoskeletal systems including the spine. FE
models of the spine and its components are being used increasingly to assist in
understanding the behaviour of the structures when healthy, diseased or injured, and
to examine the effects of different surgical interventions and prostheses (Fagan et al .,
2002a, Jones and Wilcox, 2008).
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1.6.2 Development of Spinal Models

FE models of the human spine may be classified into two categories: whole-
spine models and vertebral-segment models, as shown in Figure 1.21. The whole-
spine models normally consist of simplified components of the spine to examine the
structural behaviour of the full spinal column (Dietrich et al., 1991, Lee et al., 1995).
These models have been used to estimate the forces and stresses in the different
elements for different positions of the spine. However, the models are unable to
estimate accurate responses of soft tissues and vertebrae, and facet joints have been
normally neglected. Therefore, vertebral-segment models have been developed for
more detailed representation of spinal materials and geometries (Rohimann et al.,
2006, Schmidt et al., 2007b). In addition, recent advances in image analysis and
geometrical reconstruction have also enabled the generation of specimen-specific and
patient-specific models (Fagan et al., 2002b, Wilcox, 2007).

a.

Figure 1.21. Two types of spinal models a. Whole-spine model (Leeet al., 1995) b. Vertebral-
segment model (Teo et al., 2004).

1.6.3 Development of Facet Joint Modelling

In the previous FE models, the components that are often modelled in the facet

joints are the facet articular processes bone, capsular ligament and cartilage layer.
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The geometrical data of the facet processes bone are normally included in the
development of the vertebral body model which is commonly obtained either using
coordinate measuring machines (Maurel et al., 1997, Teo and Ng, 2001a), MRI
(Cyteval et al., 2002) or computed tomography (CT) images (Breau et al., 1991,
Wilcox, 2006). The CT technique is the most frequently used due to the flexibility
and clarity of bony geometry data. There are software packages that can convert the
data from CT images into a format that can be interpreted by engineering computer
aided drafting software, which can then be input into commercia FE software.

Although some studies neglected the curvature of the facet articular surface and
assumed it to beflat, it has been reported that the curvature plays an important role in
the facet joint modelling. A computational study has found that the facet curvature
has a strong influence of the contact distribution which affected the shear forces in
the facet joint compared with flat geometrical models of facet joints (Holzapfel and
Stadler, 2006).

1.6.3.1 Articular Cartilage of the Facet Joint

Since there are limited data of the cartilage in the facet joint, the cartilage
geometry and material properties are either assumed or adopted from other synovial
joint studies. The cartilage is often neglected and represented using gap elements or
spring elements between the two cartilages (Sharma et al., 1995, Schmidt et al.,
2008).

The space between two cartilage surfaces has been defined using gap elements
(Ueno and Liu, 1987, Sharma et al., 1995), link elements (Shirazi-Adl et al., 1986a),
contact gap elements (Shirazi-Adl, 1994) or dliding surface contact elements (Teo et
al., 2004). Generaly, al these element types were generated using a similar
approach, where the thickness of the cartilage layer was assumed on each facet
articular surface by incorporating a gap limit between articular surfaces of the facet
joints. However, the material properties of the facet cartilage were applied using

different approaches.

In the earlier facet joint modelling, the cartilage properties were represented by
a constant linear axial and shear spring stiffness (Hakim and King, 1979, Ueno and
Liu, 1987). Shirazi-Adl et al. (1986, 1987) then incorporated nonlinear stress-strain
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characteristics with initial low modulus of elasticity in compression reaching a
maximum equal to cortical bone and zero modulus of elasticity in tension. However,
Sharma et al. (1995, 1998) represented the cartilage properties from an experimental
compression stress-strain curve of the cartilage from the bovine knee joint
(McCutchen, 1962). This approach was replicated by other researchers in their works
to simulate the cartilaginous layer in the facet joints (Teo et al., 2004, Rohlmann et
al., 2006, Schmidt et al., 2007b, Schmidt et al., 2008). The values of the cartilage
properties applied in the previous FE models are shown in Table 1.7.

Continuum modelling approaches have been implemented to simulate the
cartilage in the facet joint using solid elements, synovial fluid using fluid elements,
and synoviad membrane using membrane elements (Yoganandan et al., 1996,
Kumaresan et al., 1998, Natargjan et al., 2000). However, the definitions of the
articular cartilage are lacking in these models and although various cartilage
formulations have been developed as described in Section 1.5.3.1, the biphasic
formulation has yet to be applied in facet cartilage.

Table 1.7. Previous FE models of the facet joint*.

Reference Facet Joint Element Material Properties
Components I dealisation
Hakim, 1979 Gap between facet bones Gap k = 1050.8 N/mm
Ueno, 1987 Gap between facet bones Gap k = 1000 N/mm
Sharma, 1995 _
Schmidt, 2007 Gap between facet bones Gap E=11.1-12000 MPa
Shirazi-Adl, 1986 . C = max. 12000 MPsg;
Shirazi-Adl, 1987 | ©3 between facet bones Link E=0MPa
Shirazi-Adl, 1994 Gap between facet bones Contact gap C=75MPsa
Teq, 2004 Gap between facet bones Slidingsurface | £ _ 10000 Mpa; v = 0.3
contact
Y oganandan, 1996 Articular cartilage Solid E=34MPg v=04
Articular cartilage Shell E=104MPg v=04

Kumaresan, 1998 | o novial fluid Incompressible fluid | p = 1000 kg/m3
Natarajan, 2000 Articular cartilage Solid E=11MPg v=04

*E: Elastic modulus; C: Compression modulus; k: stiffness; v: Poisson’sratio; p: density.
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1.6.3.2 Facet Joint Contact Modelling

In the earlier modelling of the facet joint, the joint was represented as a fixed
problem until the facet joint contact model was introduced by Shirazi-Adl et al.
(1986a) in order to articulate a realistic total motion of the vertebral segment. The
contact of the joints were modelled using the moving contact problem which was
based on the perpendicular distance between the nodal points on the inferior articular
surface and triangular plane elements on the superior articular surface as shown in
Figure 1.22. The perpendicular distance was computed after each load increment

where the contact was assumed to have occurred when:

i. the perpendicular distance between superior and inferior facets were
smaller than the specified gap-limit,
Ii. the projection on the plane of the same lower triangle was inside of its

boundary.

INFERIOR
ARTICULAR SURFACE

\\ SUPERIOR
ARTICULAR SURFACE

ST

Figure 1.22. Articulating surfaces of segmental model. Adapted from Shirazi-Adl et al. (1986a).

However, the contact modelling on the basis of perpendicular distance
difference may not be the best to represent the physical situation. In reality, the facet
contact areas change or may no longer remain in contact during the application of
incremental loading. Therefore, Sharma et al. (1995, 1998) developed an algorithm
for more redistic representation of facet joint contact known as a nonlinear
progressive contact problem. The articulation is modelled by the changing contact

areas of the facet articulating surfaces with change in loading.
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The nonlinear progressive contact problem has been widely used, but the
contact constraints between the articular facets vary and depend on the type of
element used. For instance, authors have used contact gap elements (Sharma et al.,
1995, Sharma et al., 1998, Rohimann et al., 2006), nonlinear contact elements (Teo
and Ng, 2001b), sliding surface contact elements (Teo et al., 2004), and surface to
surface contact elements (Schmidt et al., 2007b, Schmidt et al., 2008). Table 1.8

summarises the development of the facet joint contact modelling in FE models.



Table 1.8. FE model development of facet joint contact modelling*.

Reference F.E. Model Facet_ Contact Important Results
Articulation Element
Shirazi-Adl, 1986a 3D nonlinear model of L2-L3, L4-L5 Nonlinear e Pure compression result 1-5% FL.
Shirazi-Adl, 1987 motion segments. VB, DC, PC, FC, moving contact Link e Combined loads (C+F, C+E) generate large FL.
Shirazi-Adl, 1994 LG. problem o Axial torsion yield large FL.
e High FL in extension and anterior shear loading.
Sharma, 1995 3D nonlinesr model of L3-L4 motion Nonllne_ar o FL |s§en5|t|ve tc_) facet.orlentanon anq gap. . _
Sharma, 1998 ment: VB. DC. PC. FC. LG progressive Gap e Facet important in torsion and extension but not in flexion.
Rohlmann, 2006 segment. VB, D, Bl P Lo contact problem o Facets removal exposes high axial rotations of discs.
o Disc degeneration level effected the FL.
Nonlinear o Facets and discs shared equal 1oad on high compression.
3D nonlinear model of C4-C6 motion o Nonlinear o Facet articulations contribute stability in compression.
Teo, 2001b ) progressive . . ) - )
segment: VB, DC, PC, FC, LG. contact o Facet joints are important in resisting compression and
contact problem : ;
extension loading.
. . Nonlinear - .
Teo. 2004 3D nonlinear model of L2-L3 motion progressive Sliding surface o Facetectomy greater than 75% alter the translational
segments: VB, DC, PC, FC, LG. contact problem contact displacement and flexibilities of the motion segment.
. . e Facets remained unloaded in flexion loadings.
;ﬂm:g: ggggb 3D nonlinear model of L4-L5 motion pl:lc());rle Surface to e For other load directions, higher loading results higher FL.
’ segment: VB, DC, PC, FC, LG. surface contact e Maximum FL obtained when instantaneous centre of

contact problem

rotation at outside disc.

*VB: Vertebral body; DC: Intervertebral disc; PC: Processes; FC: Facet joints; LG: Ligaments; FL: Facet load; C: Compression; F: Flexion, E: Extension.

_ZV_
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1.6.4 Modelling of Other Synovial Joints

In the previous studies of synovial joints, it appears that the hip and knee joint
modelling have received more attention because of the assessment of total hip and
total knee replacement. Although recent FE models have been generated based on
subject-specific geometrical data, the cartilage in these models has only been
represented as a linear isotropic material or an incompressible neo-Hookean
hyperelastic materia (Mesfar and Shirazi-Adl, 2005, Anderson et al., 2007,
Anderson et al., 2008, Fitzpatrick et al., 2011). These models tend to assume the
cartilage to be a solid single-phased material which contradict the fluid-dominated
nature of the cartilage. It has been shown that the fluid phase is capable of
supporting more than 90% of the load thus resulting in low solid-to-solid contact
and hence a lower effective coefficient of friction (Slotz and Ateshian, 1998, Park et
al., 2003).

However, recently synovial joint modelling has been developed to incorporate
the biphasic material properties of the cartilage in the hip joint (Pawaskar et al.,
2011). The model was able to account for interstitial fluid pressurisation which
influenced on the contact mechanics of the articular cartilage within the joint.
Moreover, surface fluid flow boundary conditions based on a developed contact

dependent flow were implemented in order to make the models more redlistic.

1.6.5 Discussion

In order to simulate the facet joints, the material properties of the individual
components of synovia fluid, capsular ligament, articular processes and articular
cartilage, must be defined in the FE model. Since most of the facet joint components
have not been characterised, data from other synovia joints of the human body have
been adopted in the facet joint model (Teo et al., 2004, Schmidt et al., 2008). These
properties could lead to inaccuracy in the results produced from the model,
particularly for the important components of the joint such as the articular cartilage,
where it has been demonstrated in Table 1.4 and Table 1.5 that the properties of

articular cartilage vary across the synovia joints of the human body.
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The nature of articular cartilage is that it is dominated by the fluid content,
exhibiting 70-85% fluid while the remainder is solid. This results in the fluid
pressure having amajor role in the load distribution of the cartilage in the facet joint.
Although the cartilage constitutive formulations described in Section 1.5.3.1 have
incorporated the fluid phase, such as through the use of biphasic theories, and these
have been implemented in modelling other synovial joints, it appears that only linear
elastic elements have been used to represent the cartilage in the previous FE models
of the facet joints (Kumaresan et al., 1998, Natargjan et al., 2000).

The progressive contact problem (Sharma et al., 1995), which modelled the
contact between the cartilage layer in the facet joint by the changing of the contact
area, has been widely used in a previous FE model to simulate the motion of the
facet joint. However, this contact model was unable to capture the fluid flow in the
cartilage. Therefore, Pawaskar (2006) has developed a contact dependent flow
algorithm by employing the contact stress at the cartilage surface nodes to change
the fluid flow conditions on the cartilage surface. The contact model was then
applied to the hip joint to investigate the fluid load support in the cartilage
(Pawaskar, 2010). This algorithm has been shown to be more redlistic in cartilage
contact mechanics where it incorporates the biphasic formulation of the cartilage

which allowed the fluid in the cartilage to flow during the contact.

In most of the facet joint studies, the FE models were validated by comparison
to previous experimental results performed by other researchers (Sharma et al.,
1998, Teo et al., 2004, Schmidt et al., 2007b). The comparison among studies on
spina motion segments might not be accurate due to the difference of the specimen
geometry where the size and orientation of the articular facets may vary from
specimen to specimen as described in Section 1.4.2. Therefore, the use of specimen-
specific FE models, both in terms of morphology and bone quality, could increase
the accuracy of the FE model (Wilcox, 2006). The large number of modificationsin
the facet representation in FE models in recent years suggest that facet joint
modelling is not yet completely satisfactory.
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1.7 Animal Models

1.7.1 Introduction

In vitro models consisting of cadaveric spine specimens are useful in providing
basic understanding of the functioning of the spine. One problem is the difficulty in
obtaining fresh frozen human specimens, especialy from the younger population.
Another problem with the use of human specimens is the large variation in geometry
and mechanica properties due to differences in age, sex, bone quality, and disc
degenerative changes. These disadvantages of using human specimens have

prompted the use of alternative animal models.

Anima models, such as porcine, bovine and ovine, have been commonly used
for in vivo and in vitro spinal research (Allan et al., 1990, Eggli et al., 1992, Gurwitz
et al., 1993, Ahigren et al., 1994). Such animal specimens are more readily available
and have more uniform geometrica and mechanical properties. To mimic the
clinical situation, an appropriate animal should have as similar spina characteristics
to those in humans as possible.

1.7.2 Skeletal Maturity

Skeletal maturity is a measure of development incorporating the size, shape
and degree of mineralisation of bone to define its proximity to full maturity. Skeletal
maturity could become an important factor for the animal model if studies of the
morphology and the synovial joints are to be carried out. This is because the growth
plate, which is normally found at the end of the long bones including the vertebral
body, will stop growing and form a new bone when the maturity age is reached.
Table 1.9 shows the age of the skeletal maturity of the animal models that are often
used in the spine research (Reinwald and Burr, 2008).

Table 1.9. Comparisons of skeletal maturity for animal models (Reinwald and Burr, 2008).

Criteria Human Bovine Canine Porcine Hircine Ovine

Skeletal maturity (yr) 18-25 2-4 1.3 >2.5 2-3 3
Life span (yr) ~70-80 - 10-12 10-15 10-15 10-15
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1.7.3 Anatomy

Anatomical studies have been carried out to anayse the differences and
similarities of the vertebrae between human and animal spines, so as to gauge the
extent to which anima models resemble the human spine. Typically anatomical
parameters of the vertebrae have consisted of the dimensions of vertebral body,

spina canal and pedicle, as shown in Figure 1.23.

Vertebral body width upper
Vertebral body width lower
Spinal canal depth

Spinal canal width

Pedicle width

Vertebral body depth
Vertebral body width
Vertebral body depth upper
Vertebral body height anterior
Vertebral body height posterior
Pedicle height

Vertebral body depth lower

rXce—-—IOmMmmMOO®>

Figure 1.23. Typical anatomical parametersof vertebra. Adapted from Sheng et al. (2010).

In previous studies, various animal studies have been carried out to determine
the anatomical data of the vertebrae. Table 1.10 shows the average of dimensional
difference percentage comparisons between the animal and human vertebrae, while
Table 1.11 shows the dimension trends compared to human vertebrae. Only the
bovine (Cotterill et al., 1986), porcine (Dath et al., 2007) and ovine (Wilke et al.,
1997b) were included in these tables since these animals are the most often used in
spinal research.
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Table 1.10. Average dimensional difference percentage to the human vertebrae (Sheng et al.,

2010).
Vertebral Body (%) Spinal Canal (%) Pedicle (%)

Cervical

Ovine 85-320 57-74 200-500

Porcine - - -

Bovine - - -
Thoracic

Ovine 61-190 45-79 146-164

Porcine 50-121 57-83 93-128

Bovine - - -
Lumbar

Ovine 57-181 44-50 57-250

Porcine 50-159 61-76 66-157

Bovine 61-135 76-95 83-121

Table 1.11. Dimension trend compar ed to the human vertebrae (Sheng et al., 2010).

Vertebral Body Spinal Canal Pedicle
width depth height width depth width height
Cervical
Ovine Opposite  Opposite  Opposite | Similar Similar Similar  Opposite
Porcine - - - - - - -
Bovine - - - - - - -
Thoracic
Ovine Similar  Opposite ~ Similar Similar  Opposite | Similar Similar
Porcine Similar Similar Similar Similar  Opposite | Similar Similar
Bovine - - - - - - -
Lumbar
Ovine Similar Similar Similar Similar Similar Similar  Opposite
Porcine Similar Similar Similar Similar Similar | Opposite  Similar
Bovine - - - - - - -

Distinct anatomical differences of the vertebra dimensions were found between
the human and animal spines as tabulated Table 1.10. Based on such variation of
these animal models, it is difficult to interpret which species is the most suitable to
be used to represent the human spine. However, similar trends in terms of the
vertebra dimensions were found at certain spine regions, as shown in Table 1.11.
Although it may not be definite in which animal model is the most appropriate from
the anatomical data, the dimensiona trend could be an important criteria for the
selection.
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1.7.4 Range of motion

Range of motion (ROM) studies have been carried out to examine the
biomechanical behaviour of the vertebral segments in flexion, extension, axid
rotation and lateral bending directions. The ROM was defined as the angular
deformation at the maximum load needed to flex, bend and rotate the specimen
(Wilke et al., 1996). In the animal studies, skeletally immature bovine (Wilke et al.,
1996) and mature ovine (Wilke et al., 1997a) spines were used to compare the ROM
with the human spine. Although differences were found at certain vertebral
segments, generally similar ROM were observed in al directions compared to
human spine. Based on these studies, these species were suggested as appropriate
animals for in vitro biomechanical models of the human spine.

In addition, the ROM for skeletally immature porcine spines were also
investigated (Busscher et al., 2010). It was reported that the segments were more
flexible and a larger ROM was found compared to the human spine. The use of the
immature pig, aged between five to six months old, could possibly be the reason for
the differences in the flexibility. But the choice of age is limited by the availability
of the tissue, and older porcine specimens are less frequently available. However,
the ROM may not be the only criteria, as other selection choices for the animal
model may have to take into consideration and this will depend on the interest of the
study.

1.7.5 Discussion

Basic spine research and preclinical testing of new surgical methods often
involve animal experiments because most tests cannot be carried out on humans or
the availability of human specimens is limited. The spines from animal species such
as pig, cow and sheep have often been used for in vivo and in vitro experimental
studies. Although there have been concerns about the horizontal position of the
guadruped spine, theoretical considerations show that the spine of the quadruped

animal is mainly loaded along its long axis, similar to the human spine (Smit, 2002).

The selection of the anima model depends mainly on the application and the
research area, where the differences in the skeletal maturity, anatomy and ROM
between the species need to be considered. In addition, several factors such as
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availability, costs, breeding and growth should be taken into account. For instance,
for the in vitro experimental studies where skeletal mature animal model is required,
the ovine spine could be chosen since there is limited availability of mature porcine
and bovine spines. Therefore in order to select an animal model for spine research,
all the selection criteria have to be considered in which the research interest will be

the main priority.

1.8 Overall Summary

The high prevalence of low back pain results in high healthcare costs and also
in working hours lost. The facet joints are well known to be a source of low back
pain due to the influence of high mobility and large forces which can cause

significant degenerative changes.

From the previous studies, limited facet cartilage data has been found to
characterise the cartilage biphasic properties of the facet joint. This has led to the
inaccurate application on the cartilage properties of the facet joint in the FE models.
Furthermore, the cartilage was seen to be represented as a single-phased material,
which contradicts the nature of the fluid-dominated behaviour. Therefore, the
implementation of the biphasic properties for the cartilage in the facet joint is
needed in order to simulate the facet joint in a more realistic manner.

In the spinal research, animal models have been used in in vivo and in vitro
experimental studies since more uniform geometry and material properties
conditions could be obtained compared to human cadaveric spine specimens.
Although anatomical and range of motion studies of the animal models have been
carried out, the suitability of the anima models to represent the human spine

specifically for facet joint studies has yet to be investigated.
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1.9 Aimsand Objectives

1.9.1 Aims

The overal am of this study is to characterise the anatomical and
biomechanical behaviour of the spinal facet joints and evaluate the use of an ovine

facet joint model as a representation of the human facet joint.

1.9.2 Objectives
The specific objectives of this study were:

e To develop a methodology to characterise the facet articular radius using an
imaging method to evaluate ovine and human specimens.

e Toinvestigate alternative storage methods for facet joint cartilage specimens.

e To perform compression tests using an indenter on ovine articular cartilage
from the facet joint to determine the biomechanical behaviour.

e To determine the biomechanical properties of the cartilage using finite
element models incorporating the linear biphasic formulation.

e To investigate the effect of the FE model sophistication, from idealised
axisymmetric to specimen-specific on the derived cartilage properties.

e To examine the effects of the subchondral bone architecture on the derived
cartilage properties.

e To apply the methods developed to human facet cartilage and determine the
most appropriate methodology for future studies.
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Chapter 2: Methods — Morphological Study of the Facet Joint

2.1 Introduction

This chapter will describe the materials, equipment and experimenta
methodologies employed to study the morphology of the facet joint. The first two
sections describe the method used to prepare the specimens and the imaging
methods to scan the specimens. This is followed by the facet joint morphological
measurement methods including a new improved method to measure facet articular
radius and facet orientation angle, which are based on the scan images. The final

section outlines the statistical analysis used in this study.

2.2 Specimen Preparation of Ovine Vertebral Segment

All the vertebral segments were acquired from the spines of three female Texel
sheep (n=3) aged between four and five years and weighing between 25 kg and 31
kg. A surgical scalpel was used to dissect the spines into two-vertebra segments
from the lumbar region (L1L2, L3L4, L5L6), thoracic region (T2T3, T4T5, T6T7,
T8T9, T10T11, T12T13) and cervica region (C2C3, C4C5, C6C7). During the
dissection process, excessive connective tissues were removed whilst the facet joints
between the vertebrae were preserved, including the surrounding tissues. Following
preparation, the vertebral segments were stored at -20°C within two weeks prior to
scanning (Section 2.3). Examples of the vertebral segments from each region are

shown in Figure 2.1.
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Figure2.1. Ovine two-vertebra segments at different spinal regions.

2.3 Micro Computed Tomography Imaging

Micro computed tomography (UCT) is amedical imaging method that uses x-
ray imaging and computed tomography to produce three-dimensiona (3D) images
of very high resolution. In this study, a specimen uCT system was employed
(nCT80 Scanco Medical AG, Zurich, Switzerland) with a maximum resolution of 20
pum. The system operates by rotating the specimen between an x-ray source and
sensor to capture a series of projection images which are then reconstructed to form
a 3D image of the specimen. In this study, the scan data was subsequently converted
to a series of two-dimensiona dlices through the specimen and saved in .tiff file

format for the purposes of measurement and model devel opment.

The uCT imaging technique was performed with the objective to study the
morphology of the spinal facet joints. The following section will describe the scan
specification and the set-up applied in this study.

2.3.1 Scan Set-up for Ovine Vertebral Segment

Ovine segments were prepared as described in Section 2.2 and imaging was
performed at 70 kV pulse voltage, 114 pA current, and 300 ms integration time with
a resolution of either 60 um or 74 um. The vertebral segments were placed in a
vertical position during the scanning, with the upper endplate plane parallel to the

transverse scan plane so as to obtain transverse cross-sectional image dlices, as
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shown in Figure 2.2. This aso aligned the longitudinal axis of the vertebral segment
with the vertical axis of the uCT specimen container. The orientation of the
specimen in the specimen container was considered important for obtaining
consistency in the images produced. Therefore, the orientation was made such that
the spinous process of the vertebra was parallel to the walls of the x-ray tube, which
vertically orientated the spinous process in the image. In order to ensure the position
and orientation of the vertebral segment were maintained during the scanning
process, dry foam (household sponge) was wrapped around the vertebral body and

Spinous process to avoid any movement.

Covered with plastic

Vertebral segment

MCT specimen

container Dry foam

Figure 2.2. Schematic diagram of scan setup for the ovine vertebral segment.

2.3.2 Scan Set-up for Human Vertebra

The human vertebra scan data was obtained by Dr. S. Rehman (iMBE,
University of Leeds). The specimens were acquired from the Medica School,
University of Leeds and were aged between 81 and 102 years old. The vertebrae
were from the lumbar region at the vertebral level of L1 (n=2), L2 (n=1), L3 (n=3)
and L4 (n=1).

The vertebrae were scanned at 70 kV pulse voltage, 114 uA current, and
300 ms integration time with the resolution of 74 um. Since the human vertebrae
were larger than the ovine, the specimens were oriented such that the upper endplate
plane was perpendicular to the transverse scan plane and parallel to the wall of x-ray
tube, as shown in Figure 2.3. In some cases, either the transverse or spinous
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processes were trimmed, without disruption of the facet articular region, to

accommodate the vertebra within the uCT specimen container.

Covered with plastic

«—— UCT specimen
container

Vertebra Dry foam

Figure 2.3. Schematic diagram of scan setup for the human vertebra.

2.4 Morphological M easurement

In this study, the morphological measurements were based on uCT images
with the objective to characterise the vertebral dimensions, the facet articular radius,
and the facet orientation angle. The scan data was converted to .tiff file format in
order to analyse and eval uate the images.

2.4.1 Vertebral Dimensions

The measurements of the vertebral dimensions were made at the superior level
of the vertebra body so as to obtain the maximum width (W) and depth (D). Two
extreme points of measurement were manually selected from the scan images using
image visualisation and measurement software (MATLAB V7.8.0 R2009a,
MathWorks Inc, MA, USA) to obtain the coordinates, as shown in Figure 2.4. The
distance between the two points was then converted to the actual distance using the

scan resolution pixel size.
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Figure 2.4. M easurements of vertebral body width (W) and depth (D).

2.4.2 Facet Joint Articular Radius

Both the superior and inferior facet articular radii were quantified using a
custom-written algorithm (MATLAB V7.8.0 R2009a, MathWorks Inc, MA, USA).
The transverse scan images were selected around the facet joint at every 0.6 mm to
establish the average radius. In order to segment the contour rapidly, the image was
sectioned into either left or right facet joints. The facet articular contour was
accordingly segmented using an active contour segmentation method (Chan and
Vese, 2001). Then, both the superior and inferior articular edges were detected using
the Canny method available in the software, which is considered to be the most
effective edge detector (Gonzalez et al., 2004). Subsequently, two boundaries were
created at the superior and inferior facet articular curvatures to extract the points
along the curvatures. A circle was then fitted to each set of points using the least-
squares method, in order to determine the radius for the superior and inferior facet
articular regions. Figure 2.5 shows the process followed in the program to determine
theradius.
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a. b. C.

Estimated superior radius = 3.421 mm
Estimated inferior radius = 3.125 mm

d. e

Figure2.5. MatL ab program stepsto deter mine facet articular radii a. The uCT image dlice,
b. The selection of the facet region, c. The contour segmentation, d. The edge detection,
e. Theboundary trace and circlesfit.

2.4.3 Facet Joint Orientation Angle

The transverse facet orientation angle was measured according to the work
carried out by Masharawi et al. (2004) to enable comparison with previous data. The
transverse scan images were selected around the facet joint at every 0.6 mm so as to
obtain the average facet angle. From the scan image, two lines were created: one
was constructed through the spinous process and midpoint of the vertebral body,
whilst the other was created through two extremities points of the facet joint, as
adopted from the Masharawi et al. (2004) study. The angle between these two lines

determined the transverse facet angle, as shown in Figure 2.6.
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Figure 2.6. Facet orientation angle measurement.

2.5 Statistical Analysis

For the quantitative experimental data, mean and standard deviations were
calculated and displayed as mean + standard deviation (SD) unless stated otherwise.
The following statistical methods were used in this study.

Student t-test

The facet articular radius and facet joint angle were statistically evaluated
using the Student t-test (p<0.05) in order to evaluate the statistical significance
between the left and right facet joint measurements. If no significant difference was
found, the left and right measurements were averaged together to obtain the mean
and standard deviation for both facet articular radius and facet angle. All the tests
were performed using Microsoft Excel 2007.

Linear Regression Analysis

Linear regression analyses (p<0.05) were performed to observe linear
correlations between the facet orientation angle and facet articular radius, between
the facet orientation angle and axial rotation, and between the facet articular radius
and axial rotation. A graph and coefficient of determination (R?) value are presented

for al regression analyses using Microsoft Excel 2007.
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2.6 Summary

This chapter outlined the methodology used to characterise the morphology of
the facet joint. A new methodology, which was improved from the method used
previously, was developed to acquire comprehensive data of the vertebral body
dimensions, facet joint angle, and facet articular radius. The measurements were
carried out using image visualisation and measurement software (MATLAB V7.8.0
R2009a, MathWorks Inc, MA, USA) based on the pCT scan images. The

methodology was for both ovine and human specimens.
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Chapter 3: Methods — Characterisation of Facet Cartilage

Biomechanical Properties

3.1 Introduction

This chapter will describe the materials, equipment, experimental
methodologies and computational methodologies employed to characterise the
biomechanical properties of the facet cartilage. The first two sections describe the
methods used to prepare the specimens and the imaging methods to scan the
specimens. In order to characterise the facet cartilage biomechanical properties, both
experimental and computational methods were employed. Therefore, detailed
descriptions of the creep compression test using an indenter and finite element
models are presented including a novel specimen-specific modelling method. The
final section outlines the statistical analysis used in this study.

3.2 Material and Specimen Preparation

3.2.1 Phosphate Buffered Saline

Throughout this study, phosphate buffered saline (PBS) was used for irrigation
purposes during the dissection procedures and also to equilibrate the cartilage during
the compression tests. It was prepared using a PBS tablet (MP Biomedicals, Solon,
USA) dissolved in sterile distilled water at the ratio of one tablet to 100 ml, as
recommended by the manufacturer (www.mpbio.com). The PBS tablets were

composed of inorganic salts, as shown in Table 3.1.



- 60 -

Table 3.1. Formulation of the PBS tablets used in this study.

Concentration  Molecular Weight  Molarity
Component

(mg/L) (Da) (mM)
Potassium Chloride (KCI) 200.0 74.55 2.68
Potassium Phosphate Monobasic (KH,POy) 200.0 136.09 1.47
Sodium Chloride (NaCl) 8000.0 58.44 136.89
Sodium Phosphate Dibasic (Na,HPO,) 1150.0 141.96 8.10

3.2.2 Ovine Facet Cartilage Pin

The connective tissue surrounding the facet joints was first removed with a
surgical scalpel in order to expose the facet joint and make the joint easy to separate.
As the joint was separated, the facet cartilage surfaces were irrigated with PBS in
order to wash away any synovial fluid and to further avoid any potential dehydration
of the cartilage. The cartilage surface was then visually inspected for any obvious
signs of damage, disease or scalpel cuts, and promptly rejected in the case of any

such discoveries.

The cartilage pin specimens were plugged using hand-held tools and an
electric drill, as shown in Figure 3.1. The 4 mm diameter cylindrical pin specimens
were only plugged from facet joints of the cervical spine because the cartilage
surfaces here possessed a sufficient area and flathess compared with the other
regions. Throughout the extraction process, the whole of the joint surfaces were kept
hydrated with regular PBS washes.

a. C.

Figure 3.1. a. The hand drill on facet surface used to extract the specimen, b. Tools used to plug
out the pin specimen, c. The cartilage pin specimen.
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The cartilage pin specimens were prepared in three different conditions with
the intention of examining the storage effects on the cartilage biomechanical
properties. Firstly (fresh, n=10), the specimens were extracted from fresh joints and
either tested following the extraction, or otherwise stored at 2°C in moist conditions
and tested within 24 hours. A schematic diagram that illustrates the storage method
to maintain cartilage specimens in moist conditions is shown Figure 3.2. Secondly
(frozen joint, n=5), the intact facet joints were subjected to a freeze-thaw cycle, and
the cartilage pins were subsequently extracted from the joint. Thirdly (frozen pin,
n=4), the cartilage pin specimens were extracted from fresh facet joints and then
subjected to a freeze-thaw cycle. Notably, all the frozen joint and frozen pin
specimens were frozen at -20 °C within two weeks and equilibrated in PBS for 60
minutes prior to testing.

ﬁ

Sealed container ——»

. . < Cartilage
Cartilage pin PR
ﬁk o Subchondral bone
Cotton wool soaked with PBS oS

Figure 3.2. Schematic diagram of the cartilage specimen storagein a moist environment.

3.3 Micro Computed Tomography Imaging for Facet Cartilage Pin

The uCT imaging technique described in Section 2.3 was performed on the
cartilage pin specimens to measure the cartilage thickness and to further provide
geometrical data for the development of the three-dimensional computational model
of the cartilage pin. The specimens were prepared as described in Section 3.2.2 and
the scan was performed at 70 kV pulse voltage, 114 pA current, and 300 ms
integration time with a resolution of 20 um. The cartilage pin was positioned
vertically in the uCT specimen container, as shown in Figure 3.3. Dry foam was
used to wrap around the subchondral bone so as to hold the cartilage pin in place and
thereby avoid any movement during the scanning process. The cartilage had to be

exposed in order to produce a clear image of the tissue. Furthermore, the contact
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between the cartilage and the foam had to be avoided to prevent the fluid from
seeping through the foam and consequently affecting the cartilage image produced.
PBS-soaked cotton wool was placed at the bottom of the uCT specimen container
and the top of the tube was covered in order to maintain moisture and avoid any

possibility of cartilage dehydration during the scanning process.

Covered with plastic

Cartilage
Subchondral bone

Cartilage pin

MCT specimen——»
container

Dry foam

e PBS-soaked cotton wool

Figure 3.3. Schematic diagram of scan setup for the cartilage pin.

3.4 Compression Test Procedure

3.4.1 Apparatus

The apparatus used to perform compression test and thickness measurements
of facet joint articular cartilage is shown in Figure 3.4. The equipment comprised of
a shaft attached to a force transducer with a 2 mm diameter spherical indenter at its
lower end. The overal weight of the shaft assembly was 0.24 N. The movement of
the shaft was monitored by linear variable differential transformer (LVDT) mounted
at the top of the shaft. At the same time, the force was detected via a piezoelectric
force transducer fitted above the indenter. The data from the LVDT and force
transducer were accordingly transferred through an analogue-to-digital converter
and stored in a computer using data acquisition software (LabVIEW 8.0, National
Instruments Corporation, Austin, TX, USA).

In order to avoid any movement during the testing process, the cartilage pin
was press-fitted in a specimen holder. The holder was then fitted in a fix-based
fixture containing a PBS solution to hydrate the cartilage during the test.
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a. d.
Figure 3.4. Apparatusfor compression test a. Compression test rig, b. Cartilage pin specimen
fitted in the specimen holder, c. 2mm diameter of the spherical indenter, d. Close view on
theindented specimen.

3.4.2 Calibration Procedure

Cdibration of the LVDT and force transducer was conducted prior to
performing the compression tests, and at intervals during the testing programme.
This was undertaken to obtain the calibration factor for the displacement and the
load. The calibration factors were used to convert from the voltage data to the actual
distance and load produced from the LVDT and force transducer during the test.

The displacement LVDT was calibrated using standard stainless stedl step
height gauges. The changes in the output voltage from the LVDT were recorded
during the addition or removal of the step height gauges whilst maintaining the
weight during the process. The data was plotted in a linear regression fit of the
voltage against the displacement which produced the linear line equation as a
calibration factor, shown in Figure 3.5a.

In order to calibrate the force transducer, the displacement of the indenter
was held constant and the load increased gradually by addition of dead weights. The
voltage data was recorded, and a linear regression fit graph plotted between the
voltage and the load so as to obtain the calibration factor, as shown in Figure 3.5b.
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This process was repeated three times to gather average values and also to evaluate

the repeatability of the measurement.
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Figure 3.5. Graphsrepresent the mean (+ SD) of the measurementstaken in the compression
apparatus calibration. a. Displacement calibration, b. Load calibration.

3.5 Creep Compression Test

Creep compression tests using an indenter were performed to provide
experiment data to characterise the biphasic properties of the cartilage. The tests
were carried out using a 2 mm diameter spherical indenter subjected to 0.24 N
compression force. In addition, a 6.3 mm diameter indenter were also utilised on
fresh cartilage specimen (n=6) to investigate the effects of the indenter size on the
derived cartilage biphasic properties. Throughout the test, the cartilage pin was
submerged in the PBS solution to prevent the cartilage from becoming dehydrated.

The indenter was set as close as possible to the cartilage surface; this was
confirmed by observing the load indicator and establishing whether the indenter has
made any contact with the cartilage surface. The indenter was then released and the
displacement and force readings were recorded continuously at a sampling
frequency of 0.01s for 50 minutes, by which time the displacement had reached
equilibrium. There was significant noise in the deformation readings so the data
were evaluated using a dtatistical software package (Origin 8, OriginLab
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Corporation, MA, USA), in order to fit a curve of best fit to the experiment data
(Figure 3.6) using the exponential function [2],

y =y, + Ale—(X—xo)/f1 + Aze—(X—xo)/tz

where yp is offset, %o is centre, A; and A, are amplitudes, and t; and t, are decay
constants.
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Figure 3.6. Experiment data curve-fit using Origin 8 software.

3.5.1 Compression Test Repeatability

The experiment repeatability test was carried out using five fresh cartilage pin
specimens (n=5) with the purpose of investigating the repeatability of the
compression test on the same specimen. Three tests were performed on each
specimen, all with the same contact indentation point. Between each test, the

specimens were permitted to equilibrate in PBS solution for one hour.

3.5.2 Compression Test of Subchondral Bone

Creep compression tests using an indenter on the subchondral bone were

performed on six ovine fresh cartilage pin specimens (n=6) to observe any
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deformation of the underlying bone. For this purpose, the cartilage was removed

from the pin specimens using a surgical scalpel.

3.6 Cartilage Thickness M easur ement

The cartilage thickness was evaluated using the compression test method and
accordingly verified using the uCT imaging method. This section will describe both
methods in detail.

3.6.1 Compression Test

The cartilage thickness was measured using a needle indenter, which was
subjected to various compression forces with the objective to identify the most
suitable for penetration of the cartilage but not the subchondra bone. The
displacement and load readings were recorded at the frequency of 0.001s so as to
establish more accurately the contact load. The thickness of the cartilage was
obtained by determining the difference between the position of the needle when it
contacted the cartilage surface and when it contacted the subchondral bone, as
shown in the experiment graph in Figure 3.7. Penetration was terminated when a
significant increase in the measured force was witnessed, thereby indicating that the

needle was in contact with the subchondral bone.
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Figure 3.7. Compression test result to deter mine cartilage thickness.
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3.6.2 Micro computed tomography

Only the middle slice image produced from the uCT scan was selected owing
to the fact that the cartilage pin was indented at the centre in the compression test
method. The cartilage thickness was evauated using image measurement software
(MATLAB V7.8.0 R2009a, MathWorks Inc., MA, USA) in order to contrast the
scan image between the specimen and background. Two points were selected at the
edges of the cartilage and the thickness was calculated based on the distance
between these points. The measurements were carried out at the centre of the pin
and four other points within a 0.2 mm interval in order to obtain the average
thickness, asillustrated in Figure 3.8b.

a.

Figure 3.8. a. Image from uCT scan, b. Cartilage thickness measur ement after image
processing.

3.7 Computational Methods

Computational models were developed in order to simulate the creep-
deformation phenomenon performed in the compression test experiment. All the
finite element models were processed using Abagus 6.9-1 (DS Simulia Corp.,
Providence, RI, USA). An idealised axisymmetric biphasic poroelastic model was
used to characterise the cartilage biphasic properties of permeability (x) and elastic
modulus (E) for the cartilage pin specimens. Subsequently, a three-dimensional
idealised model was constructed in order to develop the methodology which was
then followed with the generation of a three-dimensional specimen-specific model.
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The specimen-specific model was utilised in order to investigate the effects of the
cartilage surface geometry and the underlying bone structure on the derived cartilage

properties compared to the idealised model.

3.7.1 Idealised Axisymmetric Model

3.7.1.1 Implementation of Contact Dependent Flow

A contact dependent flow agorithm developed by Pawaskar (2006) was
implemented to account for the change in the flow conditions between the free
surface and the region where the indenter was in contact with the cartilage. It could
also be applied in a three-dimensional model (Pawaskar, 2010). In this algorithm,
the contact stresses at the cartilage surface nodes were recorded and evaluated. For
the stress which was above the set threshold (0.0 MPa), indicating contact with the
indenter, a sealed (no-flow) condition was applied at the node, otherwise a free flow
condition was applied. The effectiveness of the algorithm can be observed in Figure
3.9 where the fluid flow in the contact nodes were completely stopped as

impermeable indenter was used.
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Figure 3.9. Direction of fluid velocity vector at a. 2 seconds, b. 1000 seconds.
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3.7.1.2 Model Development: Repeat of Previous Study

As a first step, the model which was established by Pawaskar (2006) was
reconstructed in order to validate the implementation of the contact-dependent flow
detection algorithm. The compression test was simulated using an axiSsymmetric
model with a 3 mm thickness and 20 mm radius of cartilage and a rigid spherical
indenter of 5 mm radius, as shown in Figure 3.10. The cartilage consisted of 3200
(200x16) four-node bilinear displacement and pore pressure, reduced integration

with hourglass control (CAX4RP) elements.

No fluid flow

5mm

Free draining flow

Contact dependent flow

20 mm

Figure 3.10. FE model for contact dependent flow implementation using an axisymmetric
model with the axis of symmetry on theleft (Pawaskar, 2006).

Boundary and interface conditions were applied on the cartilage and
indenter, according to Pawaskar (Pawaskar, 2006, Pawaskar et al., 2010). The
bottom nodes of the cartilage were constrained in both horizontal and vertical
directions, whilst the nodes on the axis were constrained in the horizontal direction.
The spherica indenter was only permitted to move in a vertical direction, as the
horizontal direction and rotational movements were constrained. For the cartilage
fluid flow, asillustrated in Figure 3.10, the bottom and vertical symmetry axis of the
cartilage surfaces were prevented from permitting fluid to flow whilst the outer edge
nodes of the cartilage were maintained at zero pore pressure so as to alow
unrestricted fluid flow as demonstrated in Figure 3.9. For the cartilage surface which
was in contact with the indenter, the contact dependent flow a gorithm was imposed.

Table 3.2 shows the cartilage properties applied in the previous study.
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Table 3.2: Cartilage material propertiesfor FE validation model (Pawaskar, 2006).

Parameter Value
Y oung's modulus, E 0.54 MPa
Poisson’sratio, v 0.08
Permeability, x 4.0x 10™ m'/Ns
Voidratio, e 4.0 (80% interdtitial fluid)

For comparison purposes, both stress-relaxation and creep-deformation were
simulated (Pawaskar, 2006). The stress-relaxation was simulated by applying 10%
deformation over a ramp time of two seconds, and then the indenter position was
maintained for a further 1,000 seconds. The creep-deformation simulation was then
performed by applying a ramp load of 0.9 N on the indenter for two seconds with
the load maintained for a further 1,000 seconds. In addition, the NLGEOM
parameter was included so as to take account of the geometric nonlinearity which
occurred within the model, as it affected the contact and pore pressure distributions

at the cartilage surface after two seconds of ramp deformation.

3.7.1.3 Model Development: Simulation of Experimental Compression Tests

An axisymmetric biphasic poroelastic finite element model was generated to
simulate the compression test experiment on the facet cartilage pin. The cartilage pin
was modelled individually according to the measured cartilage thickness, whilst the
bone was modelled at a constant 1.5 mm height. Four-node CAX4RP elements were
selected to model the cartilage, because it has been shown that there were no marked
differences of the contact pressure and pore pressure within the contact region as
compared with an eight-node element (CAX8RP), whilst four-node bilinear elastic
elements (CAX4) were used to represent the underlying bone (Pawaskar et al.,
2010). The 1 mm radius rigid spherical indenter was modelled as an analytical rigid
body. A diagram of the finite element mesh for the cartilage and subchondral boneis

shown in Figure 3.11.
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Figure 3.11. Axisymmetric FE modé of cartilage pin.

Boundary and interface conditions were applied on the cartilage and
indenter, to imitate the experimental creep compression test set-up. The bottom
nodes of the bone were constrained in both horizontal and vertical directions, whilst
the nodes on the axis were constrained in the horizontal direction. The spherical
indenter was only permitted to move in the vertical direction, as the horizontal
direction and rotational movements were constrained. For the cartilage fluid flow, as
illustrated in Figure 3.11, flow was prevented at the bottom and vertica symmetry
axis of the cartilage surfaces whilst the outer edge nodes of the cartilage were
maintained at zero pore pressure so as to allow unrestricted fluid flow. For the upper
cartilage surface, the contact dependent flow algorithm was imposed where the flow

conditions at the nodes were changed depending on the contact stress.

In order to simulate the creep-deformation phenomenon, a ramp load from O
to 0.24 N, matching the experiment, was applied on the indenter for two seconds,
and the load was then maintained at 0.24 N for a further 3,000 seconds. The two
seconds ramp period was based on an experimental study, which found that the
minimum time at which creep compression test of the cartilage could be compared
reliably was two seconds after the application of the load (Kempson et al., 1971).
The two-second ramp load was also used in previous computational studies (Warner
et al., 2001, Pawaskar et al., 2010). Although the automatic time increments were
applied in the model, the increments were controlled using the UTOL parameter,
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which specified the allowed maximum pore pressure change in one increment at a
typically small value of 600 kPa so as to produce acceptable results (Goldsmith et
al., 1995, Warner et al., 2001, Pawaskar, 2006).

3.7.1.4 Mesh Sensitivity Analysis

Mesh sensitivity analysis was carried out in order to obtain an optimised model
for the cartilage. The FE model, as described in Section 3.7.1.3, was implemented
using the cartilage properties shown in Table 3.2 to simulate the creep-deformation
phenomenon. The elastic modulus and Poisson’s ratio of the underlying bone were
taken as 2 GPa and 0.20 respectively (Pawaskar et al., 2010).

The mesh density of the cartilage was uniformly generated, which consisted
of 160 (40x4 in the horizontal and vertical directions respectively), 360 (60x6), 640
(80%x8) and 1440 (120x12) elements. In addition, a concentrated mesh density at the
contact area consisting of 300 elements, as shown in Figure 3.12b, was also

generated for comparison.

a. b.

Figure 3.12. Examples of finite element mesh for mesh sensitivity analysis. a. Uniform mesh 640
elements (80x8), b. Concentrated mesh at contact area 300 elements.

3.7.2 Idealised Three-Dimensional M odél

An idedlised three-dimensional (3D) model was developed to provide a
framework for the generation of specimen-specific models. The geometry, boundary
and interface conditions from the axisymmetric model, as described in Section
3.7.1.3, were implemented for the purpose of validation. However, an additional
step was introduced in order to initiate the contact between the indenter and cartilage
surfaces. The cartilage was represented using eight-node trilinear displacement and
pore pressure, reduced integration elements (C3D8RP) and for the bone, eight-node
linear brick elements (C3D8) were applied (Pawaskar et al., 2010). The concentrated
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mesh density around the contact area, as in the axisymmetric model as shown in
Figure 3.13, was implemented using the material properties derived from the
axisymmetric model.

L]

Figure 3.13. Idealised three-dimensional FE model.

The results obtained from this model were compared with the axisymmetric
model for verification. The results between the axisymmetric and three-dimensional
models were found to be very similar in terms of the cartilage displacement and
contact pressure shown in Figure 3.14. Therefore, this protocol was deemed
applicable to be implemented in the specimen-specific model devel opment.
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Figure 3.14. Comparisons of theresults produced from theidealised axisymmetric and 3D
models
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3.7.3 Specimen-Specific M odel

3.7.3.1 Model development

The specimen-specific model was developed using the 3D geometrical data of
the cartilage pin obtained from the uCT scan. The data, with a resolution of 20 pm,
was converted into a series of .tiff format images, which were subsequently
segmented using ScanlP v3.2 (Smpleware Ltd, Exeter, UK) software. In the
segmentation process, the images were first filtered to reduce the noise effects on the
image. Two masks were then created to define the shapes of the cartilage and
underlying bone. The masks were generated using global threshold operation which
was applied to al the images where the cartilage and the bone were differentiated
based on the specified range of the image voxel. A flood-fill operation was used to
separate the main object from the mask generated from surrounding noise and more
importantly to ensure the connectivity of the main object. Subsequently, the 3D solid

model was generated from the final masks as shown in Figure 3.15b.

a. b. C.
Figure 3.15. Development of three-dimensional specimen-specific FE model. a. uCT scan image,
b. 3D solid model, c. FE mode!.

The solid model was then meshed into finite el ements, where the cartilage was
meshed using IA-FEMesh 1.0 software (University of lowa, 1A, USA) to generate
hexahedral mesh whilst the bone was meshed using ScanFE v3.1.4 (Simpleware Ltd,
Exeter, UK) software to generate a mixed mesh of hexahedra and tetrahedral
elements as shown in Figure 3.15c. Eight-node trilinear displacement and pore
pressure, reduced integration elements (C3D8RP) were used in the cartilage mesh

whereas both eight-node linear brick elements (C3D8) and four-node linear
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tetrahedral elements (C3D4) were used in the bone mesh. The bottom surface of the
cartilage was tied to the top surface of the bone to prevent any relative movement

between the two during the simulation.

However, owing to the curvature at the edge of the cartilage, the hexahedral
mesh generated was not smooth, and produced distorted elements. This subsequently
affected the convergence of the solution. Therefore, a cuboid specimen-specific
model representing the central region of the specimen was developed in order to
eliminate the effect at the cartilage curvature, as described in the next section.

3.7.3.2 Cuboid Specimen-Specific Model

Similar segmentation and meshing protocols used to generate the specimen-
specific model described in Section 3.7.3.1 was implemented in the development of
cuboid specimen-specific model. In addition, a square region of interest (Figure
3.16a) for both the cartilage and underlying bone was created throughout the images
using unpaint operation tool in ScanlP v3.2 (Simpleware Ltd, Exeter, UK) software.
This was then followed by generating the 3D solid model and meshing the model as
described in Section 3.7.3.1 and shown in Figure 3.16b.

a.

Figure 3.16. a. Image segmentation into squar e shape, b. Cuboid specimen-specific FE model.

3.7.3.3 Cartilage Width Sensitivity Analysis

A cartilage width sengitivity analysis was performed to investigate the
consequences of reducing the dimensions of the cuboid model. Since the
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computational time to run the cuboid model was high, the sensitivity study was
performed using an axisymmetric model to simulate the creep-deformation
phenomenon, and the cartilage width from the symmetry axis to the edge was varied
from 2 mm to 1 mm. The minimum cartilage width of 1 mm was determined by the
lowest distance from the contact centre point to the edge in the cuboid specimen-
specific model, which was 1.06 mm, as shown in Figure 3.17. The results from the
axisymmetric model for 1 mm cartilage width were then compared with the cuboid
three-dimensional idealised model using the same dimensions, which was devel oped

to observe the effect in three-dimensional modd!.

Figure 3.17. The distance from the contact point to the edge.

Comparison of the cartilage deformation curve was performed because this
data would be utilised in order to estimate the equilibrium biphasic properties.
Figure 3.18 shows the cartilage deformation curve at the maximum contact pressure
node for the different diameter axisymmetric models and the three-dimensional
model. The axisymmetric models were found to be very similar and insignificant
effect was observed to the three-dimensional model which possess 1 mm cartilage
width to the centre point. Based on this finding, it was concluded that the specimen-
specific cuboid model, with half-edge dimensions of 1 mm, could be applied to
generate the cartilage deformation curve for the cartilage biphasic properties
characterisation.
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Figure 3.18. Cartilage deformation resultsfor the cartilage model width sensitivity analysis.

3.8 Cartilage Biomechanical Properties Characterisation

The cartilage equilibrium biphasic properties of elastic modulus and
permeability were characterised by combining both experimental and computational
methods. The axisymmetric biphasic poroelastic FE model described in section
3.7.1.3 was implemented to simulate the experimental creep compression test
performed on the cartilage pin. The Poisson’s ratio of the cartilage was assumed and
maintained at 0.0 to allow maximum compressibility (Jin et al., 2000), and the
cartilage water content of 74.7% was imposed (Elder et al., 2009). For the
subchondral bone, the elastic modulus and Poisson’s ratio were taken as 1510 MPa
(Mitton et al., 1997) and 0.3 (Shirazi and Shirazi-Adl, 2009) respectively.

The cartilage biphasic elastic modulus (E) and permeability (x) were
estimated by matching the cartilage deformation curve generated from the FE model
to the experimental deformation curve using a least-squares method to resolve the
function [3] (Lei and Szeri, 2007, Pawaskar, 2010),

N
f ko, Ep) = Z[Uti(Ko'Eo) - Ue,ti]z
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where N is the total number of observations, Uy, (k,, Eo) and U, are predicted from

FE modd and experimental displacements, respectively, at time t; of the ith
observation. During the analysis, the inequality constraints of the parameters were

specified as, 0 < kg< oo and 0 < Eg < oo.

In order to optimise the nonlinear least-squares problem, a programme
developed by Pawaskar (2010) was applied which imposing ‘Isgnonlin’ function in
MATLAB software. Initial values of equilibrium elastic modulus and permeability
of the cartilage were used to begin the iteration and the final optimised values were
obtained when the function reached the minimum specified convergence criteria or

minimal squared error occurred between the curves.

3.8.1 The Effects of Cartilage Poisson’s Ratio and Void Ratio

In previous studies from other synovia joints, the cartilage biphasic Poisson’s
ratio was characterised to be between 0.02 to 0.098 using compression testing as
shown in Table 1.5. However in this study, the Poisson’s ratio was initially assumed
to be 0.0 in the characterisation process to achieve the maximum cartilage
compressibility (Jin et al., 2000). To study the sensitivity to this parameter, the
Poisson’s ratio was varied from 0.0 to 0.2 in the axisymmetric FE model and the
effects on the cartilage deformation curve, which was utilised to derive the

properties, was observed.

Furthermore, the effect of the cartilage void ratio on the cartilage
deformation curve was also investigated using the axisymmetric FE model. The void
ratio was varied between 3.0 and 4.25 representing the fluid phase of the cartilage
water composition of 60-85% (Mow and Huiskes, 2005).

3.8.2 The Effects of Subchondral Bone Elastic M odulus

In this study, the effect of the subchondral bone elastic modulus was
investigated on the cartilage deformation curve. An initial elastic modulus of 1510
MPa was applied which assumed to be a norma healthy bone for the ovine
specimens. The elastic modulus was varied down to a value of 20 MPa, representing
the lowest value likely in severely osteoporotic bone. This was again undertaken in
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the axisymmetric FE model and the effects on the predicted cartilage deformation

examined.

3.8.3 The Effects of Indenter Radius

The cartilage properties characterisation was also performed using a larger
indenter size of 6.3 mm diameter, which was also as undertaken in the experimental
testing. This would enable the effect of using larger indenter size on the estimated
cartilage biphasic properties to be evauated. For this study, the axisymmetric FE
model described in Section 3.7.1.3 was adapted to represent the 6.3 mm diameter

indenter.

3.8.4 The Effects of Cartilage Surface Curvature

Although some curvature was observed in the cartilage pin specimens, the
cartilage surface was assumed to be flat in the axisymmetric FE models used for the
characterisation of the cartilage properties. In this study, the effects of the cartilage
surface curvature on the characterised cartilage properties were examined using the
axisymmetric model. Although the curvature generated from the axisymmetric
model was different compared to the actual cartilage curvature (Figure 3.19a), this

step was undertaken to evaluate if the outputs were sensitive to curvature in general.

The cartilage pin that had the most curvature, shown in Figure 3.19a, was
selected and the measurement of the cartilage surface radius was carried out using
the method described in Section 2.4.2 and shown in Figure 3.19b. The radius was
determined to be 19.3 mm. To assess the possible effect of this curvature, the
axisymmetric model was adapted to include a curved surface. Two cartilage surface
radii of 20 mm and 40 mm were employed, including both concave and convex
shapes of the curve. Figure 3.19¢ shows an example of axisymmetric FE model of

the 20 mm radius cartilage curvature with convex curve.
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Estimated cartilage surface radius is 19.252 mm H
il

C.

Figure 3.19. a. uCT scan image of the most curvature cartilage pin, b. M easur ement of the
cartilage surface radius, c. Axisymmetric FE model of 20 mm radiuswith convex curve.

Further investigation was carried out using the specimen-specific model to
examine the cartilage deformation of the actual three-dimensiona curvature. In
addition, a gradient three-dimensiona model shown in Figure 3.20 was generated
which had an approximately 10° gradient angle at one plane measured from the
actual image in Figure 3.19. This enabled the three types of the cartilage surface,

which were flat, gradient and specimen-specific curvature, to be explored.

[

11

Figure 3.20. Idealised gradient three-dimensional FE model.

3.9 Statistical Analysis

For the quantitative experimental data, mean and standard deviations were
calculated and displayed as mean + standard deviation (SD) unless stated otherwise.
The following statistical methods were used in this study.
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Student t-test

The Student t-test was also used to determine statistical differences (p<0.05)
for the derived biphasic properties of elastic modulus and permeability between the
2 mm diameter and 6.3 mm diameter indenters. All the tests were performed using
Microsoft Excel 2007.

One-Way Analysis of Variance (ANOVA)

One-way ANOVA (p<0.05) was carried out to examine statistical differences
for the derived biphasic properties of elastic modulus and permeability within the
fresh cartilage pin, frozen joint cartilage pin and frozen pin samples. The analysis
was performed using SPSS PASW Statistics 17.0 (IBM Corporation, NY, USA)

software.

3.10 Summary

This chapter outlined all of the experimental and computational methodol ogies
used to characterise the biomechanical properties of the facet cartilage. The
compression test experiment method using an indenter was performed to provide
experimental data to characterise the biphasic properties of the cartilage. The
cartilage deformation curve generated from the biphasic poroelastic axisymmetric
FE model was matched to the experimental deformation curve in order to estimate
the cartilage properties of the elastic modulus and permeability. Furthermore, a
novel specimen-specific model was developed to study the three-dimensional
geometrical effect of the cartilage surface on the estimated biphasic properties of the

cartilage.
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Chapter 4: Results — Morphological Study of the Facet Joint

4.1 Introduction

This chapter presents the results and analysis of the facet joint morphological
study. The first section presents the outcome of the ovine and human facet joints
morphology and comparisons between the two species. This is followed with the
investigation of the correlation between the measurement parameters and finally
discussed the overall resultsin the final section.

4.2 Facet Joint Articular Radius

The superior and inferior facet articular radius values for the three ovine spines
(n=3) are presented in Figure 4.1 and Figure 4.2. The left and right radii were
averaged together to obtain the mean and standard deviation because difference
between the two was found not to be statistically significant using a t-test analysis
(p<0.05). From the measurements, most of the thoracic vertebra segments were
found to be flat with the exception of T2T3 and T12T13, both of which are at the
transitions between the spine regions. The facet joint scan images of Spine 2 are

shown in Appendix | at all levels of the vertebral segment.
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Figure4.1. Superior facet articular radius of ovine vertebral segment. The barsrepresent the
mean (+ SD) of at least six measur ementstaken on theleft and right facet joint at each

level.
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Figure4.2. Inferior facet articular radius of ovine vertebral segment. The barsrepresent the
mean (+ SD) of at least six measur ementstaken on theleft and right facet joint at each
level.

In the crania direction, the facet radius increased gradualy from T2T3 to
C2C3, reaching a maximum value of 25.2 mm. However, only one spine was found
with curved facet joints at the cervical region, whilst the other two spines were flat.
This curved facet joint possessed higher variation of the radius measurements, which
denotes the irregular curvature throughout the cervical facet joints. Figure 4.3 shows

an example of the flat and the curved facet joint at cervical region. Towards the



-84-

caudal direction, a relatively consistent facet radius was seen in the joints between
T12T13 and L5L6, ranging between 3.1 mm and 4.8 mm for the superior radius
while the inferior radius ranged between 2.5 mm and 4.4 mm.

Posterior Posterior

Facet
joint Facet

joint

Anterior Anterior

Figure 4.3. uCT scan image of C4C5 vertebral segment a. Flat facet joint of Spine 3, b. Curved
facet joint of Spine 2.

For the human facet joint, the superior facet radius from the L1 to L4 vertebra
level ranged from 6.3 mm to 8.8 mm, as shown in Figure 4.4. Although the radius at
L4 measured in the present study was considerably lower than the average radius at
that level measured by van Schaik and van Pinxteren (1999) at 13.7 mm, it was still
within the range of the extensive measurement variation (+5.8 mm) published in the
study.
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Figure 4.4. Superior facet articular radius of human vertebrae. The barsrepresent the mean (+
SD) of at least eight measurements taken on theleft and right facet joint at each level.
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4.3 Comparison of Facet Articular Radius between Ovine and Human
L4 Vertebra

Limited data on facet articular radius in the previous literature meant that the
comparison was only undertaken at the L4 vertebra level. The human vertebral
dimensions in the present study were taken from one vertebra (n=1) because it was
the only data available. The measurement of the facet articular radius (R), the width
(W) and depth (D) of the vertebral body are illustrated in Figure 4.5.

Figure 4.5. Schematic diagram of vertebral dimension measurement.

Comparisons of the ovine and human L4 vertebra dimensions are tabulated in
Table 4.1. In order to verify the measurement method, the dimensions were
compared to the previous studies. As can be seen, the dimensions were comparable
and within the range of the previous measurement, athough a considerable
difference was found for the average human facet radius. However, the difference of
the facet radius was mainly attributed to the method applied in the previous study,
where only three points were used in order to determine the radius, which would be
likely to result more error in the measured facet radius.
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Table4.1. Vertebral dimensions (mean + SD) of ovineand human L4 vertebra.

Dimension Ovine Human Ovine/Human
(mm) Present Previous Present Previous Stud Present Study
Study Study Study y (min-max)
27.6 51.2+5.6 0.56
w 273t1.2 | (gheng, 2010) 480 (Berry 1987) (0.54-0.59)
20.7 34.9+3.4 0.57
D 192+1.0 | gheng 2010) 334 (Berry 1987) (0.54-0.60)
40 13.745.8 0.47
R 37403 1 MmcLain2002) | 7905 | (vanschaik1999) |  (0.40-0.54)

All of the dimensions were larger for the human specimens than for the ovine
specimens. The dimensional ratios between the ovine and human were examined in
order to observe the relationship between the two species. From the table, the ratios
of the dimensions were found to be within the same range, although a marginal
difference was found for the facet radius. Despite the limitation of measuring only
one human L4 vertebra, the dimensions were comparable with the previous studies.
The outcome of this comparison is a useful factor in justifying the suitability of the
ovine lumbar vertebra to represent the human lumbar facet joint in range of motion

studies.

4.4 Facet Joint Orientation Angle

The transverse facet joint orientation angles, as described in Section 2.4.3, of
three ovine spine (n=3) are presented in Figure 4.6. The left and right angle
measurements were averaged together to obtain the mean and standard deviation
because the difference between the two was found to not be statistically significant
using a t-test analysis (p<0.05). Based on the results, the angles could be grouped
into three main categories, which were approximately associated with the three

spinal regions.
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Figure 4.6. Transver sefacet joint orientation angle of ovine vertebral segment. The bars
represent the mean (= SD) of at least six measur ements taken on the left and right facet
joint at each level.

The first group includes the angles from the cervica region C2C3 to C6C7
where the angles slightly increased from 52.1° to 69.0°. In the second group which
was in the thoracic region from T2T3 to T10T11, the angles ranged between 83.3°
and 109.1° without any clear trend. Furthermore, the facet angles were facing the
anterior side of the vertebra, or were more than 90°, as shown in Figure 4.7b.
Finally, in the most caudal group, from the last thoracic T12T13 to the last lumbar
L5L6 vertebral segments, the angle increased considerably from 3.8° to 18.9°
Furthermore, the facet angles were the most narrow as shown in Figure 4.7c.

a. b. C.

Figure 4.7. Facet joint orientation angle classification a. Group 1: C2C3-C6C7, b. Group 2:
T2T3-T10T11, c. Group 3: T12T13-L5L6.
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The facet joint angles of the human lumbar spines were found to vary between
13.8° and 31.0° In order to verify the facet angle measurement method, the
transverse facet angles of human vertebrae were compared with a previous study.
Although the present results were found to be lower than the study carried out by
Masharawi et al. (2004), the values were nevertheless within the measurement
range, as illustrated in Figure 4.8. Moreover, the trend of the results was similar
where the angles decreased from the L1 to L2 vertebra level, and then increased to
the L4 level.
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B Present study*

20 B Masharawi, 2004
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10

L1 L2 L3 L4

Figure 4.8. Comparison of the transver se facet joint orientation angle of human vertebra
between the present study and M asharawi et al. (2004).

* Note: The bars represent the mean (+ SD) of at least eight measurements taken on the left and right
facet joint at each level.

4.5 Comparison of Facet Joint Orientation Angle between Ovine and

Human Spine

The ovine facet angles were compared with the human facet angles reported by
Masharawi et al. (2004). Since very limited data on the human cervical facet angles
were published in the previous literature, comparisons were only performed at the
thoracic and lumbar regions. As illustrated in Figure 4.9, both of the spines have

similar angle trends in each of the spine regions. However, it is noteworthy to
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highlight that a considerable difference was established at ovine T12T13 and human
T12L1 levels, which could be due to the transition point between the regions, as

these two species have a different number of vertebrae in each region.

Human Ovine
Left Right Left Right
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Figure 4.9. Comparison of the facet orientation anglein transver se plane along vertebral
column between the present results of the ovine spine and the human spine study by
Masharawi et al. (2004).

4.6 Relationship between Facet Orientation Angle and Facet Articular
Radius

Although the relationships between facet orientation and radius have been
studied previoudly, it is not possible to compare the results directly with the present
study, because different methods and criteria were applied. For instance, van Schaik
and van Pinxteren (1999) observed the relationship between the facet radius and the
facet orientation circle instead of facet orientation angle, in which the methods have
been described earlier in Section 1.4.2.2. However, no conclusive relationship could
be found between those parameters. Therefore, in the present study, the relationship
between the facet radius and orientation angle were examined to determine if there
was a correlation. The relationships were evaluated based on the linear regression

analysis for ovine and human vertebrae.



-90 -

4.6.1 Ovine Vertebral Segments

The ovine vertebral segments were examined from T12T13 to L5L6 because
the facet radius at the thoracic region was flat, and only one from three spines was
found to curve at the facet articular surfaces in the cervical region. The correlation
between facet angle and the facet radius was weak and was found to be insignificant

(p>0.05), as shown Figure 4.10.
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Figure 4.10. Correlation between facet orientation angle and facet articular radius of ovine
vertebral segments.

4.6.2 Human Vertebrae

The relationship between the facet angle and the facet radius for the human
vertebrae was examined from L1 to L4 vertebral level due to the limited scan data.
Similarly to the ovine, no correlation (p>0.05) was found between the facet angle

and facet radius as shown in Figure 4.11.
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Figure 4.11. Correlation between facet orientation angle and facet articular radius of human
vertebrae.

Therefore, these results confirm that geometrically there is no relationship
between the facet orientation angle and facet radius for both ovine and human

vertebrae.

4.7 Relationship between Facet Orientation Angle and Axial Rotation

It has been reported that the asymmetry of the facet joint angle, known as facet
tropism, has no correlation with intervertebral disc degeneration and facet joint
osteoarthritis (Vanharanta et al., 1993, Boden et al., 1996, Kalichman et al., 2009).
However, the facet joint angle alone has certainly been associated with those
diseases (Farfan et al., 1972, Boden et al., 1996, Fujiwara et al., 2001, Kalichman et
al., 2009). Ahmed et al. (1990) found a lack of correlation between the facet angle
and axial rotation, despite the fact that mechanically it would be expected that the
two would be related. Therefore, this relationship was again investigated with the
use of ovine vertebral segments and human vertebrae based on the linear regression

anaysis.

4.7.1 Ovine Vertebral Segments

The mean of the facet orientation angles of the ovine vertebral segments for

three spines (n=3) were plotted together with the mean range of motion in axial
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rotation studied by Wilke et al. (1997a) against the vertebra level. The angle and
axial rotation were seen to possess similar trends, which can be divided into three

groups approximating to the spine regions, as demonstrated in Figure 4.12.
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Figure 4.12. Relationship between mean (= SD) of the facet orientation angle from the current
study and axial rotation (Wilke et al., 1997a) of ovine vertebral segments.

The mean of the facet angle were then plotted against the mean of the axia
rotation to determine if there was a relationship between these two parameters. A
significant correlation (p<0.05) was found between the facet angle and axial rotation
where the axial rotation of the vertebral segment increased with increasing facet

orientation angle as shown in Figure 4.13.
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Figure 4.13. Correlation between the mean (+ SD) of the facet orientation angle and axial
rotation (Wilke et al., 1997a) of ovine vertebral segments.

4.7.2 Human Vertebrae

For the human vertebrae, the relationships were evaluated at the L1L2, L2L3
and L3L4 vertebral segments. Figure 4.14 shows the graph of the facet orientation
angle against the range of motion in axia rotation data for the human vertebral
segments were obtained from the previous studies (Yamamoto et al., 1989, Panjabi
et al., 1994). Statistically, the facet angle was significantly correlated (p<0.05) to
the axia rotation measured by Yamamoto et al. (1989). Conversely, insignificant
correlation (p>0.05) was obtained with the axial rotation measured by Panjabi et al.
(1994).
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Figure 4.14. Correlation between facet orientation angle and axial rotation (Yamamoto et al.,
1989, Panjabi et al., 1994) of human vertebral segments.

However, these conflicting results were mainly caused by the experiment
methodology of the axia rotation measurement. Panjabi et al. (1994) applied a
compressive preload of 100 N aong the longitudinal axis of the specimen
throughout the experiment whereas no preload was applied in Yamamoto et al.
(1989) experiment. There are other factors that could contribute to the variation of
the axia rotation measurement such as the experimental set-up, amount of preload
and axia torque applied, and whether a two-vertebra segment (Ahmed et al., 1990,
Wilke et al., 1997a) or the whole intact lumbar spine (Yamamoto et al., 1989,
Panjabi et al., 1994) was used. The variation of the axial rotation measurement has
been presented in Panjabi et al. (1994) work illustrated in Figure 4.15.
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Figure 4.15. Thevariation of the axial rotation range of motion in the experimental studiesfor
the human vertebral segments. Adapted Panjabi et al. (1994).

4.8 Relationship between Facet Articular Radiusand Axial Rotation

In previous studies, the relationship between the facet radius and axial rotation
has not been evaluated, which is probably due to the lack of studies and information
on the facet curvature. Although there was no relationship between the facet radius
and angle for both ovine and human vertebrae as demonstrated in Section 4.6, this
investigation could provide better understanding of the facet joint behaviour in both

Species.

4.8.1 Ovine Vertebral Segments

The relationship was examined at T12T13, L1L2, L3L4 and L5L6 for the
ovine vertebral segments where the facet joints were found to be curved compared
to the other vertebral segments. The axial rotation motion of the vertebral segments
was again taken from Wilke et al. (1997a). As shown in Figure 4.16, no correlation
(p>0.05) was observed between the axial rotation and the facet radius.
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Figure 4.16. Correlation between facet articular radius and axial rotation (Wilke et al., 1997a)
of ovine vertebral segments.

4.8.2 Human Vertebrae

The relationship for the human vertebrae was observed at L1L2, L2L.3 and
L3L4 vertebral segments. Axial rotation data of the human vertebral segments from
Panjabi et al. (1994) and Yamamoto et al. (1989) were once again used for the
comparison. Statistically, significant correlations (p<0.05) were found between the
facet radius and both experiment results of the axia rotation, where the axial

rotation increased with the increasing of the facet radius as shown in Figure 4.17.
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Figure 4.17. Correlation between facet articular radius and axial rotation (Yamamoto et al.,
1989, Panjabi et al., 1994) of human vertebral segments.
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4.9 Discussion

This study has presented a comprehensive set of morphological data for the
facet joints of the ovine spine. The data were produced based on the uCT images of
the vertebral segments to obtain the facet articular radius using an improved method
while the facet orientation angle was determined according to the previous studies.
In addition, human vertebrae were also evaluated for comparison purposes to

investigate the similarity between these two species.

A previous experimental study has found that the range of motion in flexion,
extension, axia rotation and lateral bending between the ovine and human spines
were in similar range (Wilke et al., 1997a). Since the spina facet joints play an
important role of the spine kinematic (Stokes, 1988, Miyazaki et al., 2010), the
similarities of the facet joints morphology between the ovine and human spines,
such as similar trends of facet orientation angle and similar range of dimensional
ratio of the facet articular radius, vertebral body width and vertebral body depth,
observed in this study add evidence to support the premise that the ovine spine
possesses a similar range of motion to the human spine. Based on the spinal motion
similarities and the results from the present facet joint morphologica study, the
ovine facet joint could be used as a model to represent the human facet joint
functiona study, particularly at the L4 vertebral level. However, measurements of
all human vertebral levels are needed in order to ensure it can be applied to other
vertebral levels.

The present study indicates that a positive correlation is apparent between the
facet angle and axia rotation although insignificant correlation was found with the
axial rotation measured by Panjabi et al. (1994). This conflicting evidence was
mainly due to the experiment methodology used to measure the range of motion as
described by Panjabi et al. (1994). The correlation between the facet angle and axial
rotation is also in disagreement to the previous study from Ahmed et al. (1990).
However, this could be caused by facet angle measurement method: in their study,
the measured angles were significantly higher than both the present and previous
studies. The measured angles also varied substantially ranging from 5° to 55° for the
L2L3 joint and 10° to 85° for the L4L5 joint (Ahmed et al. 1990). It appears that
both the methodology to measure the facet angle and to measure the axia rotation

arecrucial in order to deduce the relationship between these two parameters.



-08 -

In another parametric relationship, apparent correlation was observed between
the facet radius and axial rotation for the human vertebrae, despite the lack of
correlation found for the ovine vertebrae. In contrast, there was certainly no
correlation between the facet articular radius and facet orientation angle for both
ovine and human spines. However, data from only seven scans of the human
vertebra were obtained in lumbar spine region between L1 and L4 vertebra level.
The lack of the human vertebra data used in this morphological study may have
influenced the variability of the measured facet articular radius and facet orientation
angle. Therefore, more scan images of the human vertebra at al vertebra levels are
needed in order for a more thorough analysis of the facet joint morphology to be
carried out. Furthermore, the mean results obtained in the present study were only
compared with the mean results from the literature. In future, these relationships
could be revisited and may become more obvious if the measurement of the facet

morphology and the range of motion could be carried out on the same specimens.

The present study has investigated simple two-dimensional properties in the
transverse plane whereas in reality the joint is contained in an integrated complex
three-dimensional anatomy. However, experimental studies of spine motions were
mostly based on a single plane including axial rotation, lateral bending, flexion and
extension, so making comparisons in two dimension is appropriate. Therefore, the
methods used in this study could be useful in order to select which anima model
would be appropriate to represent the human spine based on the morphological data
for aparticular area of research. This study indicated the potentia usage of the ovine
spine to represent human spine, especially in lumbar spine region, for lumbar facet
joint range of motion studies.
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Chapter 5: Results - Characterisation of Facet Cartilage

Biomechanical Properties

5.1 Introduction

This chapter presents the results and analysis of the characterisation of the
biomechanical properties of the facet cartilage. The first section presents the
compression experiment results of the cartilage including the creep compression
tests and the thickness measurements. The validation of the idealised computational
axisymmetric model is outlined in the second section which was then utilised to
derive the cartilage properties. This is followed with the outcome of the
characterisation of the facet joint cartilage properties and the related parametric

studies, and the overall results are discussed in the final section.

5.2 Biomechanical M easurement

5.2.1 Compression Test Repeatability

The repeatability of the compression test using a indenter was performed to
demonstrate the reproducibility of the test methodology using the methods presented
in Section 3.5.1. The mean and standard deviation (SD) of the cartilage deformation
from the three repeated compression tests on the same specimen using five fresh

ovine cartilage pins (n=5) are shown in Figure 5.1.
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Figure5.1. Cartilage deformation (mean * SD) of three repeated compression tests undertaken
on the same specimens. Between tests, the specimens wer e equilibrated in PBS solution
for one hour.

Although the second and third test result mean values were higher than the
initial test mean values by between 8% and 22%, they were still within a similar
range to the initia test, due to the relatively large standard deviations between
specimens. There was no clear trend between the results from second and third
compression tests, however two distinct sets of results (Figure 5.2) were obtained

from the tests which produced the large standard deviations between the specimens.
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Figure5.2. Cartilage deformation of threerepeated compression testsfor five cartilage pins at
2000 seconds.

In the present study, the cartilage pins were only submerged for one hour in the
PBS solution before each test. A previous study using patellofemora articular
cartilage acquired from bovine knee joints has found that the cartilage should

equilibrate in PBS for two hours prior to another test in order to obtain similar
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deformations to the initial tests (Katta, 2007). However, the average thickness of the
cartilage was 2.01 £ 0.25 mm and the compression test was subjected to 0.98 N
force. Despite the cartilage equilibration time, the cartilage thickness and the
compression force, the results demonstrate that the test methodology produced
considerably repeatable results and the deformation curve trends were in good
agreement with the results obtained from previous studies (Mow et al., 1989,
Pickard et al., 1998).

5.2.2 Cartilage Thickness

The uCT imaging measurement method was undertaken in order to verify the
cartilage thickness measured using the compression test. The percentage of the
cartilage thickness difference measured between the two methods for seven fresh
cartilage pins (n=7) is shown in Table 5.1 and Figure 5.3 using various compression
forces. A dight difference of between 3% and 5% was found when the compression
force was increased to 3.5 N. At 4.4 N, the difference was less than 2% and a
distinct peak force was observed which suggested that the needle went through the
cartilage straight to the bone, as shown in Figure 5.4b.

Based on the results, it is suggested that the appropriate compression force to
measure the ovine facet cartilage is at least 3.5 N. The mean cartilage thickness
measured from ten fresh cartilage pins (n=210) using the compression method was
found to be 0.52+0.1 mm. The cartilage thickness was observed to be relatively

uniform across the specimen as shown in Figure 5.5.

Table 5.1. Comparison of the cartilage thickness measur ed between compression test and puCT.

. Cartilage Thickness, mm :
Sample Compression , Thickness
P Force, N Compression uCT Difference, %
Test
Specimen 1 16 0.25 0.44 43.2
Specimen 2 16 0.26 0.52 50.0
Specimen 3 2.6 0.27 0.32 15.6
Specimen 4 2.6 0.39 0.47 17.0
Specimen 5 35 041 0.43 4.6
Specimen 6 35 0.37 0.38 2.6
Specimen 7 4.4 0.59 0.60 1.7
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Figure5.5. Examples of uCT scan image of cartilage pinsat middle dice.
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5.2.3 Compression Test of the Ovine Facet Subchondral Bone

The creep compression tests using an indenter were performed on six ovine
subchondral bone specimens (n=6) using the methods described in Section 3.5.2.
However, negligible deformation was recorded on all of the bone specimens, as
shown in Figure 5.6. This is probably due to the density of the bone (Figure 5.5),
where the specimens were extracted from relatively young sheep between four and
five years old compared to the skeletal maturity of the sheep at 3 years old and life
span between 10 to 15 years (Reinwald and Burr, 2008). This result confirms that
the ovine subchondral bone did not influence the cartilage deformation in the

compression test.

Voltage, v

04 ——Load
—-Displacement

0.02 0.04 0.06 0.08 0.1 2 4 6 g 10 200 400 600 300 1000
02 Time, s

Figure5.6. Example of ovine subchondral bone creep compression test, showing threetime
intervalstoillustrate the lack of displacement over the whole test period.

5.3 Computational Results for Idealised Axisymmetric Model

5.3.1 Implementation of Contact Dependent Flow

The contact dependent flow agorithm was developed in order to change the
flow conditions depending on the contact stress at the cartilage surface nodes. The
present results were compared to the results generated by Pawaskar (2006) to verify
the algorithm implementation as described in Section 3.7.1.2. Figure 5.7
demonstrates the comparisons of the contact pressure distribution on the cartilage
surface at 2 s and 1000 s for both stress-relaxation and creep-deformation

simulations. In addition, the pore pressure distribution on the cartilage surface of the
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creep-deformation is also compared in Figure 5.8. As can be seen, the present results
were identical with the results produced by Pawaskar (2006) which confirmed the
correct implementation of the contact dependent algorithm.
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Figureb5.7. Contact pressuredistribution at cartilage surface, a. Stress-relaxation b. Creep-
defor mation, showing comparison between current study and the previousresults of
Pawaskar (2006).
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Figure5.8. Pore pressuredistribution at cartilage surface of creep-deformation, a. 2 secondsb.
1000 seconds, showing comparison between current study and the previous results of
Pawaskar (2006).
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5.3.2 Mesh Sensitivity Analysis

The mesh sensitivity analysis was performed to obtain an optimised mesh
density for the axisymmetric model as described in Section 3.7.1.4. The FE meshes
were varied such that the width and height of the cartilage were maintained at ten to
one element ratio respectively from 160 to 1440 elements. In addition, a
concentrated mesh density at the contact area consisting of 300 elements was

included to observe the efficiency.

The contact pressure and deformation of the cartilage during 1000 s did not
show any marked difference for al the meshes observed, as shown in Figure 5.9. In
addition, comparisons of the contact pressure distribution on the cartilage surface at
2 s and 1000 s were examined and illustrated in Figure 5.10. Although the
distributions were similar along the contact distance, slight differences were
observed at the edge of the contact. The concentrated mesh was found to be
optimum due to the accuracy and the computational time required. The results
produced from the concentrated mesh were the most similar to the one produced
from 1440 elements mesh. However, the computational time required for the
concentrated mesh was only 96 s compared to 214 s for the 1440 elements mesh.
Although the magnitude of the difference in the computationa time was
insignificant, it would increase tremendously in the three-dimensional model

because substantial differencesin the element numbers would be generated.
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Figure5.9. Contact pressure ver sus defor mation of the cartilage during 1000 seconds.
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Figure5.10. Contact pressuredistribution on cartilage surface a. 2 seconds b. 1000 seconds.

5.4 Cartilage Biomechanical Properties

5.4.1 The Effects of Cartilage Storage

The objective of this study was to investigate if there was an aternative

storage method of the cartilage pin specimens in order to maintain the cartilage
properties comparable to the fresh cartilage. Three different conditions of cartilage
pin storage were studied to examine the effect on the derived biphasic cartilage

properties of elastic modulus and permeability as described in Section 3.8. Figure

5.11 shows the comparison of the properties for ten fresh cartilage pins (n=10), five

frozen joint cartilage pins (n=5) and four frozen cartilage pins (n=4) from the ovine

facet joints.
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Figure5.11. Comparison of the cartilage biphasic properties (mean + SD) for different storage
conditions a. Elastic modulus b. Per meability.

The cartilage biphasic elastic modulus and permeability derived from the fresh
cartilage pins were 0.76+0.35 MPa and 1.61+1.10 x10™ m*/Ns respectively. A one-
way ANOVA datistical analysis (p<0.05) indicated that there was no statistical
difference in the elastic modulus and permeability between the fresh and frozen joint
cartilage pin. However, significant differences were found for both properties
between the fresh and the frozen cartilage pins. Based on these results, it would
appear that the freeze-thaw cycle does not change the cartilage elastic modulus and
permeability compared to the fresh cartilage pins providing that the whole facet joint

isfrozen in an intact state.

5.4.2 The Effects of Cartilage Poisson’s Ratio and Void Ratio

This parametric study was carried out, as described in Section 3.8.1, to
demonstrate the effect of the cartilage Poisson’s ratio and void ratio on the cartilage
deformation curve because the curve was utilised to derive the cartilage properties.
Figure 5.12a shows the difference of the cartilage deformation curves for each
Poisson’s ratio applied in the biphasic poroelastic axisymmetric FE model. Similar
curves were obtained when the value of the cartilage Poisson’s ratio was varied

between 0.0 to 0.12. Although the cartilage Poisson’s ratio characterised previously
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were below 0.12, a higher value of 0.20 was also applied and approximately 9%

difference was found in the deformation curve compared to the initial curve.
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Figure5.12. Cartilage deformation curve a. Cartilage Poisson’sratio sensitivity, b. Cartilage
void ratio sensitivity.

A similar protocol was applied to examine the sensitivity of the void ratio of
the cartilage. Figure 5.12b shows the curves generated from 3.0 to 4.25 void ratio of
the cartilage were aimost identical. This therefore confirms that the void ratio has no
difference on the cartilage deformation curve generated from the axisymmetric FE
model.

5.4.3 The Effects of Subchondral Bone Elastic M odulus

The effects of the subchondral bone elastic modulus on the cartilage
deformation was investigated using the axisymmetric FE model as described in
Section 3.8.2. Figure 5.13 shows the curves generated from 1510 MPa to 50 MPa
elastic modulus of the subchondral bone were amost identical. The curve started to
distort when 20 MPa elastic modulus was applied to the subchondral bone and
finally around 7% difference was found in the deformation curve compared to the

initial curve when using 10 MPa. Furthermore, the subchondral bone was found to
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deform when using 10 MPa elastic modulus for the subchondral bone compared to
1510 MPa, asillustrated in Figure 5.14.
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Figure5.13. Cartilage deformation curve of subchondral bone elastic modulus sensitivity.

Cartilage

b.

Figure5.14. Spatial deformation at nodesfor elastic modulus of the subchondral bone at 2000 s.
Thered arrows show the direction of the defor mation. a. E=10 M Pa, showing
deformation in the bone b. E=1510 M Pa, showing no bone defor mation.
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5.4.4 The Effects of Indenter Radius

Comparisons of the characterised cartilage properties were carried out to
examine the effect of using a different size of indenter diameter. The compression
tests were performed on six fresh cartilage pins (n=6) using a 6.3 mm diameter
spherical indenter as described in Section 3.8.3. Figure 5.15 shows the cartilage

properties obtained from both indenter sizes.
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Figure 5.15. Comparison of the cartilage biphasic properties (mean £ SD) for 2 mm and 6.3
mm indenter diameter a. Elastic modulus b. Per meability.

The mean cartilage properties characterised from 6.3 mm diameter indenter
were higher compared to the 2 mm diameter indenter. Furthermore, the variationsin
the estimated properties were aso increased when 6.3 mm diameter indenter was
used. However, statistical t-test analysis (p<0.05) shows that differences were not
significant for either the elastic modulus or the permeability of the cartilage between

the two indenter sizes.

5.4.5 The Effects of Cartilage Surface Curvature

The cartilage surface curvature sensitivity study was carried out to observe the
effects on the characterised properties in the axisymmetric FE model. Both concave
and convex curvatures were evaluated with the cartilage surface radius of 20 mm
and 40 mm. Figure 5.16 shows the differences in the derived cartilage elastic
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modulus and permeability obtained from different radii of curvature. The negative
and positive values of the radius represent the concave and convex curves

respectively.
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Figure5.16. Cartilage biphasic properties characterised from different cartilage surface radius.

Based on the results, the cartilage curvature had an effect on the estimated
cartilage properties. The smaller cartilage surface of 20 mm radius produced higher
difference of the characterised properties compared to the 40 mm radius. In addition,
the 20 mm radius cartilage surface generated 9% difference in the permeability and
5% difference in the elastic modulus, compared to the flat cartilage. This indicates
that the cartilage permeability would be most affected by the cartilage curvature
during the characterisation process. However, the curvature produced from the
axisymmetric model was not best to represent the three-dimensional curvature of the
actual cartilage pin specimen. Therefore, this study was extended using specimen-
specific model to model the actual three-dimensional curvature of the cartilage pin.

5.4.6 The Effects of Three-Dimensional Curvature of Cartilage Surface

The results obtained from the axisymmetric mode! indicated that the curvature
of the cartilage surface influenced the characterised cartilage properties. Therefore,
further investigation was performed using the specimen-specific model to examine
the cartilage deformation of the actual three-dimensional curvature as described in
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Section 3.8.4. This enabled the three types of the cartilage surface, which were flat,
gradient and specimen-specific curvature, to be explored. However, the specimen-
specific model greatly increased the computational time, and approximately 1390
hours were needed to complete the simulation. Figure 5.17 shows the comparison of

the cartilage deformation curves produced from the three different models.
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Figure5.17. Comparison of the cartilage defor mation between the specimen-specific and
idealised 3D models.

The gradient model did not significantly alter the cartilage deformation
compared to the flat model. However, the specimen-specific model increased the
deformation by approximately 7% compared to the flat model.

In order to determine how this difference in the simulated deformation would
affect the derived cartilage properties, ideally the properties in the specimen-specific
model would have been iteratively changed until the predicted deformation matched
the experimenta results, and the properties compared with the axisymmetric case.
However, substantial computational time would have been required in order to
characterise the cartilage properties using the specimen-specific model to curve-fit
the experiment data because the process may lead up to 20 complete simulations,
each lasting approximately 1400 hours. Therefore, in order to estimate the
differences in the cartilage properties generated from the actual three-dimensional
curvature model, the axisymmetric model was utilised to characterise the properties

because its deformation curve was very similar to the idealised 3D model (Figure
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3.14). The axisymmetric model was simulated and iterated to match to the
deformation curve generated from specimen-specific model (Figure 5.18) and the

derived cartilage properties are shown in Figure 5.19.
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Figure5.18. The cartilage defor mation curve matching process to the specimen-specific model
a. Showing initial smulation of both models with the same biphasic propertiesb. After
iteratively changing the properties of the axisymmetric model until it fitted the 3D
specimen-specific model.

A higher percentage difference was again observed for the cartilage
permeability compared to the elastic modulus. The actual three-dimensional
curvature altered the characterised cartilage permeability by 35% and the elastic
modulus by 13% as compared to the flat cartilage.
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Figure 5.19. Comparison of the cartilage properties characterised from the specimen-specific
and axisymmetric models a. Elastic modulus b. Per meability.
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5.5 Discussion

In the present study, the cartilage biomechanical properties of the ovine facet
joints were characterised for the first time. The developed experimenta
methodology of the compression test using an indenter performed on the facet
cartilage pin generated reproducibility and repeatability in the results. This was
crucia because the cartilage deformation data from the compression test was used to
derive the cartilage biphasic properties.

Experimenta protocols in cartilage research typically require some type of
storage protocol particularly between harvesting and testing. Although there are
conflicting opinions on the effect of freezing to the cartilage biomechanical
properties as discussed in Section 1.5.3.2, it has been shown in the present study that
freezing at -20 °C altered the biomechanica properties of the cartilage when it was
stored as extracted pins. Thisis supported by another study where freezing at -20 °C
altered the biomechanical properties resulting from the damage to the extra-cellular
matrix (ECM) and cells (Willet et al., 2005). Instead of this method of cartilage
storage, some studies have proposed that the cartilage should be maintained as
normal using tissue culture methods (Black et al., 1979, Brighton et al., 1979, Kwan
et al., 1992, White et al., 1999).

However, this study has found the cartilage extracted from the frozen intact
facet joint which was kept at -20 °C within two weeks subjected to a freeze-thaw
cycle to have comparable biomechanical properties to the fresh cartilage. It indicates
that the cartilage tissue was able to survive the freezing and thawing cycles when
enclosed within the intact facet joint, in terms of maintaining the biomechanical
properties. This storage protocol of keeping the cartilage in an intact joint could
potentially be applied to other synovial joints for future mechanical studies on the
cartilage. Furthermore, the storage protocol could be implemented for the functional
spina unit such as in range of motion and load-displacement studies, where the
experiment can be undertaken on specimens following a freeze-thaw cycle without
concern that the facet cartilage properties will have been substantially atered.
However, no biological characterisation of the tissue was undertaken in this study
and so the efficacy of this storage method for biological studies would require
further testing.
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Generaly, cartilage thickness has been measured using either an imaging
method such as MRI or direct method using a compression test using a needle
indenter as described in Section 1.5.3.3. However, it appears that the thickness
measured from imaging methods has been higher than that measured using the
compression test, as shown in Table 5.2. Moreover, the plane resolution of the MRI
scan was between 0.25 mm and 0.5 mm with the image section thickness between
0.3 mm and 3 mm, compared to uCT scan resolution of 20 to 40 um. Therefore, this
study utilised the compression test using a needle indenter to determine the cartilage
thickness of the ovine facet joints and then compared the results to uCT scan
information. Based on the thickness measured from these two methods, it was
observed that the compression force was important to determine the thickness of the
cartilage since the lower force caused the cartilage thickness to be underestimated.
The mean thickness of the ovine facet cartilage was found to be 0.52+0.1 mm and
the compression force needed to be at least 3.5 N. As demonstrated in Table 1.4, the
cartilage thickness varies for each of the synovia joints in human body and
therefore, the required compression force to measure the thickness is likely to also
vary. Thisis because the resistance to the indenter is to some extent provided by the
frictional shear forces on the shaft of the indenter, so the thicker tissue has more of
the shaft of the indenter in contact with the tissue and the greater frictional
resistance.

Table 5.2. Comparison of the cartilage thickness measur ed between M RI and compression test.

Cartilage MR Imaging (mm) Compression Test (mm)
Hip-Femoral head 1.14 - 2.84 (Nakanishi, 2001) 1.06 - 1.83 (Athanasiou, 1994)
Ankle-Tibia 1.21 £+ 0.14 (Millington, 2007) 0.95 - 1.30 (Athanasiou, 1994)
Elbow-Radial head 1.20 (Graichen, 2000) 0.87 — 1.17 (Schenck, 1994)

In order to characterise the cartilage biphasic properties, both experimental and
computational methods were required to be incorporated. A contact dependent flow
algorithm developed by Pawaskar (2006) was implemented in the biphasic
poroelastic axisymmetric FE model to simulate the experimental creep compression

test using an indenter performed on the cartilage pin. Parametric studies of the



- 116 -

cartilage Poisson’s ratio, cartilage void ratio and subchondral bone elastic modulus
were performed because the properties for these tissues had to be assumed.
Although in previous studies the Poisson’s ratio was determined to be less than 0.1,
similar cartilage deformations were observed when values between 0.0 and 0.12 for
the cartilage Poisson’s ratio were applied. Moreover, the cartilage deformation
curves were amost identical for the void ratio values from 3.0 to 4.25 which
represented 60% to 85% of fluid in the cartilage that has been reported in the
literature (Mow 2005). For the subchondral bone, consistent cartilage deformation
curves were found when the elastic modulus was varied from 1510 MPato 50 MPa

and the curve only started to distort when amodulus of 20 MPawas imposed.

Although there have been extensive studies to characterise the biphasic
properties of the cartilage in human synovial joints, limited studies have been
carried out to characterise the biomechanica properties of the cartilage in the spinal
facet joint. Based on these characterised properties, it appears that the cartilage
properties vary in different joints in order to accommaodate the function of the joint
as shown in Figure 5.20. The functional characterisation of the facet joint articular
cartilage has only been studied recently using the canine spine (Elder et al., 2009).
However, the compression test using a porous flat-ended indenter was performed on
the cartilage that had been separated from the subchondral bone using a scalpel and
the biphasic properties were derived using the analytical solution for linear biphasic
theory. Although the bone itself is unlikely to have affected the characterised
cartilage properties, the method of extraction may cause greater damage to the tissue
than using the full cartilage-bone plug. In contrast, this study has characterised the
cartilage biphasic properties of the ovine facet joints where the compression test was
performed on the cartilage attached to the subchondral bone. The biphasic properties
were derived using computational method based on the experiment where the elastic
modulus and permeability were 0.76+0.35 MPa and 1.61+1.10 x10™ m?/Ns
respectively, which within the range of the previous characterised properties.
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Figure 5.20. Comparisons of cartilage biomechanical properties from different synovial joints.
a. Thickness b. Elastic modulus c. Permeability. The species used and references for each
study are shown.

During the cartilage properties characterisation, the cartilage surface in the
biphasic axisymmetric FE model was assumed to be flat since this appears to have
been assumed in most of the previous studies in order to evaluate the cartilage
behaviour (Warner et al., 2001, Jin and Lewis, 2004, Choi and Zheng, 2005).
However, this assumption was not appropriate in this study because most of the
cartilage pin specimens were found to be curved. Therefore, a specimen-specific FE
model was developed to replicate the actual three-dimensional curvature of the
cartilage surface and simulate the creep-compression test performed in the

experiment. The difference of the characterised cartilage properties between the
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actual three-dimensional curvature and the flat cartilage surface was 35% for the
permeability and 13% for the elastic modulus. Based on these results, it clearly
indicates that the cartilage curvature does affect the cartilage deformation in the
creep-deformation simulation. Moreover, this phenomenon was also observed in
another computational study where the facet curvature play an important role in the

contact stress distribution in the facet joint (Holzapfel and Stadler, 2006).
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Chapter 6: Application of Specimen-Specific Modelling M ethodsto

the Human Facet Joint

6.1 Introduction

This chapter presents a pilot study where the methodology developed in the
previous chapters for the experimental testing and specimen-specific modelling of
ovine facet cartilage pins was extended to evaluate cartilage pins extracted from
human facet joints. Due to the limited availability and age of the tissue, the number
of specimens obtained was small, and they were found to have completely
degenerated cartilage with weak subchondra bone. Therefore, the methodology was
adapted to evaluate the effects of the weak underlying bone. This chapter outlines
the methodology used and the results obtained from the pilot study, and makes
recommendations for further testing of human facet cartilage in the future.

6.2 Methods

6.2.1 Specimen Preparation of Facet Cartilage Pin

Following approva by the Joint MAPS Engineering Ethics Committee,
University of Leeds (Reference: MEEC 09-088), the thoracic region between T1 and
T4 from a human spine (age and sex unknown) was used in this study. The 4 mm
diameter facet cartilage pins were extracted according to the procedure described in
Section 3.2.2. However, extra care had to be taken during the pin extraction because
the facet underlying bone was in weak condition which could damage the trabecular
bone architecture easily during the coring process. From visual observation, the
cartilage was found to be totally degenerated in all of the facet joints and, due to the
fragility of the bone, only two facet cartilage pins (n=2) were successfully extracted,
both from the T3T4 facet joints.
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6.2.2 Scan Set-up for Facet Cartilage Pin

The scan set-up described in Section 3.3 was adapted to scan the human facet
pins. The uCT scans were performed in order to generate the three-dimensional
specimen-specific model from the scan data. The scan images also enabled better
visualisation of the bone and cartilage conditions. As can be seen from the scan
images taken from the two specimens in Figure 6.1, the cortical bone was still
present with underlying weak trabecular bone, but virtually no cartilage was

detected on either specimen.

Figure6.1. uCT scan image of the human facet pin a. Specimen 1 b. Specimen 2.

6.2.3 Creep Compression Test

Although there was very little cartilage on the facet pins observed in the uCT
scan image, creep compression tests using an indenter were carried out to evaluate
the potential of the procedure for use on human tissue and observe the deformation
of the underlying bone in weak condition. The experimental data was then used to
characterise the biphasic properties of the facet pins as the pins were submerged in
PBS during the test. The creep compression tests on the two human facet pins (n=2)
were performed according to the protocol described in Section 3.5. An indenter
weight of 0.24 N, as was used to characterise the ovine facet cartilage, was applied

using a2 mm diameter spherical indenter.

6.2.4 Characterisation of Biphasic Properties Using Axisymmetric Model

The characterisation of the biphasic properties was performed to determine the
composite elastic modulus (Ecompositeaxi)) and permeability of the facet pin which

consisted of the bone and fluid. The compression test using an indenter was
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simulated using an axisymmetric biphasic poroelastic FE model consisting of a flat-
ended bone of radius 2 mm, with the thickness measured from the uCT scan image,
and arigid spherical indenter of 1mm radius. The model was then discretised into a
finite element mesh which consisted of 1000 CAX4RP elements with concentrated

mesh density around the contact area, as shown in Figure 6.2.
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Figure 6.2. Axisymmetric FE model of the human facet pin.

Boundary and interface conditions were applied on the bone and indenter,
according to details described in Section 3.7.1.2. The bottom nodes of the bone were
constrained in both the horizontal and vertical directions, whilst the nodes on the
axis were constrained in the horizontal direction. The spherical indenter was only
permitted to move in the vertical direction, as the horizontal direction and rotational
movements were constrained. The fluid flow, as illustrated in Figure 6.2, was
prevented on the bottom and vertical symmetry axis (in the horizontal direction) of
the bone surfaces whilst the outer edge nodes of the bone were maintained at zero
pore pressure so as to alow unrestricted fluid flow. For the bone surface which was
in contact with the indenter, the contact dependent flow algorithm (Pawaskar, 2006)

was imposed.
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The Poisson’s ratio of the subchondral bone was assumed to be 0.3 (Shirazi
and Shirazi-Adl, 2009) and the void ratios of both specimens were calculated by
dividing the difference between the total volume and the bone volume, over the total
volume where both of the volumes were determined using image processing
software (ScanlP v3.2-Simpleware Ltd, Exeter UK). The void ratios calculated for
Specimen 1 and Specimen 2 were 3.3 (66% fluid) and 3.8 (76% fluid) respectively.
In order to characterise the biphasic properties of the facet pin, a similar protocol to
that described in Section 3.8 was applied to estimate the elastic modulus and
permeability.

6.2.5 Characterisation of Elastic Modulus of the Facet Subchondral Bone using
Specimen-Specific Mode

6.2.5.1 Development of Specimen-Specific Model

In this study, two types of specimen-specific models were developed to
represent the subchondral bone. In one (‘ specimen-specific trabecular model’), the
actual architecture of the trabecular structure was replicated while in the other model
(‘ specimen-specific solid model’) a solid continuum was used to represent the
combination of trabecular bone and trabecular space as one material. These enabled
estimates of the elastic modulus of the bone tissue (Epone) and the composite elastic

modul us (Ecomposite(3p olic)) 10 be made respectively.

The three-dimensional geometrical data of the facet pin obtained from the
micro-computed tomography scan was utilised to develop these specimen-specific
models. The images, which had a resolution of 20 pum, were segmented as described
in Section 3.7.3.1 using ScanlP v3.2 (Simpleware Ltd, Exeter, UK) software to
generate a specimen-specific trabecular model as shown in Figure 6.3a. However,
the mask was only defined for the bone because the cartilage was not detectable in
the scan images. For the specimen-specific solid model, the paint operation tool in
ScanlP v3.2 (Smpleware Ltd, Exeter, UK) software was used to fill the spaces of
the porosity in the bone as shown in Figure 6.4a. The specimen-specific trabecular
and solid models of the facet bone were then discretised into finite element meshes

using ScanFE v3.1.4 (Simpleware Ltd, Exeter, UK) software to generate a mixed
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mesh of eight-node linear hexahedral brick elements (C3D8) and four-node linear
tetrahedral elements (C3D4) as shown in Figure 6.3b and Figure 6.4b.

In both models, boundary and interface conditions were applied such that the
bottom nodes of the bone were constrained in al directions to prevent any
movement during the simulation. The spherical indenter was only permitted to move
in a vertical direction and the horizontal direction and rotational movements were
constrained. The contact between top surface of the bone and the indenter surface
was represented using frictionless small sliding contact. The Poisson’s ratio of the
bone was assumed to be 0.3 (Shirazi and Shirazi-Adl, 2009).

Figure 6.3. Development of the specimen-specific trabecular model a. 3D solid model, b. FE
model.

Figure 6.4. Development of the specimen-specific solid model a. 3D solid model, b. FE model.
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6.2.5.2 Estimation of the Bone Elastic Modulus

In order to estimate the elastic modulus of the bone tissue (Epone) and the
composite elastic modulus (Ecomposite@d solid)), the modulus was manually adjusted in
the elastic specimen-specific trabecular and solid models respectively until the
predicted displacements matched the equilibrium displacements measured from the
compression tests of the facet pins. From the estimated tissue elastic modulus of the
bone (Epone), the facet bone composite el astic modulus (Ecomposite(3D trabeculary) Was al'so
approximately calculated by incorporating the percentage of the bone volume (Vione)

and the fluid modulus as shown bel ow.

Ecomposite(3D trabecular) = (Ebone X Y0Vhone) + (Efiuid X %0Viuid)

In this study, the eastic modulus of the fluid (Esuiq) Wwas assumed to be
negligible because the fluid was expected to freely flow out from the facet pin
during the compression test. The composite eastic modulus derived from the
specimen-specific trabecular and solid models was then compared to the composite
elastic modulus characterised using the biphasic poroel astic axisymmetric model.

6.2.6 Computational Study of the Effect of Trabecular Bone Architectureto the
Cartilage Defor mation

In the healthy ovine facet joint, the deformation of the subchondral bone was
minimal and did not affect the creep compression tests performed on the specimen,
as shown in Section 5.2.3. Furthermore, from the computational model sensitivity
study, the presence of the subchondral bone did not make any significant change to
the cartilage deformation, and there was little change in the outcome until avery low
elastic modulus was applied to the bone as demonstrated in Section 5.4.3. However
this scenario could not be applied to the human weak bone because, from the
experiment results obtained in Section 6.3.1, the subchondral bone deformed even
under alow load of 0.24 N during the creep compression test. Previous studies have
reported that there are two factors influencing the mechanical properties of the

cancellous bone, which are the trabecular architecture and the trabecular material
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properties (Goldstein et al., 1993, van Rietbergen et al., 1995). Therefore, these two

factors were anal ysed to observe their influence on the cartilage deformation.

Although virtually no cartilage was detected on both specimens, an artificial
cartilage layer with the averaged thickness of 0.6 mm (Y oganandan et al., 2003) was
constructed manually in the specimen-specific models using the paint operation tool
in ScanlP v3.2 (Simpleware Ltd, Exeter, UK) software. Again, two models were
generated representing the subchondral bone as either a solid continuum (‘solid
model’) or including the trabecular architecture (‘trabecular model’) for comparison
of the cartilage deformation, as shown in Figure 6.5. The solid bone was again
created manually using the paint operation tool in the ScanlP software to fill the

spaces in the trabecular bone in the specimen-specific model.
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Figure 6.5. FE modelsa. Solid subchondral bone, b. Trabecular architecture bone.

The cartilage and subchondral bone were modelled as elastic materials in order
to reduce the computational time in particular for the cartilage. For the cartilage, the
elastic modulus was 0.76 MPa and the Poisson’s ratio was 0.08 (Athanasiou et al.,
1991). For the subchondra bone, a Poisson’s ratio of 0.3 (Shirazi and Shirazi-Adl,
2009) was applied and the composite modulus and bone tissue modulus derived
from the compression tests were applied to the solid model and trabecular model
respectively. The subchondral bone elastic modulus was aso varied between 1000
MPa to 10 MPa in both the solid and trabecular models to evaluate the effect. The
selection of the lowest elastic modulus of 10 MPa for the subchondral bone was
based on an experimental study which has reported that the compressive modulus of

the trabecular bone extracted in anterior-posterior and medial-lateral directions from
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human vertebral body aged between 63 to 80 years old was between 7.2 MPato 48.8
MPa (Ladd et al., 1998).

6.3 Resaults

6.3.1 Creep Compression Test

The creep compression tests using an indenter were performed on two facet
pins (n=2) extracted from the human facet joint. The test provided the deformation
data of the facet pin which was used to characterise the biphasic properties of the

tissue. Figure 6.6 shows an example of the creep compression test result.
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Figure 6.6. Defor mation of the facet pin in creep compression test for Specimen 1.

In the previous creep compression test performed on the ovine subchondral
bone, no deformation was detected on the bone. However for the human specimens,
both of the facet pins were found to deform under the same load of 0.24 N, due to
the weak condition of the bone.
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6.3.2 Characterisation of Biphasic Properties using Axisymmetric M odel

Using the axisymmetric model described in Section 6.2.4, the derived biphasic
properties of the two human facet pins (n=2) are given in Table 6.1. The elastic
modulus and permeability obtained for both of the facet pinswerein asimilar range.

Table 6.1. The characterised biphasic propertiesfor the human facet pins.

. . . Elastic Modulus Permeability,x10™
ecimen Void Ratio ’
= Ecomposite(axi) MPa m’/Ns
1 3.3 (66% fluid) 1.90 1.00
2 3.8 (76% fluid) 1.52 1.41

6.3.3 Characterisation of Elastic Modulus of the Facet Subchondral Bone using
Specimen-Specific M odel

In order to characterise the elastic modulus of the facet subchondral bone, the
elastic modulus was manually adjusted to match the experimenta displacement
using the elastic specimen-specific trabecular and solid models. Table 6.2 shows the
estimated elastic modulus of the bone (Epone) Obtained from the specimen-specific
trabecular models for the two facet bone (n=2) specimens. As can be seen from
Table 6.2 for the centred indenter, the elastic modulus of the bone (Epone) Obtained
for Specimen 2 was higher than for Specimen 1. This was likely to be due to the
lower number of the nodes constrained at the bottom of the bone due to the uneven
trabecular structure on this surface, as well as the thinner trabeculae in this
specimen. The models were reanaysed with the indenter offset to the low and high
densities of the constrained nodes to clarify that the number of the constrained nodes
influenced the estimated elastic modulus. As expected, when the contact point was
moved to a region of fewer node constraints, a higher bone tissue elastic modulus

was found and vice versa

In contrast, the constrained nodes did not cause an effect with the solid
specific-specimen model since the model was fully constrained across the bottom
surface of the bone. The composite elastic modulus values (Ecomposite(ap solic))
estimated were found to be similar, with values of 1.7 MPa and 1.8 MPa for
Specimen 1 and Specimen 2 respectively.
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Table 6.2. The elastic modulus of the subchondral bone using specimen-specific model.

Specimen 1 Specimen 2

Constraint Nodes

Centre

Ebone = 69 M Pa Ebone = 318 M Pa

Offset

Epye = 18.7 MPa

Ebone = 19.3 M Pa

6.3.4 The Effect of Trabecular Architecture to the Cartilage Defor mation

Figure 6.7 shows the deformation of the cartilage using various elastic
modulus vaues for the solid and trabecular architecture subchondral bone models.

When the elastic modulus of the bone tissue (Enone) and the composite elastic
modulus (Ecompositeap solig)), Which were estimated in Section 6.3.3, were applied to

the trabecular bone model and solid bone model respectively, there was
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approximately 20% difference in the cartilage deformation, as shown in Figure 6.7.
This indicates that the trabecular architecture of the facet joint bone plays arolein

the cartilage deformation.

When the subchondral bone modulus values were varied between 1000 MPa
and 10 MPa, approximately 5% difference in the cartilage deformation was found
from the solid specimen-specific model. However for the trabecular architecture
bone model, the cartilage deformation started to change at a bone elastic modulus of
100 MPa. These clearly shows that the elastic modulus and the trabecular bone
architecture of the subchondral bone influenced the deformation of the cartilage. The
difference in the cartilage deformation when the elastic modulus of the bone was
applied to the trabecular architecture model between 1000 MPa and 10 MPa was
37%. Figure 6.8 and Figure 6.9 show the comparisons of the cartilage deformation
contour plot generated from the solid and trabecular subchondral bone models using

different values of e astic modulus of the bone.
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Figure 6.7. Comparison of the cartilage defor mation generated from solid and trabecular
ar chitectur e subchondral bone models at various elastic modulus of the bone.
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Figure 6.8. Comparison of the cartilage axial deformation contour plot generated from solid
and trabecular subchondral bone models using the elastic modulus of subchondral bone
value of 1000 M Pa subjected to 0.24 N.
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Figure 6.9. Comparison of the cartilage axial deformation contour plot generated from solid
and trabecular subchondral bone models using the elastic modulus of subchondral bone
value of 20 M Pa subjected to 0.24 N.
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6.4 Discussion

In this study, the properties of the human facet pin were characterised using
the combination of experimental and computational methods. Although the cartilage
on the facet pins was totally degenerated, and could not be differentiated from the
bone, the study was carried out to characterise the facet subchondral bone properties
including the biphasic properties of the facet pin and aso the elastic modulus of the

bone tissue.

A lot of difficulties were experienced in the extraction of the facet pins, and
only two pins were managed to be plugged out from the six facet joints. This was
because of the tools used to extract the facet pin from the ovine specimens (Figure
3.1), were insufficient to extract the pin from the weak bone. The corer was
fabricated to have rough cutting teeth with a thickness of 0.6 mm, as shown in
Figure 6.10, and these may have damaged the architecture of the trabecular bone. In
aprevious study of bone taken from older cadavers, with an average age of 70 years,
a numericaly controlled milling machine was used to prepare cubic samples of
trabecular bone taken from the vertebral body in order to preserve the architecture of
the trabecular bone (Ladd et al., 1998). However, this method would not be suitable
for the facet joint because of the small size and curvature shape of the facet articular
structures. Therefore, an improved corer with finer cutting teeth using a thinner
thickness of stainless steel would be a better option for future studies to avoid
damaging the trabecular architecture and enhance the extraction process for the
weak bone.

Figure 6.10. The corer used to extract the facet pin.
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To date, no studies appear to have characterised the elastic modulus of the
facet subchondral bone, so there is no previous data to compare with the present
results. However, an experimental study has been carried out to determine the
composite compressive modulus of the trabecular bone extracted in different
directions from the vertebral body of specimens aged between 63 to 80 years old
(Ladd et al., 1998). The compression moduli ranged between 11.9 MPa and 48.8
MPa in anterior-posterior direction, while in media-latera direction the moduli
ranged between 7.2 MPa and 19.1 MPa. Compared to the present estimated
composite elastic modulus values of 1.7 MPa and 1.8 MPa, both of the moduli were
dlightly lower than the experimenta values. This could be due to the weak condition

of the bone as shown in Figure 6.1.

From the estimated elastic modulus of the bone (Enone) USing the elastic
specimen-specific model and the volume of the bone (Vuone), the composite elastic
modulus (Ecomposite(3Dd trabecular)) Of the facet pin was calculated. Table 6.3 shows these
estimated values compared to the composite elastic modulus derived from the
biphasic poroelastic axisymmetric model (Ecompositeaxi)) @nd the composite elastic

modulus derived from the specimen-specific solid model (Ecomposite(3p solid))-

Compared with the composite elastic modulus of the bone derived using the
solid specimen-specific model, the values derived using the axisymmetric biphasic
model were similar, as shown in Table 6.3.

There was some difference between these values and the estimated composite
elastic modulus calculated from the specimen-specific trabecular model, even
though all of the elastic modulus values were of a similar magnitude. Approximately
24% difference was found for Specimen 1 and a five-fold difference for Specimen 2.
This indicates that the trabecular bone model in this case is not an appropriate model
to predict the composite modulus or apparent modulus because the model was
dependant on the amount of the nodes constrained at the bottom of the bone and the
location of the contact point as demonstrated in Table 6.2.
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Table 6.3. Comparison of the composite elastic modulus for the facet pin characterised using
axisymmetric biphasic model, linear specimen-specific model and linear solid specimen-
specific model.

Ecomposi te(axi) Ecomposite(3D trabecular) Ecomposi te(3D solid)

M ethod M ethod M ethod

Derived from axisymmetric | Eyy,e derived from 3D linear | Derived from 3D linear solid
biphasic poroelastic model | trabecular model and then | model to fit compression test
to fit compression test data. | calculated from data.

Econposite(SD trabecular) = (Ebone x
%Vione) + (Enuia X YViiia),
where Eﬂuid =0.

Specimen 1 =1.90 MPa Specimen 1 = 2.35 MPa Specimen 1 =1.7 MPa
Specimen 2 = 1.52 MPa Specimen 2 =7.63 MPa Specimen 2 =1.8 MPa

Furthermore, bone quality plays an important role in the deformation of the
subchondral bone as demonstrated in the present experimental studies on ovine
subchondral bone (Section 5.2.3) and weak human subchondral bone (Section
6.3.1). Although the indenter was assumed to be in the centre of the specimen-
specific model, the actual contact location in the experiment could not be very
accurately located. In addition, actual contact between the lower surface of the bone
and the base could not be fully controlled. These uncertainties in the experiment
could be attributable for the error in the properties derived from the specimen-

specific model.

Further computational study was carried out to examine whether the trabecular
architecture affected the cartilage deformation. It was found that the cartilage
deformation generated from the trabecular bone models started to increase
substantially (Figure 6.7) when the elastic modulus of the bone value of 100 MPa

was applied. Moreover, it was demonstrated that the architecture of the trabecular
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bone has an important role, as shown by the difference between the trabecular model
and the solid bone model, described in Section 6.3.4. Therefore, in order to
characterise the properties of the cartilage with weak subchondral bone, the elastic
modulus and the trabecular architecture of the subchondral bone must be considered.

In addition, the permeability of the subchondral bone derived using the
axisymmetric biphasic poroelastic model were 1.00 and 1.41 x10™ m%Ns which
were two orders of magnitude different compared to the experimenta
characterisation on mature bone of 3.7 x10*® m*Ns (Grimm and Williams, 1997,
Nauman et al., 1999, lIsaksson et al., 2009). Although the computational
methodology has the potential to derive the permeability of the bone, a thorough
study of this experiment methodology of the compression test using an indenter of

the bone must be reviewed.

The limitation of this study was the number of the facet pins tested
experimentally. Only two specimens were characterised which was insufficient to
determine the variability in the results. However, the application of the specimen-
specific model could be a potential method of characterising the cartilage properties.
This is because the model could replicate the curvature of the articular cartilage
surface and the trabecular bone architecture of the subchondral bone, which this
study has shown to influence the predicted deformation of the cartilage. Without
these factors, there is likely to be considerable error in the characterisation of the
cartilage properties. Furthermore, this methodology could be applied for assessing

the cartilage properties for different subchondral bone conditions.
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Chapter 7: General Discussion and Conclusions

7.1 Introduction

The work presented in this thesis aimed to characterise the anatomical and
biomechanical behaviour of the spinal facet joints and develop computational
methods to determine the cartilage biphasic properties. Throughout the devel opment
process, investigation of the ovine spine was carried out to evaluate the use of an
ovine facet joint model as arepresentation of the human facet joint. A methodology,
which consisted of experimental and computational methods, was developed in
order to characterise the biomechanical properties of the articular cartilage for the
facet joints. This chapter presents the overal discussion of the work presented in
Chapters 4, 5 and 6, the potential applications and future works. This discussion is

followed with the overall conclusions of the study.

7.2 Overall Discussion

This study has provided further insight into the complex morphology of the
spina facet joint for better understanding of its behaviour. A comprehensive set of
data on the facet articular radius and facet orientation angle of the ovine spine was
established using an improved measurement method based on the uCT scan images.
The qualitative similarities of the facet joint morphology between the ovine and
human spines indicates that the ovine spine could potentially be used to represent
the human spine to study the facet joint during spine motion since a similar range of
motion was found in an experimental study between these two species (Wilke et al.,
1997a).

In the present study, a positive relationship between the facet orientation angle

and axia rotation was obtained for both ovine and human vertebral segments,
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although Ahmed et al. (1990) stated otherwise. Experimental studies have shown
that the mechanica function of the facet joint during axia rotation is to limit and
prevent excessive movement from damaging the intervertebra disc (Adams and
Hutton, 1981, Adams and Hutton, 1983, Stokes, 1988). In addition, the facet
orientation angle has been shown to be an important parameter because it has been
associated with the low back pain related diseases such as lumbar facet joint
osteoarthritis, disc degeneration, disc herniation and degenerative spondylolisthesis
(Boden et al., 1996, Fujiwaraet al., 2001, Kalichman et al., 2009).

Clinicaly, low back pain patients are examined using imaging methods such
as plain radiography, computed tomography (CT) and magnetic resonance imaging
(MRI), after potentially serious conditions have been found in the patient history and
from physical examination (Chou et al., 2007). In the imaging diagnosis, the facet
joints are evaluated based on the scan images with regard to joint space narrowing,
sclerosis, subchondral erosions, cysts and osteophytes (Schwarzer et al., 1995).
Therefore, the facet orientation angle could provide an additional potential
evaluation measurement in the imaging diagnostic for the low back pain patients.
However, further studies are needed in order to implement the measurement of facet
angle from medical scan images and assess the effectiveness of incorporating the

facet orientation angle parameter into the diagnosis of low back pain patients.

Although facet joint artificial implants have been introduced to treat facet joint
related diseases (Wiseman et al., 2005, Goel et al., 2007, Zhu et al., 2007, Regan et
al., 2009), these have yet to prove their long term success, and cartilage tissue
engineering appears to be a promising approach for facet joint cartilage
regeneration. In order to establish the design criteria for tissue engineered materias,
the characterisation of the native cartilage biomechanical properties is required so
that the desired functional properties of the engineered tissue are known. In this
study, the biomechanical properties of the articular cartilage of the ovine facet joint
were determined for the first time to obtain the cartilage thickness, equilibrium
biphasic elastic modulus and permeability as described in Chapter 5. A methodol ogy
which consists of experimental and computational methods, was developed to
characterise the properties using an axisymmetric biphasic poroelastic FE model to
match the cartilage deformation that was generated from the compression test using

an indenter. The derived properties were found to be within the range of the human
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cartilage properties characterised from other synovia joints in the human body. In
addition, a freeze-thaw cycle of the intact facet joints was found to be a potential
storage method for cartilage and facet joint biomechanical research, since the
biphasic properties of the cartilage pins extracted from the intact facet joints were
comparable to the fresh cartilage specimens. Based on these characterisation results,
including the similarities found in the morphology, range of motion, and cartilage
properties, the ovine spine appears to be a good model to represent human spine in
biomechanical facet joint studies.

However, the axisymmetric model used to characterise the properties was
seen to include some error in the estimated cartilage properties since it failed to
represent the actual curvature of the cartilage surface. Therefore, a novel specimen-
specific model was developed to simulate the compression test of the cartilage pin
specimen in order to characterise the biphasic properties of the cartilage. This model
incorporated the actual curvature of the cartilage surface and the trabecular bone
architecture of the subchondral bone. The difference in the characterised cartilage
properties between the specimen-specific model and the axisymmetric model was
35% for the permeability and 13% for the elastic modulus, and moreover the derived
properties were found to vary depending on the radius of the cartilage curvature.
This is in agreement with a computational study carried out by Holzapfel and
Stadler (2006), which reported that the facet curvature was crucia in the contact
stress distribution and played an important role in the load-bearing characteristics
study. At this stage, it is not known at which level of curvature the specimen-
specific modelling becomes necessary, and further investigation is required.
However from the axisymmetric model shown in Section 5.4.5, the derived biphasic
properties were affected when the cartilage surface radius of 40 mm was applied and

became more severe when the radius was decreased.

Although encouraging results were obtained using the specimen-specific
model, a few issues were observed during the development and simulation of the
model which limited the study in this thesis. The Abagus 6.9-1 (DS Simulia Corp.,
Providence, RI, USA) software only provided an eight-node pore pressure element
in order to model the cartilage. However, it was not possible to create hexahedral
element meshes either in Abagus 6.9-1 (DS Simulia Corp., Providence, RI, USA) or
ScanFE v3.1.4 (Simpleware Ltd, Exeter, UK) software. Therefore, the IA-FEMesh
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(University of lowa, 1A, USA) software was used to generate the hexahedral mesh
but severe elemental distortions were found at the curved edge of the cartilage which
led to the necessity to reshape the model to a smaller cuboid specimen-specific
section. In future, the SCIRun (University of Utah, UT, USA) software could be
explored as it has shown the potential to generate smooth hexahedral mesh
(Shepherd and Johnson, 2009) or other hexahedra mesh generation methods that
have been published (Marechal, 2009, Tabacu et al., 2010).

Another important issue was the substantial computational time taken using
the specimen-specific model. Due to this issue, no mesh sensitivity study was
undertaken since re-meshing the model with different numbers of elements would
have been extremely time consuming. Instead, the width and height of the element
was chosen to approximately match that used in the axisymmetric model which was
proven to produce very similar results to the idealised three-dimensional model as
demonstrated in Section 3.7.2. The computational time issue also affected the
characterisation of the cartilage biphasic properties using the specimen-specific
model, where ideally the properties in the specimen-specific model would have been
iteratively changed until the predicted deformation matched the experimental results.
Instead, the axisymmetric model was used to reiterate the properties in the
simulation to match the results generated from the specimen-specific model
experimental data in order to avoid the excessive amount of computational time
taken as described in Section 5.4.6. Despite these issues, promising results were
obtained using the specimen-specific model and the cartilage characterisation

methodology was then implemented in a study of the human facet joint.

In addition to the difficulty in obtaining normal cartilage from the human
specimens, other related problems included the large variation in geometry and
mechanical properties due to differences in age, bone quality, and disc degenerative
changes. The characterisation of the cartilage from human facet joints would provide
useful information as the data has yet to be published, however in the present study,
the cartilage acquired from the human facet joint was totally degenerated and it was
not possible to characterise the properties. Instead, an artificial cartilage layer was
created in the specimen-specific model to observe the effect of the trabecular bone
architecture on the cartilage deformation in the creep-compression test smulation. It

was found that it is important to preserve the architecture of the trabecular bone and
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to apply the correct elastic modulus of the subchondral bone because these factors
affected the cartilage deformation and could be more crucial for the weak bone. It
has been shown in this study that the cartilage deformation generated from the
trabecular bone models started to increase substantially (Figure 6.7) when the elastic
modulus of the bone value of 100 MPa was applied. However, further investigation
is required to relate the elastic modulus of the bone and the level of porosity of the
bone.

Although promising results were obtained using the Abaqus 6.9-1 (DS Simulia
Corp., Providence, RI, USA) software, it would also be beneficia to explore an
aternative software which geared toward the biologica applications. The FEBio
(University of Utah, UT, USA) software which has been specifically written for
biological problems in computational biomechanics has shown the potentia of
generating similar results compared to Abaqus software (Maas et al., 2009). In
addition, the present study only modelled the contact interaction between the
cartilage surface and the impermeabl e indenter surface. The next step is to model the
contact between the cartilage surfaces (Pawaskar, 2010). This could lead to the
modelling of the whole facet joint and finally for more complex model of the

vertebral segment with complete detail of facet joint.

7.3 Conclusions

In the spina research field, animal models have often been used due to the
difficulties in obtaining human spines and moreover, the large variation in the
biomechanical properties of the human specimens. The ovine spine appears to be a
good model to represent the human spine in facet joint studies based on the
following facts: the morphology similarities between these two species, as presented
in Chapter 4; the biomechanical properties of the articular cartilage of the ovine
facet joint being within the range of human cartilage properties, as described in
Chapter 5; and the similar ranges of motion in al directions which were observed in
an experimental study published previously (Wilke et al., 1997a).

A successful methodology was achieved to characterise the cartilage

biomechanical properties of the facet joint using the experimental and computational
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methods. However, the assumption that the cartilage pin specimen has a flat surface
in the axisymmetric FE model will limit the accuracy of the derived cartilage
properties. A novel specimen-specific FE model was developed to replicate the
actual curvature of the cartilage surface and subsequently derive the cartilage
biphasic properties. In this study, the difference in the characterised cartilage
properties determined using the specimen-specific model compared to the flat
axisymmetric model were found to be 35% for the permeability and 13% for the
elastic modulus, and these may vary depending on the radius of the cartilage surface.

Furthermore, the specimen-specific model was able to model the trabecular
bone architecture of the subchondral bone. Results from a pilot computational study
on human facet joint specimens show that the elastic modulus and trabecular
architecture of the subchondral bone affected the cartilage deformation in a
compression test and therefore will influence the characteristic biphasic properties of

the cartilage.

This novel approach of using the specimen-specific model to characterise the
cartilage biomechanical properties has provided new prospects for future work in
cartilage research since the model incorporated the cartilage surface curvature and
the trabecular architecture of the subchondral bone, which were observed to be
important aspects in the cartilage properties characterisation. This methodology
could potentially be used to characterise the cartilage of the facet joint for other
species and the cartilage from other synovial joints. Furthermore, the
characterisation of the cartilage biomechanical properties could be performed under

various subchondra bone conditions including the osteoporotic bone.
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Appendix | : pCT Scan I mage of Facet Joint for Spine 2

Table A-1. uCT scan images of the ovine facet joint for Spine 2.

Vszgribern?l MCT Scan Image Vszg[ribernat‘l MCT Scan Image
Cc2C3 T8T9
C4Cs T10T11
CeC7 T12T13
T2T3 L1L2
T4T5 L3L4
T6T7 L5L6
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Spine: “Investigation of the sheep spine as a biomechanical model for human spines
in facet joint study”, Abd Latif, M.J.; Jin, Z.; and Wilcox, R.K. (2011).

Journal of Biomechanics:. “Biomechanical characterisation of ovine spinal facet joint
cartilage”, Abd Latif, M.J.; Jin, Z.; and Wilcox, R.K. (2011).

Conference Oral Presentation

4" |nternational Conference of Computational Bioengineering (2009), Bertinoro,
Italy;

17th Congress of the European Society of Biomechanics 2010, Edinburgh, UK;

6th World Congress on Biomechanics 2010, Singapore.

Conference Poster Presentation
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Appendix I11: Abstract for 4™ International Conference of
Computational Bioengineering (2009).

Morphological Study of Ovine Spinal Facet Joints
Mohd Juzaila Abd Latif, Zhongmin Jin and Ruth K. Wilcox

Introduction

The ovine spine is often used as a model for the human spine, although the
anatomical comparisons of the spinal facet joints have yet to be established. The
facet joints are important in governing the kinematics of the spine and a recent
computationa study has shown that the level of curvature of the facet surfaces has a
significant effect on the segment load-displacement characteristics and the facet
stress distribution (Holzapfel, 2006).

Although studies have been made to characterise the facet curvature (van
Schaik, 1999; McLain, 2002), newer imaging methodologies will now alow more
accurate characterisation. The purpose of this study was to develop a new method to
characterise the facet curvature from micro-computed tomography (uCT) images
and investigate the morphology of ovine spinal facet joints.

Methods

Two female Texe ovine spines (age, 4 to 5 years) were dissected into two-
vertebra segments and imaged using uCT. The scan plane was paralé to the upper
endplate of the segmented vertebra. The facet orientation angles were evaluated
using the transverse scan images as shown in Figure 1.

Figure 1: Facet orientation angle measurement.

Based on the active contour segmentation method [Chan, 2001], the facet joint
images were segmented and the edge was detected using the Canny method in a
MatLab (MathWorks Inc.) program. Boundaries were then created at the superior
and inferior curvatures of the facet articular surface and the points along the
boundaries were extracted. The points were used to create circles using a least-
squares method to determine the superior and inferior facetsradii asin Figure 2.



- 166 -

Input Image Boundary Trace and Circle Fit
Posterior Estimated superior radius = 3.224 mm

Estimated inferior radius = 2.963 mm

Anterior
Figure2: Transverse facet radius measur ement.

Results

The measurements of the facet radii and angles from the lumbar region are
illustrated in Figure 3. The facet joints of the thoracic vertebral segments from T2 to
T11 were found to be virtualy flat.
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=3 Inferior Radius
—o— Facet Angle
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\

._.
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Figure 3: Results of facet radius and angle.

Discussion

This anatomical study described a new method to characterise the facet joint
curvature using uCT. The results provide a comprehensive morphologic database of
the Texd ovine facet joints curvature. Although there were differences in the facet
radius compared with the human, the lumbar region possesses similar curvature and
might be used as amodel for the human spine.
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Appendix 1V: Abstract for 6" World Congress on Biomechanics
2010.

Biomechanical Characterisation of Ovine Facet Joint Cartilage
Mohd Juzaila Abd Latif, Zhongmin Jin and Ruth K. Wilcox

Introduction

Articular cartilage has been extensively characterised in previous studies for
many synovial joints, however there has been limited investigation of the spinal
facet joint. Only recently the facet cartilage biomechanical properties have been
characterised for the first time using canine lumbar vertebrae [1]. However in
studies of biomechanics, ovine spines are more often used due to the anatomy and
range of motion being similar to the human sping[2,3].

This study therefore aimed to characterise the ovine facet joint cartilage to
obtain the biphasic properties of elastic modulus and permeability. In addition, a
novel specimen-specific model which included the structure of the subchondral bone
was developed for further investigation.

M ethods

Cylindrical cartilage pins (n=10) were harvested from Texel ovine cervica
facet joints (C2-C7) between 4-5 years old. The specimens were kept between 2-5°C
overnight and tested within 24 hours. In order to evaluate the cartilage thickness, the
specimens were imaged using micro-computed tomography (UCT). In addition,
indentation tests were undertaken using a needle indenter for comparison purposes.

The biphasic experimental data were obtained from creep indentation tests
using a 2 mm diameter spherical indenter subjected to 0.24 N load for 30 minutes.
Both 2D and 3D specimen-specific poroelastic biphasic finite element models of the
specimens were generated. The 2D models assumed axisymmetry whilst the 3D
model were based on the pCT scan images following segmentation (ScanlP,
Simpleware Ltd., UK). All of the models were solved using Abaqus (Simulia Corp.,
RI, USA). The elastic modulus and permeability of cartilage were derived by curve-
fitting the computational prediction of the displacement from the FE model to the
corresponding experiment indentation datg[4].

Results

Good agreement was found (2% difference) between the uCT and indentation
measurement of the cartilage thickness with the average thickness of 0.52+0.1 mm.
However, it was found that an appropriate weight (>4N) must be applied for the
indentation test. The properties derived from the FE models were 0.76+0.3 MPa for
the biphasic elastic modulus and 1.61+1.1 x 10-15 m4/Ns for the permeability.

Discussion

This study provides the cartilage biphasic properties for the ovine facet joints.
The use of the finite element models enabled the cartilage properties to be obtained
whilst taking into account the individual specimen geometry. The properties
obtained were found to be in a similar range to human cartilage from other synovial
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joints. The 3D finite element models will now be used to investigate the effect of
subchondral bone stiffness during the cartilage indentation. This analysis could be
extended to the osteoarthritis studies as increasing evidence suggests that
subchondral bone and cartilage health seem to be closely related in the progression
of osteoarthritig[5].
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