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Abstract 

Seed quality is of paramount importance to agriculture, food security and plant 

conservation programs. However, our understanding of the molecular aspects 

determining seed quality is far from complete, and the influence of 

environmental conditions during seed development and post-harvest storage 

are poorly characterised. There is accumulating evidence that DNA damage, 

response and repair mechanisms are major factors that control germination 

performance. Here, levels of DNA damage were analysed to determine the 

effects of unfavourable environments during seed development and 

deterioration in storage on genome integrity. In response to DNA damage, 

plants display a highly specific transcriptional response to double strand 

breaks (DSBs). This response was found to be highly sensitive to seed 

ageing. A slight reduction in seed vigour accompanied a reduced ability to 

respond effectively to DNA damage upon imbibition, indicating that an 

impaired DNA damage response is an early symptom of seed deterioration. 

Analysis identified the specific forms of DNA damage associated with seed 

ageing. Levels of single strand DNA breaks (SSBs) increased with loss of 

seed viability. Similarly DNA base damage, in the form of 8oxoG residues, 

increased in the dry seed following accelerated ageing. Evidence of repair of 

this base damage was identified within nine hours imbibition. Suboptimal 

temperature in the maternal environment did not significantly influence levels 

of these lesions, consistent with pathways mitigating DNA damage active 

during seed development. A requirement for antioxidant activity in genome 

protection was also studied using mutants with reduced levels of the 

antioxidant vitamin C. Understanding the molecular differences seen between 

high quality seeds and those that have undergone different degradation 

conditions provides insight into the process by which seeds lose the capacity 

to germination. Future analysis in different species will determine the utility of 

DNA damage related biomarkers for seed quality and identify potential genetic 

targets to improve seed performance. 
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1.1   DNA damage in plants 

Plants are continuously exposed to environmental stresses and oxidative 

species generated by cellular metabolism which compromise genome integrity 

throughout their developmental cycle (Waterworth et al., 2011). Unrepaired 

DNA damage can lead to arrested growth and development, mutations and 

cell death. Organisms have therefore evolved complex networks of DNA repair 

and response factors to restore genome integrity (Lindahl and Wood, 1999). 

Due to an absolute dependence of plant growth on cell division in the root and 

shoot apical meristems, the potentially harmful effects of DNA damage in 

these regions must be particularly tightly controlled (Heyman et al., 2014). Any 

mutations arising in meristematic cells have the potential for transmission to 

the next generation (Ries et al., 2000). Plants are sessile, photosynthetic 

organisms, which renders them particularly vulnerable to DNA damage 

through a dependence on light for photosynthesis, and consequently constant 

UV exposure, and the inability to escape genotoxic stresses in their 

environment. Furthermore, seeds are exposed to high levels of genotoxic 

stress as a consequence of desiccation/rehydration cycles and extended 

periods in  a dry quiescent state, which are associated with high levels of 

oxidative damage (Bailly, 2004; Rajjou et al., 2012; Waterworth et al., 2015).  

1.1.1  Ultraviolet damage 

An absolute reliance on sunlight for photosynthesis exposes plant cells to 

ultraviolet (UV) radiation. UV light lies between 10nm and 400nm on the 

electromagnetic spectrum. UV-A (320nm-400nm) and UV-B (280nm-320nm) 

are the only forms capable of penetrating the Earth’s atmosphere, with around 

95% being UV-A. UV-B however is responsible for most UV-induced DNA 

malformations in plants (Jansen et al., 1998), typically accumulating as 

dimerization of adjacent pyrimidine bases. There are two main UV-induced 

lesions; cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-

4) photoproducts (6-4PPs). CPDs constitute around 75% of these lesions 

(Waterworth et al., 2002), and if left unrepaired these dimers are capable of 

blocking transcription and DNA replication. The removal of pyrimidine dimers 

occurs through either of two pathways, the light-dependant direct reversal 
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pathway or ‘dark repair mechanisms’ of nucleotide excision repair (Waterworth 

et al., 2002).  

1.1.2  Alkylation and hydrolysis 

Alkylation occurs when hydrocarbons are bound to nucleotide residues. 

Although DNA damage can occur through alkylation, the process also includes 

methylation events which generate epigenetic changes within genomes. The 

methylation of cytosine at the 5-carbon location typically causes transcriptional 

silencing and is used to commonly “switch off” genes (Gehring and Henikoff, 

2008). Despite the utility of alkylation in epigenetics, it can also cause 

genotoxicity in cells. Induction of alkylation using ethylmethane sulfonate 

(EMS) in Arabidopsis has been used to generate point mutations allowing for 

forward genetic screening of biological processes. EMS induces methylation 

in guanine which promotes guanine-thymine base pairing and C to T 

transitions (Qu and Qin, 2014).  

1.1.3  Oxidative damage 

Reactive oxygen species (ROS) are generated as part of normal plant cellular 

metabolism. In excess, ROS can be extremely destructive within a cell, 

causing damage to macromolecules including lipids, proteins, RNA and DNA. 

In animals oxidative lesions are up to 15 times more abundant than 

depurination, the next largest contributor to base damage (Bray and West, 

2005). 

Despite their destructive nature, ROS are also utilised within plant cells as 

signalling molecules in processes such as PCD, pathogenic responses and 

responses to stress (Mittler, 2002). The levels of ROS rise under stressful 

conditions, threatening the oxidative equilibrium and reaching an upper 

threshold at which damage begins to occur. As plants are sessile organisms 

they must tolerate exogenous stresses in their environment such as heavy 

metals, heat and water availability which can generate additional oxidative 

damage (Sethy and Ghosh, 2013; Wen et al., 2016). Oxidative lesions to DNA 

can cause mutations which, if left unchecked, could result in permanent 

mutations or cell death. 
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High levels of oxidative damage associated with desiccation/rehydration 

cycles and the inactivation of protection and repair mechanisms in the 

desiccated state repair is considered a major cause in reduction of seed quality 

(Bailly, 2004; Rajjou et al., 2012; Sano et al., 2015). The very low metabolic 

activity in the dry seed means repair cannot occur until imbibition and the 

commencement of germination processes.  

One of the main genomic lesions associated with oxidative damage is 8-oxo-

7,8-dihydroguanine (8-oxoG), a modification of the nucleotide guanine 

(Kanvah et al., 2010). Guanine is the most commonly oxidised base due to its 

low oxidation potential, readily causing reactions with ROS, especially when 

as part of a chain of successive guanine molecules (GG..) (Saito et al., 1998). 

Increased presence of 8-oxoG has the potential to cause mutagenesis due to 

erroneous pairing with adenosine (rather than cytosine) causing C-to-A 

transitions and subsequently G-to-T transitions following excision of the 8-

oxoG (Shibutani et al., 1991) (Figure 1.1). These transitions are incorporated 

during DNA replication and mutations are passed on to daughter cells.  

Several studies now identify that damage to nuclear DNA is a major factor in 

the reduction of seed quality, especially during extended periods of storage 

(Balestrazzi et al., 2011; Waterworth et al., 2016). Orthodox seeds have 

enhanced mechanisms to handle the generation of excessive reactive species 

in order to survive storage whilst minimising damage. By lowering seed 

moisture content and thereby reducing metabolic activity, production of ROS 

is reduced (Rajjou et al., 2012). However due to the cessation of most 

metabolic activities any enzymatic repair activity is minimal. ROS build-up in 

tissues, and resulting damage, is therefore irreparable until resumption of 

normal metabolism (Smirnoff, 1993). Upon seed imbibition, any ROS 

accumulated within cellular structures are released, causing a large ‘burst’ of 

oxidative damage which must be countered by detoxifying enzyme and anti-

oxidant systems, along with the repair of any damage they cause (Bailly, 

2004). The systems utilised to handle this burst of oxidative damage can easily 

be overwhelmed, especially in lower quality seeds which show a reduction in 

antioxidant activity, subsequently lowering seed vigour and final germination 

performance (Pukacka, 1991; De Vos et al., 1994; Bailly, 2004). Excessive 
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storage over long periods of time, or in high temperature and humidity 

environments, drastically increase ROS production in planta, leading to an 

increase in damage and reduction in overall seed quality (Bailly, 2004; Tian et 

al., 2008).  

 

[A] 

 

 

 

 

[B] 

 

 

 

 

 

Figure 1.1 Guanine:cytosine base pairing  

Guanine typically pairs to cytosine in the genome through three hydrogen 

bonds [A]. Following oxidation of the C8 molecule guanine changes 

conformation and binds to adenine to create a Hoogsten base pair [B]. 
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Oxidation to DNA can lead to mutations through transversions and mis-pairing 

but can also cause single strand breaks through normal repair processes. 

Oxidised guanine molecules are repaired via the base excision repair (BER) 

pathway which can generate single strand breaks in order to remove the 

oxidised base and replace it with a newly synthesised guanine molecule 

(Section 1.2.4). Strand breaks are highly genotoxic as they increase the risk 

of losing genetic information if left unrepaired.  

1.1.4  DNA strand breaks 

Single and double strand DNA breaks threaten genomic stability due to the 

potential for loss of genetic information. Excess amounts of reactive oxygen 

species are responsible for the majority of DNA strand breaks through 

oxidation of the phosphodiester bond between nucleotides (Britt, 1996). The 

induction of strand breaks is possible through several methods including 

exposure to gamma radiation and introduction of radiomimetic compounds, 

most of which break the phosphodiester bonds between nucleotides on the 

same strand through increased levels of ROS in the cell. 

Single strand DNA breaks (SSBs) typically pose less of a cytotoxic threat than 

DNA double strand breaks (DSBs) as the former retains the availability of the 

intact strand to replace missing nucleotides via complementary base pairing. 

SSBs are also often the intermediate by-product formed in DNA repair 

processes. Following damage to a base, the repair machinery will usually 

generate SSBs by excising the damaged base or a short stretch of nucleotides 

and replacing it with newly synthesised DNA (Bray and West, 2005). A single 

strand break can be created in different ways, including by a dual AP 

lyase/glycosylase enzyme that recognises certain base lesions and remove 

the affected nucleotide, leaving an abasic site (such as FPG and oxidised 

guanine molecules).  

Double strand DNA breaks are the most cytotoxic form of DNA damage, with 

a single unrepaired DSB being sufficient to cause death in yeast cells (Bennett 

et al., 1996). This is due to the potential loss of genetic information on both 

strands of the DNA and the loss in the continuity of the double helix. If left 

unrepaired, double strand breaks can cause fragmentation of chromosomes, 
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with substantial loss of genetic information following DNA replication and cell 

division. Depending on the level of DSBs or the amount of genetic information 

lost, this can result in cell death or severe mutations. DSBs can be induced 

through ionising radiation, where both strands of the duplex are subjected to 

simultaneous oxidation causing breaks to form, or through compounds such 

as bleomycin. Bleomycin is thought to primarily act by chelating metal ions, 

which in turn enhance the production of superoxide radicals following 

interaction with oxygen. These localised high concentrations of ROS attack 

the phosphodiester bonds resulting in the detachment of neighbouring 

nucleotides on both DNA strands. Double strand breaks need to be repaired 

quickly in order to avoid cellular catastrophe and there are two highly 

conserved mechanisms that deal with repair of these lesions, homologous 

recombination (HR) and non-homologous end joining (NHEJ).  

1.2   DNA repair in plants 

Accumulation of damage to the genome is highly undesirable because of the 

potential consequences for plant growth and development, but also the 

contribution of mutations to the germline and ultimately to the next generation. 

DNA damage must either be prevented or repaired in order to retain the 

original, intact genome. Thus, due to a highly stressful life cycle, DNA repair 

mechanisms need to be efficient, especially given that plant meristem cells 

give rise to reproductive tissues at a relative late stage of development 

(Sablowski, 2004). However, plants have developed particularly robust 

mechanisms to both protect themselves from genome damage and to repair 

any lesions that do occur (Waterworth et al., 2011). The mechanisms behind 

DNA repair are broadly conserved across eukaryotes, reflecting their 

fundamental importance for cellular survival. However, there are several key 

differences between eukaryotes. For example, plants, unlike mammals, do not 

contain p53 or Chk1 important mediators of cell cycle progression during 

genotoxic stress. Although our understanding is more advanced in animal and 

yeast models, our knowledge of repair mechanisms in higher plants has 

greatly increased in the last two decades. In particular dependence of plant 

genome modification technologies on DSB repair pathways, also termed DNA 

recombination pathway, has focussed research on the underlying 
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mechanisms. Plants appear to have higher tolerance for DNA damage in 

comparison to other organisms, possibly because they are exposed to higher 

levels of genotoxic stress as a consequence of their sessile, auxotrophic 

nature (Killion and Constantin, 1971; Britt, 1996).  

1.2.1  DNA repair synthesis  

In all forms of repair in plants, with the exception of direct reversal mechanisms 

that operate on alkylated nucleotides and UV dimers, synthesis of new DNA 

is required to replace the damaged or excised nucleotides. 

Deoxyribonucleotides (dNTPs) are synthesised by de novo or through salvage 

pathways and are used by DNA polymerases in repair synthesis (Bray et al., 

2008).  

Ribonucleotide reductase (RNR) is required during de novo synthesis of 

dNTPs. RNR is an essential enzyme which acts in a rate limiting step to 

catalyse the reduction of ribonucleoside diphosphates (NDPs) to 

deoxyribonucleoside diphosphates (dNDPs). The protein consists of four 

molecules comprising two large (R1) and two small (R2) subunits. The R1 

units are responsible for binding NDPs and provide feedback on cellular levels 

to ensure that a constant supply is available for DNA repair and RNA 

synthesis. The larger R2 subunit is responsible for the production of dNDPs 

from NDPs via an intrinsic di-iron tyrosyl radical cofactor (Kolberg et al., 2004). 

In Arabidopsis three genes encoding R2 subunits have been discovered: 

RNR2A, RNR2B and TSO2 (Wang and Liu, 2006). TSO2 increases in 

expression in the  presence of double stranded DNA damage induced by 

bleomycin treatment, and levels rise further in atr mutants, and form part of the 

ATM-mediated DNA damage response (section 1.6.2) (Roa et al., 2009). 

RNR2A and RNR2B expression levels rise in the presence of hydroxyurea, a 

replication-blocking agent. This transcriptional induction is reduced in atr 

mutants, and this induction may play a role in the response to replication stress 

(Roa et al., 2009). RNR activity and nucleotide production is intrinsically linked 

to DNA repair, with defective RNR activity in yeast and mammals leading to 

cell cycle arrest and retarded growth (Kolberg et al., 2004). Levels of dNTPs 

also rise up to 8-fold following DNA damage suggesting increased levels 

precede repair synthesis (Chabes et al., 2003; Kolberg et al., 2004). However, 
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steady state cellular levels of dNDPs are tightly controlled in normal conditions 

with increased RNR activity leading to increased DNA repair, but also  higher 

mutation rates (Chabes et al., 2003).  

The second pathway involved in deoxyribonucleotide synthesis involves the 

salvaging of deoxyribonucleosides by phosphorylation, generating 5’-

monophosphate deoxyribonucleosides. The process is mediated by 

deoxyribonucleoside kinases (dNKs), which are well characterised in 

mammals but are absent in fungi (Sandrini and Piškur, 2005). The salvage 

mechanism and the specific enzymes required vary widely throughout 

kingdoms, with fruit fly (Drosophila melanogaster) containing one gene 

encoding four different dNK activities, whereas humans have four different 

dNK genes for the same activity. The four genes involved in the human 

salvage pathway are thymidine kinase 1 (TK1), thymidine kinase 2 (TK2) 

deoxycytosine kinase (dCK) and deoxyguanosine kinase (dGK) (Welin et al., 

2004). In Arabidopsis two genes have been identified with sequence similarity 

to the human TK1 gene and have been termed TK1a and TK1b. One further 

gene has shown dGK, dCK and deoxyadenosine kinase (dAK) properties, 

suggesting three genes are involved in the salvaging pathway in Arabidopsis 

(Clausen et al., 2012). Originally TK1a and TK1b were thought to have 

analogous roles in the salvaging of deoxyribonucleosides. This was due to 

single tka1 or tka2 knockout plants showing no phenotypic differences but 

double tka1/tka2 mutants dying at an early stage; this also identifies the 

importance of scavenging early in plant development (Clausen et al., 2012). 

However recent studies show transcriptional induction of TK1a transcripts, but 

not TK1b, following UV treatment. This suggests that  TK1a is the major gene 

involved in salvaging as a response to DNA damage (Pedroza-García et al., 

2015). Upregulation of TK1a also led to increased resistance to genotoxic 

lesions including base lesions and double strand breaks, suggesting a role for 

TK1a in several DNA repair pathways (Pedroza-García et al., 2015). 

1.2.2  Single strand DNA damage and base lesions 

DNA damage lesions incurred by a single strand of the DNA duplex represent 

a less genotoxic threat to genome stability than DSBs. Single stranded DNA 

damage vary in abundance and severity, with photoproducts being repaired 
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without the need for breaking the strand in a “direct reversal” reaction, whereas 

nucleotide excision repair requires excision and replacement of 

oligonucleotides from the genome (Wood, 1996).  

1.2.2.1 Photoreactivation and direct reversal 

DNA is capable of repairing ultraviolet (UV) photoproducts through direct 

chemical reversal which does not require the incision of the phosphodiester 

backbone of DNA. Two enzymes are required for the reversal of the two UV-

B induced photoproducts in Arabidopsis in light-dependent reactions driven by 

UV-A and blue light (Sancar, 1996). Cyclobutane pyrimidine dimers (CPDs) 

are removed using CPD photolyase and pyrimidine (6-4)pyrimidones (6-4PPs) 

are removed with 6-44PP photolyase. Plants deficient in either of these 

photolyases display increased UV sensitivity (Sancar, 1994; Jiang et al., 1997; 

Waterworth et al., 2002).  Due to the lack of photosynthetic activity in seeds 

and protection from UV light by the seed coat, photolyases are absent in 

Arabidopsis seeds but are found in large amounts in emerged seedlings (Pang 

and Hays, 1991).  

1.2.2.2 Base excision repair 

Base damage is repaired by base excision repair (BER), a very well-conserved 

pathway which is found throughout all kingdoms with examples of the 

mechanism present in bacteria through to humans. BER is mainly responsible 

for the repair of smaller lesions such as oxidative damage to bases, 

deamination, removal of methylation and the removal and replacement of 

incorrect bases (Córdoba-Cañero et al., 2009). The BER pathway is of great 

importance due to the prevalence of large levels of base damage in 

comparison to other damage types. The highly conserved nature of the 

pathway reflects the necessity for cells to cope with large amounts of base 

lesions that occur in several variations. Each base lesion that occurs in 

genomic DNA has a specific glycosylase activity associated with removal 

followed by strand incision in order to remove the damaged bases, again with 

the exception of direct reversal reactions. These glycosylases generate single 

strand breaks as an intermediate product of repair which in dry Zea mays 

seeds accounted for 38 AP sites per 106 bases (Dandoy et al., 1987).  



- 11 - 

Uracil is erroneously incorporated into DNA or produced through hydrolytic 

deamination of cytosine at estimated rates of 100 lesions per cell per day in a 

genome of 3,000 Mbp (Britt, 1996).  The importance of this pathway in seeds 

is also exemplified through the increased accumulation of 8-oxoG lesions 

through storage and imbibition (Chen et al., 2012). 8-oxoG is the main 

oxidative lesion in plants and repair occurs through the BER pathway (Kimura 

and Sakaguchi, 2006).  

Although different organisms have distinct BER pathways, the steps involved 

follow a similar pattern and begin with the recognition of a base lesion by 

lesion-specific DNA glycosylases. In the case of oxidation and the 8-oxoG 

lesion, the glycosylase used is either FPG or OGG, with plants the only 

organisms known to contain both (Murphy and George, 2005). These 

glycosylases cleave the damaged base, creating an apurinic or apyrimidinic 

site, before an AP endonuclease or AP lyase incises the phosphate backbone 

5’ to the abasic site (Britt, 1996). This leaves the strand with two exposed ends, 

a 3’-OH and a 5’-deoxyribose-5-phosphate (5’dRP). This break is then filled 

with the correct nucleotide (short-patch BER) or there is resection along the 

strand and 2-10 nucleotides are replaced (long-patch BER) (Córdoba-Cañero 

et al., 2009). The gap is filled by a DNA polymerase and a phosphodiester 

bond is generated between the 3’-OH and the 5’-phosphate using a DNA 

ligase, thought to be DNA ligase I (Córdoba-Cañero et al., 2011). 

1.2.2.3 Nucleotide excision repair 

Nucleotide excision repair (NER) is responsible for the removal of a wide 

variety of lesions in genomic DNA, ranging  from photoproducts that are 

unrepaired by direct reversal through to bulky helical distortions (Kunz et al., 

2005). NER is extensively studied in mammals due to the contribution of the 

repair system in photosensitive syndromes such as xeroderma pigmentosum 

(XP) (Friedberg, 2001). 

The multistep mechanism of NER relies on detection of lesions, incision of the 

strand either side of the damaged nucleotides, excision of several nucleotides 

surrounding the lesion and synthesis/ligation of new DNA to fill the gap. There 

are two pathways involved in the detection of damage in the NER pathway.  
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One is closely coupled to transcription, directly interacting with the 

transcription complex, and is named the transcription coupled repair pathway 

(NER-TCR). This pathway preferentially targets genomic regions that are 

undergoing transcription in order to avoid the transcriptional machinery 

encountering deleterious lesions (Kunz et al., 2005).  The alternative pathway 

is known as global genome repair (NER-GGR) and is responsible for genome-

wide repair through recognition of UV-products by DNA Damage Binding 

proteins 1 and 2 (DDB1/DDB2) (Scrima et al., 2008).  

Following recognition both pathways rely on DNA unwinding at the site of 

damage, mediated by general transcription factor-IIH (GTFIIH). In humans the 

NER pathways is well studied and excision relies on either XERODERMA 

PIGMENTODUM GROUP B (XPB) or a complex consisting of two proteins: 

XPD and EXCISION REPAIR CROSS-COMPLEMENTING PROTEIN 1 

(ERCC1), with homologues present in Arabidopsis (Liu et al., 2000; Vonarx et 

al., 2006). After the affected lesion, along with several nucleotides either side, 

are removed, DNA polymerase is involved in synthesis of nucleotides to 

replace the removed oligonucleotide. Ligation occurs, restoring the affected 

strand to its original sequence. 

1.2.3  Repair of double stranded DNA breaks 

Double stranded, or chromosomal, breaks (DSBs) are the most cytotoxic form 

of DNA damage within the genome. The cellular consequences of these 

deleterious lesions increase in severity in actively dividing cells, such as the 

plant meristems, where cell division in the presence of DSBs produces clonal 

mutant cells (Sablowski, 2007; Waterworth et al., 2015). As such the repair of 

double strand DNA breaks is imperative in maintenance of genomic stability. 

The persistence of these lesions upon germination, when plant meristems are 

activated, poses a serious threat to subsequent cell lineages arising from the 

undifferentiated stem cells (Waterworth et al., 2016). There are two major 

repair mechanisms for these lesions. Homologous recombination (HR) utilises 

a nearby sister strand in order to direct base-pairing-related repair, and error-

prone non-homologous end joining (NHEJ), or illegitimate recombination, 

which does not require a template and randomly joins broken DNA ends. 
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1.2.3.1  Homologous recombination 

Homologous recombination (HR) relies on the availability of a highly similar 

sequence in the genome to guide repair activity. Initially, following the 

detection of a DSB, exonucleases resect DNA creating long 3’ single strands. 

From this point there are three separate pathways to DSB repair; single strand 

annealing (SSA), synthesis dependant strand annealing (SDSA) and the 

double strand break repair model (DSBR) (Figure 2.2).  

SDSA and DSBR are initiated in a similar fashion: double strand breaks are 

bound by stabilising proteins, notably the MRN (MRE11, RAD50 and NBS1) 

complex, followed by 3’ resection, generating long single stranded regions of 

DNA (Jazayeri et al., 2006). These strands invade DNA duplexes in the search 

for homology mediated by RAD51. RAD51 is essential in homologous 

recombination and indispensable for meiotic development of gametes. Despite 

this, rad51 mutant Arabidopsis plants are otherwise phenotypically normal, 

even in the presence of DSB-inducing toxins, suggesting minor roles for HR in 

maintenance of plant genomic integrity in vegetative tissues (Li et al., 2004). 

Following the RAD51-mediated invasion of the resected strand into duplex 

DNA, one strand of the invaded duplex is displaced, creating a ‘D-loop’ 

(Waterworth et al., 2011). This is the point at which SDSA and DSBR repair 

mechanisms diverge. 

In the SDSA pathway the invading strand uses homology from the template 

duplex DNA to restore the original sequence. The invading strand then 

dissociates from the invaded duplex and re-joins with the free DNA end at the 

other side of the break. Any missing bases are synthesised based on the newly 

synthesised DNA, usually restoring the original sequence. If the invading 

strand does not dissociate and nucleotide synthesis continues until the end of 

the invaded chromosome, this is termed break-induced repair (BIR). However, 

BIR is not considered a major contributor to DSB repair in plants (Schubert et 

al., 2011). 
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Figure 1.2 Homologous recombination pathways 

The three different pathways involved in HR. Single strand annealing (SSA) is the 

most common pathway and repairs most double strand breaks occurring between 

repeated sequences, however the intervening sequence is lost upon ligation. 

Synthesis dependant strand annealing (SDSA) best described HR products in plants 

and the double strand break repair model (DSBR) shows how chromosomes have 

the capacity to cross-over, a feature utilised during meiosis. (Waterworth et al., 2011)  
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DSBR is capable of generating crossovers between the damaged chromatid 

and the template chromatid. Following D-loop formation, the displaced strand 

joins to the 3’ site on the opposite strand of the original break. This causes the 

two chromatids to become linked through homology base pairing and a double 

Holliday junction is formed. Resolution of Holliday junctions results in one of 

two final products. In one, the invading strand will “crossover” to the duplex 

DNA in which it was searching for homology and become permanently 

associated with that chromatid from the break site to the 5’ end. The second 

resolution exchanges the region of homology where the invading strand enters 

the duplex DNA with the original displaced strand. This replaces the 

intervening sequence between the break site and the end of the 3’resection. 

The final resolution is based on where the intervening DNA strand and the 

dissociated strand are cut (Mazon et al., 2010).  

Single strand annealing (SSA) is thought to be the most utilised method of 

efficient HR repair in plants and occurs when DSBs form in stretches of DNA 

containing sequence repeats (Siebert and Puchta, 2002). Unlike other HR 

pathways, SSA does not require a template sequence, rather following 

resection of 5’ ends the two single-stranded, repeating regions ligate together 

and the intervening sequence is lost.  

1.2.3.2 Non-homologous end joining 

The second mechanism of double strand break repair (DSBR) is error-prone 

non-homologous end joining (NHEJ), which repairs DSBs independently of 

DNA sequence. NHEJ is the predominating mechanism of DSBR in organisms 

with larger genomes, such as higher plants and animals, unlike yeast and the 

moss Physcomitrella patens in which HR is the principal mechanism. Most 

DSBR in somatic tissues is performed by NHEJ pathway(s) in most 

eukaryotes, and there is an incredible flexibility in the forms of DNA broken 

ends this mechanism is capable of repairing. In the canonical (classic) NHEJ 

pathway (c-NHEJ), which is conserved across eukaryotes, Ku70 and Ku80 

proteins initiate repair by binding to either end of the broken duplex DNA. This 

is followed by recruitment of the MRN (Mre11-Rad50-Nbs1) complex to the 

site of broken DNA ends, where end-processing begins to allow the XRCC4-

DNA ligase 4 (Lig4) complex to initiate joining of the broken ends (West et al., 
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2000; West et al., 2004). Because NHEJ is reliant on processing of broken 

DNA ends and ligation of the final product, with no homology necessary, it is 

often associated with varied levels of deletions and insertions (Roy, 2014). 

Higher plant NHEJ mutants still retain capacity to repair double strand breaks, 

although their exact roles and contribution to the overall processing of double 

strand breaks is yet to be fully elucidated (Bray and West, 2005). Unlike in 

mammals, in which their counterparts are often lethal, mutants such as 

ku70/ku80 and lig4, are phenotypically indistinguishable from wild type plants 

under physiological growth conditions. These mutants do display sensitive to 

DSB-inducing treatments such as X-rays, indicating that they have a major 

role to play in enhanced genotoxic stress (Riha et al., 2002; West et al., 2004). 

ku70 and ku80 mutants also show telomere length abnormalities, indicating a 

function in telomere maintenance (West et al., 2002; van Attikum et al., 2003).  

1.3   Responses to DNA damage in plants 

Upon detection of DNA damage a cascade of signalling and repair proteins 

are activated to quickly and efficiently ensure that genome integrity is not 

compromised. The DNA Damage Response (DDR) is a well conserved 

pathway that initiates in the presence of double strand DNA breaks and is 

mediated by the ATAXIA TELANGIECTASIA MUTATED (ATM) protein.  

1.3.1  ATM and ATR: the signalling kinases 

The initial responses are coordinated by two phosphoinositide-3-kinase-

related protein kinases (PIKKs) in plants. ATAXIA TELANGIECTASIA 

MUTATED (ATM) mainly co-ordinates the response to double strand break 

and ATAXIA TELANGIECTASIA MUTATED and Rad3 related (ATR) typically 

responds to replication defects. These two PIKKs activate several downstream 

responses including cell cycle arrest, transcriptional induction of DNA repair 

associated proteins, protein phosphorylation, cell death and further activation 

of other signalling and repair molecules (Culligan et al., 2006; Waterworth et 

al., 2016) Garcia 2003.  

ATM and ATR play central roles in mediating the DNA damage response 

(DDR) in plant. In response to detection of damage they activate 

phosphorylation signalling cascades which trigger DNA repair factors, cell 
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cycle checkpoints and PCD. Arabidopsis atm mutants are hypersensitive to 

ionising radiation-induced double strand DNA breaks (Garcia et al., 2003). The 

downstream effects of ATM activation by DSBs in Arabidopsis include the 

upregulation of hundreds of repair related genes (the transcriptional DNA 

damage response) (Culligan et al., 2006), chromatin remodelling activities and 

histone modifications, specifically the phosphorylation of histone H2AX, a 

modification localised to DSB sites (Rogakou et al., 1999).  ATR on the other 

hand acts on single strand defects formed during replication or through further 

processing of double strand breaks (Ünsal-Kaçmaz et al., 2002; Sancar et al., 

2004; Culligan et al., 2006).  

1.3.2  Transcriptional changes upon detection of DNA damage 

One specific response mediated by the DDR in plants is the transcriptional 

induction of hundreds of genes in the presence of DNA damage. This is largely 

dependent on ATM; however ATR is also responsible for minor alterations in 

transcript abundance (Molinier et al., 2005; Culligan et al., 2006).  Transcripts 

associated with the transcriptional DDR are enriched in genes involved in DNA 

metabolism, cell cycle control, chromosome structural changes and DNA 

repair. RAD51, encoding a protein involved in homologous recombination, 

displays 186-fold induction upon γ-irradiation. PARP-2, which is involved in 

detecting and signalling around DNA single strand breaks, displayed over 130-

fold induction of transcript levels. Other transcripts encode proteins with roles 

in nucleotide synthesis, such as thymidine kinase (TK) and ribonucleotide 

reductase (RNR), which displayed fold increases in transcript levels following 

100Gy irradiation of 46 and 37 respectively.  

 



- 18 - 

 

 

Figure 1.3 Upregulation of repair transcripts following imbibition  

The activation of the DNA double strand break transcriptional response following 

imbibition. (Waterworth et al., 2011) 

 

Although a transcriptional response to DNA damage forms part of the DDR in 

several organisms, the subset of genes induced varies substantially, indicating 

high divergence between kingdoms. Although NHEJ is the major DSB pathway 

in higher plants, no significant changes were observed in genes associated 

with this mechanism immediately following gamma irradiation, in contrast to 

the increases observed in HR-related genes (Culligan et al., 2006). Changes 

in LIG4, encoding a core enzyme responsible for the ligation stages of NHEJ, 

exhibited an ATM-dependent increase in transcript levels; however this 

responses occurred several hours after irradiation (Garcia et al., 2003). The 

lack of transcriptional induction of NHEJ is thought to be attributable to 

constitutive NHEJ activity pathway in cells of higher plants, but also that post-

translational control by phosphorylation is likely to be the major mechanism 

which regulates DDR associated factors in plants, as in other eukaryotes 

(Matsuoka et al., 2007).  

1.3.3   Cell cycle control 

The ability to control progression of the cell cycle is important in the presence 

of DNA damage to extend time for repair and minimise the perpetuation of 
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mutations in the genome. Thus, control of the cell cycle is an integral 

component of the DDR (Sancar et al., 2004). The regulation of the cell cycle 

is mainly based on proteins involved in “checkpoints” between different stages 

of the cell cycle. By stopping a cell with mutations from entering S-stage of the 

cell cycle, when DNA replication occurs, the mutation will not be passed on to 

daughter cells, a process particularly important in regions with high cell 

division(Sancar et al., 2004). Controlling progression through the cell cycle is 

mainly controlled by cyclin and cyclin dependent kinases (CDKs).  

The transition between the resting phase G1 and S is controlled in Arabidopsis 

by CDKA;1, one of many CDKs in plants. CDKA;1 is highly homologous to 

Cdc2+ and Cdk1 in yeast and animals, illustrating the large amount of 

conservation in cell cycle control across kingdoms (Zhao et al., 2012). Further 

regulation is displayed through inhibitory control of CDKA;1 by the WEE1 

kinase in response to DNA replication stress in plants. WEE1 acts to 

phosphorylate two tyrosine residues on CDKA;1, activating cell cycle arrest 

seen in Arabidopsis and maize (Zea mays) (Sun et al., 1999; Sorrell et al., 

2002). The impact WEE1 has on the cell cycle is exemplified by knockout 

wee1 Arabidopsis lines, which show cell cycle progression in the presence of 

DNA damage, whereas WEE1 overexpressing lines display constituent cell 

cycle checkpoint activation (Sorrell et al., 2002; De Schutter et al., 2007). The 

activation of CDKA;1 homologues in mammals is induced by a phosphatase 

known as CDC25, although no functional homologues have yet been identified 

in plant species (Dewitte and Murray, 2003).  

1.4   Seed Biology 

The seed is an embryonic plant enclosed in a protective outer coating known 

as the testa or seed coat (Bewley and Black, 1994). The seed represents an 

important step in plant evolution which facilitates survival away from the 

maternal plant, unlike more ancient plants such as ferns and moss which 

propagate without forming a seed.  Seed development is initiated when pollen 

(male gamete) fertilises a ripened ovule (female gamete), which is followed by 

formation of the mature seed on the mother plant before release to propagate 

the next generation. 
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Typically seeds contain an outer protective layer known as the seed coat or 

testa, this provides physical protection to the embryo inside which will go on 

to establish the full plant. In Arabidopsis, along with most flowering plants, 

there is often the presence of an energy rich endosperm. The cells of the 

endosperm are triploid and the abundance varies between species, with 

Arabidopsis only having one layer of endosperm tissue and crops such as 

wheat having abundant endosperm. The initial energy requirements for the 

embryo during germination are supplied by the endosperm in a species-

dependent mixture of starch, oils and proteins. In seeds where the endosperm 

is not present, such as Pisum sativum (pea) , energy is stored in the cotyledons 

other notable examples are members of the Orchidaceae family where they 

require a fungal-symbiotic relationship for energy.  

Rapid establishment of a strong seedling is crucially important for high crop 

yields in agriculture and survival of plant species in ecosystems (Finch-Savage 

and Basel 2016). Rapid, vigorous germination underpins successful seedling 

establishment. Once the germination process is initiated, the emerging 

seedling is highly vulnerable to environmental stresses such as suboptimal 

temperature, drought, or salinity, weed competition, pathogen infection and 

pest attack.  

1.4.1  Seed development and maturation  

Dependent on plant species, up to thousands of seeds can be generated on a 

single plant. Seed development is initiated after fertilisation, subsequently, 

embryogenesis and morphogenesis are followed by deposition of storage 

reserves before seed maturation in which orthodox seeds acquire desiccation 

tolerance (Bewley, 1997). As orthodox seeds reduce in moisture content the 

cytoplasm transitions to a glassy state, which helps to increase freezing 

tolerance and reduces damage accumulated during storage through very low 

metabolic rates (Buitink and Leprince, 2008). During the period of seed 

development on the mother plant, they can be subjected to stresses that could 

affect seed quality and final plant performance potentially years later. The 

impact of light availability on the maternal plant during lettuce seed 

development was reported to subsequently result in  differences in seed 

qualities, with long day conditions (8 hours of darkness) producing higher 
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quality seeds than short day conditions (16 hours of darkness) following 

storage (Contreras et al., 2008). Other conditions which detrimentally affect 

seed quality during the maturation stage include drought nutrient deficiency 

that pushes the plant towards survival over reproduction (Peters, 1982; 

Fenner, 1991; Wang et al., 2012). Stress during seed maturation could be 

considered to be as a double edged sword, as some studies suggests it can 

generate resilience to the stress, whilst others suggest it negatively impact on 

the seed.  

Dormancy is a block to germination which prevents germination under 

favourable conditions of germination, and is more usually associated with 

temperate species (Graeber et al., 2012; Wang et al., 2012). Primary 

dormancy, in which seeds are dormant from the time of seed maturity when 

shed from the mother plant, is a survival strategy to enable temporal and 

spatial distribution of germination. Prolonged exposure of a non-dormant seed 

to unfavourable conditions can induce a state of secondary dormancy. 

Dormancy cycling between a non-dormant and the dormant state is a 

mechanism which promotes persistence of seeds in the soil seedbank (Cao et 

al., 2013). 

1.4.2  Seed storage  

Seeds can be divided into three categories on the basis of desiccation 

tolerance: orthodox, recalcitrant and intermediate species (Ellis et al., 1991). 

The capacity to withstand desiccation tolerance is a key trait in orthodox 

seeds, in which survival in a dry state prolongs seed longevity and enables 

seeds to survive environmental extremes of low temperature and freezing. 

Recalcitrant seeds are intolerant of desiccation, whilst species with 

characteristics between the two groups are known as ‘intermediate’ seeds.  

Orthodox seeds can withstand desiccation, typically as low as 10-15% (Bewley 

and Black, 1994). The low water content of orthodox seeds effectively extends 

embryo survival. In extreme cases date palm seeds have remained viable for 

over a 2000 years following desiccation (Sallon et al., 2008). Seeds of 

temperate regions are typically orthodox, as are most agricultural species, 

including cereals and grains. The seeds can then be dry stored for long periods 

of time without losing germination capacity. Recalcitrant species, such as 
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cocoa (Theobroma cacao) and mango (Mangifera indica), are generally limited 

to tropical regions where severe winters are uncommon and thus germinate 

readily from the fruit.  

However, seeds still deteriorate at a reduced rate in the dry state due to very 

low levels of metabolism (Bewley and Black, 1994; Bewley, 1997). Decline in 

seed quality is initially seen as a decrease in rapidity and synchronicity of 

germination. An increasing delay to germination is also accompanied by an 

increased frequency of abnormal seedlings in many species and the seed lot 

eventually demonstrates a loss of viability. The ability of a seedling to 

germinate rapidly and uniformly under a wide range of environmental 

conditions is known as seed vigour and is an important factor which underpins 

crop productivity (Finch-Savage and Bassel, 2015b). 

The molecular factors which determine resilience of the seed to deterioration 

are incompletely understood. However, increasing deterioration of 

macromolecules and cellular structures has long been known to correlate with 

extending periods in the desiccated state (Waterworth et al., 2015). This 

deterioration can be exacerbated by unfavourable conditions storage in high 

temperatures or high humidity. This deterioration is of prime economic 

importance as manifests as reduced seed quality, reduced vigour and 

subsequent yield losses (Powell and Matthews, 1984).  

Increasing evidence identifies that the ability to prevent or repair this 

accumulated damage is a key determinant of seed vigour and viability, and 

moreover that levels of damage and repair capacity directly determine the 

ability of a seed to germinate and by extension survive (Sano et al., 2015; 

Waterworth et al., 2015). 

1.4.3  Germination 

In the germination process the quiescent embryo switches to a metabolically 

active state. Germination can be split into three phases (Bewley, 1997). 

Germination commences in Phase I upon imbibition with the uptake of water 

and the initiation of metabolic activities. Upon imbibition cells within the seed 

hydrate, although not uniformly, with the micropylar endosperm and the radicle 

showing the greatest level of hydration early in germination (Manz et al., 2005). 
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Rapid rehydration of the desiccated seed may be associated with high levels 

of oxidative damage to macromolecules and cellular structures in the seed. 

Upon hydration, resumption of metabolism is accompanied by initiation of DNA 

repair processes. Major metabolic enzymes are present in the dry seed and 

further proteins are produced with the resumption of transcription and protein 

synthesis. Furthermore, transcriptional changes can be seen as early as 3 

hours into imbibition of Arabidopsis seed, including several genes associated 

with DNA damage responses (Preston et al., 2009; Waterworth et al., 2010). 

An overview of the different metabolic changes dependent on stage of 

inbibition can be seen in Figure 1.4 (Bewley and Black, 1994.) 

Phase II of germination represents a time where water uptake is complete and 

is associated with general changes in seed size. Phase II typically varies in 

duration between species, also depending on the quality of the seed. In maize 

(Zea mays) this period has been shown to extend proportionally to the amount 

of deterioration (Matthews and Khajeh-Hosseini, 2007). Following testa 

rupture phase II is completed and further water uptake dictates the start of 

stage III when the radical emerges. Germination, sensu stricto, is completed 

upon radicle protrusion through the endosperm and seed coat. There is not an 

absolute requirement for cell division for the completion of germination in 

Arabidopsis, although  expression of cell cycle-related transcripts increases 

around this period (Barrôco et al., 2005) and cell cycle activation is required 

for effective germination, as cell cycle inhibition substantially slows completion 

of germination (Masubelele et al., 2005; Waterworth et al., 2016). Cell division 

is required for further growth and seedling establishment (classed as post 

germinative growth). The production of a robust seedling measures the 

success of germination in establishment of a healthy adult plant (Finch-Savage 

and Bassel, 2015a). 
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Figure 1.4 Metabolic changes at different stages of imbibition   

Events associated with different points during germination. The time taken is heavily 

dependent on species and germinating conditions, ranging from hours to weeks 

Bewley (1997).   
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1.4.4  Seed vigour  

Seed vigour is a complex trait determined by multiple environmental and 

genetic factors (Clerkx et al., 2004b). High vigour seeds germinate uniformly 

and rapidly under a wide range of environmental conditions and are resistant 

to deterioration in storage. Increasing our fundamental knowledge of seed 

quality is important because it is a key determinant of final crop yields (Finch-

Savage and Bassel, 2015b). Improved resilience of germination to 

environmental stresses by biotechnological approaches or plant breeding 

would be an important step in our ability to improve crop yields on marginal 

land and adapt crop varieties to changing climates (Waterworth et al., 2015). 

Understanding and predicting seed vigour and viability is also central to 

conservation of plant germplasm in seedbanks, of both of wild species and 

cultivars of agriculturally important species. The latter provide a valuable 

source of genetic resources for crop breeding. However our current 

understanding of the genetic basis of seed vigour is limited, although multiple 

factors have been implicated. Seed vigour and seed longevity have been 

recently been reviewed (Rajjou et al., 2012; Finch-Savage and Bassel, 2015b; 

Sano et al., 2015). 

1.4.5  Oxidative damage, repair and seed vigour  

Combinations of desiccation/rehydration cycles and quiescence are 

associated with high levels of oxidative stress (Bailly, 2004; Kranner et al., 

2010). Studies over several decades have identified that cellular structures 

and macromolecules including proteins, RNA, DNA and membranes 

accumulate increasing damage as the seed deteriorates. Increasing evidence 

now points to the critical roles of repair and protection mechanisms in 

maintenance of germination performance. A significant role for tocopherol 

(vitamin E) in protection against lipid peroxidation in seed longevity and 

seedling establishment was demonstrated through analysis of mutants 

deficient in tocopherol synthesis (Sattler et al., 2004). 

Oxidative damage to proteins by seed ageing or environment stress has also 

identified as a key determinant of seed ageing, in as inactivation of key 

metabolic or repair enzyme activities will impair recovery processes of the 
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seed. Methionine sulfoxide residues caused by protein oxidation upon ageing 

are reversed by methionine sulfoxide reductase and levels correlate with 

longevity in varieties of Medicago seeds (Châtelain et al., 2013). Conversion 

of aspartate to isoaspartyl causes protein misfolding, reversed by L-

isoaspartylmethyltransferase1, is associated with ageing in several organisms 

and is also important determinant of seed longevity (Ogé et al., 2008). 

1.4.6  Important roles for genome maintenance pathways in seeds 

Studies have established DNA damage repair and response factors as factors 

very important to seed vigour. Studies by Cheah and Osbourne (1978) 

identified that seed ageing correlated with loss of genome integrity; rye seeds 

of 50% viability accumulated SSBs, detected using electrophoretic analysis of 

genomic DNA under alkaline conditions. Subsequent studies established that 

DNA repair processes are initiated very early in germination and also that the 

lag phase in aged seed is accompanied by extended periods of DNA repair 

associated synthesis (Elder and Osborne, 1993). This supported the idea that 

a requirement of DNA repair is associated with the increasing delay to 

germination in aged seed, and that a requirement for repair is limiting for 

germination (Waterworth et al., 2010). 

Studies in several species identified that frequencies of chromosomal 

abnormalities, including chromosomal fusions, bridges and rearrangements 

increase in aged seed as deterioration progresses. These represent 

chromosomal breaks which have been repaired inaccurately by the DSB repair 

mechanisms in the germinating seed, providing direct evidence that seeds 

experience high levels of genotoxic stress (Roberts, 1972; Dourado and 

Roberts, 1984).  However, it was concluded that even high quality seeds carry 

a basal level of chromosomal damage. Desiccation tolerance and quiescence 

in other organisms has also linked to a remarkable capacity to repair DNA 

(Waterworth et al., 2011).  

Waterworth et al (2010) identified that Arabidopsis mutants lacking the NHEJ 

factors DNA ligase 4 and DNA ligase 6 are hypersensitive to seed ageing. This 

demonstrated that the ability to repair chromosomal breaks is limiting for seed 

germination and provided the first genetic evidence of the link between DNA 
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repair and seed quality, specifically DSBs. Greater sensitivity of the 

at4lig/atlig6 double mutants to ageing is consistent with both DNA ligases 

acting in distinct pathways. Whilst DNA ligase 4 functions in the canonical 

NHEJ pathway, DNA ligase 6 is unique to plants and is thought to function in 

alt-NHEJ. Evidence of DSBs was provided by the transcriptional response to 

DNA damage, which was observed very early in germination of unaged 

Arabidopsis seeds. This response was elevated in mutants lacking DNA ligase 

4 and 6, consistent with higher levels of DSBs in these lines. A role for BER in 

seed longevity was identified by overexpression of the BER enzyme OGG1 in 

Arabidopsis (Chen et al 2012), which removes the oxidised base 8oxoG from 

DNA. Germination was resistant to accelerated ageing and other germination 

stresses, indicating the potential of DNA repair factors as genetic targets for 

crop improvement. 

1.4.7  Antioxidant protection 

Accumulation of damage in plants is undesirable because of the chance of 

contributing mutations to the germline or offspring. Several methods have 

evolved in order to limit damage in seeds, such as condensation of chromatin 

during seed maturation to limit damage to cellular DNA during desiccation (van 

Zanten et al., 2011). Large accumulations of reactive oxygen species occur 

during storage and imbibition, with accumulation of exogenous stresses and 

endogenous respiration generating enhanced oxidative damage. The removal 

of excess oxidative damage is reduced by antioxidants such as the non-

enzymatic, low molecular weight antioxidants (glutathione and ascorbic acid) 

and various enzymatic antioxidants (e.g superoxide dismutase). Levels of 

antioxidants also increase during seed maturation which may help reduce 

ROS-induced cellular damage at this stage of the plant life cycle (Bailly, 2004) 

Ascorbic acid (vitamin C; AsA) is an essential antioxidant in plants, with knock-

out mutants not surviving past seedling stage (Dowdle et al., 2007). The major 

source of production of vitamin C in plants is the L-galactose pathway, 

although the full understanding of vitamin C synthesis in plants is still not clear 

with uronic acids thought to contribute small amounts (Wheeler et al., 1998; 

Smirnoff and Wheeler, 2000). Negligible levels of AsA and AsA peroxidase are 

present in the dry seed but are activated very early in imbibition in response 
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to increased oxidation pressures and are present prior to seed desiccation 

during development (Tommasi et al., 1999; De Tullio and Arrigoni, 2003). The 

importance of vitamin C is clear; however the way it acts in plants is not fully 

understood. Trigonella foenum-graecum seeds soaked in AsA showed greater 

root length, fresh weight and germination in response to salt-stress (Behairy 

et al., 2012). Furthermore AsA peroxidase activity has been linked to 

increased germination in aged Dasypymm villosum seeds and increased 

germination in ascorbate-dependent H2O2 scavenging in Zea mays (De Gara 

et al., 2000). However increased AsA was shown to suppress germination in 

wheat (Triticum aestivum) and oxidised AsA has been shown to act as a 

prooxidant (Ishibashi and Iwaya-Inoue, 2006). Vitamin C therefore has a 

complex role during the imbibition and germination of seeds that has yet to be 

fully elucidated.  

1.5    Summary and Aims 

Plants must overcome several inhibiting factors throughout their life cycle in 

order to establish and grow to their maximum potential. Although sunlight, 

water and nutrient availability all affect plant growth and final yield, the success 

of the mature plant has already been heavily influenced by factors experienced 

at the seed stage of the plant lifecycle, including seed development on the 

maternal plant and desiccation during storage.  

Our understanding of the molecular factors important to seed vigour is far from 

complete. Recent studies have established an important role for repair of 

DSBs in germination and seed longevity and identified that ATM and the DDR, 

responding to high levels of DSBs in the seed, play important roles in control 

of the germination process. However, the contribution of other DNA damage 

lesions and specific repair factors remains to be established.  Understanding 

the molecular basis of seed quality will identify candidate factors for the genetic 

improvement of crop species and the development of biomarkers for prediction 

of seed lot quality. 

Moreover, seed quality is influenced by environmental conditions experienced 

during development, quiescence and imbibition.  This is particularly pertinent 

in evaluating the impact of rapidly changing climate conditions on natural plant 

populations and crop varieties. The study presented here form part of the EU 
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EcoSeed project, which aims to understand the molecular mechanisms 

important to seed quality and their relationship with the maternal environment 

during seed development and storage conditions.  
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Aims 

The overall aim of this project was to determine the influence of the 

environment during seed development and storage on genome maintenance 

in the dry and imbibing seed. This was addressed by the following specific 

objectives: 

 To correlate seed germination performance with levels of specific 

DNA damage products  

This required the development and application of quantitative methods for 

analysis of specific forms of DNA damage. In mammalian studies, biomarkers 

and sensitive methodology to determine levels of genome damage and 

genotoxic stress are routine, including in clinical use. However, such 

approaches have not been widely utilised in plants to date. Therefore, 

optimisation of methodology for the accurate, sensitive and high throughput 

analyses of DNA lesions is required. 

 To identify the cellular responses to DNA damage in seeds and the 

activity of these responses in relation to seed quality. 

The DNA damage response is a highly dynamic and specific cellular response 

to chromosomal damage. Here the aim was to link the activity of these 

responses to increased levels of genome damage in aged seeds. 

 To determine the relationship between genome damage and the 

antioxidant ascorbic acid.  

Oxidative damage is considered to be a major source of DNA damage in seed 

deterioration. One approach to minimise genome damage in seeds, and so 

enhance seed vigour and longevity, could be to increase protection of the 

embryo genome through increased levels of seed antioxidant levels.  
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2.  Materials and Methods 
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2.1    Suppliers 

Unless otherwise stated chemicals were obtained from Sigma Aldrich, Poole, 

UK.   

2.2    Equipment 

Any centrifugation steps involving 0.5 ml, 1.5 ml or 2 ml microcentrifuge tubes 

used an Eppendorf minispin microcentrifuge at room temperature at 20238 

RCF (relative centrifugal force); equivalent to 14680 rpm (revolutions per 

minute) unless otherwise stated. Falcon tubes of 15 ml or 30 ml (BD 

Biosciences) were centrifuged using the 5810R centrifuge with the A4-62 rotor 

at 3000RPM (1700 RCF) at 20°C unless otherwise stated. 96-well PCR plates 

(BioRad) were spun briefly in the 5810R centrifuge using an Eppendorf A-2-

DWP rotor in the same centrifuge.  

PCR reactions were performed in an Eppendorf Mastercycler machine and 

electrophoresis was carried out in a BioRad mini subcell electrophoresis tank 

with a basic BioRad power pack. In order to sterilise solutions and equipment 

a Radwell Herald autoclave was used at temperatures of 121°C for 20 minutes 

unless otherwise stated. Bacterial densities were determined using an 

Eppendorf Biophotometer spectrophotometer. Nucleic acid concentrations 

and purity were determined using a ND-1000 spectrophotometer in the range 

of 220nm-350nm and analysed with ND-1000 software.  

Images of agarose and acrylamide gels were taken inside a SynGene GBOX 

and quantification carried out using GeneTools software (SynGene). Any other 

images were taken with a Nikon D90 camera.  

2.3   Plant material and mutants 

Seed stocks of mutant and wild-type Arabidopsis lines were obtained from the 

Nottingham Arabidopsis Stock Centre (NASC: http://Arabidopsis.info/) (Scholl 

et al., 2000) unless they provided by partners of the EcoSeed programme. 

Arabidopsis seeds for use EcoSeed were grown at Warwick University and 

Brassica grown at University Pierre and Marie Curie (section2.5.4). The VTC2 

(AT4G26850) T-DNA mutant (vtc2-5) had the accession number 

SAIL_769_H05 (Sessions et al., 2002). The EMS mutation (vtc2-1) was 

donated by the Christine Foyer lab at Leeds University and originally isolated 

http://arabidopsis.info/


- 33 - 

by Professor Conklin (Conklin et al., 2000). Genotyping was carried out via 

primer specific (table 2.1) PCR reactions. Primers would amplify wither the 

wild-type allele or T-DNA insertion allele allowing isolation of homozygous 

mutant lines (section 2.3.1) in 2 week old seedlings grown on ½ MS media. 

Isolated mutants were then moved to soil to set for seed outlined in section 

2.4.  

Table 2.1 - List of primers  

Primer Locus Sequence 

actin1_f 

AT2G37620 

5’-CAATGCCCCTGCTATGTATGT-3’ 

actin1_r 5’-TCACACCATCTCCAGAGTCG-3’ 

Bo-actin1_f 

C5IWW9 

5’-AATGGTCAAGGCTGGTTTTG-3’ 

Bo-actin1_r 5’-GCGTGTGGAAGAGAGAAAACC-3’ 

actin7_f 

AT5G09810 

5’-GGTGAGGATATTCAGCCACTTGTCTG-3’ 

actin7_r 5’-TGTGAGATCCCGACCCGCAAGATC-3’ 

parp_f 

AT4G02390 

5’-CCAGATGGGGAAGAGTTGGT-3’ 

parp_wrt 5’-ACCAGCCCAGTTAGTGAGAC-3’ 

rad51_f 

AT5G20850 

5’-GGATCACGGGAGCTCGATAA-3’ 

rad51_r 5’-TTTCCTCAACGCCAACCTTG-3’ 

rnr_f 

AT3G27060 

5’-TCCTAACACCAACCCCAGAC -3’ 

rnr_r 5’-CGCACACAAACTCTCTCTCG -3’ 

tk_f AT3G07800 5’-CCTTCGCCGAATCAAGTCAG-3’ 
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A list of primers used for genotyping and RT-PCR. Primer names correspond 

to the name of the gene for amplification followed by: f – forward primer, r – 

reverse primer, wt – primer specific for wild-type amplification of gene, tdna – 

primer specific for amplification when TDNA insertion is present. Primers were 

synthesised by Sigma aside from 8-oxoG primers provided by DNA 

technology. 

2.3.1  Isolation of double T-DNA insertion knock-out mutants 

Two different single T-DNA insertion plants (the F0 generation) were grown on 

soil before crossing. Plants that had developed 5-6 inflorescences were 

crossed with plants that had started to form siliques. Mature siliques, open 

tk_r AT3G07800 5’-TGAAACATGGACCAGAGGCT-3’ 

silentregion

_f 
 5’-CAATTATTGGTGAAAGGGATTCA-3’ 

silentregion

_r 
 5’-AGGTTATGACCAATGACACTGC-3’ 

8oxoGcontai

ning_f 
 5’-CAATGCCCCTGC -3’ 

8oxoGcontai

ning_r 
 5’-TCACACCATCTC -3’ 

VTC2_f 

AT4G26850 

5’- GGCAAACACAGCAGTCTGAAAC -3’ 

VTC2_r 5’-  TCAGCTTAACGAGGGTCGTCA -3’ 

vtc2-5_wt 5’- CTTCCGATCTCCTCTTTCTCG -3’ 

vtc2-5_mut 5’- GAGGCAAGCAGTCAAGAACAC -3’ 

SAIL_LB1  

5’-

GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC

-3’ 
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flowers and white-tipped or matured buds were removed from the first plant. 

Unopened flower buds were opened using Jeweller’s forceps (5Inox, Dumont, 

Switzerland) and all immature anthers were removed. From the second plant, 

flowers containing anthers that were shedding pollen were selected and the 

anther was used to transfer pollen to the stigma of the recipient plant. The 

pollinated inflorescences were wrapped loosely in cellophane and labelled 

appropriately and given 15-25 days to form mature siliques. These seeds were 

then collected and genotyped.  

Seeds from the parental lines were grown (section 2.4) and leaves were 

genotyped using PCR (section 2.7). Plants heterozygous for T-DNA insertions 

(the F1 generation) were allowed to self-fertilise by segregating these plants 

from others. Seeds were collected (the F2 generation) and grown under 

normal conditions (section 2.4). Mendelian inheritance states that one in 

sixteen of these plants will be homozygous double for the mutation. These 

plants were identified by PCR genotyping and were allowed to set to seed so 

a large, renewable stock could be generated to ensure maintenance of the 

genotype.  

2.4    Plant growth conditions 

2.4.1  Seed sterilisation and imbibition 

Materials 

Hyperchlorite solution:  

 10% (v/v) Bleach (5-10% hypochlorite) 

 1% (v/v) Triton-X100 

Agar media: 

 0.1% (w/v) Phyto agar (Duchefa Biochemie). Autoclaved and allowed 

to cool to room temperature 

Method 

Arabidopsis seeds were suspended in hyperchlorite solution for 10 minutes 

inside sterile 1.5 ml microcentrifuge tubes. The seeds were then washed 5 

times in sdH2O to remove residual sterilising solution before being added to 

agar media.  
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2.4.2  Chlorine gas seed surface sterilisation 

Materials 

Gas sterilising solution:  

 100 ml Bleach (5-10% hypochlorite) 

 3 ml concentrated HCl 

Method 

Arabidopsis seeds were placed inside open containers and placed in a sealed 

desiccator (Nalgene) inside a fume cupboard (pf&f Ltd.). The gas sterilising 

solution was placed in an Erlenmeyer beaker (Fischer Scientific) inside the 

desiccator for 3 hours.  

2.4.3  Growth of Arabidopsis  

Materials 

MS media (pH 5.7):  

 2.2 g l-1 MS basal medium 

 1% sucrose 

 0.8% Phytoagar (for agar plates) 

Method 

Seedlings were grown on half concentration Murashige and Skoog (MS) 

media, plus 1% sucrose, before transferring to soil at up to 2 weeks 

(Murashige and Skoog, 1962). The media was adjusted to pH 5.7 using KOH. 

Phyto agar was added and the media was autoclaved before being allowed to 

cool to 55°C before adding any required antibiotics. The media was then 

poured into 9cm Petri dishes (Starstedt) and allowed to cool. Sterilised seeds 

were spread on the MS plates under sterile conditions, sealed with Micropore 

tape (3 m) and grown in a growth chamber (Sanyo MLR-351) in a 16 hour light 

period at 70% humidity and 23°C. If the seeds were required to grow past the 

seedling stage, then they were transferred to soil after 2 weeks.  

2.4.4  Plant growth on soil 

Materials 

SHL growing medium (William Sinclair Horticulture):  
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 15% peat 0-5 mm 

 85% peat 0-10 mm 

 204 g m-3 N 

 238g m-3 P2O5 

 408g m-3 K2O (pH6.0) 

Method 

Plants grown beyond 2 weeks on media were transferred to SHL growing 

medium. Seedlings were carefully removed from plates and placed into the 

soil. The plants were then kept in temperature controlled glasshouses at 22°C 

in a 16 hour/8 hour day/night cycle (commonly referred to as long day 

conditions). 

2.5   Seed production and treatments 

2.5.1  Seed production and after-ripening 

To ensure seed lots of the different genotypes were comparable, plants were 

grown at the same time as described in section 2.4. Upon desiccation of 

siliques, seeds were harvested and stored in non-airtight tubes at ambient 

temperature and humidity for 2 months to allow adequate after-ripening and 

removal of primary dormancy (Finch-Savage and Leubner-Metzger, 2006).  

2.5.2  Germination assays 

Unsterilised seeds were placed on Blue Blotter Germination Paper (referred 

to as Germination Paper from here onwards) (SGB1924B, 

http://www.anchorpaper.com/) in 90 mm Petri dishes (Sarsdedt) with 7 ml of 

dH2O. Seeds on Petri dishes were then stratified for 2 days at 4°C to relieve 

any dormancy. Following stratification, the Petri dishes were moved to a 

growth cabinet (Sanyo MLR-351) kept at 16 hour light period at 70% humidity 

and 23°C. EcoSeed seeds were not stratified and kept under full light 

conditions (24 hour day) at 15°C in the same Sanyo growth cabinets. Seeds 

were scored for germination as  defined by the protrusion of the radicle from 

the seed coat (Bewley, 1997). A stereomicroscope (Novex RZB-PL) was used 

to monitor radicle protrusion at regular intervals. Independent biological 

replicates were performed with different harvests of both the wild-type seeds 

and seeds from a mutant background for verification of results. This method 

http://www.anchorpaper.com/
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allows for both final germination percentage (viability) and mean germination 

time (MGT) (vigour; equation 3.1) to be scored.  

2.5.3  Accelerated ageing of seeds 

To simulate long term storage, high quality, non-dormant seeds were placed 

inside an open 1.5 ml microcentrifuge tube suspended above a saturated salt 

solution (100 ml H2O, 50g KCl) in an air-tight vessel. The seeds were then 

placed at 35°C producing a relative humidity of 80% for between 1 and 5 days 

as appropriate. Seeds were scored for viability and vigour loss as described 

(section 2.5.2) before any further analysis were performed. EcoSeed seeds 

were generated at Warwick and used different conditions (section 2.5.4). 

2.5.4  X-ray treatment of seeds 

Seeds were sterilised in 70% ethanol for 5 minutes before being resuspended 

in sterile H2O and stratified for 24 hours at 4°C. Ionizing radiation was 

administered at different doses using a 320 kV X-ray irradiation system (NDT 

Equipment Services) at a rate of 1 Gy min-1. Seeds were plated individually on 

½ MS media in 90 mm Petri dishes and placed upright to allow the roots to 

grow through the media. Root length was measured daily to determine the 

effects on root growth using tracking on ImageJ software.  

2.5.5  EcoSeed growth and CDT conditions 

Arabidopsis seeds grown for the EcoSeed project were produced by the Finch-

Savage lab at the University of Warwick under different temperature regimes 

using Levington F2 compost:sand:perlite 6:1:1. Initially temperature and 

daylight were kept at 18/22°C for 8h dark and 16h light. Before the first flower 

appears plants were placed under low temperature, control temperature or 

high temperature conditions (14°C/16°C, 18°C/22°C, 25°C/28°C). Upon 2/3 

brown siliques forming plants were left without water for 7 days in order to 

complete maturation drying. Seeds were then kept in open bags at 15°C/15% 

RH until required. Arabidopsis seeds that underwent controlled deterioration 

were kept at 40°C;75% RH for 4 days. 

Brassica seeds were grown in John Innes compost at University Pierre and 

Marie Curie. Seeds were grown at 18°C-22°C in 16 hour day, 8 hour night 

glasshouses. Seeds were transferred to different maternal temperatures when 
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seed moisture content reached 75%. Maternal temperatures for these seeds 

only included a control and high temperature (18°C-22°C, 25°C-31°C). CDT in 

these seeds was undertaken at Leibniz Institute of Plant Genetics and Crop 

Plant Research and involved seeds being subjected to 45°C;85% RH for 7.5 

days.  

2.6 DNA and RNA Extraction from Seed and Leaf Tissue 

2.6.1  DNA extraction from leaf and seedling tissue 

Materials 

Extraction buffer:  

 100 mm Tris-HCl (pH 9.0) 

 200 mM LiCl 

 50 mM EDTA 

 1% SDS 

10x T.E. buffer 

 100 mM Tris-HCl (pH 8.0) 

 10 mM EDTA (pH 8.0) 

Isopropanol 

Method 

Leaf or seedling tissues were placed in 1.5 ml microcentrifuge tubes containing 

500 µl of extraction buffer then ground using an electric stirrer (Stuart Scientific 

SS10). The tubes were then centrifuged at 13 000 rpm for 15 minutes at room 

temperature. 350 µl of the extraction buffer was taken and placed into a fresh 

1.5 ml microcentrifuge tube containing the same volume of isopropanol. The 

tubes were mixed by gentle inversion before being centrifuged for 10 minutes 

at 13000rpm. The supernatant was removed and the remaining pellet was left 

to air dry before resuspension in 100 µl T.E. buffer.  
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2.6.2  DNA extraction from seed tissue 

Materials 

CTAB buffer:  

 2% (w/v) Cetyl trimethylammonium bromide (CTAB) 

 2 M LiCl 

 50 mM EDTA 

 100 mM Tris-HCl (pH 9.4) 

 1% (w/v) Polyvinylpyrrolidone 

 0.2% (v/v) β-mercaptoethanol 

o 1.4 M NaCl – Used for high quality seed DNA extraction (see 

section 4.2.1) 

Chloroform: isoamyl alcohol (24:1) 

Isopropanol 

70% ethanol 

Resuspension buffer 

 100 mM Tris-HCl (pH 8.0) 

 250 mM NaCl (pH 8.0) 

 20 mM EDTA 

 RNase A (10 mg ml-1) 

T.E. buffer 

 10 mM Tric-HCl (pH8.0) 

 1 mM EDTA (pH 8.0) 

Method 

Seed material (variable quantities, see table 4.1) was ground using a pestle 

and mortar into a fine powder. The powder was then transferred to a 15 ml 

falcon tube containing 6 ml of CTAB buffer pre-heated at 60°C. The tube 

contents were mixed and either incubated at 60°C or, in the case of 

Arabidopsis, not incubated, to aid in the segregation of mucilage from nucleic 

acid. An equal amount of chloroform:isoamyl alcohol  (24:1) was added to the 

CTAB mixture and centrifuged at 3000rpm for 10 minutes. The aqueous phase 

was extracted and placed into a fresh falcon tube and the chloroform extraction 

was repeated (3000rpm; 10 minutes). The aqueous phase was moved to a 

fresh falcon tube again and 4.2 ml of 100% isopropanol was added and mixed 
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by gentle inversion. The tubes were then centrifuged at 3000rpm for 5 minutes 

to gather precipitated DNA. The supernatant was discarded and the pellet 

washed with 70% ethanol before allowing the pellet to air-dry. The pellet was 

then resuspended in 650μl resuspension buffer, moved to a sterile 1.5 ml 

microcentrifuge tube, and incubated at 37°C for 30 minutes. A final chloroform 

extraction was performed using equal amounts of chloroform:isoamyl alcohol 

to the resuspension buffer and spun briefly. The supernatant was transferred 

to a fresh 1.5 ml microcentrifuge tube and 650μl of isopropanol was added. 

The mixture was then centrifuged at 14000rpm for 5 minutes and the 

supernatant discarded. The pellet wash washed in 70% ethanol and spun for 

1 minute at 14000 rpm before being allowed to air-dry. The pellet was then 

suspended in 100μl of T.E. buffer.  

2.6.3  RNA extraction  

The SV total RNA isolation kit (Promega) was used for all RNA isolations in 

plant and seed tissue.  

Materials 

SV RNA lysis buffer (Promega) 

 4 M guanidine thiocyanate 

 10 mM Tris-HCl (pH 7.5) 

 0.97% β‐mercaptoethanol 

SV RNA wash solution (Promega) 

 60 mM potassium acetate 

 10 mM Tris-HCl (pH 7.5) 

 60% Ethanol 

RNA dilution buffer (Promega) 

DNase solution:  

 Yellow core buffer (Promega) (40 µl per spin column) 

 MnCl2  (5 µl per spin column) 

 DNase I (5 µl per spin column) 

DNase stop solution 

Absolute ethanol 
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70% ethanol 

sdH2O  

Method 

RNA was purified and extracted on a silica spin column. Tissue was ground 

using a pestle and mortar in liquid nitrogen. Ground tissue was placed in a 

sterile microcentifuge tube containing 175 µl RNA lysis buffer and 350 µl 

dilution buffer and mixed by gentle inversion. The solution was then incubated 

for 3 minutes at 70°C before centrifuging at 14 000 rcf for 10 minutes. The 

lysate was transferred to a fresh sterile microcentrifuge tube and 200 µl 95% 

ethanol added.  This mixture was placed inside a spin column and centrifuged 

at 14 000 rcf for 1 minute and the flow-through discarded. 600 µl of wash 

solution was then added to the membrane and centrifuged at 14 000 rcf for 1 

minute. After discarding the flow-through 50 µl of DNase solution was added 

directly to the spin column membrane and left to incubate at room temperature 

for 15 minutes followed by adding 200 µl of DNase stop solution and 

centrifuging at 14 000 rcf for 1 minute. 600 µl of wash solution was added to 

the column and centrifuged at 14 000 rcf for 1 minute and the flow-through 

discarded. A final wash with 250 µl of wash solution at 14 000 rcf for 2 minutes 

ensures the removal of residual buffers. To elute the DNA the spin column was 

placed into a fresh, sterile microcentifuge tube and 50 µl of sdH2O was added 

to the membrane before centrifuging at 14 000 rcf for one minute. Quantity 

and quality of RNA was evaluated on an ND-1000 spectrophotometer and the 

RNA was then stored at -80°C. 

2.6.4  cDNA synthesis 

cDNA synthesis was performed using the SuperScript II Reverse Transcription 

kit (Invitrogen) along with RNA from the previous section.  

Materials 

 200 U µl -1 SuperScript II Reverse Transcriptase (RT) 

 5x First strand buffer (FSB) 

 0.1 M DTT 

 dNTP mix (dATP, dCTP, dGTP and dTTP, 10 mM each.) 

 500 µg ml -1 Oligo-deoxythymidine (Oligo (dT)) 
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Method 

To synthesise DNA typically 200-500ng of total RNA was added to a 0.2 ml 

centrifuge tube along with 1 µl Oligo (dT) and 1 µl dNTP mix, made up to 12 

µl with sdH2O. The tubes were incubated at 65°C for 5 minutes and then chilled 

on ice. Following cooling 4 µl of FSB, 2 µl of DTT and 1 µl of RT were added 

to the centrifuge tubes and incubated at 42°C for 50 minutes. The RT was then 

inactivated by heating at 70°C for 15 minutes. cDNA was stored at -20°C. 

2.7   DNA amplification via PCR reaction 

2.7.1  DNA amplification 

PCR amplification of DNA fragments were conducted using GoTaq (Promega) 

utilising Thermus aquaticus Taq DNA polymerase as described below.  

Materials 

GoTaq® Green Master Mix, Promega (2x): 

 2x Green GoTaq® Reaction Buffer (Ph 8.5) 

 3 mM MgCl2 

 dNTP mix (0.4 mM each of: dATP, dCTP, dGTP and dTTP) 

 50 U ml -1 Taq DNA polymerase  

 10µm Oligonucleotide primers  

 T.E. buffer 

Method 

Oligonucleotide primers were designed to have between 20-25bp homology 

with the target sequence to be amplified and generated a fragment of DNA of 

specific size dependent on subsequent analysis. A 100µM stock of each 

primer was made using T.E. buffer, subsequently diluted in sdH2O to generate 

a 50x solution (10µM). PCR reactions using the 2x GoTaq® Green Master Mix 

were used at a final concentration of 1x following the addition of 50-500ng 

DNA, sdH2O and 0.5µM each of forward and reverse primers. The reactions 

took place in 0.2 ml PCR tubes with a 20 µl final volume. The reactions took 

place in a SensoQuest LabCycler thermocycler for standard PCR and a 

BioRad CFX Connect cycler for qPCR using the programmes described below. 

Annealing temperatures (highlighted in bold) were altered slightly (+/-3°C) 

depending on primer pair Tm and PCR product length. 
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2.7.2  PCR programmes  

95°C   1 minute 

95°C     20 seconds

𝟓𝟑°𝐂     20 seconds

72°C     60 seconds

}          20-30 cycles dependent on copy number 

72°C     5 minutes 

 

2.7.3  RT-PCR programmes  

95°C   1 minute 

95°C     20 seconds

𝟓𝟑°𝐂     20 seconds

72°C     60 seconds

}   50 cycles.  

95°C     10 seconds 

Melt curve: 65°C rising in 0.5°C every 5 seconds up to 95°C. 

 

The plate in RT-PCR programmes is analysed for copy number after each 

cycle. 

2.8   Enzymatic Digestion of DNA 

2.8.1  Uracil DNA glycosylase treatment of DNA 

Materials  

DNA sample 

10x UDG reaction buffer (New England BioLabs) 

UDG (New England BioLabs) 

sdH2O 

Method 

DNA (~1ng) was kept on ice and made up to 8 µl with sdH2O. 1 µl of UDG and 

the same amount of Buffer 1 were added to the mixture and incubated at 37°C 

for 3 hours. A control reaction that did not excise 8-oxoG underwent the same 
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treatments but did not contain UDG, instead having 1 µl of sdH2O. The reaction 

was stopped by heating at 95°C for 10 minutes.  

2.8.2  FPG treatment of DNA 

Materials  

DNA sample 

Buffer 1 (New England BioLabs) 

FPG (New England BioLabs) 

sdH2O 

Method 

DNA (~1ng) was placed on ice and adjusted to 8 µl with sdH2O. 1 µl of FPG 

and the same amount of Buffer 1 were added to the mixture and incubated at 

37°C for 3 hours. A control reaction underwent the same treatments but did 

not contain FPG, instead having 1 µl of sdH2O. The reaction was stopped by 

heating at 60°C for 10 minutes.  

2.9   Gel electrophoresis 

2.9.1  Agarose gel electrophoresis 

Materials 

Tris, boric acid, EDTA (TBE) buffer:  

 89 mM Tris base  

 89 mM Boric acid 

 2 mM EDTA  

Agarose 

GelRed (Biotium) 

Loading buffer: 

 50% (v/v) Glycerol 

 0.05% (w/v) Bromophenol blue 

 0.05% (w/v) Xylene cyanol 

Hyperladder 1kb plus (Bioline) 

Method 
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For smaller cast gels, agarose was added to 40 ml TBE buffer and for larger 

cast gels agarose was added to 100 ml TBE buffer inside an open topped 

beaker. The amount of agarose added was dependent on predicted product 

size. The standard percentage agarose in the gel was 1.0% which was 

lowered accordingly for smaller products.  

 

The beaker was microwaved until the agarose had dissolved. The gel was 

either left to set in a gel cast with comb (BioRad) awaiting post-electrophoretic 

staining or was left to cool to 65°C and GelRed (5 µl/100 ml of TBE) was added 

before being poured and left to set. Once set, the gel was placed in an 

electrophoresis tank (BioRad) and overlaid with TBE buffer. If the samples did 

not already contain a loading dye 0.25 volumes of loading buffer were added. 

The samples were then loaded into the wells alongside Hyperladder I kb plus 

(5 µl) to verify size of products. Electrophoresis was conducted at a constant 

voltage to allow DNA migration through the gel.  

2.9.2  Alkaline agarose gel electrophoresis 

Materials 

Agarose 

10x Alkaline agarose gel electrophoresis buffer (electrophoresis buffer):  

 500 mM NaOH 

 10 mM EDTA 

Absolute ethanol 

70% ethanol 

Staining solution:  

 GelRed (30 µl/100 ml TBE) 

 1x TBE buffer 

Neutralizing solution: 

 1 M Tris-Cl (pH 7.6) 

 1.5 M NaCl 

Tris, boric acid, EDTA (TBE) buffer:  
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 89 mM Tris base  

 89 mM Boric acid 

 2 mM EDTA  

Method 

For smaller cast gels agarose was added to 40 ml sdH2O and for larger cast 

gels agarose was added to 100 ml sdH2O inside an open topped flask and 

heated in a microwave until dissolved. After the mixture had cooled to 55°C 

0.1 volumes of 10x electrophoresis buffer was added. Once the gel had set it 

was placed inside an electrophoresis tank (BioRad) and overlaid with 1x 

electrophoresis buffer. The DNA samples were mixed with 0.2 volumes of 

alkaline gel loading buffer and loaded into the wells before running at a 

constant 3.5 V cm-1 of gel. To stain the gel it was first neutralized by gentle 

mixing in neutralizing solution for 45 minutes. The neutralizing solution was 

rinsed from the gel with TBE and the gel was submerged in staining solution 

for one hour before imaging and analysis. 

 

2.9.3  Urea poly-acrylamide gel electrophoresis (Urea PAGE) 

Urea PAGE gels were performed using reagents from the Sequagel Ureagel 

system protocol (National Diagnostics (ND)) according to the manufacturer’s 

instructions.  

Materials 

UreaGel concentrate (ND): 

 237.5 g l-1 Acrylamide 

 12.5 g l-1 Methylene bisacrylamide 

 7.5 M Urea 

Ureagel buffer (ND): 

 0.89 M Tris-borate 

 20 mM EDTA (pH 8.3) 

 Urea 

Loading buffer: 

 90% Formamide 
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 0.5% EDTA 

 0.1% Xylene cyanol 

 0.1% Bromophenol blue 

Ureagel diluent (ND) 

Tetramethylethylenediamine (TEMED) 

10% Ammonium persulfate (APS) freshly made 

Method 

Urea PAGE gels were created by adding 20 ml UreaGel concentrate, 70 ml 

UreaGel diluent and 10 ml UreaGel buffer in a glass beaker. In order to initiate 

gel formation 40 µl of TEMED and 800 µl of freshly prepared 10% APS were 

added. The mixture was poured into two gel casting stands (Mini-protean; 

BioRad) and combs placed on top. Once the gels had polymerised they were 

added into an electrophoresis chamber (Biorad) and submerged in 1x TBE 

and connected to a standard power pack. The gel was then pre-run for 30 

minutes at constant voltage to warm the gel and remove excess urea. The 

wells were then rinsed briefly in TBE to remove standing urea that may affect 

DNA upon loading. Loading buffer was added to the samples and they were 

added to wells, any empty wells contained only loading buffer to maintain 

equal conditions across the acrylamide gel. The gel was run at a constant 

voltage until the dye had reached the bottom of the gel. Once complete the 

gels were rinsed in TBE and visualised and processed using software as 

mentioned in section 2.2. 
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2.9.4  DNA purification using agarose Gels 

Gel extraction was performed using a QIAquick PCR purification kit (Qiagen) 

according to the manufacturer’s instructions.  

Materials 

Buffer QG (Qiagen) 

Buffer PE (Qiagen) 

3 M Sodium acetate (pH 5.0) 

Absolute isopropanol 

sdH2O  

Method 

The protocol uses spin columns with silica membranes to purify DNA. The 

desired fragment of DNA was extracted from the agarose gel using a scalpel 

and weighed in a 1.5 ml microcentrifuge tube. Binding and solubilisation buffer 

(Buffer QG) was added (300 µl per 100 mg of gel fragment) and incubated at 

50°C until the gel was dissolved and the solution turned yellow. If the solution 

did not turn yellow, 10 µl of sodium acetate (pH 5.0) was added. One gel 

volume of absolute isopropanol was added, followed by mixing by gentle 

inversion, in order to precipitate the DNA. The precipitated DNA was bound to 

a QIAquick spin column silica membrane by centrifugation at 12 000 rcf for 

one minute. The column was then washed by adding buffer PE and 

centrifuging 12 000 rcf for one minute. This step was repeated before adding 

30 µl of sdH2O and centrifuging for 2 minutes at 12 000 rcf in order to elute the 

DNA from the column. 
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3.  Characterisation of EcoSeed seed lots   
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3.1   Introduction 

3.1.1  Seed quality 

Seeds can be classified into three categories; orthodox, recalcitrant and 

intermediate species. Following seed maturation, orthodox seeds undergo 

maturation drying, reducing both water content and metabolic activity and 

allowing them to survive for extended periods before germinating (Ellis et al., 

1991). Arabidopsis thaliana and Brassica oleracea, the species used in this 

study, are both orthodox (desiccation tolerant) seeds. 

Orthodox seeds, representing most agricultural species, are stored in a variety 

of circumstances dependent on the global range of agricultural practices. 

Elevated heat and humidity increases the speed of deterioration of 

macromolecules (Waterworth et al., 2015). Deterioration is particularly 

problematic in the developing world with limited access to controlled storage 

facilities. This deterioration includes an increase in the levels of genome 

damage apparent in aged seeds (Cheah and Osborne, 1978). The natural 

deterioration of seeds in storage can be simulated during accelerated ageing 

(AA) protocols: subjecting the seeds to elevated heat and humidity for short 

periods of time mimics natural seed ageing (Powell and Matthews., 2012; 

Rajjou et al., 2008). The related method of controlled deterioration (CDT) is 

optimised for larger seeds, whereby seeds are fully equilibrated to defined 

hydration levels before they are subject to heat-induced ageing (Mavi and 

Demir, 2007). Both methods allows for in depth analysis on seed damage and 

repair during ageing to help uncover the molecular basis that underpin 

differences in seed vigour and viability (Powell and Matthews, 2012).  These 

two important aspects of germination determine the quality of a seed lot. 

Successful germination is crucial for plant survival and a key determinant of 

crop yields. Reduction in seed quality can cause considerable problems in 

agriculture and conservation efforts in wild species, leading to considerable 

economic loss. Two factors that strongly affect the quality of a seed are 

maternal environment (Zas et al., 2013) and storage following desiccation 

(Powell and Matthews, 2012; Waterworth et al., 2015). 
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3.1.2  The EcoSeed project overview 

To date, despite the importance of seed quality to ecology and agriculture, we 

know surprisingly little about the molecular processes that determine the 

speed of germination and loss of seed viability. The work in this thesis forms 

a component of the EcoSeed EU Horizon 2020 funded project which, 

combining the expertise of agricultural industry experts, seed conservation 

scientists and several EU-wide universities, aimed to increase our 

understanding of the basis of seed quality. A key aim of the project was to 

determine the factors that underpin seed quality, in terms of molecular 

changes within seeds and in relation to their maternal environment. Through 

delineating the molecular changes that occur in the seed following different 

stresses in the dry seed and during imbibition, the project aimed to identify the 

important changes that affect seed quality through development, storage and 

throughout imbibition. In addition, an integral part of the EcoSeed project was 

the inclusion of crop species in addition to the model plant Arabidopsis 

thaliana. Application of the project findings, through identification of genetic 

determinants of seed quality, would provide candidate biomarkers for seed 

quality in Brassica and barley. The ideal marker for seed quality would be 

transferable, cost efficient, high throughput relatively simple and fast to 

undertake. Applying all of these traits generates seed quality biomarkers that 

can be widely accessible and utilisable in agriculture, conservation and assist 

in plant breeding programmes.  

3.1.3  The EcoSeed project: Leeds 

The objective of the work presented in here was to analyse the relationship 

between seed quality and the types and levels of DNA damage in seeds, along 

with an analysis of the DNA damage response and its role during early 

imbibition and germination. Long periods of time cause seeds to lose viability 

and vigour associated with ageing and oxidative stress, with higher 

temperatures and humidity causing accelerated decline (Goel et al., 2003; 

Powell and Matthews, 2012). The desiccated state in dry, orthodox seeds 

allows survival through harsh environmental conditions, in some species 

successfully propagating after centuries (Shen-Miller et al., 1995). The 

desiccation/rehydration cycles that orthodox seeds often go through before 
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initiating germinative processes are associated with increased levels of 

damage to macromolecules and cellular structures (Rajjou et al., 2012). In 

conjunction with low levels of metabolic activity coupled with low levels of 

respiration allows for damage to accumulate without repair or scavenging 

systems to generate a repair response leading to a reduction in seed vigour 

and viability. During storage DNA breaks and other forms of damage 

accumulate, contributing to the drop in overall seed performance (Dourado 

and Roberts, 1984; Waterworth et al., 2016). This damage to DNA induced by 

storage has been shown to occur across a range of species (Cheah and 

Osborne, 1978; Dourado and Roberts, 1984; Dandoy et al., 1987; Liu et al., 

2004; El-Maarouf-Bouteau et al., 2011). If DNA damage accumulates to 

cytotoxic levels, seeds will eventually lose the capacity to germinate and the 

seed will die (Kranner et al., 2010).  

3.1.4  Seed vigour: a measure of seed quality 

Uptake of water by the seed initiates the start of germination and completion 

is determined by the protrusion of the radicle from the seed coat (Bewley and 

Black, 1994). The speed at which a seed completes germination is defined as 

seed vigour and is an important determinant of how productive the plant will 

be (Rajjou et al., 2012). Low vigour seeds produce weaker seedlings that are 

more prone to influence from environmental conditions and typically show a 

reduction in yield (Ellis et al., 1990). Seed vigour is influenced by several 

factors including environmental conditions during development, storage 

conditions and exogenous factors such as nutrient availability and pathogen 

presence (Rajjou et al., 2012). The most adverse conditions result in reduced 

seed viability with accumulated damage causing cell death.  

Current methods of determining seed quality differences rely on germination 

testing samples of seeds to determine vigour and viability. Drops in viability of 

seed lots are usually associated with a large accumulation of damage and are 

more uncommon in agricultural practices. Vigour differences are more 

common and result in reduction of crop yield.  Seed vigour can be portrayed 

as the mean germination time (MTG) of a seed lot and calculated using 

equation 3.1. Natural ageing generates differences in seed quality which can 

be simulated by raising the moisture content of seeds, known as controlled 
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deterioration. Similarly vigour differences can be generated using specified 

higher temperatures and relative humidity over a shorter period of time, known 

as accelerated ageing (Powell and Matthews, 1984). The reliance on 

germination testing opens the door for novel methods of predicting seed 

quality, with seed vigour a candidate for predicting crop yield allowing for the 

generation of quantitative, sensitive biomarkers to evaluate seed quality.  

3.1.5  The significance of seed quality 

Economic losses are suffered every year by farmers due to poor seed quality. 

This is a particular problem in developing areas of the world with restricted 

access to controlled storage facilities and hot, humid climates. Global warming 

is set to further exacerbate problems with agriculture and wild-species 

conservation centres bearing the brunt of reduction in seed quality and crop 

yield. This increases the importance of the generation of universal markers for 

seed quality that can be utilised across a number of species.  Using 

accelerated ageing to produce seeds with differences in vigour, we look to 

develop our understanding of how DNA damage affects seed vigour and 

potentially look for effective biomarkers to estimate vigour differences. 

 

Mean germination time equation 

ti is the start of the experiment, post stratification, to the ith observed time. ni is the 

number of seeds to germinate in the ith time interval and k is the point in which the 

last seed has germinated. The average of each independent test gives the final MGT 

value.  

 

Seed quality is of great importance to agriculture, conservation and food 

security. The added challenge of increasing global temperatures require new 

knowledge on how rapidly changing climates will affect seeds during 

development and storage, in order to better predict quality of seed batches 

and minimise losses. Correlating the levels of DNA damage and the cellular 

responses DNA damage with seed quality would strengthen the link between 

these processes, in addition to identifying candidate biomarkers. Thus, the 
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germination characteristics of seeds grown in different environments and 

storage conditions, in terms of vigour, viability and storability can be correlated 

with a molecular analysis of genome integrity. Seed lots were produced by the 

EcoSeed network or at Leeds, under standardised conditions used by all 

project partners. This section will assess the quality of seed lots used in during 

the project by germination testing. Chapters 3-7 report the analyses of damage 

accumulation and repair in the seed lots and relate these factors to the 

germination profiles reported here. 

3.1.6  Species studied in EcoSeed seed lots 

Two plant species were used in the project-the model plant Arabidopsis 

thaliana (hereon referred to as Arabidopsis) and the closely related UK crop 

Brassica oleracea spp. oleracea (hereon referred to as Brassica). The former 

provides us with a large genetic resource, including a sequenced genome and 

a wide variety of knock-out mutants available. Brassica allows for the 

translation of the knowledge into crop species and comparison of the 

relationship between genome maintenance processes and seed quality across 

different species. The Brassica genus includes a number of crop species such 

as broccoli, cabbage, cauliflower, kale and sprouts. Brassica oleracea has a 

sequenced pangenome; unlike sequencing individual organisms a 

pangenome allows the incorporation of structural variations, such as 

presence/absence variance and copy number differences, which are 

characteristic of Brassica species (Golicz et al., 2016).  

3.1.7  Aims 

The aim was to analyse the germination characteristics of the EcoSeed seed 

lots to determine the effects on vigour and viability resulting from the seeds 

produced under a range of maternal environmental temperatures and subject 

to different ageing regimes. This characterisation then allows for the 

comparison of seed quality with downstream analysis of DNA damage, repair 

and oxidation in further chapters. Two different Arabidopsis seed lots were 

used in this studies, one generated at the University of Leeds that were 

subjected to accelerated ageing (section 3.2.1) and Arabidopsis and Brassica 
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seeds produced at Warwick University for use in the EcoSeed project (section 

3.2.2). 

3.2   Results 

3.2.1  Accelerated ageing of Arabidopsis thaliana seeds 

Two different seed lots of Arabidopsis were used in this work. This section 

reports data obtained using seed lots generated and subjected to accelerated 

ageing at the University of Leeds. To obtain seed lots, plants were propagated 

from seeds that were surface sterilised and plated onto MS medium before 

being placed into a control temperature room (22°C; 16 h:8 h day/night cycle). 

After two week’s growth, seedlings were transferred to soil and placed in 

greenhouses, as described in (section 2.4). Mature plants that had set seed 

were allowed to dry once all siliques had turned brown. Harvested seed were 

stored for two months at room temperature to allow after-ripening. These are 

referred to a ‘high quality’ seed to distinguish them from seeds subject to 

accelerated ageing. 

The high quality seeds produced were of 100% final viability, and uniform 

germination, on average showing radicle protrusion within 50 hours of the 

onset of imbibition (Figure 3.1). To generate seeds of lower quality, seeds 

were deteriorated by accelerated ageing. The ageing regime involves seeds 

incubation above a saturated solution of potassium chloride at elevated 

temperature in an air-tight vessel (35°C; 80% relative humidity)  (Hay et al., 

2003; Powell and Matthews, 2012). Viability and vigour are reduced 

dependent on the time period seeds are deteriorated. Seeds were deteriorated 

in the high temperature/humidity environment for between 1 and 5 days, with 

samples being removed every 24 hours to generate seed lots of progressively 

deteriorating quality (0 d, 1 d, 2 d, 3 d, 4 d and 5 d aged). Monitoring 

germination over a time course allows calculation of both final germination 

percentage and the average mean it takes for the seeds to germinate. 

Germination tests are performed as described in section 2.5.2. Analysis of 

germination, including calculation of mean germination time (MGT) is 

described in section 2.5.2. 
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Seed viability was 97.5% and 95% respectively for seeds aged for 1 and 2 

days. Seeds began to lose significant viability following ageing for three days 

when final germination dropped to 90% (P<0.05). The mean germination time 

(MGT) showed no significant change up to 3 days ageing, averaging between 

50 and 52 hours. Following 4 days of ageing, there was a drop in both viability 

and vigour with final germination percentage dropping to 67.5% and the mean 

germination time rising to 66 hours. Further decline was seen in seeds aged 

for 5 days, with only 49% of seeds germinating. Of those seeds that did 

germinate, radicle emergence was greatly delayed; on average it took 88 

hours for the protrusion of the radicle from the seed coat (Figure 3.1).  
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[A] 

 

[B]

 

Figure 3-1 Germination performance of Arabidopsis seed  

Seeds were grown as described in section 2.4 at the University of Leeds, subjected 

to ageing (section 2.5.3) (35°C; 80% RH) and germinated on germination paper. 

Germination was scored every 24 hours (section 2.5.2). 

[A] Daily germination percentages of Arabidopsis thaliana seeds across different 

accelerated ageing regimes.  

[B] Mean germination time (MGT) of Arabidopsis thaliana seeds. The average time it 

takes for a seed to germinate is an indication of vigour, with highest quality 

Arabidopsis seeds germinating within 2 days.  

 

0

10

20

30

40

50

60

70

80

90

100

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G
er

m
in

at
io

n
 (%

)

Time after imbibition (days)

Unaged

1 day aged

2 day aged

3 day aged

4 day aged

5 day aged

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

HQ seeds 1 day 2 days 3 days 4 days 5 daysM
ea

n
 g

er
m

in
at

io
n

 ti
m

e 
(D

ay
s)

Time of seed ageing (days)

The effects of ageing on mean germination time

* 

* 



- 59 - 

3.2.2  The effects of maternal environment on Arabidopsis 

thaliana seed germination performance  

Seed lots were produced at the University of Warwick for the EcoSeed project 

for distribution to partners. EcoSeed seed lots underwent several different 

stresses, including either elevated, reduced or control temperature during 

seed maturation on the mother plant. In addition, accelerated ageing was 

performed on seed lots from each treatment to analyse the impact of the 

maternal environment on seed performance and stress responses. For 

Arabidopsis this consisted of three treatments: a low temperature stress (LT; 

14°C/16°C), control temperature (CT; 18°C/22°C) and high temperature (HT; 

25°C/28°C). In Brassica a control temperature (CT; 18°C/22°C) and high 

temperature (HT; 25°C/31°C) were used (table 3.1). The variable temperature 

regimes replicated, as closely as possible, predicted climatic changes to see 

how seed production and quality will be affected in the near future. During 

formation on the maternal plant, temperature drastically affected both seed 

quality and seed yield per plant. Arabidopsis and Brassica produced fewer 

seed in smaller siliques at higher temperatures. Thus seed production was 

very vulnerable to temperature stress in the maternal environment, and is 

known to cause losses in agriculture (Semenov et al., 2014). 

This studied aimed to investigated agriculturally relevant changes to seed 

quality associated with potential climate fluctuations and mild ageing 

treatments. This meant that seed lots with very viability were not included in 

this investigation, and that the combination of treatments generating small 

viability differences or changes in vigour were of most interest for the 

investigation of associated molecular changes in seed. Deterioration in 

storage was simulated using conditions of elevated temperature and relative 

humidity which were optimised for each species studied. In initial studies, the 

effects of hypoxia (atmospheres containing <3% O2) were also investigated 

but there were no differences in the germination characteristics between seeds 

exposed to low oxygen atmospheres and controls. Controlled deterioration 

(CDT) for up to 11 days was used to generate a range of differences in seed 

quality in Arabidopsis seeds. For CDT, seeds were equilibrated at 20°C and 

75% RH for 1 day and then transferred to 40°C and 75% RH. Interestingly, 
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seeds obtained from plants grown at a lower temperature (LT), which induces 

dormancy, lost this thermodormancy following CDT for 5 days. Utilising the 

different maternal environments and CDT stresses, significant differences in 

seed quality were obtained. These results allows both and investigation of the 

effects of the maternal environment on germination performance and also 

provide a resource allowing the relationship between DNA damage/repair and 

seed quality to be studied (Figure 3.2 and 3.3). Brassica seeds shoed greater 

sensitivity to CDT than Arabidopsis, losing viability within 9 weeks of CDT, and 

reduction in vigour and viability apparent following 6 days at 45°C, 83% RH 

(Figure 3.3). 

Germination analysis of the EcoSeed seed lots was performed at (15°C; 24 h 

day) in growth chambers, as this was required to relieve thermal dormancy 

induced in seeds obtained from plants grown under LT conditions. An 

additional advantage of analysing seed performance at lower temperatures 

was that slowed germination accentuated differences in seed lot vigour.   
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LT 

Seeds grown in a low temperature environment during 

development. 

14°C-16°C; 16 hour days. 

CT 

Seeds grown in a control temperature environment during 

development. 

18°C-22°C; 16 hour day 

HT 

Seeds grown in a high temperature environment during 

development. 

25°C-28°C; 16 hour day 

 

LTA 

CTA 

HTA 

An “A” suffix denotes controlled deterioration of the above seeds 

at 40°C with 75% relative humidity for 4 days (e.g. LTA, CTA, 

HTA) 

 

Table 3.1 Notations for the environmental conditions while Arabidopsis 

seeds were developing on the maternal plant and post-harvest ageing 

conditions 
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In unaged seeds, final germination of LT, CT and HT seeds were 91.7%, 

97.5% and 99.16% viability respectively. There was no change in viability 

observed between CT seeds and either LT (P=0.24) or HT (P=0.52) seeds; 

however HT seeds had the highest level of viability (rather than control 

temperature seeds) and was significantly greater than that of LT seeds 

(P<0.01). Seed lot viability reduced significantly following ageing of LT and CT 

seeds, with seed viability dropping to 57.5% and 75.8% in LTA (P<0.01, aged 

vs unaged) and CTA (P<0.05) seeds. The controlled deterioration of HT seeds 

produced no significant change (84.2% from 99.1% final germination; P>0.05). 

Seeds produced under lower temperature conditions, displayed greater 

sensitivity to CDT compared to the control or high temperature (Figure 3.2). 

The mean germination time (MGT) of the seed lots, a measure of vigour, 

reflected the loss in viability. CDT increased the mean germination time 

following ageing in all three conditions. LT seeds took 110.8 hours on average 

to germinate. This was significantly longer than CT (86.4 hours) or HT (67.0 

hours) (P<0.05). HT seeds germinated the fastest, displaying increased vigour 

in comparison to the CT seeds.  Similarly LTA seeds took significantly longer 

(163.9 hours) than CTA (127.4 hours) and HTA (127.0 hours) seed. However 

no significant differences were between CTA and HTA seeds were observed.  
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Figure 3.2 Germination percentages of aged and unaged EcoSeed 

Arabidopsis seed lots produced under different maternal 

environments 

Germination percentages of Arabidopsis thaliana seeds grown at different maternal 

temperatures and either kept as high quality controls (■) or subjected to CDT 

(controlled deterioration) ageing regimes (■). Ageing lowered the viability in seeds 

grown in low or control temperature regimes (* = P<0.05) but not in the seeds grown 

at higher temperature. Maternal environment conditions: LT; 14°C-16°C, CT; 18°C-

22°C, HT; 25°C-28°C. CDT of seeds  undertaken at 40°C with 75% relative humidity 

for 4 days. 
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Figure 3.3 Mean germination time (MGT) of aged and unaged EcoSeed 

Arabidopsis seed lots produced under different maternal 

environments 

The mean germination time (MGT) for Arabidopsis thaliana seeds grown at different 

maternal temperatures and either kept as high quality controls (■) or subjected to 

CDT ageing regimes (■). CDT causes an increase in the amount of time taken for the 

seeds to germinate i.e. a reduction in vigour (P<0.05 for all conditions). Seeds grown 

in a low temperature environment, with or without ageing, take longer on average to 

germinate than those grown at the control temperature (P<0.01). Seeds grown at a 

higher temperature germinate faster than those kept in the control temperature 

(P<0.05) but only in high quality seeds. P-values given from Student’s T-Test with 3 

replicates of 40 seeds for each condition, * = P<0.05, ** = P<0.01. Maternal 

environment conditions: LT; 14°C-16°C, CT; 18°C-22°C, HT; 25°C-28°C. CDT of 

seeds  undertaken at 40°C with 75% relative humidity for 4 days. 
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3.2.3  The effects of maternal environment and accelerated ageing 

on Brassica oleracea germination performance 

Seed lots were produced at the University of Warwick for the EcoSeed project 

for distribution to partners. Similar to Arabidopsis seeds, Brassica seed lots 

underwent different temperatures during seed maturation on the mother plant. 

These conditions did not include a lower temperature, but a higher 

temperature was used (HT; 25°C/31°C) along with a control temperature (CT; 

18°C/22°C). In addition to the maternal temperatures accelerated ageing was 

also used with both seed lots being subjected to high heat and humidity 

(45°C/85% RH) to simulate long term storage. The elevated maternal 

temperature regime was used to best replicate the future effects global 

warming may have on the quality of seed lots. 

Brassica seeds were subjected to control and higher temperatures during 

seed development and subjected to ageing. There were no significant 

differences in viability between seeds grown in different maternal 

environments in unaged or aged seeds. CT seeds showed a 96.7% final 

germination percentage which lowered to 90.0% following ageing, although 

not significantly. The MGT for these seeds was 67.9 hours and 102 hours 

respectively. Despite the longer time it took to germinate for the aged seeds 

the differences were not significant (P>0.05). 

Higher maternal temperature showed a reduction in viability, reduced to 56.7% 

following ageing when compared to unaged HT seeds which showed 98.3% 

viability. These HTA seeds germinated after 114.4 hours compared to HT 

seeds which generally germinated after around 72.0 hours, although this 

difference was again not significant (P>0.05).  
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Figure 3.4 Germination of aged and unaged EcoSeed Brassica oleracea 

seed lots produced under different maternal environments 

Germination percentages of Brassica seeds grown at different maternal temperatures 

and either kept as high quality controls or subjected to CDT ageing regimes. Ageing 

lowered the viability in seeds grown in high temperature regimes, with 98.3% of HT 

seeds germinating compared to 56.7% upon ageing (HTA)(P<0.05). There was no 

significant difference in final germination CT (96.7% germination) and CTA seeds 

(90.0%)(P=0.18). P-values given from Student’s T-Test with 3 replicates of 35 seeds 

for each condition, * = P<0.05, ** = P<0.01. Maternal environment conditions: CT; 

18°C-22°C, HT; 25°C-28°C. Controlled deterioration of seeds  undertaken at 24°C 

with 75% relative humidity for 10 days and is denoted by the suffix “A” (i.e. CTA and 

HTA respectively). 
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Figure 3.5 Mean germination time (MGT) of aged and unaged EcoSeed 

Brassica seed lots produced under different maternal environments 

The mean germination time (MGT) for Brassica oleracea seeds grown at different 

maternal temperatures and either kept as high quality controls (■/■) or subjected to 

CDT ageing regimes (■/■). Maternal environment had no effect on MGT with CT 

seeds (67.9 hours) and HT seeds (72 hours) germinating at similar times. CTA (102 

hours) and HTA seeds (114 hours) also did not differ from each other. There was no 

significant difference between CT and CTA seeds (P=0.068) nor any difference 

between HT and HTA seeds (P>0.05). P-values given from Student’s T-Test with 3 

replicates of 35 seeds for each condition, * = P<0.05, ** = P<0.01. Maternal 

environment conditions: CT; 18°C-22°C, HT; 25°C-28°C. Controlled deterioration of 

seeds  undertaken at 24°C with 75% relative humidity for 10 days and is denoted by 

the suffix “A” (i.e. CTA and HTA respectively).. 
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3.3   Discussion   

3.3.1  Accelerated ageing can be used to mimic long term storage and 

lower the quality of seeds 

A reduction in germination vigour precedes loss of viability and leads to losses 

in crop production through weaker seedlings and smaller yields (Ellis et al., 

1990). Low vigour seeds and poor germination performance are associated 

with weak seedlings (low seedling vigour) reducing seedling establishment, 

plant productivity and yield (Finch-Savage and Bassel, 2015b). Here, the 

effects of the maternal environment on germination performance and seed 

longevity were analysed. In addition, these well-characterised seed lots 

provided the resource material used to determine the link between germination 

performance and genome damage. In commercial agriculture seed lots are 

required to have a minimum of ~90-100% viability when tested under optimal 

germination conditions. Therefore, an analyses of seed lots demonstrating 

significant loss in viability is less relevant to agricultural seed production, 

whereas reduction in vigour is a more useful and sensitive indicator of seed 

lot quality. Controlled deterioration (CDT) resulted in a small reduction in 

viability in Arabidopsis seed lots (Figures 3.1A and 3.2). Vigour differences are 

also seen following accelerated ageing as an accompaniment to the loss in 

viability (Figures 3.1B and 3.3).  

3.3.2  The effects of the maternal environment 

In this study seeds produced under low temperature maternal environments 

displayed reduced vigour in the absence of CDT (Figure 3.3). This may reflect 

residual levels of thermodormancy in these seed lots, as seeds grown in lower 

temperatures have been shown to remain dormant, even in ideal growing 

conditions (Bentsink and Koornneef, 2008). Seeds obtained from plants grown 

under higher temperature regimes in Arabidopsis displayed faster germination 

than those at the control temperature, with a significant increase in vigour, but 

no differences in viability observed between seed lots. This increase in vigour 

relative to controls was no longer evident after ageing. Thus, although seeds 

produced at a higher maternal temperature (HT) displayed higher vigour 
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immediately following after-ripening, no vigour differences were apparent 

between aged control (CTA) and HTA lines.  

3.3.3  Germination data provided from the EcoSeed project partners 

The first time-point selected for analyses in seed imbibition was an early 

imbibition time-point, aimed to assess the relationship between damage 

caused by an influx of ROS during imbibition and the repair processes that are 

initiated upon restarting of respiration. Early seed imbibition has already been 

shown to activate several responses associated with repair, including the DNA 

damage response (detailed in section 1.6) (Waterworth et al., 2010). The early 

time point was selected in order to ensure that the analysis of the early phase 

of germination would include repair activities. Six hours imbibition in 

Arabidopsis and 10 hours in Brassica were selected as these times 

represented when water uptake had reached a steady level (end of phase I of 

germination) (EcoSeed partner Finch-Savage lab, University of Warwick; 

Figure 3.4). Although water uptake seemed stable following 2-2.5 hours’ 

imbibition in Arabidopsis this was deemed insufficient time for metabolic 

activities to be initiated and quantified. The late imbibition time-point was 

chosen to determine how much repair had occurred prior to germination 

initiation. The time-point in this case was taken as 80% of the time taken to 

reach germination. In the case of Arabidopsis this was 72 hours and 40 hours 

in Brassica.  

 

  



- 70 - 

 

[A]  

 

[B] 

 

 

Figure 3.4 Water uptake in Arabidopsis and Brassica  

Seeds were dry-blotted and weighed at different points throughout imbibition to 

determine when water uptake had stopped, signalling the end of phase I in 

germination. The weights were taken in Arabidopsis thaliana [A] and Brassica 

oleracea [B]. Two ecotypes of Brassica were utilised in initial experiments; SL101 

and A12, with only SL101 being taken forward for further analysis due to residual 

dormancy present in A12 lines. Work undertaken by the University of Warwick. 
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The seed lots analysed here, with progressively reduced vigour and viability, 

form the basis of studies to investigate the molecular events important to seed 

quality, providing insight into the factors affecting seed performance. The 

following chapters will focus on the relationship between genome maintenance 

and germination performance integrity by analyses of lesions, levels of 

damage and DNA responses in seeds of different quality, from storage through 

to completion of germination.  
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4.  Analysis of DNA integrity in seed 

ageing and germination  
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4.1   Introduction 

DNA damage poses a serious threat to genomic stability, as it can lead to 

arrested growth, mutation and cell death. The maintenance of genomic 

integrity is essential for high seed vigour, yet DNA damage accumulates in the 

dry, quiescent state in the orthodox seed (Waterworth et al., 2016). This 

damage is apparent as an accumulation of single strand breaks (SSBs) 

associated with loss of seed viability, although the importance of different 

lesions on determining seed quality are unknown (Cheah and Osborne, 1978). 

DNA breaks can be caused directly through oxidation of the phosphodiester 

bond, connecting deoxyribose sugars in the DNA backbone. Breaks are also 

formed as an intermediate in excision repair pathways of damaged bases and 

nucleotides (Bray and West, 2005). Double strand DNA breaks (DSBs), 

representing broken chromosomes, are one of the most cytotoxic forms of 

DNA damage. DSBs can be formed through oxidation of both strands of the 

duplex which can occur during localised production of ROS caused by tracks 

of high energy radiation, or through the Fenton reaction mediated by heavy 

metal ions. It has been suggested that single strand breaks in close proximity 

can generate double strand breaks, and single stranded produced through the 

‘opening’ in the DNA during repair is particularly sensitive to oxidation (Britt, 

1996). Furthermore cells in the S-phase of the cell cycle can generate DSBs 

from single strand nicks as polymerases pass over the gap generated in the 

phosphodiester backbone, or through replication blocking lesions that lead to 

replication fork collapse (Lieber, 2010). Plants need to repair DNA damage 

upon seed imbibition, before cell cycle initiation and completion of germination, 

in order to prevent mutations (Waterworth et al., 2016). Preservation of 

meristem cells by delaying the cell cycle in response to genotoxins is important 

to plant growth under stress conditions (Heyman et al., 2013). DNA damage 

responses activated by the accumulation of strand breaks delay germination 

until sufficient repair has taken place (Preuss and Britt, 2003). To date, most 

focus has been on DSBs and less is known about the effects of SSBs in seeds.  
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4.1.1  Aims 

The aim of this work was to develop a method to allow quantification of single 

strand breaks in seeds. This would then allow correlation between SSB 

accumulation and seed quality to be investigated. The approach taken was to 

quantify single DNA strand breaks using denaturing alkaline agarose gel 

electrophoresis. Under these conditions the duplex is denatured and single 

stranded DNA fragments migrate into the gel and can be quantified. In 

conjunction with current image analysis software, this provides a widely 

accessible, cheap and effective method of quantifying SSBs and predicting 

seed quality. The fraction of DNA that migrates into the gel can be quantified 

using GelRed in conjunction with image analysis software. This would then 

identify any correlation between levels of single DNA strand breaks and seed 

quality.  

4.2   Results 

4.2.1  Optimisation of genomic DNA extraction from Arabidopsis seeds 

Because of the abundance of carbohydrates, seed coat mucilage, storage 

proteins, lipids and secondary metabolites in seeds, standard DNA extraction 

protocols are often ineffective. Impurities that co-purify with DNA make both 

spectrophotometric quantification and gel electrophoresis problematic. In 

order to circumvent the elution of contaminants (which display an absorbance 

peak at 230 nm), modifications to the standard plant DNA isolation procedures 

were required. Optimisation of extraction protocols involved adaptation of a 

CTAB-based extraction method in section 2.6.2. A higher salt concentration 

was used in the modified CTAB based extraction buffer, as initially NaCl was 

not present. Given the solubility of DNA in high salt solutions we raised this to 

1.4 M. The incubation time during the initial extraction step was also reduced 

from 30 minutes to 2 minutes. Given the ability for DNA to dissolve rapidly in 

NaCl solutions this gave the highest chance to avoid contaminants from co-

dissolving. 

The concentration of NaCl used in the CTAB extraction buffer was varied 

originally to determine best conditions for DNA solubility. Concentrations 

varied from 0.4 M NaCl up to a maximum of 3.5 M NaCl and incubation time 
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was reduced from 30 minutes to 2 minutes. DNA remains soluble at the higher 

salt concentration but reduces levels of contaminants, whilst the reduced 

incubation temperature selectively reduces the time for hydration of seed coat 

mucilage. An optimised concentration of 1.4 M NaCl was used in subsequent 

extractions. The amount of starting material was found to be critical to the 

extraction of high quality DNA from Arabidopsis seeds. High amounts of 

powdered seed tissue resulted in high levels of co-purifying contaminants that 

co-purify with DNA, interfering with downstream analysis (Nonogaki, 2001). 

Because of the large differences in hydrated mucilage content of Arabidopsis 

seeds observed depending on level of imbibition (with low levels in dry seed 

and increased levels in seeds as they reach germination), different starting 

quantities need to be used for differentially imbibed seeds (table 4.1).  

Table 4.1 Optimised starting quantities of freeze-ground Arabidopsis seed 

material at different time-points of seed imbibition 

Imbibition time of seed 
Quantity of starting seed material 

(mg) 

Dry seed 20 

Early imbibition (1-3 hours) 35 

Mid stage imbibition (4-9 hours) 50 

Late imbibition (10+hours) 75 

 

Seeds such as Brassica oleracea have high levels of storage compounds; 

however most contaminants are lipid based and may be removed through 

standard chloroform extractions. Cereal seeds such as Hordeum vulgare 

required embryo dissection from the seed prior to DNA extraction to remove 

the starch enriched dead endosperm tissue which would otherwise interfere 

with DNA integrity analysis. In this case the standard CTAB extraction process 

produced high quality DNA with few contaminants (section 2.6.2).  
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4.2.2 Single strand break analysis in Seeds 

Single strand breaks pose a threat to genomic stability by blocking 

transcription and generating the highly cytotoxic double strand break when 

present at high levels or conversion of SSBs into DSBs during DNA replication 

(section 1.1.4) (Kuzminov, 2001). To enhance our understanding of how levels 

of single strand breaks correlate with the ability of a seed to germinate two 

approaches were developed to quantify the number of single strand breaks in 

genomic DNA isolated from Arabidopsis seeds: alkaline agarose and urea 

acrylamide gels. Both methods use a denaturing agent to disrupt the hydrogen 

bonds in duplex DNA. Single stranded DNA is then separated by either 

acrylamide or agarose gel electrophoresis. Lower molecular weight DNA 

migrating away from the intact genomic DNA and represented fragmented 

regions, can be quantitated by staining with GelRed and quantified using 

image analysis software. 
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[A] 

 

[B]       [C] 

 

Figure 4.1 Optimisation of genomic DNA isolation from seeds: Quality 

difference of DNA extracted using different CTAB methods  

DNA extracted form Arabidopsis seeds contain large amounts of contaminants at the 

230nm spectrum when DNA is quantified using a spectrophotometer showing nucleic 

acids with a peak absorbance at 260nm.    

[A] DNA extraction using the standard CTAB method for plant material. The 

standard method for extracting DNA from plant material (Doyle, 1987) contains 

contaminants  which absorbed at 230nm in Arabidopsis seeds. 

[B] DNA extraction with modified NaCl content and controlled starting seed 

material. Modifying the standard CTAB protocol by increasing salt concentration in 

the initial incubation buffer and tightly controlling starting seed material lowers 

contamination and increases the final concentration of DNA.  

[C] DNA migration. The effect excess mucilage has on DNA migration through 

agarose gels. Lanes 1 and 3; retention of DNA in wells of low percentage agarose 

gels. Lanes 2 and 4 Selective precipitation of contaminants using NaCl and ethanol 

results in DNA suitable for electrophoresis.  

 

  1       2       3       4 
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4.2.2.1 Urea acrylamide gels 

Single strand breaks do not disrupt the continuity of the DNA duplex as the 

structure is maintained by the complementary strand, which also provides the 

template for repair of the missing nucleotide(s). The repair processes used to 

repair a SSB depends on how the single strand break forms, but typically they 

involve four steps: detection, end processing, gap filling and finally ligation 

(Caldecott, 2008). Under denaturing conditions, the duplex dissociates 

allowing visualisation of SSBs. Urea is a denaturing agent used to determine 

DNA single strand breaks using acrylamide gel electrophoresis (section 2.9.3). 

Polyacrylamide gels are widely used in biochemistry to separate 

macromolecules such as proteins and nucleic acids based on length and 

conformation of the molecule. We utilised polyacrylamide gels in an attempt to 

separate strands of DNA with single strand breaks from intact genomic DNA.  

In order to evaluate the sensitivity of this approach to detect and quantify SSBs 

quantitative, denaturing urea gel analysis was used to analyse standards 

containing known levels of DNA damage. The rationale behind the approach 

is that by generating lesion-specific strand breaks utilising glycosylase 

enzymes with genomic DNA, these can be quantitated using acrylamide gels 

and image analyses software. Initially synthesised oligonucleotides containing 

uracil were used. When intact, these oligonucleotides will act as a control 

where no breaks are present. By treating these oligonucleotides with Uracil-

DNA-Glycosylase (UDG), the uracil is removed and single strand breaks are 

formed. By combining different concentrations of intact DNA and broken DNA 

we can establish the sensitivity of this method to determine levels of single 

strand breaks.  
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[A]    [B] 

 

 

 

 

 

 

 

Figure 4.2 The fragmentation of DNA containing differing concentrations 

of excised uracil molecules  

Oligonucleotides containing different percentages of uracil were amplified by PCR 

and treated with uracil-DNA-glycosylase (UDG) and apurinic/apyrimidinic (AP) 

endonuclease. The resulting products were run on urea acrylamide gels. The shorter, 

broken, DNA molecules move further down the gel and the amount of DNA migration 

was calculated.    

[A] Urea acrylamide gel with different concentrations of uracil containing DNA. 

After incubation in UDG, DNA containing uracil in different concentrations were 

allowed to migrate through the urea acrylamide gel a) 0% Uracil; b) 0.1% Uracil; c) 

0.5% Uracil; d) 1% Uracil. 

[B] The amount of fragmentation of DNA in a urea acrylamide gel with different 

uracil concentrations following UDG digestion. DNA containing between 0% and 

1% Uracil, were subject to urea conditions and run on acrylamide gels with 

fragmentation being measured as the amount of DNA migrating away from the intact 

DNA forming a band towards the top of the gel. As uracil levels increases there is a 

rise in amount of fragmented DNA passing through the gel. 

 

  

a b c d 
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The same methodology was applied to Arabidopsis seeds to quantify the 

amount of single strand breaks and correlate the data with seed quality to 

determine any relationship. Arabidopsis seed DNA was extracted by 

chloroform extraction (section 2.6.2) and analysed using urea acrylamide gels 

as previously described.  

 

When small synthesised nucleotides were run on urea acrylamide gels the 

separation of DNA containing induced SSBs was detectable at low levels 

(Figure 4.2). However, similar results were not observed when Arabidopsis 

seed DNA was applied to the acrylamide gels. DNA failed to migrate out of the 

wells, possibly because of the much greater size of genomic DNA when 

compared to the synthesised nucleotide or due to an increased mucilage 

concentration following DNA extraction hindering movement through the 

crosslinked acrylamide.  
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Figure 4.3 Fragmentation of the Arabidopsis genomic DNA on urea-

acrylamide gels 

Extracted DNA from dry Arabidopsis seeds was run on urea-acrylamide gels to 

quantify single strand breaks. (L: bioline hyperladder, 0 d; high quality seeds, 1 d; 

seeds aged for one day, 2d; seeds aged for two days, 5 d; seeds aged for five days 

at 35°C, 80% RH) 

  

 L                    0 d                      1 d                    2 d                   5 d 
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4.2.2.2 Alkaline agarose gel electrophoresis analysis of DNA from 

Arabidopsis seeds  

Alkali is a denaturing agent and, when introduced to agarose gels, allows the 

separation of DNA molecules up to 20-30 kb, a larger fragment than possible 

using acrylamide. Alkaline agarose gels were used for analysis of genomic 

DNA. Initially Arabidopsis DNA was extracted from seeds (described in 

Chapter 3) produced from plants grown under different maternal 

environments. In addition, some seed lots were subject to ageing treatment as 

described in Chapter 3. The different conditions during seed development 

were: low temperature (LT), control temperature (CT) and high temperature 

(HT) and either left unaged or subjected to accelerated ageing as described in 

section 3.2.2. The aged samples from each maternal environment were 

designated as LTA, CTA and HTA respectively. Both LT and CT showed lower 

viability following ageing with all three conditions showing lower vigour 

(germination data in section 3.2.2). DNA isolated from these seeds was 

analysed using agarose gel electrophoresis under alkaline conditions to 

determine the levels of SSBs in these seeds of differing quality.  

Analysis of dry Arabidopsis seeds (EcoSeed batches) showed very little loss 

of integrity (Figure 4.4A.) Neither the maternal temperature or post-harvest 

ageing conditions used in this study, either singly or in combination, resulted 

in increased levels of single strand breaks in genomic DNA. The amount of 

fragmented DNA varied from 0.01% to 0.05%, but significant differences in 

levels remained difficult to establish because the low levels of fragmentation 

were near the limit of the sensitivity (detection limit) of this analysis (Figure 

4.4B.) However, Arabidopsis seeds subject to more severe accelerated ageing 

regimes (Section 3.1) displayed increased levels of single strand breaks 

(Figure 4.5). The increase was greatest in seeds after four or five days 

accelerated ageing (35°C, 80% RH) which lowered germination percentage 

and vigour significantly (Figure 3.1).  
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Figure 4.4 Analysis of DNA fragmentation in dry Arabidopsis seeds  

 [A] Alkaline agarose gel analysis of DNA from dry Arabidopsis seeds. Intact 

genomic DNA from dry Arabidopsis seeds under different conditions migrates at the 

top of the gel. Fragmented DNA containing single strand breaks migrates below the 

intact genomic band. (Maternal environment conditions: LT; 14°C-16°C, CT; 18°C-

22°C, HT; 25°C-28°C. Controlled deterioration of seeds  undertaken at 40°C with 75% 

relative humidity for 4 days.) 

[B] Quantification of fragmented DNA. The percentage of DNA that has migrated 

further into the gel than the intact genomic DNA. (■) High quality seeds, (■) aged 

seeds. Error bars denotes ±SEM (n=3 for each condition). 
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Figure 4.5 Fragmentation of DNA from Arabidopsis seed of varying 

quality  

[A] Alkaline agarose gel analysis of DNA isolated from differently aged 

Arabidopsis seeds. Genomic DNA isolated from Arabidopsis seeds was analysed 

by alkaline agarose gel electrophoresis. DNA was detected using GelRed staining 

and image analysis. L = Bioline hyperladder. 

[B] The percentage of DNA that has migrated away from intact genomic DNA.  

Quantification of fragmented DNA migrating into the gel, expressed as a percentage 

of total DNA present in the gel. Seeds analysed include high quality (0 days aged) 
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and seeds aged for periods of 24 hours from 1 day to 5 days (35°C; 75% RH. 

Error bars represent S.E.M from 3 replicates).  

4.2.2.3 Single strand DNA breaks in dry Brassica seeds 

Levels of SSBs in Brassica seeds of differing quality (Chapter3) were 

quantified as described above. Brassica seeds were produced under control 

temperature (CT) and high temperature (HT) during formation on the maternal 

plant. Samples of these seed lots were used to generate aged (A) seed lots 

using controlled deterioration (CTA; HTA) (40 days; 40°C 75% RH). Seeds 

produced from plants grown in control conditions showed 3.2% of genomic 

DNA containing SSBs. Following seed ageing SSB levels in these seed 

batches rose to 10.1% (P<0.05) of total DNA. A similar effect was seen with 

the seeds produced at higher maternal environmental temperatures with 3.0% 

of the DNA containing SSBs in the high quality seeds, rising to 10.3% after 

accelerated ageing (Figure 4.6; P<0.05).  

The differences in maternal environment conditions used in the study did not 

significantly affect the levels of SSBs present in either the high quality seeds 

or the seeds that had been aged post-harvest. Seeds from the control maternal 

conditions showed 3.2% of genomic DNA migrating into the gel, whilst those 

produced from plants grown in higher temperature conditions showed no 

difference with 3.0% of fragmented DNA.   

4.2.2.4 Accumulation of single strand breaks in imbibed Brassica 

seeds  

Brassica seeds were imbibed in water for 10 hours (designated early imbibition 

time point) or 40 hours (designated late imbibition time point). The early 

imbibition time point represents the end of phase one of germination where 

water uptake reaches a stable rate, whilst the late imbibition time point 

corresponds to 80% of the time required for the first radicle protrusion in 

control seeds (EcoSeed partner Finch-Savage lab, University of Warwick). 

This allowed determination of SSB levels throughout seed imbibition, 

corresponding to DNA repair, or further accumulation of SSBs DNA was 

extracted from imbibed seeds using the same chloroform based extraction as 

dry Brassica seeds and subjected to alkaline agarose gel electrophoresis. 
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Figure 4.6 Analysis of DNA fragmentation in DNA from dry Brassica 

seeds  

[A] Alkaline agarose gel analysis of the DNA of differently aged dry Brassica 

seeds. L; Bioline hyperladder 1 kb, C; Controlled maternal temperature, Ca; 

controlled maternal temperature and subject to post-shedding ageing, H; high 

maternal temperature, Ha; high maternal temperature and subject to post-shedding 

ageing. Full details of conditions are outlined in section 3.2.2 

[B] The percentage of DNA that has migrated away from intact genomic DNA.  

Quantification of the amount of DNA that has migrated further than the intact genomic 

DNA. (■) High quality seeds, (■) aged seeds. P-values given from Student’s T-Test 

with 3 replicates for each condition, * = P<0.05. Maternal environment conditions: CT; 
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18°C-22°C, HT; 25°C-28°C. Controlled deterioration of seeds  undertaken at 24°C 

with 75% relative humidity for 10 days and is denoted by the suffix “A” (i.e. CTA and 

HTA respectively). 

 

 

Seed ageing resulted in a significant increase in DNA fragmentation in the 

Brassica samples. During early imbibition (10 hours) fragmentation increased 

in seed harvested from plants gown under control conditions. Perhaps 

surprisingly, seeds produced under elevated temperatures showed less 

fragmentation in imbibition, at only 2.48%. DNA fragmentation in imbibed 

seeds increased significantly following ageing to around 27.87% and 24.47% 

of the Brassica genome respectively (Figure 4.6). At the later stages of 

imbibition (40 hours) DNA isolated from seeds produced under a controlled 

maternal environment displayed 2.83% fragmentation and those produced 

under higher temperature displayed 2.78%. Ageing-induced DNA 

fragmentation was still apparent at this stage of imbibition, with 20.37% in CT 

seeds and 30.75% in HT seeds (Figure 4.7).  
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Figure 4.7 Analysis of DNA fragmentation in Brassica seeds during 

imbibition 

The percentage of DNA that migrated away from intact genomic DNA in differently 

treated Brassica seeds following imbibition for 10 hours or 40 hours. CT; control 

temperature during seed formation, HT; high temperature during seed formation. (■) 

High quality seeds, (■) aged seeds. P-values given from Student’s T-Test with 3 

replicates for each condition, * = P<0.05. Maternal environment conditions: CT; 18°C-

22°C, HT; 25°C-28°C. Controlled deterioration of seeds  undertaken at 24°C with 75% 

relative humidity for 10 days and is denoted by the suffix “A” (i.e. CTA and HTA 

respectively). 
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4.3   Discussion 

Previous studies identified the accumulation of single strand breaks in aged 

seeds (Cheah and Osborne). However, this analysis used seed lots with 50% 

viability, and it remained unclear whether the appearance of SSBs was 

associated with loss of vigour in viable seeds. In addition, the aim of this study 

was to determine whether the maternal environment during seed development 

resulted in changes in seeds produced under these conditions. Low levels of 

SSBs are tolerated by organisms due to the fact that the physical continuity of 

the DNA duplex is not disrupted, and the undamaged strand serves as a 

template for repair. This contrasts with DSBs: due to their high cytotoxicity, 

even low levels of DSBs can result in cell death. Levels of SSBs can be studied 

using the Comet assay, single cell electrophoresis in which fragmented DNA 

migrates as a ‘comet’ behind the  isolated nuclei in an electric field. However, 

this technique cannot be applied to seeds due to the high levels of background 

fluorescence in seed samples. Thus denaturing electrophoresis was optimised 

for analysis of genomic DNA isolated from seeds. 

4.3.1  Optimisation of DNA extraction from Arabidopsis seeds  

There are several methods of extracting nucleic acids from plant tissue 

samples. Ensuring there is a robust and reproducible method for extracting 

high quality DNA from seeds is important in downstream analysis. However 

different species or lineages, cell or tissue type and presence of potential 

contaminants dictate which method is optimal (Fang et al., 1992). Seeds are 

particularly challenging for extraction of DNA. Arabidopsis seeds have high 

levels of seed coat mucilage, storage proteins, lipids and secondary 

metabolites that makes extraction difficult (Vicient and Delseny, 1999). The 

removal of undesirable products becomes more difficult through the co-

precipitation of mucilage and nucleic acids during the precipitation steps of 

extraction (Meng and Feldman, 2010). Contaminants can interfere in 

downstream processes including quantitative methodologies of 

electrophoresis (this chapter) and PCR-based analysis (Section 6). 

Carbohydrate contaminants are known to interfere with taq polymerase activity 

(Fang et al., 1992) and these assays require accurate quantification of 

genomic DNA used for analysis. Here, a protocol was established to permit 



- 90 - 

isolation of high quality DNA without co-purifying contaminants. Specifically, 

optimisation of NaCl, testing concentrations ranging from 0 M to 3.5 M in 

increments of 0.5 M, determined the ideal concentration for DNA precipitation 

with no contaminants. In CTAB extraction buffer NaCl prevents DNA from 

forming precipitates with CTAB, provided it is present in high enough 

concentrations, and helps increase DNA solubility with reduced levels of 

fragmentation (Cullings, 1992).  

Raising the NaCl concentration alone did not lower contaminant levels 

sufficiently to obtain high quality DNA from Arabidopsis seeds. Several 

different methods were evaluated to improve DNA purity, including additional 

washing steps, additional CTAB incubations and different incubation times. By 

lowering the initial incubation time from 30 minutes at 60°C to two-minute 

inversion, the yield of DNA recovered was lower but the overall quality 

increased. Given that DNA is soluble in CTAB extraction buffer, reduction of 

the incubation period limits the possibility of other molecules co-dissolving. 

However the main limitation in the yield, and quality, of DNA extracted from 

seeds (especially after imbibition) was the quantity of starting material used. 

Upon freezing and grinding seeds in liquid nitrogen, very small amounts were 

required to extract high quality DNA. In dry seeds the most effective starting 

weight was 20 mg of ground seed material, which when dissolved in CTAB 

extraction buffer (6 ml) gives a 0.0012% (w/v) seed content in the solution.  

4.3.2  SSB levels in the EcoSeed seed lots 

Analysis of seed produced from plants grown under different temperature 

regimes found no differences in SSB levels. This suggests that growth at these 

temperatures either did not result in elevated levels of DNA damage in seeds, 

or that any damage was repaired during the maturation drying phase. There 

is no direct evidence that growth at lower or higher temperature results in 

genotoxic stresses. However, temperature stresses can results in elevated 

ROS levels, either directly or as part of stress signalling (Vickers et al., 2009). 

However, the growth regimes caused relatively little differences in seed vigour, 

so it is not surprising that DNA damage was similar between samples. Ageing 

levels that resulted in changes in seed vigour did lead to significant increases 

in levels of SSBs. This finding makes a significant advance on the work of 
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Cheah and Osbourne who demonstrated correlation of low molecular DNA 

with loss of rye seed viability using alkaline gel electrophoresis (Cheah and 

Osborne, 1978). However, this study was flawed, as their seeds showed ~ 

50% viability loss. Non-viable seeds may be dead and DNA degradation would 

occur through the loss of compartmentation and enzymatic degradation in 

dead tissues. To have biological significance, differences in genome integrity 

should be detectable between seeds that display a reduction in vigour.  

Previous analysis of DNA integrity in pea seeds identified DNA laddering after 

ageing. This is indicative of programmed nuclease cleavage of DNA into 

nucleosomal fragments and is a hallmark of programmed cell death (Kranner 

yet al 2011). In Arabidopsis PCD was not detected in alkaline or neutral 

electrophoresis of genomic DNA. 

4.3.3  High levels of single strand breaks accumulate in low quality 

Brassica seeds 

Here, ageing showed a negative effect on DNA integrity with a significant rise 

in single strand break presence in all Brassica seed lots tested following 

accelerated ageing (Figures 4.6 and 4.7). The amount of SSBs in seeds grown 

in higher temperatures did not differ significantly from those grown in control 

temperature. Upon imbibition Brassica seeds accumulated single strand 

breaks at a higher rate than when desiccated. Both unaged and aged seeds 

grown in control temperatures saw frequencies of SSBs rise ~2 fold, with a 

similar rise seen in aged seeds grown at a higher temperature. There was no 

change in unaged seeds grown at a higher temperature following imbibition. 

Looking specifically at aged seeds, those grown in control temperature 

dropped slightly, but not significantly, between early and late imbibition time 

points (P>0.05). However seeds grown at a higher temperature and subject to 

ageing saw levels of SSB continue to rise from 24.5% to 30.7%.The increase 

in single strand break presence correlates with the loss of vigour seen in 

Brassica seeds (section 3.2.3). The instances of single strand breaks, 

especially at late germination, show the same trend as viability and vigour 

differences. HTA seeds have the poorest germination performance, reducing 

in viability to 56.7% and these seeds show the highest level of fragmentation. 
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Conversely HT seeds germinate quickest and have the highest viability and 

also have the lowest SSB presence during late imbibition (Figure 4.7).   

The rate of base loss in dry seeds is reduced due to their desiccated state 

(Dandoy et al., 1987), potentially accounting for the low rates of loss in 

Arabidopsis, and although there were still large differences in dry Brassica 

seeds the levels rose significantly during imbibition. This correlates to work 

undertaken in corn plants (Zea mays) where within the first 20 hours of 

imbibition AP sites rose 4-fold, as the suspected action of DNA glycosylases 

activation, following initiation of respiration (Dandoy et al., 1987). Although the 

corn seeds were stored for 2 years at 20°C DNA damage is  still evident in 

seeds of high quality due to the inherent instability of DNA in the cellular 

environment (Lindahl, 1993). This is also seen in both Arabidopsis and 

Brassica dry seeds (Figures 4.5 and 4.6) where, although high quality seeds 

have fewer DNA strand breaks, they are still present. This contrasts with the 

Arabidopsis seed lots, which showed no significant difference in SSB levels 

under the ageing conditions employed by EcoSeed (Figure 4.4) and SSBs only 

became apparent at higher levels of ageing (Figure 4.5). Thus, neither  

different maternal environments, nor post-harvest ageing of the EcoSeed 

Arabidopsis seed lots led to detectable differences in DNA fragmentation, 

despite the lower vigour and viability of the seed lots (Figure 3.2).  

Brassica seeds contain higher levels of hydrogen peroxide (H2O2) and lower 

levels of total glutathione (GSH) following ageing (EcoSeed partner; Kranner 

lab, University of Innsbruck). Cysteine, an important molecule in GSH 

metabolism, also increases to almost three-fold normal levels following 

accelerated ageing of Brassica seeds. Considering the importance of 

protecting the genome from oxidative damage, the lower levels of GSH, an 

important non-enzymatic antioxidant, could account for a decreased ability to 

protect the genome from reactive oxygen species (ROS) in aged seeds, 

causing increase single strand breaks as a result of repair processes (Section 

1.2.2.2.). Furthermore higher levels of H2O2 in aged seeds could correspond 

to an increased levels, in DNA damage as several cell types have shown 

induced single and double strand breaks in the presence of hydrogen peroxide 

(Ananthaswamy and Eisenstark, 1977; Olson, 1988; Driessens et al., 2009). 
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GSH oxidative protection becomes more pertinent in the dry seed due to low 

levels of metabolism hindering enzymatic damage prevention from enzymes 

such as superoxide dismutases (SODs) and catalase (Bewley, 1997). Ageing 

has been shown to increase oxidation of molecules within the dry seed such 

as proteins, DNA and lipids (Bailly, 2004; Job et al., 2005; Waterworth et al., 

2016).  

4.3.4  The effects of SSBs in seeds 

Single strand breaks are less cytotoxic and recombinagenic than DSBs as the 

duplex remains intact and the complimentary DNA strand provides a template 

for SSB repair. However, single strand DNA breaks are potentially severe 

lesions and occur at much greater frequency than double strand breaks. 

During DNA replication or transcription, helicases separates the two strands 

of the duplex decreasing overall stability. During replication if a polymerase 

encounters a single strand break there is the potential for termination and 

generation of a double strand break, creating loss of genetic content (Mannuss 

et al., 2010; Waterworth et al., 2011). Double strand breaks are generally 

considered the most potent form of DNA damage because of the propensity 

for loss of genetic information leading to genotoxic or cytotoxic events. 

Genomic instability accumulates in seeds with reduced viability, with reduced 

quality seeds showing chromosomal abnormalities. Lettuce (Lactuca sativa) 

seeds showed 90% abnormal anaphase in seeds with a 50% loss in viability 

indicating the importance for genome integrity in high quality seeds (Villiers, 

1974). Cytogenetic analyses identified that aged Arabidopsis seeds showing 

delayed germination but no loss of viability carried anaphase bridges 

(chromosomal fusions) in 4% cells of germinating embryos. 

Single strand breaks are also intermediates formed during the regular cellular 

repair of base adducts, one of the most common forms of lesions.  The removal 

of apurinic/apyrimidinic sites, as mediated by the enzyme ARP (apurinic 

endonuclenuclease-redox protein) generates single strand breaks and is the 

most active glycosylase in Arabidopsis during imbibition (Córdoba-Cañero et 

al., 2011).  Thus, the combination of SSBs incurred through imbibition and as 

a result of repair processes initiated on the resumption of metabolism could 

generate high levels of single strand breaks. Here we identified the 
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accumulation of these lesions during imbibition of Arabidopsis and Brassica 

and found increased levels of SSBs in aged seeds associated with loss of 

vigour. 
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5.  Cellular responses to DNA damage in 

seeds 
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5.1    Introduction 

All organisms encounter stress-induced genomic damage which can cause 

mutations and cell death. Genomic integrity is of prime importance for survival 

and transfer of genetic information to future generations. Several DNA repair 

pathways and DNA damage specific responses have evolved to minimise the 

harmful effects of the DNA damage to the cell and the organism and to aid in 

the repair of lesions before cell cycle progression results in permanent 

mutation of the genome.  

Plants have developed powerful responses to DNA lesions collectively termed 

the DNA damage response (DDR) pathway. One pathway particularly 

important to the cellular response to DNA double strand breaks is mediated 

by the checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM), with 

additional signalling activity also mediated by the related kinase ATAXIA 

TELANGIECTASIA-MUTATED and Rad3-related (ATR). Double strand 

breaks are the most cytotoxic form of DNA damage with single DSB capable 

of causing cell death in yeast (Bennett et al., 1996). ATM is essential in co-

ordinating  downstream processes following DSB formation in order to limit 

further damage and initiate repair (Garcia et al., 2003). ATR on the other hand 

responds more strongly to replication defects and is activated by single 

stranded regions of DNA which are formed as a result of replication stress 

(Culligan et al., 2006).  

There are several processes initiated by the DDR in plants which are important 

for survival. These processes are also observed in seeds during the early 

stages of imbibition, where the influx of water and resumption of metabolic 

activity is accompanied by detection of damage accumulated during 

quiescence (Dandoy et al., 1987). DNA damage levels are elevated in aged 

seeds, resulting in differences in vigour and viability (Cheah and Osborne, 

1978; Waterworth et al., 2010). Several ATM mediated responses activate 

early in imbibition to combat DSBs including a transcriptional upregulation of 

DNA repair associated genes, phosphorylation of histones and activation of 

cell cycle checkpoints (Falck et al., 2005; Waterworth et al., 2010; Waterworth 

et al., 2016).  
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Within the first 6 hours of imbibition in Arabidopsis there is a large increase in 

transcripts of DNA repair factors including RAD51, RNR, TK, PARP and 

WEE1. RADIATION SENSITIVE 51 (RAD51) is involved in homology 

searching during homologous recombination, one of the major pathways of 

DNA double strand break repair. Permanent activation of RAD51 is seen in 

mutant plants with genome instability, including DSB repair mutants (West, 

2004) and plants defective in chromatin assembly (Endo et al., 2006). 

RIBONUCLEOTIDE REDUCTASE (RNR) and THYMIDINE KINASE (TK) are 

both important in the generation of new deoxynucleotides for incorporation in 

repair synthesis of damaged DNA. Both genes are upregulated in the 

presence of increasing double stranded DNA damage and RNR is also 

transcriptionally induced in times of replication stress (Chen et al., 2010; 

Jossen and Bermejo, 2013). POLY(ADP-RIBOSE) POLYMERASE (PARP) 

catalyses the addition of poly(ADP)ribose to proteins in response to DNA 

DSBs, signalling and recruiting further repair proteins to sites of genomic 

damage (Beck et al., 2014).  WEE1 negatively affects the action of CYCLIN 

DEPENDENT KINASE A;1 (CDKA;1), especially in the presence of double 

strand breaks, causing cell division arrest (Ricaud et al., 2007). All the genes 

listed above show increased transcriptional activity in the presence of double 

strand breaks, as mediated by the phosphatidyl inositol protein kinase like 

kinase (PIKK) ATM (Culligan et al., 2006). Several also show increased activity 

early in imbibition of Arabidopsis seeds (Waterworth et al., 2010). The 

presence of these transcripts throughout imbibition therefore should give an 

indication of the detection during imbibition of DNA double strand breaks 

accumulated during storage.  

5.1.1  Aims 

Previous analysis identified transcriptional induction of the DDR within the first 

few hours of imbibition in response to DNA damage incurred during storage of 

the quiescent seed. This response is indicative of the induction of repair 

processes early in imbibition. This response is evidenced even in freshly 

harvested high quality Arabidopsis seeds (Waterworth et al., 2010), and less 

is known on how this response would be affected in low-quality seeds with an 
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increased amount of DNA damage present (Abdalla and Roberts, 1969; 

Weimer et al., 1972; Cheah and Osborne, 1978; Osborne et al., 1984).  

Through measuring transcript levels of the DNA repair-associated proteins 

involved in the DDR we can determine whether increased DNA damage 

associated with seed ageing results in a stronger response and a higher 

accumulation of these repair transcripts.  These transcriptional changes are 

readily quantifiable and therefore have potential use as markers for seed 

quality. Transcript levels were therefore quantified using PCR-based 

approaches. Furthermore, tissue specificity of expression is determined using 

GUS-reporter constructs linked to the promoters of selected DDR genes. 

Histochemical approaches allow cell and tissue specific expression patterns 

of gene expression to be identified which can provide insight into the 

physiological functions of repair gene expression in seeds. The changes in 

transcript levels of four genes were determined: RAD51, TK1, PARP2 and 

RNR. These genes were selected as they showed the highest induction, 

following imbibition, of DNA repair-related genes. In order to account for 

normal transcriptional differences upon imbibition, all genes were 

standardised to ACTIN7. ACT7 displays no differences in transcript level 

dependent on seed condition or ageing regime (Rajjou et al., 2008).  
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5.2   Results 

5.2.1  The transcriptional response in Arabidopsis 

5.2.1.1 Transcriptional induction of RAD51 during imbibition after 

maternal and post-harvest stress 

RADIATION SENSITIVE 51 (RAD51) is protein essential for homologous 

recombination (HR) repair of double stranded DNA breaks and rad51 knockout 

mutants are sterile in Arabidopsis due to the failure to repair meiotic DSBs (Li 

et al., 2004). Levels of RAD51  transcript have been shown to increase in the 

early hours of imbibition as part of the DNA damage response (DDR) 

(Waterworth et al., 2010). Here we looked at the difference in transcript levels 

at three time-points: dry seed, 6 hours imbibition (early imbibition; EI), and 72 

hours imbibition (late imbibition; LI) following temperature stress on the 

maternal plant and post-harvest ageing. 

Levels of RAD51 transcripts were measured and normalised to ACTIN7 in 

seeds of different quality across imbibition. Low levels of transcripts were seen 

in dry seeds and there was no difference between high quality seeds grown in 

the control temperature and any other maternal or post-harvest ageing 

conditions before imbibition. Transcript levels increased following imbibition for 

6 hours in all maternal conditions that were not subjected to accelerated 

ageing (LT, CT, HT) in comparison to control temperature dry seeds. Seeds 

grown in low temperatures had a 13.8-fold increase in RAD51 transcript levels; 

however this was not seen in the same seeds that had undergone accelerated 

ageing (4.9-fold increase). Similar trends were seen in seeds at control 

temperature and high temperature at early imbibition. Levels of transcripts in 

CT seeds increased 11.8-fold compared to only a 1.4-fold increase in the same 

seeds following ageing. HT seed RAD51 transcript levels increased 10.1-fold 

whereas HTA seed transcripts only displayed a 3.3-fold increase. All high 

quality seeds (those that had not gone post-harvest accelerated ageing) 

displayed increased levels of RAD51 following 6 hours imbibition with 

transcript levels reducing by the 72 hour time-point. There was no increase in 

the DDR response to seed ageing treatments (Figure 5.1). This suggests that 
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there is reduced capacity for aged seeds to mount the transcriptional DDR 

upon imbibition.  

 

 

Figure 5.1 RAD51 transcript levels in seeds during imbibition  

Levels of RAD51 transcripts were measured in dry seeds (■), seeds at an early 

imbibition time of 6 hours (■) and seeds at a late imbibition time of 72 hours (■). The 

seeds were of different quality after undergoing temperature stresses whilst 

developing on the mother plant along with post-harvest ageing (see section 3.2.2 for 

full seed treatment notations). All values are standardised to levels found in dry seed 

grown at a control temperature and without any accelerated ageing (CT). There were 

rises in transcript levels in early imbibition (6 hours) in all seeds that had not 

undergone accelerated ageing and those seeds that were aged showed an inability 

to initiate the same increases in RAD51 transcript levels (P<0.05; Student’s T-Test). 

Levels of RAD51 were normalised to ACTIN7 and expressed as fold-change from 

transcript levels in the unimbibed seed. P-values given from Student’s T-Test with 3 

replicates for each condition, * = P<0.05. Maternal environment conditions: LT; 14°C-

16°C, CT; 18°C-22°C, HT; 25°C-28°C. Controlled deterioration of seeds undertaken 

at 40°C with 75% relative humidity for 4 days and denoted as LTA, CTA and HTA 

respectively. 
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5.2.1.2 Transcriptional induction of RNR during imbibition after 

maternal and post-harvest stress 

RIBONUCLEOTIDE REDUCTASE (RNR) is an enzyme involved in the 

synthesis of deoxyribonucleotides from ribonucleotides and has important 

roles in DNA synthesis and repair (Herrick and Sclavi, 2007). RNR is one of 

many DNA repair related transcripts shown to increase in abundance following 

imbibition. Here we looked to determine whether different maternal plant 

environments affected the RNR transcriptional response upon imbibition. We 

also looked at levels of RNR transcripts in quiescent and imbibition seeds 

following post-harvest ageing to determine whether the accumulation of DNA 

damage associated with ageing affected the RNR transcriptional response. 

Transcript levels of RNR (normalised to ACTIN7 levels in dry seed) were 

measured seeds imbibed for 6 hours (early imbibition time-point) and seeds 

imbibed for 72 hours (late imbibition time-point). RNR transcript levels 

increased following 72 hours imbibition in all unaged samples (LT, CT, HT) 

along with CTA seeds (seeds subjected to accelerated ageing following 

formation in controlled maternal environmental temperature) compared to high 

quality, dry CT seeds (P<0.05). The two remaining aged samples at 

suboptimal temperatures (LTA, HTA) showed no significant change in RNR 

transcript levels. At the late imbibition time point transcript levels in seeds 

grown at low (LT) and control (CT) temperatures were higher than in the same 

seeds that had undergone accelerated ageing (LTA and CTA respectively) 

(P<0.05). RNR transcript levels did not change at the early imbibition time-

point in any of the conditions tested suggesting RNR is not actively transcribed 

until after 6 hours in the conditions used here (Figure 5.2).  
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Figure 5.2 RNR transcript levels in seeds during imbibition  

Levels of RNR transcripts were measured in dry seeds (■), seeds at an early 

imbibition time of 6 hours (■) and seeds at a late imbibition time of 72 hours (■). The 

seeds were of different quality after undergoing temperature stresses whilst 

developing on the mother plant along with post-harvest ageing (see section 3.2.2 for 

full seed treatment notations). All values are standardised to levels found in dry seeds 

grown at a control temperature and without any accelerated ageing (CT). There were 

rises in transcript levels in late imbibition (72 hours) in all seeds that had not 

undergone accelerated ageing, along with seeds that had been aged and kept in a 

control-temperature maternal environment. The remaining aged seeds (LTA, HTA) 

showed an inability to initiate the same increases in RNR transcript levels following 

imbibition (P<0.05; Student’s T-Test). RNR transcript levels were normalised to 

ACTIN7 and expressed as fold-change from transcript levels in the unimbibed seed. 

P-values given from Student’s T-Test with 3 replicates for each condition, * = P<0.05. 

Maternal environment conditions: LT; 14°C-16°C, CT; 18°C-22°C, HT; 25°C-28°C. 

Controlled deterioration of seeds undertaken at 40°C with 75% relative humidity for 4 

days and denoted as LTA, CTA and HTA respectively.  
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5.2.1.3 Transcriptional induction of THYMIDINE KINASE (TK during 

imbibition after maternal and post-harvest stress 

Two orthologues of THYMIDINE KINASE (TK) are present in Arabidopsis: 

TK1a and TK1b and show redundancy (Pedroza-Garcia et al., 2015). TK is 

found in most living cells and catalyses the reaction of thymidine into thymidine 

monophosphate, one of the four main nucleotides in the plant nuclear genome. 

This reaction is important in the synthesis of thymidine triphosphate and 

subsequent incorporation of thymidine into the genome during DNA repair 

synthesis and DNA replication. We investigated the expression of this gene by 

quantifying TK transcripts in dry seeds and at early and late imbibition time 

points, normalised to ACTIN7. RAD51 and RNR displayed a reduction in 

imbibition-induced transcript level increases following post-harvest ageing, 

this same trend was not evident with TK. After six hours imbibition there was 

a reduction in transcript levels in aged seeds produced under low temperature 

conditions (LTA) in comparison to the same seeds of higher quality (LT) 

(P<0.01). The expression profile suggests thymidine kinase transcript levels 

are similar to RNR, with levels rising in late imbibition (Figure 5.3).  
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Figure 5.3 TK transcript levels in seeds during imbibition  

Levels of thymidine kinase transcripts were measured in dry seeds (■), seeds at an 

early imbibition time of 6 hours (■) and seeds at a late imbibition time of 72 hours (■). 

The seeds were of different quality after undergoing temperature stresses whilst 

developing on the mother plant along with post-harvest ageing (see section 3.2.2 for 

full seed treatment notations). All values are standardised to levels found in dry seeds 

grown at a control temperature and without any accelerated ageing (CT). Unlike the 

transcript levels of RAD51 and RNR there was no overall trend seen with the different 

conditions except between LT and LTA where thymidine kinase transcript levels were 

lower following post-harvest ageing following 6 hours imbibition (P<0.01; Student’s T-

Test). TK transcript levels were normalised to ACTIN7 and expressed as fold-change 

from transcript levels in the unimbibed seed. P-values given from Student’s T-Test 

with 3 replicates for each condition, * = P<0.05. Maternal environment conditions: LT; 

14°C-16°C, CT; 18°C-22°C, HT; 25°C-28°C. Controlled deterioration of seeds 

undertaken at 40°C with 75% relative humidity for 4 days and denoted as LTA, CTA 

and HTA respectively. 
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5.2.1.4  Transcriptional induction of POLY(ADP-RIBOSE) POLYMERASE 

(PARP) during imbibition after maternal and post-harvest stress 

POLY(ADP-RIBOSE) POLYMERASE (PARP) is a family of proteins that 

mediates the transfer of ADP-ribose groups to proteins in response to 

genotoxic stress (Waterworth et al., 2015). PARP proteins have been shown 

to be important in germination and activity has been strongly implicated in the 

presence of strand breaks (Hunt et al., 2007; Briggs and Bent, 2011). There 

are three major PARP proteins in Arabidopsis: PARP1, PARP2 and PARP3. 

PARP1 accounts for over 90% of DNA damage-related PARP activity in 

humans but PARP2 is responsible for the majority of repair in Arabidopsis 

(Song et al., 2015). PARP3 has roles in the storability of seed, with parp3 

mutants showing increased sensitivity to ageing and lower seed viability 

(Rissel et al., 2014). PARP2 transcript levels are induced as part of the DNA 

damage response in seeds (Waterworth et al, 2010) and in the current study 

PARP2 levels were measured throughout imbibition in Arabidopsis seeds of 

varying quality.   

The levels of PARP2 transcripts were lowest in dry seeds with little change 

regardless of ageing regime or maternal environment as with the previous 

DNA-repair related transcripts. PARP2 levels increased following 72 hours 

imbibition in CTA (P<0.05), HT and HTA seeds (P<0.01; Figure 5.4) but not in 

seeds produced at lower temperatures or the unaged control temperature 

samples. There was no difference between any of the high quality seed 

batches following post-harvest ageing and similarly no significant difference 

was seen between differing environments during seed maturation. 

  



- 106 - 

 

Figure 5.4 PARP2 transcript levels in seeds during imbibition  

Levels of PARP2 transcripts were measured in dry seeds (■), seeds at an early 

imbibition time of 6 hours (■) and seeds at a late imbibition time of 72 hours (■). The 

seeds were of different quality after undergoing temperature stresses whilst 

developing on the mother plant along with post-harvest ageing (see section 3.2.2 for 

full seed treatment notations). All values are standardised to levels found in dry seeds 

grown at a control temperature and without any accelerated ageing (CT). Ageing 

generated no significant differences in transcript abundance, nor did maternal 

environmental differences. 3 replicates were used for each condition with no 

significant difference across treatments. Maternal environment conditions: LT; 14°C-

16°C, CT; 18°C-22°C, HT; 25°C-28°C. Controlled deterioration of seeds undertaken 

at 40°C with 75% relative humidity for 4 days and denoted as LTA, CTA and HTA 

respectively. 
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5.2.1.5 Modification of the transcriptional response in seeds of 

lower quality 

The previous sections indicate that seed ageing modifies the transcriptional 

response, resulting in a lower level of induction of certain genes under the 

control of the DNA damage response pathway. Aged seeds that had been 

imbibed for 6 hours were tested to determine whether the severe accelerated 

ageing regimes reduces the transcriptional induction seen upon rehydration. 

The increase in normalised transcript levels at 6h imbibition relative to levels 

in the dry seed (0 hour time point) were compared between unaged seeds and 

seeds that had been aged for 3 days as described in section (section 3.2.1) 

(Figure 5.4). 

 

Figure 5.5 RAD51, RNR and TK transcript levels following accelerated 

ageing   

Levels of RAD51, RNR and TK transcripts were measured in high quality Arabidopsis 

seeds (■) and seeds that had undergone accelerated ageing for 3 days (■) after 6 

hours of imbibition. All values are given as a fold increase from dry seed of  the 

respective treatments. Levels of transcripts were lower in aged seeds compared to 

the high quality seeds for all three genes (*: P<0.05; **: P<0.01. Student’s T-Test, n=3 

batches of seeds per condition). Accelerated ageing was undertaken at 40°C and 

75% RH. 
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High quality seeds had higher levels of transcripts of all three DDR genes 

analysed. RAD51 transcripts were the highest of the three genes following 6 

hours of imbibition with an increase of 35.5-fold. Following accelerated ageing, 

the transcriptional response was reduced to only a 4.2-fold increase in RAD51 

levels. Similar effects were observed in RNR transcript levels, where high 

quality seed levels increased to 20.6-fold, and ageing again caused a 

reduction in transcriptional response, at only 3.9-fold levels observed in dry 

seeds.  TK showed a lower induction in comparison to the other genes, with 

high quality seeds showing a 3.4-fold increase in transcript levels upon 

imbibition. Despite the relatively lower induction of TK compared to the other 

genes, subjecting the seeds to accelerated ageing still reduced transcriptional 

induction of TK with those seeds showing a 1.6-fold increase (Figure 5.3). 

These results suggest that ageing impairs the transcriptional response, rather 

than any increased DNA damage producing stronger DNA damage responses 

on imbibition. 

5.2.2  Temporal and spatial localisation of DNA repair genes 

The abundance of transcripts associated with the DDR changes throughout 

imbibition, possibly depending on the requirement for repair and the ability of 

the seed to mount an adequate response. Increasing understanding of the 

plant DDR will determine the differentiation of DDR activation between cell 

types. All cells in plants arise from the root apical meristem (RAM) and the 

shoot apical meristem (SAM); consequently, maintenance of genomic integrity 

is of prime importance in meristem cell where mutations will perpetuate in the 

plant germline. Cell division in germination is initiated in the RAM and SAM 

around the time of germination (Masubelele et al., 2005). Recent studies 

identify the critical roles ATM plays in delaying progression of germination in 

aged seeds to safeguard the genome from high levels of genotoxic stress 

sustained in desiccation and quiescence. ATM functions through 

transcriptional induction of the cell cycle inhibitor SMR5 in the RAM 

(Waterworth et al., 2016). One possibility could be that the DDR is elevated or 

localised to the RAM or SAM.  
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Therefore, it is plausible the DDR might be restricted or enhanced in certain 

cell types, whilst different component transcripts of the plant DDR might show 

different spatial and temporal patterns of expression. 

Analysis of transcript levels in the whole seed does not provide insight into the 

cell specific localisation of the DDR associated genes in Arabidopsis seed. 

The change in transcript levels allowed for determination of temporal changes 

in mRNA abundance of repair genes by using RT-PCR in the previous 

sections. Whereas this establishes the total levels of transcripts at different 

points throughout imbibition, here we employed GUS-reporter studies to 

investigate spatial changes in gene expression. By using GUS-promotor 

fusions of DDR associated genes we determined the cellular specific 

expression pattern and thus where repair activities are most needed.  

The GUS reporter gene was fused to the promotor region of repair genes, in 

this case PARP, RNR, TK and WEE1. WEE1:GUS lines were kindly supplied 

by van Lieven de Veylder (Ghent University) in Arabidopsis Col-0. Other lines 

were generated in pCB1381z and introduced into Col-0 lines using 

Agrobacterium mediated transformation (section 2.10). Homozygous 

transformants were isolated and the GUS-expressing seeds are collected and, 

following after-ripening, are kept as high quality standards or aged for three 

days as described in (section 2.5.3; 35°C, 80% RH). Expression patterns 

during imbibition can then be analysed using histochemical straining. 

Four time points were selected to relate to different physiological stages of 

seed imbibition: 1) dry seed, 2) 6 hours imbibition (to represent early imbibition 

when metabolism has begun and transcriptional DDR peaks (Waterworth et 

al., 2010)), 3) seed cracking and 4) germination. Germination is defined as the 

point in which the radicle emerges from the seed coat. Seed cracking precedes 

this point, marked by seed coat ruptures but elongation has not yet occurred. 

Previous studies identify that cell cycle activation occurs around the time of 

seed coat rupture, with initiation of DNA replication (Waterworth et al., 2016). 

The last two time points were selected to establish expression of DDR genes 

around the time of cell cycle initiation to relate this to seed quality (Barrôco et 

al., 2005; Masubelele et al., 2005; Waterworth et al., 2016). By choosing the 

stages in development rather than set time-points it allows us to look at high 
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quality seeds and aged seeds in terms of physiological changes at important 

stages of imbibition, even though both sets of seeds will reach these stages at 

different times. 
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Dry seed      6h Imbibed    Seed coat            Germination 

                                                cracked   complete 

 

 

Figure 5.6 PARP:GUS localisation throughout imbibition 

Representative images showing the pattern of PARP2:GUS expression was analysed 

by PARP:GUS localisation in high quality seeds (top row) and in seeds following 

accelerated ageing (bottom row) at the following stages: dry seeds, 6h imbibed seeds, 

seeds following coat cracking and after germination. A minimum of 15 seeds were 

isolated per condition.   
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Analysis of PARP:GUS enzyme activity throughout imbibition identified 

several changes in expression. Firstly, when comparing the differences 

between high quality (top row) and low quality (bottom row) dry seeds (Figure 

5.5A) it appears that PARP is expressed in dry seeds, localised within the 

cotyledons, presumably carried over from the late stages of maturation drying. 

Furthermore, levels in aged seeds were lower than that in high quality seeds, 

possibly reflecting GUS inactivation in ageing. The localisation of PARP:GUS 

within the cotyledons remains similar following imbibition for 6 hours; however 

the intensity of staining in aged seeds increases whereas high quality seeds 

show a slight reduction. As the seed coat ruptures almost all PARP:GUS 

transcription stops within the cotyledons, with some detectable levels in the 

high quality seeds. Localised PARP expression is observed at root tip where 

cell cycle will be initiated in the RAM (Masubelele et al., 2005). After 

germination (Figure 5.5D) low levels were observed distributed throughout the 

entire aged embryo, whilst high quality seedling had more concentrated levels 

in the root tip and in the cotyledons, consistent with elevated repair level in 

active meristems (Yadav et al., 2009).  
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Dry seed      6h Imbibed    Seed coat            Germination 

                                                cracked   complete 

 

 

Figure 5.7 RNR:GUS localisation throughout imbibition 

RNR expression was analysed by RNR:GUS localisation in high quality seeds (top 

row) and in seeds following accelerated ageing (bottom row) at the following stages: 

dry seeds, 6h imbibed seeds, seeds following coat cracking and after germination. A 

minimum of 15 seeds were isolated per condition.   

 

RNR:GUS expression did not exhibit the same patterns of localisation or 

temporal expression as observed for PARP2 (Figure 5.6). Whilst high quality 

seeds showed no evidence of RNR:GUS activity in the dry seed, staining was 

visible in the cotyledons of the aged seeds. The staining in cotyledons 

intensified in aged seeds following imbibition for 6 hours whereas only low 

levels were visible in high quality seed at 6 hours. High quality seeds also 

showed expression in the cotyledon following seed coat rupture where the 

lower quality seeds displayed markedly lower levels compared to earlier in 

imbibition. Furthermore the aged seeds showed intense staining towards the 

radicle, however the expression was concentrated between the shoot apical 

meristem (SAM) and root meristem rather than within the RAM. Localisation 

and abundance of RNR:GUS transcription was similar between the high and 

low quality seeds at germination (Figure 5.6d) with relatively low levels 

throughout the embryo, however previous transcriptional results would 

suggest there should be markedly lower presence following ageing. Aged 
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seeds displayed more pronounced staining of the root tip and SAM, sites 

where cell division is likely to be initiating and reaching high levels.  

 

                     Dry seed         6h Imbibed           Germination                                                                          

                                                                   Complete 

 

Figure 5.8 TK:GUS localisation throughout imbibition 

The pattern of TK promoter activity was analysed by TK:GUS localisation in high 

quality seeds (top row) and in seeds following accelerated ageing (bottom row) at the 

following stages: dry seeds, 6h imbibed seeds, seeds following coat cracking and 

after germination. A minimum of 15 seeds were isolated per condition.   

 

Thymidine Kinase is involved in the generation precursors for repair and 

replicative DNA synthesis. TK:GUS expression was undetectable in dry seeds 

and only became apparent during early imbibition, with low levels visible in 

cotyledons of high quality seeds and aged seeds, with evidence of staining in 

the root tip of the aged seeds. Following germination TK:GUS expression 

levels were much higher in cotyledons in aged seeds and less apparent in the 

root tip of aged seeds. During germination TK:GUS expression was visible in 

the root tips of high quality seeds, where aged seeds had shown levels after 

only 6 hours, and remained visible in the cotyledons.  
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Dry seed      6h Imbibed    Seed coat            Germination 

                                                cracked   complete 

 

 

Figure 5.9 WEE1:GUS localisation throughout imbibition 

WEE promoter activity was assayed using WEE:GUS localisation in high 

quality seeds (top row) and in seeds following accelerated ageing (bottom row) 

at the following stages: dry seeds, 6h imbibed seeds, seeds following coat cracking 

and after germination. A minimum of 15 seeds were isolated per condition.  
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WEE1, unlike TK, RNR and PARP, is responsible for delaying the cell cycle 

from entering S-phase, particularly under conditions of replication stress (ref).  

WEE1:GUS enzyme activity was not detectable in dry, unaged seeds but low 

levels are observed throughout dry seed following accelerated ageing (Figure 

5.1A). Early in imbibition levels in the aged seeds do not change, with low 

levels visible throughout the seed. However this is where accumulation begins 

in the high quality seeds with low levels throughout the embryo which can be 

seen persisting through to the point of seed coat rupture. At this stage, GUS 

activity in high quality seed expressing WEE1:GUS shows a slight 

enhancement of staining in the root tip, a change that is more apparent 

following ageing with WEE1:GUS levels confined more towards the root 

meristem. Levels are similar through to germination with cotyledons and cells 

around the root tip showing low levels of WEE1:GUS expression in both high 

and low quality seeds.  
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5.3   Discussion 

5.3.1  Abiotic stress and DNA damage in seeds 

Orthodox seeds undergo a period of desiccation following maturation, with 

moisture content typically dropping to 10-15% without further damage (Ellis 

and Roberts, 1980; Franchi et al., 2011). The low moisture content allows for 

a significant reduction in metabolism to very low levels to help reduce energy 

requirements during prolonged storage. The low water content in seeds is 

associated with macromolecules in a glassy state that do not form ice crystals, 

thereby providing resistance to desiccation and freezing (Koster, 1991). 

During this dry period any damage arising from reactive oxygen species start 

to accumulate in cell compartments due to the low levels of repair activities. 

Respiration starts fairly rapidly upon rehydration in the seed, releasing the 

ROS from cellular compartments following the influx of water causing large 

amounts of oxidative stress to the seed (Ehrenshaft and Brambl, 1990; 

Tripathy and Oelmüller, 2012). This stress is linked to severe damage to 

macromolecules, including DNA, which has to be repaired sufficiently before 

the seed can initiate cell cycle and germination can begin (Elder and Osborne, 

1993; Waterworth et al., 2016). The large amounts of potential damage during 

early imbibition are countered by the initiation of different repair processes. 

Some of these processes are designed to limit damage, such as enzymatic 

antioxidants which ‘mop up’ free radicals whereas some are responsible for 

repairing the inevitable damage that occurs, such as the DNA damage 

response (DDR). 

5.3.2  The plant DNA damage response (DDR) 

The DDR is a rapid response to DNA strand breaks activated in early imbibition 

(Culligan et al., 2006; Waterworth et al., 2010). The process is regulated by 

two phosphoinositide-3-kinase-related protein kinases (PIKKs): ataxia 

telangiectasia mutated (ATM) is the main component with minor roles 

suggested for ataxia telangiectasia mutated and Rad3-related (ATR). The 

activation of the DDR through these kinases has multiple downstream effects 

including; cell cycle arrest, histone modification, programmed cell death (PCD) 

and the transcriptional induction of hundreds of DNA repair genes. These 
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responses can be activated dependent on the severity of degradation and the 

specific tissue type, with programmed cell death (PCD) initiated in severely 

damaged stem cells in order to prevent mutation incorporation into the 

germline (Fulcher and Sablowski, 2009). In the case of double strand breaks 

uncertainties arise around the timing of the initial response between ATM and 

the MRN (Mre11, Rad50 and Nbs1) complex. MRN is involved in DSB end 

processing early in DSB formation and is necessary for ATM activation, 

however roles both upstream and downstream of ATM activation have been 

shown in MRN (Uziel et al., 2003; Lee and Paull, 2005; Amiard et al., 2010).  

The transcriptional induction of DNA repair-related genes following imbibition 

is a specific response to double strand breaks, rather than a generic response 

to DNA damage, activated by the ATM-dependent DDR pathway (Molinier et 

al., 2005; Waterworth et al., 2010). Following γ-ray doses of 100Gy, to induce 

double strand breaks, DNA repair gene transcripts can be seen to increase as 

much as 500-fold, with hundreds of genes showing upregulation (Culligan et 

al., 2006). Several genes also are seen to be down-regulated during this 

response, notably those involved in G2 or M phase of the cell cycle, indicative 

of cell cycle arrest which has been shown to be a response to high levels of 

DNA damage (Ricaud et al., 2007). Altering levels of gene transcripts in times 

of stress is a highly conserved process that occurs across a wide variety of 

organisms; however the specific genes that are involved are poorly conserved 

across kingdoms (Culligan et al., 2006). For example the DNA repair-related 

gene BRCA1 is found in bacteria, plants and mammals but the transcriptional 

induction of this gene following DNA damage is only found in plants and 

bacteria and little change is found in humans (Rieger and Chu., 2004; Culligan 

et al., 2006).  

5.3.3  Transcriptional induction of DNA Repair related genes in 

Arabidopsis during imbibition 

The influx of water and resumption of respiration is an intensely stressful 

period of time for the seed. DNA damage and double strand breaks are 

detected in seeds during early imbibition, and levels increase after seed 

storage in unfavourable condition such as high heat and humidity, associated 

with loss of viability (Cheah and Osborne, 1978). The DDR is active as early 
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as three hours into imbibition, as large increases in transcripts coding DNA 

repair proteins are seen (Waterworth et al., 2010). Amongst these transcripts 

are PARP2, RAD51, RNR and TK, which are all involved in DNA repair 

processes and important for rapid germination. The levels of these transcripts 

rise in early imbibition before decreasing steadily towards the point of 

germination (Waterworth et al., 2010). This response reflects the accumulation 

of DNA damage during storage and activation of repair pathways early in 

imbibition. The level of transcriptional induction varies between genes. Here, 

the expression of well characterised DDR genes (PARP2, RAD51, RNR and 

TK) was characterised in seeds of different quality to identify any correlation 

between amount of damage and expression of repair genes. 

Dry seeds had low levels of DNA repair gene transcripts in all conditions, in 

line with transcriptomic analysis (Waterworth et al., 2010). No significant effect 

of maternal environment on the DDR expression patterns was observed in any 

of the seeds tested; seeds produced from low, control and high maternal 

temperatures all displayed similar levels of transcripts across imbibition, and 

the same levels in high and low (aged) quality seeds. The different DDR genes 

varied in expression. The time of maximal transcriptional induction was later 

in imbibition for RNR and TK transcript levels whereas PARP displayed 

elevated transcript levels during both early and late imbibition and RAD51 

showing large increases during early imbibition before reducing again as the 

seeds reach germination. The late induction of PARP, RNR and TK suggest 

these factors are not required immediately upon imbibition, but act at a later 

time point and may be associated with the onset of S-phase. The seed lots 

germinated from around 67 hours after imbibition in the case of unaged seeds 

grown in high temperature (HT) conditions (section 3.2.2). The early imbibition 

time-point represents a time where germination is only 9.0% complete, 

although water uptake and seed water content should have reached a steady 

level (EcoSeed partner Finch-Savage lab, University of Warwick). However 

the likelihood is that transcript levels that are not present at 6 hours may be 

increased between the EI stage and the late imbibition (LI) time-point.   

RAD51 was the only gene that showed high induction at the early imbibition 

time point. RAD51 is involved in homologous recombination (HR); one of the 



- 120 - 

two major double stranded break repair pathways. Levels of RAD51 in 

seedling root tips increased over 100-fold in Arabidopsis following 100Gy γ-

ray irradiation (Culligan et al., 2006). The localisation in root tips is consistent 

with HR utilisation being restricted mostly to dividing cells, given the 

requirement for HR in S-phase. High RAD51 levels very early in imbibition are 

seen consistently in high quality seeds (Figure 5.1); however the role of HR in 

seeds is unclear due to the cell cycle not being initiated until days later; around 

the time of germination. DSBs are typically resolved by non-homologous end 

joining (NHEJ) in non-dividing plant cells, however NHEJ transcript levels are 

not responsive to genotoxic stresses, likely due to constitutive expression of 

the NHEJ pathway.  

5.3.4  Transcriptional induction of the DDR in aged seeds 

High quality seeds are capable of initiating the transcriptional induction to 

generate large numbers of proteins associated with repairing damage that 

occurs during storage. However, the effects of seeds storage for long periods 

of time or in unfavourable conditions on the transcriptional DDR were 

unknown. Transcripts levels of three DDR genes: RAD51, RNR and TK were 

therefore compared between aged and unaged seeds during imbibition.  

Poor quality seeds have an increased amount of DNA damage present which 

must be repaired sufficiently before germination proceeds (Dourado and 

Roberts, 1984). Despite the increased need for repair in aged seeds, the DDR 

transcriptional response was reduce rather than increased when compared to 

high quality seeds (Figure 5.4). Oxidation-mediated protein degradation in 

Arabidopsis does not instigate a rise in transcripts to replace the damaged 

proteins, instead preference is given to accumulating anti-oxidant defence 

mechanisms (Baxter et al., 2007). The lack of DDR mediated transcriptional 

response in aged seeds may therefore represent a preferential antioxidant 

response in a response similar to that of protein degradation, however the true 

reason behind the drop in transcripts is unclear. 

The reduced transcriptional response in aged seeds may reflect the reduced 

capacity for de novo mRNA synthesis resulting from lower energy levels and 

loss of sub-cellular compartmentation (Kranner et al., 2010). Reduction in 
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germination vigour is associated with decreased protein synthesis capacity, 

which may reflect the energy status or transcript availability (Galland and 

Rajjou, 2015). The levels of mRNA do not correlate with levels of protein 

synthesis in seeds (Galland et al., 2012). The accumulation of damaged 

mRNA may also underpin the reduced levels of protein synthesis and aged 

seeds, and turnover of damage transcripts provides a possible explanation for 

the attenuated transcriptional DDR observed in aged seed lots. Alternatively, 

damaged transcripts may be difficult to detect using RT-PCR approaches if 

cDNA synthesis is inhibited. Northern analysis or array-based approaches that 

rely on hybridisation for transcript quantification (rather than reverse 

transcription) would resolve this technical difficulty.  

5.3.5  GUS reporter localisation of DDR gene expression 

Stable transformants with the β-glucuronidase (GUS) reporter gene under the 

control of the promoters of selected genes involved in the DNA damage 

response were generated. This allowed the expression pattern of repair genes 

to be localised, revealing  cell- and tissue specific expression. The expression 

of four genes were analysed using GUS as a reporter. The first three; PARP, 

RNR and TK are involved in the DNA damage response and are required for 

repair. The fourth gene, WEE1, is regulated by both ATM and ATR as a result 

of DNA damage and replication stress and is responsible for halting cell cycle 

progression (Eckardt, 2007b). 

There were two main areas where GUS expression is highest across the four 

genes; the cotyledons and the root tips. The root tips are the region where the 

cell cycle is initiated first, around the time of germination, and ensuring high 

levels of DNA integrity is important to avoid mutations contributing to 

subsequent cells and promote meristem activity. Cotyledons fall into two 

categories dependant on the type of plant. Some plants, such as legumes, 

have cotyledons with extensive nutrient storage to promote growth following 

germination. Other plants, including Arabidopsis, have cotyledons that 

elongate immediately upon imbibition and display cell division activity after a 

few days (Stoynova-Bakalova et al., 2004).  
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Three of the four genes showed no GUS expression in high quality, dry seeds 

with only PARP showing detectable GUS levels in the cotyledons prior to 

imbibition. The low metabolic activity of dry seeds prevents any major changes 

in protein levels (Galland and Rajjou, 2015). Following ageing however, RNR 

and WEE1 GUS activity increased in dry seed, ruling out maternal synthesis 

of the DNA repair genes for dry storage in these instances. The changes in 

GUS levels in dry seed are unusual because of the lack of metabolism. 

However the proteins have been shown to increase and decrease in 

abundance after controlled deterioration, although the mechanism is unknown 

(Rajjou et al., 2008). For example, several proteins involved in the glycolytic 

pathway increase in dry seeds following ageing, a pathway that has been 

shown to be inducible through oxidative stress (Rajjou et al., 2008).  

WEE:GUS expression was ubiquitous throughout the seed with higher levels 

found towards the root tip in aged seeds where the seed coat had cracked, 

that were not visible in high quality seeds, suggesting a delay to cell cycle 

initiation following ageing. Accelerated ageing is known to cause DNA damage 

and WEE1 presence in the root tip would indicate replication blocks in place 

early in imbibition. Increased levels in the root tip suggest a delay in the cell 

cycle to repair large amounts of damage before root tip proliferation despite 

levels of WEE1 transcript overall in seeds showing no significant difference in 

abundance (Waterworth et al., 2016). 

RNR:GUS showed expression in the cotyledons in dry, aged seeds which 

increased during early imbibition. Expression was higher in the roots during 

seed coat cracking, especially in aged seeds, although the localisation was 

not focussed around the root tip which would be where most DNA repair 

synthesis would be expected to occur. Instead RNR:GUS was concentrated 

to the region between root meristem and shoot meristem before gradually 

focussing towards the two meristems following germination. Levels of 

RNR:GUS activity in the cotyledons were maintained throughout imbibition 

and in dry seeds that had undergone ageing suggesting RNR is important 

during all stages of imbibition and during maintenance in aged seeds (Figure 

5.6).  
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Overall the levels of GUS expression, and thus promoter activity, did not 

correlate with RT-PCR analysis of PARP, RNR and TK transcript levels. 

Considering transcription is not required for completion of germination this may 

cause differences between the two methods, where promotor activity within 

the seed does not account for already stored mRNA molecules. Aged seeds 

often showed an increase in staining intensity in GUS localisation studies but 

displayed a reduction in transcript levels in RT-PCR approaches. Few of the 

conditions showed an increase in GUS activity in high quality seeds, including 

thymidine kinase, which displayed high GUS activity in unaged seeds around 

the root tip following germination. This trend could be accounted for due to the 

need for new thymidine molecule generation for incorporation into the genome 

during replication which would be more efficient in seeds of high vigour with 

seedlings generally growing faster and thus increasing cell numbers.  
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6.  Detecting oxidative DNA damage in 

seeds 
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6.1    Introduction 

Base damage occurs on single nucleotide molecules and can cause 

mutagenesis without necessarily affecting any surrounding nucleotides. 

Oxidation is thought to be the primary type of damage occurring in the aged 

orthodox seed genome mainly due to desiccation and rehydration cycles 

generating large amounts of reactive oxygen species (Bailly, 2004; Kranner et 

al., 2010; Considine and Foyer, 2014). There are several single-base lesions 

associated with oxidative damage, however the oxidation of guanine to 

produce 8-oxoG is the most prevalent form of oxidative lesion affecting 

nucleotides (Kanvah et al., 2010). These lesions require excision, primarily 

through the base excision repair (BER) pathway. 

There are several products which can potentially cause oxidative damage 

throughout the cell. Free oxygen radicals such as the hydroxyl radical (•OH) 

and non-radicals such as hydrogen peroxide (H2O2) are the major cause of 

damage, with their damage potential based on differences in redox potentials 

(Kawanishi et al., 2001). DNA bases show differences in oxidation potential, 

with guanine having the lowest and is therefore the most likely to be oxidised 

especially in sequences containing a guanine repeat (GG) (Boone and 

Schuster, 2002). The oxidised guanine molecules produced by reactive 

oxygen species show propensity to generate G:C to T:A transversions through 

misreading of replication machinery (Bjelland and Seeberg, 2003). Mutations 

in somatic cells of the root or shoot meristem prior to cell cycle initiation risk 

incorporating these mutations in cells throughout the plant.  

The process of removing oxidised guanine lesions through BER generates 

apurinic/apyrimidinic (AP) sites which cause breaks in the phosphate 

backbone of DNA. AP sites in aged Zea mays seeds accounted for 38 in every 

106 nucleotides and these single strand breaks can cause loss of genetic 

information and mutagenesis (Dandoy et al., 1987). 8oxoG is excised from the 

genome by one of two interchangeable DNA glycosylase enzymes: 

formamidopyrimidine [fapy]-DNA glycosylase (FPG) or 8-oxoguanine 

glycosylase (OGG) depending on species. All higher plants have both FPG 

and OGG with redundant roles in the excision pathway (Murphy and George, 

2005), as evidenced by the increase in oxidative damage found in nuclear and 
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mitochondrial seedling DNA in the absence of these two enzymes (Córdoba-

Cañero et al., 2014).  

Oxidative damage to DNA can cause mutations directly without the AP 

intermediate. Oxidised guanine molecules can be misread by replication 

machinery as thymine and cause nucleotide transversions from G to T and 

subsequently C to A, resulting in mutagenesis (Figure 1.1). Repair machinery 

attempts to remove the affected nucleotide before cell cycle progresses. If cell 

cycle begins prior to removal of the afflicted nucleotide the mutation is 

replicated and permanently fixed within the genome.  

6.1.1  Aims 

To determine the prevalence of oxidation in the Arabidopsis seed genome 

novel methods were developed in order to measure the levels of oxidised 

guanine molecules. Measuring genome oxidation levels in seeds of different 

quality allows us to determine whether oxidation correlates with the reduction 

in germination capacity of selected seed lots. Comparing oxidation levels with 

seed performance in germination tests will determine whether the methods 

used to measure 8-oxoG offer sufficient sensitivity to be utilised as seed quality 

biomarkers.  

6.2    Results 

6.2.1  Measuring 8-oxoG as a quantitative biomarker for oxidative 

Stress 

To determine the correlation of oxidative DNA damage with seed ageing, 8-

oxoG levels were measured using PCR-glycosylase quantification of FPG 

cleavage activity at specific genomic loci. Oxidised guanine molecules are 

difficult to detect, however by removing these lesions using selected enzymes, 

in this case FPG, the resulting single strand breaks can be measured by the 

inability of polymerases to amplify the broken strands i.e. FPG mediated 

reduction in copy number. The amount of oxidation can then be quantified and 

correlated with seed quality. This will help to determine whether oxidation of 

the genome is a key marker of a seed lot to germinate.  

A method was developed to measure the amount of 8-oxoG in different plant 

species at different imbibition time points to establish whether levels correlated 
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with seed performance. Genomic DNA was treated with the enzyme FPG to 

remove oxidised guanine molecules before PCR amplification. FPG creates a 

single strand DNA break through base excision and the associated lyase 

activity that cuts the phosphodiester backbone immediately halts amplification. 

The difference in amplification obtained between DNA that had been treated 

with FPG and control DNA incubated only in water allowed the quantification 

of 8-oxoG levels in aged seeds. 

Initially the effectiveness and sensitivity of this PCR-glycosylase approach to 

determine levels of 8-oxoG in DNA was evaluated. To determine whether the 

PCR-glycosylase approach provided a quantitative measure of 8-oxoG levels, 

PCR products incorporating known amounts of 8-oxoG were synthesised and 

tested. PCR was used to amplify a DNA fragment using primers with and 

without an 8-oxoG present. Mixing and titration of PCR products allowed the 

production of DNA with a known amount of base modification (Table 2.1). 

Treatment of the product with the enzyme FPG results in cleavage of the DNA 

backbone and prevents amplification. PCR amplification of oligonucleotides 

that contained 8-oxoG yielded no final product following FPG incubation, 

suggesting that an abasic site is created in all strands containing the lesion, 

terminating elongation. Amplification of the oligonucleotide in the absence of 

FPG did however generate several copies, showing that DNA polymerase can 

efficiently read guanine as a nucleotide, even in an oxidised state. 

Furthermore, when combining ratios of oligonucleotides with known 

percentages of 8-oxoG there is high correlation between number of 8-oxoG 

molecules and final copy number (Figure 6.1) (R2 = 0.983). 
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Figure 6.1 Correlation between 8-oxoG and final copy number following 

PCR amplification  

To determine the efficiency of 8-oxoG cleavage by FPG in solution two sets of 

primers were synthesised; one containing an 8-oxoG and an identical set of 

primers with a regular guanine molecule (table 2.1). There was no amplified 

product in the final solution post-PCR when 8-oxoG containing 

oligonucleotides and FPG were combined, as measured by qPCR. The two 

oligonucleotides were combined in different ratios showing the increase in 8-

oxoG presence correlated highly 8-oxoG levels (R2 = 0.983), thus proving 

accurate quantification. 

6.2.2  Designing primers for use in Arabidopsis  

Orthodox seeds accumulate extremely high levels of DNA damage, much 

higher than at other stages of the plant lifecycle (Waterworth et al., 2016). For 

the technique to work effectively in seeds, primers would need to sensitively 

quantify guanine oxidation changes in the seed genome. Establishing the 

prevalence of genomic oxidation in seeds throughout imbibition would 

increase our knowledge on which stages of imbibition are most stressful and 

when most repair of oxidative DNA damage occurs. Primers were generated 

to amplify regions of the ACTIN1 (ACT1) gene. Different length products were 

obtained and treated with FPG, larger PCR products contained more guanine 

molecules, and were therefore more likely to contain oxidised bases that would 
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cause termination of amplification. Studies with Arabidopsis seedlings 

suggests that the occurrence of 8oxoG is approximately two in every kilobase; 

however levels in seeds are expected to be much higher than in seedlings 

(Córdoba-Cañero et al., 2014). In line with this, amplification of DNA 

generating fragments higher than 1kb showed no amplification following FPG 

treatment, suggesting that at least one oxidised guanine molecule occurs in 

every 1kb of DNA (Figure 6.2). Sensitivity was very high with final primer 

selection amplifying a 198bp region for FPG treatment, as shown in Figure 

6.3.  

 

[A]     [B] 

L        L            

  

Figure 6.2 Amplification and FPG treatment to determine fragment size 

DNA was extracted from Arabidopsis seeds and either remained untreated or was 

treated with FPG. Visible bands represent the untreated samples where amplification 

occurred and white arrows denote the lack of product following FPG treatment. 

Different primers were used to determine sensitivity of the method, with fragments 

>1kb in size failing to amplify following FPG treatment meaning at least one 8-oxoG 

is present per kilobase. The amplification products shown were 2kb [A] and 1kb [B] 

in length. Final fragment length selection was 198bp in size as it showed reduced 

amplification across a range of conditions (figure 6.3). Each band represents an 

increase in PCR cycle number ranging from 20 cycles to 40 cycles in incrementing 

groups of 5 cycles. L; Bioline Hyperladder 1kb. 
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6.2.3  Effect of DNA quality and quantity on the frequency of 8-oxoG 

Excision 

Extraction of high quality DNA from seeds can often prove difficult because of 

the large quantities of polysaccharides and storage compounds present (Xin 

and Chen, 2012). Optimisation of DNA extraction from seeds for analysis of 

DNA damage is described in Chapter 4. These by-products of extraction are 

often co-precipitated with DNA and cause a reduction in yield and 

contamination of DNA. These impurities often lead to difficulties determining 

the accurate concentration of DNA when using spectroscopy and interfere with 

DNA migration in electrophoresis (Chapter 4). The presence of these 

impurities might therefore also interfere with FPG-PCR mediated 

quantification of base damage. This was assessed by determining whether 

Arabidopsis DNA extracts displayed concentration dependence when 

determining levels of 8-oxoG. DNA was extracted from 48-hour imbibed Col-0 

seeds and was left either undiluted or was diluted 4 times or 8 times with 

ddH2O. The samples were digested with FPG as described in section 2.8.2 

and quantification carried out as outlined in section 2.9.1.  

There was little difference in final copy number reduction following dilution and 

FPG treatment. The DNA, when left undiluted, had a 39.4% reduction in copy 

number which changed narrowly to 42% reduction when diluted 8x. The 

dilutions used were prepared to provide accurate readings as possible when 

using agarose gel quantification. Further dilutions gave no product after FPG 

treatment and lower copy numbers generate weaker fluorescent bands which 

are more difficult to quantify accurately.  
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[A]    [B] 

 

 

Figure 6.3 Reduction in copy number of FPG-treated DNA following 

dilution and PCR amplification 

DNA was extracted from 48 hour imbibed Col-0 seeds and was left undiluted or 

diluted 4-fold and 8-fold with dH2O following FPG treatment. The products were run 

on an agarose gel and reduction in copy number quantified by fluorescence of bands.  

[A] Agarose gel showing PCR product of undiluted DNA (1), DNA diluted 1 in 4 with 

ddH2O (¼) and DNA diluted 1 in 8 with ddH2O (⅛) with (+FPG) or without (-FPG) FPG 

treatment. The ladder used was Hyperladder 1 kb plus (lane L). 

 

[B] Graph showing the reduction in fluorescence of FPG treated samples when 

compared to those left untreated. There does not appear to be a correlation between 

dilution and final copy number with the undiluted sample showing a 39.4% reduction, 

the 4x dilution showing 40.4% reduction and the 8x dilution showing 42.0% reduction. 
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6.2.4  Repair of 8oxoG during imbibition of high quality Arabidopsis 

seed 

In initial studies, temporal changes in levels of oxidised base damage 

throughout germination of high quality Arabidopsis seeds were evaluated. The 

causes of DNA damage in germination are incompletely understood and the 

re-entry of water upon rehydration may increase levels of oxidative DNA 

damage. DNA repair processes are believed to initiate early in imbibition (Elder 

and Osborne, 1993; Waterworth et al., 2010). Oxidation levels fluctuate 

throughout germination with little available knowledge on oxidation throughout 

imbibition and the causes of increases and decreases. Levels of 8oxoG were 

monitored throughout germination to establish at which point levels of genome 

oxidation were significantly low, signifying repair and reduction in DNA 

damage. Seeds were generated in greenhouses at controlled temperatures 

(22°C; 16 h:8 h day/night cycle) and kept as unaged or subjected to 

accelerated ageing for 1 day (35°C, 80% RH). The DNA was extracted and 

subjected to the same PCR-glycosylase treatment as previous (section 2.8 

and 2.7.3). Aged seeds showed an increase in DNA oxidation compared to dry 

seed, with unaged samples displaying 52.1% oxidation increasing to 94.5% 

following 1-day ageing (P<0.05). Following 9 hours of imbibition the levels of 

oxidation were at their lowest in both the unaged (10.7%) and in aged samples 

(38.6%) (P<0.05). Although oxidation levels in the aged seeds were at their 

lowest at 9 hours imbibition they were still significantly higher than in the 

unaged seeds (P<0.01) (Figure 6.4). 

It is important to increase knowledge of the molecular basis behind differences 

in seed quality, in order to effectively generate biomarkers for seed quality then 

such knowledge must be applied in an affordable and widely accessible way 

and be transferable across a number of species. As this is an ultimate aim of 

the EcoSeed project, we modified the methodology involved in the 

quantification step from the relatively expensive qPCR quantification to 

agarose gel quantification (Section 2.9.1). The reduction in transcript levels 

will be measured by the drop in fluorescence similar to the quantification 

method used in Figure 6.4. Comparable results were obtained using agarose 

gel quantification as with qPCR quantification, on average showing ±6.8% 



- 133 - 

variability, increasing the accessibility of using quantification of oxidised as a 

biomarker. 

We also developed a method of estimating base damage based on the 

percentage of damaged transcripts. As we know the size of the Arabidopsis 

genome, and assuming only one oxidised guanine molecule appears in each 

198 bp long transcript that has failed to amplify, then it is possible to 

extrapolate the number of damaged bases across the whole genome. The 

equation allows for a new way of presenting data that increases accessibility 

to a wider audience (Figure 6.4).  
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Figure 6.4 Base oxidation during ageing and reduction following 

imbibition 

Aged seeds (■) that had not been imbibed showed an increase in 8oxoG content of 

42.3% when compared to high quality seeds (■), suggesting an increase in oxidative 

pressures in these seeds. Following imbibition for 9 hours there was a reduction in 

oxidation in both high quality and low vigour seeds. High quality seeds showed a 

41.3% reduction (P<0.05) following incubation, whereas the aged seeds dropped by 

55.8% (P<0.05). Although 9 hours imbibition resulted in a drop in oxidation in both 

aged and unaged seeds, the aged samples still had significantly more guanine 

oxidation (P<0.01).  

By knowing the proportion of oxidised products in a 198bp region of Arabidopsis DNA, 

this number can be extrapolated to represent genomic oxidation allowing for a 

different representation of the work. This method gives approximate numbers of 

oxidised lesions at the genome level and is shown on the secondary y-axis.  
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6.2.5  Oxidation in non-transcribed regions of DNA 

DNA oxidation occurs across the whole genome and large amounts can be 

found in seeds, as shown previously.  The previous sections of this chapter 

used a small region of the Actin1 gene in order to estimate numbers of oxidised 

guanine molecules across the genome. However, transcribed regions only 

account for a small percentage of nuclear DNA and some repair processes 

preferentially repair actively transcribed regions, such as lesions linked to 

transcription (TC-NER). DNA damage products can stall the progression of the 

transcription complex on the DNA template, compromising gene expression 

and downstream protein synthesis. Damage and repair may therefore differ at 

these loci relative to the rest of the genome. ACTIN1 is a protein found widely 

across many plant species and is actively transcribed in seeds (Hightower and 

Meagher, 1986); it is unclear whether the transcriptional activity around this 

gene would influence levels of oxidative damage. DNA from three sources 

were therefore used in order to test the oxidation in a gene-coding region of 

ACTIN1 and another in a non-coding area of chromosome 1. High quality dry 

Arabidopsis seeds, dry seeds that had been aged for one day and aged seeds 

that had been imbibed for 9 hours were amplified using the two primers to 

determine whether there were any oxidative differences in the two regions. 

The 9-hour imbibition time point represents a time when transcription of 

ACTIN1 will have started and has been shown to be a period of time where 

repair of oxidation is high (section 6.2.5).  
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Figure 6.5 Genomic oxidation in silent and protein coding regions 

Identical sized oligonucleotide fragments were generated using primer amplification 

of two regions; one involved in the transcription of the ACTIN1 gene and one in a non-

coding area of DNA. These fragments were subjected to the same FPG treatment as 

described (section 2.8.2). There was no difference between the two regions in terms 

of guanine oxidation in unaged seeds, aged seeds or following imbibition.  

 

High quality dry seeds showed a 69% reduction in final copy number of the 

Actin region following amplification and the silent region showed a similar 62% 

reduction. Aged seeds showed no difference between the two regions with a 

98% reduction in ACTIN7 copy number and a 99% reduction in the non-coding 

region. Because of the reduction in oxidation seen following 9 hours imbibition, 

and the active transcription of the genome at this time, we used this time point 

to determine whether repair is lower in silent regions. There appeared to be 

no preferential oxidation removal in the active region compared to the silent 

region, with a reduced level of oxidation in both.   
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6.2.6  The effect of maternal environment and post-harvest ageing on 

8oxoG accumulation in seeds 

The aim of determining oxidative damage levels is to discover whether 

accumulation affects overall seed quality. DNA was extracted using a 

chloroform based extraction (section 2.6.2) from Arabidopsis seeds that had 

been produced in different maternal environments, low temperate (LT; 

14°C/16°C), control temperature (CT; 18°C/22°C) and high temperature (HT; 

25°C/28°C) (full details on conditions in section 3.2.2). The seeds were also 

subjected to accelerated ageing to determine how storage affects the 

accumulation of oxidised guanine (40°C, 75% RH for 4 days). The DNA was 

then subjected to an FPG enzymatic reaction and cycled through a qPCR 

machine for quantification as described in section 2.7.3. 

In dry seeds there was no difference in oxidised guanine content between 

seeds grown under any of the three maternal conditions. Seeds grown under 

HT did not differ following accelerated ageing, with 35.7% damaged transcripts 

in unaged seeds and 35.0% following ageing. Control temperature seeds also 

showed no significant difference following ageing (P=0.11). Seeds grown in a 

lower temperature showed more oxidation following ageing, with unaged 

seeds having 54.6% oxidation levels compared to the higher 88.7% levels 

following ageing (P<0.05) (Figure 6.4).  

Early imbibition (6 hours) represents a time where water uptake is steady and 

respiration enables initiation of repair processes. LT seeds showed repair of 

oxidised guanine molecules by 6h, with levels dropping by 32.1% following 

imbibition (P<0.05). LT seeds showed the lowest levels of base oxidation in 

early imbibition (22.5%); lower than both CT seeds (69.7%) and HT seeds 

(48.1%). Aged seeds from the control group (CTA) increased in oxidation 

following imbibition by 40.9% (P<0.05). There was no significant difference in 

seed lots that were aged compared to their respective unaged seeds. 

Late imbibition (72 hours) represents 80% of the mean germination time for 

CT seeds and can be used to look at how damage levels change as the seed 

prepares to initiate cell cycle and start germination. Oxidation levels in LTA 

seeds remained reduced from the dry seed (unchanged from early imbibition) 
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whereas CTA seeds showed a 67.4% increase in 8-oxoG levels compared to 

the dry seed. HT seed DNA oxidation increased from early imbibition by 

13.0%. There was once again no difference in oxidation between ageing 

treatments in any of the seed samples.  
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[A]         Dry seeds 

 

[B]    Early imbibition 

 

[C]     Late imbibition 

 

Figure 6.6 Effects of the maternal environment and accelerated ageing 

on 8-oxoG accumulation in Arabidopsis seed imbibition 

8-oxoG accumulation across different imbibition time points was measured in 

Arabidopsis thaliana seeds of high quality (■) and seeds subjected to controlled 

deterioration (■) 

[A] 8-oxoG levels in dry seed There were no significant differences in base oxidation 

in unaged seeds produced at different maternal temperatures in (LT, CT, HT).  

However LTA seeds showed much greater levels of oxidation (88.7%) than CTA 
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(14.2%) or HTA (35.0%) seeds (P<0.05). LT was also the only seeds to show 

significant difference following ageing, increasing by 34.1% in LTA seeds (P<0.05) 

compared to the respective unaged treatment. 

[B] 8-oxoG levels during early seed imbibition LT seeds  significantly repaired 

base damage following imbibition for 6 hours, showing decreased levels in 

comparison to dry seed (P<0.05). LT seeds also maintained lower levels of 8-oxoG 

than CT seeds, showing 47.2% lower levels (P<0.01). There was no significant 

change in 8oxoG presence in any of the seed batches following accelerated ageing.  

[C] 8-oxoG levels during late imbibition LT seeds remained at the lower levels as 

seen in early imbibition, however levels were not significantly different than CT seeds 

following imbibition for 72 hours. CTA seeds had a larger accumulation of 8-oxoG 

during late imbibition in comparison to dry seed. Accelerated ageing had no effect on 

8-oxoG levels. 

 

 

Figure 6.7 Reduction in copy number following FPG incubation in dry 

Brassica seeds 

Quantification of oxidative DNA damage in Brassica seeds. Neither maternal 

environment nor ageing caused significant change in oxidised base levels in dry 

Brassica seeds. Levels were much lower than those seen in Arabidopsis suggesting 

more robust protective mechanisms may be present in Brassica seeds. Ageing 

regimes are as described in (2.5.4)   
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6.2.7  Effects of the maternal environment and accelerated ageing 

effects on 8-oxoG accumulation in Brassica seed 

The levels of 8-oxoG were next determined in Brassica seeds produced under 

control (18°C/22°C; CT) and high (25°C/31°C; HT) maternal temperatures 

temperature regimes to investigate the effects of maternal environmental 

temperature on levels of oxidative base damage. Brassica seeds were also 

analysed for presence of oxidised guanine molecules either before (CT, HT) 

or after (CTA, HTA) ageing in the same way as described above (section 

6.2.4). Seeds that were produced at the control temperature showed a 15.8% 

reduction in copy number, with no significant difference after ageing (21.7% 

reduction). Seeds produced at a higher temperature did not have significantly 

more oxidative damage, nor did the same seedlots show any difference after 

ageing, with a 20.7% and a 27.4% reduction in final copy number respectively. 

There was also no observable difference between seeds produced in different 

maternal environments. 

6.3   Discussion 

6.3.1  Determining the efficiency of FPG to remove 8-oxoG 

From early work in mammalian and bacterial genomes the levels of genomic 

oxidation were always estimated to be several fold lower than that of 

mitochondrial DNA. More recently, partially due to updated methodology, the 

levels of genomic oxidation are now seen to be similar to that of mitochondrial 

DNA (de Souza-Pinto et al., 2001; Trapp et al., 2007).   

The discrepancies arose through early studies utilising chromatographic 

methods to determine oxidation. Both mass spectrometry and high pressure 

liquid chromatography (HPLC) are vulnerable to artificial oxidation events 

during isolation of DNA and subsequent hydrolysis, leading to suspected over-

estimates in DNA oxidation (Collins, 2005). Considering the significant 

contribution macromolecular oxidation has on the seed ageing process, we 

developed a non-chromatographic method in an attempt to limit levels of 

artificial oxidation sites introduced in analysis. The differences in oxidation 

levels between the two methods vary, chromatographic methods generally 

suggest between 5 and hundreds of oxidation residues per 106 guanines, 
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whereas enzymatic methods (such as employed here) tend to suggest ~0.5 

oxidation events per 106 guanines (Collins, 2005). 

As a control to determine how quantitative the FPG-PCR assay is, 8-oxoG 

containing primers were generated to allow introduction of known levels of 8-

oxoG into DNA. These primers allowed the introduction of 8-oxoG into 

oligonucleotides which, upon excision using a dual AP-lyase/glycosylase 

(FPG), would fail to amplify using PCR. Combining products known to contain 

the excised bases (incapable of amplification) and whole-fragments (those 

capable of amplification) allows us to generate a template DNA with a known 

percentage of 8-oxoG containing DNA strands. Two templates were made; 

one containing no excised fragments which should amplify fully and one 

containing only excised fragments which should be incapable of amplification. 

The two were also combined to generate solutions containing 33.3% and 

66.7% excised fragments to determine the relationship between percentage 

base excision and final copy number. The result was a line of best fit with an 

R2 value of 0.983, showing that the levels of PCR amplified product is inversely 

correlated to the presence of oxidised guanine molecules. 

6.3.2  The percentage of 8-oxoG in DNA can be measured over a range 

of template concentrations 

The methodology was then transferred to seeds to compare oxidation in seeds 

of different quality. Due to the co-purification of large amounts of 

carbohydrates during DNA extraction protocols, it is difficult to accurately 

determine DNA concentrations and it was unknown how 8-oxoG excision 

would be affected by the amount of DNA present. Three dilutions were made 

of extracted seed DNA that had been imbibed for 48 hours; seed DNA at 

~750ng, the same DNA diluted four times in water and another diluted 8 times.  

There was no significant change between the three samples, with 1x DNA, the 

4x dilution and the 8x dilution showing a reduction in copy number by 39.4%, 

40.4% and 42.0% respectively. This indicates that the assay is robust and not 

likely to be influenced by small differences in starting quantity between 

samples.  
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6.3.3  Low temperature in maternal development increases oxidation of 

guanine upon ageing 

Seed maturation conditions have been shown to affect how well seeds 

establish dependent on temperature (Koller, 1962), along with differences in 

seed size and viability (Mohamed et al., 1985). Higher temperatures during 

maturation are linked to a reduction in seed yield, with lower temperatures 

linked to an increase in dormancy (Section 3.2.2) (Kendall et al., 2011; Huang 

et al., 2014). By using seeds produced in different temperature regimes and 

subjecting them to accelerated ageing regimes, it is possible to see whether 

temperature during seed development can alter germination performance in 

combination with sensitivity to storage. There was no significant difference in 

the dry seed between the accumulation of 8oxoG in seeds produced in low 

(LT), control (CT) or high temperatures (HT). This indicated that, at least under 

the conditions and genotypes investigated in the present study, that maternal 

environment does not increase genomic oxidation prior to seed shedding 

(Figure 6.4). However, the maternal environment did influence how the seeds 

responded to ageing stress, as dry LT seeds demonstrated increased DNA 

oxidation after being subjected to accelerated ageing (P<0.05). These seeds 

also showed poorest germination performance, with reduced vigour and 

viability (Figure 3.2) possibly as a result of increased oxidative pressure 

building up in dry seeds. This is exemplified by increasing levels of hydrogen 

peroxide (H2O2) in seeds grown in lower maternal temperatures, with ageing 

significantly increasing H2O2 presence (EcoSeed partner; Bailley lab, Pierre 

and Marie Curie University). Similarly, flavonoid concentrations increase at 

lower temperatures which are seen in plants undergoing high levels of stress 

(EcoSeed). The major increase is seen in quercetin flavonoid derivatives 

which are suggested to have a role in singlet oxygen scavenging (1O2) 

(EcoSeed partner INRA, France)(Agati et al., 2012). 

6.3.4  Arabidopsis seeds aged for one day show increased levels of 

oxidation  

Quantification was carried out on Arabidopsis seeds that had been grown in 

greenhouses of controlled temperature (section 2.4) and had been aged at 

defined RH and temperature using a saturated salt solution of KCl (35°C; 80% 
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RH) as described in section 3.2.1. DNA was extracted from unaged seeds and 

seeds that had been aged for one day. Oxidative damage in dry seeds 

accumulates even with very low levels of metabolism and is exacerbated by 

the influx of water when imbibed as respiration initiates (El-Maarouf-Bouteau 

and Bailly, 2008). The acquisition of desiccation tolerance in orthodox seeds 

increases protection from oxidative damage and levels of base damage in dry 

seeds, stored for 2 years, is still 6 fold lower than DNA in aqueous solution 

(Dandoy et al., 1987). We suggest that oxidation is still high in the dry seed 

despite these protective mechanisms which is exacerbated during ageing 

(Figure 6.4).  

The presence of water initiates the seed to begin metabolism and, although 

this is an additional source of stress for an orthodox seed, it allows for the 

activation of repair mechanisms. Genomic repair is essential in the early 

stages of imbibition due to the need for protein synthesis and the priority of 

reducing risk of mutation before the cell cycle starts. Should mutations persist 

when the cell cycle activates it is possible they may contribute to the germline 

of the whole plant. The presence of oxidation in the dry seed is increased with 

one day ageing when compared to high quality dry seeds. Using qPCR to 

measure copy number reduction (section 2.7.3) high quality seeds showed a 

53.2% reduction in transcript levels, whereas one day aged seeds show a 

96.7% reduction (Figure 6.4). This shows that under sub-optimal storage 

conditions oxidation is a major source of damage in dry seeds. The increase 

in oxidation as a consequence of controlled deterioration (CDT) has been 

shown previously, with imbibition also increasing the levels of 8oxoG (Chen et 

al., 2012). The high levels of oxidation were reduced by overexpression of 

OGG1, one of the two DNA glycosylases responsible for 8oxoG removal, 

which also saw a marked improvement in germination performance following 

CDT (Chen et al., 2012).  

6.3.5  Lowest levels of 8-oxoG are found around 9-hours post imbibition  

The early stages of imbibition are often seen as one of the more stressful 

events a seed encounters. Despite the increase in damage associated with 

water influx and initiation of metabolism, this period of time is also where repair 

of genomic damage occurs before cell cycle starts (El-Maarouf-Bouteau and 
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Bailly, 2008; Waterworth et al., 2010). Several responses early in imbibition 

are targeted towards ensuring the integrity of the plant’s genome, such as 

transcriptional induction of DNA repair genes, delay to cell cycle induction and 

signalling of double strand breaks (Elder and Osborne, 1993; Waterworth et 

al., 2016). The levels of oxidative damage therefore flux throughout imbibition, 

increasing with water influx and respiration resumption but decreasing with 

repair activities (Waterworth et al., 2016).  

During imbibition levels of oxidation reach their lowest levels after around 9 

hours in both unaged seeds and 1 day aged seeds. This suggests that in the 

early hours of seed imbibition the repair of oxidised guanine molecules is less 

than the rate of formation of new lesions. Within the first 20 hours of imbibition 

(around 50% of the way to germination) the number of AP sites in aged Zea 

mays seeds increased 4-fold in comparison to dry seeds (Dandoy et al., 1987). 

The formation of these sites through glycosylase action demonstrates the 

large levels of genomic repair occurring throughout early seed imbibition to 

turn over damaged base formation. 

At around 9 hours we discovered 8-oxoG levels to be at their lowest, indicating 

repair very early in imbibition. The synthesis of DNA-repair related transcripts 

within the first few hours of imbibition and the formation of additional AP sites 

suggest that this represents a time where genomic repair activities peak 

(Dandoy et al., 1987; Waterworth et al., 2010). The amount of oxidation in high 

quality seeds, as measured by drop in copy number, decreased by 2.5-fold 

from 53.2% to 21.2% following imbibition for 9 hours. There was still 

significantly higher oxidation after 9 hours in the seeds aged for one day in 

comparison to the high quality seeds (P<0.05). When looking solely at the one 

day aged seeds, levels of oxidation dropped from 96.7% in dry seeds to 42.0% 

after 9 hours of imbibition, a decrease of 2.3-fold (Figure 6.4). Due to the large 

amounts of protein synthesis, increase in ROS production and other highly 

stressful events early in imbibition it is possible that nine hours represents a 

time between repair and cell cycle initiation where the genome is primed to be 

ready for DNA replication.  
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6.3.6  8-oxoG levels do not differ between actively coding and non-

coding regions 

The genome of Arabidopsis is 135 Mbp in size and can be split into regions 

that are actively involved in transcription (active regions; gene-coding) and 

those which do not and are regulatory, have other purposes or are ‘junk’ DNA 

(non-active regions; intergenic). Damage to the genome can occur across all 

regions of DNA; however DNA pathways can use transcription blockages as 

a mechanism for DNA damage detection (e.g. transcription coupled nucleotide 

excision repair – TC-NER). Chromatin structure also modifies around areas of 

high transcription, potentially affecting the presence of DNA damage and 

repair (Kakarougkas et al., 2015). The primers used to determine the amount 

of oxidation in the Arabidopsis genome represented a 198bp region of the 

ACTIN1 gene. However, to ensure that this was representative of the genome 

as a whole, an untranscribed region of DNA of identical size was generated. 

This allows the comparison between active and non-active regions to 

determine whether the levels of oxidation differ dependent on genomic 

regional activity. DNA was extracted from seeds and treated with FPG before 

being amplified by PCR using primers for a coding region of ACTIN1 and a 

silent region. DNA was extracted from three differently treated seeds; high 

quality dry seeds, dry seeds aged for 1 day and the same 1 day aged seeds 

that had been imbibed for 9 hours. The different treatments allows us to show 

that, regardless of seed quality or imbibition time point, the genome remains 

uniformly oxidised, with no preference for oxidation in active or non-active 

regions (Figure 6.5). This shows that in non-coding regions, DNA lesions are 

still repaired at the same frequency as those regions which are responsible for 

actively transcribing genes. 

6.3.7  Estimating the level of oxidised nucleotides DNA in Arabidopsis 

seeds 

Using primers of defined length (198bp) to determine the amount of oxidation 

in the Arabidopsis genome, and knowing the Arabidopsis genome is ~135 Mbp 

in size it is possible to extrapolate an estimate for oxidation across the entire 

genome. Because the levels of oxidised bases here actively coding regions do 

not appear to significantly differ from non-active regions (Figure 6.5), the 
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estimate is based on the assumption that oxidation levels do not differ 

significantly across different areas of the genome. Therefore, if high quality dry 

seeds show a 53.2% reduction in copy number then we calculate that every 

198 base pairs there is a 53.2% probability of the presence of at least one 

oxidised guanine molecule. Extrapolating this across the whole genome 

(comprising ~681,000 regions of 198 bp length), this equates to 355,351 

oxidised molecules in dry, high quality seeds or around 0.26% of the genome. 

Similarly we can do the same with the other imbibition times and ageing 

regimes as shown by Figure 6.4. This shows that the level of oxidation in high 

quality seeds drops from 355,351 oxidised nucleotides (0.26%) to 73,152 

oxidised molecules (0.05%) following 9 hours imbibition. Seeds aged for one 

day show 639,039 oxidised nucleotides (0.47% of the genome) which drops 

to around 263,522 (0.19%) following 9 hours’ imbibition (Figure 6.4). 

Investigation into the appearance of AP sites during dry storage estimates AP 

sites occur 38 times per 1 mbp region (Dandoy et al., 1987). This work, in Zea 

mays, would suggest an AP site would appear every ~263,000 nucleotides 

whereas we suggest levels of oxidation are much higher, occurring every 

~380bp in high quality seeds and ~211bp in seeds aged for one day.  

This approach allows us to put ‘real’ numbers to the developed methodology 

to make it more understandable and accessible however there are limitations 

to the extrapolation. The technique relies on assuming uniform oxidisation of 

the genome and that each region of 198 bp in length contains only one 

oxidised guanine (out of 52 possible guanine molecules). However, for 

illustrative purposes, the prediction of actual number of oxidised guanine 

molecules heralds a good estimation and a useful way to present the 

importance of oxidation.  

6.3.8  Dry Brassica oleracea seeds show no significant difference in 

DNA oxidation following maternal stress or post-harvest ageing 

Arabidopsis is one of the most extensively studied model organisms due in 

part to its relatively simple, fully-sequenced genome and short generation time. 

In terms of generating biomarkers for seed quality however the methodology 

used must be transferable across a number of species. Brassica oleracea (var. 

oleracea) is an important crop species that produces orthodox seeds and has 
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a production output of over 70 m tonnes in 2012 (FAOSTAT, 2012). We aimed 

to determine whether Brassica seeds would respond in the same way as 

Arabidopsis to the FPG-PCR treatments as oxidation across species will 

potentially vary in response to maternal environment and accelerated ageing. 

The subjecting of crop species to unfavourable conditions leads to significant 

agricultural losses every year (Powell and Matthews, 2012).  

The same approach was utilised with Brassica dry seeds, treating isolated 

DNA with FPG to generate single strand nicks in the DNA and then amplifying 

using PCR and measuring the drop in copy number after FPG treatment. Initial 

experiments were undertaken on dry seed, with Arabidopsis showing different 

oxidation levels after short ageing regimes (Figure 6.4). The levels of oxidation 

are much lower in Brassica, showing 15.8% reduction in high quality seeds 

compared to 44.4% in Arabidopsis. A similar trend is seen across the different 

maternal temperatures and ageing regimes used. It is possible that Brassica 

has more robust preventative measures in the dry seed, or potentially that 

seeds turnover oxidised molecules quickly by excision, resulting in more 

strand breaks which can be seen in section 4.2.2.3. The lack of differences in 

Brassica dry seeds suggests that the detection of oxidised bases via this 

method may not be suitable for use as a seed quality biomarker. Despite this, 

the work here in Arabidopsis suggests 8-oxoG has large roles to play in 

genomic oxidation during storage which has been shown previously (Chen et 

al., 2012). This may lead to development of species-specific methodology for 

accurately determining the contribution of oxidation to seed performance. 

Interspecific or intraspecific variation in repair capacities may also represent a 

significant factor. 

Determination of base excision repair (BER) activities in seeds, in conjunction 

with the molecular analysis of the BER pathway in germination performance, 

would increase our knowledge of how genome stability influences seed 

quality. Various proteins have been implicated in the BER pathway in plants, 

including the processing of 3’-blocking ends generated by 8-oxoG incision by 

the protein ARP (Córdoba-Cañero et al., 2014). Genetic analysis of mutants 

deficient in factors, such as ARP, would establish the importance of repairing 

base lesions during seed storage.  
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7.  Genome stability in ascorbate-deficient 

mutants 
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7.1    Introduction 

Oxidative damage is  a major cause of seed deterioration resulting from high 

levels of macromolecular oxidation of membrane lipids, proteins and DNA 

(Osborne and Boubriak, 1994; Bailly, 2004; Kranner et al., 2010; Waterworth 

et al., 2015). Levels of oxidative products increase with seed ageing, and 

reversal of this damage is important for seed longevity, as shown by the 

correlation between levels of the protein repair enzyme methionine sulfoxide 

reductase and seed longevity of Medicago cultivars (Châtelain et al., 2013). 

ROS also can have beneficial effects in cells and participate in signalling 

pathways, with roles in the control of germination (Bailly, 2004).  

Oxidative stress is also a major cause of DNA damage. Whilst assumed to be 

the major cause of DNA damage in seeds, this has not directly demonstrated, 

although levels of the predominant form of base damage, 8-oxoG, increase 

after seed ageing (Chen et al., 2012; Córdoba-Cañero et al., 2014). Plants 

have several powerful protective systems to counter the deleterious effects of 

oxidative stress to the cell, which include including non-enzymatic scavenging 

systems, such as antioxidants tocopherol, glutathione and ascorbate, and 

detoxification enzymes such as catalase, ascorbate peroxidase, glutathione 

reductase, and superoxide dismutase (Bailly, 2004). Oxidation of seed storage 

proteins has also recently has been identified as a major ROS scavenging 

system in seeds (Nguyen et al., 2015). Collectively these mechanisms are 

responsible for maintaining the redox balance in plant cells. 

There is a strong link between glutathione redox state and seed viability, 

established in several species (Kranner et al., 2006; Nagel et al., 2015). 

Studies investigating altered levels of glutathione in plants are difficult in seeds 

as mutants with reduced glutathione are not viable or display severely retarded 

development (Eckardt, 2007a). Analysis of ROS mutants in plants additionally 

can be complicated by a number of factors including high redundancy between 

protection systems and residual levels of antioxidants in knockout mutant 

lines. The study of Clerkx et al., 2004 reported that even several double 

mutants deficient in ROS protection systems showed only mild sensitivity to 

ageing and germination on H2O2. (Clerkx et al., 2004a). 
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Ascorbic acid (AsA; Vitamin C) is present in all cells of plants and has roles as 

an antioxidant, an enzyme co-factor and as a signalling molecule. Roles for 

vitamin C have been described in several processes including photosynthesis, 

protection from UV damage, cell growth/expansion and implications in 

genomic stability (Smirnoff and Wheeler, 2000; Filkowski et al., 2004). While 

vitamin C levels in seeds are reported to be low, a reduced antioxidant 

capacity during seed maturation could potentially impact on seed quality. de 

novo AsA synthesis is initiated early in germination (Smirnoff and Wheeler, 

2000). 

Plants completely deficient in vitamin C do not survive past the seedling stage 

with bleaching of the cotyledons, consistent with severe oxidative stress, and 

death occurring shortly after germination (Conklin et al., 2000). The major 

pathway for production of vitamin C in plants is the GDP-L-mannose pathway. 

One specific step, involving the conversion of GDP-L-galactose to L-galactose 

1-P, is under the control of GDP-L-galactose phosphorylase, which encoded 

is by the VTC2 gene. The VTC2 homologue VTC5 is semi-redundant in 

function, but with a minor role estimated to be around 20% of overall AsA 

production (Dowdle et al., 2007). Double vtc2/vtc5 mutant are plants are non-

viable; however single mutant lines contain ~15% and ~80% of wild-type 

vitamin C levels respectively (Figure 7.1) (Dowdle et al., 2007).  
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Figure 7-1 Total ascorbate levels in leaves of VTC2 mutant seedlings 

(EcoSeed project; De Simone and Foyer unpublished results) 

 

7.1.1  Aims 

Oxidative damage is a major source of deterioration in seeds. One approach 

to minimise genome damage in seeds, and so enhance seed germination 

vigour and longevity, could be to increase protection of the embryo genome 

through increased levels of seed antioxidant levels. Here, to investigate the 

effects of reduced antioxidant levels on genome damage and cellular 

responses to DNA damage in seeds, Arabidopsis mutants deficient in the 

vitamin C biosynthesis pathway were analysed.  
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7.2   Results 

7.2.1  Isolation and analysis of the vtc2-5 mutant 

In order to further understand the relationship between accumulation of DNA 

damage in seeds and ascorbic acid, two vtc2 mutant lines were analysed.  

While plants cannot survive without vitamin C, it is possible to generate viable 

vtc2 mutants, which have reduced levels vitamin C levels synthesised by a 

VTC5 dependent pathway. Two mutants lines were used in this study:  vtc2-1 

is an EMS mutant previously isolated in a forward genetic screen for plants 

hypersensitive to ozone (Conklin et al., 1996), which contains a single base 

change (G to A) at the predicted 3′ splice site of the fifth intron. The mutant 

allele results in a HindIII restriction site which can be screened using restriction 

analysis of a PCR generated region of the VTC2 gene (a Cleaved Amplified 

Polymorphic Sequence (CAPS) marker). This mutant line was kindly donated 

by Professor Christine Foyer, University of Leeds. A second knockout mutant 

line, vtc2-5, was isolated as part of this study and contains a T-DNA insert 

(SAIL_769_H05) 620 bp downstream of the start codon. This mutation was 

generated through integration of the T-DNA region of the pROK2 vector 

through Agrobacterium tumefaciens infection of Arabidopsis plants (Alonso et 

al., 2003). PCR genotyping confirmed the presence of the T-DNA insertion in 

vtc2-5, utilising primers corresponding to the left border region of the T-DNA 

insert and VTC2 specific primers (Figure 2.1). The wild-type VTC2 allele was 

screened using primers flanking the T-DNA insertion site. No amplification 

across the T-DNA insertion site was observed in vtc2-5 plants. The EMS 

mutant was genotyped using wild-type VTC2 primers before analysing the 

amplified region for HindIII restriction sites. The wild type product of 767bp 

was digested to produce two smaller products of 588bp and 179bp in the vtc2-

1 mutants. PCR genotyping confirmed the presence of homozygous alleles for 

vtc2-1 and vtc2-5 (Figure 7.3). Analysis of AsA levels in seedlings was 

performed in the EcoSeed project by Dr Ambra De Simone and Professor 

Christine Foyer (University of Leeds) (unpublished data/personal 

communication), identifying that leaves of vtc2-5 and vtc2-1 seedlings 

respectively contain  22% and 15% of wild-type AsA levels (Figure 7.1; 

EcoSeed).  
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Figure 7.2 Schematic of the VTC2 gene and location of single base 

change (vtc2-1) and T-DNA insertion (vtc2-5)  

The position of the t-DNA insertion (vtc2-5) and the EMS mutation (vtc2-1) in the 

VTC2 gene (AT4G26850). Exons are denoted by boxes, with filled boxes 

representing untranslated region (UTR), empty boxes representing the coded regions 

and introns represented by a line.  
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Figure 7.3 Genotyping of vtc2-1 EMS mutant and vtc2-5 T-DNA 

insertional mutant. 

PCR analysis of the vtc2-1 EMS mutant and vtc2-5 T-DNA insertion lines. 

Genotyping to identify wild-type and homozygous mutant plants containing either a 

single nucleotide substitution (vtc2-1) or T-DNA insertion (vtc2-5). The PCR  primers 

used are detailed in table 2.1. The ladder used was Hyperladder 1 kb plus (lanes L) 

with bp number shown to the left. 

[A]. Wild-type (Col-0) and vtc2-1 seedling DNA were amplified using specific primers 

before incubation in the absence of HINDIII (-) or in the presence of HINDIII (+). The 

primer pair result in an amplicon of 767bp in the absence of the mutation whereas the 

fragment is broken into two fragments of 588bp and 179bp following digestion in 

homozygous vtc2-1 mutants. 

[B] Primers specific for wild-type (W) and T-DNA insertion (T) VTC2 were used to 

amplify genomic DNA from plants. WT plants resulted in only a WT band and 

homozygous vtc2-5 plants resulted in only the T-DNA band.   
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7.2.2  Germination performance of AsA mutants  

AsA (Ascorbic Acid; Vitamin C) is an important plant antioxidant. Most studies 

into the effects of AsA on plant development to date have focused on green 

tissues (Clerkx et al., 2004a). Complete knockout of vitamin C in Arabidopsis 

production causes bleaching and plant death almost immediately following 

germination (Dowdle et al., 2007). Mutations in the VTC2 and VTC5 genes 

generate lower AsA levels in plants. Only when both VTC2 and VTC5 knocked 

out, seedlings fail to establish, with VTC2 being the major contributor in the 

AsA biosynthesis pathway (Dowdle et al., 2007). 

Germination performance of vtc2-1 and vtc2-5 mutant lines were analysed. In 

high quality (unaged) seed lots there were no significant difference in the  final 

germination percentages of either mutant line when compared to the wild-type 

(Figure 7.4a). Both wild-type and vtc2-5 displayed 100% final germination and 

vtc2-1 a final germination percentage of 97.5%. Wild type seeds germinated 

within 2.00 days, vtc2-5 seeds germinated on average after 1.98 days and 

vtc2-1 seeds germinated after 2.07 days (P>0.1, Students T-Test) (Figure 

7.4b).  

After accelerated ageing for one day (35°C; 80%) there was no significant 

difference in the final germination percentage of either wild-type (85.8%) or 

vtc2-1 seeds (93.3%). However vtc2-5 seed showed greater sensitivity to 

deterioration, with a 50.8% reduction in germination (P<0.01) representing a 

large reduction in seed viability (Figure 7.4a). The mean time to germination 

also increased in wild-type (2.57 days) and vtc2-5 (3.61 days) seeds. 

However, vtc2-1 seeds did not display a significant loss of vigour (2.28 days 

to germination), also germinating faster than the wild-type seeds 

(P<0.01)(Figure 7.4b).  
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[A] 

 

Figure 7.4 Germination performances of vtc2-1 and vtc2-5 mutant seed 

Germination performances of wild-type, vtc2-1 and vtc2-5 seeds. Germination 

and accelerated ageing was performed as described in section 2.5.3 of wild-type, 

vtc2-1 and vtc2-5 seeds.  

[A] Seed percentage viability Final germination percentages of Col-0 (■), vtc2-1 (■) 

and vtc2-5 (■) seeds after 0 days, 1 day and 3 days accelerated ageing. There was 

no observed difference between viability of high quality (0 days) seed lots. vtc2-5 

seeds showed reduced viability following 1 day and three days ageing, whereas vtc2-

1  germinated as wild-type seed after ageing. vtc2-5 seeds failed to germinate 

following 3 days of ageing, whereas both Col-0 and vtc2-1 seed are comparable. 

(error bars display SEM of 3 replicates with 40 seeds per replicate. P values: 

*=P<0.05, **=P<0.01) 
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 [B] 

 

[B] Mean  germination (MGT): The mean time to germination of Col-0 (■), vtc2-1 (■) 

and vtc2-5 (■) seeds. No significant difference was observed between high quality 

seed lots. Following ageing for one day, germination is delayed in both Col-0 and 

vtc2-5 seeds, but not vtc2-1.  vtc2-1 seeds germinated faster than WT seed whereas 

vtc2-5 seeds took significantly longer to germinate than Col-0. 
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There was a large reduction in final germination percentage (viability) of all 

three seed lots following 3 days accelerated ageing. Whilst wild type seed 

displayed 16.7% germination in comparison to 19.2% of vtc2-1 seeds, no vtc2-

5 seeds germinated, corresponding to complete loss of viability (Figure 7.4a). 

The wild-type and vtc2-1 seeds displayed low germination vigour, with MGTs 

of 5.09 days and 4.67 days respectively (Figure 7.4b). Thus, only vtc2-5 seed 

displayed significant hypersensitivity to seed ageing relative to wild-type. In 

contrast, vtc2-1 seeds displayed slight improvement in germination vigour 

(P<0.01) after 1 day of accelerated ageing. As the ageing sensitivity of the two 

mutants is not comparable, it is difficult to assign the observed differences in 

germination performed to mutation the VTC2 gene and reduced levels of 

vitamin C.  
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7.2.3  DNA damage associated transcriptional changes in vtc2-1, vtc2-5 

and wild-type seed 

The roles of antioxidants such as vitamin C in protection of cellular DNA from 

oxidative damage in plants and influencing responses to DNA damage is 

poorly understood. We therefore investigated the effects of reduced levels of 

vitamin C in vtc2 mutants on activation of the DDR in germination. One 

hypothesis was that lower antioxidant levels could lead to greater activation of 

the DNA damage transcriptional response as a result of increased oxidative 

damage to the genome in mutant seed. Transcript levels of three genes 

associated with the plant transcriptional DNA damage response were 

determined in vtc2-1 and vtc2-5 seeds (Figure 7.5) during imbibition of high 

quality (unaged) seed. Levels of transcript induction was then compared to 

those of wild-type seeds (Figure 7.6) 

Rapid activation of the transcriptional DDR is observed early in germination of 

wild type Arabidopsis seeds. However, induction of the DDR was not observed 

in vtc2-1 seeds following imbibition (Figure 7.5a), with transcript levels 

reducing upon imbibition and remaining low for at least 24 hours. This 

suggested that reduced levels of vitamin C could impair induction of the DDR. 

However, transcript levels in the vtc2-5 mutant did not differ significantly from 

wild-type seeds (Figure 7.6), consistent with differences in germination 

performance of the two mutant lines. Following 6 hours imbibition, wild-type 

seeds showed a 21-fold induction of RAD51 transcript levels in comparison 

with vtc2-1 seed, which showed a decrease to 72% of dry seed levels.  

Similarly, following imbibition for 6 hours in wild type seeds RNR showed an 

18-fold increase and TK a 2.5 fold increase, whereas vtc2-1 seeds displayed 

a 0.35-fold reduction in transcript levels and 0.39 fold the level of the 

unimbibed seed (Figure 7.6). However, the reduction in DDR transcript levels 

observed in the vtc2-1 mutant background was not observed in the T-DNA line 

vtc2-5, which showed transcriptional responses comparable to that of wild-

type seeds. Levels of RAD51, RNR and TK transcripts in vtc2-5 seed 

increased by 11.7, 16.0 and 3.4 fold respectively (Figure 7.6) when compared 

with dry seed after 6 hours imbibition. This suggests that differences seen 
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between vtc2-1 and vtc2-5 mutants are not attributable to mutations in the 

VTC2 gene. 
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[A]

 

[B] 

  

Figure 7.5 Transcriptional DNA damage response in seed imbibition of 

vtc2-1 and vtc2-5 mutants 

Changes in transcript levels of the DNA response associated genes RAD51 (-■-), 

RNR (-■-) and TK (-■-) in vtc2-1 [A] seeds and vtc2-5 [B] seeds following imbibition 

for up to 24 hours. Transcript levels were measured by reverse transcription PCR 

(RT-PCR) and shown relative to ACT7 transcripts. The samples were then normalised 

to levels found in dry seed to track changes upon imbibition. Levels of all three 

transcripts dropped in vtc2-1 mutants following imbibition but the same effects were 

not observed in vtc2-5 seeds with levels resembling that of wild-type with large 

increases seen early in imbibition (Figure 7.6). 
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Figure 7.6 DDR transcript levels in vtc mutants following 6 hours 

imbibition 

Changes in transcript levels of the DNA damage response associated genes RAD51 

(-■-), RNR (-■-) and TK (-■-) in wild-type (Col-0), vtc2-1 and vtc2-5 seed following 

imbibition for 6 hours. Levels of all three transcripts dropped in vtc2-1 following 

imbibition, but the same effects were not observed in vtc2-5 seeds, which did not 

differ from wild-type. This identifies that vtc2-1 seeds showed decreased induction of 

DNA damage response associated transcripts compared with wild-type or vtc2-5 

seeds.  
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7.2.4  X-ray sensitivity of vtc2-1 seeds  

Double strand breaks (DSBs) cause delay to germination through activation of 

ATM-mediated DNA damage signalling (Waterworth et al., 2016). Evaluating 

plant growth following induction of double strand breaks by X-rays allows us 

to determine whether particular genotypes are impaired in their response to 

DNA damage, as root growth is hypersensitive to X-rays. Here we induced 

double strand breaks by subjecting seeds to varying doses (75Gy, 150Gy) of 

gamma radiation (Section 2.5.4). Root length was measured as a marker for 

reduced seedling vigour as an indicator of cell division and meristem activity 

(Waterworth et al., 2010). The detection of DSBs and cell cycle arrest relies 

on ATM, the master controller of the DNA damage response. The ATM mutant, 

atm, was also included to compare the root length in seedlings that were 

incapable of delaying cell cycle (Garcia et al., 2003; Waterworth et al., 2016).  

Wild-type seedling roots grew to 28.3 mm, whereas vtc2-5, showed a marked 

reduction in root length in relative to wild type controls (17.8 mm) (P<0.001). 

The EMS mutant, vtc2-1, however displayed increased root growth compared 

to wild type (33.4 mm). Following 75Gy X-rays there was no significant 

difference observe in root length between wild-type seedlings (22.3 mm) and 

either vtc2-1 (24.1 mm) or vtc2-5 (24.4 mm) mutants. However, compared to 

unirradiated controls, Col-0 and vtc2-1 displayed a similar reduction in root 

growth upon X-ray treatment, whereas growth of vtc2-5 lines was not inhibited, 

and appeared to be stimulated by X-rays. Consistent with previous studies 

(Garcia et al 2003), the atm seeds showed a marked hypersensitivity of root 

growth, reflecting impaired repair of DNA damage in this mutant background.   

Following 150Gy irradiation the vtc2-1 and vtc2-5 seedlings showed some 

reduction in root growth (19.0 mm and 18.8 mm respectively), although only in 

the vtc2-5 was this reduction statistically significant (P<0.01) (Figure 7.7). 
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Figure 7.7 Changes in root length in wild-type, vtc2-1, vtc2-5 and atm 

seedlings following gamma irradiation 

Changes in root length in wild-type Arabidopsis and the vitamin C deficient seedlings, 

vtc2-1 and vtc2-5, following 0Gy (■), 75Gy (■) and 150Gy (■) gamma radiation doses. 

Seeds deficient in the DNA damage response were also included (atm). Of the seeds 

that were not subjected to gamma irradiation, vtc2-5 root length was decreased 

(P<0.001) whereas vtc2-1 (P<0.05) and atm (P<0.001) root length increased 

suggesting failure to initiate normal cell cycle delay. Following 75Gy irradiation there 

was no difference in either vtc2 mutant but atm seeds showed hypersensitivity of root 

growth (P<0.001). Only atm (P<0.001) and vtc2-5 (P<0.05) seedlings showed 

reduced root length following 150Gy irradiation. All statistical analysis is a result of 

student’s t-test with a minimum of 25 samples per condition (P values: *=P<0.05, 

**=P<0.01, ***=P<0.001, in comparison to identically irradiated Col-0 samples).  
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7.2.5  Oxidised guanine accumulation in vitamin C deficient seeds 

A role of vitamin C in protecting the embryo genome from oxidative damage 

was investigated by determination of the amount of oxidised guanine base 

damage present in wild-type seeds and in seeds deficient in vitamin c (vtc2-1) 

(Figure 7.8) throughout imbibition. Genomic DNA was isolated from dry seeds 

(0 hours imbibition) or seeds imbibed for 3, 6, 9 or 16 hours. These seeds were 

then analysed for 8-oxoG accumulation using FPG treatment and PCR 

quantification as described in section 6.2. 

Despite the lower levels of vitamin C in the mutant, there were no significant 

differences in the levels of oxidised base damage observed at the time points 

analysed during seed imbibition. Dry Col-0 seeds showed 8-oxoG base 

damage in 38.2% of copies of the genomic region analysed. Vitamin C-

deficient seeds accumulated damage to 53.1% of loci, although this was not 

statistically different from levels measured in wild type seeds. At an early 

imbibition time point of 3 hours, wild-type and vitamin C-deficient seeds 

displayed 52.2% and 59.9% loci respectively containing damage. This did not 

change at the 6 hour imbibition time point, with levels measured as 45.9% and 

52.8% damaged loci in wild type and vtc2-1 seeds respectively. 8-oxoG levels 

were quantified at the 16 hour imbibition time point, but no significant 

differences were observed between wild-type seeds (47.8% damaged loci) 

and vtc2-1 seeds (52.2% loci with damage). 
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Figure 7.8 Accumulation of oxidised guanine molecules in wild-type and 

vitamin C deficient seeds during imbibition 

8-oxoG accumulation was determined in wild-type Arabidopsis (■) and vtc2-1 seeds 

(■) during imbibition. No  differences in accumulation of 8-oxoG were observed in dry 

seed (0hours), 3 hours, 6 hours or 16 hour imbibed seeds.  
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7.3    Discussion 

7.3.1  Differences in germination capacity of vitamin C deficient seeds 

Vitamin C is ubiquitous in plant tissues and is found in all plant species to date 

(Wheeler and Smirnoff 2000). Despite the importance of vitamin C in plant 

tissues, its functions in plants remain to be fully elucidated. A relationship 

between the antioxidants tocopherol and glutathione and seed deterioration is 

established (Sattler et al., 2004; Kranner et al., 2006; Nagel et al., 2015).  

Ascorbic acid synthesis occurs as the seed matures on the mother plant, but 

levels drop during maturation drying, although small amounts of 

dehydroascorbic acid (DHA) and large amounts of vitamin C recycling 

enzymes remain present (De Tullio and Arrigoni, 2003). This suggests vitamin 

C may have a have minor role in protection from ROS in dry seed during 

storage but may influence the oxidation state of the dry seed due to roles 

during the maturation phase. Significantly, overexpression of antioxidant 

genes in Arabidopsis conveys increased resistance to oxidative stress early in 

seedling growth (Xi et al., 2010). Illustrating that the complex interactions and 

high redundancy of ROS protection mechanisms often complicates their 

analysis in plants, stress resistance in this study was only conferred by 

combination of pathways. The synthesis of vitamin C begins within a few hours 

of imbibition, consistent with roles in protecting the seed from oxidative 

damage associated with the loss in subcellular compartmentation that occurs 

during the early stages of rehydration (Sreenivasan and Wandrekar, 1950). 

However, synthesis would be dependent on the reinitiation of metabolism in 

the seed. Early imbibition is important as repair processes are initiated at this 

time, representing critical events in prior to germination that support successful 

seedling establishment (Elder and Osborne, 1993; Waterworth et al., 2016). 

The antioxidant levels in the dry seed may therefore be crucial in the earliest 

stages of imbibition, when metabolism has not commenced but the re-entry of 

water generates high levels of oxidative stress. This provides the potential for 

vitamin C to influence seed vigour, and a possible relationship between vitamin 

C levels and genome stability has been established (Filkowski et al., 2004).  

Direct interaction with DNA was demonstrated at millimolar concentrations of 
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vitamin C where it bound to duplex DNA, although the physiological relevance 

of this observation is unclear (Yoshikawa et al., 2006).  

Vitamin C levels in the two vtc2 mutant lines were similar, at around 22% and 

15% of wild-type levels in vtc2-1 and vtc2-5 seedlings respectively (Figure 

7.1), although levels in the dry seed and early imbibition were not determined. 

Germination performance of vtc2 mutant seed was analysed. In high quality 

(unaged) seeds there was no difference in seed vigour or viability, between 

the mutant and wild type lines. Lower levels of the antioxidant in mutant seed 

does not affect germinate under normal conditions; however 1 day ageing 

reduces vigour but not viability in Col-0 seeds, whereas the vtc2 mutant lines 

displayed different responses. vtc2-5 seeds took much longer to germinate 

and final germination percentage was  reduced to below 50%,  consistent with 

reduced ROS scavenging during imbibition in the mutant. However vtc2-1 

seeds did not display this phenotype. Despite similar levels of ascorbate, vtc2-

1 seeds germinated slightly faster than wild-type seeds, with vigour levels 

unaffected by 1 day accelerated ageing. The hypersensitivity of vtc2-5 to 

ageing led to significantly reduced viability and vigour following ageing, whilst 

vtc2-1 seeds displayed similar or higher germination levels as wild-type. The 

different response observed in the two mutant background  could reflect the 

effects of mutation either in different regions of the VTC2 gene, or genetic 

differences in the lines unrelated to the VTC2 gene. The vtc2-1 seeds were 

generated through EMS mutagenesis followed by out crossing of background 

mutations, whilst the vtc2-5 line was generated through T-DNA insertion into 

the VTC2 gene, selected from a large population of random insertion lines 

(Sessions et al., 2002). 

The combination of the increased seed vigour of vtc2-1 seeds (Figure 7.4) and 

the negligible induction of the transcriptional DDR during imbibition (Figure 

7.5A) might support the conclusion that an increased oxidative state of these 

seeds resulted in faster germination. mRNA oxidation has been shown to 

influence germination of rice seeds and promote releases from dormancy in 

sunflower (Bazin et al., 2011). Although vtc2-1 seeds germinated faster they 

also displayed signs of bleaching in seedlings, possibly resulting from an 

apoptosis-like mechanism (Lim et al., 2016).  
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7.3.2  Effects of reduced levels of vitamin C on the transcriptional DDR 

Transcript levels of the DNA damage response associated genes RAD51, 

RNR and TK were analysed in vitamin C deficient mutants to determine 

whether vitamin C levels could influence the transcriptional DNA damage 

response. Plants initiate synthesis of new vitamin C early in imbibition, around 

the same time that transcriptional DNA damage response (DDR) is activated 

(Sreenivasan and Wandrekar, 1950; Waterworth et al., 2010). Vitamin C levels 

have been reported to influence transcription of a variety of gene families. The 

majority of transcripts modulated  by vitamin C are associated with biotic 

defence; of the 171 genes found to be influenced by ascorbate levels, 33 were 

found to be involved in cell cycle control or have DNA binding capacities, with 

a further 11 involved in protein synthesis and protein modification (Pastori et 

al., 2003). All changes in transcripts reverted to wild-type levels when vtc2 

mutant lines were supplemented with ascorbate (Pastori et al., 2003).  

The effect on transcripts could also be modified by changes in ROS levels of 

the seeds, which would be affected by the reduced antioxidant levels in the vtc 

mutant lines. The presence of elevated levels of oxidative species initiates a 

cascade of signalling pathways, resulting in transcriptional responses 

associated with cell rescue and defence (Maurino and Flügge, 2008). 

Furthermore mRNA is prone to oxidation in high oxidative state environments 

due to its single stranded nature and lack of repair mechanisms. Damaged 

mRNA is turned over in the cell, and while the mechanisms for quality control 

remain obscure, the physiological importance is illustrated by  the requirement 

of oxidation of mRNA in sunflower in order to alleviate dormancy (Bazin et al., 

2011). Should the vtc2-1 seeds have vitamin C levels low enough to enhance 

cellular oxidation, particularly of mRNA molecules, it may induce early 

germination as seen in Figure 7.4b. 

Because of the differences observed in germination performance and 

transcript levels in the two vtc2 mutants, it is difficult to draw firm conclusions 

regarding the observation that altered transcript levels are observed only in 

vtc2-1 (Figures 7.5a and 7.6). vtc2-5 seeds showed no difference from wild-

type, although plants contain around 15% of the ascorbic acid content. This 

suggests that ascorbate levels do not affect the DDR mediated transcriptional 
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induction, either directly or through differences in ROS levels.  Thus, the 

phenotypic effects of vtc2-1 on the DDR are likely to be independent of 

ascorbate levels, and  could be related to background EMS induced mutations 

genetically linked to the VTC locus that were not removed in out-crossing  

7.3.3  Sensitivity of vtc mutants to DNA damage 

In Arabidopsis, wild type levels of germination vigour require activation of the 

cell cycle prior to germination (Masubelele et al., 2005). The presence of DNA 

damage arrests to cell cycle progression to reduce the mutagenic effects of 

DNA damage (Waterworth et al., 2016). Delayed meristem activity results in 

reduced root growth following irradiation (Liu et al., 2004; Fulcher and 

Sablowski, 2009). Root length was quantified in wild-type, the vitamin C 

deficient vtc2-1 and vtc2-5 seeds along with atm seeds to determine whether 

the vtc2 mutants displayed hypersensitivity to DNA damage. 

In addition, wild type and mutant seeds were subject to X –ray irradiation to 

determine the effect of vitamin C (and antioxidant levels) on the cellular 

response to DNA double strand breaks (Plumb et al., 1999; West et al., 2000). 

Vitamin C has been shown to provide dose-dependent protection of DNA in 

the presence of double strand breaks with 5 mM treatment having 20 times 

lower levels of DSBs (Yoshikawa et al., 2006). We found that root length was 

reduced in vtc2-5 seeds relative to wild type in the absence of irradiation but 

both vtc2-1 and atm displayed longer roots that controls (Figure 7.7). Following 

irradiation root length in atm seeds was reduced significantly relative to WT, 

the typical phenotype of NHEJ knockout mutants in Arabidopsis, with 

accumulated DNA damage, lack of root cell maintenance and loss of dividing 

cells (Garcia et al., 2003; Ricaud et al., 2007). In vtc2-5 seeds treated with 

150Gy X-rays there was a significant reduction in root length, typical of cell 

cycle arrest in the presence of increased DNA damage. Inhibition of root 

growth has been reported be reduced in the presence of enhanced oxidative 

stress by exogenous application of vitamin C, showing the importance of the 

antioxidant in root meristem cells early in germination (Xu et al., 2015). 

Unusually the same seeds subjected to 75Gy radiation had longer roots than 

those at 150Gy suggesting increased protection following mild irradiation 

treatments; however X-ray doses above 100Gy has been shown to cause 
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variation in levels of vitamin C in onion seeds which could account for the 

shorter roots (Benkeblia and Khali, 1996)  

7.3.4  Genomic protection from reactive oxidative species is not 

dependent on vitamin C in seeds 

To determine whether the reduction in vitamin C levels, and thus the reduction 

in ROS scavenging, would affect the oxidation of the genome, levels of 

oxidised guanine molecules were quantified throughout seed imbibition. 

Conversely, it has been shown that loading human cells with dehydroascorbic 

acid reduces mutation frequency and accumulation of oxidised guanine 

molecules induced by H2O2 (Lutsenko et al., 2002). Despite the preventative 

nature vitamin C has on reactive oxygen species induced damage, it also has 

pro-oxidant properties when in the presence of free transition metals. Several 

transition metal-requiring enzymes are present in soybeans during seed 

growth including iron, copper and zinc dependent enzymes, leaving the 

opportunity for oxidised ascorbate to potentially generate oxidised base 

lesions (Agrawal et al., 2008). There was no significant difference observed in 

levels of 8-oxoG between the vtc2-1 seeds and wild type, indicating that 

reduction of vitamin C did not significantly affect genomic oxidation levels. 

Although oxidised guanine is commonly used as a marker of oxidative 

damage, and studies report lower levels following vitamin C supplementation 

(Podmore et al., 1998; Lutsenko et al., 2002) there is also evidence that the 

pro-oxidant nature of oxidised vitamin C  favours production of 8-oxo-adenine 

over 8-oxo-guanine (Podmore et al., 1998). This would suggest that lower 

vitamin C levels in the vtc2-1 mutant could potentially have reduced levels of 

genomic oxidation to adenine molecules in early imbibition which would 

account for some of the resilience to ageing seen in Figure 7.4. However due 

to the prevalence of oxidised guanine molecules in comparison to the relatively 

scarce levels of oxidised adenine measuring levels of 8-oxo-adenine makes 

quantification difficult and not as relevant in seed genomic oxidation (Cadet et 

al., 2003).    

In mammals and yeast the also DDR is known to be activated directly in 

response to oxidative stress and ATM is well established to functioning as a 

major redox sensor. However, in plants such a role remains obscure to date. 
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Two lines of evidence support a link between DDR induction and redox 

sensing in plants. Double cat/asp mutants deficient in ascorbate peroxidase 

and catalase, but not the single genes, displayed constitutive elevated 

expression of genes associated with the DDR, were resistant to genotoxic 

stress and induced expression of cell cycle inhibitor WEE1 (Vanderauwera et 

al., 2011). However, DDR induction levels were low and the gene profile was 

distinct from that of the DDR profile observed in seeds to genotoxic stress e.g. 

BRACA1 was up regulated. That single mutants did not demonstrate this 

response suggested that synergistic interaction of two pathways is required 

for activation of the DDR by ROS. Furthermore, the cell cycle inhibitors SMR5 

and 7 are transcriptionally induced by oxidative stress inducing stimuli under 

control of ATM (Yi et al., 2014). The authors suggest that, as SMR5 is 

transcriptionally inducted by a wide range of stresses, that SMR5 could 

function to integrate ROS signalling/redox status with cell cycle control 

 The DDR is activated very early in seed imbibition, indicative of DNA damage 

sensing by ATM, in response to DNA damage. SMR5 is also major component 

of the mechanism which integrates control germination with ATM (Waterworth 

et al., 2016). An intriguing idea is that redox status in the germinating seed 

could directly contribute to regulation of germination through ATM and SMR5.  
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8.  General Discussion 
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8    General discussion 

Seed quality is a major determinant of crop yield and underpins effectiveness 

of conservation programmes in seedbanks, yet the molecular aspects 

governing the change in germination vigour and overall viability are far from 

understood (Finch-Savage and Bassel, 2016). From the early stages of 

development, through desiccation acquisition, quiescence and imbibition, 

seeds undergo a series of abiotic stresses that can impact on seed quality. 

Understanding how environmental and endogenous stresses affect seeds 

allows the prediction and enhancement of seed longevity and will help in the 

assessment of the potential impact of changing climates on crop performance. 

Molecular changes that correlate with germination performance have potential 

as new biomarkers for seed quality, which are required to be relatively simple, 

cost-effective and applicable to a range of species. The present study 

focussed on lesions in DNA in seeds grown and stored under different 

environmental conditions, including an analysis of the DNA damage 

responses that occur early in seed imbibition and the correlation with 

germination performance.  
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8.1   DNA integrity in seeds 

8.1.1  Single strand breaks are more frequent in aged seeds and levels 

increase upon imbibition 

DNA damage accumulates in the seed as a result of stresses during 

maturation, desiccation, storage and imbibition. Single strand breaks in DNA 

arise through both damage to the sugar phosphate backbone and through 

excision of damaged bases in BER mechanisms.  The levels of apyrimidinic 

(AP) sites in dry Zea mays seeds has been estimated at 38 sites per 106 bases 

following two years of storage, which increased four-fold following imbibition 

(Dandoy et al., 1987). The quality of the seeds used, in terms of germination 

percentage and vigour, is unclear although it is suggested the seeds are 

capable of germinating within 36 hours.  The work presented in this thesis 

aimed to correlate seed germination performance with SSB levels in unaged 

and aged seeds produced from plants grown under different temperature 

stresses. Maternal environment temperature ranging from 15-29°C had no 

significant effects on the number of single strand breaks present in either 

Arabidopsis or Brassica oleracea seeds, whether dry or imbibed (Figures 4.4 

– 4.7) in this study.  Previous work revealed that both elevated and reduced 

temperatures led to increased genome instability, as measured by increases 

in spontaneous chromosomal rearrangements (Boyko et al., 2005). However, 

any destabilisation of the genome was either not carried over to seeds, or was 

not detectable with the approaches used in the present study. However, a 

significant accumulation of SSBs, coinciding with a reduction in viability, was 

observed aged Brassica seeds (Figures 4.6 and 4.7). Elevated levels of SSBs 

in aged seed persisted from the dry seed, through early imbibition (end of 

phase I germination) and in to late imbibition in aged Brassica seeds. In line 

with the increase in AP site observed upon imbibition of maize (Dandoy et al., 

1984), SSB levels also increased over two-fold in Brassica following imbibition. 

8.1.2  Single strand breaks as a potential biomarker for seed quality 

The correlation between single strand break accumulation and seed quality 

has potential to be utilised as a biomarker to determine or predict the quality 

of seed lots. Prediction of seed lot quality underpins both the analysis of seed 
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lots in the seed industry and is important to the conservation of plant genetic 

resources in seedbanks. There is currently an acute demand for universal, 

quantitative and sensitive biomarkers to replace manual germination testing. 

The increase in SSBs observed in both Arabidopsis and Brassica 

accompanied significant loss in viability. In the seed industry, seed batches 

are required to be of high viability, of over 90% final germination percentage. 

Vigour differences between high viability commercial seed lots are the main 

determinant of crop productivity losses, with low vigour seeds leading to poor 

seedling establishment (Finch-Savage and Bassel, 2015b). The SSB 

detection methods here lacked sufficient sensitivity to identify differences in 

damage levels in seed lots of different vigour before loss of viability. However, 

predictors of viability loss are required for routine evaluation of seed lots stored 

in seedbanks, and quantification of DNA integrity could provide a universally 

applicable and widely accessible approach for utilisation in seed conservation 

programs. 

The increase in SSB levels observed on imbibition may reflect the activity of 

excision repair pathways, or de novo generation of breaks through oxidative 

stress arising from the influx of water. A second possible source of damage 

could be release of ROS through deterioration of subcellular 

compartmentalisation in deteriorated seed. If the former proved true it would 

indicate that cells undergoing vast amounts of repair, rather than passively 

accumulating damage. Analysis of excision repair deficient mutant lines would 

help distinguish which of these two hypotheses is correct, as reduced repair 

capacity would lead to fewer SSBs generated after imbibition. 

 

8.2   DNA damage responses in imbibition 

8.2.1  Temporal patterns of the DNA damage transcriptional response 

The DNA damage response (DDR), mediated by ATM, is highly specific to 

increased levels of double strand breaks (DSBs) and activates the 

transcriptional induction of hundreds of repair-related genes (Molinier et al., 

2005; Culligan et al., 2006; Waterworth et al., 2010). The DDR is activated 

early in imbibition of Arabidopsis seeds, reflecting a rapid response to 
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genotoxic stress encountered throughout storage and upon imbibition, both of 

which are associated with high levels of oxidative stress (Bailly, 2004; Kranner 

et al., 2010). The magnitude of the transcriptional response reflects levels of 

DNA damage, with greater amounts of DSBs causing larger transcriptional 

induction. Here the aim was to determine the magnitude of the DDR in seeds 

of different quality using a reverse transcription-PCR based method to 

indirectly correlate levels of DNA damage with loss of seed viability.  

8.2.2  Temporal patterns of RAD51 transcripts in seeds of different 

quality 

RAD51 is an essential gene in Arabidopsis which mediates strand invasion 

during repair of double strand breaks utilising the homologous recombination 

(HR) repair pathway. The level of RAD51 transcripts increases over 100-fold 

following 100Gy γ-ray irradiation (Culligan et al., 2006). Presence of RAD51 

transcripts has been shown to increase significantly early in imbibition of 

Arabidopsis and barley (Waterworth et al., 2010; Waterworth et al., 2016). 

Consistent with this previous report, the present study found that transcript 

levels increased up to 14-fold following 6 hours imbibition (Figure 5.1). The 

increase in HR-related proteins is unusual in early imbibition, particularly 

because the pathway is rarely used in higher plants in comparison to error-

prone NHEJ outside of replicating cells. Environmental temperature during 

seed development on the mother plant did not affect levels of RAD51 in dry 

seeds or throughout imbibition in this study. However, ageing did have a 

significant effect. Controlled deterioration significantly attenuated the 

transcriptional DNA damage response, with little transcript induction at 6h 

imbibition in deteriorated seeds, contrasting with the rapid upregulation of 

RAD51 observed in high quality seeds at this time point. This response was 

unexpected because seeds subjected to ageing accumulate DNA breaks 

(Waterworth et al., 2015, 2016). The attenuated transcriptional response is 

therefore highly unlikely to represent a reduced need for repair activities in 

aged seeds. Rather, the weakened DDR may result from cellular damage and 

reduced transcriptional capacity of the aged seed, possibly arising from low 

cellular energy levels and/ or macromolecular damage (Kranner, 2010). 

Consistent with this hypothesis, ageing resulted in a very large reduction in 
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cellular translation activity in Arabidopsis seeds (Rajjou et al., 2008). 

Alternatively, oxidation-induced RNA damage may lead to transcript turnover 

(El-Maarouf-Bouteau et al., 2013).  Interestingly, the attenuated DDR upon 

ageing is observed in seeds that display reduced vigour but retain high viability 

(Figure 3.2). This suggests that dampening of the transcriptional response is 

a very early symptom of seed ageing. 

8.2.3  Temporal patterns of RNR transcripts in seeds of different quality 

Ribonucleotide reductase (RNR) is important in synthesis of the dNTPs 

required for DNA repair and replication processes. Following 100Gy γ-ray 

irradiation (Culligan et al., 2006), the level of RNR transcripts increased 37-

fold as part of the transcriptional DDR. As observed for RAD51, RNR 

transcripts were induced upon imbibition, although delayed relative to RAD51, 

peaking around 72 hours (Figure 5.2). Again no differences in RNR transcript 

levels were associated with different environmental conditions during seed 

development on the maternal plant. This transcriptional induction of RNR was 

again largely absent following controlled deterioration of seeds, most likely 

linked to increased damage to transcriptional machinery arising from elevated 

ROS levels in seed ageing (Coello and Vázquez-Ramos, 1996). The reduced 

magnitude of the DDR may increase the time taken to repair cellular damage 

and this could be a major contributing factor to the extended time taken for 

aged seeds to germinate.  It would be informative to determine levels of repair 

proteins and activities of repair pathways in aged seeds, and the extent to 

which these limit germination and seed vigour.  

8.2.4  Transcript abundance as a biomarker for seed quality 

The DNA damage response (DDR) initiates signalling and activates pathways 

involved in maintaining genome integrity and cell cycle control. In plants our 

understanding of the effects of downstream signalling in the DDR, mediated 

by ATM, is incomplete, with most studies limited to transcriptional responses 

and, more recently, phosphoproteomics analysis (Roitinger et al., 2015). 

Phosphorylation of histone H2AX is highly conserved across eukaryotes and 

is used extensively as biomarker for double strand breaks (Kuo and Yang, 

2008). H2AX phosphorylation is well-characterised in plants, but detection in 
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seeds has not been reported to-date. An original aim of this project was to 

investigate the ATM-dependent DDR (Waterworth et al., 2015, 2016) as an 

indirect method to determine elevated levels of DSBs in aged seeds, reported 

by increased transcriptional induction of RAD51 on imbibition. However, in 

contrast to the expected result, an attenuated DDR in lower quality seeds was 

observed, even after mild ageing treatments that lead to a reduction in seed 

vigour but maintained high viability. Thus there is potential for the attenuated 

DDR as a marker for loss of seed vigour, if similar observations can be made 

in other species. 

8.3   The molecular impact of oxidation in seeds   

8.3.1  Combined effects of maternal environment and seed ageing on 

8oxoG abundance  

Oxidative DNA lesions, specifically 8oxoG, are one of the most common 

genomic lesions incurred by seeds due to large amounts of oxidative stress 

associated with desiccation, storage and imbibition. The lesions are removed 

by either FPG or OGG1 DNA glycosylases in plants via the base excision 

repair (BER) pathway, with either gene sufficient for removal of this lesion. 

One difference between the two enzymes is the ability for FPG to generate 3’-

P termini that are not evident in mutant fpg Arabidopsis plants but are present 

in ogg1 lines (Córdoba-Cañero et al., 2014). 8oxoG lesions were quantified 

during seed imbibition to determine when greatest oxidative damage was 

incurred and repaired in seeds. Oxidation of macromolecules is a major 

feature of seed deterioration and shown to be an underlying cause for the loss 

in viability during storage (Bailly, 2004; Kranner et al., 2010). Previous studies 

demonstrated increased that 8-oxoG levels increased following seed 

imbibition but were reduced upon overexpression of the BER factor OGG1, 

which increased seed longevity and resistance to ageing (Chen et al., 2012). 

During BER removal of 8oxoG, zinc finger DNA 3’-phosphoesterase (ZDP) 

and apurinic endonuclease redox protein (ARP) are involved in post excision 

steps and knock-out mutants in these two lines show increased sensitivity to 

seed ageing (Córdoba-Cañero et al., 2014). Similarly, we found increased 

oxidation of the Arabidopsis genome following imbibition, but surprisingly 

levels were not increased in aged seeds. The exception was seeds from plants 
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grown in lower temperature environments where, upon controlled 

deterioration, an increase in oxidation was seen in the dry seed (Figure 6.4). 

These seed lots also failed to show increased oxidation upon imbibition, 

perhaps reflecting delayed activation of metabolic processes in these low 

vigour seeds.  

8.3.2  Fluctuations in oxidative damage during imbibition 

Seeds produced under differing maternal temperature regimes and subjected 

to controlled deterioration showed no consistent patterns in levels of genome 

damage, either in response to treatments or during imbibition. However, the 

variation observed in 8oxoG levels was indicative of active oxidation and 8oxG 

removal by genome repair pathways. Unaged, high viability seeds displayed 

40%less oxidative damage than seeds aged for 1 day (Figure 3.1), indicative 

of significant genomic oxidation during ageing. Interestingly, repair kinetics 

seemed similar between aged and unaged seeds, with lowest 8oxoG levels 

observed at 9 hours post imbibition, which is around 3 h after the peak of DNA 

damage response gene induction (Figure 7.6) (Waterworth et al., 2010). 

Levels of oxidation increase again towards the end point of germination, which 

may relate to ROS-signalling previously reported in seeds (Bailly, 2004).  

8.3.3  Repair of genome damage at different loci 

Transcription-coupled nucleotide excision repair (TC-NER) preferentially 

repairs active genes by detecting stalling of the RNA polymerase complex at 

a transcription-blocking lesion and activating repair processes. Quantification 

of 8oxoG levels in the actively transcribed ACTIN1 gene and an intergenic 

region revealed no differences in either oxidation or repair between coding and 

non-coding regions. This therefore suggests that oxidative DNA repair is a 

global process and not confined to protein-coding regions, and may also reflect 

the fact the 8-oxoG does not block transcription and so would represent a poor 

substrate for TC-NER. 

8.3.4  Levels of oxidative DNA damage as a biomarker for seed quality 

Increased levels of base oxidation were observed upon Arabidopsis seed 

imbibition, which reduced by 9 hours imbibition, possibly reflecting activity of 

repair processes, and increasing as the seed neared germination. However, 
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base oxidation levels in Brassica seeds did not show similar trends in response 

to environmental temperature either during seed development or after 

controlled deterioration (Figure 6.7). Thus, key trends in genomic oxidation 

using the seed lots analysed in the study were not clearly identified. Further 

work is required to determine how levels of oxidative stress and damage 

fluctuate during seed imbibition. The seed stage of the plant lifecycle is 

associated with extremely high levels of genotoxic stress in the orthodox seeds 

not encountered nor tolerated under physiological growth conditions 

(Waterworth et al.  2010; 2012; 2015; 2016). Thus, the orthodox seed has 

consequently evolved a remarkable tolerance to DNA damage, so to what 

extent variation in damage levels between seed lots is attributable to 

programmed events in germination, or incidental to stresses that reduce seed 

germination potential remains to be established.  

8.4   Antioxidant levels and genome integrity 

8.4.1  Vitamin C levels are tightly controlled 

To further investigate the relationship between oxidative stress and genome 

damage in the orthodox seed, we used VTC2 mutants deficient in vitamin C 

synthesis.  Low molecular weight antioxidants in plants include glutathione, 

tocopherol and vitamin C (ascorbate, AsA). Glutathione redox status 

correlates with germination potential in several species (Kranner et al., 2006; 

Nagel et al., 2015). However, mutants with reduced glutathione are often non-

viable or display severely retarded growth, compromising analyses in these 

mutant backgrounds. However, Arabidopsis vtc2 knockout mutants deficient 

in synthesis of the antioxidant vitamin C are viable, as they retain residual low 

levels of AsA arising from the activity of VTC5, which provides a minor pathway 

for AsA synthesis. Thus vtc2 mutants produce around one-fifth the levels of 

vitamin C observed in wild type lines in leaves of young seedlings (Figure7.1). 

The L-galactose pathway is responsible for most AsA synthesis and mutation 

disrupting this pathway results in lethality early in seedling growth (Dowdle et 

al., 2007). Thus vitamin C is not required for the completion of germination but 

is required post-germination. Conversely, plants with enhanced vitamin C 

levels display increased fresh weight, longer roots, improved H2O2 scavenging 

and improved germination rates in some species, but decreased germination 
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vigour in wheat (Triticum aestivum) (De Gara et al., 1991; De Gara et al., 2000; 

Ishibashi and Iwaya-Inoue, 2006; Behairy et al., 2012).  

8.4.2  Germination characteristics of vitamin C-deficient mutants 

Vitamin C deficient mutants were used in the present study to investigate the 

relationship between altered antioxidant levels on accumulation of DNA 

damage and resistance to seed ageing. Surprisingly, the germination 

performance of the vtc2-1 and vtc2-5 mutants analysed in the present study 

differed, with vtc2-1 (EMS generated point mutation) displaying higher vigour 

than wild-type following seed ageing, and vtc2-5 (T-DNA insertional mutant 

line) displaying reduced viability and vigour upon accelerated ageing. These 

differences between the EMS and T-DNA mutants must be attributable either 

to the differences in the mutation in the VTC2 gene or differences between the 

two genotypes elsewhere in their genomes. The latter is a more likely with 

recent studies suggesting the growth retardation in vtc2-1 plants (not seen in 

vtc2-5) segregates independently of the vtc2-1 mutation (Lim et al., 2016). The 

vtc2-1 mutation therefore evidently carries background mutations in one or 

more unknown genes. 

8.4.3  Activation of the transcriptional DDR in vtc2 mutants 

Induction of the genes associated with the transcriptional DNA damage 

response (DDR) was also different in the vtc-2 mutant background. Whereas 

vtc2-1 seeds showed no activation of the transcriptional DDR in imbibition, 

vtc2-5 seeds displayed an activation of the DDR early in germination 

comparable to that observed in wild-type (Figures 7.5-7.6). This further 

disparity between the two vtc2 mutants strongly supports the effects of 

background mutation in the vtc2-1 line (Lim et al; 2016). The complete lack of 

DDR induction in vtc2-1 also intriguingly suggests that the unidentified 

mutation has compromised ATM function in germination as cell cycle 

activation and the DDR are both under control of ATM. Ideally, the analysis of 

a third vtc2 mutant would clarify the conflicting phenotypes observed in this 

study. 
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8.5    Conclusions 

Understanding the molecular basis of seed quality is an important strategy for 

enhancement of crop resilience and increased yields. Seeds provide the 

majority of global calorific intake and are required for propagation of most crop 

species. Determining the molecular changes which occur in seeds subject to 

different environment conditions during seed development, storage and 

germination will underpin biotechnological and plant breeding approaches to 

enhance seed performance.  

The work presented in this thesis aimed to improve our understanding of the 

relationship between genome stability and the genetic basis of seed quality. 

The characterisation of molecular changes in the seed as a response to 

detrimental environmental conditions allows us to better predict how seed 

quality will change in response to rapidly changing temperatures. The work 

invested in this field will help improve crop performance and increase 

efficiency of seed conservation efforts in wild species. Increasing our 

knowledge of the interactions in the dry seed and upon imbibition could lead 

to the development of crop species that are resilient to perturbation, with 

enhanced germination and storability. Furthermore; by utilising methods, such 

as the ones undertaken within this thesis, robust biomarkers that predict seed 

quality can be developed. Due the high conservation of DNA repair and 

response mechanisms, and the central importance of DNA repair to control of 

germination and seed viability, further elucidation of these processes will 

provide the foundation for improved prediction and genetic enhancement of 

seed quality. 
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