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Abstract

We classify certain families of homogeneous 2-graphs and prove some

results that apply to families of 2-graphs that we have not completely

classified.

We classify homogeneous 2-coloured 2-graphs where one component is

a disjoint union of complete graphs and the other is the random graph

or the generic Kr-free graph for some r. We show that any non-trivial

examples are derived from a homogeneous 2-coloured 2-graph where one

component is the complete graph and the other is the random graph or

the generic Kr-free graph for some r; and these are in turn either generic

or equivalent to one that minimally omits precisely one monochromatic

colour-1 (K1,Kt) 2-graph for some t < r.

We also classify homogeneous 2-coloured 2-graphs G where both com-

ponents are isomorphic and each is either the random graph or the

generic K3-free graph; in both cases show that there is an antichain A of

monochromatic colour-1 2-graphs all of the form (Ks,Kt) (for some s and

t) such that G is equivalent to the homogeneous 2-coloured 2-graph with

the specified components that is generic subject to minimally omitting

the elements of A.
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Chapter 1

Introduction

We begin by giving a short summary of some of the literature that is relevant to the

study of homogeneous structures and to homogeneous 2-graphs in particular. We

do not define the terms at this stage; we do this in Chapter 2.

1.1 Literature

The study of homogeneous structures started with Roland Fräıssé. His principal

work is summarised in the detailed and concise if somewhat idiosyncratic 1986 trea-

tise Théorie des relations (Fräıssé (1986)) which summarises various properties that

a relation, or a collection of relations, including the notion of homogeneity for a “re-

lational structure”. (The 1980s work is used as a convenient collated source though

Fräıssé’s principal papers were published in the mid 1950s.)

One of the earliest classifications of homogeneous structures to be completed was

that of homogeneous graphs. This classification was completed over a period of years

by many authors. Sheehan (1974/75) classified the finite non-cubic homogeneous

graphs (that is, finite homogeneous graphs that do not contain vertices of degree

3). Later, Gardiner (1976) classified the remaining finite homogeneous graphs; his

paper does not generally re-prove the results of Sheehan. The infinite triangle-free

homogeneous graphs were classified in Woodrow (1979); later a rather more com-

plicated classification of all homogeneous graphs was given in Lachlan & Woodrow

(1980).
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1. Introduction

We make free use of the classification of the homogeneous graphs. Generally we treat

the classification as a “black box” but in Theorem 2.13, and perhaps elsewhere, we

do make use of a variant of the method Lachlan and Woodrow used to complete

their induction argument.

Some work was done on classifying some cases of homogeneous 2-graphs in Jenkinson

(2006). His thesis concentrated mainly on classifying the homogeneous n-partite

graphs up to n = 5 though in chapter 3 of his thesis he did prove some results about

homogeneous 2-graphs where both components are Km[Kn] and he also classified

those homogeneous 2-graphs where either component is isomorphic to C5 or K3×K3.

He also stated a proof that there are continuum-many homogeneous c-coloured 2-

graphs if c ≥ 3, though this result was certainly known by Cherlin (who stated it

without proof in Cherlin (1998)) and may be folklore.

The main part of Jenkinson’s thesis has since been expanded by Seidel who has

classified all the homogeneous n-partite graphs; this part of the classification has

been consolidated in the paper by Jenkinson et al. (2011) which at the time of

writing has been accepted for publication in the European Journal of Combinatorics.

Work is progressing on classifying the coloured homogeneous n-partite graphs in

Lockett & Truss (in preparation). A coloured n-partite graph is a very special case

of an n-graph where all components are empty graphs; we therefore expect that a

classification of the homogeneous n-graphs will be very much more difficult than a

classification of the homogeneous coloured n-partite graphs.

Cherlin has done a considerable amount of work on homogeneous structures, and

in Cherlin (1998) he gave an alternative proof of the classification of the infinite

homogeneous graphs as well as classifying the homogeneous digraphs and the ho-

mogeneous n-tournaments. (The reader should note that Cherlin does not allow

“bidirectional edges” in digraphs - if x and y are vertices in a digraph D then D

cannot have edges x → y and y → x. Some other authors allow such bidirectional

edges, for example Lachlan (1982). The extra edge type does make a significant

difference to the classification; for example there are many more homogeneous finite

4-type digraphs than there are homogeneous finite 3-type digraphs.)

Cherlin also stated a number of research problems, one of which is the following:

Problem. Classify the homogeneous n-graphs and n-digraphs.

2



1.1 Literature

We explain what an n-graph is in Chapter 2; an n-digraph is similar to an n-graph

but with a digraph on each component instead of a graph. Cherlin remarks that this

problem is “technically quite difficult”. We agree. In this thesis we aim for a much

more modest goal, namely to give an idea of how a classification of the homogeneous

countable 2-graphs might go and to deal with at least some of the cases. The work

was begun in chapter 3 of Jenkinson (2006); as we stated above, Jenkinson was only

able to deal with a few highly special cases and mostly concentrated on classifying

homogeneous complete multipartite graphs (which in turn he achieved only partial

success with).

Cherlin’s alternative proof of the classification of the homogeneous graphs did refer

at several points to 2-graphs. We have not been able to isolate any results that we

think would have been useful in our own classification, and generally this thesis does

not rely on Cherlin (1998) in any significant way.

There have been several other classifications of classes of homogeneous structures.

So far each have proceeded in a relatively ad-hoc way although certain techniques are

seen in several of these classifications. Cherlin did hope that there would ultimately

be a systematic classification of all homogeneous structures in an arbitrary finite

relational language; while it may indeed be possible that such a classification could

be found, it seems that it will be a long time before we see it.

An example of one of these other classifications is the classification of the coloured

partial orders given in Torrezao de Sousa & Truss (2008). There has also been sub-

stantial work on classifications of structures satisfying properties that are related to,

but different from, homogeneity; for example the weaker notions of n-homogeneity

and n-transitivity. A survey of work in these areas can be found in Truss (2007).

In cases where the homogeneous structures to be classified are finite, Lachlan (1984)

showed that there is a general structure to the classification. Specifically, there will

be finitely many families of cases, and each family will consist either of a series of

cases tending towards a common limit, or a single “sporadic” case. Of course the

task still remains to determine specifically what these families consist of for any

given class of structures.

We remind the reader that terminology in this area is somewhat confusing. The

reader is warned that there is an unrelated notion of a structure called a “2-graph”

meaning a set T of (unordered) triples on domain X such that every quadruple
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1. Introduction

in X contains an even number of triples in T . This notion has been developed in

van Lint & Seidel (1966), Seidel (1973) and Taylor (1977). We mention this here

mainly to prevent the reader being misled by papers describing this earlier notion.

It is somewhat unfortunate that Cherlin chose the term “2-graph” (or in general “n-

graph”) to describe his (and our) notion but this is one of those historical accidents

of mathematics that has to be lived with. The term “homogeneous” has been heavily

overloaded over the years to describe various notions, some similar to the one we are

using and some very different. We hope that these terms have at least been used in

a mostly consistent manner within this thesis.

At various points in the thesis we will need to count the number of elements in

a finite set, typically to show that one is larger than another to show that there

is no isomorphism between them. In this thesis the combinatorial enumeration we

need is normally very simple. Readers who wish to know more about combinatorial

enumeration, especially those hoping to extend our results who need more precise

estimates (we believe, for example, that more precise estimates would be needed

to extend Theorem 4.11), should consult Goulden & Jackson (1983) for a detailed

general background or Harary & Palmer (1973) for issues specifically related to

graphs and structures based on graphs.

1.2 General intuition

Intuitively (we give a formal definition in Chapter 2), a 2-graph is a structure consist-

ing of two graphs, called components, with a coloured edge (called a cross-edge)

between each pair of points on opposite sides. We will be thinking diagrammatically,

and so will speak of a left component and a right component. Swapping the

two components, at least in general, gives a different, non-isomorphic 2-graph, so

it makes sense to think of “left” and “right”. In diagrams, the left component will

actually be the left-hand oval in the diagram. If there are exactly two colours, we

will normally call them “red” and “blue” and use these colours in diagrams. In cases

where we need to number the colours, red will normally be colour 1 and blue will

be colour 2.

The term “component” is also used in graph theory to describe a set of vertices so

that there is a path between any two vertices in the set. For such a “component”, we

4



1.2 General intuition

will use the term connected component to avoid confusion. Moreover, we often

will avoid actually saying that a vertex is in the “left component” and instead say

that it is on the left (and similarly for the right). The aim of this is again to avoid

confusion.

Concretely, if somewhat artificially, we can visualise a 2-graph as follows: suppose

there are two “island groups”, called A and B. Each “island group” contains islands

(representing the connected components) and on each island there are boat landings

(representing vertices) on the coast and edges between boat landings.1 Between

landings in different groups there are ferries, each operated by one of c companies

whose boats are identified by colours, the same colour for all boats run by the

same company. (The ferry companies bid for the right to run each line; only one

ferry company is allowed on one line, and the hypothetical government ensures that

every line is given proper service.) There are no ferries within an island group.

At each landing there is a sign stating which island group it is in, but all landings

are otherwise anonymous. Homogeneity would then amount to the following – for

any way one can label landings with two sets of finitely many numbered signs, one

with the numbers in circles and the other with the numbers in squares, so that

the network of the circles and the network of the squares are “the same”, we can

continue the numbering so that every landing is given both a circle and a square

numbering, and the network of circles looks the same (together with numbering) as

that of squares. (This is admittedly a rather contrived visualisation of the concept,

and unfortunately we have not found a more natural one.)

Less concretely we might look at weaker notions than homogeneity. Informally, a re-

lational structure S is n-transitive if, for any pair T1, T2 of isomorphic substructures

of S of size n, there is an isomorphism α : T1 → T2 that extends to an automor-

phism of T (i.e. there is an automorphism β of S such that β(T1) = T2). S is

n-homogeneous if every α : T1 → T2 (where T1, T2 are still a pair of isomorphic

substructures of S of size n) extends to an automorphism of α. Note the difference

– if S is n-homogeneous it is certainly n-transitive, but n-transitivity is considerably

1It is not possible to go from one edge (i.e. path) to another except at a vertex (i.e. landing).

If the connected component is complete (i.e. there are paths between all landings on a vertex) this

stricture is irrelevant. Otherwise, if paths cross otherwise than at landings they are to be treated

as if one has a bridge going over the other.
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1. Introduction

weaker in general. S is homogeneous if it is n-homogeneous for every n; that is,

for every pair T1, T2 of finite isomorphic substructures of S and every isomorphism

α : T1 → T2, there is an automorphism of S extending α. The generalisation of

n-transitivity would in general be “high transitivity” – S is highly transitive if, for

every pair T1, T2 of finite isomorphic substructures of S, there is an automorphism

β of S such that β(T1) = T2. In practice one does not speak of “high transitiv-

ity” as such but of more specific notions like “high vertex transitivity” or “high arc

transitivity”.

In this thesis we will classify:

• in chapter 3, all homogeneous 2-graphs with two cross-edge colours where one

component is Km[Kn] and the other is the generic Kr-free graph, called Γr

(where m,n, r can be finite or infinite but r ≥ 3; we abuse notation by writing

Γ∞ for the “random graph”); and

• in chapter 4, all homogeneous 2-graphs with two cross-edge colours where ei-

ther both components are isomorphic to Γ3 or both components are isomorphic

to Γ∞.

We explain what this notation means in Chapter 2 and give a precise statement of

the classification in section 1.4.

Extending the classification to cover cases with two cross-edge colours where the two

components are Γr and Γs respectively for values of r and s other than r = s = 3

and r = s = ∞ seems to be, at least in principle, practicable, though attempts

to do so have to date been stymied by the number of cases that appear to have

to be considered and by technical difficulties in so doing. We expect however that

attempting to extend most of our results to cases with more than two cross-edge

colours involves fundamental differences, and have so far not been able to say much

about this situation. We say more about this in section 5.3.

We do not say much about 2-graphs of the form (Km[Kp],Kn[Kq]), in part because

this aspect of the classification is messy and not especially illuminating. I do plan

to publish results relating to classification of these homogeneous 2-graphs at a later

stage, and give a statement (without proof) of results I have been able to prove in

section 5.2 (as Theorem 5.1).

6



1.3 Techniques used

1.3 Techniques used

Most of the methods we use are not especially novel in general. We generally apply a

similar “bare-hands” style of argument to that used in Jenkinson (2006), though we

have been able to apply these methods to much broader families of homogeneous 2-

graphs than was possible in the earlier thesis and have been able to be rather more

systematic in our treatment of 2-graphs than was possible in Jenkinson (2006).

(Jenkinson (2006) concentrated mainly on homogeneous multipartite graphs and,

for him, 2-graphs were something of an afterthought.)

As the treatment of 2-graphs in Jenkinson (2006) was not very systematic, I believe

that this thesis can be considered to be the first semi-systematic attempt to classify

at least some fairly-broad families of 2-graphs. As such many of the concepts I

use are “new” in the sense of being applied to 2-graphs, though they are really

only minor adaptations of concepts used generally in mathematics. The notion of

collapsingness in Definition 2.7 is an example of this; it is really just an attempt

to form some kind of “quotient” of a 2-graph, but I am not aware of any previous

work on 2-graphs that has attempted to do this in anything like a systematic way.

The notion of “equivalence” of 2-graphs is a similar example – it is a way of slightly

weakening the notion of isomorphism to consider 2-graphs which are not the same

but where any operation done on one can be easily and mechanically translated to

an operation on the other. This procedure is common in mathematics, but again I

am not aware of any previous formal attempt to apply it to 2-graphs.

The “copying argument” in Theorem 2.13 is an example of a different kind of trans-

lation. Lachlan & Woodrow (1980) uses a notion of “derivation” to express how

each finite graph can be built up by amalgamation from so-called “basic” graphs.

I use a slightly modified version of this notion to show how such a derivation can

be translated to a derivation of a 2-graph from a sufficiently large family of “ba-

sic” 2-graphs. Again, while the idea in abstract is hardly new, I believe that the

application to 2-graphs is at least somewhat novel.

7



1. Introduction

1.4 Statement of main classification results

We now state the principal results of our classification. The notation and terminol-

ogy will be defined later, principally in Chapter 2.

Theorem 3.1 Let G = (A,B,R) be a homogeneous non-collapsing 2-coloured 2-

graph where A ∼= Km[Kn] for somem,n ∈ N∪{∞} and B ∼= Γr for some r ∈ N∪{∞}

where r ≥ 3. Then mn = ∞ and G is equivalent to one of the following 2-graphs:

• m = ∞, n = 1 and G is otherwise generic (i.e. embeds all finite 2-graphs

satisfying these constraints);

• m = ∞, n = 1, the 2-graph (K1,Kk)
1 is minimally omitted for some k < r,

and G is otherwise generic;

• m = ∞, n = 2, the 2-graphs (K2,K1)
1 and (K2,K1)

2 are minimally omitted,

and G is otherwise generic;

• 2 ≤ m ≤ ∞, n = ∞ and G is otherwise generic; or

• 2 ≤ m ≤ ∞, n = ∞,the 2-graph (K1,Kk)
1 is minimally omitted for some

k < r, and G is otherwise generic.

Remark. The proof that these five 2-graphs are indeed homogeneous is found in

Propositions 3.7 and 3.8.

Theorem 4.2 Let G be a homogeneous 2-coloured (Γr,Γr) 2-graph where r = 3 or

r = ∞. Then there exists some antichain A of finite 2-graphs of the form (Km,Kn)
1

(for various values of m and n) such that G is equivalent to some GA (as defined in

Proposition 4.1).

Remark. Proposition 4.1 states that GA is the “most generic” 2-graph such that:

• GA omits all elements of A;

• GA embeds every finite 2-graph of the form (C,D)1 (where C,D < Γr) that

does not embed any element of A; and

• GA embeds every finite 2-graph of the form
(
Ĉ, D̂

)2
(where Ĉ, D̂ < Γr).

8



1.4 Statement of main classification results

Proposition 4.1 also proves that this 2-graph is indeed homogeneous for every such

antichain A; moreover it proves existence for values of r other than 3 and ∞, or

where the two components of G are Γr and Γs where r 6= s. We have not been able

to prove uniqueness in these cases.

9
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Chapter 2

Generalities

In this chapter, we discuss some fairly general results which we will be applying at

several points in this thesis, and which it is therefore expedient to combine.

2.1 Basic definitions of graphs and graph theory

A graph is a structure G = (V,E) where E ⊆ V (2) (that is, E is a set of two-element

subsets of V ). We say that the elements of V are vertices of G, and similarly that

the elements of E are edges of G. We write V (G) for the set of vertices of G and

E(G) for the set of edges of G. We will often be sloppy and identify a graph with

its vertex set.

In this thesis, a subgraph of a graph G is a graph H = (W,F ) such that W ⊆ E

and such that (u, v) ∈ F if and only if u, v ∈ W and {u, v} ∈ E. (This is usually

called an induced subgraph of G, but for various reasons we almost never need to

refer to the “standard” definition of subgraph, so where we say “subgraph” we mean

“induced” subgraph. The standard definition of a subgraph of G would be a graph

H ′ = (W,F ) where W ⊆ V and H ⊆ F ∩W (2); that is, the edges of H ′ are a subset

of the edges of H.)

Certain special graphs are given special names. The complete graph on n vertices

is the graph

Kn = ({1, . . . , n}, {{i, j} : 1 ≤ i < j ≤ n})

and where n = ∞ this amounts to

K∞ = (N, {{i, j} : i, j ∈ N, i < j})

11



2. Generalities

The complement of a graph G is the graph

G = (V (G), (V (G))(2) \ E(G))

and the empty graph on n vertices is

Kn = ({1, . . . , n},∅)

The null graph is the graph on zero vertices, namely

K0 = (∅,∅)

At various points we will abuse notation by writing ∅ for the null graph.

A path in a graph G between two vertices x, y ∈ V (G) is a finite sequence of vertices

x0 = x, x1, . . . , xn−1, xn = y

such that each {xi, xi+1} ∈ E(G) when 0 ≤ i < n, and such that there are no i 6= j

such that xi = xj . A cycle in G is a finite sequence of vertices

x0 = x, x1, . . . , xn−1, xn

such that each {xi, xi+1} ∈ E(G) when 0 ≤ i < n, such that {x0, xn} ∈ E(G) and

such that there are no i 6= j such that xi = xj . Often we write such a sequence as

x0, x1, . . . , xn, x0

to emphasise that we are talking about a cycle.

A graph G is said to be connected if there is a path between any two vertices of

G. A connected component of G is a maximal connected subgraph of G. (This

is usually just called a “component”, but we use this term for another concept, so

we are careful to speak only of the connected components of G.)

We write Pn for the graph

Pn = ({1, . . . , n}, {{1, 2}, {2, 3}, . . . , {n − 1, n}})

(that is, Pn is a path consisting of n vertices), and Cn for the graph

Cn = ({1, . . . , n}, {{1, 2}, {2, 3}, . . . , {n − 1, n}, {1, n}})

12



2.1 Basic definitions of graphs and graph theory

(that is, Cn is a cycle consisting of n vertices).

Two graphs G and H are isomorphic if and only if there is a bijection

α : V (G) → V (H)

such that, for all x, y ∈ V (G), {x, y} ∈ E(G) if and only if {α(x), α(y)} ∈ E(H).

Quite often we will not care about differences between isomorphic graphs and will

regard them as “the same”. Occasionally we will care about such distinctions. For

example, this sort of distinction will be important in what we will be calling the

“copying argument” in section 2.7. The isomorphism class of the graph G is the

proper class (not a set) of graphs isomorphic to G. We will use the term isomor-

phism type to loosely refer, given a specific labelled graph G, to an unlabelled

graph G∗ that is isomorphic to G and that is meant to typify all members of the

isomorphism class containing G. (We will often abuse notation by not distinguishing

between G and G∗.)

We will be considering various unions of graphs (or, more often, isomorphism types

of graphs) and need notations that describe the edges that exist between the two

graphs in the union. We will need to use them when specifying structures we will

later amalgamate, especially when (as will often be the case) previous steps have left

us with structures that are not fully determined. This will be particularly important

in chapter 4.

Given graphs G and H with disjoint vertex sets we will write G+H for the graph

G+H = G ∪H = (V (G) ∪ V (H), E(G) ∪E(H))

and G⊞H for the graph

G⊞H = (V (G) ∪ V (H), E(G) ∪ E(H) ∪ {{u, v} : u ∈ V (G), v ∈ V (H)})

We write G⊔H for any graph whose vertex set is the same as V (G+H) and whose

edge set is a superset of E(G + H); we typically do this when the edge-types are

either given arbitrarily or are the result of an earlier step in a chain of amalgamation

arguments. Sometimes, when G and H are specified as graphs (not isomorphism

types of graphs), we wish to refer to their union as identified entities, where G and

H may overlap. In this case, we write G ∪H for the normal union of G and H (i.e.

V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪ E(H)).

13



2. Generalities

Note in particular that G + H and G ⊞ H are very different. G ⊔ H is not fully

specified and (in particular) G +H and G ⊞H are cases of G ⊔H. Examples can

be seen in Figure 2.1.

Figure 2.1: We show three different instances of disjoint unions between A =

({a, b, c}, {ab, ac, bc}) and B = ({d, e}, {de}).

We will often abuse notation by writing the edge {x, y} as xy, or sometimes (x, y).

Moreover, we will often say x ∈ G when we really mean x ∈ V (G), or yz ∈ G when

we really mean {y, z} ∈ E(G). The meaning will be clear by the context. In a

further abuse of notation, we write xy ∼= x′y′ to mean “xy has the same type as

x′y′” (i.e. both are edges or both are non-edges) and xy 6∼= x′y′ to mean “xy and

x′y′ have different types” (i.e. one is an edge and the other is a non-edge). (We only

use this notation when x 6= y and x′ 6= y′.)

Formally, G+H only makes sense when G and H are disjoint. However, as a further

abuse of notation, we will write G + H for the graph G′ + H ′ where G′ ∼= G and

H ′ ∼= H are chosen to ensure that V (G′) ∩ V (H ′) = ∅. Similarly G⊞H is G′
⊞H ′

(for the same G′ and H ′). For n ∈ N and for a graph G we will write nG for the

graph

G1 +G2 + . . . Gn =

n⊕

i=1

Gi

where each Gi (for 1 ≤ i ≤ n) is isomorphic to G and, for 1 ≤ i 6= j ≤ n, V (Gi) ∩

V (Gj) = ∅.

We will need to refer to the graph known as K3 ×K3, namely the graph product

of two disjoint copies of K3. We do not define the graph product in general. It is

sufficient to state that K3 ×K3 is the graph with vertex set

{(m,n) : m,n ∈ {1, 2, 3}}

14
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2.2 Definitions of 2-graphs and general concepts of embedding and

homogeneity

and edge set

{((m,n), (m′, n′)) : m,m′, n, n′ ∈ {1, 2, 3},m = m′
⊻ n = n′}

where P ⊻Q means “exactly one of P and Q holds”.

We will also need to refer to two families of graphs that can be described as wreath

products, namely Km

[
Kn

]
and Km [Kn]. Km [Kn] is the graph consisting of m

disjoint copies of Kn (if m = ∞ this means ℵ0 disjoint copies of Kn). This graph

can also be referred to as

mKn = Kn +Kn + . . .+Kn︸ ︷︷ ︸
m

and both notations are used interchangeably. (Typically we use Km [Kn] to describe

the components, as defined later, of the 2-graphs we classify, and mKn to describe

small instances of graphs of this form that arise in constructions.) Km

[
Kn

]
is the

complement of Km [Kn]; it is the complete n-partite graph where the parts each

have size m. (In all cases ∞ is to be interpreted as ℵ0 as all graphs and structures

are countable unless specifically stated otherwise.)

2.2 Definitions of 2-graphs and general concepts of em-

bedding and homogeneity

For any given positive integer value of c, a c-coloured 2-graph is a structure

G = (G1, G2, R)

where each Gi (called a component of G) is a graph (Vi, Ei), where Vi ∩ Vj = ∅

whenever i 6= j, and where R is an ordered partition of V1 ×V2 into c subsets (some

of which may be empty). The elements of the partition R are written R1, . . . , Rc.

A cross-edge between Gi and Gj is an element of an element of Ri,j ; we will often

abuse notation by writing a cross-edge (x, y) as xy.

We can consider a 2-graph to be a structure in the language

(L1, L2, E1, E2, C1, . . . , Cc)

15



2. Generalities

where L1, L2 are unary relations denoting the two components; E1 and E2 are the

edge relations on the components and C1, . . . , Cc are the colours. The axioms will

include sentences like

(∀x)((L1x ∧ ¬L2x) ∨ (¬L1x ∧ L2x))

and, to take as an example the c = 3 case,

(∀x, y)((L1x ∧ L2y) ⇒ ((R1(x, y) ∧ ¬R2(x, y) ∧ ¬R3(x, y)) ∨

(¬R1(x, y) ∧R2(x, y) ∧ ¬R3(x, y)) ∨

(¬R1(x, y) ∧ ¬R2(x, y) ∧R3(x, y)))

Note that the language and the axioms depend on the number of colours.

Less formally, a 2-graph can be considered to be a coloured bipartite graph where we

add a graph structure within each of the two “parts” (which we call components)

and where we distinguish between the two components. A 2-graph, despite the

name, is not itself a graph or even a coloured graph (but nor is it a digraph or

a coloured digraph); this is because we impose an ordering on the components so

that, in effect, all the cross-edges start in component 1 and end in component 2, so

a 2-graph is a kind of “hybrid” between a graph and a digraph. In particular, the

2-graphs (A,B,R) and (B,A,R↔) (where R↔ is formed from R by swapping each

cross-edge appearing in each element of R) are not in general isomorphic.

Two 2-graphs

G = (G1, G2, R)

and

H = (H1,H2, S)

are isomorphic if, for each i, there is an isomorphism

αi : Gi → Hi

and, for each k such that 1 ≤ k ≤ c and for each x ∈ V (G1) and y ∈ V (G2),

(x, y) ∈ Rk if and only if (α1(x), α2(y)) ∈ Sk. The isomorphism is given by

α = α1 ∪ α2

16



2.3 Initial results

For some i and for any graphs A and B, the 2-graph (A,B)i is shorthand for the

2-graph

(A,B, (D1, . . . ,Dc))

where Di = V (A)× V (B) and Dj = ∅ whenever j 6= i.

We will often abuse notation by writing the 2-graph (A,B,R) as simply (A,B) when

the colours of the cross-edges are implicit or unimportant, or when we are speaking

of a member of a family of 2-graphs.

Let S and T be structures in some language (for example both may be graphs,

or both may be 2-graphs with the same number of cross-edge colours). We say S

embeds in T if there is a substructure T ′ of T such that S is isomorphic to T ′.

Often we will be sloppy and write “S is a substructure of T” or “S ≤ T” when what

we really mean is “S embeds in T”. We will say that T omits S if S does not embed

in T , and that T minimally omits S if T omits S but any proper substructure of

S embeds in T .

A countable structure S is homogeneous if every isomorphism between finitely-

generated substructures (which we will shorten to “finitely-generated partial isomor-

phism”) of S extends to an automorphism of S. If S is a relational structure (that

is, S is a structure in a language L with only relational symbols) then every finitely-

generated substructure of S is in fact finite and we will refer to the isomorphisms

between finite substructures of S as “finite partial isomorphisms” of S. (In fact this

is also true if L has finitely many constant symbols; we will not need to make use

of this slight weakening of the hypotheses.)

2.3 Initial results

Let G = (A,B,R) be a c-coloured 2-graph. We state and prove some simple results

we will use in the rest of the thesis; in some cases the proofs are essentially trivial.

Lemma 2.1. If G is homogeneous then A and B are homogeneous graphs.

Proof. We prove that A is homogeneous; by symmetry, B will also be homogeneous.

We must show that every isomorphism α between substructures induced by finite

subsets of A extends to an automorphism of A. But α extends to an automorphism

β of G, and if a ∈ A then β(a) ∈ A. Moreover, if ab is an edge in A then β(a)β(b) is

17



2. Generalities

also an edge in A, and similarly if ab is a non-edge in A then β(a)β(b) is a non-edge

in A. Hence β restricts to an automorphism γ of A which clearly extends α.

Remark. We will usually omit the words “substructures induced by”; that is, we will

normally identify a subset C of the domain of A with the substructure of A induced

by C.

Recall that Lachlan & Woodrow (1980) showed that the only infinite homogeneous

graphs are:

• Km[Kn] where either m or n (or both) are infinite;

• the complement of Km[Kn], namely Km

[
Kn

]
where either m or n (or both)

are infinite;

• the generic Kn-free graph for finite n ≥ 3 (which we write as Γn), proved to

exist in Henson (1971) (where it was called Gn);

• the complement of Γn, namely the genericKn-free graph for finite n ≥ 3 (which

we write as Γn); and

• the random graph (which we write as Γ∞) (easily seen to be equal to its

complement).

Moreover, Gardiner (1976), following Sheehan (1974/75), proved that the only finite

homogeneous graphs are:

• Km[Kn] where m,n ∈ N;

• its complement, namely Km

[
Kn

]
where m,n ∈ N;

• C5 (equal to its complement); and

• K3 ×K3 (equal to its complement).

Hence Lemma 2.1, as simple as it is, already helps cut down the scope of our task and

indeed makes it possible. The following result deals with the trivial monochromatic

case and allows us to restrict to cases where there are at least two cross-edge colours

that are both used.

18



2.3 Initial results

Proposition 2.2. If c = 1, then G = (A,B, {V (A)×V (B)}) is homogeneous if and

only if A and B are.

Proof. If G is homogeneous then A and B are by Lemma 2.1.

Suppose A and B are homogeneous and c = 1. Let α be an isomorphism between

finite subsets of G. By homogeneity, the restrictions of α to A and B extend to

automorphisms αA, αB of these. Moreover, since any pair of points (a, b) with A ∈ A

and b ∈ B has the same colour of cross-edge between them, αA ∪ αB will be an

automorphism of G extending α.

We therefore will assume from now on that the 2-graphs we are trying to classify

have at least two distinct colours of cross-edges.

We now states some conditions by which two non-isomorphic 2-graphs can never-

theless be said to be “equivalent” (that is, any property of one can be easily and

mechanically translated to a property of the other), and prove that these operations

preserve homogeneity. The analogue of this is that any graph is equivalent for our

purposes to its complement (any property of a graph G can be mechanically trans-

lated to a property of G). We now list some other operations that allow a 2-graph

to be translated to a different, but equivalent, 2-graph.

Lemma 2.3. G = (A,B,R) is homogeneous if and only if:

1. (A,B,R) is;

2. (B,A,R↔) is, where

R↔ = (R↔
1 , . . . , R

↔
c )

and, for 1 ≤ i ≤ c,

R↔
i = {(b, a) : (a, b) ∈ Ri}

3. (A,B, (Rσ(1), . . . , Rσ(c))) is, for each σ ∈ Sc (where Sc is the symmetric group

on c elements); and

4. (A,B, (R1, . . . , Rc,∅)) is.

Sketch proof. 1. The same maps work for (A,B,R) and (A,B,R).

2. Reverse all relevant maps (e.g. if the original map α were such that α(a) = b

for some a, b ∈ A, then the new map α′ will still have α′(a) = b but this time

a and b are in the right component).
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2. Generalities

3. The same maps work.

4. The same maps work.

Definition 2.4. For each 2-graph G, let [G] be the family of 2-graphs obtained

from G by closing under the operations in Lemma 2.3 (and their inverses). Two

2-graphs G,H are equivalent if and only if G ∈ [H]. Explicitly, G and H are

equivalent if and only if there is a chain G0 = G,G1, . . . , Gk = H of 2-graphs such

that, for each i, one of the following holds (where in each case Gi = (Ai, Bi, Ri) and

Ri = (R1
i , . . . , R

c
i )):

1. Gi+1
∼= Gi;

2. Gi+1 = (Ai, Bi, Ri);

3. Gi+1 = (Bi, Ai, R
↔
i );

4. for some σ ∈ Sc, Gi+1 = (Ai, Bi, (R
σ(1)
i , . . . , R

σ(c)
i ));

5. Gi+1 = (Ai, Bi, (R
1
i , . . . , R

c
i ,∅)); or

6. Gi+1 = (Ai, Bi, (R
1
i , . . . , R

c−1
i )) (where Rc

i = ∅).

Remark. We will classify 2-graphs only up to equivalence.

2.4 Perfect matchings

Definition 2.5. A perfect matching in a 2-graph G = (A,B,R) is a colour i such

that, for all a ∈ A, there is a unique b ∈ B such that (a, b) ∈ Ri, and such that for

all b ∈ B there is a unique a ∈ A such that (a, b) ∈ Ri.

We will show that, for any homogeneous graph A, there is a 2-graph G = (A,A,R)

containing a perfect matching; indeed there is essentially only one such 2-graph (i.e.

if G′ = (A,A,R′) also contains a perfect matching then G′ is equivalent to G).

Given A, let A′ be a graph isomorphic to A, and define a 2-graph PA = (A,A′, (R1, S2, S3))

so that R1, S2, S3 have the following properties:

• R1 induces an isomorphism from A to A′; and

• for a1 6= a2 ∈ A and b1 6= b2 ∈ A′ where a1b1, a2b2 ∈ R1:
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2.4 Perfect matchings

– a1b2, a2b1 ∈ S2 if a1a2 is an edge; and

– a1b2, a2b1 ∈ S3 otherwise (i.e. if a1a2 is a non-edge)

The following proposition shows that any homogeneous 2-graph containing a perfect

matching must be equivalent to PA for some A.

Proposition 2.6. Let G = (A,B,R) be a homogeneous 2-graph in which R1 ∈ R is

a perfect matching. Then:

1. R1 defines an isomorphism from A to either B or B, and

2. G is equivalent to PA.

Proof. Since R1 is a perfect matching, we can label the vertices of A and B as

{ai : i ∈ I} and {bi : i ∈ I} respectively for some index set I. Suppose that the map

given by

α : (∀i ∈ I)ai 7→ bi

is neither an isomorphism nor an anti-isomorphism; that is, without loss of generality,

there are i, j, i′, j′ so that aiaj ∼= ai′aj′ ∼= bibj and ai′aj′ 6∼= bi′bj′ . (There is no

assumption that i 6= i′ or that j 6= j′.) But then

α : ai 7→ ai′ , aj 7→ aj′

is a finite partial automorphism of G which does not extend to an automorphism

of G, since if it did then the extension β would bi to bi′ and bj to bj′, which clearly

cannot happen.

Hence either A ∼= B or A ∼= B. Without loss of generality we can assume that

A ∼= B. Suppose G is not equivalent to PA. Then one of the following occurs in G:

1. there exist i, j so that aibj 6∼= ajbi, or

2. there exist i, j, k so that aiaj ∼= aiak but aibj 6∼= aibk, or

3. there exist i, j, k so that aiaj 6∼= aiak but aibj ∼= aibk.

For (1), the map

β : ai 7→ aj , aj 7→ ai

proves that G could not be homogeneous, since it would extend to a map which

interchanges bi with bj , and aibj 6∼= ajbi.
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2. Generalities

For (2), the map

γ : ai 7→ ai, aj 7→ ak

is a finite partial automorphism, but it cannot extend since if it did the extension

would map bj to bk, but aibj 6∼= aibk.

For (3),

δ : ai 7→ ai, bj 7→ bk

is a finite partial automorphism, but again it does not extend since if it did then the

extension would map aj to ak and aiaj 6∼= aiak.

The only remaining possibility is that G is indeed equivalent to PA, as required.

It remains to verify that PA is indeed homogeneous. Let θ be a finite partial auto-

morphism of P ; we claim that it must extend to an automorphism of PA. But there

is a unique finite partial automorphism φ of PA obtainable from θ by extending the

domain to

{ai, bi : ai ∈ dom(θ) ∨ bi ∈ dom(θ)}

This similarly extends the domain of any partial automorphism of PA, including

infinite ones. The restriction of φ to A extends to an automorphism ψ of A, and

this in turn extends to an automorphism ω of PA which extends θ. Since this holds

for any finite partial automorphism θ, PA is homogeneous.

2.5 Collapsing

We introduce another important notion, that of a collapsing 2-graph. This notion

will allow us to consider certain 2-graphs as being simply expanded versions of

simpler ones.

Definition 2.7. Let G = (A,B,R) be a 2-graph in which A =
⊕

i∈I Ai and each

Ai
∼= Kn for some n ∈ N ∪ {∞}. Then G is said to left-collapse to a 2-graph

H = (C,B, S) if

C = ({ci : i ∈ I},∅)

and, for every i ∈ I and every b ∈ B there is a j so that, for every a ∈ Ai, (a, b) ∈ Rj,

and (ci, b) ∈ Sj .

There is an analogous notion of right-collapsing. G is said to collapse to H if G

either left-collapses to H or G right-collapses to H.
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2.6 Amalgamation

This notion is too strong to fully encapsulate all the ways that a 2-graph G can

be an “expanded” version of another 2-graph H. However, it is a straightforward

notion, and if G collapses to H then the following proposition reduces the question

of whether or not G is homogeneous to the question of whether or not H is homoge-

neous. This will allow us to assume, in the rest of this thesis, that the homogeneous

2-graphs we work with are not collapsing.

Proposition 2.8. Suppose A =
⊕

i∈I Ai where each Ai is a complete graph. If

G = (A,B,R) left-collapses to a 2-graph H, G is homogeneous if and only if every

Ai has the same cardinality and H is homogeneous.

Sketch proof. If |Ai| 6= |Aj | then G is not homogeneous since it is not 1-homogeneous.

Hence we assume |Ai| = |A1| for all i.

Suppose G is homogeneous. Let α be a finite partial automorphism of H. There is a

corresponding finite partial automorphism β of G (given by arbitrarily choosing ai ∈

Ai and putting β(ai) = aj whenever α(ci) = cj), which extends to an automorphism

γ of G. Since γ is a map of components (on the left), it restricts to an automorphism

δ of H which clearly extends α. Since we can do this for every α, H is homogeneous.

We now suppose that H is homogeneous and seek to show that G is also homoge-

neous. Let α be a finite partial automorphism of G. Now, for every a, b ∈ A, if

a, b ∈ dom(α) then α(a) and α(b) are in the same Aj if and only if a and b are in the

same Ai. Hence there is a finite partial automorphism β of H corresponding to α,

and β extends to γ ∈ Aut(G). But there is an automorphism δ of G corresponding to

γ and extending α. Again, since we can do this for every α, G is homogeneous.

2.6 Amalgamation

The main tool we will use throughout this thesis is that of amalgamation.

Let L be a finite (or countable) language. (We will normally assume that L is

“relational”; that is, L only contains relation symbols.) Let M be a countable L-

structure and let I be a set. We say that the I-age of M , written AI , is the set

of finitely-generated L-structures embedding in M whose domain is a subset of I.

(This is not the same, in general, as the set of finitely-generated substructures ofM ,

even if I is the domain ofM .) Now AI will always have the following two properties:

1. the hereditary property (HP): if X ∈ AI and Y is a substructure of X then

Y ∈ AI ; and
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2. Generalities

2. the joint embedding property (JEP): if X,Y ∈ AI then there is Z ∈ AI

such that X and Y are substructures of Z.

Note that the I-age is also closed under isomorphisms restricted to I. Hence the

I-age of a structure M with domain I will not (in general) be the set of finitely-

generated substructures ofM as this will not normally be closed under isomorphism.

In cases where it is not important to distinguish between isomorphic structures, we

refer simply to an age. The age of M is the set of isomorphism types of M , and

will also have HP and JEP. In section 2.7 we will use the notion of an I-age (not

simply an age) as it allows for a slightly neater formulation (the embeddings will

come out as simply being inclusions) which, in principle, might be easier to encode

on (for example) a computer. Later in the thesis we will drop the ground set I and

simply refer to ages.

The age (or I-age) of a structure does not in general determine that structure up

to isomorphism. For example, the following (isomorphism types of) graphs have the

same age but are clearly not isomorphic:

1. K∞[K∞]

2. K∞[K∞] +K1

3. K1 +K2 +K3 + . . .

It will however turn out that if M is known to be homogeneous then the age of M

is sufficient to determine M up to isomorphism (i.e. if F is the age of both M and

M ′, and M and M ′ are homogeneous, then M ∼= M ′). (The same is of course true

for I-ages.)

IfM is a homogeneous L-structure, and A is its age, then A has a property known as

the amalgamation property (AP): ifX and Y are finitely-generated substructures

of M (and so X,Y ∈ A), and W ∈ A is such that there are embeddings f1 : W → X

and f2 : W → Y , then there are Z ∈ A and embeddings g1 : X → Z, g2 : Y → Z

so that g2f2 = g1f1. (In fact, in the I-age of M , there will be copies X ′ of X and

Y ′ of Y so that X ′ ∩ Y ′ = W , and Z will then be X ′ ∪ Y ′. Moreover, by using the

existence of X ′ and Y ′, either in M or in A, we can usually assume, at least when

working with I-ages, that the embeddings are trivial.)
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2.6 Amalgamation

We say that an amalgamation class is a set A of isomorphism types of finitely-

generated L-structures satisfying HP, JEP and AP; similarly, an I-amalgamation

class is a set AI of finitely-generated L-structures on ground set I satisfying HP,

JEP and AP and closed under isomorphism. Fräıssé (1986) tells us how the problem

of classifying homogeneous L-structures reduces to that of classifying amalgamation

classes. (A perhaps more accessible account of how this, and other results in this

section, are proved can be found in Hodges (1997).)

Theorem 2.9 (Fräıssé). Let L be a countable language, and let A be a countable,

non-empty amalgamation class. Then there is a countable homogeneous L-structure

M , unique up to isomorphism, such that the age of M is A.

In this thesis, we say that an L-structure M is “generic subject to P”, given a

property P aboutM (or typically the age of M), if M realises all finite L-structures

that are consistent with P . There will be certain implicit restrictions that we will

not always state explicitly (e.g. if M is a 2-graph, the graph structure on the

components of M will often be treated as implicit). Where the implicit restrictions

are the only ones that apply, we will say that M is “fully generic” or “completely

generic”. Note in particular that in this thesis the “generic subject to P” is not

simply the homogeneous L-structure with the largest amalgamation class whose

members all satisfy P . For any given P , the “generic subject to P” may or may not

exist, and may or may not be homogeneous. (In essence, this notion of “generic”

is an assertion that the age of the generic is trivially determined by P and there

are no extra restrictions that have been neglected. We will say a little more about

this point in Section 2.9, with specific reference to the 2-graph case.) We give two

examples where the generic (in this sense) does exist; the most general structure is

indeed what we might expect it to be in these cases.

Corollary 2.10. 1. The random graph is homogeneous.

2. For each c, the generic c-coloured 2-graph (i.e. the 2-graph that embeds all

finite c-coloured 2-graphs) is homogeneous.

Proof. The corresponding N-ages would be, respectively:

1. the set C of all finite graphs whose vertices lie in N, and

2. the set Dc of all finite c-coloured 2-graphs whose vertices lie in N.
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In order to apply Theorem 2.9, it is sufficient to verify that C and each Dc are N-

amalgamation classes. By construction, the N-ages satisfy the hereditary property,

and are closed under isomorphisms restricted to the underlying domain. Given two

finite graph (respectively finite c-coloured 2-graphs) called G1 and G2, the union

G1 ∪ G2 is clearly a finite graph (respectively finite c-coloured 2-graph) into which

G1 and G2 embed, so the joint embedding property holds. Indeed, if G0 embeds

into G1 and G2, there are finite graphs (respectively finite c-coloured 2-graphs) H1

and H2 such that H0 = H1 ∩ H2 is isomorphic to G0, and then H1 ∪ H2 embeds

G1 and G2 so that the embeddings of G0 are consistent whether through G1 or

G2. So in fact C, and Dc for each c, satisfy the amalgamation property and so are

N-amalgamation classes as required.

In practice, at least for relational languages L, to check that an I-age AI has AP it

is sufficient to check that AI has two-point amalgamation. That is, it is sufficient

to verify that, if X,Y ∈ A, W = X ∩ Y , X \W = {x} and Y \W = {y}, then there

exists an L-structure Z ∈ AI containing isomorphic copies X ′ of X and Y ′ of Y such

that X ′ ∩ Y ′ ∼=W and X ′ ∪ Y ′ = Z. We express this diagrammatically with sets of

overlapping ovals representing X and Y , where the overlap is isomorphic to W and

where there is precisely one vertex, namely y, in the Y ovals that is not in the X

ovals and precisely one vertex, namely x, in the X ovals that is not in the Y ovals,

and aim to show that by assigning xy to some relation and by taking the union we

get a member of AI . In practice, if working with an age A, to check that AP holds

for types X∗ and Y ∗ over W ∗ (where W ∗ embeds into X∗ and Y ∗ and is one vertex

smaller than each of X∗ and Y ∗), we find representatives W,X, Y in a sufficiently

large I-age AI , obtain Z as above and note that Z∗ is indeed in A and satisfies AP

for W ∗,X∗, Y ∗. This will implicitly be the procedure we follow; in practice we will

often not be this pedantic in the way we express it.

In a few cases it will be convenient to use “many-point” amalgamation, with more

than two points outside the overlap. This will be equivalent to doing two-point

amalgamation repeatedly and accepting any result that an amalgamation can give.

We therefore will not say any more about the theoretical framework of “many-point”

amalgamation.
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2.7 The copying argument

2.7 The copying argument

We will describe one special, and somewhat complicated, use of amalgamation that

will allow us to appeal to the work of earlier classification strategies in many of

the cases we classify. As before we assume that our language L is relational. Also,

we will assume in this section that all structures have domain a subset of a fixed

countably infinite set I, and use the notions of “I-age” and “I-amalgamation class”

to allow us to (at least formally) work with actual identified structures and to make

the embeddings explicit in the labellings of the structures. This allows us to ensure

that all ways that structures can be amalgamated are considered; see for example

Figure 2.2.

Figure 2.2: Care needs to be taken to ensure that all amalgamations are considered;

in particular, these two possible amalgamations of two copies of P4 over P3 lead to

very different results.

If, as is often the case, the set of all finite L-structures on some countable domain

I forms an I-amalgamation class (this is the case, for example, for graphs and for

2-graphs with any fixed number c of cross-edge colours; see Corollary 2.10), then

for any isomorphism-closed family B of so-called “basic” L-structures there will

certainly be an I-amalgamation class A′ containing all elements of B.

Let Ã be the intersection of all I-amalgamation classes containing B (note that,

in general, there is no reason to suppose that Ã is itself an I-amalgamation class).

We need to see how each element of Ã is derived from the elements of B through

a sequence of amalgamations, potentially taking several steps. In general when we
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2. Generalities

amalgamate two structures we do not know what the result will be, though we know

that it will be some element of a specified finite set (the goal will be to ensure that

either this set has size 1 or that all of its elements embed the structure we are trying

to obtain, but this may take many steps). The following definition gives a formal

means by which we can specify how each element of Ã is derived ultimately from

the elements of B; it is similar to the definition given in Lachlan & Woodrow (1980)

to encode how a finite graph can be built up from the “basic” graphs (the finite

complete and empty graphs and the graphs P3 and P3).

Definition 2.11. Let B be an family of L-structures whose domains are finite sub-

sets of I (and which is closed under isomorphisms restricted to I), which we refer

to as “basic” structures. We define an amalgamation hierarchy as follows:

1. let C0 = {{B} : B ∈ B} (i.e. there is a singleton for each “basic” structure in

B at level 0, and nothing else).

2. given Cn for some n, obtain C′
n by closing Cn under taking finite unions and

replacing elements with substructures: specifically, let D0
n = Cn and, for each

i ≥ 0, let Di+1
n be the smallest superset of Di

n such that:

(a) if X ∈ Di
n, G ∈ X and H ≤ G, then X ∪ {H} \ {G} ∈ Di+1

n ; and

(b) if X,Y ∈ Di
n then X ∪ Y ∈ Di+1

n ;

and then let C′
n =

⋃∞
i=0 D

i
n;

3. given C′
n, let Cn+1 be the smallest superset of C′

n such that, for each U, V ∈ C′
n

where U 6= V , and for each X ∈ U \ V and Y ∈ V \ U where, if Z = X ∩ Y ,

then |X \ Z| = |Y \ Z| = 1, if P1, . . . , Pm are such that amalgamating X and

Y over Z, must yield one of P1, . . . , Pm
1 then

U ∪ V ∪ {P1, . . . , Pm} \ {X,Y } ∈ Cn+1

We note that we allow closure under union and replacement by substructure within

a level before we do the amalgamations. We do not close under union and sub-

structures once we have performed the amalgamations in that level. Adding these

1X, Y and Z are actual structures, so we have defined a single amalgamation. IfX ′ ∼= X and the

domain of X ′ lies in I then X ′ will appear in similar circumstances to X; hence all amalgamations

that should be in the hierarchy will in fact be there.
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2.7 The copying argument

closure operations would not make much difference to our arguments though it may

change level numbers slightly. It is important that we don’t allow closure under

amalgamation in each level as this would collapse the hierarchy to a single level.

Each set in each Ci in the hierarchy represents a set of structures, one of which must

exist in every I-amalgamation class containing B (though we do not know which,

nor that the choice need be independent of the choice of I-amalgamation class).

However, if any Ci contains a singleton {X} then X must be in every amalgamation

class containing B. We can use this to define the notion of a derivation. Note that,

in general, not every structure lying in an element of the hierarchy need have a

derivation.

Definition 2.12. Let C =
⋃∞

i=0 Cn, and let A = {A : {A} ∈ C} (i.e. A is the set

of elements of singletons of any Cn). A is the set of structures derived from B. A

derivation of a graph X ∈ A is a finite generating substructure of

(C0,C1, . . .)

(i.e. every set in the derivation is obtainable from ones in lower levels according to

the rules (1) to (4) above, and X is in some level of the derivation).

An example of a derivation is the following derivation of P3 +K1 in Γ∞ (or indeed

in Γ3), shown in Figure 2.3:

• C0 = {{P3}, {P3}, {K3}}

• C1 = {{P3 +K1, P4}, {P3 +K1,K2 +K2}}

• C2 = {{P3 +K1, T1, T2}}

• C3 = {{P3 +K1}}

In the above, T1 is the graph:

({a, b, c, d, e}, {ab, bc, be, de})

and T2 is the graph:

({a, b, c, d, e}, {ab, ad, bc, cd, de})
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Figure 2.3: A derivation of P3 +K1. The light blue boxes indicate the levels, and

at least one of the graphs within each pink box embeds at the level of the box.
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2.7 The copying argument

(We have been slightly sloppy here and written these in terms of isomorphism types,

not in actual graphs. The labelling of the other graphs in the derivation can be

determined from the diagram.)

The idea is that we “know” that, for each element U of C, any I-amalgamation class

containing B should have (at least) one element from U (of course different classes

might have different elements). We do not know that we have different elements

of different elements of C; if U, V ∈ C and X ∈ U ∩ V then there is no reason to

suppose that we must have a second element from U ∪ V . It is therefore important

that U and V are distinct, and indeed that Y 6∈ V and X 6∈ U . If we do not have

this then we have nothing to amalgamate.

In general there is no reason to suppose that A is an I-amalgamation class or

even that it contains anything other than B. However Lachlan & Woodrow (1980)

amounts to showing that if B is either

B∞ = {P3, P3} ∪ {Km,Km : m ∈ N}

or (for some finite n)

Bn = {P3, P3,Kn} ∪ {Km : m ∈ N}

then A is an I-amalgamation class (and since it contains B and no extraneous sets

it will be the minimal I-amalgamation class containing all of B). Our task is to

translate the derivation of any specific graph into a derivation of a 2-graph with a

given right component, and thus show that everything that ought to be derivable

actually is.

Theorem 2.13. Let B be a finite set of finite graphs such that the minimal I-

amalgamation class containing every element of B is A, and let c be a positive

integer. Let

B
′ = {(B,D,R) : B ∈ B,D ∈ D, R arbitrary of size c}

where D is a family of finite graphs such that if D ∈ D then D+D ∈ D. Then there

exists a minimal amalgamation class A′ that contains all elements of B′; moreover,

A′ contains (A,D,R) for all A ∈ A, all D ∈ D and all colourings R (and A′ contains

nothing else).
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Remark. We can slightly weaken the requirement that if D ∈ D then D +D ∈ D.

For example, it is sufficient if D ⊞D ∈ D whenever D ∈ D. Having some disjoint

union D ⊔D ∈ D is not sufficient as the fundamental requirement is being able to

ensure that the graphs on the right components are consistent.

Proof. Let Cn and C be as given in Definition 2.12.

Let (A,D,R) be a 2-graph where A ∈ A and D ∈ D. We want to find a derivation

H′ of (A,D,R) from B′. If we can do this for every such 2-graph, then the set of

these 2-graphs will form an amalgamation class, which would be enough to prove

the theorem.

Take a minimal derivation H of A from B; we seek to construct H′ starting at the

top level (the one that will contain (A,D,R)) and working down to level 0 that will

contain only basic 2-graphs (elements of B′; we will then show that H′ is indeed

a subset of C′. At all stages we add sufficient elements to H′ to close under finite

unions and to close under the operation “replace U ∈ H′ with U∪{Y }\{X}”, where

X ∈ U and Y is a substructure of U . We can therefore ignore these operations if

they occur in H, since we will have closed under them by the next stage anyway.

If the original derivation H were such that every amalgamation had only one pos-

sible outcome, we would be able simply to add D on the right component and add

the appropriate cross-edges. However, in general each amalgamation will have mul-

tiple outcomes, and the final result will only appear much later (indeed, even if it

only had one outcome up to isomorphism, it may still have two or more outcomes

with the desired result in different places). We will therefore need to add an appro-

priately coloured copy of D for each amalgamation outcome (“appropriate” means

appropriate to the desired final result), and propagate this down the chain.

Formally, suppose that:

• X and Y can be amalgamated over some W to give one of Z1, . . . , Zk;

• {U1, . . . , Up,X}, {V1, . . . , Vq, Y }, {U1, . . . , Up, V1, . . . , Vq, Z1, . . . , Zk} ∈ H;

• for some i ≥ 1, {U1, . . . , Up,X}, {V1, . . . , Vq, Y } ∈ Ci \ Ci−1; and

• by induction, some {U ′
1, . . . , U

′
p, V

′
1 , . . . , V

′
q , Z

′
1, . . . , Z

′
k} is in H′, where each

Z ′
j = (Zj ,mjD,Rj), each U

′
j = (Uj , D̃j , R̃j), and each V ′

j = (Vj , D̂j , R̂j).

Since if we amalgamate X with Y we get one of Z1, . . . , Zk, define P1 = (X,mD,S1)

and P2 = (Y,mD,S2), where m =
∑k

j=1mj and each S1 and S2 is chosen so that

the jth tranche of mj copies of D would be coloured to X and to Y so that if the
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2.8 Properties of graphs

amalgamation gives Zj then we have a copy of Z ′
j. (This can always be defined.)

Then add {P1, P2, U
′
1, . . . , U

′
p} to H′.

This process continues until we reach level 0 in H. But the structures here will have

their left components be “basic” graphs (elements of B) and their right components

will consist of many copies of D. Hence, by definition of D, they will be in B′.

It remains to verify that H′ is indeed a derivation. But it clearly has any and all

necessary “union” and “substructure” steps, and we have constructed it in such a

way as to have the “amalgamation” steps. Hence it is indeed a derivation producing

(A,D,R), as required.

Remark. Figure 2.4 gives an example of how the derivation in Figure 2.3 can be

translated to a derivation of the 2-graph

((abcd, {ab, bc}), x, ({bx, cx}, {ax, dx}))

where in this case we need only three copies of the K1 on the right. By hypothesis

every colouring of (B,Km) is in B′ for every “basic” graph B and every m.

2.8 Properties of graphs

We list some properties of certain homogeneous graphs we will use throughout this

thesis.

We will often make use of the infinite Ramsey theorem. The simplest form of this,

and the one we will use, can be written as follows:

Theorem 2.14 (Ramsey). Let X be an infinite graph. Either K∞ ≤ X or K∞ ≤ X.

Proof. See Ramsey (1930).

At various points we will need to “split” either Γr or Γ∞ into two subgraphs, and

want to show that one of the two subgraphs retains some genericity. For the random

graph the proof is relatively simple and we present the proof here.

Theorem 2.15. Let X ∼= Γ∞ and let (X1,X2) be a partition of the vertices of X.

Then either X1
∼= Γ∞ or X2

∼= Γ∞.

Remark. A rather abstract proof of this result is given in Fräıssé (1986), chapter 10,

result 4.4. We give a more concrete proof here.
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Figure 2.4: An example of a derivation of a (P3 +K1,K1) 2-graph; the cross-edge

colours are obtained using the method in Theorem 2.13.
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Proof. Suppose that X1 6∼= Γ∞, so that there is a finite graph Y not realised in X1.

We want to show that an arbitrary finite graph Z is realised in X2.

We may assume that Y is minimal, so that for every y ∈ V (Y ) the graph Y \ {y}

does embed in X1; let Y
′ be such a graph. Construct a graph W = W1 ∪W2 such

that W1 ∩W2 = ∅, W1
∼= Y ′, W2

∼= Z and, for every w ∈W2, W1 ∪ {w} ∼= Y .

Since X is the random graph, W embeds in X in such a way that W1 embeds in

X1. If any vertex of W2 embeds in X1 then Y would too, which is a contradiction.

So every vertex of the embedding W2 must lie in X2, and so Z does also.

El-Zahar & Sauer (1989) showed that we also cannot split a generic Kr-free graph

into two simpler pieces. The proof is slightly complicated so we will merely give the

statement here.

Theorem 2.16 (El-Zahar and Sauer). Let X ∼= Γr for some r (finite or infinite)

and let (X1,X2) be a partition of the vertices of X. Then there exists i such that Xi

contains a copy of Γr.

Proof. See El-Zahar & Sauer (1989).

In many cases we will know independently that X1 andX2 are already homogeneous.

In such cases we have the following corollary.

Corollary 2.17. Let X ∼= Γr and let (X1,X2) partition X in such a way that each

Xi is a homogeneous graph. Then there exists i such that Xi is isomorphic to Γr.

Proof. By Theorem 2.16, one of the Γi contains (a copy of) Γr as a subset. But

Xi is homogeneous, and so Xi must be Γs for some s ≥ r, since these are the

only homogeneous graphs containing Γr. If r = ∞ then the only possibility is that

Xi
∼= Γ∞. If r is finite, then since X omits Kr, Xi also omits it. Hence Xi 6∼= Γs for

every s > r, and so Xi
∼= Γr.

2.9 Conventions

We conclude this chapter by listing certain notational and terminological conventions

we will be using in this thesis. Some of these have been stated previously in the

chapter and we restate them here, slightly less formally, for emphasis.

An empty graph is one with zero edges; it can have zero or more vertices. We

will sometimes need to make use of graphs with zero vertices; such a graph is a
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null graph, and by a slight abuse of notation we denote it by ∅. (For example, the

generic (Γ3,Γ∞) 2-graph omits (K3,∅).)

We use the terms component or side to refer to either of the distinguished sets

of vertices in a 2-graph. For example, in the 2-graph (A,B,R), the components are

A and B. We occasionally need to refer to “components” in the graph-theoretic

sense: when we do, we call them connected components. We distinguish the two

components by calling them “left” and “right”, and in the 2-graph (A,B,R), A is

the left component and B is the right component. (In diagrams we will always have

the left component on the left-hand side, and the right component on the right-hand

side.)

For our purposes, within components there are two edge-types, called “edge” and

“non-edge” (which can be thought of as “black edge” and “white edge”). Therefore,

the term subgraph of a graph will always mean an induced subgraph. In normal

graph theory K3 is a subgraph of K3; for us this is not the case.

Where two edges (or cross-edges) ab and cd are known to have the same type, we

will often write

ab ∼= cd

to signify this. (This can be justified by considering the structures induced by {ab}

and {cd}; if ab and cd have the same type then these structures are isomorphic.)

We occasionally abuse this notation further: if ab and xy are edges in different

components we will still write ab ∼= xy as the graphs induced by {a, b} and {x, y}

are isomorphic.

When we say that a 2-graph G, with given components and a given number of

cross-edge types, is “generic subject to P” for some property P , we mean that G

realises every finite 2-graph with the same colour set as G except those that are

inconsistent with P and those that G cannot realise because their components do not

embed into the components of G. We sometimes say “fully generic” or “completely

generic” to mean that P = ⊤ (i.e. that G realises all finite 2-graphs with the

same colour set as G whose components embed into the components of G). Given

specified components and a specified number of cross-edge types, there may or may

not be a homogeneous 2-graph that is “fully generic” or “generic subject to P”

for any given P , and determining which values of P (and which components and
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numbers of cross-edge types) do yield homogeneous 2-graphs is the main task of the

classification.

Some authors use “generic” to mean that the amalgamation class is the maximal

amalgamation class that actually exists whose members satisfy P and which have

the correct components and the correct number of cross-edge types. We do not use

it in this sense. When we say that G is generic subject to P , we are asserting that the

maximal set of (isomorphism types of) 2-graphs consistent with P , the number of

cross-edge types and the components is an amalgamation class. An example where

this is relevant is the 2-coloured homogeneous (K∞[K2],Γr) 2-graph (see Corollary

3.24): for each r there is only one such 2-graph (up to equivalence), but it is not the

“fully generic” in our sense since it must omit (K2,K1)
1 and (K2,K1)

2. We would

normally say that it is the “generic omitting (K2,K1)
1 and (K2,K1)

2”; of course

(K3,∅), (P3,∅) and (∅,Kr) are also (minimally) omitted, but we will usually not

mention them as they are implicitly omitted by asserting that it is a (K∞[K2],Γr)

2-graph.

Normally our 2-graphs have just two cross-edge types. When this happens, we

normally call the cross-edge types “red” and “blue”, where “red” is cross-type 1 and

“blue” is cross-type 2: these are the colours we use in diagrams. In many cases we

have incomplete information about the 2-graphs in the diagram. To encode this,

there are two conventions we use:

• one colour (sometimes “white”) for all cross-edges whose colours are unknown;

or

• all cross-edges shown as the same colour are known to be the same colour (we

do not know which).

If only one extra cross-edge colour is shown, we specify which of these conventions

is being used where this is important.

We also use non-black edges (especially brown edges) within components to indi-

cate that their natures are not fully determined; again, in each case where this is

important we specify the significance of such edges.
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Chapter 3

The (Km[Kn],Γr) case

In this chapter we classify homogeneous 2-graphs of the form (Km[Kn],Γr), where

m,n, r ∈ N ∪ {∞} and r ≥ 3.

We will prove the following:

Theorem 3.1. Let G = (A,B,R) be a homogeneous non-collapsing 2-coloured 2-

graph where A ∼= Km[Kn] for some m,n ∈ N∪{∞} and B ∼= Γr for some r ∈ N∪{∞}

where r ≥ 3. Then mn = ∞ and G is equivalent to one of the following 2-graphs:

• m = ∞, n = 1 and G is otherwise generic (i.e. embeds all finite 2-graphs

satisfying these constraints);

• m = ∞, n = 1, the 2-graph (K1,Kk)
1 is minimally omitted for some k < r,

and G is otherwise generic;

• m = ∞, n = 2, the 2-graphs (K2,K1)
1 and (K2,K1)

2 are minimally omitted,

and G is otherwise generic;

• 2 ≤ m ≤ ∞, n = ∞ and G is otherwise generic; or

• 2 ≤ m ≤ ∞, n = ∞,the 2-graph (K1,Kk)
1 is minimally omitted for some

k < r, and G is otherwise generic.

Moreover, there does exist a homogeneous 2-graph for each of these cases.

Remark. It is clear that the cases defined in Theorem 3.1 are genuinely different;

that is, if G1 and G2 are homogeneous 2-coloured (Km[Kn],Γr) 2-graphs satisfying

different cases of Theorem 3.1 then G1 6∼= G2.
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3.1 Initial results

The following proposition shows that there are no interesting cases if both m and n

are finite.

Proposition 3.2. There is no homogeneous 2-graph G = (A,B,R) with cross-edges

of more than one colour such that A is a finite graph and B ∼= Γr (r can be finite or

infinite).

Proof. Suppose thatG = (A,B,R) is a 2-graph whereA is a finite graph andB ∼= Γr.

We can partition B into finitely many subsets B1, . . . , Bk such that, if b, b′ ∈ Bi for

some 1 ≤ i ≤ k, then, for all a ∈ A, ab and ab′ are the same colour. Moreover, since

at least two colours appear, by 1-transitivity we must have that k ≥ 2.

Figure 3.1: If G = (A,Γr, R) were homogeneous where R1, R2 6= ∅ and A is finite,

we can construct a contradiction.

Now B is infinite, so by the pigeonhole principle some Bi is infinite; without loss of

generality assume that i = 1 and let b1, b2 ∈ B1 be distinct vertices. Now B and

B are connected, so there is a b3 ∈ B \ B1 such that b1b2 and b1b3 have the same

edge-type; the setup is as depicted in Figure 3.1. Consider the map

α : b1 7→ b1, b2 7→ b3

By construction, α is an isomorphism {b1, b2} → {b1, b3}. If G were homogeneous,

then α would extend to an automorphism β of G. Hence, for all a ∈ A, β(a)β(b1) =

β(a)b1 and β(a)β(b2) = β(a)b3 are the same colour. But there is a vertex a′ ∈ A
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such that a′b2 (which is the same colour as a′b1) and a
′b3 are not the same colour.

Let a = β−1(a′). Then

a′b1 = β(a)β(b1) ∼= ab1 ∼= ab2 ∼= β(a)β(b2) = a′b3

since β is an automorphism, but this contradicts the definition of a′. Hence G is not

homogeneous.

Since there are no non-monochromatic cases if mn is finite, we will assume in the

rest of the chapter that either m or n is infinite. We do have to handle the three

families of cases (m finite, n finite or both infinite) separately; for example, the

m = ∞, n = 2 case is very different to the m = 2, n = ∞ one. It will also sometimes

be convenient to distinguish the m = ∞, n = 1 case. The m = 1, n = ∞ case is of

course equivalent to the m = ∞, n = 1 case, so we only need to classify one of these,

and the one we will use is the m = ∞, n = 1 case.

We now let G = (A,B,R) be a homogeneous 2-graph where A ∼= Km[Kn] and

B ∼= Γr. For each a ∈ A and each 1 ≤ i ≤ |R|, let

Bi
a = {b ∈ B : (a, b) ∈ Ri}

and, for each b ∈ B let

Ai
b = {a ∈ A : (a, b) ∈ Ri}

We then have:

Lemma 3.3. For all a, b ∈ A and all 1 ≤ i ≤ |R|, Bi
a
∼= Bi

b.

Proof. Let α be the map a 7→ b. Since G is homogeneous, α must extend to an

automorphism β of G. To show that Bi
a
∼= Bi

b, it is enough to show that β(Bi
a) = Bi

b.

For x ∈ B, we show that x ∈ Bi
a if and only if β(x) ∈ Bi

b. But x ∈ Bi
a if and only if

ax has colour i, which occurs if and only if β(a)β(x) = bβ(x) has colour i, which in

turn happens if and only if β(x) ∈ Bi
b, as required.

Lemma 3.4. For every a ∈ A and every 1 ≤ i ≤ |R|, Bi
a is homogeneous.

Proof. Let γ be an isomorphism between finite subsets of Bi
a. This extends to a

map δ = γ ∪ {(a, a)} which is a finite partial automorphism of (a,Bi
a). Since G is

homogeneous, δ extends to an automorphism ǫ of G. But, for every x ∈ B, ax and

ǫ(a)ǫ(x) always have the same colour. Hence ǫ must fix Bi
a. Since this holds for any

isomorphism γ between finite subsets of Bi
a, it follows that Bi

a is a homogeneous

graph.
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From this we obtain the following corollary.

Corollary 3.5. For every a ∈ A, there is 1 ≤ i ≤ |R| such that Bi
a is isomorphic

to Γr.

Proof. The (Bi
a) partition Γr into finitely many pieces, so by Theorem 2.15 if r = ∞,

or Theorem 2.16 if r < ∞, one of them contains Γr. But all of the pieces are

homogeneous, so by the proof of Corollary 2.17 the piece that contains Γr must in

fact be Γr, since it is clearly a subgraph of Γr so cannot be Γs for s > r.

In general, it seems more difficult to prove directly that Bi
a is always infinite. How-

ever, if m = ∞ and n = 1, proving that Bi
a is infinite is easier, and it will turn

out that in classifying the 2-coloured homogeneous (Km[Kn],Γr) case we only need

to prove that Bi
a is infinite when m = ∞ and n = 1 (as it will turn out that all

non-trivial cases are based on the m = ∞, n = 1 case; moreover, proving this will

not need Lemma 3.6).

Lemma 3.6. If m = 1 or n = 1, then for every a ∈ A and every 1 ≤ i ≤ |R|, Bi
a is

infinite.

Proof. We may assume without loss of generality that i = 1. We recall that, by

1-transitivity on A, Bi
a is non-empty.

First we show that |B1
a| ≥ 2. For if |B1

a| = 1, then for every a ∈ A there is a unique

xa ∈ B so that axa has colour 1 (and, by homogeneity, for every y ∈ B there is

b ∈ A so that y = xb). We want to find a, b, c ∈ A so that ab ∼= ac (which is always

true since A has no structure1) but the map

α : a 7→ a, b 7→ c

does not extend to β ∈ Aut(G); that is, we require that xaxb 6∼= xaxc, since, for

all d and e in A, if β(d) = e then β(xd) = xe. But any choice of xa, xb, xc where

xaxb 6∼= xaxc will do, and by genericity of B, and the fact that the map a 7→ xa is

onto, we can make such a choice where a, b, c are distinct. Hence |B1
a| ≥ 2.

We now show that if |B1
a| ≥ k for some finite k ≥ 2, then |B1

a| ≥ k + 1, which

will imply that B1
a is infinite. If not, choose a, b, c ∈ A so that |B1

a \ B1
b | = 1 but

|B1
a \B

1
c | = 2. (This is always possible since, by homogeneity, for every subset D of

1If m,n ≥ 2 this would of course not hold. We avoid this issue in a roundabout way by proving

Lemma 3.6 only for the m = 1 (and n = 1) cases and also, independently of Lemma 3.6, proving

that all non-trivial instances of other cases are simple variants of the m = 1 case.
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B isomorphic to B1
a there is d ∈ A so that D = B1

d , and by genericity we can find

subsets of B which have intersections of the right sizes.) Consider

γ : a 7→ a, b 7→ c

Since A is complete or empty, γ is always a finite partial isomorphism. But it does

not extend to an automorphism of G, since if it did it would map B1
a∪B

1
b to B1

a∪B
1
c ,

mapping a set of size k+ 1 to one of size k + 2. This is a contradiction, so |B1
a| 6= k

for any finite k ≥ 1, so k must be infinite.

So far we have not had to restrict the number c of colours of G. However, we

will now have to restrict to cases where G has only two cross-edge colours; that is,

R = (R1, R2). If G has more than two cross-edge colours, then any classification

would depend on knowledge of the various combinations of the Bi
a (recall that, by

Lemma 3.3, these will, up to isomorphism, be independent of the choice of a ∈ A).

In principle this would be possible, but it would appear to need a classification of

the 2-coloured homogeneous (c− 1)-graphs, and even once this is done the number

of such cases appears to be so large as to be unworkable.

By Corollary 2.17, we have that, for each a ∈ A, either B1
a
∼= Γr or B2

a
∼= Γr,

and by Lemma 3.3 the choice is the same for every a ∈ A. We will therefore

assume, without loss of generality, that from now on B2
a
∼= Γr, and consider the

various possible isomorphism types of B1
a (which, by Lemma 3.3, is known to be a

homogeneous graph).

We will show that the 2-graphs stated in Theorem 3.1 really are homogeneous, and

then divide the rest of this chapter into proving uniqueness in three families of cases,

which we consider separately. The families we consider are:

• n finite, m = ∞;

• m finite, n = ∞; and

• m = n = ∞.

A word of caution – we will typically handle the Γr and Γ∞ cases together. We

will often speak of omitting (∅,Kr); in the Γ∞ case this is to be interpreted as not

omitting any (∅,Kk) for k ∈ N. (In the Γ∞ case we will of course realise both

(∅,K∞) and (∅,K∞).) We mention this severe abuse of notation here to avoid

43



3. The (Km[Kn],Γr) case

having to point out this difference every time. We will not have the luxury of being

able to use this simplification in chapter 4 as there the r = ∞ and r 6= ∞ cases

appear to need notably different techniques. (We will explain more about this at

the points in chapter 4 where this point is relevant.)

3.2 Existence

We must verify that all of the 2-graphs listed in Theorem 3.1 really are homogeneous.

There are two basic families – the family where n is finite and the family where n is

infinite.

3.2.1 The n 6= ∞ family

The n 6= ∞ family of cases are those arising from extending the (K∞,Γr) case by

increasing the size of components on the left. We will show later (in Lemma 3.9)

that n ≤ 2. We list the cases that can arise and show that in each case there is a

homogeneous 2-coloured 2-graph (and they are all clearly not equivalent).

Proposition 3.7. For each r ≥ 3, there exist non-collapsing homogeneous 2-coloured

(K∞[Kn],Γr) 2-graphs satisfying each one of the following lists of properties:

1. n = 1, and G is generic (i.e. embeds all finite 2-graphs consistent with being

of the specified form);

2. n = 1, and G minimally omits (K1,Kk)
1 and is otherwise generic (i.e. em-

beds all finite 2-graphs consistent with being of the specified form and omitting

(K1,Kk)
1); or

3. n = 2, and G minimally omits (K2,K1)
1 and (K2,K1)

2 and is otherwise

generic.

Proof. We must prove that the ages of these structures are amalgamation classes. As

usual we need only verify that each age has the two-point amalgamation property.

The ages can be described respectively as:

1. all finite 2-coloured 2-graphs minimally omitting (K2,∅) and (∅,Kr);

2. all finite 2-coloured 2-graphs minimally omitting (K2,∅), (∅,Kr) and (K1,Kk)
1;

and
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3.2 Existence

3. all finite 2-coloured 2-graphs minimally omitting (K3,∅), (P3,∅), (∅,Kr),

(K2,K1)
1 and (K2,K1)

2;

In all these cases, we can always add non-edges on the right-hand side of any two-

point amalgamation diagram. Moreover, if n = 1 we can (and indeed must) always

add non-edges on the left-hand side of an amalgamation diagram, and always add

blue cross-edges to a two-point amalgamation diagram. Hence there is no difficulty

with the n = 1 case.

Suppose that n = 2. There is no difficulty if both added vertices are on the right-

hand side of the two-point amalgamation diagram. If the added vertices are a on

the left and z on the right, then either a is joined to a single left-side vertex b or a

is not joined to any left-side vertex b. In the latter case any cross-edge colours at all

will suffice (since none of the restrictions are relevant).

Suppose then that n = 2, that the added points are a and z, and that a is joined

to some b. The colour from a to z can simply be the reverse of the colour from

b to z – this will certainly omit (K2,K1)
1 and (K2,K1)

2, and none of the other

restrictions are relevant, so in fact the diagram can be completed and the two-point

amalgamation property holds.

We are left with a diagram in the n = 2 case where both added vertices, a and b,

are on the left-hand side of the amalgamation diagram. We must show that this

diagram can nevertheless be completed.

There are three choices for what to do between a and b:

1. add a non-edge between a and b;

2. add an edge between a and b; or

3. identify a and b.

We can add a non-edge between a and b unless there is some c joined to both a and

b. In this case we cannot join a and b, as this would give a K3 on the left, and we

cannot have a non-edge since this would give a P3. So we have to identify a and

b. But, since (K2,K1)
1 and (K2,K1)

2 are omitted (by Lemma 3.10), the colours

from a to the right are exactly inverse to those from c to the right, and these are

in turn exactly inverse to the colours from b to the right. Hence the colours from a

to the right are exactly the same, in the same order, to those from b to the right.

Furthermore, the only edges from a or b on the left are the ones to c; there is no

d 6= a, b, c so that ad or bd are edges. We can therefore identify a and b. The class of
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3. The (Km[Kn],Γr) case

finite graphs omitting (∅,Kr), (K3,∅) and (K1,Kk)
1 is therefore an amalgamation

class (for each 2 ≤ k ≤ r, k ∈ N).

3.2.2 The n = ∞ family

Whenever n = ∞, the following proposition shows that all the cases we require to

exist (i.e. those listed in Theorem 3.1) do indeed exist, and moreover the different

cases are clearly not equivalent.

Proposition 3.8. For each finite s where 2 ≤ s < r, there exists a Γr
s
∼= (Km[K∞],Γr)

such that every (K∞,Γr) in G minimally omits precisely (K1,Ks)
1. Moreover, there

exists a Γr
r
∼= (Km[K∞],Γr) such that every (K∞,Γr) in G is isomorphic to the fully

generic.

Remark. Γr
r is a degenerate case of Γr

s. We define it separately in order to avoid

difficulties when r = s = ∞ (where the normal definition breaks down).

Proof. We have to prove that the class of (isomorphism types of) finite 2-coloured

2-graphs of the form H = (A1 + . . . + Am, B) (where each Aj
∼= Kij , where each

ij < r and where H also omits (K1,Kt)
1 for finite t ≥ s) is an amalgamation class.

(If r = s = ∞, this amounts to realising every finite (K1,Kt)
1.) Clearly the class has

the hereditary property, and clearly it is closed under isomorphism. We therefore

have to prove that the class has the amalgamation property, and it is sufficient to

show that it has the two-point amalgamation property. If the two points are on the

right we can clearly add a non-edge between them, and if one of the two points is

on the left and the other on the right we can clearly add a cross-edge of colour 2.

Therefore, the only potential difficulty is if the two new points are on the left (and

if m ≥ 2; if m = 1 we can simply add an edge).

Label the two points on the left a and b. If there is a vertex c on the left with edges

from c to both a and b, we want to add an edge between a and b; this is always

possible in such circumstances. If there is no such c, but there is a d with an edge ad

but no edge bd (or vice versa), we want to add a non-edge between a and b, which

we can do since we do not need to increase the number of connected components on

the left.

Suppose that for every vertex e on the left (except a and b), both ae and be are non-

edges. In this case we want to join a and b. The number of connected components

on the left remains the same and all components are complete graphs. Hence the

amalgamation is valid and the class is indeed closed under amalgamation.
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3.3 n finite; uniqueness

Remark. Note that there is never a need to identify the added vertices. This is the

key difference between this case and the case where m = ∞ and n is finite.

3.3 n finite; uniqueness

Having proved that all the 2-coloured 2-graphs in Theorem 3.1 do exist and are

homogeneous, we turn our attention to showing that those are the only homogeneous

2-coloured (Km[Kn],Γr) 2-graphs. In this section we look at those cases where

m = ∞ and n <∞.

We can fairly easily show that a number of potential cases, in particular those where

m = ∞ and 3 ≤ n <∞ and which are not collapsing, cannot in fact arise. We show

this using the following lemma.

Lemma 3.9. There are no homogeneous non-collapsing 2-coloured (K∞[Kn],Γr)

2-graphs for any finite n ≥ 3.

Proof. Fix a connected component a0 . . . an−1 in A, and divide B into B0, . . . , B2n−1

such that Bi is red to all vertices in aj if ⌊i/2
j⌋ ≡ 1 (mod 2), and blue to all vertices

in aj otherwise (i.e. if ⌊i/2j⌋ ≡ 0 (mod 2)).

Figure 3.2: An illustration of how we divide B in the (K∞[K3],Γr) case (i.e. when

n = 3).

Let

C = {Bi : Bi 6= ∅}
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3. The (Km[Kn],Γr) case

Either C ⊆ {B0, B2n−1} or, for all Bj1 and Bj2 in C,

({a0, . . . , an−1}, Bj1)
∼= ({a0, . . . , an−1}, Bj2)

(for if Bj1 ∈ C \{B0, B2n−1} then for every Bj2 ∈ C there are i1, i2 so that, for some

x ∈ Bj1 and y ∈ Bj2 , ai1x
∼= ai2y, which extends to an isomorphism as above) and

we may assume the latter since the former (i.e. C ⊆ {B0, B2n−1}) implies that G is

collapsing.

Now some Bi ∈ C is isomorphic to Γr, and since Bi
∼= Bj for all i and j it follows

that every Bi ∈ C is isomorphic to Γr. Since n ≥ 3, we can choose Bj1 , Bj2 ∈ C so

that both are identically coloured to an−1 and differently coloured to a0 (this fails

if n = 2). Pick x ∈ Bj1 and z ∈ Bj2 . Since Bj1
∼= Γr and since Γr and Γr are

connected, there certainly exists y ∈ Bj1 such that xy ∼= xz. Consider

γ : an−1 7→ an−1, x 7→ x, y 7→ z

and its extension δ ∈ AutG.

Now δ must fix the set

{a0, . . . , an−1}

as a set (not necessarily pointwise), so it must map each Bj to some Bj′ (since

the partition is defined by the set {a0, . . . , an−1}). But δ necessarily destroys this

partition; since δ(x) = x and δ(y) = z, δ(Bj1) cannot be equal to any Bj. Contra-

diction.

Moreover, if n = 2 we will show that the only solution involves a type of “copying”

(but not the “copying” of Theorem 2.13); the two vertices in each edge on the

left have to be, in a sense, “mirror images” of each other. In particular, we will

eventually prove that:

Theorem. Up to equivalence, there is exactly one non-collapsing homogeneous 2-

coloured (K∞[K2],Γr) 2-graph G.

Most of the proof of this result will be given after we complete the classification of

the 2-coloured homogeneous (K∞,Γr) case (i.e. the n = 1 case). However, we will

give the proof of the “easy” part here; that is, any such homogeneous 2-coloured

(K∞[K2],Γr) 2-graph must have a “mirror image” property.

Lemma 3.10. Let G = (K∞[K2],Γr) be a non-collapsing homogeneous 2-coloured

2-graph. Then G is “quasi-collapsing” - that is, if ab is an edge in the left component

of G and x is in the right component of G then ax and bx are of different colours.
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3.3 n finite; uniqueness

Proof. Let G = (A,B,R) be a homogeneous 2-coloured (K∞[K2],Γr) 2-graph. Let

A = ({ai, bi : i ∈ N
+}, {aibi : i ∈ N})

(i.e. the only edges of A are aibi).

Suppose that G is not quasi-collapsing; that is, suppose there is an edge ab ∈ A

and there are vertices x, y, z ∈ B such that (ab, x) ∼= (ab, y) but (ab, x) 6∼= (ab, z).

Then, by 1-transitivity, there is a vertex y ∈ B and there are edges a1b1, a2b2 in A

such that a1y ∼= b1y but a2y 6∼= b2y. We may assume without loss of generality that

a1y ∼= a2y. Consider

δ : a1 7→ a2, y 7→ y

This is a finite partial automorphism of G, so extends to some ǫ ∈ Aut(H). But

then ǫ(b1) = b2 (since it must be joined to a2) but by construction

b1y ∼= a1y ∼= a2y 6∼= b2y

a contradiction. Hence if G is not quasi-collapsing then it cannot be homogeneous.

To classify the homogeneous non-collapsing m = ∞, n 6= ∞ case in full, since the

m = ∞, 3 ≤ n <∞ case cannot arise, it is enough to classify the m = ∞, n = 1 case

and then to show how that the m = ∞, n = 2 case arises naturally out of (one of)

the m = ∞, n = 1 cases. We will now concentrate on the m = ∞, n = 1 case before

briefly going back to conclude the classification of the m = ∞, n = 2 case.

There are two sub-cases of the n = 1 case that we will distinguish - the case where

we omit some monochromatic (1,D) 2-graph and the case where all monochromatic

(1,D) 2-graphs embed. We will now classify these separately.

3.3.1 n = 1; not all monochromatics embed

In this section we assume that m = ∞ and that n = 1. Our aim is to prove the

following:

Theorem 3.11. Let G be a homogeneous (K∞,Γr) 2-coloured 2-graph such that G

omits a monochromatic 2-graph (C,D)1. Then there exists k such that:

1. if r is finite, G is the generic 2-coloured (K∞,Γr) 2-graph omitting (K1,Kk)
1;

or
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3. The (Km[Kn],Γr) case

2. if r = ∞, G is either the generic 2-coloured (K∞,Γ∞) 2-graph omitting

(K1,Kk)
1 or the generic 2-coloured (K∞,Γ∞) 2-graph omitting (K1,Kk)

1.

Suppose that G omits a 2-graph of the form (1,D)i. Without loss of generality, we

may assume that i = 1, and as such D is omitted from (every) B1
a. In principle,

since B is a homogeneous graph, there are therefore four possibilities for D:

1. D = P3;

2. D = P3;

3. for some k, D = Kk; or

4. for some k, D = Kk.

Since B is infinite, we may assume that B1
a contains K∞. (By construction B1

a

contains K∞ if r is finite anyway, and if r is infinite and B1
a omitted Kk then

consider the complement.) If we can prove that B1
a contains both P3 and P3, then

B1
a will contain, and will therefore be equal to, Γs for some s ≥ 3. If B1

a omits

both P3 and P3 then it omits K2 and will therefore be K∞; by analogy we say that

Γ2 = K∞. The following lemma shows that either both or neither of P3 and P3 must

embed in B1
1 , and so (in a slight abuse of notation) B1

a
∼= Γs for some s ≥ 2.

Lemma 3.12. If n = 1 and B1
a embeds K2 then it embeds both P3 and P3

Proof. Suppose that B1
a does embed P3. We prove that it embeds P3 as well. (The

converse, showing that if B1
a contains P3 then it contains P3, is similar; to do so we

simply take complements of the right components of all amalgamation diagrams in

this proof.)

Since B is connected, there is an edge between some vertex x in B1
a and some vertex

y in B2
a. Hence the 2-graph

({a}, {x, y}, ({ax}, {ay}))

does embed in G. Similarly, since B is connected,

({a},∅, ({ax}, {ay}))

also embeds in G
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Figure 3.3: Obtaining the four “ingredients” needed to prove that G embeds

(K1, P3)
1 and (K1, P3)

1.

51

4/4_p3compp3_ingredients.eps


3. The (Km[Kn],Γr) case

We will need four small 2-graphs, which we call “ingredients”, to embed in G. We

exhibit them, and show how they do indeed embed in G, in Figure 3.3.

We then use the amalgamation in Figure 3.4 to see that these “ingredients” are

enough to show that (K1, P3)
1 embeds in G (i.e. that P3 ≤ B1

a). Each of the amal-

gamands in Figure 3.4 is in turn obtained by amalgamating two of the “ingredients”

over (∅, P3), and in so doing we must obtain non-edges on the left in both cases,

allowing us to perform the amalgamation of Figure 3.4.

Figure 3.4: The ingredients in Figure 3.3 combine to form this amalgamation dia-

gram, and whether we add an edge or a non-edge we must obtain (K1, P3)
1. (Note

that we can obtain the top and bottom without identifying, and since n = 1 we have

to have a non-edge, not an edge, on the left.)

Corollary 3.13. There exists a finite k ≥ 2 such that B1
a
∼= Γk (if k = 2 then

B1
a
∼= K∞).

We now prove that G must embed all finite 2-graphs (K1,D) that do not themselves

embed (K1,Kk)
1.

Lemma 3.14. Let H = (K1,D,R) be a finite 2-graph not embedding (K1,Kk)
1.

Then H embeds in G.

Remark. The idea here is similar to the proof we gave of Lemma 2.15. Note that

this proof relies on the homogeneity of B1
a and B2

a.

Proof. Let D = D1 ∪ D2 so that, if we write H = (b,D1 ∪ D2), then bd is red if

d ∈ D1 and blue if d ∈ D2. Fix a ∈ A and let v = |D2|. Label the points of D2 by

d1, . . . , dv .
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Figure 3.5: Why G embeds (K1,D) of mixed colour whenever D1 does not contain

Kk.

Let H ′ = vKk−1 and label the copies of Kk−1 in H ′ by H1, . . . ,Hv. Form a graph

J consisting of H ′ ∪D, with the only new edges being, for each i, those from (the

copy of) di to each vertex in (the copy of) Hi. (We still have the appropriate edges

between D1 and D2.)

Note that H ′ ∪D1 embeds in B1
a since B′

a
∼= Γk. By genericity of Γr, J must embed

in B in such a way that the copy of H ′ in J also embeds in G. But no copy of di

could be mapped into B1
a, as if it were we would obtain a copy of Kk in B1

a, and

this is impossible. Hence every di is mapped into B2
a, and so we obtain our copy of

H in G.

We have proved that, for every finite graphD < Γr, G realises everyH ′ = (K1,D,R
′)

that does not realise (K1,Kk)
1. To complete the “uniqueness” part of our classifica-

tion of the n = 1 case, we need to show that, for every finite l ∈ N, G realises every

H = (Kl,D,R) not itself embedding (K1,Kk)
1, and we do this using the following

lemma.

Lemma 3.15. Let G be a 2-coloured homogeneous (K∞,Γr) 2-graph omitting (K1,Kk)
1

for some k < r. Then G embeds every finite 2-graph H of the form (Kp,D) not

embedding (K1,Kk)
1.
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Proof. Increase p inductively, the case p = 1 being a consequence of Lemma 3.14.

Suppose H = (A1 + . . .+Ap,D), where each Ai is the 1-vertex graph {ai}. Let

H1 = H \ Ap ∪ {(∅, z)}

and let

H2 = (H ∩ (Ap,D)) ∪ {(∅, z)}

where z is colour 1 to all of Ap and colour 2 to all of A1, . . . , Ap−1.

By induction, both H1 and H2 embed in G. Amalgamate both over (∅,D ∪ {z}).

We clearly cannot identify any vertex in Ap with any vertex in any Ai with i 6= p,

and we cannot add edges. Therefore we have to obtain H, as required.

Proof of Theorem 3.11. Immediate corollary of Lemmas 3.12, 3.14 and 3.15, Corol-

lary 3.13 and other remarks in this section.

3.3.2 n = 1; all monochromatics embed

Let G be a homogeneous 2-coloured (K∞,Γr) 2-graph embedding every 2-graph of

the form (K1,D)i where D is a finite graph (in Γr) and i ∈ {1, 2}. We will show

that G must be the generic 2-coloured (Km[Kn],Γr) 2-graph (i.e. G must realise

any finite 2-coloured (Kp,D) 2-graph where D < Γr). We showed in Proposition 3.7

that there is such a 2-graph and that it is indeed homogeneous; here we prove that

it is unique up to equivalence. That is, we prove:

Theorem 3.16. Let G be a homogeneous 2-coloured (K∞,Γr) 2-graph realising

every 2-graph of the forms (K1,Ks)
i and (K1,Ks)

i for s < r and i ∈ {1, 2}. Then

G is the generic 2-coloured (K∞,Γr) 2-graph.

We will aim to use the “copying argument” (that is, Theorem 2.13). Therefore, it

will be sufficient to show that G embeds everything of the form

(Kp, B)

where p ∈ N and

B ∈ {P3, P3} ∪ {Ks : s < r} ∪ {Ks : s ∈ N}

In practice we will aim for slightly more. We will show that G embeds everything

of the form

(Kp, B)
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Figure 3.6: How we add a point to (K1,Ks); if the initial amalgamation gives an

edge instead of a non-edge, we then amalgamate with a structure with null left

component (as shown) to convert the edge back to a non-edge.

where p ∈ N and either

B = isKs + . . . + i2K2 + i1K1

or

B = j3P3 + j2K2 + j1K1

for i1, . . . , is, j1, j2, j3 ∈ N and s < r. We will show that this holds when p = 1,

and then increase p by using the method of Theorem 3.15. Note that this aspect of

the argument is mostly transferable to the (Γr,Γs) case in Chapter 4 (though, for

technical reasons, we will not always rely on this).

Lemma 3.17. G embeds everything of the form (K1,Ks) for all s ∈ N.

Proof. We work by induction on s, and note that if s ≤ 1 we know the result holds.

Let H = (a, x1 . . . xs) where there are no edges. We may assume that ax1 is red and

ax2 is blue (if axi is the same colour for every i then H is already known to embed

in G). Amalgamate

H1 = (a, x1x3 . . . xs)

with

H2 = (a, x2x3 . . . xs)

over

H0 = (a, x3 . . . xs)
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as in the left-hand diagram in Figure 3.6 to give a product H3 in which x1x2 is

either an edge or a non-edge. (H1 and H2 embed in G by induction on s.) If x1x2

is a non-edge we are finished. Otherwise, amalgamate H3 with

H4 = (∅, x1 . . . xsy)

(which clearly embeds in G) over

(∅, x1 . . . xs)

where the only edge is x1x2, as in the right-hand diagram in Figure 3.6. Then,

whether ay is red or blue we obtain H (by discarding x1 if ay is blue, and by

discarding x2 if ay is red).

We can do something almost identical to show that G also embeds (K1,Ks) for all

colours when s < r.

Lemma 3.18. G embeds everything of the form (K1,Ks) whenever s < r.

Proof. Work by induction on s, the cases where s ≤ 1 being known. Let H =

(a, x1 . . . xs) where xixj is an edge whenever i 6= j. Assume, without loss of gener-

ality, that ax1 is red and ax2 is blue. Amalgamate

H1 = (a, x1x3 . . . xs)

with

H2 = (a, x2x3 . . . xs)

over

H0 = (a, x3 . . . xs)

giving H3 in which x1x2 is either an edge or a non-edge. (H1 and H2 embed in G

by induction.) If it is an edge we are done, so assume it is a non-edge. Amalgamate

H3 with

H4 = (∅, x1 . . . xsy)

over

(∅, x1 . . . xs)

where xiy is an edge for all i; clearly H4 embeds in G. Whether ay is red or blue,

we then see that H embeds in G.
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Figure 3.7: How we add a point to (K1,Ks); if the initial amalgamation gives a

non-edge instead of an edge, we then amalgamate with a structure with null left

component (as shown) to convert the non-edge back to an edge.

We now show that G embeds (K1, λKs) for all λ, s ∈ N and s < r. In practice we

prove slightly more, namely we show that G embeds

(K1,Ks1 + . . . +Ksλ)

for s1, . . . , sλ < r.

Lemma 3.19. Let H = (K1,Ks + Kt) for some s, t ∈ N where s < r. Then H

embeds in G.

Proof. We work by induction on (s, t), cases where either s = 1 or t = 0 being trivial.

Write H = (a, x1 . . . xsy1 . . . yt), where xixj is an edge if and only if i 6= j, and these

are the only edges on the right. There are three non-trivial cases to consider:

1. ax1 is red and ax2 is blue;

2. ay1 is red and ay2 is blue; or

3. axi is red for all i, and ayj is blue for all j.

In case 1 we can apply Lemma 3.18, and in case 2 we can apply Lemma 3.17, in

both cases with extraneous matter that does not affect the argument. So the only

interesting case is case 3.

In case 3 we apply the amalgamations in Figure 3.8. H5 would embed in G by

induction on s with an increased value of t. To make this explicit, note that H1 and
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Figure 3.8: Obtaining H ∼= (K1,Ks +Kt) in case 3 (the difficult case). Note that

D1
∼= Ks−1, D2

∼= Kt−1 and D3
∼= Ks.

H2 embed in G by induction on G, and amalgamating them gives either H3 or H5,

and if H3 then since H4 definitely embeds in G we can amalgamate H3 with H4 to

obtain H5.

Now H6 embeds in G by induction on t. We wish to amalgamate H5 with H6. We

have arranged things so that y is joined to no vertices of D1 and to all vertices of

D3. Hence amalgamation cannot cause any points to be identified, so we obtain H7.

H8 clearly embeds in G, and, whether az is red or blue, amalgamating H7 with H8

gives H as required.

Lemma 3.20. Let H = (K1,Ks1 + . . .+Ksλ +Kt) for some λ, s1, . . . , sλ, t ∈ N and
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2 ≤ si < r for all i. Then H embeds in G.

Proof. We will work by induction on s1 and on t.

If, within any complete connected component of the right-component of H, there is

a red and a blue cross-edge from the left-hand vertex a, then we apply the method

of Lemma 3.18 to apply induction on the size of that component.

Write H = (a,D1 + . . . +Dλ + E) where Di
∼= Ksi and E

∼= Kt. We consider two

cases:

1. (a,Di) is monochromatic red for every i but there is e ∈ E so that (a, e) is

blue; or

2. (a,D1) is monochromatic red and (a,D2) is monochromatic blue.

In the first case, if there exists e, f ∈ E so that (a, e) is blue and (a, f) is red, then

likewise we can apply the method of Lemma 3.17 and apply induction on t. So

assume that (a, e) is blue for all elements e ∈ E.

We then proceed inductively using the sequence of amalgamations in Figure 3.9.

The inductions are on s1 and on t; and the base cases will thus be when t = 0 and

when s1 = 0.

Now consider the second case, and in this case we will work by induction on (s1, s2)

and assume that, whenever either is smaller, we have all cases with, in particular,

all values of t.

Proceed inductively using the sequence of amalgamations in Figure 3.10.

We have thus far shown that G embeds every 2-coloured 2-graph of the form

(K1, isKs + . . .+ i1K1)

for all s, i1, . . . , is ∈ N where s < r. We also need every 2-coloured 2-graph of the

form

(K1, iP3)

for all i ∈ N. We will actually prove slightly more.

Lemma 3.21. Let H = (K1, iP3 + jK2 +Ks), for some i, j, s ∈ N. Then H embeds

in G.

Proof. Let H = (a,D1 +D2 +D3) where D1
∼= iP3, D2

∼= jK2 and D3
∼= Ks. We

wish to work by induction on (i, j, s).
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Figure 3.9: The inductive step for case 1 of Lemma 3.20. Note that D1
1 = D3

1∪{w}
∼=

D2
1 ∪ {z} ∼= D1. The contents of the pink boxes are carried forward unaltered

throughout the sequence of amalgamations.
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Figure 3.10: The inductive step for case 1 of Lemma 3.20. Note that D1
1 =

D3
1 ∪ {w1} ∼= D2

1 ∪ {z} ∼= D1 and that D2
2
∼= D3

2 ∪ {w2} ∼= D1
2 ∪ {z} ∼= D2. The

contents of the pink boxes are carried forward unaltered throughout the sequence of

amalgamations.
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Figure 3.11: Reducing i in case 1 of Lemma 3.21 (even if D2 and D3 are not

monochromatic).

It might be that D2 or D3 is not monochromatic to a. If this is the case, we can

reduce j or s respectively using arguments in earlier lemmas. The same applies if

D2 and D3 are both monochromatic to a but of different colours. We will therefore

assume that D2 and D3 are both monochromatic blue to a.

There are therefore four cases to consider:

1. there is a P3 x1x2x3 in D1 where x1x2 and x2x3 are edges and ax1, ax2 are

red and ax3 is blue;

2. there is a P3 x1x2x3 in D1 where x1x2 and x2x3 are edges and ax1, ax3 are

red and ax2 is blue;

3. there are two instances of P3 inD1, namely x1x2x3 and y1y2y3, where ax1, ax2, ax3

are red and ay1, ay2, ay3 are blue; or

4. every instance z1z2z3 of P3 in D1 is monochromatic red to a.

(The first and second cases do not depend on D2 andD3 being monochromatic blue,

and so there is no loss of generality in restricting to these.)

In the first case, we reduce i by using the amalgamations in Figure 3.11. Similarly, in

the second case we reduce i by using the slightly different amalgamations in Figure

3.12. Note that in both cases we increase j by 1 and s by 2.

Hence we can restrict to the third and fourth cases, where we may assume that every

instance of P3 in D1 is individually monochromatic to a.
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Figure 3.12: Reducing i in case 2 of Lemma 3.21 (even if D2 and D3 are not

monochromatic).

In the third case we will use the two-stage amalgamation procedure shown in Figure

3.13. Note that the inputs have extra isolated points, and of different colours, but

this is not an issue since the arguments in Lemma 3.17 can deal with these.

The fourth case can be split into two sub-cases: j 6= 0 or j = 0. In both cases we

aim to reduce i (and possibly increase j and/or s) or keep i fixed and reduce one

of j and s. This will be sufficient to avoid circularity.

If j 6= 0 we will obtain the (i, j, s) case from the (i−1, j, s+3) and (i, j−1, s+3) cases,

as in Figure 3.14. Note that in this case the new D′
2 is of course not monochromatic,

but this should not matter as we can use the arguments from our earlier results to

obtain it.

If j = 0 we obtain the (i, 0, s) case from a (i−1, 0, s+3) and a (i, 0, s−1) case, as in

Figure 3.15, which again are obtainable inductively. This completes our inductive

derivation of H.

We can now formally conclude the proof of Theorem 3.16.

Proof of Theorem 3.16. Lemma 3.20 shows that G realises every finite 2-coloured

2-graph of the form (K1, pKs + Kq), and Lemma 3.21 shows that G realises every

finite 2-coloured 2-graph of the form (K1, pP3 + Kq), for all finite p and q and all

s < r. The proof of Theorem 3.15 allows us to move isolated vertices from the right

component to the left component; it therefore follows that G realises every finite 2-

coloured 2-graph of the forms (Kq, pKs) or (Kq, pP3). By Theorem 2.13, G realises
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Figure 3.13: Reducing i in case 3 of Lemma 3.21. This is a two-stage process.

The inputs for the first case have one fewer copy of P3 but have extra isolated

points (which we can add using arguments in Lemma 3.17). Whatever 2-graph this

amalgamation yields can be input into the second stage (and the other amalgamand

here has empty left-hand side and so embeds in G anyway) and we will get the

required extra P3 whether the “long diagonal” is red or blue.
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Figure 3.14: Reducing 4 in case 2 of Lemma 3.21 when j 6= 0.
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Figure 3.15: Reducing i in case 4 of Lemma 3.21 when j = 0.
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any finite 2-coloured 2-graph of the form (Kq,D), as required.

3.3.3 n = 2; uniqueness

We showed in Lemma 3.10 that if G is a homogeneous 2-coloured (K∞[K2],Γr) 2-

graph then G must be “quasi-collapsing” (i.e. if G = (A,B,R) then for every edge

ab in A and all x, y ∈ B we have that (ab, x) ∼= (ab, y)).

Moreover:

Lemma 3.22. Let G = (A,B,R) be a non-collapsing homogeneous 2-coloured

(K∞[K2],Γr) 2-graph. Then, for every finite graph D < R, G must realise (K1,D)1

and (K1,D)2.

Proof. Suppose G omits (K1,D)1 for some D. By Theorem 2.17, G must realise

(K1,D)2, say as (a,X) for some a ∈ A and some X ∼= D in B. But a is joined to a

(unique) vertex b in A, and G is quasi-collapsing so for every x ∈ X ax 6∼= bx. So b is

colour 1 to every vertex in X and G realises (K1,D)1 after all. Contradiction.

We claim that G realises (K1,D,R) for every finite D < Γr and every valid choice

R of cross-edges. For this we aim to extend those results of section 3.3.2 that don’t

directly apply.

The results (Lemmas 3.17 to 3.21) that show that G realises every

(
K1,

λ∑

i=1

Ksi +Kt

)

and every
(
K1, κP3 + σK2 +Kτ

)

work just as well here as they did in section 3.3.2. We do however need a little

more care to be able to move isolated points from the right component to the left

component (as we need to in order to apply the copying argument).

Lemma 3.23. Let G = (A,B,R) be a non-collapsing homogeneous 2-coloured

(K∞[K2],Γr) 2-graph realising every finite 2-graph of the form (K1,D + Kt) for

some finite D < Γr and for all t ∈ N. Then G realises every finite 2-graph of the

form (Ks,D) for all s ∈ N.
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Proof. We work by induction on s, the case s = 1 being trivial.

Let H = (Ks,D,R), and let H ′ = (Ks[K2],D,R
′) be the (unique) extension of H

that extends each left-side vertex to an edge. Let H1 = (ab,D,R) be a sub-2-graph

of H where ab is an edge, and let H2 = H \ {a, b}. Moreover, let D′ = D + {x, y}

and H ′
1 = H1 ∪ {x, y} and H2 = H2 ∪ {x, y}, where ax, ay are red and bx, by are

blue, and where for all edges cd in the left component of H2 cx, dy are red and cy, dx

are blue. By the induction hypothesis, both H ′
1 and H ′

2 embed in G.

Now amalgamate H ′
1 and H ′

2 over (∅,D′). We clearly cannot add edges from a or b

to any vertex in the left component of H ′
2, and we cannot identify either since a and

b are both differently coloured to x and y than any vertex in the left component of

H ′
2. So we have to add non-edges, and the amalgam must therefore contain a copy

of H.

Note that given a set of 2-graphs of the form (Ks,D) realised in G we can compute

precisely the set of 2-graphs of the form (Ks[K2],D) that G embeds. Hence:

Corollary 3.24. Let G be a homogeneous 2-coloured (K∞[K2],Γr) 2-graph. Then

G is the generic 2-coloured (K∞[K2],Γr) 2-graph omitting (K2,K1)
1 and (K2,K1)

2;

specifically, G minimally omits precisely the following 2-graphs: (P3,∅), (K3,∅),

(K2,K1)
1 and (K2,K1)

2, and (∅,Kr) if r <∞.

3.4 n = ∞; uniqueness

In this section we aim to prove the following:

Theorem 3.25. Let G ∼= (Km[K∞],Γr) be a homogeneous 2-graph, where 2 ≤ m ≤

∞. Then, up to equivalence, either:

• for some 2 ≤ s < r, G is the 2-coloured homogeneous (Km[K∞],Γr) 2-graph

minimally omitting precisely (1,Ks)
1, which we write as Γr

s
, or where the r is

understood, Γs; or

• G is the 2-coloured homogeneous fully-generic (Km[K∞],Γr) 2-graph Γr

r
(or

Γr if it is understood that we are working in (Km[K∞],Γr)).

Write

G = (A1 +A2 + . . .+Am, B)

where Ai
∼= K∞ and B ∼= Γr. (This sum does not imply that m is finite.)

68



3.4 n = ∞; uniqueness

Lemma 3.26. One of the following holds: either

1. for all i and j, (Ai, B) ∼= (Aj , B); or

2. for all i, (Ai, B) is monochromatic.

Proof. Suppose that some (Ai, B) is not monochromatic; specifically, suppose that

there are a, b ∈ Ai and x, y ∈ B such that ax and by are different colours. (There is

no assumption that a 6= b or that x 6= y.

Because there are only two cross-edge colours, for each j 6= i there must be c ∈ Aj

and z ∈ B such that cz is the same colour as either ax or by. Suppose without loss

of generality that ax ∼= cz. Then consider the finite partial automorphism

α : a 7→ c, x 7→ z

which, by homogeneity, extends to β ∈ Aut(G). But β must map Ai to Aj, giving

the required isomorphism (Ai, B) → (Aj , B).

Of course, if every (Ai, B) is monochromatic then G is collapsing. We will show that

if G is not collapsing then every (Ai, B) is homogeneous. We will need a lemma

that allows us to split partial isomorphisms of Γr into maps that each move only

one point.

Lemma 3.27. Let H ∼= Γr and let C,D < H be finite subgraphs of H such that

there is an isomorphism

α : C → D

Then there exist κ, subgraphs C0, . . . , Cκ of H and isomorphisms β0, . . . , βκ−1 such

that:

1. C0 = C;

2. Cκ = D;

3. for each i, βi : Ci → Ci+1; and

4. for each i, there exists xi ∈ Ci such that, for all y ∈ Ci \ {xi}, βi(y) = y.

Proof. Label the points of C by c1, . . . , cλ, and the points of D by d1, . . . , dλ, so that

α(ci) = di. Let E1, E2, F < H be such that:

1. E1, E2, F ∼= C;
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2. C ∩E1 = C ∩E2 = C ∩F = D∩E1 = D∩E2 = D∩F = E1 ∩E2 = E1 ∩F =

E2 ∩ F = ∅;

3. E(C,F ) = E(C,E2) = E(E1, E2) = E(D,E1) = E(D,F ) = ∅;

4. if the points of Ei are labelled eij, and the points of F are labelled fj (so that

cj 7→ e1j , cj 7→ e2j , cj 7→ fj are all isomorphisms), then cie
1
j , fie

2
j , fie

1
j and die

2
j

are edges if and only if cicj is an edge (which is true if and only if didj is an

edge).

We need to check that, if r is finite, then there are no “rogue” copies of Kr. Now

the only way we can get one is by using at least two out of (C,D,E1, E2, F ), and

the only pairs between which there might be edges are

(C,D), (C,E1), (D,E2), (E1, F ), (E2, F )

If there is a vertex in at least three of the sets, there will be non-edges, since any

three out of (C,D,E1, E2, F ) will contain one of the pairs

(C,E2), (C,F ), (D,E1), (D,F ), (E1, E2)

Moreover, since C and D were given there will not be a Kr in (C,D). If there is a

Kr within one of the other pairs which could have one, without loss of generality it

will be in (C,E1). But if there is a Kr in

C ∪ E1 = {c1, . . . , cλ, e
1
1, . . . , e

1
λ}

then there will be one in

C = {c1, . . . , cλ}

since we can replace each e1i by ci. But by assumption there is no Kr in C.

The idea is to map C into E1, E1 into F , F into E2 and E2 into D, and to do these

maps one point at a time. In this case κ = 4λ.

I claim that the maps

αi : {e
1
1, . . . , e

1
i , ci+1, . . . , cλ} → {e11, . . . , e

1
i+1, ci+2, . . . , cλ}

for 0 ≤ i ≤ λ−1 given by αi(ci+1) = e1i+1, and which are the identity map elsewhere,

are all isomorphisms. There are similar sequences of isomorphisms from E1 into F ,

from F into E2 and from E2 into D which are essentially the same but in the

respective sets.

70



3.4 n = ∞; uniqueness

To see that αi is indeed an isomorphism, we need to know that it preserves edges

and non-edges. We need only worry about edges or non-edges starting from ci+1.

That is, ci+1cj should be an edge if and only if e1i+1cj is, and ci+1e
1
j should be an

edge if and only if e1i+1e
1
j is. By construction of the edges and non-edges between C

and E1 these can be seen to be true, so αi is indeed an isomorphism for each i. Thus

there is a sequence of λ isomorphisms from C to E1 that each move only one point

such that their composition maps C to E1. By symmetry, the required sequence of

length 4λ of isomorphisms from C to D that each move exactly one point exists.

We now use Lemma 3.27 by assuming that any finite partial automorphisms of

(A1, B) that do not extend to automorphisms of (A1, B) (and thus would falsify the

homogeneity of (A1, B)) are of the form

α : x 7→ y, z1 7→ z1, . . . , zλ 7→ zλ

Theorem 3.28. If (A1, B) is not homogeneous then G is collapsing.

Proof in the λ = 0 case. Suppose that the inhomogeneity of G is witnessed by the

finite partial automorphism

α : x 7→ y

If G is not collapsing then

(∃i)(∃z ∈ B)(∃a, b ∈ Ai)(az ∈ R1, bz ∈ R2)

and since all restrictions are isomorphic,

(∀i)(∃a, b ∈ Ai)(∃z ∈ B)(az ∈ R1, bz ∈ R2)

Let x, y ∈ B, and suppose that there are no a, b ∈ A1 so that

α : a 7→ b, x 7→ y

extends to an automorphism of G.

If it were the case that

(∃i)(∃a ∈ A1)(ax, ay ∈ Ri)

then

α1 : a 7→ a, x 7→ y

would do, and if it were the case that

(∃i)(∃a 6= b ∈ A1)(ax, by ∈ Ri)
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then likewise

α2 : a 7→ b, x 7→ y

suffices. Therefore, we may assume that neither holds and, without loss of generality,

for all a ∈ A1, ax is red and ay is blue.

But G is not collapsing, so (A1, B) is not collapsing, which means that we can choose

z ∈ B and c, d ∈ A1 such that cz ∈ R1 and dz ∈ R2.

Consider

β : z 7→ x, c 7→ c

which maps cz to cx, and both are red so this is a finite partial isomorphism, and

extends to an automorphism γ of G. But

dz ∼= γ(d)γ(z) = γ(d)x = ex

for some e ∈ A1, but dz is blue and ex is red for all e ∈ A1. Contradiction.

Proof in the λ ≥ 1 case. Let x, y, z1, . . . , zλ ∈ B be such that

α : x 7→ y, zi 7→ zi

is a finite partial isomorphism {x, z} → {y, z} where λ ≥ 1 (and thus a potential

counterexample to the homogeneity of (A1, B); recall that by Lemma 3.27 we may

assume that any counterexample is of this form). We will show that there is a ∈ A1

such that

β : a 7→ a, x 7→ y, zi 7→ zi

is an isomorphism (a, xz) → (a, yz) (and so α is not a counterexample after all).

If there is no such a, let

A1,1 = {a ∈ A : ax ∈ R1, ay ∈ R2}

and

A1,2 = {a ∈ A : ax ∈ R2, ay ∈ R1}

partition A1. By the proof above in the λ = 0 case,

α′ : x 7→ y

extends to an automorphism β′ of G that fixes A1 set-wise, so both A1,1 and A1,2

must be non-empty.
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Let

B1 = {z ∈ B : (∀a ∈ A1,1)(∀b ∈ A1,2)(az ∈ R1, bz ∈ R2)}

and

B2 = {z ∈ B : (∀a ∈ A1,1)(∀b ∈ A1,2)(az ∈ R2, bz ∈ R1)}

Let B3 = B \(B1∪B2). If B3 = ∅, then since one of A1,1 and A1,2 is infinite, and we

may assume that A1,1 is infinite, if we let a, b ∈ A1,1 and c ∈ A1,2 the finite partial

automorphism

π : a 7→ a, b 7→ c

should extend to an automorphism of G that fixes B1 and interchanges B1 with B2,

a contradiction. Hence B3 is non-empty.

Suppose u, v, w ∈ B1 and z ∈ B3 were such that uv ∼= wz. (We assume that w 6= u

but not necessarily that w 6= v.) It must be that there are b ∈ A1,1 and c ∈ A1,2 such

that bz ∼= cz; without loss of generality we may assume this colour is red. Consider

the finite partial automorphism

γ : u 7→ w, v 7→ z, b 7→ b

of G which extends to an automorphism δ. Now δ must both fix A1,1 set-wise (since

A1,1 is precisely the set of points to which u and w are red) and not fix A1,1 set-wise

(since it should map A1,1, the set of points to which v is red, to the set of points to

which z is red, which by definition is not A1,1). Contradiction. So if B1 has an edge

then between every u ∈ B1 and v ∈ B3 is a non-edge, and between every s, t ∈ B1

is an edge; and similarly if B1 contains a non-edge. So B1 is complete or empty.

By a similar argument, so is B2. Moreover, if B1 and B2 are both complete then

no vertex of B3 is in the same connected component of B as B1 or B2, which is a

contradiction since B is connected. Similarly if B1 and B2 are both empty then B

would fail to be connected, which is also false. So without loss of generality B1 is

complete and B2 is empty.

Let a ∈ A1,1 and b ∈ A1,2 and consider

η : a 7→ b, x 7→ y

Now η is a finite partial automorphism, so must extend to an automorphism ζ. But

ζ maps A1,1 to A1,2 and B1 to B2 (by the same argument as before), so B1
∼= B2

and hence both are singletons. But then this means that y has degree at most 1 in

B, and x has co-degree at most 1 in B. Neither of these are possible in B, which is

isomorphic to Γr for some r. Contradiction.
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3. The (Km[Kn],Γr) case

The only remaining possibility is therefore that there is a ∈ A1 such that ax ∼= ay,

as claimed, thus completing the proof of Theorem 3.25.

At this point we have proved that each (Ai, B) has to be homogeneous; clearly they

are all isomorphic. But, at least in principle, there are many ways by which these

can be jumbled. We seek to prove that only the “most generic” version for each

variant of (Ai, B) is possible. (Recall that, without loss of generality, (Ai, B) is

either the fully generic (K∞,Γr) or is the generic (K∞,Γr) minimally omitting some

(K1,Ks)
1 for some s < r.)

To conclude the proof of uniqueness, we will involve a sequence of several nested

inductions. Let G be a homogeneous 2-coloured (Km[K∞],Γr) 2-graph omitting

(K1,Ks)
1 and realising (K1,Kt)

1 whenever t < s. (If r = s = ∞ this simply means

that G embeds every (K1,Kt)
1 for t ∈ N.) We prove that G embeds every finite

2-graph of the form

H = (Ki1 + . . .+Kip ,D)

for all finite D ∈ Γr and all finite p ≤ m, subject to H not realising (K1,Ks)
1.

Lemma 3.29. G embeds every

H = ({b1, . . . , bp},D,R) ∼= (Kp,D)

such that no (bi,D) contains (K1,Ks)
1.

Proof. Clearly some

H0 = ({c1, . . . , cp},D,R0)

for some colours R0 must embed in G. We aim to replace each ci with the corre-

sponding bi in H. Specifically, we prove that if

Hi = ({b1, . . . , bi, ci+1, . . . , cp},D,Ri)

embeds in G, then so does

Hi+1 = ({b1, . . . , bi+1, ci+2, . . . , cm},D,Ri+1)

where each bj is coloured to D as in H, and each cj as in H0.

Amalgamate Hi with

H ′
i = ({bi+1, ci+1},D,R

′
i)
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3.4 n = ∞; uniqueness

Figure 3.16: The method of interchanging a point with unknown colours to the right

with one where these colours are correct.

over ({ci+1},D), where bi+1ci+1 is an edge, where bi+1 is coloured to D as in H,

and ci+1 is coloured to D as in H0. Note that H ′
i does indeed embed in G, since the

(K∞,Γr) subgraphs of G are all homogeneous, and so are determined by sections

4.1.1 and 4.1.2 and all of these must realise H ′
i if they realise the (K1,D) substruc-

tures of it. We therefore get a product H ′′
i , but cannot identify bi+1 with any bj or

cj , nor can we add any edges since if we did we would get a P3 on the left which we

cannot have. Hence H ′′
i has no new edges, and thus contains a copy of Hi+1. The

induction proceeds.

Theorem 3.30. G embeds every

H = (A1 + . . .+Ap,D,R)

not realising (K1,Ks)
1 where each Ai

∼= Kji.

Proof. Assume without loss of generality that |Ai| ≥ |Ai′ | whenever i < i′. Let i be

maximal such that ji > 1; by Lemma 3.29 we are done if ji = 1 for all i. We work

by induction on i.

Label the vertices of Ai by a1, . . . , aji , and label the vertices of Aj for j > i by bj.

Let

H1 = H \ (Ai \ {a1})

and

H2 = H ∩ (Ai,D)
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3. The (Km[Kn],Γr) case

and amalgamate H1 with H2 over their intersection ({a1},D). Note that H1 embeds

in G and H2 embeds by the classification of the homogeneous 2-coloured (K∞,Γr)

2-graphs earlier in the chapter. Moreover, in the amalgam we cannot identify any

vertices or join any ai with any other vertex. Hence the only possible product

involves adding non-edges, and the induction proceeds.
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Chapter 4

The (Γr,Γs) case

In this chapter we classify homogeneous 2-graphs G = (A,B,R) of the form (Γr,Γs).

For similar technical reasons to those in Chapter 3, and which we reiterate later,

we will assume that G has only two cross-edge colours. We have only been able to

classify those cases where r = s = 3 or r = s = ∞, but we have proved some lemmas

that are of more general application.

Many of the results, particularly early in this chapter, are essentially the same as

the corresponding results in Chapter 3, with the same proofs. In these cases we

repeat the statement but refer the reader to the proof given in Chapter 3.

4.1 Existence

We first give a list of the cases we suspect are the only ones that exist (up to

equivalence) and verify that they do indeed all exist.

Recall that an antichain of (isomorphism types of) 2-graphs is a set A of 2-graphs

so that if A,B ∈ A then A 6≺ B and B 6≺ A (i.e. A does not embed in B and B

does not embed in A). Also recall that, if A and B are graphs and i = 1, 2, then

(A,B)i is the (2-coloured) 2-graph whose components are A and B (in this order)

and where all cross-edges have colour i.

Proposition 4.1. Let r, s ∈ N∪{∞}\{0, 1, 2}. For every antichain A of monochro-

matic 2-graphs of the form (Km,Kn)
1 where m < r and n < s, there exists a homo-

geneous 2-coloured (Γr,Γs) 2-graph GA such that:

• GA omits all elements of A;

77



4. The (Γr,Γs) case

• GA embeds every finite 2-graph of the form (C,D)1 (where C < Γr and D <

Γs) that does not embed any element of A; and

• GA embeds every finite 2-graph of the form
(
Ĉ, D̂

)2
(where Ĉ < Γr and D̂ <

Γs).

Proof. Let A be such an antichain, and let C be the set of finite 2-graphs (whose

domain is a subset of N × {1, 2}) such that, if H = (C,D,R) ∈ C, then C < Γr,

D < Γs and H does not embed any element of A.

We need to check that C defines an amalgamation class. We claim that it will always

be sufficient to do the following:

• add blue cross-edges when a cross-edge relation between vertices in different

components is undetermined, and

• add non-edges on both sides whenever an edge relation within a component is

undetermined.

Clearly C has the hereditary property and appropriate closure under isomorphism,

so it is sufficient to check that it has the amalgamation property, and for this, as

usual, it is sufficient to verify the two-point amalgamation property. Specifically, it

is sufficient to verify that if the result of the amalgamation contains (Km,Kn)
1 for

some m,n ∈ N (and is therefore not in C) then one of the amalgamands contained

(Km,Kn)
1 (and so was not in C originally).

Let the amalgamands be H1 = (A1, B1, R1) and H2 = (A2, B2, R2). There are three

cases:

1. B1 = B2, A1 \A2 = {a1} and A2 \ A1 = {a2};

2. A1 = A2, B1 \B2 = {b1} and B2 \B1 = {b2}; and

3. A2 \ A1 = B1 \B2 = ∅, A1 \A2 = {a}, B2 \B1 = {z}.

In the first two cases the amalgamation product does not embed any (Km,Kn)
1

that did not embed in either of the amalgamands, as if it did then we would have

to increase the size of a complete subgraph on one of the two sides, and this does

not happen. Similarly, if we got a new (Km,Kn)
1 in the third case then we would

have had to add red across, which we don’t (and adding blue clearly does give

something in the class). Hence C is indeed an amalgamation class and thus defines

a homogeneous 2-graph GA.
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4.2 General results

4.2 General results

Our task throughout this chapter will be to prove that the instances in Proposition

4.1 are the only ones. We will accomplish this in the r = s = 3 and r = s = ∞

cases; that is we will prove the following:

Theorem 4.2. Let G be a homogeneous 2-coloured (Γr,Γr) 2-graph where r = 3 or

r = ∞. Then there exists some antichain A of finite 2-graphs of the form (Km,Kn)
1

(for various values of m and n) such that G is equivalent to some GA (as defined in

Proposition 4.1).

In this section we will prove some introductory results. Most of these results apply

for all values of r and s, however there is an important exception (namely Theorem

4.11) where for technical reasons we have had to restrict ourselves to the r = s = 3

and r = s = ∞ cases.

Let G = (A,B,R) be a homogeneous 2-coloured 2-graph where A ∼= Γr and B ∼= Γs

for some finite r, s ≥ 3, and R = (R1, R2). For each a ∈ A, let

Ba = {b ∈ B : (a, b) ∈ R1}

and

B′
a = {b ∈ B : (a, b) ∈ R2}

Similarly, for each b ∈ B let

Ab = {a ∈ A : (a, b) ∈ R1}

and

A′
b = {a ∈ A : (a, b) ∈ R2}

As in Chapter 3, and by using the same proofs as we used there, we can show that

Ba is always homogeneous (given that G is) and that, up to isomorphism, Ba is

independent of the choice of a.

Lemma 4.3. For all a, b ∈ A, Ba
∼= Bb.

Proof. See Lemma 3.3.

Lemma 4.4. For all a ∈ A, Ba is homogeneous.
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4. The (Γr,Γs) case

Proof. See Lemma 3.4.

The proofs in Chapter 3 do not immediately extend to show that Ba must always

be infinite in the (Γr,Γs) case. However we can adapt the proof used there and we

do so now.

Lemma 4.5. For all a ∈ A, Ba is infinite.

Proof. Suppose that Ba is finite, say that |Ba| = k for some finite k. We will show

that every such value leads to a contradiction.

Suppose k = 1, so for each a ∈ A there is a unique b ∈ B such that (a, b) ∈ R1. If,

for each b ∈ B, there was a unique a ∈ A such that (a, b) ∈ R1, then we would have

a perfect matching, which cannot happen as it contradicts Proposition 2.6. So take

b ∈ B and consider Ab. Consider two cases:

1. Ab has no edges, but has at least two vertices; or

2. Ab has an edge a1a2.

In the first case, since Γr is connected there is a non-edge a1a3 such that a1 ∈ Ab

and a3 ∈ A
′
b. Let a2 ∈ Ab (so in particular a1a2 is also a non-edge) and consider

α : a1 7→ a1, a2 7→ a3

Now α is an isomorphism {a1, a2} → {a1, a3}, so it extends to an automorphism α′

of G. But this automorphism would have to simultaneously fix b and map it to the

single vertex b′ in Ba3 , and this cannot be.

In the second case, take an edge a1a2 in Ab. Since A is connected, there is a path

from a1 to some vertex a3 ∈ A′
b such that a3 is the only vertex in the path not in

Ab. There must therefore be a path a3a4a5 where a4, a5 ∈ Ab. Consider

β : a4 7→ a4, a5 7→ a3

Now β is an isomorphism {a4, a5} → {a4, a3}, so it extends to an automorphism β′

of G. But this automorphism would have to simultaneously fix b and map it to the

single vertex b′ in Ba3 , and this cannot happen.

Hence k 6= 1, so k ≥ 2. We aim to prove that no finite value of k ≥ 2 is permissible.

Let a ∈ A. It is clear that if U < B and U ∼= Ba then there exists a′ ∈ A such that

U = Ba′ .
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4.2 General results

If we can find a, b, c ∈ A such that ab ∼= ac but

[Ba, Bb] 6∼= [Ba, Bc]

(which means that there is no isomorphism

φ : Ba ∪Bb → Ba ∪Bc

such that φ(Ba) = Ba and φ(Bb) = Bc) then the finite partial automorphism

θ : a 7→ a, b 7→ c

would extend to an automorphism φ of G that fixes Ba and maps Bb to Bc. But by

choice of a, b, c this is impossible.

So there can be only as many types of (Ba, Bx) as there are types of (a, x), namely

2. But if k ≥ 3 then there clearly must be at least three types of (Ba, Bx) (since

|Ba ∩ Bx| could have sizes 0, 1 or 2 at least, and there is at least one type for each

size). So the only value of k that could cause any difficulty is k = 2. If k = 2 and

either Ba
∼= K2 or s ≥ 4, then there are still at least three types:

• Ba ∩Bx = ∅;

• Ba = {u, v}, Bx = {u,w} and vw is an edge; and

• Ba = {u, v}, Bx = {u,w} and vw is a non-edge.

Hence for any k ≥ 2 there are more types of (Ba, Bx) than of (a, x), except possibly

when s = 3 and Ba
∼= K2, a case which we will handle specially. But we have shown

that this is impossible if G is homogeneous. Hence G cannot be homogeneous if Ba

is finite, unless Ba
∼= K2 and s = 3.

Suppose that s = 3 and Ba
∼= K2. In this case, of course, we cannot have an

edge between Ba and Bx if they intersect. However, we could have up to two edges

between Ba and Bx if their intersection is trivial. This therefore gives us four types

of (Ba, Bx), more than the two types of (a, x). So even in this special case G cannot

be homogeneous.

It is easy to see that the proofs of Lemmas 4.3, 4.4 and 4.5 work equally well if

we reverse left and right; hence, for all x, y ∈ B, Ax
∼= Ay and Ax is homogeneous

and infinite. Similarly, A′
x
∼= A′

y and A′
x is homogeneous and infinite, and, for all

a, b ∈ A, B′
a is homogeneous and infinite and B′

a
∼= B′

b. We will sometimes prove
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4. The (Γr,Γs) case

results for, say, Ba and then use the corresponding result for Ax without further

comment.

The following result allows us to use equivalence to reduce the number of cases we

have to consider. As with Lemmas 4.3 and 4.4, the proof is the same as the proof

of the corresponding result in Chapter 3.

Lemma 4.6. For every a ∈ A, either Ba or B′
a is isomorphic to Γs.

Proof. See Lemma 3.5.

We therefore assume in the rest of the chapter that B′
a
∼= Γs. We will now show

that the only possible values of Ba are Ba
∼= Γq for some q ≤ s.

If s 6= ∞ then Ba cannot omit Kn for any n ∈ N since then it would violate the

Infinite Ramsey Theorem (Theorem 2.14); similarly, even if s = ∞, Ba cannot

simultaneously omit Kn and Km for any m,n ∈ N. Hence we may assume that Ba

embeds K∞.

It remains to verify that Ba indeed cannot omit exactly one of P3 and P3 (of course if

it omits K2 then it must omit P3 and P3). This is similar to the situation in Lemma

3.12; the difference here is that we cannot simply make both abs non-edges (as we

could before in the (K∞,Γr) case, which was the prototype for all (Km[Kn],Γr)

cases).

Lemma 4.7. Let a ∈ A. If Ba contains P3 then it contains P3.

Proof. Ba is homogeneous and embeds P3 and K∞, so it contains 3K2, say with

edges x1y1, x2y2, x3y3. Moreover, there exists z1 in B joined to x1 but not to y1, x2,

y2, x3 or y3. Then if az1 is red P3 ⊆ Ba. Suppose instead that az1 is blue and let

H = (a, x1x2x3y1y2y3z1). The sequence of amalgamations in Figure 4.1 then shows

that Ba must contain P3 after all.

Remark. We can use a sequence of amalgamations where the graphs are the com-

plements of the ones given here to show that if Ba contains P3 then it contains

P3.

We have already shown that, for all b ∈ B, either Ab or A′
b is isomorphic to Γr.

However, one potentially difficult case could arise if, for example, Ab
∼= Γr and

B′
a
∼= Γs but A

′
b 6
∼= Γr and Ba 6∼= Γs. The following result tells us that this is not the

case.
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4.2 General results

Figure 4.1: If Ba contains P3 then it contains P3 also. The amalgamations in this di-

agram depend on H = (a, x1y1z1x2y2x3y3) (where H has edges x1y1, x1z1, x2y2, x3y3

and where az1 is blue and all other cross-edges are red) embedding in G as they use

substructures of H and results of earlier amalgamations in the sequence. H \ {z1}

embeds in G by homogeneity of Ba, and if az1 were red we would have P3 ⊂ Ba

immediately. We do not know whether the brown edge is an edge or a non-edge; we

have arranged matters so that this is unimportant.
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4. The (Γr,Γs) case

Lemma 4.8. Let a ∈ A and b ∈ B. If B′
a
∼= Γs and Ba 6∼= Γs, then A

′
b
∼= Γr.

Proof. Suppose not, so that G minimally omits (1, Q)1 and (P, 1)2 for some finite

graphs P < Γr and Q < Γs. Certainly G does embed (P, 1)1 since Ab
∼= Γr. It

will be enough if we can show that G embeds (P,Q′)1 for some subgraph Q′ < Q

where |Q \Q′| = 1, since then we can show that each point of P must be blue to the

remaining point q in Q. This can be seen in Figure 4.2.

Figure 4.2: Obtaining (1, Q)1 or (P, 1)2 in G; if for any p ∈ P pq is red then we get

(1, Q)1, otherwise we get (P, 1)1.

To obtain (P,Q′)1, note that we can label the points of Q′ by q1, . . . , qk. Split A into

2k pieces according to how they are coloured to Q′ (i.e. within a piece Ai, if a, b ∈ Ai

and q ∈ Q′ then aq ∼= bq). By Theorem 2.16 (or Theorem 2.15 if r = ∞), one of

these pieces must contain Γr. If any piece other than the “all-red” piece contains

Γr, then G would realise (Γr, 1)
2, so A′

b
∼= Γr. Otherwise the “all-red” piece contains

Γr, so G realises (Γr, Q
′)1 and hence (P,Q′)1 embeds in G.

We want to extend Lemma 4.5. For C < A let

BC = {b ∈ B : (∀c ∈ C)(c, b) ∈ R1}

and similarly for D < B let

AD = {a ∈ A : (∀d ∈ D)(a, d) ∈ R1}

The following is an easy extension of Lemma 4.4.

Lemma 4.9. If C < A is finite then BC is homogeneous.
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Proof. Let α be a finite partial automorphism of BC ; we require an automorphism

β of BC extending α. But γ = α∪1C is a finite partial automorphism of G, so must

extend to an automorphism δ of G which fixes BC set-wise. Then β = δ|BC
is the

required automorphism of BC that extends α.

The following lemma rules out certain potential forms of BC when C < A is finite.

Specifically, we show that BC is either empty, complete or isomorphic to either Γt or

Γt for some t; we do this by showing that it cannot be any of the other homogeneous

graphs.

Lemma 4.10. Let C < A be finite. If BC is either finite or isomorphic to Km[Kn]

or Km

[
Kn

]
for some m,n ∈ N ∪ {∞}, then BC is complete or empty.

Proof. Let C = {c1, . . . , ck}. If BC is not complete, empty or isomorphic to Γt or

Γt for some t, then by Lemma 4.9 it is one of the following:

1. C5,

2. K3 ×K3,

3. Km[Kn] where m,n ≥ 2 or

4. Km

[
Kn

]
where m,n ≥ 2.

Suppose that BC is finite. Let xyz be such that xy ∼= yz but xy 6∼= xz. Let w ∈ B\BC

be joined to x and no other vertex of BC (this exists by genericity of B). Consider

α1 : w 7→ w, y 7→ z, c1 7→ c1, . . . , ck 7→ ck

Now α1 is a finite partial automorphism, so must extend to an automorphism β1.

But α1 fixes BC set-wise, so fixes x pointwise (since w is joined only to x in BC).

But xy is an edge and β1(x)β1(y) = xz is a non-edge. Contradiction.

Now suppose that BC
∼= Km[Kn] for some m,n ≥ 2. The above paragraph shows

that m and n cannot both be finite. If m = ∞ and n < ∞, suppose that there

are connected components D1 and D2 in BC , that x, y ∈ D1, that z ∈ D2 and that

w ∈ B \BC is joined to x ∈ D1 and no other vertex in D1 ∪D2. Now consider

α2 : w 7→ w, y 7→ z, c1 7→ c1, . . . , ck 7→ ck

Again α2 is a finite partial automorphism so must extend to an automorphism β2.

But α2(BC) = BC and moreover:
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4. The (Γr,Γs) case

• β2(D1) = D2 (since y ∈ D1 is mapped to z ∈ D2), but

• β2(D1) 6= D2 (since wx is an edge but β(w)β(x) = wβ(x) cannot be an edge

if β(x) ∈ D2)

giving a contradiction.

Now suppose BC
∼= Km[K∞] (i.e. n = ∞) where m ≥ 2; this implies that s = ∞.

Let x1x2 and y1y2 be two edges in different connected components of BC and let

C ′ < A be such that C ′ ∼= C and

BC′ ∩BC = {x1, x2, y1, y2}

Let d1, . . . , dk be the vertices of C ′, and let w ∈ B \ (BC ∪BC′) be joined to x1 and

not to x2, y1 or y2. Consider

α3 : w 7→ w, x2 7→ y2, c1 7→ c1, d1 7→ d1, . . . , ck 7→ ck, dk 7→ dk

Now α3 is a finite partial automorphism of G and so extends to an automorphism

β3. By fixing C and C ′ pointwise, β3 fixes

BC ∩BC′ = {x1, x2, y1, y2}

set-wise. But then fixing w fixes x1 and hence also x2, but β3(x2) = y2. Contradic-

tion.

We have shown that BC cannot be isomorphic to Km[Kn] for any m,n ≥ 2. By

taking complements it will also follow that BC is not isomorphic to Km

[
Kn

]
.

Proving that BC is infinite (or null) when C is finite is more difficult. We will

however prove this if r = s = 3 or r = s = ∞.

Theorem 4.11. If C < A is a finite graph and either r = s = 3 or r = s = ∞,

then BC is infinite or null (of size zero).

Proof in the r = s = ∞ case. If |C| = 1 then this is true (and indeed Ba is not the

null graph for any a ∈ A if G is not monochromatic). So assume that |C| ≥ 2 and

that BC is finite but not the null graph. Write n = |C|.

By homogeneity, it can easily be seen that for any C ′ ∼= C in A, then BC′
∼= BC .

Similarly, for any graph D ∼= BC in B, there is C ′′ ∼= C in A so that D = BC′′ .

If there are C1, C2, C3, C4 ≤ A, all isomorphic to C (and not necessarily distinct),

then if

[C1, C2] ∼= [C3, C4]
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(that is, if there is an isomorphism α mapping C1∪C2 to C3∪C4 such that α(C1) =

C3 and α(C2) = C4), then

[BC1
, BC2

] ∼= [BC3
, BC4

]

since by homogeneity α must extend to an automorphism β of G such that β(BC1
) =

BC3
and β(BC2

) = BC4
.

Therefore, since if BC is finite then every type of [BC1
, BC2

] that could exist in B

must be realised, there are at least as many types of [C,C ′] as there are of [BC , BC′ ].

Similarly, there are at least as many types of [BC , BC′ ] as there are of [ABC
, ABC′

].

Since BC is known to be complete or empty, if ABC
is finite (and we will return

later to consider the possibility that it is infinite) then it must be that |BC | ≥ |ABC
|

(given that r = s = ∞; for other values the situation is slightly more complex).

Hence:

• ABC
is finite, and so complete or empty, so

• C is complete or empty, and no larger than ABC
, therefore

• we also have that n = |C| ≥ |BC |, and hence

• n = |C| = |BC | and C = ABC
.

The remaining cases are:

1. there is a “perfect matching” between types of [C,C ′] and types of [BC , BC′ ];

or

2. ABC
is infinite.

If ABC
is infinite, let D1,D2

∼= ABC
be disjoint subsets of A such that C < ABC

. Let

C1 < D1\C and C2 < D2 be isomorphic to C. Let φ be a finite partial automorphism

of G that fixes C and maps C1 to C2. Then φ should extend to ψ ∈ Aut(G). But

ψ(BC) = BC and ψ(BC1
) = BC2

6= BC1
, which is a contradiction since BC1

= BC .

Suppose there is a perfect matching between types of [C,C ′] and types of [BC , BC′ ].

We show that there must also be a perfect matching between these and types of

(C,BC′). Suppose instead that there are C1, C2, C3, C4 ≤ A, all isomorphic to C

(and not necessarily distinct) so that

[C1, C2] ∼= [C3, C4]
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4. The (Γr,Γs) case

but

(C1, BC2
) 6∼= (C3, BC4

)

Consider an isomorphism γ : C1 7→ C3, C2 7→ C4; this ought to extend to an auto-

morphism δ of G such that δ(C1) = C3 and δ(BC2
) = BC4

, which clearly cannot

hold. Hence there are at least as many types of [C,C ′] as of (C,BC′), and similarly

there are at least as many types of (C,BC′) as there are of [BC , BC′ ].

Recall that, since A and B are the random graph, every possible type of [C,C ′] or

[BC , BC′ ] must in fact be realised. (Indeed, even if r 6= ∞ or s 6= ∞, it is still

true that every possible type of [C,C ′] that omits Kr, and every type of [BC , BC′ ]

that omits Ks, must be realised.) We will show, for a contradiction, that there are

strictly fewer possible types of (C,BC′) than there are possible types of [C,C ′]; then

there will certainly be fewer realised types of (C,BC′) than of [C,C ′], destroying the

perfect matching.

But there can only be as many types of (C,BC′) as there are bipartite graphs where

the parts have sizes |C| and |BC | respectively. Since |C| = |BC | (as we are in the

r = s = ∞ case), and since r = s = ∞ so the types of [C,C ′] can realise any finite

complete graph, we have at most as many types of (C,BC′) as we do types of [C,C ′]

where C ∩ C ′ = ∅. But there is at least one more type of [C,C ′], namely [C,C],

and this destroys any prospect of a perfect matching.

Sketch proof in the r = s = 3 case. If r = s = 3, proceed as above when C and BC

are empty (note that the equality of |C| and |BC | does hold here as no K3 could

possibly embed in any [C,C ′]). In the case where one of C and BC is complete (and

assume without loss of generality that C is complete), then since |C| = 2 there are

precisely five types of [C,C ′], all realised. But |BC | ≥ 2 so there are at least 10 types

of [BC , BC′ ], all realised, and the required perfect matching of types cannot exist.

If C is complete (rather than empty) and non-null, it must be K2. There are then

precisely five types of [C,C ′]; the three shown in Figure 4.3. However, at least six

of the seven possible types of (C,BC′) must be realised. Hence the required perfect

matching of types cannot exist.

Remark. More information about the number of isomorphism types of bipartite

graphs is given in chapter 4.3 of Harary & Palmer (1973). We only needed a rather

crude estimate in the r = s = ∞ case; we would probably need to be much more

precise in cases where either or both are finite. (When r = s = 3 we were able

to count these types precisely; the same could be done if we were given fixed finite

values of r and s.)
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4.2 General results

Figure 4.3: The three types of [K2,K2] in Γ3 where the copies of K2 do not intersect.

We have now determined which all-red finite substructures can be minimally omitted

in G (specifically, up to equivalence, they must be of the form (Kp,Kq)
1 for some

p < r and q < s) and as such G must minimally omit an antichain of structures of

this form. Proving that G minimally omits no other finite 2-coloured 2-graphs is the

subject of the remainder of the chapter.

Note that this is one of the main reasons we must restrict ourselves to classifying

2-coloured (Γr,Γs) 2-graphs. The problem is not with the results proved so far in

this section; we can define

Bi
C = {x ∈ B : (∀a ∈ C)ax ∈ Ri}

and apply the same arguments in almost the same way. The problem is that we

cannot rely on the fact that the possible combinations of values (for a given finite

C < A) of Bi
C are easy to determine. This is a technical rather than a fundamental

difficulty (since in principle a classification of the 2-coloured homogeneous (n − 1)-

graphs would be sufficient to obtain the combinations of (Bi
C : 1 ≤ i ≤ n)), but it is

one we have not been able to resolve.

In cases where r is finite, it is possible to exploit this fact in certain situations to

obtain colourings (Km,D) whenever the constituent (K1,D) substructures embed

in G. More specifically:

Lemma 4.12. Suppose that r is finite. Suppose that every colouring of (K1, nD)

embeds in G for every n ∈ N and some finite graph D. Then every colouring

of (Km,D) embeds in G for every m ∈ N. Moreover, if G omits (K1,Kp)
1 and

embeds every (K1, nD) not embedding (K1,Kp)
1 then G embeds every (mK1,D) not

embedding (K1,Kp)
1.
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4. The (Γr,Γs) case

Remark. This result is stated here in this form because it is potentially useful in

classifying cases for values of r and s other than those we have been able to consider

in detail, and so for extending the results in this thesis.

Proof. We work by induction on m. Specifically, we show that if, for some D and

every p ∈ N, every colouring of (Km, pD) embeds in G, then any required colouring

H of (Km+1, nD) embeds in G. By assumption this is true whenever m = 1.

The idea is to keep adding points on the left-hand side until we are forced to add

non-edges, and then single out an appropriately large Km. If there are sufficiently

many copies of D on the right-hand side, we will be able to single out one with the

right colours to the left as long as it is conceivable a correct colouring does exist

(which we ensure with the condition in the statement of the lemma).

Let H1,H2
∼= (Km, k0D) (where the colours are still to be decided). Amalgamate

over (Km−1, kD) to obtain either the desired H or

H3,H4
∼= (K2 +Km−1, k1D)

and in general, given

H2i−1,H2i
∼= (Ki +Km−1, kiD)

amalgamate H2i−1 and H2i over an intersection

(Ki−1 +Km−1, k̂D)

to obtain either H or

H2i+1,H2i+2
∼= (Ki+1 +Km−1, ki+1D)

until we reach the point where i = n− 1 at which point we could not possibly add

an edge on the left.

Now km−1 = 2 (one copy to avoid identifying, one copy for the result) and ki =

2ki+1 + 2 (one set for H2i+1, one set for H2i+2, one copy for if we happen to add a

non-edge on the left and one extra copy to be sure we do not identify).

We need to choose colours to do two things:

• avoid identifying the two points not in the intersection of the amalgamands,

and

• choose the colours appropriately.
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4.3 Not all monochromatics embed, r = s = 3

The colours are chosen recursively. At the i = m−1 stage, one copy of D is coloured

so as to give H, and the other is coloured in such a way as to avoid identifying (blue

to the points in the middle and one point outside, red to the other point outside).

At the ith stage we duplicate both sets of colours at the (i + 1)th stage, and add

the two sets we need at the i = m− 1 stage. These propagate to the i = 1 stage.

H1 and H2 are well-defined, and by assumption they both embed in G. By proceed-

ing in this way so does H.

In the rest of this chapter, we will show that, in the following four sub-cases, any

homogeneous 2-coloured 2-graph must be one of the cases shown by Proposition 4.1

to exist:

1. Not all monochromatics embed in G ∼= (Γr,Γs) where r = s = 3;

2. All monochromatics embed in G ∼= (Γr,Γs) where r = s = 3; and

3. Not all monochromatics embed in G ∼= (Γr,Γs) where r = s = ∞;

4. All monochromatics embed in G ∼= (Γr,Γs) where r = s = ∞.

Throughout the rest of the chapter, a finite 2-coloured 2-graph H = (C,D,R) will be

called legal if C < Γr, D < Γs and H does not embed any element of the antichain

(if any) of which all elements are asserted to be minimally omitted from G.

4.3 Not all monochromatics embed, r = s = 3

Gminimally omits an antichain A of monochromatic 2-graphs. The results in section

4.2 imply that, up to equivalence, all elements of A are monochromatic red and both

components are complete. Hence the only possible values of A are:

1. A1 = {(K1,K2)
1, (K2,K1)

1};

2. A2 = {(K1,K2)
1}; and

3. A3 = {(K2,K2)
1}

We show in each case that G is generic subject to minimally omitting the elements

of the relevant antichain; that is, we show that G realises every finite 2-coloured

2-graph H such that:
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4. The (Γr,Γs) case

1. H omits all elements of the antichain; and

2. both components of H omit K3.

4.3.1 {(K1, K2)
1, (K2, K1)

1} minimally omitted

To show that G is generic (subject to minimally omitting (K1,K2)
1 and (K2,K1)

1),

Theorem 2.13 states that it is sufficient to show that any finite 2-coloured 2-graph

H ∼= (B,D) that satisfies the following two properties embeds in G:

• H does not embed (K1,K2)
1 or (K2,K1)

1, and

• B is either P3, P3 or Km for some finite m.

To show that any (K1,D) 2-graph not realising (K1,K2)
1 embeds in G, we use the

same proofs as we used for for the corresponding results in Chapter 3 and we do

not need to give them again here. Given that G realises any (K1,D) that omits

(K1,K2)
1, Lemma 4.12 tells us that G realises every H ∼= (Km,D) that omits

(K1,K2)
1.

The following result shows that G realises any legal finite monochromatic blue 2-

graph.

Lemma 4.13. For all finite C,D < Γ3, G realises (C,D)2.

Proof. LetG = (A,B,R) and assume that C < A. SplitB into subsetsB0, B1, . . . , Bk

according to the colours of each vertex to C (i.e. for all i, all a ∈ C and all x, y ∈ Bi,

ax ∼= ay, but for all i 6= j there exist a ∈ C, x ∈ Bi and y ∈ Bj such that ax 6∼= ay),

where B0 is monochromatic blue to C. By Theorem 2.16, there exists i such that

Bi contains Γ3, but if any vertex of C is red to the vertices of Bi, then Bi cannot

contain an edge. Hence only B0 can contain Γ3, and since some Bi contains Γ3 it

must therefore be B0. It follows that G realises (C,D)2 for any finite C,D < Γ3.

Remark. The idea we use here of splitting either B or D into subsets where all

vertices of the same subset have the same pattern of colours to some finite subgraph

C of A is one we use throughout this chapter.

Since results in section 4.2 tell us which finite (C,D)1 2-graphs embed in G, and

Lemma 4.13 says that every finite (C,D)2 embeds if C,D < Γ3, and since we have

determined which finite (Km,D) 2-graphs embed in G, we have reduced the task
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4.3 Not all monochromatics embed, r = s = 3

of classifying G to that of showing that G realises all legal mixed-colour finite 2-

graphs of the forms (P3,D) and (P3,D). Before we do this, we will first show that G

realises any legal mixed-colour finite 2-graph of the form (K2,D); this is needed as

an intermediate step towards obtaining all legal 2-graphs of the forms (P3,D) and

(P3,D).

Lemma 4.14. G realises any “legal” finite 2-graph of the form H = (K2,D).

Proof. Let H = (ab,D,R) (where ab is an edge) and let D = D0 ⊔ D1 ⊔ D2 ⊔ D3

such that all vertices of D0 and D1 are red to a, all vertices of D0 and D2 are red

to b, and all other cross-edges are blue. For H to be legal, D0 = ∅ and D1 and D2

cannot contain any edges. We must show that any such H does embed in G.

If only D3 is non-empty, then H embeds by Lemma 4.13, so we may assume without

loss of generality that D1 is non-empty. We prove the lemma in two parts:

1. we show that H is realised if D2 = ∅; then

2. we show that H is realised when both D1 and D2 are non-empty.

In the first case (where D2 = ∅), amalgamate (a,D) with (ab,D3) over (a,D3). By

the above results the top and bottom embed in G, and b cannot be red to any point

in D1 (since a is, and if both are then (K2,K1)
1 would be realised). Hence H must

embed in G. This amalgamation can be seen in the left-hand diagram in Figure 4.4.

In the second case (where D2 6= ∅), we may assume (by applying the previous case)

that (ab,D1 ∪D3) is realised in G. Amalgamate it with (b,D) (which also embeds

in G) over (b,D1 ∪ D3). Again a cannot be red to any point in D2 since b is and

both cannot be, so H must embed in G. This amalgamation can be seen in the

right-hand diagram in Figure 4.4.

Lemma 4.15. G realises any “legal” finite 2-graph of the form H = (P3,D).

Proof. Write H = (a0a1a2,D) where the edges are a0a1 and a1a2, and partition D

into 8 subsets D0, . . . ,D7 so that ai is red to all of Dj if ⌊j/2i⌋ ≡ 0 (mod 2) and

blue to all of Dj if ⌊j/2i⌋ ≡ 1 (mod 2). Note that D0, D1 and D4 are empty and

every other Dj , other than D7, contains no edges.

We split into two cases:

1. the case where only D5 and D7 are non-empty; and

2. cases where at least one of D2, D3 and D6 are non-empty.
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4. The (Γr,Γs) case

Figure 4.4: The amalgamation diagrams needed for the first (shown on the left) and

second (shown on the right) cases of Lemma 4.14.

In the first case, amalgamate (a0a1a2,D7) with (a0a1,D5∪D7) over (a0a1,D7). Both

amalgamands embed in G, and a2 cannot be red to any vertex of D5, so it must be

blue, so we obtain H. This amalgamation can be seen in the left-hand diagram in

Figure 4.5.

For the second case, assume that we have first done all instances of the first case.

Amalgamate (a0a1a2,D5 ∪ D7) with (a0a2,D) over (a0a2,D5 ∪ D7). Again, both

amalgamands embed in G, and if a1 were red to any vertex in D2 ∪ D3 ∪ D6 we

would obtain (K2,K1)
1 which we don’t. Hence a1 is blue to all of D2 ∪D3 ∪D6 and

so we must obtain H. This amalgamation can be seen in the right-hand diagram in

Figure 4.5.

Lemma 4.16. G realises any “legal” finite 2-graph of the form H = (P3,D).

Proof. Write H = (a0a1a2,D) where the edge is a0a1, and split D into 8 pieces

D0, . . . ,D7 so that ai is red to all of Dj if ⌊j/2i⌋ ≡ 0 (mod 2) and blue to all of Dj

if ⌊j/2i⌋ ≡ 1 (mod 2). Note that D0 and D4 are empty and every other Dj , other

than D7, contains no edges.

This time we need to divide into three cases:

1. cases where only D2, D3 and D7 can be non-empty, and

2. cases where at least one of D1 and D5 is non-empty, but D6 is still empty; and

3. cases where D6 is non-empty.
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4.3 Not all monochromatics embed, r = s = 3

Figure 4.5: The amalgamation diagrams needed for the first (left) and second (right)

cases in Lemma 4.15.

In the first case, amalgamate (a0a1a2,D7) with (a0a2,D) over (a0a2,D7). Both

amalgamands embed in G. By construction, no vertex of D \D7 = D2 ∪D3 can be

red to a1, or else we would obtain (K2,K1)
1 which we don’t. Hence H embeds in

G. This amalgamation can be seen in the left-hand diagram in Figure 4.6.

In the second case, we may assume that (a0a1a2,D2 ∪ D3 ∪ D7) embeds in G by

applying the first case. Amalgamate it with (a1a2,D), which also embeds in G,

over (a1a2,D2 ∪ D3 ∪ D7). No vertex of D1 ∪ D5 can be red to a1, or else we

obtain (K2,K1)
1 in G. Hence they must all be blue and H embeds in G. This

amalgamation can be seen in the right-hand diagram in Figure 4.6.

Figure 4.6: The amalgamation diagrams needed for the first (left) and second (right)

cases in Lemma 4.16.
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4. The (Γr,Γs) case

In the final case, where D6 is non-empty, we define two auxiliary 2-graphs H1 =

(a0a1b,D) and H2 = (a1a2b,D) where b is joined to a0 and a2, but not to a1, and b

is red to all vertices of D5 (if any) and blue to all other vertices of D. Then H1 does

embed in G by use of the first two cases, and H2 clearly does by Lemma 4.15. So

amalgamate over (a1b,D), and note that a0a2 must be a non-edge in the amalgam

(they can’t be identified since D6 is non-empty and vertices of D6 are red to a0 and

blue to a2, and they can’t be joined since then a0a2b would be a K3). Hence we

must again obtain H, as required. This amalgamation is shown in Figure 4.7.

Figure 4.7: The amalgamation diagram needed for the third case of Lemma 4.16.

Hence G must embed every “legal” (B,D) where

B ∈ {P3, P3} ∪ {Km : m ∈ N}

and by Theorem 2.13 G is therefore uniquely determined.

4.3.2 {(K1, K2)
1} minimally omitted

As in the previous section, G realises every finite 2-coloured 2-graph of the form

(Km,D) with D < Γ3 that omits (K1,K2)
1. It is therefore sufficient to show that

G realises every finite 2-coloured 2-graph of the form (B,D) which omits (K1,K2)
1

and where D < Γ3 and B is either P3 or P3. Moreover, we can easily extend Lemma

4.13 to show that G must realise any (C,D)2 where C,D < Γ3, since the proof of

that result did not use the fact that (K2,K1)
1 was minimally omitted.

We therefore have to transfer Lemmas 4.14, 4.15 and 4.16 to this new situation

where (K2,K1)
1 is realised.
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4.3 Not all monochromatics embed, r = s = 3

Figure 4.8: The amalgamation needed for Lemma 4.17. H2 embeds because the left

component has no edges, and H1 embeds by induction on l for increased n. Only

cross-edges to w are shown.

Lemma 4.17. G realises any “legal” finite 2-graph of the form H = (K2+Km, lK2+

Kn).

Proof. We prove that any

H = (abc1 . . . cm, x1 . . . xny1 . . . ynz1 . . . zl, R)

embeds where H is such that the edges are ab and, for each i, yizi. We may also

assume that az1 is blue.

Let

H1 = (abc1 . . . cm, wx1 . . . xny1 . . . ylz2 . . . zl)

and

H2 = (bc1 . . . cm, wx1 . . . xny1 . . . ylz1 . . . zl)

where wz1 is an edge and where aw is red and bw and ciw are blue. H1 and H2 are

shown in Figure 4.8.

Now H1 embeds in G by induction on n and H2 embeds in G by Lemma 4.12 (if

l = 1 then both H1 and H2 embed in G by this lemma). So amalgamate H1 with

H2 over their intersection

(bc1 . . . cm, wx1 . . . xny1 . . . ylz2 . . . zl)

and note that az cannot be red (since aw is) so it has to be blue, thus yielding

H.
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4. The (Γr,Γs) case

Now all we have to do is replace each K2 with a P3. We do so using the following

two lemmas.

Lemma 4.18. Suppose, for some finite graphs D and E, that G realises every

H ′ = (D +K2, E +K1)

that omits (K1,K2)
1. Then G realises every

H = (D + P3, E)

omitting (K1,K2)
1.

Proof. Suppose we wish to show that G realises

H = (D + P3, E,R)

where the P3 is labelled abc and ab, bc are edges. Let

H1 = (D + {a, b}, E + {z})

and

H2 = (D + {b, c}, E + {z})

where az is red and bz and cz are blue. Now H1 and H2 embed in G by hypothesis,

and so we can amalgamate them over their intersection

(D + {b}, E + {z})

But we cannot identify a with c (because az is red and cz blue), and we cannot join

a and c (as then we would have a K3 in G, which we don’t). So we must add a

non-edge and obtain H.

This process is illustrated in the left-hand amalgamation diagram in Figure 4.9.

Lemma 4.19. Suppose, for some finite graphs D and E, that G realises every

H ′ = (D +K1, E +K2)

that omits (K1,K2)
1. Then G realises every

H = (D,E + P3)

omitting (K1,K2)
1.
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Figure 4.9: The amalgamations required for the inductive step in changing a K2 on

the left component of H to a P3: Lemma 4.18 needs the first amalgamation and

Lemma 4.19 needs the second amalgamation.

Proof. Suppose we wish to show that G realises

H = (D,E + P3, R)

where the P3 is labelled xyz and xy, yz are edges. Let

H1 = (D + {a}, E + {x, y})

and

H2 = (D + {a}, E + {y, z})

where ax is red and ay and az are blue. Now H1 and H2 embed in G by hypothesis,

and so we can amalgamate them over their intersection

(D + {a}, E + {y})

But we cannot identify x with z (because ax is red and az blue), and we cannot

join x and z (as then we would have a K3 in G, which we don’t). So we must add

a non-edge and obtain H.

We see this in the right-hand amalgamation diagram in Figure 4.9.

The above results combine to give us the following result that concludes our classifi-

cation of the homogeneous 2-coloured (Γ3,Γ3) 2-graphs minimally omitting (K1,K2)
1:
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4. The (Γr,Γs) case

Theorem 4.20. Let G be a homogeneous 2-coloured (Γ3,Γ3) 2-graph minimally

omitting (K1,K2)
1. Then G is the generic homogeneous 2-coloured (Γ3,Γ3) 2-graph

minimally omitting (K1,K2)
1.

Proof. G realises every (P3+mK1, nP3) omitting (K1,K2)
1. We can apply Theorem

2.13 to show that G realises every (D,nP3) (where D is a finite K3-free graph)

that omits (K1,K2)
1, and apply Theorem 2.13 again to show that G must in fact

realise every H = (D,E), where D and E are finite K3-free graphs, that omits

(K1,K2)
1.

4.3.3 {(K2, K2)
1} minimally omitted

If (K2,K2)
1 is minimally omitted, this must mean that (K1,K2)

1 and (K2,K1)
1 are

embedded in G. It follows that every monochromatic (K1,D) and (D,K1) embeds

in G. The proofs given in section 3.3.2 show that G realises every (K1,D,R) where

D ∼= nP3 for some n ∈ N.

Lemma 4.21. G realises every colouring of (K2+Km,K2+Kn) where the (K2,K2)

is not monochromatic red.

Proof. Let

H = (abc1 . . . cm, x1 . . . xnyz,R)

where the only edges are ab and yz. Without loss of generality we can assume that

az is blue.

Let

H1 = (abc1 . . . cmd,wx1 . . . xny)

and

H2 = (bc1 . . . cmd,wx1 . . . xnyz)

where in addition ad and wz are edges and aw, dw and dz are red. Now both K1

and K2 have an edge-free graph on one or other component, so both embed in G.

Amalgamate them over their intersection

(bc1 . . . cmd,wx1 . . . xn)

as in Figure 4.10, and note that az cannot be red, so must be blue, and if it is blue

we must obtain H. Hence H embeds in G.
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4.3 Not all monochromatics embed, r = s = 3

Figure 4.10: The amalgamation diagram for Lemma 4.21; we have omitted all cross-

edges except the ones we added as red (aw, dw, dz).

We would like to extend Lemma 4.21 to show, by induction on m, that G realises

every instance of

(K2 + lK1,mK2 + nK1)

with no all-red (K2,K2)
1. This needs a little care; specifically, we need to do our

induction through P3. We now state the lemma we will use to convert a K2 to a P3.

(We gave the proof of a corresponding result in section 4.3.2 and as this proof also

applies in this case we do not need to repeat it.)

Lemma 4.22. Suppose, for some finite graphs D and E, that G realises every

H ′ = (D +K2, E +K1)

that omits (K2,K2)
1. Then G realises every

H = (D + P3, E)

omitting (K2,K2)
1.

Proof. See Lemma 4.18; the proof is the same.

We now extend Lemma 4.21 using the following lemma.

Lemma 4.23. Suppose, for some finite graphs D and E, that G realises every

H ′ = (P3 +D,E +K1)
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that omits (K2,K2)
1. Then G realises every

H = (K2 +D,E +K2)

omitting (K2,K2)
1.

Proof. Suppose we want to show that G realises

H = (D + {a, b}, E + {y, z})

where az is blue and ab, yz are edges. Let

H1 = (D + {a, b, c}, E + {x, y})

and

H2 = (D + {b, c}, E + {x, y, z})

where bc and xy are non-edges and ac and xz are edges, and ax, cx and cz are red.

By Lemma 4.22, H1 embeds in G, and, by Lemma 4.12, H2 embeds in G. So we can

amalgamate H1 with H2 over their intersection

(D + {b, c}, E + {y, z})

as in Figure 4.11, and az cannot be red so must be blue, giving us H.

Finally we can successively convert each edge on the right to a P3 using the following

lemma. As the proof is the same as for the corresponding result in section 4.3.2, we

only give the statement here.

Lemma 4.24. Suppose, for some finite graphs D and E, that G realises every

H ′ = (D +K1, E +K2)

that omits (K2,K2)
1. Then G realises every

H = (D,E + P3)

omitting (K2,K2)
1.

Proof. The proof of Lemma 4.19 also works here.

We are now in a position where we can combine the above results and conclude our

classification of the homogeneous 2-coloured (Γ3,Γ3) 2-graphs minimally omitting

(K2,K2)
1
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Figure 4.11: The amalgamation needed in Lemma 4.23 to convert a vertex on the

right component to an edge at a price of reducing the P3 on the left component to

an edge. The only real difference between this diagram and Figure 4.10 is that D

and E are now not just sets of isolated vertices.

Corollary 4.25. Let G be a homogeneous 2-coloured (Γ3,Γ3) 2-graph minimally

omitting (K2,K2)
1. Then G is the generic homogeneous 2-coloured (Γ3,Γ3) 2-graph

minimally omitting (K2,K2)
1.

Proof. G realises every (P3+mK1, nP3) omitting (K2,K2)
1. We can apply Theorem

2.13 to show that G realises every (D,nP3) omitting (K2,K2)
1 for any finite graph

D, and apply Theorem 2.13 to show that G must in fact embed every (D,E) that

omits (K2,K2)
1 where D and E are finite graphs.

4.4 All monochromatics embed - r = s = 3

In this section, suppose that G embeds all finite monochromatic 2-graphs (C,D)i

where i ∈ {1, 2}, C < Γr and D < Γs. We will show that G is in fact generic; that

is, we show that G embeds every finite 2-graph (C,D, S) where C < Γr, D < Γs

and S = (S1, S2) is a partition of V (C)× V (D).

To do this we will use the copying argument (Theorem 2.13): that is, we show that

every 2-colouring of (Km, nP3) embeds in G for every m,n ∈ N, and that every

2-colouring of (P3, nP3) and (P3, nP3) embeds in G for every n ∈ N. We will then

apply the copying argument twice; once on the left to obtain every colouring of
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4. The (Γr,Γs) case

(C,nP3) for every finite C < Γ3 and every n ∈ N, and then once on the right to

obtain every colouring of (C,D) for every finite C,D < Γ3.

We will therefore prove that, for everym,n, p ∈ N, every colouring of (P3+Km, pP3+

Kn). We will work by means of alternation, starting with 2-graphs of the form

(K2 +Km,K2 +Kn) – the idea is to:

• change the K2 on the left to a P3, while keeping the right-hand side fixed, then

• add an edge on the right while reducing the P3 on the left to a K2.

We first need to prove explicitly that G does indeed embed every 2-coloured 2-graph

of the form (K2,K2). This proof also shows that G embeds any 2-colouring of

(K2 +Km,K2 +Kn) if the embedded (K2,K2) is not monochromatic.

Lemma 4.26. G embeds every 2-colouring of (K2,K2).

Remark. This argument, by adding extra points on the left and right as necessary,

also gives us every colouring of (K2 +Km,K2 +Kn) as long as the (K2,K2) is not

monochromatic.

Proof. LetH = (ab, xy,R) be a 2-graph of the form (K2,K2). IfH is monochromatic

it embeds in G by assumption, so assume, for some p, q ∈ {a, b} and r, s ∈ {x, y},

that pr is red and qs is blue. (There is no assumption that p 6= q or that r 6= s.

However, in practice both will hold, and the diagrams are drawn on the basis that

p 6= q and r 6= s.)

Construct the amalgamation diagram in Figure 4.12. By Lemma 4.12 both amal-

gamands do embed in G. (Note that for the corresponding result in the r = s = ∞

case this cannot be taken for granted. We will return to this point later.) The

diagram is constructed so that if cw is blue then (cd, uw) is a copy of (pq, rs), and if

cw is red then (ce, vw) is a copy of (pq, rs). (This type of argument will be implicit

throughout the chapter and will not usually be written out with this level of detail.)

Hence (pq, rs) embeds in G, as required.

We next need to show that G embeds every 2-colouring of H = (K2,K2 +Kn) for

every n ∈ N; we did the case n = 0 in Lemma 4.26. In order to do this, we need to

go through (P3,K2 +Kn) (but we only need certain cases of this, and it will turn

out that we can show those cases embed in G without circularity). We can assume
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Figure 4.12: We desire (pq, rs) (the false colours of ps and qr are just to identify

these cross-edges in the amalgamation diagram, and cross-edges without specified

colours can be taken as arbitrary). Note that whether cw is red or blue we necessarily

get (pq, rs).

that the (K2,K2) in H is monochromatic; if it isn’t, the Remark to Lemma 4.26

suffices to show that H embeds in G.

We first do the base case (n = 1); that is, we show that every 2-colouring of (K2,K2+

K1) embeds in G.

Lemma 4.27. G embeds every 2-coloured H = (K2,K2 +K1, R).

Proof. By Lemma 4.26 and the Remark, we may assume that the (K2,K2) is

monochromatic red but that H is not monochromatic. Let H = (ab, xyz) where

the only edges are ab and xy, and distinguish two cases:

1. z is red to a and blue to b (or vice versa); or

2. xz and yz are blue.

For the first case, use the left-hand amalgamation in Figure 4.13 (if az is red use

a, c, x, y, z and if az is blue use a, b, x, y, z); for the second, use the other two amal-

gamations (the lower amalgamand in the second amalgamation is given by Lemma

4.12).

We now inductively increase n; for this we need to go through P3. Let H =

(ab, xyz1 . . . zn), where the only edges are ab and xy. Suppose that ax, ay, bx, by

are all red. We consider the three cases separately:

1. azi and bzi are blue for all i;

105

5/5_g3g3_k2k2.eps


4. The (Γr,Γs) case

Figure 4.13: Obtaining (K2,K2 +K1) in (Γ3,Γ3) where the (K2,K2) is monochro-

matic red. Cross-edge types not specified can be made red.

2. azi ∼= bzi for all i, but (without loss of generality) az1 is red and az2 is blue;

and

3. without loss of generality, az1 is red and bz1 is blue.

We consider these cases in this order. Note that later cases need a simpler amalga-

mation diagram but more data.

Lemma 4.28. For all n, let Hn be the 2-graph

(({a, b}, {ab}), ({x, y, z1 , . . . , zn}, {xy}), ({ax, ay, bx, by}, {azi , bzi : 1 ≤ i ≤ n})

(that is, Hn is of the form (K2,K2+Kn) where the (K2,K2) part is monochromatic

red and all other cross-edges are blue). Suppose that, for some n ≥ 1, Hn embeds in

G. Then so does Hn+1.

Proof. We first show that

H ′
n = (abc, xyz1 . . . zn)

embeds in G, where bc is an edge, ac is a non-edge, cx is red and dy and every czi and

dzi is blue. For this, amalgamate as in Figure 4.14; note that the top amalgamand

embeds by the induction hypothesis, and the bottom amalgamand embeds by the

Remark to Lemma 4.26.

Then amalgamate H ′
n with the (P3,Kn+3) 2-graph H

′′
n (over their intersection), as

in Figure 4.15. This creates a product H̃n.

Finally, amalgamate H̃n with the (K2,D) 2-graph in Figure 4.16 over their intersec-

tion. This will necessarily produce Hn+1 in G.

We now inductively obtain the other two cases of (K2,K2+Kn). We do these using

the following lemma.
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Figure 4.14: Obtaining H ′
n in Lemma 4.28. The top amalgamand embeds by the

induction hypothesis; the bottom embeds by the Remark to Lemma 4.26.

Figure 4.15: Obtaining H̃n in Lemma 4.28. The top amalgamand is H ′
n; the bottom

embeds by Lemma 4.12.
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4. The (Γr,Γs) case

Figure 4.16: Obtaining Hn+1 in Lemma 4.28. The top amalgamand is H̃n; the

bottom embeds by Lemma 4.12.

Lemma 4.29. Fix n ≥ 2 and let H be a 2-graph either of the form

(({a, b}, {ab}), ({x, y, z1 , . . . , zn}, {xy}), (R1 , R2))

where {ax, ay, bx, by, az1} ⊆ R1 and

• either bz1 ∈ R2,

• or bz1 ∈ R1 and az2, bz2 ∈ R2.

Suppose that G embeds every 2-graph of the form

(({c, d}, {cd}), ({u, v, w1 , . . . , wn′}, {uv}), (S1 , S2))

where n′ < n and where cu, cv, du, dv ∈ S1. Then H also embeds in G.

Remark. It is somewhat more convenient to do the induction for these cases together

than to do them separately. They do both require rather different amalgamations.

Proof. If H has bz1 ∈ R2 then induction proceeds as in Figure 4.17.

If H has bz1 ∈ R1 and az2, bz2 ∈ R2 then induction proceeds as in Figure 4.18.
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Figure 4.17: The inductive step for showing that H ∼= (K2,K2+Kn) in Lemma 4.29

embeds in G if bz1 ∈ R2. The purple oval contains one fewer isolated point than H.

At this point we are in a position to present the lemma that allows us to change a

K2 on the left to a P3 on the left. Note that its extreme simplicity is due to our

assumption that s = 3. The price we pay is that one of the isolated vertices on

the right is “used up” - since we can have arbitrarily many of these, though, this is

acceptable.

Lemma 4.30. If, for some n and some graph D, every colouring of

(K2,D +Kn+1)

embeds in G, then so does every colouring of

(P3,D +Kn)

Proof. Suppose we want

H = (abc,D + E)

where ab, bc are edges and ac is a non-edge, and where E ∼= Kn. Let

H1 = H + (∅, z) \ (c,∅)

and

H2 = H + (∅, z) \ (a,∅)

where az, bz are red and bz is blue. By assumption H1 and H2 embed in G. Amal-

gamate over their intersection and note that a and c can neither be joined nor

identified, so we necessarily obtain H.
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Figure 4.18: The inductive step for showing that H ∼= (K2,K2 + Kn) in Lemma

4.29 embeds in G if bz1 ∈ R1 and az2, bz2 ∈ R2. The purple oval contains two fewer

isolated points than H.

There is a counterpart to Lemma 4.30 that allows us to change each K2 on the right

to a P3. For this we will need to be able to add singletons on the left, as each time

we change a K2 to a P3 we “use up” one of these singletons.

Before we make further changes to the left-hand side, we will obtain every colouring

of (K2,mK2 +Kn). Distinguish three cases:

1. every (K2,K2) is monochromatic red;

2. every (K2,K2) is monochromatic, but some are red and some are blue; and

3. there is a non-monochromatic (K2,K2).

In case 1 it is sufficient to apply Lemmas 4.28 and 4.29 with the extra edges. In case

3 it is sufficient to apply the Remark to Lemma 4.26 on the non-monochromatic

(K2,K2). So this means that we only have to consider case 2. But this can be

handled easily using the induction shown in Figure 4.19. In this induction, the

2-graphs whose left components are P3 are obtained using Lemma 4.30.
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Figure 4.19: The inductive step for obtaining H ∼= (K2,mK2 +Kn) in G ∼= (Γ3,Γ3)

when every embedded (K2,K2) in H is monochromatic but some are monochromatic

red and some are monochromatic blue.

We now need to add singletons to the left. We will begin with the base case -

obtaining all colourings of (K2+K1,K2+K1). We only need to consider cases of this

where the (K2,K2) is monochromatic red as if the (K2,K2) is not monochromatic

then we can simply use the Remark to Lemma 4.26, and the “monochromatic red”

and “monochromatic blue” cases are symmetric. These cases will be obtained using

the following lemma.

Lemma 4.31. G realises all colourings of H = (K2 + K1,K2 + K1) where the

(K2,K2) is monochromatic red.

Proof. Let H = (abc, xyz) where the edges are ab and xy. If c is red to all of x, y, z,

or if z is red to all of a, b, c, we can simply apply the arguments in Lemma 4.27 with

an extra all-red point (reversing the sides if necessary). So assume that both c and

z have a blue neighbour.

The sequence of amalgamations in Figure 4.20 allows us to handle a case where

either c or z has a red and a blue to the edge on the other side. (We do this in the

case where cx and az are blue and bz, cy, cz are red; the other cases are similar.)

Similarly, we can handle a case where az, bz, cx, cy are blue by the method shown in

Figure 4.21.

Note that in these diagrams we have shown cz as red; if it is blue, then in fact

the same amalgamations will apply. However, this does leave the case where cz is

the only blue cross-edge. In this case we will need to apply the amalgamations

in Figure 4.22; these are straightforward because we can obtain using a sequence
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Figure 4.20: Obtaining (K2 + K1,K2 + K1) where cx is blue and cy and cz are

red. We show this for the case where az is also blue and bz red; the other instances

are handled similarly. (Recall that the (K2 +K1,K2) 2-graphs shown are known to

embed in G by Lemma 4.27.)

of amalgamations whose initial amalgamands are monochromatic 2-graphs and 2-

graphs with empty (i.e. edge-less) graphs on one side.

In general, we wish to obtain (K2+Kl,mK2+Kn) for all l,m, n ∈ N. This means we

need to extend Lemmas 4.28 and 4.29 and the above remarks about (K2,mK2+Kn).

But it is easy to see that, for fixed l, we can carry out all of these inductions in just

the same way as we did in the l = 0 case; the only difficult case would be when

n = 1 for each value of l. But we can also carry out the inductions for Lemmas 4.28

and 4.29 (when m = 1) for fixed n and increasing l, so in fact even the l = 1 case

poses no difficulty (given the l = n = 1 case, which we have from Lemma 4.31).

HenceG does realise every (K2+lK1,mK2+nK1), and indeed every (P3+lK1,mK2+

nK1). It remains to adapt Lemma 4.30 to a result that converts a K2 on the right to

a P3, but in fact the amalgamation used there works here if we reverse the sides (we

simply use up one left-side point to avoid identifying, and this is acceptable since

we can have arbitrarily many isolated vertices in the left component).
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Figure 4.21: Obtaining (K2 + K1,K2 + K1) where az, bz, cx and cy are blue and

cz is red. All cross-edges not shown are red. The (K2 + K2,K2) 2-graphs shown

embed in G as a result of earlier lemmas.
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Figure 4.22: Obtaining (K2+K1,K2+K1) where cz is blue and all other cross-edges

are red. All cross-edges not shown are red.

So G realises every (P3 + lK2,mP3 + nK1) for all l,m, n ∈ N. Hence

Theorem 4.32. Let G be a 2-coloured homogeneous (Γ3,Γ3) 2-graph embedding

every finite monochromatic 2-graph (C,D)i where C,D < Γ3 and either i = 1 or

i = 2. Then G is the generic 2-coloured homogeneous (Γ3,Γ3) 2-graph.

Proof. G realises every (P3 + lK2,mP3 + nK1) for all l,m, n ∈ N. Apply Theorem

2.13 to show that G realises every (D,mP3+nK1) for every finiteD < Γ3, then apply

Theorem 2.13 again to show that G realises every finite (C,D,R) where |R| = 2 and

C,D < Γ3.

Remark. This completes the proof of Theorem 4.2 in the case where r = s = 3 and

A = ∅.

4.5 Not all monochromatics embed, r = s = ∞

Throughout this section, suppose that there is a non-empty antichain A of finite

monochromatic 2-graphs (Cj ,Dj)
i (i.e. all of the same colour) such that for finite

graphs C,D < Γ∞ and this value of i, the 2-graph (C,D)i is omitted from G if and

only if it embeds a member of A. We will assume that i = 1 (i.e. all the 2-graphs in

A are monochromatic red). We will prove that Theorem 4.2 holds for this case; that
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is, we will show that G is the generic homogeneous 2-coloured (Γ∞,Γ∞) 2-graph

minimally omitting precisely the elements of A. In doing so we will use a variation

of the technique we used in Lemma 3.14.

We will therefore prove the following, which will be sufficient for this case of Theorem

4.2:

Theorem 4.33. Let H = (E,F, S) be a finite 2-graph that omits all elements of A

and is not monochromatic red. Then H embeds in G.

Proof. Split H into an “all-red” part and a residue. Let (E1, F1) be such that

E1 = {e ∈ E : (∀x ∈ F )(ex ∈ R1)}

and

F1 = {x ∈ F : (∀e ∈ E)(ex ∈ R1)}

and let E2 = E \E1 and F2 = F \ F1.

It is sufficient to prove that if every H ′ = (E′, F ′, S′) such that |E′
2| < |E2| or |E

′
2| =

|E2| and |F ′
2| < |F2| (where E

′
1, E

′
2, F

′
1, F

′
2 are defined by analogy to E1, E2, F1, F2)

embeds in G then so does H.

The aim is to enlarge H to some H ′ that “almost” contains a copy of some element

of A; more precisely, H ′ will embed H and have a cross-edge such that if this cross-

edge were red instead of blue then H ′ would embed an element of A. For this, we

work by lexicographic induction on (|E2|, |F2|) (i.e. we work by induction on |E2|,

and when this size is fixed work by induction on |F2|). If |E2| = 0 or |F2| = 0 then

H is monochromatic red, so embeds in G by assumption. Therefore it is enough to

handle the inductive step.

If |E1| = 1 or |F1| = 1 the inductive step is handled in Lemma 4.35, and otherwise

in Lemma 4.34. Once these lemmas have been proved, the proof of Theorem 4.33

will be complete.

Lemma 4.34. Let A be an antichain of finite monochromatic-red 2-graphs where

both components are complete, such that every 2-graph L = (C,D, S) ∈ A has

|C| ≥ 2 and |D| ≥ 2. Let H = (E,F,R) be a finite 2-graph not embedding any

element of A, and let E1, E2, F1, F2 be defined as above. Suppose that, for any H ′ =

(E′, F ′, R′) such that if E′
1, E

′
2, F

′
1, F

′
2 are defined analogously then either |E′

2| < |E2|

or |E′
2| = |E2| and |F ′

2| < |F2|, H
′ embeds in G. Then H also embeds in G.
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Figure 4.23: The inductive step for obtaining H = (E,F,R) if G ∼= (Γ∞,Γ∞) omits

A and |C|, |D| ≥ 2; note that any blue cross-edges are in ({a} ∪ E′
2, F

′
2 ∪ {z}) and

the size of one component of this reduces in each amalgamand, which is sufficient

for the induction to work, even though the sizes of the amalgamands do increase.

Let (C,D)1 be in A; that is, let it be minimally omitted from G. By assumption

|C| ≥ 2 and |D| ≥ 2.

We want to amalgamate a 2-graph of the form

H1 = ({a} ⊔ E1 ⊔ C
′ ⊔ E′

2,D
′ + (F1 ⊔ F

′
2))

with a 2-graph of the form

H2 = (C ′ + (E1 ⊔E
′
2),D

′ ⊔ F1 ⊔ F
′
2 ⊔ {z})

over their intersection

H0 = (C ′ + (E1 ⊔ E
′
2),D

′ + (F1 ⊔ F
′
2))

as in Figure 4.23, where:

• C ′ is chosen so that {a} ∪ C ′ ∼= C;

• E′
2 is chosen so that E′

2 ∪ {a} ∼= E2;

• D′ is chosen so that {z} ∪D′ ∼= D;

• F ′
2 is chosen so that F ′

2 ∪ {z} ∼= F2;
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and where the cross-edges are chosen so that:

• a is red to all of D′ ∪ F1;

• z is red to all of C ′ ∪ E1;

• all of C ′ ∪ E1 is red to all of D′ ∪ F1;

• all of E1 is red to all of F ′
2;

• all of F1 is red to all of E′
2; and

• if az were blue then ({a} ∪ E1 ∪E
′
2, {z} ∪ F1 ∪ F

′
2)

∼= H.

If suitable H1 and H2 are realised in G then H is automatically realised in G, since

az cannot possibly amalgamate to a red cross-edge (as then we would obtain (C,D)1,

which is omitted), so az must be blue.

The idea is to use induction to obtain H1 and H2. We have not yet fully specified

these two 2-graphs so we can make all unspecified cross-edges red (i.e. all cross-edges

from C ′ to F ′
2 and all cross-edges from D′ to E′

2), and let any edge types that are not

already specified be non-edges (this avoids accidentally creating any new elements

of A). Note that we add C ′ and D′ to be disjoint from, and have no edges to, E \{a}

and F \ {b}; as these have red cross-edges to all vertices of the other component,

this avoids accidentally creating any elements of A. (This doesn’t work if |C| = 1;

we will describe later what we do if this is the case.)

Once we have defined H1 and H2, we find that H2 is just an instance of the result we

are trying to obtain where E′
2 is the “new E2”; if |E

′
2| = 0 then H2 is monochromatic

so embeds since it does not embed any member of A, otherwise it embeds in G by

induction on |E2|. Similarly, we find that H1 is an instance of the result where E2

has remained the same and F ′
2 is the “new F2”, so, since it omits all members of A,

it embeds in G either by induction (if |F ′
2| > 0) or by monochromaticity (if |F ′

2| = 0).

The argument in Lemma 4.34 has the technical deficiency of needing two vertices in

both C and D. In these cases we need an alternative argument; the technique we

sketch is similar to that we used in Lemma 3.14 and so we need only sketch it here.

Lemma 4.35. Let A be an antichain of finite monochromatic-red 2-graphs where

both components are complete, such that there is a 2-graph L = (C,D, S) ∈ A where
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4. The (Γr,Γs) case

Figure 4.24: Obtaining H = (E,F ) if G ∼= (Γ∞,Γ∞) minimally omits (K1,D)1.

The top amalgamand embeds because it is monochromatic red, and the bottom

amalgamand embeds by induction on |E2|. a cannot be red to anything in F2 so

must be blue to all of F2, giving H.

|C| = 1. Let H = (E,F,R) be a finite 2-graph not embedding any element of A, and

let E1, E2, F1, F2 be defined as above. Suppose that, for any H ′ = (E′, F ′, R′) such

that if E′
1, E

′
2, F

′
1, F

′
2 are defined analogously then either |E′

2| < |E2| or |F ′
2| < |F2|,

H ′ embeds in G. Then H also embeds in G.

Remark. The |D| = 1 case is essentially the same as the |C| = 1 case we present.

Sketch proof. Let H ′ be a 2-graph whose left component is ({a}+E1)⊔E
′
2), where

{a} ∪ E′
2
∼= E2. whose right component is D′ ⊔ (F1 ⊔ F2), where D

′ is such that

D′
⊞K1

∼= D and where every vertex of D′ is joined to all of F1 and none of F2, and

where H ′ \ (a,D) is correctly coloured and a is red to all of D′ ∪ F1. By induction,

H ′ embeds in G. If a were red to any vertex in F2 then (K1,D)1 would embed in

G, which is not the case, so a is blue to all of D giving the required copy of H. We

can see this expressed as an amalgamation diagram in Figure 4.24.

We have therefore shown that any homogeneous 2-coloured (Γ∞,Γ∞) 2-graph G

that minimally omits the elements of an antichain A of finite monochromatic-red

2-graphs, each with both components complete, must be the generic homogeneous

2-coloured (Γ∞,Γ∞) minimally omitting precisely the elements of A, thus proving

Theorem 4.2 for this case.
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Let G be a homogeneous 2-coloured 2-graph of the form (A,B,R) where A,B ∼= Γ∞

such that G realises every (C,D)1 and (C,D)2 for any finite graphs C and D.

Clearly, if we can show that G realises every 2-graph H = (C,D, S) where C and D

are finite graphs and |S| = 2, then Gmust be the fully-generic 2-coloured (Γ∞,Γ∞)

2-graph.

In fact we don’t have to do this for all finite graphs C and D in this section, as

we have done some of the work already. By using the copying argument, Theorem

2.13, if we can show that G realises any 2-graph (C,D, S) where D is a finite graph,

|S| = 2 and C is a basic finite graph (specifically P3, P3 or Kn or Kn for some finite

n), then G will realise any 2-graph (E,D, S′) where |S′| = 2 and E is any finite

graph. This reduces the amount of work we have to do. Moreover, symmetry will

allow us to deduce that (C,D, S) is realised whenever (C,D, S) is. Hence we only

need to show that G realises H = (C,D, S) whenever D is a finite graph, |S| = 2

and either C = Kn or C = P3.

The strategy will be somewhat different than the strategies we have used in earlier

cases. Specifically, although we will only use basic graphs on the left components of

our finite 2-graphs, we will not simply consider basic graphs on the right compo-

nents. The structure of Γ∞ gives us certain freedoms that allow us to assume that

certain things exist that we could not do so easily if we were working in Γr for some

finite value of r. (For similar reasons, some of the proofs in Chapter 3 would be

simpler in, for example, the (K∞,Γ∞) case than in the (K∞,Γr) case for finite r.

In that case, of course, the r < ∞ case turned out to be simple enough for us to

consider the r < ∞ and r = ∞ case together. This does not appear to be true in

the (Γr,Γs) case.)

Specifically, we will prove the following:

Theorem 4.36. Let G = (A,B,R) be a homogeneous 2-coloured 2-graph where

A,B ∼= Γ∞ such that G realises every 2-graph of the form (E,F )i for all finite

graphs E and F and for each i ∈ {1, 2}. Then G realises all finite 2-coloured 2-

graphs of the form (C,D, S) where D is a finite graph and C is either P3 or a finite

complete graph.
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4. The (Γr,Γs) case

We prove Theorem 4.36 in stages: the case where C = K1 is covered in section 4.6.1

(specifically, Lemma 4.37), the case where C = K2 in section 4.6.3 and the case

where C = P3 in section 4.6.6. The remaining cases where C is a complete graph

are handled by induction on |C|; the proof is in section 4.6.5.

4.6.1 |C| = 1

The following lemma proves Theorem 4.36 when C = K1.

Lemma 4.37. Let D = D1 ∪ D2 be a finite graph where D1 ∩D2 = ∅. Let H =

(a,D,R) be a 2-coloured 2-graph where, for each d ∈ D, (a, d) ∈ Ri if and only if

d ∈ Di. Then H embeds in G.

Proof. We work by induction on min(|D1|, |D2|); if this minimum is zero then, by

assumption, H is already known to embed in G. We may assume, without loss of

generality, that |D1| ≤ |D2|.

Let S1, S2, T1, T2, z be such that S1 ∼= T1 ∪ {z} ∼= D1, S2 ∪ {z} ∼= T2 ∼= D2 and

S1 ∪ S2 ∪ {z} ∼= T1 ∪ T2 ∪ {z} ∼= D

.

Figure 4.25: The key step in obtaining (K1,D) for any D in (Γ∞,Γ∞).

Amalgamate (a, S1 ∪ S2) with (a, S2 ∪ T1 ∪ T2) over their intersection (a, S2), as in

Figure 4.25. This gives a 2-graph H ′ = (a, S). Now (a, S1 ∪ S2) has one fewer blue

than H, while (a, S2 ∪ T1 ∪ T2) has one fewer red than H, so both embed in G.

Therefore we can certainly amalgamate the two. We need to avoid identifying any

vertex of S1 with any vertex of T1 (we cannot identify vertices in S1 with vertices
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Figure 4.26: The problematic s = t = 2 case - if we use this method, whether

we make the brown edge an edge or a non-edge we still end up identifying the

bottom red point with one of the top points. (The other cases where s = t = 2 are

straightforward.)

in T2 since they are differently coloured to a). We do however have a free choice of

how S2 should be joined to T1 ∪T2. If there are more isomorphism types of (x∪S2)

for x 6∈ S2 than there are vertices in S1, one of them is not represented, so join every

vertex in T1 to S2 using one of these unrepresented classes.

Let s = |S1| and t = |T2|, so |S2| = t− 1 and |T1| = s − 1. Now there are 2t−1 ≥ t

labelled combinations of edges from a vertex in S1 to S2, and if t > s or if t = s ≥ 3

then there are strictly more than s such combinations and can assign one such type

from S2 to the vertices of T1. Similarly if s > t we can swap S1 with T2 and S2

Figure 4.27: An ad-hoc way of dealing with the problematic case
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4. The (Γr,Γs) case

and T1 and get a similar result. So we are finished unless s = t ≥ 2. Moreover,

if s = t = 1 then either the top or the bottom is monochromatic so this problem

does not arise. Hence we need only worry about the s = t = 2 case. That this is a

problem can be seen in Figure 4.26, but we can handle this case in an ad-hoc way

illustrated in Figure 4.27.

We now have H ′ = (a, S), where

S = (S1 ∪ S2) ∪ (T1 ∪ T2)

Amalgamate H ′ with (∅, S ∪ {z}) over the intersection (∅, S). If az is red, (a, T1 ∪

T2 ∪ {z}) ∼= H, and if az is blue then (a, S1 ∪ S2 ∪ {z}) ∼= H. In either case we

therefore obtain our required copy of H.

4.6.2 General strategy for |C| > 1

Our strategy is to show, by induction on n, that G realises every H = (Kn,D, S)

where D is a finite graph and |S| = 2 (i.e. we show that if G realises every

(Km,D
′, S′) where m < n, D′ is a finite graph and |S′| = 2 then it realises H)

and then showing separately that G realises every (P3,D, S) (where D is a finite

graph and |S| = 2). In this section we set out our plan for how we will do this; the

details will occupy the remainder of section 4.6.

Now, for this H, let D1, . . . ,Dk partition D such that:

• each Di is non-empty; and

• for all x, y ∈ D, cx ∼= cy for every c ∈ C if and only if there exists i such that

x, y ∈ Di.

(A word of warning. In later sections we will often, but not always, use a different

ordering of the Dj to the one we use here based on the colours from each vertex to

C. We don’t do that here as it would obscure the description of the strategy.)

We then work by induction on k. If k = 1 then either H is monochromatic, in which

case we are done, or at any rate each vertex in D has the same pattern to C, a case

which can be dealt with reasonably simply; we give this proof in Lemma 4.42.

Otherwise k ≥ 2. There is an “easy” case and a “hard” case. (By “easy” we

mean that it is relatively easy to reduce it to a smaller case, of course; the smaller

cases may themselves be in the “hard” category.) The “easy” case for C = Kn is
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where, for some i 6= j and for some labelling c1, . . . , ck of the vertices of C, for some

(hence all) x ∈ Di and y ∈ Dj we have that c1x 6∼= c1y but there is a permutation

σ ∈ S({2, . . . , k}) such that, for all ι such that 2 ≤ ι ≤ k, cιx ∼= cσ(ι)y. (There

will be an “easy” case when C = P3 but the permutation in that case has to take

account of the graph structure; i.e. not all permutations will suffice.) If we are in

the “easy” case, it will turn out to be easier to deduce the embeddability of H in G

from graphs H ′ = (Kn,D
′, S′) with smaller values of k. The “hard” case is where

there is no pair (Di,Dj) such that this property holds.

In the “hard” case we will order the Di by size (i.e. |D1| ≤ |D2| ≤ . . . ≤ |Dk|) and

typically work with D1 and D2 (either reducing |D1| and possibly increasing |D2|, or

reducing |D2| while keeping |D1| constant). If there is a non-empty D3 (and hence

|D3| ≥ |D2| ≥ |D1|), then we will add a vertex to D3 while reducing either |D1| or

|D2|. This will eventually reduce the number of non-empty sets Di until there are

only two remaining. Each step in this reduction involves three amalgamations:

1. add another copy of C \{a} to the left component, controlling only the colours

to the vertex added to D3;

2. form two copies of the (Di) by amalgamating over the enlarged left component

and the single vertex added to D3; and

3. amalgamate over a 2-graph which we obtain using Lemma 4.41 so that adding

a red to the long diagonal uses one copy of C \ {a} and the (Di) and adding

a blue uses the other copies.

This leaves the case where there are precisely two non-empty sets Di. In this case the

induction works by either reducing |D1| and almost doubling |D2|, or by reducing

|D2| and leaving |D1| fixed. Each step in this reduction involves three amalgama-

tions:

1. add another copy of C \ {a} to the left component, controlling the colours to

D1
2 (a copy of D2 with one vertex deleted) – the right components are either

D1
1 ⊔D

1
2 (where D1

1 is a copy of D1) or D
1
2 ⊔D

2
1 ⊔D

2
2 (where D2

1 is a copy of

D1 with one vertex deleted, and D2
2 is a copy of D2);
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4. The (Γr,Γs) case

2. form two copies of (D1,D2) by amalgamating over the enlarged left component

and D1
2; and

3. amalgamate over a 2-graph which we obtain using Lemma 4.41 so that adding

a red to the long diagonal uses one copy of C \ {a} and the (Di) and adding

a blue uses the other copies.

We make this more precise and fill in the details in the following sections.

Before we do this we make a final notational remark: in the statement of several of

the lemmas that follow, we will say that H = (C,D,R) embeds in G if every 2-graph

H ′ = (C ′,D′, R′) that satisfies certain properties embeds in G. In the proof of these

lemmas, the graph C is fixed in advance and so the proof is only for this value of

C. We will refer to the family (D′
j) where each D′

j is the analogue of Dj in D′ (i.e.

vertices of D′
j are coloured to C the same way as vertices of Dj are).

4.6.3 Details for C = K2

We now show that G realises every 2-coloured H = (C,D,R) where

C = ({a, b}, {ab})

and D is a finite graph. We will do this in rather more detail than we will do later

in cases where C ∼= Kn for n ≥ 3.

We first need to obtain the “base case” of the induction, namely the cases where

D = K2 and D = K2.

Lemma 4.38. G realises every 2-coloured 2-graph H of the form (K2,K2).

Proof. We may assume without loss of generality that a vertex on the left of H has

both a red and a blue cross-edge from it. Use the amalgamations shown in Figure

4.28. Note that the four initial 2-graphs are of the form (D,K1) or (K1,D) so embed

in G by Lemma 4.37.

Let

D =
⋃

i,j

D2i+j

where j+1 is the colour from every vertex of D2i+j to a and i+1 is the colour from

every vertex of D2i+j to b.
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Figure 4.28: The amalgamations needed to obtain H ∼= (K2,K2) in G. The colours

of cross-edges not shown are unimportant as long as they are consistent, and they

can easily be chosen to make them consistent.

We first state the “easy” case. We give the statement in a form that works for larger

values of n (and, with a little extra care, can be made to work also for C ∼= P3 as

we will see later in section 4.6.6).

Lemma 4.39. Let H be a 2-graph (C,D,R) where

C = ({a0, . . . , an−1}, {aiaj : 0 ≤ i < j ≤ k − 1})

where D0, . . . ,D2n−1 are as above and where, for some p and q differing in precisely

one binary digit, 1 ≤ |Dp| ≤ |Dq|. Then G realises H if G realises every (Kn,D
′, R′)

such that |D′
r| = 0 whenever |Dr| = 0 and either |D′

p| < |Dp| or |D′
p| = |Dp| and

|D′
q| < |Dq|.

Proof in the n = 2 case. Without loss of generality, we may assume that p = 0 and

q = 1.

It is sufficient to find 2-graphs

H1
∼= ({a, b},D1

0 ⊔D
1
1 ⊔D

2
0 ⊔D

2
1 ⊔D

1
2 ⊔D

1
3 ⊔D

2
2 ⊔D

2
3)
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Figure 4.29: The final amalgamation needed for Lemma 4.39.

and

H2
∼= ({b},D1

0 ⊔D
1
1 ⊔D

2
0 ⊔D

2
1 ⊔D

1
2 ⊔D

1
3 ⊔D

2
2 ⊔D

2
3 ⊔ {z})

embedding in G, where

D1
0
∼= D2

0 ∪ {z} ∼= D0

and

D1
1 ∪ {z} ∼= D2

1
∼= D1

and

D1
0 ∪D

1
1 ∪D

1
2 ∪D

1
3 ∪ {z} ∼= D2

0 ∪D
2
1 ∪D

2
2 ∪D

2
3 ∪ {z} ∼= D

and where the colours are such as to ensure that when we amalgamate H1 with

H2 over their intersection we obtain H whether az is red or blue. We see this

amalgamation in Figure 4.29.

Showing that H2 embeds in G is straightforward; we have it as a consequence of

Lemma 4.37. So we only need to show that H1 embeds in G.

In the typical case, we let

H3 = H1 \ (D
1
0)

and

H4 = H1 \ (D
2
0 ∪D

2
1)

which do embed in G (by assumption), and amalgamate these over their intersection,

as in Figure 4.30. In most cases there are enough choices of edge-types between D1
1
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Figure 4.30: The amalgamation needed to obtain H1 for Lemma 4.39.

and D2
0 to ensure that we can choose one that avoids identifying any vertices, and

any choice of edge-types across the amalgamation gives a satisfactory H1.

When are there not enough edge-types? Recall that we assumed that |D0| ≤ |D1|,

and that at most |D0| edge-types are realised from D1
1 → D1

0 while there are 2|D
1

1
|

acceptable types from D1
1 to D2

0. If |D0| < |D1| then 2|D
1

1
| > |D1

0|, and the same

applies if |D0| = |D1| ≥ 3. If |D0| = |D1| = 1 then D2
0 will be empty so there will be

no question of identifying. Thus the only problematic case is when |D0| = |D1| = 2.

If in practice we have two edges or two non-edges from D1
1 to D1

0 then we use the

other type from D1
1 to D2

0 and avoid identifying that way. Otherwise we have an

edge and a non-edge. We can handle these using a separate amalgamation argument

that we deal with in the next section in Lemma 4.43.

Lemma 4.39 disposes of the “easy” instances of the C = K2 (and C = K2) case.

The remaining cases are thus (up to equivalence):

1. only D1 is non-empty;

2. only D1 and D2 are non-empty; and

3. only D0 and D3 are non-empty.

When only D1 is non-empty, it is easy to reduce |D1| inductively. We see how this

is done diagrammatically in Figure 4.31. Note that every 2-graph in the diagram is
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a valid part of a derivation of H; either it is the result of amalgamating structures

earlier in the diagram, or it follows from the induction hypothesis, or it embeds in

G because of Lemma 4.37. We come back to this idea for larger graphs C in Lemma

4.42.

This leaves the cases where D1 and D2 are the only non-empty Di (and both are

non-empty), and the cases where D0 and D3 are the only non-empty Di (again, both

are non-empty; if only one is non-empty then H is monochromatic and so already

known to embed in G).

Suppose that D0,D3 6= ∅ and D1 = D2 = ∅. Further suppose without loss of

generality that |D0| ≤ |D3|. We will aim to either reduce |D0| or reduce |D3|

while keeping |D0| fixed (i.e. to move closer to the monochromatic situation). More

precisely, we show the following:

Lemma 4.40. Let H = (C,D,R) be such that C = K2 and D = D0 ∪D3 (where C

is red to all of D0 and blue to all of D3), where |D0| ≤ |D3|. Suppose that G realises

every H ′ = (C,D′, R′) where D = D′
0 ∪D

′
3, where C is red to all of D′

0 and blue to

all of D′
3, and where

• either |D′
0| < |D0|;

• or |D′
0| = |D0| and |D′

3| < |D3|.

Then G realises H.

Proof. We work by induction, the inductive step being shown in Figure 4.32 (note

that the steps that require us to assume that certain structures of the form (P3, E)

embed are valid, as these structures are monochromatic), and the base case (|D0| =

0) being trivial. Note that since

2|D
2

3
−1| ≥ |D2

3| ≥ |D1
0 |

then unless |D1
0 | = |D2

3 | = 2 there are sufficient possible types from D1
3 to each

vertex of D2
0 that we can assign one that doesn’t clash with the types from D1

3 to

the vertices of D1
0. Also note that the induction is valid - if we write k = |D0| and

l = |D3|, then we effectively obtain (k, l) from (k, l − 1) (which is fine even if k = l)

and from (k − 1, 2l − 1) (which again is fine by the statement of the lemma).

The special case is where k = l = 2; in fact, it can be seen that this case is only a

problem if each vertex in D0 has an edge and a non-edge to D3 and each vertex in
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induction

or
result

section 5.6.1

null right
component

Figure 4.31: The inductive step in the procedure for obtaining H = (C,D,R) if

D = D1.
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Figure 4.32: The inductive step for Lemma 4.40.

130

5/5_ginfginf_d0d3.eps


4.6 All monochromatics embed - r = s = ∞

Figure 4.33: The induction step if D1,D2 6= ∅, similar to the one in Figure 4.32. To

make this work we need to use Lemma 4.42.
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D3 has an edge and a non-edge to D0. But this special case is dealt with in the next

section in Lemma 4.43.

For the D1,D2 6= ∅ case, assume that |D1| ≤ |D2|. We wish to use the sequence

of amalgamations shown in Figure 4.33. The base case is where |D1| = 0, and we

handled this using Figure 4.31. There is a structure Ĥ of the form (P3,D
1
2) (where

all cross-edges are determined) in this sequence that requires care to prove that it

does embed in G. It is, however, possible to produce Ĥ without any circularity, and

we describe how to do this in Lemma 4.42. Again there is a special case that we will

deal with in Lemma 4.43.

4.6.4 Two special cases

There are two special cases which arose in section 4.6.3 and need to be dealt with.

As they will arise again in sections 4.6.5 and 4.6.6 it is prudent to deal with them

here. We also need a lemma about the “bottom amalgamand” in the final step in

each amalgamation (and specifically about the left component of this amalgamand)

which we now present.

Lemma 4.41. Let H = (C,D,R) where C is isomorphic to one of Kn, P3, Kn

[
K2

]

or either of

• ({a, b, c, d, e}, {ab, ac, ad, ae}), or

• ({a, b, c, d, e}, {ab, ad, bc, bd, be, cd, ce, de}).

Let D1 and D2 be proper substructures of D, and let D′ be a disjoint union of D1

and D2. There is a 2-graph

H ′ =
(
C1 ⊔ C2,D

′ ⊔ {z}, R′
)

such that:

• (C1,D1 ∪ {z}) and (C2,D2 ∪ {z}) are proper substructures of H;

• a vertex a can be added to C1 in such a way that if az were red then (C1 ∪

{a},D1 ∪ {z}) ∼= H;

• a vertex a′ can be added to C2 in such a way that if az were red then (C2 ∪

{a′},D2 ∪ {z}) ∼= H; and
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• G realises either H or H ′.

Remark. The idea here is similar to that of Lemma 4.12. Note that the key point

is that the graph we get on the left, if not C, is meant to be determined only by C

and the choice of substructures C1 and C2, or if there is any arbitrariness we can at

least make the same choice every time we have these particular graphs.

Proof in the case C = Kn. The idea of the proof is to obtain H ′ while maintaining

some control over the graph structure by adding one point of C2 at a time to C1,

in such a way that we either obtain H or get successively closer to H ′. At stage

i the points not amalgamated over will be ci and di in such a way as to yield H

immediately if cidi amalgamates to an edge, and so that after the (n − 1)th stage

we will either have H or a suitable H ′ (with known graph on the left component).

For the graphs on the left, we begin by amalgamating Kn−1 with Kn−1 over Kn−2;

this will either produce Kn or a graph

H1
∼= K2 +Kn−2

(we will describe later how we avoid identifying any pairs of vertices.) Then amal-

gamate H1 with itself over a subgraph of size n − 1 containing a and b. Again we

obtain either Kn or

H2
∼= 2K2 +Kn−3

At stage i we amalgamate Hi−1 over Hi−1 which gives us Kn or

Hi
∼= iK2 +Kn−i

and eventually we get a graph

Hn−1
∼= (n− 1)K2

∼= Kn−1

[
K2

]

(or Kn), so we have the required left component for the lemma.

To avoid identifying and to ensure we have the correct right components and cross-

edge colours, we work in the other direction (i.e. we work out what right component

we need at the last stage and propagate this inductively to earlier stages). If we

require X on the right with colours R if we have Kn on the left, and Y on the right

with colours S otherwise, we let

H1
n−2,H

2
n−2

∼= (H, {z} +X + Y )

with cross-edge colours chosen to avoid identifying (by making z red to one of the

points not amalgamated over and blue to the other) and to ensure the required
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4. The (Γr,Γs) case

Figure 4.34: Obtaining C = K4 or C ′ = K3[K2] in Lemma 4.41. We show this for

an empty graph rather than a complete one for clarity.

results. Similarly at the ith stage there will be a graph Yi and colours Ri that feed

into the next stage if we add a non-edge, and so let

H1
i ,H

2
i
∼= (H, {z} ⊞X + Yi)

with cross-edge colours again chosen to feed in correctly and to avoid identifying.

This process proceeds downwards to H1
0 and H2

0 which are of the form (Kn−1,D)

for some graph D so embed in G by induction on n.

Sketch proof in the case C 6= Kn. Suppose now that |V (C)| = n but that C is not

complete (and we may assume that C is not empty either). Let a1, a2 ∈ C and let

C1, C2 be such that C1 and C2 are not isomorphic to C but C1⊔{a1} and C2⊔{a2}

are. We will find a graph C ′ = C1 ⊔ C2 such that the choice of edges between (the

copies of) C1 and C2 does not depend on the right-hand side of any amalgamation

arguments, and such that G realises either H or the desired H ′ = (C ′,D′, R′). The

method is similar to the method in the C = Kn case; here we need only describe

what we need to do to obtain C ′ in such a way that its structure is independent of D,

D′, R and R′. The reader is warned that we have had to assign rather idiosyncratic

labels for the graphs we use and they typically do not fit into coherent series.

We need only consider cases where C ∼= Kn

[
K2

]
or where C is isomorphic to one of

three specific graphs.

We handle the most symmetric case first. If C ∼= Kn

[
K2

]
then

C1, C2
∼= Kn−1

[
K2

]
⊞K1

This case has certain symmetries so we describe how to build it in a similar manner to

how we dealt with the C = Kn case. Again we only mention how the amalgamations
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work on the left component. Let

H0
∼= Kn−1

[
K2

]

and

H1
∼= Kn−1

[
K2

]
⊞K1

and begin by amalgamating H1 with itself over H0; if we get an edge this is C,

otherwise the product is

H2
∼= Kn−1

[
K2

]
+K2

Similarly we amalgamate this with itself over H1 and obtain C or

H3
∼= Kn−2

[
K2

]
+ P3 +K1

In general

H2m
∼= Kn−m

[
K2

]
+ (m− 1)P3 +K2

and

H2m+1
∼= Kn−m−1

[
K2

]
+mP3 +K1

so we eventually obtain either C or a graph containing two copies of C1 disjointly,

as required.

We now handle the three special cases. We will make assumptions based on at what

point in the later sections we need Lemma 4.41 for that particular value of C.

If C ∼= P3 we need to consider three cases, which we describe in terms of the

amalgamations on the left component. (If we obtain P3 at any stage we can stop as

this is one of the two cases we are trying to reduce to.)

1. C1
∼= C2

∼= K2: amalgamate K2 with K2 over K1, then K3 with K3 over K2;

2. C1
∼= C2

∼= K2: amalgamate K2 with K2 over K1, then wxy with xyz over xy

where the edges are wx, yz; and

3. C1
∼= K2;C2

∼= K2: amalgamate K2 with K2 over K1, then wxy ∼= K2 +K1

with xyz ∼= K2 +K1 over xy where the edges are wx, xz.

If

C = ({a, b, c, d, e}, {ab, ac, ad, ae}) ∼= F5

then C1 and C2 are each isomorphic to either K4 or to

F4 = ({a, b, c, d}, {ab, ac, ad})
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4. The (Γr,Γs) case

and we describe the three cases in terms of the amalgamations on the left component.

Note that since we only need this C if we are trying to show that (P3,D,R) is

realised, and it will turn out that at that part of the argument we can assume that

(Kn,D
′, R′) and (Kn,D

′, R′) embed for every D′ and R′, we can simplify some of

our arguments.

1. C1
∼= C2

∼= K4: (K8,D,R) is known to embed so there is nothing to prove in

this case;

2. C1
∼= F4, C2

∼= K4: amalgamate F4 with K4 over K3, then F4 +K1 with K5

over K4, then F4+K2 with K6 over K5, then F4 +K3 with K7 over K6. (The

(Kn,D) are known to embed so this sequence is indeed valid.)

3. C1
∼= C2

∼= F4: by the previous argument we have (F4 + K3,D
′, R′) or

(F5,D
′, R′) for any desired D′ and R′, and if we obtain F5 there is noth-

ing further to prove, so assume that we obtain F4 + K3 and amalgamate it

with itself over K6 (where every vertex in the overlap has an edge to precisely

one vertex outside); this gives F5 or F4 + F4.

If

C = ({a, b, c, d, e}, {ab, ae, bc, bd, be, cd, ce, de}) ∼= E5

then C1 and C2 are each isomorphic to either K4, to

D4
∼= ({a, b, c, d}, {ab, bc, bd, cd})

or to

E4
∼= ({a, b, d, e}, {ab, ae, bd, be, de})

and we describe the six cases in terms of the amalgamations on the left component.

(If we obtain E5 at any stage we stop.) Again we can assume that every (Kn,D
′, R′)

embeds since we only need this C to obtain (P3,D) at a point where we have already

shown that every (Kn,D
′, R′) embeds.

1. C1
∼= C2

∼= K4: (K8,D,R) is already known to embed;

2. C1
∼= K4, C2

∼= D4: amalgamate D4 with K4 over K3, then the product with

K5 over K4, then the product with K6 over K5, then the product with K7

over K6;

3. C1
∼= K4, C2

∼= E4: amalgamate E4 with K4 over K3, then E4 ⊞K1 with K5

over K4, then E4 ⊞K2 with K6 over K5, then E4 ⊞K3 with K7 over K6;
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4. C1
∼= C2

∼= D4: either we have E5 or we have a graph D7 containing K3 and

D4 disjointly; amalgamate two copies of this over K6 so that the two copies

have their embedded copies of D4 use disjoint subsets of the overlap;

5. C1
∼= C2

∼= E4: either we have E5 or we have a graph E7 containing K3 and

E4 disjointly; amalgamate two copies of this over K6 so that the two copies

have their embedded copies of E4 use disjoint subsets of the overlap; and

6. C1
∼= D4, C2

∼= E4: we either have E5 or we have D7 and E7; amalgamate

these over K6 so that the E4 in E7 uses a disjoint K3 from the D4 in D7.

Lemma 4.42. Let H = (C,D,R) where, for all x, y ∈ D and all a ∈ C, ax ∼= ay.

Then H embeds in G.

Remark. We only prove this result for those graphs C for which we proved Lemma

4.41. If that were proved for all finite graphs C < Γ∞ then this proof of Lemma

4.42 would work for every finite C.

Proof. We may assume that any H̃ ∼= (C ′,D′) (for any C ′ < C and any finite graph

D′) embeds in G. Moreover, we may assume that any Ĥ ∼= (C,D′′) (for any graph

D′′ such that |D′′| < |D|) embeds in G; the case where |D| = 1 was done by Lemma

4.37. We require

H1 = ({a} ⊔ C1 ⊔ C2,D1 ⊔D2)

and

H2 = (C1 ⊔ C2,D1 ⊔D2 ⊔ {z})

where

• {a} ⊔ C1
∼= {a} ⊔ C2

∼= C;

• {z} ⊔D1
∼= {z} ⊔D2

∼= D;

• a is red to all of D1 and blue to all of D2; and

• if az is red then ({a} ⊔ C1, {z} ⊔ D1) ∼= H while if az is blue then ({a} ⊔

C2, {z} ⊔D2) ∼= H.

If these embed them we amalgamate H1 with H2 over H1 ∩ H2 and will then in-

evitably obtain H embedding in G.
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4. The (Γr,Γs) case

Now, whatever the other colours and whatever the edge types on the right may

be, H2 embeds in G by Lemma 4.41. So we need only concern ourselves with

constructing H1.

Let

H3 = ({a} ⊔ C1 ⊔ C2,D1)

and

H4 = ({a} ⊔ C1 ⊔ C2,D2)

Now H3 \ C2 and H4 \ C1 embed in G by induction, and since G is generic, it

follows that H3 and H4 will embed for some (unknown) choice of cross-edge colours

wherever not specified. So amalgamate these over their intersection

({a} ⊔ C1 ⊔C2,∅)

and note that, since a is differently coloured to D1 and D2, we cannot identify any

pairs of vertices, so D1 and D2 embed in G disjointly (with unknown edges between

them), and this is sufficient for H1 to also embed.

Lemma 4.43. Let H = (C,D,R) where:

• C ∼= Kn for some n or C ∼= P3;

• D = D1 ⊔D2;

• |D1| = |D2| = 2 (we write V (D1) = {x1, y1} and V (D2) = {x2, y2});

• for all i and all a ∈ A, axi ∼= ayi;

• there is a ∈ A such that ax1 6∼= ax2; and

• x1x2 and y1y2 are edges and x1y2 and y1x2 are non-edges.

Then H embeds in G.

Proof. We require

H1 = ({a} ⊔ C1 ⊔C2, {x
1
1, y

1
1 , y

1
2, x

2
1, x

2
2, y

2
1})

and

H2 = (C1 ⊔ C2, {x
1
1, y

1
1, y

1
2 , x

2
1, x

2
2, y

2
1, z})

where:
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• {a} ⊔ C1
∼= {a} ⊔ C2

∼= C;

• x11z
∼= x21x

2
2
∼= x1x2;

• y11y
1
2
∼= y21z

∼= y1y2; and

• if az is red then ({a} ⊔ C1, {x
1
1, z, y

1
1 , y

1
2})

∼= H while if az is blue then ({a} ⊔

C2, {x
2
1, x

2
2, y

2
1 , z})

∼= H.

That H2 (or H) embeds in G follows from Lemma 4.41.

For H1, let

H3 = (a ⊔ C1 ⊔ C2, {x
1
1, y

1
1 , y

1
2, y

2
1})

and

H4 = (a ⊔ C1 ⊔ C2, {x
2
1, x

2
2, y

2
1, y

1
2})

and note that if these embed in G then we can amalgamate them over their inter-

section

(a ⊔C1 ⊔ C2, {x
1
1, y

2
1})

to obtain H1 as required.

It remains to obtain H3 and H4. We do H3; the proof for H4 is essentially the same.

Let

H5 = (a ⊔ C1 ⊔ C2, {x
1
1, y

2
1})

and

H6 = (a ⊔ C1, {x
1
1, y

1
1 , y

1
2 , y

2
1})

If we make x11y
2
1 an edge then H5 embeds by the argument for (K2,D) with the sides

reversed as long as C > K2; if C = K2 then we note that we have enough of the

argument to give us every (P3,K2) so H5 embeds. For H6 we note that we have an

instance of (C,D′) where D′ is a four vertex graph that is not the awkward case,

and so it embeds by the arguments we use for whichever value of C we work in.

Hence H3 embeds in G, and so does H4 by similarity, and a fortiori H1 and H.

4.6.5 Details for C = Kn for n ≥ 3

Suppose now that C ∼= Kn for some n ≥ 3 and suppose that V (C) = {a0, a1, . . . , an−1}.

We will proceed by induction on n: that is, we will show:

Theorem 4.44. Let D be a finite graph, and let H = (C,D,R) be a 2-coloured

2-graph. Suppose that, if H ′ = (C ′,D′, R′) for any finite graph D′ and for C ′ ∼= Kn′

where n′ < n, then H ′ embeds in G. Then H also embeds in G.
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4. The (Γr,Γs) case

Let D0, . . . ,D2n−1 partition D in such a way that, for each i and j, ai is blue to all

vertices of Dj if the ith binary digit of j is 1; that is, if

⌊
j/2i

⌋
≡ 1 (mod 2)

and ai is red to all other vertices of D.

In section 4.6.2 we stated that there is an “easy” case and a “hard” case. The easy

case is the n ≥ 3 version of Lemma 4.39, which we state again for convenience. As

the proof is similar to how it was when n = 2, we will merely sketch the points

where there are differences.

Lemma 4.39 Let H be a 2-graph (C,D,R) where

C = ({a0, . . . , an−1}, {aiaj : 0 ≤ i < j ≤ k − 1})

where D0, . . . ,D2n−1 are as above and where, for some p, q differing in precisely one

binary digit, 1 ≤ |Dp| ≤ |Dq|. Then G realises H if G realises every (Kn,D
′, R′)

such that |D′
r| ≤ |Dr| whenever r 6= p, q and either |D′

p| < |Dp| or |D
′
p| = |Dp| and

|D′
q| < |Dq|.

Sketch proof in the n ≥ 3 case. We work similarly to how we did in the proof of

Lemma 4.39 when n = 2. We will write this sketch proof as though p = 0 and q = 1;

the ideas are the same for other values. We seek to find embedded in G

H1
∼=

(
{a0, . . . , an−1},D

1
0 ∪D

1
1 ∪D

2
0 ∪D

2
1 ∪

(
k⋃

i=2

D1
i ∪D

2
i

))

and

H2
∼=

(
{a1, . . . , an−1},D

1
0 ∪D

1
1 ∪D

2
0 ∪D

2
1 ∪

(
k⋃

i=2

D1
i ∪D

2
i

)
∪ {z}

)

where

D1
0,D

2
0 ∪ {z} ∼= D0

and

D1
1 ∪ {z},D2

1
∼= D1

and
k−1⋃

i=0

D1
i ∪ {z} ∼=

k−1⋃

i=0

D2
i ∪ {z} ∼= D
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and where the colours are such as to ensure that when we amalgamate H1 with H2

over their intersection we obtain H whether a0z is red or blue.

Now H2 is realised in G by induction on n, so we only have to show that H1 is

realised in G. But we can use the same technique we used in Lemma 4.38 to obtain

H1 in those cases where either |Dp| < |Dq| or |Dp| = |Dq| 6= 2.

Moreover, if there exists r such that |Dr| ≥ |Dq| then we can instead amalgamate

H3 =

(
{a1, . . . , an−1}, {w} ∪

k⋃

i=0

D1
i

)

with

H4 =

(
{a1, . . . , an−1}, {w} ∪

k⋃

i=0

D2
i

)

over their intersection

({a1, . . . , an−1}, {w})

where w is joined to every vertex of every D1
j and not to any vertex of any D2

j , and

is coloured to match the colours from Dr - H3 and H4 embed in G by the induction

hypothesis, and the presence of w prevents any pairs of vertices being identified, so

we obtain H1.

This leaves us to deal with just one “awkward” case. But the awkward case is just

the one we handled in Lemma 4.43.

We now consider the “hard” cases. The easiest of these arises when only one Di is

non-empty; that is, for all a ∈ C and for all x, y ∈ D, ax ∼= ay.

Lemma 4.45. Let H = (C,D,R) be such that, for all a ∈ C and for all x, y ∈ D,

ax ∼= ay. Then H embeds in G.

Proof. Induction on |C|; the case |C| = 1 follows from Lemma 4.37.

It is sufficient to find H1 and H2 embedding in G such that

H1 = (C1 ∪ C2 ∪ {a},D1 ∪D2)

and

H2 = (C1 ∪ C2,D
1 ∪D2 ∪ {z})

where

C1 ∪ {a} ∼= C2 ∪ {a} ∼= C
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and

D1 ∪ {z} ∼= D2 ∪ {z} ∼= D

as then we can simply amalgamate H1 with H2 over their intersection to obtain H

(whether az is red or blue).

For H1, amalgamate

H3 = (C1 ∪C2 ∪ {a},D1)

with

H4 = (C1 ∪C2 ∪ {a},D2)

over their intersection

(C1 ∪ C2 ∪ {a},∅)

Note that H3 and H4 do embed in G with the required colours: H3 \C2 and H4 \C1

do by induction, and we can add C2 and C1 respectively since we don’t care about

the colours. (The edge type between C1 and C2 will be determined later; for this

step any edge type is equally good.) Hence H1 embeds in G.

For H2, amalgamate

H5 = (C1,D
1 ∪D2 ∪ {a})

with

H6 = (C2,D
1 ∪D2 ∪ {a})

over their intersection

(∅,D1 ∪D2 ∪ {a})

and with the edge type between D1 and D2 as above. H5 and H6 do embed in

G. Because of a, we cannot identify any vertex of C1 with any vertex of C2, and

any combination of edge-types between C1 and C2 is acceptable and yields H2, and

hence H, embedding in G.

Assume now that at least two sets Dp,Dq are non-empty. As long as there is a third

non-empty set Dr, we will choose p and q so as to minimise |Dp| (while ensuring it is

non-empty), and then to minimise |Dq| (while ensuring it is non-empty). (That is,

we choose the two smallest non-empty sets Dp and Dq, and make Dp the smaller.)

Suppose now that at least three of the Di are non-empty, say |Dp| ≤ |Dq| ≤ |Dr|.

In the following lemma we will either reduce |Dp| by 1 and fix |Dq| or reduce |Dq|

by 1 and fix |Dp|, at a price of increasing |Dr| by 1.
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Lemma 4.46. Let H = (C,D,R) such that

D = D0 ∪ . . . ∪D2n−1

(as above) and such that |Dp| ≤ |Dq| ≤ |Dr| ≤ |Ds| for some p, q, r and for all

s 6= p, q, r such that |Ds| > 0. Suppose that G realises every (C,D′) where

D′ = D′
0 ∪ . . . ∪D

′
2n−1

(with the same numbering scheme), where D′
i = ∅ whenever Di = ∅, and where

either |D′
p| < |Dp| and |D′

q| = |Dq| or |D′
p| = |Dp| and |D′

q| < |Dq|. Then G also

realises H.

Proof. If G embeds compatible

H1 =
(
{a}⊞ (C1 ⊔ C2) ,D

1 ⊔D2
)

and

H2 =
(
C1 ⊔ C2,

(
D1 ⊔D2

)
∪ {z}

)

where

({a} ⊞ C1,D
1 ∪ {z}) ∼= H

if az is red, and

({a} ⊞ C2,D
2 ∪ {z}) ∼= H

if az is blue, then we can amalgamate H1 with H2 over their intersection and will

inevitably obtain H in G. By Lemma 4.41 we have H2 with a definitely known

graph on the left (or H outright), so we only need to obtain H1. Note that D
i
j
∼= Dj

except that D1
p ∪ {z} ∼= Dp and D2

q ∪ {z} ∼= Dq.

If we can find

H3 =


{a}⊞ (C1 ⊔C2), {w} ∪


⋃

j

D1
j






and

H4 =


{a}⊞ (C1 ⊔C2), {w} ∪


⋃

j

D2
j






where w is joined to all of every D1
j , not joined to all of every D2

j , and is coloured

as in Dr to both parts, then we can amalgamate H3 with H4 over their intersection

to obtain H1. But we can obtain H3 by amalgamating

H5 = ({a} ⊞ (C1 ⊔ C2), {w})
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(which certainly exists in G) with

H6 =


{a}⊞ C1, {w}

⋃

j

D1
j




(which exists in G by induction) over their intersection ({a}⊞C1, {w}), and similarly

we can obtain H4. Hence H is realised in G.

We are now in a position to formally conclude the proof of Theorem 4.44.

Proof of Theorem 4.44. Let D0, . . . ,D2n−1 partition D as above. If two non-empty

Di,Dj have i and j differing in precisely one binary digit, H embeds using Lemma

4.39. IfH has precisely one non-emptyDj , H embeds using Lemma 4.45. IfH has at

least three non-empty Djs, H embeds using Lemma 4.46. We have therefore reduced

to the case where precisely two of the Di are non-empty (and where Lemma 4.39

does not apply).

If the two sets are D0 and D2n−1 then, other than if they are graphs of size 2, there

are no complications if we simply follow the method we used in Lemma 4.40 in the

n = 2 case. Even if this is not the case we can still use this method provided that we

can obtain the required structures of the form (Kn−1[K2],D
′) where every vertex of

D′ has the same pattern of colours to the left component. But these can be obtained

using Lemma 4.42. The rest of the proof follows the same arguments as in the n = 2

case and, as with that case, uses Lemma 4.41 to obtain the “bottom” amalgamand

and Lemma 4.43 to deal with the case where |Di| = |Dj | = 2 and each vertex of

either has an edge and a non-edge to the other.

4.6.6 Details for C = P3

We now consider the case where C = P3. Write

C = ({a, b, c}, {ab, bc})

so that b is the “middle” of the P3 and a and c the two ends. Recall that we need

to show that:

Theorem 4.47. For each finite graph D, every 2-coloured 2-graph H = (C,D,R)

embeds in G.
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The method of handling these cases is similar to that we used in sections 4.6.3 and

4.6.5, as outlined in section 4.6.2. We do have to take a little extra care because of

the graph structure of a P3, and these complexities will typically result in having

extra sub-cases.

As with the other sections, there is an “easy” case and a “hard” case. We now

handle the “easy” case (again, in the usual sense of reducing an “easy” instance

to cases that are smaller in some way which allows non-circular induction). Write

D =
∐

iDi where, for all i, all a ∈ C and x, y ∈ Di, ax ∼= ay, and where for all

i 6= j there are a ∈ A, x ∈ Di, y ∈ Dj such that ax 6∼= ay. We do not yet impose any

ordering on the Di; we will do this later in the section.

Lemma 4.48. Let H = (C,D,R) ∼= (P3,D) be a 2-graph such that D =
⋃7

i=0Di

where, for all i, for all x, y ∈ Di and for all p ∈ {a, b, c}, px ∼= py and, for all i 6= j,

there exists q ∈ {a, b, c} such that, for all x ∈ Di and y ∈ Dj, qx 6∼= qy. Suppose

moreover that D0,D1 are such that there exists exactly one p ∈ {a, b, c} such that,

for all x ∈ Di and y ∈ Dj , px 6∼= py, and that |D0| ≤ |D1|. Then, if H ′ = (C,D′, R′)

embeds in G whenever H is such that, for D′
i corresponding to Di, |D

′
i| = 0 whenever

|Di| = 0 and either |D′
0| ≤ |D0| (with no condition on |D′

1|) or |D′
0| = |D0| and

|D′
1| ≤ |D1|, H also embeds in G.

Remark. Note that in this result D0 need not be monochromatic red to C, although

we will show it this way in diagrams.

Proof. There are essentially two cases of this lemma, corresponding to p = b and

p = c. (We may ignore the p = a case as it is essentially the same as p = c.) We

may assume that G embeds all 2-coloured 2-graphs of the form (K2,D).

Let Z be any graph containing the following disjointly:

• two copies D̃0 and D̃1 of D \ {D0,D1},

• a point z,

• a copy D0
0 of D0,

• a copy D1
1 of D1,

• a copy D1
0 of D0 \ {x} (that is, D1

0 ∪ {z} ∼= D0), and

• a copy D0
1 of D1 \ {x} (that is, D0

1 ∪ {z} ∼= D1),
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4. The (Γr,Γs) case

in such a way that

D0
0 ∪D

0
1 ∪ {z} ∪ D̃0 ∼= D1

0 ∪D
1
1 ∪ {z} ∪ D̃1 ∼= D

Figure 4.35: The H1 and H2 needed for obtaining the “easy” case of (P3,D). In this

illustration p is red to D0 and blue to D1, while both vertices of C \ {p} are red to

all vertices of both D0 and D1.

We want to amalgamate

H1 = (C,Z \ {z})

with

H2 = (C \ {p}, Z)

in such a way that, whether pz is red or blue, if H1 and H2 embed in G then so

does H, as shown in Figure 4.35 (where one particular instance of the p = b and

p = c cases is shown). But this is clear since z is correctly coloured to all vertices

of C \ {p}, and all other cross-edge colours are automatic. Moreover, by Section

4.6.3, H2 is realised in G for every finite graph Z. So we need only find some H1

embedding in C with some Z that satisfies the conditions above.

Let

H3 = (C,D0
1 ∪D

1
0 ∪D

1
1 ∪ D̃

0 ∪ D̃1)

and

H4 = (C,D0
0 ∪D

0
1 ∪ D̃

0 ∪ D̃1)

(with the edge relationship between D0
1 and D1

0 ∪ D1
1 to be specified). If we can

amalgamate H3 with H4 over their intersection without identifying any pairs of

vertices, the graph we get on the right-hand side will certainly be suitable for Z.

So the only issue is making this impossible. As before, there is no difficulty unless
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|D0| = |D1| = 2 and each vertex in D0 has an edge and a non-edge to D1 (and vice

versa), as in all other cases, as before, we can find some combination of edges that

avoids any risk of identifying any vertex in D1
0 with any vertex in D0

0. But this case

can be handled using Lemma 4.43.

If precisely one of the Di sets is non-empty, then H embeds by Lemma 4.42. We

can now therefore assume that every (K2,D) embeds in G (since the dependency

of those cases on (P3,D) cases was only on those where only one Di is non-empty).

We can even assume that every (Kn,D) and every (Kn,D) embeds in G, as these

were handled in section 4.6.5. We will further assume that at least two of the Di are

non-empty. We distinguish the case where at least three of the Di are non-empty

from the case where precisely two of the Di are non-empty; the following two lemmas

each handle one of these two cases.

Lemma 4.49. Suppose that there exist i, j, k such that 1 ≤ |Di| ≤ |Dj | ≤ |Dk| and

suppose that G realises every H ′ = (C,D′, R′) where D′
l = ∅ whenever Dl = ∅ and

where:

• either |D′
i| < |Di| and |D′

j | ≤ |Dj |,

• or |D′
i| ≤ |Di| and |D′

j | < |Dj |.

Then H embeds in G.

Sketch proof. The proof is similar to that of Lemma 4.46, so we need only point out

areas of caution.

We do need to be careful about the graph on the left component. We may assume

that either a0 or a1 is differently coloured to Di and Dj .

If a0 is differently coloured to Di and Dj , the main amalgamation diagram will be

as in the left diagram in Figure 4.36, and we we can assume that the left component

of the bottom amalgamand H2 is K4. Similarly, if aa is differently coloured to Di

and Dj we can assume that the left component of H2 is K4, as in the right diagram

in Figure 4.36. Hence, without loss of generality, the bottom amalgamand embeds

in G without needing Lemma 4.41.

To obtain H1 we work as in Lemma 4.46.

Lemma 4.50. Suppose that there exist i, j such that 1 ≤ |Di| ≤ |Dj | and, for all

k 6= i, j, |Dk| = 0. Suppose that G realises every H = (C,D′, R′) where D′
k = ∅

unless k = i or k = j, and:
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4. The (Γr,Γs) case

Figure 4.36: The main amalgamation diagrams for the first (left) and second (right)

cases of Lemma 4.49. In this diagram we assume that i = 1, j = 2, k = 3.

Figure 4.37: The main amalgamation diagrams for the first (left) and second (right)

cases of Lemma 4.50. In this diagram we assume that i = 1, j = 2, k = 3.

• either |D′
i| < |Di|,

• or |D′
i| = |Di| and |D′

j | < |Dj |.

Then H embeds in G.

Sketch proof. The proof is similar to that in the C = K2 case, so we need only point

out areas where we have to be slightly more careful here than in the C = K2 case.

As in Lemma 4.49 we do need to be careful about the graph on the left component.

We can assume that either a0 or a1 is differently coloured to Di and Dj .

If it is a0 that is differently coloured to Di and Dj , the main amalgamation diagram

will be as in the left diagram in Figure 4.37. Note that the left component of the

bottom amalgamand H2 can be assumed to be K4. Similarly, if it is a1 that is

differently coloured to Di and Dj , we can assume that the left component of H2 is

K4, as in the right diagram in Figure 4.37.
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For H1 we work as before, using Lemma 4.42 with the left component being either

({a, b, c, d, e}, {ab, ac, ad, ae})

or

({a, b, c, d, e}, {ab, ad, bc, bd, be, cd, ce, de})

and using Lemma 4.43 as usual when |Di| = |Dj | = 2 and each has an edge and a

non-edge to the other.

We have therefore proved Theorem 4.47.

149



4. The (Γr,Γs) case

150



Chapter 5

Summary and future work

5.1 Summary of classification results

In this section, we summarise the principal results of this thesis and also some results

by other authors that are key to understanding this classification.

Let G be a homogeneous 2-graph and write G = (A,B,R). If |R| = 1 then G is

homogeneous if and only if A and B are homogeneous graphs. We will therefore

assume that |R| ≥ 2.

Figure 5.1: The two equivalent non-isomorphic instances of (C5, C5).

Jenkinson (2006) showed that A ∼= C5 if and only if B ∼= C5, and if A ∼= B ∼= C5

then G is either monochromatic or equivalent to the 2-graph given by Proposition

2.6. There are two non-isomorphic equivalent instances of this shown in Figure 5.1.

Jenkinson also showed that A ∼= K3 × K3 if and only if B ∼= K3 × K3, and if this
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holds then again G is either monochromatic or equivalent to the 2-graph given by

Proposition 2.6, of which there are also two equivalent non-isomorphic instances.

Figure 5.2: The two equivalent non-isomorphic instances of (K3 × K3,K3 × K3).

Since there are 81 cross-edges these diagrams are necessarily somewhat unclear.

Moreover, Jenkinson also observed, and we restated in Lemma 2.1, that A and B

must be homogeneous graphs, and if either is C5 or K3 ×K3 then Jenkinson fully

described G. By this and using equivalence, we only needed to consider those cases

where:

1. A ∼= Km[Kp] and B ∼= Kn[Kq], for some m,n, p, q ∈ N ∪ {∞}, where m,n ≥ 1

and p, q ≥ 2;

2. A ∼= Km[Kn] and B ∼= Γr, for some m,n, r ∈ N ∪ {∞}, where m ≥ 1,n ≥ 2

and r ≥ 3; or

3. A ∼= Γr and B ∼= Γs, for some r, s ∈ N ∪ {∞}, where r, s ≥ 3.

We showed in Proposition 2.8 that if G is left-collapsing (i.e. A = A1+A2+ . . .+Am

(there is no implication that m is finite) where each Ai
∼= Kp for some p ∈ N, and

where, for every i, every x ∈ B and every a, b ∈ Ai, ax and bx are the same colour)

then G is homogeneous if and only if the (Km, B) 2-graph to which it collapses is

homogeneous. A similar result holds if G is right-collapsing. Hence we restricted

ourselves to non-collapsing homogeneous 2-graphs.

The first of the families of cases listed above (where A ∼= Km[Kp] and B ∼= Kn[Kq])

has mostly been ignored in this thesis, though I have made some remarks about

these cases in section 5.2.
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If A ∼= Km[Kn] and B ∼= Γr, and G has exactly two cross-edge colours and is not

collapsing, Theorem 3.1 shows that G is homogeneous if and only if it is equivalent

to one of the following:

• m = ∞, n = 1 and G is otherwise generic;

• m = ∞, n = 1, the 2-graph (K1,Kk)
1 is minimally omitted for some k < r,

and G is otherwise generic;

• m = ∞, n = 2, the 2-graphs (K2,K1)
1 and (K2,K1)

2 are minimally omitted,

and G is otherwise generic;

• 2 ≤ m ≤ ∞, n = ∞ and G is otherwise generic; or

• 2 ≤ m ≤ ∞, n = ∞,the 2-graph (K1,Kk)
1 is minimally omitted for some

k < r, and G is otherwise generic.

If A ∼= B ∼= Γ3 and G has exactly two cross-edge colours and is not collapsing, G is

homogeneous if and only if it is equivalent to one of the following:

• generic omitting {(K1,K2)
1, (K2,K1)

1};

• generic omitting {(K1,K2)
1};

• generic omitting {(K2,K2)
1}; or

• generic.

If A ∼= B ∼= Γ∞ and G has exactly two cross-edge colours and is not collapsing, G is

homogeneous if and only if there is an antichain A of 2-graphs of the form (Km,Kn)
1

such that G is equivalent to the two-coloured (Γ∞,Γ∞) minimally omitting precisely

the members of A.

(The “if” part (existence) of the preceding two cases was proved in Proposition 4.1.

The “only if” part (uniqueness) is Theorem 4.2, and its proof occupies the bulk of

chapter 4.)

These results amount to a complete classification of 2-coloured homogeneous (Km[Kn],Γr)

2-graphs, for all values of m,n, r where r ≥ 3, and also of 2-coloured homogeneous

(Γ3,Γ3) and (Γ∞,Γ∞) 2-graphs. The fact that the resulting classification has such

limited scope is somewhat disappointing, but reflects the technical difficulties in

getting even to the stage we have currently reached.
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5.2 Notes on the (Km[Kp], Kn[Kq]) case

I will now give a brief summary of the status of the (Km[Kp],Kn[Kq]) classification

(where m, n, p and q are each either a positive integer or equal to infinity (i.e. ℵ0,

since all structures considered are countable)). As the classification is not complete

and the proofs of the cases so far dealt with are tedious and not very enlightening, I

have not said much about this case so far in this thesis. I will therefore now merely

give a statement of the stage which I have reached (namely, Theorem 5.1) and a

statement of the main result of chapter 3 of Jenkinson (2006) on 2-graphs on this

form (namely, Theorem 5.2). I intend that a complete classification of this case will

be published separately once it is ready.

Theorem 5.1 amounts to a classification of the 2-coloured homogeneous (Km[Kp],Kn[Kq]),

and of all finite homogeneous (Km[Kp],Kn[Kq]) 2-graphs; moreover, some other fam-

ilies of cases are also completely classified by Theorem 5.1. Note that we rely on

Lemma 2.3, Proposition 2.8 and other results from chapter 2; as a result, not all

equivalent combinations are explicitly mentioned and certain cases are omitted from

the statement (e.g. the m = p = 1 case and the p = q = 1 case).

Theorem 5.1. Let G be a homogeneous, non-collapsing (Km[Kp],Kn[Kq]) 2-graph.

Then:

1. it is not the case that mp is finite and nq is infinite, or vice versa;

2. it is not the case that m = n = ∞ and 2 < p < q <∞;

3. it is not the case that m = q = ∞, n ≥ 2 and p > 2;

4. if all of m, n, p and q are finite, and at least three of m, n, p and q are greater

than or equal to 2, then all four are equal to 2, and moreover G is equivalent

to the 2-graph K in figure 5.3:

5. if m = 1, n, q ≥ 2 and p = nq = ∞ then, for some partition of the colour set

C into subsets C1, . . . , Cr, G is equivalent to the 2-graph GC1,...,Cr that realises

a 2-graph H of the form (K1,K2) if and only if both cross-edges of H lie in

the same Ci and that is generic subject to this stipulation;

6. if m = n = ∞ and p = q = 2, then either:

• G is the 2-graph PK∞[K2]
given by Proposition 2.6, or
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• there is a finite set C of (K2,K2) 2-graphs, none of which has three

different cross-edge colours or three cross-edges of the same colour, and

no two of which have a cross-edge in common, such that G is generic

subject to all (K2,K2) sub-2-graphs of G being isomorphic to elements of

C;

7. if m = n = ∞ and 3 ≤ p = q <∞, then every (Kp,Kq) restriction in G must

be homogeneous (which implies that G is PK∞[Kp]
from Proposition 2.6);

8. if m = q = ∞, n ≥ 2 and p = 2, and G has precisely two cross-edge types,

then G minimally omits only (P3,∅), (∅, P3), (Kn+1,∅) (if finite), (∅,K3),

(K2,K1)
1 and (K2,K1)

2;

9. if p = q = ∞ and 2 ≤ m ≤ n < ∞, every (K∞,K∞) restriction in G must be

homogeneous (and then the form of G is given by Theorem 5.2);

10. if n = p = q = ∞ and 2 ≤ m <∞ and G has precisely two cross-edge colours,

then all (K∞,K∞) restrictions in G are isomorphic;

11. if m = n = p = q = ∞ and G has precisely two cross-edge types, G is either

generic (i.e. realising all finite 2-coloured 2-graphs where either component is

a finite induced subgraph of (K∞[K∞])) or is generic subject to omitting the

two 2-graphs of the forms (K2,K2) where one edge-type appears once and the

other three times.

Figure 5.3: The only non-trivial example of a finite homogeneous (Km[Kp],Kn[Kq])

2-graph. For clarity we show the red and blue cross-edges separately.

Recall that Jenkinson (2006) proved the following about homogeneous (Km[Kn],Kp[Kq])

2-graphs, which we restate here for convenience without proof:
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Theorem 5.2. Let G be a c-coloured (Km[Kp],Kn[Kq]) homogeneous 2-graph where

p, q ≥ 3. Write G = (A1 + . . . + Am, B1 + . . . + Bn, R) where each Ai and Bj is a

maximal clique. Suppose that, for all i and j,

(Ai, Bj , (R1 ∩ V (Ai)× V (Bj), . . . , Rc ∩ V (Ai)× V (Bj))

is homogeneous. Then G is equivalent to one of the following:

1. the 2-graph PKm[Kp]
of Proposition 2.6;

2. a 2-graph where, for all i, j, (Ai, Bj) ∼= (A1, B1) and this is either monochro-

matic or the generic in two or more colours;

3. a 2-graph where m = n and, for all i, (Ai, Bi) ∼= (A1, B1) and for all i 6= j,

(Ai, Bj) ∼= (A1, B2) 6∼= (A1, B1), and moreover (A1, B1) and (A1, B2) are each

either monochromatic or generic, and there is no overlap in the colour sets;

4. a 2-graph satisfying the following properties:

• m = n = ∞;

• each (Ai, Bj) is monochromatic or generic, and the isomorphism classes

of restrictions can be labelled by Q1, Q2, . . . , QN ;

• if (Ai, Bj) 6∼= (Ai′ , Aj′) then the two have no cross-edges in common;

• if X1,X2 are finite, disjoint subsets of {A1, A2, . . .}, and Y1, Y2 are finite,

disjoint subsets of {B1, B2, . . .}, then, for every 1 ≤ k ≤ N :

– there is an i so that Ai 6∈ X1∪X2 and, for every j so that Bj ∈ Y1∪Y2,

(Ai, Bj) ∼= Qk if Bj ∈ Y1, and

– there is a j so that Bj 6∈ Y1∪Y2 and, for every i so that Ai ∈ X1∪X2,

(Ai, Bj) ∼= Qk if Ai ∈ X1.

Remark. It is fairly easy to verify that these 2-graphs are indeed homogeneous; in

each case there will be an age and it can be verified that the amalgamation property

holds.

The catalogue of finite non-collapsing (Km[Kn],Kp[Kq]) 2-graphs, up to equiva-

lence, is rather brief:

1. PKm[Kn]
for each finite m and n

2. K (as in 5.3)
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The set of known infinite non-collapsing (Km[Kn],Kp[Kq]) 2-graphs (up to equiv-

alence) is however less easy to succinctly state, and moreover I believe that this

catalogue is not complete, and do not have a conjecture as to its full extent.

5.3 Future work

Cherlin (1998) set out an ambitious programme for the systematic classification

of homogeneous structures in general. It is probably unrealistic to immediately

embark on a general classification of this nature at this stage. Nevertheless there

are some significantly less ambitious steps one might take in attempting to extend

the results of this thesis.

The definition of a 2-graph given in chapter 2 can be extended to cases where there

are more than two components; the resulting structure is an n-graph. More precisely,

for any given finite positive integer values of c and n, a c-coloured n-graph is a

structure

G = (G1, . . . , Gn, R1,2, . . . , Rn−1,n)

where each Gi is a graph (Vi, Ei), where Vi ∩ Vj = ∅ whenever i 6= j, and where

each Ri,j (for i < j) is an ordered partition of Vi × Vj into c subsets (some of which

may be empty). We write R1
i,j, . . . , R

c
i,j for the elements of the partition Ri,j. A

cross-edge between Gi and Gj is an element of an element of Ri,j; we will often

abuse notation by writing a cross-edge (x, y) as xy. A c-coloured n-digraph is similar

to a c-coloured n-graph, but each Gi is a digraph (definitions vary on whether it is

permitted to have undirected edges).

As a more immediate though still technically difficult goal, Cherlin set the task of

finding a classification of the homogeneous n-graphs and n-digraphs. This thesis

is essentially a first attempt to systematically classify the homogeneous 2-graphs.

Even that goal proved too ambitious and we have largely restricted ourselves to the

homogeneous 2-coloured 2-graphs (and even then not all of those).

It seems that it should be possible to generalise the techniques in Chapter 4 to

classify the 2-coloured homogeneous (Γr,Γs) 2-graphs for all 3 ≤ r, s ≤ ∞. It

appears that, with some hard work and careful bookkeeping, the proof we set out

for the r = s = 3 case should be adaptable for larger, finite values of r and s (though

we have so far been unable to make this generalisation). Similarly, the r <∞, s = ∞
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case should be conquerable using a mixture of the techniques in the r = s = 3 case,

the techniques in the r = s = ∞ case and some hard work and care in bookkeeping.

In either case we would need to extend the work of Theorem 4.11 for other values

of r and s. For specific values (if for example this was the only step missing from

a classification of the homogeneous 2-coloured (Γ4,Γ4) 2-graphs) this can be done

if necessary by brute force. A general proof of Theorem 4.11 in these other cases

appears to need some fairly careful combinatorial estimates.

There are a number of other natural possibilities for extending the work in this thesis

and we describe some of them below.

5.3.1 The ultimate extension of the bipartite case

At several points we prove, in various guises, variations of the following two results:

Lemma 5.3. Let G be an n-coloured bipartite graph with both parts infinite (i.e. a

2-graph where both components are K∞). Then if G is homogeneous, no vertex (on

either part) can have finite degree of any colour unless that degree is 0 or 1.

Theorem 5.4. If G is a homogeneous n-coloured bipartite graph where both parts

are infinite, then G is equivalent to one of the following:

1. monochromatic (i.e. n = 1);

2. perfect matching in one colour and the complement of a perfect matching in

one other colour (which implies that n = 2); or

3. generic in n ≥ 2 colours.

Moreover all of these are homogeneous n-coloured bipartite graphs.

We have needed to reprove variants of these results in part because in many cases

it is difficult to systematically translate a finite partial automorphism of a structure

S into a second structure T derived in some way from S. It has occurred to us that

these various reiterations should be susceptible to generalisation, and efforts should

be made to find general formulations, particularly of Lemma 5.3.

Problem 5.5. Find the most general formulations of Lemma 5.3 and Theorem 5.4.
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5.3.2 Extensions of the notion of “collapsing”

In Definition 2.7 we defined a notion of “collapsingness” for 2-graphs. The intention

of this definition was to allow us to eliminate quotients from our classification (since

a collapsing 2-graph G is homogeneous if and only if the 2-graph G′ to which G

collapses is homogeneous). Unfortunately, the definition did not encompass various

types of “quasi-quotient” that arose. We need to generalise the notion of collaps-

ingness to encompass these weakenings.

Problem 5.6. Find a general and uniform weakening of the notion of collapsing-

ness.

5.3.3 Sizes of intermediate amalgamands

Generally we have not been especially careful about how large our intermediate

amalgamands are. In some cases, for example in the proof of Lemma 4.12 where

we sought structures of the form (Km,D) embedding in (Γr,Γs) for finite graphs

D and finite r, the sizes of the right components of the intermediate amalgamands

increase exponentially with increasing m, and the sizes of the left components of the

intermediate amalgamands also increase with r as well as with m.

It is almost certainly possible to find tighter amalgamation arguments than the

ones we use (that is, arguments where the intermediate amalgamands are smaller

and/or using fewer intermediate amalgamands). It should be possible to investi-

gate whether or not there are asymptotic bounds on the number of amalgamations,

and the maximum sizes of the intermediate amalgamands, needed to obtain some

H = (C,D,R) embedding in, for example, a generic 2-coloured (Γr,Γs) 2-graph,

and to determine what such bounds may be or at least “bound the bounds” (i.e.

find functions f1 and f2 of k, r and s such that, if the maximum number of amal-

gamations needed to obtain a legal (C,D,R) where max(|C|, |D|) = k is f(k, r, s)

then f(k, r, s) ∈ O(f1(k, r, s)) and f(k, r, s) ∈ Ω(f2(k, r, s)), and similarly for the

maximum size of the amalgamands).

5.3.4 Other potential scope for extension

It may be possible to find versions of our results that work in the 2-digraph case

(compare with the classification of the countable 2-tournaments given in Cherlin
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(1998)). In such a case there would be three or four possible edge types within

each component (depending on whether or not we allow an edge in both directions;

Cherlin’s classification does not but Lachlan (1982) does), and there would be some

other technical complications. It is possible that our approach might not be very

fruitful (just as Cherlin in his classification of the homogeneous digraphs did not sim-

ply extend the approach in Lachlan & Woodrow (1980) to classifying homogeneous

graphs).

It might also be possible to extend some of our results to the n-graph (or even the

n-digraph) cases for some n ≥ 3. We can consider an n-graph as consisting of a

family of overlapping 2-graphs (i.e. for each pair of components the restriction of

the n-graph to these two components is a 2-graph). Jenkinson et al. (2011) classified

the 2-coloured n-partite graphs; we can think of an n-partite graph as a special case

of an n-graph where all components are edge-free graphs.

Extending to cases where there are infinitely many cross-edge relations is unlikely

to lead to worthwhile results. I can think of three ways one might try to do such an

extension, and all three are unsatisfactory.

1. Include a function that gives the cross-edge colour between any two vertices in

different components – this requires care to determine precisely what “finitely

generated” would mean.

2. Include a relation for each cross-edge colour – if this were done then the state-

ment that “there is a colour between each pair of vertices in different compo-

nents” cannot be expressed finitistically, so we do not have an Lωω theory.

3. Include a relation for all but one cross-edge colour – this leaves a colour that

is not definable, and makes it impossible to define certain finite 2-graphs that

we would want to show are embedded or omitted.

The only approach to this question that appears to have any chance of success seems

to be making the language non-relational by adding a function giving the colour

between any two vertices, and even then it is questionable whether the resulting

theory would resemble in any way the theories that arise when there are a (known)

finite number of cross-edge colours. For this reason, attempting to extend to cases

where there are more than two cross-edge colours appears unlikely to be fruitful.
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