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  Chapter 1 Introduction 
 

Abstract 
Prostate cancer (PCa) is the most common cancer diagnosis in males and the second leading 

cause of cancer related male deaths. Local microenvironments containing stromal fibroblasts are 

vitally important in the normal development and homeostatic regulation of the prostate, and have 

key roles in supporting prostate cancer progression. Local chronic inflammation has been 

associated with the development of prostate cancer. The potential impact of local immune cell 

derived inflammatory mediators on prostate stromal and epithelial/tumour cells have been studied, 

however the reciprocal impact on infiltrating immune cells has not been fully explored. 

Advancements in immunotherapy through clinical applications in checkpoint molecule inhibition 

have led to significant progress in the treatment of melanoma and lung cancer in recent years. 

However, for unknown reasons, immunotherapies thus far have widely failed to have therapeutic 

efficacy in prostate cancer patients.  

 

By utilising primary human prostate tissue samples from patients with benign prostatic 

hyperplasia (BPH) or PCa using both in vitro culture systems combined with gene expression 

profile analysis, imaging and flow cytometry, it has been shown that prostate stromal cells exhibit a 

conserved capacity to interact with local immune cells. Prostate stromal cells potently express an 

array of molecules known to negatively regulate immune cells, either endogenously, or in response 

to local immune activity through TGF-β, IDO and PD-L1. The expression of these molecules 

drives inhibition of local anti-tumour T cells and ultimately, tumour immune evasion. Furthermore, 

an experimental protocol to analyse the prostate infiltrating immune cells by flow cytometry was 

developed and used to demonstrate preliminary evidence for an enrichment of cytotoxic T 

lymphocytes in the tissue compared to peripheral blood. Importantly, these T cells have an 

increased surface expression of PD-1, the receptor that binds PD-L1 to induce T cell inhibition.  

 

Prostate tissue contains large numbers of stromal fibroblasts, even in cases of high-grade 

cancer. This study indicates prostate stromal cells tip the balance toward immunosuppression, 

which in the context of prostate cancer may lead to tumour immune escape. This is an important 

consideration for future studies in the field of immunotherapy in prostate cancer, since prostate 

infiltrating immune cells reside in the stromal compartment. Therefore, the success of PCa 

immunotherapy likely relies on targeting tumour fibroblasts.   
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1.1. The human prostate gland 

1.1.1. Gross structure and function  

The male prostate gland is a walnut-sized exocrine gland of the reproductive system. It is 

located at the base of the bladder and surrounds the urethra. Pathologically, it can be divided into 

distinct zones: the peripheral zone (PZ), central zone (CZ), transitional zone (TZ) and the anterior 

fibro-muscular zone (Figure 1.1) (McNeal, 1988). The gland functions to discharge an alkaline 

secretion that together with the seminal vesicle secretions and sperm, makes up the semen. Given 

that the vaginal environment is largely acidic, the basic fluid provided by the prostate and seminal 

vesicles is important for both the survival and motility of spermatozoa in this milieu. Although 

females do not strictly have a prostate gland, there is substantial evidence that the skene’s gland is 

the undeveloped female equivalent.  

 

1.1.2. Embryonic development of the prostate 

The prostate arises from the urogenital sinus (UGS) at around 10 weeks after gestation in 

humans (Lowsley, 1912). In contrast to most reproductory organs, which derive from the Wolffian 

ducts and are mesodermal in origin, the UGS has endodermal origins (Lowsley, 1912). Urogenital 

epithelial (UGE) cells bud from the UGS and migrate in succession into the surrounding 

mesenchyme (UGM). Once implanted in the UGM, the UGE depend on prompts from the UGM to 

form interconnecting branches (Prins and Putz, 2008; Timms et al., 1995). Thus, the development 

of the prostate is highly dependent on stromal cells. Subsequently, UGE derived signalling causes 

differentiation of the UGM into mature smooth muscle cells and fibroblasts that form the non-

haematopoietic stroma of the adult prostate (Cunha et al., 1996; Hayward et al., 1996). Androgen 

steroid signalling between stroma and epithelia is essential in both this developmental phase of the 

foetal prostate and the homeostasis of the adult prostate (Prins and Birch, 1995). It is mediated via 

stromal derived molecules collectively referred to as andromedins. Andromedins act on androgen 

receptor (AR) negative basal cells, triggering their differentiation into the epithelial luminal cells 

(Berry et al., 2008). These same interactions are thought to be involved in the counter direction 

following castration, whereby a stromal-dependent reduction of the prostate occurs (Kurita et al., 

2001).  

 

1.1.3. Microanatomy 

Histologically, prostate tissue can be further divided into the epithelial and stromal 

compartments (Figure 1.2). Epithelial acinar structures are composed of a pseudostratified 

columnar epithelium, which perform the secretory function of the gland. Within the basal layer of 

the acini reside the committed basal and stem cells, the latter of which differentiate to provide the 

cells of the luminal layer: a mixture of transit amplifying and terminally differentiated luminal 

epithelial cells. The basal epithelial cells are surrounded by a basement membrane, providing a 

protective barrier between them and the stromal compartment.  
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Figure 1.1: Gross anatomical structure of the prostate gland and associated prostatic 

diseases 

The prostate gland can be broadly separated into distinct zones the PZ, CZ, TZ and the anterior fibro-
muscular zone. Each zone has associated diseases, for example, BPH most often presents in the TZ, rarely in 
the CZ and never in the PZ. Conversely PCa occurs more often in the PZ than the TZ and never in the CZ. 
The occurrence of PCa correlates exactly with the prevalence of prostatic intraepithelial neoplasia (PIN), 
thought to be a PCa precursor. Figure taken from: (De Marzo et al., 2007) 
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Figure 1.2: Microanatomy of the prostate  

The diagram depicts a cartoon representation of the cellular composites of the human prostate architecture. 
To demonstrate this histologically an example of an intact acinus is shown on the right from BPH tissue. 
Epithelial acini are composed of a hierarchy or epithelial cells in a basal (green arrowhead; committed basal, 
stem and Trans-amplifying cells) and luminal layer (blue arrowhead). The acinus is surrounded by an intact 
basement membrane, which is lined by smooth muscle cells (yellow arrowhead). The stromal compartment 
contains mostly fibroblasts (red arrowhead) in an interconnecting ECM. Note the multiple layers of columnar 
epithelium of the luminal layer typical of luminal epithelial BPH.  
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1.2. Stromal cells 

The biological term “stroma” can be ambiguous and cause confusion since it incorporates 

many cell types (ranging from haematopoietic cells to fibroblasts) in any organ. Essentially it 

includes any cell that provides a supportive role in fulfilling the primary function of the organ in 

which it resides. It is perhaps this “supportive” role allocated to stroma that has resulted in the 

under-representation of stromal biology in research until relatively recent years. It is now well 

appreciated that stromal cells provide a vital backdrop to many biological developmental and 

homeostatic processes, and stromal cell dysfunction can contribute to the development of most 

diseases. Although immune cells may be included in this broad stromal term, for the purpose of 

this research project, the immune component of stroma are considered separately, so only the non-

immune stroma shall henceforth be designated stroma.  

 

1.2.1. Prostate stromal cells 

All stromal cells originate embryonically from the mesoderm. As discussed earlier in this 

chapter, the stroma of the immature prostate is essential for the normal development of an adult 

prostate and for healthy homeostatic regulation in the prostate. Prostate stromal cells, which are 

predominantly smooth muscle cells (SMCs) and fibroblasts, have gained increasingly more 

attention due to established roles in prostatic diseases such as benign and malignant transformation 

of prostate epithelia (Condon and Bosland, 1999; Hagglof and Bergh, 2012; Ishigooka et al., 1996; 

Wang et al., 2016). SMCs of the adult prostate are positioned in the stromal compartment 

surrounding the basement membrane. The prostate fibroblasts compose the majority of the stromal 

compartment. Fibroblasts lay down and orientate collagen and fibronectin fibres, which form the 

extracellular matrix (ECM) that SMCs are bound and upon contraction facilitate the expulsion of 

prostate secretions from the lumen of the acini. Though, “fibroblasts” themselves are a misleading 

term as their gene expression and functions vary from tissue to tissue, depending on their localised 

microenvironment (Chang et al., 2002). For this reason Komuro suggested fibroblasts should be 

further defined by the main functions they exhibit, although this has not been widely implemented 

(Komuro, 1990). 

 

Culturing primary human prostate stromal cells in vitro is a valuable technique used to 

elucidate mechanisms underlying stromal mediated disease progression. However, this is a practice 

that can lead to unreliable conclusions if the caveats are not taken into account. Not only do 

stromal cells become senescent if cultured for extended periods, they have also demonstrated a loss 

of physiologically important features after a just few passages (Hall et al., 2002; Janssen et al., 

2000; Peehl, 2005). Characterisations of prostate stromal cultures in the past have concluded that 

fibroblasts and myofibroblasts predominate (Gravina et al., 2013). SMCs and endothelial cells 

form only a small fraction and are lost early in culture. Cultured prostate stroma have been shown 

to exhibit features reminiscent of the stromal compartment of origin (i.e. normal and cancer), 
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making in vitro investigations of prostate stroma an important technique to utilise to improve 

understanding regarding stroma and disease (Hall et al., 2002; Kopantzev et al., 2010).  

1.2.2. Multipotent mesenchymal stromal cells (MSCs) 

Due to the contentious issues surrounding the nomenclature of traditionally named 

mesenchymal stem cells (MSCs), the international society of cell therapy (ISCT) published a 

position statement to address inconsistencies between the classification of MSCs and the biological 

properties they exhibit (Dominici et al., 2006). Hence, it was declared that, unless cells meet the 

true stem cell criteria, heterogenous adherent cells isolated from tissues would be termed 

mesenchymal stromal cells. MSCs may be isolated from many types of tissues, including but not 

limited to bone marrow (BM), adipose tissue, dental pulp and umbilical cord (da Silva Meirelles et 

al., 2006). BM-derived MSCs (BMSCs) are most well studied. To warrant the MSC classification, 

cells must meet a number of criteria, according to the ISCT. First, cells must be plastic-adherent. 

Secondly, they must express a number of cell surface markers (e.g. CD105 and CD90) in the 

absence of haematopoietic markers such as CD45 and CD14. Lastly, they must exhibit 

multipotency. That is; the ability to give rise to a number of different mesenchymal progeny. The 

last is potentially a remaining sticking point for those working in the MSC specialty. Since MSCs 

are heterogenous in nature, not all are able to differentiate into all three (osteogenic, adipogenic and 

chondrogenic) lineages (James et al., 2015). Rather, there are variabilities in the potency of 

differentiation among the MSC cultures, from tripotent (the ability to give rise to all 3 lineages) to 

nullipotent (unable to differentiate). Only the first (together with the other criteria) merits the stem 

cell terminology (Muraglia et al., 2000; Okamoto et al., 2002).  

 

MSC research has focused substantially on a role in immunoregulation, potentially due to the 

haematopoietic niche that BMSCs inhabit (Bernardo and Fibbe, 2013; Nauta and Fibbe, 2007; 

Puissant et al., 2005). However it is not only BMSCs that have the capacity to modulate immune 

cell function, even those isolated from non-haematopoietic tissues share this ability (Bartholomew 

et al., 2002). They are able to facilitate inhibition of innate and adaptive immunity, depending on 

the immunological context due to plasticity (usually with on-going inflammation), but may also 

provide stimulatory signals (Wang et al., 2014; Weinstock et al., 2015). Through expression of 

transforming growth factor-β1 (TGF-β1), indoleamine 2,3-deoxygenase (IDO) and immune 

checkpoint molecules such as programmed death ligand 1 (PD-L1), MSCs are able to prevent 

immune cell proliferation and activity, improving self-tolerance and preventing autoimmunity 

(Abumaree et al., 2013; DelaRosa et al., 2009; Nemeth et al., 2010; Spaggiari et al., 2008). 

Alternatively, given differing immune signals (e.g. TLR4 agonists) MSCs are able to fulfil a pro-

inflammatory role, in order to improve local immune cell activity through either cell-cell contact or 

secretion (Tomchuck et al., 2008; Waterman et al., 2010).  

 

Populations of progenitor MSCs reside in all adult organs, including non-haematopoietic 

organs such as the prostate where they are believed to provide a source of mature stromal cells to 
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facilitate regeneration (Crisan et al., 2008; da Silva Meirelles et al., 2006). There is also evidence 

to suggest that in response to inflammation, BMSCs are liberated from the BM to colonise 

elsewhere (Kassis et al., 2006).  

 

1.2.3. Stromal cells in lymphoid organogenesis and adult lymphoid tissues 

Non-haematopoietic stromal cells of lymphoid organs such as the lymph node (LN) are key 

in maintaining an environment that permits the development and sustenance of lymphoid reactions. 

The development of secondary lymphoid organs (SLO) is regulated by cross talk between stroma 

and lymphocytes (Mueller and Germain, 2009). Early haematopoietic lymphoid tissue inducer 

(LTi) and lymphoid tissue initiator (LTin) cells provide resident stroma (LT organisers; LTo) with 

signals that encourage stromal mediated retention of haematopoietic cells. These signals are 

predominantly lymphotoxin (LT) dependent. LTi cells release LTα1β2, which upon binding to 

LTβR on LTo cells, triggers upregulation of (1) chemokines that attract further LTi cells and (2) 

adhesion molecules (AM) such as intercellular adhesion molecule 1 (ICAM1) and vascular cell 

adhesion protein 1 (VCAM1), which are vital for LTi retention (Adachi et al., 1997; Honda et al., 

2001). Initiation of a positive feedback occurs when LTo cells release interleukin-7 (IL-7) and TNF 

related activation-induced cytokine (TRANCE, also known as RANKL), acting to upregulate 

release of LTα1β2 by LTi and potentiate the development (Meier et al., 2007). IL-7R mediated 

signalling is only partially required in lymph node (LN) development though, as this occurs in the 

absence of IL-7 signalling, whereas in Peyer’s patch formation it is a complete requirement 

(Adachi et al., 1997; Luther et al., 2003). Interestingly, it is the stroma that dictates the initiation of 

SLO development, as LTo cells are primed before LTi infiltration, however the signals that trigger 

the stromal maturation are yet to be elucidated (Benezech et al., 2010; Brendolan and Caamano, 

2012).  

 

In fully developed LN, LTβR signalling is important for the upkeep of stromal organisation 

and function and can contribute to the development of disease (Gommerman et al., 2002; Mackay 

et al., 1998). There are 3 principal stromal populations recognised in the human LN that promote 

lymphocyte homeostasis and activation through the generation of distinct anatomical niches: 

marginal reticular cells (MRCs) which reside in the subcapsular sinus, follicular dendritic cells 

(FDCs) and follicular reticular cells (FRCs), which reside in the B cell follicles and T cell zones 

respectively. Reciprocal interactions between LN stromal cells and the corresponding lymphocyte 

maintain respective stromal phenotypes and structural integrity of lymphocyte segregation 

(Boulianne et al., 2012; Endres et al., 1999). During immune responses, the LN undergoes 

dramatic remodelling through reorganisation and expansion of the stromal cell network. This 

permits LN hypertrophy (influx of lymphocytes) and formation of the germinal centre, both of 

which are essential for generating a successful immune response (Allen and Cyster, 2008; Vu et 

al., 2008). In certain immunological scenarios it can be recognised that loss in the structural 

integrity of lymphocyte segregation (and respectively the stroma) causes detrimental effects on 
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generation of an appropriate immune response (Mackay and Browning, 1998). An example of this 

is the loss of FRCs in response to Lymphocytic Choriomeningitis Virus (LCMV), which prevented 

immunological response to secondary infections (Scandella et al., 2008). This highlights the 

importance of immune-stromal cell interactions under both homeostatic and immune responses.  

 

1.2.4. Stromal-immune interactions in disease 

Stromal cells from non-haematopoietic organs probably share the ability to regulate immune 

infiltrates upon activation (Barone et al., 2012). Given the potential destruction that can occur as a 

result of either overactive or under active immune responses, it is logical that mechanisms exist in 

peripheral tissues to regulate immune cells. This is particularly important considering populations 

of regulatory immune cells are scarce and lymphoid stroma are absent. Resident stroma has 

become a focus for clinical research particularly in immunological related conditions. For example, 

the immune suppressive abilities of MSCs have gained them attention as a potential treatment to 

reduce overactive immune activity in autoimmune diseases such as systemic lupus erythematosus 

(SLE) and organ transplantation (Reinders et al. 2013;Wang et al. 2014a). Although reactive 

prostate stroma has not been shown to directly modulate immune cells, they do expresses 

chemokines and cytokines, known inflammatory mediators (De Marzo et al., 2007; Niu and Xia, 

2009).  

 

Formation of tertiary lymphoid structures (TLS) occurs during chronic inflammation and 

often close to tumours. It is likely that similar mechanisms involved in the formation of SLO are 

conserved in the formation of TLS, and that reciprocal signalling between stroma and immune cells 

promotes this. Its presence close to tumours is most often found to be a positive prognostic 

indicator for patients, though the molecular mechanisms and whether they can support generation 

of anti-tumour immunity are yet to be clarified (Dieu-Nosjean et al., 2008; Germain et al., 2014; 

Goc et al., 2014; Ladanyi et al., 2007).  

 

1.3. Prostatic disease 

1.3.1. Prostatitis 

Prostatitis is an inflammatory condition of the prostate. It is sometimes associated with acute 

or chronic bacterial infections (acute or chronic bacterial prostatitis), but usually the aetiology 

cannot be identified (chronic prostatitis/chronic pelvic pain syndrome; CP/CPPS or asymptomatic 

prostatitis). Its prevalence overall is reportedly between 2-10% and most are CP/CPPS diagnosed 

(Krieger et al., 2002). Over the years there have been many attempts to understand the association 

between prostatitis and prostate cancer (PCa), with inconsistent results. In one study, CP was 

directly associated with benign prostatic hyperplasia (BPH) but was found to occur at similar rates 

close to both normal and cancerous glands (Delongchamps et al., 2008). Another found a weak 

positive correlation between CP and PCa (Davidsson et al., 2011). CP was directly associated with 
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the development of proliferative inflammatory atrophy (PIA), but this was not found to correlate 

with the development of prostatic intraepithelial neoplasia (PIN; a condition considered by many as 

a precursor to PCa), or PCa (Vral et al., 2012).  

 

1.3.2. Benign Prostatic Hyperplasia (BPH) 

BPH is a non-malignant hyperplastic disease of the prostate that is increasingly prevalent 

with age (Berry et al., 1984). Since both prostate epithelial and stromal cells undergo hyperplasia 

in BPH, it is an indication that it is not a clonal disease (Tang and Yang, 2009). BPH is not 

accompanied by disruption of the basement membrane and so does not result in invasion of 

epithelium. As microanatomical expansion occurs, the prostate gland becomes significantly 

enlarged. The anatomical position means this enlargement causes compression of the upper urethra. 

Due to the resulting lower urinary tract symptoms (LUTS), BPH causes a great deal of financial 

stress on the NHS (Speakman et al., 2015). Initially, patients are treated with alpha-blockers (e.g. 

Flomaxtra/Tamsulosin), which through relaxation of the prostate, neck of the bladder and 

thickened urethra wall, permit easier passage of urine through the obstructed urethra (Kenny et al., 

1996; Lepor, 2007). Avodart, a 5α-reductase inhibitor, may alternatively be used, although the 

drug has reduced efficacy for directly relieving urine flow complications (Tarter and Vaughan, 

2006). In patients that respond less well on Flomaxtra, Avodart may prevent the need for surgical 

intervention through overall reduction in the size of the prostate (Emberton et al., 2007). In patients 

with advanced BPH, where urethral blockage is extensive, a transurethral resection of the prostate 

(TURP) is performed. A resectoscope (a tube containing a resection loop, camera and light) is 

passed through the urethra to the point of obstruction. The resection loop heats when a current is 

passed through it and facilitates the removal of tissue blocking the urethra. The tissue is removed in 

sections (or chips), which can be examined histologically.  

 

The exact aetiology of BPH is unknown, but it has been closely associated with chronic 

infections, inflammation of the prostate, and suspected interference of paracrine signalling within 

the microenvironment that control homeostatic regulation. Activated infiltrating immune cells are 

common in BPH tissue, however it is unclear whether this is a causative or aggravating effect 

(Kramer et al., 2007). Cytokines produced by activated immune cells may either induce or inhibit 

growth of prostate epithelial and stromal cells. For example, IL-4 (mainly derived from T helper 2; 

TH2 cells) inhibits SMC growth while inducing clonal expansion of fibroblasts (Kramer et al., 

2002; Steiner et al., 2003). IL-17 stimulates cytokine production (IL-6 and IL-8) by stromal cells 

and is expressed mainly by T cells derived from BPH, and to a lesser extent in the corresponding 

prostate epithelium (Steiner et al., 2003). Activated TH1 and cytotoxic T lymphocytes (CTLs) are 

potent interferon-γ (IFNγ) expressers, which was found to induce growth of BPH stroma and 

epithelial separately (Deshpande et al., 1989; Kramer et al., 2002; Steiner et al., 2003). And TGF-β 

is understood to induce transdifferention of prostate fibroblasts to myofibroblasts (Huang and Lee, 

2003; Untergasser et al., 2005). It is unlikely however that the activated immune infiltration occurs 
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spontaneously. As such, BPH is associated with recurring urinary tract infections (UTI), which are 

postulated to induce chronic inflammation and consequently hyperplasia of the prostatic tissue. 

McNeal performed key studies that introduced the embryonic reawakening theory (McNeal, 1978). 

He suggested that prostate stromal cells regain the embryonic functions that stimulated the initial 

prostate morphogenesis. Many believe the aforementioned inflammatory effects on stroma 

propagate stromal mediated epithelial hyperplasia and therefore contribute to the embryonic 

reawakening theory, but the initiating event remains undetermined.  

 

Another potential mechanism of BPH development is persistent androgen signalling, which 

normally stimulates prostatic growth through induction of growth hormones. Prostate stromal cells 

convert testicular testosterone to dihydrotestosterone (DHT), which has higher affinity for the AR. 

This is facilitated in the prostate by type II 5α-reductase (hence the use of Avodart to reduce 

prostate enlargement) (Makela et al., 1990). With age, androgens decrease in the peripheral blood 

however they continue to be present at high levels in the prostate (Marberger et al., 2006). It is this 

persistent presence of local androgens that could contribute to BPH development.  

 

1.3.3. Prostate Cancer (PCa) 

PCa has replaced lung cancer as the most commonly diagnosed male cancer in the UK and is 

expected to remain so up to 2035 (Smittenaar et al., 2016). It is the second leading cause of cancer 

related death in men, with over 11,000 documented annually (Cancer Research UK). Although 5-

year survival is high (98.6%) for early stage localised PCa, 55-65% of these patients are estimated 

to develop incurable metastatic disease, for which the 5-year survival is markedly lower (32.6%) 

(McPhail, 2008; NICE, 2013). The ability to discriminate patients whose disease is likely to 

advance from those with indolent disease is not currently possible, despite many years’ research 

focus on this objective.  

 

PCa treatment and prognosis is assessed during diagnosis according to the Gleason Pattern 

Scoring System. First developed in the 1960’s by pathologist Dr Donald Gleason (Gleason, 1966), 

the system is still widely implemented in medicine today. Pathological examination of 

haematoxylin and eosin (H&E) stained biopsy tissue is evaluated on the basis of architectural 

features including the degree of similarity of the sample to normal prostate tissue, acinus formation 

and invasion to surrounding tissues (McNeal and Gleason, 1991). An overall Gleason score 

(between 2 and 10) is calculated according to the combined major and minor patterns (1 to 5) 

observed in the sample, and therefore takes into account a degree of the heterogeneity that exists in 

PCa. Higher Gleason scores are indicative of aggressive/advanced and poorly differentiated 

disease, increased risk of metastasis and a worse prognosis. For example, tissue where the majority 

(major pattern) exhibits characteristics fitting with Gleason pattern of 5 and minor pattern of 4, the 

diagnosis would be Gleason score of 5+4=9. The loss of cellular architecture during in PCa is 

depicted in Figure 1.3 and Gleason scoring system is demonstrated in Figure 1.4 (Epstein et al., 
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2016). The stage of disease positively correlates with substantial changes in the local stromal 

compartment, originally described as a co-evolutionary process (Tuxhorn et al., 2002). This “co-

evolution” term and the nature of the Gleason scoring system suggests a transitional progression of 

PCa, implying that lower Gleason scoring tumours become “more malignant” over time. This is a 

difficult concept to prove, as repeated biopsies would have a number of limitations, including 

inaccuracy and a resulting local inflammatory response and cytokine release that would influence 

tumour growth. An additional theory for PCa progression has been the existence of separate cancer 

stem cells (CSCs) giving rise to the distinct tumour grades observed in multifocal tumour tissue 

(Packer and Maitland, 2016). PCa cells are phenotypically luminal, though the CSC theory conveys 

that populations of basal-like tumour initiating cells (CSCs/TICs) residing in the niche 

uncontrollably give rise to progeny of luminal epithelial cancer cells (Maitland and Collins, 2005). 

This hierarchical model is well defined in haematological malignancies, which have been better 

studied due to the accessibility of peripheral blood (Bonnet and Dick, 1997). It proposes that only a 

fraction of the tumour cells are able to initiate tumours and are therefore responsible for recurrence 

post-treatment (Boman and Wicha, 2008; Maitland and Collins, 2008). 

 

As with embryonic development, normal function and BPH, AR signalling is important in 

the early stages of PCa. Activation of the AR upon binding of DHT or testosterone results in 

translocation to the nucleus, where it mediates transcription of AR response genes such as prostate 

specific antigen (PSA) and promotes survival and proliferation of luminal cells. In patients whose 

disease progresses beyond locally confined disease after radical prostatectomy (RP) or 

radiotherapy, androgen deprivation therapy (ADT; e.g. Enzalutamide) is used to prevent AR 

mediated tumour cell survival. Consistent with this, ADT is effective in dramatically reducing the 

size of prostate tumours. However, this is a transient effect, and ultimately almost every patient 

will become refractory to ADT and develop what is termed castrate resistant prostate cancer 

(CRPC). Response to ADT is monitored by measuring serum concentration of PSA, where 

increases in PSA are indicative of revival of AR signalling and resistance to ADT. PSA had been 

considered a useful PCa biomarker, instigating a PCa screening program, although this has had 

considerable controversies associated due to inaccuracies and has since been advised against 

(Moyer, 2012). CRPC and metastatic-CRPC (mCRPC) is incurable and treatments are mainly 

palliative, e.g. chemotherapy (docetaxel and abiraterone) or bone directed radiotherapy and 

bisphosphonates to ease bone pain (due to the high propensity of PCa to metastasis to the bone).  

 

Like with BPH, cytokine release by infiltrated immune cells is associated with progression 

of cancer due to many of the same signals previously described. Packer and colleagues describe 

CSC cytokine addiction as an initiator of positive feedback loop that contributes to the 

development of PCa (Packer and Maitland, 2016). PCa cells gain the ability to produce cytokines 

(such as IL-6 and IL-8) and in doing so establish an autocrine loop that facilitates their expansion. 

It is observations such as these that have supported the inflammatory cancer theory, which is the 
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role of chronic inflammation in promoting development of cancer. This is a concept explored 

throughout this thesis.  

1.4. Reactive Stroma 

PCa, like many tumours, has cancer-associated localised changes to stroma. Whether these 

changes are due to either epigenetic or genetic have been investigated, with variable results. Using 

laser capture microdissection (LCM) and downstream genetic/epigenetic analysis, a number of 

studies found have found tumour stroma to have some genetic alterations, although the use of LCM 

could produce results difficult to interpret (Hanson et al., 2006; Hu et al., 2005). It is unclear 

exactly what signals may cause the stromal compartment to change local to the tumour or indeed 

the source of the transformed stromal cells (i.e. whether they arise due to differentiation of resident 

mature stroma, local MSC progenitors or BMSC) (Ishii et al. 2015). Nevertheless, the presence of 

this tumour microenvironment is absolutely essential for tumour survival, progression and 

migration (Olumi et al., 1999; Tuxhorn et al., 2002; Yang et al., 2005). This knowledge has 

sustained the concept that inhibition of tumour recurrence after treatment could be achieved by 

undoing the cancer-promoting changes in the tumour stroma (Hiscox et al., 2011).  

 

The altered stromal compartment local to PCa is referred to as reactive stroma. This can be 

characterised by increased myofibroblast frequency (also referred to as cancer associated 

fibroblasts (CAFS)), increased expression of TGF-ß, loss of SMCs and ECM remodelling (Barron 

and Rowley, 2012; Tuxhorn et al., 2002). Development of a reactive stromal compartment though, 

is not necessarily tumour specific and occurs in many conditions with an associated inflammatory 

component. An increased proportion of myofibroblasts/CAFs is found in a variety of physiological 

conditions, including wound healing (granulation tissue), PIN and BPH (Darby et al., 2014; 

Schauer and Rowley, 2011; Tuxhorn et al., 2001; Xue et al., 1998). Most strikingly, reactive 

stroma is similar in phenotype to tertiary lymphoid tissue (TLT) stroma, suggesting the associated 

inflammatory signals have a significant impact on stromal phenotype (Peduto et al., 2009). TGF-β1 

has been found to induce conversion of fibroblasts to myofibroblasts in vitro and in vivo. 

Potentially then, the development of reactive stroma may be an indirect consequence of cancer and 

could be the result of increased inflammation. 

 

In comparison to normal and BPH associated stroma, PCa stromal cells have been shown to 

provide functionally distinct roles to the corresponding epithelial cells (and vice versa). Hall and 

colleagues characterised 3-dimensional (3D) co-cultures of prostate stroma and epithelial cells 

from BPH and PCa diagnosed patients in collagen gels, which revealed intrinsically different 

features (Hall et al., 2002). PCa stroma demonstrated a reduced capacity to contract collagen gels 

when co-cultured with BPH epithelium. This effect was reversed when PCa epithelium populated 

the surface. Correspondingly, migration of prostate epithelium into collagen gels was governed by 

the stroma within the gel. BPH stroma but not tumour stroma permitted single cell tumour 

epithelial invasion. Contrastingly, BPH epithelium migrated and formed acini-like structures in 
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BPH stromal gels but not tumour stroma gels. Altogether this study conveyed that tumour stroma 

de-regulated BPH epithelial organisation but was also able to prevent tumour cell invasion, 

whereas BPH stroma was not. It is clearly evident from this study that epithelium and stromal cells 

are less able fulfil normal function when in close range to counterparts from different diseases, 

indicating differential signalling. Studies in vitro and in vivo have demonstrated more drastic 

changes imparted on epithelium by tumour stroma. Hayward’s and Cuhna’s labs have contributed 

considerably to prostate stroma studies. They demonstrated that only when human prostate CAFs 

are grafted with human immortalised BPH epithelial cells (BPH-1) into the renal capsule of mice, 

are tumours able to arise and neither could form a tumour in isolation (Cunha et al., 2002; Hayward 

et al., 1998). Similar to the described study by Hall et al., this was unique to tumour stroma and did 

not occur when BPH stroma and BPH-1 epithelium were mixed. Moreover, they demonstrated that 

tumour stroma induced neoplastic growth of non-tumourogenic (BPH-1) prostate epithelium 

(Hayward et al., 2001). Reactive stroma is not present in immunodeficient mice, indicating a 

requirement for immune cells for its initiation.  

 

A number of mechanisms may account for these described functional differences between 

normal, BPH and PCa stromal cells. Metallomatrix proteases (MMPs) are commonly found to be 

upregulated in CAFs compared to the normal equivalents, providing a mechanism for invasion by 

degradation of the basement membrane and ECM fibres (Stearns and Stearns, 1996). Reactive 

stromal cells are known expressers of chemokines and cytokines, which may invoke autocrine and 

paracrine signals between stroma and epithelium promoting tumour proliferation and migration 

(Jung et al., 2010; Orimo et al., 2005). An emerging field of exosome-mediated communications 

has led to increased investigation of tumour stroma derived exosomes. Some early investigations 

find that prostate stroma-derived exosomes containing microRNA may modulate prostate tumour 

cell resistance to therapy (Fletcher et al. unpublished). They can be potent expressers of growth 

factors such as fibroblast growth factor (FGF) and hepatocyte growth factor (HGF), which can 

reportedly directly induce invasion of tumour cells and select for a CSC-like phenotype 

respectively (Henriksson et al., 2011; Vermeulen et al., 2010). Expression of AM may also 

influence migratory capacity of tumour stroma and consequently tumour cells. Lakins et al. 

demonstrate that increased expression of podoplanin, ICAM1 and VCAM1 (similar to TLT stroma) 

corresponds to increased migration by tumour stroma (Lakins, 2012). This phenotype was 

mimicked in BPH and high passage stroma when treated with IL-4, LTβ & TNFα, although the 

migratory capacity of high adhesion molecule (i.e. inflammatory cytokine treated) BPH stroma was 

not investigated. The authors suggest that migration of tumour stroma formed a path of least 

resistance, allowing tumour cells to follow sequentially. Stromal cell phenotype in BPH and PCa 

will be explored further in Chapter 5. 
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Figure 1.3: Prostate cancer results in a loss of normal architecture  

Prostate cancer involves over expansion of the epithelium and loss of the basement membrane. Although the 
cancer cells adhere to the luminal phenotype they expand due to over-proliferation of tumour initiating cells 
giving rise to luminal progeny at an increased, uncontrolled rate. Loss of the basement membrane means 
malignant cells can invade the stromal compartment. Notable changes occur in the stromal compartment 
including infiltration of immune cells, accruement of myofibroblasts and loss of SMCs. An example of 
histology of high Gleason grade PCa is shown on the top right. High grade PCa is characterised by the 
complete loss of structure. Epithelial tumour cells grow in sheets, becoming mixed with activated stromal 
and immune infiltrating cells. Although the cells are mixed in the image, the bottom left corner contains 
mostly tumour cells and the top right corner mostly stromal cell, recognisable by the high amount of collagen 
fibres (dark pink).  
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Figure 1.4: Gleason Pattern Grading System 

Gleason Pattern 1: Neoplastic tissue is well differentiated and most similar to normal prostate tissue. Glands 
are well packed and formed.  
Gleason Pattern 2: Glands are large and well-formed but have more stromal tissue between.  
Gleason Pattern 3: Glands stain darker and show signs of randomised structure. They seem to be invading 
surrounding tissue.  
Gleason Pattern 4: Glands may be poorly formed and cribriform glands may be present with a few 
recognizable glands.  
Gleason Pattern 5: There are no recognizable glands mostly cribriform glands are present. Cells with 
distinct nuclei appear in sheets.  
H&E images taken from: (Epstein et al., 2016) 
  



  Chapter 1 Introduction 
 

1.5. Tumour Immune evasion 

The ability of cancer cells to evade immune mediated destruction became a new addition to 

the original hallmarks of cancer more than a decade after first introduced (Hanahan and Weinberg, 

2011). Tumour immune escape occurs when any step in the cancer-immunity cycle fails, as a 

result, there is an absence in mounting an adequate immune response and so cancer presents 

clinically (Chen and Mellman, 2013; 2017). Failures in the immunity cycle can equally result in 

loss of self-tolerance, when an unwarranted immune response is triggered against self-peptide 

resulting in autoimmunity. Hence, a subtle equilibrium exists, which if disturbed either way is 

detrimental to the host. It is the necessity of this balance that makes cancer (as aberrant self-cells) a 

challenge for the immune system. For an effective anti-cancer T cell response to be initiated, a 

number of steps must occur, each reliant on various factors. Cancer cells must express recognisable 

antigens, which can be processed and presented by antigen presenting cells (APCs) tasked with 

immune surveillance (Galon et al., 2013; Zitvogel et al., 2013). Upon priming and activation in 

SLO (tumour draining LN), CTLs migrate and infiltrate tumour tissue. Cancer cells expressing 

cognate antigen on Major Histocompatibility Complex (MHC) I molecules are specifically 

recognised and targeted for immune mediated death, and so releasing further cancer antigens, 

propagating the cycle (Figure 1.5).  

 

Needless to say, microevolution of the tumour can result in evasion of immune mediated cell 

death at any point in the cycle, particularly accentuated in the presence of moderate immune 

pressure, allowing for “immune editing”. Alternatively, immune cells can be actively restrained 

(rather than evaded) so that effector T cell function is prevented, consequently resulting in reduced 

tumour cell killing (Motz and Coukos, 2013). This may be accomplished by a number of means 

including: over representation of T regulatory cells (Treg); reduced expression of pro-inflammatory 

cytokines; over expression of inhibitory and checkpoint molecules; loss of MHCI expression on 

cancer cells; altogether resulting in a tolerogenic, rather than immunogenic, response. Tumour 

immunogenicity can be defined by the propensity of tumour cells to be recognised by immune cells 

(Blankenstein et al., 2012). It can be ranked according to the amount of distinctive cancer-antigens, 

as well as the degree of similarity to self-antigens and thereby controls the power of the immune 

response. Melanoma is one of the most immunogenic tumours in humans, characterised by a high 

degree of mutations and strong immune responses. In contrast, prostate tumours have one of the 

least detectable mutagenic burdens, slow growth and low immunogenicity. This therefore makes 

PCa one of the more difficult cancer types for immune cells to “see” and intercept.  

 

Cancer immunotherapy aims to devise a way to harness the killing ability immune cells 

possess to target cancer (Mellman et al., 2011). One such way has been neutralisation of immune 

checkpoint inhibitors, which has had variable success in clinical trials, partly due to the 

accompanying adverse effects. Inhibition of the cytotoxic T lymphocyte-associated antigen 4 

(CTLA-4) and programmed death-1 (PD-1) pathways have shown particular promise in clinical 

trials for a number of malignancies, the largest achievement perhaps being melanoma (Krummel 



  Chapter 1 Introduction 
 

and Allison, 1995; Parish, 2003; Prieto et al., 2012). In prostate cancer specifically there has been 

little success with immune checkpoint inhibition, with a recent phase III trial showing no difference 

in placebo and Ipilimumab (anti-CTLA-4) treated patients (Kwon et al., 2014a). The use of 

immunotherapy in PCa is explored in section 4.2. Adoptive T cell transfer has also proven 

successful for melanoma (Kalos and June, 2013). This is when immune cells are extracted from the 

patients’ tumour or tumour draining LN with the appreciation that a proportion of lymphocytes 

homing to these sites have specificity for tumour-specific antigens (TSAs) or tumour-associated 

antigens (TAAs). They are expanded ex vivo and reintroduced back to the original patient; in a 

fraction of patients either partial or complete responses (PR; CR) have been achieved. Cancer 

vaccines could be utilised and particularly useful in patients who have failed to mount an adequate 

immune response, compared to those exhibiting immunosuppressive tumour microenvironment 

(Palucka and Banchereau, 2013; van den Boorn and Hartmann, 2013).  

  



  Chapter 1 Introduction 
 
 

 

 

 

 

 

 
Figure 1.5: Cancer immunity cycle and potential mediators  

For activation of anti-tumour immunity tumour cells must express unique cancer antigens (TSA or TAA), 
which are presented on APCs at the tumour draining lymph node. Here they interact with cancer specific 
lymphocytes in order to induce adaptive immunity. T lymphocytes migrate to the tumour where they 
recognise cancer antigens on tumour cells inducing T cell mediated killing. This process may be inhibited at 
any point and result in failure of effective adaptive immunity. Figure taken from: (Chen and Mellman, 2013)  
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1.6. Interferon-γ  (IFNγ) 

Interferons were so named due to the ability to interfere with viral infections. IFNγ is the 

only member of the type II IFNs and differs from the Type I family in chromosomal location and 

lacks any sequence homology (Pestka et al., 2004). Upon dimerization it binds and signals through 

a heterodimeric receptor formed of IFNγR1 (which confers ligand binding capacity) and IFNγR2 

(the signal transducing component), and transmits signal predominantly through the JAK-STAT1 

(Janus Kinase- Signal transducer and activator of transcription) classical pathway (Figure 3.2) 

(Bach et al., 1997; Pestka et al., 1997). IFNγ dependent transcription is reliant on IFNγ activated 

site (GAS) promoter elements in genes, which are bound by phosphorylated STAT1 (pSTAT1) 

homodimers (Darnell, 1997; Darnell et al., 1994). This canonical model of IFNγ (and many other 

cytokines) signal transduction has been enduring until recently when a non-canonical model was 

introduced (Johnson et al., 2013). The authors suggest IFNγR1-IFNγ-JAK/STAT1 complexes are 

endocytosed and translocate to the nucleus to permit specific transcription of IFNγ response genes. 

The non-canonical pathway addresses issues surrounding how enumerable cytokines that transmit 

through the same signalling molecules go on to induce different results. IFNγ can also result in 

signalling via other pathways, such as PKCδ (via PI3K). PKCδ facilitates phosphorylation of the 

STAT1 homodimer at the Serine residue position 727 and this is required for transcriptional 

regulation of IFN stimulated genes (ISGs) (Huang and Lee, 2003). When this phosphorylation is 

inhibited, fibrosarcoma cells have an increased susceptibility to apoptosis by the chemotherapeutic 

drug Etoposide (DeVries et al., 2004). Depending on the signalling pathways that are co-

stimulated, certain transcription factors will be recruited to STAT1 in the nucleus. For example, 

recruitment of C/EBPβ by MEK-ERK signalling allows transcription of IFNγ activated 

transcriptional elements (GATEs), which have been implicated in promoting IFNγ mediated cell 

death (Gade et al., 2008; Roy et al., 2000). A less appreciated feature of IFNγ is its strong binding 

to the glycosaminoglycan (GAG) heparin sulfate (HS), which comprise part of the ECM (Saesen et 

al., 2013). By binding to HS, IFNγ forms repositories so that concentrations vary immeasurably 

within tissues. In this form IFNγ is protected from proteolytic degradation so increasing IFNγ 

functionality. 

 

In the context of PCa, IFNγ has been shown to negatively impact tumour cell invasive 

capacity by repressing Annexin2, an adhesion molecule that facilitates cell-ECM interactions 

(Hastie et al., 2008). Fang et al. demonstrated in a STAT1-mTOR dependent manner, IGFBP-3 

sensitised prostate tumour cells to IFNγ induced cell death (Fang et al., 2008). Interestingly, there 

may be a link between presence of cytokine in the microenvironment and progression of PCa to 

androgen independence prostate cancer (AIPC); when AIPC cell lines were treated in vitro with 

nerve growth factor (NGF) and IFNγ in combination, there was a loss of proliferation, increased 

apoptosis and reduction in AI associated with downregulation of fibroblast growth factor receptor 2 

(Chen et al., 2012). In a small clinical study of 10 CRPC patients treated with immunotherapy, 

clinical benefit (assessed by reduction in PSA levels) was positively correlated with serum 
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concentrations of IFNγ, indicating the therapeutic benefit was due to increased immunity (Yuan et 

al., 2009). Importantly though, out of the 8 patients that did respond, all suffered adverse effects 

associated with autoimmunity.  

 

While there is evidence IFNγ can directly induce tumour cell death, it mainly contributes to 

anti-tumour immunity by indirect mechanisms. Classic IFNγ induced genes include the chemokines 

CXCL9, CXCL10 and CXCL11, which propagate inflammation most probably not redundantly but 

rather synergistically and temporally (Groom and Luster, 2011; Singh et al., 2003). These 

chemokines induce chemotaxis of further inflammatory CXCR3 positive T cells. IFNγ further 

stimulates (1) the proliferation of CTL, NK and TH1 cells and (2) preferential differentiation of 

TH1 cells from naive T cells. MHCI molecules are also inducible through IFNγ, which may 

paradoxically increase immune recognition of tumour cells through presentation of tumour antigens 

and facilitate tumour cells to inhibit NK cells directly (Fruh and Yang, 1999; Zhou, 2009). Of note, 

IFNγ has been associated with the upregulation of a number of immune inhibitory molecules 

including checkpoint ligands and IDO, an enzyme that indirectly inhibits T cells by depleting local 

amino acid availability (Zaidi and Merlino, 2011).  

 

Figure 1.6: The canonical and non-canonical pathways of IFNγ  signaling.  

Homodimeric IFNγ binds to the heterodimeric receptor consisting of IFNGR1 and IFNGR2 and initiates 
either canonical (A) or non-canonical (B) signaling. In the canonical signaling model, receptor ligation 
results in phosphorylation of JAK1/JAK2 and recruitment of STAT1. STAT1 forms a phosphorylated 
homodimer, which translocates to the nucleus and modulates transcription of IFNγ response genes. In the 
non-canonical model the IFNGR1 receptor is internalised upon ligation and forms a complex of 
IFNγ/IFNGR1/JAK1/JAK2/pSTAT1, which is actively transported to the nucleus. Here, it mediates 
transcription of IFNγ response genes. Figure taken from: (Johnson et al., 2013).  
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1.7. Interleukin-4 (IL-4) 

TH2 cells produce IL-4, which has pleiotropic effects, but its role in suppressing effector 

TH1 functions gained it an anti-inflammatory reputation (Cohn et al., 2001; Sadick et al., 1990). 

IL-4 binds to the heterodimeric IL-4 receptor composed of an IL-4-Rα subunit and either the 

common γ chain (γc) (Type-I) or the IL-13Rα1 subunit (Type-II), allowing activation of variable 

downstream signalling pathways (Figure 3.3) (He and Malek, 1995; Johnston et al., 1994; LaPorte 

et al., 2008; Obiri et al., 1995). Expression of the γc subunit is normally restricted to 

haematopoietic cells, whereas the IL-4Rα and IL-13Rα1 subunits have broader expression profiles 

(Orchansky et al., 1999; Ul-Haq et al., 2016; Witthuhn et al., 1994). IL-4 receptor ligation in either 

form induces responses through STAT6 homodimer mediated transcription (Malabarba et al., 

1996; Rolling et al., 1996). In Type-I receptor signalling JAK1/JAK3 precedes this and so can 

activate both STAT6 and insulin receptor substrate-2 (IRS-2), whereas in Type-II signalling 

JAK1/JAK2 and Tyk2 transduce the signal to STAT6 (Malabarba et al., 1996; Murata et al., 1998; 

Rolling et al., 1996; Schnyder et al., 1996). In T cells, STAT6 activates Gata3, the master regulator 

of TH2 differentiation (Ranganath et al., 1998). To induce survival and proliferation, STAT6 

lessens cyclin-dependent kinase inhibitor 1B (CDKN1B) mediated inhibition of cell cycle (Liu et 

al., 2000). IL-4 mediated activation of STAT6 in B cells induces Immunoglobulin class switching, 

promoting IgE and IgG1 antibodies (Gascan et al., 1991).  

 

While IL-4 potently represses IFNγ expression and TH1 effector functions, it can also be 

considered pro-inflammatory due to strong associations with pathological allergic responses 

(Grunewald et al., 1998). Mechanistically this is due to the requirement of TH2 cells for B cell 

class switching (Foote et al., 2004; Morris et al., 2000). Therefore, imbalance in IL-4 results in 

overrepresentation of TH2 cells, increased B cell activation and antibody production, leading to 

pathological disease mediated through humoral immunity. Il-4/STAT6 mediated transcription 

induces upregulation of AM such as VCAM1, particularly synergistically with TNFα (Iademarco 

et al., 1995; Thornhill et al., 1991). This effect initially directly associated IL-4 signalling with 

extravasation of leukocytes to inflamed tissues and in cancer has been associated with increased 

tumour cell migration and invasion to the vasculature (DeNardo et al., 2009; Li et al., 2008). 

Moreover, it has been shown to increase survival in tumour cells, and there is evidence for 

increased clonogenic potential in PCa CSCs as a result of IL-4 (Nappo, 2016; Prokopchuk et al., 

2005; Roca et al., 2012). This is of particular clinical significance as IL-4 and IL-4Rα is increased 

in PCa patients (Wise et al., 2000). Further, immunosuppressive cytokines, including IL-10 and 

TGF-β are inducible by IL-4 and strongly inhibit effector immune cell proliferation, activity and 

increases regulatory immune cell activity (Fiorentino et al., 1989).  
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Figure 1.7: The potential mechanisms of IL-4 signalling 

IL-4 signalling can occur through either Type I or Type II receptors. The type I receptor is a heterodimer of 
γc and IL-4Rα. Both IL-4 and IL-13 can initiate signalling via the type II receptor constructed of IL-4R and 
IL-13Rα1. IL-13Rα2 has specificity for IL-13 only and is largely though to act as a “decoy”. IL-4 mediated 
activation of the type I receptor stimulates JAK1/JAK3 signalling and formation of pSTAT6 homodimer. 
Binding of IL-4/IL-13 to the type II receptor results in activation of JAK/Tyk2 and pSTAT6. pSTAT6 
modulates transcription of IL-4/IL-13 response genes. Figure taken from: (Wills-Karp and Finkelman, 2008) 
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1.8. Tumour necrosis factor-α  (TNFα) 

TNFα belongs to the TNF superfamily and is so named due to evidence of direct 

apoptotic/necrotic affects on tumour cells (Beutler and Cerami, 1988; Oettgen et al., 1980). It can 

be produced by TH1, CTL and APCs to name a few, indicating the probability of its magnitude in 

many inflammatory scenarios including tumours (Mukhopadhyay et al., 2006). However, it has 

been implicated in divergent biological processes, exhibiting remarkable dual functionality 

(Bertazza and Mocellin, 2010). The reason for this may depend on the contextual environment, as 

it has been shown to compliment other cytokines synergistically (Badalyan et al., 2014; Dong et 

al., 2013; Enderlin et al., 2009; Ray et al., 2009).  

 

TNFα has dual specificity for receptors TNFR1 and TNFR2, which may 

alternately/additionally account for these contradictory roles (Wajant et al., 2003). TNFR1 and 

TNFR2 have differential expression and specificity; TNFR1 binds only TNFα and is expressed in 

most cell types, while TNFR2 can bind both TNFα and TNFβ, and its expression is more restricted 

(Figure 3.4) (Grell et al., 1995; Li et al., 2002; Ware et al., 1991). Transmitting signals through 

both its cytoplasmic death domain (DD) and indirect activation of the TNFR-associated factor 

(TRAF) signalling molecules means that TNFR1 can induce both apoptosis and survival. The DD 

of TNFR1 induces activation of 3 main mediators of apoptotic cell death; receptor-interacting 

protein 1 (RIP1), Fas-associated death domain protein (FADD) and TNFR1-associated death 

domain protein (TRADD) (Chen et al., 2008; Hsu et al., 1996; Hsu et al., 1995; Tartaglia et al., 

1993). Concurrently, TNFR1 can activate TRAF2 through TRADD, which may coordinate with 

RIP1 to induce NF-ĸB transmitting a pro-survival signal rather than apoptosis (Mahoney et al., 

2008; Micheau and Tschopp, 2003). Further pro-survival and proliferative signals occur when 

TNFα signalling induces TRAF2-JNK activation and AP-1 mediated transcription, leading to 

expression of inflammatory cytokines, cell growth and proliferative signals (Brach et al., 1993; 

Dixit et al., 1989; Rothe et al., 1995a). The outcome of TNFα signalling (either activation of the 

apoptotic or anti-apoptotic arms) likely depends on a number of factors, be it the cell type, 

surrounding niche or additional signalling occurring, including co-activation of TNFR2. TNFR2 

transduces through TRAF2, activating the NF-ĸB and AP-1 transcription factors to promote 

survival (Rothe et al., 1995b). Activation of both receptors is thought to invoke a functional 

crosstalk mechanism through the shared TRAF2 mediator. TNFR2 activation transduces through 

TRAF2 but also promotes its degradation (Arch et al., 2000; Wu et al., 2005). This causes 

depletion of TRAF2 from both TNFR1 and TNFR2 signalling pathways, causing preferential 

activation of the pro-apoptotic arm TNFR1 activation (Cabal-Hierro and Lazo, 2012; Rodríguez et 

al., 2011).  
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Figure 1.8: TNFα  mediated signalling.  

TNFα initiates signalling through trimeric TNFR1 or TNFR2. TNFR1 ligation results in the recruitment of 
TRADD to its cytosolic death domains (DD), which initiates signalling via recruitment and activation of Fas-
associated DD protein (FADD) leading to activation of pro-caspase-8 and apoptosis. Alternatively, TRADD 
may activate signalling via TRAF-2 leading to NF-ĸB activation, promoting cell survival. Co-activation of 
TNFR2 by TNFα results in TRAF2 activation (and NF- ĸB) followed by TRAF2 degradation. Intracellular 
depletion of TRAF2 causes preferential activation of the TNFR1/FADD arm and apoptosis. Figure taken 
from :(Cabal-Hierro and Lazo, 2012) 
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1.9. Cytokine signalling in PCa 

Due to the historical links of inflammation and tumourigenisis, there have been a number of 

cytokines that have been associated with the development, progression and survival of PCa cells 

(De Marzo et al., 2007). These links have been supported by in vitro cell line experiments, in vivo 

xenograft studies and correlations of TME cytokine and receptor expression in patients with relapse 

and progression in many tumour types. In PCa IL-1, IL-6 and TGF-β are commonly linked with 

tumour progression. The physiological source of these cytokines has been elusive due to 

contradictory results and lack of reproducibility in different systems. It is conceivable that the 

differences in the inflammatory environment are a major contributing factor to these 

inconsistencies as many of these cytokines are regulated by other inflammatory signals. The human 

immune system is one of the multifaceted systems in biology and undeniably a powerful one. This 

attribute makes reproducing the same inflammatory environment incredibly difficult. Immune 

complexity additionally makes it difficult to separate homeostatic inflammatory responses 

contributing to resolving pathology from deregulation in inflammatory signals contributing to 

pathology. More often correlations made between inflammatory signals and disease progression are 

suggested as a good therapeutic targets, however many notorious complications have occurred and 

continue to occur when therapies are used to interrupt the immune system without fully understand 

the repercussions it might involve.  

 

The IL-1 family encompasses eleven cytokines. IL-1α and primarily IL-1β are the most 

studied and both are produced as precursor proteins by a wide variety of cell types, including 

macrophages, fibroblasts and epithelial cells (Auron et al., 1984; Lomedico et al., 1984; Palomo et 

al., 2015). While IL-1β requires proteolytic cleavage (e.g. by caspase-1) for activity, IL-1α can 

transduce signalling in both the immature and mature form (Guma et al., 2009; Martinon et al., 

2002; Thornberry et al., 1992). This second level of regulation means that IL-1β cannot 

immediately initiate an inflammatory response, but instead requires stimulation that controls its 

maturation (e.g. via NF-kB). IL-1α on the contrary, functions as a damage-associated molecular 

pattern (DAMP) and can be released by necrotic or damaged cells, or secreted in either the 

immature or mature form (Afonina et al., 2011; Cohen et al., 2010). Cleavage of pro-IL-1α by the 

Ca2+ activated calpain releases ppIL-1α that can translocate to the nucleus and serve as a 

transcription factor, so fulfilling dual functions (Kobayashi et al., 1990; Werman et al., 2004). IL-

1α and IL-1β bind to the receptor IL-1R1, which lacks a cytosolic domain and so requires 

recruitment of IL-1 receptor accessory protein (IL-1RAP; also known as IL-1RAcP) a co-activator 

that transmits activating signals downstream (Greenfeder et al., 1995). IL-1 is known for initiating 

inflammation when damage occurs in the absence of pathogen infections (i.e. and lack of TLR 

ligation) (O'Neill, 2008). IL-1R1 ligation instigates signalling via MyD88, IRAK, TRAF6 and 

ultimately activation of NF-kB and AP-1 (Muzio et al., 1998). IL-1R1 therefore facilitates a feed 

forward loop by prompting transcription of pro-inflammatory cytokines including IL-1, IL-6, IL-8 

and COX-2 (Tsuzaki et al., 2003). Due to this potency, the IL-1 pathway requires several levels of 
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regulation. Both IL-1α and IL-1β can bind to IL-1R2, which lacking capacity to transmit signal, 

serves as a decoy receptor (Colotta et al., 1993; McMahan et al., 1991). IL-1R2 and IL-1RAP, as 

soluble proteins, can regulate IL-1 signalling in the extracellular space (Smith et al., 2003; Symons 

et al., 1995). Additionally, IL-1R1 can bind a third ligand IL-1 receptor antagonist (IL-1RN; also 

known as IL-1RA), an endogenous antagonist that competes with the actuating ligands, preventing 

signal activation (Dripps et al., 1991).  

 

Autoimmune pathology has been attributed, in part, to over activation of the IL-1 pathway. 

Consistent with this, therapeutic use of Anakinra (IL-1RN) in patients with autoimmune 

rheumatoid arthritis provides in part substantial clinical benefits (Bresnihan, 2002; Dayer et al., 

2001). In vivo studies of IL-1 signalling in cancer have indicated a cancer-promoting role, with 

associations with angiogenesis, growth and metastasis (Elaraj et al., 2006). Polymorphisms in the 

IL-1 family have increased associated risk for PCa (Xu et al., 2014). Inhibition of IL-1α and loss of 

IL-1R1 reduces hepatocarcinoma burden (Sakurai et al., 2008). Immunohistochemical staining of 

normal, BPH and PCa tissue revealed increased progression free survival in patients with high IL-1 

expression (in both stroma and tumour) but low IL-1R1 expression, indicative of low reciprocal 

signalling (Torrealba et al., 2017). To understand how this mechanistically might occur, in vitro 

and in vivo studies have investigated the effects of IL-1 on tumour cells. IL-1β has been identified 

as a factor that promotes colon cancer cell epithelial to mesenchymal transition (EMT) and 

consequently metastasis and CSC transformation (Li et al., 2012b).  

 

IL-6 is a pleiotropic cytokine. It induces both pro- and anti- inflammatory outcomes, as well 

as direct effects on cell survival and differentiation (Scheller et al., 2011). It can be stimulated in 

inflammatory responses via either TLR or IL-1 ligation (Nackiewicz et al., 2014; O'Hara et al., 

2012). IL-6 can directly inhibit IL-1 signalling through the induction of IL-1RN, acting as a 

negative feedback regulator of IL-1 induction. As well as effects on IL-1, it induces IL-10 

expression and inhibits TNFα, gaining rank as an immunosuppressive or anti-inflammatory 

cytokine more than a pro-inflammatory cytokine (Terai et al., 2012). Through expression of anti-

apoptotic molecules such as bcl-xl and direct inhibition of the “guardian of the genome” p53, the 

IL-6 pathway can support cell survival (Schwarze and Hawley, 1995; Yonish-Rouach et al., 1991). 

For signal transmission, it binds to the ligand-binding component of the IL-6 receptor IL-6Rα. 

Recruitment of the signal-transducing component IL-6ST (also known as gp130) permits signalling 

through the JAK-STAT pathway, primarily via STAT3 (Guschin et al., 1995; Hibi et al., 1990; 

Zhong et al., 1994). As well as the classical cytokine signalling process, soluble IL-6Rα-IL-6 

complex can initiate signals in IL-6ST expressing cells (Jones et al., 2001).  

 

Expression of IL-6 is associated with pathology of numerous diseases including rheumatoid 

arthritis (RA), SLE and cancer; in fact, the first FDA approved anti-IL-6 drug was in the treatment 

of RA (Ishihara and Hirano, 2002). In cancer it is associated with virtually every step of cancer 
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development: malignant transformation, tumour growth and progression (Grivennikov and Karin, 

2008; Santer et al., 2010; Smith and Keller, 2001). Like IL-1, IL-6 is overexpressed in many 

tumours including melanoma and PCa (Royuela et al., 2004; Shariat et al., 2001; Valles et al., 

2013). In the TME, expression of IL-6 by endothelial cells is proposed to improve the 

tumourigenicity of CSCs in head and neck squamous cell carcinoma (HNSCC) (Krishnamurthy et 

al., 2014). EMT is thought to be a direct consequence of IL-6 on tumour cells from a variety of 

tissues, with increases in vimentin expression (fibroblast marker), loss of E-cadherin (epithelial 

adhesion protein) and increased migration (Miao et al., 2014).  

 

1.10. Transforming growth factor-β  (TGF-β) 

Upon translation, a homodimer of TGF-β is bound to latency associated protein (LAP) and 

with/without latent TGF-β binding protein (LTBP) form an immature complex lacking biological 

activity (Gentry et al., 1988; Gleizes et al., 1997; Miyazono et al., 1988; Wakefield et al., 1988). 

LAP is required for the secretion of TGF-β; together these molecules form the small latent complex 

(SLC) (Lopez et al., 1992). The large latent TGF-β complex (LLC) is comprised of SLC bound to 

LTBP. Although a larger molecule, the LLC is secreted at a much faster rate than the SLC, 

indicating the involvement of LTBP in the secretion process (Miyazono et al., 1991). In 

comparison, SLC lacking LTBP is largely retained in the golgi body (Miyazono et al., 1992). 

Together this indicates that in the absence of LTBP, although there is some availability of TGF-β 

as part of the SLC, this is likely to be much lower than that if LTBP is expressed and the LLC can 

be formed (Olofsson et al., 1992). LTBP also confers binding of LLC to the ECM (Olofsson et al., 

1995; Taipale and Keski-Oja, 1997; Taipale et al., 1994). It is capable of directly binding to ECM 

proteins fibrillin-1 and fibronectin and can therefore provide a way to sequester TGF-β, 

particularly in an ECM rich organ such as the prostate (Dallas et al., 2005; Isogai et al., 2003). 

 

Latent TGF-β activation (the release of TGF-β from LLC or SLC) can be achieved through a 

number of proteolytic enzymes (e.g. MMPs, plasmin), physiochemical perturbations within the 

microenvironment (e.g. pH or reactive oxygen species), or by binding of thrombospondin or 

integrins to the complex. Proteases that are known to specifically cleave LAP and so release TGF-β 

include MMPs (MMP-2 and MMP-9) and plasmin (Lyons et al., 1990; Sato and Rifkin, 1989; Yu 

and Stamenkovic, 2000). Both of these MMP enzymes have been found to be increased in tumour 

stroma compared to normal, which may account for the increased TGF-β activity in these 

conditions. However, proteolytic cleavage may not be a major mechanism of TGF-β activation in 

vivo and instead significant evidence indicates nonspecific interactions with LLC/SLC in the ECM 

an important contributor to TGF-β activation (Bugge et al., 1995; Munger et al., 1999). Integrins 

are transmembrane proteins that allow the adhesion of cellular cytoskeleton to ECM proteins and 

are so involved in cell migration. Integrins bind to the RGD motif of LAP on the extracellular 

surface and upon a second interaction between the cytoskeleton and the cytoplasmic domain of the 
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integrin; TGF-β becomes released from the latent complex through a conformational change 

(Munger et al., 1999). Thrombospondin-1 (THBS-1) is a homotrimeric glycoprotein that can 

mediate adhesion of cells to either neighbouring cells or ECM components through binding to an 

array of molecules including ECM components integrins, heparin, fibrinogen and collagen as well 

as the cell surface receptor CD36. THBS-1 has been shown to activate TGF-β by binding to LAP 

and liberating TGF-β for receptor interactions (Crawford et al., 1998; Schultz-Cherry et al., 1994a; 

Schultz-Cherry et al., 1994b). 

 

Of the 3 TGF-β isoforms (TGF-β1, β2 and β3), TGF-β1 is most studied (Bierie and Moses, 

2006; Siegel and Massague, 2003). All 3 isoforms signal through the same receptors (TGF-βRI and 

TGF-βRII) and the downstream class of signalling molecules SMADs (Figure 3.5) (Wrana et al., 

1994). It is not completely understood how the 3 isoforms confer different roles apart from 

differing spatially and temporally (Kubiczkova et al., 2012). Prostate epithelial and stromal cells 

express TGF-β isoforms: while TGF-β1 is expressed by epithelium and fibroblasts (and becomes 

upregulated in myofibroblasts), TGF-β2 and -β3 are expressed by the prostate epithelium.  

 

TGF-β has paradoxical effects both on different cell types and on different stages of cancer 

(Roberts et al., 1985; Roberts et al., 1986). In healthy tissues TGF-β inhibits proliferation of 

epithelial cells, while having the opposite effect on stromal cells (Bottinger et al., 1997; Clark et 

al., 1997; Massague et al., 2000; Xiao et al., 2012; Zenzmaier et al., 2015). These contradictory 

outcomes translate to TGF-β fulfilling both tumour suppressor and tumour promoting roles in 

malignancy. In malignant transformation, tumour cells become refractory to TGF-β mediated 

growth arrest and instead continue to proliferate in the presence of high levels of TGF-β, which 

corresponds to correlation of TGF-βR loss with PCa progression and bad prognosis (Bottinger et 

al., 1997; Kim et al., 1998; Levy and Hill, 2006; Wikstrom et al., 1998; Zhao et al., 2005). The 

change in TGF-β signalling in high grade tumour cells (but not normal and benign epithelium and 

low grade neoplastic cells) is thought to be due to a progressive shift in the tumour cell population 

and accumulation of tumour cells with inactivating mutations in TGF-β pathway, consistent with 

loss of the cytostatic effects of TGF-β (Kim et al., 1998; Levy and Hill, 2006; Wikstrom et al., 

1998). This, consistent with clinical findings, is likely to result in upregulation of TGF-β ligands in 

the TME (Perry et al., 1997). TGF-β is central to pathological fibrosis due to the stimulation of 

transdifferentiation of normal fibroblasts to myofibroblasts, this may also contribute to the 

acquirement of tumour stroma in PCa and other cancers (Evans et al., 2003). True to the 

paradoxical effects of TGF-β, overactivating aberrations in the TGF-β signalling pathway resulting 

tumour promoting effects to include TGF-β mediated epithelial-mesenchymal transition (EMT) in 

tumour epithelial cells, a prerequisite for tumour progression to metastatic disease (Giampieri et 

al., 2009; Mima et al., 2013). In addition to the direct impact on tumour epithelial cells, TGF-β is 

an established immunosuppressive cytokine (as mentioned in the introduction to this chapter), an 
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attribute which likely accounts for the majority of TGF-β mediated pro-tumour consequences 

(Yamagiwa et al., 2001). Treg cells are professional immune inhibitors, and fulfil many of these 

roles through the expression of TGF-β. This directly prevents CTL mediated killing, reduces the 

capacity of APCs to induce T cell activation and prevents T cell proliferation, so represents a 

prevalent molecule of the immunosuppressive arm of the anti-tumour immunity balance (Figure 

3.1) (Chen et al., 2005; Yang et al., 2010).   
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Figure 1.9: TGF-β  mediated signalling in the prostate 

(A) TGF-β ligation to a heterodimeric receptor of type I and type II TGF-β receptors initiates signal 
transduction by phosphorylation of SMAD2/SMAD3. pSMAD2/3 forms a heterodimer with SMAD4 which 
mediates transcription of TGF-β response genes. Schematic diagram made using motifolio ®. 
(B) TGF-β signalling in the healthy prostate modulates growth of prostate epithelium. In prostate cancer 
TGF-β concentrations are elevated. Epithelial cells become resistant to TGF-β mediate growth arrest and 
undergo EMT. With amplified TGF-β signalling fibroblasts increase transdifferentiation to myofibroblasts 
and expression of IL-6, VEGF and MMP, which are often associated with tumour promoting properties. 
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1.11. Major histocompatibility complexes class I and II 

T cells are activated when they recognise antigen presented on the MHC molecules on the 

cell surface of presenting cells (Rock et al., 2016). In humans MHC is known as the human 

leukocyte antigen (HLA) and is one of the most highly polymorphic protein families in the human 

genome (S. Beck, 1999). The MHC class of proteins are both highly polygenic (there are more than 

200 genes) and remarkably polymorphic. The inherited MHC variants are expressed equally, rather 

than in a dominant/recessive fashion, which allows thousands of allelic variants to be expressed in 

an individual. This polymorphism occurs in the region encoding the peptide binding groove, 

allowing MHC molecules to bind a very broad range of peptides and so provides an inherent 

mechanism to combat the variability existing in the pathogenic world (Falk et al., 1991; 1994; 

Schmid et al., 2010).  

 

MHC molecules are ligands for the T cell receptors (TCR). During development, T cells 

become tolerised to all host proteins, which ensures that upon recognition of peptides derived from 

mutated self-proteins and pathogenic organisms they are activated (Klein et al., 2014). CD4 and 

CD8 (used for characterising the TH and CTL subsets of T cells respectively) dictate whether 

MHC class I or MHCII molecules are recognised. MHC class I bound to intracellular protein 

fragments is expressed on all nucleated cells and are recognised by the CD8/TCR on CTLs. MHC I 

therefore provides CTLs with a window into cells to determine whether a threat exists (i.e. 

infection and mutation). In humans the MHC I molecules are transcribed from the HLA-A, -B, -C, -

E and -G genes, classified as classical (-A, -B and -C) and non-classical (-E and -G) MHC I 

molecules. Whereas classical (MHCIa) molecules are capable of initiating immune responses via 

presenting peptide to the TCR, non-classical (MHCIb) are better known for inducing immune 

tolerance by interacting with inhibitory receptors on effector cells (Braciale, 1992; Le Bouteiller 

and Lenfant, 1996). 

 

MHCII, on the other hand, is expressed mainly by professional APCs, presenting both 

intracellular and extracellular (via endocytosis) peptides. It is recognised by CD4/TCR on TH cells. 

The MHCII molecules that present antigens on the cell surface are transcribed from the genes HLA-

DP, -DQ AND -DR. T cell activation is a tightly controlled process, requiring more than simple 

recognition of antigen and is explored in more detail in the upcoming chapter. T cells require co-

stimulation to gain a license to kill, and are only to take action against cells expressing their 

cognate antigen in the absence of inhibitory signals. One of these inhibitory receptors expressed by 

T cells, belonging to the immune checkpoint family is the lymphocyte activation gene-3 (LAG-3) 

(He et al., 2016). LAG-3 out-competes CD4 and upon binding to MHCII molecules delivers an 

inhibitory rather than an activation signal to the T cell (Triebel et al., 1990). 
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1.12. Checkpoint Inhibition 

Checkpoint inhibition provides a means of down-regulating the immune response in order to 

both promote self-tolerance and prevent collateral damage during on-going inflammation. T cells 

express a variety of checkpoint molecules on the cell surface involved in this response. The PD-

1/PD-L1/PD-L2 axis plays an important part in down-regulation of T cells in peripheral tissues. For 

the purpose of this thesis the main focus was on PD-L1. To fully appreciate the relevance of this 

pathway it is necessary to review the physiological process of generating an immune response from 

T cell priming to effector activity. Simplified schematic representations of this are illustrated in 

Figures 4.1-4.3. 

 

1.12.1. Checkpoint inhibition; physiological relevance 

T-cell priming occurs in the secondary lymphoid tissue (Figure 4.1). Here, naive T cells 

encounter APC’s expressing cognate antigenic peptide in the groove of a MHC molecule on its 

surface. Together with antigen recognition, T cells require co-stimulatory (e.g. CD28-CD80/CD86) 

and cytokine (IL-2) signals (termed signals 1, 2 and 3 respectively) producing fully active T cells 

that clonally expand and mount an antigen-specific response (Favero and Lafont, 1998; Goldrath 

and Bevan, 1999). Upon activation, T cells will: (i) secrete cytokines mediating their effector 

function e.g. IFNγ (ii) upregulate PD-1, IL-2R and chemokine receptors on the cell surface and (iii) 

enter the circulation to home to inflamed sites. Having upregulated PD-1, effector T cells become 

susceptible to PD-L1/PD-L2 mediated inhibition (Freeman et al., 2000; Ishida et al., 1992; Keir et 

al., 2007; Latchman et al., 2001). Alternatively, in Treg cells the PD-1: PD-L1/PD-L2 axis 

promotes proliferation and prevents cell death. It is further thought to promote the conversion of 

naive CD4+ T cells to inhibitory Treg, overall supporting tolerance over immune activation 

(Francisco et al., 2009; Wang et al., 2008). The general consensus has been that PD-1 co-inhibition 

was more important in the effector phase (i.e. at peripheral tissues) and a second checkpoint 

inhibitor CTLA-4 mediated inhibition only in the priming phase (Figure 4.2) (Fife and Bluestone, 

2008; Keir et al., 2006; Masteller et al., 2000; Parry et al., 2005). However, data has suggested that 

PD-1 ligation during the initial priming phase can have profound effects on the fate of T cell 

function during the effector phase (Goldberg et al., 2007). Indications now suggest that both of 

these inhibition pathways are more complex than first though, so better understanding of the basic 

immunology will help to progress the field. 

 

Structurally, PD-1 (CD279) contains an IgV extracellular domain, a transmembrane domain 

and an intracellular domain. Upon ligation, the intracellular domain with an immunoreceptor 

tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM) 

becomes phosphorylated and capable of recruiting the SHP-1 and SHP-2 phosphatases (Chemnitz 

et al., 2004). SHP-2 dephosphorylates the CD3ζ chain, hence mitigating further TCR signalling 

(Yokosuka et al., 2012). Additionally, SHP-2 can inhibit co-stimulatory (CD28) mediated PI3K 
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activation and phosphorylation of signalling molecules downstream of the T cell receptor CD3 (e.g. 

ZAP70), effectively preventing further antigen recognition effector outcomes (IFNγ, TNFα and IL-

2 secretion). PD-1 is upregulated on the surface of T cells upon antigen recognition, particularly in 

the absence of co-stimulation (Day et al., 2006; Tewalt et al., 2012). Therefore in chronic 

inflammation, antigen-specific T cells are repeatedly exposed to antigen inducing high PD-1 

expression and are termed “exhausted” (Barber et al., 2006; Day et al., 2006). Due to this high PD-

1 expression, there is a greater capacity for PD-1 mediated inhibition during chronic inflammation 

than initial antigen recognition. Although exhausted T cell activity only becomes impaired upon 

repeated PD-1 ligation i.e. exhausted (PD-1 high) T cells are only anergic (impaired activity) in the 

presence of ligands PD-L1 or PD-L2.  

 

PD-L1 (B7-H1;CD274) can be induced by many cell types, whereas PD-L2 (B7-DC;CD273) 

expression is mainly restricted to professional APCs (Huber et al., 2010; Kim et al., 2005; Rozali 

et al., 2012). In vivo chimera experiments demonstrate that, in peripheral tissue, PD-L1 expression 

by endothelial cells can maintain tissue tolerance in the absence of APC’s (Rodig et al., 2003). The 

IRF-1 response element on the PD-L1 promoter means that IFNγ can modulate its expression, so in 

the presence of IFNγ secreting CTL and TH1 cells, PD-L1 upregulation may induce tolerance (Lee 

et al., 2006; Loke and Allison, 2003). Particularly in a milieu where co-inhibitory molecules are 

high and co-stimulatory molecules are low, immune cells are more likely tolerised to antigen and 

so less able to induce cell death (Harding et al., 1992; Hawiger et al., 2001). Although PD-L1 has 

dual specificity for both PD-1 and CD80, its affinity for PD-1 is greatest (dissociation constant 

Kd=7.7µM for PD-1/PD-L1 vs 18.8µM for CD80/PD-L1) (Cheng et al., 2013). PD-L2 has a higher 

affinity for PD-1 (2.2µM) than PD-L1 and no affinity for CD80. The physiological relevance of 

CD80 (B7-1): PD-L1 ligation is still being elucidated. Some reports identify CD80 as a PD-1 

substitute and that PD-L1 can inhibit T cells through CD80 signalling as well as PD-1, potentially 

making PD-L1 inhibition a better therapeutic target than PD-1 (Park et al., 2010). PD-L1/PD-1 

inhibition occurs even in the absence of TCR ligation (i.e. T cell antigen recognition) though the 

level of inhibition may inversely correlate with the potency TCR signal. Kaiser et al demonstrate 

that in the presence of low levels of antigen (i.e. upon resolution of infection or in the case of a 

non-immunogenic tumour such as PCa) PD-1 high CD8+ T cells are most susceptible to PD-1/PD-

L1 mediated inhibition (Kaiser et al., 2012).  

 

  



  Chapter 1 Introduction 
 
 

 

 

 

 

 

 

 

 
Figure 1.10: Simplified summary of T cell mediated immunity  

T cells residing in T cell zones of lymph nodes encounter APCs presenting processed antigen on MHC 
molecules. When T cells encounter their cognate antigen, receive cytokine signals and co-stimulation they 
become activated, clonally expand and migrate to the periphery. Upon activation, T cells upregulate IL2R 
and transiently express PD-1 on the cell surface. Upon recognition of antigen in peripheral tissue, T cells 
release cytokines such as IFNγ. In conditions like chronic infections or unresolved inflammation where T 
cells continue to antigen, they become PD-1 high. 
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Figure 1.11: Simplified summary of T cell inhibition  

T cells residing in T cell zones of lymph nodes encounter APCs presenting processed antigen on MHC 
molecules. T cells are inhibited upon ligation of CTLA-4 in lieu of co-stimulation. Activated T cells 
upregulate IL2R and express PD-1 transiently on the cell surface. Upon recognition of antigen in peripheral 
tissue T cells release cytokines such as IFNγ. In conditions such as chronic infections or unresolved 
inflammation, where T cells continue to be exposed to antigen, they become PD-1 high. PD-1 expression 
leaves T cells susceptible to PD-L1/PD-L2 mediated inhibition.  
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1.13. Summary and Aims 

The predominant prostate stromal compartment drives prostate embryonic development and 

together with chronic inflammation, is heavily implicated in the progression of PCa. Stroma-

immune interactions are well documented in lymphoid tissue and autoimmune disease, although 

are not fully explored in PCa. The impacts of immune cell mediators and normal/tumour prostate 

stromal cells have been investigated separately on epithelial cells. However the role of stromal cells 

in the context of an inflammatory prostate are less well understood, despite the prevalence of both 

in PCa. Recently with the emergence of immunotherapy and success rates in some cancers (e.g. 

melanoma) but not in PCa, there is a growing requirement to better understand the immune 

environment in the prostate, to which the stromal compartment will provide a fundamental 

backdrop.  

 

Professor Norman Maitland’s lab (Cancer Research Unit, University of York) has access to 

primary prostate tissue from patients undergoing a TURP or RP for BPH and PCa. The aims of this 

thesis are to utilise primary prostate epithelial and stromal cells to:  

 

1. Analyse the response of stromal cells in inflammatory environments 

 

2. Evaluate the role of prostate stromal cells in modulating local inflammation 

 

3. Characterise morphology of BPH and PCa stromal cells in inflammatory environments 

and correlate to what is known about CAFs 

 

4. Develop a method to characterise prostate infiltrating immune cells to understand the 

potential functional impact of these factors on anti-tumour immunity  

 

1.14. Hypothesis 

Prostate stromal cells, in addition to regulating the normal development of the prostate, and 

providing a supportive environment that allows tumour cells to thrive, may be important in the 

regulation of local immune activity.  In response to inflammatory mediators such as cytokines 

derived from active immune cells, stromal cells may produce factors involved in either the 

propagation or inhibition of inflammation. An understanding of this will be an important factor for 

improving current therapeutic efficacies and stratifying patients based on the features of the stromal 

compartment. Further, most current treatment paradigms aim to initiate anti-tumour immunity that 

would improve the efficiency of treatment, therefore an appreciation of the impact this may have in 

the local environment will be important.  
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2.1. Cell culture 

2.1.1. Prostate stromal cells 

Primary prostate stromal cells once extracted from human tissue were routinely cultured in 

Roswell Park Memorial Institute formulation 1640 (RPMI-1640; Life Technologies) supplemented 

with 2mM L-glutamine (Gibco, Life Technologies), 10% foetal calf serum (FCS; Hyclone) and 1% 

penicillin streptomycin (pen-strep; Gibco, Life Technologies). Complete media is termed as R10%. 

 

2.1.2. Human Foreskin Fibroblasts 

HFF cells were sourced from ATCC and cultured in Dulbecco’s modified eagle medium 

(DMEM; Sigma-Aldrich) supplemented with 2mM L-glutamine, 15% FCS and 1% pen-strep. 

Complete media is termed as D15%. 

 

2.1.3. Tonsil stromal cells 

Primary tonsil stromal cells were extracted by Emily Taylor and routinely cultured in 

DMEM supplemented with L-glutamine, 10% FCS and 1% pen-strep. Complete media is termed as 

D10%. 

 

2.1.4. Prostate epithelial cells 

Primary prostate epithelial cells isolated from human tissue were cultured in keratinocyte 

serum free medium (KSFM; Gibco Invitrogen) supplemented with: recombinant human epidermal 

growth factor (5ng/ml; Gibco) bovine pituitary extract (BPE; Gibco) 50µg/m, 2ng/ml leukaemia 

inhibitory factor (LIF; Cambridge Bioscience), 2ng/ml stem cell factor (SCF; Preprotech), 

100ng/ml cholera toxin (CT; SLS), 1ng/ml GM-CSF (Milteny Biotec LTD) and 1% glutamine, 

together herein termed complete KSFM.  

 

All cells were cultured at 37C with 5% CO2.  

 

2.2. Extracting stromal and epithelial cells from human prostate tissue 

Human prostate tissue was procured from Hull hospital (LREC 07/HI304/121), which was 

collected during TURP or channel TURP (chTURP) procedures and histologically examined. 

Tissue was freshly processed. A section of tissue was embedded in optimal cutting temperature 

(OCT; Merck), snap frozen in liquid nitrogen and stored at -80°C. Following rinsing in sterile 

phosphate buffered saline (PBS), the remainder of the tissue was chopped finely in collagenase 

solution (1000IU Worthington Collagenase Type I (Lorne Diagnostics) in 7.5ml/g of tissue). 

Minced tissue was then transferred to a Erlenmeyer flask and incubated overnight shaking (80rpm) 

on an orbital shaker at 37°C. Digested tissue was first triturated and then passed through a blunt 
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needle. The solution was centrifuged at 300g for 10 minutes, supernatant discarded and pellet 

resuspended in PBS. Centrifugation was repeated once and cells resuspended in 10ml RPMI 10% 

FCS. Differential centrifugation was used to separate stromal and haematopoietic cells from 

epithelia. The mixture was centrifuged for 1 minute at 800rpm to sediment epithelia, which could 

be collected using a pipette carefully avoiding the supernatant containing stromal and 

haematopoietic cells. Centrifugation and epithelia removal was repeated to enrich for individual 

epithelial and stromal fractions, which were processed further for culture as described in section 

2.2.1 and 2.2.2, respectively.  

 

2.2.1. Prostate epithelial cell culture  

The combined pellet of epithelial cells was resuspended in PBS, centrifuged 3min 300g and 

trypsinised by resuspending in 5ml 1X Trypsin-ethylenediaminetetraacetic acid (EDTA; Gibco) 

and incubated 30mins at 37°C shaking at 80rpm to produce single cell epithelium. 10ml RPMI 

10% FCS was added to epithelia to prevent further trypsin activity and the solution was vigorously 

shaken to mix. Epithelia were centrifuged 10min 300g and resuspended in RPMI 10% FCS. 

Centrifugation was repeated and pellet finally resuspended in 4ml warmed (37°C) complete KSFM 

and plated on collagen I coated 10cm plate (BD Biosciences) with 1-2ml irradiated (SIM)-derived 

6-thioguanine- and ouabain-resistant (STO) feeder cells. 

 

2.2.2. Prostate stromal cell culture  

Stromal cells were resuspended in fresh R10 and added to a T75 tissue culture flask 

(Corning), left undisturbed for at least 2 days, until attached stroma could be observed (up to 2 

weeks). At which point media was removed, replaced with PBS and gently shaken by hand to 

detach contaminating haematopoietic cells, erythrocytes and dead cells. After colonies of stromal 

cells were apparent and contaminating haematopoietic cells removed, stromal cells were allowed to 

become ~80% confluent at which point 1x106 cells (5x105 cells per vial) were frozen and the rest 

reseeded for experiments. If less than 1.5x106 cells, only 0.5x106 cells were frozen. Media (R10) 

was replaced twice weekly until suitable for subculturing (~80-90% confluent). 

 

2.2.3. Cell subculture  

Upon reaching confluency (~80-90%), media was removed and cells were washed liberally 

twice in sterile Dulbecco’s-PBS (D-PBS; no CaCl2 no MgCl2; PAA) and 2ml or 5ml 1X Trypsin-

EDTA added to a T75 flask or T175, respectively. Cells were incubated in trypsin up to a 

maximum of 7 minutes, although time varied depending on patient and passage number. Cells were 

monitored for rounding and detachment, once cells were observed to have detached, flasks were 

tapped to facilitate removal of most cells. Adding 5ml fresh warm R10 terminated trypsin activity 

and cells were collected, pelleted (centrifugation 5min 300g) and resuspended in 5ml for cell 

counts. Depending on specific experimental requirements, cells were seeded in 24, 12 and 6 well 
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plates (VWR). Table 2.1 was used for calculating number of cells to be seeding in different tissue 

culture plates. For routine passage cells were split 1:3. At least 1 vial of cells was frozen for each 

passage. All experiments were performed on primary prostate stromal cells below passage 5, most 

below passage 3.  

 

Table 2.1: Determining the approximate cell number for seeding at particular densities.  

N.B. Cell numbers varied by patient due to inherent differences in typical cell size. Stated cell numbers are 
an approximation calculated from typical cell counts of cells retrieved from dishes of specified surface area 
and extrapolating accordingly.  

 

2.2.4. Cryopreservation 

Adherent cells were resuspended at 1x106 cells/ml in cell-specific culture media after 

detaching and quantifying cells. 500µl cells (0.5x106) were transferred to fully labelled 2ml 

cryovials (Corning). 500µl of freezing media (FCS, 20% dimethyl sulfoxide; DMSO; Sigma-

Aldrich) was added drop-wise to cells before immediately transferring vials to a Mr Frosty 

(Nalgene) and storing at -80°C. For long-term storage vials were deposited in liquid nitrogen.  

 

For revival of frozen cells, vials were retrieved from liquid nitrogen (LN2) and transferred to 

a 37°C water bath until only a small portion of the cell mix remained frozen. Cells were added to 

3ml pre-warmed media and pelleted, resuspended in 10ml warm media and transferred to a T75 

flask. The next day media was replaced with fresh warm media so as to discard dead cells.  

 

2.3. Treatment of cultured stroma and epithelia  

Treatment media was prepared by diluting cytokines/agonists to the appropriate 

concentration in pre-warmed cell-specific media and vortexing to ensure even distribution. 

IFNγ&TNFα treatment media contained human IFNγ (Preprotech) at 12.5ng/ml and human TNFα 

(Preprotech) at 5ng/ml. IL-4&TNFα treatment media contained 5ng/ml of both human IL-4 

(Preprotech) and TNFα. The stimulator of IFN genes (STING) agonist cGAMP (InvivoGen) was 

used at 20µM. The TLR1-9 agonist kit (InvivoGen) was used at concentrations instructed by the 

manufacturer. This kit contained - TLR1/2 Agonist: Pam3CSK4,- TLR2 Agonist: HKLM, TLR3 

Dish Surface	Area	cm2	
Seeding	density	
(~25%)	(x106)

Seeding	density	
(~60%)	(x106)

Confluency	
(x106) Growth	Media

T75 75 0.375 0.9 1.5	-20 10ml
T25 25 0.125 0.3 0.5-0.7 4ml
T160 162 0.8125 1.95 3.5-4.0 17ml

6-well 9 0.05 0.12 0.2 3ml
12-well 4 0.02 0.048 0.08 1ml
24-well 2 0.01 0.024 0.04 0.5ml

Stromal	cells	per	cm2 0.005 0.012 0.02
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Agonist: Poly(I:C) (HMW), TLR3 Agonist: Poly(I:C) (LMW), TLR4 Agonist: LPS-EK standard, 

TLR6/2 Agonist: FSL1, TLR7 Agonist: Imiquimod, TLR9 Agonist: ODN1826. Recombinant 

Human CD14 protein (R&D Systems) and MPL-A (InvivoGen) were used at 1µg/ml and 

100ng/ml, respectively.  

 

Unless otherwise stated, cells were treated when ~70% confluent. Prior to treating, media 

was removed and cells rinsed with D-PBS. An appropriate volume (as stated in table 2.1) of 

treatment media was added gently to cells, which were then cultured for a time period depending 

on experimental requirements. Cytokine concentrations were chosen following experiments 

whereby cells treated with particular cytokines were titrated across a range of concentrations and 

expression of appropriate genes analysed by quantitative real time-PCR (qRT-PCR, section 2.6).  

 

2.4. Clinical data from patients with prostatic disease  

 

Table 2.2: Clinical data of samples used throughout this thesis  

  

Patient	code Disease Cell	type Age	

H135/11 Gl9 Stroma 56
H372/13 BPH Stroma 66
H373/13 BPH Stroma 82
H385/13 Gl9 Stroma 82
H391/13 BPH Stroma 75
H393/03 Gl9 Stroma 55
H396/13 BPH Stroma 65
H398/13 BPH Stroma 66
H400/14 BPH Stroma 81
H427/14 Gl9 Stroma 69
H438/14 Gl9 Stroma 68
H501/14 BPH Stroma 59
H503/14 BPH Stroma 77
H504/14 BPH Stroma 66

H537/15** BPH Stroma 71

H225/12 BPH Epithelium 63
Y070/09 BPH Epithelium 86
H507/14 Gl7 Epithelium 68
H239/12 Gl9 Epithelium 50

**this	sample	was	excluded	from	analysis	as	it	was	
identified	as	an	outlier	based	expression	of	stromal	genes
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2.5. RNA isolation 

RNA was extracted using the RNAeasy Mini Kit (Qiagen). Media was removed and 

adherent cells were rinsed twice with sterile PBS before 350µL RLT buffer was added. Cells were 

observed to ensure lysis and transferred to a QIAshredder (Qiagen) for homogenisation. 

QIAshredders were centrifuged at full speed for 2 minutes, before column was removed, lid 

replaced and sample transferred to -20°C overnight. The following day the homogenate was 

thawed and processed using RNAeasy mini spin columns, which isolates and purifies total RNA. 

The concentration and the quality of purified RNA was determined using a nanodrop spectrometer, 

where 260/280 ratios indicate quality of purification. Ratios below 1.8 were considered 

contaminated. RNA samples were stored at -20°C and kept on ice during experiments. RNA was 

used for downstream analysis by qRT-PCR (section 2.6) and nanoString (section 2.7) 

 

2.6. Quantitative Real Time PCR  

2.6.1. Complementary DNA (cDNA) synthesis 

RNA samples were diluted to a known concentration in nuclease free water to final volume 

of 10µL in a 0.2mL thin walled microcentrifuge tube. A master mix prepared using the high 

capacity cDNA reverse transcription kit (Applied Biosciences™) contained (per 10µL): 4.2µL 

nuclease free water, 2µL 10X Reverse Transcription buffer, 0.8µL 25X dNTPs, 2µL 10X RT 

random primers and 1µL Multiscribe® Reverse Transcriptase. Per sample 10µL of the master mix 

was added to the 10µL RNA solution of known quantity and transferred to a thermocycler PCR 

machine (SensoQuest) for reverse transcription. The cycle properties were: 25°C 10minutes, 37°C 

2 hours, 85°C 5minutes and maintained at 4°C. cDNA was diluted to a known concentration by 

adding nuclease free water and stored at -20°C. 

2.6.2. qRT-PCR reaction  

Depending on the gene to be analysed (and the corresponding primer/probe), either Power 

SYBR® Green PCR Master mix or TaqMan Fast Universal PCR Master mix, no Amperase UNG 

(Applied Biosciences™) were used. For primers compatible with SYBR® Green a master mix 

containing: 12.5µL of Power SYBR® Green with 1µL each of Forward and Reverse Primers and 

6.5µL nuclease free water was added to each well of a 96-well MicroAmp Optical reaction plate 

(Applied Biosciences™). Alternatively, for TaqMan probes a master mix contained: 10µL TaqMan 

Fast Universal PCR Master mix, 5µL nuclease free water and 1µL of appropriate gene expression 

assay probe. 4µL of cDNA (typically correlating to 1ng of original isolated RNA sample) was 

added to each well in duplicate. GAPDH (glyceraldehyde 3-phosphate dehydrogenase) expression 

was analysed and used as an endogenous control (EC) gene, to which genes of interest (GOI) were 

normalised. Control wells containing the appropriate master mix with either no cDNA or no RNA 

controls were included for each plate. Reactions were completed on either an Applied 

Biosystems 7300 Real-Time PCR System (SYBR® Green primers) or Applied Biosystems 
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QuantStudio 3 System (TaqMan probes). SYBR® Green PCR consisted of 50°C for 2minutes, 

95°C for 10minutes and 40 cycles of 95°C 15seconds before 1minute 60°C during which data was 

collected. A meltcurve followed completion of the reaction in to assess specificity of amplicon 

production. This involves ramping the temperature from 50°C to 95°C during which the 

fluorescence is analysed. Upon separation of double stranded DNA fluorescence is reduced. 

Primers producing a single peak are considered specific. 

Table 2.3 Primers and Probes 

2.6.3. qRT-PCR analysis 

On completion of the reaction an automatic threshold (fluorescence normalised to reference dye) of 

0.2Rn was set in the linear phase of the curve so that threshold cycles (Ct) could be determined for 

GOI and EC genes. The Ct is the cycle number at which the fluorescence (from SYBR® Green of 

Taqman reporter fluorescence) passed the threshold. The mean Ct of the GOI for duplicate samples 

were calculates and normalised to mean Ct for the EC (termed the ΔCt). From this, the ΔΔCt was 

calculated by subtracting sample ΔCt from the ΔCt of a calibrating sample (e.g. an untreated 

control). Finally, 2-ΔΔCt calculated the fold change, which were then plotted using Prism 6 

(GraphPad). Table 2.4 demonstrates an example of raw data and the calculations used for data 

analysis.      

Table 2.4 Exemplar raw data acquired from qRT-PCR and calculation  

2.7. NanoString  

NanoString was used to assess the expression of over 800 immune-related genes in a single 

reaction for each sample, using the PanCancer Immune panel (NanoString Technologies™). 

Gene Forward Primer Sequence Reverse Primer Sequence
PD-L1 CATCTTATTATGCCTTGGTGTAGCA GGATTACGTCTCCTCCAAATGTG 

GAPDH AAGGTGAAGGTCGGAGTCAA AATGAAGGGGTCATTGATGG

Gene Assay Company
IDO1 Hs00984148_m1  Applied Biosystems

IDO2 Hs01589373_m1   Applied Biosystems

TGF-β1 Hs00998133_m1 Applied Biosystems

TGF-β2 Hs00234244_m1 Applied Biosystems

TGF-β3 Hs01086000_m1 Applied Biosystems

FAP HS0090806_m1 Applied Biosystems

GAPDH Hs02758991_g1 Applied Biosystems

PDL1 
mean ct 

(duplicate)

GAPDH 
mean ct 

(duplicate)

Relative to 
EC (dct)

Relative to 
untreated 

(ddct)

Fold change 
(2^-ddct)

KR83 8 hours IFNg/TNFa 503 UNTREATED 22.025 15.13 6.895 0 1
KR83 8 hours IFNg/TNFa 398 UNTREATED 21.58 15.14 6.44 -0.455 1.3707828
KR83 8 hours IFNg/TNFa 391 untreated 20.655 14.525 6.13 -0.765 1.69937
KR83 8 hours IFNg/TNFa 396 untreated 21.225 14.74 6.485 -0.41 1.32868581
KR83 8 hours IFNg/TNFa 400 untreated 20.59 14.445 6.145 -0.75 1.68179283
KR83 8 hours IFNg/TNFa 503 TREATED 19.855 15.51 4.345 -2.55 5.85634278
KR83 8 hours IFNg/TNFa 398 TREATED 18.89 15.225 3.665 -3.23 9.38267959
KR83 8 hours IFNg/TNFa 391 treated 17.62 14.56 3.06 -3.835 14.2708563
KR83 8 hours IFNg/TNFa 396 treated 18.15 14.85 3.3 -3.595 12.0837807
KR83 8 hours IFNg/TNFa 400 treated 17.965 14.505 3.46 -3.435 10.8152867
KR83 8 hours IFNg/TNFa 135 untreated 21.97 14.48 7.49 0.595 0.66204446
KR83 8 hours IFNg/TNFa 438 untreated 22.51 15.13 7.38 0.485 0.71449707
KR83 8 hours IFNg/TNFa 385 untreated 20.48 15.045 5.435 -1.46 2.75108364
KR83 8 hours IFNg/TNFa 393 untreated 21.97 15.035 6.935 0.04 0.97265495
KR83 8 hours IFNg/TNFa 135 treated 18.885 14.76 4.125 -2.77 6.82107913
KR83 8 hours IFNg/TNFa 438 treated 18.685 15.135 3.55 -3.345 10.1612079
KR83 8 hours IFNg/TNFa 385 treated 18.125 15.095 3.03 -3.865 14.5707173
KR83 8 hours IFNg/TNFa 393 treated 18.715 14.995 3.72 -3.175 9.03171524
KR83 8 hours IFNg/TNFa HFF untreated 24.76 15.565 9.195 2.3 0.2030631
KR83 8 hours IFNg/TNFa T97 untreated 23.395 16.035 7.36 0.465 0.72447108
KR83 8 hours IFNg/TNFa HFF treated 20.18 15.95 4.23 -2.665 6.34227309
KR83 8 hours IFNg/TNFa T97 treated 20.135 16.365 3.77 -3.125 8.72406186
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2.7.1. Patient samples groups size  

Prostate stromal cells were the principal cells to be investigated in this project. Stromal cells 

from 6 BPH patients and 5 Gl9 PCa patients were analysed in total. Of these patients, 3 BPH and 

Gl9 were treated with IL-4&TNFα or IFNγ&TNFα (8hours). This project primarily focused on the 

stromal response to IFNγ&TNFα, therefore as a comparison, stromal cells from SLO (tonsil) and 

skin fibroblasts (HFF) were used as controls and analysed in untreated and IFNγ&TNFα treated 

conditions. To compare prostate stromal cells to prostate epithelial cells, epithelial cells from 4 

patients (2 BPH, 1 Gl7 PCa and 1 Gl9 PCa) were analysed, again in untreated and IFNγ&TNFα 

treated conditions. Dr Dominka Butler and Dr Robert Seed seeded prostate epithelial cells at 60% 

confluency in the Cancer Research Unit, York. Additional biological repeats could not be 

completed due to financial and sample availability restrictions. For a summary of the cohorts 

studied by nanoString, refer to Table 2.5, making note of the number of patients/lines included in 

each cohort. Due to the small number of patients, statistical analysis of individual genes has not 

been performed. However, genes that were significantly altered are noted in volcano plots. 

Table 2.5: Cohort sizes used for nanoString analysis. 

2.7.2. NanoString reaction 

For nanoString experiments, RNA concentration was normalised to 20ng/µl, permitting 

analysis of 100ng when 5µl RNA was used. RNA was shipped on dry ice to Newcastle University 

and either immediately processed or stored at -80°C until processing. Kile Green and Anastasia 

Resteu of the Institute of Cellular Medicine, Newcastle University performed the nanoString 

reaction using the nCounter Analyser and the PanCancer Immune Profiling Panel. In total, 36 

samples were analysed in 3 batches of 12 samples, the first of which I observed. Figure 2.1 is a 

schematic representation of nanoString processing. In summary, the Cancer Immune Reporter 

CodeSet and Capture ProbeSet (nanoString Technologies®) were thawed and gently mixed by 

inverting. These contain target specific sequences covalently bound to a biotin moiety on the 3’ end 

(Capture probe) or a six position visible signal on the 5’ end (Reporter probe). Each position on the 

Cell	Type	 Tissue	source Cytokine	treatment	 Number	of	patients

Stroma BPH Untreated 6
Stroma BPH IL-4&TNF-α 3
Stroma BPH IFN-γ&TNF-α 3

Stroma Gl9 Untreated 5
Stroma Gl9 IL-4&TNF-α 3
Stroma Gl9 IFN-γ&TNF-α 3

Stroma Tonsil	control Untreated 1
Stroma Tonsil	control IFN-γ&TNF-α 1

Stroma HFF	control Untreated 1
Stroma HFF	control IFN-γ&TNF-α 1

Epithelium BPH Untreated 2
Epithelium BPH IFN-γ&TNF-α 2

Epithelium Gl7 Untreated 1
Epithelium Gl7 IFN-γ&TNF-α 1

Epithelium Gl9 Untreated 1
Epithelium Gl9 IFN-γ&TNF-α 1
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reporter probe signal can be one of four colours, a known sequence that corresponds to the target-

specific sequence, so as to facilitate detection of specific mRNA molecules later. A mastermix 

containing 5µl hybridization buffer and 3µl Reporter CodeSet per sample was aliquoted into 

individual hybridization tubes (on a strip of 12 tubes), to which 5µl RNA (100ng) is added. To this, 

2µl Capture ProbeSet was added, cap placed and inverted/flicked to ensure even dispersal 

throughout sample. The strip of hybridisation tubes now containing RNA, Reporter CodeSet and 

Capture ProbeSet was briefly spun and placed on a thermal cycler pre-heated to 65°C overnight 

(ramped to 4°C at 16hours) (Figure 2.1, Step 1). During this hybridization period the single 

stranded target RNA sequence binds by target-specific Capture and Reporter probes to form a 

double stranded target-probe complex.  

 

The second day is an Automated Process whereby Step Two of Figure 2.1 is completed by 

magnetic bead-based purification. This involves:  

1. Addition of magnetic beads, bound to complementary sequences to the Capture probes, 

which attach to the unbound portion of the Capture probe (i.e. all unbound Capture probes as well 

as target-probe complex, but not free Reporter probes). Free Reporter probes are washed away, as 

are cellular molecules from the RNA sample not bound to a probe. 

2. Elution of Capture probes and target-probe complexes from magnetic beads, and addition 

of magnetic beads with sequence complementary to the free portion of the Reporter probe. In this 

step, target-probe complexes bind the beads, but Capture probes do not and are therefore washed 

away.  

3. Finally, target-probe complexes are eluted from magnetic beads, leaving a purified 

solution without contaminating probes or RNA molecules. Target-probe complexes are 

immobilised and aligned on the cartridge. 

 On the third day, data was collected using an epifluorescence microscope on the nCounter 

Analyser. This facilitated counts of each individual Reporter probe (and therefore the 

corresponding mRNA molecule), which can be exported as a .csv document that can be analysed 

using software of choice.  

 

2.7.3. Nanostring analysis: nSolver Analysis Software and programming using R 

Using nSolver Analysis Software 3.0 counts in each sample were normalised by the geNorm 

algorithm, which assesses and normalises all samples to the 10 most stable housekeeper genes 

(included in the nanoString panel) across samples. The nSolver Advanced Analysis (PanCancer 

Immune) module was used to generate principle component analysis (PCA) and differential 

expression (a.k.a. Volcano) plots. Normalised counts were exported. R studio (version 0.99.9) was 

used to generate heatmaps (agglomerative clusters) of detected genes (where the maximum count 

across samples for each gene was above 20) and histograms of all genes. The distance metric used 

for hierarchical clustering was based on Pearson’s correlation, which was chosen due to robustness 

to rescaling.  
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Figure 2.1 Schematic representation of nanoString reaction (section 2.7.2).  

Figure taken from: http://www.nanostring.com/applications/technology 
  



  Chapter 2 Materials and Methods 
 

2.8. Flow cytometry 

2.8.1. Isolation of prostate haematopoietic cells 

 A protocol was developed for the analysis of prostate infiltrating haematopoietic cells by 

flow cytometry (Chapter 6). Briefly, prostate tissue was chopped in 1X Hank’s Balanced Salt 

Solution (HBSS; Life Technologies), cooled to 4°C. Chopped tissue was transferred to a C-Tube 

(Miltenyi Biotec) and enzyme solution added. A number of Liberase digestion enzymes (Liberase 

Test Kit; Roche) were tested, as detailed in Chapter 6, before Liberase Thermolysin Low (Roche) 

was chosen. Complete enzyme solution contained 0.25mg/ml Liberase TL, 1mg/ml DNase I 

(Sigma) diluted in 1X HBSS. The gentleMACs dissociator (Miltenyi Biotec) was used for 

mechanical disruption before and after incubation at 37°C for 15min. At each step, released cells 

were removed from enzyme solution (to prevent excessive exposure) and stored on ice in 1X 

HBSS. The cell solution was strained (70µm cell strainer; Corning) into a 50ml falcon tube 

(Corning) and hematopoietic cells isolated by density centrifugation (Histopaque-1077; Sigma) 

(400g at room temperature; 21°C, 20 min, no brake).  

Figure 2.2 Isolating viable haematopoietic cells for analysis by flow cytometry  
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2.8.2. Staining of prostate infiltrating cells by flow cytometry 

Haematopoietic cells collected using a Pasteur pipette (SLS) from the interface of 1XHBSS 

and Histopaque-1077 in Section 2.8.1 were pelleted and resuspended in cooled FACs wash (D-

PBS, 2mM EDTA, 0.5% bovine serum albumin; BSA) for counting. Meanwhile an aliquot of tonsil 

mononuclear cells (MNCs) was thawed (according to section 2.2.4) and counted. Cells were 

resuspended in FACs wash at 1x106 cells/100µl and aliquoted into v-bottomed 96-well plate 

(VWR). Particular fluorescently conjugated antibodies were previously titrated on tonsil MNCs 

and an optimal concentration chosen. For each experiment, a mastermix containing a cell viability 

dye and specific fluorescently labelled/unlabelled antibodies at titrated concentrations (or 

corresponding isotype at the same concentration) were prepared. Due to low haematopoietic cell 

numbers extracted from prostate tissue, isotype and single colour controls were performed on tonsil 

MNCs and an unstained control was performed on prostate haematopoietic cells. Cells that were 

aliquoted in 96-well plate were centrifuged (@300g, 5min) and resuspended in 100µl 

antibody/isotype mastermix and stored on ice in the dark for 30min. 100µl FACs wash was then 

added to the cell/antibody solution and mixed before centrifugation at 300g, 5min, 4°C. To ensure 

complete removal of antibody, cells were washed 3 times by repeating the addition of FACs wash 

and centrifugation step. If unlabelled antibody was used, cells were further stained with an 

appropriate secondary antibody as described with primary antibody staining. For acquisition, cells 

were suspended in a final volume of 300µl and acquired immediately on a X-20 Fortessa Flow 

cytometer (BD). No antibody with a conjugate in the FITC fluorescence channel (530/30) was 

included when analysing prostate infiltrating haematopoietic cells, as this channel was kept clear to 

remove autofluorescent cells.   

 

2.8.3. Detaching adherent stromal cells and staining for flow cytometric analysis 

Stromal cells were seeded in 10cm plates and treated accordingly. For detachment, media 

was removed and 3ml of the stable Trypsin-like enzyme 1XTrypLE Express (Invitrogen) added to 

dishes (to prevent cleavage of cell surface molecules prior to staining). Cells were agitated at room 

temperature and periodically observed for detachment; time varied per patient, but was no more 

than 7 minutes. A cell lifter (Sarstedt Ltd) was used to completely detach remaining cells, which 

were collected with a 5ml pipette, transferred to a 15ml tube and triturated to minimise cell 

aggregation. The cell suspension was resuspended and live cells were counted using trypan blue 

dead cell exclusion dye. Cells were resuspended at 1x106 cells/ml, transferred to a v-bottomed 96 

well plate (VWR) and later stained at 2.5x105/100ul as in section 2.8.4.  

 

2.8.4. Flow cytometry: acquisition and analysis 

Cells labelled with fluorescent antibodies in Section 2.8.2 and 2.8.3 were acquired on low 

flow on a X-20 Fortessa Flow cytometer (BD) using BD FACS Diva software. The unlabelled 

controls were used to set voltages of photomultiplier tubes (PMTs) and positive gates were set 
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using isotype controls. Analysis was performed post-acquisition using FlowJo. Single colour 

controls were used to calculate a compensation matrix to correct for spillover fluorescence from a 

primary signal detected in a secondary channel. The median fluorescence of the positive population 

(of a single colour control) in a secondary channel is corrected to match the median fluorescence of 

the negative population. This process is repeated sequentially through all single colour controls 

until a complete compensation matrix is created and applied to all samples.  

 

2.8.5. Normalised median fluorescence intensity (MFI) for prostate infiltrating 

lymphocyte samples 

The background fluorescence in prostate infiltrating immune cell samples was additionally 

corrected for using the isotype and unlabelled controls, followed by the tonsil MNC control 

completed with every experiment according to the calculations below.  

 

                     𝑀𝑖𝑛𝑢𝑠 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑀𝐹𝐼(𝐶ℎ𝑎𝑛𝑛𝑒𝑙)  =  

𝑃𝑟𝑜𝑠𝑡𝑎𝑡𝑒 𝑀𝐹𝐼(𝐶ℎ𝑎𝑛𝑛𝑒𝑙) –𝑈𝑛𝑠𝑡𝑎𝑖𝑛𝑒𝑑 𝑀𝐹𝐼(𝐶ℎ𝑎𝑛𝑛𝑒𝑙) 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑀𝐹𝐼 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 =  
𝑀𝑖𝑛𝑢𝑠 𝑏𝑎𝑐𝑘𝑔𝑟o𝑢𝑛𝑑 𝑀𝐹𝐼 𝐶ℎ𝑎𝑛𝑛𝑒𝑙

𝑇𝑜𝑛𝑠𝑖𝑙 𝑀𝐹𝐼 𝐶ℎ𝑎𝑛𝑛𝑒𝑙
 

Channel; fluorescence channel 

MFI; median fluorescence intensity 

 

2.9. Western blotting 

2.9.1. Protein isolation and quantification  

Adherent cells were directly lysed on the plate post-treatment. Media was discarded and cells 

washed 3 times with D-PBS, ensuring to remove all remainder D-PBS. Cell lysis buffer (5ml 

1%Triton-X-100, 150mM NaCl, 50mM Tris pH7.4, 50µl protease inhibitor cocktail; Sigma, 

Na3Va4, 50µl NaF) was added (volume depended on plate size, e.g. 100µl in a 10cm dish) and the 

plate rocked to ensure coating of all cells, before incubate on ice for 15mins. To ensure cell lysis 

occurred they were microscopically observed. A rubber cell scraper (Starstedt Ltd) was used to 

collect lysate and pipetting into a sterile 1.5ml eppendorf tube, which were kept on ice throughout 

isolation. Lysate was vortexed and cleared by centrifugation at 20,500rcf, 4°C, 15min. Supernatant 

was carefully collected into a new eppendorf tube and immediately stored at -20°C.  

 

Protein content was measured using Pierce™ protein assay kit (Cat:23225), bicinchoninic 

acid assay (BCA; Fischer Scientific) by reverse pipetting 2.5µl protein lysate into a flat-bottomed 

96-well plate in triplicate, adding 50µl BCA working reagent (50 parts Reagent A: 1 part Reagent 

B) and incubating 30min at RT. Absorbance was measured at 562nm on a plate reader, and sample 

protein concentration calculated relative to absorbance of standard samples of known concentration 
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(BSA ranging from 0 to 4µg/ml). Accuracy of pipetting was assessed by the linear regression (r2) 

of the standard curve slope. 

2.9.2. Loading protein and running SDS-PAGE gel  

Protein was denatured by combining volume of protein lysate normalised to known 

concentration with lysis buffer and loading buffer (4X LDS sample Buffer; Fischer Scientific, with 

10% 2-Mercaptoethanol; BME; Sigma) so the final solution contained 1X LDS and 2.5% BME. 

Final solution was then heated at 90°C for 10 minutes. Meanwhile, a resolving gel (12% 

acrylamide) was mixed, cast and allowed to polymerise. For 5ml of 12% resolving gel the 

following was combined: 1.6ml dH20, 2ml Acrylamide (ProtoFLOWGel; SLS), 1.3ml 1.5M Tris 

(pH8.8; Severn Biotech), 50µl sodium dodecyl sulphate (SDS; SLS), 50µl Ammonium persulfate 

(APS; Fischer Scientific) and 2µl Tetramethylethylenediamine (TEMED; Sigma) and immediately 

poured into a gel casting stand (OmniPAGE Mini; Cleaver Scientific) between sealed glass plates. 

The resolving gel was then layered on top with isopropanol to ensure that the gel sets linearly, 

which is removed fully before the addition of the stacking gel. 2ml stacking gel was mixed by 

combining: 1.4ml dH20, 330µl acrylamide, 250µl 1M Tris (pH6.8; Severn Biotech), 20µl SDS, 

20µl APS and 2µl TEMED, which was layered on solidified resolving gel before 12-sample well 

comb is added and allowed to polymerise. The gel was transferred to a running tank filled with 1x 

SDS-PAGE Buffer (Geneflow Ltd) and protein samples (now denatured and cooled to RT) were 

loaded evenly, along with a SeeBlue® Plus2 Pre-stained Protein Standard (Fischer Scientific). Gels 

were run at 120V for 40min before gel was removed from glass plates and trimmed to prepare for 

transfer. 

 

2.9.3. Transferring protein to a membrane and immunoblotting 

Soaking a polyvinylidene difluoride (PVDF; Merck) membrane (0.45µm pore size) in 

methanol for 1min activated it, which was then rinsed well in transfer buffer (24mM Tris Base, 

150mM Glycine, 20% Methanol in dH20). The gel and membrane were stacked in direction of 

current (cathode to anode) as follows: sponge, 2 layers of filter paper (Whatman™), gel, 

membrane, 2 layers of filter paper (Whatman™), sponge, all of which were pre-soaked in transfer 

buffer, ensuring no bubbles occur between layers. Protein from gels were transferred to the 

membrane by running at 110V for 60min. The membrane was blocked in 5% Milk (VWR) in TBS-

T (10mM Tris Base, 100 mM NaCl, 0.1% Tween-20 at pH 7.6) for 30min at RT gently shaking 

(60rpm) before incubating overnight with primary antibody diluted in 5% Milk in TBS-T, gently 

shaking (60rpm) at 4°C. Membranes were then washed in TBS-T 1x15min, 3x10min at RT, gently 

shaking (60rpm). If primary antibody was unconjugated, the membrane was further incubated at 

RT for 1 hour in the appropriate secondary antibody, which was coupled to horse radish peroxidase 

(HRP). Washing steps were repeated as with primary and signal detected using GE Healthcare ECL 

Prime Detection reagent (SLS) and developed on UltraCruz™ Autoradiography Film (Santa Cruz) 
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in a dark room with a Xograph. For densitometry analysis, the density of the protein of interest is 

displayed relative to the density of the loading control (β-actin).  

 

2.10. Ptychography- label free imaging of live prostate stromal cells 

Ptychography was used to analyse various features of stromal cells including morphology, 

migration and cell division. Cells were plated at a density of 5x105 in 3ml R10 media per well in a 

glass bottomed 6-well plate (Cellvis). The lower seeding density ensured single cells could be 

distinguished. The plate was shaken laterally and longitudinally to ensure an even distribution of 

cells and cultured overnight. For each patient (6 in total, 3 each of BPH and PCa cohorts) cells 

were seeded in duplicate so that IFNγ&TNFα treatment could be directly compared to untreated. 

Cells were treated as previously described (Section 2.3) and imaged over a 72hour period at 10min 

intervals on a VL21 inverted microscope (Phase Focus, Sheffield) contained in Solent Scientific 

environment chamber (Solent Scientific Limited) at 37°C with 5% CO2. Images were collected an 

Olympus LMPlanFLN 20x/0.40 Objective and reconstructed according to the extended 

Ptychographic Iteratic Engine (ePIE) algorithm (The Phase Focus Virtual Lens®, Phase Focus), 

which utilises a phase retreival method to generate high contrast images without labelling. Data 

collected was analysed using the Cell Analysis Toolbox, V1.1.0 (Phase Focus) for cell 

segmentation at 6 stated time points, or the mTrackJ Plugin on ImageJ (Fiji) for manual cell 

tracking. Parametrics collected by cell segmentation were plotted using r Studio, whereby the given 

parametric (e.g. Area) were plotted against time in separate facet grids corresponding to disease 

and treatment and coloured by patient. Data collected by mTrackJ were plotted using Prism 6 

(GraphPad Software). At the end of the time lapse imaging, cells were fixed and labelled as in 

section 2.11.1.  

 

2.11. Immunohistochemistry 

2.11.1. In vitro staining of cells in chamber slides 

Stromal cells were seeded at 5x104 cells or 2.5x104 in 500µl: 4- and 250ul:8- well chamber 

slides (Lab-Tek, Thermoscientific), respectively. Cells were incubated overnight to allow 

attachment to slide before treated as before for 48hours. Media was removed and cells carefully 

washed in sterile PBS 3 times, fixed in 4% paraformaldehyde (PFA) before washing a further 3 

times. 5% Goat serum (Sigma) was added to wells and incubated 30mins at room temperature 

(RT). For cell surface labelling, cells were incubated at 4°C overnight after 5% goat serum 

containing relevant antibody or isotype control was added at titrated concentration. The next 

morning, cells were washed 3 times and permeabilised in 0.5% Triton-X for 10 minutes (Sigma). 

Intracellular staining was performed as with surface staining, starting with a second blocking step 

in 5% Goat serum at RT. Intracellular label incubations were 30 minutes at room temperature 

rather than overnight. Cells were washed 3 times in PBS, and chamber well separator removed. A 

drop of Prolong gold anti-fade reagent with 4',6-Diamidino-2-Phenylindole, Dilactate (DAPI; Life 
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Technologies) was added to wells and slide mounted with a Coverslip (No 1.5 22x55mm, SLS) 

before storing overnight at 4°C and finally sealing with nail varnished. Slides and plates were 

stored at 4°C until imaged.  

 

2.11.2. Confocal imaging 

Cells were imaged using a Zeiss LSM880 inverted microscope controlled with the Zen 2.1 

software, which benefits from 4 independent lasers and 6 laser lines; 405, 458, 488, 514, 561, and 

633 nm. Typically, cells were labelled with antibodies and DAPI that could be detected in the 405, 

488, 561 and 633nm channels. For comparability across experiments, laser power, pinhole and 

detector voltage gain & digital offset were kept constant. Each was imaged on separate tracks to 

minimise spillover and single colour controls were performed to ensure accuracy. Cells were 

imaged at x20 or x40 objectives, with tile scans and a z stack spanning total height of cells. Images 

were taken at 1024 x 1024 pixels and line averaging of 4. Images were processed using ImageJ 

(Fiji), where z stack was merged at maximum intensity.  

 

2.12. Statistical analysis  

Statistical analysis was done using GraphPad Prism or r Studio. When comparing the effect 

of disease and treatment a two-way ANOVA was done followed by a Tukey’s multiple comparison 

test. Data was plotted on graphs with bars illustrating the mean values and error bars representing 

the standard deviation of the mean (SD) (GraphPad). On occasions where values were missing 

from the cohort, r Studio was used to determine statistical significance of trends by means of a 

generalised linear model (GLM).  
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Chapter 3 Transcriptional analysis of primary human prostate stromal cells 

3.1. Introduction 

Intricate balances of pro-/anti-inflammatory and stimulatory/inhibitory mechanisms maintain 

immune function to facilitate the destruction of pathogens and tumours without leading to overt 

inflammatory disease. In response to infection or aberrant host cells, early inflammation has a 

critical role in stimulating clearance of pathogens/tumour cells by phagocytic and lytic innate cells 

and stimulating the initiation of adaptive T and B cell responses.  However, in addition to 

regulating the initiation of immune responses, inflammation profoundly effects gene transcription 

in epithelium and stromal fibroblasts, modulating epithelial structural integrity, function and repair 

by modulating proliferative capacity, function and migration. Thus to prevent localised tissue 

pathology the same set of signals that drive early inflammation also drive molecular and cellular 

processes that lead to downregulation of both the innate and adaptive immune responses.  

Regulation occurring through down regulation of inflammatory genes, regulatory cytokine and 

natural steroid secretion and expression of check-point inhibitors. 

 

It is becoming an increasingly accepted paradigm that tumour microenvironments (TME) 

often harbour smouldering ineffective immune responses, which is thought to provide enough 

inhibitory signals to prevent effective tumour clearance, while delivering pro-inflammatory signals 

that has the potential to drive tumour cell survival, proliferation and metastasis (Balkwill et al., 

2005). In this chapter, the immune environment in PCa and examine how stromal cells and 

epithelial cells of primary patient prostate tissues may be involved in supporting a smouldering 

inflammatory environment.will be assessed 

 

3.1.1. The cellular constituents of the effector phase in anti-tumour immunity 

Complex interactions within the TME determine the outcome of anti-tumour immunity 

(Figure 3.1). Signals originating from the normal and transformed epithelium, normal and reactive 

stromal cells, and the infiltrating immune cells, which may either be regulatory or effector, impact 

on each of the other cellular components of the TME in a multifactorial network. Given that each 

signal is likely to affect the others and that the exact local concentrations cannot be well measured, 

this is a system that in vitro experimentation is unlikely to ever be able to fully recapitulate. Yet by 

utilising reductionist systems, a better understanding cellular phenotypes and interactions in a 

controlled environment can be achieved.  

 

The cellular components of the effector phase of anti-tumour immunity are mainly reliant on 

APCs, CD4+ TH cells, CD8+ T killer cells (or CTL) and natural killer cells (NK). All of these 

immune cells are potent cytokine producers and are heavily regulated by soluble factors and cell-

cell contact within the TME to conserve tissue homeostasis. For example, APCs (dendritic cells; 

DCs, macrophages) are powerful initiators of immune responses, but their efficacy in doing so 

depends on the inflammatory balance in the environment from which the antigen originates 
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(Pinzon-Charry et al., 2005; Steinbrink et al., 1999). However, this localised balance is forever 

evolving due to fluctuations in the concentrations and ratios of pro- and anti- inflammatory 

mediators and availability of antigen, hence the efficiency in anti-tumour immunity will oscillate. 

Each of the effector immune cell components secretes cytokines that mediate the effector 

outcomes, and are generally considered to belong to either the pro- or anti- immune ends of the 

balance. The T cell (TH and CTL) subsets are particularly important for mediating anti-tumour 

immunity (Frey, 2008). Antigen activated TH1, CTL and NK cells mediate responses through pro-

inflammatory cytokines like IFNγ, which is often used in vitro to recapitulate pro-inflammatory 

environments and termed TH1 cytokines (Luheshi et al., 2014). Oppositely, TH2 cells secrete anti-

inflammatory/TH2 cytokines such as interleukin-4 (IL-4), which acts to further propagate anti-

inflammatory signals in an autocrine matter by increasing the differentiation of naive TH cells to 

TH2 subtype (Ansel et al., 2006; Swain et al., 1990). Often the CD4:CD8 ratio (TH:CTL) is used 

as an indicator in cancer immunology research as to which pole of the balance the TME favours 

and so has associated prognostic value (Prall et al., 2004; Sato et al., 2005; Shah et al., 2011; Toes 

et al., 1999). As of yet though, the impact of the cytokines derived from these cells on stromal cells 

has not been fully elucidated.  
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Figure 3.1: Effector T cells impact the balance of anti-tumour immunity 

T cells are of particular important in upholding the balance between tolerance and immunity due to the 
powerful subtypes that maintain each extreme. Treg and TH2 cells increase local concentrations of IL-4, IL-
10 and TGF-β and suppress TH1, CTL and NK cells; this is beneficial in preventing autoimmunity, but 
detrimental for the host in the case of a tumour as suppressive immunity permits tumour cell progression. For 
an effective anti-tumour immune response the opposite is required, dependent on increases in active TH1 and 
CTL with tumour killing capacity, facilitating tumour regress.  
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3.1.2. Summary and aims 

For the purpose of this thesis, the roles of these two opposing ends of inflammatory extremes 

by using IFNγ and IL-4 as models are investigated. IFNγ is expressed potently by TH1 and CTL 

mediated immunity, T cells that are considered beneficial for anti-tumour immunity. TH2 cells are 

often associated with a poor prognosis in cancer patients and express IL-4 in large amounts. 

Knowing that these cytokines will not occur in isolation, TNFα in combination with these are used, 

due to evidential roles of synergistic activities. This is not to say that all inflammatory or anti-

inflammatory cytokines will produce the same results, or that the presence of other cytokines in the 

milieu will not change the outcome in some way. However, investigate the effect of an overall 

imbalance in the localised inflammatory signals on the stromal compartment of the prostate, these 

combinations of cytokines are a suitable starting point.  

 

The aims of this chapter were to:  

 

• Understand the involvement of prostate stromal cells (derived from BPH and PCa) 

in responding to local inflammation. 

 

• Determine the source of commonly PCa associated molecules and whether they are 

modulated by inflammatory signals in prostate stroma and epithelium (in BPH and 

PCa).  
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3.2. Results 

3.2.1.  Gene expression analysis of prostate epithelial and stroma cells 

Epithelial and stromal cells cultured from patient prostate tissue were either treated with 

IFNγ&TNFα or untreated. Control stroma (HFF cells and tonsil stroma) is included to compare as 

both BPH and Gl9 PCa are states of disease. Prostate stroma was also treated with IL-4&TNFα, 

although prostate epithelium and control stroma were not. Gene expression was analysed by 

nanostring whereby actual counts of mRNA molecules per gene are returned. All expressed genes 

were used to present data with sample clustering as an overview using r. Genes are scaled across 

samples (Row Z score). Figure 3.2 demonstrates all detected genes in all samples. Two principal 

clusters exist, one containing epithelia and second containing stroma. Within these two clusters, 

IFNγ&TNFα treated samples cluster separately from untreated samples (and IL-4&TNFα treated 

stroma). To explore individual cohorts in more detail, each are displayed as heatmaps. In each case, 

genes that weren’t detected within the cohort were excluded.  

 

Genes detected in epithelial cells are demonstrated in Figure 3.3. While IFNγ&TNFα 

treatment primarily defines clustering, within each of these clusters, BPH was separately clustered 

from Gl7 and Gl9 epithelial samples. This is evident by subsets of genes that are either upregulated 

(bottom central green cluster) or downregulated (top central red cluster) in Gl7 or Gl9 epithelium 

compared to BPH. There is also a clear subset of genes that were upregulated by IFNγ&TNFα and 

a smaller subset downregulated by IFNγ&TNFα.  

 

Further inspection of stromal samples (Figure 3.4) reveals a similar trend with IFNγ&TNFα 

treatment as with epithelium, containing a major upregulated gene cluster in the IFNγ&TNFα 

treated, and a minor downregulated cluster. In the case of stroma however, disease did not appear 

to significantly impact on gene expression. Analysis of IL-4&TNFα treated prostate stroma in 

comparison to untreated (Figure 3.5) demonstrates IL-4&TNFα did not impact on stroma 

significantly enough to result in differential clustering as IFNγ&TNFα does. However there is a 

small subset of genes that were upregulated in treated stroma over untreated stroma. Due to the 

ambiguity of this cluster, a bracket has been added to highlight it. Again, disease did not made a 

significant impact on hierarchical clustering.  

 

To further explore the impact of disease on stromal cells, principle components analysis 

(PCA) and differential expression represented by volcano plots are demonstrated (Figure 3.6 and 

3.7). PCA allows clustering of samples based on, in this case, its transcriptional profile, by 

compressing all the data onto a single plot. This is achieved by plotting the data onto axis that 

describe the principle components of the data. PC1, the first principle component explains the 

direction in which most of the variation within the data set occurs. PC2, explains the second most 

variation, and so on. More similar cell types will cluster together, due to similar transcriptional 
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profiles. The PCA plots included in Figure 3.6 and 3.7 display the first to fourth PC plotted against 

each other. Untreated stromal samples separated by disease in the first 2 PC, which capture 35% of 

the variation in the data in total (PC1 and PC2, which explain 20% and 15% of the variation 

respectively) (Figure 3.10A). As presented in the volcano plot, IL-13Rα2 was the most 

differentially expressed gene between disease cohorts (demonstrated by x axis) and the most 

statistically significant (y axis; Figure 3.10B), which is discussed further later in the chapter. 

PTGS2, VEGFα, IL-1RN and LTβR are among the subset of genes that were significantly 

downregulated in Gl9 stroma (-fold change) compared to BPH stroma. Of note, fewer genes were 

upregulated in Gl9 stroma compared to BPH (+fold change). Included in these genes are STAT6, 

TICAM and PSMB9. Analysing the effect of treatment in the same way (Figure 3.7) is consistent 

with analysis by heatmaps. IFNγ&TNFα treated stroma separated distinctly from both untreated 

and IL-4&TNFα treated stroma by PC1 vs. PC2, in which 52% of variation is explained (Figure 

3.7 A). Nevertheless, both IFNγ&TNFα and IL-4&TNFα produced potent and statistically 

significant changes in gene expression (Figure 3.7 B&C). Consistent with what is known about 

cellular responses to these cytokines, genes that are known to be modulated by IFNγ or IL-4 are 

included in the most upregulated and significant changes.  
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Figure 3.2: Gene expression analysis of prostate stroma in comparison to prostate 

epithelium and control stroma  

Normalised counts obtained from nanoString analysis and detected above background are plotted. For 
hierarchical clustering, distance between samples (columns) and genes (rows) was calculated according to 
Pearson’s correlation. Counts are scaled by row (i.e. across samples) and coloured by row Z-score, where 
green indicates high expression and red indicates low expression relative to other samples. Above the plot, 
colours indicate the disease, treatment and cell type of the corresponding sample below. Within the control 
samples (coloured green), “H” and “T” indicate HFF and Tonsil control stroma, respectively. n=35 
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Figure 3.3: Gene expression analysis of prostate epithelium  

An enlarged plot of the epithelial cluster evidenced in Figure 3.2, with undetected genes (that are detectable 
in stromal cells) removed. For hierarchical clustering, distance between samples (columns) and genes (rows) 
was calculated according by Pearson’s correlation. Counts are scaled by row (i.e. across samples) and 
coloured by row Z-score, where green indicates high expression and red indicates low expression relative to 
other samples. Above the plot, colours indicate the disease and treatment of the corresponding sample below. 
n=8 
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Figure 3.4: Gene expression analysis of untreated and IFNγ&TNFα  treated stroma  

An enlarged plot of stromal cells from Figure 3.2, with undetected genes removed (which are detectable in 
epithelial or IL-4&TNFα treated cells). For hierarchical clustering, distance between samples (columns) and 
genes (rows) was calculated according by Pearson’s correlation. Counts are scaled by row (i.e. across 
samples) and coloured by row Z-score, where green indicates high expression and red indicates low 
expression relative to other samples. Above the plot, colours indicate the disease and treatment of the 
corresponding sample below. Within the control samples (coloured green), “H” and “T” indicate HFF and 
Tonsil control stroma, respectively. n=22 
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Figure 3.5: Gene expression analysis of untreated and IL-4&TNFα  treated prostate 

stroma  

An enlarged plot of stromal cells from Figure 3.2, with undetected genes removed (which are detectable in 
epithelial or IL-4&TNFα treated cells). For hierarchical clustering, distance between samples (columns) and 
genes (rows) was calculated according by Pearson’s correlation. Counts are scaled by row (i.e. across 
samples) and coloured by row Z-score, where green indicates high expression and red indicates low 
expression relative to other samples. Above the plot, colours indicate the disease and treatment of the 
corresponding sample below.  The bracket illustrates a subset of genes regulated by IL-4&TNFα treatment. 
n=17 
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3.2.2. Quantifying cell subsets marker expression in patient cell cultures confirms cell 

types  

The expression of markers restricted to certain cell subsets were analysed to confirm that 

immune, endothelial or epithelial cells do not contaminate prostate and control stromal cultures 

(Figure 3.8 and 3.9). It was confirmed that immune cell markers such as CD19, CD163 and CD3 

were not expressed in any of the cultures; counts fall below 20 in all cases, which is within the 

range of background counts. Prostate and control stromal cultures express high levels of COL3A1, 

COLEC12 and THY1, which were not expressed in the patient epithelial cultures. Endothelial cell 

genes CD34 and PECAM1 were not detected in any cultures, indicating their absence. Likewise, 

epithelial cell markers EPCAM and CEACAM1 were expressed in epithelial cultures (albeit at a 

lower level than expected) and undetectable in stromal cultures. Altogether these data indicate that 

neither stromal nor epithelial cultures contain detectable amounts of contaminating immune or 

endothelial cells and epithelial cultures do not contain stromal cells or vice versa.  

 

3.2.3. Type I and Type II IFN receptors were expressed in all cultures, while the ligands 

were not 

The ability of prostate stromal cells to respond to immune cell derived cytokines relies on the 

expression of the corresponding receptors. To analyse the capacity of cultures to participate in IFN 

signalling, the ligand and receptors of Type I and Type II IFN were examined (Figure 3.10). Type I 

IFNs (IFNA1, IFNA2, IFNA7 and IFNB1) were not expressed, though the receptors (IFNAR1 and 

IFNAR2) were. Similarly, IFNG was not expressed and the receptor IFNGR1 was (N.B ifngr2 was 

not present on the nanostring panel). In both cases the receptor was upregulated upon treatment 

with IL-4&TNFα or IFNγ&TNFα in some but not all cultures. IFNAR1 was expressed to a higher 

degree in stromal cultures compared to epithelium and upregulated marginally in stroma and BPH 

epithelium, but not Gl7 or Gl9 epithelium. PCa epithelium appears to express a higher level of 

IFNAR2 than BPH epithelium and stroma, although all responded similarly to IFNγ&TNFα. PCa 

epithelium expresses a higher level of IFNGR1. While control stroma, BPH stroma, BPH 

epithelium and Gl7 epithelium upregulated IFNGR1 in response to IFNγ ligation, the Gl9 stroma 

and Gl9 epithelium appeared to have lost this ability. These data are an indication that tumour cells 

upregulate IFNAR1, IFNAR2 and IFNGR1 and may provide a mechanism for tumour cell to 

respond to low levels of local IFN. It is also evident from these data that stromal cells are highly 

capable of responding to IFN signalling. This is of particular importance given the microanatomical 

structure of the prostate; where stromal cells usually dominate the ratio of epithelium to stroma and 

are spatially more relevant to prostate infiltrating lymphocytes since the microvessels they 

extravasate from are situated in the stromal compartment. 
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Figure 3.8: mRNA counts of genes corresponding to cell markers in all samples  

Immune and epithelial cell markers are plotted as boxplots. Each point is a sample and are coloured by 
treatment group. Epithelial and stromal samples are plotted in separate facet grids with a scaled y-axis, which 
are coloured accordingly. Counts below 20 are considered below background and negative controls.  
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Figure 3.9: mRNA counts of genes corresponding to cell markers in all samples  

Stromal and Endothelial cell markers are plotted as boxplots. Each point is a sample and are coloured by 
treatment group. Epithelial and stromal samples are plotted in separate facet grids with a scaled y-axis, which 
are coloured accordingly. Counts below 20 are considered below background and negative controls.  
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Figure 3.10: mRNA counts of genes belonging to the Type I and Type II IFN 

signalling pathways 

Counts of genes belonging to the Type I (A) and Type II (B) IFN ligands and receptors are plotted coloured 
by treatment group. In each case, ligands are expressed below the negative threshold, while receptors are 
expressed and inducible in both cell types. Epithelial and stromal samples are plotted in separate facet grids 
with a scaled y-axis, which are coloured accordingly. 
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3.2.4. Differential expression of Type II IL-4 signalling molecules in Gl9 prostate stroma 

Both IL-4 and IL-13 can signal through the type II IL-4 receptor (IL-4Rα & IL-13Rα1) 

(diagram of IL-4 signalling in Figure 3.12). Neither cytokine were expressed by stromal or 

epithelial cells, nor is the IL2RG, typically restricted to haematopoietic cells (Figure 3.11). Both IL-

4R and IL-13RA1 were expressed in stromal and epithelial cells. While IL-4R was upregulated in 

prostate stroma compared to control stroma, and upregulated in PCa epithelium compared to BPH, 

the opposite is true for IL-13RA1. This may indicate that IL-4 can better stimulate prostate stroma 

and PCa epithelium than control stroma and BPH epithelium, and that IL-13 is more effective in 

the alternative settings. Of the type II IL-4 signalling molecules, only TKY2 was differentially 

expressed. It was upregulated in treated Gl9 stroma, indicating an increased propensity to respond 

to IL-13Rα1 ligation. IL-13Rα2 has controversial roles in IL-13 signalling and is developing more 

established associations with cancer progression and metastasis. Many have described it as a decoy 

receptor, since it lacks a cytoplasmic domain (Orchansky et al., 1997). It has specificity for IL-13 

but not IL-4, and is suggested to deplete local IL-13 availability and so preventing downstream IL-

13 signalling. Examination of IL-13RA2 in control stroma and prostate stroma and epithelium 

revealed that it was expressed to a considerably higher degree in BPH stroma than any other 

cultured cells.  

 

3.2.5. Receptors of the TNF ligand family are expressed by stroma and eptithelium  

TNFα, TNFβ (also known as TNF and lymphotoxin-α; LTA, respectively) and LTβ were not 

expressed in any tested cultured cells at the mRNA level (Figure 3.17). As previously discussed, 

TNFα has specificity for both TNFR1 and TNFR2 (a.k.a. TNFRSF1A and TNFRSF1B). It is 

evident from this data that stromal cells expressed both TNFRSF1A and TNFRSF1B, indicating a 

capacity for TNFα signalling through either receptor. Interestingly, only when treated with 

IFNγ&TNFα and not IL-4&TNFα were the receptors upregulated. To understand whether this was 

due to an IFNγ specific response or whether IL-4 signalling in some way inhibits TNFα receptor 

upregulation, each cytokine should be used in isolation and receptors analysed. Interestingly, 

prostate epithelium did not express TNFRSF1B, indicating an inability to signal through TNFR2.  

 

Tumour necrosis factor alpha inducible protein 3 (TNFAIP3, a.k.a A20) is an inhibitor of 

TNF mediated apoptosis, as well as a number of other pathways including NF-kB and IL-1. Mice 

deficient in TNFAIP3 succumb prematurely to significant inflammatory diseases (Lee et al., 2000). 

In all cultures except PCa epithelium, TNFAIP3 was induced by both cytokine treatments. If 

activity correlates with mRNA expression, the lack of upregulated TNFAIP3 would indicate 

tumour cell susceptibility to TNFα mediated apoptosis, consistent with other reports, particularly 

when combined with the lack of TNFR2 expression (Malynn and Ma, 2009). Consistent with this, 

FADD (fas associated via death domain; FADD) is higher expressed in PCa epithelium compared 

to BPH, but was not upregulated with treatment. TRAF2 was upregulated in response to cytokine 
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treatment in all cell cultures except Gl9 epithelium, despite the absence of TNFSF1B expression in 

prostate epithelium. Lymphotoxin-β (LTβ) as discussed in chapter 1, is required in lymphoid 

organogenesis, where LTβR on stromal cells facilitates recruitment of early immune cells. 

Interestingly, while it was expressed consistently highly on stromal cells from all settings and BPH 

epithelium, it was greatly upregulated on PCa epithelium, and inducible with IFNγ&TNFα. This 

may provide a mechanism for immune cell recruitment by tumour cells.   

 

3.2.6. Expression of TLR in the cellular components of the prostate 

The expression of toll like receptors (TLRs) in control and prostate stromal cells and prostate 

epithelium were analysed (Figure 3.14). TLRs play a key role in the innate immune response and 

ligand binding tends to induce expression of pro-inflammatory cytokines (typically IL-1, IL-6 and 

IL-8) and chemokines. Since the prostate often harbours acute and chronic infections, it is surmised 

that TLR expression might provide a mechanism for establishing the chronic inflammation that 

often causes clinical symptoms. TLR5-TLR10 were not expressed in any of the cultured cells. 

While TLR1 was expressed, it was possibly not at a high enough level to be physiologically 

significant. TLR3 displayed a consistent pattern of expression across cell type and disease, 

indicating a shared ability to detect and respond to dsRNA.  

 

The expression of TLR2 and TLR4 is interesting due to the distinct expression between cell 

types. Epithelial cells expressed TLR2, which was inducible upon treatment but this inducibility 

appeared to decline with disease progression, while stromal cells from all settings show no capacity 

to express this receptor. The opposite is true of TLR4, which was expressed and inducible in 

stromal cells but not in epithelium. TLR2 recognises an array of pathogen associated molecular 

patterns (PAMPs) (e.g. lipoproteins, porins and haemagglutinin). TLR4, on the other hand, has 

specificity for just a few PAMPs including lipopolysaccharide (LPS) and its derivatives, which are 

expressed on the outer membrane of Gram-negative bacteria. Endogenous ECM molecules such as 

hyaluronin and fibronectin are also able to bind and activate TLR4. It is unclear why TLR4 should 

be expressed on stromal cells but not epithelium, but may simply be another mechanism whereby 

stromal cells modulate and maintain homeostasis in the microenvironment. This is particularly 

relevant since its expression was increased upon IFNγ&TNFα treatment, and so might synergise 

with existing inflammation to promote an additional inflammatory response. The response of TLR4 

to normal ECM components may instead be more relevant, and provide the prostate stromal 

compartment with a mechanism to detect aberrant remodelling and induce an inflammatory 

response.  
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Figure 3.11: mRNA counts of genes belonging to the IL-4 signalling pathway 

Counts of genes corresponding to IL-4 ligands, receptors and intracellular signalling molecules are plotted 
coloured by treatment group (refer to Figure 3.12 for a diagrammatic representing of IL-4 signalling). In each 
case, ligand counts are below the negative threshold. IL-4 receptors IL-4R, IL-13RA1, and IL-13RA2 but not 
the common γ chain IL2G and intracellular signalling molecules are expressed. Epithelial and stromal 
samples are plotted in separate facet grids with a scaled y-axis, which are coloured accordingly. 
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Figure 3.12: Schematic diagram of IL-4 signalling 

A diagrammatic representation of IL-4 signalling is demonstrated as a reference to figure 3.11, created using 
motifolio®. IL-4 or IL-13 can signal through a complex of IL-13Rα1-IL-4R. The inhibitory or “decoy” 
receptor IL-13Rα2 can sequester only IL-13 but cannot transmit signal. IL-4 may also transmit signal 
through a heterodimeric receptor of IL-4R-IL2Rγ (a.k.a. the common γ chain; γc), when IL2Rγ is expressed 
(normally restricted to haematopoietic cells). IL-13Rα1 transmits signalling through JAK1 or JAK2 and 
Tyk2, while IL2Rγ signals via JAK1 and JAK3. Either signalling results the formation of a phosphorylated 
STAT6 homodimer.  
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Figure 3.13: mRNA counts of genes belonging to the TNF signalling pathway 

Counts of genes corresponding to TNF ligands, receptors and intracellular signalling molecules are plotted 
coloured by treatment group. In each case, ligand counts are below the negative threshold or very low. TNF 
receptors TNFRSF1A, TNFRSF1B and LTBR and intracellular signalling molecules are expressed. 
Epithelial and stromal samples are plotted in separate facet grids with a scaled y-axis, which are coloured 
accordingly. 
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Figure 3.14: mRNA counts of genes corresponding to Toll like receptors  

Counts of genes corresponding to TLRs are plotted coloured by treatment group. TLR5-TLR10 counts are 
below the negative threshold. TLR1-TLR4 was detected in either stromal or epithelial cells. Epithelial and 
stromal samples are plotted in separate facet grids with a scaled y-axis, which are coloured accordingly. 
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3.2.7. Investigating expression of cytokines associated with PCa 

Knowing that both IL-6 and IL-1 have been associated with increased survival and 

proliferation of prostate tumour cells the mRNA expression of the signalling molecules of each 

pathway were examined.  

 

Analysis of the upstream IL-1 signalling molecules demonstrated that IL-1α & IL-1β were 

expressed at the mRNA level to a greater extent in prostate epithelium, and inducible with 

IFNγ&TNFα (Figure 3.15 A). The activating receptor IL-1R1 was expressed to a greater extent in 

prostate stromal cells (and inducible in control stroma), while IL-1RAP was expressed to a minor 

degree in prostate stroma and increased in epithelium (Figure 3.16 B). Since IL-1RAP is required 

for downstream signalling, this indicates while there is expression of IL-1RAP, there may be a 

greater capacity to respond to IL-1 in prostate epithelium than stroma. Interestingly, IL-1RN, which 

acts to inhibit IL-1R1 mediated signalling, was upregulated in IFNγ&TNFα treated BPH 

epithelium but no other cells. This suggests a mechanism to reduce local inflammation in BPH. The 

expression of IL-1R2 is likely not enough to be physiologically significant.  

 

The IL-6 pathway is mainly facilitated by JAK-STAT signalling and through both STAT3 

mediated transcription of survival genes and by inhibition of p53 (or TP53) prevents apoptosis by 2 

mechanisms (Figure 3.16 B). Cytokine treated stromal cells mainly expressed IL-6 whereas 

expression of the receptor IL-6R was greater in prostate epithelium, and consistent with other 

reports, upregulated in Gl9 epithelium (Figure 3.16 A). Stromal cells, particularly from the 

prostate, expressed consistently high levels of IL-6St, which is required for activation of cytosolic 

IL-6 signalling. Prostate epithelium still expressed significant levels of IL-6st expected to support 

IL-6 signalling in these cells. STAT3 is expressed in both cell types suggesting capacity to 

transduce IL-6 signalling. Of interest, P53 was reduced in Gl9 epithelium at the transcriptional 

level, consistent with the tumourigenic associations of this transcription factor. IL-6R can facilitate 

IL-6 response in neighbouring cells as a secreted form. Taken together, these data indicate a 

capacity of IL-6 signalling in both stromal and epithelial cells, with stromal cells as a substantial 

source in the inflamed prostate. It is conceivable that IL-6 signalling in the inflamed prostate may 

therefore contribute to increased survival and p53 mediated inhibition of apoptosis, which if 

sustained has the potential to contribute to mutational burden and tumourigenisis. 

 

TGF-β is associated with PCa due to the observation that tumour cells becoming refractory 

to TGF-β mediated cell cycle inhibition, the high levels of activated TGF-β ligands detected in 

tumour tissues and the strong association with immune inhibition. Therefore, the TGF-β ligands 

contained within the nanoString panel were analysed. Since the TGF-β receptors were not present 

in the panel, whether the loss of receptors in PCa cells could be attributed to TGF-β refraction 

could not be addressed. TGF-β isoforms 1 and 2 mRNA was expressed in all cell types and 

diseases analysed (Figure 3.17). While TGF-β1 is upregulated at the transcriptional level in tumour 
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cells with disease progression, it was expressed at particularly high levels in stromal cells 

regardless of disease. However, TGF-β is a cytokine with multiple levels of regulation at the post-

translational stages of production, some of which were outlined (section 3.1.6). Some of these 

mechanisms are mediated through proteolytic cleavage by plasmin and MMP, or the 

conformational change in the latent complex facilitated by integrins and THBS1. Only THBS1 

could be analysed by nanoString, which was found also be to expressed to excess in the stroma. 

Interestingly, THBS1 was upregulated in the tumour cells derived from the patient with Gl7 

disease. 
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Figure 3.15: mRNA counts of genes belonging to the IL-1 signalling pathway 

(A) Counts of genes corresponding to IL-1 ligands and receptors are plotted, coloured by treatment group. 
Epithelial and stromal samples are plotted in separate facet grids with a scaled y-axis, which are coloured 
accordingly. (B) A diagrammatic representation of IL-1 signalling, created using motifolio®. IL-1α and IL-
1β can signal through a heterodimeric receptor of IL-1RAP and IL-1R1. The inhibitory or “decoy” receptor 
IL-1R2 can sequester only IL-1α/IL-1β but cannot transmit signal. IL-1RN is an inhibitory ligand, which 
blocks and prevents signalling through the IL-1R/IL-1RAP.  
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Figure 3.16: mRNA counts of genes belonging to the IL-6 signalling pathway 

(A) Counts of genes corresponding to IL-6 ligands, receptors and intracellular molecules are plotted, 
coloured by treatment group. Counts below 20 are considered below background and negative controls. 
Epithelial and stromal samples are plotted in separate facet grids with a scaled y-axis, which are coloured 
accordingly. (B) A diagrammatic representation of IL-6 signalling, created using motifolio®. IL-6 signals 
through a heterodimeric receptor of IL-6R and IL-6ST. IL-6ST transmits signal through activation of STAT3, 
which forms a homodimer and mediates transcription. STAT3 homodimer also prevents P53 activation, so 
inhibiting cell death. 
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Figure 3.17: mRNA counts of genes corresponding to TGF-β  associated molecules 

Counts of genes corresponding to TGF-β ligands and THBS1 (a latent TGF-β activator) are plotted, coloured 
by treatment group. Epithelial and stromal samples are plotted in separate facet grids with a scaled y-axis, 
which are coloured accordingly. Counts below 20 are considered below background and negative controls. 
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3.2.8. Expression of AM 

Cellular AM are important for many processes, not limited to: homeostatic maintenance of 

cellular polarity and tissue architecture, EMT and cellular communication. These processes are 

often implicated in cancer development and immune cell-host cell interactions, so whether changes 

occur in disease progression and cytokine treatment in prostate stroma and epithelial were 

analysed. Consistent with the literature, carcinoembryonic antigen-related cell adhesion molecules 

(CEACAM) CEACAM1 and CEACAM6 were expressed in epithelial cells but not stroma (Figure 

3.18). These AM were initially discovered to be upregulated in the tumour epithelium of colorectal 

cancer and expressed in embryonic tissues at high levels and are used as a prognostic indicator in 

colorectal cancer (CRC) and breast cancer (BCa) (Beauchemin and Arabzadeh, 2013; Gold and 

Freedman, 1965). Overexpression has been associated with aggressive disease through involvement 

in migration and invasiveness (Ebrahimnejad et al., 2004). CEACAM1 and CEACAM6 (also 

known as NCA) epithelial expression in the prostate is normal. CEACAM1 is positively correlated 

with tumour progression in gastric cancers, though the opposite is true for PCa, where CEACAM1 

has been shown to be lost in human PCa tissues (Busch et al., 2002; Shi et al., 2014). This loss is 

thought to have implications in the regulation of cell proliferation and polarity, and reintroduction 

of CEACAM1 in prostate cancer cells delayed tumour growth (Busch et al., 2002; Hsieh et al., 

1995; Kleinerman et al., 1995). While CEACAM6 expression has not been widely investigated in 

PCa, it was found not to be upregulated with disease progression compared to other tumours 

(Blumenthal et al., 2007). Here it is demonstrated that both CEACAM1 and CEACAM6 were 

decreased in epithelial tumour cells compared to BPH. It may be that the loss of CEACAM in the 

tumour cells of PCa is indicative of epithelial-mesenchymal transition (EMT), since they are not 

expressed by prostate stroma.  

 

ICAM-1 and VCAM-1 are best documented for the role in transmigration of immune cells 

across the vascular endothelial barrier into tissues. Endothelial cells in inflamed tissues upregulate 

ICAM-1 and VCAM-1, which bind to leukocyte function associated antigen-1 (LFA-1) and very 

late antigen-4 (VLA-4) respectively, expressed on activated immune cells to facilitate immune 

extravasation to inflamed tissues. However, both ICAM-1 and VCAM-1 also mediate stromal-

ECM interactions and were previously shown to have increased cell surface expression in high 

Gleason stroma and in inflammatory conditions, which correlated with the propensity of stromal 

cells to mediate PCa cell invasion (Lakins, 2012). Upon analysing ICAM1 and VCAM1 it’s 

confirmed that both were expressed by prostate stroma and upregulated when treated with 

cytokines. Both prostate epithelium and stroma upregulated ICAM1 when treated with 

IFNγ&TNFα. The expression was greater in prostate stroma, and moderately upregulated by IL-

4&TNFα. In contrast, VCAM-1 was upregulated to a greater degree when treated with IL-

4&TNFα than IFNγ&TNFα. As prostate epithelium was not treated with IL-4&TNFα it cannot be 

confirmed whether this is a consistent response. At the mRNA level differential expression by 

disease grade was not detectable.  
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Figure 3.18: mRNA counts of genes corresponding to AM 

Counts of genes corresponding to AM are plotted, coloured by treatment group. Epithelial and stromal 
samples are plotted in separate facet grids with a scaled y-axis, which are coloured accordingly. Counts 
below 20 are considered below background and negative controls. 
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3.2.9. Immunomodulatory roles of stroma in the prostate 

When MHC Ia is expressed on the cell surface they can bind to CTL TCR and NK cell killer 

cell inhibitory receptors (KIRs). The expression of MHC Ia molecules and upregulation upon 

cytokine signalling indicates a propensity for stromal and epithelial cells to present internal 

antigens for surveying CTL and ability to inhibit NK cells (Figure 3.19). The expression of MHCIb 

molecules has been implicated in preventing host rejection of transplant tissue and as a mechanism 

of tumour immune escape (Kochan et al., 2013). HLA-E is a known high affinity ligand for the NK 

cell and CTL inhibitory receptor CD94/NKG2A and can to a lesser degree bind to the NK 

activating receptor CD94/NKG2C. HLA-G delivers an inhibitory signal to interacting with a range 

of receptors expressed on different immune cells (T cells B cells, NK cells and APCs). MSCs co-

express HLA-E and HLA-G on the surface, which is hypothesised to, in part, provide these cells 

with the weak immunogenicity they exhibit (Stubbendorff et al., 2013). HLA-G was expressed in 

prostate epithelium and consistently above 500 counts in stroma, both were found to upregulate 

HLA-G when treated with IFNγ&TNFα. This indicates that both prostate stroma and epithelial cells 

are capable of delivering an inhibitory signal to infiltrating immune cells, particularly in 

inflammatory environments. In light of these data, it is conceivable that co-expression by these 

cells may confer resistance to CTL-mediated killing, as in similar reports (Malmberg et al., 2002).  

 

To understand whether stromal cells have the capacity to present antigen on MHCII 

molecules those that were included in the nanoString panel were analysed. Antigen processing on 

MHCII is demonstrated in Figure 3.21. Given that HLA-DM α/β and HLA-DO were expressed at 

low levels in stromal cells even under IFNγ&TNFα treatment, it is indicative a reduced capacity to 

cleave the invariant chain (or CD74), which is expressed at high levels (Figure 3.20). The MHCII 

molecules that present antigens on the cell surface are transcribed from the genes HLA -DP, -DQ 

and -DR, which were as expected expressed at variable levels across patients but generally become 

upregulated with IFNγ&TNFα treatment.  

 

While it is possible stromal and epithelial cells can present antigen, it is unlikely they can 

stimulate T cell activation without signal 1 and signal 2, therefore co-stimulatory molecules were 

analysed (Figure 3.22). CD80, CD86, CD70 and ICOSLG were not expressed at levels above 

background in stromal or epithelial cells. Interestingly CD40 was expressed upon IFNγ&TNFα in 

both stromal and epithelial cells, as was TNFRSF14 (best known as HVEM or LIGHT receptor). 

CD40 expression has been previously documented in human fibroblasts and upon ligation has been 

shown to deliver an activating signal to the fibroblasts to induce expression of cytokines (IL-6 & 

IL-8), hyaluronan and COX-2 (Sempowski et al., 1998; Wassenaar et al., 1999; Yellin et al., 

1995). Although, the CD40 expression is not able to induce TH cell activation alone, pre-activating 

fibroblasts with anti-CD40 induces TH cell proliferation, most likely through production of 

inflammatory molecules by fibroblasts (Nakayama et al., 2015; Willermain et al., 2000).  
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In light of the described data the expression of known immune inhibitory molecules 

expressed by prostate stroma and epithelia were analysed, bearing striking results (Figure 3.23). In 

some cases, for example IDO1, molecules are upregulated by both cell types under inflammatory 

conditions, however the level expressed by stroma far exceeds that of epithelium. KIR ligands 

MICa and MICb are both upregulated in prostate tumour cells compared to BPH. The expression of 

MICb in stroma was similar to that of PCa cells. MICb expression was upregulated by stroma 

treated with IFNγ&TNFα to a greater degree than in epithelium. IFNγ&TNFα treated cells 

expressed both CD274 (PD-L1) and PDCD1LG2 (PD-L2). The expression by treated stroma was 

greater than that of treated epithelium, whereas the opposite was true for PDCD1LG2. CD276 (B7-

H3) is hypothesised to deliver an inhibitory signal to T cells, however its interacting partner and the 

mechanism behind this have not been fully unveiled. CD276 (B7-H3) was expressed consistently in 

stroma, but interestingly was upregulated by PCa cells. PTGS2 (better known as COX-2) is 

responsible for the production of prostaglandins, potent mediators of inflammation. Non-steroidal 

anti-inflammatory drugs (NSAIDS) such as aspirin target COX-2 (and COX-1 to a lesser extent) to 

reduce consequences of inflammation. Interestingly, although expressed by stroma in BPH and 

PCa, PTGS2 was expressed moderately higher in BPH stroma than Gl9 stroma both basally and 

upon cytokine treatment. Moreover, the expression was elevated in IFNγ&TNFα treated epithelium 

and control stroma. Altogether these data indicate a high propensity of stromal cells to inhibit the 

immune system, particularly under inflammatory conditions. Prostate epithelium share this capacity 

to an extent, although expression was often higher in stroma that epithelium. When considering an 

environment such as the prostate this information is highly relevant, given the relative frequency of 

prostate stroma to epithelium. It also indicates that in a stroma heavy prostate tumour, the threshold 

for immune activity is likely required to be much higher than that containing a lower population of 

stroma.  
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Figure 3.19: mRNA counts of genes corresponding to MHC class I molecules 

Counts of genes corresponding to classical (MHCIa) and nonclassical (MHCIb) MHCI molecules are plotted, 
coloured by treatment group. Epithelial and stromal samples are plotted in separate facet grids with a scaled 
y-axis, which are coloured accordingly. Counts below 20 are considered below background and negative 
controls. 
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Figure 3.20: mRNA counts of genes belonging to MHC class II molecules 

Counts of genes corresponding to MHCII molecules are plotted coloured by treatment group (refer to Figure 
3.21 for a diagrammatic representing of MHCII processing). Epithelial and stromal samples are plotted in 
separate facet grids with a scaled y-axis, which are coloured accordingly. Counts below 20 are considered 
below background and negative controls. 
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Figure 3.21: Schematic diagram of MHCII processing 

A diagrammatic representation of MHCII processing is demonstrated as a reference to Figure 3.20, created 
using motifolio®. MHCII molecules (HLA DP, DQ and DR) are bound to the invariant chain (CD74) 
blocking the peptide groove in the ER. The complex is trafficked to the cell surface via the golgi body, where 
it is endocytosed and processed for antigen binding. The invariant chain is cleaved, leaving CLIP in the 
peptide groove. HLA-DM and HLA-DO facilitate removal of CLIP for exchange with peptide. The 
MHCII/peptide complex is trafficked back to the cell surface for antigen presentation.  
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Figure 3.22: mRNA counts of genes involved in immune cell stimulation 

Counts of genes corresponding to co-stimulatory molecules are plotted coloured by treatment group 
Epithelial and stromal samples are plotted in separate facet grids with a scaled y-axis, which are coloured 
accordingly. Counts below 20 are considered below background and negative controls 
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Figure 3.23: mRNA counts of genes involved in immune cell inhibition 

Counts of genes corresponding to inhibitory molecules are plotted coloured by treatment group Epithelial and 
stromal samples are plotted in separate facet grids with a scaled y-axis, which are coloured accordingly. 
Counts below 20 are considered below background and negative controls.  
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3.2.10. Summary of results 

• Stromal cultures express markers consistent with fibroblast phenotype but lack endothelial and 

epithelial markers. Stromal cells do not contaminate epithelial cultures. This permits the use of 

in vitro models to separate these prostate populations to understand their interactions with 

infiltrating immune cells and their relative contribution to common PCa associations. 

  

• Stromal and epithelial cells express type I and type II IFN receptors and TNF receptors but not 

the ligands, indicating the capacity to respond to local inflammation.  

 

• IL-4 signalling appears to be modified in Gl9 stromal cells. They lack the inhibitory IL-13RA2 

receptor and display increased levels of TYK2, the intracellular signalling molecule. This may 

indicate an increased capacity for Gl9 stroma to respond to local IL-4. This may be particularly 

relevant in PCa metastasis as reports demonstrate increased 3D migration when treated with IL-

4, which is imparted on neighbouring tumour cells.  

 

• Epithelial cells expressed IL-1, whereas stroma expressed the receptors, potentially indicating a 

paracrine signalling mechanism between stroma and epithelium in the prostate. IL-6 is inducibly 

expressed in stromal cells while the receptors are expressed by both stroma and epithelium, 

which may support anti-apoptotic mechanisms. Prostate stromal cells constitutively expressed 

TGF-β at a higher level than prostate epithelium. 

 

• ICAM1 is inducibly expressed in both stromal and epithelial cells, though the expression by 

stroma far exceeds that of epithelium. VCAM1 is upregulated to a greater extent under IL-

4&TNFa treated conditions in stroma, IFNγ&TNFα treated stroma upregulated vcam1 but 

epithelium do not.  

 

• Stromal cells express and upregulate MHCIb inhibitory molecules. 

 

• Stromal cells do not express HLA-DM or HLA-DO, required for the removal of CLIP from the 

peptide groove of MHCII (which is expressed and cytokine inducible), consistent with inability 

to present antigen like classical APCs. Similarly, co-stimulatory molecules (CD80, CD86, 

CD70 and ICOSLG) are not expressed, although stromal cells may be able to induce immune 

cell activation upon CD40 ligation. 

 

• Stromal cells express many immune inhibitory molecules, including IDO1, PD-L1 and PD-L2. 
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3.3. Discussion 

Histological studies give context in 3D space cell specific expression, though observations 

often vary between patients making it difficult to draw conclusions. This, in part, may be due to 

differences in unidentified signals within the environment and temporal variability. An alternative 

method has been LCM mediated extraction of cell types from tissue and downstream 

transcriptional analysis. Again this is highly dependent on signals in the local environment and 

further discounts temporal and spatial relevance of molecules. Another caveat of this kind of 

method is incomplete understanding of the source of signals detected since immune cells 

infiltrating tissue can be extracted alongside tissue specific cell types from their designated 

microanatomical space. By culturing patient prostate cells and confirm cell types, better control of 

the environment can be achieved and used to understand the response of cells to specific signals. 

Knowledge from studies like this can be used to inform histological studies about the importance of 

certain inflammatory states. 

 

3.3.1. Influence of disease on transcriptional profile 

Primary epithelial cells displayed a distinct and compelling demarcation in the 

transcriptional profile with disease progression, though their stromal counterparts did not. Tumour 

epithelial cells, though not the focus of this thesis, exhibit a clear loss of a number of immune 

related molecules. Similarly, a distinct panel of molecules become over expressed. Tumour cells 

display a number of features consistent with neoplastic transformation, including loss of P53 and 

epithelial associated AM (Beauchemin and Arabzadeh, 2013; Brady and Attardi, 2010; Busch et 

al., 2002). Unsurprisingly, stromal cells cluster completely separately from epithelial cells. Stroma 

separates only subtly by disease, which is more apparent by PCA than hierarchical clustering. 

Direct comparison of untreated prostate stromal cells shows only a few differentially expressed 

genes (of those that are included in the nanoString panel), explaining this marginal separation. 

Interestingly, within these genes is the inhibitory receptor belonging to the IL-4/IL-13 pathway, IL-

13Rα2. This may be of particular clinical significance since IL-4 has been previously shown to 

induce a migratory phenotype in prostate stromal cell (Lakins, 2012). Though IL-13 was not 

directly tested, the documented redundancy of IL-4 and IL-13 suggests a similar response may be 

induced by IL-13 (Hallett et al., 2012). The loss of the inhibitory receptor suggests in the context of 

a high IL-4/IL-13 environment, Gl9 stroma will be less able to sequester IL-13 preventing its 

signalling in stromal and epithelial cells. Moreover, the elevated IL-4/IL-13 signalling (exacerbated 

by the lack of IL-13Rα2 and increased TYK2) will induce a migratory phenotype in stromal cells, 

which has been shown to confer invasiveness of tumour cells (Lakins, 2012). Another included in 

this category is PTGS2 (better known as COX-2). The current study identifies a Gl9 stromal 

specific loss in expression of COX-2. This is contrary to the literature, as COX-2 upregulation is 

frequently associated with cancer progression (Gupta et al., 2000; Kirschenbaum et al., 2000). 

Consistent with this pro-tumour role aspirin (a COX-2 inhibitor of the class of NSAIDs) treatment 

contributes to men having a reduced risk of PCa (Jafari et al., 2009; Salinas et al., 2010). 
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Physiologically, COX-2 is responsible for the production of the inflammatory mediators 

prostaglandins. Prostaglandins are thought to be involved in tumour progression through the 

induction of cytokines like IL-6 and T cells immunosuppression (Chinen et al.; Hinson et al., 1996; 

Li et al., 2015; Mahic et al., 2006). The clinical significance of this finding is unclear and merits 

further investigation. Although, this may be an artefact of comparing Gl9 stroma to BPH rather 

than normal, or mRNA expression may not be representative of protein expression.  

 

3.3.2. Cytokine signalling in prostate cancer with links to infection 

Cytokine signalling has been attributed to tumour survival in many tissues. In PCa this has 

been mainly IL-1, IL-6, TGF-β and their related molecules, which are often found elevated in the 

serum or tissue of PCa patients (Culig and Puhr, 2012; Diener et al., 2010; Ivanovic et al., 1995; 

Rodriguez-Berriguete et al., 2013; Shariat et al., 2001). Though the cellular source has been 

disputed, so determining this can reveal mechanisms underpinning TME signalling required for 

tumour survival. IL-1 expression by PCa cell lines and increased detection in PCa compared to 

healthy prostate tissue has pushed associations with IL-1 signalling and cancer progression (Abdul 

and Hoosein, 2000; Ricote et al., 2004). This is supported by studies demonstrating IL-1 mediated 

proliferation and differentiation to a more aggressive neuroendocrine phenotype in PCa cells (Liu 

et al., 2013). In the current study, epithelial cells expressed IL-1α and IL-1β. The receptors were 

expressed on epithelia and stroma, evidence for autocrine and paracrine signalling initiated by 

epithelium. The reduced expression of IL-1 inhibitory molecules (IL-1RII and IL-1RN) by tumour 

epithelia indicates a potential mechanism of increased IL-1 signalling in cancer. IL-1 in part 

mediates its pro-tumour functions through induction of IL-6 and COX-2, which may account for 

increased detection of these molecules in high grade PCa (Li et al., 2012a; Tsuzaki et al., 2003).  

 

IL-6 has been detected in prostate tumour epithelial cells in vitro and in the prostate stromal 

compartment by histology, supporting both autocrine and paracrine growth signals in PCa (Giri et 

al., 2001; Sung et al., 2013). In contrast to many in vitro studies of PCa cell lines, this study found 

IL-6 was expressed and inducible by both IL-4 and IFNγ in prostate stromal cells but not primary 

epithelial cells. This finding corroborates a recently published histological study (Yu et al., 2015). 

They demonstrate a stromal specific expression of IL-6, which was increased in areas of 

inflammation and postulate that IL-6R or IL-6RAP expressing epithelial/tumour cells can respond 

to stromal derived IL-6 (Yu et al., 2015). Interestingly, they also demonstrate how discrepancies 

between theirs and earlier studies that suggested epithelial expression of IL-6 could be explained by 

the use of an unspecific batch of commercial anti-IL-6 (Morrissey et al., 2010; Yu et al., 2015). In 

vitro and in vivo studies have identified IL-6 as a regulator of prostate cancer cell proliferation by 

transactivation of the AR (Hobisch et al., 1998; Malinowska et al., 2009). Therefore, recognising 

stromal cells as potent IL-6 producers provides additional evidence for stromal mediated cancer 

progression in response to inflammatory signals.  
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TLR expression is upregulated upon inflammatory stimulus and inflammatory cytokines IL-

1 and IL-6 are inducible by TLR ligation (Ozato et al., 2002). This relationship has reinforced the 

association of infection with cancer initiation and progression (Sato et al., 2009). It has been of 

particular interest in the prostate due to the prominence of infection and chronic inflammation. The 

current study highlights an IFNγ&TNFα mediated response of TLR1-4 in either stroma or 

epithelium, which is not present in IL-4&TNFα treated cells. PCa TLR expression has associated 

prognostic value and trials investigating the use of TLR agonists show some significance (Davis et 

al., 2011; Gonzalez-Reyes et al., 2011; Yamazaki et al., 2014). Gonzalez-Reyes et al. found 

increased TLR3, 4 & 9 in PCa tissue compared to BPH (Gonzalez-Reyes et al., 2011). The data 

presented in the current study implies this increase may be simply secondary to local inflammatory 

stimuli. While epithelia and stroma differentially expressed TLR2 and TLR4 (and TLR5-9 were not 

detected), publications with results to the contrary indicate that some signals (whether 

inflammatory or otherwise) may induce different responses. For example, TLR4 expression was 

detected on both stroma and epithelium, suggesting epithelia have the capacity to express TLR4 

under certain conditions (Gatti et al., 2009). TLR2/4 ligation and activation of the signalling 

pathway by high-mobility group box 1 protein (HMGB1) released upon cell death is beneficial for 

APC activation (Abe et al., 2014; Rovere-Querini et al., 2004). Interestingly, here HMGB1 was 

significantly downregulated in PCa epithelia (supplementary data), a characteristic documented 

elsewhere and found detrimental for initiation of anti-tumour immunity (termed tolerogenic as 

opposed to immunogenic cell death) (Kroemer et al., 2013; Shen et al., 2009; Yamazaki et al., 

2014). Notably though, elevated HMGB1 expression has conversely been shown to promote 

tumour cell survival (Jube et al., 2012; Wu et al., 2008). Thus, TLRs (and their ligands) have dual 

roles in tumour progression. On one hand they promote immune activation whilst on the other 

promoting tumour cell survival through IL-1/IL-6 dependent mechanisms or otherwise.  

 

3.3.3. The influence of stromal cells in the TH1/CTL vs. TH2 immunity balance 

As discussed in section 3.1.1 and demonstrated in Figure 3.1, TH1/CTL (IFNγ) vs. TH2 (IL-

4) immune balance has different connotations in anti-tumour immunity. A high proportion of IFNγ 

producing cells in the TME is considered indicative of strong anti-tumour immunity. Alternatively, 

a high proportion of IL-4 producing TH2 cells are associated with tumour immune escape. 

However, this is based largely on the types of immune cells present and their effects on tumour 

cells but does not consider the impact these cells have on resident cells in the TME. Our lab has 

previously demonstrated an IL-4 mediated pro-metastatic effect on prostate stromal cells. A 

comparison of IL-4 and IFNγ (both in combination with TNFα) on stromal cells in this chapter has 

demonstrated a much more significant transcriptional impact on immune related classes of 

molecules from IFNγ treatment than IL-4. While a balance in favour of TH1/CTL immunity is 

considered beneficial for anti-tumour immunity, the influence on stromal cells, at least in the 

prostate, seems to indicate a significant reprogramming to an immune regulatory phenotype. This 

involves an upregulation in a number of chemokines, AM and immune inhibitory molecules. 
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Consistent with previous data, IL-4 induces an upregulation in AM that were associated with the 

migratory phenotype (ICAM1 and VCAM1). Of note though, some of these are also upregulated by 

IFNγ and at a much more significant level (e.g. ICAM1). So, by either inducing a migratory 

phenotype that promotes metastasis, or an immune inhibitory phenotype that promotes tumour 

immune escape, either side of the TH1/CTL vs. TH2 balance reprograms prostate stromal cells 

producing a phenotype favourable for tumour progression.  

 

The clinical impact of the immune inhibitory phenotype by stromal cells in response to IFNγ 

is significant, especially in light of the surge in checkpoint immunotherapy and lack of efficacy 

with mCRPC patients (discussed in detail in Chapter 4). T cells receiving an inhibitory signal from 

stroma is of particular significance. Upon infiltration, tumour activated T cells recognise tumour 

antigens, expressed by tumour epithelia but not stroma. Stromal cells lacking tumour antigen are 

therefore not the targets of anti-tumour immunity. This study also demonstrated prostate stromal 

paucity in stimulatory molecules. Both antigen recognition and co-stimulatory molecules are 

capable of overpowering engagement of inhibitory molecules in effector T cells. Therefore lack of 

tumour antigen and stimulatory molecules makes stromal cells in TME vital players in inhibiting 

immunity. Of course, three-cell-communication may occur between tumour, stromal and immune 

cells allowing recognition of tumour antigen and engagement of inhibitory molecules. Though in 

the context of a stroma heavy TME, tumour antigen concentrations will be slight, making it 

challenging for T cells to engage target cells. Furthermore the inhibitory phenotype of stroma raises 

the threshold required to activate T cells, a threshold unlikely to be achieved in a TME with low 

tumour antigen.  

 

3.4. Concluding remarks 

This chapter aimed to understand the involvement of prostate stromal cells (derived from 

BPH and PCa) in responding to local inflammation. Transcriptional analysis of prostate stroma 

under conditions representing TH1 (IFNγ&TNFα) and TH2 (IL-4&TNFα) dominated 

environments reveals a more powerful response to TH1 cytokines. Though transcriptional 

expression does not guarantee representative of protein expression and activity, it does provide 

insights and avenues for further research. By using this technique a number of prospective 

pathways that could be further researched were identified. The potential interplay of the IL-1, IL-6, 

TLR and COX-2 are particularly interesting, though are not addressed in this thesis. The 

IFNγ&TNFα mediated response in immune inhibitory molecules was of particular interest and are 

the main focus herein.  
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4.1. Experimental rationale 

Prostate cancer is considered to be immunologically “cold” owing to lower levels of 

immunogenicity. This is most likely due to a combination of the slow growing nature of the disease 

and low mutagenic load, restricting the potency of and ability to generate immune responses. Yet, 

analysis of prostate infiltrating lymphocytes (PILs) has indicated that clonally expanded T cells 

occur at high numbers in PCa (Sfanos et al., 2009). Although this study found a common antigen 

across these patients, the identity of the antigen itself is yet to be elucidated. Data suggests that PCa 

can potentially be targeted by the immune system, but that (i) lack of efficient killing by CTL, (ii) 

immunosuppression in the microenvironment, (iii) or low expression of tumour antigen, prevents 

effective tumour clearance. In chapter 3, data identified transcriptional upregulation of key immune 

inhibitory molecules in prostate stroma treated with TH1/CTL cytokines. In light of this, potential 

mechanisms of immune inhibition by prostate stroma were investigated. It was considered that in 

the context of PCa, where reactive stroma can substantially overshadow tumour cells and that PILs 

likely are intimately associated with stroma while invading the prostate tissue, these mechanisms 

could provide a significant impediment for anti-tumour immunity.  

 

4.2. Immunotherapy and prostate cancer 

Immunotherapy aims to rejuvenate immune responses that have failed to eliminate tumour 

growth. This is comprised by 7 key stages in a cancer-immunity cycle, described in Chapter 1 

(Figure 1.5) (Chen and Mellman, 2013). These stages are: (1) Release of cancer cell antigens, (2) 

Cancer antigen presentation, (3) Priming and activation, (4) Trafficking of T cells to tumours, (5) 

Infiltration of T cells into tumours, (6) Recognition of cancer cells by T cells and (7) Killing of 

cancer cells. Impairment at any stage in the cycle hinders effective anti-tumour immunity and 

immunotherapy is intended to restore this.  

 

One of the only FDA approved immunotherapies for the treatment of prostate cancer is the 

cellular vaccine Sipuleucel-T (also known as Provenge®) (FDA, 2010). To generate vaccines 

autologous APCs are incubated with recombinant human prostatic acid phosphatase (PAP) fused to 

granulocyte-macrophage colony-stimulating factor (GM-CSF) ex vivo, aiming to activate patient 

immune cells, with PAP as a target antigen (Small et al., 2000). So, it is theorised to improve 

immune cell targeting of prostate cells expressing the PAP antigen. Sipuleucel-T provides only a 

modest 4-month improvement in median overall survival (mOS) in patients compared to placebo 

treated (Flanigan et al., 2013). Sipuleucel-T is currently approved only for the treatment of patients 

with incurable mCRPC, but presumably patients with earlier stages of the disease, free from 

metastasis, would have an improved benefit from an immunotherapy treatment. Clinical trials 

treating patients with localised PCa with Sipuleucel-T are on-going and provide evidence for 

improved immune infiltration (Fong et al., 2014). 
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Prostvac-VF® is a vector based vaccine in clinical trials for the treatment of mCRPC. A 

plasmid containing PSA and 3 immune co-stimulatory molecules (CD80, ICAM1 and LFA-3) is 

transfected into a mammalian host cell line. Viral vectors infect the host cell line to produce viral 

vectors containing recombinant DNA encoding PSA and co-stimulatory molecules (Madan et al., 

2009). Prostvac-VF is proposed to stimulate a natural immune response upon subcutaneous 

injection. The viral vectors are phagocytosed by APCs leading to presentation of PSA on MHCI 

and MHCII molecules and expression of co-stimulatory molecules, which go on to activate PSA 

specific T cells. Upon activation, T cells target PSA expressing cells resulting in lysis of tumour 

cells and release of further tumour antigens. Clinical trials so far have highlighted a potential 

benefit for mCRPC patients treated with Prostvac-VF, with an approximate 8.5-month median OS 

benefit in one phase II trial (Kantoff et al., 2010).  

 

The use of conditional replicating adenoviruses (CRADs) for cancer treatment is appealing, 

since if true tumour specificity is achieved it would minimise the off-target effects typical of 

common cancer treatments like radiotherapy and chemotherapy (Alemany et al., 2000). Ad[I/PPT-

E1A] is an oncolytic adenoviruses under investigation for the treatment of PCa patients. It aims to 

selectively infect and replicate in prostate tumour cells resulting in both tumour cell death and an 

inflammatory environment capable of supporting a PCa specific immune response. It incorporates 

the use of 3 prostate associated genes (1.Prostate specific membrane antigen; PSMA, 2.PSA and 

3.T cell receptor γ-chain alternate reading frame protein; TARP) that controls activity of the viral 

E1A protein required for virus replication and it is for this reason it is termed “PPT-E1A” (Cheng 

et al., 2006). Both in vitro and preclinical in vivo experiments have confirmed oncolysis and 

tumour regression (Adamson et al., 2012; Cheng et al., 2006; Schenk et al., 2014).  

 

However recently, the most notable immunotherapeutics in the treatment of cancers have 

undoubtedly been checkpoint inhibitors. To date though, of all the clinical trials with checkpoint 

inhibitors in prostate cancer, none have met primary end points or provided any survival benefit for 

patients. 

 

4.2.1. Checkpoint inhibition; therapeutic relevance in cancer 

The PD-1/PD-L1 pathway can regulate T cell responses to both acute and chronic infections, 

the latter of which has historically been investigated in more detail (Barber et al., 2006; Day et al., 

2006). Inhibiting the PD-1/PD-L1 pathway can benefit survival and the ability of mice to clear 

infections in an antigen specific T cell dependent manner. It is of no surprise then that the emerging 

field of cancer immunotherapy has ventured to PD-1/PD-L1 (Fig 4.1). Immunotherapies targeting 

checkpoint molecules first began with CTLA-4 antibody mediated inhibition (Ipilimumab) (Egen et 

al., 2002; Krummel and Allison, 1995). It was shown to provide clinical benefits in the mouse and 

later in the clinic, however can cause significant off target effects through autoimmune 

mechanisms (Leach et al., 1996; Peggs et al., 2009; Robert et al., 2011). Ipilimumab is approved 
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for the treatment of metastatic melanoma at a dosage of 3mg/kg and has been demonstrated to 

provide significant OS benefits in a range of solid tumours in clinical trials. At this dose, 

Ipilimumab treated patients had a mOS of 10months, compared to 6.4months in vaccine treated 

patients (Hodi et al., 2010). Furthermore, of the Ipilimumab treated patients 45.6% and 23.5% 

survived at 1 and 2 years respectively, in comparison to 25.3% and 13.7% in vaccine treated 

patients. Treatment related deaths occurred in 3% of the Ipilimumab cohort and 1.5% of the 

vaccine cohort. Importantly, these clinical benefits appear to be prolonged even after withdrawal 

from treatment, providing evidence for generation of immunological memory (Prieto et al., 2012). 

Such clinical responses have earned Ipilimumab (and immunotherapy by extension) headlines as 

the new cancer wonder drug. There is no question that CTLA-4 inhibition renews anti-tumour 

immunity in this setting, although the significant side effects that patients exhibit indicate that self-

reactive T cells are inappropriately given a licence to kill. Off-target effects are mainly attributed to 

CTLA-4 acting in the T cell priming phase. Since it is largely thought to contribute to the 

generation of primed T cells in SLO, blocking this may lead to generating a larger pool of antigen 

specific T cells primed against self-antigens as well as tumour antigens. 

 

 Theoretically, off-target effects would be minimised by targeting the PD-1/PD-L1 pathway, 

due to narrowing or improving the function of antigen specific T cells in periphery. Tumour cells 

have been demonstrated (in both tissues and cells lines) to have upregulated PD-L1 and are 

speculated to provide a means of tumour immune escape. Nivolumab is a human IgG4 anti-PD-1 

monoclonal antibody developed by Bristol-Myers Squibb that is FDA approved for clinical use in 

the treatment of advanced/ metastatic melanomas and non-small cell lung cancer (NSCLC). 

Clinical trials are on-going in various other cancers, however to our knowledge, there has been no 

benefit for patients with PCa. Brahmer and colleagues have published clinical studies investigating 

the efficacy of Nivolumab in the treatment of patients with advanced solid tumours. In an initial 

dose escalation study, tumour regression (including complete and partial responses) was detected in 

all disease groups (melanoma, CRC, NSCLC and renal cell carcinoma; RCC) but not CRPC, even 

at the highest dosage of 10mg/kg (Brahmer et al., 2010; Topalian et al., 2012). In targeting PD-L1 

(BMS-936559), objective responses were observed in patients with melanoma, NSCLC, RCC and 

ovarian cancer, but not in CRC, pancreatic or BCa (Brahmer et al., 2012). Of note, PCa was not 

investigated in this study. In both of these studies, immune related adverse effects occurred, but 

were not as frequent or severe as in studies with Ipilimumab treated patients. In advanced NSCLC, 

Nivolumab (@3mg/kg) provided a benefit of 9.2months mOS compared to 6months mOS in those 

treated with Docetaxel as a second line therapy (Brahmer et al., 2015). Overall survival at 1 year 

was almost doubled in the Nivolumab treated patients than Docetaxel (42% vs 24%), whereas 

progression free survival was 21% and 6% in Nivolumab and Docetaxel treated patients, 

respectively. The response rate of patients on Nivolumab earned it FDA approval for the use as a 

second-line therapy for NSCLC (@3mg/kg) in 2015 and is additionally approved in the treatment 

of metastatic melanoma and RCC (FDA, 2015a; 2015b; 2015c; 2016). 
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In the treatment of PCa, checkpoint inhibition has proved much less successful. Importantly, 

the use of PSA in evaluating patient responses may influence checkpoint inhibitor efficacy in PCa 

patients since its suitability as a biomarker has been widely disputed. Secondly, response is likely 

confounded by prior treatments such as ADT, radiotherapy and chemotherapy, which impact 

(either negatively or positively) on immune cell activity (Onyema et al., 2015; Roden et al., 2004; 

Wirsdorfer et al., 2014). Another important factor is patient age, since the immune response 

declines with age (immunosenescence) (Weinberger, 2017). In one Phase II study treating mCRPC 

patients with Ipilimumab ± radiotherapy, biochemical regression of >50% was observed in only 

15% treated with Ipilimumab (10mg/kg), 1 patient (4% of cohort) had a complete response, 4% had 

partial responses, 21% had stable disease and 29% had progressive disease (Slovin et al., 2013). 

Most patients suffered some degree of treatment related adverse events (AE) including 46% with 

grade 3/4 AE (e.g. hepatitis) in the 10mg/kg cohort, requiring in some cases corticosteroid 

treatment or withdrawal from the trial. Strikingly, one death occurred as a direct result of the 

treatment, when treated with a lower dosage of 5mg/kg (Slovin et al., 2013). An interesting 

observation in this trial is that, while there was no increased tumour regression in combination 

treated patients, there was a higher proportion of AE in patients not receiving radiotherapy 

compared to those in combination. This may indicate radiotherapy induced TAA release, 

increasing immune targeting of the tumour and as a result reducing off target effects.  

 

Similar observations were noted in other checkpoint inhibition trials of PCa patients. For 

example, no improved OS was observed with Ipilimumab 10mg/kg treatment (vs. placebo; 46.8% 

vs. 40.4% at 1-year, mOS 11.2months and 10.0months) after radiotherapy in docetaxel-experienced 

patients in a phase III trial, although there was some indication of PSA response (13.1% vs. 5.2%) 

(Kwon et al., 2014b). Again, similar AE occurred in most patients, including 4 deaths (1%) due to 

Ipilimumab toxicity (Kwon et al., 2014b). In chemotherapy-naive patients treated with Ipilimumab 

10mg/kg vs. placebo, mOS was 28.7months vs. 29.7 months and progression free survival (PFS) 

was 5.6months vs. 3.8months (Beer et al., 2017). As before, AE were common and Ipilimumab 

caused 9 (2%) deaths (Beer et al., 2017). Further Ipilimumab studies are on-going and intend to 

better understand the mechanisms underlying the responses in PCa and relevance with combination 

therapy (e.g. NCT01194271). Investigating Nivolumab (or similar PD-1/PD-L1 targeting therapies) 

in the treatment of PCa is still in the immature phases and clinical trials are on-going (e.g. 

NCT00730639, NCT02601014, NCT02933255).  

 

It is still unclear what makes immunotherapy more effective in a subset of patients or 

tumours in certain tissues. As of yet, response to checkpoint inhibition has been associated with 

high tumour expression of the checkpoint molecule prior to therapy, consistent with it “jamming” 

the cancer immunity cycle (Herbst et al., 2014). However, responses to Nivolumab are often seen 

in patients who are PD-L1 negative. The results presented in Chapter 3 of IFNγ&TNFα treatment 

on a range of cell types and disease stages indicates that PD-L1 can be expressed by all cell types 

regardless of disease, so it is likely to occur in all patients upon local immune activation. 
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Mutational burden is also linked to predicting patient responses, an indication of tumour 

immunogenicity. As previously described in Chapter 1, prostate tissue contains a high proportion 

of stromal cells relative to epithelium in contrast to both melanoma and NSCLC, which typically 

have less stroma (Zhang et al., 2015). Given that tumour associated stroma have well described 

roles in supporting the progression and migration of tumour cells, it would not be a leap of faith to 

consider they also impact on anti-tumour immunity. Having observed the response of stroma to 

IFNγ&TNFα in upregulating immune inhibitory molecules, it was hypothesised that upon 

infiltration of the prostate, T cells would be overwhelmed by the inhibitory mechanisms employed 

by stroma. And although epithelia are also able to respond similarly, it was not to the same extent. 

Moreover, even though there would be an expansion of the epithelial population in cancer, they are 

unlikely to increase beyond that of the stroma until advanced high grade PCa.  
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Figure 4.1: Simplified summary of T cell inhibition in the context of cancer 

T cells residing in T cell zones of lymph nodes encounter APCs presenting processed antigen on MHC 
molecules. T cells are inhibited upon ligation of CTLA-4 in lieu of co-stimulation. Activated T cells 
upregulate IL2R and express PD-1 transiently on the cell surface. Upon recognition of antigen in peripheral 
tissue, T cells release cytokines such as IFNγ, which may induce tumour cells to express PD-L1. CD8+ T 
cells are capable of inducing tumour cell death by releasing perforin and granzymes. T cells that are 
continually exposed to antigen, they become PD-1 high. PD-1 expression leaves T cells susceptible to PD-
L1/PD-L2 mediated inhibition by tumour cells.  
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4.3. Other mechanisms of T cell inhibition 

Expression of checkpoint inhibitors is not the only documented mechanism of direct immune 

inhibition by tumour cells. There has also been evidence of expression of IDO and LAG-3 ligands, 

both of which were upregulated by prostate stroma when treated with IFNγ&TNFα in Chapter 3.  

 

IDO is an enzyme, which through diminishing the bioavailability of tryptophan, impedes 

effector T cell activity. Physiologically, IDO expression is important for controlling the maternal 

immune response in pregnancy, preventing immune mediated foetus rejection (Munn et al., 1998). 

Expression in pathological conditions contributes to excessive immune suppression (Soliman et al., 

2010; Sucher et al., 2010). It has been incriminated as an immune evasion tactic in many cancers, 

urging investigation of IDO inhibitors in cancer treatment. Two isoforms of IDO exist (IDO1 and 

IDO2), of which IDO1 is more commonly investigated and significant in the context of cancer 

(Ball et al., 2007; Metz et al., 2007). Various immune related signals induce IDO expression, 

including cytokines such as IFNγ and LPS (Dai and Gupta, 1990; Takikawa et al., 1988; Yoshida 

and Hayaishi, 1978; Yoshida et al., 1981). IDO metabolises the essential amino acid tryptophan to 

kynurenine. Reduction in tryptophan availability activates a nutritional stress response, a 

mechanism whereby cells protect themselves from “starvation”. In the absence of tryptophan, the 

proportion of uncharged tRNA (tRNA lacking cognate amino acid) and tryptophan catabolites 

increases. The stress response kinase general control non-derepressible protein 2 (GCN2) 

preferentially binds uncharged tRNA and becomes activated, initiates eIF2α mediated translation 

of activating transcription factor 4 (ATF4) and repression of cell growth (Dong et al., 2000; 

Harding et al., 2000; Munn et al., 2005). While this pathway is highly conserved in all cells, cancer 

cells modulate and mutate signalling pathways to regulate their response to amino acid depletion 

more efficiently than T cells, making T cells more susceptible to IDO mediated growth inhibition 

than tumour cells (Timosenko et al., 2016). Activation of this pathway in T cells induces cell cycle 

arrest, reduces activation and increases susceptibility to apoptosis (Lee et al., 2002; Munn et al., 

1999). IDO mediated increases in tryptophan catabolites has been shown to induce naive T cell 

differentiation to Treg cells in the tumour draining lymph node, increasing systemic tolerance of 

TAA (Fallarino et al., 2006; Mezrich et al., 2010; Munn et al., 2004). Furthermore, the catabolites 

are directly toxic to the IFNγ producing T cells (CTL and TH1) belonging to the aforementioned 

anti-tumour arm of the anti-tumour immunity balance, but not on TH2 cells (Figure 3.1 pg70) 

(Frumento et al., 2002). These attributes means IDO directly contributes to tipping the balance in 

favour of suppressed immunity and prohibiting strong anti-tumour immunity. Tumour expression 

of IDO1 is linked to worse prognosis across many cancers, including PCa (Brandacher et al., 2006; 

Feder-Mengus et al., 2008; Ferns et al., 2015; Ino et al., 2006; Liu et al., 2009; Pan et al., 2008; 

Suzuki et al., 2010; Weinlich et al., 2007). Inhibition of IDO in vitro and in vivo contributed to an 

introduction of inhibitors into clinical trials, which are still in the immature phases and few have 

released results (Friberg et al., 2002; Koblish et al., 2010; Uyttenhove et al., 2003). Of those that 
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have, inhibition of IDO in patients appears to induce similar AE as those treated with checkpoint 

inhibitors, consistent with an immune mediated mechanism of action (Beatty et al., 2017; Iversen 

et al., 2014; Soliman et al., 2014; Soliman et al., 2016; Vacchelli et al., 2014). Disease stabilisation 

has been detected and objective responses occur. Although promising, further research is required 

to determine if this approach can provide any advantage compared to standard treatments.  

 

Checkpoint molecules work in synergy (Woo et al., 2012). LAG-3 is a second immune 

checkpoint receptor expressed on the surface of antigen activated T cells and through binding to 

MHCII molecules, inhibits T cells at tumour sites. Like PD-1, LAG-3 appears to be less potent at 

producing autoimmune disorders when deleted in mice than CTLA-4, an indication that while both 

may be involved in T cell priming, they likely are more relevant in the effector phase (Miyazaki et 

al., 1996; Nishimura et al., 2001; Waterhouse et al., 1995). Similarly, the inhibition of LAG-3 

increases tumour specific T cell activation, which is increased when in combination with loss of the 

PD-1 pathway (Foy et al., 2016; Grosso et al., 2007; Huang et al., 2015; Turnis et al., 2012; Woo 

et al., 2012). This is particularly important given the co-expression of PD-1 and LAG-3 on TILs 

(Grosso et al., 2009; Matsuzaki et al., 2010a). As a result, cancer immunotherapy is moving toward 

more targeted combinatorial approaches, leading to an exciting new era in the cancer-immunology 

field.  

4.4. Summary and Aims 

PD-L1, IDO and MHCII expression by professional APCs and non-haematopoietic cells 

such as endothelium, inhibits T cell mediated immunity and is important for the resolution of 

inflammation and controlling self-reactive T cells. In the case of cancer, this inhibitory signal may 

be provided by the neoplastic cells, infiltrated APC’s or the surrounding tumour microenvironment. 

Not much is known about the role of stromal cells in this pathway. Since there is a high density of 

stromal cells in the prostate and proportions remain high in even high grade PCa, the aim was to 

better understand the impact of inflammatory cytokines on expression of immune inhibitory 

molecules, in light of Chapter 3. 

 

1. Investigate the expression of inhibitory molecules by patient-derived stromal cells. 

 

2. Understand differential expression of inhibitory molecules between stromal cells derived 

from patients diagnosed with BPH and Gl9 PCa.  
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4.5. Results 

4.5.1. Prostate stromal cells upregulate programmed death- ligand 1 (PD-L1) in response 

to IFNγ  

To understand the stromal PD-L1 response to IFNγ, prostate stromal cells derived from a 

patient with Gleason 9 PCa were cultured in the presence of increasing concentrations of IFNγ for 

48hours before mRNA and protein was collected. As shown in Figure 4.2, PD-L1 is significantly 

upregulated even at the lowest concentration used (12.5ng/ml), at both the mRNA level (Figure 4.2 

A) and the protein level (Figure 4.2. B). The expression is IFNγ dose dependent and at the 

concentrations used there was no evidence of a plateau in the response. These data together 

indicate that stromal cells in the prostate play a role in controlling local immune cell activity, 

through expression of the inhibitory PD-L1 molecule.  

 

4.5.2. TNFα  in the presence of IFNγ  amplifies the IFNγ  dependent upregulation of PD-L1 

in prostate stroma 

In the literature, TNFα and IFNγ have typically been used in combination to induce PD-L1 

expression. To understand whether TNFα provides any additional or detrimental effects on the PD-

L1 response induced by IFNγ, the combinatorial effects of both cytokines were investigated. 

Increasing concentrations of TNFα and IFNγ (Figure 4.3 A left and right respectively) were 

supplemented in the media of BPH derived stromal cells, and PD-L1 expression analysed 48hours 

later. TNFα alone does not induce PD-L1 expression at the concentrations used (up to 20ng/ml; 

concentrations are cited in summary Figure 4.4). However, consistent with Figure 4.2, IFNγ (at 

lower concentrations than Figure 4.2) increases PD-L1 expression. The chosen concentrations for 

each cytokine (12.5ng/ml of IFNγ and 5ng/ml of TNFα) were then used in combination with 

increasing concentrations of the other (Figure 4.3 B). IFNγ raises the fold change in PD-L1, 

however the addition of TNFα does not appear to have a linear effect (left). The presence of 

5ng/ml of TNFα with increasing IFNγ produced a linear response at a higher level than when 

TNFα is absent (B right and A right respectively). This indicated that TNFα amplifies the IFNγ 

dependent response. To investigate whether different combinations of cytokines would have an 

impact on the upregulation of PD-L1, the balance of IFNγ and TNFα concentration was altered 

(Figure 4.3 C). This suggested, unsurprisingly, that PD-L1 upregulation is more dependent on IFNγ 

than TNFα. These data are summarised in a 3D graph (Figure 4.4). For all further experiments 

TNFα and IFNγ were used in combination at 5ng/ml and 12.5ng/ml.  
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Figure 4.2: IFNγ  treatment upregulates PD-L1 in cultured patient derived patient 

stromal cells in a dose-dependent manner 

Stromal cells were cultured in the presence of increasing concentrations of IFNγ for 48 hours. (A) PD-
L1 mRNA expression was analysed. Stromal cells were lysed, mRNA isolated, before retro-transcription and 
analysis by RT-qPCR. PD-L1 expression was normalised to internal control gene GAPDH and is presented 
as the relative concentration compared to Human foreskin fibroblasts (HFFs) cDNA. (B) Protein expression 
was analysed by Western blotting. Cells were lysed, cleared and 5ng of lysate loaded on a gel before 
transferred and probing for PD-L1 and loading control ß-actin. 
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Figure 4.3: TNFα  amplifies the IFNγ  dependent upregulation of PD-L1 in prostate 

stroma. 

Prostate stromal cells were cultured in media supplemented with varying concentrations of IFNγ and 
TNFα where indicated. After 48hours media was removed and mRNA extracted as described in Figure X. 
cDNA was analysed by RT-qPCR and PD-L1 expression was normalised to GAPDH. Data is presented as 
the mean fold change in PD-L1 (relative to untreated control) ± SD of duplicate experiments, versus 
log(cytokine concentration) in order to analyse the linear relationship of PD-L1 response explained by 
cytokine concentration. The equation, r2 and where appropriate the p value corresponding to the significance 
of the slope fitting a non-zero regression given by linear regression analysis is presented alongside the plots. 
(A) Initially PD-L1 mRNA response was considered when treated with increasing concentrations 
(TNFα;0.004-20ng/ml and IFNγ;0.01-12.5ng/ml) of TNFα (left) and IFNγ(right) (B) Secondly the chosen 
concentrations of TNFα (5ng/ml) and IFNγ (12.5ng/ml) used in all other experiments were combined with 
the same increasing concentrations of the additional cytokine as in (A). (C) Finally, variable combinations of 
IFNγ and TNFα were supplemented in the media as indicated in table (C). 
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Figure 4.4: TNFα  amplifies the IFNγ  dependent up-regulation of PD-L1 in prostate 

stroma. 

Figure 4.5 summarised in a 3D graph, data is the mean of duplicate technical replicates is shown. 
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4.5.3. Stromal cells upregulate PD-L1 rapidly when exposed to IFNγ  and TNFα  and 

continue to express high levels after removal 

HFF, BPH and PCa derived stromal cells were treated with IFNγ and TNFα and mRNA PD-

L1 expression was analysed to determine whether disease had an impact on the time to respond to 

cytokines (Figure 4.5 A). The peak of PD-L1 gene expression occurs at 8 hours of treatment for all 

and declines at similar rates. PD-L1 expression in the lysate was analysed for HFF and PCa stroma. 

For both, PD-L1 protein expression increases over time to a maximum at between 24-48hours 

(Figure 4.5 B and C). To understand for how long local immune cell activity could affect the 

immunosuppressive state of stromal cells, HFF cells were treated for 24hours. At this point the 

supplemented media was removed and cells washed to ensure complete removal of cytokines. 

Unsupplemented tissue culture media was added back to the cells, which were further incubated for 

the indicated time points. This data demonstrates that 8 days after removal of cytokines, HFF cells 

continue to express an increased level of PD-L1 mRNA. While a 24hour IFNγ&TNFα treated 

control was not included, the data from Figure 4.5 A suggests that an approximate decline from 40-

fold upregulation to 3-fold occurred in the initial 24hours. If representative of the in vivo 

mechanism this data is highly relevant-especially in the context of a tumour where extended 

periods of immunosuppression may allow for tumour immune escape. 

 

4.5.4. PD-L1 upregulation is a conserved response to IFNγ  & TNFα  in patients with 

prostatic disease 

To investigate the expression of PD-L1 by prostate stroma, a number of patients with BPH 

(6) and PCa (5) were treated with IFNγ&TNFα. One patient with BPH was excluded from analysis, 

as he was an outlier in expression of classical stromal markers by nanoString (Chapter 3). Every 

patient-derived stromal culture increased PD-L1 gene expression (Figure 4.6 A, N.B. mRNA at 

48hours) and protein expression (Figure 4.6 B), when treated with IFNγ&TNFα. It is evident from 

Figure 4.6B that basal PD-L1 protein expression varies across patients, however the upregulation is 

preserved. This baseline variability may be indicative of the level of immunological activity in the 

prostate at the time of surgery, or different phenotypic mixtures. It was also clear that PD-L1 

expression by stroma did not differ between disease groups. Given that PD-L1 functions at the cell 

surface to inhibit local T cells, stromal cells were labelled with a PD-L1 specific antibody and 

fluorescent secondary antibody before analysis by confocal imaging, which confirmed localisation 

to the cell surface (Figure 4.6 C). This also appeared to highlight population heterogeneity in the 

PD-L1 expression on untreated stroma. For flow cytometry (Figure 4.6 D), a PD-L1 specific PE 

conjugated antibody labelled the surface of unfixed, unpermeabilised stromal cells. Both confirm 

an increase in PD-L1 on the cell surface when treated with IFNγ&TNFα. In the context of prostate 

tissue, T cells infiltrating through PD-L1 high stroma will be negatively regulated activity if 

expressing PD-1. This may provide the vital shift in the tumour-immune balance required to allow 

tumour immune escape and consequently tumour progression.  
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Figure 4.5: IFNγ  and TNFα  effect on stromal cell PD-L1 expression over time 

Stromal cells (HFF, prostate cancer or benign prostatic disease stroma) were cultured in the presence 
of IFNγ&TNFα before RNA (A) or protein lysate (B-C) was collected at indicated time points. (A) PD-L1 
mRNA expression was analysed by RT-qPCR, mRNA was isolated as previously described and PD-L1 
expression measured, normalised to GAPDH and is represented as fold change compared to untreated 
control. Data is mean±SD of three technical replicates. (B-C) PD-L1 protein expression was analysed by 
Western blotting. Stromal cells were lysed, protein lysate collected as previously described and PD-L1 or β-
actin presence measured. (D) PD-L1 mRNA expression was analysed by RT-qPCR, HFF cells were cultured 
in the presence of IFNγ and TNFα for 24 hours before washing to remove supplement cytokines and further 
cultured for the indicated time points. At these times, cells were lysed and analysed as in (A). Data is 
mean±SD of two technical replicates 

.  
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Figure 4.6: PD-L1 expression in patient prostate stroma with either cancer or benign 

disease  

Patient derived prostate stromal cells were cultured with or without IFNγ and TNFα for 48 hours. (A) 
PD-L1 mRNA expression was analysed. Stromal cells were lysed, mRNA isolated, before retro-transcription 
and analysis by RT-qPCR. PD-L1 expression was normalised to internal control gene GAPDH and is 
presented as the relative concentration compared to HFF cDNA. Data shown is the mean±SD of triplicates 
for 6 BPH patients, 5 Gleason 9 prostate cancer patients and 3 stromal cell lines untreated (HFF, ADSC and 
tonsil derived stromal cells) and treated HFF cells. (B) Protein expression was analysed by Western blotting. 
Cells from 5 patients with prostatic disease were lysed, cleared and 5ng of lysate loaded on a gel before 
transferred and probing for PD-L1 and loading control ß-actin. Data presented is a representative example of 
3 separate experiments. (C) Confocal image of prostate stromal cells fixed and labelled with anti-PD-L1 and 
anti-mouse A488 fluorophore (D) Flow cytometric analysis of cell surface PD-L1 expression by prostate 
stroma. Cells were detached and labelled (unpermeabilised) with an anti-PD-L1-PE antibody before analysis 
by flow cytometry. The left panel demonstrated an exemplar histogram, with MFI for each patient plotted on 
the right. Statistical significance was measured by a RM 2Way ANOVA with a post hoc Tukey’s multiple 
comparisons test. 
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4.5.5. Stromal cells respond to IFNγ  & TNFα  by upregulating a number of immune 

inhibiting molecules 

Having comprehensively explored the expression of PD-L1 by prostate stromal cells, the 

potential role that prostate stroma may have in the regulation of immune activity through other well 

described mechanisms was analysed. Taking 8 hours as the peak of gene expression resulting from 

IFNγ&TNFα exposure, the expression of PD-L1, IDO1 and IDO2 were examined.  In agreement 

with earlier data (Figure 4.5 & 4.6), PD-L1 is consistently increased in response to IFNγ&TNFα, 

as are IDO1 and IDO2 (Figure 4.7 A,C, D). Together this data indicates redundant mechanisms of 

immune cell inhibition.  

 

TGF-β (particularly isoform 1) expression is also strongly associated with reactive stroma; 

therefore the impact of disease and cytokine treatment on the gene expression of all three isoforms 

was investigated (Figure 4.9). Unexpectedly, TGF-β3 was consistently downregulated in Gl9 

stroma compared to BPH, while TGF-β2 expression was slightly reduced by IFNγ&TNFα at the 

mRNA level. TGF-β1 was unchanged by disease or cytokine treatment. However, the high level of 

TGF-β in all patient-derived stromal cultures is supported by nanoString counts in chapter 3. 

 

Analysis of molecules on the cell surface of stromal cells revealed that HLA-DR, an MHCII 

molecule capable of binding LAG-3 on T cells, is upregulated in response to IFNγ&TNFα (Figure 

4.9). For presenting antigens to immune cells CLIP should be cleaved from MHCII molecules. 

With upregulation of HLA-DR, CLIP is also present at an increased level on the surface of stromal 

cells. Correspondingly, there is evidence of an upward trend in binding of a recombinant LAG-3-

Fc molecule in IFNγ&TNFα treated cells, although this is quite minimal. Simultaneously, HLA-E 

is expressed and becomes upregulated, when stromal cells are treated. HLA-E has been associated 

with the inhibition of T cells and NK cells. Altogether these data indicate that in addition to PD-L1 

stromal cells may be able to downregulate inflammation in the local environment by a multiple and 

well-characterised mechanisms. 
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Figure 4.7: Analysis of stromal cell gene expression after 8hours of IFNγ  and TNFα  

supplementation 

As determined in Figure 4.5 8hours was found to be the peak PD-L1 gene expression response time to IFNγ 
and TNFα, therefore a panel of molecules of interest were further investigated in 5 BPH and 4 Gl9 patients, 
as well as HFF and tonsil derived stromal cells. Cells were supplemented with IFNγ and TNFα (12.5ng/ml 
and 5ng/ml respectively) for 8 hours before mRNA extraction and gene expression analysis as previously 
described. PD-L1 (A), IDO1 (B) and IDO2 (C) expression was measured by RT-qPCR, normalised to 
GAPDH and is presented as the mean fold change ±SD. Statistical significance was measured by a RM 
2Way ANOVA with a Tukey’s multiple comparisons test (A&B). Due to missing values (not detected in 
tonsil stroma and untreated HFF), a generalised linearised model (GLM) was used to determine significance 
for IDO2 expression (Signif. codes: p= 0:***, 0.001:**, 0.01:*). 
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Figure 4.8: Analysis of stromal cell TGF-β  expression after 8hours of IFNγ  and 

TNFα  supplementation 

 As determined in Figure 4.5 8hours was found to be the peak gene expression response time to IFNγ and 
TNFα, therefore a panel of molecules of interest were further investigated in 5 BPH and 4 Gl9 diagnosed 
patients as well as HFF and tonsil derived stromal cells. Cells were supplemented with IFNγ and TNFα 
(12.5ng/ml and 5ng/ml respectively) before mRNA extraction and gene expression analysis as previously 
described. TGFβ1 (A), TGFβ2 (B) and TGFβ3 (C) expression was measured by RT-qPCR, normalised to 
GAPDH and is presented as the mean fold change ±SD. Statistical significance was measured by a RM 
2Way ANOVA with a Tukey’s multiple comparisons test. 
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Figure 4.9: Flow cytometric staining of patient stroma and HFF cells that were IFNγ  

&TNFα  treated or untreated 

Stromal cells from 3 patients with either BPH or PCa were supplemented with or without cytokines for 
48hours before collecting for analysis by flow cytometry. Cells were gated to exclude dead cells and debris 
before analysing surface expression of HLA-dr (A), CLIP (B), LAG-3 binding (C) and HLA-E (D). At least 
10,000 events were collected for analysis and the relevant isotype control was performed in parallel. 
Statistical significance was measured by a RM 2Way ANOVA with a Tukey’s multiple comparisons test. 
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4.5.6. TLR activation does not influence expression of PD-L1 in prostate stroma 

Incidence of BPH and PCa is associated with chronic infections of the prostate. The effects 

of TLR agonists on prostate stromal cells’ expression of PD-L1 was considered, in order to 

investigate whether stromal TLR-mediated PD-L1 expression could account for unresolved 

infections of the prostate. Of all the agonists investigated, initially on cancer associated stroma, the 

TLR4 agonist LPS-EK was the only one which upregulated PD-L1 (Figure 4.11 A). Therefore, this 

was investigated further in stroma derived from 4 BPH patients and 3 cancer patients. LPS-EK was 

not found to consistently mediate the upregulation of PD-L1 in these patients (Figure 4.11 B). 

MPL-A is a more effective human TLR4 agonist than LPS-EK and coordinates with rCD14 for its 

function. Due to conflicting results in A&B, MPL-A was used in stromal treatments, which did not 

affect PD-L1 expression (Figure 4.11 C).   
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Figure 4.10 RT-qPCR analysis of PD-L1 expression in prostate stroma treated with 

LPS or MPLA±rCD14 

Prostate stromal cells were supplemented with TLR agonists (A), LPS (B) or MPLA±rCD14 and (C) for 24 
hours. As previously described mRNA was extracted and RT-qPCR used to analyse expression of PD-L1. 
Data presented is the mean fold change ± SD in PD-L1 of patients diagnosed with BPH and Gl9 prostate 
cancer.  
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4.6. Summary of Results 

• IFNγ induces a dose dependent upregulation in PD-L1 by stroma, which is amplified in the 

presence of TNFα and peaks for mRNA at 8hours, or protein at 48hours. This expression 

remains upregulated even 10 days after removal of the cytokines.  

 

• Stroma derived from patients with both BPH and Gl9 PCa upregulate PD-L1 in response to 

IFNγ at similar levels, as do stromal cell lines.  

 

• PD-L1 is localised to the surface of the cell, where it functions as a ligand for the co-inhibitory 

receptor PD-1 on T cells 

 

• Prostate stromal fibroblasts express many other inhibitory molecules that can either be induced 

or are constitutively expressed: IDO1, IDO2 and 3 isoforms of TGF-β. Expression of MHCII 

molecules (HLA-DR) on the cell surface is upregulated on treated stromal cells and LAG-3 

binding is correspondingly upregulated to a minimal but statistically significant level.  

 

• TLR4 ligation does not consistently upregulate PD-L1 in patient stroma.  
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4.7. Discussion 

4.7.1. Stromal mediated immune regulation contribution to tumour immune escape 

Given the involvement of stromal cells in the progression of cancers as well as the 

association of inflammation and cancer progression, it is important to understand how prostate 

stromal cells regulate inflammation of tumours. Research in PCa has paid particular attention to the 

stromal compartment in the past, yet the interplay of immune cells and stroma needs further 

investigation. The data presented in this chapter indicates BPH and Gl9 PCa stroma share the same 

potential to inhibit infiltrating immune cells. However, that is not to say that this should not be a 

meaningful consideration in PCa. Prostate stromal cells may express this immunosuppressive 

ability in early stage PCa, potentially stimulating local immune cell anergy. It may also provide an 

alternative or additional explanation for the inflammatory cancer theory, and the association of 

recurring UTIs and PCa development. Infections likely result in local TH1 and CTL cell mediated 

immunity that establishes immune inhibitory stroma (primarily aiming to restore homeostasis). If 

recurrent infections occur in the prostate and promote inhibitory stroma, it may consequently 

provide an indirect mechanism for tumour immune escape. During the initial development of PCa, 

the prostate microanatomy remains unaffected, so a dense stromal compartment surrounds the early 

tumour, providing a barrier between infiltrating immune cells and tumour cells.  

 

The clinical trials of checkpoint inhibitors in PCa have indicated some clinical activity, 

however no improved survival has been documented. The existence of a substantial prostate 

stromal compartment indicates a higher threshold of immune activation is required to overcome 

local inhibition and target tumour cells. This may occur as a cyclic process or in waves of 

immunity where immune activity rises locally, causing antigen release, stromal mediated immune 

suppression and accumulation of infiltrating immune cells (Figure 4.14). Additionally, the 

inflammation may also promote the development of a reactive stromal compartment, indicated by 

the occurrence of reactive stroma in wounds and prostatitis. Reactive stroma has established roles 

in promoting cancer progression. Through facilitating migration of PCa cells (when treated with 

inflammatory cytokines) and inhibition of immune cells, reactive stroma provides a fundamental 

environment for promoting PCa development (Lakins, 2012). The data presented here indicated the 

high proportion of stromal cells in the prostate likely contributes to a highly immunosuppressive 

and tolerogenic environment. This will require a stronger immune response to surpass the threshold 

and prevent T cell anergy, which would be provided by immunogenic antigens, low levels of 

inhibitory molecules and high levels of co-stimulatory molecules. The prostate lacks all 3 of these 

traits, impacting on the efficacy of APCs at generating T cell mediated immunity as well as the 

efficacy of T cell effector function in the prostate environment. Crucially, it seems the clinical 

activity generated with checkpoint inhibition is not sufficient to overcome this inhibitory 

environment in the prostate. Importantly, this research is not only relevant in the context of 

checkpoint inhibitor therapeutics, but also in Sipuleucel-T and similar vaccine approach as well as 

chronic infections of the prostate.  
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Figure 4.11. A schematic representation of immunological waves resulting in 

generation of an immunosuppressive environment.  
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4.7.2. Concluding remarks 

In this chapter the aim was to investigate the expression of immune inhibitory molecules by 

patient-derived stromal cultures and determine if the expression differed between disease groups. 

The presented data indicate an important role for prostate stroma in establishing an 

immunosuppressive environment that prevents effective immunity required in targeting infection 

and neoplastic transformation. An important factor is the utilisation of a number of well 

characterised mechanisms described as adaptive resistance by tumour cells, namely PD-L1, IDO1, 

MHCII and HLA-E expression. Additionally, the constitutive expression of TGF-β isoforms will 

contribute to an immunosuppressive background in the prostate. This will negatively impact on two 

crucial stages of the cancer-immunity cycle. APCs activated in an inhibitory environment are less 

able to generate effective T cells and instead produce tolerogenic T cells. Effector T cells in the 

prostate are unable to efficiently kill due to the high expression of co-inhibitory molecules and 

cytokines. This environment is additionally more favourable to Treg cells than T cells able to 

induce tumour cell death. Altogether, prostate stroma provides an environment detrimental to 

effective anti-tumour immunity.  
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Chapter 5 Phenotypic analysis of prostate stromal cells 

5.1. Experimental rationale 

While there were a few distinctions between BPH and PCa stromal fibroblasts by nanoString 

analysis (Figure 3.6 pg78), there were no differences in checkpoint inhibitor expression by disease 

group (Chapter 4). There is a great body of evidence documenting functional stromal changes with 

cancer development. In PCa, increased proportions of myofibroblasts are detected and considered 

an “activated” fibroblast phenotype. These cancer myofibroblasts have over time become 

synonymous with CAFs. It was an interest, given the findings of Chapter 4, to determine whether 

the inhibitory phenotypes could be attributed to certain stromal phenotypes. 

 

5.1.1. Stromal cell phenotypes 

As discussed in Chapter 1, stromal cells may conform to various stromal subsets. 

Identification of reactive stromal cells becomes difficult by specific marker expression, due to the 

inherent plasticity. Instead fractionation is predominantly done by a combination of markers 

(Barron and Rowley, 2012). For example smooth muscle cells express α-smooth muscle actin 

(αSMA) but not vimentin. Fibroblasts express vimentin but not αSMA, and myofibroblasts are an 

intermediate type cell, expressing both αSMA and vimentin. Myofibroblasts are also typically 

characterised by a larger flattened morphology, due to an expansion of the endoplasmic reticulum 

to facilitate increased protein production (Figure 5.1). Prostate stromal cultures contain mainly 

fibroblasts and myofibroblasts. Although all experiments were performed on prostate stromal 

cultures within five passages (the majority within three), SMC and endothelial cells are lost as 

early as passage one due to overgrowth of the other subsets so are not analysed in this chapter (Hall 

et al., 2002; Lakins, 2012). The absence of endothelial cells in cultures is supported by the lack of 

endothelial marker expression by nanoString (Chapter 3, Figure 3.5). Therefore vimentin and 

αSMA should be sufficient to discriminate between fibroblasts and myofibroblasts.  

 

Many pathological mechanisms can be attributed to either defective myofibroblast 

activity/recruitment or persistence of myofibroblasts. In older mice, scar formation is defective due 

to reduced myofibroblast numbers and activity (Bujak et al., 2008). Conversely, development of 

fibrotic conditions such as idiopathic pulmonary fibrosis is attributed to overactive or persistent 

myofibroblasts (Huang and Horowitz, 2014). This is well understood in the context of aberrant 

wound healing. Cells at wound sites increase TGF-β1 production, which acts to recruit local 

fibroblasts and circulating MSCs to the wound where they are “activated” to acquire the 

myofibroblast phenotype (Desmouliere et al., 1993; Pakyari et al., 2013). This is typified by the 

gain of αSMA stress fibre expression; a characteristic of true SMCs (Darby et al., 1990; 

Desmouliere et al., 1993). Expression of cytoskeletal αSMA facilitates increased contractile force 

and consequently wound closure. Following the formation of scar tissue, most myofibroblasts 

undergo apoptosis and are cleared, restoring homeostasis after wound healing (Desmouliere et al., 

1995; Dobaczewski et al., 2006; Jugdutt, 2003). As well as increased contractility, myofibroblasts 
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display increased deposition/remodelling of ECM components and increased expression of ECM 

degradation enzymes such as MMPs, which are both characteristics of PCa (Desmouliere and 

Gabbiani, 1994; Krušlin et al., 2015; Stearns and Stearns, 1996). Paradoxically, this could both 

permit tumour invasion (as MMPs are often observed increased at the invasive front), and provide 

a physical barrier (ECM) against infiltrating immune cells and tumour cells (Adachi et al., 2001; 

Hall et al., 2002; Sentani et al., 2014). The increased contractility exhibited by myofibroblasts is 

facilitated in part by increased expression of αSMA, a cytoskeletal filamentous fibre. The rapid 

restructuring of αSMA within the cytoplasm facilitates cell movement, therefore providing 

myofibroblasts with increased migratory capacity, as well as the contractility required for wound 

closure. Therefore, the presence of myofibroblasts in the context of wound healing can be 

beneficial by promptly facilitating wound closure, but equally, persistence can be detrimental to 

tissue architecture.  

 

5.1.2. Cancer associated fibroblasts (CAFs) 

The presence of CAFs in many types of tumours has been investigated and regularly 

associated with bad prognosis (De Wever et al., 2008; Saigusa et al., 2011; Wikberg et al., 2013). 

CAFs are thought to provide the tumour microenvironment with a rich source of secretions (e.g. 

growth factors) as an attempt to promote resolution of homeostasis. For survival, tumour cells must 

be able to exploit the effects of myofibroblast-mediated wound healing actions to their advantage, 

so CAFs become pro-tumour rather than pro-healing. Myofibroblasts can promote angiogenesis in 

order to promote immune cell access to the tumour, though consequently provides the nutrients 

tumour cells require for survival (Hughes, 2008). In lung adenocarcinoma, fibroblasts adjacent to 

the tumour were described as podoplanin positive compared to normal lung fibroblasts (Kawase et 

al., 2008). Similarly, podoplanin positive CAFs in melanoma were associated with worse prognosis 

(Kan et al., 2014). BCa contains similar stroma:tumour cell ratios as in PCa (~80%, identified by 

αSMA positivity) (Sappino et al., 1988). Whereas in colorectal cancer (CRC) <20% of tumours 

contain CAFs, although the presence of them is associated with bad prognosis (Tsujino et al., 

2007). Moreover, early stage but not high grade CRC expresses high levels of fibroblast activation 

protein-α (FAP) (Henry et al., 2007). 

 

FAP has been described as a marker of CAFs, however has also been identified on 

myofibroblasts in granulation tissue and other pathological sites (Jacob et al., 2012). It is a 

membrane bound serine protease, containing a catalytic domain on the extracellular surface. Upon 

dimerization, it can act as a dipeptidase (hydrolysing pairs of amino acids) or as a 

gelatinase/collagenase (degradation of gelatin and collagen fibres; belonging to the same family as 

MMP enzymes) (Park et al., 1999). In addition to facilitating local invasion, FAP may also enable 

accumulation of immune cells through release of cytokines/chemokines bound on ECM fibres. 

FAP expression is PCa stroma compared to normal prostate stroma by IHC and qPCR of 

immortalised cultured cells (Jia et al., 2016). While it was expressed to a higher degree in stroma 
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associated with a range of malignant epithelial tumours, it was also expressed in benign tumours, 

but not normal tissues (Garin-Chesa et al., 1990).  

 

Attempts to utilise CAFs as a therapeutic target have to date been largely unsuccessful. 

Inhibition of MMP activity was not found to benefit patients (Coussens et al., 2002). Identification 

of FAP as a CAF marker led to it being utilised as a therapeutic target. Using an immunoconjugate 

therapy (FAP5-DM1; FAP targeting monoclonal antibody conjugated to the cytotoxic agent DM1) 

did demonstrate the potential to target CAFs as a method to reduce tumour volume through specific 

cell death in dividing FAP+ cells, without off target effects in other tissues (Ostermann et al., 

2008). Similarly, stimulating an anti-FAP specific immune response prophylactically prior to 

tumour challenge suppressed tumour growth, when used in combination with chemotherapy 

(Loeffler et al., 2006). Moreover, this therapeutic had no detrimental effect on wound healing. 

Together these data highlight the cancer-supportive benefits of reactive stroma, but does not 

provide evidence that FAP specifically contributes to the pro-tumour effects of reactive stroma.  
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Figure 5.1: Prostate stromal phenotypes’ morphology and marker expression 

Traditional fibroblasts adhere to the classic spindle morphology and express high levels of the intermediate 
filament vimentin. Myofibroblasts are typically larger than fibroblasts and display increased quantity and size 
of protrusions together with expression of αSMA. SMCs are the smallest of the 3, have a spindle 
morphology and express only αSMA. 
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5.2. Summary and Aims 

Stromal cells derived from PCa and BPH have been shown to differ functionally however, 

data presented thus far have not elucidated many differences in the context of interactions with 

immune cells. Various molecules have been associated with CAFs, but a specific marker has not 

been identified. Therefore, in this chapter the aim was to:  

 

• Determine whether stromal cultures from BPH and PCa could be differentiated, based on 

morphology, expression of stromal antigens and CAF associated markers.  
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5.3. Results 

5.3.1. Immunofluorescence and morphological characterisation of prostate stromal 

cultures 

 Myofibroblasts are typically considered to express both vimentin and αSMA compared to 

fibroblasts, which only express vimentin. To fit with the literature, stroma derived from patients 

with Gl9 PCa, should have a high proportion of myofibroblasts (double positive for vimentin and 

αSMA), compared to normal prostate stroma. This expression profile together with a loss of the 

classic “spindle” shape of fibroblast should distinguish myofibroblasts. Access to sufficient normal 

prostate tissue to establish an in vitro culture was not possible, therefore fibroblasts derived from 

human foreskin (HFF’s) was used as a comparison. Thus, prostate stroma derived from BPH and 

Gl9 PCa at low passage was labelled intracellularly (after permeabilisation) with antibodies 

specific for vimentin and αSMA under untreated and cytokine treated conditions. These markers 

were paired with 3 other stromal antigens ICAM1, VCAM1 and podoplanin, which are expressed 

on the cell surface. The cell surface markers had been previously characterised by our lab, where 

they were found to be important in migration of prostate stroma and consequently PCa cells. 

Marker expression was also influenced by IL-4&TNFα (Lakins, 2012).  

 

Overall, both patient cohorts (BPH; Figures 5.2-5.4 and PCa; Figures 5.5- 5.7) exhibited a 

mixed population of cells by both marker expression and morphology. In comparison to prostate 

fibroblasts, HFF cells (Figures 5.8-5.10) consistently demonstrated the typical spindle shape 

associated with fibroblasts. Gl9 stroma contained a higher percentage of cells double positive for 

vimentin and αSMA (so fitting the myofibroblasts category) in the field of view (FOV). However, 

double positive cells also occurred at a low rate in the BPH cultures. Even in the HFF culture, some 

cells weakly expressed αSMA. In all cell types ICAM1 was upregulated on the cell surface after 

treatment with IFNγ&TNFα, but not IL-4&TNFα. VCAM1 was increased to the greatest degree 

when prostate stroma was treated with IL-4&TNFα but mildly increased under IFNγ&TNFα 

conditions. However, VCAM1 stimulation was not conserved in the HFF cultures. Podoplanin 

expression was not impacted by treatment conditions, and was expressed at consistent levels by 

prostate stroma, but not HFF cells.  
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Figure 5.2: Immunofluorescent labelling for changes in ICAM1 in benign stroma 

after supplementation with IFNγ  or IL-4 with TNFα . 

Benign stromal cells were seeded on 4-well chamber slides and cultured in media containing the indicated 
cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 and TNFα 
(5ng/ml for both) on the right hand side. Cells were incubated for 48hours before fixing in 4% PFA and 
labelling with surface molecule targeting fluorophore-conjugated anti-ICAM1. Intracellular labelling was 
performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA specific 
antibodies. Tile scan (1x4) images were taken on a confocal microscope on x20. Scale bar is 100µm. 
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Figure 5.3: Immunofluorescent labelling for changes in VCAM1 in benign stroma 

after supplementation with IFNγ  or IL-4 with TNFα  

Benign stromal cells were seeded on 4-well chamber slides and cultured in media containing the indicated 
cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 and TNFα 
(5ng/ml for both) on the right hand side. Cells were incubated for 48hours before fixing in 4% PFA and 
labelling with surface molecule targeting fluorophore-conjugated anti-VCAM1. Intracellular labelling was 
performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA specific 
antibodies. Tile scan (1x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 
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Figure 5.4: Immunofluorescent labelling for changes in podoplanin in benign stroma 

after supplementation with IFNγ  or IL-4 with TNFα  

Benign stromal cells were seeded on 4-well chamber slides and cultured in media containing the 
indicated cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 
and TNFα (5ng/ml for both) on the right hand side. Cells were incubated for 48hours before fixing in 4% 
PFA and labelling with surface molecule targeting fluorophore-conjugated anti-Podoplanin. Intracellular 
labelling was performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA 
specific antibodies. Tile scan (1x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 
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Figure 5.5: Immunofluorescent labelling for changes in ICAM1 in cancer stroma 

after supplementation with IFNγ  or IL-4 with TNFα  

Cancer stromal cells were seeded on 4-well chamber slides and cultured in media containing the 
indicated cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 
and TNFα (5ng/ml for both) on the right hand side.  Cells were incubated for 48hours before fixing in 4% 
PFA and labelling with surface molecule targeting fluorophore-conjugated anti-ICAM1. Intracellular 
labelling was performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA 
specific antibodies. Tile scan (3x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 
  



Chapter 5 Phenotypic analysis of prostate stromal cells 

 

Figure 5.6: Immunofluorescent labelling for changes in VCAM1 in cancer stroma 

after supplementation with IFNγ  or IL-4 with TNFα  

Cancer stromal cells were seeded on 4-well chamber slides and cultured in media containing the 
indicated cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 
and TNFα (5ng/ml for both) on the right hand side.  Cells were incubated for 48hours before fixing in 4% 
PFA and labelling with surface molecule targeting fluorophore-conjugated anti-VCAM1. Intracellular 
labelling was performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA 
specific antibodies. Tile scan (3x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 
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Figure 5.7: Immunofluorescent labelling for changes in podoplanin in cancer stroma 

after supplementation with IFNγ  or IL-4 with TNFα  

Cancer stromal cells were seeded on 4-well chamber slides and cultured in media containing the 
indicated cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 
and TNFα (5ng/ml for both) on the right hand side.  Cells were incubated for 48hours before fixing in 4% 
PFA and labelling with surface molecule targeting fluorophore-conjugated anti-Podoplanin. Intracellular 
labelling was performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA 
specific antibodies. Tile scan (3x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 
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Figure 5.8: Immunofluorescent labelling for changes in ICAM1 in HFF after 

supplementation with IFNγ  or IL-4 with TNFα  

HFF cells were seeded on 4-well chamber slides and cultured in media containing the indicated 
cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 and TNFα 
(5ng/ml for both) on the right hand side. Cells were incubated for 48hours before fixing in 4% PFA and 
labelling with surface molecule targeting fluorophore-conjugated anti-ICAM1. Intracellular labelling was 
performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA specific 
antibodies. Tile scan (1x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 



Chapter 5 Phenotypic analysis of prostate stromal cells 

 
Figure 5.9: Immunofluorescent labelling for changes in VCAM1 in HFF after 

supplementation with IFNγ  or IL-4 with TNFα  

HFF cells were seeded on 4-well chamber slides and cultured in media containing the indicated 
cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 and TNFα 
(5ng/ml for both) on the right hand side. Cells were incubated for 48hours before fixing in 4% PFA and 
labelling with surface molecule targeting fluorophore-conjugated anti-VCAM1. Intracellular labelling was 
performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA specific 
antibodies. Tile scan (1x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 
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Figure 5.10: Immunofluorescent labelling for changes in podoplanin in HFF after 

supplementation with IFNγ  or IL-4 with TNFα  

HFF cells were seeded on 4-well chamber slides and cultured in media containing the indicated 
cytokines. Untreated is on the left, IFNγ and TNFα (12.5ng/ml and 5ng/ml) in the centre and IL-4 and TNFα 
(5ng/ml for both) on the right hand side. Cells were incubated for 48hours before fixing in 4% PFA and 
labelling with surface molecule targeting fluorophore-conjugated anti-Podoplanin (C). Intracellular labelling 
was performed following permeabilisation, with fluorophore-conjugated Vimentin and αSMA specific 
antibodies. Tile scan (1x4) images were taken on a confocal microscope on x20. Scale bar is 100µm 
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5.3.2. Flow cytometric analysis confirms expression profile of ICAM1, VCAM1 and 

podoplanin in a group of patients 

To confirm the expression of the AM (ICAM1 and VCAM1) and podoplanin, cell surface 

staining of these molecules and analysis by flow cytometry was performed in an expanded number 

of patients (Figure 5.11). As with in vitro staining, ICAM1 is upregulated in all cytokine treated 

stromal cells. VCAM1 was expressed by prostate stromal cells (but not HFFs) and was not 

upregulated when treated with IFNγ&TNFα (N.B IL-4&TNFα treated stromal cells were not 

analysed by flow cytometry). Likewise, prostate stromal cells, but not HFFs, express podoplanin 

and there is an upward trend when treated with IFNγ&TNFα. 

 

5.3.3. FAP cannot be associated exclusively with cancer associated stroma over normal or 

benign stroma in vitro and is upregulated by IFNγ&TNFα  on the cell surface.  

FAP has long been associated with stroma typically classified as CAFs. Having briefly 

considered that untreated PD-L1 expression may correlate with a phenotypic difference between 

cultures, the expression of FAP in patient cultures was investigated. The hypothesis was that FAP 

may be upregulated by IFNγ&TNFα, indicating that immune activation causes a switch in the 

localised stromal cell phenotype resulting in the CAFs classification in the context of tumours. 

Surprisingly, FAP mRNA was neither increased in cancer-derived stroma (contrary to the 

literature), nor in IFNγ&TNFα treated stroma (Figure 5.12A). The FAP cell surface expression in 

low passage stroma derived from BPH and PCa patients, in comparison to low passage HFF cells 

was analysed (Figure 5.12B). HFFs express the highest FAP levels on the cell surface. It is 

unchanged between BPH and PCa untreated stroma. It is, however, upregulated on the cell surface 

when stroma is treated with IFNγ&TNFα.  
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Figure 5.11: Flow cytometric staining of patient stroma and HFF cells that were IFNγ  

&TNFα  treated or untreated 

Stromal cells from 3 patients with either BPH or PCa were supplemented with or without cytokines for 
48hours before collecting for analysis by flow cytometry. Cells were gated to exclude dead cells and debris 
before analysing surface expression of ICAM1 (A), VCAM1 (B) and Podoplanin (C). At least 10,000 events 
were collected for analysis and the relevant isotype control was performed in parallel.  
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Figure 5.12: FAP expression by patient prostate stroma 

Stromal cells from 3 patients with either BPH or PCa were supplemented with or without cytokines for 
8hours before mRNA collection (A) and 48hours before collecting for analysis by flow cytometry (B). FAP 
expression was measured by RT-qPCR, normalised to GAPDH and is presented as the mean fold change 
±SD (A). Cells were gated to exclude dead cells and debris before analysing surface expression of FAP, at 
least 10,000 events were collected for analysis and the relevant isotype control was performed in parallel (B). 
Statistical significance was measured by a RM 2Way ANOVA with a Tukey’s multiple comparisons test. 
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5.3.4. Analysis of prostate stromal cells by ptychography 

Fixation of cells in vitro induces morphological change. Therefore, to get a more 

representative characterisation of prostate stroma, cultures derived from 3 patients of each disease 

group were analysed by label-free time lapse imaging (Marrison et al., 2013) in untreated and 

IFNγ&TNFα treated conditions, to determine if cytokine treatment caused changes in the 

proportions of myofibroblasts and fibroblasts in culture. Figure 5.15 illustrates the cells at 0 and 48 

hours by phase contrast. It was evident during the time course, and displayed in these images, that 

cell morphology varies greatly both within patients and between patients. Cell shape was fluid over 

time. Cells adapted to both the spindle shape and a large flattened morphology with many dendrites 

that would be considered as a myofibroblast phenotype, over time. Disease groups could not be 

associated with one phenotype over another, and treatment could not be seen to impact on cell 

shape by phase contrast microscopy.  

 

Following completion of the time lapse images, cells were again fixed and labelled for 

vimentin, αSMA and ICAM1, given that ICAM1 was previously shown to be upregulated in 

response to IFNγ&TNFα (Figure 5.2 and 5.5). In this case, the classic stromal antigens vimentin 

and αSMA did not provide any evidence of an enrichment of either fibroblasts or myofibroblasts 

favoured in either disease group nor with treatment, though treatment did induce the expected 

ICAM1 upregulation. This is in contrast to the previous examples, where an increased proportion 

of double positive cells was present in Gl9 samples. However, here, 3 patients of each disease were 

analysed in comparison to one of each previously. All cells stained staining for αSMA, however 

the dispersion did appear to differ between treatments. For example, the first 2 BPH derived 

cultures contained cells with weak nuclear/peri-nuclear positivity of αSMA and spindle 

morphology. Similar cells were present in the 3rd PCa culture untreated and 1st PCa treated culture. 

The staining becomes clearly localised to a network of cytoplasmic fibres in the alternate images 

(culture 1&2 BPH treated, culture 1 PCa untreated and culture 3 PCa treated), considered to be a 

myofibroblast phenotype. As a whole therefore, it could be concluded that fibroblasts and 

myofibroblasts exist in both BPH and PCa cultures, but that these phenotypes are likely not to be 

static and stromal cells may be influenced to fit either grouping.  

 

5.3.5. Cell segmentation of stromal cells allows quantification of cell size 

Cell segmentation was used to compare cell shape and size in different cultures and 

treatment conditions (e.g. Figure 5.15). As the Phase Focus software could not segment cells 

automatically, time point images (0, 2, 4, 8, 24, 48 hours) were taken of all conditions and 

segmentation optimised for each individually. Relevant data from this process were then plotted 

(Figure 5.16) which allowed the cell area, mass length width and thickness to be considered in 

untreated and treated BPH and PCa stroma. These data suggested that a linear relationship does not 

occur between any of the parameters and time. When comparing the untreated and treated cultures 

within disease groups, it becomes evident that treatment did not impact cell size.  
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Figure 5.15: Analysis of stromal cell morphology after IFNγ  and TNFα  treatment in 

cultured stromal cells derived from patients with prostatic disease. 

Ptychography was used to capture images of prostate stromal cells over 52hours at 10 minute intervals. 
Images taken at 0, 2, 4, 8, 24 and 48 hours were used for segmentation as demonstrated at 0h (A) and 
48hours (B). Scale bar represents 500µm.  
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Figure 5.16: Analysis of stromal cell morphology after IFNγ  and TNFα  treatment in 

cultured stromal cells derived from patients with prostatic disease. 

Phase focus microscopy was used to capture images of prostate stromal cells over 52hours at 10 
minute intervals. Images taken at 0, 2, 4, 8, 24 and 48 hours were segmented (demonstrated in figure 5.15) to 
quantify morphological differences between diseases and treatments. Parameters were plotted against time 
(hours) and linear regression was used to understand whether a relationship existed. Data is coloured by 
patient and each point indicates 1 cell. Area (µm2), Volume, Thickness, Drymass (pg), Width (µm) and 
Length (µm) were plotted for patients with BPH and PCa for untreated and treated conditions.  
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5.3.6. Stromal cell lineage analysis highlights the importance of population enrichment 

over time in culture 

Potential population differences between disease groups and treatment conditions could be 

due to specific enrichments of populations within cultures. To investigate this possibility, cells in 

the FOV imaged during ptychography were manually tracked in FIJI mTrackj® to identify 

enhanced proliferation of cells, either within lineages or an increase in the number of lineages 

(Figure 5.17 and 5.18 BPH and Gl9 respectively). In each well, every cell that remained in FOV for 

more than 1 hour was followed over time and given a designated track; in the figure, a horizontal 

line of a single colour illustrates this. Upon proliferation, where the original cell divides and gives 

rise to 2 daughter cells, the track diverges; this is illustrated by branching of the original track at the 

time point mitosis occurred, keeping the colour consistent to signify a lineage cluster. All cells 

were analysed this way and a complete cell lineage tree produced for each well (Figures 5.17 and 

5.18 A). Of the clusters that undergo more than 1 cycle of mitosis it is clear that daughter cells 

undergo the 2nd and 3rd cycles in synchrony with each other (indicated by a red arrow at each cycle 

in Figure 5.17A; untreated patient 1). In the cases where tracks are not completed cells have either 

gone out of frame or have undergone cell death (e.g. blue arrow Figure 5.17 A; untreated patient 1). 

Cells continued to proliferate in the presence of IFNγ&TNFα.  

 

The number of cycles identified in each well is also plotted as pie charts (Figure 5.17 and 

5.18 B) to more easily illustrate cell proliferation. There is no conserved trend evident from this 

data due to variation between patients. Conclusions could be more confidently made with a greater 

number of cells analysed for each patient. This was not possible to do in the current project due to 

the large size of stromal cells, though advances with technology may allow greater FOV to be 

assessed. It is clear however from this data that a greater degree of proliferation can occur over 

time, leading to an enrichment of specific lineages and a potential loss of heterogeneity. This may 

account for the variation observed across patients and is likely the reason some characteristics are 

lost in culture, especially with prolonged passage.  

 

Plots of the mean cell speed and distance travelled for each patient’s cells demonstrated that 

cancer stroma have increased mobility (Figure 5.19 A&B) in culture compared to BPH stroma. 

There is also an indication that with treatment cancer stroma becomes slower and total BPH stroma 

migration is reduced, although this does not reach statistical significance. This resulted in cells 

frequently moving in and out of frame in the cultures, as shown by the number of unfinished tracks 

(Figure 5.19 A). Further to consideration of the number of cycles cells undergo in culture, the 

frequency of proliferation is also plotted as a histogram against time (Figure 5.19 C&D; benign and 

cancer respectively), which does not reveal a conserved or clear trend with regards to effect disease 

and cytokines have on proliferation. There is an indication that an increase in the number of cells 

that don’t divide within the time frame in the cancer stroma cultures treated with cytokines, similar 

to untreated and treated BPH stroma, compared to untreated cancer stroma.   
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Figure 5.17: Analysis of cell lineage progression with IFNγ  and TNFα  treatment in 

stromal cells derived from patients with benign prostatic disease. 

Images captured during ptychography (Figure 5.15) were used to manually track cells in FIJI mTrackj 
over 52hours. Lineages were then clustered based on cells of origin in order to determine whether IFNγ and 
TNFα affect frequency of (1) proliferation (2) proliferative stromal cells. The top and bottom panels of (A) 
and (B) corresponds to 3 separate patients without and with cytokine supplementation respectively. (A) A 
single line corresponding to a cell in the field of view extends horizontally over time. Separation of the line 
into 2, 4 and 8 secondary tracks correspond to cell division, giving rise to daughter cells. Tracks are coloured 
by the cell of origin.  (B) Pie charts of the number of mitosis cycles each lineage in (A) undergoes. 
  

KEY 

Track ends (cell death 
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Cell divides giving rise 
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Figure 5.18: Analysis of stromal cell lineage after IFNγ  and TNFα  treatment in 

cultured stromal cells derived from patients with prostate cancer. 

Images captured during ptychography (Figure 5.15) were used to manually track cells in FIJI mTrackj 
over 52hours. Lineages were then clustered based on cells of origin in order to determine whether IFNγ and 
TNFα affect frequency of (1) proliferation (2) proliferative stromal cells. The top and bottom panels of (A) 
and (B) corresponds to 3 separate patients without and with cytokine supplementation respectively. (A) A 
single line corresponding to a cell in the field of view extends horizontally over time. Separation of the line 
into 2, 4 and 8 secondary tracks correspond to cell division, giving rise to daughter cells. Tracks are coloured 
by the cell of origin.  (B) Pie charts of the number of mitosis cycles each lineage in (A) undergoes. 
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Figure 5.19: Analysis of IFNγ  and TNFα  effect on cell speed and proliferation in 

stromal cells derived from patients with prostatic disease. 

Images taken during ptychography were used to track cells in mTrackJ and cell speed, distance 
travelled and time between mitosis cycles was analysed. For (A and B) the mean velocity or total distance 
travelled for each patient untreated or treated is plotted. Data is the mean of this ± SD. Significance was 
considered by means of a two-way repeated measures ANOVA, which finds disease has a significant effect 
on both velocity of cells and total distance travelled. The time between mitosis cycles was plotted as 
histograms for benign (C) and cancer (D) stroma, taken from data presented in Figures X&Y. For each the 
frequency (y-axis) of cells that divide at the given times on the x-axis is plotted.  
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5.4. Summary of Results 

• Analysis of stromal cell phenotypes reveals that both IFNγ&TNFα and IL-4&TNFα induce 

changes in AM ICAM1 and VCAM1. Prostate stroma express podoplanin, which was mildly 

upregulated by IFNγ&TNFα. This is consistent in both BPH and Cancer stroma. HFF cells 

neither express podoplanin nor are induced to express VCAM1, but do upregulate ICAM1.  

 

• Stroma cultures from PCa and BPH contain both myofibroblasts (vimentin+ & αSMA+) and 

fibroblasts (vimentin+ & αSMA-). Morphology alone did not distinguish between 

myofibroblasts and fibroblasts, without additional markers.  

 

• FAP expression on the cell surface was increased to a small degree in response to IFNγ& 

TNFα. 

 

 

• Daughter stromal cells born from the same cell of origin divide in synchrony. BPH and Cancer 

stroma both proliferate in the presence of IFNγ&TNFα. Without analysing more cells of each 

patient it cannot be determined if differences in proliferation occur between disease or cytokine 

treatment.  

 

• Cancer stromal cells migrate faster and farther than BPH.  

 

  



Chapter 5 Phenotypic analysis of prostate stromal cells 

5.5. Discussion 

5.5.1. Myofibroblasts/CAFs in culture 

In culture, the myofibroblast phenotype (vimentin&αSMA double positive cells) or 

morphology (large flattened cells with dendrite-like extensions) cannot be consistently associated 

with cancer stroma relative to BPH, since they were present in cultures derived from both patient 

groups. Moreover, spindle morphology does not guarantee lack of myofibroblast phenotype by 

marker expression. HFF cultures conversely, as expected, do not contain cells with either the 

myofibroblast phenotype or morphology, at least in the conditions used here. This suggests signals 

that occur in both BPH and PCa encourage myofibroblast growth. Due to the shorter doubling time 

of HFF cells compared to prostate stroma within the treatment period of 48hours, the HFF cultures 

reach monolayer confluency, compared to 60-70% in prostate stroma (cell loss also occurs during 

antibody labelling). Contact inhibition and spatial restriction is likely to affect morphology of 

stromal cells, as they extend to fill the free space. This may induce the differences observed 

between HFF and prostate cultures. However, even at low confluency, HFF cells maintain their 

spindle morphology, so it is unlikely this could account for the absence of myofibroblasts in these 

cultures. Others have demonstrated that it is possible to differentiate HFF cells into myofibroblasts 

after culture with TGF-β1. To accurately determine whether prostate myofibroblasts are a disease, 

inflammation or a prostate associated stromal phenotype; normal prostate stroma should be 

investigated (since both PCa and BPH are proliferative diseases). IFNγ&TNFα does not appear to 

induce the myofibroblast phenotype or morphology in stromal cultures within the treatment periods 

(maximum 52hours), although, prolonged exposure to IFNγ&TNFα may change fibroblast 

phenotype. TGF-β1 can induce myofibroblasts in culture. After just 72 hours in culture, fibroblasts, 

human adipose stem cells and in vivo change phenotype (Midgley et al., 2013; Tuxhorn et al., 

2002). This TGF-β1 mediated differentiation is dependent on epidermal growth factor receptor 

(EGFR), CD44 and can be influenced by cell-cell and cell-ECM contact (Midgley et al., 2013). 

Due to a loss of EGFR expression in high passage fibroblasts, they lose the capacity to differentiate 

to a myofibroblast phenotype. Data presented in the previous two chapters demonstrated a high 

endogenous expression of TGF-β1 in the prostate, regardless of disease, which may account for the 

myofibroblasts found in culture.  

 

Fibroblasts and fibroblast-like cells are heterogenous (hence the use of the stroma 

terminology). Stroma extracted from different tissue types across the body and even within the 

same tissue, exhibits heterogeneity in both function and phenotype. These stromal variations can be 

due to fluctuations in microenvironmental pressures (e.g. mechanical forces, signalling molecules 

or inflammation). Crucially, these stromal subtypes might be just that; fluctuations of the cell state. 

Maintenance of a phenotype may depend on the microenvironment they originate; one that can 

never be fully recapitulated in vitro. Indeed, the scientific value of in vitro investigations on stroma 

from pathological tissues relies on altered stroma being a committed, rather than fluid, phenotype. 

Nevertheless, these cells may retain the same competence to fulfil different functional roles when 
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in a different microenvironment (such as culture). The capacity and proclivity of stromal cells to 

adjust in response to the local milieu is likely to be similar within tissues types, but influenced by 

neighbouring cells. So while BPH and PCa stroma fulfil different functions within the context of 

their specific microenvironment (inflammation and epithelial signals), they may both respond in a 

similar manner when taken out of this environment. Analysis of heterogenous populations by qRT-

PCR (or similar techniques) and western blotting means amalgamating and presenting heterogenic 

variables as a representative of a culture as a whole, which may be erroneous and mask subtle but 

significant changes.  

  

5.5.2. FAP as a tumour stroma marker 

FAP expression has been associated with CAFs (Jia et al., 2016; Liu et al., 2012), however 

in culture stromal FAP gene expression did not differ between the BPH and Gl9 derived stroma. 

This could indicate that the stromal cultures derived from PCa did not contain CAFs. Although to 

manage this, samples with high grade Gl9 disease was selected for choosing PCa stroma. These 

particular samples were used due to the high content of cancer in the tissue collected. Previous 

publications from the Maitland lab, employing the same technique for stromal culture 

establishment have demonstrated functional distinctions between BPH and PCa stroma. Lastly, all 

experiments were conducted on low passage stroma to lessen the outgrowth of particular lineages. 

Taking this all into consideration, it leaves the conclusion that the reported increased FAP 

expression in cancer stroma is not detectable at the mRNA level in cultured stroma. It may be that 

CAFs taken out of the local environment are not so different from BPH stroma, although in vitro 

experiments by others and us have displayed differences in migration and gene expression (Eiro et 

al., 2016; 2017; Hall et al., 2002; Lakins, 2012; Yang et al., 2005). Given that surface FAP 

expression is increased upon IFNγ&TNFα, it indicates that FAP expression in tumour stroma is in 

part due to local inflammation as a consequence of tumour presence, rather than tumour-derived 

signalling (Brokopp et al., 2011; Tillmanns et al., 2015). Since inflammation is associated with 

both BPH and PCa stroma, this could account for the similarities. It would also explain FAP 

expression in malignant (and to a lesser degree benign) tumour tissue but not normal. If this were 

the case it would be expected that HFFs express relatively little FAP. Though, HFFs express 

increased surface FAP, in both untreated and IFNγ&TNFα treated conditions, relative to BPH and 

PCa stroma. Since expression is still increased after treatment, it is possible that this elevated 

expression is due to different culture conditions of HFF and prostate stromal cells. HFF cultures 

have been grown in D15% (compared to R10% for prostate stroma) as per commercial 

recommendations, therefore the increased serum concentration likely results in this irregularity. 

DMEM and RPMI have distinct compositions that may also have effected FAP expression. For 

example, calcium and L-Isoleucine contents are doubled in DMEM compared to RPMI (2001). To 

test this, HFF cells should be equilibrated in R10% and comparisons made.  
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The observation of a potentioal IFNγ&TNFα mediated FAP upregulation is interesting 

(though this increase was of a small magnitude) and may explain some of the earlier discussed 

implications of targeting FAP as a cancer therapeutic. Importantly, targeted cytotoxicity of FAP+ 

stromal cells is likely also to eradicate a substantial immunosuppressive compartment of the 

tumour, since stromal cells also upregulate a range of immune inhibitory molecules in response to 

TH1/CTL immune activity (Chapter 4). This would be consistent with recently emerging data 

demonstrating synergy between checkpoint inhibition and FAP+ cell depletion (Wen et al., 2016; 

Zhang and Ertl, 2016).  

 

5.5.3. Proliferative capacity of prostate stroma 

Analysing living populations of prostate stroma by ptychography highlighted the potential 

for stroma subtype selection in vitro, supporting the importance of using low passage samples. This 

selection likely occurs even in the first subculture stages resulting in a shift of subtype population 

densities and differences in the heterogeneity between in vivo and in vitro. This phenomenon has 

been demonstrated by others and will be discussed in more detail in Chapter 7.  

 

5.5.4. Concluding remarks 

This chapter aimed to determine whether stromal cultures from BPH and PCa could be 

discriminated by morphology, expression of stromal antigens and CAF associated markers. It was  

found that disease did not impact on these parameters. Myofibroblasts occurred in cultures from 

both disease groups. Consistent with previous data from the Coles and Maitland lab, stromal cell 

migration and adhesion molecule expression was influenced by addition of cytokines. Interestingly, 

IFNγ&TNFα treatment increased FAP expression. Questions remain as to whether stromal 

phenotypes (and associated characteristics) are attributable to or a result of disease pathology. Are 

these phenotypes a result of permanent differentiation or can they be reversed? It is likely that to 

understand these dynamic cells, a better understanding of their lineage and response to 

environment should be understood, but mainly functional phenotypes should be separated by 

expression profile. Only then, can cell types be separated when isolated from tissue and the 

influence of the microenvironment fully tested.  
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Chapter 6 Analysing prostate infiltrating lymphocytes in patients with prostatic disease 

6.1. Introduction 

The infiltration of effector T cells into the tumour is it critical for the initiation and efficacy 

of the anti-tumour immune responses. Data presented in the previous chapters demonstrate a 

significant role for stromal cells in modulating local T cell function. Prostate stromal fibroblasts 

express a number of immune inhibitory molecules including PD-L1, IDO and TGF-β, upregulated 

by IFNγ&TNFα; a model of TH1/CTL mediated immunity. Many studies have attempted to 

analyse tumour infiltrated T cell (TIL) activity using IHC, though while this method can provide 

spatial relevance, it is limited to only a few molecules and a small portion of tissue. To analyse 

functionality of the T cells, flow cytometry provides a means of labelling cells with a larger 

number of antigen specific antibodies, and therefore gives better distinction of immune subtypes. 

As well as defining the populations of immune cells within the tissue, it would permit analysis of 

activation and exhaustion phenotypes. Furthermore, extraction of live TILs means that the actual 

capacity to accomplish tumour killing could be assessed by T cell cytotoxicity assays.  

 

Flow cytometry has been used in the characterisation of TILs from a number of tissues. In 

ovarian cancer, phenotypic analysis of intratumoural lymphocytes identified infiltration of active 

tumour specific CD8+ CTLs in patients seropositive for the TAA NY-ESO-1 and that PD-1 and 

Lag-3 were potential mechanisms of inhibiting these cells in the TME (Matsuzaki et al., 2010b). 

Similarly, in hepatocellular carcinoma patients, TILs were proportionally skewed toward a Treg 

dominated T cell population, which varied depending on tumoural location (i.e. intratumoural, 

peritumoural and periphery) (Wu et al., 2013). Furthermore, the Treg populations extracted from 

the different locations within the tumour also displayed proportionally impaired function 

correlating with distance from the tumour.  

 

However, few studies have analysed flow cytometric data of PILs and a well-characterised 

method for doing has not been established. Instead, many studies have evaluated the functionality 

of circulating lymphocytes, assuming the characterisation of peripheral T cells will be 

representative of those infiltrating tissue. However, a study of 20 patients comparing PILs to 

patient matched peripheral blood T cells demonstrated a significant upregulation of PD-1+ CD8+ T 

cells from the tissue compared to blood, indicating this is not the case (Sfanos et al., 2009). An 

earlier study from the same group demonstrated an increased propensity of IFNγ production (upon 

stimulation with phorbol 12-myristate13-acetate and ionomycin) in selected TH1 cells isolated 

from prostate tissue compared to patient matched peripheral blood (Sfanos et al., 2008). Although, 

in neither case the authors stated the quantity of events in each gate, whether a viability delineator 

had been used, and the use of contour plots rather than dot plots made it difficult to assess the 

immune populations. A second group has recently published papers employing methods of analysis 

of viable PILs (Norström et al., 2016). T cells infiltrating BPH tissue were extracted and 

phenotypically analysed using a protocol published almost two years earlier (Norstrom et al., 

2014). On comparing the median frequency of immune cell subsets, they found significant 
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proportional changes of T cell subsets between peripheral blood and TILs. The TIL fractions had 

increased proportions of CD8+ T cells and a reduction in CD4+ T cells, resulting in an overall 

reduced CD4:CD8 (blood: 1.7 compared to tissue: 0.6). They also documented reduced proportions 

of NK cells and B cells, with an increased in Treg frequency. These T cells displayed differential 

expression of regulatory receptors compared to circulating T cells. In all instances PD-1, LAG-3 

and CTLA-4 were increased in the TILs. These data support an overall immunosuppressive 

environment within BPH tissue. By histological analysis, lymphocytes phenotypically consistent 

with Treg (CD4+CD25+FOXP3+) were a substantial proportion of lymphocyte clusters in the 

region of tumour tissue and were PD-1+ (Ebelt et al., 2009). The authors describe these cells as 

embedded within a “dense stromal compartment”. Notably, PD-L1+ cells were present but not 

identified by marker expression and presumed APCs. Moreover, tumour cells were PD-L1- in all 

PCa tissue from each of the 17 patients. 

 

6.2. Summary and Aims 

An established protocol that would permit isolation of live TILs from prostate tissue for 

phenotypic and functional analysis has been absent. Given the inhibitory roles of stroma presented 

in previous chapters the aim was to:  

 

1. Establish a protocol for extracting viable PILs 

 

2.  Analyse immune cell subsets and determine expression of phenotypic exhaustion and 

activation markers from BPH and PCa tissue  
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6.3. Results 

6.3.1. Extraction of prostate infiltrating immune cells from patient tissue for analysis by 

flow cytometry requires a short digestion 

A protocol that permitted the analysis of freshly isolated viable lymphocytes from human 

prostate tissue was required in order to understand the activity and subtypes of T cells infiltrating 

prostate tissue. Initially the methodology used for isolation of epithelium and stroma for culture 

(described in methods) was tested. This protocol released cells with a high degree of 

autofluorescence and the proportion of CD45+ cells were not viable. The hypothesis was that 

lymphocytes, unlike stroma and epithelium, would not have strong connections to the ECM or 

surrounding cells and would therefore not require an overnight collagenase digestion. With this in 

mind, short digestions with liberase blends were compared to gentleMACs dissociation and 

overnight digestion (Figure 6.1). All methods except overnight digestion (6.1D) released a large 

population of CD45+ cells that could clearly be separated into T and B cells based on CD3 and 

CD19 expression. Inclusion of liberase enzyme (thermolysin low) permitted a higher proportion of 

lymphocytes to be released in comparison to gentleMACs dissociation alone (6.1A&C vs. 6.1B). 

GentleMACs compared to manual dissociation by pipetting had no detectable effect on extraction 

efficiency. Therefore, for extraction of lymphocytes from prostate tissue, a short digestion sufficed. 

 

6.3.2. Cell yield and surface antigen (CD45, CD19 and CD3) expression is not effected by 

liberase blend or concentration 

Liberase enzymes are available in a number of blends, varying ratios of thermolysin and 

dispase. To determine whether some combinations of enzymes improved recovery of lymphocytes, 

or whether cleavage of surface molecules could occur, 5 blends were investigated in conjunction 

with gentleMACs dissociation (Figure 6.2). MFI of CD45, CD3 and CD19 was analysed and no 

enzyme blend was found to consistently impact on fluorescence of the molecules tested (data not 

shown). Cell yield was not impacted as determined by trypan blue exclusion prior to antibody 

labelling. 

 

Further to this, concentration of enzyme (thermolysin low, as in 6.2A) was titrated before 

analysing cell yield and MFI. In this case, the highest concentration of enzyme reduced yield of 

cells but not MFI (Figure 6.3C). As a result, a concentration of 0.2mg/ml of thermolysin low was 

used for the digestion of prostate tissue.  
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Figure 6.1: Improving extraction of prostate infiltrating immune cells for analysis by 

flow cytometry 

Prostate tissue collected from a patient undergoing a transurethral resection of the prostate was divided into 4 
groups for separate digestion before the released cells were labelled and analysed by flow cytometry. Tissue 
was processed by (A) 15minute liberase digestion and manual dissociation by pipetting, (B) dissociation 
using the gentleMACs dissociator, (C) 15minute liberase digestion with gentleMACs dissociation and (D) 
overnight collagenase digestion. Cells were labelled with antibodies targeting immune cell surface 
molecules; CD45, CD19 and CD3 before analysing on a flow cytometer. Notice a shift in the populations in 
(D) due to increased autofluorescence. 
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Figure 6.2: Improving extraction of prostate infiltrating immune cells for analysis by 

flow cytometry; blend of liberase 

Prostate tissue collected from a patient undergoing a transurethral resection of the prostate was divided into 5 
groups for digestion by different liberase blends before the released cells were labelled and analysed by flow 
cytometry. Tissue was digested for 15minutes with Liberase (A) thermolysin low, (B) thermolysin medium, 
(C) thermolysin high, (D) dispase low and (E) dispase high, combined with dissociation by gentleMACs. 
Cells were labelled with antibodies targeting immune cell surface molecules; CD45, CD19 and CD3 before 
analysing on a flow cytometer. Data is a representative example of 2 separate patient tissue samples. 
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Figure 6.3: Improving extraction of prostate infiltrating immune cells for analysis by 

flow cytometry; concentration of liberase 

Prostate tissue collected from a patient undergoing a transurethral resection of the prostate was divided into 3 
groups for digestion by thermolysin low liberase at increasing concentrations before the released cells were 
labelled and analysed by flow cytometry. Tissue was digested for 15minutes with liberase thermolysin low at 
(A) 0.2mg/ml, (B) 0.35mg/ml and (C) 0.5mg/ml combined with dissociation by gentleMACs. Cells were 
labelled with antibodies targeting immune cell surface molecules CD45, CD19 and CD3 before analysing on 
a flow cytometer. Data is a representative example of 3 separate patient tissue samples. 
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6.3.3. Analysis of human prostate infiltrating lymphocytes demonstrates the importance of 

the PD-1/PD-L1 axis in the prostate 

Human prostate tissue collected during TURP procedures was digested and immune cells 

extracted. In each case, patients were diagnosed with BPH; due to logistics with the tissue 

collection system, only four samples could be analysed before a disruption in sample retrieval 

occurred. With two of these samples patient matched peripheral blood lymphocytes were analysed 

as an internal. 

 

MNCs derived from tonsil tissue were aliquoted and stored in liquid nitrogen for use as a 

control between experiments in the analysis prostate infiltrating immune cells. Isotype controls on 

tonsil MNCs were performed to assess unspecific binding of antibodies and used to set gates. 

Isotype controls and unstained controls are demonstrated in a representative example in Figure 6.4. 

The unstained control data from the prostate tissue demonstrate a degree of auto-fluorescence 

remains in the PD-1 channel (BV421, 405nm laser; 450/50 filter). To control for this, the 

background fluorescence in each channel is removed in the normalised MFI calculations (as 

described in section 2.8.5 methods).  

 

The analysis of prostate infiltrating immune cells revealed CD8+ T cells express a higher 

level of the PD-L1 receptor PD-1 on the cell surface than their peripheral blood counterparts. 

Furthermore, there are a higher proportion of PD-1 positive CD8+ and CD4+ T cells in the tissue. 

Tissue infiltrating lymphocytes are enriched for CD8+ compared to CD4+ T cells. This data is 

summarised in Figure 6.6, with a representative example in Figure 6.5.  
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Figure 6.6: Characterising prostate infiltrating immune cells  

Prostate tissue collected from patients undergoing a transurethral resection of the prostate was processed as 
described. Liberated cells were subsequently labelled with antibodies specific to CD45, CD3, CD4, CD8 and 
PD1, with inclusion of a live/dead dye. The MFI of tissue and blood immune cell populations was 
normalised to the MFI of the tonsil control of the given run, allowing comparability of separate experiments. 
The frequency of total T and CD8+/CD4+ T cells in parent gate (CD45+ cells for T cells and CD3+ cells for 
CD8+/CD4+ T cells) in tissue and blood is considered and the CD4:CD8 ratio stated (A). The normalised 
MFI of PD-1 on CD8+ and CD4+ is presented (B). 
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6.4. Summary of results  

• A short digestion with liberase enzymes is required in order to analyse live TILs from 

prostate tissue by flow cytometry.   

 

• Differences between liberase blends did not impact on the yield or level of detection of 

CD45, CD3 or CD19 surface markers 

 

• The BPH tissue CD4:CD8 ratio of T cells is decreased in comparison to that of T cells in 

peripheral blood 

 

• CD8+ CTL cells extracted from BPH tissue express a significantly higher proportion of 

PD-1 on their cell surface than circulating CD8+ CTLs 
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6.5. Discussion 

The prostate is a dense tissue with high proportions of ECM components that would 

negatively impact on cell isolation. TURP procedures, outlined in Chapter 1, entail removal of 

prostate tissue that impedes on the urethra. This removal is facilitated by a heated element 

(resection loop) that separates chips of tissue, leaving a charred perimeter on the tissue. In addition 

to creating tissue auto-fluorescence detectable by fluorescent microscopy, this charred tissue likely 

affects the viability of cells within the tissue. Consistent with this theory, anecdotal evidence 

indicated a higher proportion of viable cells isolated from core biopsy tissue, despite a vast 

reduction in the weight of tissue that was processed (not shown). Dead and dying cells contain 

intracellular molecules that fluoresce, which makes multicolour flow cytometric analysis difficult 

due to ambiguous/apparent populations and false positive staining (Hulspas et al., 2009; Monici, 

2005). Historically our lab demonstrated an extensive digestion was required for the isolation of 

stromal and epithelial cells (Lang et al., 1998). Importantly, cultured stromal and epithelial cells 

demonstrate comparable transcriptional profiles to that of in situ counterparts (Rane et al., 

submitted). However, it was demonstrated here that this lengthy digestion reduced TIL viability, 

which resulted in extensive auto-fluorescence that made flow cytometry unachievable. To 

overcome this, a short digestion combined with mechanical disruption released enough cells for 

immuno-phenotyping. In the future, this protocol is expected to provide a means for cell selection 

and ex vivo analysis, in addition to expanding on the small subset of patients (with BPH) that were 

analysed for this work, including PCa tissue. The protocol developed here is somewhat similar to 

that of the Norstrom papers discussed earlier. The main difference between the two methods is our 

inclusion of an enzymatic digestion (Norstrom et al., 2014). Interestingly, the authors also 

described a high degree of background auto-fluorescence, which was induced in their case by 

enzymatic digestion. The enzyme use or the time digested for was not disclosed though. The 

authors also described post-disruption H&E staining of tissue, which indicated that a significant 

proportion of tissue remained unprocessed. In supplementary information a representative example 

of H&E stained remainder tissue contained significant clusters of lymphocytes, which were 

therefore left unanalysed. Wu and colleagues reported Treg cells within hepatocellular carcinoma 

that had differential activity depending on the portion of tissue from which they originated (Wu et 

al., 2013). This importantly reinforces the heterogeneity of TILs and demonstrates that to best 

understand their activity, as many TILs should be analysed as possible.  

 

An important outcome of the data presented in this chapter is the high proportion of PD-1+ T 

cells, predominantly in the CD8+ populations infiltrating prostate tissue. Since PD-1 is upregulated 

upon activation of T cells, these data suggest and specific recruitment of active T cells to the 

prostate. Given these data are derived from BPH tissue and not PCa, it supports the potential for an 

immunological target in BPH, a disease for which the aetiology is relatively unknown. Although 

the equivalent analysis could not be achieved on PCa tissue within the time frame of this research 

project, it would be very interesting to continue further.  
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The small sample numbers in these data pose a significant limitation to the analysis. The use of 

tonsil MNCs for isotype controls, though necessary for this project due to number of cells available 

is not ideal. However, now that a protocol has been developed that permits the analysis of live PILs 

a greater sample set can be analysed. Particular areas of interest would be:  

 

• Further immunophenotyping of TILs in both BPH and PCa tissue, including analysis 

of TH1 and TH2 subsets, Tregs and CTL cell 

 

• Focus on the activity of the aforementioned subsets, including IFNγ, IL-4 secretion 

 

• Characterisation of classical “exhaustion” markers; PD-1, LAG-3, CTLA-4 

 

• Correlations of above with disease stage and disease progression  

 

6.5.1. Concluding remarks 

This chapter aimed to elucidate the proportions and activity of TILs in BPH ad PCa, 

comparing to circulating lymphocytes when possible. To do so, a protocol was developed that 

permits the isolation of viable TILs, which can be used for downstream analysis. In BPHs these 

TILs, particularly CTLs were PD-1 high, consistent with an exhausted phenotype (and susceptible 

to PD-L1 mediated inhibition), which is supported by similar data. However, tumour TILs could 

not be analysed due to the absence of fresh tissues. Despite this, the chapter presents interesting 

preliminary data worthy of further research in the future, and potentially incredibly valuable in the 

analysis of patient response to immunotherapies in the future.  
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7.1. Summary of findings and significance 

7.1.1. BPH and PCa stroma; counterparts in distinct diseases 

It is important to appreciate that BPH is itself a hyperplastic disease with associated 

inflammation and therefore may not considered an ideal control to investigate tumour-associated 

stroma. Examination of normal prostate stromal cultures may reveal that both BPH and Gl9 PCa 

stroma differ from normal. However, since similar transcriptional changes with cytokine treatments 

occur in HFF cells it is unlikely that normal prostate stroma differs in response to inflammation, 

thus making it easier to discriminate between general inflammatory signals and those driven by 

tumours. It would be interesting to understand whether morphological changes occur in normal 

prostate stroma with cytokine treatments and therefore whether the common inflammatory setting 

in BPH and PCa could account for the similar occurrence of myofibroblasts in BPH and PCa 

cultures but not HFFs. In this context, BPH may be a more relevant control for malignancy since 

both BPH and PCa have associated inflammation but only PCa stroma have grown in an 

environment containing malignant tumour cells.  

 

There have been a number of other studies that find few variations between normal/BPH 

stroma and PCa stroma. Eiro and colleagues for example, examined the gene expression profile of 

cultured BPH and PCa stroma and found only 3 genes differentially expressed at the time of 

analysis; IL-17RB, CXCL14 and MMP2 (Eiro et al., 2017). Intriguingly, the MMP2 finding is 

contradictory to the common perception of tumour stroma, as it was found overexpressed in BPH 

stroma compared to tumour stroma. It should be noted that in our system, neither IL-17RB nor 

CXCL14 were detected in prostate stroma by nanoString analysis (supplementary), suggesting 

discrepancies in the cells cultured between the two systems. This could be accounted for by the 

distinctions in the isolation and routine culture of stromal cells in the current study and the study by 

Eiro. For example, the authors did not disclose for how long stroma was cultured, but indicated that 

differential trypsinisation occurred over several passages in order to separate epithelial and stromal 

cell subsets. This is important as prolonged culture results in loss of physiologically relevant 

characteristics. Stromal cells additionally were cultured in DMEM-F12 10% FCS media compared 

to R10% in the current study. Moreover, MMP2 was previously shown in our lab to be slightly (2 

fold) upregulated in Gl8 PCa stroma (Lakins, 2012). Here, it is shown that TGF-β3, contrary to the 

literature, is downregulated at the mRNA level in tumour stroma (Figure 4.8 pg127). However, the 

increased TGF-β commonly found in the tumour stromal compartment may either derive from 

populations of infiltrating immune cells rather than the mesenchymal cells themselves, or could be 

due to increased active TGF-β protein. It should be an important consideration in all cancer 

research studies, to definitively show the cell of origin of differential signals (Rane et al., 2015). 

Many studies, for example, by microdissection or whole tumour analysis show differential 

expression of key molecules without consideration of the infiltrating immune cells that potentially 

reside in variable ratios or activation states.  
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7.1.2. Potential sources for reactive stroma  

Although the source of myofibroblasts in PCa has remained elusive, there are a number of 

potential possibilities, which may not be mutually exclusive. (i) Tissue resident fibroblasts may 

differentiate and become activated (as they are understood to during wound healing) to fulfil SMC 

roles (Mueller et al., 2007), fitting with the likeness of cancer as the “never healing wound” 

(Dvorak, 1986). (ii) Dedifferentiation of SMCs may occur, which in the prostate at least, may 

explain loss of SMCs and accumulation of CAFs in PCa (Janssen et al., 2000). (iii) Either resident 

or BM derived circulating MSCs may give rise to progeny to facilitate expansion or regrowth of 

the stromal compartment (Placencio et al., 2010). (iv) EMT of prostatic tumour cells may also 

contribute to the myofibroblast pool (Ronnov-Jessen et al., 1995). 

 

The expression of immunosuppressive molecules detailed in Chapter 4 bare striking 

similarities to those well characterised in MSCs, so may support a MSCs source. Consistent with 

this, there are substantial reports to support either resident or BMSCs as a source of reactive stroma 

in PCa. A proportion of prostate stromal cells isolated from prostate biopsies fit the minimal 

criteria to appropriate MSCs and can support prostate repair (Brennen et al., 2013; Lin et al., 2007; 

Placencio et al., 2010). It is possible that the data presented in this thesis are not representative of 

the in vivo environment and instead are an artefact of in vitro culture. Brennan and colleagues 

recently detail overgrowth of minor populations of MSCs in prostate stromal cultures (R10%), 

which dominate (80%) by passage three and show differentiation to the osteoblast and chondrocyte 

lineages when cultured in specific induction media (Brennen et al., 2016). Here, it was found that 

patient cultures remained heterogenous, for example by basal PD-L1 expression (Figure 4.6, 

pg124) morphology (Figure 5.13, pg155) and proliferative capacity (Figure 5.17-18, pg160-161). 

Furthermore, while the lineage studies presented in Chapter 5 supported a potential for overgrowth 

of certain lineages, this had not yet occurred in the low passage cultures analysed in this thesis 

(Figure 5.17-18, pg160-161).  

 

In response to inflammation during wound repair, BMSCs are recruited due to inflammatory 

signals (e.g. G-CSF) and impart immunomodulatory effect in the local environment (Kassis et al., 

2006). NanoString analysis highlighted that G-CSF is neither expressed by, nor induced in cultured 

prostate epithelial or stromal cells (supplementary), though infiltrating immune cells may be a 

potential source. The recruitment of BMSCs in response to inflammation (an occurrence in both 

BPH and PCa) potentially explains why, in this study, BPH and PCa stroma have similar properties 

in culture. However, since distinctions have been documented between BPH and PCa stroma it 

indicates that it is potentially a mixture a number of mechanisms that give rise to reactive stroma, 

in addition to the signals in the local environment.  
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7.1.3. Implications for the cancer immunity cycle  

The data presented in this thesis suggests a highly immunomodulatory role for stromal cells 

that at least in PCa has been overlooked. Importantly, this data may account for the difficulties in 

treating PCa patients with immunotherapy. Prostate stroma creates an immunosuppressive 

environment that likely negatively affects many of the 7 stages in the cancer immunity cycle 

(Figure 7.1).  

 

Impaired anti-tumour immunity can arise due to faults in the immunisation stage can occur 

by impeding DC maturation, triggering a tolerogenic response in cognate T cells and ultimately an 

inability to develop an active immune response. In the current study, a number of molecules 

expressed by prostate stroma may contribute to this, including IL-6, CSF1, VEGF, COX-2 (Figure 

3.16, pg93, 3.23, pg103 and supplementary), as well as the low expression of TAA and HMGB1 by 

tumour cells (supplementary) (Gabrilovich et al., 1998; Menetrier-Caux et al., 1998; Sharma et al., 

2003). This block on immunisation is supported by responses in patients treated with Sipuleucel-T, 

which replaces endogenous APC activation in the prostate with artificial APC activation in vitro 

(Flanigan et al., 2013; Fong et al., 2014). However these patients benefit only moderately from 

Sipuleucel-T, suggesting further blockages occur in the cycle.  

 

While trafficking of T cells to the prostate appears to be supported by stromal expression of 

chemokines like CXCL9 and CXCL10 (particularly in response to IFNγ release; supplementary) 

the efficacy of killing is greatly encumbered by stromal cells. Stroma express a plethora of the 

inhibitory molecules linked with blocking effective killing of cancer cells in the cancer-immunity 

cycle through preventing active immune responses within tissue. At the mRNA level TGF-β 

(Figure 3.17 pg94, 4.8, pg127), IDO, PD-L2, CD276 (Figure 3.23 pg103, Figure 4.8, pg127), non-

classical MHCIb molecules (Figure 3.19 pg99) and MICa/MICb (Figure 3.23 pg103) were 

expressed substantially either endogenously or is induced in response to local TH1/CTL cytokines. 

Given that CTLs were enriched in the BPH tissue analysed by flow cytometry compared to 

peripheral blood (Figure 6.6 pg177), it indicates a likelihood of local IFNγ production (if 

activated), though the CD4+ T cells were not subtyped into TH1 and TH2 cells. At the protein 

level MHCII (HLA-DR specifically) was upregulated on the stromal cell surface upon treatment 

with TH1/CTL cytokines (Figure 4.12 pg128). Correspondingly there was low level upregulation 

in CLIP expression on the cell surface and LAG-3 binding (Figure 4.12 pg128), indicating a 

capacity for stromal cells to inhibit TILs via the LAG-3 inhibitory receptor, but not present antigen 

as traditional APCs.  Likewise, MHCIb (HLA-E) (Figure 4.9 pg128) was expressed and 

upregulated on the cell surface, a molecule traditionally known as an NK cell inhibitor (or 

activator, depending on the receptor), so may therefore provide an additional method of preventing 

active immunity and tumour escape. The inhibitory receptor (CD94/NKG2A) has been shown at an 

elevated level on CTLs in cervical cancer and was associated with a worse prognosis when HLA-E 

was expressed (Gooden et al., 2011; Sheu et al., 2005). It should be noted though, that this 
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mechanism is complex as evidence is accumulating for a role in antigen presentation and activation 

of HLA-E restricted CTLs (Mazzarino et al., 2005).  

 

Most strikingly though, PD-L1 was expressed at significant levels on the stromal cell surface 

and further upregulated with TH1/CTL cytokines (Figure 4.6, pg124), suggesting both an 

endogenous capacity for PD-1 mediated inhibition and an elevated capacity in response to local 

inflammation. Flow cytometric analysis of PILs demonstrated that trafficking of T cells was not 

prevented, as immune cells were detected in the tissue. It further supported a physiological 

importance for stromal PD-L1 expression since PD-1 was correspondingly upregulated on PILs 

compared to peripheral blood (Figure 6.6 pg177). The expression of both PD-L1 and TGF-β in the 

prostate would make a favourable setting for Treg cells, since both of these molecules provide 

positive signals for Treg survival (Miller et al., 2006). The failure of immunotherapies in PCa 

patients is potentially a trait of the redundancy of immunomodulatory mechanisms employed by 

stroma. Simply inhibiting PD-1/PD-L1 is not sufficient, as it is not the only inhibitor expressed by 

stroma. Further, the volatility of patient responses may be due to variability in the ratio of stroma to 

tumour cells. The data presented in this thesis together suggests that the quantity of TAA activated 

T cells needs to be greatly in excess so as to overwhelm the tumour and not be dissuaded by the 

stroma.  
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Figure 7.1 Role of stroma in modulating the cancer-immunity cycle.  

Prostate stroma provides an immunosuppressive environment through expression molecules such as TGF-β 
and Cox-2. Activation of TH1/CTL cells stimulates local production of IFNγ, which induces a regulatory 
response by prostate stroma. Expression of chemokines contributes to increased trafficking of T cells to the 
prostate and providing an “immunologically hot” environment. Although, the “immunologically cold” 
aspects of prostate stroma far out-weighs this response. These molecules both directly inhibit T cells and 
provide a favourable environment for Treg cells.  
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7.2. Remaining questions and future work 

7.2.1. Immunosuppression by prostate stroma 

The data in this thesis have suggested a capacity of stromal cells to inhibit infiltrating 

immune cells via the expression of various molecules including PD-L1, MHCII and MHCIb, which 

was supported by analysis of PILs demonstrating expression of PD-1. However this should be 

tested further. PILs should be further analysed in more detail and an expanded cohort of tissue from 

both BPH and PCa. This could not be achieved in this current project due to complications with 

procuring further samples, although an experimental protocol for doing so was developed. 

Additionally, co-cultures of untreated and IFNγ&TNFα treated patient stroma with stimulated 

patient-matched peripheral blood lymphocytes could be utilised to determine whether stromal 

expression of immunomodulatory molecules is functionally capable of inducing T cell inhibition. 

Systematically blocking the molecules expressed and determining changes in T cell killing capacity 

can verify this. IHC analysis of PD-L1 expression in prostate tissue and correlation to local T cell 

infiltrates may determine in vivo relevance of this mechanism.  

 

7.2.2. Is there a role for prostate stromal cells in biasing local T cell subsets? 

In addition to outstanding questions directly associated to the work presented in this thesis, 

there are many lines of research that arose during nanoString analysis but could not be pursued. 

Prostate stromal cells exhibit an immunosuppressive phenotype through the expression of TGF-β 

and IL-6, which together have been shown to contribute to the differentiation of TH17 cells from 

naive T cells. These are a more recent T cell subset that are not fully understood as they are 

understudied (Weaver et al., 2006). TH17 are most commonly associated with autoimmunity and 

organ specific chronic inflammation, but were also shown to be required for tumour development 

in vivo. They require IL-23 for sustenance and through production of IL-17 trigger further IL-6 

expression. This implies that in the presence of APCs (a source for IL-23), prostate stroma may 

support local differentiation of naive T cells to a TH17 phenotype, perhaps in the context of cancer 

associated TLT formation. On the contrary, TGF-β production in the absence of IL-6 protein will 

instead skew T cells toward a Treg phenotype and propagate an immunosuppressive environment. 

Both of these scenarios have been documented in patient tissue, suggesting a patient dependent 

context that may rely on factors such as presence of infection, patient age and treatment history 

(Sfanos et al., 2008).  

  



     Chapter 7 General discussio 

7.3. Concluding remarks and schematic summary 

While the local inflammatory setting will invoke similar adaptations by prostate stroma in 

BPH and PCa stroma, the setting these changes occur in may result in very different outcomes. For 

example, attempted homeostatic correction by BPH stroma due to inflammation and resultant 

inhibition of immune cells can attribute to expansion of the stromal compartment and unresolved 

inflammation, attributing to the chronic condition. In the context of malignancy, there is more at 

stake. Here, if inflammation is improperly inhibited, tumour cells are able to expand with moderate 

immune pressure, supporting tumour microevolution. This, and previous work from the Coles’ and 

Maitland’s labs have demonstrated that while it is beneficial to produce an anti-tumour response, 

the local cytokine response may paradoxically provide tumour supportive stroma. Previous data 

demonstrated a TH2 mediated induction of VCAM1 that supported stromal/tumour migration and 

metastasis (Lakins, 2012)(Figure 7.2 B). However, this thesis mainly focused on the stromal 

response to TH1/CTL cytokines revealing a key role for stroma in local immune inhibition, which 

in the context of malignancy will be detrimental for anti-tumour immunity. Treatment of PCa, 

specifically by immunotherapy, will prove a significant challenge in the future owing to this 

demonstrated role of stromal immune inhibition. Altogether, this is summarised in Figure 7.3.  
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Figure 7.2: Interactions between stroma and immune cells 

(A) A proposed model of stromal mediated skewing of local T cells. In the presence of both IL-6 and TGF-β, 
naive T cells differentiate to TH17 cells. In the absence of IL-6, Tregs are induced (iTregs). (B) Activation of 
TH2 cells (by APCs) induces local expression of IL-4, inducing stromal expression of VCAM1. Previously, 
this was shown to mediate crosstalk between prostate stromal and epithelia and stimulate increased 
migration. Epithelial cells expressing VLA-4, attach to VCAM-1 expressing stroma. This stimulates 
secretion of SPARC by proficient epithelia, which outcompetes VLA-4 for binding and provides a 
mechanism for detachment (Lakins, 2012).  
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Figure 7.3: The changing faces of prostate stroma  

Prostate stromal cells are highly responsive to local inflammation (top left and right). TH2 activation and 
subsequent IL-4 secretion stimulates stromal VCAM-1 expression, which mediates migration as previously 
described (Figure 7.2B). Activation of TH1/CTLs and production of IFNγ induces stromal expression of 
various molecules shown to inhibit T cell activity and therefore prevents tumour cell killing. Prostate stroma 
provides an immunosuppressive environment by the expression of IL-6 and TGF-β. Increased activation of 
TGF-β (e.g. Treg infiltration or MMP secretion) increases myofibroblast accumulation and skews local T cell 
subsets (Figure 7.2A).  



 

Abbreviations 
αSMA    α-smooth muscle actin  

γc    Common γ chain 

µg    Microgram 

µl    Microlitre 

µm    Micrometer 

µM    Micromolar 

3D    3-dimensional  

ADT    Androgen deprivation therapy  

AE     Adverse events 

AIPC    Androgen independence prostate cancer  

AM     Adhesion molecules  

APCs    Antigen presenting cells  

AR    Androgen receptor 

ATF4    Activating transcription factor 4  

BCa     Breast cancer 

BM    Bone marrow 

BMSCs     Bone marrow mesenchymal stromal cells 

BPH    Benign prostatic hyperplasia  

BSA    Bovine serum albumin 

CAFs    Cancer associated fibroblasts  

cDNA     Complementary DNA 

CEACAM   Carcinoembryonic antigen-related cell adhesion molecules  

CO2     Carbon dioxide 

CP/CPPS    Chronic prostatitis/chronic pelvic pain syndrome 

CR     Complete responses 

CRADs     Conditional replicating adenoviruses 

CRC     Colorectal cancer  

CRPC    Castrate resistant prostate cancer  

CSCs    Cancer stem cells  

Ct    Threshold cycles 

CTLA-4    Cytotoxic T lymphocyte-associated antigen 4  

CTLs    Cytotoxic T lymphocytes  

CZ    Central zone  

DAPI    4',6-Diamidino-2-Phenylindole, Dilactate  

DC    Dendritic Cell 

DHT    Dihydrotestosterone  

DMEM    Dulbecco’s modified eagle medium 

DMSO     Dimethyl sulfoxide 



 

EC    Endogenous control  

ECM    Extracellular matrix  

EDTA     Ethylenediaminetetraacetic acid 

EGFR     Epidermal growth factor receptor 

EMT    Epithelial-mesenchymal transition 

FACS     Fluorescence activated cell sorting 

FAP    Fibroblast activation protein 

FCS    Foetal calf serum  

FDCs    Follicular dendritic cells  

FGF    Fibroblast growth factor  

FOV     Field of view 

FRCs    Follicular reticular cells  

FSC     Forward scatter 

g     Grams 

g     g-force 

GAG    Glycosaminoglycan 

gapdh     Glyceraldehyde 3-phosphate dehydrogenase 

GAS    IFNg activated site 

GCN2    General control nonderepressible protein 2 

Gl    Gleason 

GLM    Generalised linear model  

GM-CSF    Granulocyte-macrophage colony-stimulating factor 

GOI    Genes of interest  

H&E    Haematoxylin and eosin  

HBSS    Hank’s Balanced Salt Solution 

HFF    Human foreskin fibroblasts 

HGF    Hepatocyte growth factor  

HLA    Human leukocyte antigen  

HMGB1    High-mobility group box 1 protein  

HNSCC    Head and neck squamous cell carcinoma 

HS    Heparin sulfate  

ICAM1     Intercellular Adhesion Molecule 1  

IDO    Indoleamine 2,3-deoxygenase  

IFN    Interferon 

Ig     Immunoglobulin 

IHC    Immunohistochemistry 

IL     Interleukin 

ITIM    Immunoreceptor tyrosine-based inhibitory motif 

ITSM    Immunoreceptor tyrosine-based switch motif  

JAK    Janus Kinase 



 

kD    Kilo Dalton 

KIRs     Killer cell inhibitory receptors 

LAG    Lymphocyte activation gene 

LAP     Latency associated protein 

LCM    Laser capture microdissection  

LCMV    Lymphocytic Choriomeningitis Virus   

LFA    Leukocyte function associated antigen-1 (LFA-1)  

LLC     Large latent TGF-b complex 

LN    Lymph node  

LN2    Liquid nitrogen 

LPS    Lipopolysaccharide  

LT    Lymphotoxin  

LTb    Lymphotoxin-b 

LTBP     Latent TGF-b binding protein 

Lti    Lymphoid tissue inducer  

LTin    Lymphoid tissue initiator  

LTo    LT organiser 

LTα1β2    Lymphotoxin α1β2 

LTβR     Lymphotoxin β Receptor 

LUTS    Lower urinary tract symptoms  

M    Molar 

mCRPC    Metastatic CRPC 

MFI     Median fluorescence intensity 

MHCI     Major Histocompatibility Complex  

min     Minutes 

ml     Millilitre 

mM     Millimolar 

MMPs    Metallomatrix proteases  

MNCs     Mononuclear cells  

mOS    Median overall survival  

MPL-A    Monophosphoryl Lipid-A 

MRCs    Marginal reticular cells  

MSCs     Mesenchymal stem/stromal cells 

ng     Nanogram 

NGF    Nerve growth factor  

NHS     National health service 

NK    Natural killer  

NSAIDs    Non-steroidal anti-inflammatory drugs 

NSCLC     Non-small cell lung cancer  

OCT    Optimal cutting temperature  



 

PAMPs    Pathogen associated molecular patterns  

PAP     Prostatic acid phosphatase 

PBS    Phosphate buffered saline  

PCA    Principal components analysis 

PCa    Prostate cancer  

PD-1    Programmed death-1  

PD-L1    Programmed death ligand 1  

PFA    Paraformaldehyde  

PFS     Progression free survival 

pg     Picogram 

PIA    Proliferative inflammatory atrophy  

PILs     Prostate infiltrating lymphocytes 

PIN     Prostatic intraepithelial neoplasia 

PR    Partial responses 

PSA     Prostate specific antigen  

pSTAT1     Phosphorylated STAT1 

PVDF    Polyvinylidene difluoride  

PZ    Peripheral zone  

qRT-PCR   Quantitative real time-PCR  

RA     Rheumatoid arthritis  

RCC    Renal cell carcinoma 

RP     Radical prostatectomy  

RPMI     Roswell Park Memorial Institute 

RT    Room temperature  

SD    Standard deviation of the mean  

SLC     Small latent complex 

SLE    Systemic lupus erythematosus  

SLO    Secondary lymphoid organs 

SMCs    Smooth muscle cells  

SSC     Side scatter 

STAT    Signal transducer and activator of transcription 

STING     Stimulator of IFN genes 

TAAs    Tumour-associated antigens 

TCR    T cell receptors  

TGF-β    Transforming growth factor-β 

TH2     T helper 2 

THBS-1    Thrombospondin-1 

TICs    Tumour initiating cells 

TIL     Tumour infiltrated T cell 

TL     Thermolysin Low  



 

TLRs    Toll like receptors  

TLS    Tertiary lymphoid structures 

TLT    Tertiary lymphoid tissue  

TME    Tumour microenvironments 

TNF    Tumour necrosis factor 

TRANCE   TNF related activation-induced cytokine  

Treg    T regulatory cells  

TSAs     Tumour-specific antigens 

TURP    Transurethral resection of the prostate  

TZ    Transitional zone  

UGE    Urogenital epithelia 

UGM    Urogenital mesenchyme  

UGS    Urogenital sinus  

UTI    Urinary tract infections  

V    Volt 

VCAM1    Vascular cell adhesion protein 1 

VLA    Very late antigen-4 (VLA-4) 

  



 

Bibliography 
2001. Medium formulations. Curr Protoc Cell Biol Appendix 2:Appendix 2B. 

Abdul M, Hoosein N. 2000. Differences in the expression and effects of interleukin-1 and -2 on 
androgen-sensitive and -insensitive human prostate cancer cell lines. Cancer Lett 
149(1-2):37-42. 

Abe A, Kuwata T, Yamauchi C, Higuchi Y, Ochiai A. 2014. High Mobility Group Box1 
(HMGB1) released from cancer cells induces the expression of pro-inflammatory 
cytokines in peritoneal fibroblasts. Pathol Int 64(6):267-75. 

Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM, Fatani AS, 
Chamley LW, Knawy BA. 2013. Human placental mesenchymal stem cells (pMSCs) 
play a role as immune suppressive cells by shifting macrophage differentiation from 
inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev 9(5):620-41. 

Adachi S, Yoshida H, Kataoka H, Nishikawa S. 1997. Three distinctive steps in Peyer's patch 
formation of murine embryo. Int Immunol 9(4):507-14. 

Adachi Y, Yamamoto H, Itoh F, Arimura Y, Nishi M, Endo T, Imai K. 2001. Clinicopathologic 
and prognostic significance of matrilysin expression at the invasive front in human 
colorectal cancers. Int J Cancer 95(5):290-4. 

Adamson RE, Frazier AA, Evans H, Chambers KF, Schenk E, Essand M, Birnie R, Mitry RR, 
Dhawan A, Maitland NJ. 2012. In vitro primary cell culture as a physiologically 
relevant method for preclinical testing of human oncolytic adenovirus. Hum Gene 
Ther 23(2):218-30. 

Afonina IS, Tynan GA, Logue SE, Cullen SP, Bots M, Luthi AU, Reeves EP, McElvaney NG, 
Medema JP, Lavelle EC et al. . 2011. Granzyme B-dependent proteolysis acts as a 
switch to enhance the proinflammatory activity of IL-1alpha. Mol Cell 44(2):265-78. 

Alemany R, Balague C, Curiel DT. 2000. Replicative adenoviruses for cancer therapy. Nat 
Biotechnol 18(7):723-7. 

Allen CD, Cyster JG. 2008. Follicular dendritic cell networks of primary follicles and germinal 
centers: phenotype and function. Semin Immunol 20(1):14-25. 

Ansel KM, Djuretic I, Tanasa B, Rao A. 2006. Regulation of Th2 differentiation and Il4 locus 
accessibility. Annu Rev Immunol 24:607-56. 

Arch RH, Gedrich RW, Thompson CB. 2000. Translocation of TRAF proteins regulates 
apoptotic threshold of cells. Biochem Biophys Res Commun 272(3):936-45. 

Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, Dinarello CA. 1984. 
Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl 
Acad Sci U S A 81(24):7907-11. 

Bach EA, Aguet M, Schreiber RD. 1997. The IFN gamma receptor: a paradigm for cytokine 
receptor signaling. Annu Rev Immunol 15:563-91. 



 

Badalyan V, Thompson R, Addo K, Borthwick LA, Fisher AJ, Ort T, Myers TG, Wynn TA, 
Ramalingam TR. 2014. TNF-alpha/IL-17 synergy inhibits IL-13 bioactivity via IL-
13Ralpha2 induction. J Allergy Clin Immunol 134(4):975-8 e5. 

Balkwill F, Charles KA, Mantovani A. 2005. Smoldering and polarized inflammation in the 
initiation and promotion of malignant disease. Cancer Cell 7(3):211-7. 

Ball HJ, Sanchez-Perez A, Weiser S, Austin CJ, Astelbauer F, Miu J, McQuillan JA, Stocker R, 
Jermiin LS, Hunt NH. 2007. Characterization of an indoleamine 2,3-dioxygenase-like 
protein found in humans and mice. Gene 396(1):203-13. 

Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. 2006. 
Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 
439(7077):682-7. 

Barone F, Nayar S, Buckley CD. 2012. The role of non-hematopoietic stromal cells in the 
persistence of inflammation. Front Immunol 3:416. 

Barron DA, Rowley DR. 2012. The reactive stroma microenvironment and prostate cancer 
progression. Endocr Relat Cancer 19(6):R187-204. 

Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, 
Ucker D, Deans R et al. . 2002. Mesenchymal stem cells suppress lymphocyte 
proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42-8. 

Beatty GL, O'Dwyer PJ, Clark J, Shi JG, Bowman KJ, Scherle P, Newton RC, Schaub R, Maleski 
J, Leopold L et al. . 2017. First-in-Human Phase 1 Study of the Oral Inhibitor of 
Indoleamine 2,3-dioxygenase-1 Epacadostat (INCB024360) in Patients With 
Advanced Solid Malignancies. Clin Cancer Res. 

Beauchemin N, Arabzadeh A. 2013. Carcinoembryonic antigen-related cell adhesion molecules 
(CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 32(3-4):643-
71. 

Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, Ganju V, Polikoff J, Saad F, 
Humanski P et al. . 2017. Randomized, Double-Blind, Phase III Trial of Ipilimumab 
Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With 
Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J Clin Oncol 
35(1):40-47. 

Benezech C, White A, Mader E, Serre K, Parnell S, Pfeffer K, Ware CF, Anderson G, Caamano 
JH. 2010. Ontogeny of stromal organizer cells during lymph node development. J 
Immunol 184(8):4521-30. 

Bernardo ME, Fibbe WE. 2013. Mesenchymal stromal cells: sensors and switchers of 
inflammation. Cell Stem Cell 13(4):392-402. 

Berry PA, Maitland NJ, Collins AT. 2008. Androgen receptor signalling in prostate: effects of 
stromal factors on normal and cancer stem cells. Mol Cell Endocrinol 288(1-2):30-7. 

Berry SJ, Coffey DS, Walsh PC, Ewing LL. 1984. The development of human benign prostatic 
hyperplasia with age. J Urol 132(3):474-9. 



 

Bertazza L, Mocellin S. 2010. The dual role of tumor necrosis factor (TNF) in cancer biology. 
Curr Med Chem 17(29):3337-3352. 

Beutler B, Cerami A. 1988. Tumor necrosis, cachexia, shock, and inflammation: a common 
mediator. Annu Rev Biochem 57:505-18. 

Bierie B, Moses HL. 2006. TGF-beta and cancer. Cytokine Growth Factor Rev 17(1-2):29-40. 

Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. 2012. The determinants of tumour 
immunogenicity. Nat Rev Cancer 12(4):307-13. 

Blumenthal RD, Leon E, Hansen HJ, Goldenberg DM. 2007. Expression patterns of CEACAM5 
and CEACAM6 in primary and metastatic cancers. BMC Cancer 7:2. 

Boman BM, Wicha MS. 2008. Cancer stem cells: a step toward the cure. J Clin Oncol 
26(17):2795-9. 

Bonnet D, Dick JE. 1997. Human acute myeloid leukemia is organized as a hierarchy that 
originates from a primitive hematopoietic cell. Nat Med 3(7):730-7. 

Bottinger EP, Jakubczak JL, Roberts IS, Mumy M, Hemmati P, Bagnall K, Merlino G, Wakefield 
LM. 1997. Expression of a dominant-negative mutant TGF-beta type II receptor in 
transgenic mice reveals essential roles for TGF-beta in regulation of growth and 
differentiation in the exocrine pancreas. EMBO J 16(10):2621-33. 

Boulianne B, Porfilio EA, Pikor N, Gommerman JL. 2012. Lymphotoxin-sensitive 
microenvironments in homeostasis and inflammation. Front Immunol 3:243. 

Brach MA, Gruss HJ, Sott C, Herrmann F. 1993. The mitogenic response to tumor necrosis 
factor alpha requires c-Jun/AP-1. Mol Cell Biol 13(7):4284-90. 

Braciale TJ. 1992. Antigen processing for presentation by MHC class I molecules. Curr Opin 
Immunol 4(1):59-62. 

Brady CA, Attardi LD. 2010. p53 at a glance. J Cell Sci 123(15):2527-32. 

Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, Antonia S, Pluzanski 
A, Vokes EE, Holgado E et al. . 2015. Nivolumab versus Docetaxel in Advanced 
Squamous-Cell Non–Small-Cell Lung Cancer. N Engl J Med 373(2):123-35. 

Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, 
Salay TM, McMiller TL et al. . 2010. Phase I Study of Single-Agent Anti–Programmed 
Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, 
Pharmacodynamics, and Immunologic Correlates. J Clin Oncol 28(19):3167-75. 

Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, 
Kauh J, Odunsi K et al. . 2012. Safety and Activity of Anti–PD-L1 Antibody in Patients 
with Advanced Cancer. N Engl J Med 366(26):2455-65. 

Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, 
Werner-Felmayer G, Weiss HG, Gobel G et al. . 2006. Prognostic value of indoleamine 
2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. 
Clin Cancer Res 12(4):1144-51. 



 

Brendolan A, Caamano JH. 2012. Mesenchymal cell differentiation during lymph node 
organogenesis. Front Immunol 3:381. 

Brennen WN, Chen S, Denmeade SR, Isaacs JT. 2013. Quantification of Mesenchymal Stem 
Cells (MSCs) at sites of human prostate cancer. Oncotarget 4(1):106-17. 

Brennen WN, Kisteman LN, Isaacs JT. 2016. Rapid Selection of Mesenchymal Stem and 
Progenitor Cells in Primary Prostate Stromal Cultures. Prostate 76(6):552-64. 

Bresnihan B. 2002. Effects of anakinra on clinical and radiological outcomes in rheumatoid 
arthritis. Ann Rheum Dis 61(Suppl 2):ii74-7. 

Brokopp CE, Schoenauer R, Richards P, Bauer S, Lohmann C, Emmert MY, Weber B, Winnik S, 
Aikawa E, Graves K et al. . 2011. Fibroblast activation protein is induced by 
inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur Heart J 
32(21):2713-22. 

Bugge TH, Flick MJ, Daugherty CC, Degen JL. 1995. Plasminogen deficiency causes severe 
thrombosis but is compatible with development and reproduction. Genes Dev 
9(7):794-807. 

Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG. 2008. Aging-related defects 
are associated with adverse cardiac remodeling in a mouse model of reperfused 
myocardial infarction. J Am Coll Cardiol 51(14):1384-92. 

Busch C, Hanssen TA, Wagener C, B OB. 2002. Down-regulation of CEACAM1 in human 
prostate cancer: correlation with loss of cell polarity, increased proliferation rate, and 
Gleason grade 3 to 4 transition. Hum Pathol 33(3):290-8. 

Cabal-Hierro L, Lazo PS. 2012. Signal transduction by tumor necrosis factor receptors. Cell 
Signal 24(6):1297-305. 

Chang HY, Chi JT, Dudoit S, Bondre C, Van De Rijn M, Botstein D, Brown PO. 2002. Diversity, 
topographic differentiation, and positional memory in human fibroblasts. Proc Natl 
Acad Sci USA 99(20):12877-82 

Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. 2004. SHP-1 and SHP-2 associate with 
immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary 
human T cell stimulation, but only receptor ligation prevents T cell activation. J 
Immunol 173(2):945-54. 

Chen DS, Mellman I. 2013. Oncology meets immunology: the cancer-immunity cycle. 
Immunity 39(1):1-10. 

Chen DS, Mellman I. 2017. Elements of cancer immunity and the cancer-immune set point. 
Nature 541(7637):321-330. 

Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K. 2005. 
Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta 
signals in vivo. Proc Natl Acad Sci U S A 102(2):419-24. 



 

Chen NJ, Chio, II, Lin WJ, Duncan G, Chau H, Katz D, Huang HL, Pike KA, Hao Z, Su YW et al. 
. 2008. Beyond tumor necrosis factor receptor: TRADD signaling in toll-like 
receptors. Proc Natl Acad Sci U S A 105(34):12429-34. 

Chen W, Wang GM, Guo JM, Sun LA, Wang H. 2012. NGF/gamma-IFN inhibits androgen-
independent prostate cancer and reverses androgen receptor function through 
downregulation of FGFR2 and decrease in cancer stem cells. Stem Cells Dev 
21(18):3372-80. 

Cheng WS, Dzojic H, Nilsson B, Totterman TH, Essand M. 2006. An oncolytic conditionally 
replicating adenovirus for hormone-dependent and hormone-independent prostate 
cancer. Cancer Gene Ther 13(1):13-20. 

Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, Huo J, Yu C, 
Evans EJ, Leslie AJ et al. . 2013. Structure and interactions of the human programmed 
cell death 1 receptor. J Biol Chem 288(17):11771-85. 

Chinen T, Komai K, Muto G, Morita R, Inoue N, Yoshida H, Sekiya T, Yoshida R, Nakamura K, 
Takayanagi R et al. . Prostaglandin E2 and SOCS1 have a role in intestinal immune 
tolerance. Nat Commun 2:190-. 

Clark RA, McCoy GA, Folkvord JM, McPherson JM. 1997. TGF-beta 1 stimulates cultured 
human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin 
matrix-dependent event. J Cell Physiol 170(1):69-80. 

Cohen I, Rider P, Carmi Y, Braiman A, Dotan S, White MR, Voronov E, Martin MU, Dinarello 
CA, Apte RN. 2010. Differential release of chromatin-bound IL-1alpha discriminates 
between necrotic and apoptotic cell death by the ability to induce sterile 
inflammation. Proc Natl Acad Sci U S A 107(6):2574-9. 

Cohn L, Herrick C, Niu N, Homer R, Bottomly K. 2001. IL-4 promotes airway eosinophilia by 
suppressing IFN-gamma production: defining a novel role for IFN-gamma in the 
regulation of allergic airway inflammation. J Immunol 166(4):2760-7. 

Colotta F, Re F, Muzio M, Bertini R, Polentarutti N, Sironi M, Giri JG, Dower SK, Sims JE, 
Mantovani A. 1993. Interleukin-1 type II receptor: a decoy target for IL-1 that is 
regulated by IL-4. Science 261(5120):472-5. 

Condon MS, Bosland MC. 1999. The role of stromal cells in prostate cancer development and 
progression. In Vivo 13(1):61-5. 

Coussens LM, Fingleton B, Matrisian LM. 2002. Matrix metalloproteinase inhibitors and 
cancer: trials and tribulations. Science 295(5564):2387-92. 

Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, 
Bouck N. 1998. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 
93(7):1159-70. 

Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang 
L et al. . 2008. A perivascular origin for mesenchymal stem cells in multiple human 
organs. Cell Stem Cell 3(3):301-13. 

CRUK. Available from: http://www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/prostate-cancer - heading-Zero 



 

Culig Z, Puhr M. 2012. Interleukin-6: A multifunctional targetable cytokine in human 
prostate cancer. Mol Cell Endocrinol 360(1-2):52-8. 

Cunha GR, Hayward SW, Dahiya R, Foster BA. 1996. Smooth muscle-epithelial interactions in 
normal and neoplastic prostatic development. Acta Anat (Basel) 155(1):63-72. 

Cunha GR, Hayward SW, Wang YZ. 2002. Role of stroma in carcinogenesis of the prostate. 
Differentiation 70(9-10):473-85. 

da Silva Meirelles L, Chagastelles PC, Nardi NB. 2006. Mesenchymal stem cells reside in 
virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204-13. 

Dai W, Gupta SL. 1990. Regulation of indoleamine 2,3-dioxygenase gene expression in human 
fibroblasts by interferon-gamma. Upstream control region discriminates between 
interferon-gamma and interferon-alpha. J Biol Chem 265(32):19871-7. 

Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, Humphries MJ, Kielty CM. 
2005. Fibronectin regulates latent transforming growth factor-beta (TGF beta) by 
controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem 
280(19):18871-80. 

Darby I, Skalli O, Gabbiani G. 1990. Alpha-smooth muscle actin is transiently expressed by 
myofibroblasts during experimental wound healing. Lab Invest 63(1):21-9. 

Darby IA, Laverdet B, Bonte F, Desmouliere A. 2014. Fibroblasts and myofibroblasts in wound 
healing. Clin Cosmet Investig Dermatol 7:301-11. 

Darnell JE, Jr. 1997. STATs and gene regulation. Science 277(5332):1630-5. 

Darnell JE, Jr., Kerr IM, Stark GR. 1994. Jak-STAT pathways and transcriptional activation in 
response to IFNs and other extracellular signaling proteins. Science 264(5164):1415-
21. 

Davidsson S, Fiorentino M, Andren O, Fang F, Mucci LA, Varenhorst E, Fall K, Rider JR. 2011. 
Inflammation, focal atrophic lesions, and prostatic intraepithelial neoplasia with 
respect to risk of lethal prostate cancer. Cancer Epidemiol Biomarkers Prev 
20(10):2280-7. 

Davis MB, Vasquez-Dunddel D, Fu J, Albesiano E, Pardoll D, Kim YJ. 2011. Intratumoral 
administration of TLR4 agonist absorbed into a cellular vector improves antitumor 
responses. Clin Cancer Res 17(12):3984-92. 

Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, 
Leslie AJ, DePierres C et al. . 2006. PD-1 expression on HIV-specific T cells is 
associated with T-cell exhaustion and disease progression. Nature 443(7109):350-4. 

Dayer JM, Feige U, Edwards CK, 3rd, Burger D. 2001. Anti-interleukin-1 therapy in rheumatic 
diseases. Curr Opin Rheumatol 13(3):170-6. 

De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, Nakai Y, Isaacs WB, Nelson 
WG. 2007. Inflammation in prostate carcinogenesis. Nat Rev Cancer 7(4):256-69. 



 

De Wever O, Demetter P, Mareel M, Bracke M. 2008. Stromal myofibroblasts are drivers of 
invasive cancer growth. Int J Cancer 123(10):2229-38. 

DelaRosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R, Rico L, Camarillo 
E, Garcia L, Abad JL et al. . 2009. Requirement of IFN-gamma-mediated indoleamine 
2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human 
adipose-derived stem cells. Tissue Eng Part A 15(10):2795-806. 

Delongchamps NB, de la Roza G, Chandan V, Jones R, Sunheimer R, Threatte G, Jumbelic M, 
Haas GP. 2008. Evaluation of prostatitis in autopsied prostates--is chronic 
inflammation more associated with benign prostatic hyperplasia or cancer? J Urol 
179(5):1736-40. 

DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM. 2009. 
CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing 
protumor properties of macrophages. Cancer Cell 16(2):91-102. 

Deshpande N, Hallowes RC, Cox S, Mitchell I, Hayward S, Towler JM. 1989. Divergent effects of 
interferons on the growth of human benign prostatic hyperplasia cells in primary 
culture. J Urol 141(1):157-60. 

Desmouliere A, Gabbiani G. 1994. Modulation of fibroblastic cytoskeletal features during 
pathological situations: the role of extracellular matrix and cytokines. Cell Motil 
Cytoskeleton 29(3):195-203. 

Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. 1993. Transforming growth factor-beta 1 
induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts 
and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103-11. 

Desmouliere A, Redard M, Darby I, Gabbiani G. 1995. Apoptosis mediates the decrease in 
cellularity during the transition between granulation tissue and scar. Am J Pathol 
146(1):56-66. 

DeVries TA, Kalkofen RL, Matassa AA, Reyland ME. 2004. Protein kinase Cdelta regulates 
apoptosis via activation of STAT1. J Biol Chem 279(44):45603-12. 

Diener KR, Need EF, Buchanan G, Hayball JD. 2010. TGF-beta signalling and immunity in 
prostate tumourigenesis. Expert Opin Ther Targets 14(2):179-92. 

Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, 
Tartour E, de Chaisemartin L et al. . 2008. Long-term survival for patients with non-
small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 
26(27):4410-7. 

Dixit VM, Marks RM, Sarma V, Prochownik EV. 1989. The antimitogenic action of tumor 
necrosis factor is associated with increased AP-1/c-jun proto-oncogene transcription. 
J Biol Chem 264(28):16905-9. 

Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG. 2006. Extracellular 
matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res 
324(3):475-88. 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating 
A, Prockop D, Horwitz E. 2006. Minimal criteria for defining multipotent 



 

mesenchymal stromal cells. The International Society for Cellular Therapy position 
statement. Cytotherapy 8(4):315-7. 

Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. 2000. Uncharged tRNA activates 
GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding 
domain. Mol Cell 6(2):269-79. 

Dong S, Zhang X, He Y, Xu F, Li D, Xu W, Wang H, Yin Y, Cao J. 2013. Synergy of IL-27 and 
TNF-alpha in regulating CXCL10 expression in lung fibroblasts. Am J Respir Cell 
Mol Biol 48(4):518-30. 

Dripps DJ, Brandhuber BJ, Thompson RC, Eisenberg SP. 1991. Interleukin-1 (IL-1) receptor 
antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal 
transduction. J Biol Chem 266(16):10331-6. 

Dvorak HF. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma 
generation and wound healing. N Engl J Med 315(26):1650-9. 

Ebelt K, Babaryka G, Frankenberger B, Stief CG, Eisenmenger W, Kirchner T, Schendel DJ, 
Noessner E. 2009. Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-
H1+ lymphocyte clusters. Eur J Cancer 45(9):1664-72. 

Ebrahimnejad A, Streichert T, Nollau P, Horst AK, Wagener C, Bamberger AM, Brummer J. 2004. 
CEACAM1 enhances invasion and migration of melanocytic and melanoma cells. Am 
J Pathol 165(5):1781-7. 

Egen JG, Kuhns MS, Allison JP. 2002. CTLA-4: new insights into its biological function and 
use in tumor immunotherapy. Nat Immunol 3(7):611-8. 

Eiro N, Fernandez-Gomez J, Sacristan R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J, 
Quintas A, Escaf S, Vizoso FJ. 2016. Stromal factors involved in human prostate 
cancer development, progression and castration resistance. J Cancer Res Clin Oncol. 

Eiro N, Fernandez-Gomez J, Sacristan R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J, 
Quintas A, Escaf S, Vizoso FJ. 2017. Stromal factors involved in human prostate 
cancer development, progression and castration resistance. J Cancer Res Clin Oncol 
143(2):351-359. 

Elaraj DM, Weinreich DM, Varghese S, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, 
Turner EM, Alexander HR. 2006. The role of interleukin 1 in growth and metastasis of 
human cancer xenografts. Clin Cancer Res 12(4):1088-96. 

Emberton M, Zinner N, Michel MC, Gittelman M, Chung MK, Madersbacher S. 2007. Managing 
the progression of lower urinary tract symptoms/benign prostatic hyperplasia: 
therapeutic options for the man at risk. BJU Int 100(2):249-53. 

Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R, Kiessling F, Paschek S, 
Sozzani S, Rommelaere J et al. . 2009. TNF-alpha and the IFN-gamma-inducible 
protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce 
antitumor effects in mouse glioblastoma. Cancer Gene Ther 16(2):149-60. 

Endres R, Alimzhanov MB, Plitz T, Futterer A, Kosco-Vilbois MH, Nedospasov SA, Rajewsky K, 
Pfeffer K. 1999. Mature follicular dendritic cell networks depend on expression of 



 

lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta 
and tumor necrosis factor by B cells. J Exp Med 189(1):159-68. 

Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani 
AV, Reuter VE, Fine SW et al. . 2016. A Contemporary Prostate Cancer Grading 
System: A Validated Alternative to the Gleason Score. Eur Urol 69(3):428-35. 

Evans RA, Tian YC, Steadman R, Phillips AO. 2003. TGF-beta1-mediated fibroblast-
myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res 
282(2):90-100. 

Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. 1991. Allele-specific motifs 
revealed by sequencing of self-peptides eluted from MHC molecules. Nature 
351(6324):290-6. 

Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. 1994. Pool sequencing of natural 
HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of 
processing, and general rules. Immunogenetics 39(4):230-42. 

Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, 
Belladonna ML, Volpi C et al. . 2006. The combined effects of tryptophan starvation 
and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a 
regulatory phenotype in naive T cells. J Immunol 176(11):6752-61. 

Fang P, Hwa V, Little BM, Rosenfeld RG. 2008. IGFBP-3 sensitizes prostate cancer cells to 
interferon-gamma-induced apoptosis. Growth Horm IGF Res 18(1):38-46. 

Favero J, Lafont V. 1998. Effector pathways regulating T cell activation. Biochem Pharmacol 
56(12):1539-47. 

FDA. Approval Letter-Provenge [Internet]. Available from: 
http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedPro
ducts/ucm210215.htm 

FDA. Nivolumab (Opdivo Injection) [Internet]. Available from: 
http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm474092.htm 

FDA. Nivolumab in combination with Ipilimumab [Internet]. Available from: 
http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm465274.htm 

FDA. Nivolumab Injection [Internet]. Available from: 
http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm466576.htm 

FDA. Modification of the Dosage Regimen for Nivolumab [Internet]. Available from: 
http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm520871.htm 

Feder-Mengus C, Wyler S, Hudolin T, Ruszat R, Bubendorf L, Chiarugi A, Pittelli M, Weber WP, 
Bachmann A, Gasser TC et al. . 2008. High expression of indoleamine 2,3-dioxygenase 
gene in prostate cancer. Eur J Cancer 44(15):2266-75. 

Ferns DM, Kema IP, Buist MR, Nijman HW, Kenter GG, Jordanova ES. 2015. Indoleamine-2,3-
dioxygenase (IDO) metabolic activity is detrimental for cervical cancer patient 
survival. Oncoimmunology 4(2):e981457. 



 

Fife BT, Bluestone JA. 2008. Control of peripheral T-cell tolerance and autoimmunity via the 
CTLA-4 and PD-1 pathways. Immunol Rev 224:166-82. 

Fiorentino DF, Bond MW, Mosmann TR. 1989. Two types of mouse T helper cell. IV. Th2 
clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 
170(6):2081-95. 

Flanigan RC, Polcari AJ, Shore ND, Price TH, Sims RB, Maher JC, Whitmore JB, Corman JM. 
2013. An analysis of leukapheresis and central venous catheter use in the randomized, 
placebo controlled, phase 3 IMPACT trial of Sipuleucel-T for metastatic castrate 
resistant prostate cancer. J Urol 189(2):521-6. 

Fletcher CE. 2016. microRNAs (miRs) as treatment response and resistance biomarkers in 
advanced Castration-Resistant Prostate Cancer (CRPC). Prostate cancer UK:Making 
progress; Research networking day 

Fong L, Carroll P, Weinberg V, Chan S, Lewis J, Corman J, Amling CL, Stephenson RA, Simko J, 
Sheikh NA et al. . 2014. Activated Lymphocyte Recruitment Into the Tumor 
Microenvironment Following Preoperative Sipuleucel-T for Localized Prostate 
Cancer. J Natl Cancer Inst 106(11). 

Foote LC, Evans JW, Cifuni JM, Siracusa MC, Monteforte GM, McCole JL, D'Orazio CC, 
Hastings WD, Rothstein TL. 2004. Interleukin-4 produces a breakdown of tolerance in 
vivo with autoantibody formation and tissue damage. Autoimmunity 37(8):569-77. 

Foy SP, Sennino B, dela Cruz T, Cote JJ, Gordon EJ, Kemp F, Xavier V, Franzusoff A, Rountree 
RB, Mandl SJ. 2016. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 
Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, 
Yielding Complete Tumor Regression in Mice. PLoS One 11(2). 

Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH. 2009. 
PD-L1 regulates the development, maintenance, and function of induced regulatory T 
cells. J Exp Med 206(13):3015-29. 

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, 
Okazaki T, Byrne MC et al. . 2000. Engagement of the PD-1 immunoinhibitory 
receptor by a novel B7 family member leads to negative regulation of lymphocyte 
activation. J Exp Med 192(7):1027-34. 

Frey AB. 2008. Cancer-Induced Signaling Defects in Antitumor T Cells. Immunol Rev 
222:192-205. 

Friberg M, Jennings R, Alsarraj M, Dessureault S, Cantor A, Extermann M, Mellor AL, Munn DH, 
Antonia SJ. 2002. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T 
cell-mediated rejection. Int J Cancer 101(2):151-5. 

Fruh K, Yang Y. 1999. Antigen presentation by MHC class I and its regulation by interferon 
gamma. Curr Opin Immunol 11(1):76-81. 

Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. 2002. Tryptophan-
derived catabolites are responsible for inhibition of T and natural killer cell 
proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196(4):459-68. 



 

Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP. 1998. Vascular 
endothelial growth factor inhibits the development of dendritic cells and dramatically 
affects the differentiation of multiple hematopoietic lineages in vivo. Blood 
92(11):4150-66. 

Gade P, Roy SK, Li H, Nallar SC, Kalvakolanu DV. 2008. Critical Role for Transcription 
Factor C/EBP-β in Regulating the Expression of Death-Associated Protein Kinase 1. 
Mol Cell Biol 28(8):2528-48. 

Galon J, Angell HK, Bedognetti D, Marincola FM. 2013. The continuum of cancer 
immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 
39(1):11-26. 

Garin-Chesa P, Old LJ, Rettig WJ. 1990. Cell surface glycoprotein of reactive stromal 
fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad 
Sci U S A 87(18):7235-9. 

Gascan H, Gauchat JF, Roncarolo MG, Yssel H, Spits H, de Vries JE. 1991. Human B cell clones 
can be induced to proliferate and to switch to IgE and IgG4 synthesis by interleukin 4 
and a signal provided by activated CD4+ T cell clones. J Exp Med 173(3):747-50. 

Gatti G, Quintar AA, Andreani V, Nicola JP, Maldonado CA, Masini-Repiso AM, Rivero VE, 
Maccioni M. 2009. Expression of Toll-like receptor 4 in the prostate gland and its 
association with the severity of prostate cancer. Prostate 69(13):1387-97. 

Gentry LE, Lioubin MN, Purchio AF, Marquardt H. 1988. Molecular events in the processing of 
recombinant type 1 pre-pro-transforming growth factor beta to the mature 
polypeptide. Mol Cell Biol 8(10):4162-8. 

Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian 
S, Bizouard G et al. . 2014. Presence of B cells in tertiary lymphoid structures is 
associated with a protective immunity in patients with lung cancer. Am J Respir Crit 
Care Med 189(7):832-44. 

Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. 2009. Localized and reversible 
TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. 
Nat Cell Biol 11(11):1287-96. 

Giri D, Ozen M, Ittmann M. 2001. Interleukin-6 is an autocrine growth factor in human 
prostate cancer. Am J Pathol 159(6):2159-65. 

Gleason DF. 1966. Classification of prostatic carcinomas. Cancer Chemother Rep 50(3):125-8. 

Gleizes PE, Munger JS, Nunes I, Harpel JG, Mazzieri R, Noguera I, Rifkin DB. 1997. TGF-beta 
latency: biological significance and mechanisms of activation. Stem Cells 15(3):190-7. 

Goc J, Germain C, Vo-Bourgais TK, Lupo A, Klein C, Knockaert S, de Chaisemartin L, Ouakrim 
H, Becht E, Alifano M et al. . 2014. Dendritic cells in tumor-associated tertiary 
lymphoid structures signal a Th1 cytotoxic immune contexture and license the 
positive prognostic value of infiltrating CD8+ T cells. Cancer Res 74(3):705-15. 

Gold P, Freedman SO. 1965. Specific carcinoembryonic antigens of the human digestive 
system. J Exp Med 122(3):467-81. 



 

Goldberg MV, Maris CH, Hipkiss EL, Flies AS, Zhen L, Tuder RM, Grosso JF, Harris TJ, Getnet 
D, Whartenby KA et al. . 2007. Role of PD-1 and its ligand, B7-H1, in early fate 
decisions of CD8 T cells. Blood 110(1):186-92. 

Goldrath AW, Bevan MJ. 1999. Selecting and maintaining a diverse T-cell repertoire. Nature 
402(6759):255-62. 

Gommerman JL, Mackay F, Donskoy E, Meier W, Martin P, Browning JL. 2002. Manipulation of 
lymphoid microenvironments in nonhuman primates by an inhibitor of the 
lymphotoxin pathway. J Clin Invest 110(9):1359-69. 

Gonzalez-Reyes S, Fernandez JM, Gonzalez LO, Aguirre A, Suarez A, Gonzalez JM, Escaff S, 
Vizoso FJ. 2011. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their 
association with biochemical recurrence. Cancer Immunol Immunother 60(2):217-26. 

Gooden M, Lampen M, Jordanova ES, Leffers N, Trimbos JB, van der Burg SH, Nijman H, van 
Hall T. 2011. HLA-E expression by gynecological cancers restrains tumor-infiltrating 
CD8(+) T lymphocytes. Proc Natl Acad Sci U S A 108(26):10656-61. 

Gravina GL, Mancini A, Ranieri G, Di Pasquale B, Marampon F, Di Clemente L, Ricevuto E, 
Festuccia C. 2013. Phenotypic characterization of human prostatic stromal cells in 
primary cultures derived from human tissue samples. Int J Oncol 42(6):2116-22. 

Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G. 1995. Molecular cloning and 
characterization of a second subunit of the interleukin 1 receptor complex. J Biol 
Chem 270(23):13757-65. 

Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, 
Kollias G, Pfizenmaier K et al. . 1995. The transmembrane form of tumor necrosis 
factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 
83(5):793-802. 

Grivennikov S, Karin M. 2008. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer 
Cell 13(1):7-9. 

Groom JR, Luster AD. 2011. CXCR3 ligands: redundant, collaborative and antagonistic 
functions. Immunol Cell Biol 89(2):207-15. 

Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen HR, Pyle KJ, Hipkiss E, Vignali DA, Pardoll 
DM, Drake CG. 2009. Functionally distinct LAG-3 and PD-1 subsets on activated and 
chronically stimulated CD8 T cells. J Immunol 182(11):6659-69. 

Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, 
Getnet D, Bruno TC et al. . 2007. LAG-3 regulates CD8+ T cell accumulation and 
effector function in murine self- and tumor-tolerance systems. J Clin Invest 
117(11):3383-92. 

Grunewald SM, Werthmann A, Schnarr B, Klein CE, Brocker EB, Mohrs M, Brombacher F, 
Sebald W, Duschl A. 1998. An antagonistic IL-4 mutant prevents type I allergy in the 
mouse: inhibition of the IL-4/IL-13 receptor system completely abrogates humoral 
immune response to allergen and development of allergic symptoms in vivo. J 
Immunol 160(8):4004-9. 



 

Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M, Corr M. 2009. Caspase 1-independent 
activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis 
Rheum 60(12):3642-50. 

Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H. 2000. Over-expression of 
cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42(1):73-8. 

Guschin D, Rogers N, Briscoe J, Witthuhn B, Watling D, Horn F, Pellegrini S, Yasukawa K, 
Heinrich P, Stark GR et al. . 1995. A major role for the protein tyrosine kinase JAK1 in 
the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J 
14(7):1421-9. 

Hagglof C, Bergh A. 2012. The stroma-a key regulator in prostate function and malignancy. 
Cancers (Basel) 4(2):531-48. 

Hall JA, Maitland NJ, Stower M, Lang SH. 2002. Primary prostate stromal cells modulate the 
morphology and migration of primary prostate epithelial cells in type 1 collagen gels. 
Cancer Res 62(1):58-62. 

Hallett MA, Venmar KT, Fingleton B. 2012. Cytokine stimulation of epithelial cancer cells: the 
similar and divergent functions of IL4 and IL13. Cancer Res 72(24):6338-43. 

Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, Tangrea JA, 
Libutti SK, Linehan WM, Woodson KG. 2006. Gene promoter methylation in prostate 
tumor-associated stromal cells. J Natl Cancer Inst 98(4):255-61. 

Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. 1992. CD28-mediated signalling 
co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 
356(6370):607-9. 

Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. 2000. Regulated 
translation initiation controls stress-induced gene expression in mammalian cells. Mol 
Cell 6(5):1099-108. 

Hastie C, Masters JR, Moss SE, Naaby-Hansen S. 2008. Interferon-gamma reduces cell surface 
expression of annexin 2 and suppresses the invasive capacity of prostate cancer cells. J 
Biol Chem 283(18):12595-603. 

Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, 
Nussenzweig MC. 2001. Dendritic cells induce peripheral T cell unresponsiveness 
under steady state conditions in vivo. J Exp Med 194(6):769-79. 

Hayward SW, Cunha GR, Dahiya R. 1996. Normal development and carcinogenesis of the 
prostate. A unifying hypothesis. Ann N Y Acad Sci 784:50-62. 

Hayward SW, Haughney PC, Rosen MA, Greulich KM, Weier HU, Dahiya R, Cunha GR. 1998. 
Interactions between adult human prostatic epithelium and rat urogenital sinus 
mesenchyme in a tissue recombination model. Differentiation 63(3):131-40. 

Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD, Sudilovsky D, Cunha GR. 
2001. Malignant transformation in a nontumorigenic human prostatic epithelial cell 
line. Cancer Res 61(22):8135-42. 



 

He Y, Rivard CJ, Rozeboom L, Yu H, Ellison K, Kowalewski A, Zhou C, Hirsch FR. 2016. 
Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer 
Sci 107(9):1193-7. 

He YW, Malek TR. 1995. The IL-2 receptor gamma c chain does not function as a subunit 
shared by the IL-4 and IL-13 receptors. Implication for the structure of the IL-4 
receptor. J Immunol 155(1):9-12. 

Henriksson ML, Edin S, Dahlin AM, Oldenborg PA, Oberg A, Van Guelpen B, Rutegard J, 
Stenling R, Palmqvist R. 2011. Colorectal cancer cells activate adjacent fibroblasts 
resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol 178(3):1387-
94. 

Henry LR, Lee HO, Lee JS, Klein-Szanto A, Watts P, Ross EA, Chen WT, Cheng JD. 2007. 
Clinical implications of fibroblast activation protein in patients with colon cancer. 
Clin Cancer Res 13(6):1736-41. 

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, 
Powderly JD, Gettinger SN et al. . 2014. Predictive correlates of response to the anti-
PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563-7. 

Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. 1990. Molecular cloning and 
expression of an IL-6 signal transducer, gp130. Cell 63(6):1149-57. 

Hinson RM, Williams JA, Shacter E. 1996. Elevated interleukin 6 is induced by prostaglandin 
E2 in a murine model of inflammation: possible role of cyclooxygenase-2. Proc Natl 
Acad Sci U S A 93(10):4885-90. 

Hiscox S, Barrett-Lee P, Nicholson RI. 2011. Therapeutic targeting of tumor-stroma 
interactions. Expert Opin Ther Targets 15(5):609-21. 

Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H, Culig Z. 1998. Interleukin-6 
regulates prostate-specific protein expression in prostate carcinoma cells by 
activation of the androgen receptor. Cancer Res 58(20):4640-5. 

Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, 
Schadendorf D, Hassel JC et al. . 2010. Improved Survival with Ipilimumab in Patients 
with Metastatic Melanoma. N Engl J Med 363(8):711-23. 

Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, 
Fukumoto T, Chiba T et al. . 2001. Molecular basis for hematopoietic/mesenchymal 
interaction during initiation of Peyer's patch organogenesis. J Exp Med 193(5):621-30. 

Hsieh JT, Luo W, Song W, Wang Y, Kleinerman DI, Van NT, Lin SH. 1995. Tumor suppressive 
role of an androgen-regulated epithelial cell adhesion molecule (C-CAM) in prostate 
carcinoma cell revealed by sense and antisense approaches. Cancer Res 55(1):190-7. 

Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. 1996. TNF-dependent recruitment of the 
protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4(4):387-96. 

Hsu H, Xiong J, Goeddel DV. 1995. The TNF receptor 1-associated protein TRADD signals 
cell death and NF-kappa B activation. Cell 81(4):495-504. 



 

Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, Polyak K. 2005. Distinct 
epigenetic changes in the stromal cells of breast cancers. Nat Genet 37(8):899-905. 

Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. 2015. LAG3 and PD1 co-
inhibitory molecules collaborate to limit CD8(+) T cell signaling and dampen 
antitumor immunity in a murine ovarian cancer model. Oncotarget 6(29):27359-77. 

Huang SK, Horowitz JC. 2014. Outstaying their Welcome: The Persistent Myofibroblast in 
IPF. Austin J Pulm Respir Med 1(1):3-. 

Huang X, Lee C. 2003. Regulation of stromal proliferation, growth arrest, differentiation and 
apoptosis in benign prostatic hyperplasia by TGF-beta. Front Biosci 8:s740-9. 

Huber S, Hoffmann R, Muskens F, Voehringer D. 2010. Alternatively activated macrophages 
inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 
116(17):3311-20. 

Hughes CC. 2008. Endothelial-stromal interactions in angiogenesis. Curr Opin Hematol 
15(3):204-9. 

Hulspas R, O'Gorman MR, Wood BL, Gratama JW, Sutherland DR. 2009. Considerations for the 
control of background fluorescence in clinical flow cytometry. Cytometry B Clin 
Cytom 76(6):355-64. 

Iademarco MF, Barks JL, Dean DC. 1995. Regulation of vascular cell adhesion molecule-1 
expression by IL-4 and TNF-alpha in cultured endothelial cells. J Clin Invest 
95(1):264-71. 

Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, 
Nawa A, Nomura S et al. . 2006. Indoleamine 2,3-dioxygenase is a novel prognostic 
indicator for endometrial cancer. Br J Cancer 95(11):1555-61. 

Ishida Y, Agata Y, Shibahara K, Honjo T. 1992. Induced expression of PD-1, a novel member of 
the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 
11(11):3887-95. 

Ishigooka M, Hayami S, Hashimoto T, Suzuki Y, Katoh T, Nakada T. 1996. Relative and total 
volume of histological components in benign prostatic hyperplasia: relationships 
between histological components and clinical findings. Prostate 29(2):77-82. 

Ishihara K, Hirano T. 2002. IL-6 in autoimmune disease and chronic inflammatory 
proliferative disease. Cytokine Growth Factor Rev 13(4-5):357-68. 

Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, 
Rifkin DB, Sakai LY. 2003. Latent transforming growth factor beta-binding protein 1 
interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 
278(4):2750-7. 

Ivanovic V, Melman A, Davis-Joseph B, Valcic M, Geliebter J. 1995. Elevated plasma levels of 
TGF-beta 1 in patients with invasive prostate cancer. Nat Med 1(4):282-4. 

Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J, Zeyher C, 
Gouttefangeas C, Thomsen BM, Holm B et al. . 2014. Long-lasting disease stabilization 



 

in the absence of toxicity in metastatic lung cancer patients vaccinated with an 
epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 20(1):221-32. 

Jacob M, Chang L, Pure E. 2012. Fibroblast activation protein in remodeling tissues. Curr Mol 
Med 12(10):1220-43. 

Jafari S, Etminan M, Afshar K. 2009. Nonsteroidal anti-inflammatory drugs and prostate 
cancer: a systematic review of the literature and meta-analysis. Can Urol Assoc J 
3(4):323-330. 

James S, Fox J, Afsari F, Lee J, Clough S, Knight C, Ashmore J, Ashton P, Preham O, Hoogduijn 
M et al. . 2015. Multiparameter Analysis of Human Bone Marrow Stromal Cells 
Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. 
Stem Cell Reports 4(6):1004-15. 

Janssen M, Albrecht M, Moschler O, Renneberg H, Fritz B, Aumuller G, Konrad L. 2000. Cell 
lineage characteristics of human prostatic stromal cells cultured in vitro. Prostate 
43(1):20-30. 

Jia B, Gao Y, Li M, Shi J, Peng Y, Du X, Klocker H, Sampson N, Shen Y, Liu M et al. . 2016. 
GPR30 Promotes Prostate Stromal Cell Activation via Suppression of ERalpha 
Expression and Its Downstream Signaling Pathway. Endocrinology 157(8):3023-35. 

Johnson HM, Noon-Song EN, Dabelic R, Ahmed CM. 2013. IFN signaling: how a non-canonical 
model led to the development of IFN mimetics. Front Immunol 4:202. 

Johnston JA, Kawamura M, Kirken RA, Chen YQ, Blake TB, Shibuya K, Ortaldo JR, McVicar 
DW, O'Shea JJ. 1994. Phosphorylation and activation of the Jak-3 Janus kinase in 
response to interleukin-2. Nature 370(6485):151-3. 

Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. 2001. The soluble interleukin 6 
receptor: mechanisms of production and implications in disease. FASEB J 15(1):43-
58. 

Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, Pass HI, Gaudino G, Carbone M, 
Yang H. 2012. Cancer cell secretion of the DAMP protein HMGB1 supports 
progression in malignant mesothelioma. Cancer Res 72(13):3290-301. 

Jugdutt BI. 2003. Ventricular remodeling after infarction and the extracellular collagen 
matrix: when is enough enough? Circulation 108(11):1395-403. 

Jung DW, Che ZM, Kim J, Kim K, Kim KY, Williams D, Kim J. 2010. Tumor-stromal crosstalk 
in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer 
127(2):332-44. 

Kaiser AD, Schuster K, Gadiot J, Borkner L, Daebritz H, Schmitt C, Andreesen R, Blank C. 2012. 
Reduced tumor-antigen density leads to PD-1/PD-L1-mediated impairment of 
partially exhausted CD8(+) T cells. Eur J Immunol 42(3):662-71. 

Kalos M, June CH. 2013. Adoptive T cell transfer for cancer immunotherapy in the era of 
synthetic biology. Immunity 39(1):49-60. 



 

Kan S, Konishi E, Arita T, Ikemoto C, Takenaka H, Yanagisawa A, Katoh N, Asai J. 2014. 
Podoplanin expression in cancer-associated fibroblasts predicts aggressive behavior 
in melanoma. J Cutan Pathol 41(7):561-7. 

Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali 
DL, Laus R, Schlom J et al. . 2010. Overall survival analysis of a phase II randomized 
controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic 
castration-resistant prostate cancer. J Clin Oncol 28(7):1099-105. 

Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R. 2006. Isolation of 
mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin 
microbeads. Bone Marrow Transplant 37(10):967-76. 

Kawase A, Ishii G, Nagai K, Ito T, Nagano T, Murata Y, Hishida T, Nishimura M, Yoshida J, 
Suzuki K et al. . 2008. Podoplanin expression by cancer associated fibroblasts predicts 
poor prognosis of lung adenocarcinoma. Int J Cancer 123(5):1053-9. 

Keir ME, Francisco LM, Sharpe AH. 2007. PD-1 and its ligands in T-cell immunity. Curr Opin 
Immunol 19(3):309-14. 

Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, 
Sayegh MH, Sharpe AH. 2006. Tissue expression of PD-L1 mediates peripheral T cell 
tolerance. J Exp Med 203(4):883-95. 

Kenny BA, Miller AM, Williamson IJ, O'Connell J, Chalmers DH, Naylor AM. 1996. Evaluation 
of the pharmacological selectivity profile of alpha 1 adrenoceptor antagonists at 
prostatic alpha 1 adrenoceptors: binding, functional and in vivo studies. Br J 
Pharmacol 118(4):871-8. 

Kim IY, Ahn HJ, Lang S, Oefelein MG, Oyasu R, Kozlowski JM, Lee C. 1998. Loss of expression 
of transforming growth factor-beta receptors is associated with poor prognosis in 
prostate cancer patients. Clin Cancer Res 4(7):1625-30. 

Kim J, Myers AC, Chen L, Pardoll DM, Truong-Tran QA, Lane AP, McDyer JF, Fortuno L, 
Schleimer RP. 2005. Constitutive and inducible expression of b7 family of ligands by 
human airway epithelial cells. Am J Respir Cell Mol Biol 33(3):280-9. 

Kirschenbaum A, Klausner AP, Lee R, Unger P, Yao S, Liu XH, Levine AC. 2000. Expression of 
cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56(4):671-6. 

Klein L, Kyewski B, Allen PM, Hogquist KA. 2014. Positive and negative selection of the T cell 
repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14(6):377-91. 

Kleinerman DI, Zhang WW, Lin SH, Nguyen TV, von Eschenbach AC, Hsieh JT. 1995. 
Application of a tumor suppressor (C-CAM1)-expressing recombinant adenovirus in 
androgen-independent human prostate cancer therapy: a preclinical study. Cancer 
Res 55(13):2831-6. 

Kobayashi Y, Yamamoto K, Saido T, Kawasaki H, Oppenheim JJ, Matsushima K. 1990. 
Identification of calcium-activated neutral protease as a processing enzyme of human 
interleukin 1 alpha. Proc Natl Acad Sci U S A 87(14):5548-52. 

Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neilan CL, Haley PJ, Burn TC, Waeltz P, 
Sparks RB, Yue EW et al. . 2010. Hydroxyamidine inhibitors of indoleamine-2,3-



 

dioxygenase potently suppress systemic tryptophan catabolism and the growth of 
IDO-expressing tumors. Mol Cancer Ther 9(2):489-98. 

Kochan G, Escors D, Breckpot K, Guerrero-Setas D. 2013. Role of non-classical MHC class I 
molecules in cancer immunosuppression. Oncoimmunology 2(11). 

Komuro T. 1990. Re-evaluation of fibroblasts and fibroblast-like cells. Anat Embryol (Berl) 
182(2):103-12. 

Kopantzev EP, Vayshlya NA, Kopantseva MR, Egorov VI, Pikunov M, Zinovyeva MV, 
Vinogradova TV, Zborovskaya IB, Sverdlov ED. 2010. Cellular and molecular 
phenotypes of proliferating stromal cells from human carcinomas. Br J Cancer 
102(10):1533-40. 

Kramer G, Mitteregger D, Marberger M. 2007. Is benign prostatic hyperplasia (BPH) an 
immune inflammatory disease? Eur Urol 51(5):1202-16. 

Kramer G, Steiner GE, Handisurya A, Stix U, Haitel A, Knerer B, Gessl A, Lee C, Marberger M. 
2002. Increased expression of lymphocyte-derived cytokines in benign hyperplastic 
prostate tissue, identification of the producing cell types, and effect of differentially 
expressed cytokines on stromal cell proliferation. Prostate 52(1):43-58. 

Krieger JN, Ross SO, Riley DE. 2002. Chronic prostatitis: epidemiology and role of infection. 
Urology 60(6 Suppl):8-12; discussion 13. 

Krishnamurthy S, Warner KA, Dong Z, Imai A, Nor C, Ward BB, Helman JI, Taichman RS, 
Bellile EL, McCauley LK et al. . 2014. Endothelial interleukin-6 defines the 
tumorigenic potential of primary human cancer stem cells. Stem Cells 32(11):2845-57. 

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. 2013. Immunogenic cell death in cancer therapy. 
Annu Rev Immunol 31:51-72. 

Krummel MF, Allison JP. 1995. CD28 and CTLA-4 have opposing effects on the response of T 
cells to stimulation. J Exp Med 182(2):459-65. 

Krušlin B, Ulamec M, Tomas D. 2015. Prostate cancer stroma: an important factor in cancer 
growth and progression. Bosn J Basic Med Sci 15(2):1-8. 

Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. 2012. TGF-beta - an excellent servant but 
a bad master. J Transl Med 10:183. 

Kurita T, Wang YZ, Donjacour AA, Zhao C, Lydon JP, O'Malley BW, Isaacs JT, Dahiya R, Cunha 
GR. 2001. Paracrine regulation of apoptosis by steroid hormones in the male and 
female reproductive system. Cell Death Differ 8(2):192-200. 

Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, 
Santos R, Mahammedi H et al. . 2014a. Ipilimumab versus placebo after radiotherapy 
in patients with metastatic castration-resistant prostate cancer that had progressed 
after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, 
phase 3 trial. Lancet Oncol 15(7):700-12. 

Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJM, Krainer M, Houede N, 
Santos R, Mahammedi H et al. . 2014b. Ipilimumab versus placebo after radiotherapy 



 

in patients with metastatic castration-resistant prostate cancer that had progressed 
after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, 
phase 3 trial. Lancet Oncol 15(7):700-12. 

Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I, Timar J. 2007. Density of DC-
LAMP(+) mature dendritic cells in combination with activated T lymphocytes 
infiltrating primary cutaneous melanoma is a strong independent prognostic factor. 
Cancer Immunol Immunother 56(9):1459-69. 

Lakins MA. 2012. The role of stroma microenvironments in prostate cancer cell migration and 
metastasis. University of York. 

Lang SH, Clarke NW, George NJ, Allen TD, Testa NG. 1998. Interaction of prostate epithelial 
cells from benign and malignant tumor tissue with bone-marrow stroma. Prostate 
34(3):203-13. 

LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, Keegan AD, Garcia KC. 2008. 
Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 
system. Cell 132(2):259-72. 

Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, 
Brown JA, Nunes R et al. . 2001. PD-L2 is a second ligand for PD-1 and inhibits T cell 
activation. Nat Immunol 2(3):261-8. 

Le Bouteiller P, Lenfant F. 1996. Antigen-presenting function(s) of the non-classical HLA-E, -F 
and -G class I molecules: the beginning of a story. Res Immunol 147(5):301-13. 

Leach DR, Krummel MF, Allison JP. 1996. Enhancement of antitumor immunity by CTLA-4 
blockade. Science 271(5256):1734-6. 

Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. 2000. Failure to Regulate 
TNF-Induced NF-κB and Cell Death Responses in A20-Deficient Mice. Science 
289(5488):2350-4. 

Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. 2002. Tryptophan deprivation 
sensitizes activated T cells to apoptosis prior to cell division. Immunology 107(4):452-
60. 

Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM, Oh S, Shin JG, Yao S, Chen L et al. . 2006. 
Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-
gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 580(3):755-62. 

Lepor H. 2007. Alpha blockers for the treatment of benign prostatic hyperplasia. Rev Urol 
9(4):181-90. 

Levy L, Hill CS. 2006. Alterations in components of the TGF-beta superfamily signaling 
pathways in human cancer. Cytokine Growth Factor Rev 17(1-2):41-58. 

Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Yuan J, Zhang WJ. 2008. IL-4/Stat6 activities 
correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res 
Commun 369(2):554-60. 



 

Li HJ, Reinhardt F, Herschman HR, Weinberg RA. 2012a. Cancer-stimulated mesenchymal 
stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer 
Discov 2(9):840-55. 

Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, Yu BQ, Zhi QM, Li CL, Wang YQ et al. . 
2015. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates 
prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res 
25(5):588-603. 

Li X, Yang Y, Ashwell JD. 2002. TNF-RII and c-IAP1 mediate ubiquitination and 
degradation of TRAF2. Nature 416(6878):345-7. 

Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. 2012b. IL-1beta promotes stemness and 
invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer 11:87. 

Lin VK, Wang SY, Vazquez DV, C CX, Zhang S, Tang L. 2007. Prostatic stromal cells derived 
from benign prostatic hyperplasia specimens possess stem cell like property. Prostate 
67(12):1265-76. 

Liu J, Estes ML, Drazba JA, Liu H, Prayson R, Kondo S, Jacobs BS, Barnett GH, Barna BP. 2000. 
Anti-sense oligonucleotide of p21(waf1/cip1) prevents interleukin 4-mediated 
elevation of p27(kip1) in low grade astrocytoma cells. Oncogene 19(5):661-9. 

Liu J, Lu G, Tang F, Liu Y, Cui G. 2009. Localization of indoleamine 2,3-dioxygenase in 
human esophageal squamous cell carcinomas. Virchows Arch 455(5):441-8. 

Liu Q, Russell MR, Shahriari K, Jernigan DL, Lioni MI, Garcia FU, Fatatis A. 2013. Interleukin-
1beta promotes skeletal colonization and progression of metastatic prostate cancer 
cells with neuroendocrine features. Cancer Res 73(11):3297-305. 

Liu R, Li H, Liu L, Yu J, Ren X. 2012. Fibroblast activation protein: A potential therapeutic 
target in cancer. Cancer Biol Ther 13(3):123-9. 

Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA. 2006. Targeting tumor-associated 
fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J 
Clin Invest 116(7):1955-62. 

Loke P, Allison JP. 2003. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. 
Proc Natl Acad Sci U S A 100(9):5336-41. 

Lomedico PT, Gubler U, Hellmann CP, Dukovich M, Giri JG, Pan YC, Collier K, Semionow R, 
Chua AO, Mizel SB. 1984. Cloning and expression of murine interleukin-1 cDNA in 
Escherichia coli. Nature 312(5993):458-62. 

Lopez AR, Cook J, Deininger PL, Derynck R. 1992. Dominant negative mutants of 
transforming growth factor-beta 1 inhibit the secretion of different transforming 
growth factor-beta isoforms. Mol Cell Biol 12(4):1674-9. 

Lowsley O. 1912. The Development of the Human Prostate Gland. American Journal of 
Anatomy 13(3). 



 

Luheshi N, Davies G, Poon E, Wiggins K, McCourt M, Legg J. 2014. Th1 cytokines are more 
effective than Th2 cytokines at licensing anti-tumour functions in CD40-activated 
human macrophages in vitro. Eur J Immunol 44(1):162-72. 

Luther SA, Ansel KM, Cyster JG. 2003. Overlapping roles of CXCL13, interleukin 7 receptor 
alpha, and CCR7 ligands in lymph node development. J Exp Med 197(9):1191-8. 

Lyons RM, Gentry LE, Purchio AF, Moses HL. 1990. Mechanism of activation of latent 
recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 110(4):1361-7. 

Mackay F, Browning JL. 1998. Turning off follicular dendritic cells. Nature 395(6697):26-7. 

Mackay F, Browning JL, Lawton P, Shah SA, Comiskey M, Bhan AK, Mizoguchi E, Terhorst C, 
Simpson SJ. 1998. Both the lymphotoxin and tumor necrosis factor pathways are 
involved in experimental murine models of colitis. Gastroenterology 115(6):1464-75. 

Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. 2009. Prostvac-VF: a vector-based 
vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs 18(7):1001-11. 

Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM. 2006. FOXP3+CD4+CD25+ 
adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by 
a prostaglandin E2-dependent mechanism. J Immunol 177(1):246-54. 

Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, Arora V, Mak TW, 
Lacasse EC, Waring J et al. . 2008. Both cIAP1 and cIAP2 regulate TNFalpha-
mediated NF-kappaB activation. Proc Natl Acad Sci U S A 105(33):11778-83. 

Maitland NJ, Collins A. 2005. A tumour stem cell hypothesis for the origins of prostate cancer. 
BJU Int 96(9):1219-23. 

Maitland NJ, Collins AT. 2008. Prostate cancer stem cells: a new target for therapy. J Clin 
Oncol 26(17):2862-70. 

Makela S, Santti R, Martikainen P, Nienstedt W, Paranko J. 1990. The influence of steroidal and 
nonsteroidal estrogens on the 5 alpha-reduction of testosterone by the ventral 
prostate of the rat. J Steroid Biochem 35(2):249-56. 

Malabarba MG, Rui H, Deutsch HH, Chung J, Kalthoff FS, Farrar WL, Kirken RA. 1996. 
Interleukin-13 is a potent activator of JAK3 and STAT6 in cells expressing 
interleukin-2 receptor-gamma and interleukin-4 receptor-alpha. Biochem J 319 ( Pt 
3):865-72. 

Malinowska K, Neuwirt H, Cavarretta IT, Bektic J, Steiner H, Dietrich H, Moser PL, Fuchs D, 
Hobisch A, Culig Z. 2009. Interleukin-6 stimulation of growth of prostate cancer in 
vitro and in vivo through activation of the androgen receptor. Endocr Relat Cancer 
16(1):155-69. 

Malmberg KJ, Levitsky V, Norell H, de Matos CT, Carlsten M, Schedvins K, Rabbani H, Moretta 
A, Soderstrom K, Levitskaya J et al. . 2002. IFN-gamma protects short-term ovarian 
carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J Clin 
Invest 110(10):1515-23. 



 

Malynn BA, Ma A. 2009. A20 takes on tumors: tumor suppression by an ubiquitin-editing 
enzyme. J Exp Med 206(5):977-80. 

Marberger M, Roehrborn CG, Marks LS, Wilson T, Rittmaster RS. 2006. Relationship among 
serum testosterone, sexual function, and response to treatment in men receiving 
dutasteride for benign prostatic hyperplasia. J Clin Endocrinol Metab 91(4):1323-8. 

Marrison J, Raty L, Marriott P, O'Toole P. 2013. Ptychography--a label free, high-contrast 
imaging technique for live cells using quantitative phase information. Sci Rep 3:2369. 

Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering 
activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417-
26. 

Massague J, Blain SW, Lo RS. 2000. TGFbeta signaling in growth control, cancer, and 
heritable disorders. Cell 103(2):295-309. 

Masteller EL, Chuang E, Mullen AC, Reiner SL, Thompson CB. 2000. Structural analysis of 
CTLA-4 function in vivo. J Immunol 164(10):5319-27. 

Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele 
S, Shrikant P et al. . 2010a. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are 
negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci 
U S A 107(17):7875-80. 

Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele 
S, Shrikant P et al. . 2010b. Tumor-infiltrating NY-ESO-1–specific CD8(+) T cells are 
negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci 
U S A 107(17):7875-80. 

Mazzarino P, Pietra G, Vacca P, Falco M, Colau D, Coulie P, Moretta L, Mingari MC. 2005. 
Identification of effector-memory CMV-specific T lymphocytes that kill CMV-
infected target cells in an HLA-E-restricted fashion. Eur J Immunol 35(11):3240-7. 

McMahan CJ, Slack JL, Mosley B, Cosman D, Lupton SD, Brunton LL, Grubin CE, Wignall JM, 
Jenkins NA, Brannan CI et al. . 1991. A novel IL-1 receptor, cloned from B cells by 
mammalian expression, is expressed in many cell types. EMBO J 10(10):2821-32. 

McNeal JE. 1978. Origin and evolution of benign prostatic enlargement. Invest Urol 15(4):340-
5. 

McNeal JE. 1988. Normal histology of the prostate. Am J Surg Pathol 12(8):619-33. 

McNeal JE, Gleason DF. 1991. [Gleason's classification of prostatic adenocarcinomas]. Ann 
Pathol 11(3):163-8. 

McPhail S. 2008. SWPHO Briefing 4: Prostate cancer survival by stage. 

Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R, Acha-Orbea H, Finke D. 
2007. Ectopic lymphoid-organ development occurs through interleukin 7-mediated 
enhanced survival of lymphoid-tissue-inducer cells. Immunity 26(5):643-54. 



 

Mellman I, Coukos G, Dranoff G. 2011. Cancer immunotherapy comes of age. Nature 
480(7378):480-9. 

Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY. 1998. 
Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor 
cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 
92(12):4778-91. 

Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. 2007. Novel 
tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the 
antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. 
Cancer Res 67(15):7082-7. 

Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. 2010. An 
interaction between kynurenine and the aryl hydrocarbon receptor can generate 
regulatory T cells. J Immunol 185(6):3190-8. 

Miao JW, Liu LJ, Huang J. 2014. Interleukin-6-induced epithelial-mesenchymal transition 
through signal transducer and activator of transcription 3 in human cervical 
carcinoma. Int J Oncol 45(1):165-76. 

Micheau O, Tschopp J. 2003. Induction of TNF receptor I-mediated apoptosis via two 
sequential signaling complexes. Cell 114(2):181-90. 

Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, Steadman R. 2013. 
Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to 
myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal 
growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 
288(21):14824-38. 

Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P. 2006. 
CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate 
cancer patients. J Immunol 177(10):7398-405. 

Mima K, Hayashi H, Kuroki H, Nakagawa S, Okabe H, Chikamoto A, Watanabe M, Beppu T, 
Baba H. 2013. Epithelial-mesenchymal transition expression profiles as a prognostic 
factor for disease-free survival in hepatocellular carcinoma: Clinical significance of 
transforming growth factor-beta signaling. Oncol Lett 5(1):149-154. 

Miyazaki T, Dierich A, Benoist C, Mathis D. 1996. Independent modes of natural killing 
distinguished in mice lacking Lag3. Science 272(5260):405-8. 

Miyazono K, Hellman U, Wernstedt C, Heldin CH. 1988. Latent high molecular weight complex 
of transforming growth factor beta 1. Purification from human platelets and 
structural characterization. J Biol Chem 263(13):6407-15. 

Miyazono K, Olofsson A, Colosetti P, Heldin CH. 1991. A role of the latent TGF-beta 1-binding 
protein in the assembly and secretion of TGF-beta 1. EMBO J 10(5):1091-101. 

Miyazono K, Thyberg J, Heldin CH. 1992. Retention of the transforming growth factor-beta 1 
precursor in the Golgi complex in a latent endoglycosidase H-sensitive form. J Biol 
Chem 267(8):5668-75. 



 

Monici M. 2005. Cell and tissue autofluorescence research and diagnostic applications. 
Biotechnol Annu Rev 11:227-56. 

Morris SC, Gause WC, Finkelman FD. 2000. IL-4 suppression of in vivo T cell activation and 
antibody production. J Immunol 164(4):1734-40. 

Morrissey C, Lai JS, Brown LG, Wang YC, Roudier MP, Coleman IM, Gulati R, Vakar-Lopez F, 
True LD, Corey E et al. . 2010. The expression of osteoclastogenesis-associated factors 
and osteoblast response to osteolytic prostate cancer cells. Prostate 70(4):412-24. 

Motz GT, Coukos G. 2013. Deciphering and reversing tumor immune suppression. Immunity 
39(1):61-73. 

Moyer VA. 2012. Screening for prostate cancer: U.S. Preventive Services Task Force 
recommendation statement. Ann Intern Med 157(2):120-34. 

Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, Walter J, Karnatz N, 
Lamszus K, Rogiers X et al. . 2007. Stromal fibroblasts in colorectal liver metastases 
originate from resident fibroblasts and generate an inflammatory microenvironment. 
Am J Pathol 171(5):1608-18. 

Mueller SN, Germain RN. 2009. Stromal cell contributions to the homeostasis and 
functionality of the immune system. Nat Rev Immunol 9(9):618-29. 

Mukhopadhyay S, Hoidal JR, Mukherjee TK. 2006. Role of TNFα in pulmonary 
pathophysiology. Respir Res 7(1):125. 

Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat 
C, Matthay MA et al. . 1999. The integrin alpha v beta 6 binds and activates latent 
TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 
96(3):319-28. 

Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. 1999. Inhibition of T 
cell proliferation by macrophage tryptophan catabolism. J Exp Med 189(9):1363-72. 

Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL. 2005. GCN2 kinase 
in T cells mediates proliferative arrest and anergy induction in response to 
indoleamine 2,3-dioxygenase. Immunity 22(5):633-42. 

Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, 
Mellor AL. 2004. Expression of indoleamine 2,3-dioxygenase by plasmacytoid 
dendritic cells in tumor-draining lymph nodes. J Clin Invest 114(2):280-90. 

Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. 1998. 
Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 
281(5380):1191-3. 

Muraglia A, Cancedda R, Quarto R. 2000. Clonal mesenchymal progenitors from human bone 
marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113 ( Pt 
7):1161-6. 



 

Murata T, Husain SR, Mohri H, Puri RK. 1998. Two different IL-13 receptor chains are 
expressed in normal human skin fibroblasts, and IL-4 and IL-13 mediate signal 
transduction through a common pathway. Int Immunol 10(8):1103-10. 

Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A. 1998. The human toll signaling 
pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream 
of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 
187(12):2097-101. 

Nackiewicz D, Dan M, He W, Kim R, Salmi A, Rutti S, Westwell-Roper C, Cunningham A, Speck 
M, Schuster-Klein C et al. . 2014. TLR2/6 and TLR4-activated macrophages contribute 
to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. 
Diabetologia 57(8):1645-54. 

Nakayama Y, Brinkman CC, Bromberg JS. 2015. Murine fibroblastic reticular cells from lymph 
node interact with CD4(+) T cells through CD40-CD40L. Transplantation 99(8):1561-7. 

Nappo G. 2016. Role of IL-4 in the prostate cancer microenvironment. University of York. 

Nauta AJ, Fibbe WE. 2007. Immunomodulatory properties of mesenchymal stromal cells. 
Blood 110(10):3499-506. 

Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, Hodges MG, 
Jelinek I, Madala S, Karpati S et al. . 2010. Bone marrow stromal cells use TGF-beta to 
suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl 
Acad Sci U S A 107(12):5652-7. 

NICE. 2013. Draft scope for the proposed appraisal of enzalutamide for treating metastatic 
hormone- relapsed prostate cancer not previously treated with chemotherapy. 

Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi 
A, Hiai H, Minato N et al. . 2001. Autoimmune dilated cardiomyopathy in PD-1 
receptor-deficient mice. Science 291(5502):319-22. 

Niu YN, Xia SJ. 2009. Stroma-epithelium crosstalk in prostate cancer. Asian J Androl 
11(1):28-35. 

Norstrom MM, Radestad E, Stikvoort A, Egevad L, Bergqvist M, Henningsohn L, Mattsson J, 
Levitsky V, Uhlin M. 2014. Novel method to characterize immune cells from human 
prostate tissue. Prostate 74(14):1391-9. 

Norström MM, Rådestad E, Sundberg B, Mattsson J, Henningsohn L, Levitsky V, Uhlin M. 2016. 
Progression of benign prostatic hyperplasia is associated with pro-inflammatory 
mediators and chronic activation of prostate-infiltrating lymphocytes. Oncotarget 
7(17):23581-93. 

O'Hara A, Lim FL, Mazzatti DJ, Trayhurn P. 2012. Stimulation of inflammatory gene 
expression in human preadipocytes by macrophage-conditioned medium: 
upregulation of IL-6 production by macrophage-derived IL-1beta. Mol Cell 
Endocrinol 349(2):239-47. 

O'Neill LA. 2008. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of 
progress. Immunol Rev 226:10-8. 



 

Obiri NI, Debinski W, Leonard WJ, Puri RK. 1995. Receptor for interleukin 13. Interaction 
with interleukin 4 by a mechanism that does not involve the common gamma chain 
shared by receptors for interleukins 2, 4, 7, 9, and 15. J Biol Chem 270(15):8797-804. 

Oettgen HF, Carswell EA, Kassel RL, Fiore N, Williamson B, Hoffmann MK, Haranaka K, Old 
LJ. 1980. Endotoxin-induced tumor necrosis factor. Recent Results Cancer Res 75:207-
12. 

Okamoto T, Aoyama T, Nakayama T, Nakamata T, Hosaka T, Nishijo K, Nakamura T, Kiyono T, 
Toguchida J. 2002. Clonal heterogeneity in differentiation potential of immortalized 
human mesenchymal stem cells. Biochem Biophys Res Commun 295(2):354-61. 

Olofsson A, Ichijo H, Moren A, ten Dijke P, Miyazono K, Heldin CH. 1995. Efficient association 
of an amino-terminally extended form of human latent transforming growth factor-
beta binding protein with the extracellular matrix. J Biol Chem 270(52):31294-7. 

Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstrom U, Heldin CH. 1992. Transforming 
growth factor-beta 1, -beta 2, and -beta 3 secreted by a human glioblastoma cell line. 
Identification of small and different forms of large latent complexes. J Biol Chem 
267(27):19482-8. 

Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. 1999. Carcinoma-
associated fibroblasts direct tumor progression of initiated human prostatic 
epithelium. Cancer Res 59(19):5002-11. 

Onyema OO, Decoster L, Njemini R, Forti LN, Bautmans I, De Waele M, Mets T. 2015. 
Chemotherapy-induced changes and immunosenescence of CD8+ T-cells in patients 
with breast cancer. Anticancer Res 35(3):1481-9. 

Orchansky PL, Ayres SD, Hilton DJ, Schrader JW. 1997. An interleukin (IL)-13 receptor 
lacking the cytoplasmic domain fails to transduce IL-13-induced signals and inhibits 
responses to IL-4. J Biol Chem 272(36):22940-7. 

Orchansky PL, Kwan R, Lee F, Schrader JW. 1999. Characterization of the cytoplasmic domain 
of interleukin-13 receptor-alpha. J Biol Chem 274(30):20818-25. 

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, 
Richardson AL, Weinberg RA. 2005. Stromal fibroblasts present in invasive human 
breast carcinomas promote tumor growth and angiogenesis through elevated SDF-
1/CXCL12 secretion. Cell 121(3):335-48. 

Ostermann E, Garin-Chesa P, Heider KH, Kalat M, Lamche H, Puri C, Kerjaschki D, Rettig WJ, 
Adolf GR. 2008. Effective immunoconjugate therapy in cancer models targeting a 
serine protease of tumor fibroblasts. Clin Cancer Res 14(14):4584-92. 

Ozato K, Tsujimura H, Tamura T. 2002. Toll-like receptor signaling and regulation of cytokine 
gene expression in the immune system. Biotechniques Suppl:66-8, 70, 72 passim. 

Packer JR, Maitland NJ. 2016. The molecular and cellular origin of human prostate cancer. 
Biochim Biophys Acta 1863(6 Pt A):1238-60. 

Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. 2013. Critical Role of Transforming 
Growth Factor Beta in Different Phases of Wound Healing. Adv Wound Care (New 
Rochelle) 2(5):215-24. 



 

Palomo J, Dietrich D, Martin P, Palmer G, Gabay C. 2015. The interleukin (IL)-1 cytokine 
family--Balance between agonists and antagonists in inflammatory diseases. Cytokine 
76(1):25-37. 

Palucka K, Banchereau J. 2013. Dendritic-cell-based therapeutic cancer vaccines. Immunity 
39(1):38-48. 

Pan K, Wang H, Chen MS, Zhang HK, Weng DS, Zhou J, Huang W, Li JJ, Song HF, Xia JC. 
2008. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular 
carcinoma. J Cancer Res Clin Oncol 134(11):1247-53. 

Parish CR. 2003. Cancer immunotherapy: the past, the present and the future. Immunol Cell 
Biol 81(2):106-13. 

Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ. 1999. Fibroblast 
activation protein, a dual specificity serine protease expressed in reactive human 
tumor stromal fibroblasts. J Biol Chem 274(51):36505-12. 

Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, Yao S, Tsushima F, 
Narazaki H, Anand S et al. . 2010. B7-H1/CD80 interaction is required for the 
induction and maintenance of peripheral T-cell tolerance. Blood 116(8):1291-8. 

Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, 
Thompson CB, Riley JL. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by 
distinct mechanisms. Mol Cell Biol 25(21):9543-53. 

Peduto L, Dulauroy S, Lochner M, Spath GF, Morales MA, Cumano A, Eberl G. 2009. 
Inflammation recapitulates the ontogeny of lymphoid stromal cells. J Immunol 
182(9):5789-99. 

Peehl DM. 2005. Primary cell cultures as models of prostate cancer development. Endocr Relat 
Cancer 12(1):19-47. 

Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. 2009. Blockade of CTLA-4 on 
both effector and regulatory T cell compartments contributes to the antitumor 
activity of anti-CTLA-4 antibodies. J Exp Med 206(8):1717-25. 

Perry KT, Anthony CT, Case T, Steiner MS. 1997. Transforming growth factor beta as a 
clinical biomarker for prostate cancer. Urology 49(1):151-5. 

Pestka S, Kotenko SV, Muthukumaran G, Izotova LS, Cook JR, Garotta G. 1997. The interferon 
gamma (IFN-gamma) receptor: a paradigm for the multichain cytokine receptor. 
Cytokine Growth Factor Rev 8(3):189-206. 

Pestka S, Krause CD, Walter MR. 2004. Interferons, interferon-like cytokines, and their 
receptors. Immunol Rev 202:8-32. 

Pinzon-Charry A, Maxwell T, Lopez JA. 2005. Dendritic cell dysfunction in cancer: a 
mechanism for immunosuppression. Immunol Cell Biol 83(5):451-61. 

Placencio VR, Li X, Sherrill TP, Fritz G, Bhowmick NA. 2010. Bone marrow derived 
mesenchymal stem cells incorporate into the prostate during regrowth. PLoS One 
5(9):e12920. 



 

Prall F, Duhrkop T, Weirich V, Ostwald C, Lenz P, Nizze H, Barten M. 2004. Prognostic role of 
CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without 
microsatellite instability. Hum Pathol 35(7):808-16. 

Prieto PA, Yang JC, Sherry RM, Hughes MS, Kammula US, White DE, Levy CL, Rosenberg SA, 
Phan GQ. 2012. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 
patients with metastatic melanoma. Clin Cancer Res 18(7):2039-47. 

Prins GS, Birch L. 1995. The developmental pattern of androgen receptor expression in rat 
prostate lobes is altered after neonatal exposure to estrogen. Endocrinology 
136(3):1303-14. 

Prins GS, Putz O. 2008. Molecular signaling pathways that regulate prostate gland 
development. Differentiation 76(6):641-59. 

Prokopchuk O, Liu Y, Henne-Bruns D, Kornmann M. 2005. Interleukin-4 enhances proliferation 
of human pancreatic cancer cells: evidence for autocrine and paracrine actions. Br J 
Cancer 92(5):921-8. 

Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, 
Laharrague P et al. . 2005. Immunomodulatory effect of human adipose tissue-derived 
adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J 
Haematol 129(1):118-29. 

Rane JK, Scaravilli M, Ylipaa A, Pellacani D, Mann VM, Simms MS, Nykter M, Collins AT, 
Visakorpi T, Maitland NJ. 2015. MicroRNA expression profile of primary prostate 
cancer stem cells as a source of biomarkers and therapeutic targets. Eur Urol 67(1):7-
10. 

Ranganath S, Ouyang W, Bhattarcharya D, Sha WC, Grupe A, Peltz G, Murphy KM. 1998. 
GATA-3-dependent enhancer activity in IL-4 gene regulation. J Immunol 161(8):3822-
6. 

Ray JC, Flynn JL, Kirschner DE. 2009. Synergy between individual TNF-dependent functions 
determines granuloma performance for controlling Mycobacterium tuberculosis 
infection. J Immunol 182(6):3706-17. 

Ricote M, Garcia-Tunon I, Bethencourt FR, Fraile B, Paniagua R, Royuela M. 2004. Interleukin-1 
(IL-1alpha and IL-1beta) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate 
carcinoma. Cancer 100(7):1388-96. 

Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, 
Grob JJ et al. . 2011. Ipilimumab plus dacarbazine for previously untreated metastatic 
melanoma. N Engl J Med 364(26):2517-26. 

Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. 1985. Type beta 
transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl 
Acad Sci U S A 82(1):119-23. 

Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, 
Falanga V, Kehrl JH et al. . 1986. Transforming growth factor type beta: rapid 
induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in 
vitro. Proc Natl Acad Sci U S A 83(12):4167-71. 



 

Roca H, Craig MJ, Ying C, Varsos ZS, Czarnieski P, Alva AS, Hernandez J, Fuller D, Daignault S, 
Healy PN et al. . 2012. IL-4 induces proliferation in prostate cancer PC3 cells under 
nutrient-depletion stress through the activation of the JNK-pathway and survivin up-
regulation. J Cell Biochem 113(5):1569-80. 

Rock KL, Reits E, Neefjes J. 2016. Present Yourself! By MHC Class I and MHC Class II 
Molecules. Trends Immunol 37(11):724-737. 

Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis 
E, Leibovich BC et al. . 2004. Augmentation of T cell levels and responses induced by 
androgen deprivation. J Immunol 173(10):6098-108. 

Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T, Greenfield EA, Liang SC, Sharpe AH, 
Lichtman AH et al. . 2003. Endothelial expression of PD-L1 and PD-L2 down-regulates 
CD8+ T cell activation and cytolysis. Eur J Immunol 33(11):3117-26. 

Rodríguez M, Cabal-Hierro L, Carcedo MT, Iglesias JM, Artime N, Darnay BG, Lazo PS. 2011. 
NF-κB Signal Triggering and Termination by Tumor Necrosis Factor Receptor 2. J 
Biol Chem 286(26):22814-24. 

Rodriguez-Berriguete G, Sanchez-Espiridion B, Cansino JR, Olmedilla G, Martinez-Onsurbe P, 
Sanchez-Chapado M, Paniagua R, Fraile B, Royuela M. 2013. Clinical significance of 
both tumor and stromal expression of components of the IL-1 and TNF-alpha 
signaling pathways in prostate cancer. Cytokine 64(2):555-63. 

Rolling C, Treton D, Pellegrini S, Galanaud P, Richard Y. 1996. IL4 and IL13 receptors share 
the gamma c chain and activate STAT6, STAT3 and STAT5 proteins in normal 
human B cells. FEBS Lett 393(1):53-6. 

Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. 1995. The origin of the 
myofibroblasts in breast cancer. Recapitulation of tumor environment in culture 
unravels diversity and implicates converted fibroblasts and recruited smooth muscle 
cells. J Clin Invest 95(2):859-73. 

Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. 1995a. The TNFR2-TRAF signaling 
complex contains two novel proteins related to baculoviral inhibitor of apoptosis 
proteins. Cell 83(7):1243-52. 

Rothe M, Sarma V, Dixit VM, Goeddel DV. 1995b. TRAF2-mediated activation of NF-kappa B 
by TNF receptor 2 and CD40. Science 269(5229):1424-7. 

Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, 
Muller S, Iannacone M, Traversari C et al. . 2004. HMGB1 is an endogenous immune 
adjuvant released by necrotic cells. EMBO Rep 5(8):825-30. 

Roy SK, Wachira SJ, Weihua X, Hu J, Kalvakolanu DV. 2000. CCAAT/enhancer-binding 
protein-beta regulates interferon-induced transcription through a novel element. J 
Biol Chem 275(17):12626-32. 

Royuela M, Ricote M, Parsons MS, Garcia-Tunon I, Paniagua R, de Miguel MP. 2004. 
Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in 
benign, hyperplasic, and malignant human prostate. J Pathol 202(1):41-9. 



 

Rozali EN, Hato SV, Robinson BW, Lake RA, Lesterhuis WJ. 2012. Programmed death ligand 2 
in cancer-induced immune suppression. Clin Dev Immunol 2012:656340. 

S. Beck DG, H. Inoko, L. Rowen. 1999. Complete sequence and gene map of a human major 
histocompatibility complex. The MHC sequencing consortium. Nature 401(6756):921-
3. 

Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, Locksley RM. 1990. Cure of murine 
leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-
dependent, interferon gamma-independent mechanism. J Exp Med 171(1):115-27. 

Saesen E, Sarrazin S, Laguri C, Sadir R, Maurin D, Thomas A, Imberty A, Lortat-Jacob H. 2013. 
Insights into the mechanism by which interferon-gamma basic amino acid clusters 
mediate protein binding to heparan sulfate. J Am Chem Soc 135(25):9384-90. 

Saigusa S, Toiyama Y, Tanaka K, Yokoe T, Okugawa Y, Fujikawa H, Matsusita K, Kawamura M, 
Inoue Y, Miki C et al. . 2011. Cancer-associated fibroblasts correlate with poor 
prognosis in rectal cancer after chemoradiotherapy. Int J Oncol 38(3):655-63. 

Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M. 2008. Hepatocyte 
necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-
induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14(2):156-65. 

Salinas CA, Kwon EM, FitzGerald LM, Feng Z, Nelson PS, Ostrander EA, Peters U, Stanford JL. 
2010. Use of aspirin and other nonsteroidal antiinflammatory medications in relation 
to prostate cancer risk. Am J Epidemiol 172(5):578-90. 

Santer FR, Malinowska K, Culig Z, Cavarretta IT. 2010. Interleukin-6 trans-signalling 
differentially regulates proliferation, migration, adhesion and maspin expression in 
human prostate cancer cells. Endocr Relat Cancer 17(1):241-53. 

Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G. 1988. Smooth-muscle differentiation 
in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41(5):707-
12. 

Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, 
Ambrosone C et al. . 2005. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a 
high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian 
cancer. Proc Natl Acad Sci U S A 102(51):18538-43. 

Sato Y, Goto Y, Narita N, Hoon DS. 2009. Cancer Cells Expressing Toll-like Receptors and the 
Tumor Microenvironment. Cancer Microenviron 2 Suppl 1:205-14. 

Sato Y, Rifkin DB. 1989. Inhibition of endothelial cell movement by pericytes and smooth 
muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by 
plasmin during co-culture. J Cell Biol 109(1):309-15. 

Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T, 
Ludewig B. 2008. Restoration of lymphoid organ integrity through the interaction of 
lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol 9(6):667-75. 

Schauer IG, Rowley DR. 2011. The Functional Role of Reactive Stroma in Benign Prostatic 
Hyperplasia. Differentiation 82(4-5):200-10. 



 

Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. 2011. The pro- and anti-inflammatory 
properties of the cytokine interleukin-6. Biochim Biophys Acta 1813(5):878-88. 

Schenk E, Essand M, Kraaij R, Adamson R, Maitland NJ, Bangma CH. 2014. Preclinical safety 
assessment of Ad[I/PPT-E1A], a novel oncolytic adenovirus for prostate cancer. Hum 
Gene Ther Clin Dev 25(1):7-15. 

Schmid BV, Kesmir C, de Boer RJ. 2010. Quantifying how MHC polymorphism prevents 
pathogens from adapting to the antigen presentation pathway. Epidemics 2(3):99-108. 

Schnyder B, Lugli S, Feng N, Etter H, Lutz RA, Ryffel B, Sugamura K, Wunderli-Allenspach H, 
Moser R. 1996. Interleukin-4 (IL-4) and IL-13 bind to a shared heterodimeric 
complex on endothelial cells mediating vascular cell adhesion molecule-1 induction in 
the absence of the common gamma chain. Blood 87(10):4286-95. 

Schultz-Cherry S, Lawler J, Murphy-Ullrich JE. 1994a. The type 1 repeats of thrombospondin 1 
activate latent transforming growth factor-beta. J Biol Chem 269(43):26783-8. 

Schultz-Cherry S, Ribeiro S, Gentry L, Murphy-Ullrich JE. 1994b. Thrombospondin binds and 
activates the small and large forms of latent transforming growth factor-beta in a 
chemically defined system. J Biol Chem 269(43):26775-82. 

Schwarze MM, Hawley RG. 1995. Prevention of myeloma cell apoptosis by ectopic bcl-2 
expression or interleukin 6-mediated up-regulation of bcl-xL. Cancer Res 55(11):2262-
5. 

Sempowski GD, Rozenblit J, Smith TJ, Phipps RP. 1998. Human orbital fibroblasts are 
activated through CD40 to induce proinflammatory cytokine production. Am J 
Physiol 274(3 Pt 1):C707-14. 

Sentani K, Matsuda M, Oue N, Uraoka N, Naito Y, Sakamoto N, Yasui W. 2014. 
Clinicopathological significance of MMP-7, laminin gamma2 and EGFR expression at 
the invasive front of gastric carcinoma. Gastric Cancer 17(3):412-22. 

Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB, 
Drake CG. 2008. Phenotypic Analysis of Prostate-Infiltrating Lymphocytes Reveals 
T(H)17 and T(reg) Skewing. Clin Cancer Res 14(11):3254-61. 

Sfanos KS, Bruno TC, Meeker AK, De Marzo AM, Isaacs WB, Drake CG. 2009. Human 
prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate 
69(15):1694-703. 

Shah W, Yan X, Jing L, Zhou Y, Chen H, Wang Y. 2011. A reversed CD4/CD8 ratio of tumor-
infiltrating lymphocytes and a high percentage of CD4(+)FOXP3(+) regulatory T cells 
are significantly associated with clinical outcome in squamous cell carcinoma of the 
cervix. Cell Mol Immunol 8(1):59-66. 

Shariat SF, Andrews B, Kattan MW, Kim J, Wheeler TM, Slawin KM. 2001. Plasma levels of 
interleukin-6 and its soluble receptor are associated with prostate cancer progression 
and metastasis. Urology 58(6):1008-15. 

Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K, Luo J, Zhu L, Lin Y, Huang M et 
al. . 2003. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. 
Clin Cancer Res 9(3):961-8. 



 

Shen X, Hong L, Sun H, Shi M, Song Y. 2009. The expression of high-mobility group protein 
box 1 correlates with the progression of non-small cell lung cancer. Oncol Rep 
22(3):535-9. 

Sheu BC, Chiou SH, Lin HH, Chow SN, Huang SC, Ho HN, Hsu SM. 2005. Up-regulation of 
inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular 
perforin expression of tumor-infiltrating CD8+ T lymphocytes in human cervical 
carcinoma. Cancer Res 65(7):2921-9. 

Shi JF, Xu SX, He P, Xi ZH. 2014. Expression of carcinoembryonic antigen-related cell 
adhesion molecule 1(CEACAM1) and its correlation with angiogenesis in gastric 
cancer. Pathol Res Pract 210(8):473-6. 

Siegel PM, Massague J. 2003. Cytostatic and apoptotic actions of TGF-beta in homeostasis and 
cancer. Nat Rev Cancer 3(11):807-21. 

Singh UP, Singh S, Iqbal N, Weaver CT, McGhee JR, Lillard JW, Jr. 2003. IFN-gamma-
inducible chemokines enhance adaptive immunity and colitis. J Interferon Cytokine 
Res 23(10):591-600. 

Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, Scher HI, Chin K, Gagnier 
P, McHenry MB et al. . 2013. Ipilimumab alone or in combination with radiotherapy 
in metastatic castration-resistant prostate cancer: results from an open-label, 
multicenter phase I/II study. Ann Oncol 24(7):1813-21. 

Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH. 2000. 
Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic 
cells. J Clin Oncol 18(23):3894-903. 

Smith DE, Hanna R, Della F, Moore H, Chen H, Farese AM, MacVittie TJ, Virca GD, Sims JE. 
2003. The soluble form of IL-1 receptor accessory protein enhances the ability of 
soluble type II IL-1 receptor to inhibit IL-1 action. Immunity 18(1):87-96. 

Smith PC, Keller ET. 2001. Anti-interleukin-6 monoclonal antibody induces regression of 
human prostate cancer xenografts in nude mice. Prostate 48(1):47-53. 

Smittenaar CR, Petersen KA, Stewart K, Moitt N. 2016. Cancer incidence and mortality 
projections in the UK until 2035. Br J Cancer 115(9):1147-55. 

Soliman H, Mediavilla-Varela M, Antonia S. 2010. Indoleamine 2,3-Dioxygenase: Is It an 
Immune Suppressor? Cancer J 16(4). 

Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD, Han H, Ismail-Khan R, Minton S, 
Vahanian NN, Link C et al. . 2014. A first in man phase I trial of the oral 
immunomodulator, indoximod, combined with docetaxel in patients with metastatic 
solid tumors. Oncotarget 5(18):8136-46. 

Soliman HH, Minton SE, Han HS, Ismail-Khan R, Neuger A, Khambati F, Noyes D, Lush R, 
Chiappori AA, Roberts JD et al. . 2016. A phase I study of indoximod in patients with 
advanced malignancies. Oncotarget 7(16):22928-38. 

Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. 2008. 
Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and 



 

cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. 
Blood 111(3):1327-33. 

Speakman M, Kirby R, Doyle S, Ioannou C. 2015. Burden of male lower urinary tract 
symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) - focus on the 
UK. BJU Int 115(4):508-19. 

Stearns M, Stearns ME. 1996. Evidence for increased activated metalloproteinase 2 (MMP-2a) 
expression associated with human prostate cancer progression. Oncol Res 8(2):69-75. 

Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH. 1999. Interleukin-10-treated 
human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells 
resulting in a failure to lyse tumor cells. Blood 93(5):1634-42. 

Steiner GE, Stix U, Handisurya A, Willheim M, Haitel A, Reithmayr F, Paikl D, Ecker RC, 
Hrachowitz K, Kramer G et al. . 2003. Cytokine expression pattern in benign prostatic 
hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine 
mRNA profile in prostatic tissue. Lab Invest 83(8):1131-46. 

Stubbendorff M, Deuse T, Hua X, Phan TT, Bieback K, Atkinson K, Eiermann TH, Velden J, 
Schroder C, Reichenspurner H et al. . 2013. Immunological properties of 
extraembryonic human mesenchymal stromal cells derived from gestational tissue. 
Stem Cells Dev 22(19):2619-29. 

Sucher R, Kurz K, Weiss G, Margreiter R, Fuchs D, Brandacher G. 2010. IDO-Mediated 
Tryptophan Degradation in the Pathogenesis of Malignant Tumor Disease. Int J 
Tryptophan Res 3:113-20. 

Sung SY, Liao CH, Wu HP, Hsiao WC, Wu IH, Jinpu, Yu, Lin SH, Hsieh CL. 2013. Loss of let-7 
microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells 
triggering a reactive stromal response to prostate cancer. PLoS One 8(8):e71637. 

Suzuki Y, Suda T, Furuhashi K, Suzuki M, Fujie M, Hahimoto D, Nakamura Y, Inui N, Nakamura 
H, Chida K. 2010. Increased serum kynurenine/tryptophan ratio correlates with 
disease progression in lung cancer. Lung Cancer 67(3):361-5. 

Swain SL, Weinberg AD, English M, Huston G. 1990. IL-4 directs the development of Th2-like 
helper effectors. J Immunol 145(11):3796-806. 

Symons JA, Young PR, Duff GW. 1995. Soluble type II interleukin 1 (IL-1) receptor binds and 
blocks processing of IL-1 beta precursor and loses affinity for IL-1 receptor 
antagonist. Proc Natl Acad Sci U S A 92(5):1714-8. 

Taipale J, Keski-Oja J. 1997. Growth factors in the extracellular matrix. FASEB J 11(1):51-9. 

Taipale J, Miyazono K, Heldin CH, Keski-Oja J. 1994. Latent transforming growth factor-beta 
1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J 
Cell Biol 124(1-2):171-81. 

Takikawa O, Kuroiwa T, Yamazaki F, Kido R. 1988. Mechanism of interferon-gamma action. 
Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by 
interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in 
its anticellular activity. J Biol Chem 263(4):2041-8. 



 

Tang J, Yang J. 2009. Etiopathogenesis of benign prostatic hypeprlasia. Indian J Urol 
25(3):312-7. 

Tartaglia LA, Ayres TM, Wong GH, Goeddel DV. 1993. A novel domain within the 55 kd TNF 
receptor signals cell death. Cell 74(5):845-53. 

Tarter TH, Vaughan ED, Jr. 2006. Inhibitors of 5alpha-reductase in the treatment of benign 
prostatic hyperplasia. Curr Pharm Des 12(7):775-83. 

Terai M, Eto M, Young GD, Berd D, Mastrangelo MJ, Tamura Y, Harigaya K, Sato T. 2012. 
Interleukin 6 mediates production of interleukin 10 in metastatic melanoma. Cancer 
Immunol Immunother 61(2):145-55. 

Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, Conaway MR, Bender TP, Tung 
KS, Vella AT et al. . 2012. Lymphatic endothelial cells induce tolerance via PD-L1 and 
lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 
120(24):4772-82. 

Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, 
Molineaux SM, Weidner JR, Aunins J et al. . 1992. A novel heterodimeric cysteine 
protease is required for interleukin-1 beta processing in monocytes. Nature 
356(6372):768-74. 

Thornhill MH, Wellicome SM, Mahiouz DL, Lanchbury JS, Kyan-Aung U, Haskard DO. 1991. 
Tumor necrosis factor combines with IL-4 or IFN-gamma to selectively enhance 
endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion 
molecule-1-dependent and -independent binding mechanisms. J Immunol 146(2):592-
8. 

Tillmanns J, Hoffmann D, Habbaba Y, Schmitto JD, Sedding D, Fraccarollo D, Galuppo P, 
Bauersachs J. 2015. Fibroblast activation protein alpha expression identifies activated 
fibroblasts after myocardial infarction. J Mol Cell Cardiol 87:194-203. 

Timms BG, Lee CW, Aumuller G, Seitz J. 1995. Instructive induction of prostate growth and 
differentiation by a defined urogenital sinus mesenchyme. Microsc Res Tech 
30(4):319-32. 

Timosenko E, Ghadbane H, Silk JD, Shepherd D, Gileadi U, Howson LJ, Laynes R, Zhao Q, 
Strausberg RL, Olsen LR et al. . 2016. Nutritional Stress Induced by Tryptophan-
Degrading Enzymes Results in ATF4-Dependent Reprogramming of the Amino Acid 
Transporter Profile in Tumor Cells. Cancer Res 76(21):6193-6204. 

Toes RE, Ossendorp F, Offringa R, Melief CJ. 1999. CD4 T cells and their role in antitumor 
immune responses. J Exp Med 189(5):753-6. 

Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. 2008. Toll-
like receptors on human mesenchymal stem cells drive their migration and 
immunomodulating responses. Stem Cells 26(1):99-107. 

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, 
Carvajal RD, Sosman JA, Atkins MB et al. . 2012. Safety, activity, and immune 
correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443-54. 



 

Torrealba N, Rodriguez-Berriguete G, Fraile B, Olmedilla G, Martinez-Onsurbe P, Guil-Cid M, 
Paniagua R, Royuela M. 2017. Expression of several cytokines in prostate cancer: 
Correlation with clinical variables of patients. Relationship with biochemical 
progression of the malignance. Cytokine 89:105-115. 

Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T. 
1990. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 
171(5):1393-405. 

Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I, Ikeda M, Sekimoto M, 
Matsuura N, Monden M. 2007. Stromal myofibroblasts predict disease recurrence for 
colorectal cancer. Clin Cancer Res 13(7):2082-90. 

Tsuzaki M, Guyton G, Garrett W, Archambault JM, Herzog W, Almekinders L, Bynum D, Yang 
X, Banes AJ. 2003. IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 
beta and IL-6 in human tendon cells. J Orthop Res 21(2):256-64. 

Turnis ME, Korman AJ, Drake CG, Vignali DAA. 2012. Combinatorial Immunotherapy: PD-1 
may not be LAG-ing behind any more. Oncoimmunology 1(7):1172-4. 

Tuxhorn JA, Ayala GE, Rowley DR. 2001. Reactive stroma in prostate cancer progression. J 
Urol 166(6):2472-83. 

Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. 2002. Reactive stroma in 
human prostate cancer: induction of myofibroblast phenotype and extracellular 
matrix remodeling. Clin Cancer Res 8(9):2912-23. 

Ul-Haq Z, Naz S, Mesaik MA. 2016. Interleukin-4 receptor signaling and its binding 
mechanism: A therapeutic insight from inhibitors tool box. Cytokine Growth Factor 
Rev 32:3-15. 

Untergasser G, Gander R, Lilg C, Lepperdinger G, Plas E, Berger P. 2005. Profiling molecular 
targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. 
Mech Ageing Dev 126(1):59-69. 

Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde 
BJ. 2003. Evidence for a tumoral immune resistance mechanism based on tryptophan 
degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269-74. 

Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, Platten M, 
Zitvogel L, Kroemer G, Galluzzi L. 2014. Trial watch: IDO inhibitors in cancer 
therapy. Oncoimmunology 3(10):e957994. 

Valles SL, Benlloch M, Rodriguez ML, Mena S, Pellicer JA, Asensi M, Obrador E, Estrela JM. 
2013. Stress hormones promote growth of B16-F10 melanoma metastases: an 
interleukin 6- and glutathione-dependent mechanism. J Transl Med 11:72. 

van den Boorn JG, Hartmann G. 2013. Turning tumors into vaccines: co-opting the innate 
immune system. Immunity 39(1):27-37. 

Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman 
JB, Todaro M, Merz C, Rodermond H et al. . 2010. Wnt activity defines colon cancer 
stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468-76. 



 

Vral A, Magri V, Montanari E, Gazzano G, Gourvas V, Marras E, Perletti G. 2012. Topographic 
and quantitative relationship between prostate inflammation, proliferative 
inflammatory atrophy and low-grade prostate intraepithelial neoplasia: a biopsy 
study in chronic prostatitis patients. Int J Oncol 41(6):1950-8. 

Vu F, Dianzani U, Ware CF, Mak T, Gommerman JL. 2008. ICOS, CD40, and lymphotoxin beta 
receptors signal sequentially and interdependently to initiate a germinal center 
reaction. J Immunol 180(4):2284-93. 

Wajant H, Pfizenmaier K, Scheurich P. 2003. Tumor necrosis factor signaling. Cell Death Differ 
10(1):45-65. 

Wakefield LM, Smith DM, Flanders KC, Sporn MB. 1988. Latent transforming growth factor-
beta from human platelets. A high molecular weight complex containing precursor 
sequences. J Biol Chem 263(16):7646-54. 

Wang L, Pino-Lagos K, de Vries VC, Guleria I, Sayegh MH, Noelle RJ. 2008. Programmed 
death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory 
T cells. Proc Natl Acad Sci U S A 105(27):9331-6. 

Wang L, Xie L, Tintani F, Xie H, Li C, Cui Z, Wan M, Zu X, Qi L, Cao X. 2016. Aberrant 
Transforming Growth Factor-beta Activation Recruits Mesenchymal Stem Cells 
During Prostatic Hyperplasia. Stem Cells Transl Med. 

Wang Y, Chen X, Cao W, Shi Y. 2014. Plasticity of mesenchymal stem cells in 
immunomodulation: pathological and therapeutic implications. Nat Immunol 
15(11):1009-16. 

Ware CF, Crowe PD, Vanarsdale TL, Andrews JL, Grayson MH, Jerzy R, Smith CA, Goodwin 
RG. 1991. Tumor necrosis factor (TNF) receptor expression in T lymphocytes. 
Differential regulation of the type I TNF receptor during activation of resting and 
effector T cells. J Immunol 147(12):4229-38. 

Wassenaar A, Verschoor T, Kievits F, Den Hartog MT, Kapsenberg ML, Everts V, Snijders A. 
1999. CD40 engagement modulates the production of matrix metalloproteinases by 
gingival fibroblasts. Clin Exp Immunol 115(1):161-7. 

Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, 
Griesser H, Mak TW. 1995. Lymphoproliferative disorders with early lethality in mice 
deficient in Ctla-4. Science 270(5238):985-8. 

Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. 2010. A new mesenchymal stem cell 
(MSC) paradigm: polarization into a pro-inflammatory MSC1 or an 
Immunosuppressive MSC2 phenotype. PLoS One 5(4):e10088. 

Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. 2006. Th17: an effector CD4 
T cell lineage with regulatory T cell ties. Immunity 24(6):677-88. 

Weinberger B. 2017. Immunosenescence: the importance of considering age in health and 
disease. Clin Exp Immunol 187(1):1-3. 

Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D. 2007. Decreased serum tryptophan 
concentration predicts poor prognosis in malignant melanoma patients. Dermatology 
214(1):8-14. 



 

Weinstock A, Pevsner-Fischer M, Porat Z, Selitrennik M, Zipori D. 2015. Cultured Mesenchymal 
Stem Cells Stimulate an Immune Response by Providing Immune Cells with Toll-
Like Receptor 2 Ligand. Stem Cell Rev 11(6):826-40. 

Wen X, Xie Y, He X, Jiao F, Wang C, Sun Y, Ren X, Li Q. 2016. Fibroblast activation protein-
alpha positive fibroblasts promote gastric cancer progression and resistant to 
immune checkpoint blockade. Oncol Res. 

Werman A, Werman-Venkert R, White R, Lee JK, Werman B, Krelin Y, Voronov E, Dinarello 
CA, Apte RN. 2004. The precursor form of IL-1alpha is an intracrine 
proinflammatory activator of transcription. Proc Natl Acad Sci U S A 101(8):2434-9. 

Wikberg ML, Edin S, Lundberg IV, Van Guelpen B, Dahlin AM, Rutegard J, Stenling R, Oberg A, 
Palmqvist R. 2013. High intratumoral expression of fibroblast activation protein 
(FAP) in colon cancer is associated with poorer patient prognosis. Tumour Biol 
34(2):1013-20. 

Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. 1998. Transforming growth 
factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in 
prostate cancer. Prostate 37(1):19-29. 

Willermain F, Caspers-Velu L, Baudson N, Dubois C, Hamdane M, Willems F, Velu T, Bruyns C. 
2000. Role and expression of CD40 on human retinal pigment epithelial cells. Invest 
Ophthalmol Vis Sci 41(11):3485-91. 

Wills-Karp M, Finkelman FD. 2008. Untangling the Complex Web of IL-4– and IL-13–
Mediated Signaling Pathways. Sci Signal 1(51):pe55. 

Wirsdorfer F, Cappuccini F, Niazman M, de Leve S, Westendorf AM, Ludemann L, Stuschke M, 
Jendrossek V. 2014. Thorax irradiation triggers a local and systemic accumulation of 
immunosuppressive CD4+ FoxP3+ regulatory T cells. Radiat Oncol 9:98. 

Wise GJ, Marella VK, Talluri G, Shirazian D. 2000. Cytokine variations in patients with 
hormone treated prostate cancer. J Urol 164(3 Pt 1):722-5. 

Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN. 1994. Involvement of 
the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid 
cells. Nature 370(6485):153-7. 

Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano D, 
Vogel P, Liu CL et al. . 2012. Immune inhibitory molecules LAG-3 and PD-1 
synergistically regulate T cell function to promote tumoral immune escape. Cancer 
Res 72(4):917-27. 

Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. 1994. Mechanism of activation of the 
TGF-beta receptor. Nature 370(6488):341-7. 

Wu CJ, Conze DB, Li X, Ying SX, Hanover JA, Ashwell JD. 2005. TNF-alpha induced c-
IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 
ubiquitination. EMBO J 24(10):1886-98. 

Wu D, Ding Y, Wang S, Zhang Q, Liu L. 2008. Increased expression of high mobility group box 
1 (HMGB1) is associated with progression and poor prognosis in human 
nasopharyngeal carcinoma. J Pathol 216(2):167-75. 



 

Wu H, Chen P, Liao R, Li YW, Yi Y, Wang JX, Cai XY, He HW, Jin JJ, Cheng YF et al. . 2013. 
Intratumoral regulatory T cells with higher prevalence and more suppressive activity 
in hepatocellular carcinoma patients. J Gastroenterol Hepatol 28(9):1555-64. 

Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z. 2012. TGF-beta 1 induced fibroblast proliferation 
is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 17:2667-74. 

Xu H, Ding Q, Jiang HW. 2014. Genetic polymorphism of interleukin-1A (IL-1A), IL-1B, and 
IL-1 receptor antagonist (IL-1RN) and prostate cancer risk. Asian Pac J Cancer Prev 
15(20):8741-7. 

Xue Y, Smedts F, Latijnhouwers MA, Ruijter ET, Aalders TW, de la Rosette JJ, Debruyne FM, 
Schalken JA. 1998. Tenascin-C expression in prostatic intraepithelial neoplasia (PIN): 
a marker of progression? Anticancer Res 18(4A):2679-84. 

Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. 2001. A role for TGF-beta in the generation 
and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J 
Immunol 166(12):7282-9. 

Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, Prada N, Adjemian S, 
Catani JP, Freudenberg M et al. . 2014. Defective immunogenic cell death of HMGB1-
deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 
21(1):69-78. 

Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. 2005. Stromal expression 
of connective tissue growth factor promotes angiogenesis and prostate cancer 
tumorigenesis. Cancer Res 65(19):8887-95. 

Yang L, Pang Y, Moses HL. 2010. TGF-beta and immune cells: an important regulatory axis 
in the tumor microenvironment and progression. Trends Immunol 31(6):220-7. 

Yellin MJ, Winikoff S, Fortune SM, Baum D, Crow MK, Lederman S, Chess L. 1995. Ligation of 
CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) up-regulation 
and IL-6 production and proliferation. J Leukoc Biol 58(2):209-16. 

Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. 2012. 
Programmed cell death 1 forms negative costimulatory microclusters that directly 
inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 
209(6):1201-17. 

Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. 1991. Wild-type p53 
induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 
352(6333):345-7. 

Yoshida R, Hayaishi O. 1978. Induction of pulmonary indoleamine 2,3-dioxygenase by 
intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 
75(8):3998-4000. 

Yoshida R, Imanishi J, Oku T, Kishida T, Hayaishi O. 1981. Induction of pulmonary 
indoleamine 2,3-dioxygenase by interferon. Proc Natl Acad Sci U S A 78(1):129-32. 

Yu Q, Stamenkovic I. 2000. Cell surface-localized matrix metalloproteinase-9 proteolytically 
activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 
14(2):163-76. 



 

Yu SH, Zheng Q, Esopi D, Macgregor-Das A, Luo J, Antonarakis ES, Drake CG, Vessella R, 
Morrissey C, De Marzo AM et al. . 2015. A Paracrine Role for IL6 in Prostate Cancer 
Patients: Lack of Production by Primary or Metastatic Tumor Cells. Cancer Immunol 
Res 3(10):1175-84. 

Yuan J, Orlandi F, Jefferson M, Li H, Gallardo H, Ku G, Wolchok J, Scher H, Allison J, Slovin SF. 
2009. Cytokine changes in castrate metastatic prostate cancer (CPMC) patients (pts) 
treated with ipilimumab (Ipi). J Clin Oncol 27(15_suppl):e16149. 

Zaidi MR, Merlino G. 2011. The two faces of interferon-gamma in cancer. Clin Cancer Res 
17(19):6118-24. 

Zenzmaier C, Kern J, Heitz M, Plas E, Zwerschke W, Mattesich M, Sandner P, Berger P. 2015. 
Activators and stimulators of soluble guanylate cyclase counteract myofibroblast 
differentiation of prostatic and dermal stromal cells. Exp Cell Res 338(2):162-9. 

Zhang T, Xu J, Shen H, Dong W, Ni Y, Du J. 2015. Tumor-stroma ratio is an independent 
predictor for survival in NSCLC. Int J Clin Exp Pathol 8(9):11348-55. 

Zhang Y, Ertl HC. 2016. Depletion of FAP+ cells reduces immunosuppressive cells and 
improves metabolism and functions CD8+T cells within tumors. Oncotarget 
7(17):23282-99. 

Zhao H, Shiina H, Greene KL, Li LC, Tanaka Y, Kishi H, Igawa M, Kane CJ, Carroll P, Dahiya R. 
2005. CpG methylation at promoter site -140 inactivates TGFbeta2 receptor gene in 
prostate cancer. Cancer 104(1):44-52. 

Zhong Z, Wen Z, Darnell JE, Jr. 1994. Stat3: a STAT family member activated by tyrosine 
phosphorylation in response to epidermal growth factor and interleukin-6. Science 
264(5155):95-8. 

Zhou F. 2009. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen 
processing and presentation. Int Rev Immunol 28(3-4):239-60. 

Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. 2013. Mechanism of action of conventional and 
targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74-88. 

 
 


